WorldWideScience

Sample records for high energy heavy

  1. Prospects for high energy heavy ion accelerators

    International Nuclear Information System (INIS)

    Leemann, C.

    1979-03-01

    The acceleration of heavy ions to relativistic energies (T greater than or equal to 1 GeV/amu) at the beam intensities required for fundamental research falls clearly in the domain of synchrotons. Up to date, such beams have been obtained from machines originally designed as proton acccelerators by means of modified RF-programs, improved vacuum and, most importantly, altered or entirely new injector systems. Similarly, for the future, substantial changes in synchrotron design itself are not foreseen, but rather the judicious application and development of presently known principles and technologies and a choice of parameters optimized with respect to the peculiarities of heavy ions. The low charge to mass ratio, q/A, of very heavy ions demands that superconducting magnets be considered in the interest of the highest energies for a given machine size. Injector brightness will continue to be of highest importance, and although space charge effects such as tune shifts will be increased by a factor q 2 /A compared with protons, advances in linac current and brightness, rather than substantially higher energies are required to best utilize a given synchrotron acceptance. However, high yeilds of fully stripped, very heavy ions demand energies of a few hundred MeV/amu, thus indicating the need for a booster synchrotron, although for entirely different reasons than in proton facilities. Finally, should we consider colliding beams, the high charge of heavy ions will impose severe current limitations and put high demands on system design with regard to such quantities as e.g., wall impedances or the ion induced gas desorption rate, and advanced concepts such as low β insertions with suppressed dispersion and very small crossing angles will be essential to the achievement of useful luminosities

  2. An intranuclear cascade calculation of high-energy heavy-ion interactions

    International Nuclear Information System (INIS)

    Yariv, Y.; Fraenkel, Z.

    1979-01-01

    The intranuclear cascade model of Chen is extended to high-energy reactions between two heavy ions. The results of the calculations are compared with experimental results for the inclusive proton and pion cross sections, two-particle correlations, particle multiplicity distributions and spallation cross section distributions from light ( 12 C+ 12 C) to heavy( 40 Ar + 238 U) projectile-target systems in the laboratory bombarding energy range E/A=250-1000 MeV. The comparison shows that the model is fairly successful in reproducing the various aspects of high-energy reactions between heavy ions. It is also shown that the assumption that high particle multiplicities are indicative of ''central'' (small impact parameter) collisions are well founded for heavy projectile-target systems. (B.G.)

  3. Heavy ion fragmentation in high energy

    International Nuclear Information System (INIS)

    Nemes, M.C.

    1985-01-01

    A review is made on the theoretical aspects of heavy ion collisions at high energies. A comparison with several experimental data obtained in a large variety of experiments is present. An emphasis is given on the basis of Glauber's theory of scattering. (L.C.) [pt

  4. Reaction mechanism in high energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Tanihata, Isao.

    1982-04-01

    The reaction mechanism in high energy heavy-ion collision is discussed. The discussion is mainly based on the experimental data. Empirical equations have been given for the total cross-sections of nucleus-nucleus reactions and the reaction cross-sections. These cross-sections are well described by the geometrical size of the colliding nuclei. The cross-sections are also understood by microscopic calculation. The charged particle multiplicity gives additional information about the geometrical aspect of heavy ion collision. The data suggested that the total energy, independent of projectile size, is most important for determining the multiplicity. The inclusive proton spectrum in a heavy ion collision showed two distinct regions. The one is the fragment region, and the other the participant region. The spectral shapes of inclusive pion spectra are reasonably well explained by the Coulomb interaction of pions with nuclear fragments. The high energy heavy ion reaction occurs in the overlap region of the projectile and target. This has been tested by measuring the number of participants for various reactions. The space and the time structure of the collision are also discussed in this paper as well as the dynamical aspects of the collision. (Kato, T.)

  5. Numerical analysis of energy density and particle density in high energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Fu Yuanyong; Lu Zhongdao

    2004-01-01

    Energy density and particle density in high energy heavy-ion collisions are calculated with infinite series expansion method and Gauss-Laguerre formulas in numerical integration separately, and the results of these two methods are compared, the higher terms and linear terms in series expansion are also compared. The results show that Gauss-Laguerre formulas is a good method in calculations of high energy heavy-ion collisions. (author)

  6. New aspects of high energy heavy-ion transfer reactions

    International Nuclear Information System (INIS)

    Scott, D.K.

    1975-03-01

    New aspects of heavy ion reactions at incident energies in the region of 10 MeV/nucleon are discussed with an emphasis on the peripheral nature of the collisions, which leads to simplicities in the differential cross sections. The distortion of the peripheral distribution through the interference of direct and multistep processes is used to illustrate aspects of high energy reactions unique to heavy ions. The simplicities of the distributions for reactions on lighter nuclei are exploited to give new information about nuclear structure from direct and compound reactions at high energy. (16 figures, 32 references) (U.S.)

  7. Experiments on very high energy heavy ions

    International Nuclear Information System (INIS)

    Willis, W.J.

    1981-01-01

    In this paper I describe experimental techniques which could be used to investigate central collision of very high energy heavy ions. For my purposes, the energy range is defined by the number of pions produced, Nsub(π) >> 100, and consequently Nsub(π) >> Nsub(nucleon). In this regime we may expect that new phenomena will appear. (orig.)

  8. Heavy Quark and Quarkonium Transport in High Energy Nuclear Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Kai [Physics Department, Tsinghua University and Collaborative Innovation Center of Quantum Matter, Beijing 100084 (China); Institute for Theoretical Physics, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main (Germany); Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, D-60438 Frankfurt am Main (Germany); Dai, Wei [Physics Department, Tsinghua University and Collaborative Innovation Center of Quantum Matter, Beijing 100084 (China); Xu, Nu [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Zhuang, Pengfei [Physics Department, Tsinghua University and Collaborative Innovation Center of Quantum Matter, Beijing 100084 (China)

    2016-12-15

    The strong interaction between heavy quarks and the quark gluon plasma makes the open and hidden charm hadrons be sensitive probes of the deconfinement phase transition in high energy nuclear collisions. Both the cold and hot nuclear matter effects change with the colliding energy and significantly influence the heavy quark and charmonium yield and their transverse momentum distributions. The ratio of averaged quarkonium transverse momentum square and the elliptic flow reveal the nature of the QCD medium created in heavy ion collisions at SPS, RHIC and LHC energies.

  9. Heavy Quark and Quarkonium Transport in High Energy Nuclear Collisions

    International Nuclear Information System (INIS)

    Zhou, Kai; Dai, Wei; Xu, Nu; Zhuang, Pengfei

    2016-01-01

    The strong interaction between heavy quarks and the quark gluon plasma makes the open and hidden charm hadrons be sensitive probes of the deconfinement phase transition in high energy nuclear collisions. Both the cold and hot nuclear matter effects change with the colliding energy and significantly influence the heavy quark and charmonium yield and their transverse momentum distributions. The ratio of averaged quarkonium transverse momentum square and the elliptic flow reveal the nature of the QCD medium created in heavy ion collisions at SPS, RHIC and LHC energies.

  10. High-energy manifestations of heavy quarks in axial-vector neutral currents

    International Nuclear Information System (INIS)

    Kizukuri, Y.; Ohba, I.; Okano, K.; Yamanaka, Y.

    1981-01-01

    A recent work by Collins, Wilczek, and Zee has attempted to manifest the incompleteness of the decoupling theorem in the axial-vector neutral currents at low energies. In the spirit of their work, we calculate corrections of the axial-vector neutral currents by virtual-heavy-quark exchange in the high-energy e + e - processes and estimate some observable quantities sensitive to virtual-heavy-quark masses which may be compared with experimental data at LEP energies

  11. Heavy ion reactions at high energies

    International Nuclear Information System (INIS)

    Jakobsson, Bo.

    1977-01-01

    A review on heavy ion experiments at energies >0.1GeV/nucleon is presented. Reaction cross-sections, isotope production cross-sections and pion production in nucleus-nucleus collisions are discussed. Some recent models for heavy ion reactions like the abrasion-ablation model, the fireball model and the different shock-wave models are also presented

  12. Photon and dilepton production in high-energy heavy-ion collisions

    Indian Academy of Sciences (India)

    2015-05-07

    May 7, 2015 ... The recent results on direct photons and dileptons in high-energy heavy-ion collisions, obtained particularly at Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) are reviewed. The results are new not only in terms of the probes, but also in terms of the precision. We shall discuss the ...

  13. High energy structures in heavy ion collisions: a multiphonon description

    International Nuclear Information System (INIS)

    Chomaz, P.; Blumenfeld, Y.; Frascaria, N.

    1984-01-01

    Energy spectra of fragments from the 36 Ar + 208 Pb reaction at 11 MeV/n exhibit structures at high excitation energies. These structures are interpreted in terms of target multi-phonon excitations built from giant resonances. The importance of such processes for the kinetic energy dissipation in heavy ion collisions is emphasized

  14. Investigation of structural materials of reactors using high-energy heavy-ion irradiations

    International Nuclear Information System (INIS)

    Wang Zhiguang

    2007-01-01

    Radiation damage in structural materials of fission/fusion reactors is mainly attributed to the evolution of intensive atom displacement damage induced by energetic particles (n, α and/or fission fragments) and high-rate helium doping by direct α particle bombardments and/or (n, α) reactions. It can cause severe degradation of reactor structural materials such as surface blistering, bulk void swelling, deformation, fatigue, embrittlement, stress erosion corrosion and so on that will significantly affect the operation safety of reactors. However, up to now, behavior of structural materials at the end of their service can hardly be fully tested in a real reactor. In the present work, damage process in reactor structural materials is briefly introduced, then the advantages of energetic ion implantation/irradiation especially high-energy heavy ion irradiation are discussed, and several typical examples on simulation of radiation effects in reactor candidate structural materials using high-energy heavy ion irradiations are pronounced. Experimental results and theoretical analysis suggested that irradiation with energetic particles especially high-energy heavy ions is very useful technique for simulating the evolution of microstructures and macro-properties of reactor structural materials. Furthermore, an on-going plan of material irradiation experiments using high energy H- and He-ions based on the Heavy Ion Research Facilities in Lanzhou (HIRFL) is also briefly interpreted. (authors)

  15. High energy density in matter produced by heavy ion beams

    International Nuclear Information System (INIS)

    1987-08-01

    This annual report summarizes the results of research carried out in 1986 within the framework of the program 'High Energy Density in Matter Produced by Heavy Ion Beams' which is funded by the Federal Ministry for Research and Technology. Its initial motivation and its ultimate goal is the question whether inertial confinement can be achieved by intense beams of heavy ions. (orig./HSI)

  16. Review of high energy heavy ion experiments

    International Nuclear Information System (INIS)

    Miake, Yasuo

    2000-01-01

    It has been proposed that in high energy heavy ion collisions a physical conditions similar to the early stage of the Universe can be established in the laboratory. New phase of matter expected to be created is called the quark gluon plasma (QGP). Based on the motivation to create the QGP in the laboratory, heavy ion beams have been accelerated at AGS of Brookhaven National Laboratory and also at CERN-SPS. Several interesting features of the data have been reported, among which are: the suppression of J/ψ production in Pb+Pb collisions, the enhancement of low mass lepton pairs, and the collective behavior of hadron production. These features are reviewed under the key words of Deconfinement, Chiral Restoration and Collectivity in the lecture. (author)

  17. Fifth high-energy heavy-ion study

    International Nuclear Information System (INIS)

    1981-10-01

    This was the fifth of a continuing series of summer studies held at LBL to discuss high energy heavy ion collisions. Recently, a similar meeting has been held on alternate years at GSI (Darmstadt); and, in 1979, we held a meeting at LBL exclusively devoted to ultra-relativistic nuclear collisions. Two new features distinguish this study from earlier meetings in the series. First, the energy range for discussion was broadened by including collisions from about 20 MeV/nucleon to the highest available in the cosmic radiation. The lower range, particularly below 100 MeV/nucleon, will be under intense study in the near future with machines such as the upgraded Bevalac, Michigan State University Superconducting Cyclotron, GANIL in France, and the SC at CERN. Recently, the high energy collision regime has been expanded by the successful operation of the CERN ISR with alpha particles. Second, in addition to an extensive program of invited talks, we decided for the first time to actively solicit contributions. Forty-seven individual items from the conference were prepared separately for the data base

  18. Fifth high-energy heavy-ion study

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-01

    This was the fifth of a continuing series of summer studies held at LBL to discuss high energy heavy ion collisions. Recently, a similar meeting has been held on alternate years at GSI (Darmstadt); and, in 1979, we held a meeting at LBL exclusively devoted to ultra-relativistic nuclear collisions. Two new features distinguish this study from earlier meetings in the series. First, the energy range for discussion was broadened by including collisions from about 20 MeV/nucleon to the highest available in the cosmic radiation. The lower range, particularly below 100 MeV/nucleon, will be under intense study in the near future with machines such as the upgraded Bevalac, Michigan State University Superconducting Cyclotron, GANIL in France, and the SC at CERN. Recently, the high energy collision regime has been expanded by the successful operation of the CERN ISR with alpha particles. Second, in addition to an extensive program of invited talks, we decided for the first time to actively solicit contributions. Forty-seven individual items from the conference were prepared separately for the data base. (GHT)

  19. A model for high-energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Myers, W.D.

    1978-01-01

    A model is developed for high-energy heavy-ion collisions that treats the variation across the overlap region of the target and projectile in the amount of energy and momentum that is deposited. The expression for calculating any observable takes the form of a sum over a series of terms, each one of which consists of a geometric, a kinematic, and a statistical factor. The geometrical factors for a number of target projectile systems are tabulated. (Auth.)

  20. High-energy heavy ion testing of VLSI devices for single event ...

    Indian Academy of Sciences (India)

    Unknown

    per describes the high-energy heavy ion radiation testing of VLSI devices for single event upset (SEU) ... The experimental set up employed to produce low flux of heavy ions viz. silicon ... through which they pass, leaving behind a wake of elec- ... for use in Bus Management Unit (BMU) and bulk CMOS ... was scheduled.

  1. Nuclear interactions in high energy heavy ions and applications in astrophysics

    International Nuclear Information System (INIS)

    Wefel, J.P.; Guzik, T.G.

    1993-01-01

    The overall objective is to study the mechanisms and the energy dependence of heavy ion fragmentation by studying the reactions of heavy ion projectiles (e.g. 4 He, 16 O, 20 Ne, 28 Si, 56 Fe) in a variety of targets (H, He, C, Si, Cu, Pb) and at a number of beam energies exceeding 0.1 GeV/nucleon. The results have application to questions in high-energy nuclear astrophysics. Most of the discussion is on low-energy 16 O, 28 Si data analysis. The description includes analysis procedures and techniques, detector calibrations, data selections and normalizations. Cross section results for the analysis are also presented. 83 figs., 6 tabs., 73 refs

  2. Photon and dilepton production in high-energy heavy-ion collisions

    Indian Academy of Sciences (India)

    2015-05-07

    May 7, 2015 ... Photons; dileptons; Relativistic Heavy Ion Collider; Large Hadron Collider; quark ... the collisions produces relatively high pT photons, often referred to ..... energy have been found for identified charged hadrons at RHIC [25].

  3. Shielding experiments with high-energy heavy ions for spaceflight applications

    International Nuclear Information System (INIS)

    Zeitlin, C; Guetersloh, S; Heilbronn, L; Miller, J; Elkhayari, N; Empl, A; LeBourgeois, M; Mayes, B W; Pinsky, L; Christl, M; Kuznetsov, E

    2008-01-01

    Mitigation of radiation exposures received by astronauts on deep-space missions must be considered in the design of future spacecraft. The galactic cosmic rays (GCR) include high-energy heavy ions, many of which have ranges that exceed the depth of shielding that can be launched in realistic scenarios. Some of these ions are highly ionizing (producing a high dose per particle) and for some biological endpoints are more damaging per unit dose than sparsely ionizing radiation. The principal physical mechanism by which the dose and dose equivalent delivered by these particles can be reduced is nuclear fragmentation, the result of inelastic collisions between nuclei in the hull of the spacecraft and/or other materials. These interactions break the incident ions into lighter, less ionizing and less biologically effective particles. We have previously reported the tests of shielding effectiveness using many materials in a 1 GeV nucleon -1 56 Fe beam, and also reported results using a single polyethylene (CH 2 ) target in a variety of beam ions and energies up to 1 GeV nucleon -1 . An important, but tentative, conclusion of those studies was that the average behavior of heavy ions in the GCR would be better simulated by heavy beams at energies above 1 GeV nucleon -1 . Following up on that work, we report new results using beams of 12 C, 28 Si and 56 Fe, each at three energies, 3, 5 and 10 GeV nucleon -1 , on carbon, polyethylene, aluminium and iron targets

  4. Shielding experiments with high-energy heavy ions for spaceflight applications

    Energy Technology Data Exchange (ETDEWEB)

    Zeitlin, C; Guetersloh, S; Heilbronn, L; Miller, J [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Elkhayari, N; Empl, A; LeBourgeois, M; Mayes, B W; Pinsky, L [Physics Department, University of Houston, Houston, TX (United States); Christl, M [NASA Marshall Spaceflight Center, Huntsville, AL (United States); Kuznetsov, E [Physics Department, University of Alabama, Huntsville, AL (United States)], E-mail: cjzeitlin@lbl.gov

    2008-07-15

    Mitigation of radiation exposures received by astronauts on deep-space missions must be considered in the design of future spacecraft. The galactic cosmic rays (GCR) include high-energy heavy ions, many of which have ranges that exceed the depth of shielding that can be launched in realistic scenarios. Some of these ions are highly ionizing (producing a high dose per particle) and for some biological endpoints are more damaging per unit dose than sparsely ionizing radiation. The principal physical mechanism by which the dose and dose equivalent delivered by these particles can be reduced is nuclear fragmentation, the result of inelastic collisions between nuclei in the hull of the spacecraft and/or other materials. These interactions break the incident ions into lighter, less ionizing and less biologically effective particles. We have previously reported the tests of shielding effectiveness using many materials in a 1 GeV nucleon{sup -1} {sup 56}Fe beam, and also reported results using a single polyethylene (CH{sub 2}) target in a variety of beam ions and energies up to 1 GeV nucleon{sup -1}. An important, but tentative, conclusion of those studies was that the average behavior of heavy ions in the GCR would be better simulated by heavy beams at energies above 1 GeV nucleon{sup -1}. Following up on that work, we report new results using beams of {sup 12}C, {sup 28}Si and {sup 56}Fe, each at three energies, 3, 5 and 10 GeV nucleon{sup -1}, on carbon, polyethylene, aluminium and iron targets.

  5. Searching for squeezed particle-antiparticle correlations in high-energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Padula, Sandra S.; Socolowski, O. Jr.

    2010-01-01

    Squeezed correlations of particle-antiparticle pairs were predicted to exist if the hadron masses were modified in the hot and dense medium formed in high-energy heavy-ion collisions. Although well-established theoretically, they have not yet been observed experimentally. We suggest here a clear method to search for such a signal by analyzing the squeezed correlation functions in terms of measurable quantities. We illustrate this suggestion for simulated φφ pairs at the Relativistic Heavy Ion Collider (RHIC) energies.

  6. Microscopic descriptions of high-energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Bodmer, A.R.

    1977-01-01

    The essentials of the equation-of-motion (EOM) approach are given and some of its significant and interesting results are described. A framework for the theoretical description of high-energy heavy-ion (HE-HI) collisions is presented; specifically included are a critical assessment of various approaches--EOM calculations, Boltzmann equations/cascade calculations, and hydrodynamics--their relationships and their respective domains of applicability, if any, to HE-HI collisions. 11 figures, 3 tables

  7. Heavy quark production in photon-Pomeron interactions at high energies

    Energy Technology Data Exchange (ETDEWEB)

    Machado, M. M. [Instituto Federal de Ciencia, Educacao e Tecnologia Farroupilha, Campus Sao Borja, Rua Otaviano Castilho Mendes, 355, CEP 97670-000, Sao Borja, RS (Brazil); Goncalves, V. P. [Instituto de Fisica e Matematica - IFM, Universidade Federal de Pelotas, Caixa Postal 354, CEP 96010-900, RS (Brazil)

    2013-03-25

    The diffractive heavy quark cross sections are estimated considering photon-Pomeron interactions in hadron - hadron at RHIC, Tevatron, and CERN LHC energies. We assume the validity of the hard diffractive factorization and calculate the charm and bottom total cross sections and rapidity distributions using the diffractive parton distribution functions of the Pomeron obtained by the H1 Collaboration at DESY-HERA. Such processes are sensitive to the gluon content of the Pomeron at high energies and are a good place to constrain the behavior of this distribution. We also compare our predictions with those obtained using the dipole model, and verify that these processes are a good test of the different mechanisms for heavy quarks diffractive production at hadron colliders.

  8. Emission of high-energy, light particles from intermediate-energy heavy-ion reactions

    International Nuclear Information System (INIS)

    Ball, J.B.; Auble, R.L.

    1982-01-01

    One of the early surprises in examining reaction products from heavy ion reactions at 10 MeV/nucleon and above was the large yield of light particles emitted and the high energies to which the spectra of these particles extended. The interpretation of the origin of the high energy light ions has evolved from a picture of projectile excitation and subsequent evaporation to one of pre-equilibrium (or nonequilibrium) emission. The time scale for particle emission has thus moved from one that occurs following the initial collision to one that occurs at the very early stages of the collision. Research at ORNL on this phenomenon is reviewed

  9. Discovery of hydrodynamic behavior in high energy heavy ion collisions

    International Nuclear Information System (INIS)

    Hamagaki, Hideki

    2010-01-01

    The objective of high energy heavy ion collision experiments is creating high temperature and high density states to investigate hadron matter properties in such extreme conditions. Since the start of heavy ion collision experiments with BEVALAC, knowledge of the space-time evolution of collision has become indispensable for understanding the hadronic matter properties. This problem is reviewed here from the hydrodynamics view point. Although its importance has been generally recognized since the time of BEVALAC, the hydrodynamic description has not been successful because the hydrodynamic model assuming non-viscous or small fluid had not been considered to be enough to properly describe the space-time evolution of hadron-hadron collisions until the RHIC experiments. Items of the following titles are picked up and reviewed here: Development of heavy ion accelerations; Space-time evolution of hadron collision process and hydrodynamic model; Chemical freezing and kinematical freezing, including transverse momentum spectra at proton-proton collisions and particle spectra in heavy ion collisions; Elliptical azimuthal angle anisotropy; Discovery of hydrodynamic flow at BEVALAC; Problems of incident beam dependence of v2; Elliptic azimuthal angle anisotropy at RHIC; What is it that carries the elliptic anisotropy? Discussion of attainment of thermodynamical equilibrium state at RHIC; and finally investigations of fluid properties other than azimuthal anisotropy, such as, Fluid properties probed by heavy quarks and Observing QCD fluid responses. (S. Funahashi)

  10. A time of flight detector for high energy heavy particles

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Z.; O`Connor, D.J. [Newcastle Univ., NSW (Australia). Dept. of Physics

    1993-12-31

    As a commonly used method to measure the energy of a particle with known mass, the flight time of the particle travelling over a certain distance is measured. A detector based on this principle is called a time-of-flight (TOF) detector which has attracted interests constantly during the last 15 years. For high energy heavy particle energy detection, TOF detector is an appropriated choice and such a system, developed recently, is described in this paper. 8 refs., 3 figs.

  11. A time of flight detector for high energy heavy particles

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Z; O` Connor, D J [Newcastle Univ., NSW (Australia). Dept. of Physics

    1994-12-31

    As a commonly used method to measure the energy of a particle with known mass, the flight time of the particle travelling over a certain distance is measured. A detector based on this principle is called a time-of-flight (TOF) detector which has attracted interests constantly during the last 15 years. For high energy heavy particle energy detection, TOF detector is an appropriated choice and such a system, developed recently, is described in this paper. 8 refs., 3 figs.

  12. Prototype drift chamber for high energy heavy ions with a large dynamic range

    International Nuclear Information System (INIS)

    Kobayashi, T.; Bieser, F.; Crawford, H.; Lindstrom, P.; Baumgartner, M.; Greiner, D.

    1985-01-01

    The authors have constructed and tested a small prototype drift chamber designed for high energy heavy ions. When a drift chamber is used as a tracking detector for heavy projectile fragments from high energy nucleus-nucleus reactions, the major problem comes from the many spurious hits due to delta-rays. Three methods have been developed to solve this problem. The first one is to use a constant fraction discriminator to pick up the timing signal from the core ionization under the large background of delta-rays. The second one is to use pulse height information from the drift chamber to find the cell hit by the heavy ion. The last one is the idea of distributed planes. Modular planes (12 in this case) are distributed 10 cm apart on a rigid base plate to provide accurate relative positioning of the wires. The performance of the prototype chamber has been measured as a function of the high voltage bias and of the charge of the heavy ion from protons up to uranium at around 1 GeV/nucleon

  13. U.S. Heavy Ion Beam Research for High Energy Density Physics Applications and Fusion

    International Nuclear Information System (INIS)

    Davidson, R.C.; Logan, B.G.; Barnard, J.J.; Bieniosek, F.M.; Briggs, R.J.

    2005-01-01

    Key scientific results from recent experiments, modeling tools, and heavy ion accelerator research are summarized that explore ways to investigate the properties of high energy density matter in heavy-ion-driven targets, in particular, strongly-coupled plasmas at 0.01 to 0.1 times solid density for studies of warm dense matter, which is a frontier area in high energy density physics. Pursuit of these near-term objectives has resulted in many innovations that will ultimately benefit heavy ion inertial fusion energy. These include: neutralized ion beam compression and focusing, which hold the promise of greatly improving the stage between the accelerator and the target chamber in a fusion power plant; and the Pulse Line Ion Accelerator (PLIA), which may lead to compact, low-cost modular linac drivers

  14. Energy loss and charge exchange processes of high energy heavy ions channeled in crystals

    International Nuclear Information System (INIS)

    Poizat, J.C.; Andriamonje, S.; Anne, R.; Faria, N.V.d.C.; Chevallier, M.; Cohen, C.; Dural, J.; Farizon-Mazuy, B.; Gaillard, M.J.; Genre, R.; Hage-Ali, M.; Kirsch, R.; L'hoir, A.; Mory, J.; Moulin, J.; Quere, Y.; Remillieux, J.; Schmaus, D.; Toulemonde, M.

    1990-01-01

    The interaction of moving ions with single crystals is very sensitive to the orientation of the incident beam with respect to the crystalline directions of the target. Our experiments show that high energy heavy ion channeling deeply modifies their slowing down and charge exchange processes. This is due to the fact that channeled ions interact only with outershell target electrons, which means that the electron density they experience is very low and that the binding energy, and then the momentum distribution of these electrons, are quite different from the corresponding average values associated to random incidence. The two experimental studies presented here show the reduction of the energy loss rate for fast channeled heavy ions and illustrate the two aspects of channeling effects on charge exchange, the reduction of electron loss on one hand, and of electron capture on the other hand

  15. Low energy ion implantation and high energy heavy ion irradiation in C60 films

    International Nuclear Information System (INIS)

    Narayanan, K.L.; Yamaguchi, M.; Dharmarasu, N.; Kojima, N.; Kanjilal, D.

    2001-01-01

    C 60 films have been bombarded with low energy boron ions and high energy swift heavy ions (SHI) of silver and oxygen at different doses. Raman scattering and Fourier transform infrared (FTIR) studies were carried out on the virgin and irradiated films and the results are in good agreement with each other. The films subject to low energy boron ion implantation showed destruction of the bukky balls whereas the films subject to high energy ion irradiation did not show appreciable effects on their structure. These results indicate that C 60 films are more prone to defects by elastic collision and subsequent implantation at lower energy. Irradiation at higher energy was less effective in creating appreciable defects through electronic excitation by inelastic collisions at similar energy density

  16. Jet and Leading Hadron Production in High-energy Heavy-ion Collisions

    International Nuclear Information System (INIS)

    Wang, Xin-Nian

    2005-01-01

    Jet tomography has become a powerful tool for the study of properties of dense matter in high-energy heavy-ion collisions. I will discuss recent progresses in the phenomenological study of jet quenching, including momentum, colliding energy and nuclear size dependence of single hadron suppression, modification of dihadron correlations and the soft hadron distribution associated with a quenched jet

  17. Pulse-height response of silicon surface-barrier detectors to high-energy heavy ions

    International Nuclear Information System (INIS)

    Smith, G.D.

    1973-01-01

    The pulse-height defect (PHD) of high-energy heavy ions in silicon surface-barrier detectors can be divided into three components: (1) energy loss in the gold-surface layer, (2) a nuclear-stopping defect, and (3) a defect due to recombination of electron-hole pairs in the plasma created by the heavy ion. The plasma recombination portion of the PHD was the subject of this study using the variation of the PHD with (1) the angle of incidence of incoming heavy ions, and (2) changes in the detector bias. The Tandem Van de Graaff accelerator at Argonne National Laboratory was used to produce scattered beam ions ( 32 S, 35 Cl) and heavy target recoils (Ni, Cu, 98 Mo, Ag, Au) at sufficient energies to produce a significant recombination defect. The results confirm the existence of a recombination zone at the front surface of these detectors and the significance of plasma recombination as a portion of the pulse-height defect. (Diss. Abstr. Int., B)

  18. A Hierarchy of Transport Approximations for High Energy Heavy (HZE) Ions

    Science.gov (United States)

    Wilson, John W.; Lamkin, Stanley L.; Hamidullah, Farhat; Ganapol, Barry D.; Townsend, Lawrence W.

    1989-01-01

    The transport of high energy heavy (HZE) ions through bulk materials is studied neglecting energy dependence of the nuclear cross sections. A three term perturbation expansion appears to be adequate for most practical applications for which penetration depths are less than 30 g per sq cm of material. The differential energy flux is found for monoenergetic beams and for realistic ion beam spectral distributions. An approximate formalism is given to estimate higher-order terms.

  19. High-energy elastic recoil detection heavy ions for light element analysis

    International Nuclear Information System (INIS)

    Goppelt-Langer, P.; Yamamoto, S.; Takeshita, H.; Aoki, Y.; Naramoto, H.

    1994-01-01

    The detection of light and medium heavy elements in not homogeneous solids is a severe problem in ion beam analysis. Heavy elements can be detected by the well established Rutherford backscattering technique (RBS). In a homogeneous host material most impurities can be easily analyzed by secondary ion mass spectroscopy (SIMS). Some isotopes ( 3 He, 6 Li, 10 B) can be measured by nuclear reaction analysis (NRA) using thermal neutrons inducing (n, p) or (n, α) reactions. Others can be detected by energetic ion beams by nuclear reactions (e.g. 15 N( 1 H, αγ) 12 C for analysis of hydrogen). A high content of H, D or T can be also determined by elastic recoil detection using an energetic He beam. The latter technique has been developed to a universal method for detection of light and heavy elements in any target, using a high energetic heavy ion beam and a detector system, which is able to identify the recoils and delivers energy and position of the particles. (author)

  20. Charge exchange processes of high energy heavy ions channeled in crystals

    International Nuclear Information System (INIS)

    Andriamonje, S.; Dural, J.; Toulemonde, M.; Groeneveld, K.O.; Maier, R.; Quere, Y.

    1990-01-01

    The interaction of moving ions with single crystals is very sensitive to the orientation of the incident beam with respect to the crystalline directions of the target. The experiments show that high energy heavy ion channeling deeply modifies the slowing down and charge exchange processes. In this review, we describe the opportunity offered by channeling conditions to study the charge exchange processes. Some aspects of the charge exchange processes with high energy channeled heavy ions are selected from the extensive literature published over the past few years on this subject. Special attention is given to the work performed at the GANIL facility on the study of Radiative Electron Capture (REG), Electron Impact Ionisation (EII), and convoy electron emission. Finally we emphasize the interest of studying resonant charge exchange processes such as Resonant Coherent Excitation (RCE), Resonant Transfer and Excitation (RTE) or Dielectronic Recombination (DR) and the recently proposed Nuclear Excitation by Electron Capture (NEEC)

  1. Charged Particle, Photon Multiplicity, and Transverse Energy Production in High-Energy Heavy-Ion Collisions

    Directory of Open Access Journals (Sweden)

    Raghunath Sahoo

    2015-01-01

    Full Text Available We review the charged particle and photon multiplicities and transverse energy production in heavy-ion collisions starting from few GeV to TeV energies. The experimental results of pseudorapidity distribution of charged particles and photons at different collision energies and centralities are discussed. We also discuss the hypothesis of limiting fragmentation and expansion dynamics using the Landau hydrodynamics and the underlying physics. Meanwhile, we present the estimation of initial energy density multiplied with formation time as a function of different collision energies and centralities. In the end, the transverse energy per charged particle in connection with the chemical freeze-out criteria is discussed. We invoke various models and phenomenological arguments to interpret and characterize the fireball created in heavy-ion collisions. This review overall provides a scope to understand the heavy-ion collision data and a possible formation of a deconfined phase of partons via the global observables like charged particles, photons, and the transverse energy measurement.

  2. Comparative study between hadron and heavy ion dissociation at high energies

    International Nuclear Information System (INIS)

    El-Bakry, Y.M.N.; Abd-Elhalim, S.M.

    2002-01-01

    The present work deals with the dissociation of hadrons and heavy ions at high energies. In investigating hadron nucleus and nucleus-nucleus collisions, it is important to classify the experimental data, into two main classes; the coherent. and incoherent reactions. The coherent production is the main of our study. This process called electromagnetic dissociation (ED) and can be differentiate into coulomb dissociation (CD) and diffraction dissociation (DD). This work explains the experimental data of collisions of hadrons K± (70 GeV/c) and π(340 Gc V/c) and heavy ions 6 L i, 7 L i, 1 2C and1 6O at Dubna energies (3-4.5 A GeV/c)with emulsion target, in the frame of some models and theories which describe the mechanism of ED dissociation

  3. Measurement of residual radioactivity in cooper exposed to high energy heavy ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eunjoo; Nakamura, Takashi [Tohoku Univ., Sendai (Japan). Cyclotron and Radioisotope Center; Uwamino, Yoshitomo; Ito, Sachiko; Fukumura, Akifumi

    1999-03-01

    The residual radioactivities produced by high energy heavy ions have been measured using the heavy ion beams of the Heavy Ion Medical Accelerator (HIMAC) at National Institute of Radiological Sciences. The spatial distribution of residual radioactivities in 3.5 cm, 5.5 cm and 10 cm thick copper targets of 10 cm x 10 cm size bombarded by 290 MeV/u, 400 MeV/u-{sup 12}C ion beams and 400 MeV/u-{sup 20}Ne ion beam, respectively, were obtained by measuring the gamma-ray activities of 0.5 mm thick copper foil inserted in the target with a high purity Ge detector after about 1 hour to 6 hours irradiation. (author)

  4. Soft errors in 10-nm-scale magnetic tunnel junctions exposed to high-energy heavy-ion radiation

    Science.gov (United States)

    Kobayashi, Daisuke; Hirose, Kazuyuki; Makino, Takahiro; Onoda, Shinobu; Ohshima, Takeshi; Ikeda, Shoji; Sato, Hideo; Inocencio Enobio, Eli Christopher; Endoh, Tetsuo; Ohno, Hideo

    2017-08-01

    The influences of various types of high-energy heavy-ion radiation on 10-nm-scale CoFeB-MgO magnetic tunnel junctions with a perpendicular easy axis have been investigated. In addition to possible latent damage, which has already been pointed out in previous studies, high-energy heavy-ion bombardments demonstrated that the magnetic tunnel junctions may exhibit clear flips between their high- and low-resistance states designed for a digital bit 1 or 0. It was also demonstrated that flipped magnetic tunnel junctions still may provide proper memory functions such as read, write, and hold capabilities. These two findings proved that high-energy heavy ions can produce recoverable bit flips in magnetic tunnel junctions, i.e., soft errors. Data analyses suggested that the resistance flips stem from magnetization reversals of the ferromagnetic layers and that each of them is caused by a single strike of heavy ions. It was concurrently found that an ion strike does not always result in a flip, suggesting a stochastic process behind the flip. Experimental data also showed that the flip phenomenon is dependent on the device and heavy-ion characteristics. Among them, the diameter of the device and the linear energy transfer of the heavy ions were revealed as the key parameters. From their dependences, the physical mechanism behind the flip was discussed. It is likely that a 10-nm-scale ferromagnetic disk loses its magnetization due to a local temperature increase induced by a single strike of heavy ions; this demagnetization is followed by a cooling period associated with a possible stochastic recovery process. On the basis of this hypothesis, a simple analytical model was developed, and it was found that the model accounts for the results reasonably well. This model also predicted that magnetic tunnel junctions provide sufficiently high soft-error reliability for use in space, highlighting their advantage over their counterpart conventional semiconductor memories.

  5. High-resolution insight into the competitive adsorption of heavy metals on natural sediment by site energy distribution.

    Science.gov (United States)

    Huang, Limin; Jin, Qiang; Tandon, Puja; Li, Aimin; Shan, Aidang; Du, Jiajie

    2018-04-01

    Investigating competitive adsorption on river/lake sediments is valuable for understanding the fate and transport of heavy metals. Most studies have studied the adsorption isotherms of competitive heavy metals, which mainly comparing the adsorption information on the same concentration. However, intrinsically, the concentration of each heavy metal on competitive adsorption sites is different, while the adsorption energy is identical. Thus, this paper introduced the site energy distribution theory to increase insight into the competitive adsorption of heavy metals (Cu, Cd and Zn). The site energy distributions of each metal with and without other coexisting heavy metals were obtained. It illustrated that site energy distributions provide much more information than adsorption isotherms through screening of the full energy range. The results showed the superior heavy metal in each site energy area and the influence of competitive metals on the site energy distribution of target heavy metal. Site energy distributions can further help in determining the competitive sites and ratios of coexisting metals. In particular, in the high-energy area, which has great environmental significance, the ratios of heavy metals in the competitive adsorption sites obtained for various competitive systems were as follows: slightly more than 3:1 (Cu-Cd), slightly less than 3:1 (Cu-Zn), slightly more than 1:1 (Cd-Zn), and nearly 7:2:2 (Cu-Cd-Zn). The results from this study are helpful to deeply understand competitive adsorption of heavy metals (Cu, Cd, Zn) on sediment. Therefore, this study was effective in presenting a general pattern for future reference in competitive adsorption studies on sediments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. PHELIX - Petawatt high-energy laser for heavy ion experiments

    International Nuclear Information System (INIS)

    Backe, H.; Bock, R.; Caird, J.

    1998-12-01

    A high-power laser facility will be installed at the GSI heavy-ion accelerator. It will deliver laser pulses up to one kilojoule (with an option of a later upgrade to several kJ) at a pulse length of 1 - 10 nanoseconds (high-energy mode). In a high-intensity mode, laser pulses with a power of one petawatt (10 15 Watt) will be generated by chirped pulse amplification at a pulse length of typically 500 femtoseconds. Details of the laser system as well as time schedule and costs are given in Section B. In combination with the heavy-ion beams available at GSI - which will be further improved in intensity by the presently on-going upgrade program - a large number of unique experiments will become possible by the high-power laser facility described in this report. As outlined in Section A, novel research opportunities are expected in a wide range of basic-research topics spanning from the study of ion-matter interaction, through challenging new experiments in atomic, nuclear, and astrophysics, into the virgin field of relativistic plasma physics. Foreseeable topics in applied science are the development of new sources for highly charged ions and of X-ray lasers, new concepts for laser-based particle acceleration and the research in the field of inertial confinement fusion. (orig.)

  7. SIS: an accelerator installation for heavy ions of high energy

    International Nuclear Information System (INIS)

    The two major sections of the report cover the scientific experimental program and the accelerator installation. Topics covered in the first include: heavy ion physics in the medium energy region; nuclear physics at relativistic energies; atomic physics loss and capture cross sections for electrons; spectroscopy of few-electron systems; atomic collision processes; biological experiments; nuclear track techniques in biology; and experiments with protons and secondary radiation. The second includes: concept for the total installation; technical description of the SIS 12; technical description of the SIS 100; status of the UNILAC injector; development options for the SIS installations; properties of the heavy ion beam; and structural work and technical supply provisions. In this SIS project proposal, an accelerator installation based on two synchrotrons is described with which atomic nuclei up to uranium can be accelerated to energies of more than 10 GeV/μ. With the SIS 12, which is the name of the first stage, heavy ion physics at intermediate energies can be pursued up to 500 MeV/μ. The second stage, a larger synchrotron, the SIS 100, has a diameter of 250 m. With this device, it is proposed to open up the domain of relativistic heavy ion physics up to 14 GeV/μ (for intermediate mass particles) and 10 GeV/μ (for uranium)

  8. Review of high excitation energy structures in heavy ion collisions: target excitations and three body processes

    International Nuclear Information System (INIS)

    Frascaria, N.

    1987-09-01

    A review of experimental results on high excitation energy structures in heavy ion inelastic scattering is presented. The contribution to the spectra of the pick-up break-up mechanism is discussed in the light of the data obtained with light heavy ion projectiles. Recent results obtained with 40 Ar beams at various energies will show that target excitations contribute strongly to the measured cross section

  9. Nonlinear energy loss of highly charged heavy ions

    International Nuclear Information System (INIS)

    Zwicknagel, G.Guenter.

    2000-01-01

    For slow, highly charged heavy ions strong coupling effects in the energy transfer from the projectile-ion to an electron target plasma become important. A theoretical description of this nonlinear ion stopping has to go beyond the standard approaches like the dielectric linear response or the binary collision model which are strictly valid only at weak ion-target coupling. Here we outline an improved treatment which is based on a suitable combination of binary collision and linear response contributions. As has been verified for isotropic, nonmagnetized electron plasmas by comparison with simulations, this approach well reproduces the essential features of nonlinear stopping up to moderate coupling strength. Its extension to anisotropic, magnetized electron plasmas basically involves the fully numerical determination of the momentum and energy transfer in binary ion-electron collisions in the presence of a magnetic field. First results of such calculations are presented and discussed

  10. Experiments and detectors for high energy heavy ion colliders

    Energy Technology Data Exchange (ETDEWEB)

    Ludlam, T.

    1984-01-01

    Problems and possibilities are discussed for experiments at the highest collision energies achievable in man-made accelerators; i.e., colliding beams of heavy nuclei at cm energies greater than or equal to 100 GeV/amu, well beyond the threshold of nuclear transparency. Here the final state consists of two hot, dense, baryon-rich fireballs flying away from each other at large rapidity (the fragmentation regions), and thermally-produced particles with near-zero net baryon number populating the central rapidity range. The matter produced at central rapidity (the lab frame for a collider) may reach extremely high temperatures and energy densities, and it is here that one expects to produce thermodynamic conditions similar to those which existed when the early universe condensed from a plasma of quarks and gluons to a gas of hadrons. The problem of tracking, lepton measurements, and calorimeters are discussed. (WHK)

  11. HIGH DENSITY QCD WITH HEAVY-IONS

    CERN Multimedia

    The Addendum 1 to Volume 2 of the CMS Physics TDR has been published The Heavy-Ion analysis group completed the writing of a TDR summarizing the CMS plans in using heavy ion collisions to study high density QCD. The document was submitted to the LHCC in March and presented in the Open Session of the LHCC on May 9th. The study of heavy-ion physics at the LHC is promising to be very exciting. LHC will open a new energy frontier in ultra-relativistic heavy-ion physics. The collision energy of heavy nuclei at sNN = 5.5 TeV will be thirty times larger than what is presently available at RHIC. We will certainly probe quark and gluon matter at unprecedented values of energy density. The prime goal of this research programme is to study the fundamental theory of the strong interaction - Quantum Chromodynamics (QCD) - in extreme conditions of temperature, density and parton momentum fraction (low-x). Such studies, with impressive experimental and theoretical advances in recent years thanks to the wealth of high-qua...

  12. Experimental heavy ion physics at high energies. Progress report, September 1992--November 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    This report summarizes the research activities of the experimental high energy heavy ion physics group at Vanderbilt University carried out under Grant No. DE-FG05092ER40712 with the Department of Energy during the period Oct 1, 1992 to Nov 30, 1993. This research encompasses four areas of related inquiry in relativistic and high energy nuclear reactions. The preparation of the PHENIX experiment which has been approved as one of the two major experiments at RHIC to start in 1998. The RD10/RD45 Muon Identifier experiment which will provide essential input for the design of the Muon Endcap arm detector sub-system in PHENIX. The E855 Soft Photon Experiment at the AGS designed to clarify the status of a possible quark-gluon-plasma signature with presently available heavy-ion collisions. The construction CsI Ball detector project at Texas A&M which is designed as part of a comprehensive detector system which will probe the nuclear equation of state in the 50 MeV/nucleon domain.

  13. Heavy-flavor production and medium properties in high-energy nuclear collisions. What next?

    Energy Technology Data Exchange (ETDEWEB)

    Aarts, G.; Allton, C. [Swansea University, Swansea (United Kingdom); Aichelin, J.; Gossiaux, P.B.; Nahrgang, M. [Universite de Nantes, SUBATECH, Ecole des Mines de Nantes, Nantes (France); Arnaldi, R.; Scomparin, E. [INFN, Sezione di Torino, Torino (Italy); Bass, S.A. [Duke University, Durham, NC (United States); Bedda, C.; Grelli, A.; Trzeciak, B.; Doremalen, L. van; Vermunt, L.; Vigolo, S. [Utrecht University, Institute for Subatomic Physics, Utrecht (Netherlands); Brambilla, N. [Technische Universitaet Muenchen, Physik-Department and Excellence Cluster Universe, Garching (Germany); Technische Universitaet Muenchen, Institute for Advanced Study, Munich (Germany); Bratkovskaya, E. [GSI Helmholtzzentrum fuer Schwerionenforschung, Research Division and ExtreMe Matter Institute EMMI, Darmstadt (Germany); Frankfurt University, Institute for Theoretical Physics, Frankfurt am Main (Germany); Braun-Munzinger, P. [GSI Helmholtzzentrum fuer Schwerionenforschung, Research Division and ExtreMe Matter Institute EMMI, Darmstadt (Germany); Ruprecht-Karls-Universitaet Heidelberg, Physikalisches Institut, Heidelberg (Germany); Bruno, G.E. [Dipartimento di Fisica and INFN, Bari (Italy); European Organization for Nuclear Research, Geneva (Switzerland); Dahms, T. [Technische Universitaet Muenchen, Physik-Department and Excellence Cluster Universe, Garching (Germany); Das, S.K. [University of Catania, Catania (Italy); Dembinski, H.; Schmelling, M. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Djordjevic, M. [University of Belgrade, Institute of Physics, Belgrade (Serbia); Ferreiro, E. [Universidad de Santiago de Compostela, Santiago de Compostela (Spain); Frawley, A. [Florida State University, Tallahassee, FL (United States); Granier de Cassagnac, R.; Jo, M.; Nguyen, M. [Ecole Polytechnique, Laboratoire Leprince-Ringuet, Palaiseau (France); He, M. [Nanjing University of Science and Technology, Department of Applied Physics, Nanjing (China); Horowitz, W.A. [University of Cape Town, Department of Physics, Rondebosch (South Africa); Innocenti, G.M. [Massachusetts Institute of Technology, Cambridge, MA (United States); Kaczmarek, O. [Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan (China); University of Bielefeld, Bielefeld (Germany); Kuijer, P.G. [National Institute for Subatomic Physics, Amsterdam (Netherlands); Laine, M. [University of Bern, AEC, Institute for Theoretical Physics, Bern (Switzerland); Lombardo, M.P. [INFN - Laboratori Nazionali di Frascati, Frascati (Italy); Mischke, A. [Utrecht University, Institute for Subatomic Physics, Utrecht (Netherlands); National Institute for Subatomic Physics, Amsterdam (Netherlands); Munhoz, M.G.; Suaide, A.A.P. [Universidade de Sao Paulo (USP), Sao Paulo (Brazil); Oliveira da Silva, A.C.; Zanoli, H.J.C. [Utrecht University, Institute for Subatomic Physics, Utrecht (Netherlands); Universidade de Sao Paulo (USP), Sao Paulo (Brazil); Petreczky, P. [Brookhaven National Laboratory, Upton, NY (United States); Rothkopf, A. [Ruprecht-Karls-Universitaet Heidelberg, Institute for Theoretical Physics, Heidelberg (Germany); Song, T. [Frankfurt University, Institute for Theoretical Physics, Frankfurt am Main (Germany); Stachel, J. [Ruprecht-Karls-Universitaet Heidelberg, Physikalisches Institut, Heidelberg (Germany); Tolos, L. [Frankfurt Institute for Advanced Studies (FIAS), Frankfurt (Germany); Institut de Ciencies de l' Espai (IEEC-CSIC), Bellaterra (Spain); Uras, A. [Domaine Scientifique de la Doua, Institute of Nuclear Physics, Villeurbanne Cedex (France); Xu, N. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Ye, Z. [University of Illinois, Chicago, IL (United States); Zhuang, P. [Tsinghua University, Beijng Shi (China)

    2017-05-15

    Open and hidden heavy-flavor physics in high-energy nuclear collisions are entering a new and exciting stage towards reaching a clearer understanding of the new experimental results with the possibility to link them directly to the advancement in lattice Quantum Chromo-Dynamics (QCD). Recent results from experiments and theoretical developments regarding open and hidden heavy-flavor dynamics have been debated at the Lorentz Workshop Tomography of the Quark-Gluon Plasma with Heavy Quarks, which was held in October 2016 in Leiden, The Netherlands. In this contribution, we summarize identified common understandings and developed strategies for the upcoming five years, which aim at achieving a profound knowledge of the dynamical properties of the quark-gluon plasma. (orig.)

  14. Bevalac, a high-energy heavy-ion facility: status and outlook

    International Nuclear Information System (INIS)

    Grunder, H.A.

    1974-01-01

    The high-energy heavy-ion facility, which has commonly been referred to as the Bevalac, is a synchrotron with B rho of 9000 [kG-in or 2.3 x 10 2 kG-m] having special injectors. The synchrotron has three injectors. The 50 MeV proton injector, originally from BNL, is a tool left over from the high-energy high-intensity days of this productive synchrotron. The 20 MeV linac is a proton linac, designed so conservatively that it was possible to accelerate modest but useful beams of 12 C, 14 N, and 16 O as well as deuterons and alpha particles in the 2 β lambda mode. This was accomplished in 1971. After our first trials, a suggestion made earlier by A. Ghiorso to inject from the SuperHILAC into the synchrotron was actively pursued. Reasons as to why the SuperHILAC is being used as injector to the Bevatron are given

  15. Heavy-flavor production and medium properties in high-energy nuclear collisions --What next?

    NARCIS (Netherlands)

    Aarts, G.; Aichelin, J.; Allton, C.; Arnaldi, R.; Bass, S. A.; Bedda, C.; Brambilla, N.; Bratkovskaya, E.; Braun-Munzinger, P.; Bruno, G. E.; Dahms, T.; Das, S. K.; Dembinski, H.; Djordjevic, M.; Ferreiro, E. G.; Frawley, A.; Gossiaux, P. B.; Granier de Cassagnac, R.; Grelli, A.; He, Ming; Horowitz, W. A.; Innocenti, G. M.; Jo, M.; Kaczmarek, O.; Kuijer, P; Laine, M.; Lombardo, M. P.; Mischke, A.; Munhoz, M. G.; Nahrgang, M.; Nguyen, Mai; Oliveira da Silva, A. C.; Petreczky, P.; Rothkopf, A.; Schmelling, M.; Scomparin, E.; Song, Ting; Stachel, J.; Suaide, A. A P; Tolos, L.; Trzeciak, B.; Uras, A.; van Doremalen, L.; Vermunt, L.; Vigolo, S.; Xu, N.; Ye, Z.; Zanoli, H.J.C.; Zhuang, P.

    2017-01-01

    Open and hidden heavy-flavor physics in high-energy nuclear collisions are entering a new and exciting stage towards reaching a clearer understanding of the new experimental results with the possibility to link them directly to the advancement in lattice Quantum Chromo-Dynamics (QCD). Recent results

  16. IMP-8 observations of the spectra, composition, and variability of solar heavy ions at high energies relevant to manned space missions

    International Nuclear Information System (INIS)

    Tylka, Allan J.; Dietrich, William F.

    1999-01-01

    In more than 25 years of almost continuous observations, the University of Chicago's Cosmic Ray Telescope (CRT) on IMP-8 has amassed a unique database on high-energy solar heavy ions of potential relevance to manned spaceflight. In the very largest particle events, IMP-8/CRT has even observed solar Fe ions above the Galactic cosmic ray background up to ∼800 MeV/nucleon, an energy sufficiently high to penetrate nearly 25 g/cm 2 of shielding. IMP-8/CRT observations show that high-energy heavy-ion spectra are often surprisingly hard power laws, without the exponential roll-offs suggested by stochastic acceleration fits to lower energy measurements alone. Also, in many solar particle events the Fe/O ratio grows with increasing energy, contrary to the notion that ions with higher mass-to-charge ratios should be less abundant at higher energies. Previous studies of radiation hazards for manned spaceflight have often assumed heavy-ion composition and steeply-falling energy spectra inconsistent with these observations. Conclusions based on such studies should therefore be re-assessed. The significant event-to-event variability observed in the high-energy solar heavy ions also has important implications for strategies in building probabilistic models of solar particle radiation hazards

  17. Lifetimes of relativistic heavy-ion beams in the High Energy Storage Ring of FAIR

    Science.gov (United States)

    Shevelko, V. P.; Litvinov, Yu. A.; Stöhlker, Th.; Tolstikhina, I. Yu.

    2018-04-01

    The High Energy Storage Ring, HESR, will be constructed at the Facility for Antiproton and Ion Research, FAIR, Darmstadt. For the first time, it will be possible to perform experiments with cooled high-intensity stable and radioactive heavy ions at highly relativistic energies. To design experiments at the HESR, realistic estimations of beam lifetimes are indispensable. Here we report calculated cross sections and lifetimes for typical U88+ , U90+ , U92+ , Sn49+ and Sn50+ ions in the energy range E = 400 MeV/u-5 GeV/u, relevant for the HESR. Interactions with the residual gas and with internal gas-jet targets are also considered.

  18. High energy density in matter produced by heavy ion beams. Annual report 1987

    International Nuclear Information System (INIS)

    1988-08-01

    Research activities presented in this annual report were carried out in 1987 in the framework of the government-funded program 'High Energy Density in Matter Produced by Heavy Ion Beams'. It addresses fundamental problems of the generation and investigation of hot dense matter. Its initial motivation and its ultimate goal is the question whether inertial confinement can be achieved by intense heavy ion beams. The new accelerator facility SIS/ESR now under construction at GSI will provide an excellent potential for research in this field. The construction work at the new validity is on schedule. The building construction is near completion and the SIS accelerator will have its first beam at the beginning of next year. First experiments at lower intensity will start in summer 1989 and the full program will run after the cooler and storage ring ESR has got operational. Accordingly, the planning and the preparation of the high energy density experiments at this unique facility was an essential part of the activities last year. In this funding period emphasis was given to the experimental activities at the existing accelerator. In addition to a number of accelerator-oriented and instrumental developments, an experiment on beam-plasma interaction had first exciting results, a significant increase of the stopping power for heavy ions in plasma was measured. Other important activities were the investigation of dielectronic recombination of highly charged ions, spectroscopic investigations aiming at the pumping of short wavelength lasers by heavy ion beams and a crossed beam experiment for the determination of Bi + + Bi + ionization cross sections. As in previous years theoretical work an space-charge dominated beam dynamics as well as on hydrodynamics of dense plasmas, radiation transport and beam plasma interaction was continued, thus providing a basis for the future experiments. (orig.)

  19. High energy density in matter produced by heavy ion beams

    International Nuclear Information System (INIS)

    1989-07-01

    This Annual Report summarizes research activities carried out in 1988 in the framework of the government-funded program 'High Energy Density in Matter produced by Heavy Ion Beams'. It addresses fundamental problems of the generation of heavy ion beams and the investigation of hot dense plasmas produced by these beams. Its initial motivation and its long-term goal is the feasibility of inertial confinement fusion by intense heavy ion beams. Two outstanding events deserve to be mentioned explicity, the Heavy Ion Inertial Fusion Conference held in Darmstadt and organized by GSI end of June and the first heavy ion beam injected into the new SIS facility in November. The former event attracted more than hundred scientists for three days to the 4th Conference in this field. This symposium showed the impressive progress since the last conference in Washington two years ago. In particular the first beams in MBE-4 at LBL and results of beam plasma interaction experiments at GSI open new directions for future investigations. The ideas for non-Lionvillean injection into storage rings presented by Carlo Rubbia will bring the discussion of driver scenarios into a new stage. The latter event is a milestone for both machine and target experiments. It characterizes the beginning of the commissioning phase for the new SIS/ESR facility which will be ready for experiments at the end of this year. The commissioning of SIS is on schedule and first experiments can start at the beginning of 1990. A status report of the accelerator project is included. Theoretical activities were continued as in previous years, many of them providing guide lines for future experiments, in particular for the radiation transport aspects and for beam-plasma interaction. (orig.)

  20. Investigation of the energy loss and the charge state of high energy heavy ions in a hydrogen plasma

    International Nuclear Information System (INIS)

    Dietrich, K.G.

    1991-07-01

    For heavy ions with energy of 1.4 to 5.9 MeV/u the energy loss and charge state after transmission through a totally ionized hydrogen plasma are investigated. Plasma target was a Z-pinch device incorporated in the beam optics of the accelerator by a pumping system. In the 20 cm long pinch hydrogen plasmas with densities up to 1.5x10 19 cm -3 and temperatures above 5 eV are produced, with ionization efficiency higher than 99%. The ions pass the plasma on the symmetry axis of the plasma column through small apertures in the electrodes. The energy loss was measured by time-of-flight method, the plasma density by interferometry along the pinch axis. For the first time the ion charge after transmission through the plasma has been determined by a charge spectrometer being a combination of a dipole magnet and a position sensitive detector with high time resolution. A growth of the average charge of heavy ions in plasma higher than the equilibrium charge in cold gas was discovered, caused by a reduction of electron capture by fast heavy ions in ionized matter. The electron loss rates in plasma and cold gas are equal. (orig./AH) [de

  1. High dose radiation damage in nuclear energy structural materials investigated by heavy ion irradiation simulation

    International Nuclear Information System (INIS)

    Zheng Yongnan; Xu Yongjun; Yuan Daqing

    2014-01-01

    Structural materials in ITER, ADS and fast reactor suffer high dose irradiations of neutrons and/or protons, that leads to severe displacement damage up to lOO dpa per year. Investigation of radiation damage induced by such a high dose irradiation has attracted great attention along with the development of nuclear energy facilities of new generation. However, it is deeply hampered for the lacking of high dose neutron and proton sources. Irradiation simulation of heavy ions produced by accelerators opens up an effective way for laboratory investigation of high dose irradiation induced radiation damage encountered in the ITER, ADS, etc. Radiation damage is caused mainly by atomic displacement in materials. The displacement rate of heavy ions is about lO 3 ∼10 7 orders higher than those of neutrons and protons. High displacement rate of heavy ions significantly reduces the irradiation time. The heavy ion irradiation simulation technique (HIIS) technique has been developed at China Institute of Atomic Energy and a series of the HIIS experiments have been performed to investigate radiation damage in stainless steels, tungsten and tantalum at irradiation temperatures from room temperature to 800 ℃ and in the irradiation dose region up to 100 dpa. The experimental results show that he radiation swelling peak for the modified stainless steel appears in the temperature region around 580 ℃ and the radiation damage is more sensitive to the temperature, the size of the radiation induced vacancy cluster or void increase with the increasing of the irradiation dose, and among the three materials the home-made modified stainless steel has the best radiation resistant property. (authors)

  2. Radiation effects on semiconductor devices in high energy heavy ion accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Belousov, Anton

    2014-10-20

    Radiation effects on semiconductor devices in GSI Helmholtz Center for Heavy Ion Research are becoming more and more significant with the increase of beam intensity due to upgrades. Moreover a new accelerator is being constructed on the basis of GSI within the project of facility for antiproton and ion research (FAIR). Beam intensities will be increased by factor of 100 and energies by factor of 10. Radiation fields in the vicinity of beam lines will increase more than 2 orders of magnitude and so will the effects on semiconductor devices. It is necessary to carry out a study of radiation effects on semiconductor devices considering specific properties of radiation typical for high energy heavy ion accelerators. Radiation effects on electronics in accelerator environment may be divided into two categories: short-term temporary effects and long-term permanent degradation. Both may become critical for proper operation of some electronic devices. This study is focused on radiation damage to CCD cameras in radiation environment of heavy ion accelerator. Series of experiments with irradiation of devices under test (DUTs) by secondary particles produced during ion beam losses were done for this study. Monte Carlo calculations were performed to simulate the experiment conditions and conditions expected in future accelerator. Corresponding comparisons and conclusions were done. Another device typical for accelerator facilities - industrial Ethernet switch was tested in similar conditions during this study. Series of direct irradiations of CCD and MOS transistors with heavy ion beams were done as well. Typical energies of the primary ion beams were 0.5-1 GeV/u. Ion species: from Na to U. Intensities of the beam up to 10{sup 9} ions/spill with spill length of 200-300 ns. Criteria of reliability and lifetime of DUTs in specific radiation conditions were formulated, basing on experimental results of the study. Predictions of electronic device reliability and lifetime were

  3. Multi-megajoule heating of large tokamaks with high energy heavy ion beams

    International Nuclear Information System (INIS)

    Dei-Cas, R.

    1981-07-01

    The fast neutral injection heating and RF heating for tokamak like plasmas are now well established. We consider in this paper the use of high energy (approximately 1 GeV) heavy ions (Xe 132 ) to reach ignition in JET or INTOR like tokamaks. The main advantages of such a method will be outlined. The capture and the confinement of heavy ions have been analysed in a particular case and with the described RF linac it seems possible to inject in the order of 50 MJ in 1 sec with a modest increase of the effective charge Zsub(eff)<1.05 in a JET-like plasma for a particle life time of 1 sec and then the additional radiated power should be maintained at a relatively low level in comparison to the injected power

  4. Limitations to depth resolution in high-energy, heavy-ion elastic recoil detection analysis

    International Nuclear Information System (INIS)

    Elliman, R.G.; Palmer, G.R.; Ophel, T.R.; Timmers, H.

    1998-01-01

    The depth resolution of heavy-ion elastic recoil detection analysis was examined for Al and Co thin films ranging in thickness from 100 to 400 nm. Measurements were performed with 154 MeV Au ions as the incident beam, and recoils were detected using a gas ionisation detector. Energy spectra were extracted for the Al and Co recoils and the depth resolution determined as a function of film thickness from the width of the high- and low- energy edges. These results were compared with theoretical estimates calculated using the computer program DEPTH. (authors)

  5. Measurement of energy deposition near high energy, heavy ion tracks. Progress report, December 1982-April 1985

    Energy Technology Data Exchange (ETDEWEB)

    Metting, N.F.; Braby, L.A.; Rossi, H.H.; Kliauga, P.J.; Howard, J.; Schimmerling, W.; Wong, M.; Rapkin, M.

    1986-08-01

    The microscopic spatial distribution of energy deposition in irradiated tissue plays a significant role in the final biological effect produced. Therefore, it is important to have accurate microdosimetric spectra of radiation fields used for radiobiology and radiotherapy. The experiments desribed here were designed to measure the distributions of energy deposition around high energy heavy ion tracks generated at Lawrence Berkeley Laboratory's Bevalac Biomedical Facility. A small proportional counter mounted in a large (0.6 by 2.5 m) vacuum chamber was used to measure energy deposition distributions as a function of the distance between detector and primary ion track. The microdosimetric distributions for a homogeneous radiation field were then calculated by integrating over radial distance. This thesis discusses the rationale of the experimental design and the analysis of measurements on 600 MeV/amu iron tracks. 53 refs., 19 figs.

  6. Measurement of energy deposition near high energy, heavy ion tracks. Progress report, December 1982-April 1985

    International Nuclear Information System (INIS)

    Metting, N.F.; Braby, L.A.; Rossi, H.H.; Kliauga, P.J.; Howard, J.; Schimmerling, W.; Wong, M.; Rapkin, M.

    1986-08-01

    The microscopic spatial distribution of energy deposition in irradiated tissue plays a significant role in the final biological effect produced. Therefore, it is important to have accurate microdosimetric spectra of radiation fields used for radiobiology and radiotherapy. The experiments desribed here were designed to measure the distributions of energy deposition around high energy heavy ion tracks generated at Lawrence Berkeley Laboratory's Bevalac Biomedical Facility. A small proportional counter mounted in a large (0.6 by 2.5 m) vacuum chamber was used to measure energy deposition distributions as a function of the distance between detector and primary ion track. The microdosimetric distributions for a homogeneous radiation field were then calculated by integrating over radial distance. This thesis discusses the rationale of the experimental design and the analysis of measurements on 600 MeV/amu iron tracks. 53 refs., 19 figs

  7. Monte Carlo simulation for neutron yield produced by bombarding thick targets with high energy heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Oranj, Leila Mokhtari; Oh, Joo Hee; Yoon, Moo Hyun; Lee, Hee Seock [POSTECH, Pohang (Korea, Republic of)

    2013-04-15

    One of radiation shielding issues at heavy-ion accelerator facilities is to estimate neutron production by primary heavy ions. A few Monte Carlo transport codes such as FLUKA and PHITS can work with primary heavy ions. Recently IBS/RISP((Rare Isotope Science Project) started to design a high-energy, high-power rare isotope accelerator complex for nuclear physics, medical and material science and applications. There is a lack of experimental and simulated data about the interaction of major beam, {sup 238}U with materials. For the shielding design of the end of first accelerating section section, we calculate a differential neutron yield using the FLUKA code for the interaction of 18.5 MeV/u uranium ion beam with thin carbon stripper of 1.3 μm). The benchmarking studies were also done to prove the yield calculation for 400 MeV/n {sup 131}Xe and other heavy ions. In this study, the benchmarking for Xe-C, Xe-Cu, Xe-Al, Xe-Pb and U-C, other interactions were performed using the FLUKA code. All of results show that the FLUKA can evaluate the heavy ion induced reaction with good uncertainty. For the evaluation of neutron source term, the calculated neutron yields are shown in Fig. 2. The energy of Uranium ion beam is only 18.5 MeV/u, but the energy of produced secondary neutrons was extended over 100 MeV. So the neutron shielding and the damage by those neutrons is expected to be serious. Because of thin stripper, the neutron intensity at forward direction was high. But the the intensity of produced secondary photons was relatively low and mostly the angular property was isotropic. For the detail shielding design of stripper section of RISP rare istope accelerator, the benchmarking study and preliminary evaluation of neutron source term from uranium beam have been carried out using the FLUKA code. This study is also compared with the evaluation results using the PHITS code performed coincidently. Both studies shows that two monte carlo codes can give a good results for

  8. [Search for strange quark matter and antimatter produced in high energy heavy ion collisions

    International Nuclear Information System (INIS)

    1992-01-01

    This document describes the development and progress of our group's research program in high energy heavy ion physics. We are a subset of the Yale experimental high energy physics effort (YAUG group) who became interested in the physics of high energy heavy ions in 1988. Our interest began with the possibility of performing significant searches for strange quark matter. As we learned more about the subject and as we gained experimental experience through our participation in AGS experiment 814, our interests have broadened. Our program has focused on the study of new particles, including (but not exclusively) strange quark matter, and the high sensitivity measurement of other composite nuclear systems such as antinuclei and various light nuclei. The importance of measurements of the known, but rare, nuclear systems lies in the study of production mechanisms. A good understanding of the physics and phenomenology of rare composite particle production in essential for the interpretation of limits to strange quark matter searches. We believe that such studies will also be useful in probing the mechanisms involved in the collision process itself. We have been involved in the running and data analysis for AGS E814. We have also worked on the R ampersand D for AGS E864, which is an approved experiment designed to reach sensitivities where there will be a good chance of discovering strangelets or of setting significant limits on the parameters of strange quark matter

  9. Recent US advances in ion-beam-driven high energy density physics and heavy ion fusion

    International Nuclear Information System (INIS)

    Logan, B.G.; Bieniosek, F.M.; Celata, C.M.; Coleman, J.; Greenway, W.; Henestroza, E.; Kwan, J.W.; Lee, E.P.; Leitner, M.; Roy, P.K.; Seidl, P.A.; Vay, J.-L.; Waldron, W.L.; Yu, S.S.; Barnard, J.J.; Cohen, R.H.; Friedman, A.; Grote, D.P.; Kireeff Covo, M.; Molvik, A.W.; Lund, S.M.; Meier, W.R.; Sharp, W.; Davidson, R.C.; Efthimion, P.C.; Gilson, E.P.; Grisham, L.; Kaganovich, I.D.; Qin, H.; Sefkow, A.B.; Startsev, E.A.; Welch, D.; Olson, C.

    2007-01-01

    During the past two years, significant experimental and theoretical progress has been made in the US heavy ion fusion science program in longitudinal beam compression, ion-beam-driven warm dense matter, beam acceleration, high brightness beam transport, and advanced theory and numerical simulations. Innovations in longitudinal compression of intense ion beams by >50X propagating through background plasma enable initial beam target experiments in warm dense matter to begin within the next two years. We are assessing how these new techniques might apply to heavy ion fusion drivers for inertial fusion energy

  10. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    International Nuclear Information System (INIS)

    Bieniosek, F.M.; Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2008-01-01

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state

  11. Comparison of models of high energy heavy ion collision

    International Nuclear Information System (INIS)

    Gyulassy, M.

    1977-01-01

    Some of the main theoretical developments on heavy ion collisions at energies (0.1 to 2.0) GeV/nuc are reviewed. The fireball, firestreak, hydrodynamic (1-fluid, 2-fluids), ''row on row'', hard sphere and intranuclear cascades, and classical equations of motion models are discussed in detail. Results are compared to each other and to measured Ne + U → p + X reactions

  12. Emission of medium-heavy fragments in asymetric heavy ion collisions at intermediate and relativistic incident energies

    International Nuclear Information System (INIS)

    Milkau, T.U.E.

    1991-11-01

    For the study of the emission of medium-heavy fragments in asymmetric heavy ion collisions a series of experiments was performed and thereby following systems at intermediate and relativistic incident energies studied: 84 Kr+ 197 Au at E/A=35 MeV, 40 Ar+ 197 Au at E/A=30 MeV, respectively 220 MeV, and 12 C+ 197 Au at E/A=99 MeV, 301 MeV, 601 MeV, respectively 1105 MeV. In the experiments highly resolving detector telescopes with low thresholds were applied to the measurement of the energy and angular distributions of the medium-heavy fragments. The spectra were analyzed in the picture of longitudinally moving sources. Thereby beyond the production cross sections the angular distributions, the decreasement parameters in the high-energetic region of the energy spectra, and the position of the maxima were determined as characteristic parameters. The following picture resulted: The production cross sections for medium-heavy fragments showed a steep increasement and then a saturation, but with a strong projectile dependence. The charge distributions could be described by a power law, the parameter of which showed a universal dependence on the total incident energy. In the angular distributions the transition from an anisotropic emission at low energies to an isotropic emission from a nearly resting source at relativistic energies was distinctly to be recognized. The decreasement parameters of the energy distribution increased - for different projectiles differently strongly - logarithmically with growing incident energy. And the maxima of the energy distribution travelled with growing incident energy to smaller and smaller fragment energies. From this systematics a schematic model of the fragmentation can be obtained. (orig./HSI) [de

  13. Energy loss effects on heavy quark production in heavy-ion collisions at sq root s = 5.5 A TeV

    CERN Document Server

    Lin Zi Wei

    1999-01-01

    We study the effect of energy loss on charm and bottom quarks in high-energy heavy-ion collisions including hadronization, longitudinal expansion and partial thermalization. We consider in detail the detector geometry and single lepton energy cuts of the ALICE and CMS detectors at the Large Hadron Collider (LHC) to show the large suppression of high P sub T heavy quarks and the consequences on their semileptonic decays.

  14. Achieving high baryon densities in the fragmentation regions in heavy ion collisions at top RHIC energy

    International Nuclear Information System (INIS)

    Li, Ming; Kapusta, Joseph I.

    2017-01-01

    Heavy ion collisions at extremely high energy, such as the top energy at RHIC, exhibit the property of transparency where there is a clear separation between the almost net-baryon-free central rapidity region and the net-baryon-rich fragmentation region. We calculate the net-baryon rapidity loss and the nuclear excitation energy using the energy-momentum tensor obtained from the McLerran-Venugopalan model. Nuclear compression during the collision is further estimated using a simple space-time picture. The results show that extremely high baryon densities, about twenty times larger than the normal nuclear density, can be achieved in the fragmentation regions. (paper)

  15. Formation of a quasi-hollow beam of high-energy heavy ions using a multicell resonance RF deflector

    Science.gov (United States)

    Minaev, S. A.; Sitnikov, A. L.; Golubev, A. A.; Kulevoy, T. V.

    2012-09-01

    The generation of matter in an extreme state with precisely measurable parameters is of great interest for contemporary physics. One way of obtaining such a state is to irradiate the end of a hollow cylindrical shell at the center of which a test material is kept at a temperature of several Kelvin by an annular beam of high-energy heavy ions. Under the action of the beam, the shell starts explosively expanding both outwards and inwards, compressing the material to an extremely high pressure without subjecting it to direct heating. A method of producing a hollow cylindrical beam of high-energy heavy ions using a resonance rf deflector is described. The deflection of the beam in two transverse directions by means of an rf electric field allows it to rotate about the longitudinal axis and irradiate an annular domain on the end face of the target.

  16. Radiation therapy using high-energy heavy-ion

    International Nuclear Information System (INIS)

    Kanai, Tatsuaki

    1995-01-01

    The clinical trial of the heavy-ion radiotherapy was started at June 1994 after pre-clinical experiments using 290 MeV/u carbon beam. In this paper, an irradiation system for the heavy-ion radiotherapy installed at HIMAC (Heavy Ion Medical Accelerator in Chiba) and the physical characteristics of the therapeutic beam were discussed. (author)

  17. HIAF: New opportunities for atomic physics with highly charged heavy ions

    Science.gov (United States)

    Ma, X.; Wen, W. Q.; Zhang, S. F.; Yu, D. Y.; Cheng, R.; Yang, J.; Huang, Z. K.; Wang, H. B.; Zhu, X. L.; Cai, X.; Zhao, Y. T.; Mao, L. J.; Yang, J. C.; Zhou, X. H.; Xu, H. S.; Yuan, Y. J.; Xia, J. W.; Zhao, H. W.; Xiao, G. Q.; Zhan, W. L.

    2017-10-01

    A new project, High Intensity heavy ion Accelerator Facility (HIAF), is currently being under design and construction in China. HIAF will provide beams of stable and unstable heavy ions with high energies, high intensities and high quality. An overview of new opportunities for atomic physics using highly charged ions and radioactive heavy ions at HIAF is given.

  18. Coulomb-driven energy boost of heavy ions for laser-plasma acceleration.

    Science.gov (United States)

    Braenzel, J; Andreev, A A; Platonov, K; Klingsporn, M; Ehrentraut, L; Sandner, W; Schnürer, M

    2015-03-27

    An unprecedented increase of kinetic energy of laser accelerated heavy ions is demonstrated. Ultrathin gold foils have been irradiated by an ultrashort laser pulse at a peak intensity of 8×10^{19}  W/  cm^{2}. Highly charged gold ions with kinetic energies up to >200  MeV and a bandwidth limited energy distribution have been reached by using 1.3 J laser energy on target. 1D and 2D particle in cell simulations show how a spatial dependence on the ion's ionization leads to an enhancement of the accelerating electrical field. Our theoretical model considers a spatial distribution of the ionization inside the thin target, leading to a field enhancement for the heavy ions by Coulomb explosion. It is capable of explaining the energy boost of highly charged ions, enabling a higher efficiency for the laser-driven heavy ion acceleration.

  19. Heavy ion scattering: High energy limits of RBS and ERD

    International Nuclear Information System (INIS)

    Rauhala, E.

    1994-01-01

    Elastic scattering of 7 Li ions by oxygen and 12 C, 14 N and 16 O ions by aluminum, silicon, titanium and sulfur have been studied below the Coulomb barrier energies 3-30 MeV in the angular range of 78 degrees - 170 degrees. By kinematically reversing the reactions, the recoiling of carbon, nitrogen and oxygen by 40-100 MeV 27 Al, 28 Si, 32S and 48 Ti ions into recoil angles of 20 degrees, 25 degrees, 30 degrees and 40 degrees has also been investigated. Excitation functions and angular distributions are presented. Contrary to the case of light H and He ions, the heavy ion scattering cross sections fall off rapidly above the non-Rutherford threshold energy, rendering heavy ion RBS and ERD spectrometry worthless. Both classical and wave mechanical calculations have been attempted for predicting the RBS threshold energies. Simple calculations give moderate accuracy, while the more extensive nuclear potential perturbation approach relies on parameters fitted for the particular experiment. The authors present a general classical semi-empirical model for both direct scattering (RBS) and the kinematically reversed reactions (ERD), accurately reproducing the experimental data. The model is based on parameters fitted from the present scattering experiments and from an extensive literature survey

  20. Strong-field physics using lasers and relativistic heavy ions at the high-energy storage ring HESR at FAIR

    International Nuclear Information System (INIS)

    Kuehl, T; Bagnoud, V; Stoehlker, T; Litvinov, Y; Winters, D F A; Zielbauer, B; Backe, H; Spielmann, Ch; Seres, J; Tünnermann, A; Neumayer, P; Aurand, B; Namba, S; Zhao, H Y

    2014-01-01

    The HESR high-energy ion storage ring at FAIR will provide unprecedented possibilities for strong-field physics using novel laser sources on relativistic heavy ions. An overview on the planning will be given.

  1. Heavy quark energy loss in nuclear medium

    International Nuclear Information System (INIS)

    Zhang, Benr-Wei; Wang, Enke; Wang, Xin-Nian

    2003-01-01

    Multiple scattering, modified fragmentation functions and radiative energy loss of a heavy quark propagating in a nuclear medium are investigated in perturbative QCD. Because of the quark mass dependence of the gluon formation time, the medium size dependence of heavy quark energy loss is found to change from a linear to a quadratic form when the initial energy and momentum scale are increased relative to the quark mass. The radiative energy loss is also significantly suppressed relative to a light quark due to the suppression of collinear gluon emission by a heavy quark

  2. Heavy-quark free energies, internal-energy and entropy contributions

    International Nuclear Information System (INIS)

    Kaczmarek, O.

    2009-01-01

    We present lattice QCD results on heavy-quark free energies, extract from its temperature dependence the entropy and internal-energy contributions, and discuss the onset of medium effects that lead to screening of static quark-antiquark sources in a thermal medium. The detailed analysis of the temperature and distance dependence of the different contributions indicate the complex non-perturbative nature of strongly interacting matter. We shall discuss the necessity to include those effects in studies on the behavior of heavy quarks, heavy-quark bound states and their dissociation in the quark-gluon plasma phase. (orig.)

  3. Coherent and noncoherent double diffractive production of QQ-bar pairs in heavy-ion collisions at high energies

    International Nuclear Information System (INIS)

    Agababyan, N.M.; Chatrchyan, S.A.; Galoyan, A.S.; Malakhov, A.I.; Melkumov, G.L.; Zarubin, P.I.; Jenkovszky, L.L.

    1999-01-01

    The coherent and noncoherent double diffractive production of heavy quark-antiquark pairs in ion scattering at the LHC energies has been considered. The total and differential cross sections for such processes featuring the production of cc-bar and bb-bar quark pairs in pp, CaCa, and PbPb collisions have been estimated. It has been shown that the fraction of heavy quark-antiquark pairs produced in double diffractive scattering amounts to a few percent of the number of QQ-bar pairs produced in hard QCD scattering; therefore, it is necessary to take into account such processes in detecting heavy quarks, in seeking Higgs bosons of intermediate mass, in investigating the suppression of heavy quarkonia in quark-gluon plasma, and so on. It has been demonstrated that the cross section for coherent scattering is so large that this process can be used to study collective effects in nuclei at high energies. Large values of the quark-antiquark invariant mass, M QQ-bar > or approx. 100 GeV, in association with a large rapidity gap between diffractive jets, Δη>5, exemplify manifestations of such nuclear interactions

  4. Acceleration of heavy ions to relativistic energies and their use in physics and biomedicine

    International Nuclear Information System (INIS)

    White, M.G.

    1977-01-01

    The uses of accelerated heavy ions in physics and biomedicine are listed. The special properties of high energy heavy ions and their fields of applications, the desirable ions and energies, requirements for a relativistic heavy ion accelerator, and AGS and Bevalac parameters are discussed. 26 references

  5. Coherent and non-coherent double diffractive production of QQ-bar-pairs in collisions of heavy ions at high energies

    International Nuclear Information System (INIS)

    Agababyan, N.M.; Galoyan, A.S.; Enkovskij, L.L.; Zarubin, P.I.; Malakhov, A.I.; Melkumov, G.L.; Chatrchyan, S.A.

    1999-01-01

    The double coherent and non-coherent diffractive production of heavy quark-antiquark pairs (QQ-bar) in heavy ion scattering at high energies (LHC) is considered. The total and differential cross sections of these processes with the formation of cc-bar and bb-bar pairs in pp, CaCa and PbPb collisions are evaluated. The contribution of the considered mechanisms is a few per cent of the number of heavy quark-antiquark pairs obtained in the processes of hard (QCD) scattering, and it will be taken into account in the registration of c, b quarks or, for instance, in the study of the heavy quarkonia suppression effect in Quark-Gluon Plasma, in the search got intermediate mass Higgs bosons and so on. It is shown that the cross section of the coherently scattering process is great enough. This makes it suitable for studying collective effects in nuclear interactions at high energies. An example of such effects is given: large values of the invariant mass of a QQ-bar pair, M QQ-bar ≥ 100 GeV, in association with a large rapidity gap between diffractive jets Δη >5 [ru

  6. Coherent and non-coherent double diffractive production of QQ-bar - pairs in collisions of heavy ions at high energies

    International Nuclear Information System (INIS)

    Agababyan, N.M.; Chatrchyan, S.A.; Galoyan, A.S.; Malakhov, A.I.; Melkumov, G.L.; Zarubin, P.I.; Jenkovszky, L.L.

    1998-01-01

    The double coherent and non-coherent diffractive production of heavy quark-antiquark pair (QQ-bar) in heavy ion scattering at high energies (LHC) is considered. The total and differential cross sections of these processes with the formation of cc bar and bb bar pairs in pp, CaCa and PbPb collisions are evaluated. The contribution of the considered mechanisms is a few per cent of the number of heavy quark-antiquark pairs obtained in the processes of hard (QCD) scattering, and it will be taken into account in the registration of c, b quarks or, for instance, in the study of the heavy quarkonia suppression effects in quark-gluon plasma, in the search for intermediate mass Higgs bosons and so on. It is shown that the cross section of the coherent scattering process is great enough. This makes it suitable for studying collective effects in nuclear interactions at high energies. An example of such effects is given: large values of the invariant mass of a QQ- bar pair, M QQb ar ≥ 100 GeV, in association with a large rapidity gap between diffractive jets Δη>5

  7. The problem of phase transition and the heavy ion collisions at very high energies

    International Nuclear Information System (INIS)

    Waheed, A.

    1993-09-01

    This paper presents a review of our current understanding of deconfined phases of strongly interacting matter at high energy densities - quark matter, or the quark-gluon plasma, likely to be produced in ultra-relativistic heavy ion collisions. Properties of the deconfined quark matter and speculations concerning the ways in which this phase transition can be explored in laboratory are discussed. Some suggestions have been put forward for the future experiments. (author). 91 refs

  8. Heavy water technology and its contribution to energy sustainability

    International Nuclear Information System (INIS)

    MacDiarmid, H.; Alizadeh, A.; Hopwood, J.; Duffey, R.

    2009-01-01

    Full text: As the global nuclear industry expands several markets are exploring avenues and technologies to underpin energy security. Heavy water reactors are the most versatile power reactors in the world. They have the potential to extend resource utilization significantly, to allow countries with developing industrial infrastructures access to clean and abundant energy, and to destroy long-lived nuclear waste. These benefits are available by choosing from an array of possible fuel cycles. Several factors, including Canada's early focus on heavy-water technology, limited heavy-industry infrastructure at the time, and a desire for both technological autonomy and energy self-sufficiency, contributed to the creation of the first commercial heavy water reactor in 1962. With the maturation of the industry, the unique design features of the now-familiar product-on-power refuelling, high neutron economy, and simple fuel design-make possible the realization of its potential fuel-cycle versatility. As resource constrains apply pressure on world markets, the feasibility of these options have become more attractive and closer to entering widespread commercial application

  9. Mass effects in the emission of gluons from heavy quarks at high energies

    CERN Document Server

    Fuster, J A; Tortosa, P

    2001-01-01

    The effects in the emission of gluons due to the mass of the heavy quarks have clearly been observed by the experiments at LEP and SLC. The analyses of the data using theoretical corrections computed at Next-to-Leading Order have allowed to either test the flavour independence of the strong coupling constant with very high precision (~1%) or measure the b-quark mass at high energy, square root s~M/sub Z/. The results obtained by the various experiments, ALEPH, DELPHI, OPAL and SLD, agree well within errors. The systematic uncertainties limit present determinations though new methods and strategies are being developed to overcome the present bounds. (15 refs).

  10. Heavy ion collisions at energies near the Coulomb barrier 1990

    International Nuclear Information System (INIS)

    Nagarajan, M.A.

    1991-01-01

    During recent years, detailed experimental and theoretical investigations have been carried out on heavy ion collisions at energies close to the Coulomb barrier. These studies have provided direct evidence of strong couplings between the various reaction channels available at energies near the top of the Coulomb barrier. This field of research has remained the focus of interest and with improved experimental techniques, new detailed high resolution data have been obtained. The workshop on ''Heavy Ion Collisions at Energies Close to the Coulomb Barrier'' was organized with the aim of reviewing the current understanding of the collision dynamics and to discuss future directions in this area of research. The topics discussed at the workshop were broadly classified under the titles: quasielastic reactions; fusion of heavy ions; and shape and spin dependence in heavy ion collisions. The last of these topics was included to review new data obtained with polarized heavy ions and their theoretical interpretations. This volume contains the invited and contributed talks as well as a few short presentations during panel discussions. (author)

  11. 7th high energy heavy ion study

    International Nuclear Information System (INIS)

    Bock, R.; Gutbrod, H.H.; Stock, R.

    1985-03-01

    These proceedings contain the articles presented at the named conference. They deal with relativistic heavy ion reactions, the expansion and freeze-out of nuclear matter, anomalon experiments, and multifragmentation and particle correlations in heavy ion reactions. See hints under the relevant topics. (HSI)

  12. Method of determining the partial cross sections in a heavy liquid. Application to the production of strange particles by high energy π"-

    International Nuclear Information System (INIS)

    Lloret, Antonio

    1964-01-01

    This research thesis reports the study if the measurement of cross sections on proton, and more particularly the development of a method of determination of cross sections which takes problems raised by a heavy liquid into account. This method is applied with sufficiently high energies for the Fermi momentum to have no influence on cross sections. The author first presents the general method of determination of partial cross sections in a heavy liquid: case of a hydrogen chamber, ideal case of a heavy liquid chamber without possibility of secondary interactions nor evaporations, search for a formula removing secondary interactions, correction due to the fact that the number of neutrons is not equal to the number of protons in the mixture nuclei, application to cross sections of production of high energy strange particles, calculation of the number of produced high energy particles. The experiment is then presented with its chamber, its measurement and calculation techniques. The author then reports and discusses cross section calculations and compares results with those of previous experiments. The last part addresses the study of secondary interactions in nuclei

  13. US Heavy Ion Beam Research for Energy Density Physics Applications and Fusion

    International Nuclear Information System (INIS)

    Davidson, R.C.; Logan, B.G.; Barnard, J.J.; Bieniosek, F.M.; Briggs, R.J.; Callahan D.A.; Kireeff Covo, M.; Celata, C.M.; Cohen, R.H.; Coleman, J.E.; Debonnel, C.S.; Grote, D.P.; Efthimiom, P.C.; Eylon, S.; Friedman, A.; Gilson, E.P.; Grisham, L.R.; Henestroza, E.; Kaganovich, I.D.; Kwan, J.W.; Lee, E.P.; Lee, W.W.; Leitner, M.; Lund, S.M.; Meier, W.R.; Molvik, A.W.; Olson, C.L.; Penn, G.E.; Qin, H.; Roy, P.K.; Rose, D.V.; Sefkow, A.; Seidl, P.A.; Sharp, W.M.; Startsev, E.A.; Tabak, M.; Thoma, C.; Vay, J-L; Wadron, W.L.; Wurtele, J.S.; Welch, D.R.; Westenskow, G.A.; Yu, S.S.

    2005-01-01

    Key scientific results from recent experiments, modeling tools, and heavy ion accelerator research are summarized that explore ways to investigate the properties of high energy density matter in heavy-ion-driven targets, in particular, strongly-coupled plasmas at 0.01 to 0.1 times solid density for studies of warm dense matter, which is a frontier area in high energy density physics. Pursuit of these near-term objectives has resulted in many innovations that will ultimately benefit heavy ion inertial fusion energy. These include: neutralized ion beam compression and focusing, which hold the promise of greatly improving the stage between the accelerator and the target chamber in a fusion power plant; and the Pulse Line Ion Accelerator (PLIA), which may lead to compact, low-cost modular linac drivers

  14. High energy density in matter produced by heavy ion beams

    International Nuclear Information System (INIS)

    1986-05-01

    In this report the activities of the GSI Darmstadt (FRG) during 1985 concerning inertial confinement fusion by heavy ion beams. Short communications and abstracts are presented concerning a Z-pinch experiment, heavy ion pumped lasers and X-ray spectroscopy, the study of ion-ion collisions, a RFQ development and beam transport studies, accelerator theory, targets for SIS/ESR experiments, the rayleigh-Taylor instability, studies on the equation of state for matter under high pressure, as well as the development of computer codes. (HSI)

  15. Multiple Coulomb scattering of high-energy heavy charged particle beams used in biology and medicine

    International Nuclear Information System (INIS)

    Wong, M.; Schimmerling, W.; Ludewigt, B.; Phillips, M.; Curtis, S.; Tobias, C.A.

    1987-01-01

    The authors measured lateral displacement and angular distributions of high-energy heavy charged particles emerging from a target at the Lawrence Berkeley Laboratory BEVALAC with beams used in radiobiology experiments. Multiple Coulomb scattering occurring in the target material generally spreads the beam laterally and increases its divergence. The apparatus consists of four sets of position-sensitive semiconductor detectors located along the beam line. Each providing two position signals and one energy signal. The difference between the two position signals is used to determine the particle position in one dimension. The two position signals are constrained to add up to the energy deposition signal in order to reject multiple-particle traversals. The vector directions for the incident and emerging particles are reconstructed in three dimensions from their measured coordinated positions. Lateral and angular distributions are reported for beams of high-energy neon, iron and uranium ions incident on targets of aluminum, cooper, lead and water

  16. Inelastic heavy ion scattering on 90Zr and 208Pb at intermediate energies

    International Nuclear Information System (INIS)

    Blumenfeld, Y.; Beaumel, D.; Chomaz, P.; Frascaria, N.; Garron, J.P.; Jacmart, J.C.; Roynette, J.C.; Scarpaci, J.A.; Suomijarvi, T.

    1988-01-01

    Heavy ion inelastic scattering has been investigated using the SPEG spectrometer at GANIL. It is shown that the use of such a high resolution spectrometer allows a quantitative study of the giant resonances excited in heavy ion collisions. The contribution of the pick-up break-up mechanism to the high excitation energy region (E > 30 MeV) is then discussed. Recent results obtained with 40 Ar beams at two different incident energies show that target excitations are also present in this energy region

  17. Adaptive response of low linear energy transfer X-rays for protection against high linear energy transfer accelerated heavy ion-induced teratogenesis.

    Science.gov (United States)

    Wang, Bing; Ninomiya, Yasuharu; Tanaka, Kaoru; Maruyama, Kouichi; Varès, Guillaume; Eguchi-Kasai, Kiyomi; Nenoi, Mitsuru

    2012-12-01

    Adaptive response (AR) of low linear energy transfer (LET) irradiations for protection against teratogenesis induced by high LET irradiations is not well documented. In this study, induction of AR by X-rays against teratogenesis induced by accelerated heavy ions was examined in fetal mice. Irradiations of pregnant C57BL/6J mice were performed by delivering a priming low dose from X-rays at 0.05 or 0.30 Gy on gestation day 11 followed one day later by a challenge high dose from either X-rays or accelerated heavy ions. Monoenergetic beams of carbon, neon, silicon, and iron with the LET values of about 15, 30, 55, and 200 keV/μm, respectively, were examined. Significant suppression of teratogenic effects (fetal death, malformation of live fetuses, or low body weight) was used as the endpoint for judgment of a successful AR induction. Existence of AR induced by low-LET X-rays against teratogenic effect induced by high-LET accelerated heavy ions was demonstrated. The priming low dose of X-rays significantly reduced the occurrence of prenatal fetal death, malformation, and/or low body weight induced by the challenge high dose from either X-rays or accelerated heavy ions of carbon, neon or silicon but not iron particles. Successful AR induction appears to be a radiation quality event, depending on the LET value and/or the particle species of the challenge irradiations. These findings would provide a new insight into the study on radiation-induced AR in utero. © 2012 Wiley Periodicals, Inc.

  18. Minijet thermalization and diffusion of transverse momentum correlation in high-energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Pang Longgang; Wang Qun; Wang Xinnian; Xu Rong

    2010-01-01

    Transverse momentum correlations in the azimuthal angle of hadrons produced owing to minijets are first studied within the HIJING Monte Carlo model in high-energy heavy-ion collisions. Quenching of minijets during thermalization is shown to lead to significant diffusion (broadening) of the correlation. Evolution of the transverse momentum density fluctuation that gives rise to this correlation in azimuthal angle in the later stage of heavy-ion collisions is further investigated within a linearized diffusion-like equation and is shown to be determined by the shear viscosity of the evolving dense matter. This diffusion equation for the transverse momentum fluctuation is solved with initial values given by HIJING and together with the hydrodynamic equation for the bulk medium. The final transverse momentum correlation in azimuthal angle is calculated along the freeze-out hypersurface and is found to be further diffused for higher values of the shear viscosity to entropy density ratio, η/s∼0.2-0.4. Therefore the final transverse momentum correlation in azimuthal angle can be used to study the thermalization of minijets in the early stage of heavy-ion collisions and the viscous effect in the hydrodynamic evolution of strongly coupled quark-gluon plasma.

  19. Right-handed currents and heavy neutrinos in high energy ep and e+e- scattering

    International Nuclear Information System (INIS)

    Buchmueller, W.; Greub, C.

    1992-03-01

    Heavy Dirac or Majorana neutrinos can be produced via right-handed charged currents which occur in extensions of the standard model with SU(2) L x SU(2) R x U(1) B-L gauge symmetry. Low energy processes, Z precision experiments and direct search experiments in pp collisions are consistent with W R bosons heavier than 300 GeV, if the right-handed neutrinos are heavy. We study the production of heavy neutrinos via right-handed currents in e + e - annihilation and ep scattering which appears particularly promising. At HERA heavy neutrinos and W R bosons can be discovered with masses up to 170 GeV and 700 GeV, respectively. (orig.)

  20. Probing gauge-phobic heavy Higgs bosons at high energy hadron colliders

    Directory of Open Access Journals (Sweden)

    Yu-Ping Kuang

    2015-07-01

    Full Text Available We study the probe of the gauge-phobic (or nearly gauge-phobic heavy Higgs bosons (GPHB at high energy hadron colliders including the 14 TeV LHC and the 50 TeV Super Proton–Proton Collider (SppC. We take the process pp→tt¯tt¯, and study it at the hadron level including simulating the jet formation and top quark tagging (with jet substructure. We show that, for a GPHB with MH<800 GeV, MH can be determined by adjusting the value of MH in the theoretical pT(b1 distribution to fit the observed pT(b1 distribution, and the resonance peak can be seen at the SppC for MH=800 GeV and 1 TeV.

  1. Kinetic energy dissipation in heavy-ion collisions

    International Nuclear Information System (INIS)

    Fedotov, S.I.; Jolos, R.V.; Kartavenko, V.G.

    1979-01-01

    Kinetic energy dissipation mechanism is considered in deep inelastic heavy-ion collisions. It is shown that the significant part of the kinetic energy loss can be explained by the excitation of the nuclear matter multipole vibrations. The main contribution of the energy dissipation is given by the time dependent heavy-ion interaction potential renormalized due to the nuclear excitations, rather than by the velocity proportional frictional forces

  2. Performance Limitations in High-Energy Ion Colliders

    CERN Document Server

    Fischer, Wolfram

    2005-01-01

    High-energy ion colliders (hadron colliders operating with species other than protons) are premier research tools for nuclear physics. The collision energy and high luminosity are important design and operations considerations. However, the experiments also expect flexibility with frequent changes in the collision energy, lattice configuration, and ion species, including asymmetric collisions. For the creation, acceleration, and storage of bright intense ion beams, attention must be paid to space charge, charge exchange, and intra-beam scattering effects. The latter leads to luminosity lifetimes of only a few hours for heavy ions. Ultimately cooling at full energy is needed to overcome this effect. Currently, the Relativistic Heavy Ion Collider at BNL is the only operating high-energy ion collider. The Large Hadron Collider, under construction at CERN, will also run with heavy ions.

  3. High energy heavy ions: techniques and applications

    International Nuclear Information System (INIS)

    Alonso, J.R.

    1985-04-01

    Pioneering work at the Bevalac has given significant insight into the field of relativistic heavy ions, both in the development of techniques for acceleration and delivery of these beams as well as in many novel areas of applications. This paper will outline our experiences at the Bevalac; ion sources, low velocity acceleration, matching to the synchrotron booster, and beam delivery. Applications discussed will include the observation of new effects in central nuclear collisions, production of beams of exotic short-lived (down to 1 μsec) isotopes through peripheral nuclear collisions, atomic physics with hydrogen-like uranium ions, effects of heavy ''cosmic rays'' on satellite equipment, and an ongoing cancer radiotherapy program with heavy ions. 39 refs., 6 figs., 1 tab

  4. The present state and perspectives of low-energy heavy ion biology

    International Nuclear Information System (INIS)

    Yuan Chengling; Yu Zengliang

    2004-01-01

    The interaction between low-energy ions and matter has been concerned rarely comparing to that of high-energy ions. It is even more unusual to find studies of the interaction of low-energy ions and complicated organisms. However, the discovery of bioeffects induced by ion beam implantation has opened a new branch in the field of ion beam applications in the life science--Low-energy Heavy Ion Biology. The mutagenic effect of low energy heavy ions was firstly reported in 1986 in rice. Since then, a damage mechanism involved in energy absorption, mass deposition, and charge exchange has been proposed. Accumulating evidence has indicated that these three factors are key determinants in the bioeffects induced by low energy heavy ions, which has opened new opportunities for mutational breeding, gene transferring, cell modification, and cell fusion. In recent years, the ion beam implantation technique has been widely applied in many fields, and increasing research interest in the field has been seen. The authors summarize recent advances in research on the role of low-energy ions in terms of the mechanisms and applications

  5. Studies on the production of high energy density in matter with intense heavy-ion beams

    International Nuclear Information System (INIS)

    Jacoby, J.

    1989-01-01

    In the framework of the present thesis the interaction of an intense heavy-ion beam with a small, but macroscopic, amount of matter is studied. Thereby high energy densities are produced in the target matter. For this experiment it was for the first time possible to heat matter with ion beams from conventional heavy-ion accelerators up to plasma conditions. A Kr + ion beam was first accelerated with the heavy-ion accelerator MAXILAC to 45 keV/u and then focused by a fine-focusing lens on a closed xenon gas target. The light emitted from the target was space- and time-resolved taken up with a spectrometer as well a streak and CCD camera. Thereby the radial development of the plasma and the penetration behaviour of the ion beam were consecuted. The free-electron density of the plasma was determined from the Stark-broadening of emission lines (n e ≅ 4x10 16 cm -3 ). The electron temperature amounted in the center of the pipelet kT ≅ 0.75 eV. (orig./HSI) [de

  6. High-energy heavy-ion beams as igniters for commercial-scale intertial-fusion power plants

    International Nuclear Information System (INIS)

    Judd, D.L.

    1977-01-01

    Commercial-scale inertial-fusion power can be generated by producing a steady succession of thermonuclear microexplosions of small pellet targets whose ignition requires supplying a few magajoules in a few nanoseconds, a goal well beyond the present single-shot capabilities of high-power pulsed laser and electron-beam systems which also lack the needed repetition-rate capability of order one per second. However, existing high-energy accelerator technology with straightforward engineering extrapolations, applied to pulsed beams of heavy ions in low charge states, can meet all requirements. The relevant accelerator capabilities are discussed; three widely differing types of accelerators show promise. Needed developmental work is mostly on lower-energy components and can be conducted at relatively low cost. Some of the work started at several accelerator laboratories on this new approach within the past year are described, and possible goals of an early demonstration construction project are indicated

  7. Studies on the production of high energy densities in matter by intense heavy-ion beams

    International Nuclear Information System (INIS)

    Jacoby, J.

    1989-08-01

    In the framework of the present thesis the interaction of an intense heavy-ion beam with a small, but macroscopical amount of matter is studied. Thereby high energy densities in the target matter are produced. For this experiment it was for the first time possible to heat matter with ion beams from conventional heavy-ion accelerators up to plasma conditions. A KR + -ion beam was first accelerated with the heavy-ion accelerator MAXILAC to 45 keV/u and then focussed by a fine-focusing lens to a closed xenon gas target. The light emitted from the target was space- and time resolved taken up by a spectrometer as well as by a streak and CCD camera. Thereby the radial development of the plasma and the penetration behaviour of the ion beam was observed. The free electron density of the plasma was determined from the Stark broadening of emission lines (n e ≅ 4x10 16 cm -3 ). The temperature could be determined by different methods (shock-wave velocity, degree of ionization, line ratios). The electron temperature amounted in the center of the pipe to kT ≅ 0.75 eV. For the opacity of the target by which the emitted light power is determined under the assumption of the two-dimensional model (equilibrium between emitted and absorbed energy) the value κ p ≅ 7700 cm 2 /g resulted. (orig./HSI) [de

  8. A compact Ultra-High Vacuum (UHV) compatible instrument for time of flight-energy measurements of slow heavy reaction products

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, A.V.; Veldhuizen, E.J. van; Westerberg, L.; Lyapin, V.G.; Aleklett, K.; Loveland, W.; Bondorf, J.; Jakobsson, B.; Whitlow, H.J.; El Bouanani, M

    2000-10-01

    A compact Ultra-High Vacuum (UHV) compatible instrument for time of flight-energy measurements of slow heavy reaction products from nuclear reactions has been designed and tested at the CELSIUS storage ring in Uppsala. The construction is based on MicroChannel Plate (MCP) time detectors of the electron mirror type and silicon p-i-n diodes, and permits the detectors to be stacked side-by-side to achieve large solid angle coverage. This kind of telescope measures the Time of Flight (ToF) and Energy (E) of the particle from which one can reconstruct mass. The combination of an ultra-thin cluster gas-jet target and thin carbon emitter foils allows one to measure heavy residues down to an energy of {approx}35 keV/nucleon from the interactions of 400 MeV/nucleon {sup 16}O with {sup nat}Xe gas targets.

  9. A compact Ultra High Vacuum (UHV) compatible instrument for time of flight energy measurements of slow heavy reaction products

    International Nuclear Information System (INIS)

    Kuznetsov, A.V.; Loveland, W.; Jakobsson, B.; Whitlow, H.J.; Bouanani, M. El; Univ. of North Texas, Denton, TX

    2000-01-01

    A compact Ultra High Vacuum (UHV) compatible instrument for time of flight energy measurements of slow heavy reaction products from nuclear reactions has been designed and tested at the CELSIUS storage ring in Uppsala. The construction is based on MicroChannel Plate time detectors of the electron mirror type and silicon p-i-n diodes, and permits the detectors to be stacked side-by-side to achieve large solid angle coverage. This kind of telescope measures the Time of Flight (ToF) and Energy (E) of the particle from which one can reconstruct mass. The combination of an ultra-thin cluster gas-jet target and thin carbon emitter foils allows one to measure heavy residues down to an energy of ∼ 35 keV/nucleon from the interactions of 400 MeV/nucleon 16 O with nat Xe gas targets

  10. A compact Ultra High Vacuum (UHV) compatible instrument for time of flight energy measurements of slow heavy reaction products

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, A.V. [V.G.Khlopin Radium Institute, St. Petersburg (Russian Federation); Uppsala Univ. (Sweden). The Svedberg Lab.; Veldhuizen, E.J. van; Aleklett, K. [Uppsala Univ., (Sweden). Dept. of Radiation Sciences; Westerberg, L. [Uppsala University (Sweden). The Svedberg Lab.; Lyapin, V.G. [V.G.Khlopin Radium Institute, St. Petersburg (Russian Federation); Loveland, W. [Oregon State Univ., Corvallis, OR (United States). Dept. of Chemistry; Bondorf, J. [Niels Bohr Inst., Copenhagen (Denmark); Jakobsson, B. [Lund Univ. (Sweden). Dept. of Physics; Whitlow, H.J. [Lund Univ. (Sweden). Dept. of Nuclear Physics; Bouanani, M. El [Lund Univ. (Sweden). Dept. of Nuclear Physics; Univ. of North Texas, Denton, TX (United States). Dept. of Physics

    2000-07-01

    A compact Ultra High Vacuum (UHV) compatible instrument for time of flight energy measurements of slow heavy reaction products from nuclear reactions has been designed and tested at the CELSIUS storage ring in Uppsala. The construction is based on MicroChannel Plate time detectors of the electron mirror type and silicon p-i-n diodes, and permits the detectors to be stacked side-by-side to achieve large solid angle coverage. This kind of telescope measures the Time of Flight (ToF) and Energy (E) of the particle from which one can reconstruct mass. The combination of an ultra-thin cluster gas-jet target and thin carbon emitter foils allows one to measure heavy residues down to an energy of {approx} 35 keV/nucleon from the interactions of 400 MeV/nucleon {sup 16}O with {sup nat} Xe gas targets.

  11. A compact Ultra-High Vacuum (UHV) compatible instrument for time of flight-energy measurements of slow heavy reaction products

    International Nuclear Information System (INIS)

    Kuznetsov, A.V.; Veldhuizen, E.J. van; Westerberg, L.; Lyapin, V.G.; Aleklett, K.; Loveland, W.; Bondorf, J.; Jakobsson, B.; Whitlow, H.J.; El Bouanani, M.

    2000-01-01

    A compact Ultra-High Vacuum (UHV) compatible instrument for time of flight-energy measurements of slow heavy reaction products from nuclear reactions has been designed and tested at the CELSIUS storage ring in Uppsala. The construction is based on MicroChannel Plate (MCP) time detectors of the electron mirror type and silicon p-i-n diodes, and permits the detectors to be stacked side-by-side to achieve large solid angle coverage. This kind of telescope measures the Time of Flight (ToF) and Energy (E) of the particle from which one can reconstruct mass. The combination of an ultra-thin cluster gas-jet target and thin carbon emitter foils allows one to measure heavy residues down to an energy of ∼35 keV/nucleon from the interactions of 400 MeV/nucleon 16 O with nat Xe gas targets

  12. Quantum electrodynamical effects in heavy highly-charged ions

    International Nuclear Information System (INIS)

    Yerokhin, V.A.; Artemyev, A.N.; Indelicato, P.; Shabaev, V.M.

    2003-01-01

    The present status of theoretical calculations of QED effects in highly charged ions is reviewed for several important cases: the Lamb shift in heavy H-like ions, the 2p 1/2 -2s transition energy in heavy Li-like ions, and the bound-electron g factor in H-like ions. Theoretical predictions are compared with experimental results. Special attention is paid to the discussion of uncertainties of theoretical predictions

  13. The influence of initial state fluctuations on heavy quark energy loss in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Cao, Shanshan; Bass, Steffen A; Huang, Yajing; Qin, Guang-You

    2015-01-01

    We study the effects of initial state fluctuations on the dynamical evolution of heavy quarks inside a quark–gluon plasma (QGP) created in relativistic heavy-ion collisions. The evolution of heavy quarks in QGP matter is described utilizing a modified Langevin equation that incorporates the contributions from both collisional and radiative energy loss. The spacetime evolution of the fireball medium is simulated with a (2 + 1)-dimensional viscous hydrodynamic model. We find that when the medium traversed by the heavy quark contains a fixed amount of energy, heavy quarks tend to lose more energy for greater fluctuations of the medium density. This may result in a larger suppression of heavy flavor observables in a fluctuating QGP matter than in a smooth one. The possibility of using hard probes to infer the information of initial states of heavy-ion collisions is discussed. (paper)

  14. Immediate remediation of heavy metal (Cr(VI)) contaminated soil by high energy electron beam irradiation

    International Nuclear Information System (INIS)

    Zhang, Jing; Zhang, Guilong; Cai, Dongqing; Wu, Zhengyan

    2015-01-01

    Highlights: • An immediate remediation method for Cr(VI) contaminated soil (CCS) was developed. • High energy electron beam (HEEB) irradiation could reduce Cr(VI) in CCS to Cr(III). • This effect was attributed to electrons, hydrated electrons, and reductive radicals. • This remediation method was effective, environmentally friendly, and low-cost. - Abstract: This work developed an immediate and high-performance remediation method for Cr(VI) contaminated soil (CCS) using high energy electron beam (HEEB) irradiation. The result indicated that, compared with γ-ray irradiation, HEEB irradiation displayed a significant reduction efficiency on Cr(VI) in CCS to Cr(III) with substantially lower toxicity, which was mainly attributed to the reduction effects of electrons, hydrated electrons, and reductive radicals generated in the irradiation process of HEEB. This work could provide a one-step and effective method for the remediation of heavy metal contaminated soil (HMCS)

  15. Immediate remediation of heavy metal (Cr(VI)) contaminated soil by high energy electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing; Zhang, Guilong [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei 230031 (China); Bioenergy Forest Research Center of State Forestry Administration, Hefei 230031 (China); Cai, Dongqing, E-mail: dqcai@ipp.ac.cn [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei 230031 (China); Bioenergy Forest Research Center of State Forestry Administration, Hefei 230031 (China); Wu, Zhengyan, E-mail: zywu@ipp.ac.cn [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei 230031 (China); Bioenergy Forest Research Center of State Forestry Administration, Hefei 230031 (China)

    2015-03-21

    Highlights: • An immediate remediation method for Cr(VI) contaminated soil (CCS) was developed. • High energy electron beam (HEEB) irradiation could reduce Cr(VI) in CCS to Cr(III). • This effect was attributed to electrons, hydrated electrons, and reductive radicals. • This remediation method was effective, environmentally friendly, and low-cost. - Abstract: This work developed an immediate and high-performance remediation method for Cr(VI) contaminated soil (CCS) using high energy electron beam (HEEB) irradiation. The result indicated that, compared with γ-ray irradiation, HEEB irradiation displayed a significant reduction efficiency on Cr(VI) in CCS to Cr(III) with substantially lower toxicity, which was mainly attributed to the reduction effects of electrons, hydrated electrons, and reductive radicals generated in the irradiation process of HEEB. This work could provide a one-step and effective method for the remediation of heavy metal contaminated soil (HMCS)

  16. High energy nuclear excitations

    International Nuclear Information System (INIS)

    Gogny, D.; Decharge, J.

    1983-09-01

    The main purpose of this talk is to see whether a simple description of the nuclear excitations permits one to characterize some of the high energy structures recently observed. The discussion is based on the linear response to different external fields calculated using the Random Phase Approximation. For those structure in heavy ion collisions at excitation energies above 50 MeV which cannot be explained with such a simple approach, we discuss a possible mechanism for this heavy ion scattering

  17. Production and energy loss of strange and heavy quarks

    International Nuclear Information System (INIS)

    2010-01-01

    Data taken over the last several years have demonstrated that RHIC has created a hot, dense medium with partonic degrees of freedom. Identified particle spectra at high transverse momentum (p T ) and heavy flavor that are thought to be well-calibrated probes thus serve as ideal tools to study the properties of the medium. We present p T distributions of particle ratios in p+p collisions from the STAR experiment to understand the particle production mechanisms. These measurements will also constrain fragmentation functions in hadron-hardon collisions. In heavy-ion collisions, we highlight (1) recent measurements of strange hadrons and heavy flavor decay electrons up to high p T to study jet interaction with the medium and explore partonic energy loss mechanisms, and (2) Υ and high p T J/ψ measurements to study the effect of color screening and other possible production mechanisms.

  18. Heavy ion physics challenges at Bevalac/SIS energies

    Energy Technology Data Exchange (ETDEWEB)

    Gyulassy, M.

    1987-11-01

    This paper discusses where the future of higher energy heavy ion acceleration may lead in terms of understanding the nucleus. The discussion concerns obstacles to formulating an equation of state for nuclear matter at high temperature and density. Implications of this research for astrophysical problems is also presented. (LSP)

  19. Hard scattering contribution to particle production in high energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Pareek, Pooja; Mishra, Aditya Nath; Sahoo, Pragati; Sahoo, Raghunath

    2014-01-01

    Global observables like the multiplicity of produced charged particles and transverse energy, are the key observables used to characterize the properties of the matter created in heavy-ion collisions. In order to study the dependence of the charged particle density on colliding system, center of mass energy and collision centrality, there have been measurements starting few GeV to TeV energies at LHC. There is a need to understand the particle production contribution coming from the QCD hard processes, which scale with number of binary nucleon-nucleon collisions, N coll and soft processes scaling with number of participant nucleons, N part

  20. Why heavy and light quarks radiate energy with similar rates

    International Nuclear Information System (INIS)

    Kopeliovich, B. Z.; Potashnikova, I. K.; Schmidt, Ivan

    2010-01-01

    The dead-cone effect has been predicted to reduce the magnitude of energy loss and jet quenching for heavy flavors produced with large p T in heavy-ion collisions. On the contrary, data from the Relativistic Heavy Ion Collider demonstrate a strong suppression of high-p T electrons from charm and bottom decays. We show that vacuum radiation of a highly virtual quark produced at high p T with a stripped-off color field develops a much wider dead cone, which screens the one related to the quark mass. Lacking the field, gluons cannot be radiated within this cone until the color field is regenerated and the quark virtuality cools down to the scale of the order of the quark mass. However, this takes longer than is essential for the observed jet quenching, leading to similar nuclear effects for the light and charm quark jets. Open beauty is expected to radiate much less within the p T range studied so far in heavy-ion collisions.

  1. Equilibrium charge state distributions of high energy heavy ions

    International Nuclear Information System (INIS)

    Clark, R.B.; Grant, I.S.; King, R.; Eastham, D.A.; Joy, T.

    1976-01-01

    Equilibrium charge state fractions have been measured for N, O, Ne, S, Ar and Kr ions at 1.04 MeV/nucleon after passing through various stripping materials. Further data were obtained at higher energy for S ions (4.12 MeV/nucleon) and Ar ions (4.12 and 9.6 MeV/nucleon). The mean charge fractions can be fitted to universal curves for both solid and gaseous strippers. Measurements of the equilibrium fraction of krypton ions at 1.04 MeV/nucleon passing through heavy vapours have shown that a higher average charge state is obtained than for lighter gaseous strippers. (Auth.)

  2. Track detection on the cells exposed to high Linear Energy Transfer heavy-ions by Cr-39 plastic and terminal deoxynucleotidyl transferase(Td T)

    International Nuclear Information System (INIS)

    Mehnati, P.; Keshtkar, A.; Mesbahi, A.; Sasaki, H.

    2006-01-01

    The fatal effect of ionizing radiation on cells depends on Linear Energy Transfer level. The distribution of ionizing radiation is sparse and homogeneous for low Linear Energy Transfer radiations such as X or y, but it is dense and concentrated for high Linear Energy Transfer radiation such as heavy-ions radiation. Materials and Methods: Chinese hamster ovary cells (CHO-K1) were exposed to 4 Gy Fe-ion 2000 keV/μm. The Cr-39 is a special and sensitive plastic used to verify exact position of heavy-ions traversal. Terminal deoxynucleotidyl transferase is an enzyme labeled with [3 H ] d ATP for detection of cellular DNA damage by autoradiography assay. Results: The track of heavy ions traversals presented by pit size was almost similar for all different doses of radiation. No pits to show the track of traversal were found in 20% of the cell nuclei of the irradiation. Apparently these fractions of cells wave not hit by heavy ions. Conclusion: This study indicated the possible usefulness of both the Cr-39 plastics and DNA labeling with Terminal deoxynucleotidyl transferase method for evaluating the biological effect of heavy-ions in comparison with low Linear Energy Transfer ionizing radiation

  3. Energy density, stopping and flow in ultrarelativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Sorge, H.; von Keitz, A.; Mattiello, R.; Stoecker, H.; Greiner, W.

    1990-01-01

    The Lorentz invariant molecular dynamics approach (RQMD) is employed to investigate the space-time evolution of heavy ion collisions at energies (E kin = 10AGeV hor-ellipsis 200AGeV). The calculations for various nucleus nucleus reactions show a high degree of stopping power. The importance of secondary rescattering at these beam energies is demonstrated. The computed nucleon rapidity distributions are compared to available experimental data. It is demonstrated that nonlinear, collective effects like full stopping of target and projectile and matter flow could be expected for heavy projectiles only. For nuclear collisions in the Booster era at BNL and for the lead beam at CERN SPS the authors predict a stimulating future: then a nearly equilibrated, long lived (8 fm/c) macroscopic volume of very high energy density (> 1 GeV/fm 3 ) and baryon density (> 5 times ground state density) is produced

  4. Development of an intermediate energy heavy-ion micro-beam irradiation system

    International Nuclear Information System (INIS)

    Song Mingtao; Wang Zhiguang; He Yuan; Gao Daqing; Yang Xiaotian; Liu Jie; Su Hong; Man Kaidi; Sheng Li'na

    2008-01-01

    The micro-beam irradiation system, which focuses the beam down the micron order and precisely delivers a predefined number of ions to a predefined spot of micron order, is a powerful tool for radio-biology, radio-biomedicine and micromachining. The Institute of Modern Physics of Chinese Academy of Sciences is developing a heavy-ion micro-beam irradiation system up to intermediate energy. Based on the intermediate and low energy beam provided by Heavy Ion Research Facility of Lanzhou, the micro-beam system takes the form of the magnetic focusing. The heavy-ion beam is conducted to the basement by a symmetrical achromatic system consisting of two vertical bending magnets and a quadrupole in between. Then a beam spot of micron order is formed by magnetic triplet quadrupole of very high gradient. The sample can be irradiated either in vacuum or in the air. This system will be the first opening platform capable of providing heavy ion micro-beam, ranging from low (10 MeV/u) to intermediate energy (100 MeV/u), for irradiation experiment with positioning and counting accuracy. Target material may be biology cell, tissue or other non-biological materials. It will be a help for unveiling the essence of heavy-ion interaction with matter and also a new means for exploring the application of heavy-ion irradiation. (authors)

  5. Prospects for parity-nonconservation experiments with highly charged heavy ions

    OpenAIRE

    Maul, Martin; Schäfer, Andreas; Greiner, Walter; Indelicato, Paul

    2006-01-01

    We discuss the prospects for parity-nonconservation experiments with highly charged heavy ions. Energy levels and parity mixing for heavy ions with 2–5 electrons are calculated. We investigate two-photon transitions and the possibility of observing interference effects between weak-matrix elements and Stark matrix elements for periodic electric field configurations.

  6. High baryon density from relativistic heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Y.; Kahana, S.H. [Brookhaven National Lab., Upton, NY (United States); Schlagel, T.J. [Brookhaven National Lab., Upton, NY (United States)]|[State Univ. of New York, Stony Brook, NY (United States)

    1993-10-01

    A quantitative model, based on hadronic physics, is developed and applied to heavy ion collisions at BNL-AGS energies. This model is in excellent agreement with observed particle spectra in heavy ion collisions using Si beams, where baryon densities of three and four times the normal nuclear matter density ({rho}{sub 0}) are reached. For Au on Au collisions, the authors predict the formation of matter at very high densities (up to 10 {rho}{sub 0}).

  7. Nuclear interactions of high energy heavy ions and applications in astrophysics

    International Nuclear Information System (INIS)

    Wefel, J.P.

    1992-01-01

    This program was established for the purpose of studying projectile fragmentation; (1) as a function of energy, focusing first on the intermediate energy region, < 1 GeV/nucleon, where there have been few previous measurements and no systematic studies, and (2) as a function of projectile mass, starting with light beams and proceeding to species as heavy as nickel (and possibly beyond). The intermediate energy region is important as the transition between the lower energy data, where the interaction appears to be dominated by collective effects and the decay of excited nuclei, and the highest energy results, where nucleon-nucleon interactions are fundamental, ''limiting fragmentation'' applies, and the nucleus may well break-up before any de-excitation. The mass dependence of projectile fragmentation is largely unknown since most detailed work has involved light ion beams. Nuclear structure effects, for example, may well be quite prominent for heavier beams. Furthermore, the nuclear excitation functions for the production of different fragment isotopes have immediate application to the astrophysical interpretation of existing isotopic datasets obtained from balloon and satellite measurements of galactic cosmic rays

  8. Energy deposition by heavy ions: additivity of kinetic and potential energy contributions in hillock formation on CaF2.

    Science.gov (United States)

    Wang, Y Y; Grygiel, C; Dufour, C; Sun, J R; Wang, Z G; Zhao, Y T; Xiao, G Q; Cheng, R; Zhou, X M; Ren, J R; Liu, S D; Lei, Y; Sun, Y B; Ritter, R; Gruber, E; Cassimi, A; Monnet, I; Bouffard, S; Aumayr, F; Toulemonde, M

    2014-07-18

    Modification of surface and bulk properties of solids by irradiation with ion beams is a widely used technique with many applications in material science. In this study, we show that nano-hillocks on CaF2 crystal surfaces can be formed by individual impact of medium energy (3 and 5 MeV) highly charged ions (Xe(22+) to Xe(30+)) as well as swift (kinetic energies between 12 and 58 MeV) heavy xenon ions. For very slow highly charged ions the appearance of hillocks is known to be linked to a threshold in potential energy (Ep) while for swift heavy ions a minimum electronic energy loss per unit length (Se) is necessary. With our results we bridge the gap between these two extreme cases and demonstrate, that with increasing energy deposition via Se the Ep-threshold for hillock production can be lowered substantially. Surprisingly, both mechanisms of energy deposition in the target surface seem to contribute in an additive way, which can be visualized in a phase diagram. We show that the inelastic thermal spike model, originally developed to describe such material modifications for swift heavy ions, can be extended to the case where both kinetic and potential energies are deposited into the surface.

  9. Heavy Bearings Exploitation Energy and Reduction Methods

    Science.gov (United States)

    Szekely, V. G.; Cioară, R.

    2016-11-01

    The global trend of resource conservation so as “not to compromise the ability of future generation's development” is the fundamental basis of the concept of sustainable development. Concordant with this, the energy efficiency of products is increasingly discussed and frequently taken into account in the design stage. In more cases a product is more appreciated and more attractive as the energy consumption and its associated materials are lower. In the production stage, said consumption advantages primarily the manufacturer, particularly through low consumption thereof. In the operational phase, low energy and materials consumption represents an user advantage and it's a major argument in the decision to purchase and use a particular product. Heavy bearings are frequent products used in wind turbines that are producing non-conventional “clean” energy, as windmills. An enhanced energy efficiency bearing contributes to the enhancement of the overall efficiency of the wind turbines. Based on a suitable mathematical model, this paper identifies and recommends courses of action to reduce the operating energy of heavy bearing through the “cage” - which is the subject of a much larger research - with the highest priority. The identified actions may constitute from a set of requirements for the design stage of the heavy bearing predominantly oriented towards innovation-invention.

  10. High energy collisions of nuclei: experiments

    International Nuclear Information System (INIS)

    Heckman, H.H.

    1977-09-01

    Heavy-ion nuclear reactions with projectile energies up to 2.1 GeV/A are reviewed. The concept of ''rapidity'' is elucidated, and the reactions discussed are divided into sections dealing with target fragmentation, projectile fragmentation, and the intermediate region, with emphasis on the production of light nuclei in high-energy heavy-ion collisions. Target fragmentation experiments using nuclear emulsion and AgCl visual track detectors are also summarized. 18 figures

  11. Far-from-equilibrium heavy quark energy loss at strong coupling

    CERN Document Server

    Chesler, Paul; Rajagopal, Krishna

    2013-01-01

    We study the energy loss of a heavy quark propagating through the matter produced in the collision of two sheets of energy [1]. Even though this matter is initially far-from-equilibrium we find that, when written in terms of the energy density, the equilibrium expression for heavy quark energy loss describes most qualitative features of our results well. At later times, once a plasma described by viscous hydrodynamics has formed, the equilibrium expression describes the heavy quark energy loss quantitatively. In addition to the drag force that makes it lose energy, a quark moving through the out-of-equilibrium matter feels a force perpendicular to its velocity.

  12. Energy straggling of heavy ions in solids

    International Nuclear Information System (INIS)

    Cowern, N.E.B.

    1979-08-01

    The energy-loss straggling of heavy ions has been studied, principally in the Born Approximation region v > zv 0 . Measurements were made with 5.486 MeV α particles, 5 - 48 MeV 16 0 ions, and 3 - 36 MeV 12 C ions, incident on thin uniform Al foils. The thickness uniformity of the foils was studied with a proton microbeam and a surface profiler, and their homogeneity, purity and isotropy were investigated by electron microscope, proton backscattering, and X-ray diffraction studies. Using the Bethe theory of energy loss the charge-exchange model of energy straggling for heavy ions is confirmed. (author)

  13. Beam-transport system for high-resolution heavy-ion spectroscopy

    International Nuclear Information System (INIS)

    Roussel, P.; Kashy, E.

    1980-01-01

    A method is given to adjust a beam-transport system to the requirements of high-energy resolution heavy-ion spectroscopy. The results of a test experiment performed on a MP tandem with a 12 C beam are shown. A drastic improvement in energy resolution is obtained for a kinematical factor K=1/p dp/dtheta=0.12 [fr

  14. Prospects for Parity Non-conservation Experiments with Highly Charged Heavy Ions

    OpenAIRE

    Maul, M.; Schäfer, A.; Greiner, W.; Indelicato, P.

    1996-01-01

    We discuss the prospects for parity non-conservation experiments with highly charged heavy ions. Energy levels and parity mixing for heavy ions with two to five electrons are calculated. We investigate two-photon-transitions and the possibility to observe interference effects between weak-matrix elements and Stark matrix elements for periodic electric field configurations.

  15. A self-calibrating ionisation chamber for the precise intensity calibration of high-energy heavy-ion beam monitors

    International Nuclear Information System (INIS)

    Junghans, A.

    1996-01-01

    The intensity of a 136 Xe(600 A MeV) beam has been determined by simultaneously measuring the particle rate and the corresponding ionisation current with an ionisation chamber. The ionisation current of this self-calibrating device was compared at higher intensities with the current of a secondary-electron monitor and a calibration of the secondary-electron current was achieved with a precision of 2%. This method can be applied to all high-energy heavy-ion beams. (orig.)

  16. Measurement of water decomposition products after the irradiation with high-energy heavy-ion beams

    International Nuclear Information System (INIS)

    Katsumura, Y.; Yamashita, S.; Muroya, Y.; Lin, M.; Miyazaki, T.; Kudo, H.; Murakami, T.

    2005-01-01

    We measured the G-values of water decomposition products produced by high-energy heavy-ion beams. It was found that the evaluated yields are consistent with reported ones. In other words, with the increase of LET, the radical yields decrease, and the molecular yields increase and tend to level off. But the evaluated yields are slightly higher than reported values. So we have started two trials. One is to check the values with experiment again, and the other is to explain the difference between the yields by using the spur diffusion model. In order to explain the values quantitatively, the spur diffusion model has been applied and track structure has been investigated. (author)

  17. Energy conservation and management strategies in Heavy Water Plants

    International Nuclear Information System (INIS)

    Kamath, H.S.

    2002-01-01

    In the competitive industrial environment it is essential that cost of the product is kept at the minimum possible. Energy conservation is an important aspect in achieving this as energy is one of the key recourses for growth and survival of industry. The process of heavy water production being very complex and energy intensive, Heavy Water board has given a focussed attention for initiating various measures for reducing the specific energy consumption in all the plants. The initiative resulted in substantial reduction in specific energy consumption and brought in savings in cost. The cumulative reduction of specific energy consumption has been over 30% over the last seven years and the total savings for the last three years on account of the same has been about Rs. 190 crore. The paper describes the strategies adopted in the heavy water plants for effecting the above achievements. The paper covers the details of some of the energy saving schemes carried out at different heavy water plants through case studies. The case studies of schemes implemented at HWPs are general in nature and is applicable for any other industry. The case studies cover the modifications with re-optimisation of the process parameters, improvements effected in utility units like refrigeration and cooling water systems, improvements in captive power plant cycle and improved recycle scheme for water leading to reduced consumptions. The paper also mentions the innovative ammonia absorption refrigeration with improved coefficient of performance and HWB's efforts in development of the system as an integrated unit of the ammonia water deuterium exchange process for heavy water production. HWB also has taken up R and D on various other schemes for improvements in energy consumption for future activities covering utilisation of low grade energy for generation of refrigeration. (author)

  18. Multiple parton scattering in nuclei: heavy quark energy loss and modified fragmentation functions

    International Nuclear Information System (INIS)

    Zhang Benwei; Wang, Enke; Wang Xinnian

    2005-01-01

    Multiple scattering, induced radiative energy loss and modified fragmentation functions of a heavy quark in nuclear matter are studied within the framework of generalized factorization in perturbative QCD. Modified heavy quark fragmentation functions and energy loss are derived in detail with illustration of the mass dependencies of the Landau-Pomeranchuk-Migdal interference effects and heavy quark energy loss. Due to the quark mass dependence of the gluon formation time, the nuclear size dependencies of nuclear modification of the heavy quark fragmentation function and heavy quark energy loss are found to change from a linear to a quadratic form when the initial energy and momentum scale are increased relative to the quark mass. The radiative energy loss of the heavy quark is also significantly suppressed due to limited cone of gluon radiation imposed by the mass. Medium modification of the heavy quark fragmentation functions is found to be limited to the large z region due to the form of heavy quark fragmentation functions in vacuum

  19. Exploring the QCD Phase Structure with Beam Energy Scan in Heavy-ion Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xiaofeng, E-mail: xfluo@mail.ccnu.edu.cn

    2016-12-15

    Beam energy scan programs in heavy-ion collisions aim to explore the QCD phase structure at high baryon density. Sensitive observables are applied to probe the signatures of the QCD phase transition and critical point in heavy-ion collisions at RHIC and SPS. Intriguing structures, such as dip, peak and oscillation, have been observed in the energy dependence of various observables. In this paper, an overview is given and corresponding physics implications will be discussed for the experimental highlights from the beam energy scan programs at the STAR, PHENIX and NA61/SHINE experiments. Furthermore, the beam energy scan phase II at RHIC (2019–2020) and other future experimental facilities for studying the physics at low energies will be also discussed.

  20. A few aspects of intermediate energy heavy ion reactions

    International Nuclear Information System (INIS)

    Guet, C.

    1982-10-01

    Some aspects of reactions induced by intermediate energy heavy ions, with a special emphasis of 85 MeV/nucleon 12 C data, are discussed and compared to low energy and relativistic energy features. Transition from mean field to independant nucleon picture is advocated by an increase of nuclear transparency illuminated by reaction cross section estimations. Projectile-like fragment distributions, while demonstrating a typical high energy fragmentation behaviour, exhibit low energy regime distortions. Light fragments, associated to large parallel momentum transfer may result from total explosion. Proton emission is investigated and discussed in terms of opposite models such as thermal equilibrium and nucleon-nucleon scattering. First pion production data are well explained by single nucleon-nucleon inelastic scattering

  1. Baseline measures for net-proton distributions in high energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Netrakanti, P.K.; Mishra, D.K.; Mohanty, A.K.; Mohanty, B.

    2014-01-01

    The STAR experiment at the Relativistic Heavy-Ion Collider facility has reported results for the cumulants and their ratios from the net-proton distributions upto the fourth order cumulants at various collision energies. These measurements were carried to look for the signatures of the possible critical point (CP) in the phase diagram for a system undertaking strong interactions. The results show an intriguing dependence of the cumulant ratios C 3 /C 2 and C 4 /C 2 as a function of beam energy. The beam energy dependence appears to be non-monotonic in nature. However the experiment also reports that the energy dependence is observed to be consistent with expectation from an approach based on the independent production of proton and anti-protons in the collisions. In this paper we emphasize the need to have a proper baseline for appropriate interpretation of the cumulant measurements and argue that the comparison to independent production approach needs to be done with extreme caution

  2. Overview. Department of High Energy Physics. Section 5

    International Nuclear Information System (INIS)

    Coghen, T.

    1995-01-01

    The activities of Department of High Energy Physics in 1994 have been presented. They cover a variety of problems of experimental and theoretical high energy elementary particle physics: hadronic and leptonic interactions with nucleons and nuclei (mainly characteristics of particle production , including heavy quark physics), e + e - interactions and tests of the Standard Model (also evaluations of radiative corrections), ultrarelativistic heavy ion interactions and search for the quark-gluon plasma, as well as spectra, composition and interactions of high energy cosmic ray particles.Research on detectors and development of apparatus for high energy physics experiments at future accelerators such as LHC or RHIC were also carried out. The short information about personnel employed in the Department, seminars, publication, conferences and reports is also given

  3. Overview. Department of High Energy Physics. Section 5

    Energy Technology Data Exchange (ETDEWEB)

    Coghen, T. [Institute of Nuclear Physics, Cracow (Poland)

    1995-12-31

    The activities of Department of High Energy Physics in 1994 have been presented. They cover a variety of problems of experimental and theoretical high energy elementary particle physics: hadronic and leptonic interactions with nucleons and nuclei (mainly characteristics of particle production , including heavy quark physics), e{sup +} e{sup -} interactions and tests of the Standard Model (also evaluations of radiative corrections), ultrarelativistic heavy ion interactions and search for the quark-gluon plasma, as well as spectra, composition and interactions of high energy cosmic ray particles.Research on detectors and development of apparatus for high energy physics experiments at future accelerators such as LHC or RHIC were also carried out. The short information about personnel employed in the Department, seminars, publication, conferences and reports is also given.

  4. Overview. Department of High Energy Physics. Section 5

    Energy Technology Data Exchange (ETDEWEB)

    Coghen, T [Institute of Nuclear Physics, Cracow (Poland)

    1996-12-31

    The activities of Department of High Energy Physics in 1994 have been presented. They cover a variety of problems of experimental and theoretical high energy elementary particle physics: hadronic and leptonic interactions with nucleons and nuclei (mainly characteristics of particle production , including heavy quark physics), e{sup +} e{sup -} interactions and tests of the Standard Model (also evaluations of radiative corrections), ultrarelativistic heavy ion interactions and search for the quark-gluon plasma, as well as spectra, composition and interactions of high energy cosmic ray particles.Research on detectors and development of apparatus for high energy physics experiments at future accelerators such as LHC or RHIC were also carried out. The short information about personnel employed in the Department, seminars, publication, conferences and reports is also given.

  5. Elliptic flow and energy loss of heavy quarks in ultrarelativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Uphoff, Jan; Fochler, Oliver; Greiner, Carsten; Xu, Zhe

    2011-01-01

    The space-time propagation of heavy quarks in ultrarelativistic heavy ion collisions is studied within the partonic transport model Boltzmann approach of multiparton scatterings (BAMPS). In this model heavy quarks interact with the partonic medium via binary scatterings. The cross sections for these interactions are calculated with leading-order perturbative QCD, but feature a more precise Debye screening derived within the hard thermal loop approximation and obey the running of the coupling. Within this framework the elliptic flow and the nuclear modification factor of heavy quarks are computed for the BNL Relativistic Heavy Ion Collider (RHIC) and the CERN Large Hadron Collider (LHC) energies and compared to available experimental data. It is found that binary scatterings alone cannot reproduce the data and therefore radiative corrections have to be taken into account.

  6. Can pions created in high-energy heavy-ion collisions produce a Centauro-type effect?

    International Nuclear Information System (INIS)

    Martinis, M.; Mikuta-Martinis, V.; Crnugelj, J.

    1995-01-01

    We study a Centauro-type phenomenon in high-energy heavy-ion collisions by assuming that pions are produced semiclassically both directly and in pairs through the isovector channel. The leading-particle effect and the factorization property of the scattering amplitude in the impact-parameter space are used to define the classical pion field. We show that the Centauro-type effect is strongly suppressed if a large number of pions are produced in isovector pairs. Our conclusion is supported through the calculation of two pion correlation parameters, f 2 0- and f 2 00 , as well as f 2, n - 0 and the average number of neutral pions (left-angle n 0 right-angle n- ) a a function of negative pions (n - ) produced

  7. Heavy Flavor Production in Heavy Ion Collisions at CMS

    CERN Document Server

    Sun, Jian

    2016-01-01

    Studies of Heavy flavor production are of great interest in heavy ion collisions. In the produced medium, the binding potential between a quark and antiquark in quarkonium is screened by surrounding light quarks and antiquarks. Thus, the various quarkonium states are expected to be melt at different temperatures depending on their binding energies, which allows us to characterize the QCD phase transition. In addition, open heavy flavor production are relevant for flavor-dependence of the in-medium parton energy loss. In QCD, gluons are expected to lose more energy compared to quarks when passing through the QGP due to the larger color charge. Compared to light quarks, heavy quarks are expected to lose less radiative energy because gluon radiation is suppressed at angles smaller than the ratio of the quark mass to its energy. This dead cone effect (and its disappearance at high transverse momentum) can be studied using open heavy flavor mesons and heavy flavor tagged jets. With CMS detector, quarkonia, open he...

  8. Detection system with a large angular acceptance and an energy high dynamics, for heavy ion physics at intermediate energies: M.E.ω. detector

    International Nuclear Information System (INIS)

    Monnet, F.

    1985-01-01

    Built for intermediate energy heavy ions nuclear physics, the M.E.ω. detector uses various and complementary detection methods: ionization chamber, parallel plate avalanche counter, plastic scintillators. With these techniques, velocity, energy, mass and charge of nuclei were measured over wide range. From the detailed theoretical study of each method, limitations and perturbation causes are deduced. The solutions used for optimizing the detector, and the main results are exposed. The internal sectorisation of the detector, which permits a modulation in counting rate and electronical adjustments, has been revealed to be very suitable for heavy ions intermediate energy physics. Results of the first experiment realised with M.E.ω. (Ar + Ag at 35 MeV/u) are commented [fr

  9. The energy-deposition model. Electron loss of heavy ions in collisions with neutral atoms at low and intermediate energies

    International Nuclear Information System (INIS)

    Shevelko, V.P.; Litsarev, M.S.; Kato, D.; Tawara, H.

    2010-09-01

    Single- and multiple-electron loss processes in collisions of heavy many-electron ions (positive and negative) in collisions with neutral atoms at low and intermediate energies are considered using the energy-deposition model. The DEPOSIT computer code, created earlier to calculate electron-loss cross sections at high projectile energies, is extended for low and intermediate energies. A description of a new version of DEPOSIT code is given, and the limits of validity for collision velocity in the model are discussed. Calculated electron-loss cross sections for heavy ions and atoms (N + , Ar + , Xe + , U + , U 28+ , W, W + , Ge - , Au - ), colliding with neutral atoms (He, Ne, Ar, W) are compared with available experimental and theoretical data at energies E > 10 keV/u. It is found that in most cases the agreement between experimental data and the present model is within a factor of 2. Combining results obtained by the DEPOSIT code at low and intermediate energies with those by the LOSS-R code at high energies (relativistic Born approximation), recommended electron-loss cross sections in a wide range of collision energy are presented. (author)

  10. A correlation between micro- and nano-indentation on materials irradiated by high-energy heavy ions

    Science.gov (United States)

    Yang, Yitao; Zhang, Chonghong; Ding, Zhaonan; Su, Changhao; Yan, Tingxing; Song, Yin; Cheng, Yuguang

    2018-01-01

    Hardness testing is an efficient means of assessing the mechanical properties of materials due to the small sampling volume requirement. Previous studies have established the correlation between flow stress and Vickers hardness. However, the damage layer produced by ions irradiation with low energy is too thin to perform Vickers hardness test, which is usually measured by nano-indentation. Therefore, it is necessary to correlate the Vickers hardness and nano-hardness for the convenience of assessing mechanical properties of materials under irradiation. In this study, various materials (pure nickel, nickel base alloys and oxide dispersion strengthened steel) were irradiated with high-energy heavy ions to different damage levels. After irradiation, micro- and nano-indentation were performed to characterize the change in hardness. Due to indentation size effect (ISE), the hardness was dependent of load or depth. Therefore, Nix-Gao model was used to obtain the hardness without ISE (Hv0 and Hnano_0). The determined Hv0 was plotted as a function of the corresponding Hnano_0, then a good linear relation was found between Vickers hardness and nano-hardness, and a coefficient was determined to be 81.0 ± 10.5, namely, Hv 0 = 81.0Hnano _ 0 (Hv0 with unit of kgf/mm2, Hnano_0 with unit of GPa). This correlation was based on the data from various materials, therefore it was independent of materials. Based on the established correlation and nano-indentation results, the change fraction in yield stress of Inconel 718 and pure Ni with ion irradiation was compared with that with neutron irradiation. The data of Inconel 718 with heavy ion irradiation was in good agreement with the data with neutron irradiation, which was a good demonstration for the validation of the established correlation. However, a distinctive difference in change fraction of yield stress was seen for pure Ni under heavy ion irradiation and neutron irradiation, which was attributed to the difference in samples

  11. Heavy metals in trees and energy crops - a literature review

    International Nuclear Information System (INIS)

    Johnsson, Lars

    1995-12-01

    This literature review deals with the use of energy crops for cleaning of soils from heavy metals. It also deals with the use of low accumulating energy crops to be used on strongly contaminated soils where a low uptake of heavy metals is preferred, for example on mining deposits. In addition to the efforts to reduce the sources for heavy metal contamination of soils (for example commercial fertilizers and atmospheric deposition) the uptake and removal of heavy metals from the soils by the use of energy crops have recently been discussed as a method for cleaning of soils. Species from the Salix family (willow) have a greater potential for accumulating heavy metals than cereals which makes them interesting for this purpose. The Salix family consists of species with a great genetic variation. This will probably make it possible to find or develop clones with different characteristics suitable for cleaning of contaminated soils as well as for plant covering of soils that are extremely contaminated by heavy metals. In the former case an accumulation of heavy metals in the harvested parts, the shoots, is preferred. In the later case clones that do not accumulate heavy metals and maybe also clones with only root accumulation are preferred. There are also Salix clones with a specific accumulation of heavy metals which makes it possible to clean soils from a toxic metal and at the same time avoid the risk for deficiency of essential metals, for example Zn. The greatest potential to clean soils by the use of energy crops, is when the contamination levels in the soils are low, the areas to clean are large and when the time needed for cleaning is of minor importance. The most suitable soils are those where the metal contamination is located in the top soil layer and where the heavy metal concentrations in the sub soil layer are still low. 58 refs, 8 tabs, 1 fig

  12. Fission in intermediate energy heavy ion reactions

    International Nuclear Information System (INIS)

    Wilhelmy, J.B.; Begemann-Blaich, M.; Blaich, T.; Boissevain, J.; Fowler, M.M.; Gavron, A.; Jacak, B.V.; Lysaght, P.S.; Britt, H.C.; Fields, D.J.; Hansen, L.F.; Lanier, R.G.; Massoletti, D.J.; Namboodiri, M.M.; Remington, B.A.; Sangster, T.C.; Struble, G.L.; Webb, M.L.; Chan, Y.D.; Dacai, A.; Harmon, A.; Leyba, J.; Pouliot, J.; Stokstad, R.G.; Hansen, O.; Levine, M.J.; Thorn, C.E.; Trautmann, W.; Dichter, B.; Kaufman, S.; Videbaek, F.; Fraenkel, Z.; Mamane, G.; Cebra, D.; Westfall, G.D.

    1989-01-01

    A systematic study of reaction mechanisms at intermediate energies (50-100 MeV/A) has been performed at the Lawrence Berkeley Laboratory's BeValac using medium weight projectiles on medium and heavy element targets. A gas and plastic phoswich detector system was employed which gave large geometric coverage and a wide dynamic response. The particles identified with the gas detectors could be characterized into three components - intermediate mass fragments (IMF), fission fragments (FF) and heavy residues (HR). Major observed features are: The reaction yields are similar in the 50 to 100 MeV/A range, central collisions have high multiplicty of IMF's with broad angular correlations consistent with a large participant region, effects of final state Coulomb interactions are observed and give information on the size and temporal behavior of the source, true fission yields are dependent on target fissility and correlated with relatively peripheral collisions. Analysis of fission and evaporation yields implies limiting conditions for which fission decay remains a viable deexcitation channel. (orig.)

  13. Fission in intermediate energy heavy ion reactions

    International Nuclear Information System (INIS)

    Wilhelmy, J.B.; Begemann-Blaich, M.; Blaich, T.

    1989-01-01

    A systematic study of reaction mechanisms at intermediate energies (50--100 MeV/A) has been performed at the Lawrence Berkeley Laboratory's BeValac using medium weight projectiles on medium and heavy element targets. A gas and plastic phoswich detector system was employed which gave large geometric coverage and a wide dynamic response. The particles identified with the gas detectors could be characterized into three components - intermediate mass fragments (IMF), fission fragments (FF) and heavy residues (HR). Major observed features are: the reaction yields are similar in the 50 to 100 MeV/A range, central collisions have high multiplicity of IMF's with broad angular correlations consistent with a large participant region, effects of final state Coulomb interactions are observed and give information on the size and temporal behavior of the source, true fission yields are dependent on target fissility and correlated with relatively peripheral collisions. Analysis of fission and evaporation yields implies limiting conditions for which fission decay remains a viable deexcitation channel. 7 figs

  14. QCD and high-energy nuclear collisions

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    Six years ago, Relativistic Heavy Ion Collider at Brookhaven started colliding heavy nuclei at record center-of-mass energies of up to 200 GeV/nucleon. Very soon, the Large Hadron Collider at CERN will push the energy of the ions to an astounding 5 TeV/nucleon. What can be learnt from the experiments at these machines? What do we know about the physics of super--dense matter already? I will argue that heavy ion accelerators bring us to the new frontiers of physical knowledge by creating strong color fields and very high densities of partons, at which qualitatively new phenomena emerge. I will also discuss the cross-disciplinary implications for cosmology, astrophysics, and connections to condensed matter physics.

  15. Superiority of Low Energy 160 KV X-Rays Compared to High Energy 6 MV X-Rays in Heavy Element Radiosensitization for Cancer Treatment

    Science.gov (United States)

    Lim, Sara N.; Pradhan, Anil K.; Nahar, Sultana N.; Barth, Rolf F.; Yang, Weilian; Nakkula, Robin J.; Palmer, Alycia; Turro, Claudia

    2013-06-01

    High energy X-rays in the MeV range are generally employed in conventional radiation therapy from linear accelerators (LINAC) to ensure sufficient penetration depths. However, lower energy X-rays in the keV range may be more effective when coupled with heavy element (high-Z or HZ) radiosensitizers. Numerical simulations of X-ray energy deposition for tumor phantoms sensitized with HZ radiosensitizers were performed using the Monte Carlo code Geant4. The results showed enhancement in energy deposition to radiosensitized phantoms relative to unsensitized phantoms for low energy X-rays in the keV range. In contrast, minimal enhancement was seen using high energy X-rays in the MeV range. Dose enhancement factors (DEFs) were computed and showed radiosensitization only in the low energy range nitrate, was initially used because it was 7x less toxic that an equivalent amount of carboplatin in vitro studies. This would allow us to separate the radiotoxic and the chemotoxic effects of HZ sensitizers. Results from this study showed a 10-fold dose dependent reduction in surviving fractions (SF) of radiosensitized cells treated with low energy 160 kV X-rays compared to those treated with 6 MV X-rays. This is in agreement with our simulations that show an increase in dose deposition in radiosensitized tumors for low energy X-rays. Due to unforeen in vivo toxicity, however, another in vitro study was performed using the commonly used, Pt-based chemotherapeutic drug carboplatin which confirmed earlier results. This lays the ground work for a planned in vivo study using F98 glioma bearing rats. This study demonstrates that while high energy X-rays are commonly used in cancer radiotherapy, low energy keV X-rays might be much more effective with HZ radiosensitization.

  16. Electrons with continuous energy distribution from energetic heavy ion collisions

    International Nuclear Information System (INIS)

    Berenyi, D.

    1984-01-01

    The properties and origin of continuous electron spectrum emitted in high energy heavy ion collisions are reviewed. The basic processes causing the characteristic regions of the continuous spectrum are described. The contribution of electrons ejected from the target and from the projectile are investigated in detail in the cases of light and heavy projectiles. The recently recognized mechanisms, electron-capture-to-continuum (ECC) and electron-loss-to-continuum (ELC), leading to a cusp in forward direction, and their theoretical interpretations are discussed. The importance of data from ion-atom collisions in the field of atomic physics and in applications are briefly summarized. (D.Gy)

  17. Development of nano-structure controlled polymer electrolyte fuel-cell membranes by high-energy heavy ion irradiation

    International Nuclear Information System (INIS)

    Yamaki, Tetsuya; Asano, Masaharu; Maekawa, Yasunari; Yoshida, Masaru; Kobayashi, Misaki; Nomura, Kumiko; Takagi, Shigeharu

    2008-01-01

    There is increasing interest in polymer electrolyte fuel cells (PEFCs) together with recent worldwide energy demand and environmental issues. In order to develop proton-conductive membranes for PEFCs, we have been using high-energy heavy ion beams from the cyclotron accelerator of Takasaki Ion Accelerators for Advanced Radiation Application (TIARA), JAEA. Our strategic focus is centered on using nano-scale controllability of the ion-beam processing; the membrane preparation involves (1) the irradiation of commercially-available base polymer films with MeV ions, (2) graft polymerization of vinyl monomers into electronically-excited parts along the ion trajectory, called latent tracks, and (3) sulfonation of the graft polymers. Interestingly, the resulting membranes exhibited anisotropic proton transport, i.e., higher conductivity in the thickness direction. According to microscopic observations, this is probably because the columnar electrolyte phase extended, with a width of tens-to-hundreds nanometers, through the membrane. Other excellent membrane properties, e.g., sufficient mechanical strength, high dimensional stability, and low gas permeability should be due to such a controlled structure. (author)

  18. Angular correlations and fragmentation in intermediate energy heavy ion collisions

    International Nuclear Information System (INIS)

    Kristiansson, Anders.

    1990-05-01

    Intermediate energy heavy-ion collisions have been studied from 35 A MeV up to 94 A MeV at various accelerators. Angular correlations between light particles and detection of projectile- and target-fragments have been used to investigate the reaction mechanisms in this transition region between low- and high energy. An excess of correlations is observed in the particle-particle elastic scattering plane. This excess increases with particle mass and can be understood in terms of momentum conservation. The fragmentation measurements gives an indication that both energy and momentum transfer to the spectator volumes does occur. (author)

  19. High energy heavy ion beam lithography in silicon

    International Nuclear Information System (INIS)

    Rout, Bibhudutta; Dymnikov, Alexander D.; Zachry, Daniel P.; Eschenazi, Elia V.; Wang, Yongqiang Q.; Greco, Richard R.; Glass, Gary A.

    2007-01-01

    As high energy ions travel through a crystalline semiconductor materials they produce damage along the path which results in resistance to some of the wet chemical etching. A series of preliminary experiments have been performed at the Louisiana Accelerator Center (LAC) to examine the feasibility of irradiating high energy (keV-MeV) ions such as protons, xenon and gold through microscale masked structures on crystalline (n-type) Si substrates followed by wet chemical etch with KOH for attaining deep micromachining in Si. The results of these experiments are reported

  20. Heavy ion reactions at low energies

    International Nuclear Information System (INIS)

    Nemes, M.C.

    1985-01-01

    Some general features of the heavy ion reactions at low energies are presented. Some kinds of processes are studied, such as: elastic scattering, peripherical reactions, deep inelastic collisions and fusion. Both, theoretical and experimental perspectives on this field are discussed. (L.C.) [pt

  1. Energy conservation measures adopted at Heavy Water Plant, Manuguru

    International Nuclear Information System (INIS)

    Gupta, R.V.; Venugopal, M.

    1997-01-01

    The importance of conservation of energy is well recognised all over the world as the world reserves of fossil fuels will eventually run out depending on the rate of their use. This paper deals with various energy conservation schemes adopted at Heavy Water Plant, Manuguru (HWPM). Most energy conservation measures offer large financial saving with very short pay back periods. This fact has been well recognised by the management of HWPM as well as Heavy Water Board and their wholehearted and enthusiastic approach to energy conservation and energy management yielded very good results in reducing the operating cost. The process of energy conservation is not a one time exercise. Persistent efforts are on to identify the areas like condition of heat exchangers, margins in control valves, steam and condensate leakages etc. for further reduction in energy consumption

  2. Pauli correlations in heavy-ion collisions at high energies

    International Nuclear Information System (INIS)

    Franco, V.; Nutt, W.T.

    1977-01-01

    The effects of short-range correlations on the Glauber expansion for nucleus-nucleus collisions are calculated using the Fermi gas model for nuclei. When the Pauli principle is neglected for collisions between heavy nuclei, calculation of the optical phase-shift function leads to non-unitary results and cross sections cannot be obtained. When Pauli correlations are included important cancellations in the optical phase-shift function are found which make possible the calculation of total and differential cross sections for heavy nuclei. (Auth.)

  3. Heavy quark energy loss far from equilibrium in a strongly coupled collision

    CERN Document Server

    Chesler, Paul M; Rajagopal, Krishna

    2013-01-01

    We compute and study the drag force acting on a heavy quark propagating through the matter produced in the collision of two sheets of energy in a strongly coupled gauge theory that can be analyzed holographically. Although this matter is initially far from equilibrium, we find that the equilibrium expression for heavy quark energy loss in a homogeneous strongly coupled plasma with the same instantaneous energy density or pressure as that at the location of the quark describes many qualitative features of our results. One interesting exception is that there is a time delay after the initial collision before the heavy quark energy loss becomes significant. At later times, once a liquid plasma described by viscous hydrodynamics has formed, expressions based upon assuming instantaneous homogeneity and equilibrium provide a semi-quantitative description of our results - as long as the rapidity of the heavy quark is not too large. For a heavy quark with large rapidity, the gradients in the velocity of the hydrodyna...

  4. Macroscopic damping model for zero degree energy distribution in ultra-relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Gao Chongshou; Wang Chengshing

    1993-01-01

    A macroscopic damping model is proposed to calculate the zero degree energy distribution in ultra-relativistic heavy ion collisions. The main features of the measured distributions are reproduced, good agreement is obtained in the middle energy region while overestimation results on the high energy side. The average energy loss coefficient of incident nucleons, varying in the reasonable region 0.2-0.6, depends on beam energy and target size

  5. High-performance control system for a heavy-ion medical accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lancaster, H.D.; Magyary, S.B.; Sah, R.C.

    1983-03-01

    A high performance control system is being designed as part of a heavy ion medical accelerator. The accelerator will be a synchrotron dedicated to clinical and other biomedical uses of heavy ions, and it will deliver fully stripped ions at energies up to 800 MeV/nucleon. A key element in the design of an accelerator which will operate in a hospital environment is to provide a high performance control system. This control system will provide accelerator modeling to facilitate changes in operating mode, provide automatic beam tuning to simplify accelerator operations, and provide diagnostics to enhance reliability. The control system being designed utilizes many microcomputers operating in parallel to collect and transmit data; complex numerical computations are performed by a powerful minicomputer. In order to provide the maximum operational flexibility, the Medical Accelerator control system will be capable of dealing with pulse-to-pulse changes in beam energy and ion species.

  6. High-performance control system for a heavy-ion medical accelerator

    International Nuclear Information System (INIS)

    Lancaster, H.D.; Magyary, S.B.; Sah, R.C.

    1983-03-01

    A high performance control system is being designed as part of a heavy ion medical accelerator. The accelerator will be a synchrotron dedicated to clinical and other biomedical uses of heavy ions, and it will deliver fully stripped ions at energies up to 800 MeV/nucleon. A key element in the design of an accelerator which will operate in a hospital environment is to provide a high performance control system. This control system will provide accelerator modeling to facilitate changes in operating mode, provide automatic beam tuning to simplify accelerator operations, and provide diagnostics to enhance reliability. The control system being designed utilizes many microcomputers operating in parallel to collect and transmit data; complex numerical computations are performed by a powerful minicomputer. In order to provide the maximum operational flexibility, the Medical Accelerator control system will be capable of dealing with pulse-to-pulse changes in beam energy and ion species

  7. Monte Carlo simulation of channeled and random profiles of heavy ions implanted in silicon at high energy (1.2 MeV)

    International Nuclear Information System (INIS)

    Mazzone, A.M.

    1987-01-01

    In order to study channeling effects and implants of heavy ions with energy of few MeV in silicon, ion distributions are calculated with a Monte Carlo method for axial [(001) axis], planar, and nominally random directions for As + and P + ions implanted into silicon with energies in the range 100 keV to 2 MeV. The calculation indicates an appreciable channeling at the higher energy only for the (001) axis and the (110) planes. For heavy ions with energy in the MeV range the subsidence of channeling into major channels and the disappearance of minor channels are shown

  8. Heavy flavour in ALICE

    CERN Document Server

    Pillot, Philippe

    2008-01-01

    Open heavy flavours and heavy quarkonium states are expected to provide essential informa- tion on the properties of the strongly interacting system fo rmed in the early stages of heavy-ion collisions at very high energy density. Such probes are espe cially promising at LHC energies where heavy quarks (both c and b) are copiously produced. The ALICE detector shall measure the production of open heavy flavours and heavy quarkonium st ates in both proton-proton and heavy-ion collisions at the LHC. The expected performances of ALICE for heavy flavour physics is discussed based on the results of simulation studies on a s election of benchmark channels

  9. Energy change of a heavy quark in a viscous quark–gluon plasma with fluctuations

    International Nuclear Information System (INIS)

    Jiang, Bing-feng; Hou, De-fu; Li, Jia-rong

    2016-01-01

    When a heavy quark travels through the quark–gluon plasma, the polarization and fluctuating chromoelectric fields will be produced simultaneously in the plasma. The drag force due to those fields exerting in return on the moving heavy quark will cause energy change to it. Based on the dielectric functions derived from the viscous chromohydrodynamics, we have studied the collisional energy change of a heavy quark traversing the viscous quark–gluon plasma including fluctuations of chromoelectric field. Numerical results indicate that the chromoelectric field fluctuations lead to an energy gain of the moving heavy quark. Shear viscosity suppresses the fluctuation-induced energy gain and the viscous suppression effect for the charm quark is much more remarkable than that for the bottom quark. While, the fluctuation energy gain is much smaller than the polarization energy loss in magnitude and the net energy change for the heavy quark is at loss.

  10. Design and performance simulation of a segmented-absorber based muon detection system for high energy heavy ion collision experiments

    International Nuclear Information System (INIS)

    Ahmad, S.; Bhaduri, P.P.; Jahan, H.; Senger, A.; Adak, R.; Samanta, S.; Prakash, A.; Dey, K.; Lebedev, A.; Kryshen, E.; Chattopadhyay, S.; Senger, P.; Bhattacharjee, B.; Ghosh, S.K.; Raha, S.; Irfan, M.; Ahmad, N.; Farooq, M.; Singh, B.

    2015-01-01

    A muon detection system (MUCH) based on a novel concept using a segmented and instrumented absorber has been designed for high-energy heavy-ion collision experiments. The system consists of 6 hadron absorber blocks and 6 tracking detector triplets. Behind each absorber block a detector triplet is located which measures the tracks of charged particles traversing the absorber. The performance of such a system has been simulated for the CBM experiment at FAIR (Germany) that is scheduled to start taking data in heavy ion collisions in the beam energy range of 6–45 A GeV from 2019. The muon detection system is mounted downstream to a Silicon Tracking System (STS) that is located in a large aperture dipole magnet which provides momentum information of the charged particle tracks. The reconstructed tracks from the STS are to be matched to the hits measured by the muon detector triplets behind the absorber segments. This method allows the identification of muon tracks over a broad range of momenta including tracks of soft muons which do not pass through all the absorber layers. Pairs of oppositely charged muons identified by MUCH could therefore be combined to measure the invariant masses in a wide range starting from low mass vector mesons (LMVM) up to charmonia. The properties of the absorber (material, thickness, position) and of the tracking chambers (granularity, geometry) have been varied in simulations of heavy-ion collision events generated with the UrQMD generator and propagated through the setup using the GEANT3, the particle transport code. The tracks are reconstructed by a Cellular Automaton algorithm followed by a Kalman Filter. The simulations demonstrate that low mass vector mesons and charmonia can be clearly identified in central Au+Au collisions at beam energies provided by the international Facility for Antiproton and Ion Research (FAIR)

  11. Antimatter production in proton-proton and heavy-ion collisions at ultrarelativistic energies

    International Nuclear Information System (INIS)

    Cleymans, J.; Kabana, S.; Kraus, I.; Oeschler, H.; Redlich, K.; Sharma, N.

    2011-01-01

    One of the striking features of particle production at high beam energies is the near-equal abundance of matter and antimatter in the central rapidity region. In this paper we study how this symmetry is reached as the beam energy is increased. In particular, we quantify explicitly the energy dependence of the approach to matter-antimatter symmetry in proton-proton and in heavy-ion collisions. Expectations are presented also for the production of more complex forms of antimatter such as antihypernuclei.

  12. Study of energy deposition in heavy-ion reactions

    International Nuclear Information System (INIS)

    Mota, V. De La; Abgrall, P.; Sebille, F.; Haddad, F.

    1993-01-01

    An investigation of energy deposition mechanisms in heavy-ion reactions at intermediate energies is presented. Theoretical simulations are performed in the framework of the semi-classical Landau-Vlasov model. They emphasize the influence of the initial non-equilibrium conditions, and the connection with the incident energy is discussed. Characteristic times involved in the energy thermalization process and finite size effects are analyzed. (authors) 20 refs., 4 figs

  13. Improved four-stage accel-decel production of low-energy stripped heavy ions

    International Nuclear Information System (INIS)

    Thieberger, P.; Barrette, J.; Johnson, B.M.; Jones, K.W.; Meron, M.; Wegner, H.E.

    1982-01-01

    The two model MP Tandem Van de Graaff accelerators at Brookhaven have been used in a four-stage accel-decel configuration to produce highly stripped low energy heavy ions. The performance in this mode of operation has now been substantially improved by modifications of the second accelerator. The inclined field acceleration tube electrodes at the exit of this accelerator were replaced by straight electrodes, the vacuum was improved and the maximum negative terminal potential was increased. Higher intensity beams of heavier highly stripped ions can now be produced at lower energies than before

  14. Application of flywheel energy storage for heavy haul locomotives

    International Nuclear Information System (INIS)

    Spiryagin, Maksym; Wolfs, Peter; Szanto, Frank; Sun, Yan Quan; Cole, Colin; Nielsen, Dwayne

    2015-01-01

    Highlights: • A novel design for heavy haul locomotive equipped with a flywheel energy storage system is proposed. • The integrated intelligent traction control system was developed. • A flywheel energy storage system has been tested through a simulation process. • The developed hybrid system was verified using an existing heavy haul railway route. • Fuel efficiency analysis confirms advantages of the hybrid design. - Abstract: At the present time, trains in heavy haul operations are typically hauled by several diesel-electric locomotives coupled in a multiple unit. This paper studies the case of a typical consist of three Co–Co diesel-electric locomotives, and considers replacing one unit with an alternative version, with the same design parameters, except that the diesel-electric plant is replaced with flywheel energy storage equipment. The intelligent traction and energy control system installed in this unit is integrated into the multiple-unit control to allow redistribution of the power between all units. In order to verify the proposed design, a three-stage investigation has been performed as described in this paper. The initial stage studies a possible configuration of the flywheel energy storage system by detailed modelling of the proposed intelligent traction and energy control system. The second stage includes the investigation and estimation of possible energy flows using a longitudinal train dynamics simulation. The final stage compares the conventional and the proposed locomotive configurations considering two parameters: fuel efficiency and emissions reduction.

  15. Theoretical interpretation of high-energy nuclear collisions

    International Nuclear Information System (INIS)

    Fai, G.

    1992-06-01

    Nuclear collisions are interpreted theoretically. The nuclear equation of state is studied in a wide energy range. Subnucleonic degrees of freedom are invoked at high energy densities and at short length-scales. Questions of dynamical collision simulations are investigated. Direct support is provided for experiment in the form of collaborative projects. The major objective of this nuclear theory program is a better understanding of the properties of strongly interacting matter on the nuclear energy scale, as manifested in high-energy heavy-ion collisions

  16. Biological effects of high-energy radiation

    International Nuclear Information System (INIS)

    Curtis, S.B.

    1976-01-01

    The biological effects of high-energy radiation are reviewed, with emphasis on the effects of the hadronic component. Proton and helium ion effects are similar to those of the more conventional and sparsely ionizing x- and γ-radiation. Heavy-ions are known to be more biologically effective, but the long term hazard from accumulated damage has yet to be assessed. Some evidence of widely varying but dramatically increased effectiveness of very high-energy (approximately 70 GeV) hadron beams is reviewed. Finally, the importance of the neutron component in many situations around high-energy accelerators is pointed out

  17. High energy physics: Experimental, theoretical and phenomenology institute

    International Nuclear Information System (INIS)

    Barger, V.; Camerini, U.; Carlsmith, D.; Durand, B.; Durand, L.; Erwin, A.; Fry, W.; Goebel, C.; Halzen, F.; Loveless, R.; March, R.; Morse, R.; Olsson, M.; Pondrom, L.; Prepost, R.; Reeder, D.; Sheaff, M.; Smith, W.; Thompson, M.; Wu, S.L.

    1991-01-01

    This report discusses research in the following task: hadron physics at Fermilab; Lepton hadron scattering; electromagnetic ampersand weak interactions at the Stanford Linear Accelerator Center - SLAC; hyperon beam program - hadroproduction of heavy beam flavors at Fermilab; ultra high energy colliding beam physics; Institute for high energy physics phenomenology; weak ampersand electromagnetic interactions using PETRA at DESY ampersand LEP at CERN; theoretical high energy physics; DUMAND; study of ultra high energy gamma rays; data analysis facility; and R ampersand D for major subsystems for the SSC detectors

  18. Computing in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Sarah; Devenish, Robin [Nuclear Physics Laboratory, Oxford University (United Kingdom)

    1989-07-15

    Computing in high energy physics has changed over the years from being something one did on a slide-rule, through early computers, then a necessary evil to the position today where computers permeate all aspects of the subject from control of the apparatus to theoretical lattice gauge calculations. The state of the art, as well as new trends and hopes, were reflected in this year's 'Computing In High Energy Physics' conference held in the dreamy setting of Oxford's spires. The conference aimed to give a comprehensive overview, entailing a heavy schedule of 35 plenary talks plus 48 contributed papers in two afternoons of parallel sessions. In addition to high energy physics computing, a number of papers were given by experts in computing science, in line with the conference's aim – 'to bring together high energy physicists and computer scientists'.

  19. Transverse energy per charged particle in heavy-ion collisions: Role of collective flow

    Science.gov (United States)

    Kumar Tiwari, Swatantra; Sahoo, Raghunath

    2018-03-01

    The ratio of (pseudo)rapidity density of transverse energy and the (pseudo)rapidity density of charged particles, which is a measure of the mean transverse energy per particle, is an important observable in high energy heavy-ion collisions. This ratio reveals information about the mechanism of particle production and the freeze-out criteria. Its collision energy and centrality dependence is almost similar to the chemical freeze-out temperature until top Relativistic Heavy-Ion Collider (RHIC) energy. The Large Hadron Collider (LHC) measurement at √{s_{NN}} = 2.76 TeV brings up new challenges towards understanding the phenomena like gluon saturation and role of collective flow, etc. being prevalent at high energies, which could contribute to the above observable. Statistical Hadron Gas Model (SHGM) with a static fireball approximation has been successful in describing both the centrality and energy dependence until top RHIC energies. However, the SHGM predictions for higher energies lie well below the LHC data. In order to understand this, we have incorporated collective flow in an excluded-volume SHGM (EV-SHGM). Our studies suggest that the collective flow plays an important role in describing E T/ N ch and it could be one of the possible parameters to explain the rise observed in E T/ N ch from RHIC to LHC energies. Predictions are made for E T/ N ch , participant pair normalized-transverse energy per unit rapidity and the Bjorken energy density for Pb+Pb collisions at √{s_{NN}} = 5.02 TeV at the Large Hadron Collider.

  20. High energy density in matter produced by heavy ion beams. Annual report 1993

    International Nuclear Information System (INIS)

    1994-06-01

    The experimental activities at GSI were concentrated on the progress in beam-plasma interaction experiments of heavy ion with ionized matter, plasma -lens forming devices, intense beam at high temperature experimental area, and charge exchange collisions of ions. The development to higher intensities and phase space densities during 1993 for the SIS and the ESR is recorded. The possibility of studying of funneling of two beams in a two-beam RFQ is studied. Specific results are presented with respect to inertial confinement fusion (ICF). The problem of ion stopping in plasma and pumping X-ray lasers with heavy ion beams are discussed. Various contributions deal with dense plasma effects, shocks and opacity. (HP)

  1. Dynamical and statistical aspects of intermediate energy heavy ion collisions

    International Nuclear Information System (INIS)

    Knoll, J.

    1987-01-01

    The lectures presented deal with three different topics relevant for the discussion of nuclear collisions at medium to high energies. The first lecture concerns a subject of general interest, the description of statistical systems and their dynamics by the concept of missing information. If presents an excellent scope to formulate statistical theories in such a way that they carefully keep track of the known (relevant) information while maximizing the ignorance about the irrelevant, unknown information. The last two lectures deal with quite actual questions of intermediate energy heavy-ion collisions. These are the multi-fragmentation dynamics of highly excited nuclear systems, and the so called subthreshold particle production. All three subjects are self-contained, and can be read without the knowledge about the other ones. (orig.)

  2. Elementary particle physics and high energy phenomena

    International Nuclear Information System (INIS)

    Barker, A.R.; Cumalat, J.P.; de Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    This report discusses the following research in high energy physics: the properties of the z neutral boson with the SLD detector; the research and development program for the SDC muon detector; the fixed-target k-decay experiments; the Rocky Mountain Consortium for HEP; high energy photoproduction of states containing heavy quarks; and electron-positron physics with the CLEO II and Mark II detectors. (LSP)

  3. Elementary particle physics and high energy phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Barker, A.R.; Cumalat, J.P.; de Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    This report discusses the following research in high energy physics: the properties of the z neutral boson with the SLD detector; the research and development program for the SDC muon detector; the fixed-target k-decay experiments; the Rocky Mountain Consortium for HEP; high energy photoproduction of states containing heavy quarks; and electron-positron physics with the CLEO II and Mark II detectors. (LSP).

  4. SPARC experiments at the high-energy storage ring

    International Nuclear Information System (INIS)

    Stöhlker, Thomas; Litvinov, Yuri A; Bagnoud, Vincent; Dimopoulou, Christina; Dolinskii, Alexei; Geppert, Christopher; Hagmann, Siegbert; Katayama, Takeshi; Kühl, Thomas; Nörtershäuser, Wilfried; Steck, Markus; Bechstedt, Ulf; Maier, Rudolf; Prasuhn, Dieter; Stockhorst, Hans; Schuch, Reinhold

    2013-01-01

    The physics program of the SPARC collaboration at the Facility for Antiproton and Ion Research (FAIR) focuses on the study of collision phenomena in strong and even extreme electromagnetic fields and on the fundamental interactions between electrons and heavy nuclei up to bare uranium. Here we give a short overview on the challenging physics opportunities of the high-energy storage ring at FAIR for future experiments with heavy-ion beams at relativistic energies with particular emphasis on the basic beam properties to be expected. (paper)

  5. High Energy Physics Departments - Overview

    International Nuclear Information System (INIS)

    Bartke, J.

    1999-01-01

    Following the tradition, the activities of the seven new units created in 1997 on the basis of the former Department of High Energy Physics are presented under a common header, they are: Department of Particle Theory (Dept 5); Department of Leptonic Interactions (Dept 11); Department of Hadron Structure (Dept 12); Department of High Energy Nuclear Interactions (Dept 13); The ALICE Experiment Laboratory (NAL); The ATLAS Experiment Laboratory (NAT); High Energy Physics Detector Construction Group (PBD). The research covers a variety of problems of the experimental and theoretical high energy particle physics: the hadronic and leptonic interactions with nucleons and nuclei (characteristics of particle production, including heavy quark physics), e + e - interactions and tests of the Standard Model (also radiative corrections), ultrarelativistic heavy ion interactions and search for the quark-gluon plasma, as well as the spectra, composition and interactions of high energy cosmic ray particles. Research on detectors and accelerator components as well as the development of the apparatus for the high energy physics experiments at future accelerators: LHC (CERN, Geneva), RHIC (Brookhaven), B-Factory (KEK, Tsukuba) and TESLA (DESY) is also presented. The technology of new materials with unique properties such as carbon-carbon composites is also worked on from the point of view of their application in high energy physics experiments. The Division is located in a separate building on the campus of the University of Mining and Metallurgy (UMM). This location, close to the Jagiellonian University (JU), facilitates the collaboration with the latter and with the UMM. The joint weekly seminars carried out for nearly 40 years prove this long term tradition. A substantial part of the activities is teaching and training students from the academic community in Cracow. Joint research, teaching and academic training in the high energy physics are carried out within the M. Miesowicz

  6. Pion production in high energy heavy ion collisions

    International Nuclear Information System (INIS)

    Wolf, K.L.; Bock, R.; Brockmann, R.

    1984-01-01

    Experimental data for heavy ion pion production reactions are compared with the predictions of a number of versions of cascade models. Pion suppression effects observed in the experimental data are fit by introducing refinements into cascade theory. Impact parameter adjustment, off-shell effects on the potential and perturbations due to nuclear matter are considered

  7. High-energy photoproduction of states containing heavy quarks and other rare phenomena

    International Nuclear Information System (INIS)

    Cumalat, J.; Butler, J.; Gaines, I.

    1981-01-01

    We propose to study the photoproduction of states containing heavy quarks, charm and beauty, using a multiparticle spectrometer at the Tevatron. The apparatus is similar to that used in E87 and E401, but is upgraded to have a much larger acceptance, better γ and π 0 reconstruction capabilities, and a prompt decay vertex detector. To achieve high sensitivity to low cross sections, the experiment must run in a wide band photon beam, preferably the new beam proposed for the Proton East area. The experiment has two phases. Phase 1 is a 500 hour run with a thick target (1 interaction length) and a beam dump. This phase will produce a large sample of dimuon decays of T's and J/PSI's with energies up to 450 GeV and will measure the size of beauty photoproduction through the detection of multimuon final states. Phase 2 is a 1500 hour run with an open geometry and a 10% interaction length target. We will collect very large samples (> 10 6 ) of charm particle events and will search for specific B-meson and B-baryon final states. The power of the spectrometer and the flexibility of the trigger scheme we employ enables us to do sensitive searches for completely new phenomena with less bias than other experiments

  8. Computing in high energy physics

    International Nuclear Information System (INIS)

    Smith, Sarah; Devenish, Robin

    1989-01-01

    Computing in high energy physics has changed over the years from being something one did on a slide-rule, through early computers, then a necessary evil to the position today where computers permeate all aspects of the subject from control of the apparatus to theoretical lattice gauge calculations. The state of the art, as well as new trends and hopes, were reflected in this year's 'Computing In High Energy Physics' conference held in the dreamy setting of Oxford's spires. The conference aimed to give a comprehensive overview, entailing a heavy schedule of 35 plenary talks plus 48 contributed papers in two afternoons of parallel sessions. In addition to high energy physics computing, a number of papers were given by experts in computing science, in line with the conference's aim – 'to bring together high energy physicists and computer scientists'

  9. Intermediate/high energy nuclear physics

    International Nuclear Information System (INIS)

    Vary, J.P.

    1992-01-01

    Progress during the last year is reviewed under the following topics: relativistic hadron--nucleus and nucleus--nucleus collisions (heavy meson production, photon production and fragmentation functions--direct photon production with the QCM and photon fragmentation functions, Cronin efffect and multiple scattering, effective nuclear parton distributions); solving quantum field theories in nonperturbative regime; light-front dynamics and high-spin states (soft form factor of the pion and nucleon for transverse and longitudinal momentum transfers, light front spinors for high-spin objects); high-energy spin physics; relativistic wave equations, quarkonia, and e + e - resonances; associated production of Higgs boson at collider energies, and microscopic nuclear many-body theory and reactions. 135 refs

  10. Proposal for the Study of Thermophysical Properties of High-Energy-Density Matter Using Current and Future Heavy-Ion Accelerator Facilities at GSI Darmstadt

    International Nuclear Information System (INIS)

    Tahir, N.A.; Spiller, P.; Deutsch, C.; Fortov, V.E.; Gryaznov, V.; Kulish, M.; Lomonosov, I.V.; Mintsev, V.; Nikolaev, D.; Shilkin, N.; Shutov, A.; Ternovoi, V.; Hoffmann, D.H.H.; Ni, P.; Udrea, S.; Varentsov, D.; Piriz, A.R.; Temporal, M.

    2005-01-01

    The subject of high-energy-density (HED) states in matter is of considerable importance to numerous branches of basic as well as applied physics. Intense heavy-ion beams are an excellent tool to create large samples of HED matter in the laboratory with fairly uniform physical conditions. Gesellschaft fuer Schwerionenforschung, Darmstadt, is a unique worldwide laboratory that has a heavy-ion synchrotron, SIS18, that delivers intense beams of energetic heavy ions. Construction of a much more powerful synchrotron, SIS100, at the future international facility for antiprotons and ion research (FAIR) at Darmstadt will lead to an increase in beam intensity by 3 orders of magnitude compared to what is currently available. The purpose of this Letter is to investigate with the help of two-dimensional numerical simulations, the potential of the FAIR to carry out research in the field of HED states in matter

  11. Energy utilization of light and heavy weaned piglets subjected to different dietary energy levels

    Directory of Open Access Journals (Sweden)

    Andréa Machado Leal Ribeiro

    Full Text Available ABSTRACT This study was conducted to evaluate the effects of dietary metabolisable energy (ME: 3.25, 3.40, 3.55, or 3.70 Mcal kg−1 and weaning weight (WW: light 4.0±0.7 kg, and heavy: 6.3±0.6 kg on productive response and energy utilization of weaned piglets. Sixty-four male piglets were housed in 32 metabolic cages (two animals per cage during the first 14 d postweaning. At day 15, only one animal per cage was kept until day 28. Body composition, energy, and nutrient deposition rates and energy utilization efficiency were measured through a comparative slaughter procedure. Piglets with light WW had a poorer feed conversion ratio and lower weight gain and feed intake when expressed per live weight. Increased ME led to greater daily fat deposition in the empty bodies (defined as weighted mean of the carcass + organs + blood, no intestinal content, while light WW piglets had a reduced protein deposition. Light WW piglets increased heat production with increased ME, but no effect was seen for the heavy WW piglets. By contrast, heavy WW piglets increased empty body gross energy as ME increased, while no influence was observed on light WW piglets. Increasing dietary energy levels did not contribute to the subsequent growth performance of piglets that were lighter at weaning. The lack of interaction between weaning weight and dietary ME content on growth performance does not support the hypothesis that light piglets at weaning do not exhibit compensatory growth because of limitations in energy intake.

  12. Today's status of application of high power electron beam welding to heavy electric machinery

    International Nuclear Information System (INIS)

    Kita, Hisanao; Okuni, Tetsuo; Sejima, Itsuhiko.

    1980-01-01

    The progress in high energy welding is remarkable in recent years, and electron beam welding is now widely used in heavy industries. However, there are number of problems to be solved in the application of high power electron beam welding to ultra thick steel plates (over 100 mm). The following matters are described: the economy of high power electron beam welding; the development of the welding machines; the problems in the actual application; the instances of the welding in a high-pressure spherical gas tank, non-magnetic steel structures and high-precision welded structures; weldor training; etc. For the future rise in the capacities of heavy electric machinery, the high efficiency by high power electron beam welding will be useful. The current status is its applications to the high-precision welding of large structures with 6 m diameter and the high-quality welding of heavy structures with 160 mm thickness. (J.P.N.)

  13. INTERFACIAL ENERGY DURING THE EMULSIFICATION OF WATER-IN-HEAVY CRUDE OIL EMULSIONS

    Directory of Open Access Journals (Sweden)

    V. Karcher

    2015-03-01

    Full Text Available Abstract The aim of this study was to investigate the interfacial energy involved in the production of water-in-oil (W/O emulsions composed of water and a Brazilian heavy crude oil. For such purpose an experimental set-up was developed to measure the different energy terms involved in the emulsification process. W/O emulsions containing different water volume fractions (0.1, 0.25 and 0.4 were prepared in a batch calorimeter by using a high-shear rotating homogenizer at two distinct rotation speeds (14000 and 22000 rpm. The results showed that the energy dissipated as heat represented around 80% of the energy transferred to the emulsion, while around 20% contributed to the internal energy. Only a very small fraction of the energy (0.02 - 0.06% was stored in the water-oil interface. The results demonstrated that the high energy dissipation contributes to the kinetic stability of the W/O emulsions.

  14. Probing the nuclear symmetry energy with heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    De Filippo E.

    2015-01-01

    Full Text Available Heavy ion collisions (HIC have been widely used to extract the parametrization of symmetry energy term of nuclear equation of state as a function of barionic density. HIC in fact are a unique tool in terrestrial laboratories to explore the symmetry energy around the saturation density (ρ0 = 0.16fm−3 from sub-saturation densities (Fermi energies towards compressed nuclear matter (ρ > 2 − 3ρ0 that can be reached at relativistic energies, as a function of different conditions of temperature, mass asymmetry and isospin. One of the main study at present is to reach a coherent description of EOS of asymmetric nuclear matter from heavy ion collisions of stable and exotic nuclei, nuclear structure studies and astrophysical observations. In this work an overview of the current status of the research is shortly reviewed together with new perspectives aimed to reduce the present experimental and theoretical uncertainties.

  15. Proposed activity - Budget for research in high energy physics

    International Nuclear Information System (INIS)

    Barger, V.; Camerini, U.; Carlsmith, D.

    1989-01-01

    This paper contains task reports on the following topics: Hadron physics at Fermilab; Lepton hadron scattering; Electroweak and weak interactions at the Stanford Linear Accelerator Center; Hyperon beam program/hadroproduction of heavy flavors at Fermilab; High energy physics colliding beam detector facility at Fermilab; Data analysis facility; Institute for Elementary Particle Physics research; Study of weak and electromagnetic interactions at Desy and Cern; Theoretical high energy physics; Dumand; and Ultra high energy gamma rays

  16. Beamline for low-energy transport of highly charged ions at HITRAP

    International Nuclear Information System (INIS)

    Andelkovic, Z.; Herfurth, F.; Kotovskiy, N.; König, K.; Maaß, B.; Murböck, T.; Neidherr, D.; Schmidt, S.; Steinmann, J.; Vogel, M.; Vorobjev, G.

    2015-01-01

    A beamline for transport of highly charged ions with energies as low as a few keV/charge has been constructed and commissioned at GSI. Complementary to the existing infrastructure of the HITRAP facility for deceleration of highly charged ions from the GSI accelerator, the new beamline connects the HITRAP ion decelerator and an EBIT with the associated experimental setups. Therefore, the facility can now transport the decelerated heavy highly charged ions to the experiments or supply them offline with medium-heavy highly charged ions from the EBIT, both at energies as low as a few keV/charge. Here we present the design of the 20 m long beamline with the corresponding beam instrumentation, as well as its performance in terms of energy and transport efficiency

  17. Approach to equilibrium in high energy heavy ion collisions

    International Nuclear Information System (INIS)

    Zimanyi, J.

    1981-01-01

    With the aim to clarify somewhat the question of equilibration in the following we investigate the approach to equilibrium of particle composition and momentum distribution of the particles within the firecloud formed in the central collision of energetic heavy ions. (orig.)

  18. Theoretical interpretation of high-energy nuclear collisions

    International Nuclear Information System (INIS)

    Fai, G.

    1991-07-01

    Nuclear collision data are interpreted theoretically. The nuclear equation of state is investigated with particular emphasis on momentum-dependent mean field effects. Subnucleonic degrees of freedom are invoked at high energies and densities, and a short length-scales. A nontopological soliton model for baryons is studied in which effective meson fields are generated from extended quark-antiquark pairs. The major objective of this nuclear theory project is a better understanding of the properties of strongly interacting matter on the nuclear energy scale, as manifested in high-energy heavy-ion collisions

  19. Spin effects in intermediate-energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Xu Jun; Li Baoan; Xia Yin; Shen Wenqing

    2014-01-01

    In this paper, we report and extend our recent work where the nucleon spin-orbit interaction and its spin degree of freedom were introduced explicitly for the first time in the isospin-dependent Boltzmann-Uehling-Uhlenbeck transport model for heavy-ion reactions. Despite of the significant cancellation of the time-even and time-odd spin-related mean-field potentials from the spin-orbit interaction,an appreciable local spin polarization is observed in heavy-ion collisions at intermediate energies because of the dominating role of the time-odd terms. It is also found that the spin up-down differential transverse flow in heavy-ion collisions is a useful probe of the strength, density dependence, and isospin dependence of the in-medium spin-orbit interaction, and its magnitude is still considerable even at smaller systems. (authors)

  20. High current transport experiment for heavy ion inertial fusion

    Directory of Open Access Journals (Sweden)

    L. R. Prost

    2005-02-01

    Full Text Available The High Current Experiment at Lawrence Berkeley National Laboratory is part of the U.S. program to explore heavy-ion beam transport at a scale representative of the low-energy end of an induction linac driver for fusion energy production. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high intensity (line charge density ∼0.2  μC/m over long pulse durations (4  μs in alternating gradient focusing lattices of electrostatic or magnetic quadrupoles. This experiment is testing transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and steering, envelope matching, image charges and focusing field nonlinearities, halo, and electron and gas cloud effects. We present the results for a coasting 1 MeV K^{+} ion beam transported through ten electrostatic quadrupoles. The measurements cover two different fill factor studies (60% and 80% of the clear aperture radius for which the transverse phase space of the beam was characterized in detail, along with beam energy measurements and the first halo measurements. Electrostatic quadrupole transport at high beam fill factor (≈80% is achieved with acceptable emittance growth and beam loss, even though the initial beam distribution is not ideal (but the emittance is low nor in thermal equilibrium. We achieved good envelope control, and rematching may only be needed every ten lattice periods (at 80% fill factor in a longer lattice of similar design. We also show that understanding and controlling the time dependence of the envelope parameters is critical to achieving high fill factors, notably because of the injector and matching section dynamics.

  1. Universal behavior of charged particle production in heavy ion collisions at RHIC energies

    Science.gov (United States)

    Steinberg, Peter A.; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.; Phobos Collaboration

    2003-04-01

    The PHOBOS experiment at RHIC has measured the multiplicity of primary charged particles as a function of centrality and pseudorapidity in Au+Au collisions at √ SNN = 19.6, 130 and 200 GeV. Two kinds of universal behavior are observed in charged particle production in heavy ion collisions. The first is that forward particle production, over a range of energies, follows a universal limiting curve with a non-trivial centrality dependence. The second arises from comparisons with pp/ overlinepp and e +e - data. / in nuclear collisions at high energy scales with √ s in a similar way as Nch in e +e - collisions and has a very weak centrality dependence. This feature may be related to a reduction in the leading particle effect due to the multiple collisions suffered per participant in heavy ion collisions.

  2. Coal consumption minimizing by increasing thermal energy efficiency at ROMAG-PROD Heavy Water Plant

    International Nuclear Information System (INIS)

    Preda, Marius Cristian

    2006-01-01

    ROMAG-PROD Heavy Water Plant is a large thermal energy consumer using almost all the steam output from ROMAG-TERMO Power Plant - the steam cost weight in the total heavy water price is about 40%. The steam consumption minimizing by modernization of isotopic exchange facilities and engineering development in ROMAG-PROD Heavy Water Plant results in an corresponding decrease of coal amount burned at ROMAG-TERMO boilers. This decrease could be achieved mainly by the followings ways: - Facility wrappings integrity; - High performance heat exchangers; - Refurbished heat insulations; - Modified condenser-collecting pipeline routes; - High performance steam traps; - Heat electric wire. When coal is burned in Power Plant burners to obtain thermal energy, toxic emissions results in flue gases, such as: - CO 2 and NO x with impact on climate warming; - SO 2 which results in ozone layer thinning effect and in acid rain falls. From the value of steam output per burned coal: 1 GCal steam = 1.41 tone steam = 0.86 thermal MW = 1.1911 tones burned coal (lignite), it is obvious that by decreasing the thermal energy consumption provided for ROMAG PROD, a coal amount decrease is estimated at about 45 t/h, or about 394,200 t/year coal, which means about 10% of the current coal consumption at ROMAG-TERMO PP. At the same time, by reducing the burned coal amount, an yearly decrease in emissions into air to about 400,000 tones CO 2 is expected

  3. Heavy ion fusion

    International Nuclear Information System (INIS)

    Hofmann, Ingo

    1993-01-01

    With controlled thermonuclear fusion holding out the possibility of a prolific and clean new source of energy, the goal remains elusive after many years of continual effort. While the conventional Tokamak route with magnetic confinement continues to hit the headlines, other alternatives are now becoming competitive. One possible solution is to confine the thermonuclear fuel pellet by high power beams. Current research and perspectives for future work in such inertial confinement was the subject of the 'Prospects for Heavy Ion Fusion' European Research Conference held in Aghia Pelaghia, Crete, last year. Its main focus was on the potential of heavy ion accelerators as well as recent advances in target physics with high power lasers and light ion beams. Carlo Rubbia declared that high energy accelerators, with their high efficiency, are the most promising approach to economical fusion energy production. However the need for cost saving in the driver accelerator requires new ideas in target design tailored to the particularities of heavy ion beams, which need to be pushed to the limits of high current and phase space density at the same time

  4. Hypernuclei, dibaryon and antinuclei production in high energy heavy ion collisions: Thermal production vs. coalescence

    International Nuclear Information System (INIS)

    Steinheimer, J.; Gudima, K.; Botvina, A.; Mishustin, I.; Bleicher, M.; Stöcker, H.

    2012-01-01

    We study the production of (hyper-)nuclei and dibaryons in most central heavy ion collisions at energies of E lab =1-160 A GeV. In particular we are interested in clusters produced from the hot and dense fireball. The formation rate of strange and non-strange clusters is estimated by assuming thermal production from the intermediate phase of the UrQMD-hydro hybrid model and alternatively by the coalescence mechanism from a hadronic cascade model. Both model types are compared in detail. For most energies we find that both approaches agree in their predictions for the yields of the clusters. Only for very low beam energies, and for dibaryons including Ξ's, we observe considerable differences. We also study the production of anti-matter clusters up to top RHIC energies and show that the observation of anti- 4 He and even anti- 4 Λ He is feasible. We have found a considerable qualitative difference in the energy dependence of the strangeness population factor R H when comparing the thermal production with the coalescence results.

  5. Ultra-High Energy Cosmic Rays and Neutrinos

    International Nuclear Information System (INIS)

    Nagataki, Shigehiro

    2011-01-01

    In this paper, simulation of propagation of UHE-protons from nearby galaxies is presented. We found good parameter sets to explain the arrival distribution of UHECRs reported by AGASA and energy spectrum reported by HiRes. Using a good parameter set, we demonstrated how the distribution of arrival direction of UHECRs will be as a function of event numbers. We showed clearly that 1000-10000 events are necessary to see the clear source distribution. We also showed that effects of interactions and trapping of UHE-Nuclei in a galaxy cluster are very important. Especially, when a UHECR source is a bursting source such as GRB/AGN flare, heavy UHE-Nuclei are trapped for a long time in the galaxy cluster, which changes the spectrum and chemical composition of UHECRs coming from the galaxy cluster. We also showed that such effects can be also important when there have been sources of UHE-Nuclei in Milky Way. Since light nuclei escape from Milky Way in a short timescale, the chemical composition of UHECRs observed at the Earth can be heavy at high-energy range. Finally, we showed how much high-energy neutrinos are produced in GRBs. Since GRB neutrinos do not suffer from magnetic field bending, detection of high-energy neutrinos are very important to identify sources of UHECRs. Especially, for the case of GRBs, high-energy neutrinos arrive at the earth with gamma-rays simultaneously, which is very strong feature to identify the sources of UHECRs.

  6. High energy nuclear collisions: Theory overview

    Indian Academy of Sciences (India)

    1012 K, were deconfined and existed as a quark gluon plasma (QGP). These ideas can be tested in collisions of nuclei at ultra-relativistic energies. At the relativistic heavy-ion collider (RHIC), nuclei as heavy as gold are accelerated to an energy of 100 GeV per nucleon. A total energy of 40 TeV is available in the collision of.

  7. Elementary particle physics and high energy phenomena

    International Nuclear Information System (INIS)

    Barker, A.R.; Cumalat, J.P.; De Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    Experimental and theoretical high-energy physics programs at the University of Colorado are reported. Areas of concentration include the following: study of the properties of the Z 0 with the SLD detector; fixed-target K-decay experiments; the R ampersand D program for the muon system: the SDC detector; high-energy photoproduction of states containing heavy quarks; electron--positron physics with the CLEO II detector at CESR; lattice QCD; and spin models and dynamically triangulated random surfaces. 24 figs., 2 tabs., 117 refs

  8. Approach to equilibrium in high energy heavy ion collisions

    International Nuclear Information System (INIS)

    Epelbaum, Thomas

    2014-01-01

    This thesis deals with the theory of the early stages of a heavy ion collision. Just after such a collision, the matter produced - called the Quark-Gluon-Plasma (QGP) - has been shown to be far out of thermal equilibrium. One would like to know whether the QGP thermalizes, and what is the typical time scale for this. Proving that the QGP thermalizes would also justify from first principles the hydrodynamical treatment of the subsequent evolution of a heavy ion collision. After having recalled some essential theoretical concepts, the manuscript addresses these questions in two different theories. In a first part, we study a scalar field theory. Starting from an out of equilibrium initial condition, one studies the approach to equilibrium in a fixed volume or in a one-dimensional expanding system. In both cases, clear signs of thermalization are obtained: an equation of state is formed, the pressure tensor becomes isotropic and the occupation number approaches a classical thermal distribution. These results are obtained thanks to the classical statistical approximation (CSA), that includes contributions beyond the Leading Order perturbative calculation. In a second part, the Color Glass Condensate - a quantum chromodynamics (QCD) effective theory well suited to describe the early life of the QGP - is used to treat more realistically the approach to thermalization in heavy ion collisions. After having derived some analytical prerequisites for the application of the CSA, the numerical simulations performed with the Yang-Mills equations show evidences of an early onset of hydrodynamical behavior of the QGP: the system becomes isotropic on short time scales, while the shear viscosity over entropy ratio is very small, which is characteristic of a quasi perfect fluid. (author) [fr

  9. On Pseudorapidity Distribution and Speed of Sound in High Energy Heavy Ion Collisions Based on a New Revised Landau Hydrodynamic Model

    Directory of Open Access Journals (Sweden)

    Li-Na Gao

    2015-01-01

    Full Text Available We propose a new revised Landau hydrodynamic model to study systematically the pseudorapidity distributions of charged particles produced in heavy ion collisions over an energy range from a few GeV to a few TeV per nucleon pair. The interacting system is divided into three sources, namely, the central, target, and projectile sources, respectively. The large central source is described by the Landau hydrodynamic model and further revised by the contributions of the small target/projectile sources. The modeling results are in agreement with the available experimental data at relativistic heavy ion collider, large hadron collider, and other energies for different centralities. The value of square speed of sound parameter in different collisions has been extracted by us from the widths of rapidity distributions. Our results show that, in heavy ion collisions at energies of the two colliders, the central source undergoes a phase transition from hadronic gas to quark-gluon plasma liquid phase; meanwhile, the target/projectile sources remain in the state of hadronic gas. The present work confirms that the quark-gluon plasma is of liquid type rather than being of a gas type.

  10. Charge collection characteristics of a super-thin diamond membrane detector measured with high-energy heavy ions

    International Nuclear Information System (INIS)

    Iwamoto, N.; Makino, T.; Onoda, S.; Ohshima, T.; Kamiya, T.; Kada, W.; Skukan, N.; Grilj, V.; Jaksic, M.; Pomorski, M.

    2014-01-01

    A transmission particle detector based on a super-thin diamond membrane film which can also be used simultaneously as a vacuum window for ion beam extraction has been developed. Charge collection characteristics of a μ-thick diamond membrane detector for high-energy heavy ions including 75 MeV Ne, 150 MeV Ar, 322 MeV Kr, and 454 MeV Xe have been investigated for the first time. Charge collection signals under single particle flux from the thin part are stable and are well distinguishable from background signals. This behavior suggests that the diamond membrane detector could be used for counting single ions. On the other hand, charge collection efficiency is found to decrease with increasing of charge generated in the diamond membrane detector. This suggests that the pulse height defect, which has been previously reported for Si and SiC detectors, also occurs in the diamond membrane detector. (authors)

  11. Heavy ion collisions

    International Nuclear Information System (INIS)

    Jacak, B.V.

    1994-01-01

    Heavy ion collisions at very high energies provide an opportunity to recreate in the laboratory the conditions which existed very early in the universe, just after the big bang. We prepare matter at very high energy density and search for evidence that the quarks and gluons are deconfined. I describe the kinds of observables that are experimentally accessible to characterize the system and to search for evidence of new physics. A wealth of information is now available from CERN and BNL heavy ion experiments. I discuss recent results on two particle correlations, strangeness production, and dilepton and direct photon distributions

  12. Energy conservation measures adopted in heavy water plants (Paper No. 1.8)

    International Nuclear Information System (INIS)

    Sundaresan, S.; Lakshmanan, S.

    1992-01-01

    Energy use can be significantly reduced in the process plants by systematically reviewing the original design and operating practices. While designing a chemical process plant, sometimes the designers go for high margin in certain areas anticipating to suit process conditions which finally result in wastage of energy if those conditions are not realised in the actual operation of the plant. Similarly some of the operating practices evolved since commissioning, might be resulting in uneconomical use of energy when they are not checked by the regular review of the operating practices. This paper deals with the various efforts made by Heavy Water Plant, Tuticorin, in identifying the potential energy losses and steps taken to minimise them, which not only resulted in substantial energy savings but also helped in debottle-necking of the plant. (author)

  13. Characterization of highly efficient heavy-ion mutagenesis in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Kazama Yusuke

    2011-11-01

    Full Text Available Abstract Background Heavy-ion mutagenesis is recognised as a powerful technology to generate new mutants, especially in higher plants. Heavy-ion beams show high linear energy transfer (LET and thus more effectively induce DNA double-strand breaks than other mutagenic techniques. Previously, we determined the most effective heavy-ion LET (LETmax: 30.0 keV μm-1 for Arabidopsis mutagenesis by analysing the effect of LET on mutation induction. However, the molecular structure of mutated DNA induced by heavy ions with LETmax remains unclear. Knowledge of the structure of mutated DNA will contribute to the effective exploitation of heavy-ion beam mutagenesis. Results Dry Arabidopsis thaliana seeds were irradiated with carbon (C ions with LETmax at a dose of 400 Gy and with LET of 22.5 keV μm-1 at doses of 250 Gy or 450 Gy. The effects on mutation frequency and alteration of DNA structure were compared. To characterise the structure of mutated DNA, we screened the well-characterised mutants elongated hypocotyls (hy and glabrous (gl and identified mutated DNA among the resulting mutants by high-resolution melting curve, PCR and sequencing analyses. The mutation frequency induced by C ions with LETmax was two-fold higher than that with 22.5 keV μm-1 and similar to the mutation frequency previously induced by ethyl methane sulfonate. We identified the structure of 22 mutated DNAs. Over 80% of the mutations caused by C ions with both LETs were base substitutions or deletions/insertions of less than 100 bp. The other mutations involved large rearrangements. Conclusions The C ions with LETmax showed high mutation efficiency and predominantly induced base substitutions or small deletions/insertions, most of which were null mutations. These small alterations can be determined by single-nucleotide polymorphism (SNP detection systems. Therefore, C ions with LETmax might be useful as a highly efficient reverse genetic system in conjunction with SNP detection

  14. Heavy Flavor Physics in Heavy-Ion Collisions with STAR Heavy Flavor Tracker

    International Nuclear Information System (INIS)

    Yifei Zhang

    2010-01-01

    Heavy quarks are a unique tool to probe the strongly interacting matter created in relativistic heavy-ion collisions at RHIC energies. Due to their large mass, energetic heavy quarks are predicted to lose less energy than light quarks by gluon radiation when they traverse a Quark-Gluon Plasma. In contrast, recent measurements of non-photonic electrons from heavy quark decays at high transverse momentum (p T ) show a jet quenching level similar to that of the light hadrons. Heavy quark are produced mainly at early stage in heavy-ion collisions, thus they are proposed to probe the QCD medium and to be sensitive to bulk medium properties. Ultimately, their flow behavior may help establish whether light quarks thermalize. But due to the absence of the measurement of B-mesons and precise measurement of D-mesons, it is difficult to separate bottom and charm contributions experimentally in current non-photonic electron measurements for both spectra and elliptic flow v 2 . Therefore, topological reconstruction of D-mesons and identification of electrons from charm and bottom decays are crucial to understand the heavy flavor production and their in medium properties. The Heavy Flavor Tracker (HFT) is a micro-vertex detector utilizing active pixel sensors and silicon strip technology. The HFT will significantly extend the physics reach of the STAR experiment for precise measurement of charmed and bottom hadrons. We present a study on the open charm nuclear modification factor, elliptic flow v 2 and λ c measurement as well as the measurement of bottom mesons via a semi-leptonic decay. (author)

  15. 2006-2007 Academic training programme: QCD and high energy nuclear collision

    CERN Multimedia

    HR Department

    2007-01-01

    LECTURE SERIES 7, 8, 9 May QCD and high energy nuclear collisions D. Kharzeev, Brookhaven National Laboratory, USA 11:00 to 12:00 - Main Auditorium, Bldg. 500 on 7 and 8 May, Council Chamber on 9 May Six years ago, Relativistic Heavy Ion Collider at Brookhaven started colliding heavy nuclei at record center-of-mass energies of up to 200 GeV/nucleon. Very soon, the Large Hadron Collider at CERN will push the energy of the ions to an astounding 5 TeV/nucleon. What can be learnt from the experiments at these machines? What do we know about the physics of super--dense matter already? I will argue that heavy ion accelerators bring us to the new frontiers of physical knowledge by creating strong color fields and very high densities of partons, at which qualitatively new phenomena emerge. I will also discuss the cross-disciplinary implications for cosmology, astrophysics, and connections to condensed matter physics.

  16. 2006-2007 Academic training programme: QCD and high energy nuclear collisions

    CERN Multimedia

    HR Department

    2007-01-01

    LECTURE SERIES 7, 8, 9 May 2007 11:00 to 12:00 - Main Auditorium, Bldg. 500 on 7 and 8 May, Council Chamber on 9 May QCD and high energy nuclear collisions D. Kharzeev, Brookhaven National Laboratory, USA Six years ago, the Relativistic Heavy Ion Collider at Brookhaven started colliding heavy nuclei at record center-of-mass energies of up to 200 GeV/nucleon. Very soon, the Large Hadron Collider at CERN will push the energy of the ions to an astounding 5 TeV/nucleon. What can be learnt from the experiments at these machines? What do we know about the physics of super--dense matter already? I will argue that heavy ion accelerators bring us to the new frontiers of physical knowledge by creating strong color fields and very high densities of partons, at which qualitatively new phenomena emerge. I will also discuss the cross-disciplinary implications for cosmology, astrophysics, and connections to condensed matter physics.

  17. Heavy flavor production in nuclear collisions

    CERN Document Server

    Armesto-Pérez, Nestor; Capella, A; Pajares, C; Salgado, C A

    2001-01-01

    Heavy flavor production off nuclei is studied in the small x/sub F/ region of the produced heavy system. Corrections to the usually employed perturbative QCD factorization formula are considered in the framework of the Glauber-Gribov model. Transition from low to high energies is taken into account by using finite energy cutting rules. The low energy limit of the obtained results coincides with the probabilistic formula usually employed for quarkonium absorption. At finite energies both rescattering of the heavy flavor and corrections to nucleon parton densities inside nuclei appear, the latter also affecting lepton pair production. It turns out that at asymptotic energies both open heavy flavor and quarkonium are equally absorbed. The numerical differences between the results obtained with the probabilistic formula and the exact one are <20% up to LHC energies, and ~1/2% at SPS energies. (18 refs).

  18. Isospin effects in intermediate energy heavy ion collision

    International Nuclear Information System (INIS)

    Liu Jianye; Zuo Wei; Yang Yanfang; Zhao Qiang; Guo Wenjun

    2001-01-01

    Based on the achievements for the intermediate energy heavy ion collision in authors' recent work and the progresses in the world, the isospin effects and the dependence of the entrance channel conditions on them in the intermediate energy heavy ion collisions were introduced, analysed and commended. From the calculation results by using isospin dependence quantum molecular dynamics, it is clear to see that the nuclear stopping power strongly depends on the in-medium isospin dependence nucleon-nucleon cross section and weakly on the symmetry potential in the energy region from about Fermi energy to 150 MeV/u and the intermediate mass fragment multiplicity also sensitively depends on the in-medium isospin dependent nucleon-nucleon cross section and weakly on the symmetry potential in a selected energy region. But the preequilibrium emission neutron-proton ratio is quite contrary, it sensitively depends on the symmetry potential and weakly on the in-medium isospin dependent nucleon-nucleon cross section. In addition to the nuclear stopping sensitively depending on the beam energy, impact parameter and the mass of colliding system and weakly on the neutron-proton ratio of the colliding systems with about the same mass, the preequilibrium emission neutron-neutron ratio sensitively depends on the beam energy and the neutron-proton ratio of colliding system, but weakly on the impact parameter. From above results it is proposed that the nuclear stopping is a new probe to extract the information on the in-medium isospin dependence nucleon-nucleon cross section in energy region from about Fermi energy to 150 MeV/u and the preequilibrium emission neutron-proton ratio is a good probe for extracting the information about the symmetry potential from the lower energy to about 150 MeV/u

  19. High-performance heavy concrete as a multi-purpose shield

    International Nuclear Information System (INIS)

    Mortazavi, S. M. J.; Mosleh-Shirazi, M. A.; Roshan-Shomal, P.; Raadpey, N.; Baradaran-Ghahfarokhi, M.

    2010-01-01

    Concrete has long been used as a shield against high-energy photons and neutrons. In this study, colemanite and galena minerals (CoGa) were used for the production of an economical high-performance heavy concrete. To measure the gamma radiation attenuation of the CoGa concrete samples, they were exposed to a narrow beam of gamma rays emitted from a 60 Co radiotherapy unit. An Am-Be neutron source was used for assessing the shielding properties of the samples against neutrons. The compression strengths of both types of concrete mixes (CoGa and reference concrete) were investigated. The range of the densities of the heavy concrete samples was 4100-4650 kg m -3 , whereas it was 2300-2600 kg m -3 in the ordinary concrete reference samples. The half-value layer of the CoGa concrete samples for 60 Co gamma rays was 2.49 cm; much less than that of ordinary concrete (6.0 cm). Moreover, CoGa concrete samples had a 10% greater neutron absorption compared with reference concrete. (authors)

  20. Heavy-Quark Production

    CERN Document Server

    Frixione, Stefano; Nason, Paolo; Ridolfi, Giovanni

    1997-01-01

    We review the present theoretical and experimental status of heavy quark production in high-energy collisions. In particular, we cover hadro- and photoproduction at fixed target experiments, at HERA and at the hadron colliders, as well as aspects of heavy quark production in e+e- collisions at the Z0 peak.

  1. Semi-classical approach of heavy ion physics at intermediate energies

    International Nuclear Information System (INIS)

    Vinet, L.

    1986-01-01

    The study of heavy ion collisions at intermediate energies (10 to 100 MeV/A), can be undertaken by a semi-classical approach: the nuclear Vlasov equation. It is possible to decompose the one body distribution function over a suitable coherent state basis for dynamical studies. This method is applied for colliding slabs, and the results are compared with those of TDHF. With imposed spherical symmetry, the isoscalar monopole resonance, evaporation, formation of bubble nuclei and total evaporation, are obtained. The extension to three dimensions and to the Landau-Vlasov equation through the residual interaction included in the Uehling-Uhlenbeck collision term, permits a general study of the dynamical instability of highly excited nuclei. The application to heavy ion collisions gives a description of both the main mechanisms of reaction, and the ineffective fusion for the system 40 Ar (35 MeV/A) + 27 Al. Alpha particle multiplicities in correlation with evaporated residues in the experience 40 Ar (27 MeV/A) + 27 Al, have been extracted. From theoretical results, different scenari are proposed (entrance channel limitation and exit channel disintegration), in order to explain the disappearance of the fusion component observed for this system at energies above 32 MeV/A [fr

  2. On mechanism of low-energy heavy ions scattering on a target surface with small atomic mass

    Energy Technology Data Exchange (ETDEWEB)

    Umarov, F.F. E-mail: farid1945@yahoo.com; Bazarbaev, N.N.; Kudryashova, L.B.; Krylov, N.M

    2002-11-01

    In the present work, an experimental study of low-energy (E{sub 0}=20-500 eV) heavy Cs{sup +} ions scattering on target surfaces with small atomic masses (Al, Si, Ni) has been performed for more accurate definition of mechanism of scattering and evaluation of an opportunity for use of heavy ions scattering as a tool of surface layer analysis. It is shown that the dependence of the relative energies of scattered ions versus the initial energy E/E{sub 0} (E{sub 0}) for Si (E{sub b}=4.64 eV/atom) and Ni (E{sub b}=4.43 eV/atom) approximately coincide despite the fact that the mass of Ni atom is twice as large as that of the Si atom mass. At the same time their binding energies E{sub b} are approximately equal to each other. It is found that the scattering angles of Cs{sup +} ions considerably exceed a limiting scattering angle {theta}{sub lim} in a single collision. It has been established that the scattering of low-energy heavy ions by light targets is described by a non-binary mechanism of many-particle interactions (simultaneous ion interaction with several target atoms). It has been shown that during the many-particle interactions the structure of energy spectra disappears; high relative energy of scattering ions and their dependence on energy of bombardment is observed. It has been found that the energy of scattered ions depends on binding energy, melting temperature and packing density of target atoms.

  3. High energy nuclear collisions: theory review

    International Nuclear Information System (INIS)

    Fries, Rainer J.

    2009-01-01

    Full text: High Energy Nuclear Collisions are studied at the Relativistic Heavy Ion Collider (RHIC) and, starting next year, also at the Large Hadron Collider (LHC) to study the formation and properties of quark gluon plasma (QGP). This effort is driven by the prediction that above a certain critical temperature quarks and gluons are deconfined. For the past ten years of running RHIC has performed marvelously. Data from RHIC has answered many initial questions, but it has also provided new, more challenging problems to understand the nature of quark gluon plasma and the dynamics of heavy ion collisions. In this talk I review some of the basic concepts of high energy nuclear collisions and quark gluon plasma formation. We also discuss some of the novel and open questions that we are faced with. We discuss recent predictions on properties of hot quantum chromodynamics, emerging signatures for the color glass condensate, the fascinating idea of local P and CP violation in QCD, as well as ongoing research on hard probes and electromagnetic signatures

  4. High-energy, high-rate consolidation of tungsten and tungsten-based composite powders

    Energy Technology Data Exchange (ETDEWEB)

    Raghunathan, S.K.; Persad, C.; Bourell, D.L.; Marcus, H.L. (Center for Materials Science and Engineering, Univ. of Texas, Austin (USA))

    1991-01-20

    Tungsten and tungsten-based heavy alloys are well known for their superior mechanical properties at elevated temperatures. However, unalloyed tungsten is difficult to consolidate owing to its very high melting temperature (3683 K). The additions of small amounts of low-melting elements such as iron, nickel, cobalt and copper, facilitate the powder processing of dense heavy alloys at moderate temperatures. Energetic high-current pulses have been used recently for powder consolidation. In this paper, the use of a homopolar generator as a power source to consolidate selected tungsten and tungsten-based alloys is examined. Various materials were consolidated including unalloyed tungsten, W-Nb, W-Ni, and tungsten heavy alloy with boron carbide. The effect of process parameters such as pressure and specific energy input on the consolidation of different alloy systems is described in terms of microstructure and property relationships. (orig.).

  5. Ultra-relativistic heavy ions and cosmic rays

    International Nuclear Information System (INIS)

    McLerran, L.

    1983-05-01

    The collisions of ultra-relativistic heavy ions, E/sub /N/ greater than or equal to 1 TeV/nucleon are most interesting, since, at these energies, matter is produced at sufficiently high energy density that a quark-gluon plasma has a good chance to form. Very heavy ions are also most interesting since the matter forms in a larger volume than for light ions, and the matter is at a somewhat higher energy density. At very high energies with very heavy ions there is great flexibility in the experimental signals which might be studied, as well as the nature of the matter which is produced. The fragmentation region and central region provide different environments where a plasma might form. The former is baryon rich while the central region is high temperature with low baryon number density and is not accessible except at very high energies

  6. Studies of thermophysical properties of high-energy-density states in matter using intense heavy ion beams at the future Fair accelerator facilities: The HEDgeHOB collaboration

    International Nuclear Information System (INIS)

    Tahir, N.A.; Deutsch, C.; Hoffmann, D.H.H.; Shutov, A.; Lomonosov, I.V.; Gryaznov, V.; Fortov, V.E.; Hoffmann, D.H.H.; Ni, P.; Udrea, S.; Varentsov, D.; Piriz, A.R.; Wouchuk, G.

    2006-01-01

    Intense beams of energetic heavy ions are believed to be a very efficient and novel tool to create states of High-Energy-Density (HED) in matter. This paper shows with the help of numerical simulations that the heavy ion beams that will be generated at the future Facility for Antiprotons and Ion Research (FAIR) will allow one to use two different experimental schemes to study HED states in matter. The German government has recently approved the construction of FAIR at Darmstadt. First scheme named HIHEX (Heavy Ion Heating and EXpansion), will generate high-pressure, high-entropy states in matter by volumetric isochoric heating. The heated material will then be allowed to expand in an isentropic way. Using this scheme, it will be possible to study important regions of the phase diagram that are either difficult to access or are even unaccessible using traditional methods of shock compression. The second scheme would allow one to achieve low-entropy compression of a sample material like hydrogen or water to produce conditions that are believed to exist in the interiors of the giant planets. This scheme is named LAPLAS after Laboratory Planetary Sciences. (authors)

  7. Formation of Amino Acid Precursors by Bombardment of Interstellar Ice Analogs with High Energy Heavy Ions

    Science.gov (United States)

    Kobayashi, Kensei; Mita, Hajime; Yoshida, Satoshi; Shibata, Hiromi; Enomoto, Shingo; Matsuda, Tomoyuki; Fukuda, Hitoshi; Kondo, Kotaro; Oguri, Yoshiyuki; Kebukawa, Yoko

    2016-07-01

    A wide variety of organic compounds have been detected in extraterrestrial bodies. It has been recognized that carbonaceous chondrites contain pristine amino acids [1]. There are several scenarios of the formation of such extraterrestrial amino acids or their precursors. Greenberg proposed a scenario that complex organic compounds were formed in interstellar ices in dense clouds, which were brought into solar system small bodies when the solar system was formed [2]. The ice mantles of interstellar dust particles (ISDs) in dense clouds are composed of H2O, CO, CH3OH, CH4, CO2, NH3, etc. In order to verify the scenario, a number of laboratory experiments have been conducted where interstellar ice analogs were irradiated with high-energy particles [3,4] or UV [5,6], and formation of complex organic compounds including amino acid precursors were detected in the products. Though ion-molecular reactions in gaseous phase and surface reactions on the ice mantles have been studied intensively, much less works on cosmic rays-induced reaction have been reported. In order to study possible formation of complex molecules in interstellar ices, frozen mixtures of water, methanol and ammonia with various mixing ratios were irradiated with high-energy heavy ions such as carbon ions (290 MeV/u) and neon ions (400 MeV/u) from HIMAC, NIRS, Japan. For comparison, gaseous mixtures of water, ammonia, carbon monoxide, carbon dioxide, and/or methane were irradiated with protons (2.5 MeV) from a Tandem accelerator, Tokyo Tech, Japan. Amino acids in the products were determined by cation exchange HPLC after acid hydrolysis. Products, both before and after acid hydrolysis, were also characterized by FT-IR and other techniques. Amino acids were detected in the hydrolyzed products after mixture of CH3OH, NH3 and H2O with various mixing ratios were irradiated with heavy ions, including when their mixing ratio was set close to the reported value of the interstellar ices (10:1:37). In the HIMAC

  8. Pre-compound emission in low-energy heavy-ion interactions

    Directory of Open Access Journals (Sweden)

    Kumar Sharma Manoj

    2017-01-01

    Full Text Available Recent experimental studies have shown the presence of pre-compound emission component in heavy ion reactions at low projectile energy ranging from 4 to 7 MeV/nucleons. In earlier measurements strength of the pre-compound component has been estimated from the difference in forward-backward distributions of emitted particles. Present measurement is a part of an ongoing program on the study of reaction dynamics of heavy ion interactions at low energies aimed at investigating the effect of momentum transfer in compound, precompound, complete and incomplete fusion processes in heavy ion reactions. In the present work on the basis of momentum transfer the measurement of the recoil range distributions of heavy residues has been used to decipher the components of compound and pre-compound emission processes in the fusion of 16O projectile with 159Tb and 169Tm targets. The analysis of recoil range distribution measurements show two distinct linear momentum transfer components corresponding to pre-compound and compound nucleus processes are involved. In order to obtain the mean input angular momentum associated with compound and pre-compound emission processes, an online measurement of the spin distributions of the residues has been performed. The analysis of spin distribution indicate that the mean input angular momentum associated with pre-compound products is found to be relatively lower than that associated with compound nucleus process. The pre-compound components obtained from the present analysis are consistent with those obtained from the analysis of excitation functions.

  9. Pre-compound emission in low-energy heavy-ion interactions

    Science.gov (United States)

    Sharma, Manoj Kumar; Shuaib, Mohd.; Sharma, Vijay R.; Yadav, Abhishek; Singh, Pushpendra P.; Singh, Devendra P.; Unnati; Singh, B. P.; Prasad, R.

    2017-11-01

    Recent experimental studies have shown the presence of pre-compound emission component in heavy ion reactions at low projectile energy ranging from 4 to 7 MeV/nucleons. In earlier measurements strength of the pre-compound component has been estimated from the difference in forward-backward distributions of emitted particles. Present measurement is a part of an ongoing program on the study of reaction dynamics of heavy ion interactions at low energies aimed at investigating the effect of momentum transfer in compound, precompound, complete and incomplete fusion processes in heavy ion reactions. In the present work on the basis of momentum transfer the measurement of the recoil range distributions of heavy residues has been used to decipher the components of compound and pre-compound emission processes in the fusion of 16O projectile with 159Tb and 169Tm targets. The analysis of recoil range distribution measurements show two distinct linear momentum transfer components corresponding to pre-compound and compound nucleus processes are involved. In order to obtain the mean input angular momentum associated with compound and pre-compound emission processes, an online measurement of the spin distributions of the residues has been performed. The analysis of spin distribution indicate that the mean input angular momentum associated with pre-compound products is found to be relatively lower than that associated with compound nucleus process. The pre-compound components obtained from the present analysis are consistent with those obtained from the analysis of excitation functions.

  10. Single ion induced surface nanostructures: a comparison between slow highly charged and swift heavy ions.

    Science.gov (United States)

    Aumayr, Friedrich; Facsko, Stefan; El-Said, Ayman S; Trautmann, Christina; Schleberger, Marika

    2011-10-05

    This topical review focuses on recent advances in the understanding of the formation of surface nanostructures, an intriguing phenomenon in ion-surface interaction due to the impact of individual ions. In many solid targets, swift heavy ions produce narrow cylindrical tracks accompanied by the formation of a surface nanostructure. More recently, a similar nanometric surface effect has been revealed for the impact of individual, very slow but highly charged ions. While swift ions transfer their large kinetic energy to the target via ionization and electronic excitation processes (electronic stopping), slow highly charged ions produce surface structures due to potential energy deposited at the top surface layers. Despite the differences in primary excitation, the similarity between the nanostructures is striking and strongly points to a common mechanism related to the energy transfer from the electronic to the lattice system of the target. A comparison of surface structures induced by swift heavy ions and slow highly charged ions provides a valuable insight to better understand the formation mechanisms. © 2011 IOP Publishing Ltd

  11. Effect of composition on the high rate dynamic behaviour of tungsten heavy alloys

    Directory of Open Access Journals (Sweden)

    Latif Kesemen

    2015-01-01

    Full Text Available Tungsten heavy alloys are currently used as kinetic energy penetrators in military applications due to their high density and superior mechanical properties. In the literature, quasi-static properties of different tungsten heavy alloys based on W-Ni-Cu and W-Ni-Fe ternary systems are well documented and presented. However, comparison of the dynamic behaviour of these alloys in terms of the correlation between quasi-static mechanical characterization and dynamical properties is lacking. In the present study, dynamic properties of tungsten heavy alloys having different binder phase compositions (90W-7Ni-3Cu and 90W-8Ni-2Fe at different projectile velocities were investigated. The examined and tested alloys were produced through the conventional powder metallurgy route of mixing, cold compaction and sintering. Mechanical characterization of these alloys was performed. In the ballistic tests, cylindrical tungsten heavy alloys with L/D ratio of 3 were impacted to hardened steel target at different projectile velocities. After the ballistic tests, deformation characteristics of test specimens during dynamic loading were evaluated by comparing the change of length and diameter of the specimens versus kinetic energy densities. The study concluded that 90W-8Ni-2Fe alloy has better perforation characteristics than 90W-7Ni-3Cu alloy.

  12. Experiments with highly-charged heavy-ions performed at the storage ring ESR

    International Nuclear Information System (INIS)

    Mokler, P.H.

    1992-01-01

    The new heavy ion accelerator facility SIS/ESR was inaugurated in April 1990. During 1991 the experimental storage ring, ESR, has been commissioned. Highly-charged heavy ions from O 8+ up to Bi 82+ were successfully accumulated, cooled, and stored in the ring. Now all highly-charged, heavy ions can be provided for experiments at comfortable storage times and at energies roughly between 100 and 500 MeV/u. A report on the achievements and on the first experimental results will be given. For the experiments, special emphasis is put on capture processes in the electron cooler, i.e. on radiative and dielectronic recombination processes as well as on capture events of bound target electrons from a gas jet. In this case, the capture leads either directly (REC) or by cascading to X-ray emission, which is also exploited for a precision spectroscopy of the structure of the heaviest ions. Another exciting topic is the radioactive decay of highly charged ions: For instance the β-decay into bound atomic states, which is not possible for neutral atoms, was studied for stored naked Dy ions. (orig.)

  13. Letting Off Steam and Getting Into Hot Water - Harnessing the Geothermal Energy Potential of Heavy Oil Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Teodoriu, Catalin; Falcone, Gioia; Espinel, Arnaldo

    2007-07-01

    The oil industry is turning its attention to the more complex development of heavy oil fields in order to meet the ever increasing demands of the manufacturing sector. The current thermal recovery techniques of heavy oil developments provide an opportunity to benefit from the geothermal energy created during the heavy oil production process. There is scope to improve the current recovery factors of heavy oil reservoirs, and there is a need to investigate the associated geothermal energy potential that has been historically neglected. This paper presents a new concept of harnessing the geothermal energy potential of heavy oil reservoirs with the co-production of incremental reserves. (auth)

  14. A new relativistic viscous hydrodynamics code and its application to the Kelvin-Helmholtz instability in high-energy heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Kazuhisa [Nagoya University, Department of Physics, Nagoya (Japan); Nonaka, Chiho [Nagoya University, Department of Physics, Nagoya (Japan); Nagoya University, Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya (Japan); Duke University, Department of Physics, Durham, NC (United States)

    2017-06-15

    We construct a new relativistic viscous hydrodynamics code optimized in the Milne coordinates. We split the conservation equations into an ideal part and a viscous part, using the Strang spitting method. In the code a Riemann solver based on the two-shock approximation is utilized for the ideal part and the Piecewise Exact Solution (PES) method is applied for the viscous part. We check the validity of our numerical calculations by comparing analytical solutions, the viscous Bjorken's flow and the Israel-Stewart theory in Gubser flow regime. Using the code, we discuss possible development of the Kelvin-Helmholtz instability in high-energy heavy-ion collisions. (orig.)

  15. A new relativistic viscous hydrodynamics code and its application to the Kelvin-Helmholtz instability in high-energy heavy-ion collisions

    Science.gov (United States)

    Okamoto, Kazuhisa; Nonaka, Chiho

    2017-06-01

    We construct a new relativistic viscous hydrodynamics code optimized in the Milne coordinates. We split the conservation equations into an ideal part and a viscous part, using the Strang spitting method. In the code a Riemann solver based on the two-shock approximation is utilized for the ideal part and the Piecewise Exact Solution (PES) method is applied for the viscous part. We check the validity of our numerical calculations by comparing analytical solutions, the viscous Bjorken's flow and the Israel-Stewart theory in Gubser flow regime. Using the code, we discuss possible development of the Kelvin-Helmholtz instability in high-energy heavy-ion collisions.

  16. Particle and heavy ion transport code system; PHITS

    International Nuclear Information System (INIS)

    Niita, Koji

    2004-01-01

    Intermediate and high energy nuclear data are strongly required in design study of many facilities such as accelerator-driven systems, intense pulse spallation neutron sources, and also in medical and space technology. There is, however, few evaluated nuclear data of intermediate and high energy nuclear reactions. Therefore, we have to use some models or systematics for the cross sections, which are essential ingredients of high energy particle and heavy ion transport code to estimate neutron yield, heat deposition and many other quantities of the transport phenomena in materials. We have developed general purpose particle and heavy ion transport Monte Carlo code system, PHITS (Particle and Heavy Ion Transport code System), based on the NMTC/JAM code by the collaboration of Tohoku University, JAERI and RIST. The PHITS has three important ingredients which enable us to calculate (1) high energy nuclear reactions up to 200 GeV, (2) heavy ion collision and its transport in material, (3) low energy neutron transport based on the evaluated nuclear data. In the PHITS, the cross sections of high energy nuclear reactions are obtained by JAM model. JAM (Jet AA Microscopic Transport Model) is a hadronic cascade model, which explicitly treats all established hadronic states including resonances and all hadron-hadron cross sections parametrized based on the resonance model and string model by fitting the available experimental data. The PHITS can describe the transport of heavy ions and their collisions by making use of JQMD and SPAR code. The JQMD (JAERI Quantum Molecular Dynamics) is a simulation code for nucleus nucleus collisions based on the molecular dynamics. The SPAR code is widely used to calculate the stopping powers and ranges for charged particles and heavy ions. The PHITS has included some part of MCNP4C code, by which the transport of low energy neutron, photon and electron based on the evaluated nuclear data can be described. Furthermore, the high energy nuclear

  17. Composition variations of low energy heavy ions during large solar energetic particle events

    Energy Technology Data Exchange (ETDEWEB)

    Ho, George C., E-mail: George.Ho@jhuapl.edu; Mason, Glenn M., E-mail: Glenn.Mason@jhuapl.edu [Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723 (United States)

    2016-03-25

    The time-intensity profile of large solar energetic particle (SEP) event is well organized by solar longitude as observed at Earth orbit. This is mostly due to different magnetic connection to the shock that is associated with large SEP event propagates from the Sun to the heliosphere. Earlier studies have shown event averaged heavy ion abundance ratios can also vary as a function of solar longitude. It was found that the Fe/O ratio for high energy particle (>10 MeV/nucleon) is higher for those western magnetically well connected events compare to the eastern events as observed at L1 by the Advanced Composition Explorer (ACE) spacecraft. In this paper, we examined the low energy (∼1 MeV/nucleon) heavy ions in 110 isolated SEP events from 2009 to the end of 2014. In addition, the optical and radio signatures for all of our events are identified and when data are available we also located the associated coronal mass ejection (CME) data. Our survey shows a higher Fe/O ratio at events in the well-connected region, while there are no corrections between the event averaged elemental composition with the associated coronal mass ejection speed. This is inconsistent with the higher energy results, but inline with other recent low-energy measurements.

  18. Low and high dose rate heavy ion radiation-induced intestinal and colonic tumorigenesis in APC1638N/+ mice

    Science.gov (United States)

    Suman, Shubhankar; Kumar, Santosh; Moon, Bo-Hyun; Fornace, Albert J.; Datta, Kamal

    2017-05-01

    Ionizing radiation (IR) is a recognized risk factor for colorectal cancer (CRC) and astronauts undertaking long duration space missions are expected to receive IR doses in excess of permissible limits with implications for colorectal carcinogenesis. Exposure to IR in outer space occurs at low doses and dose rates, and energetic heavy ions due to their high linear energy transfer (high-LET) characteristics remain a major concern for CRC risk in astronauts. Previously, we have demonstrated that intestinal tumorigenesis in a mouse model (APC1638N/+) of human colorectal cancer was significantly higher after exposure to high dose rate energetic heavy ions relative to low-LET γ radiation. The purpose of the current study was to compare intestinal tumorigenesis in APC1638N/+ mice after exposure to energetic heavy ions at high (50 cGy/min) and relatively low (0.33 cGy/min) dose rate. Male and female mice (6-8 weeks old) were exposed to either 10 or 50 cGy of 28Si (energy: 300 MeV/n; LET: 70 keV/μm) or 56Fe (energy: 1000 MeV/n; LET: 148 keV/μm) ions at NASA Space Radiation Laboratory in Brookhaven National Laboratory. Mice (n = 20 mice/group) were euthanized and intestinal and colon tumor frequency and size were counted 150 days after radiation exposure. Intestinal tumorigenesis in male mice exposed to 56Fe was similar for high and low dose rate exposures. Although male mice showed a decreasing trend at low dose rate relative to high dose rate exposures, the differences in tumor frequency between the two types of exposures were not statistically significant after 28Si radiation. In female mice, intestinal tumor frequency was similar for both radiation type and dose rates tested. In both male and female mice intestinal tumor size was not different after high and low dose rate radiation exposures. Colon tumor frequency in male and female mice after high and low dose rate energetic heavy ions was also not significantly different. In conclusion, intestinal and colonic tumor

  19. For high energy heavy ion experiments TPC 4π detector 'Diogene'. What possibilities and what physics

    International Nuclear Information System (INIS)

    Babinet, R.; Cassagnou, Y.; Drouet, M.

    1981-05-01

    'Diogene' is the name of a 4π solid angle detector, based on a Time Projection Chamber (TPC), designed to perform exclusive measurements of charged particles emitted in central collisions of relativistic heavy ions. Exclusive measurements of all charged particles emitted in central collisions of relativistic heavy ions are becoming more and more necessary in this field of nuclear physics in order to answer some crucial questions such as: what is the degree of compression achieved in these collisions. What is the behavior of nuclear matter at high degree of excitation as well as compression. The possibility of handling high multiplicities up to 40 or 60; a momentum measurement of all particles, with not too bad a resolution, up to about 1.5 GeV/c; a good particle identification between π +- , p, d, t ..

  20. Heavy fermion and actinide materials

    International Nuclear Information System (INIS)

    1993-01-01

    During this period, 1/N expansions have been systematically applied to the calculation of the properties of highly correlated electron systems. These studies include examinations of (a) the class of materials known as heavy fermion semi-conductors, (b) the high energy spectra of heavy fermion systems, and (c) the doped oxide superconductors

  1. Some general scaling rules in high energy heavy ion reactions

    International Nuclear Information System (INIS)

    Andersson, B.; Idh, J.; Otterlund, I.; Stenlund, E.

    1988-09-01

    We show, using the Fritiof model scenario that the wide variation in the number of participating nucleons tend to drown other dynamical variations in the measurables of high energy ion collisions. We propose a set if general scaling laws for inclusive distributions in which it is the mean multiplicity and the mean transverse energy from each source which are the measurables in the interactions. (authors)

  2. Research of high energy radioactivity identification detector

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Kyun; Lee, Yong Bum; Hwang, Jong Sun; Choi, Seok Ki

    1998-07-01

    {Delta} {Epsilon}-{Epsilon} telescope high radioactivity detector was designed, fabricated, and tested at the 35 MeV proton energy. We developed the computer code to calculate the energy loss of projectile ions in the matter. Using the code, we designed and fabricated a detector to measure 15-50 MeV protons. The detector was successfully tested to measure the energy of protons and deuterons and to identify the ions. In future, we would like to extend the present result to the development of a higher energy proton detector and a heavy ion detector. (author). 10 refs., 3 tabs., 14 figs

  3. Resolving key heavy-ion fusion target issues with relativistic heavy-ion research accelerators

    International Nuclear Information System (INIS)

    Arnold, R.C.

    1988-01-01

    Heavy-ion accelerators designed for relativistic nuclear research experiments can also be adapted for target research in heavy-ion driver inertial fusion. Needle-shaped plasmas can be created that are adequate for studying basic properties of matter at high energy density. Although the ion range is very long, the specific deposited power nevertheless increases with kinetic energy, as the focus spot can be made smaller and more ions can be accumulated in larger rings

  4. Color sextet quarks and new high-energy interactions

    International Nuclear Information System (INIS)

    White, A.R.; Kang, Kyungsik

    1992-01-01

    We review the implications of adding a flavor doublet of color sextet quarks to QCD. Theoretical attractions include -- ''minimal'' dynamical symmetry breaking of the electroweak interaction, solution of the Strong CP problem via the ''heavy axion'' η 6 , and Critical Pomeron Scaling at asymptotic energies. Related experimental phenomena, which there may be evidence for, include -- production of the η 6 at LEP, large cross-sections for W + W - and Z o Z o pairs and very high energy jets in hadron colliders, and a hadronic threshold above which high-energy ''exotic'' diffractive processes appear in Cosmic Ray events

  5. Isospin equilibrium and non-equilibrium in heavy-ion collisions at intermediate energies

    International Nuclear Information System (INIS)

    Chen Liewen; Ge Lingxiao; Zhang Xiaodong; Zhang Fengshou

    1997-01-01

    The equilibrium and non-equilibrium of the isospin degree of freedom are studied in terms of an isospin-dependent QMD model, which includes isospin-dependent symmetry energy, Coulomb energy, N-N cross sections and Pauli blocking. It is shown that there exists a transition from the isospin equilibrium to non-equilibrium as the incident energy from below to above a threshold energy in central, asymmetric heavy-ion collisions. Meanwhile, it is found that the phenomenon results from the co-existence and competition of different reaction mechanisms, namely, the isospin degree of freedom reaches an equilibrium if the incomplete fusion (ICF) component is dominant and does not reach equilibrium if the fragmentation component is dominant. Moreover, it is also found that the isospin-dependent N-N cross sections and symmetry energy are crucial for the equilibrium of the isospin degree of freedom in heavy-ion collisions around the Fermi energy. (author)

  6. High conversion heavy water moderated reactor

    International Nuclear Information System (INIS)

    Miyawaki, Yoshio; Wakabayashi, Toshio.

    1989-01-01

    In the present invention, fuel rods using uranium-plutonium oxide mixture fuels are arranged in a square lattice at the same pitch as that in light water cooled reactor and heavy water moderators are used. Accordingly, the volume ratio (Vm/Vf) between the moderator and the fuel can be, for example, of about 2. When heavy water is used for the moderator (coolant), since the moderating effect of heavy water is lower than that of light water, a high conversion ratio of not less than 0.8 can be obtained even if the fuel rod arrangement is equal to that of PWR (Vm/Vf about 2). Accordingly, it is possible to avoid problems caused by dense arrangement of fuel rods as in high conversion rate light water cooled reactors. That is, there are no more troubles in view of thermal hydrodynamic characteristics, re-flooding upon loss of coolant accident, etc., as well as the fuel production cost is not increased. (K.M.)

  7. A high charge state heavy ion beam source for heavy ion fusion

    International Nuclear Information System (INIS)

    Eylon, S.; Henestroza, E.

    1996-01-01

    A high current, low emittance, high charge state heavy ion beam source is being developed. This is designed to deliver a heavy ion fusion (HIF) driver accelerator scale beam. Using a high charge state beam in a driver accelerator for HIF may increase the acceleration efficiency, leading to a reduction in the driver accelerator size and cost. The proposed source system, which consists of a gas beam electron stripper followed by a high charge state beam separator, can be added to existing single charge state, low emittance, high brightness ion sources and injectors. We shall report on the source physics design using 3D beam simulations and experimental feasibility study results using a neutral gas stripper and a beam separator at the exit of the LBL 2 MV injector. (orig.)

  8. Colloquia on High Energy Physics: IFAE 2012

    International Nuclear Information System (INIS)

    Barion, L.; Bozzi, C.; Fioravanti, E.; Pagliara, G; Ricci, B.

    2013-01-01

    The 2012 edition of the 'Incontri di Fisica delle Alte Energie' (IFAE2012) was held at the Aula Magna del Rettorato of the Ferrara University from April 11th to 13th. The Conference was attended by more than 150 participants, with about 75 presentations and 35 posters covering the most recent advances in High Energy Physics, Astroparticle and Neutrino Physics, Heavy Ions and Detection Techniques. Only plenary sessions were held, giving young researchers the opportunity to present their work to a large audience, either with talks or posters, which were on permanent display during the entire conference. The scientific program was organized in 7 sessions: 1-Standard Model and beyond; 2-QCD; 3-Heavy Flavour; 4-Heavy Ions; 5-Astro particles; 6-Neutrino Physics; 7-New Technologies. Introductory, state-of-the art talks, opened the Conference and each session. More detailed talks followed, stimulating lively discussions and interactions between the speakers and the participants. Three talks and two posters by young researchers (Matteo Biassoni, Roberta Cardinale, Stefano Perazzini, Federica Primavera and Laura Zotti) were selected for their high quality and awarded a prize money. It would not have been possible to held this conference without the support of INFN Sezione di Ferrara, Universita' di Ferrara and the generous contributions of Hamamatsu, Caen, National Instruments and AdvanSiD, whom we gratefully acknowledge.

  9. Energy Dispersive X-Ray Fluorescent Analysis of Soil in the Vicinity of Industrial Areas and Heavy Metal Pollution Assessment

    Science.gov (United States)

    Singh, V.; Joshi, G. C.; Bisht, D.

    2017-05-01

    The soil of two agricultural sites near an industrial area was investigated for heavy metal pollution using energy dispersive X-ray fluorescence (EDXRF). The concentration values for 17 elements were determined in the soil samples including eight heavy metal elements, i.e., Fe, Ni, As, Pb, Mn, Cr, Cu, and Zn. The soil near a pulp and paper mill was found to be highly polluted by the heavy metals. The concentration data obtained by EDXRF were further examined by calculating the pollution index and Nemerow integrated pollution index.

  10. Characterization and treatment options for high TOC heavy water

    International Nuclear Information System (INIS)

    Evans, D.; Leilabadi, A.; Rudolph, A.; Williams, D.

    2007-01-01

    High total organic carbon (TOC) and high conductivity contamination in heavy water feed present serious problems for the operation of heavy water upgrader facilities. The authors describe the chemical analysis of a particular batch of contaminated heavy water which had resisted standard clean-up procedures. After chemical characterization, a special clean-up plan was developed and successfully tested in the laboratory, followed by its implementation at site. (author)

  11. Biomaterial imaging with MeV-energy heavy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Seki, Toshio, E-mail: seki@sakura.nucleng.kyoto-u.ac.jp [Department of Nuclear Engineering, Kyoto Univ., Uji, Kyoto 611-0011 (Japan); CREST, Japan Science and Technology Agency (JST), Chiyoda, Tokyo 102-0075 (Japan); Wakamatsu, Yoshinobu; Nakagawa, Shunichiro [Department of Nuclear Engineering, Kyoto Univ., Uji, Kyoto 611-0011 (Japan); Aoki, Takaaki [Department of Electronic Science and Engineering, Kyoto Univ., Nishikyo, Kyoto 615-8510 (Japan); CREST, Japan Science and Technology Agency (JST), Chiyoda, Tokyo 102-0075 (Japan); Ishihara, Akihiko [Laboratory of Cell Biology and Life Science, Graduate School of Human and Environmental Studies, Kyoto Univ., Sakyo, Kyoto 606-8501 (Japan); Matsuo, Jiro [Quantum Science and Engineering Center, Kyoto Univ., Uji, Kyoto 611-0011 (Japan); CREST, Japan Science and Technology Agency (JST), Chiyoda, Tokyo 102-0075 (Japan)

    2014-08-01

    The spatial distribution of several chemical compounds in biological tissues and cells can be obtained with mass spectrometry imaging (MSI). In conventional secondary ion mass spectrometry (SIMS) with keV-energy ion beams, elastic collisions occur between projectiles and atoms of constituent molecules. The collisions produce fragments, making the acquisition of molecular information difficult. In contrast, ion beams with MeV-energy excite near-surface electrons and enhance the ionization of high-mass molecules; hence, SIMS spectra of fragment-suppressed ionized molecules can be obtained with MeV-SIMS. To compare between MeV and conventional SIMS, we used the two methods based on MeV and Bi{sub 3}-keV ions, respectively, to obtain molecular images of rat cerebellum. Conventional SIMS images of m/z 184 were clearly observed, but with the Bi{sub 3} ion, the distribution of the molecule with m/z 772.5 could be observed with much difficulty. This effect was attributed to the low secondary ion yields and we could not get many signal counts with keV-energy beam. On the other hand, intact molecular ion distributions of lipids were clearly observed with MeV-SIMS, although the mass of all lipid molecules was higher than 500 Da. The peaks of intact molecular ions in MeV-SIMS spectra allowed us to assign the mass. The high secondary ion sensitivity with MeV-energy heavy ions is very useful in biomaterial analysis.

  12. Biomaterial imaging with MeV-energy heavy ion beams

    International Nuclear Information System (INIS)

    Seki, Toshio; Wakamatsu, Yoshinobu; Nakagawa, Shunichiro; Aoki, Takaaki; Ishihara, Akihiko; Matsuo, Jiro

    2014-01-01

    The spatial distribution of several chemical compounds in biological tissues and cells can be obtained with mass spectrometry imaging (MSI). In conventional secondary ion mass spectrometry (SIMS) with keV-energy ion beams, elastic collisions occur between projectiles and atoms of constituent molecules. The collisions produce fragments, making the acquisition of molecular information difficult. In contrast, ion beams with MeV-energy excite near-surface electrons and enhance the ionization of high-mass molecules; hence, SIMS spectra of fragment-suppressed ionized molecules can be obtained with MeV-SIMS. To compare between MeV and conventional SIMS, we used the two methods based on MeV and Bi 3 -keV ions, respectively, to obtain molecular images of rat cerebellum. Conventional SIMS images of m/z 184 were clearly observed, but with the Bi 3 ion, the distribution of the molecule with m/z 772.5 could be observed with much difficulty. This effect was attributed to the low secondary ion yields and we could not get many signal counts with keV-energy beam. On the other hand, intact molecular ion distributions of lipids were clearly observed with MeV-SIMS, although the mass of all lipid molecules was higher than 500 Da. The peaks of intact molecular ions in MeV-SIMS spectra allowed us to assign the mass. The high secondary ion sensitivity with MeV-energy heavy ions is very useful in biomaterial analysis

  13. Overview of US heavy-ion fusion progress and plans

    International Nuclear Information System (INIS)

    Logan, B.G.

    2004-01-01

    Significant experimental and theoretical progress has been made in the U.S. heavy ion fusion program on high-current sources, transport, final focusing, chambers and targets for inertial fusion energy (IFE) driven by induction linac accelerators seek to provide the scientific and technical basis for the Integrated Beam Experiment (IBX), an integrated source-to-target physics experiment recently included in the list of future facilities planned by the U.S. Department of Energy. To optimize the design of IBX and future inertial fusion energy drivers, current HIF-VNL research is addressing several key issues (representative, not inclusive): gas and electron cloud effects which can exacerbate beam loss at high beam perveance and magnet aperture fill factors; ballistic neutralized and assisted-pinch focusing of neutralized heavy ion beams; limits on longitudinal compression of both neutralized and un-neutralized heavy ion bunches; and tailoring heavy ion beams for uniform target energy deposition for high energy density physics (HEDP) studies.

  14. Beam energy dependence of elliptic flow in heavy-ion collision

    International Nuclear Information System (INIS)

    Otuka, Naohiko; Isse, Masatsugu; Ohnishi, Akira; Pradip Kumar Sahu; Nara, Yasushi

    2002-01-01

    We study radial flow and elliptic flow in relativistic heavy-ion collisions at energies from GSI-SIS to BNL-RHIC energies using hadronic cascade model JAM. The excitation function of radial flow shows the softening of hadronic matter from BNL-AGS to CERN-SPS energies. JAM model reproduces transverse mass spectra at BNL-AGS, CERN-SPS at BNL-RHIC energies as well as elliptic flow upto CERN-SPS. For elliptic flow at BNL-RHIC energy (√s=130 GeV), while JAM gives the enough flow at fragment region, it fails at mid rapidity. (author)

  15. Ultrarelativistic heavy ions

    International Nuclear Information System (INIS)

    Pugh, H.G.

    1980-12-01

    Studies with ultrarelativistic heavy ions combine aspects of cosmic ray physics, particle physics, nuclear physics, astrophysics and cosmogenesis. The leading theoretical concerns are the behavior of matter at very high-energy density and flux, the general behavior of space time in collisions, relativistic nuclear theory, and quantum chromodynamics. The field has developed over a period of more than thirty years, since the first observation of heavy nuclei in cosmic rays and the major developments of understanding of high-energy collisions made by Fermi and Landau in the early fifties. In the late sixties the discovery of the parton content of nucleons was rapidly followed by a great extension of high-energy collision phenomenology at the CERN ISR and subsequent confirmation of the QCD theory. In parallel the study of p-nucleus and nucleus-nucleus collisions at very high energies, especially at the CERN PS, Fermilab and the Bevalac, and in cosmic rays demonstrated that studies involving the nucleus opened up a new dimension in studies of the hadronic interaction. It is now at a high level of interest on an international scale, with major new accelerators being proposed to dedicate to this kind of study

  16. Energy-loss measurements with heavy ions at relativistic energies

    International Nuclear Information System (INIS)

    Blank, B.; Gaimard, J.J.; Geissel, H.; Muenzenberg, G.; Schmidt, K.H.; Stelzer, H.; Suemmerer; Clerc, H.G.; Hanelt, E.; Steiner, M.; Voss, B.

    1990-03-01

    Using the magnetic spectrometer SPES I at SATURNE, energy-loss measurements have been performed for projectiles of 40 Ar (401 MeV/u), 36 P (362 MeV/u), 15 N (149 MeV/u), 11 Li (131 MeV/u) and 8 Li, 9 Li (130 MeV/u) in carbon, aluminum and lead targets. The experimental results are compared to calculations based on a modified relativistic Bethe formula and to a semi-empirical formula using a Z 2 scaling law for the stopping power and an effective charge parametrization for the heavy ions. (orig.)

  17. Antiproton production in heavy-ion collisions at energies below the threshold

    International Nuclear Information System (INIS)

    Schroeter, A.

    1993-08-01

    In the framework of this thesis the antiproton production in heavy ion collisions at projectile energies far below the threshold for anti p production in nucleon-nucleon collisions (5.63 GeV/u) was studied. A suited detection apparature was developed and constructed at the fragment separator-magnet spectrometer at the Society for Heavy Ion Research (GSI). For the identification of the antiprotons the momentum of the particles emitted in beam direction was measured and their velocity multiple-redundantly determined by means of time-of-flight measurements and threshold Cherenkov detectors. By this way the antiprotons could be in spite of low anti p production cross sections and high production rates for lighter particles (R anti p: R K - -:R π - -∼1:5*10 3 :10 7 ) background-freely determined. By this experiment for Ne+NaF, Cu, Sn, and Bi as well ass Ni+Ni collisions at incident energies between 1.6 GeV/u and 2.0 GeV/u production cross sections for antiprotons in the momentum range between 1.0 GeV/c and 2.2 GeV/c and for kaons and pions between 0.5 GeV/c and 2.8 GeV/c were measured, in order to study the influence of collisional-system size, incident energy, and secondary-particle momentum on the production probabilities and to contribute in comparison with the prognoses of theoretical models to the explanation of the particle production mechanisms. (HSI)

  18. 1995 European school of high-energy physics. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, N; Neubert, M [eds.

    1996-06-11

    The European School of High-Energy Physics is intended to give young experimentalists an introduction to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain lectures on Field Theory, the Standard Model, Physics beyond the Standard Model, Quantum Chromodynamics and Deep Inelastic Scattering, B-Physics and CP Violation, Neutrino Oscillations, Dark Matter, Experimental Techniques, as well as reports on Heavy Ions and Collider Physics and an account of particle physics at JINR. Two local subjects are also treated: Conditions for Science in Russia, and Search for Heavy Elements. (orig.).

  19. 1995 European school of high-energy physics. Proceedings

    International Nuclear Information System (INIS)

    Ellis, N.; Neubert, M.

    1996-01-01

    The European School of High-Energy Physics is intended to give young experimentalists an introduction to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain lectures on Field Theory, the Standard Model, Physics beyond the Standard Model, Quantum Chromodynamics and Deep Inelastic Scattering, B-Physics and CP Violation, Neutrino Oscillations, Dark Matter, Experimental Techniques, as well as reports on Heavy Ions and Collider Physics and an account of particle physics at JINR. Two local subjects are also treated: Conditions for Science in Russia, and Search for Heavy Elements. (orig.)

  20. Energy loss of heavy ion beams in plasma

    Energy Technology Data Exchange (ETDEWEB)

    Okada, T; Hotta, T [Tokyo Univ. of Agriculture and Technology, Koganei (Japan). Faculty of Technology

    1997-12-31

    The energy loss of heavy-ion beams (HIB) is studied by means of Vlasov theory and Particle-in-Cell (PIC) simulations in a plasma. The interaction of HIB with a plasma is of central importance for inertial confinement fusion (ICF). A number of studies on the HIB interaction with target plasma have been published. It is important for heavy-ion stopping that the effects of the non-linear interaction of HIB within the Vlasov theory are included. Reported are results of a numerical study of nonlinear effects to the stopping power for HIB in plasma. It is shown that the PIC simulations of collective effects of the stopping power are in a good agreement with the Vlasov theory. (author). 2 tabs., 1 fig., 5 refs.

  1. Search for and selection of novel heavy scintillator crystals for calorimeter design for future high-energy colliders

    International Nuclear Information System (INIS)

    Ferrere, D.

    1993-01-01

    The discovery of some particles (Higgs, top,..) foreseen by theoretical models should be achieved at future colliders allowing to reach an energy scale of about 1 TeV. Efficient detectors must be designed to handle the very high luminosity of the LHC collider at CERN. In the intermediate mass region, M Z -2M Z , the diphoton decay mode of a Higgs boson produced inclusively or in association with W boson or a toponium gives good chance of observation. A very high resolution calorimeter with photon angle reconstruction and pion identification capability should detect a Higgs signal with high probability. So a homogeneous crystal calorimeter seems to be suitable. Because of the high luminosity and the high radiation level, a search for a new heavy scintillator has been undertaken. It must have a good radiation hardness (>0.5 MRad in a year) and a fast luminescence decay time (<30 ns). Among 50 crystals or glasses of specific chemical composition tested in transmission, luminescence, decay time, γ/neutrons radiation and light yield, cerium fluoride seems best suited for LHC. The necessity to have a good photon resolution in the intermediate Higgs mass region led us to optimise by Monte Carlo simulations the geometry of the calorimeter, the uniformisation of the light collection and crystal intercalibration parameters. (orig.)

  2. Heavy quarkonium production at collider energies: Factorization and evolution

    Science.gov (United States)

    Kang, Zhong-Bo; Ma, Yan-Qing; Qiu, Jian-Wei; Sterman, George

    2014-08-01

    We present a perturbative QCD factorization formalism for inclusive production of heavy quarkonia of large transverse momentum, pT at collider energies, including both leading power (LP) and next-to-leading power (NLP) behavior in pT. We demonstrate that both LP and NLP contributions can be factorized in terms of perturbatively calculable short-distance partonic coefficient functions and universal nonperturbative fragmentation functions, and derive the evolution equations that are implied by the factorization. We identify projection operators for all channels of the factorized LP and NLP infrared safe short-distance partonic hard parts, and corresponding operator definitions of fragmentation functions. For the NLP, we focus on the contributions involving the production of a heavy quark pair, a necessary condition for producing a heavy quarkonium. We evaluate the first nontrivial order of evolution kernels for all relevant fragmentation functions, and discuss the role of NLP contributions.

  3. Highly Compressed Ion Beams for High Energy Density Science

    CERN Document Server

    Friedman, Alex; Briggs, Richard J; Callahan, Debra; Caporaso, George; Celata, C M; Davidson, Ronald C; Faltens, Andy; Grant-Logan, B; Grisham, Larry; Grote, D P; Henestroza, Enrique; Kaganovich, Igor D; Lee, Edward; Lee, Richard; Leitner, Matthaeus; Nelson, Scott D; Olson, Craig; Penn, Gregory; Reginato, Lou; Renk, Tim; Rose, David; Sessler, Andrew M; Staples, John W; Tabak, Max; Thoma, Carsten H; Waldron, William; Welch, Dale; Wurtele, Jonathan; Yu, Simon

    2005-01-01

    The Heavy Ion Fusion Virtual National Laboratory (HIF-VNL) is developing the intense ion beams needed to drive matter to the High Energy Density (HED) regimes required for Inertial Fusion Energy (IFE) and other applications. An interim goal is a facility for Warm Dense Matter (WDM) studies, wherein a target is heated volumetrically without being shocked, so that well-defined states of matter at 1 to 10 eV are generated within a diagnosable region. In the approach we are pursuing, low to medium mass ions with energies just above the Bragg peak are directed onto thin target "foils," which may in fact be foams or "steel wool" with mean densities 1% to 100% of solid. This approach complements that being pursued at GSI, wherein high-energy ion beams deposit a small fraction of their energy in a cylindrical target. We present the requirements for warm dense matter experiments, and describe suitable accelerator concepts, including novel broadband traveling wave pulse-line, drift-tube linac, RF, and single-gap approa...

  4. Swift Heavy Ions in Matter

    Science.gov (United States)

    Rothard, Hermann; Severin, Daniel; Trautmann, Christina

    2015-12-01

    The present volume contains the proceedings of the Ninth International Symposium on Swift Heavy Ions in Matter (SHIM). This conference was held in Darmstadt, from 18 to 21 May 2015. SHIM is a triennial series, which started about 25 years ago by a joint initiative of CIRIL - Caen and GSI - Darmstadt, with the aim of promoting fundamental and applied interdisciplinary research in the field of high-energy, heavy-ion interaction processes with matter. SHIM was successively organized in Caen (1989), Bensheim (1992), Caen (1995), Berlin (1998), Catania (2002), Aschaffenburg (2005), Lyon (2008), and Kyoto (2012). The conference attracts scientists from many different fields using high-energy heavy ions delivered by large accelerator facilities and characterized by strong and short electronic excitations.

  5. Investigation of incomplete linear momentum transfer in heavy ion reactions at intermediate energies

    International Nuclear Information System (INIS)

    Leray, S.

    1986-07-01

    At intermediate energies, heavy ion central collisions lead to the incomplete fusion of the incident nuclei while part of the initial linear momentum is carried away by fast light particles. Experiments were performed with 30 MeV per nucleon neon and 20, 35 and 44 MeV per nucleon argon projectiles bombarding heavy targets. Results obtained with 30 MeV per nucleon neon and 20 MeV per nucleon argon beams are in good agreement with an empirical law established with lighter projectiles. On the contrary, 35 and 44 MeV per nucleon argon projectiles do not follow the same law and fission fragments progressively disappear. A simple model explains the evolution of the amount of transferred linear momentum versus incident energy. The disappearance of the fusion products of the composite system observed with argon projectiles beyond 35 MeV per nucleon is explained by a limitation of the excitation energy per nucleon which can be deposited in a nucleus. The limit is evaluated from nucleon binding energy in nuclei and probability to emit clusters and is in good agreement with experimental data. Because of the coupling between intrinsic motion of nucleons and relative motion of nuclei, some nucleons have a kinetic energy high enough to be emitted: a theoretical model is proposed which rather well fits the data concerning fast nucleons but cannot explain the measured amounts of transferred linear momentum. This is attributed to the existence of other mechanisms [fr

  6. Medium energy heavy ion accelerator 14 UD Pelletron- a BARC-TIFR facility: a 5 year progress report 1989-1994

    International Nuclear Information System (INIS)

    Chatterjee, A.; Tandon, P.N.

    1995-01-01

    The medium energy heavy ion accelerator (MEHIA) facility based on 14 UD Pelletron set up under the collaborative project of Bhabha Atomic Research Centre (BARC) and Tata Institute of Fundamental Research (TIFR) at the TIFR campus at Bombay has been serving as a joint BARC-TIFR facility for heavy-ion accelerator based research. As this accelerator has just completed five years of its successful operations, it has been thought to be an appropriate time to bring out a report of the research work carried out with the accelerator facility over these last five years. To put the research work in proper perspective, the present report is formatted to provide a short write-up highlighting the work carried out in each area of activity along with a list of the publications which have resulted from these investigations. Some theoretical work related to the experimental activities with the pelletron accelerator has also been included in the list of publications. The research work in the area of nuclear physics, which forms the main thrust of the research activities with the accelerator, covers areas of high spin states, high energy photons, resonances in heavy ion reactions, heavy ion elastic and transfer reactions, heavy ion fusion-fission reactions and radiochemical studies in heavy ion reactions. The interdisciplinary areas of research include condensed matter physics and accelerator based atomic physics. In addition to the above topics the present report also describes the work related to the pelletron accelerator and associated experimental facilities, gas detector development work, data acquisition systems and spectrometer for heavy recoil ions under development. The present status of the superconducting Linac booster project is also briefly described. (author). refs., tabs

  7. Heavy-ion peripheral collisions in the Fermi energy domain: fragmentation processes or dissipative collisions

    International Nuclear Information System (INIS)

    Borderie, B.; Rivet, M.F.; Tassan-Got, L.

    1990-01-01

    For several years a new field in nuclear physics has been opened by the opportunity to accelerate heavy ions through an energy domain including the Fermi energy of nucleons. This new domain has to be seen as a link between dissipative processes observed at low energies, dominated by mean field considerations, and high energy collisions for which nucleon-nucleon collisions play an important role. This paper reviews our present knowledge on peripheral collisions. A reminder of contiguous energy domains is done as well as their extension in the new field. Specific calculations are also presented. Finally a wide comparison between experiments and calculations is performed. A fast dissipative stage proves to be responsible for the dominant mechanisms involved, at least when the incident energy is lower than 50 MeV/nucleon

  8. First observations of power MOSFET burnout with high energy neutrons

    International Nuclear Information System (INIS)

    Oberg, D.L.; Wert, J.L.; Normand, E.; Majewski, P.P.; Wender, S.A.

    1996-01-01

    Single event burnout was seen in power MOSFETs exposed to high energy neutrons. Devices with rated voltage ≥400 volts exhibited burnout at substantially less than the rated voltage. Tests with high energy protons gave similar results. Burnout was also seen in limited tests with lower energy protons and neutrons. Correlations with heavy-ion data are discussed. Accelerator proton data gave favorable comparisons with burnout rates measured on the APEX spacecraft. Implications for burnout at lower altitudes are also discussed

  9. Are high energy heavy ion collisions similar to a little bang, or just a very nice firework?

    Energy Technology Data Exchange (ETDEWEB)

    Shuryak, E.V. [State University of New York, NY (United States)

    2001-07-01

    The talk is a brief overview of recent progress in heavy ion physics, with emphasis on applications of macroscopic approaches. The central issues are whether the systems exhibit macroscopic behavior we need in order to interpret it as excited hadronic matter, and, if so, what is its effective Equation of State (EoS). This, in turn, depends on the collision rate in matter: we think we understand in hadronic matter near freeze-out, but certainly not at earlier stages of the collisions. Still (and this is about the most important statement we make) there is no indication that is not high enough, so that a hydro description of excited matter be possible. More specifically, we concentrate on such properties of the produced excited system as collective flow, particle composition and fluctuations relaxation are ultimately a measure of a collision rate we would like to know. We also try to explain what exactly are the expected differences between collisions at AGS/SPS and RHIC energies. (author)

  10. Are high energy heavy ion collisions similar to a little bang, or just a very nice firework?

    International Nuclear Information System (INIS)

    Shuryak, E.V.

    2001-01-01

    The talk is a brief overview of recent progress in heavy ion physics, with emphasis on applications of macroscopic approaches. The central issues are whether the systems exhibit macroscopic behavior we need in order to interpret it as excited hadronic matter, and, if so, what is its effective Equation of State (EoS). This, in turn, depends on the collision rate in matter: we think we understand in hadronic matter near freeze-out, but certainly not at earlier stages of the collisions. Still (and this is about the most important statement we make) there is no indication that is not high enough, so that a hydro description of excited matter be possible. More specifically, we concentrate on such properties of the produced excited system as collective flow, particle composition and fluctuations relaxation are ultimately a measure of a collision rate we would like to know. We also try to explain what exactly are the expected differences between collisions at AGS/SPS and RHIC energies. (author)

  11. Proceedings of the 8th high energy heavy ion study

    International Nuclear Information System (INIS)

    Harris, J.W.; Wozniak, G.J.

    1988-01-01

    This was the eighth in a series of conferences jointly sponsored by the Nuclear Science Division of LBL and the Gesellschaft fuer Schwerionenforschung in West Germany. Sixty papers on current research at both relativistic and intermediate energies are included in this report. Topics covered consisted of: Equation of State of Nuclear Matter, Pion and High Energy Gamma Emission, Theory of Multifragmentation, Intermediate Energies, Fragmentation, Atomic Physics, Nuclear Structure, Electromagnetic Processes, and New Facilities planned for SIS-ESR. The latest design parameters of the Bevalac Upgrade Proposal were reviewed for the user community. Also, the design of a new electronic 4π detector, a time projection chamber which would be placed at the HISS facility, was presented

  12. Modified-surface-energy methods for deriving heavy-ion potentials

    International Nuclear Information System (INIS)

    Sierk, A.J.

    1977-01-01

    The use of a modified-surface-energy approach for the calculation of heavy-ion interaction potentials is discussed. It is not possible to simultaneously fit elastic scattering, ion interaction barriers, and fission barriers with the same set of constants in this model. Possible explanations of this deficiency are discussed

  13. 5th CERN - Latin-American School of High-Energy Physics

    OpenAIRE

    Grojean, C; Spiropulu, M

    2010-01-01

    The CERN-Latin-American School of High-Energy Physics is intended to give young physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain lectures on quantum field theory, quantum chromodynamics, physics beyond the Standard Model, neutrino physics, flavour physics and CP violation, particle cosmology, high-energy astro-particle physics, and heavy-ion physics, as well as trigger and data acquisition, and commissioning and...

  14. Heavy-ion dosimetry

    International Nuclear Information System (INIS)

    Schimmerling, W.

    1980-03-01

    This lecture deals with some of the more important physical characteristics of relativistic heavy ions and their measurement, with beam delivery and beam monitoring, and with conventional radiation dosimetry as used in the operation of the BEVALAC biomedical facility for high energy heavy ions (Lyman and Howard, 1977; BEVALAC, 1977). Even so, many fundamental aspects of the interaction of relativistic heavy ions with matter, including important atomic physics and radiation chemical considerations, are not discussed beyond the reminder that such additional understanding is required before an adequte perspective of the problem can be attained

  15. Theoretical high energy physics research at the University of Chicago, Task A

    International Nuclear Information System (INIS)

    Rosner, J.L.; Martinec, E.J.; Sachs, R.G.

    1992-04-01

    This report discusses research conducted at the University of Chicago in theoretical high energy physics. Some of the areas included in this report are: cp violation and cabibbo-kobayashi-maskawa matrix; radiative corrections and electroweak observables; heavy quark symmetry; heavy meson spectroscopy; hadronic string theory; composite models of quarks and leptons; and pedagogical effects

  16. Fundamentals and applications of heavy ion collisions below 10 MeV/ nucleon energies

    CERN Document Server

    Prasad, R

    2018-01-01

    An up-to-date text, covering the concept of incomplete fusion (ICF) in heavy ion (HI) interactions at energies below 10 MeV/nucleon. Important concepts including the exciton model, the Harp Miller and Berne model, Hybrid model, Sum rule model, Hot spot model and promptly emitted particles model are covered in depth. It studies the ICF and PE-emission in heavy ion reactions at low energies using off-beam and in-beam experimental techniques. Theories of complete fusion (CF) of heavy ions based on Compound Nucleus (CN) mechanism of statistical nuclear reactions, details of the Computer code PACE4 based on CN mechanism, pre-equilibrium (PE) emission, modeling of (ICF) and their limits of application are discussed in detail.

  17. Overview of US heavy ion fusion research

    International Nuclear Information System (INIS)

    Logan, B.G.; Bieniosek, F.M.; Celata, C.M.; Henestroza, E.; Kwan, J.W.; Lee, E.P.; Leitner, M.; Roy, P.K.; Seidl, P.A.; Eylon, S.; Vay, J-L.; Waldron, W.L.; Yu, S.S.; Barnard, J.J.; Callahan, D.A.; Cohen, R.H.; Friedman, A.; Grote, D.P; Covo, Kireeff M.; Meier, W.R.; Molvik, A.W.; Lund, S.M.; Davidson, R.C.; Efthimion, P.C.; Gilson, E.P.; Grisham, L.R.; Kaganovich, I.D.; Qin, H.; Startsev, E.A.; Rose, D.V.; Welch, D.R.; Olson, C.L.; Kishek, R.A.; O'Shea, P.; Haber, I.; Prost, L.R.; Prost, L.

    2004-01-01

    Significant experimental and theoretical progress has been made in the U.S. heavy ion fusion program on high-current sources, injectors, transport, final focusing, chambers and targets for high energy density physics (HEDP) and inertial fusion energy (IFE) driven by induction linac accelerators. One focus of present research is the beam physics associated with quadrupole focusing of intense, space-charge dominated heavy-ion beams, including gas and electron cloud effects at high currents, and the study of long-distance-propagation effects such as emittance growth due to field errors in scaled experiments. A second area of emphasis in present research is the introduction of background plasma to neutralize the space charge of intense heavy ion beams and assist in focusing the beams to a small spot size. In the near future, research will continue in the above areas, and a new area of emphasis will be to explore the physics of neutralized beam compression and focusing to high intensities required to heat targets to high energy density conditions as well as for inertial fusion energy

  18. Overview of US heavy ion fusion research

    International Nuclear Information System (INIS)

    Logan, G.; Bieniosek, F.; Celata, C.; Henestroza, E.; Kwan, J.; Lee, E.P.; Leitner, M.; Prost, L.; Roy, P.; Seidl, P.A.; Eylon, S.; Vay, J.-L.; Waldron, W.; Yu, S.; Barnard, J.; Callahan, D.; Cohen, R.; Friedman, A.; Grote, D.; Kireeff Covo, M.; Meier, W.R.; Molvik, A.; Lund, S.; Davidson, R.; Efthimion, P.; Gilson, E.; Grisham, L.; Kaganovich, I.; Qin, H.; Startsev, E.; Rose, D.; Welch, D.; Olson, C.; Kishek, R.; O'Shea, P.; Haber, I.

    2005-01-01

    Significant experimental and theoretical progress has been made in the U.S. heavy ion fusion program on high-current sources, injectors, transport, final focusing, chambers and targets for high energy density physics (HEDP) and inertial fusion energy (IFE) driven by induction linac accelerators. One focus of present research is the beam physics associated with quadrupole focusing of intense, space-charge dominated heavy-ion beams, including gas and electron cloud effects at high currents, and the study of long-distance-propagation effects such as emittance growth due to field errors in scaled experiments. A second area of emphasis in present research is the introduction of background plasma to neutralize the space charge of intense heavy ion beams and assist in focusing the beams to a small spot size. In the near future, research will continue in the above areas, and a new area of emphasis will be to explore the physics of neutralized beam compression and focusing to high intensities required to heat targets to high energy density conditions as well as for inertial fusion energy. (author)

  19. High Energy Ion Bombardment Simulation Facility at the University of Pittsburgh

    International Nuclear Information System (INIS)

    McGruer, J.N.; Choyke, W.J.; Doyle, N.J.; Spitznagel, J.A.

    1975-01-01

    The High Energy Ion Bombardment Simulation (HEIBS) Facility located at the University of Pittsburgh is now operational. The E-22 tandem accelerator of the Nuclear Physics Laboratory, fitted with a UNIS source, provides the heavy high energy ions. An auxiliary Van de Graaff accelerator is used for the simultaneous production of He ions. Special features of the simulation laboratory are reported

  20. Structure and dynamics of highly charged heavy ions studied with the electron beam ion trap in Tokyo

    International Nuclear Information System (INIS)

    Nakamura, Nobuyuki; Hu, Zhimin; Watanabe, Hirofumi; Li, Yueming; Kato, Daiji; Currell, Fred J.; Tong Xiaomin; Watanabe, Tsutomu; Ohtani, Shunsuke

    2011-01-01

    In this paper, we present the structure and the dynamics of highly charged heavy ions studied through dielectronic recombination (DR) observations performed with the Tokyo electron beam ion trap. By measuring the energy dependence of the ion abundance ratio in the trap at equilibrium, we have observed DR processes for open shell systems very clearly. Remarkable relativistic effects due to the generalized Breit interaction have been clearly shown in DR for highly charged heavy ions. We also present the first result for the coincidence measurement of two photons emitted from a single DR event.

  1. High Energy Physics Departments - Overview

    International Nuclear Information System (INIS)

    Bartke, J.

    2000-01-01

    Full text: Following our long-time tradition we will present under a common header the activities of the seven new units created in 1997 on the basis of the former Department of High Energy Physics: Department of Particle Theory (Dept. V); Department of Leptonic Interactions (Dept XI); Department of Hadron Structure (Dept XII); Department of High Energy Nuclear Interactions (Dept XIII); The ALICE Experiment Laboratory (NAL); The ATLAS Experiment Laboratory (NAT); High Energy Physics Detector Construction Group (PBD). At the end we will list our common activities: lectures and courses as well as seminars. Our research covers a variety of problems of the experimental and theoretical high energy particle physics: the hadronic and leptonic interactions with nucleons and nuclei (characteristics of particle production, including heavy quark physics), e + e - interactions and tests of the Standard Model (also evaluation of radiative corrections), ultrarelativistic heavy ion interactions and search for the quark-gluon plasma, as well as the spectra, composition and interactions of high energy cosmic ray particles. Research on detectors and accelerator components as well as the development of the apparatus for the high energy physics experiments at future accelerators: LHC (CERN, Geneva), RHIC (Brookhaven), B-Factory (KEK, Tsukuba) and TESLA (DESY, Hamburg) is also carried out. The technology of new materials with unique properties such as carbon-carbon composites is also worked on from the point of view of their application in high energy physics experiments. The Division is located in a separate building on the campus of the University of Mining and Metallurgy. This location, close to the Jagiellonian University, facilitates the collaboration with the latter and with the University of Mining and Metallurgy. The joint weekly seminars carried out for nearly 40 years prove this long term tradition. A substantial part of our activities is teaching and training students from

  2. BROOKHAVEN: Looking towards heavy ion physics

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    July 11-22 were busy days at Brookhaven with a two-week Summer Institute on Relativistic Heavy Ion Physics. After an intensive first week designed to introduce young physicists to high energy heavy ion research, the second week was a workshop on detector technology for Brookhaven's proposed Relativistic Heavy Ion Collider (RHIC), attended by some 150 physicists

  3. Summary of the relativistic heavy ion sessions

    International Nuclear Information System (INIS)

    Harris, J.W.

    1988-01-01

    The topics covered in the Relativistic Heavy Ion Sessions span four orders of magnitude in energy in the laboratory and a few more in theory. In the two years since the last Intersections conference, experiments in the field of very high energy heavy ion research have begun at CERN and Brookhaven. The prime motivation for these experiments is the possibility of forming quark matter. This paper is a review of the topics covered in the Relativistic Heavy Ion Sessions

  4. A beam profile monitor for heavy ion beams at high impact energies

    International Nuclear Information System (INIS)

    Hausmann, A.; Stiebing, K.E.; Bethge, K.; Froehlich, O.; Koehler, E.; Mueller, A.; Rueschmann, G.

    1994-01-01

    A beam profile monitor for heavy ion beams has been developed for the use in experiments at the Heavy Ion Synchrotron SIS at Gesellschaft fuer Schwerionenforschung Darmstadt (GSI). Four thin scintillation fibres are mounted on one wheel and scan the ion beam sequentially in two linearly independent directions. They are read out via one single photomultiplier common to all four fibres into one time spectrum, which provides all information about beam position, beam extension, time structure and lateral homogeneity of the beam. The system operates in a wide dynamic range of beam intensities. ((orig.))

  5. Science and art in heavy-ion collisions

    International Nuclear Information System (INIS)

    Weiss, M.S.

    1982-01-01

    One of the more intriguing phenomena discovered in heavy-ion physics is the seeming appearance of high energy structure in the excitation spectra of inelastically scattered heavy ions. For reasons illustrated, these may well be a phenomena unique to heavy ions and their explanation perhaps unique to TDHF

  6. Pair double heavy diquark production in high energy proton-proton collisions

    Energy Technology Data Exchange (ETDEWEB)

    Martynenko, A.P. [Samara State University, Samara (Russian Federation); Samara State Aerospace University named after S.P. Korolyov, Samara (Russian Federation); Trunin, A.M. [Samara State Aerospace University named after S.P. Korolyov, Samara (Russian Federation); Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation)

    2015-03-01

    On the basis of perturbative QCD and relativistic quark model we calculate relativistic and bound state corrections in the production processes of a pair of double heavy diquarks. Relativistic factors in the production amplitude connected with the relative motion of heavy quarks and the transformation law of the bound state wave function to the reference frame of the moving S-wave diquark bound states are taken into account. For the gluon and quark propagators entering the amplitudes we use a truncated expansion in relative quark momenta up to the second order. Relativistic corrections to the quark-quark bound state wave functions in the rest frame are considered by means of a Breit-like potential. It turns out that the examined effects significantly decrease the nonrelativistic cross sections. (orig.)

  7. Heavy ion collisions at intermediate energy

    International Nuclear Information System (INIS)

    Bertsch, G.; Amsden, A.A.

    1978-01-01

    Two types of measurement are proposed for the analysis of heavy ion collisions in the range of energy of 20--200 MeV/A. First, measurement of the longitudinal component of the kinetic energy of the collision products characterizes the impact parameter of the collision. The distribution in this quantity allows the dissipation in the theoretical models to be determined. A second kind of measurement is that of the coefficients of a spherical harmonic expansion of the angular distribution of the products. Besides giving independent information on the impact parameter and reaction dynamics, measurement of these coefficients offers the possibility of measuring the stiffness of the equation of state of nuclear matter. These ideas are explored in the context of a hydrodynamic model for the collision. In the purely hydrodynamic model there is a large measurable asymmetry in the angular distribution, but the dependence on the equation of state is small

  8. Effects of retarded electrical fields on observables sensitive to the high-density behavior of the nuclear symmetry energy in heavy-ion collisions at intermediate energies

    Science.gov (United States)

    Wei, Gao-Feng; Li, Bao-An; Yong, Gao-Chan; Ou, Li; Cao, Xin-Wei; Liu, Xu-Yang

    2018-03-01

    Within the isospin- and momentum-dependent transport model IBUU11, we examine the relativistic retardation effects of electrical fields on the π-/π+ ratio and neutron-proton differential transverse flow in heavy-ion collisions at intermediate energies. Compared to the static Coulomb fields, the retarded electric fields of fast-moving charges are known to be anisotropic and the associated relativistic corrections can be significant. They are found to increase the number of energetic protons in the participant region at the maximum compression by as much as 25% but that of energetic neutrons by less than 10% in 197Au+197Au reactions at a beam energy of 400 MeV/nucleon. Consequently, more π+ and relatively fewer π- mesons are produced, leading to an appreciable reduction of the π-/π+ ratio compared to calculations with the static Coulomb fields. Also, the neutron-proton differential transverse flow, as another sensitive probe of high-density symmetry energy, is also decreased appreciably due to the stronger retarded electrical fields in directions perpendicular to the velocities of fast-moving charges compared to calculations using the isotropic static electrical fields. Moreover, the retardation effects on these observables are found to be approximately independent of the reaction impact parameter.

  9. High-energy nuclear reaction mechanisms - fission, fragmentation and spallation

    International Nuclear Information System (INIS)

    Kaufman, S.B.

    1987-01-01

    Measurements of the correlations in kinetic energy, mass, charge, and angle of coincident fragments formed in high-energy nuclear reactions have helped to characterize the processes of fission, fragmentation and spallation. For example, fission or fission-like two-body breakup mechanisms result in a strong angular correlation between two heavy fragments; in addition, the momentum transfer in the reaction can be deduced from the correlation. Another example is the multiplicity of light charged particles associated with a given heavy fragment, which is a measure of the violence of the collision, thus distinguishing between central and peripheral collisions. A summary of what has been learned about these processes from such studies will be given, along with some suggestions for further experiments

  10. The phytoremediation potential of heavy metals from soil using Poaceae energy crops: A review

    Directory of Open Access Journals (Sweden)

    Melissa PRELAC

    2016-09-01

    Full Text Available Phytoremediation is a method that use plants which can remove or stabilize pollutants in the environment. The aim of the polluted area remediation is to return ecosystems into original condition. Phytoremediation is a green technology used for a wide range of pollutants as well as on various lands, low costs and reduced environment impacts. Energy crops are relatively new in this field of researches and insufficiently explored. However, the results so far show their potential in heavy metal removal. The aim of this research was to examine the available literature and determine the phytoremediation potential of cadmium, chromium, copper, lead, mercury, nickel and zinc from the soil using Arundo donax, Miscanthus x giganteus, Panicum virgatum, Pennisetum purpureum, Sida hermaphrodita and Sorghum x drummondii. According to the researches conditions, studied energy crops are reccomended in heavy metals phytoextraction, rhizofiltration, stabilization and accumulation. Still, those plants accumulate higher concentrations of heavy metals in the rhizosphere which makes them heavy metals excluders since heavy metals are not translocated into the plants' shoot system and favorable in the implementation of rhizofiltration as well.

  11. Exploring heavy-quark energy loss via b-tagging in heavy-ion collisions at the LHC

    International Nuclear Information System (INIS)

    Klay, Jennifer L

    2005-01-01

    A strategy to study flavour-dependent parton energy loss by tagging heavy quark jets in p+p, p+Pb and Pb+Pb collisions at the LHC is discussed. Estimates for production cross-sections and experimental techniques employed at collider detectors to search QQ-bar jets are presented and a brief evaluation of the capabilities of CMS, ALICE and ATLAS detectors are given

  12. QED corrections to the 4p-4d transition energies of copperlike heavy ions

    International Nuclear Information System (INIS)

    Chen, M. H.; Cheng, K. T.; Johnson, W. R.; Sapirstein, J.

    2006-01-01

    Quantum electrodynamic (QED) corrections to 4p-4d transition energies of several copperlike ions with Z=70-92 are calculated nonperturbatively in strong external fields to all orders in binding corrections. Dirac-Kohn-Sham potentials are used to account for screening and core-relaxation effects. For the 4p 1/2 -4d 3/2 transition in copperlike bismuth, thorium, and uranium, results are in good agreement with empirical QED corrections deduced from differences between transition energies obtained from recent high-precision electron-beam ion-trap measurements and those calculated with the relativistic many-body perturbation theory (RMBPT). These comparisons provide sensitive tests of QED corrections for high-angular-momentum states in many-electron heavy ions and illustrate the importance of core-relaxation corrections. Comparisons are also made with other theories and with experiments on the 4s-4p transition energies of high-Z Cu-like ions as accuracy checks of the present RMBPT and QED calculations

  13. High $p_{T}$ physics in the heavy ion era

    CERN Document Server

    AUTHOR|(CDS)2069922

    2013-01-01

    Aimed at graduate students and researchers in the field of high-energy nuclear physics, this book provides an overview of the basic concepts of large transverse momentum particle physics, with a focus on pQCD phenomena. It examines high $p_{T}$ probes of relativistic heavy-ion collisions and will serve as a handbook for those working on RHIC and LHC data analyses. Starting with an introduction and review of the field, the authors look at basic observables and experimental techniques, concentrating on relativistic particle kinematics, before moving onto a discussion about the origins of high $p_{T}$ physics. The main features of high $p_{T}$ physics are placed within a historical context and the authors adopt an experimental outlook, highlighting the most important discoveries leading up to the foundation of modern QCD theory. Advanced methods are described in detail, making this book especially useful for newcomers to the field.

  14. New theoretical results in heavy quark hadroproduction

    International Nuclear Information System (INIS)

    Nason, P.

    1992-01-01

    We describe the status of the heavy quark hadroproduction theory. In particular, we discuss recent developments on production of heavy quarks in the high energy limit, and the results of a new calculation to next-to-leading accuracy of the fully exclusive parton cross section for heavy quark production. (orig.)

  15. Development of general-purpose particle and heavy ion transport monte carlo code

    International Nuclear Information System (INIS)

    Iwase, Hiroshi; Nakamura, Takashi; Niita, Koji

    2002-01-01

    The high-energy particle transport code NMTC/JAM, which has been developed at JAERI, was improved for the high-energy heavy ion transport calculation by incorporating the JQMD code, the SPAR code and the Shen formula. The new NMTC/JAM named PHITS (Particle and Heavy-Ion Transport code System) is the first general-purpose heavy ion transport Monte Carlo code over the incident energies from several MeV/nucleon to several GeV/nucleon. (author)

  16. Global flow of glasma in high energy nuclear collisions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Guangyao; Fries, Rainer J., E-mail: rjfries@comp.tamu.edu

    2013-06-25

    We discuss the energy flow of the classical gluon fields created in collisions of heavy nuclei at collider energies. We show how the Yang–Mills analog of Faraday's Law and Gauss' Law predicts the initial gluon flux tubes to expand or bend. The resulting transverse and longitudinal structure of the Poynting vector field has a rich phenomenology. Besides the well-known radial and elliptic flow in transverse direction, classical quantum chromodynamics predicts a rapidity-odd transverse flow that tilts the fireball for non-central collisions, and it implies a characteristic flow pattern for collisions of non-symmetric systems A+B. The rapidity-odd transverse flow translates into a directed particle flow v{sub 1} which has been observed at RHIC and LHC. The global flow fields in heavy ion collisions could be a powerful check for the validity of classical Yang–Mills dynamics in high energy collisions.

  17. Improved beam-energy calibration technique for heavy ion accelerators

    International Nuclear Information System (INIS)

    Ferrero, A.M.J.; Garcia, A.; Gil, Salvador

    1989-01-01

    A simple technique for beam energy calibration of heavy-ion accelerators is presented. A thin hydrogenous target was bombarded with 12 C and 19 F, and the energies of the protons knocked out, elastically were measured at several angles using two detectors placed at equal angles on opposite sides of the beam. The use of these two detectors cancels the largest errors due to uncertainties in the angle and position at which the beam hits the target. An application of this energy calibration method to an electrostatic accelerator is described and the calibration constant of the analyzing magnet was obtained with an estimated error of 0.4 (Author) [es

  18. Mutation breeding and submerged fermentation of a Pleurotus polysaccharide high-yield strain with low-energy heavy ions implantation

    International Nuclear Information System (INIS)

    Chen Henglei; Wan Honggui; Lv Changwu; Zeng Xianxian

    2010-01-01

    Pleurotus polysaccharide high-yield strains were selected through a method of auxotrophic primary screening and Shake-flask fermentation re-screening after low-energy heavy ions (the fluence of 1.2 x 10 16 N + /cm 2 at the energy of 15 keV) stepwise implantation. Two Pleurotus polysaccharide high-yield strains, PFPH-1 and PFPH-2, were selected with stable mycelium polysaccharide yield. The mycelium polysaccharide yield of PFPH-1 and PFPH-2 increased by 46.55% and 75.14%, respectively, compared to the original strain. The accumulation of mycelium biomass and intracellular polysaccharides were monitored in the submerged fermentation of Pleurotus ferulae by supplementation of various carbon and nitrogen sources as well as inorganic salts and pH alteration. The optima1 submerged fermentation medium favoring the accumulation of mycelium biomass and intracellular polysaccharides of PFPH-2 consisted of 1.0% wheat flour, 2.0% sucrose, 2.0% soybean flour, 1.5% bran extract, 0.2% K 2 HPO 4 , and 0.15% MgSO 4 ·7H 2 O, with a fittest pH value of 5.64. The orthogonal combination of the optimal carbon and nitrogen sources with inorganic salts indicates a synergistic effect on the accumulation of mycelium biomass and intracellular polysaccharides in the submerged fermentation of PFPH-2. The yield of mycelium polysaccharides of PFPH-2 increased to 903.73 ± 1.23 mg·L -1 by the end of fermentation. (authors)

  19. High Energy Ion Acceleration by Extreme Laser Radiation Pressure

    Science.gov (United States)

    2017-03-14

    published in the internationally leading journal Physical Review Letters. We continued to progress this pionee 15.  SUBJECT TERMS ion therapy, heavy ion ...Thomson parabola spectrometer: To separate and provide a measurement of the charge -to-mass ratio and energy spectrum of the different ion species...AFRL-AFOSR-UK-TR-2017-0015 High energy ion acceleration by extreme laser radiation pressure Paul McKenna UNIVERSITY OF STRATHCLYDE VIZ ROYAL COLLEGE

  20. Hot nuclei and search for multifragmentation in medium-energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Doubre, H.

    1988-01-01

    Some recent determinations of the excitation energies and temperatures of composite systems formed in intermediate-energy heavy-ion collisions are described and the issue of a limiting temperature is discussed. Several examples of experimental investigations of an eventual occurrence of a multifragmentation process are also described

  1. Precise measurements of energy loss straggling for swift heavy ions in polymers

    Energy Technology Data Exchange (ETDEWEB)

    Rani, Bindu [Department of Physics, Kurukshetra University, Kurukshetra 136 119 (India); Neetu [Department of Physics, S.D College, Panipat 132103 (India); Sharma, Kalpana [Department of Physics, CMR Institute of Technology, Bangalore 560037 (India); Diwan, P.K. [Department of Applied Sciences, UIET, Kurukshetra University, Kurukshetra 136 119 (India); Kumar, Shyam, E-mail: profshyam@gmail.com [Department of Physics, Kurukshetra University, Kurukshetra 136 119 (India)

    2016-11-15

    The energy loss straggling measurements for heavy ions with Z = 3–22 (∼0.2–2.5 MeV/u) in PEN (C{sub 7}H{sub 5}O{sub 2}) and PET (C{sub 10}H{sub 8}O{sub 4}) polymers have been carried out utilizing the swift heavy ion beam facility from 15UD Pelletron accelerator at Inter University Accelerator Centre (IUAC), New Delhi, India. The recorded spectra are analyzed in such a way that the Straggling associated with energy loss process could be measured in a systematic manner at any selected value of energy, in terms of per unit thickness of the absorber, at any desired energy intervals. The measured values have been compared with the calculated values obtained from the most commonly used Bethe-Livingston formulations applicable for collisional straggling. The results are tried to be understood in terms of the effective charge on the impinging ion within the absorber. Some interesting trends are observed.

  2. Precise measurements of energy loss straggling for swift heavy ions in polymers

    Science.gov (United States)

    Rani, Bindu; Neetu; Sharma, Kalpana; Diwan, P. K.; Kumar, Shyam

    2016-11-01

    The energy loss straggling measurements for heavy ions with Z = 3-22 (∼0.2-2.5 MeV/u) in PEN (C7H5O2) and PET (C10H8O4) polymers have been carried out utilizing the swift heavy ion beam facility from 15UD Pelletron accelerator at Inter University Accelerator Centre (IUAC), New Delhi, India. The recorded spectra are analyzed in such a way that the Straggling associated with energy loss process could be measured in a systematic manner at any selected value of energy, in terms of per unit thickness of the absorber, at any desired energy intervals. The measured values have been compared with the calculated values obtained from the most commonly used Bethe-Livingston formulations applicable for collisional straggling. The results are tried to be understood in terms of the effective charge on the impinging ion within the absorber. Some interesting trends are observed.

  3. Applications of SSNTD's in high energy physics

    International Nuclear Information System (INIS)

    Otterlund, I.

    1976-09-01

    Different applications of the emulsion technique in high energy physics are given. Investigations of heavy ion and proton-nucleus reactions with the conventional emulsion technique are presented together with a short interpretation of recent results. Methods of using nuclear emulsion with embedded targets will be discussed. Emulsion stacks in hybrid systems with electronic tagging suggest a new and interesting application of the emulsion technique. (Auth.)

  4. Formation and disintegration of high-density nuclear matter in heavy-ion collisions

    International Nuclear Information System (INIS)

    Kitazoe, Yasuhiro; Matsuoka, Kazuo; Sano, Mitsuo

    1976-01-01

    The formation of high-density nuclear matter which may be expected to be attained in high-energy heavy-ion collisions and the subsequent disintegration of dense matter are investigated by means of the hydrodynamics. Head-on collisions of identical nuclei are considered in the nonrelativistic approximation. The compressed density cannot exceed 4 times of the normal one so long as the freedom of only nucleons is considered, and can become higher than 4 times when other freedoms such as the productions of mesons and also nucleon isobars are additionally taken into account. The angular distributions for ejected particles predominate both forwards and backwards at low collision energies, corresponding to the formation of nuclear density less than 2 times of the normal density and become isotropic at the point of 2 times of the normal one. As the collision energy increases further, lateral ejection is intensified gradually. (auth.)

  5. Heavy-flavour and quarkonium production in the LHC era: from proton-proton to heavy-ion collisions

    CERN Document Server

    AUTHOR|(CDS)2070213; Arnaldi, R.; Beraudo, A.; Bruna, E.; Caffarri, D.; del Valle, Z.Conesa; Contreras, J.G.; Dahms, T.; Dainese, A.; Djordjevic, M.; Ferreiro, E.G.; Fujii, H.; Gossiaux, P.B.; de Cassagnac, R.Granier; Hadjidakis, C.; He, M.; van Hees, H.; Horowitz, W.A.; Kolevatov, R.; Kopeliovich, B.Z.; Lansberg, J.P.; Lombardo, M.P.; Lourenço, C.; Martinez-Garcia, G.; Massacrier, L.; Mironov, C.; Mischke, A.; Nahrgang, M.; Nguyen, M.; Nystrand, J.; Peigné, S.; Porteboeuf-Houssais, S.; Potashnikova, I.K.; Rakotozafindrabe, A.; Rapp, R.; Robbe, P.; Rosati, M.; Rosnet, P.; Satz, H.; Schicker, R.; Schienbein, I.; Schmidt, I.; Scomparin, E.; Sharma, R.; Stachel, J.; Stocco, D.; Strickland, M.; Tieulent, R.; Trzeciak, B.A.; Uphoff, J.; Vitev, I.; Vogt, R.; Watanabe, K.; Woehri, H.; Zhuang, P.

    2016-01-01

    This report reviews the study of open heavy-flavour and quarkonium production in high-energy hadronic collisions, as tools to investigate fundamental aspects of Quantum Chromodynamics, from the proton and nucleus structure at high energy to deconfinement and the properties of the Quark-Gluon Plasma. Emphasis is given to the lessons learnt from LHC Run 1 results, which are reviewed in a global picture with the results from SPS and RHIC at lower energies, as well as to the questions to be addressed in the future. The report covers heavy flavour and quarkonium production in proton-proton, proton-nucleus and nucleus-nucleus collisions. This includes discussion of the effects of hot and cold strongly interacting matter, quarkonium photo-production in nucleus-nucleus collisions and perspectives on the study of heavy flavour and quarkonium with upgrades of existing experiments and new experiments. The report results from the activity of the SaporeGravis network of the I3 Hadron Physics programme of the European Unio...

  6. Heavy-flavour and quarkonium production in the LHC era: from proton-proton to heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Andronic, A. [GSI Helmholzzentrum fuer Schwerionenforschung, Research Division, ExtreMe Matter Institute (EMMI), Darmstadt (Germany); Arleo, F. [Ecole Polytechnique, CNRS/IN2P3, Universite Paris-Saclay, Laboratoire Leprince-Ringuet, Palaiseau (France); Universite de Savoie, CNRS, Laboratoire d' Annecy-le-Vieux de Physique Theorique (LAPTh), Annecy-le-Vieux (France); Arnaldi, R.; Beraudo, A.; Bruna, E.; Scomparin, E. [INFN, Sezione di Torino, Turin (Italy); Caffarri, D.; Lourenco, C.; Woehri, H. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Del Valle, Z.C.; Hadjidakis, C.; Lansberg, J.P. [CNRS/IN2P3, Universite Paris-Saclay, IPNO, Univ. Paris-Sud, Orsay Cedex (France); Contreras, J.G.; Trzeciak, B.A. [Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Prague (Czech Republic); Dahms, T. [Technische Universitaet Muenchen, Excellence Cluster Universe, Munich (Germany); Dainese, A. [INFN, Sezione di Padova, Padua (Italy); Djordjevic, M. [University of Belgrade, Institute of Physics Belgrade (Serbia); Ferreiro, E.G. [Universidad de Santiago de Compostela, Departamento de Fisica de Particulas, IGFAE, Santiago de Compostela (Spain); Fujii, H. [University of Tokyo, Institute of Physics, Tokyo (Japan); Gossiaux, P.B.; Martinez-Garcia, G.; Peigne, S.; Stocco, D. [Ecole des Mines de Nantes, Universite de Nantes, CNRS-IN2P3, SUBATECH, Nantes (France); Cassagnac, R.G. de; Mironov, C.; Nguyen, M. [Ecole Polytechnique, CNRS/IN2P3, Universite Paris-Saclay, Laboratoire Leprince-Ringuet, Palaiseau (France); He, M. [Nanjing University of Science and Technology, Department of Applied Physics, Nanjing (China); Hees, H. van [FIAS, Institute for Theoretical Physics, Frankfurt (Germany); Horowitz, W.A. [University of Cape Town, Department of Physics, Cape Town (South Africa); Kolevatov, R. [Ecole des Mines de Nantes, Universite de Nantes, CNRS-IN2P3, SUBATECH, Nantes (France); Saint-Petersburg State University, Department of High Energy Physics, Saint Petersburg (Russian Federation); Kopeliovich, B.Z.; Potashnikova, I.K.; Schmidt, I. [Centro Cientifico-Tecnologico de Valparaiso, Universidad Tecnica Federico Santa Maria, Departamento de Fisica, Valparaiso (Chile); Lombardo, M.P. [INFN, Laboratori Nazionali di Frascati, Frascati (Italy); Massacrier, L. [CNRS/IN2P3, Universite Paris-Saclay, IPNO, Univ. Paris-Sud, Orsay Cedex (France); Ecole des Mines de Nantes, Universite de Nantes, CNRS-IN2P3, SUBATECH, Nantes (France); Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, LAL, Orsay (France); Mischke, A. [Utrecht University, Faculty of Science, Institute for Subatomic Physics, Utrecht (Netherlands); National Institute for Subatomic Physics, Amsterdam (Netherlands); Nahrgang, M. [Duke University, Department of Physics, Durham (United States); Nystrand, J. [University of Bergen, Department of Physics and Technology, Bergen (Norway); Porteboeuf-Houssais, S.; Rosnet, P. [Universite Clermont Auvergne, Universite Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire (LPC), Clermont-Ferrand (France); Rakotozafindrabe, A. [IRFU/SPhN, CEA Saclay, Gif-sur-Yvette Cedex (France); Rapp, R. [Texas A and M University, Department of Physics and Astronomy, Cyclotron Institute, College Station (United States); Robbe, P. [Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, LAL, Orsay (France); Rosati, M. [Iowa State University, Ames (United States); Satz, H. [Universitaet Bielefeld, Fakultaet fuer Physik, Bielefeld (Germany); Schicker, R.; Stachel, J. [Ruprecht-Karls-Universitaet Heidelberg, Physikalisches Institut, Heidelberg (Germany); Schienbein, I. [Universite Grenoble-Alpes, CNRS/IN2P3, Laboratoire de Physique Subatomique et de Cosmologie, Grenoble (France); Sharma, R. [Tata Institute of Fundamental Research, Department of Theoretical Physics, Mumbai (India); Strickland, M. [Kent State University, Department of Physics, Kent (United States); Tieulent, R. [IPN-Lyon, Universite de Lyon, Universite Lyon 1, CNRS/IN2P3, Villeurbanne (France); Uphoff, J. [Johann Wolfgang Goethe-Universitaet, Institut fuer Theoretische Physik, Frankfurt am Main (Germany); Vitev, I. [Los Alamos National Laboratory, Theoretical Division, Los Alamos (United States); Vogt, R. [Lawrence Livermore National Laboratory, Physics Division, Livermore (United States); University of California, Physics Department, Davis (United States); Watanabe, K. [University of Tokyo, Institute of Physics, Tokyo (Japan); Central China Normal University, Key Laboratory of Quark and Lepton Physics (MOE), Institute of Particle Physics, Wuhan (China); Zhuang, P. [Collaborative Innovation Center of Quantum Matter, Tsinghua University, Physics Department, Beijing (China)

    2016-03-15

    This report reviews the study of open heavy-flavour and quarkonium production in high-energy hadronic collisions, as tools to investigate fundamental aspects of Quantum Chromodynamics, from the proton and nucleus structure at high energy to deconfinement and the properties of the Quark-Gluon Plasma. Emphasis is given to the lessons learnt from LHC Run 1 results, which are reviewed in a global picture with the results from SPS and RHIC at lower energies, as well as to the questions to be addressed in the future. The report covers heavy flavour and quarkonium production in proton-proton, proton-nucleus and nucleus-nucleus collisions. This includes discussion of the effects of hot and cold strongly interacting matter, quarkonium photoproduction in nucleus-nucleus collisions and perspectives on the study of heavy flavour and quarkonium with upgrades of existing experiments and new experiments. The report results from the activity of the SaporeGravis network of the I3 Hadron Physics programme of the European Union 7th Framework Programme. (orig.)

  7. Progress in heavy ion driven inertial fusion energy: From scaled experiments to the integrated research experiment

    International Nuclear Information System (INIS)

    Barnard, J.J.; Ahle, L.E.; Baca, D.; Bangerter, R.O.; Bieniosek, F.M.; Celata, C.M.; Chacon-Golcher, E.; Davidson, R.C.; Faltens, A.; Friedman, A.; Franks, R.M.; Grote, D.P.; Haber, I.; Henestroza, E.; Hoon, M.J.L. de; Kaganovich, I.; Karpenko, V.P.; Kishek, R.A.; Kwan, J.W.; Lee, E.P.; Logan, B.G.; Lund, S.M.; Meier, W.R.; Molvik, A.W.; Olson, C.; Prost, L.R.; Qin, H.; Rose, D.; Sabbi, G.-L.; Sangster, T.C.; Seidl, P.A.; Sharp, W.M.; Shuman, D.; Vay, J.-L.; Waldron, W.L.; Welch, D.; Yu, S.S.

    2001-01-01

    The promise of inertial fusion energy driven by heavy ion beams requires the development of accelerators that produce ion currents (∼100's Amperes/beam) and ion energies (∼1-10 GeV) that have not been achieved simultaneously in any existing accelerator. The high currents imply high generalized perveances, large tune depressions, and high space charge potentials of the beam center relative to the beam pipe. Many of the scientific issues associated with ion beams of high perveance and large tune depression have been addressed over the last two decades on scaled experiments at Lawrence Berkeley and Lawrence Livermore National Laboratories, the University of Maryland, and elsewhere. The additional requirement of high space charge potential (or equivalently high line charge density) gives rise to effects (particularly the role of electrons in beam transport) which must be understood before proceeding to a large scale accelerator. The first phase of a new series of experiments in Heavy Ion Fusion Virtual National Laboratory (HIF VNL), the High Current Experiments (HCX), is now being constructed at LBNL. The mission of the HCX will be to transport beams with driver line charge density so as to investigate the physics of this regime, including constraints on the maximum radial filling factor of the beam through the pipe. This factor is important for determining both cost and reliability of a driver scale accelerator. The HCX will provide data for design of the next steps in the sequence of experiments leading to an inertial fusion energy power plant. The focus of the program after the HCX will be on integration of all of the manipulations required for a driver. In the near term following HCX, an Integrated Beam Experiment (IBX) of the same general scale as the HCX is envisioned. The step which bridges the gap between the IBX and an engineering test facility for fusion has been designated the Integrated Research Experiment (IRE). The IRE (like the IBX) will provide an

  8. Study of the effect of heavy ion energy on the sensitivity of electronic devices

    International Nuclear Information System (INIS)

    Raine, M.

    2011-01-01

    This thesis studies the sensitivity of advanced electronic devices in radiative environments. The work deals with the detailed modeling of the deposited energy induced by heavy-ion in matter, and the influence of taking it into account in the tools simulating the response of irradiated devices. To do so, a simulation chain was developed, combining different calculation codes at various scales. In a first step, the particle-matter interaction code Geant4 is used to model the heavy ion track. These tracks are then implemented in a TCAD simulator, in order to study the response of elementary transistors to these detailed energy deposits. This step is completed with experimental measurements. Finally, the study is extended to the circuit level, by interfacing the heavy ion tracks with a SEE prediction tool. These different steps evidence the need for taking into account the radial extension of the ion track to all simulation levels, to adequately model the response of advanced devices under heavy ion irradiations. (author) [fr

  9. Production of high-energetic photons in the heavy ion reaction 136Xe + 48Ti at ELab = 18.5 MeV/u

    International Nuclear Information System (INIS)

    Enders, G.

    1991-05-01

    The production mechanism for high-energetic photons in heavy ion collisions was studied on the example of the deep inelastic reaction 136 Xe+ 48 Ti at a projectile energy of 18.5 MeV/u in an exclusive experiment, in which photons and heavy reaction fragments were detected in coincidence. (orig.) [de

  10. UPR/Mayaguez High Energy Physics

    International Nuclear Information System (INIS)

    Lopez, Angel M.

    2015-01-01

    For the period of sixteen years covered by this report (June 1, 1997 - July 31, 2013) the High Energy Physics Group at the University of Puerto Rico's Mayaguez Campus (UPRM) carried out an extensive research program that included major experiments at Fermi National Accelerator Laboratory (Fermilab), the Cornell Electron-positron Collider and CERN. In particular, these were E831 (FOCUS) at Fermilab, CLEOc at Cornell and the Compact Muon Solenoid (CMS) at the Large Hadron Collider (LHC) at CERN. The group's history is one of successful execution and growth. Beginning with one faculty researcher in 1985, it eventually included four faculty researchers, one post-doctoral research associate, two undergraduates and as many as six graduate students at one time working on one of the experiments that discovered the Higgs boson. Some of this expansion was due to the group's leveraging of funds from the Department of Energy's core grant to attract funds from National Science Foundation programs not targeted to high energy physics. Besides the group's research productivity, its other major contribution was the training of a large number of MS students who later went on to successful technical careers in industry as well as academia including many who obtained PhD degrees at US universities. In an attempt to document this history, this final report gives a general description of the Group's work prior to June 1, 2010, the starting date for the last grant renewal period. Much more detail can, of course, be found in the annual reports submitted up to that date. The work during the last grant period is discussed in detail in a separate section. To summarize the group's scientific accomplishments, one can point to the results of the experiments. Both FOCUS and CLEOc were designed to carry out precise measurements of processes involving the heavy quarks, charm and bottom. Heavy quarks are particularly interesting because, due to their mass

  11. High resolution spectrometry for relativistic heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Gabor, G; Schimmerling, W; Greiner, D; Bieser, F; Lindstrom, P [California Univ., Berkeley (USA). Lawrence Berkeley Lab.

    1975-12-01

    Several techniques are discussed for velocity and energy spectrometry of relativistic heavy ions with good resolution. A foil telescope with chevron channel plate detectors is described. A test of this telescope was performed using 2.1 GeV/A C/sup 6 +/ ions, and a time-of-flight resolution of 160 ps was measured. Qualitative information on the effect of foil thickness was also obtained.

  12. Higgs radiation off top particles in high-energy e+e- colliders

    International Nuclear Information System (INIS)

    Djouadi, A.; Technische Hochschule Aachen; Kalinowski, J.; Zerwas, P.M.

    1991-10-01

    Higgs particles can be radiated off heavy top quarks which will be produced copiously in high energy e + e - colliders. This process can be used to measure the Higgs-top quark coupling. We present the cross section for the production of Higgs bosons in the Standard Model. In addition we have studied the production of neutral and charged Higgs particles in association with heavy fermions in the Minimal Supersymmetric Standard Model. (orig.)

  13. Are High Energy Heavy Ion Collisions similar to a Little Bang, or just a very nice Firework?

    Science.gov (United States)

    Shuryak, E. V.

    2001-09-01

    The talk is a brief overview of recent progress in heavy ion physics, with emphasis on applications of macroscopic approaches. The central issues are whether the systems exhibit macroscopic behavior we need in order to interpret it as excited hadronic matter, and, if so, what is its effective Equation of State (EoS). This, in turn, depends on the collision rate in matter: we think we understand in hadronic matter near freeze-out, but certainly not at earlier stages of the collisions. Still (and this is about the most important statement we make) there is no indication that it is not high enough, so that a hydro description of excited matter be possible. More specifically, we concentrate on such properties of the produced excited system as collective flow, particle composition and fluctuations. Note that both a generation of a pressure and the rate of fluctuation relaxation are ultimately a measure of a collision rate we would like to know. We also try to explain what exactly are the expected differences between collisions at AGS/SPS and RHIC energies.

  14. High mass asymmetry in spontaneous and induced desintegration of heavy nuclei

    International Nuclear Information System (INIS)

    Tavares, O.A.P.

    1978-01-01

    The experimental and theoretical results related to a new rupture mode of heavy ions (A>230) in mass fragments more different than ordinary ission products, are presented and disussed. Experiences of long exposure time by nuclear emulsion technique, show that, the U 238 is also a spontaneous emitter of ions with mass number between 20 and 70. The results are interpreted as a high mass asymmetry in fission process or as a nucleon cluster emission mechanism by potential barrier penetration. Preliminary estimation show good agreement with experimental results for U 238 . Glass laminas with uranium thin films prepared 16 years ago, are also analysed aiming to confirm these results. Several experiences with nuclear emulsions and mica sandwich, and radiochemical data show to be possible heavy ion emission from U 238 induced by photons of low energy as well as neutrons of reactor (M.C.K.) [pt

  15. Subthreshold pion production study with heavy ions at low and medium energy

    International Nuclear Information System (INIS)

    Rebreyend, D.

    1988-02-01

    In the domain of subthreshold pion production with heavy ions at low and medium energy (40-100 MeV/u), only Π 0 have been up to now, extensively studied. The incompleteness of the charged pion data and especially the lack of results for pions of energy less than 30 MeV have led to conceive the magnetic spectrometer SPIC. In the present work, we demonstrate that this spectrometer is particularly well suited for the detection of low energy charged pions (Inferior threshold of detection: T Π = 7 MeV), emitted around 0 0 in heavy ion collisions. Principle and performances, successfully tested at 38 and 93 MeV/u, are described in detail. The main characteristics of a Π 0 spectrometer, that was used to realize a comparative experiment of Π 0 production, are then given. The last chapter is devoted to experimental results. First, we present the results obtained with the 16 0 beam of 38 MeV/u of the SARA accelerator, in charged pions (Al and Ni targets) and in Π 0 (Al and Au targets). A comparison of the data Π - /Π 0 seems to indicate that coulomb effects are surprisingly small. Finally, we report the data obtained with the 16 0 beam of 93 MeV/u of GANIL. In contrast with low energy data, coulomb effects are very strong (ratio Π - /Π + = 100 for pions of low energy with heavy targets) and allowed us to extract informations on the geometry of the collision [fr

  16. High-current heavy-ion accelerator system and its application to material modification

    International Nuclear Information System (INIS)

    Kishimoto, Naoki; Takeda, Yoshihiko; Lee, C.G.; Umeda, Naoki; Okubo, Nariaki; Iwamoto, Eiji

    2001-01-01

    A high-current heavy-ion accelerator system has been developed to realize intense particle fluxes for material modification. The facility of a tandem accelerator attained 1 mA-class ion current both for negative low-energy ions and positive high-energy ions. The negative ion source of the key device is of the plasma-sputter type, equipped with mutli-cusp magnets and Cs supply. The intense negative ions are either directly used for material irradiation at 60 keV or further accelerated up to 6 MeV after charge transformation. Application of negative ions, which alleviates surface charging, enables us to conduct low-energy high-current irradiation on insulating substrates. Since positive ions above the MeV range are irrelevant for Coulomb repulsion, the facility as a whole meets the needs of high-current irradiation onto insulators over a wide energy range. Application of high flux ions provides technological merits not only for efficient implantation but also for essentially different material kinetics, which may become an important tool of material modification. Other advantages of the system are co-irradiation by intense laser and in-situ detection of kinetic processes. For examples of material modifications, we present nanoparticle fabrication in insulators, and synergistic phenomena by co-irradiation due to ions and photons. (author)

  17. High strength tungsten heavy alloys with molybdenum additions

    International Nuclear Information System (INIS)

    Bose, A.; Sims, D.M.; German, R.M.

    1987-01-01

    Tungsten heavy alloys are candidates for numerous applications based on the unique combination of high density, high strength, and high ductility coupled with excellent machinability. Though there has been considerable research on heavy alloys, the primary focus has been on the ductility. These alloys are well suited for ballistic uses due to their high densities and it is expected that for superior ballistic performance, a high hardness, high strength and moderate ductility alloy would be ideal. The major goal of this investigation was to obtain heavy alloys with hardness greater than HRA 72. It is evident from the phase diagrams that molybdenum, which goes into solution in tungsten, nickel and iron, could act as a potential strengthening addition. With this in view, tungsten heavy alloys with molybdenum additions were fabricated from mixed elemental powders. A baseline composition of 90W-7Ni-3Fe was chosen to its good elongation and moderate strength. The molybdenum additions were made by replacing the tungsten. Compared to the baseline properties with no molybdenum addition, the strength and hardness showed a continuous increase with molybdenum addition. The ductility of the alloy continued to decrease with increasing molybdenum content, but even with 16% wt. % molybdenum of the elongation was still around 6%. An interesting facet of these alloying additions is the grain refinement that is brought about by adding to molybdenum to the system. The grain refinement is related to the lower solubility of tunbsten in the matrix due to partial displacement by molybdenum

  18. A high-energy nuclear database proposal

    International Nuclear Information System (INIS)

    Brown, D.A.; Vogt, R.; UC Davis, CA

    2006-01-01

    We propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interface. This database will be searchable and cross-indexed with relevant publications, including published detector descriptions. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This database should eventually contain all published data from the Bevalac, AGS and SPS to RHIC and LHC energies, proton-proton to nucleus-nucleus collisions as well as other relevant systems, and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of old and new experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion and target and source development for upcoming facilities such as the Next Linear Collider. To enhance the utility of this database, we propose periodically performing evaluations of the data and summarizing the results in topical reviews. (author)

  19. Strangeness and charm production in high energy heavy ion collisions

    International Nuclear Information System (INIS)

    Xu, Nu

    2001-01-01

    We discuss the dynamical effects of strangeness and charm production in high energy nuclear collisions. In order to understand the early stage dynamical evolution, it is necessary to study the transverse momentum distributions of multi-strange hadrons like Ξ and Ω and charm mesons like J/Ψ as a function of collision centrality

  20. Heavy-ion radiography

    International Nuclear Information System (INIS)

    Fabrikant, J.I.; Tobias, C.A.; Holley, W.R.; Benton, E.V.; Woodruff, K.H.; MacFarland, E.W.

    1983-01-01

    High energy, heavy-ion beams offer superior discrimination of tissue electron densities at very low radiation doses. This characteristic has potential for diagnostic medical imaging of neoplasms arising in the soft tissues and organs because it can detect smaller inhomogeneities than x rays. Heavy-ion imaging may also increase the accuracy of cancer radiotherapy planning involving use of accelerated charged particles. In the current physics research program of passive heavy-ion imaging, critical modulation transfer function tests are being carried out in heavy-ion projection radiography and heavy-ion computerized tomography. The research goal is to improve the heavy-ion imaging method until it reaches the limits of its theoretical resolution defined by range straggling, multiple scattering, and other factors involved in the beam quality characteristics. Clinical uses of the imaging method include the application of heavy-ion computerized tomography to heavy-ion radiotherapy planning, to the study of brain tumors and other structures of the head, and to low-dose heavy-ion projection mammography, particularly for women with dense breasts where other methods of diagnosis fail. The ions used are primarily 300 to 570 MeV/amu carbon and neon ions accelerated at the Lawrence Berkeley Laboratory Bevalac

  1. Short range correlations in high energy heavy ion collisions

    International Nuclear Information System (INIS)

    Franco, V.; Nutt, W.T.

    1978-01-01

    We present a technique for including the effects of nucleon-nucleon correlations in the optical phase shift (chi) expansion of the nucleus-nucleus scattering amplitude and present the results for chi to second order. The total and inelastic cross sections are consistently higher than those obtained ignoring correlations, and are in better agreement with the data. Furthermore, the inclusion of correlations leads to second order phase shift functions which do not violate unitarity, in constrast to the case when correlations are ignored in very heavy nuclei (A 1 , A 2 > or approx. = 200). In elastic scattering differential cross sections, the effects of correlations can be quite large

  2. Complex fragment emission at low and high excitation energy

    International Nuclear Information System (INIS)

    Moretto, L.G.

    1986-08-01

    Complex fragment emission has been certified as a compound nucleus process at low energies. An extension of the measurements to heavy ion reactions up to 50 MeV/u shows that most complex fragments are emitted by highly excited compound nuclei formed in incomplete fusion reactions. 12 refs., 26 figs

  3. High p_T γ(3S) production at LHC energies

    International Nuclear Information System (INIS)

    Kumar, Vineet; Shukla, Prashant

    2016-01-01

    The quarkonia (QQ-bar) have provided useful tools for probing both perturbative and nonperturbative aspects of Quantum Chromodynamics (QCD). The quarkonia states are qualitatively different from most other hadrons since the velocity of the heavy constituents is small allowing a non-relativistic treatment of bound states. The NRQCD formalism is one of the most promising theoretical framework for the study of heavy quarkonium production. The study of the differential charmonia production cross sections in high energy p+p collisions is completed using NRQCD formalism

  4. Beam modulation for heavy ion radiotherapy

    International Nuclear Information System (INIS)

    Kanai, T.; Minohara, S.; Sudou, M.

    1993-01-01

    The first clinical trial of heavy ion radiation therapy is scheduled in 1994 by using the heavy ion medical accelerator in Chiba (HIMAC). In order to start the clinical trial, first, it is necessary to know the physical characteristics of high energy heavy ions in human bodies, for example, dose and linear energy transfer (LET) distribution. Also the knowledge on the biological effectiveness of heavy ions is required. Based on these biophysical properties of heavy ions, monoenergetic heavy ion beam should be modulated so as to make the spread Bragg peak suitable to heavy ion radiation therapy. In order to establish a methodology to obtain the most effective spread Bragg peak for heavy ion radiation therapy, a heavy ion irradiation port at the RIKEN ring cyclotron facility was constructed. By using a 135 MeV/u carbon beam, the biophysical properties of the heavy ions were investigated, and a range modulator was designed to have uniform biological response in the spread Bragg peak. The physical and biological rationality of the spread Bragg peak were investigated. The dose, LET and biological effect of a monoenergetic heavy ion beam, the design of the range modulator, and the distributions of LET and biological dose for the spread Bragg peak are reported. (K.I.)

  5. Elementary particle physics and high energy phenomena. Progress report for FY92

    Energy Technology Data Exchange (ETDEWEB)

    Barker, A.R.; Cumalat, J.P.; de Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    This report discusses the following research in high energy physics: the properties of the z neutral boson with the SLD detector; the research and development program for the SDC muon detector; the fixed-target k-decay experiments; the Rocky Mountain Consortium for HEP; high energy photoproduction of states containing heavy quarks; and electron-positron physics with the CLEO II and Mark II detectors. (LSP).

  6. Towards high-density matter with relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Nagamiya, Shoji.

    1990-04-01

    Recent progress in nucleus-nucleus collisions at BNL and CERN suggests a hint that the formation of high-density nuclear matter could be possible with relativistic heavy-ion beams. What is the maximum density that can be achieved by heavy-ion collisions? Are there data which show evidence or hints on the formation of high density matter? Why is the research of high-density interesting? How about the future possibilities on this subject? These points are discussed. (author)

  7. From heavy ions to exotic atoms

    OpenAIRE

    Indelicato, Paul; Trassinelli, Martino

    2005-01-01

    We review a number of experiments and theoretical calculations on heavy ions and exotic atoms, which aim at providing informations on fundamental interactions. Among those are propositions of experiments for parity violation measurements in heavy ions and high-precision mesurements of He-like transition energies in highly charged ions. We also describe recent experiments on pionic atoms, that make use of highly-charged ion transitions to obtain accurate measurements of strong interaction shif...

  8. On-line energy and battery thermal management for hybrid electric heavy-duty truck

    NARCIS (Netherlands)

    Pham, H.T.; Kessels, J.T.B.A.; Bosch, van den P.P.J.; Huisman, R.G.M.; Nevels, R.M.P.A.

    2013-01-01

    This paper discusses an integrated approach for energy and thermal management to minimize the fuel consumption of a hybrid electric heavy-duty truck. Conventional Energy Management Systems (EMS) operate separately from the Battery Thermal Management System (BTMS) in Hybrid Electric Vehicles (HEVs).

  9. Heavy-ion research at the tandem and superconducting linac accelerators

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The heavy-ion research program at the Argonne Physics Division is principally aimed at the study of nuclear structure and its manifestation in heavy-ion induced nuclear reactions. In order to extract information on nuclear structure, measurements with high precision often need to be performed. Such measurements are now carried out at the tandem-linac accelerator over a wide energy range. The investigation of high-spin states near the yrast line has provided much new information on the behavior of nuclei at high angular momentum. Argonne work has concentrated on nuclei where high-spin isomers, the so-called yrast traps, are prevalent. The resonance effects observed previously in the 24 Mg( 16 O, 12 C) 28 Si reactions have been further explored through both additional measurements and a new quantitative method of analysis. The measurements were extended in energy and angular range and to various exit channels as well as similar systems. Several measurements were performed to investigate the reaction mechanisms in heavy-ion induced reactions and to map out the distribution of reaction strength as a function of energy and target-projectile masses energy regions previously not accessible. The behavior of the quasi- and deep-inelastic reaction cross sections was studied as a function of energy for medium-heavy systems, the production of inclusive alpha-particle yields for 16 O beams at energies E/A greater than or equal to 5 MeV/nucleon, and excitation functions, mass and kinetic energy distributions for heavy-ion induced fusion-fission reactions

  10. Proposal for a High Energy Nuclear Database

    International Nuclear Information System (INIS)

    Brown, David A.; Vogt, Ramona

    2005-01-01

    We propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interface. This database will be searchable and cross-indexed with relevant publications, including published detector descriptions. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This database should eventually contain all published data from Bevalac and AGS to RHIC to CERN-LHC energies, proton-proton to nucleus-nucleus collisions as well as other relevant systems, and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of old and new experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion and target and source development for upcoming facilities such as the Next Linear Collider. To enhance the utility of this database, we propose periodically performing evaluations of the data and summarizing the results in topical reviews

  11. Flavors in the Soup: An Overview of Heavy-Flavored Jet Energy Loss at CMS

    CERN Document Server

    Jung, Kurt

    2016-01-01

    Kurt E. Jung PhD, Purdue University, May 2016. Flavors in the Soup: An Overviewof Heavy-Flavored Jet Energy Loss at CMS. Major Professor: Wei Xie.The energy loss of jets in heavy-ion collisions is expected to depend on the flavorof the fragmenting parton. Thus, measurements of jet quenching as a function offlavor place powerful constraints on the thermodynamical and transport propertiesof the hot and dense medium. Measurements of the nuclear modification factorsof the heavy flavor tagged jets from charm and bottom quarks in both PbPb andpPb collisions can quantify such energy loss e↵ects. Specifically, pPb measurementsprovide crucial insights into the behavior of the cold nuclear matter e↵ect, whichis required to fully understand the hot and dense medium e↵ects on jets in PbPbcollisions. This dissertation presents the energy modification of b-jets in PbPb atppsN N = 2.76 TeV and pPb collisions at sN N = 5.02 TeV, along with the first everpmeasurements of charm jets in pPb collisions at sN N = 5.0...

  12. A method for the energy calibration of a heavy ion accelerator

    International Nuclear Information System (INIS)

    Martin, B.; Michaelsen, R.; Sethi, R.C.; Ziegler, K.

    1985-01-01

    A method for the absolute energy calibration of a heavy ion accelerator was developed at VICKSI. The method is based on the use of a suitably selected heavy ion beam to calibrate an analysing magnet. In front of the entrance slit of the analysing system the beam is stripped with a thin carbon foil. The charge states of the resulting ions cover the whole range from the charge state of the injected ions to the charge state of the fully stripped ions. Ion and energy of the beam have been selected in such a way that the rigidities corresponding to the different charge states cover the full rigidity range of the analysing magnet. The field of the analysing magnet is varied and the NMR-frequency corresponding to each transmitted charge state is obtained. For the absolute calibration a standard α-source is used. The functional dependence of the rigidity versus NMR-frequency can be used to compute the energy of any beam. At present this method gives an absolute accuracy of +-0.15%. The various sources of erros are described. (orig.)

  13. Pion production - a probe for coherence in medium energy heavy ion collisions

    International Nuclear Information System (INIS)

    Stachel, J.

    1985-01-01

    Neutral pion production is observed in heavy ion collisions at beam energies as low as 25 MeV/u, where this process is consumming the major portion of the total center of mass energy available. At these low beam energies single nucleon nucleon collision models and also models that incorporate the cooperative sharing of the beam energy of several nucleons do not reproduce the data. Rather, the data presented here call for a fully coherent production mechanism. (orig.)

  14. Heavy flavour production at CMS in heavy ion collisions

    CERN Document Server

    Nguyen, Matthew

    2015-01-01

    We review recent results relating to beauty production in heavy-ion collisions, in both the closed and open heavy flavor sectors, from the CMS experiment at the LHC. The sequential suppression of the ° states in PbPb collisions is thought to be evidence of the dissociation of quarkonia bound states in deconfined matter. Data from pPb collisions demonstrate that while cold nuclear effects appear to be subdominant in minimum bias collisions, there exists a non-trivial dependence on collision multiplicity that remains to be understood. The suppression of high p T particles in heavy-ion collisions, relative to the expectation from pp collisions, is typically interpreted in terms of energy loss of hard scattered parton in the dense nuclear medium. The flavor dependence of the energy loss may be accessed via measurements of b hadrons and b-tagged jets. Measurement of B mesons, via non-prompt J = y , at relatively low p T indicate a smaller suppression factor than D meson or inclusive charged hadrons. Data on b jet...

  15. Direct electron-pair production by high energy heavy charged particles

    Science.gov (United States)

    Takahashi, Y.; Gregory, J. C.; Hayashi, T.; Dong, B. L.

    1989-01-01

    Direct electron pain production via virtual photons by moving charged particles is a unique electro-magnetic process having a substantial dependence on energy. Most electro-magnetic processes, including transition radiation, cease to be sensitive to the incident energy above 10 TeV/AMU. Thus, it is expected, that upon establishment of cross section and detection efficiency of this process, it may provide a new energy measuring technique above 10 TeV/AMU. Three accelerator exposures of emulsion chambers designed for measurements of direct electron-pains were performed. The objectives of the investigation were to provide the fundamental cross-section data in emulsion stacks to find the best-fit theoretical model, and to provide a calibration of measurements of direct electron-pairs in emulsion chamber configurations. This paper reports the design of the emulsion chambers, accelerator experiments, microscope measurements, and related considerations for future improvements of the measurements, and for possible applications to high energy cosmic ray experiments. Also discussed are the results from scanning 56m of emulsion tracks at 1200x magnification so that scanning efficiency is optimized. Measurements of the delta-ray range spectrum were also performed for much shorter track lengths, but with sufficiently large statistics in the number of measured delta-rays.

  16. Correlation effects in high-Tc superconductors and heavy fermion compounds

    International Nuclear Information System (INIS)

    Kuzemsky, A.L.

    1993-10-01

    This paper describes certain aspects of Highly Correlated Systems (HCS) such as high Tc superconductors (HTSC) and some new class of Heavy Fermion (HF) systems which have been studied recently. The problem is discussed on how the charge and spin degrees of freedom participate in the specific character of superconductivity in the copper oxides and competition of the magnetism and Kondo screening in heavy fermions. The electronic structure and possible superconducting mechanisms of HTSC compounds are discussed. The similarity and dissimilarity with HF compounds is pointed out. It is shown that the spins and carriers in the copper oxides are coupled in a very nontrivial way in order to introduce the discussion and the comparison of the Emery model, the t - J-model and the Kondo-Heisenberg model. It concerns attempts to derive from fundamental multi-band Hamiltonian the reduced effective Hamiltonians to extract and separate the relevant low-energy physics. A short review of the arguments which seem to support the spin-polaron pairing mechanism in HTSC are presented. Many other topics like the idea of mixed valence states in oxides, the role of charge transfer (CT) excitations, phase separation, self-consistent nonperturbative technique, etc. are also discussed. (author). 161 refs

  17. Calorimetric low temperature detectors for heavy ion physics

    Energy Technology Data Exchange (ETDEWEB)

    Egelhof, P.; Kraft-Bermuth, S. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)]|[Mainz Univ. (Germany). Inst. fuer Physik

    2005-05-01

    Calorimetric low temperature detectors have the potential to become powerful tools for applications in many fields of heavy ion physics. A brief overview of heavy ion physics at present and at the next generation heavy ion facilities is given with a special emphasis on the conditions for heavy ion detection and the potential advantage of cryogenic detectors for applications in heavy ion physics. Two types of calorimetric low temperature detectors for the detection of energetic heavy ions have been developed and their response to the impact of heavy ions was investigated systematically for a wide range of energies (E=0.1-360 MeV/amu) and ion species ({sup 4}He.. {sup 238}U). Excellent results with respect to energy resolution, {delta}E/E ranging from 1 to 5 x 10{sup -3} even for the heaviest ions, and other basic detector properties such as energy linearity with no indication of a pulse height defect, energy threshold, detection efficiency and radiation hardness have been obtained, representing a considerable improvement as compared to conventional heavy ion detectors based on ionization. With the achieved performance, calorimetric low temperature detectors bear a large potential for applications in various fields of basic and applied heavy ion research. A brief overview of a few prominent examples, such as high resolution nuclear spectroscopy, high resolution nuclear mass determination, which may be favourably used for identification of superheavy elements or in direct reaction experiments with radioactive beams, as well as background discrimination in accelerator mass spectrometry, is given, and first results are presented. For instance, the use of cryogenic detectors allowed to improve the sensitivity in trace analysis of {sup 236}U by one order of magnitude and to determine the up to date smallest isotope ratio of {sup 236}U/{sup 238}U = 6.1 x 10{sup -12} in a sample of natural uranium. Besides the detection of heavy ions, the concept of cryogenic detectors also

  18. Calorimetric low temperature detectors for heavy ion physics

    International Nuclear Information System (INIS)

    Egelhof, P.; Kraft-Bermuth, S.; Mainz Univ.

    2005-07-01

    Calorimetric low temperature detectors have the potential to become powerful tools for applications in many fields of heavy ion physics. A brief overview of heavy ion physics at present and at the next generation heavy ion facilities is given with a special emphasis on the conditions for heavy ion detection and the potential advantage of cryogenic detectors for applications in heavy ion physics. Two types of calorimetric low temperature detectors for the detection of energetic heavy ions have been developed and their response to the impact of heavy ions was investigated systematically for a wide range of energies (E=0.1-360 MeV/amu) and ion species ( 4 He.. 238 U). Excellent results with respect to energy resolution, ΔE/E ranging from 1 to 5 x 10 -3 even for the heaviest ions, and other basic detector properties such as energy linearity with no indication of a pulse height defect, energy threshold, detection efficiency and radiation hardness have been obtained, representing a considerable improvement as compared to conventional heavy ion detectors based on ionization. With the achieved performance, calorimetric low temperature detectors bear a large potential for applications in various fields of basic and applied heavy ion research. A brief overview of a few prominent examples, such as high resolution nuclear spectroscopy, high resolution nuclear mass determination, which may be favourably used for identification of superheavy elements or in direct reaction experiments with radioactive beams, as well as background discrimination in accelerator mass spectrometry, is given, and first results are presented. For instance, the use of cryogenic detectors allowed to improve the sensitivity in trace analysis of 236 U by one order of magnitude and to determine the up to date smallest isotope ratio of 236 U/ 238 U = 6.1 x 10 -12 in a sample of natural uranium. Besides the detection of heavy ions, the concept of cryogenic detectors also provides considerable advantage for X

  19. Scintillating liquid xenon calorimeter for precise electron/photon/jet physics at high energy high luminosity hadron colliders

    International Nuclear Information System (INIS)

    Chen, M.; Luckey, D.; Pelly, D.; Shotkin, S.; Sumorok, K.; Wadsworth, B.; Yan, X.J.; You, C.; Zhang, X.; Chen, E.G.; Gaudreau, M.P.J.; Montgomery, D.B.; Sullivan, J.D.; Bolozdynya, A.; Chernyshev, V.; Goritchev, P.; Khovansky, V.; Kouchenkov, A.; Kovalenko, A.; Lebedenko, V.; Vinogradov, V.A.; Epstein, V.; Zeldovich, S.; Krasnokutsky, R.; Shuvalov, R.; Aprile, E.; Mukherjee, R.; Suzuki, M.; Moulsen, M.; Sugimoto, S.; Okada, K.; Fujino, T.; Matsuda, T.; Miyajima, M.; Doke, T.; Kikuchi, J.; Hitachi, A.; Kashiwagi, T.; Nagasawa, Y.; Ichinose, H.; Ishida, N.; Nakasugi, T.; Ito, T.; Masuda, K.; Shibamura, E.; Wallraff, W.; Vivargent, M.; Mutterer, M.; Chen, H.S.; Tang, H.W.; Tung, K.L.; Ding, H.L.; Takahashi, T.

    1990-01-01

    The authors use αs well as e, π, p, d and heavy ion beams to test prototype scintillating liquid xenon detectors, with large UV photodiodes and fast amplifiers submersed directly in liquid xenon. The data show very large photoelectron yields (10 7 /GeV) and high energy resolution (σ(E)/E 1.6 GeV). The α spectra are stable over long term and can be used to calibrate the detectors. Full size liquid xenon detectors have been constructed, to study cosmic μ's and heavy ions. The authors report the progress on the design and construction of the 5 x 5 and 11 x 11 cell liquid xenon detectors which will be tested in high energy beams to determine the e/π ratio. The authors describe the design and the unique properties of the proposed scintillating LXe calorimeter for the SSC

  20. Theoretical high energy physics

    International Nuclear Information System (INIS)

    Lee, T.D.

    1993-01-01

    Brief reports are given on the work of several professors. The following areas are included: quantum chromodynamics calculations using numerical lattice gauge theory and a high-speed parallel computer; the ''spin wave'' description of bosonic particles moving on a lattice with same-site exclusion; a high-temperature expansion to 13th order for the O(4)-symmetric φ 4 model on a four-dimensional F 4 lattice; spin waves and lattice bosons; superconductivity of C 60 ; meson-meson interferometry in heavy-ion collisions; baryon number violation in the Standard Model in high-energy collisions; hard thermal loops in QCD; electromagnetic interactions of anyons; the relation between Bose-Einstein and BCS condensations; Euclidean wormholes with topology S 1 x S 2 x R; vacuum decay and symmetry breaking by radiative corrections; inflationary solutions to the cosmological horizon and flatness problems; and magnetically charged black holes

  1. How fast is the growth of Total Cross Section at High Energies?

    CERN Document Server

    Fazal-e-Aleem, M; Sohail-Afzal, Tahir; Ayub-Faridi, M; Qadee-Afzal, M

    2003-01-01

    Relativistic Heavy Ion Collider and Large Hadron Colliders have special agenda for the measurements of the total cross sections at high energies giving us an opportunity to touch cosmic ray energies. Recent analyses of the cosmic ray data together with earlier experimental measurements at ISR and SPS gives us an insight about the behaviour of this important parameter at asymptotic energies. We will study the growth of total cross section at high energies in the light of various theoretical approaches with special reference to measurements at RHIC and LHC.

  2. Probing the nuclear matter at high baryon and isospin density with heavy ion collisions

    International Nuclear Information System (INIS)

    Di Toro, M.; Colonna, M.; Ferini, G.

    2010-01-01

    Heavy Ion Collisions (HIC) represent a unique tool to probe the in-medium nuclear interaction in regions away from saturation. High Energy Collisions are studied in order to access nuclear matter properties at high density. Particular attention is devoted to the selection of observables sensitive to the poorly known symmetry energy at high baryon density, of large fundamental interest, even for the astrophysics implications. Using fully consistent covariant transport simulations built on effective field theories we are testing isospin observables ranging from nucleon/cluster emissions, collective flows (in particular the elliptic, squeeze out, part) and meson production. The possibility to shed light on the controversial neutron/proton effective mass splitting in asymmetric matter is also stressed. The "symmetry" repulsion at high baryon density will also lead to an "earlier" hadron-deconfinement transition in n-rich matter. The phase transition of hadronic to quark matter at high baryon and isospin density is analyzed. Nonlinear relativistic mean field models are used to describe hadronic matter, and the MIT bag model is adopted for quark matter. The boundaries of the mixed phase and the related critical points for symmetric and asymmetric matter are obtained. Isospin effects appear to be rather significant. The binodal transition line of the (T,ρ B ) diagram is lowered in a region accessible to heavy ion collisions in the energy range of the new planned FAIR/NICA facilities. Some observable effects of the mixed phase are suggested, in particular a neutron distillation mechanism. Theoretically a very important problem appears to be the suitable treatment of the isovector part of the interaction in effective QCD lagrangian approaches. (author)

  3. Overview of US heavy-ion fusion progress and plans

    International Nuclear Information System (INIS)

    Logan, G.; Bieniosek, F.; Celata, C.; Henestroza, E.; Kwan, J.; Lee, E.P.; Leitner, M.; Prost, L.; Roy, P.; Seidl, P.A.; Eylon, S.; Vay, J.-L.; Waldron, W.; Yu, S.; Barnard, J.; Callahan, D.; Cohen, R.; Friedman, A.; Grote, D.; Kireeff Covo, M.; Meier, W.R.; Molvik, A.; Lund, S.; Davidson, R.; Efthimion, P.; Gilson, E.; Grisham, L.; Kaganovich, I.; Qin, H.; Startsev, E.; Rose, D.; Welch, D.; Olson, C.; Kishek, R.; O'Shea, P.; Haber, I.

    2005-01-01

    Significant experimental and theoretical progress has been made in the US heavy-ion fusion program on high-current sources, injectors, transport, final focusing, chambers and targets for high-energy density physics (HEDP) and inertial fusion energy (IFE) driven by induction linac accelerators. One focus of present research is the beam physics associated with quadrupole focusing of intense, space-charge dominated heavy-ion beams, including gas and electron cloud effects at high currents, and the study of long-distance-propagation effects such as emittance growth due to field errors in scaled experiments. A second area of emphasis in present research is the introduction of background plasma to neutralize the space charge of intense heavy-ion beams and assist in focusing the beams to a small spot size. In the near future, research will continue in the above areas, and a new area of emphasis will be to explore the physics of neutralized beam compression and focusing to high intensities required to heat targets to high-energy density conditions as well as for inertial fusion energy

  4. Geometric and electronic structures of molecular ions from high energy collisions

    International Nuclear Information System (INIS)

    Groeneveld, K.O.

    1983-01-01

    This chapter examines the characteristics of heavy ion collision and of beam foil spectroscopy. It discusses the kinematic consequences of the high energies and presents results from ''Coulomb explosion'' and structure determination of molecular ions. It demonstrates that studies of molecular ions with accelerators can provide electronic and geometric structure information of molecules or molecular ions and points out that the understanding of the microscopic processes at such high energies is incomplete and needs further experimental and theoretical efforts

  5. Conceptual study of a heavy-ion-ERDA spectrometer for energies below 6 MeV

    Science.gov (United States)

    Julin, Jaakko; Sajavaara, Timo

    2017-09-01

    Elastic recoil detection analysis (ERDA) is a well established technique and it offers unique capabilities in thin film analysis. Simultaneous detection and depth profiling of all elements, including hydrogen, is possible only with time-of-flight ERDA. Bragg ionization chambers or ΔE - E detectors can also be used to identify the recoiling element if sufficiently high energies are used. The chief limitations of time-of-flight ERDA are the beam induced sample damage and the requirement of a relatively large accelerator. In this paper we propose a detector setup, which could be used with 3 MeV to 6 MeV medium heavy beams from either a single ended accelerator (40Ar) or from a tandem accelerator (39K). The detector setup consists of two timing detectors and a gas ionization chamber energy detector. Compared to use of very heavy low energy ions the hydrogen recoils with this beam have sufficient energy to be detected with current gas ionization chamber energy detector. To reduce the beam induced damage the proposed detector setup covers a solid angle larger than 1 msr, roughly an order of magnitude improvement over most time-of-flight ERDA setups. The setup could be used together with a small accelerator to be used for light element analysis of approximately 50 nm films. The concept is tested with 39K beam from a 1.7 MV Pelletron tandem accelerator with the Jyväskylä ToF-ERDA setup. In addition to the measurements effects related to low energies and increase in the solid angle are simulated with Monte Carlo methods.

  6. The stopping powers and energy straggling of heavy ions in polymer foils

    Czech Academy of Sciences Publication Activity Database

    Mikšová, Romana; Macková, Anna; Malinský, Petr; Hnatowicz, Vladimír; Slepička, P.

    2014-01-01

    Roč. 331, JUL (2014), s. 42-47 ISSN 0168-583X R&D Projects: GA ČR GA106/09/0125; GA MŠk(XE) LM2011019 Institutional support: RVO:61389005 Keywords : energy loss * energy straggling * heavy ions * polymers * AFM method Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.124, year: 2014

  7. HEND: A Database for High Energy Nuclear Data

    International Nuclear Information System (INIS)

    Brown, D; Vogt, R

    2007-01-01

    We propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interface. The database will be searchable and cross-indexed with relevant publications, including published detector descriptions. It should eventually contain all published data from older heavy-ion programs such as the Bevalac, AGS, SPS and FNAL fixed-target programs, as well as published data from current programs at RHIC and new facilities at GSI (FAIR), KEK/Tsukuba and the LHC collider. This data includes all proton-proton, proton-nucleus to nucleus-nucleus collisions as well as other relevant systems and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of experiments. To enhance the utility of the database, we propose periodic data evaluations and topical reviews. These reviews would provide an alternative and impartial mechanism to resolve discrepancies between published data from rival experiments and between theory and experiment. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support

  8. Exploring the Invisible Renormalon Renormalization of the Heavy-Quark Kinetic Energy

    CERN Document Server

    Neubert, M

    1997-01-01

    Using the virial theorem of the heavy-quark effective theory, we show that the mixing of the operator for the heavy-quark kinetic energy with the identity operator is forbidden at the one-loop order by Lorentz invariance. This explains why such a mixing was not observed in several one-loop calculations using regularization schemes with a Lorentz-invariant UV regulator, and why no UV renormalon singularity was found in the matrix elements of the kinetic operator in the bubble approximation (the ``invisible renormalon''). On the other hand, we show that the mixing is not protected in general by any symmetry, and it indeed occurs at the two-loop order. This implies that the parameter $\\lambda_1^H$ of the heavy-quark effective theory is not directly a physical quantity, but requires a non-perturbative subtraction.

  9. Calorimetric Low-Temperature Detectors for X-Ray Spectroscopy on Trapped Highly-Charged Heavy Ions

    Science.gov (United States)

    Kilbourne, Caroline; Kraft-Bermuth, S.; Andrianov, V.; Bleile, A.; Echler, A.; Egelhof, P.; Ilieva, S.; Kilbourne, C.; McCammon, D.

    2012-01-01

    The application of Calorimetric Low-Temperature Detectors (CLTDs) has been proposed at the Heavy-Ion TRAP facility HITRAP which is currently being installed at the Helmholtz Research Center for Heavy Ion Research GSI. This cold ion trap setup will allow the investigation of X-rays from ions practically at rest, for which the excellent energy resolution of CLTDs can be used to its full advantage. However, the relatively low intensities at HITRAP demand larger solid angles and an optimized cryogenic setup. The influence of external magnetic fields has to be taken into account. CLTDs will also be a substantial part of the instrumental equipment at the future Facility for Antiproton and Heavy Ion Research (FAIR), for which a wide variety of high-precision X-ray spectroscopy experiments has been proposed. This contribution will give an overview on the chances and challenges for the application of CLTDs at HITRAP as well as perspectives for future experiments at the FAIR facility.

  10. Heavy-residue isoscaling as a probe of the symmetry energy of hot fragments

    International Nuclear Information System (INIS)

    Souliotis, G.A.; Shetty, D.V.; Keksis, A.; Bell, E.; Jandel, M.; Veselsky, M.; Yennello, S.J.

    2006-01-01

    The isoscaling properties of isotopically resolved projectile residues from peripheral collisions of 86 Kr (25 MeV/nucleon) 64 Ni (25 MeV/nucleon), and 136 Xe (20 MeV/nucleon) beams on various target pairs are employed to probe the symmetry energy coefficient of the nuclear binding energy. The present study focuses on heavy projectile fragments produced in peripheral and semiperipheral collisions near the onset of multifragment emission (E * /A=2-3 MeV). For these fragments, the measured average velocities are used to extract excitation energies. The excitation energies, in turn, are used to estimate the temperatures of the fragmenting quasiprojectiles in the framework the Fermi gas model. The isoscaling analysis of the fragment yields provided the isoscaling parameters α that, in combination with temperatures and isospin asymmetries provided the symmetry energy coefficient of the nuclear binding energy of the hot fragmenting quasiprojectiles. The extracted values of the symmetry energy coefficient at this excitation energy range (2-3 MeV/nucleon) are lower than the typical liquid-drop model value ∼25 MeV corresponding to ground-state nuclei and show a monotonic decrease with increasing excitation energy. This result is of importance in the formation of hot nuclei in heavy-ion reactions and in hot stellar environments such as supernova

  11. 22nd DAE High Energy Physics Symposium

    CERN Document Server

    2018-01-01

    These proceedings gather invited and contributed talks presented at the XXII DAE-BRNS High Energy Physics (HEP) Symposium, which was held at the University of Delhi, India, on 12–16 December 2016. The contributions cover a variety of topics in particle physics, astroparticle physics, cosmology and related areas from both experimental and theoretical perspectives, namely (1) Neutrino Physics, (2) Standard Model Physics (including Electroweak, Flavour Physics), (3) Beyond Standard Model Physics, (4) Heavy Ion Physics & QCD (Quantum Chromodynamics), (5) Particle Astrophysics & Cosmology, (6) Future Experiments and Detector Development, (7) Formal Theory, and (8) Societal Applications: Medical Physics, Imaging, etc. The DAE-BRNS High Energy Physics Symposium, widely considered to be one of the leading symposiums in the field of Elementary Particle Physics, is held every other year in India and supported by the Board of Research in Nuclear Sciences (BRNS), Department of Atomic Energy (DAE), India. As man...

  12. European School of High-Energy Physics

    CERN Document Server

    2006-01-01

    The European School of High-Energy Physics is intended to give young experimental physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain lectures notes on field theory and the Standard Model, quantum chromodynamics, flavour physics and CP violation, experimental aspects of CP violation in K and B decays, relativistic heavy-ion physics, and the scientific programme of the Joint Institute for Nuclear Research. These core scientific topics are complemented by a lecture about the physics of ski jumping.

  13. High energy particle experiment for the GEOTAIL mission

    International Nuclear Information System (INIS)

    1989-09-01

    The high energy particle experiment for GEOTAIL mission was designed to understand the particle acceleration mechanism, energy flow, boundary dynamics and magnetic reconnection mechanism in the geotail region, solar flare particle acceleration mechanism, the propagation mechanism through interplanetary space, and the origin, lifetime and propagation mechanism of cosmic ray heavy ions. In order to achieve these objectives, particle detectors, burst detectors, medium energy isotope telescopes and a high energy isotope telescope will be placed in the spacecraft which will be launched in 1992 as one of the spacecraft missions in the International Solar Terrestrial Physics program. With these detectors, electrons, protons and helium, carbon, silicon and iron particles will be detected. The characteristics and the main technique used for each instrument to observe high energy particles are summarized. The details of the scientific objectives, the basic principle of particle identification, the electronic system and data processing system, key parameter information, telemetry data formats, preflight and in-flight calibration method and data an analysis plan are described in this report. (K.I.)

  14. Search for nuclei in heavy ion collisions at ultrarelativistic energies

    CERN Multimedia

    2002-01-01

    We would like to know if nuclei are still present after a collision of two heavy ions at ultrarelativistic energies. If one can detect some of them at large angle $(>10^{\\circ}-15^{\\circ})$ they very likely come from a multifragmentation of the excited target spectators. Such a multifragmentation in several nuclei has been in proton induced reactions at Fermilab and it was interpreted as a gas-liquid phase transition in nuclei matter near the critical point. With heavy ions the energy deposited in the target spectators will be much higher than in the case of protons and a different mechanism should be involved if nuclei are still observed. \\\\ \\\\ We propose to detect nuclei using 1-2 silicon telescopes and a 1-2mg/cm$^{2}$ Au target bombarded by an $^{16}$O or $^{32}$S beam at 226 GeV/u. The set-up will be installed in a small cube located just before the NA38 experiment and should not perturb it.\\\\ \\\\ Data from $^{16}$O incident on Au have been taken last year. The experiment is presently taking data with $^{...

  15. 1996 European school of high-energy physics. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, N; Neubert, M [eds.

    1997-07-02

    The European School of High-Energy Physics is intended to give young experimental physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain lectures on Field Theory, Physics Beyond the Standard Model, Flavour Physics, Neutrino Physics, Collider Physics and Astrophysics, as well as reports on Heavy-Ion Physics, the Large Hadron Collider Project and Physics in JINR/Russia. (orig.)

  16. 1997 European School of high-energy physics. Proceedings

    International Nuclear Information System (INIS)

    Ellis, N.; Neubert, M.

    1998-01-01

    The European School of High-Energy Physics is intended to give young experimental physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain lectures on Field Theory, the Standard Model, Quantum Chromodynamics, Flavour Physics, Physics at LEP II and Heavy Ion physics, as well as reports on Cosmology, Dark Matter and a Quantum Theory of two-dimensional space-time. (orig.)

  17. 1996 European school of high-energy physics. Proceedings

    International Nuclear Information System (INIS)

    Ellis, N.; Neubert, M.

    1997-01-01

    The European School of High-Energy Physics is intended to give young experimental physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain lectures on Field Theory, Physics Beyond the Standard Model, Flavour Physics, Neutrino Physics, Collider Physics and Astrophysics, as well as reports on Heavy-Ion Physics, the Large Hadron Collider Project and Physics in JINR/Russia. (orig.)

  18. New and unthinkable ideas in high energy physics

    International Nuclear Information System (INIS)

    Lederman, L.M.

    1975-01-01

    Possible future high energy physics experiments and the required detectors are discussed for colliding proton beams in storage rings. Analyses are given on the topics of: (1) baryon conservation; (2) a new object detector; (3) the search for heavy leptons at ISABELLE; (4) identifying super-massive particles decaying solely into very many hadrons; (5) production of anti-nuclei at ISABELLE; and (6) a metastable neutral particle arm

  19. 1997 European School of high-energy physics. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, N; Neubert, M [eds.

    1998-05-20

    The European School of High-Energy Physics is intended to give young experimental physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain lectures on Field Theory, the Standard Model, Quantum Chromodynamics, Flavour Physics, Physics at LEP II and Heavy Ion physics, as well as reports on Cosmology, Dark Matter and a Quantum Theory of two-dimensional space-time. (orig.)

  20. Imprint reduction in rotating heavy ions beam energy deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bret, A., E-mail: antoineclaude.bret@uclm.es [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-51, Cambridge, MA 02138 (United States); ETSI Industriales, Universidad Castilla-La Mancha, 13071 Ciudad Real (Spain); Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain); Piriz, A.R., E-mail: Roberto.Piriz@uclm.es [ETSI Industriales, Universidad Castilla-La Mancha, 13071 Ciudad Real (Spain); Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain); Tahir, N.A., E-mail: n.tahir@gsi.de [GSI Darmstadt, Plankstrasse 1, 64291 Darmstadt (Germany)

    2014-01-01

    The compression of a cylindrical target by a rotating heavy ions beam is contemplated in certain inertial fusion schemes or in heavy density matter experiments. Because the beam has its proper temporal profile, the energy deposition is asymmetric and leaves an imprint which can have important consequences for the rest of the process. In this paper, the Fourier components of the deposited ion density are computed exactly in terms of the beam temporal profile and its rotation frequency Ω. We show that for any beam profile of duration T, there exist an infinite number of values of ΩT canceling exactly any given harmonic. For the particular case of a parabolic profile, we find possible to cancel exactly the first harmonic and nearly cancel every other odd harmonics. In such case, the imprint amplitude is divided by 4 without any increase of Ω.

  1. Imprint reduction in rotating heavy ions beam energy deposition

    International Nuclear Information System (INIS)

    Bret, A.; Piriz, A.R.; Tahir, N.A.

    2014-01-01

    The compression of a cylindrical target by a rotating heavy ions beam is contemplated in certain inertial fusion schemes or in heavy density matter experiments. Because the beam has its proper temporal profile, the energy deposition is asymmetric and leaves an imprint which can have important consequences for the rest of the process. In this paper, the Fourier components of the deposited ion density are computed exactly in terms of the beam temporal profile and its rotation frequency Ω. We show that for any beam profile of duration T, there exist an infinite number of values of ΩT canceling exactly any given harmonic. For the particular case of a parabolic profile, we find possible to cancel exactly the first harmonic and nearly cancel every other odd harmonics. In such case, the imprint amplitude is divided by 4 without any increase of Ω

  2. UPR/Mayaguez High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    López, Angel M. [Univ. of Puerto Rico, Mayaguez (Puerto Rico)

    2015-10-27

    For the period of sixteen years covered by this report (June 1, 1997 - July 31, 2013) the High Energy Physics Group at the University of Puerto Rico’s Mayaguez Campus (UPRM) carried out an extensive research program that included major experiments at Fermi National Accelerator Laboratory (Fermilab), the Cornell Electron-positron Collider and CERN. In particular, these were E831 (FOCUS) at Fermilab, CLEOc at Cornell and the Compact Muon Solenoid (CMS) at the Large Hadron Collider (LHC) at CERN. The group’s history is one of successful execution and growth. Beginning with one faculty researcher in 1985, it eventually included four faculty researchers, one post-doctoral research associate, two undergraduates and as many as six graduate students at one time working on one of the experiments that discovered the Higgs boson. Some of this expansion was due to the group’s leveraging of funds from the Department of Energy’s core grant to attract funds from National Science Foundation programs not targeted to high energy physics. Besides the group’s research productivity, its other major contribution was the training of a large number of MS students who later went on to successful technical careers in industry as well as academia including many who obtained PhD degrees at US universities. In an attempt to document this history, this final report gives a general description of the Group’s work prior to June 1, 2010, the starting date for the last grant renewal period. Much more detail can, of course, be found in the annual reports submitted up to that date. The work during the last grant period is discussed in detail in a separate section. To summarize the group’s scientific accomplishments, one can point to the results of the experiments. Both FOCUS and CLEOc were designed to carry out precise measurements of processes involving the heavy quarks, charm and bottom. Heavy quarks are particularly interesting because, due to their mass, theoretical calculations

  3. Intermediate energy heavy ion reactions. A program for CELSIUS

    International Nuclear Information System (INIS)

    Jakobsson, B.

    1986-02-01

    The accelerator system under construction in Uppsala with the ECR-source + the K equals 200 synchrocyclotron + the CELSIUS synchrotron ring for storage, cooling and acceleration opens up possibilities for a very fruitful heavy ion physics program. Some recently obtained results and some recent ideas on intermediate energy reactions are discussed and speculations are made about some experiments where the unconventional qualities of CELSIUS beams could be utilized. (author)

  4. Transfer products from the reactions of heavy ions with heavy nuclei

    International Nuclear Information System (INIS)

    Thomas, K.E. III.

    1979-11-01

    Production of nuclides heavier than the target from 86 Kr- and 136 Xe-induced reactions with 181 Ta and 238 U was investigated. Attempts were made to produce new neutron-excess Np and Pu isotopes by the deep inelastic mechanism. No evidence was found for 242 Np or 247 Pu. Estimates were made for the production of 242 Np, 247 Pu, and 248 Am from heavy-ion reactions with uranium targets. Comparisons of reactions of 86 Kr and 136 Xe ions with thick 181 Ta targets and 86 Kr, 136 Xe and 238 U ions with thick 238 U targets indicate that the most probable products are not dependent on the projectile. The most probable products can be predicted by the equation Z - Z/sub target/ = 0.43 (A - A/sub target/) + 1.0. The major effect of the projectile is the magnitude of the production cross section of the heavy products. Based on these results, estimates are made of the most probable mass of element 114 produced from heavy-ion reactions with 248 Cm and 254 Es targets. These estimates give the mass number of element 114 as approx. 287 if produced in heavy-ion reactions with these very heavy targets. Excitation functions of gold and bismuth isotopes arising from 86 Kr- and 136 Xe-induced reactions with thin 181 Ta targets were measured. These results indicate that the shape and location (in Z and A above the target) of the isotopic distributions are not strongly dependent on the projectile incident energy. Also, the nuclidic cross sections are found to increase with an increase in projectile energy to a maximum at approximately 1.4 to 1.5 times the Coulomb barrier. Above this maximum, the nuclidic cross sections are found to decrease with an increase in projectile energy. This decrease in cross section is believed to be due to fission of the heavy products caused by high excitation energy and angular momentum. 111 references, 39 figures, 34 tables

  5. Status of Heavy Neutrino Experiments

    CERN Document Server

    Wynne, Benjamin; The ATLAS collaboration

    2017-01-01

    The observation of neutrino oscillations raises the possibility that there exist additional, undiscovered high-mass neutrinos, giving mass to Standard Model neutrinos via the seesaw mechanism. By pushing the collider energy frontier at the LHC, the possibility arises that these heavy neutrinos may be produced and identified. We summarise the latest LHC results of searches for heavy neutrinos in a variety of final states.

  6. Origin of the finite nuclear spin and its effect in intermediate energy heavy ion collisions

    International Nuclear Information System (INIS)

    Zhang Guoqiang; Cao Xiguang; Fu Yao

    2012-01-01

    The heavy-ion phase-space exploration (HIPSE) model is used to discuss the origin of the nuclear spin in intermediate energy heavy-ion collision (HIC). The spin of maximal projectile-like fragment is found to depend strongly on impact parameter of a reaction system,while it relates weakly to the collision violence. Some interesting multi-fragmentation phenomena related to the spin are shown. We also found that the excitation energy in the de-excitation stage plays a robust role at the de-excitation stage in HIC. (authors)

  7. AN ASSESSMENT OF FLYWHEEL HIGH POWER ENERGY STORAGE TECHNOLOGY FOR HYBRID VEHICLES

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, James Gerald [ORNL

    2012-02-01

    An assessment has been conducted for the DOE Vehicle Technologies Program to determine the state of the art of advanced flywheel high power energy storage systems to meet hybrid vehicle needs for high power energy storage and energy/power management. Flywheel systems can be implemented with either an electrical or a mechanical powertrain. The assessment elaborates upon flywheel rotor design issues of stress, materials and aspect ratio. Twelve organizations that produce flywheel systems submitted specifications for flywheel energy storage systems to meet minimum energy and power requirements for both light-duty and heavy-duty hybrid applications of interest to DOE. The most extensive experience operating flywheel high power energy storage systems in heavy-duty and light-duty hybrid vehicles is in Europe. Recent advances in Europe in a number of vehicle racing venues and also in road car advanced evaluations are discussed. As a frame of reference, nominal weight and specific power for non-energy storage components of Toyota hybrid electric vehicles are summarized. The most effective utilization of flywheels is in providing high power while providing just enough energy storage to accomplish the power assist mission effectively. Flywheels are shown to meet or exceed the USABC power related goals (discharge power, regenerative power, specific power, power density, weight and volume) for HEV and EV batteries and ultracapacitors. The greatest technical challenge facing the developer of vehicular flywheel systems remains the issue of safety and containment. Flywheel safety issues must be addressed during the design and testing phases to ensure that production flywheel systems can be operated with adequately low risk.

  8. 2011 European School of High-Energy Physics

    CERN Document Server

    Mulders, M; ESHEP2011; ESHEP 2011

    2014-01-01

    The European School of High-Energy Physics is intended to give young physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain lecture notes on quantum field theory and the Standard Model, quantum chromodynamics, flavour physics, neutrino physics, physics beyond the Standard Model, cosmology, heavy ion physics, statistical data analysis, as well as an account for the physics results with the data accumulated during the first run of the LHC.

  9. Coherent production of high-energy photons and π mesons in heavy ion reactions

    International Nuclear Information System (INIS)

    Batkin, I.S.; Kopytin, I.V.

    1986-01-01

    A microscopic model of high-energy photon and pion production processes in collision of multicharged ions with kinetic energy of relative motion from 40 to 100 MeV per nucleon was constructed not using fitting parameters

  10. Nuclear fission induced by heavy ions

    International Nuclear Information System (INIS)

    Newton, J.O.

    1988-09-01

    Because the accelerators of the 50's and 60's mostly provided beams of light ions, well suited for studying individual quantum states of low angular momentum or reactions involving the transfer of one or two nucleons, the study of fission, being an example of large-scale collective motion, has until recently been outside of the mainstream of nuclear research. This situation has changed in recent years, due to the new generation of accelerators capable of producing beams of heavy ions with energies high enough to overcome the Coulomb barriers of all stable nuclei. These have made possible the study of new examples of large-scale collective motions, involving major rearrangements of nuclear matter, such as deep-inelastic collisions and heavy-ion fusion. Perhaps the most exciting development in the past few years is the discovery that dissipative effects (nuclear viscosity) play an important role in fission induced by heavy ions, contrary to earlier assumptions that the viscosity involved in fission was very weak and played only a minor role. This review will be mainly concerned with developments in heavy-ion induced fission during the last few years and have an emphasis on the very recent results on dissipative effects. Since heavy-ion bombardment usually results in compound systems with high excitation energies and angular momenta, shell effects might be expected to be small, and the subject of low energy fission, where they are important, will not be addressed. 285 refs., 58 figs

  11. Energy Lossand Flow of Heavy Quarks in Au+Au Collisions at root-s=200GeV

    Energy Technology Data Exchange (ETDEWEB)

    Soltz, R; Klay, J; Enokizono, A; Newby, J; Heffner, M; Hartouni, E

    2007-02-26

    The PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) has measured electrons with 0.3 < p{sub rmT} < 9 GeV/c at midrapidity (|y| < 0.35) from heavy flavor (charm and bottom) decays in Au+Au collisions at {radical}s{sub NN} = 200 GeV. The nuclear modification factor R{sub AA} relative to p+p collisions shows a strong suppression in central Au+Au collisions, indicating substantial energy loss of heavy quarks in the medium produced at RHIC energies. A large azimuthal anisotropy, v{sub 2}, with respect to the reaction plane is observed for 0.5 < p{sub rmT} < 5 GeV/c indicating non-zero heavy flavor elliptic flow. A simultaneous description of R{sub AA}(p{sub rmT}) and v{sub 2}(p{sub rmT}) constrains the existing models of heavy-quark rescattering in strongly interacting matter and provides information on the transport properties of the produced medium. In particular, a viscosity to entropy density ratio close to the conjectured quantum lower bound, i.e. near a perfect fluid, is suggested.

  12. Heavy quarks photoproduction

    International Nuclear Information System (INIS)

    Cacciari, M.

    1996-08-01

    The state of the art of the theoretical calculations for heavy quarks photoproduction is reviewed. The full next-to-leading order calculation and two possible resummations, the high energy one for total cross sections and the large p T one for differential cross sections, are described. (orig.)

  13. Proposal for a high-energy nuclear database

    International Nuclear Information System (INIS)

    Brown, D.A.; Vogt, R.

    2006-01-01

    We propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interface. This database will be searchable and cross-indexed with relevant publications, including published detector descriptions. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This database should eventually contain all published data from Bevalac, AGS and SPS to RHIC and LHC energies, proton-proton to nucleus-nucleus collisions as well as other relevant systems, and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of old and new experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion and target and source development for upcoming facilities such as the Next Linear Collider. To enhance the utility of this database, we propose periodically performing evaluations of the data and summarizing the results in topical reviews. (author)

  14. Proposal for a High Energy Nuclear Database

    International Nuclear Information System (INIS)

    Brown, D A; Vogt, R

    2005-01-01

    The authors propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interface. This database will be searchable and cross-indexed with relevant publications, including published detector descriptions. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This database should eventually contain all published data from Bevalac, AGS and SPS to RHIC and CERN-LHC energies, proton-proton to nucleus-nucleus collisions as well as other relevant systems, and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of old and new experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion and target and source development for upcoming facilities such as the Next Linear Collider. To enhance the utility of this database, they propose periodically performing evaluations of the data and summarizing the results in topical reviews

  15. Overview of U.S. heavy ion fusion progress and plans

    International Nuclear Information System (INIS)

    Logan, G.; Bieniosek, F.; Celata, C.; Henestroza, E.; Kwan, J; Lee, E.P.; Leitner, M.; Prost, L.; Roy, P.; Seidl, P.A.; Eylon, S.; Vay, J.-L.; Waldron, W.; Yu, S.; Barnard, J.; Callahan, D.; Cohen, R.; Friedman, A.; Grote, D.; Kireeff Covo, M.; Meier, W.R.; Molvik, A.; Lund, S.; Davidson, R.; Efthimion, P.; Gilson, E.; Grisham, L.; Kaganovich, I.; Qin, H.; Startsev, E.; Rose, D.; Welch, D.; Olson, C.; Kishek, R.; O'Shea, P.; Haber, I.

    2004-01-01

    Significant experimental and theoretical progress has been made in the U.S. heavy ion fusion program on high-current sources, injectors, transport, final focusing, chambers and targets for high energy density physics (HEDP) and inertial fusion energy (IFE) driven by induction linac accelerators. One focus of present research is the beam physics associated with quadrupole focusing of intense, space-charge dominated heavy-ion beams, including gas and electron cloud effects at high currents, and the study of long-distance-propagation effects such as emittance growth due to field errors in scaled experiments. A second area of emphasis in present research is the introduction of background plasma to neutralize the space charge of intense heavy ion beams and assist in focusing the beams to a small spot size. In the near future, research will continue in the above areas, and a new area of emphasis will be to explore the physics of neutralized beam compression and focusing to high intensities required to heat targets to high energy density conditions as well as for inertial fusion energy

  16. Nuclear de-excitation processes following medium energy heavy ion collisions

    International Nuclear Information System (INIS)

    Blann, M.

    1986-09-01

    As heavy ion reaction studies have progressed from beam energies below 10 MeV/nucleon to higher energies, many non-equilibrium reaction phenomena have been observed. Among these are nucleon emission with velocities in excess of the beam velocity, incomplete momentum transfer to evaporation residue and fission-like fragments, γ-rays with energies in excess of 100 MeV, and π 0 production when beam energies are below the threshold for production by the nucleon-nucleon collision mechanism. Additionally, prefission neutrons have been observed in excess of numbers expected from equilibrium models. A few of the approaches which have been applied to these phenomena are as follows: Intranuclear cascade: two body collisions are assumed to mediate the equilibration. The geometry and momentum space is followed semiclassically. The approach has many successes though it may suffer in a few applications is not following holes; TDHF considers one body processes only; in the energy regime of interest, two body processes are important so that this may not be a viable approach; Boltzmann-Uehling-Uhlenbeck or Vlasov-Uehling-Uhlenbeck (BUU/VUU) equations combine both one body and two body dynamics. The spatial and momentum evolution of the reactions are followed in a mean field. These should be the Cadillacs of the models. They are computationally tedious, and sometimes significant approximations are made in order to achieve computational tract ability; models of collective deceleration. A very simple model approach is discussed to interpret these phenomena, the Boltzmann master equation (BME). The hybrid model was the first to be applied to the question of heavy ion precompound decay, and the BME second. 26 refs., 5 figs., 2 tabs

  17. Charge-sign-clustering observed in high-multiplicity, high-energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Takahashi, Y.; Gregory, J.C.; Hayashi, T.

    1989-01-01

    Charge-sign distribution in 200 GeV/amu heavy-ion collisions is studied with the Magnetic-Interferometric-Emulsion-Chamber (MAGIC) for central collision events in 16 O + Pb and 32 S + Pb interactions. Charge-sign clustering is observed in most of the fully-analyzed events. A statistical 'run-test' is performed for each measured event, which shows significant deviation from a Gaussian distribution (0,1) expected for random-charge distribution. Candidates of charge clusters have 5 - 10 multiplicity of like-sign particles, and are often accompanied by opposite-sign clusters. Observed clustering of identical charges is more significant in the fragmentation region than in the central region. Two-particle Bose-Einstein interference and other effects are discussed for the run-test examination. (author)

  18. Penetration of relativistic heavy ions through matter

    International Nuclear Information System (INIS)

    Scheidenberger, C.; Geissel, H.

    1997-07-01

    New heavy-ion accelerators covering the relativistic and ultra-relativistic energy regime allow to study atomic collisions with bare and few-electron projectiles. High-resolution magnetic spectrometers are used for precise stopping-power and energy-loss straggling measurements. Refined theories beyond the Born approximation have been developed and are confirmed by experiments. This paper summarizes the large progress in the understanding of relativistic heavy-ion penetration through matter, which has been achieved in the last few years. (orig.)

  19. Mechanism of collective interaction in disintegration of heavy nuclei by protons with the energy of 1 GeV

    International Nuclear Information System (INIS)

    Birbrair, B.L.; Gridnev, A.B.; Il'in, A.I.

    1984-01-01

    A two-shoulder time-of-flight spectrometer has been used to investigate deep inelastic disintegration of heavy nuclei by 1 GeV protons. Masses, kinetic energies and momenta of two additional massive fragments dispersing perpendicularly to a primary proton beam were measured in the experiment. Events with essential nucleon losses (up to 100 a.u.m.) are stated to be characterized by increased total kinetic energy of fragments and noticeable value of transferred and transverse momenta as well (up to 2-3 GeV/c). These kinematic peculiarities testify to presence of a special mechanism of heavy nucleus disintegration followed by essential nucleon losses. The threshold value of nucleon losses (45+-5) a.u.m. corresponding to transition from ordinary high-energy pressure after intranuclear cascade to a new mechanism of nuclear reaction is determined. The main peculiarity of the new mechanism is that a group of nucleons receiving essential part of energy and momentum of an incident particle is separated inside the nucleus. The physical reason for this collective mechanism of interaction can be associated with production of pion bubbles inside the nucleus under pion interaction with a nucleus regarded as a relativistic nucleon system

  20. The impact of energy conservation in transport models on the π−/π+ multiplicity ratio in heavy-ion collisions and the symmetry energy

    Directory of Open Access Journals (Sweden)

    M.D. Cozma

    2016-02-01

    Full Text Available The charged pion multiplicity ratio in intermediate energy central heavy-ion collisions has been proposed as a suitable observable to constrain the high density dependence of the isovector part of the equation of state. A comparison of various transport model predictions with existing experimental data has led, however, to contradictory results. Using an upgraded version of the Tübingen QMD transport model, which allows the conservation of energy at a local or global level by accounting for the potential energy of hadrons in two-body collisions and leading thus to particle production threshold shifts, we demonstrate that compatible constraints for the symmetry energy stiffness can be extracted from pion multiplicity and elliptic flow observables. However, pion multiplicities and ratios are proven to be highly sensitive to the yet unknown isovector part of the in-medium Δ(1232 potential which hinders, at present, the extraction of meaningful information on the high density dependence of the symmetry energy. A solution to this problem together with the inclusion of contributions presently neglected, such as in-medium pion potentials and retardation effects, are needed for a final verdict on this topic.

  1. High Efficient Nanocomposite for Removal of Heavy Metals (Hg2+ and Pb2+ from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    M. Ebadi

    2016-01-01

    Full Text Available In current work, CdS/black carbon nanocomposites were successfully synthesized with the aid of chestnut and cadmium nitrate as the starting reagents. Besides, the effects of preparation parameters such as reaction time, and precursor concentration on the morphology of products and removal of heavy metals (Hg+2, Pb+2 were studied by scanning electron microscopy images and batch adsorption mode. CdS/black carbon nanocomposite introduced as new and high efficient system for removal of heavy metal ions. The as-synthesized products were characterized by powder X-ray diffraction, scanning electron microscopy, and spectra energy dispersive analysis of X-ray.

  2. On mechanism of low-energy heavy ions scattering on a target surface with small atomic mass

    CERN Document Server

    Umarov, F F; Kudryashova, L B; Krylov, N M

    2002-01-01

    In the present work, an experimental study of low-energy (E sub 0 =20-500 eV) heavy Cs sup + ions scattering on target surfaces with small atomic masses (Al, Si, Ni) has been performed for more accurate definition of mechanism of scattering and evaluation of an opportunity for use of heavy ions scattering as a tool of surface layer analysis. It is shown that the dependence of the relative energies of scattered ions versus the initial energy E/E sub 0 (E sub 0) for Si (E sub b =4.64 eV/atom) and Ni (E sub b =4.43 eV/atom) approximately coincide despite the fact that the mass of Ni atom is twice as large as that of the Si atom mass. At the same time their binding energies E sub b are approximately equal to each other. It is found that the scattering angles of Cs sup + ions considerably exceed a limiting scattering angle theta sub l sub i sub m in a single collision. It has been established that the scattering of low-energy heavy ions by light targets is described by a non-binary mechanism of many-particle inter...

  3. Pre-equilibrium emission of nucleons from reactions induced by medium-energy heavy ions

    International Nuclear Information System (INIS)

    Korolija, M.; Holuh, E.; Cindro, N.; Hilscher, D.

    1984-01-01

    Recent data on fast-nucleon emission in heavy-ion-induced reactions are analysed successfully in terms of pre-equilibrium models; it is shown that the relevant parameters of those models preserve the physical meaning they have in light-ion-induced reactions. The initial exciton number obtained from a Griffin-plot analysis and the initial number of degrees of freedom, which is the relevant parameter of the modified HMB model, appear to be approximately equal for a given reaction at a given energy. It is inferred that, for heavy-ion reactions, the determination of such a parameter is substantially dominated by the centre-of-mass energy per nucleon above the Coulomb barrier, in contrast with the results of nucleon-induced reactions

  4. Electroweak precision tests in high-energy diboson processes

    Science.gov (United States)

    Franceschini, Roberto; Panico, Giuliano; Pomarol, Alex; Riva, Francesco; Wulzer, Andrea

    2018-02-01

    A promising avenue to perform precision tests of the SM at the LHC is to measure differential cross-sections at high invariant mass, exploiting in this way the growth with the energy of the corrections induced by heavy new physics. We classify the leading growing-with-energy effects in longitudinal diboson and in associated Higgs production processes, showing that they can be encapsulated in four real "high-energy primary" parameters. We assess the reach on these parameters at the LHC and at future hadronic colliders, focusing in particular on the fully leptonic W Z channel that appears particularly promising. The reach is found to be superior to existing constraints by one order of magnitude, providing a test of the SM electroweak sector at the per-mille level, in competition with LEP bounds. Unlike LHC run-1 bounds, which only apply to new physics effects that are much larger than the SM in the high-energy tail of the distributions, the probe we study applies to a wider class of new physics scenarios where such large departures are not expected.

  5. Investigation of the energy-averaged double transition density of isoscalar monopole excitations in medium-heavy mass spherical nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Gorelik, M.L.; Shlomo, S. [National Research Nuclear University “MEPhI”, Moscow 115409 (Russian Federation); Cyclotron Institute, Texas A& M University, College Station, TX 77843 (United States); Tulupov, B.A. [National Research Nuclear University “MEPhI”, Moscow 115409 (Russian Federation); Institute for Nuclear Research, RAS, Moscow 117312 (Russian Federation); Urin, M.H., E-mail: urin@theor.mephi.ru [National Research Nuclear University “MEPhI”, Moscow 115409 (Russian Federation)

    2016-11-15

    The particle–hole dispersive optical model, developed recently, is applied to study properties of high-energy isoscalar monopole excitations in medium-heavy mass spherical nuclei. The energy-averaged strength functions of the isoscalar giant monopole resonance and its overtone in {sup 208}Pb are analyzed. In particular, we analyze the energy-averaged isoscalar monopole double transition density, the key quantity in the description of the hadron–nucleus inelastic scattering, and studied the validity of the factorization approximation using semi classical and microscopic one body transition densities, respectively, in calculating the cross sections for the excitation of isoscalar giant resonances by inelastic alpha scattering.

  6. Materials science symposium 'heavy ion science in tandem energy region'

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, Akira; Yoshida, Tadashi; Takeuchi, Suehiro [eds.

    2000-01-01

    The tandem accelerator established at Japan Atomic Energy Research Institute (JAERI) in 1982 has been one of the most prominent electrostatic accelerators in the world. The accelerator has been serving for many researches planned by not only JAERI staff but also researchers of universities and national institutes. After the completion of the tandem booster in 1993, four times higher beam energy became available. These two facilities, the tandem accelerator and the booster, made great strides in heavy ion physics and a lot of achievements have been accumulated until now. The research departments of JAERI were reformed in 1998, and the accelerators section came under the Department of Materials Science. On this reform of the research system, the symposium 'Heavy Ion Science in Tandem Energy Region' was held in cooperation with nuclear and solid state physicists although there has been no such symposium for many years. The symposium was expected to stimulate novel development in both nuclear and solid state physics, and also interdisciplinary physics between nuclear and solid state physics. The 68 papers are indexed individually. (J.P.N.)

  7. Atomic collision studies at moderate projectile velocities using highly charged, decelerated heavy ions from the GSI-UNILAC

    International Nuclear Information System (INIS)

    Mokler, P.H.; Hoffmann, D.H.H.; Schoenfeldt, W.A.; Maor, D.

    1984-01-01

    Beams of highly ionized, very heavy atoms at moderate velocities have been produced at the UNILAC using the acceleration-stripping-deceleration method. The available ion species range from Kr 33+ to U 66+ in the energy region between 2 and 5 MeV/u. A survey on first experiments at GSI using these moderate velocity, few electron, heavy ion beams is given. The effectiveness of the method is demonstrated for Xesup(q+)-Xe collision experiments with 41 <= q <= 45. Results on vacancy transfer between inner quasimolecular levels for close collisions, and on distant collision electron capture are reported. (orig.)

  8. A highly efficient and selective polysilsesquioxane sorbent for heavy metal removal

    KAUST Repository

    Duan, Xiaonan; Qi, Genggeng; Wang, Peng; Giannelis, Emmanuel P.

    2012-01-01

    Suited for heavy stuff: An efficient mesoporous sorbent based on a pure ethylendiamine-bridged polysilsesquioxane is presented. This material, with both a high amine loading and a high surface area, is applied for heavy metal ion removal. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A highly efficient and selective polysilsesquioxane sorbent for heavy metal removal

    KAUST Repository

    Duan, Xiaonan

    2012-02-29

    Suited for heavy stuff: An efficient mesoporous sorbent based on a pure ethylendiamine-bridged polysilsesquioxane is presented. This material, with both a high amine loading and a high surface area, is applied for heavy metal ion removal. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Status of the RHIC and BNL/CERN heavy ion programs

    International Nuclear Information System (INIS)

    Ozaki, S.

    1993-01-01

    With the gold beam operation at the Brookhaven AGS started in 1992, and with the lead beam operation at the CERN SPS planned for 1994--1995, investigation of high nucleon density states through high energy heavy ion collisions is becoming a reality. In addition, the Relativistic Heavy Ion Collider (RHIC) at BNL, which is dedicated to the study of ultra-high energy heavy ion collisions, is under construction with a target completion date in 1997. There also is a plan to run the proposed CERN LHC for a few months a year for the heavy ion program. These colliders should provide opportunities to extend our knowledge of nuclear matter to the extraordinary states of extreme high temperature and high density, thus opening the way to the creation and study of quark-gluon plasma. The lattice gauge calculation based on the theory of strong interactions (QCD) predicts that, at such states, quarks and gluons are deconfined from individual nucleons and form a hot plasma. In this paper, the status of heavy ion stationary target programs at the BNL AGS and the CERN SPS, the progress of RHIC construction, and heavy ion research potential at LHC will be presented. The status of the CERN LHC will be covered elsewhere in these Proceedings

  11. HISTRAP proposal: heavy-ion storage ring for atomic physics

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, D K; Alton, G D; Datz, S; Dittner, P F; Dowling, D T; Haynes, D L; Hudson, E D; Johnson, J W; Lee, I Y; Lord, R S

    1987-04-01

    HISTRAP, Heavy-Ion Storage Ring for Atomic Physics, is a proposed 46.8-m-circumference synchrotron-cooling-storage ring optimized to accelerate, decelerate, and store beams of highly charge very-heavy ions at energies appropriate for advanced atomic physics research. The ring is designed to allow studies of electron-ion, photon-ion, ion-atom, and ion-ion interactions. An electron cooling system will provide ion beams with small angular divergence and energy spread for precision spectroscopic studies and also is necessary to allow the deceleration of heavy ions to low energies. HISTRAP will have a maximum bending power of 2.0 T m and will be injected with ions from either the existing Holifield Heavy Ion Research Facility 25-MV tandem accelerator or from a dedicated ECR source and 250 keV/nucleon RFQ linac.

  12. Origin of a maximum of the astrophysical S factor in heavy-ion fusion reactions at deep subbarrier energies

    Science.gov (United States)

    Hagino, K.; Balantekin, A. B.; Lwin, N. W.; Thein, Ei Shwe Zin

    2018-03-01

    The hindrance phenomenon of heavy-ion fusion cross sections at deep subbarrier energies often accompanies a maximum of an astrophysical S factor at a threshold energy for fusion hindrance. We argue that this phenomenon can naturally be explained when the fusion excitation function is fitted with two potentials, with a larger (smaller) logarithmic slope at energies lower (higher) than the threshold energy. This analysis clearly suggests that the astrophysical S factor provides a convenient tool to analyze the deep subbarrier hindrance phenomenon, even though the S factor may have a strong energy dependence for heavy-ion systems unlike that for astrophysical reactions.

  13. Inertial fusion with heavy ion beams

    International Nuclear Information System (INIS)

    Bock, R.; Hofmann, I.; Arnold, R.

    1984-01-01

    The underlying principle of inertial confinement is the irradiation of a small pellet filled with DT-fuel by laser or particle beams in order to compress the fuel and ignite it. As 'drivers' for this process large laser installations and light-ion devices have been built since then and the results obtained during the past few years have increased our confidence, that the ignition conditions might be reached. Further conditions, however, have to be fulfilled for operating a power plant. In particular, the driver needs to have enough efficiency to be economical, and for a continuous energy production a high repetition rate and availability is required. It is less than ten years since it was realized that heavy ion beams might be a promising candidate for achieving inertial confinement fusion (ICF). Due to the evolution of high-energy and heavy-ion physics during the past 25 years, accelerators have attained a high technical and technological standard and an excellent operational reliability. Nevertheless, the heavy ion driver for a fusion power plant requires beam specifications exceeding those of existing accelerators considerably. (Auth.)

  14. Computing trends using graphic processor in high energy physics

    CERN Document Server

    Niculescu, Mihai

    2011-01-01

    One of the main challenges in Heavy Energy Physics is to make fast analysis of high amount of experimental and simulated data. At LHC-CERN one p-p event is approximate 1 Mb in size. The time taken to analyze the data and obtain fast results depends on high computational power. The main advantage of using GPU(Graphic Processor Unit) programming over traditional CPU one is that graphical cards bring a lot of computing power at a very low price. Today a huge number of application(scientific, financial etc) began to be ported or developed for GPU, including Monte Carlo tools or data analysis tools for High Energy Physics. In this paper, we'll present current status and trends in HEP using GPU.

  15. The search for charm, beauty, and truth at high energies. Vol. 16

    International Nuclear Information System (INIS)

    Bellini, G.; Ting, S.C.C.

    1984-01-01

    This book examines present experimental knowledge on branching ratios, lifetimes, cross sections, and production mechanisms of charm and heavy flavors. The bases of the theoretical ideas and predictions, and such experimental methods as triggers, techniques, and devices are discussed. Topics covered include the search for charm and beauty with e + e - beams, the search for charm and beauty at Fermilab, the search for charm with bubble chambers, the use of visual detectors in the search for charm and other flavors, lifetime measurements, live targets for lifetime measurements, production cross sections of charm and new flavors, high resolution vertex detectors to search for charm and other flavors, the search for heavy flavors, and special triggers to search for charm and heavy flavors. The contributors participated in the Europhysics Study Conference on High-Energy Physics held in Italy in 1981

  16. FY07 LDRD Final Report Heavy Quark Jet Tomography

    International Nuclear Information System (INIS)

    Soltz, R.; Newby, J.; Glenn, A.; Klay, J.

    2008-01-01

    We propose and develop a new signature, the measurement of hadron-electron correlations to measure energy loss of heavy quarks in the quark-gluon plasma. This measurements will be used in future analyses to quantify the energy densities created in collisions of heavy ions at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Lab and the Large Hadron Collider (LHC) at CERN. In addition we develop and implement a computing model that will leverage LLNL expertise in cost-effective high performance computing to perform data analyses and simulations for the ALICE experiment at CERN

  17. A silicon strip detector array for energy verification and quality assurance in heavy ion therapy.

    Science.gov (United States)

    Debrot, Emily; Newall, Matthew; Guatelli, Susanna; Petasecca, Marco; Matsufuji, Naruhiro; Rosenfeld, Anatoly B

    2018-02-01

    The measurement of depth dose profiles for range and energy verification of heavy ion beams is an important aspect of quality assurance procedures for heavy ion therapy facilities. The steep dose gradients in the Bragg peak region of these profiles require the use of detectors with high spatial resolution. The aim of this work is to characterize a one dimensional monolithic silicon detector array called the "serial Dose Magnifying Glass" (sDMG) as an independent ion beam energy and range verification system used for quality assurance conducted for ion beams used in heavy ion therapy. The sDMG detector consists of two linear arrays of 128 silicon sensitive volumes each with an effective size of 2mm × 50μm × 100μm fabricated on a p-type substrate at a pitch of 200 μm along a single axis of detection. The detector was characterized for beam energy and range verification by measuring the response of the detector when irradiated with a 290 MeV/u 12 C ion broad beam incident along the single axis of the detector embedded in a PMMA phantom. The energy of the 12 C ion beam incident on the detector and the residual energy of an ion beam incident on the phantom was determined from the measured Bragg peak position in the sDMG. Ad hoc Monte Carlo simulations of the experimental setup were also performed to give further insight into the detector response. The relative response profiles along the single axis measured with the sDMG detector were found to have good agreement between experiment and simulation with the position of the Bragg peak determined to fall within 0.2 mm or 1.1% of the range in the detector for the two cases. The energy of the beam incident on the detector was found to vary less than 1% between experiment and simulation. The beam energy incident on the phantom was determined to be (280.9 ± 0.8) MeV/u from the experimental and (280.9 ± 0.2) MeV/u from the simulated profiles. These values coincide with the expected energy of 281 MeV/u. The sDMG detector

  18. Particle accelerator physics and technology for high energy density physics research

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, D.H.H.; Blazevic, A.; Rosmej, O.N.; Spiller, P.; Tahir, N.A.; Weyrich, K. [Gesellschaft fur Schwerionenforschung, GSI-Darmstadt, Plasmaphysik, Darmstadt (Germany); Hoffmann, D.H.H.; Dafni, T.; Kuster, M.; Ni, P.; Roth, M.; Udrea, S.; Varentsov, D. [Darmstadt Univ., Institut fur Kernphysik, Technische Schlobgartenstr. 9 (Germany); Jacoby, J. [Frankfurt Univ., Institut fur Angewandte Physik (Germany); Kain, V.; Schmidt, R.; Zioutas, K. [European Organization for Nuclear Research (CERN), Geneve (Switzerland); Zioutas, K. [Patras Univ., Dept. of Physics (Greece); Mintsev, V.; Fortov, V.E. [Russian Academy of Sciences, Institute of Problems of Chemical Physics, Chernogolovka (Russian Federation); Sharkov, B.Y. [Institut for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation)

    2007-08-15

    Interaction phenomena of intense ion- and laser radiation with matter have a large range of application in different fields of science, extending from basic research of plasma properties to applications in energy science, especially in inertial fusion. The heavy ion synchrotron at GSI now routinely delivers intense uranium beams that deposit about 1 kJ/g of specific energy in solid matter, e.g. solid lead. Our simulations show that the new accelerator complex FAIR (Facility for Antiproton and Ion Research) at GSI as well as beams from the CERN large hadron collider (LHC) will vastly extend the accessible parameter range for high energy density states. A natural example of hot dense plasma is provided by our neighbouring star the sun, and allows a deep insight into the physics of fusion, the properties of matter at high energy density, and is moreover an excellent laboratory for astro-particle physics. As such the sun's interior plasma can even be used to probe the existence of novel particles and dark matter candidates. We present an overview on recent results and developments of dense plasma physics addressed with heavy ion and laser beams combined with accelerator- and nuclear physics technology. (authors)

  19. TOF for heavy stable particle identification

    International Nuclear Information System (INIS)

    Chang, C.Y.

    1983-01-01

    Searching for heavy stable particle production in a new energy region of hadron-hadron collisions is of fundamental theoretical interest. Observation of such particles produced in high energy collisions would indicate the existence of stable heavy leptons or any massive hadronic system carrying new quantum numbers. Experimentally, evidence of its production has not been found for PP collisions either at FNAL or at the CERN ISR for √S = 23 and 62 GeV respectively. However, many theories beyond the standard model do predict its existence on a mass scale ranging from 50 to a few hundred GeV. If so, it would make a high luminosity TeV collider an extremely ideal hunting ground for searching the production of such a speculated object. To measure the mass of a heavy stable charged particle, one usually uses its time of flight (TOF) and/or dE/dX information. For heavy neutral particle, one hopes it may decay at some later time after its production. Hence a pair of jets or a jet associated with a high P/sub t/ muon originated from some places other than the interacting point (IP) of the colliding beams may be a good signal. In this note, we examine the feasibility of TOF measurement on a heavy stable particle produced in PP collisions at √S = 1 TeV and a luminosity of 10 33 cm -2 sec -1 with a single arm spectrometer pointing to the IP

  20. High-energy beams of radioactive nuclei and their biomedical applications

    International Nuclear Information System (INIS)

    Alpen, E.L.; Chatterjee, A.; Llacer, J.

    1981-01-01

    Several exploratory measurements have been conducted with radioactive beams to test the feasibility of using these beams to measure effective stopping power of heterogeneous media for heavy charged particles. Such measurements will provide direct information on the average electron density and average stopping number of a target with an unknown heterogeneous beam path. This information, once obtained with a suitable radioactive beam, can be used in equations to calculate the energy of any heavy particle of therapeutic choice so that the Bragg peak of the therapeutic beam can be placed on the tumor volume. A beam of high-energy heavy ions was collimated to a diameter of 1.58 cm (PEBA has a good positional accuracy as long as the beam diameter is less than 2 cm), and made to enter target materials (mixed or homogeneous) positioned between the detector banks and centered along the beam axis. Measurements have been made with 11 C and 19 Ne beams, but the short half-life of 19 Ne (19 sec) allows prompt repeated measurements, making that nucleus very interesting for these purposes. Only the results obtained with it are reported

  1. Future Perspectives for the Application of Low Temperature Detectors in Heavy Ion Physics

    International Nuclear Information System (INIS)

    Egelhof, P.; Kraft-Bermuth, S.

    2009-01-01

    Calorimetric low temperature detectors have the potential to become powerful tools for applications in many fields of heavy ion physics. A brief overview of heavy ion physics is given, and the next generation heavy ion facility FAIR is described with a special emphasis on the potential advantage of Low Temperature Detectors (LTDs) for applications in heavy ion physics. For prototype LTDs for the energy sensitive detection of heavy ions excellent results with respect to energy resolution down to δE/E = 1-2x10 -3 for a wide range of incident energies, and with respect to other detector properties, such as energy linearity with no indication of pulse height defects even for the heaviest ions, have been obtained. In addition, prototype detectors for hard X-rays have shown energy resolutions down to δE = 30-40eV at 60 keV. Consequently, both detector schemes have already been successfully used for first experiments. At present, the design and setup of large solid angle detector arrays is in progress. With the already achieved performance, LTDs promise a large potential for applications in atomic and nuclear heavy ion physics. A brief overview of prominent examples, including high-resolution nuclear spectroscopy, nuclear structure studies with radioactive beams, superheavy element research, as well as high-resolution atomic spectroscopy on highly charged ions and tests of QED in strong electromagnetic fields is presented.

  2. In-medium and isospin effects on eta production in heavy-ion collisions near threshold energies

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jie; Chen, Peng-Hui [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); University of Chinese Academy of Sciences, Beijing (China); Feng, Zhao-Qing; Wang, Jian-Song [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); Niu, Fei [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); Henan Normal University, Institute of Particle and Nuclear Physics, Xinxiang (China); Guo, Ya-Fei [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); Lanzhou University, School of Nuclear Science and Technology, Lanzhou (China)

    2017-06-15

    The dynamics of η meson produced in heavy-ion collisions has been investigated within the Lanzhou quantum molecular dynamics model (LQMD). The in-medium corrections have been considered in the model, in which an attractive η-nucleon potential is implemented. The impacts of the η optical potential and the nuclear symmetry energy on the η dynamics are investigated. It is found that the total yields are slightly influenced by the potential and weakly depend on the symmetry energy. However, the structure of the kinetic spectra is related to the optical potential and the stiffness of symmetry energy. The attractive potential leads to the reduction of high-momentum (kinetic energy) η production, i.e., the spectra of momentum and transverse mass distributions, increasing the reabsorption process by surrounding nucleons, and favoring the in-plane eta emissions. The reabsorption process in η-nucleon collisions plays a significant role on the η dynamics. (orig.)

  3. Elementary particle physics and high energy phenomena. Progress report for FY93

    Energy Technology Data Exchange (ETDEWEB)

    Barker, A.R.; Cumalat, J.P.; De Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    Experimental and theoretical high-energy physics programs at the University of Colorado are reported. Areas of concentration include the following: study of the properties of the Z{sup 0} with the SLD detector; fixed-target K-decay experiments; the R&D program for the muon system: the SDC detector; high-energy photoproduction of states containing heavy quarks; electron--positron physics with the CLEO II detector at CESR; lattice QCD; and spin models and dynamically triangulated random surfaces. 24 figs., 2 tabs., 117 refs.

  4. Heavy Ion Physics at LHC

    CERN Document Server

    Valenti, G.

    2002-01-01

    The study of heavy ion interactions constitutes an important part of the experimental program outlined for the Large Hadron Collider under construction at CERN and expected to be operational by 2006. ALICE 1 is the single detector having the capabilities to explore at the same time most of the characteristics of high energy heavy ion interactions. Specific studies of jet quenching and quarkonia production, essentially related to µ detection are also planned by CMS 2 .

  5. Heavy leptons at hadron colliders

    International Nuclear Information System (INIS)

    Ohnemus, J.E.

    1987-01-01

    The recent advent of high energy hadron colliders capable of producing weak bosons has opened new vistas for particle physics research, including the search for a possible fourth generation heavy charged lepton, which is the primary topic of the thesis. Signals for identifying a new heavy lepton have been calculated and compared to Standard Model backgrounds. Results are presented for signals at the CERN collider, the Fermilab collider, and the proposed Superconducting Supercollider

  6. Multifragmentation in intermediate energy 129Xe-induced heavy-ion reactions

    International Nuclear Information System (INIS)

    Tso, Kin.

    1996-05-01

    The 129 Xe-induced reactions on nat Cu, 89 Y, 165 Ho, and 197 Au at bombarding energies of E/A = 40 ampersand 60 MeV have been studied theoretically and experimentally in order to establish the underlying mechanism of multifragmentation at intermediate energy heavy-Ion collisions. Nuclear disks formed in central heavy-ion collisions, as simulated by means of Boltzmann-like kinetic equations, break up into several fragments due to a new kind of Rayleigh-like surface instability. A sheet of liquid, stable in the limit of non-interacting surfaces, is shown to become unstable due to surface-surface interactions. The onset of this instability is determined analytically. A thin bubble behaves like a sheet and is susceptible to the surface instability through the crispation mode. The Coulomb effects associated with the depletion of charges in the central cavity of nuclear bubbles are investigated. The onset of Coulomb instability is demonstrated for perturbations of the radial mode. Experimental intermediate-mass-fragment multiplicity distributions for the 129 Xe-induced reactions are shown to be binomial at each transverse energy. From these distributions, independent of the specific target, an elementary binary decay probability p can be extracted that has a thermal dependence. Thus it is inferred that multifragmentation is reducible to a combination of nearly independent emission processes. If sequential decay is assumed, the increase of p with transverse energy implies a contraction of the emission time scale. The sensitivity of p to the lower Z threshold in the definition of intermediate-mass-fragments points to a physical Poisson simulations of the particle multiplicities show that the weak auto-correlation between the fragment multiplicity and the transverse energy does not distort a Poisson distribution into a binomial distribution. The effect of device efficiency on the experimental results has also been studied

  7. Linear Energy Transfer-Dependent Change in Rice Gene Expression Profile after Heavy-Ion Beam Irradiation.

    Science.gov (United States)

    Ishii, Kotaro; Kazama, Yusuke; Morita, Ryouhei; Hirano, Tomonari; Ikeda, Tokihiro; Usuda, Sachiko; Hayashi, Yoriko; Ohbu, Sumie; Motoyama, Ritsuko; Nagamura, Yoshiaki; Abe, Tomoko

    2016-01-01

    A heavy-ion beam has been recognized as an effective mutagen for plant breeding and applied to the many kinds of crops including rice. In contrast with X-ray or γ-ray, the heavy-ion beam is characterized by a high linear energy transfer (LET). LET is an important factor affecting several aspects of the irradiation effect, e.g. cell survival and mutation frequency, making the heavy-ion beam an effective mutagen. To study the mechanisms behind LET-dependent effects, expression profiling was performed after heavy-ion beam irradiation of imbibed rice seeds. Array-based experiments at three time points (0.5, 1, 2 h after the irradiation) revealed that the number of up- or down-regulated genes was highest 2 h after irradiation. Array-based experiments with four different LETs at 2 h after irradiation identified LET-independent regulated genes that were up/down-regulated regardless of the value of LET; LET-dependent regulated genes, whose expression level increased with the rise of LET value, were also identified. Gene ontology (GO) analysis of LET-independent up-regulated genes showed that some GO terms were commonly enriched, both 2 hours and 3 weeks after irradiation. GO terms enriched in LET-dependent regulated genes implied that some factor regulates genes that have kinase activity or DNA-binding activity in cooperation with the ATM gene. Of the LET-dependent up-regulated genes, OsPARP3 and OsPCNA were identified, which are involved in DNA repair pathways. This indicates that the Ku-independent alternative non-homologous end-joining pathway may contribute to repairing complex DNA legions induced by high-LET irradiation. These findings may clarify various LET-dependent responses in rice.

  8. Heavy Ion Physics at CMS

    CERN Document Server

    Veres, Gabor

    2017-01-01

    In the present proceedings recent heavy ion results from the Compact Muon Solenoid collaboration at the LHC are presented. These contain comparisons between small and large collision systems, as well as studies of energy evolution, thus include data collected in proton-proton collisions at 13 TeV (2015 and 2016), proton-proton and lead-lead collisions at 5 TeV (2015), and proton-lead collisions at 5 TeV and 8 TeV (2016) center-of-mass energy per nucleon pair. They provide new insights into the properties of the extremely high density and high temperature matter created in heavy ion collisions, while pointing out similarities and differences in comparison to smaller collision systems. These include gluon distribution functions in the lead nucleus; the azimuthal anisotropy of final state particle distributions in all the three different collision systems; charge separation signals from proton-lead collisions and consequences for the Chiral Magnetic Effect; new studies of parton energy loss and its dependence on...

  9. Overview on heavy flavour measurements in lead-lead collisions at the CERN-LHC

    CERN Document Server

    Mischke, Andre

    2013-01-01

    High energy collisions of heavy atomic nuclei allow to create and carefully study a high-density, colour-deconfined state of strongly-interacting matter. According to calculations from lattice Quantum-Chromodynamics, under the conditions of high energy density and temperature reached in such collisions, the phase transition to a quark-gluon plasma (QGP) is expected to occur, where the colour confinement of quarks and gluons into hadrons should vanish and chiral symmetry should be restored. Heavy-flavour particles, containing charm and beauty, are unique probes of the conditions of the medium formed in nucleus-nucleus collisions at high energy. In this report recent measurements on open and hidden heavy-flavour production in lead-lead collisions at CERN's Large Hadron Collider are presented and discussed.

  10. Evolution of direct mechanisms with incident energy from the Coulomb-barrier to relativistic energies. - Two-center effects in nucleon transfer between nuclei. - Signatures of nucleon promotion in heavy ion reactions at barrier energies

    International Nuclear Information System (INIS)

    Oertzen, W. von; Voit, H.; Imanishi, B.

    1988-10-01

    This report contains a review article considering the evolution of direct mechanisms with incident energy in heavy ion reactions and two theoretical articles concerning two-center effects in transfer reactions between heavy ions and the nucleon promotion in heavy ion reactions. See hints under the relevant topics. (HSI)

  11. Measurement of energy deposition near heavy ion tracks

    International Nuclear Information System (INIS)

    Metting, N.F.; Brady, L.A.; Rossi, H.H.; Kliauga, P.J.; Howard, J.; Wong, M.; Schimmerling, W.; Rapkin, M.

    1985-01-01

    In November of 1982 work was begun in collaboration with Columbia University and Lawrence Berkeley Laboratory to use microdosimetric methods to measure energy deposition of heavy ions produced at LBL's Bevalac Biomedical Facility. Last year the authors reported preliminary results indicating that secondary charged particle equilibrium was probably obtained using this experimental setup, but that there seemed to be poor spatial resolution in the solid state position-sensitive detector. Further analysis of the measurements taken in August 1983 shows that because of this electronic noise in the position-sensitive detector, only the 56 Fe data yielded useful microdosimetric spectra

  12. Investigations in atomic physics by heavy ion projectiles

    International Nuclear Information System (INIS)

    Berenyi, D.

    1983-01-01

    Investigations in atomic physics by high-energy heavy ions are discussed. The main attention is paid to collision mechanisms (direct Coulomb interaction, quasi-molecular collision mechanism and other models) and the structure of highly ionized and excited atoms. Some problems of fundamental issues (Lamb shift of H-like heavy ions, the superheavy quasi-atoms and the position production in supercritical fields) are conside-- red in detail

  13. Beam loss studies in high-intensity heavy-ion linacs

    International Nuclear Information System (INIS)

    Ostroumov, P.N.; Aseev, V.N.; Lessner, E.S.; Mustapha, B.

    2004-01-01

    A low beam-loss budget is an essential requirement for high-intensity machines and represents one of their major design challenges. In a high-intensity heavy-ion machine, losses are required to be below 1 W/m for hands-on-maintenance. The driver linac of the Rare Isotope Accelerator (RIA) is designed to accelerate beams of any ion to energies from 400 MeV per nucleon for uranium up to 950 MeV for protons with a beam power of up to 400 kW. The high intensity of the heaviest ions is achieved by acceleration of multiple-charge-state beams, which requires a careful beam dynamics optimization to minimize effective emittance growth and beam halo formation. For beam loss simulation purposes, large number of particles must be tracked through the linac. Therefore the computer code TRACK has been parallelized and calculations are being performed on the JAZZ cluster recently inaugurated at ANL. This paper discusses how this powerful tool is being used for simulations for the RIA project to help decide on the high-performance and cost-effective design of the driver linac

  14. Highly ordered three-dimensional macroporous carbon spheres for determination of heavy metal ions

    International Nuclear Information System (INIS)

    Zhang, Yuxiao; Zhang, Jianming; Liu, Yang; Huang, Hui; Kang, Zhenhui

    2012-01-01

    Highlights: ► Highly ordered three dimensional macroporous carbon spheres (MPCSs) were prepared. ► MPCS was covalently modified by cysteine (MPCS–CO–Cys). ► MPCS–CO–Cys was first time used in electrochemical detection of heavy metal ions. ► Heavy metal ions such as Pb 2+ and Cd 2+ can be simultaneously determined. -- Abstract: An effective voltammetric method for detection of trace heavy metal ions using chemically modified highly ordered three dimensional macroporous carbon spheres electrode surfaces is described. The highly ordered three dimensional macroporous carbon spheres were prepared by carbonization of glucose in silica crystal bead template, followed by removal of the template. The highly ordered three dimensional macroporous carbon spheres were covalently modified by cysteine, an amino acid with high affinities towards some heavy metals. The materials were characterized by physical adsorption of nitrogen, scanning electron microscopy, and transmission electron microscopy techniques. While the Fourier-transform infrared spectroscopy was used to characterize the functional groups on the surface of carbon spheres. High sensitivity was exhibited when this material was used in electrochemical detection (square wave anodic stripping voltammetry) of heavy metal ions due to the porous structure. And the potential application for simultaneous detection of heavy metal ions was also investigated.

  15. Kinetic energy and charge distributions of multiply charged ions produced by heavy ions and by synchrotron radiation

    International Nuclear Information System (INIS)

    Levin, J.C.; Biedermann, C.; Cederquist, H.; Liljeby, L.; Short, R.T.; Sellin, I.A.

    1989-01-01

    This paper contrasts two methods of production of multiply charged ions which may have application in future hot-atom chemistry experiments. Interest in extending the study of ion-atom collisions from MeV to keV to eV energies has grown rapidly in the last decade as previously inaccessible astrophysical, fusion, and spectroscopic problems have been addressed. One of these methods involves highly charged secondary beams formed from ions created in dilute gas samples irradiated by fast (MeV), high-charge-state, heavy ions. The measurements show, however, that such ions often have mean recoil energies two orders of magnitude higher than kinetic energies of ions in similar charge states resulting from vacancy cascades of atomic inner shells photoionized by synchrotron x rays. These results may be applicable to development of a cold source of highly charged ions featuring low energy spread and good angular definition. Results from other laboratories (Grandin et al at Ganil, Ullrich et al in Frankfurt, and Watson et al at Texas A ampersand M) will also be discussed

  16. The heavy ion therapy project at GSI

    International Nuclear Information System (INIS)

    Kraft, G.; Becher, W.; Blasche, K.; Boehne, D.; Fischer, B.; Geissel, H.; Haberer, T.; Klabunde, J.; Kraft-Weyrather, W.; Langenbeck, G.; Muenzenberg, G.; Ritter, S.; Roesch, W.; Schardt, D.; Stelzer, H.; Schwab, T.; Gademann, G.

    1991-03-01

    The use of heavy charged particles in radiotherapy has two major advantages: Firstly, particle beams exhibit a superior dose distribution because of reduced lateral scattering, the finite range of the particles and the increased dose deposition towards the end of the particle track. Secondly, heavy ions exhibit an increased biological efficiency in the region of the increased energy deposition. This diminishes the differences in the radio response between well oxygenated and hypoxic cells as well as differences between fast and slowly proliferating cells. In addition, with high values for relative biological efficiencies, the repair capacity of cells in the tumor are selectively reduced. Both effects, the high energy deposition and the increased RBE values at the end of the particle tracks, are due to the different interaction mechanism of heavy ions with the target material and open a new field of precision and efficiency in radiotherapy. (orig.)

  17. I. Exchange currents in electron scattering from light nuclei. II. Heavy-ion scattering at intermediate and high energy

    International Nuclear Information System (INIS)

    Dubach, J.F.

    1976-01-01

    The purpose of this work is to develop a formalism that will allow one to search the wide variety of transitions presented by nuclei in order to locate situations in which the exchange-current effects are important or dominant and thus allow one to study the contributions of the meson exchanges to the electromagnetic densities within the nucleus. The nuclei studied are assumed to be described in a shell model using harmonic oscillator wave functions. The formalism needed to allow one to do a multipole analysis of these exchange currents within 1s and 1p nuclei is developed. This formalism is then applied to an examination of electron scattering from a series of light nuclei: 3 He, 6 Li, 7 Li, 9 Be, and 10 B. Three significant effects due to the inclusion of exchange currents are seen: (1) The exchange currents can often introduce new structure into the form factors. (2) At larger momentum transfer (700 to 1000 MeV/c) the exchange current contributions to the form factor dominate the simpler one-body form factor by a few orders of magnitude. (3) The exchange currents can excite E4 and M5 multipoles in the p shell which are forbidden to the simpler one-body currents. The elastic scattering of two heavy ions at intermediate and high energies (compared to the Coulomb barrier) is examined in the formalism of the WKB and ''Glauber theory'' approximations. As a concrete example, the scattering of 16 O from 60 Ni is studied assuming an optical-model potential that fits elastic scattering data at low energies. One immediate result is that the WKB approximation agrees quite well with ''exact'' numerical calculations at energies as low as 60 MeV. The Glauber theory fails below about 1 GeV but correction terms are developed that can extend the usefulness of the Glauber theory to much lower energies. The model problem of scattering from a black-sphere model of the nucleus is briefly examined

  18. The steering and manipulation of ion beams for low-energy heavy ion accelerators

    International Nuclear Information System (INIS)

    Beanland, D.G.; Freeman, J.H.

    1976-01-01

    Both electrostatic and magnetic fields are used in low-energy accelerators. Electrostatic fields are essential in the acceleration stages and they are commonly used for ion beam scanning and focussing. Magnetic fields are only infrequently used as lenses, but they are essential for mass analysis and are sometimes employed for beam steering. The electrostatic mirror is a versatile and compact lens which has hitherto received little attention for the controlled manipulation of heavy ions. In addition to energy analysis it can be used to steer, focus and scan such beams and its flexibility and usefulness can be further increased by shaping the electrostatic field in the mirror space. The use of a computer programme to model the focussing behaviour of a variety of lens shapes is described and it is shown that the focal properties of the mirror can be controlled to produce a parallel, convergent or divergent output beam. The use of mirrors for two-dimensional beam focusing is also outlined. To permit the use of the mirror system with heavy ions an apertured front plate, without field-defining gauzes, was utilized. In consequence an additional electrode was incorporated in the lens structure to prevent penetration of the positive electric field along the beam axes outside the mirror space. This factor and the compact design of the mirror, contributed to the minimisation of space-charge defocussing effects which normally militate against the use of such electrostatic lenses with high intensity ion beams. The results of experiments confirming the computer predictions are briefly described and, in conclusion some possible applications of electrostatic mirrors in electromagnetic isotope separators and low energy accelerators are outlined. (Auth.)

  19. Principles of heavy oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Szasz, S.E.; Thomas, G.W.

    1965-10-01

    Rising exploration costs have prompted greater interest in the large known deposits of heavy oil in North America. Because of high oil viscosities in such reservoirs, recoveries are poor, fluid drives are inefficient and production rates are uneconomical. Viscosity reduction can best be accomplished by heating the reservoir. The basic aspects of reservoir heating are reviewed and those processes which are of practical importance in heavy oil reservoirs are discussed. Wellbore heating frequently can be applied to heavy oil reservoirs to increase production rates. In hot waterflooding, the water requirements are much higher than an ordinary waterflood. Steam floods are more attractive, but operating costs are generally high. Conduction heating processes appear most promising. Among these is included the cyclic steam-soak process. A simple method is presented for estimating the performance from the first cycle of steam injection into the formation, assuming gravity as the only driving energy. An example calculation for a typical heavy oil reservoir is given. (26 refs.)

  20. Studies of high energy phenomena using muons: Progress report, January 1987-February 1988

    International Nuclear Information System (INIS)

    Hedin, D.; Kaplan, D.

    1988-01-01

    This paper discusses the use of muons for detection systems in high energy physics experiments. Discussed are DO detectors, muon data acquisition and electronics, muon software, heavy quark physics, chamber fabrication and superconductor super collider related work. 11 refs

  1. PREFACE: High Energy Particle Physics Workshop (HEPPW2015)

    Science.gov (United States)

    Cornell, Alan S.; Mellado, B.

    2015-10-01

    The motivation for this workshop began with the discovery of the Higgs boson three years ago, and the realisation that many problems remain in particle physics, such as why there is more matter than anti-matter, better determining the still poorly measured parameters of the strong force, explaining possible sources for dark matter, naturalness etc. While the newly discovered Higgs boson seems to be compatible with the Standard Model, current experimental accuracy is far from providing a definitive statement with regards to the nature of this new particle. There is a lot of room for physics beyond the Standard Model to emerge in the exploration of the Higgs boson. Recent measurements in high-energy heavy ion collisions at the LHC have shed light on the complex dynamics that govern high-density quark-gluon interactions. An array of results from the ALICE collaboration have been highlighted in a recent issue of CERN courier. The physics program of high-energy heavy ion collisions promises to further unveil the intricacies of high-density quark-gluon plasma physics. The great topicality of high energy physics research has also seen a rapid increase in the number of researchers in South Africa pursuing such studies, both experimentally through the ATLAS and ALICE colliders at CERN, and theoretically. Young researchers and graduate students largely populate these research groups, with little experience in presenting their work, and few support structures (to their knowledge) to share experiences with. Whilst many schools and workshops have sought to educate these students on the theories and tools they will need to pursue their research, few have provided them with a platform to present their work. As such, this workshop discussed the various projects being pursued by graduate students and young researchers in South Africa, enabling them to develop networks for future collaboration and discussion. The workshop took place at the iThemba Laboratories - North facility, in

  2. Brookhaven four-stage accel-decel production of low-energy highly stripped heavy ions

    International Nuclear Information System (INIS)

    Barrette, J.; Thieberger, P.

    1981-01-01

    The dual MP tandem facility at Brookhaven has been used in a four-stage accel-decel mode to produce highly stripped S ion beams (Q = 10-16 + ). Fully stripped S ions were obtained at energies down to 8 MeV. The low energy limit is presently due to the inclined field configuration of the last acceleration tube

  3. The effect of heavy water reactors and liquid fuel reactors on the long-term development of nuclear energy

    International Nuclear Information System (INIS)

    Brand, P.; Wiechers, W.K.

    1974-01-01

    The effects of the rates at which various combinations of power reactor types are installed on the long-range (to the year 2040) uranium and plutonium inventory requirements are examined. Consideration is given to light water reactors, fast breeder reactors, high temperature gas-cooled reactors, heavy water reactors, and thermal breeder reactors, in various combinations, and assuming alternatively a 3% and a 5% growth in energy demand

  4. High Accuracy, High Energy He-Erd Analysis of H,C, and T

    International Nuclear Information System (INIS)

    Browning, James F.; Langley, Robert A.; Doyle, Barney L.; Banks, James C.; Wampler, William R.

    1999-01-01

    A new analysis technique using high-energy helium ions for the simultaneous elastic recoil detection of all three hydrogen isotopes in metal hydride systems extending to depths of several microm's is presented. Analysis shows that it is possible to separate each hydrogen isotope in a heavy matrix such as erbium to depths of 5 microm using incident 11.48MeV 4 He 2 ions with a detection system composed of a range foil and ΔE-E telescope detector. Newly measured cross sections for the elastic recoil scattering of 4 He 2 ions from protons and deuterons are presented in the energy range 10 to 11.75 MeV for the laboratory recoil angle of 30degree

  5. 6th CERN - Latin-American School of High-Energy Physics

    CERN Document Server

    Mulders, M; Spiropulu, M; CLASHEP 2011; CLASHEP2011

    2013-01-01

    The CERN–Latin-American School of High-Energy Physics is intended to give young physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain lectures on quantum field theory, quantum chromodynamics, flavour physics and CP-violation, physics beyond the Standard Model, neutrino physics, particle cosmology, ultrahigh-energy cosmic rays and heavy-ion physics, as well as a presentation of recent results from the Large Hadron Collider (LHC) and a short introduction to the principles of particle physics instrumentation.

  6. Isospin effects on pt-differential flow in heavy ion collisions at intermediate energies

    International Nuclear Information System (INIS)

    Bansal, Rubina; Jain, Anupriya; Kumar, Suneel

    2014-01-01

    This paper aims to study the role of isospin degree of freedom in heavy-ion collisions through the transverse momentum (p t ), neutron to proton ratio and system mass dependence of p t -differential transverse flow. Our study shows that (p t )-differential transverse flow dependence can act as sensitive probe to study symmetry energy and its density dependence compared to the energy of vanishing flow. Symmetry energy and its density dependence play a dominant role over the isospin-dependence of nucleon–nucleon cross-section at Fermi energy. (author)

  7. Event-by-event gluon multiplicity, energy density, and eccentricities in ultrarelativistic heavy-ion collisions

    Science.gov (United States)

    Schenke, Björn; Tribedy, Prithwish; Venugopalan, Raju

    2012-09-01

    The event-by-event multiplicity distribution, the energy densities and energy density weighted eccentricity moments ɛn (up to n=6) at early times in heavy-ion collisions at both the BNL Relativistic Heavy Ion Collider (RHIC) (s=200GeV) and the CERN Large Hardron Collider (LHC) (s=2.76TeV) are computed in the IP-Glasma model. This framework combines the impact parameter dependent saturation model (IP-Sat) for nucleon parton distributions (constrained by HERA deeply inelastic scattering data) with an event-by-event classical Yang-Mills description of early-time gluon fields in heavy-ion collisions. The model produces multiplicity distributions that are convolutions of negative binomial distributions without further assumptions or parameters. In the limit of large dense systems, the n-particle gluon distribution predicted by the Glasma-flux tube model is demonstrated to be nonperturbatively robust. In the general case, the effect of additional geometrical fluctuations is quantified. The eccentricity moments are compared to the MC-KLN model; a noteworthy feature is that fluctuation dominated odd moments are consistently larger than in the MC-KLN model.

  8. Proceedings of the Workshop on open problems in heavy ion reaction dynamics at VIVITRON energies

    International Nuclear Information System (INIS)

    Beck, F.A.

    1993-01-01

    Some problems of heavy ion reaction dynamics at the VIVITRON tandem accelerator and the experimental facilities are discussed at the meeting. Topics include light dinuclear systems, collision dynamics at low energies, fission evaporation and fusion of heavy nuclei and others. Most documents consist of transparencies presented at the workshop, texts of papers are missing. All items are indexed and abstracted for the INIS database. (K.A.)

  9. Proceedings of the Workshop on open problems in heavy ion reaction dynamics at VIVITRON energies

    Energy Technology Data Exchange (ETDEWEB)

    Beck, F. A.

    1993-07-01

    Some problems of heavy ion reaction dynamics at the VIVITRON tandem accelerator and the experimental facilities are discussed at the meeting. Topics include light dinuclear systems, collision dynamics at low energies, fission evaporation and fusion of heavy nuclei and others. Most documents consist of transparencies presented at the workshop, texts of papers are missing. All items are indexed and abstracted for the INIS database. (K.A.).

  10. XXI and XXII SERC Main School in Theoretical High Energy Physics

    CERN Document Server

    Sivakumar, M; Surveys in theoretical high energy physics 2 : lecture notes from SERC Schools

    2016-01-01

    The book presents pedagogical reviews of important topics on high energy physics to the students and researchers in particle physics. The book also discusses topics on the Quark–Gluon plasma, thermal field theory, perturbative quantum chromodynamics, anomalies and cosmology. Students of particle physics need to be well-equipped with basic understanding of many concepts underlying the standard models of particle physics and cosmology. This is particularly true today when experimental results from colliders, such as large hadron collider (LHC) and relativistic heavy ion collider (RHIC), as well as inferences from cosmological observations, are expected to further expand our understanding of particle physics at high energies. This volume is the second in the Surveys in Theoretical High Energy Physics Series (SThEP). Topics covered in this book are based on lectures delivered at the SERC Schools in Theoretical High Energy Physics at the Physical Research Laboratory, Ahmedabad, and the University of Hyderabad.

  11. Heavy quark free energy in QCD and in gauge theories with gravity duals

    Science.gov (United States)

    Noronha, Jorge

    2010-09-01

    Recent lattice results in pure glue SU(3) theory at high temperatures have shown that the expectation value of the renormalized Polyakov loop approaches its asymptotic limit at high temperatures from above. We show that this implies that the “heavy quark free energy” obtained from the renormalized loop computed on the lattice does not behave like a true thermodynamic free energy. While this should be expected to occur in asymptotically free gauge theories such as QCD, we use the gauge/string duality to show that in a large class of strongly coupled gauge theories with nontrivial UV fixed points the Polyakov loop reaches its asymptotic value from above only if the dimension of the relevant operator used to deform the conformal field theory is greater than or equal to 3.

  12. Highly-resolving Rutherford-scattering spectroscopy with heavy ions

    International Nuclear Information System (INIS)

    Klein, C.

    2003-10-01

    in the present thesis for the first time the Browne-Buechner spectrometer for the highly resolving ion-beam analysis in the ion beam center Rossendorf is completely presented. A main topic of this theis lied in the apparative construction and the taking-into-operation of the spectrometer and the scattering chamber including the facilities for the sample treatment and characterization. In the framework of this thesis for the chosen measurement arrangement the experimental conditions were elaborated, which allow the routine-like application of the spectrometer for analyses of thin-film systems. for C and Li ions as incident particles especially the straggling was more precisely determined in a large range of materials. By means of the spectrometer also the interaction of the ion with the solid respectively single atoms on its surface could be studied. For the first time the mean charge-state after the single collision on a gold atom was determined for differently heavy ions in a wide energy range

  13. Prediction of catastrophe theory for heavy-ion collisions at high energies

    International Nuclear Information System (INIS)

    Kuchin, I.A.

    2002-01-01

    Studying the nature of limiting fragmentation of nuclei in high energy heavy-ion collisions has shown that the dynamic system of the nucleus is inclined to enter a nonequilibrium state, schottische and disintegrate on separate nucleons under conditions typical to each collision. There is a question: how the phenomenon of multifragmentation is possible here, i. e. formation of several nucleus with masses on interval from a nucleon up to a material nucleus A in a final state. What is it - debris of a material nucleus or newly created daughter nuclei? The purpose of offered report is discussion of this question. The initial for us statement is taken from the theory of dynamic systems. Chaos is a result of hashing of phase space which is carried out by means of operations of distension and compression. The appropriate transformation are called baker-transformation or Smale's horseshoe. The geometrical picture of chaos is a folded relief of multi-dimensional phase space. The stochastic amplification is understood as growth of folder number and their size. In typical interactions of massive ions, chaos formation conditions are provided automatically due to alternate force influence of Coulomb and Yukawa fields - compression is replaced by distension, and distension - by compression. Extending this representation on a case of massive ion collision, we supplement it accounting a possibility of constituents (nucleons) strong interaction on small distances. The easiest way to make it is approximating minima of potential function V(x, c) in catastrophe theory by rectangular holes of Fermi-gas in nuclear physics. The catastrophe theory is necessary to find connection between channels of fragments birth of different charge and masses, proceeding from the general form of a multi-dimensional phase space relief (a kind of potential function). The main result which can be taken from this theory at the given stage of researches consists in the general form of a curve of a

  14. Dependence of asymmetries for charge distribution with respect to the reaction plane on initial energy in heavy-ion collisions

    International Nuclear Information System (INIS)

    Okorokov, V.A.

    2013-01-01

    In this paper, two combinations of correlators are defined in order to investigate the evolution of possible C/CP invariance violation in strong interactions with initial energy for heavy-ion collisions. These combinations correspond to absolute and relative asymmetry of distribution of electrically charge particles with respect to the reaction plane in heavy-ion collisions. Energy dependence of parameters under study was derived from data of STAR and ALICE experiments. Significant decreasing both absolute and relative asymmetry is observed at energies √s NN < 20 GeV. This feature agrees qualitatively with other results of stage-I beam energy scan program in STAR experiment. General behavior of dependence of absolute asymmetry on initial energy agrees reasonably with behavior of similar dependence of Chern–Simons diffusion rate calculated at different values of external Abelian magnetic field. The observed behavior of parameters under study versus energy can be considered as indication on possible transition to predominance of hadronic states over quark–gluon degrees of freedom in the mixed phase created in heavy-ion collisions at intermediate energies. (author)

  15. Chemical modifications of polymer films induced by high energy heavy ions

    International Nuclear Information System (INIS)

    Zhu Zhiyong; Sun Youmei; Liu Changlong; Liu Jie; Jin Yunfan

    2002-01-01

    Polymer films including polyethylene terephthalate (PET), polystyrene (PS) and polycarbonate (PC) were irradiated at room temperature with ions of 35 MeV/u 40 Ar, 25 MeV/u 84 Kr, 15.1 MeV/u 136 Xe and 11.4 MeV/u 238 U to fluences ranging from 9x10 9 to 5.5x10 12 ions/cm 2 . The radiation-induced chemical changes of the materials were investigated by Fourier-transform infrared (FTIR) and ultraviolet/visible spectroscopies. It is found that the absorbance in the ultraviolet and visible range induced by all irradiations follows a linear relationship with fluence. The radiation-induced absorbance normalized to one particle increases slowly with increasing of electronic energy loss below about 8 keV/nm followed by a sharp increase up to about 15 keV/nm above which saturation is reached. FTIR measurements reveal that the materials suffer serious degradation through bond breaking. The absorbance of the typical infrared bands decays exponentially with increase of ion fluence and the bond-disruption cross-section shows a sigmoid variation with electronic energy loss. In PET loss of crystallinity is attributed to the configuration transformation of the ethylene glycol residue from trans into the gauche. Alkyne end groups are induced in all the materials above certain electronic energy loss threshold, which is found to be about 0.8 keV/nm for PS and 0.4 keV/nm for PC. The production cross-section of alkyne end group increases with increasing of electronic energy loss and shows saturation at high electronic energy loss values. It is concluded that not only the physical processes but also the chemical processes of the energy deposition determine the modification of polymer

  16. Defect production and subsequent effects induced by electronic energy loss of swift heavy ion

    International Nuclear Information System (INIS)

    Hou Mingdong; Liu Jie; Sun Youmei; Yin Jingmin; Yao Huijun; Duan Jinglai; Mo Dan; Zhang Ling; Chen Yanfeng; Chinese Academy of Sciences, Beijing

    2008-01-01

    Swift heavy ion in matter is one of forfront fields of nuclear physics in the world. A series of new phenomena were discovered in recent years. The history and sta- tus on the development of this field were reviewed. Electronic energy loss effects induced by swift heavy ion irradiation, such as defect production and evolution, ion latent track formation, phase transformation and anisotropy plastic deformation were introduced emphatically. A trend of future investigation was explored. (authors)

  17. The neutron/proton ratio of squeezed-out nucleons and the high density behavior of the nuclear symmetry energy

    International Nuclear Information System (INIS)

    Yong Gaochan; Li Baoan; Chen Liewen

    2007-01-01

    Within a transport model it is shown that the neutron/proton ratio of squeezed-out nucleons perpendicular to the reaction plane, especially at high transverse momenta, in heavy-ion reactions induced by high energy neutron-rich nuclei can be a useful tool for studying the high density behavior of the nuclear symmetry energy

  18. Development of a fragment detector system for the study of peripheral collisions at high beam energies

    International Nuclear Information System (INIS)

    Spies, H.

    1992-06-01

    In the framework of the experimental program at the accelerator facilities SIS/ESR of the Society for Heavy-Ion research in Darmstadt one of the essential research aims of the LAND collaboration is the study of high-lying collective states after electromagnetic excitation in heavy-ion collisions at nearly relativistic beam energies. By the exchange of virtual photons with high energy giant resonances are excited with high probabilities. The main decay channel of giant resonances in heavy nuclei is the emission of neutrons as well as below the particle threshold the emission of γ radiation. For the study of these states a detector system was developed, which makes the kinematically complete measurement of all reaction partners possible. For the determination of the neutron energy serves the Large Area Neutron Detector LAND, a time-of-flight spectrometer for high-energetic neutrons. For the measurement of the γ radiation emitted by the excited projectile the target is surrounded by an array of 48 BaF 2 crystals. A radiation detector system consisting of 6 single detectors and further 5 help detectors allows together with the magnetic spectrometer ALADIN the identification of the heavy projectile fragments by charge, momentum, and mass. Four position-sensitive plastic scintillators serve for the measurement of the trajectory of the projectile respectively the projectile fragments in front and behind the deviating magnet. Additionally with these detectors the velocity is measured. For the determination of the nuclear charge of the projectile fragments serve a multiple-ionization chamber and a Cherenkov detector. In this thesis the development and taking into operation of the LAND radiation detector system is described. (orig./HSI) [de

  19. Interplay of short-range correlations and nuclear symmetry energy in hard-photon production from heavy-ion reactions at Fermi energies

    Science.gov (United States)

    Yong, Gao-Chan; Li, Bao-An

    2017-12-01

    Within an isospin- and momentum-dependent transport model for nuclear reactions at intermediate energies, we investigate the interplay of the nucleon-nucleon short-range correlations (SRCs) and nuclear symmetry energy Esym(ρ ) on hard-photon spectra in collisions of several Ca isotopes on 112Sn and 124Sn targets at a beam energy of 45 MeV/nucleon. It is found that over the whole spectra of hard photons studied, effects of the SRCs overwhelm those owing to the Esym(ρ ) . The energetic photons come mostly from the high-momentum tails (HMTs) of single-nucleon momentum distributions in the target and projectile. Within the neutron-proton dominance model of SRCs based on the consideration that the tensor force acts mostly in the isosinglet and spin-triplet nucleon-nucleon interaction channel, there are equal numbers of neutrons and protons, thus a zero isospin asymmetry in the HMTs. Therefore, experimental measurements of the energetic photons from heavy-ion collisions at Fermi energies have the great potential to help us better understand the nature of SRCs without any appreciable influence by the uncertain Esym(ρ ) . These measurements will be complementary to but also have some advantages over the ongoing and planned experiments using hadronic messengers from reactions induced by high-energy electrons or protons. Because the underlying physics of SRCs and Esym(ρ ) are closely correlated, a better understanding of the SRCs will, in turn, help constrain the nuclear symmetry energy more precisely in a broad density range.

  20. Suppression and Two-Particle Correlations of Heavy Mesons in Heavy-Ion Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Shanshan [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Qin, Guang-You [Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics (MOE), Central China Normal University, Wuhan, 430079 (China); Bass, Steffen A. [Department of Physics, Duke University, Durham, NC 27708 (United States)

    2016-12-15

    We study the medium modification of heavy quarks produced in heavy-ion collisions. The evolution of heavy quarks inside the QGP is described using a modified Langevin framework that simultaneously incorporates their collisional and radiative energy loss. Within this framework, we provide good descriptions of the heavy meson suppression and predictions for the two-particle correlation functions of heavy meson pairs.

  1. Effects of pulse current on energy consumption and removal of heavy metals during electrodialytic soil remediation

    DEFF Research Database (Denmark)

    Sun, Tian R.; Ottosen, Lisbeth M.

    2012-01-01

    industrially polluted soils were performed. At a current density of 0.1mA/cm2 in soil 1 and 0.2mA/cm2 in soil 2, there was no difference on energy consumption and removal of heavy metals between pulse current and constant current experiments, but at higher current experiments (i.e., 0.2mA/cm2 in soil 1 and 0......The aims of this paper were to investigate the possibility for energy saving when using a pulsed electric field during electrodialytic soil remediation (EDR) and the effect of the pulsed current on removal of heavy metals. Eight experiments with constant and pulse current in the different.......8mA/cm2 in soil 2) the energy was saved 67% and 60% and the removal of heavy metals was increased 17–76% and 31–51% by pulse current in soil 1 and soil 2, respectively. When comparing the voltage drop at different parts of EDR cells, it was found that the voltage drop of the area across cation...

  2. Highly ordered three-dimensional macroporous carbon spheres for determination of heavy metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuxiao; Zhang, Jianming [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Liu, Yang, E-mail: yangl@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Huang, Hui [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Kang, Zhenhui, E-mail: zhkang@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Highly ordered three dimensional macroporous carbon spheres (MPCSs) were prepared. Black-Right-Pointing-Pointer MPCS was covalently modified by cysteine (MPCS-CO-Cys). Black-Right-Pointing-Pointer MPCS-CO-Cys was first time used in electrochemical detection of heavy metal ions. Black-Right-Pointing-Pointer Heavy metal ions such as Pb{sup 2+} and Cd{sup 2+} can be simultaneously determined. -- Abstract: An effective voltammetric method for detection of trace heavy metal ions using chemically modified highly ordered three dimensional macroporous carbon spheres electrode surfaces is described. The highly ordered three dimensional macroporous carbon spheres were prepared by carbonization of glucose in silica crystal bead template, followed by removal of the template. The highly ordered three dimensional macroporous carbon spheres were covalently modified by cysteine, an amino acid with high affinities towards some heavy metals. The materials were characterized by physical adsorption of nitrogen, scanning electron microscopy, and transmission electron microscopy techniques. While the Fourier-transform infrared spectroscopy was used to characterize the functional groups on the surface of carbon spheres. High sensitivity was exhibited when this material was used in electrochemical detection (square wave anodic stripping voltammetry) of heavy metal ions due to the porous structure. And the potential application for simultaneous detection of heavy metal ions was also investigated.

  3. High pressure behaviour of heavy rare earth antimonides

    International Nuclear Information System (INIS)

    Pagare, Gitanjali; Soni, Pooja; Srivastava, Vipul; Sanyal, S.P.

    2008-01-01

    We have investigated theoretically the high-pressure structural phase transition and cohesive properties of two heavy rare earth mono anyimonides (LnSb; Ln = Dy and Lu) by using two body interionic potential with necessary modifications to include the effect of Coulomb screening by the delocalized 4f electrons of the RE ion. The peculiar properties of these compounds have been interpreted in terms of the hybridization of f electrons with the conduction band. The calculated compression curves and the values of high-pressure behaviour have been discussed and compared with the experimental results. These compounds exhibits first order crystallographic phase transition from their NaCl (B 1 ) phase to CsCl (B 2 ) phase at 23.6 GPa and 25.4 GPa respectively. At phase transition the % volume collapse for both the compounds are little higher than the measured ones. The NaCl phase possesses lower energy than CsCl phase and stable at ambient pressure. The bulk moduli of LnSb compounds are obtained from the P-V curve fitted by the Birch equation of state. We also calculated the Ln-Ln distance as a function of pressure. (author)

  4. The dynamics of the nuclei-nuclei interactions at very high energies

    International Nuclear Information System (INIS)

    Blaizot, J.P.

    1988-01-01

    The lectures on the dynamics of nuclei-nuclei interactions at very high energies, presented in the Summer School on Nuclear Physics and Particle Physics (1988), are shown. The equation of state of the hadronic matter is analyzed, by means of simple models, and some orders of magnitude can be asserted. The main characteristics of the high energy hadronic interactions are recalled. The basis of the dynamics of the relativistic fluids are given. Applications of this dynamics in the description of the space-time evolution of a plasma, generated by heavy ions collision, are carried out [fr

  5. Calorimetric low-temperature detectors on semiconductor base for the energy-resolving detection of heavy ions

    International Nuclear Information System (INIS)

    Kienlin, A. von.

    1994-01-01

    In the framework of this thesis for the first time calorimetric low-temperature detectors for the energy-resolving detection of heavy ions were developed and successfully applied. Constructed were two different detector types, which work both with a semiconductor thermistor. The temperature increasement effected by a particle incidence is read out. In the first detector type the thermistor was simutaneously used as absorber. The thickness of the germanium crystals was sufficient in order to stop the studied heavy ions completely. In the second type, a composed calorimeter, a sapphire crystal, which was glued on a germanium thermistor, served as absorber for the incident heavy ions. The working point of the calorimeter lies in the temperature range (1.2-4.2 K), which is reachable with a pumped 4 He cryostat. The temperatur increasement of the calorimeter amounts after the incidence of a single α particle about 20-30 μK and that after a heavy ion incidence up to some mK. An absolute energy resolution of 400-500 keV was reached. In nine beam times the calorimeters were irradiated by heavy ions ( 20 Ne, 40 Ar, 136 Xe, 208 Pb, 209 Bi) of different energies (3.6 MeV/nucleon< E<12.5 MeV/nucleon) elastically scattered from gold foils. In the pulse height spectra of the first detector type relatively broad, complex-structurated line shapes were observed. By systematic measurements dependences of the complex line structures on operational parameters of the detector, the detector temperature, and the position of the incident particle could be detected. Together with the results of further experiments a possible interpretation of these phenomena is presented. Contrarily to the complex line structures of the pure germanium thermistor the line shapes in the pulse height spectra, which were taken up in a composite germanium/sapphire calorimeter, are narrow and Gauss-shaped

  6. Conceptual design of a heavy ion fusion energy center

    International Nuclear Information System (INIS)

    Maschke, A.W.

    1978-01-01

    A Heavy Ion Accelerator system is described which is based upon existing technology, and which is capable of producing 150 MW of average beam power in 10 MJ, 200 TW bursts, 15 times per second. It consists of an rf linac which accelerates doubly ionized uranium ions to an energy of 20 GeV. Then by utilizing the well known procedure of multiturn injection, a 6.6 ms long burst of linac current is stored in 8 separate ''accumulator'' rings. At the conclusion of the filling process, a pulsed rf system bunches the beam in each of the 8 rings simultaneously. As the bunches decrease in length, they are then extracted from the rings and transported for about 1 km to one of 5 ''boilers'', in which the thermonuclear pellet has been placed. The 8 beams (2 opposing clusters of 4 beams each) are then focused simultaneously onto the pellet, resulting in a release of thermonuclear energy about 80 times larger than the input beam energy

  7. Heavy-ion radiography

    International Nuclear Information System (INIS)

    Fabrikant, J.I.; Tobias, C.A.; Holley, W.R.; Benton, E.V.

    1981-01-01

    Heavy-particle radiography has clinical potential as a newly developed noninvasive low-dose imaging procedure that provides increased resolution of minute density differences in soft tissues of the body. The method utilizes accelerated high-energy ions, primarily carbon and neon, at the Bevalac accelerator at the Lawrence Berkeley Laboratory. The research program for medicine utilizes heavy-ion radiography for low-dose mammography, for treatment planning for cancer patients, and for imaging and accurate densitometry of skeletal structures, brain and spinal neoplasms, and the heart. The potential of heavy-ion imaging, and particularly reconstruction tomography, is now proving to be an adjunct to existing diagnostic imaging procedures in medicine, both for applications to the diagnosis, management and treatment of clinical cancer in man, and for the early detection of small soft-tissue tumors at low radiation dose

  8. Design considerations for long-pulse, high-repetition-rate modulators for recirculating heavy-ion accelerators

    International Nuclear Information System (INIS)

    Newton, M.A.; Reginato, L.L.; Yu, S.S.

    1991-06-01

    Heavy-ion accelerators are considered to be one of the promising driver alternatives for inertial fusion. In an inertial fusion driver, multiple beams of heavy-ions are accelerated to kinetic energies consistent with the fusion target requirements. During acceleration, the beams of heavy ions are compressed in time from an initial pulse duration that range from 10's to 100's of microseconds to a final pulse duration of approximately 10 nanoseconds. The compressed beam of heavy ions is then focused on the target in a reactor chamber where the energy released from the fusion reaction is converted to thermal energy and eventually to electricity. A recirculator is an induction accelerator which accelerates the particles and bends them in a closed path with pulsed dipole magnets. A single beam traverses the same accelerating cavities many times (50--100) to acquire its final energy. The primary motivation to evaluate recirculators is the potential for low cost that results from re-using many of the most expensive accelerator components, such as the induction cells, pulsers, and focusing magnets, during an acceleration sequence. One of the areas of technology that is critical to the feasibility of a recirculator is the modulator system required to accelerate the ion beams. This system greatly impacts the overall design of the recirculating accelerator. System studies have been conducted to evaluate the cost and efficiency of several recirculator configurations as function of various parameters. These system studies have helped identify desirable induction cell driver characteristics. These characteristics and the trade-offs that were evaluated will be presented and discussed

  9. Linear Energy Transfer-Dependent Change in Rice Gene Expression Profile after Heavy-Ion Beam Irradiation.

    Directory of Open Access Journals (Sweden)

    Kotaro Ishii

    Full Text Available A heavy-ion beam has been recognized as an effective mutagen for plant breeding and applied to the many kinds of crops including rice. In contrast with X-ray or γ-ray, the heavy-ion beam is characterized by a high linear energy transfer (LET. LET is an important factor affecting several aspects of the irradiation effect, e.g. cell survival and mutation frequency, making the heavy-ion beam an effective mutagen. To study the mechanisms behind LET-dependent effects, expression profiling was performed after heavy-ion beam irradiation of imbibed rice seeds. Array-based experiments at three time points (0.5, 1, 2 h after the irradiation revealed that the number of up- or down-regulated genes was highest 2 h after irradiation. Array-based experiments with four different LETs at 2 h after irradiation identified LET-independent regulated genes that were up/down-regulated regardless of the value of LET; LET-dependent regulated genes, whose expression level increased with the rise of LET value, were also identified. Gene ontology (GO analysis of LET-independent up-regulated genes showed that some GO terms were commonly enriched, both 2 hours and 3 weeks after irradiation. GO terms enriched in LET-dependent regulated genes implied that some factor regulates genes that have kinase activity or DNA-binding activity in cooperation with the ATM gene. Of the LET-dependent up-regulated genes, OsPARP3 and OsPCNA were identified, which are involved in DNA repair pathways. This indicates that the Ku-independent alternative non-homologous end-joining pathway may contribute to repairing complex DNA legions induced by high-LET irradiation. These findings may clarify various LET-dependent responses in rice.

  10. Heavy-ion radiation chemistry

    International Nuclear Information System (INIS)

    Imamura, Masashi

    1975-01-01

    New aspect of heavy ion radiation chemistry is reviewed. Experiment has been carried out with carbon ions and nitrogen ions accelerated by a 160 cm cyclotron of the Institute of Physical and Chemical Research. The results of experiments are discussed, taking into consideration the effects of core radius depending on heavy ion energy and of the branch tracks of secondary electrons outside the core on chemical reaction and the yield of products. The effect of core size on chemical reaction was not able to be observed, because the incident energy of heavy ions was only several tens of MeV. Regarding high radical density, attention must be given to the production of oxygen in the core. It is possible to produce O 2 in the core in case of high linear energy transfer (LET), while no production of O 2 in case of low LET radiation. This may be one of study problems in future. LET effects on the yield of decomposed products were examined on acetone, methyl-ethyl-ketone and diethyl ketone, using heavy ions (C and N) as well as gamma radiation and helium ions. These three ketones showed that the LET change of two gaseous products, H 2 and CO, was THF type. There are peaks at 50-70 eV/A in the yield of both products. The peaks suggest the occurrence of ''saturation'' in decomposition. Attention was drawn to acetone containing a small amount (2 wt.%) of H 2 O. H 2 O and CO produced from this system differ from those in the pure system. The hydrogen connection formed by such a small amount of H 2 O may mediate the energy transfer. Sodium acetate tri-hydrate produces CH 3 radical selectively by gamma-ray irradiation at 77 K. In this case, the production of CH 2 COO - increases with the increase of LET of radiation. This phenomenon may be an important study problem. (Iwakiri, K.)

  11. The future of high-let radiation in cancer therapy. Justification of the heavy-ion therapy programmes

    International Nuclear Information System (INIS)

    Wambersie, A.

    1989-01-01

    The introduction of new types of ionizing radiations to control the primary tumour is a promising approach in radiation therapy. High-LET (linear energy transfer) radiations produce different biological effects compared to conventional X-rays, leading to a potential therapeutic advantage over low-LET (e.g., protons or helium ions) beams, which only are aimed at improving the physical selectivity. Introduced historically to reduce the OER (oxygen enhancement ratio), there is evidence for a reduction in radiosensitivity differences, which implies an advantage or disadvantage depending on the tumour characteristics and the normal tissues at risk, which in turn raises the problem of patient selection. From clinical data, fast neutrons were found to be superior to photons in the treatments of salivary gland tumours, prostatic adenocarcinomas, and some carcinomas. Heavy ions combine the advantages of a high physical selectivity and the potential advantage of high-LET for some tumour types. Clinical indications for the use of heavy-ion beams are therefore those tumours that reside in problematic sites but are of a type for which high-LET radiations were already shown to be useful. This review discusses the improvement of the physical selectivity with proton and helium ion beams; the differential effect and the potential advantage of neutrons and high-LET radiations (including both the radiological considerations and the clinical data); and presents the rationale for heavy-ion therapy. 38 refs, 7 figs, 10 tabs

  12. Recent heavy-ion results from the LHC and future perspectives

    CERN Document Server

    Mischke, Andre

    2016-01-01

    Strongly interacting matter at high densities and temperatures can be created in high-energy collisions of heavy atomic nuclei. Since 2010, the Large Hadron Collider at CERN provides proton-proton, proton-lead and lead-lead collisions at an unprecedented energy to study the so-called quark-gluon plasma (QGP) state. Several experimental probes have been proposed to determine the properties of the QGP. In this contribution, a selection of recent results from the heavy-ion programme at RHIC and the LHC are reviewed and discussed.

  13. Theoretical study of cylindrical energy analyzers for MeV range heavy ion beam probes

    International Nuclear Information System (INIS)

    Fujisawa, A.; Hamada, Y.

    1993-07-01

    A cylindrical energy analyzer with drift spaces is shown to have a second order focusing for beam incident angle when the deflection angle is properly chosen. The analyzer has a possibility to be applied to MeV range heavy ion beam probes, and will be also available for accurate particle energy measurements in many other fields. (author)

  14. Dynamical processes in heavy ion reactions

    International Nuclear Information System (INIS)

    Blann, M.; Remington, B.A.

    1988-01-01

    In this report I review the physical assumptions of the Boltzmann Master Equation (BME). Comparisons of the model with experimental neutron spectra gated on evaporation residues for a range of incident projectile energies and masses are presented; next, I compare n spectra gated on projectile-like fragments, followed by comparisons with ungated, inclusive proton spectra. I will then consider secondary effects from the nucleon-nucleon processes involved in the heavy ion relaxation processes, specifically the high energy γ-rays which have been observed at energies up to 140 MeV in collisions of heavy ions of 20/endash/84 MeV/μ. Another secondary effect, subthreshold pion production, was covered in the XVII School and will not be repeated. 39 refs., 16 figs

  15. Swift heavy ions induced irradiation effects in monolayer graphene and highly oriented pyrolytic graphite

    International Nuclear Information System (INIS)

    Zeng, J.; Yao, H.J.; Zhang, S.X.; Zhai, P.F.; Duan, J.L.; Sun, Y.M.; Li, G.P.; Liu, J.

    2014-01-01

    Monolayer graphene and highly oriented pyrolytic graphite (HOPG) were irradiated by swift heavy ions ( 209 Bi and 112 Sn) with the fluence between 10 11 and 10 14 ions/cm 2 . Both pristine and irradiated samples were investigated by Raman spectroscopy. It was found that D and D′ peaks appear after irradiation, which indicated the ion irradiation introduced damage both in the graphene and graphite lattice. Due to the special single atomic layer structure of graphene, the irradiation fluence threshold Φ th of the D band of graphene is significantly lower ( 11 ions/cm 2 ) than that (2.5 × 10 12 ions/cm 2 ) of HOPG. The larger defect density in graphene than in HOPG indicates that the monolayer graphene is much easier to be damaged than bulk graphite by swift heavy ions. Moreover, different defect types in graphene and HOPG were detected by the different values of I D /I D′ . For the irradiation with the same electronic energy loss, the velocity effect was found in HOPG. However, in this experiment, the velocity effect was not observed in graphene samples irradiated by swift heavy ions

  16. The high mass frontier: limits on heavy neutrinos

    International Nuclear Information System (INIS)

    Gronau, M.

    1984-01-01

    The theoretical motivation for a search for heavy neutrinos is discussed followed by the presentation of typical model dependent expectations for the mixing of the latter with ordinary neutrinos. Present mass and mixing limits on such heavy neutral leptons are based on search for secondary peaks in π and K leptonic decays and on the absence of neutrino decay signatures in neutrino beams from conventional sources and beam dumps. While these limits are quite poor for masses above 1 GeV, we describe methods to extend the limits to masses in the many GeV region. Such limits may be derived from search in b decays, high statistics neutrino experiments, search in ep colliders, W and Z decays and finally - decays of very heavy gauge bosons (if such exist in the TeV region) when produced in multi-TeV pp and antipp colliders

  17. Comparative study of energy accounting for heavy ion fusion with various driver accelerators

    International Nuclear Information System (INIS)

    Kawasaki, S.; Miyahara, A.

    1980-04-01

    Typical designs of driver heavy ion accelerator systems are referred and compared with regard to the assessment of the energy payback problem involved in their applications to the inertial fusion. Detailed analyses show that the energy investment for the construction of the HIF power station is fairly smaller than the energy produced by the station in its lifetime, in spite of the large scale of its hardware. The situation could be more favourable than, or at least comparable with, the case of the magnetically confined fusion. (author)

  18. Sampling calorimeters in high energy physics

    International Nuclear Information System (INIS)

    Gordon, H.A.; Smith, S.D.

    1981-01-01

    At our current understanding of elementary particle physics, the fundamental constituents are the photon, quarks, gluons and leptons with a few highly forecasted heavy bosons. Calorimeters are essential for detecting all of these particles. Quarks and gluons fragment into many particles - at high energies, so many particles that one may not want to measure each one separately. This group of both charged and neutral particles can only be measured by calorimeters. The energy of an electron needs to be measured by a calorimeter and muon identification is enhanced by the recognition of a minimum ionizing particle passing through the calorimeter. Sampling calorimeters - those instruments in which part of the shower is sampled in an active medium sandwiched between absorbing layers - are reviewed. What follows is a very cursory overview of some fundamental aspects of sampling calorimeters. First, the properties of shower development are described for both the electromagnetic and hadronic cases. Then, examples of various readout schemes are discussed. Finally, some currently promising new ideas in calorimetry are described. 21 references

  19. Project for a high resolution magnetic spectrometer for heavy ions

    International Nuclear Information System (INIS)

    Birien, P.; Valero, S.

    1981-05-01

    The energy loss spectrometer presented in this report has an energy resolution of 2x10 -4 with the full solid angle of 5 msr. The maximum magnetic rigidity of the particles analysed is 2.88 Tesla-meters on the optical axis and the total acceptance in energy is 14%. Experiments with reaction angles near 0 0 are possible. Kinematic compensation is adapted to heavy ion physics. In this report, we have paid special attention to the simplicity of the construction and of the use of this spectrometer by experimentalists. This report is addressed both to non-specialists and to future users as well [fr

  20. Energy distribution of projectile fragment particles in heavy ion therapeutic beam

    Energy Technology Data Exchange (ETDEWEB)

    Matsufuji, Naruhiro; Tomura, Hiromi; Futami, Yasuyuki [National Inst. of Radiological Sciences, Chiba (Japan)] [and others

    1998-03-01

    Production of fragment particles in a patient`s body is one of important problems for heavy charged particle therapy. It is required to know the yield and the energy spectrum for each fragment element - so called `beam quality` to understand the effect of therapeutic beam precisely. In this study, fragment particles produced by practical therapeutic beam of HIMAC were investigated with using tissue-equivalent material and a detector complex. From the results, fragment particles were well identified by difference of their atomic numbers and the beam quality was derived. Responses of the detectors in this energy region were also researched. (author)

  1. Production of highly ionized recoil ions in heavy ion impact

    International Nuclear Information System (INIS)

    Tawara, H.; Tonuma, T.; Be, S.H.; Shibata, H.; Kase, M.; Kambara, T.; Kumagai, H.; Kohno, I.

    1985-01-01

    The production mechanisms of highly ionized recoil ions in energetic, highly charged heavy ion impact are compared with those in photon and electron impact. In addition to the innershell ionization processes which are important in photon and electron impact, the electron transfer processes are found to play a key role in heavy ion impact. In molecular targets are also observed highly ionized monoatomic ions which are believed to be produced through production of highly ionized molecular ions followed by prompt dissociation. The observed N 6+ ions produced in 1.05MeV/amu Ar 12+ ions on N 2 molecules are produced through, for example, N 2 12+ *→N 6+ +N 6+ process. (author)

  2. PHITS-a particle and heavy ion transport code system

    International Nuclear Information System (INIS)

    Niita, Koji; Sato, Tatsuhiko; Iwase, Hiroshi; Nose, Hiroyuki; Nakashima, Hiroshi; Sihver, Lembit

    2006-01-01

    The paper presents a summary of the recent development of the multi-purpose Monte Carlo Particle and Heavy Ion Transport code System, PHITS. In particular, we discuss in detail the development of two new models, JAM and JQMD, for high energy particle interactions, incorporated in PHITS, and show comparisons between model calculations and experiments for the validations of these models. The paper presents three applications of the code including spallation neutron source, heavy ion therapy and space radiation. The results and examples shown indicate PHITS has great ability of carrying out the radiation transport analysis of almost all particles including heavy ions within a wide energy range

  3. The projects for heavy water production of the Argentine National Atomic Energy Commission

    International Nuclear Information System (INIS)

    Garcia Bourg, J.M.; Garcia, E.E.

    1982-01-01

    The bases and scope of the projects for heavy water production that are being currently developed by the Argentine National Atomic Energy Commission (CNEA) are described. As an introduction, the following points are presented: a) the fundamentals of heavy water utilization in a nuclear reactor, with a mention of its properties and uses, b) a review of the physicochemical bases of the principal methods for heavy water production: chemical exchange (monothermal and bithermal processes), distillation and electrolysis, with tables summarizing the fundamental characteristics of the first two ones, and an evaluation of the different production methods from the viewpoint of their application in an industrial scale; and c) a synthetic information, in the form of tables, about the world's heavy water production. The subject of heavy water production in Argentina is treated in the principal section, describing the scope, location, main characteristics and chemical processes corresponding to the projects being developed by CNEA, which currently are the installation of an Industrial Plant in Arroyito (Province of Neuquen), purchased on a turnkey basis and using the NH 3 /H 2 isotopic exchange method; the installation of an Experimental Plant in Atucha (Province of Buenos Aires), for the development of the domestic technology of heavy-water production by the SH 2 /H 2 O isotopic exchange method, and the development of the engineering of an industrial plant (''Module 80''), based on the Experimental Plant's technology. (M.E.L.) [es

  4. Review of heavy ion collider proposals

    International Nuclear Information System (INIS)

    Ruggiero, A.G.

    1985-01-01

    In this paper we review proposals for heavy-ion colliders generated during the last few years for several national laboratories. The proposals span over a large range of energy and luminosity to accommodate the experimental needs of both the nuclear and the high-energy physicists. We report also briefly efforts in the same field happening in Europe

  5. Heavy quarks and squarks from W-gluon fusion

    International Nuclear Information System (INIS)

    Lindfors, J.

    1986-05-01

    We discuss Wg-fusion as a source of heavy quark and squark pairs at very high energy hadron colliders. Effective W approximation is used to calculate the cross-sections analytically in the forward scattering configuration; good agreement is obtained with exact numerical calculations. W-gluon fusion is found to be not nearly as important a production mechanism of heavy squarks as it is of heavy quarks. This is especially true when the mass-splitting within the SU(2) L doublet is small

  6. Bulk properties of the medium produced in relativistic heavy-ion collisions from the beam energy scan program

    Science.gov (United States)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Ajitanand, N. N.; Alekseev, I.; Anderson, D. M.; Aoyama, R.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Ashraf, M. U.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Behera, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Brown, D.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chankova-Bunzarova, N.; Chatterjee, A.; Chattopadhyay, S.; Chen, X.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Elsey, N.; Engelage, J.; Eppley, G.; Esha, R.; Esumi, S.; Evdokimov, O.; Ewigleben, J.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Federicova, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A. I.; Hamed, A.; Harlenderova, A.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, T.; Huang, B.; Huang, X.; Huang, H. Z.; Humanic, T. J.; Huo, P.; Igo, G.; Jacobs, W. W.; Jentsch, A.; Jia, J.; Jiang, K.; Jowzaee, S.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Kocmanek, M.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulathunga, N.; Kumar, L.; Kvapil, J.; Kwasizur, J. H.; Lacey, R.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, C.; Li, W.; Li, Y.; Lidrych, J.; Lin, T.; Lisa, M. A.; Liu, H.; Liu, P.; Liu, Y.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, S.; Luo, X.; Ma, G. L.; Ma, L.; Ma, Y. G.; Ma, R.; Magdy, N.; Majka, R.; Mallick, D.; Margetis, S.; Markert, C.; Matis, H. S.; Meehan, K.; Mei, J. C.; Miller, Z. W.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mizuno, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nie, M.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Nonaka, T.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Ray, R. L.; Reed, R.; Rehbein, M. J.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roth, J. D.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Salur, S.; Sandweiss, J.; Saur, M.; Schambach, J.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Schweid, B. R.; Seger, J.; Sergeeva, M.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, A.; Sharma, M. K.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Strikhanov, M.; Stringfellow, B.; Sugiura, T.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, X. M.; Sun, X.; Surrow, B.; Svirida, D. N.; Tang, A. H.; Tang, Z.; Taranenko, A.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vasiliev, A. N.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, Y.; Wang, F.; Wang, Y.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xie, G.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y. F.; Xu, Z.; Yang, Y.; Yang, Q.; Yang, C.; Yang, S.; Ye, Z.; Ye, Z.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, Z.; Zhang, X. P.; Zhang, J. B.; Zhang, S.; Zhang, J.; Zhang, Y.; Zhang, J.; Zhang, S.; Zhao, J.; Zhong, C.; Zhou, L.; Zhou, C.; Zhu, X.; Zhu, Z.; Zyzak, M.; STAR Collaboration

    2017-10-01

    We present measurements of bulk properties of the matter produced in Au+Au collisions at √{sN N}=7.7 ,11.5 ,19.6 ,27 , and 39 GeV using identified hadrons (π±, K±, p , and p ¯) from the STAR experiment in the Beam Energy Scan (BES) Program at the Relativistic Heavy Ion Collider (RHIC). Midrapidity (|y |<0.1 ) results for multiplicity densities d N /d y , average transverse momenta 〈pT〉 , and particle ratios are presented. The chemical and kinetic freeze-out dynamics at these energies are discussed and presented as a function of collision centrality and energy. These results constitute the systematic measurements of bulk properties of matter formed in heavy-ion collisions over a broad range of energy (or baryon chemical potential) at RHIC.

  7. Working group report: Heavy ion physics

    Indian Academy of Sciences (India)

    The 8th workshop on high energy physics phenomenology (WHEPP-8) was ... by two plenary talks on experimental overview of heavy ion collisions and ... charge. At low temperature and density the quarks and gluons are confined within.

  8. Electron-emission processes in highly charged Ar and Xe ions impinging on highly ordered pyrolytic graphite at energies just above the kinetic threshold

    NARCIS (Netherlands)

    Bodewits, E.; Hoekstra, R.; Dobes, K.; Aumayr, F.

    2014-01-01

    At keV energies, many electronic processes contribute to the emission of secondary electrons in the interaction of highly charged ions on surfaces. To unravel contributions resulting from isolated hollow atoms in front of the surface or embedded in the electron gas of the target, heavy highly

  9. [Experimental and theoretical high energy physics program

    Energy Technology Data Exchange (ETDEWEB)

    Finley, J.; Gaidos, J.A.; Loeffler, F.J.; McIlwain, R.L.; Miller, D.H.; Palfrey, T.R.; Shibata, E.I.; Shipsey, I.P.

    1993-04-01

    Experimental and theoretical high-energy physics research at Purdue is summarized in a number of reports. Subjects treated include the following: the CLEO experiment for the study of heavy flavor physics; gas microstrip detectors; particle astrophysics; affine Kac{endash}Moody algebra; nonperturbative mass bounds on scalar and fermion systems due to triviality and vacuum stability constraints; resonance neutrino oscillations; e{sup +}e{sup {minus}} collisions at CERN; {bar p}{endash}p collisions at FNAL; accelerator physics at Fermilab; development work for the SDC detector at SSC; TOPAZ; D-zero physics; physics beyond the standard model; and the Collider Detector at Fermilab. (RWR)

  10. [Experimental and theoretical high energy physics program

    International Nuclear Information System (INIS)

    Finley, J.; Gaidos, J.A.; Loeffler, F.J.; McIlwain, R.L.; Miller, D.H.; Palfrey, T.R.; Shibata, E.I.; Shipsey, I.P.

    1993-04-01

    Experimental and theoretical high-energy physics research at Purdue is summarized in a number of reports. Subjects treated include the following: the CLEO experiment for the study of heavy flavor physics; gas microstrip detectors; particle astrophysics; affine Kac endash Moody algebra; nonperturbative mass bounds on scalar and fermion systems due to triviality and vacuum stability constraints; resonance neutrino oscillations; e + e - collisions at CERN; bar p endash p collisions at FNAL; accelerator physics at Fermilab; development work for the SDC detector at SSC; TOPAZ; D-zero physics; physics beyond the standard model; and the Collider Detector at Fermilab

  11. Heavy rare earths, permanent magnets, and renewable energies: An imminent crisis

    International Nuclear Information System (INIS)

    Smith Stegen, Karen

    2015-01-01

    This article sounds the alarm that a significant build-out of efficient lighting and renewable energy technologies may be endangered by shortages of rare earths and rare earth permanent magnets. At the moment, China is the predominant supplier of both and its recent rare earth industrial policies combined with its own growing demand for rare earths have caused widespread concern. To diversify supplies, new mining—outside of China—is needed. But what many observers of the “rare earth problem” overlook is that China also dominates in (1) the processing of rare earths, particularly the less abundant heavy rare earths, and (2) the supply chains for permanent magnets. Heavy rare earths and permanent magnets are critical for many renewable energy technologies, and it will require decades to develop new non-Chinese deposits, processing capacity, and supply chains. This article clarifies several misconceptions, evaluates frequently proposed solutions, and urges policy makers outside of China to undertake measures to avert a crisis, such as greater support for research and development and for the cultivation of intellectual capital. - Highlights: • Rare earths are needed for many efficient lighting and renewable energy technologies. • The industries for rare earths and permanent magnets are dominated by China. • China's reliability is compromised, necessitating non-Chinese mining and processing. • Recycling, substitution and reducing rare earth content are long-term solutions only. • Policy makers should support development of supply chains and intellectual capital

  12. An overview of heavy quark energy loss puzzle at RHIC

    International Nuclear Information System (INIS)

    Djordjevic, Magdalena

    2006-01-01

    We give a theoretical overview of the heavy quark tomography puzzle posed by recent non-photonic single electron data from central Au+Au collisions at √s = 200A GeV. We show that radiative energy loss mechanisms alone are not able to explain large single electron suppression data, as long as realistic parameter values are assumed. We argue that a combined collisional and radiative pQCD approach can solve a substantial part of the non-photonic single electron puzzle

  13. A high charge state heavy ion beam source for HIF

    International Nuclear Information System (INIS)

    Eylon, S.; Henestroza, E.

    1995-04-01

    A high current low emittance high charge state heavy ion beam source is being developed. This is designed to deliver HIF (heavy ion fusion) driver accelerator scale beam. Using high-charge-state beam in a driver accelerator for HIF may increase the acceleration efficiency, leading to a reduction in the driver accelerator size and cost. The proposed source system which consists of the gas beam electron stripper followed by a high charge state beam separator, can be added to existing single charge state, low emittance, high brightness ion sources and injectors. We shall report on the source physics design using 2D beam envelope simulations and experimental feasibility studies' results using a neutral gas stripper and a beam separator at the exit of the LBL 2 MV injector

  14. The Energy Budget of a Southwest Vortex With Heavy Rainfall over South China

    Institute of Scientific and Technical Information of China (English)

    FU Shenming; SUN Jianhua; ZHAO Sixiong; LI Wanli

    2011-01-01

    Energy budgets were analyzed to study the development of an eastward propagating southwest vortex (SWV) associated with heavy rainfall over southern China (11-13 June 2008). The results show that kinetic energy (KE) generation and a dvection were the most important KE sources, while friction and sub-grid processes were the main KE sinks. There was downward conversion from divergent to rotational wind KE consistent with the downward stretching of SWVs. The Coriolis force was important for the formation and maintenance of the SWV. Convergence was also an important factor for maintenance, as was vertical motion during the mature stage of the SWV and the formation stage of a newly formed vortex (vortex B). The conversion from available potential energy (APE) to KE of divergent wind can lead to strong convection. Vertical motion influenced APE by dynamical and thermal processes which had opposite effects.The variation of APE was related to the heavy rainfall and convection; in this case, vertical motion with direct thermal circulation was the most important way in which APE was released, while latent heat release and vertical temperature advection were important for APE generation.

  15. Proceedings of 2011 European School of High-Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Grojean, C; Mulders, M [European Organization for Nuclear Research, Geneva (Switzerland)

    2014-07-01

    The European School of High-Energy Physics is intended to give young physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain lecture notes on quantum field theory and the Standard Model, quantum chromodynamics, flavour physics, neutrino physics, physics beyond the Standard Model, cosmology, heavy ion physics, statistical data analysis, as well as an account for the physics results with the data accumulated during the first run of the LHC.

  16. Research Opportunities in High Energy Density Laboratory Plasmas on the NDCX-II Facility

    International Nuclear Information System (INIS)

    Barnard, John; Cohen, Ron; Friedman, Alex; Grote, Dave; Lund, Steven; Sharp, Bill; Bieniosek, Frank; Ni, Pavel; Roy, Prabir; Henestroza, Enrique; Jung, Jin-Young; Kwan, Joe; Lee, Ed; Leitner, Matthaeus; Lidia, Steven; Logan, Grant; Seidl, Peter; Vay, Jean-Luc; Waldron, Will

    2009-01-01

    Intense beams of heavy ions offer a very attractive tool for fundamental research in high energy density physics and inertial fusion energy science. These applications build on the significant recent advances in the generation, compression and focusing of intense heavy ion beams in the presence of a neutralizing background plasma. Such beams can provide uniform volumetric heating of the target during a time-scale shorter than the hydrodynamic response time, thereby enabling a significant suite of experiments that will elucidate the underlying physics of dense, strongly-coupled plasma states, which have been heretofore poorly understood and inadequately diagnosed, particularly in the warm dense matter regime. The innovations, fundamental knowledge, and experimental capabilities developed in this basic research program is also expected to provide new research opportunities to study the physics of directly-driven ion targets, which can dramatically reduce the size of heavy ion beam drivers for inertial fusion energy applications. Experiments examining the behavior of thin target foils heated to the warm dense matter regime began at the Lawrence Berkeley National Laboratory in 2008, using the Neutralized Drift Compression Experiment - I (NDCX-I) facility, and its associated target chamber and diagnostics. The upgrade of this facility, called NDCX-II, will enable an exciting set of scientific experiments that require highly uniform heating of the target, using Li + ions which enter the target with kinetic energy in the range of 3 MeV, slightly above the Bragg peak for energy deposition, and exit with energies slightly below the Bragg peak. This document briefly summarizes the wide range of fundamental scientific experiments that can be carried out on the NDCX-II facility, pertaining to the two charges presented to the 2008 Fusion Energy Science Advisory Committee (FESAC) panel on High Energy Density Laboratory Plasmas (HEDLP). These charges include: (1) Identify the

  17. Beam dynamics in heavy ion induction LINACS

    International Nuclear Information System (INIS)

    Smith, L.

    1981-10-01

    Interest in the use of an induction linac to accelerate heavy ions for the purpose of providing the energy required to initiate an inertially confined fusion reaction has stimulated a theoretical effort to investigate various beam dynamical effects associated with high intensity heavy ion beams. This paper presents a summary of the work that has been done so far; transverse, longitudinal and coupled longitudinal transverse effects are discussed

  18. Heavy ion interactions in the TeV energy domain

    International Nuclear Information System (INIS)

    Persson, Stefan.

    1989-01-01

    Heavy-ion interactions at 60 and 200 A GeV have been studied at the CERN SPS. The energy flow in the pseudo-rapidity region >2.4 is studied with two sampling calorimeters in the WA80 experiment. It is concluded that the nuclear geometry plays an important role for energy flow in nucleus-nucleus collisions at these energies. The laser system for the gain control of the sampling calorimeters is described as well. A new emulsion technique for accurate angular measurements in the pseudo-rapidity region >1.3 used in the EMU01 experiment is described. With this technique the pseudo-rapidity distributions of relativistic singly charged particles are studied. The conclusion is that the geometry together with the fluctuations in participating nucleons, break-up of strings and decay of resonances can describe the obtained results. The standard emulsion technique is used to study the target fragmentation in nucleus-nucleus collisions at 200 A GeV. It is found that a first order cascade correction alone is unable to explain the observed emulsion results on target related fragments. (author)

  19. Heavy-ion transfer to high-spin states

    International Nuclear Information System (INIS)

    Lauterbach, C.

    1985-01-01

    Transfer reactions between very heavy ions, in particular about systems in which one or both collision partners are well deformed, are studied. These systems are expected to give rise to new phenomena which are related to the fact that the deformed nucleus has been Coulomb excited to a rotational or vibrational state at the time when the collision partners come into contact. In this paper the authors present results of experiments in which nuclei from the rare earth and the actinide region have been bombarded by various projectiles ranging from 34 S to 208 Pb at incident energies close to the Coulomb barrier. (Auth.)

  20. Intermediate energy heavy ions: An emerging multi-disciplinary research tool

    International Nuclear Information System (INIS)

    Alonso, J.R.

    1988-10-01

    In the ten years that beams of intermediate energy (∼50 MeV/amu≤E≤∼2 GeV/amu) heavy ions (Z≤92) have been available, an increasing number of new research areas have been opened up. Pioneering work at the Bevalac at the Lawrence Berkeley Laboratory, still the world's only source of the heaviest beams in this energy range, has led to the establishment of active programs in nuclear physics, atomic physics, cosmic ray physics, as well as biology and medicine, and industrial applications. The great promise for growth of these research areas has led to serious planning for new facilities capable of delivering such beams; several such facilities are now in construction around the world. 20 refs., 5 figs., 1 tab

  1. Use of Proton SEE Data as a Proxy for Bounding Heavy-Ion SEE Susceptibility

    Science.gov (United States)

    Ladbury, Raymond L.; Lauenstein, Jean-Marie; Hayes, Kathryn P.

    2015-01-01

    Although heavy-ion single-event effects (SEE) pose serious threats to semiconductor devices in space, many missions face difficulties testing such devices at heavy-ion accelerators. Low-cost missions often find such testing too costly. Even well funded missions face issues testing commercial off the shelf (COTS) due to packaging and integration. Some missions wish to fly COTS systems with little insight into their components. Heavy-ion testing such parts and systems requires access to expensive and hard-to-access ultra-high energy ion accelerators, or significant system modification. To avoid these problems, some have proposed using recoil ions from high-energy protons as a proxy to bound heavy-ion SEE rates.

  2. Multiple Electron Stripping of Heavy Ion Beams

    International Nuclear Information System (INIS)

    Mueller, D.; Grisham, L.; Kaganovich, I.; Watson, R. L.; Horvat, V.; Zaharakis, K. E.; Peng, Y.

    2002-01-01

    One approach being explored as a route to practical fusion energy uses heavy ion beams focused on an indirect drive target. Such beams will lose electrons while passing through background gas in the target chamber, and therefore it is necessary to assess the rate at which the charge state of the incident beam evolves on the way to the target. Accelerators designed primarily for nuclear physics or high energy physics experiments utilize ion sources that generate highly stripped ions in order to achieve high energies economically. As a result, accelerators capable of producing heavy ion beams of 10 to 40 Mev/amu with charge state 1 currently do not exist. Hence, the stripping cross-sections used to model the performance of heavy ion fusion driver beams have, up to now, been based upon theoretical calculations. We have investigated experimentally the stripping of 3.4 Mev/amu Kr 7+ and Xe +11 in N2; 10.2 MeV/amu Ar +6 in He, N2, Ar and Xe; 19 MeV/amu Ar +8 in He, N2, Ar and Xe; 30 MeV He 1 + in He, N2, Ar and Xe; and 38 MeV/amu N +6 in He, N2, Ar and Xe. The results of these measurements are compared with the theoretical calculations to assess their applicability over a wide range of parameters

  3. Non-equilibrium QCD of high-energy multi-gluon dynamics

    International Nuclear Information System (INIS)

    Geiger, K.

    1996-01-01

    A non-equilibrium QCD description of multiparticle dynamics in space-time is of both fundamental and phenomenological interest. Here the authors discusses an attempt to derive from first principles, a real-time formalism to study the dynamical interplay of quantum and statistical-kinetic properties of non-equilibrium multi-parton systems produced in high-energy QCD processes. The ultimate goal (from which one is still far away) is to have a practically applicable description of the space-time evolution of a general initial system of gluons and quarks, characterized by some large energy or momentum scale, that expands, diffuses and dissipates according to the self- and mutual-interactions, and eventually converts dynamically into final state hadrons. For example, the evolution of parton showers in the mechanism of parton-hadron conversion in high-energy hadronic collisions, or, the description of formation, evolution and freezeout of a quark-gluon plasma, in ultra-relativistic heavy-ion collisions

  4. Elementary particles and high energy phenomena: Progress report

    International Nuclear Information System (INIS)

    Cumalat, J.P.

    1988-01-01

    This paper reviews the research being done at the University of Colorado in High Energy Physics. Topics discussed in this paper are: Charmed Photoproduction; Hadronic Production of Charm Particles; Photoproduction of States Containing Heavy Quarks; Electron-Positron Physics with the MAC Detector at PEP; Electron-Positron Physics with the Upgraded Mark II Detector at SLC; The SLD Detector at SLC; Nonperturbative Studies of QCD; Hadron Phenomenology - Application to Experiment; Perturbative QCD and Weak Matrix Elements; Quarkonium Physics; Supersymmetry, Supergravity, and Superstrings; and Experimental Gravity. 50 refs., 13 figs

  5. Development of an IH-type linac for the acceleration of high current heavy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Haehnel, Jan Hendrik

    2017-07-20

    The Facility for Antiproton and Ion Research (FAIR) at GSI Darmstadt will provide unprecedented intensities of protons and heavy ions up to uranium at energies of up to 29 GeV for protons and 2.7 GeV/u for U{sup 28+}. To achieve high intensities in the synchrotron accelerators, high beam currents have to be provided by the injector linear accelerators. High current heavy ion beams are provided by the Universal Linear Accelerator (UNILAC), which in its current state will not be able to provide the required FAIR beam currents. This thesis deals with the development of upgrades for the UNILAC to ensure its high current capability. The first improvement is a matching section (MEBT) for the interface between the RFQ and the IH-DTL of the existing high current injector HSI at the UNILAC. With this new MEBT section, particle losses are eliminated and the overall beam quality is improved. As a second improvement, a complete replacement of the existing Alvarez-DTL is presented. A combination of efficient IH-type cavities and KONUS beam dynamics results in a reduction of the linac length from about 60 m (Alvarez) to just 23 m (new IH-DTL) while providing the same energy and fulfilling FAIR requirements of a high beam current and beam quality. This thesis contains a detailed beam dynamics design of the new linac including some fundamental investigations of the KONUS beam dynamics concept. A cross-check of the beam dynamics design was performed with two independent multi-particle simulation codes. Detailed error studies were conducted to investigate the influence of manufacturing, alignment and operating errors on the beam dynamics performance. Additionally, all five linac cavities were designed, optimized, and their RF parameters including power requirements calculated to provide a comprehensive linac design.

  6. Development of an IH-type linac for the acceleration of high current heavy ion beams

    International Nuclear Information System (INIS)

    Haehnel, Jan Hendrik

    2017-01-01

    The Facility for Antiproton and Ion Research (FAIR) at GSI Darmstadt will provide unprecedented intensities of protons and heavy ions up to uranium at energies of up to 29 GeV for protons and 2.7 GeV/u for U 28+ . To achieve high intensities in the synchrotron accelerators, high beam currents have to be provided by the injector linear accelerators. High current heavy ion beams are provided by the Universal Linear Accelerator (UNILAC), which in its current state will not be able to provide the required FAIR beam currents. This thesis deals with the development of upgrades for the UNILAC to ensure its high current capability. The first improvement is a matching section (MEBT) for the interface between the RFQ and the IH-DTL of the existing high current injector HSI at the UNILAC. With this new MEBT section, particle losses are eliminated and the overall beam quality is improved. As a second improvement, a complete replacement of the existing Alvarez-DTL is presented. A combination of efficient IH-type cavities and KONUS beam dynamics results in a reduction of the linac length from about 60 m (Alvarez) to just 23 m (new IH-DTL) while providing the same energy and fulfilling FAIR requirements of a high beam current and beam quality. This thesis contains a detailed beam dynamics design of the new linac including some fundamental investigations of the KONUS beam dynamics concept. A cross-check of the beam dynamics design was performed with two independent multi-particle simulation codes. Detailed error studies were conducted to investigate the influence of manufacturing, alignment and operating errors on the beam dynamics performance. Additionally, all five linac cavities were designed, optimized, and their RF parameters including power requirements calculated to provide a comprehensive linac design.

  7. Measurements of secondary neutrons producted from thick targets bombarded by heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Kurosawa, T.; Nakamura, T. [Tohoku Univ., Sendai (Japan). Cyclotron and Radioisotope Center; Nakao, N.; Shibata, T.; Uwamino, Y.; Nakanishi, N.; Fukumura, A.; Kumamoto, Y.

    1997-03-01

    We measured neutron angular and energy distributions from high energy heavy ions stopping in targets of carbon, aluminum, copper and lead at HIMAC. These spectra are much harder for the lighter target nucleus like carbon. This means that the momentum transfer in the forward direction from heavy ion beam to lighter nuclei is much higher than that to heavier nuclei. (author)

  8. Heavy particle production at the SSC

    International Nuclear Information System (INIS)

    Brodsky, S.J.; Haber, H.E.; Gunion, J.F.

    1984-03-01

    Predictions for the production of heavy quarks, supersymmetric particles, and other colored systems at high energy due to intrinsic twist-six components in the proton wavefunction are given. We also suggest the possibility of using asymmetric collision energies (e.g., via intersecting rings at the SSC) in order to facilitate the study of forward and diffractive particle production processes. 9 references

  9. Ultrarelativistic heavy ion collisions Theoretical overview

    International Nuclear Information System (INIS)

    Blaizot, Jean-Paul

    2006-01-01

    This is a short review of some theoretical aspects of the physics of ultra-relativistic heavy ion collisions. I review the main properties of the QCD phase diagram and recent developments in the physics of high gluon densities in the hadronic wavefunctions at high energy. Then I comment salient results obtained at RHIC

  10. Improvement of highly charged ion production in the ECR source of heavy ions

    International Nuclear Information System (INIS)

    Shirkov, G.D.

    1996-01-01

    Some physical limitations of the highly charged ion production in the ECR source are analyzed in this report. A few possible ways to improve the output of highly charged ions from the ECR source for heavy ions are proposed. A new library of computer codes for the numerical simulation of heavy ion production in the ECR ion source is used to examine these ways to improve the ECR source operation according to the CERN program of heavy ion acceleration. copyright 1996 American Institute of Physics

  11. Heavy residue properties in intermediate energy nuclear collisions with gold

    International Nuclear Information System (INIS)

    Aleklett, K.; Sihver, L.; Liljenzin, J.O.; Seaborg, G.T.

    1990-10-01

    We have measured the target fragment production cross sections and angular distributions for the interaction of 32, 44 and 93 MeV/nucleon argon, 35 and 43 MeV/nucleon krypton with gold. The fragment isobaric yield distributions, moving frame angular distributions and velocities have been deduced from these data. This fission cross section decreases with increasing projectile energy and the heavy residue cross section increases. The ratio v parallel /v cn increases approximately linearly with mass removed from the target. 21 refs., 8 figs

  12. Spin-isospin excitations induced by heavy ions at Saturne energies

    International Nuclear Information System (INIS)

    Hennino, T.

    1989-01-01

    Our program on the Spin-Isospin excitations started with the ( 3 He, 3 H) and ( 2 H, 2 He) reactions was extended with the heavy ion beams available at Saturne ( 12 C, 16 0, 20 Ne and 40 Ar) to study systematically the Δ excitation energy region. Projectile-ejectile dependences were measured. The Δ peak shift appears as a common feature in all charge exchange reactions. The first cross section calculations for the ( 12 C, 12 N) reaction are in good quantitative agreement with the data [fr

  13. Outlook for Saskatchewan heavy oil

    International Nuclear Information System (INIS)

    Youzwa, P.

    1993-01-01

    Some of the opportunities and challenges currently facing the heavy oil industry in Saskatchewan are discussed from a government perspective. By the end of September 1993, 220 heavy oil wells were drilled in the province, and 26% of the land sales in 1993 were in heavy oil areas. About 41% of the wells drilled in heavy oil areas were horizontal oil wells. Of the total horizontal wells drilled in Saskatchewan, 48% are for heavy oil, and horizontal well production averages 85 bbl/d. Initial trends suggest that horizontal wells both accelerate production and contribute to ultimate recovery. Total heavy oil production in 1992 reached 28.9 million bbl and recoverable reserves in 1991 were 262.3 million bbl, or 1.5% of total oil in place. The low recovery is not only due to technical factors such as high viscosity but also to low investment in the heavy oil sector due to poor economics. It is hoped that lower interest and exchange rates, the success of horizontal wells and the provincial royalty structure will maintain the recent increase in heavy oil activity. The provincial government recently launched a comprehensive energy strategy in which development of a heavy oil strategy is an important component. Total heavy oil reserves exceed those of light and medium oil and have significant development potential. The Saskatchewan government wishes to adopt a cooperative and partnership approach in its dealings with the heavy oil industry to help realize this potential. 9 figs

  14. Elastic and inelastic heavy ion scattering

    International Nuclear Information System (INIS)

    Toepffer, C.; University of the Witwatersrand, Johannesburg; Richter, A.

    1977-02-01

    In the field of elastic and inelastic heavy ion scattering, the following issues are dealt with: semiclassical descriptive approximations, optical potentials, barriers, critical radii and angular momenta, excitation functions and the application to superheavy ions and high energies. (WL) [de

  15. Magnetic spectrograph for the Holifield heavy ion research facility

    International Nuclear Information System (INIS)

    Ford, J.L.C. Jr.; Enge, H.A.; Erskine, J.R.; Hendrie, D.L.; LeVine, M.J.

    1977-01-01

    The need for a new generation magnetic spectrograph for the Holifield Heavy Ion Research Facility is discussed. The advantages of a magnetic spectrograph for heavy ion research are discussed, as well as some of the types of experiments for which such an instrument is suited. The limitations which the quality of the incident beam, target and spectrograph itself impose on high resolution heavy ion measurements are discussed. Desired features of an ideal new spectrograph are: (1) intrinsic resolving power E/ΔE greater than or equal to 3000; (2) maximum solid angle greater than or equal to 20 msr; (3) dispersion approx. 4-8m; (4) maximum energy interval approx. 30%; and (5) mass-energy product greater than or equal to 200. Various existing and proposed spectrographs are compared with the specifications for a new heavy ion magnet design

  16. (d,p)-transfer induced fission of heavy radioactive beams

    CERN Document Server

    Veselsky, Martin

    2012-01-01

    (d,p)-transfer induced fission is proposed as a tool to study low energy fission of exotic heavy nuclei. Primary goal is to directly determine the fission barrier height of proton-rich fissile nuclei, preferably using the radio-active beams of isotopes of odd elements, and thus confirm or exclude the low values of fission barrier heights, typically extracted using statistical calculations in the compound nucleus reactions at higher excitation energies. Calculated fission cross sections in transfer reactions of the radioactive beams show sufficient sensitivity to fission barrier height. In the probable case that fission rates will be high enough, mass asymmetry of fission fragments can be determined. Results will be relevant for nuclear astrophysics and for production of super-heavy nuclei. Transfer induced fission offers a possibility for systematic study the low energy fission of heavy exotic nuclei at the ISOLDE.

  17. Heavy flavours production in quark-gluon plasma formed in high energy nuclear reactions

    Science.gov (United States)

    Kloskinski, J.

    1985-01-01

    Results on compression and temperatures of nuclear fireballs and on relative yield of strange and charmed hadrons are given . The results show that temperatures above 300 MeV and large compressions are unlikely achieved in average heavy ion collision. In consequence, thermal production of charm is low. Strange particle production is, however, substantial and indicates clear temperature - threshold behavior.

  18. High energy physics: V. 1 and 2. Proceedings

    International Nuclear Information System (INIS)

    Bussey, P.J.; Knowles, I.G.

    1995-01-01

    The 27th International Conference on High Energy Physics attracted 950 abstracts eventually materialising as 613 full papers. These were made accessible on the World Wide Web and formed the basis of 22 plenary session talks and 274 parallel session talks. The plenary session talks are reproduced in Volume 1 of the Proceedings and most of the parallel session talks in Volume 2. The main topics covered were: top quark searches; electroweak interactions; low x physics; deep inelastic scattering and structure functions; beyond the Standard Model; searches for new particles; non-perturbative methods; lattice gauge theory; weak and rare decays; CP violation and BB-bar mixing; developments in field and string theory; light quark and gluonium spectroscopy; QCD and jet physics; flavour production on hadronic targets; non-accelerator experiments; neutrino masses; mixing and oscillations; new detectors and experimental techniques; low Q 2 and soft phenomena; particle astrophysics and cosmology; heavy quark physics; heavy ion collisions; future accelerators. (UK)

  19. Bremsstrahlung from relativistic bare heavy ions: Nuclear and electronic contributions in amorphous and crystalline materials

    DEFF Research Database (Denmark)

    Jensen, Tue Vissing; Sørensen, Allan Hvidkjær

    2013-01-01

    A charged particle emits bremsstrahlung while traversing matter. We calculate the radiation cross section for bare heavy ions penetrating amorphous materials and single crystals at highly relativistic energies. The main component originates in scattering of the virtual photons of screened target...... in a pronounced directional dependence of the energy loss of bare heavy ions at extreme relativistic energies....

  20. PHYSICO-CHEMICAL PROPERTIES OF THE SOLID AND LIQUID WASTE PRODUCTS FROM THE HEAVY METAL CONTAMINATED ENERGY CROPS GASIFICATION PROCESS

    Directory of Open Access Journals (Sweden)

    Sebastian Werle

    2017-02-01

    Full Text Available The paper presents the results of basic physico-chemical properties of solid (ash and liquid (tar waste products of the gasification process of the heavy metal contaminated energy crops. The gasification process has carried out in a laboratory fixed bed reactor. Three types of energy crops: Miscanthus x giganteus, Sida hermaphrodita and Spartina Pectinata were used. The experimental plots were established on heavy metal contaminated arable land located in Bytom (southern part of Poland, Silesian Voivodship.