WorldWideScience

Sample records for high energy contribution

  1. Sand in the salt marsh : Contribution of high-energy conditions to salt-marsh accretion

    NARCIS (Netherlands)

    de Groot, Alma V.; Veeneklaas, Roos M.; Bakker, Jan P.

    2011-01-01

    The environmental dynamics at barrier-island salt marshes are reflected in lateral and vertical textural patterns of the marsh sediment. During normal conditions, fine-grained sediment is deposited, whereas during high-energy conditions also sand accretion can occur. This paper describes the

  2. Sand in the salt marsh: Contribution of high-energy conditions to salt-marsh accretion

    NARCIS (Netherlands)

    Groot, de A.V.; Veeneklaas, R.M.; Bakker, J.P.

    2011-01-01

    The environmental dynamics at barrier-island salt marshes are reflected in lateral and vertical textural patterns of the marsh sediment. During normal conditions, fine-grained sediment is deposited, whereas during high-energy conditions also sand accretion can occur. This paper describes the

  3. Homologous recombination contributes to the repair of DNA double-strand breaks induced by high-energy iron ions

    Energy Technology Data Exchange (ETDEWEB)

    Zafar, Faria; Seidler, Sara B.; Kronenberg, Amy; Schild, David; Wiese, Claudia

    2010-06-29

    To test the contribution of homologous recombinational repair (HRR) in repairing DNA damaged sites induced by high-energy iron ions, we used: (1) HRR-deficient rodent cells carrying a deletion in the RAD51D gene and (2) syngeneic human cells impaired for HRR by RAD51D or RAD51 knockdown using RNA interference. We show that in response to iron ions, HRR contributes to cell survival in rodent cells, and that HRR-deficiency abrogates RAD51 foci formation. Complementation of the HRR defect by human RAD51D rescues both enhanced cytotoxicity and RAD51 foci formation. For human cells irradiated with iron ions, cell survival is decreased, and, in p53 mutant cells, the levels of mutagenesis are increased when HRR is impaired. Human cells synchronized in S phase exhibit more pronounced resistance to iron ions as compared with cells in G1 phase, and this increase in radioresistance is diminished by RAD51 knockdown. These results implicate a role for RAD51-mediated DNA repair (i.e. HRR) in removing a fraction of clustered lesions induced by charged particle irradiation. Our results are the first to directly show the requirement for an intact HRR pathway in human cells in ensuring DNA repair and cell survival in response to high-energy high LET radiation.

  4. Contribution of High Charge and Energy (HZE) Ions During Solar-Particle Event of September 29, 1989

    Science.gov (United States)

    Kim, Myung-Hee Y.; Wilson, John W.; Cucinotta, Francis A.; Simonsen, Lisa C.; Atwell, William; Badavi, Francis F.; Miller, Jack

    1999-01-01

    The solar-particle event (SPE) of September 29, 1989, produced an iron-rich spectrum with energies approaching 1 A GeV with an approximate spectral slope parameter of 2.5. These high charge and energy (HZE) ions challenge conventional methods of shield design and assessment of astronaut risks. In the past, shield design and risk assessment have relied on proton shielding codes and biological response models derived from X-ray and neutron exposure data. Because the HZE spectra decline rapidly with energy and HZE attenuation in materials is limited by their penetration power, details of the mass distributions about the sensitive tissues (shielding materials and the astronaut's body) are important determining factors of the exposure levels and distributions of linear energy transfer. Local tissue environments during the SPE of September 29, 1989, with its f= components are examined to analyze the importance of these ions to human SPE exposure. Typical space suit and lightly shielded structures leave significant contributions from HZE components to certain critical body tissues and have important implications on the models for risk assessment. A heavily shielded equipment room of a space vehicle or habitat requires knowledge of the breakup of these ions into lighter components, including neutrons, for shield design specifications.

  5. Contributing to Net Zero Building: High Energy Efficient EIFS Wall Systems

    Energy Technology Data Exchange (ETDEWEB)

    Carbary, Lawrence D. [Dow Corning Corporation; Perkins, Laura L. [Dow Corning Corporation; Serino, Roland [Dryvit Systems, Inc; Preston, Bill [Dryvit Systems, Inc; Kosny, Jan [Fraunhofer USA, Inc. CSE

    2014-01-29

    The team led by Dow Corning collaborated to increase the thermal performance of exterior insulation and finishing systems (EIFS) to reach R-40 performance meeting the needs for high efficiency insulated walls. Additionally, the project helped remove barriers to using EIFS on retrofit commercial buildings desiring high insulated walls. The three wall systems developed within the scope of this project provide the thermal performance of R-24 to R-40 by incorporating vacuum insulation panels (VIPs) into an expanded polystyrene (EPS) encapsulated vacuum insulated sandwich element (VISE). The VISE was incorporated into an EIFS as pre-engineered insulation boards. The VISE is installed using typical EIFS details and network of trained installers. These three wall systems were tested and engineered to be fully code compliant as an EIFS and meet all of the International Building Code structural, durability and fire test requirements for a code compliant exterior wall cladding system. This system is being commercialized under the trade name Dryvit® Outsulation® HE system. Full details, specifications, and application guidelines have been developed for the system. The system has been modeled both thermally and hygrothermally to predict condensation potential. Based on weather models for Baltimore, MD; Boston, MA; Miami, FL; Minneapolis, MN; Phoenix, AZ; and Seattle, WA; condensation and water build up in the wall system is not a concern. Finally, the team conducted a field trial of the system on a building at the former Brunswick Naval Air Station which is being redeveloped by the Midcoast Regional Redevelopment Authority (Brunswick, Maine). The field trial provided a retrofit R-30 wall onto a wood frame construction, slab on grade, 1800 ft2 building, that was monitored over the course of a year. Simultaneous with the façade retrofit, the building’s windows were upgraded at no charge to this program. The retrofit building used 49% less natural gas during the winter of

  6. Effects of High-Intensity Training on Anaerobic and Aerobic Contributions to Total Energy Release During Repeated Supramaximal Exercise in Obese Adults

    National Research Council Canada - National Science Library

    Jabbour, Georges; Iancu, Horia-Daniel; Paulin, Anne

    2015-01-01

    ... weeks of high-intensity training (HIT) on relative anaerobic and aerobic contributions to total energy release and on peak power output during repeated supramaximal cycling exercises (SCE) in obese...

  7. Do neutrinos contribute to total dark energy

    Science.gov (United States)

    Manihar Singh, Koijam; Mahanta, K. L.

    2016-02-01

    From a critical study of our present universe it is found that dark energy, and of course, dark matter are there in the universe from the beginning of its evolution manifesting in one form or the other. The different forms contained in our model are found to be generalized Chaplygin gas, quintessence and phantom energy; of course, the generalized Chaplygin gas can explain the origin of dark energy as well as dark matter in our universe simultaneously. However the more beauty in our study is that there is high possibility of the energy produced from the neutrinos might contribute to the dark energy prevalent in this universe.

  8. Effects of High-Intensity Training on Anaerobic and Aerobic Contributions to Total Energy Release During Repeated Supramaximal Exercise in Obese Adults.

    Science.gov (United States)

    Jabbour, Georges; Iancu, Horia-Daniel; Paulin, Anne

    Studying relative anaerobic and aerobic metabolism contributions to total energy release during exercise may be valuable in understanding exercise energetic demands and the energetic adaptations that occur in response to acute or chronic exercise in obese adults. The aim of the present study is to evaluate the effects of 6 weeks of high-intensity training (HIT) on relative anaerobic and aerobic contributions to total energy release and on peak power output during repeated supramaximal cycling exercises (SCE) in obese adults. Twenty-four obese adults (body mass index = ± 33 kg.m(-2)) were randomized into a control group (n = 12) and an HIT group (n = 12). Accumulated oxygen deficits (ml.min(-1)) and anaerobic and aerobic contributions (%) were measured in all groups before and after training via repeated SCE. In addition, the peak power output performed during SCE was determined using the force-velocity test. Before HIT, anaerobic contributions to repeated SCE did not differ between the groups and decreased significantly during the third and fourth repetitions. After HIT, anaerobic contributions increased significantly in the HIT group (+11 %, p anaerobic contributions (r = 0.9, p anaerobic contributions to energy release which were associated with peak power enhancement in response to repeated SCE. Consequently, HIT may be an appropriate approach for improving energy contributions and muscle power among obese adults.

  9. Experimental high energy physics

    CERN Document Server

    De Paula, L

    2004-01-01

    A summary of the contributions on experimental high energy physics to the XXIV Brazilian National Meeting on Particle and Fields is presented. There were 5 invited talks and 32 submitted contributions. The active Brazilian groups are involved in several interesting projects but suffer from the lack of funding and interaction with Brazilian theorists.

  10. Omics in the Arctic: Genome-enabled Contributions to Carbon Cycle Research in High-Latitude Ecosystems (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    Energy Technology Data Exchange (ETDEWEB)

    Wullschleger, Stan [ORNL

    2012-03-22

    Stan Wullschleger of Oak Ridge National Laboratory on "Omics in the Arctic: Genome-enabled Contributions to Carbon Cycle Research in High-Latitude Ecosystems" on March 22, 2012 at the 7th Annual Genomics of Energy & Environment Meeting in Walnut Creek, California.

  11. Exchanged naturality contributions from high-energy polarization measurements in two-body inclusive and exclusive reactions

    CERN Document Server

    Ader, J P

    1974-01-01

    In the paper, dealing with high-energy quasi-two-body or multiparticle production, the authors focus on what can be learned about exchanged naturality amplitudes from final polarization measurements with polarized or unpolarized beam amd/or target. The separation of t- channel (boson exchange) and u-channel (baryon exchange) exchanges into components of natural and unnatural parity and the measure of naturality interferences are extensively studied in all cases which are now or will be soon available with present experimental techniques. Special attention is paid to the transversity amplitudes which are shown to be always naturality conserving. (19 refs).

  12. ENERGY SYSTEM CONTRIBUTIONS DURING INCREMENTAL EXERCISE TEST

    Directory of Open Access Journals (Sweden)

    Rômulo Bertuzzi

    2013-09-01

    Full Text Available The main purpose of this study was to determine the relative contributions of the aerobic and glycolytic systems during an incremental exercise test (IET. Ten male recreational long-distance runners performed an IET consisting of three-minute incremental stages on a treadmill. The fractions of the contributions of the aerobic and glycolytic systems were calculated for each stage based on the oxygen uptake and the oxygen energy equivalents derived by blood lactate accumulation, respectively. Total metabolic demand (WTOTAL was considered as the sum of these two energy systems. The aerobic (WAER and glycolytic (WGLYCOL system contributions were expressed as a percentage of the WTOTAL. The results indicated that WAER (86-95% was significantly higher than WGLYCOL (5-14% throughout the IET (p < 0.05. In addition, there was no evidence of the sudden increase in WGLYCOL that has been previously reported to support to the "anaerobic threshold" concept. These data suggest that the aerobic metabolism is predominant throughout the IET and that energy system contributions undergo a slow transition from low to high intensity

  13. Contribution of Renewables to Energy Security

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The environmental benefits of renewable energy are well known. But the contribution that they can make to energy security is less widely recognised. This report aims to redress the balance, showing how in electricity generation, heat supply, and transport, renewables can enhance energy security and suggesting policies that can optimise this contribution.

  14. High Energy $\

    CERN Multimedia

    2002-01-01

    This experiment is a high statistics exposure of BEBC filled with hydrogen to both @n and &bar.@n beams. The principal physics aims are : \\item a) The study of the production of charmed mesons and baryons using fully constrained events. \\end{enumerate} b) The study of neutral current interactions on the free proton. \\item c) Measurement of the cross-sections for production of exclusive final state N* and @D resonances. \\item d) Studies of hadronic final states in charged and neutral current reactions. \\item e) Measurement of inclusive charged current cross-sections and structure functions. \\end{enumerate}\\\\ \\\\ The neutrino flux is determined by monitoring the flux of muons in the neutrino shield. The Internal Picket Fence and External Muon Identifier of BEBC are essential parts of the experiment. High resolution cameras are used to search for visible decays of short-lived particles.

  15. Temporal variation of suspended particulate matter and turbulence in a high energy, tide-stirred, coastal sea: Relative contributions of resuspension and disaggregation

    Science.gov (United States)

    Jago, C. F.; Jones, S. E.; Sykes, P.; Rippeth, T.

    2006-11-01

    Measurements of turbulence and suspended particulate matter (SPM) were measured over a 50 h period at a site in high tidal energy, mixed waters of the Irish Sea, NW European shelf. Turbulence parameters included both production (variance method from seabed ADCP) and dissipation (FLY profiler); SPM parameters included mass and volume concentrations and particle size (LISST 100 C). It is shown that the resultant SPM time series was due to a combination of time-varying turbulence at the measurement site and space-varying turbulence advecting through the site. Time asymmetry in turbulence at the site produced an asymmetric M 4 signal in SPM volume concentration due to resuspension and disaggregation of flocs at times of peak turbulent energy. In terms of mass, the disaggregation contribution was 43% as much as the resuspension contribution near the bed, and 20% as much integrated throughout the water column. There was aggregation of flocs at high and low slack waters but the largest flocs occurred at low slack waters. Space-varying ambient turbulence was responsible for a horizontal gradient in floc size with small and large flocs at the high and low ends of the gradient, respectively; this generated a M 2 signal in SPM properties. SPM concentrations and properties at any time resulted from combination of M 2 and M 4 variations which are responsible for the well-known twin peaks signature seen in transmissometer time series in tidal waters.

  16. Radar for salt ultra-high-energy neutrino detector and contribution of W-gluon fusion process to collision of neutrinos against protons

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, Masami [Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Ohsawa Hachioji-shi, Tokyo 192-0397 (Japan)], E-mail: chiba-masami@c.metro-u.ac.jp; Arakawa, Yoko; Kamijo, Toshio; Yabuki, Fumiaki; Yasuda, Osamu [Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Ohsawa Hachioji-shi, Tokyo 192-0397 (Japan); Chikashige, Yuichi; Ibe, Keisuke; Kon, Tadashi; Shimizu, Yutaka [Faculty of Science and Technology, Seikei University, Musashino-shi, Tokyo 180-8633 (Japan); Taniuchi, Yasuyuki; Utsumi, Michiaki [Department of Applied Science and Energy Engineering, School of Engineering, Tokai University Hiratsuka-shi, Kanagawa 259-1292 (Japan); Fujii, Masatoshi [School of Medicine, Shimane University, Izumo-shi, Shimane 693-8501 (Japan)

    2009-06-01

    Existence of GZK neutrinos (ultra-high-energy neutrinos) has been justified although the flux is estimated to be extremely low. A study of radar method of UHF radio wave was carried out using a 2 MeV electron beam on a rock salt target. Radio wave reflection was reproduced in UHF and the reflection rate was consistent with microwave reflection in X-ray irradiation. Reflected power of radio wave was proportional to a temperature of the rock salt target. A new contribution of W- and Z-gluon fusion processes as well as W and Z exchange were taken into account to calculate cross-sections of UHE neutrinos against nucleons with GRACE. Nucleon structure function of CTEQ6 including low x>10{sup -8} was employed, we obtained 1.5 times larger cross-sections than those without them.

  17. Contributing to global computing platform: gliding, tunneling standard services and high energy physics application; Contribution aux infrastructures de calcul global: delegation inter plates-formes, integration de services standards et application a la physique des hautes energies

    Energy Technology Data Exchange (ETDEWEB)

    Lodygensky, O

    2006-09-15

    Centralized computers have been replaced by 'client/server' distributed architectures which are in turn in competition with new distributed systems known as 'peer to peer'. These new technologies are widely spread, and trading, industry and the research world have understood the new goals involved and massively invest around these new technologies, named 'grid'. One of the fields is about calculating. This is the subject of the works presented here. At the Paris Orsay University, a synergy emerged between the Computing Science Laboratory (LRI) and the Linear Accelerator Laboratory (LAL) on grid infrastructure, opening new investigations fields for the first and new high computing perspective for the other. Works presented here are the results of this multi-discipline collaboration. They are based on XtremWeb, the LRI global computing platform. We first introduce a state of the art of the large scale distributed systems, its principles, its architecture based on services. We then introduce XtremWeb and detail modifications and improvements we had to specify and implement to achieve our goals. We present two different studies, first interconnecting grids in order to generalize resource sharing and secondly, be able to use legacy services on such platforms. We finally explain how a research community like the community of high energy cosmic radiation detection can gain access to these services and detail Monte Carlos and data analysis processes over the grids. (author)

  18. Quantitative analysis of the scattering contributions in high-energy X-ray computed tomography; Quantitative Untersuchung der Streubeitraege in Hochenergie-Roentgencomputertomographie

    Energy Technology Data Exchange (ETDEWEB)

    Stritt, Carina; Schuetz, Philipp; Plamondon, Mathieu; Flisch, Alexander; Hofmann, Juergen; Sennhauser, Urs [Eidgenoessische Materialpruefungs- und Forschungsanstalt (EMPA), Duebendorf (Switzerland)

    2015-07-01

    Computed tomography (CT) is a proven method in the fields of failure analysis and quality control. The energy of X-rays used in this case determines the penetration depth of the radiation, limited by the size and material of the object to be examined. For large, dense and heavy objects photon energies of more than one mega electron volts (MeV) are needed in order to achieve usable transmission values. An important factor for the quality of high-energy X-ray tomography is the proportion of scattered radiation on the CT images. X-rays can be used both in the object to be examined, as well as the measuring instrument and sprinkle operating environment and leads to a distorted picture transmission. Besides scattering effects comes for MeV photons in addition the physical process of pairing into play. The impact of the individual scattering processes on the transmission image should be examined here. But the influence of the different scattering contributions is examined using Monte Carlo simulations. In contrast to previous studies, not only a set of simple geometric objects made of different materials is examined, but also simplified models of the components of a CT scanner is used to estimate the contribution of scattering of various system components. [German] Computertomographie (CT) ist eine bewaehrte Methode in den Bereichen Fehleranalyse und Qualitaetskontrolle. Die Energie der hierbei benutzten Roentgenstrahlung bestimmt die Eindringtiefe der Strahlung und schraenkt damit die Groesse und das Material des zu untersuchenden Objektes ein. Fuer grosse, dichte und schwere Objekte sind Photonenenergien von mehr als einem Megaelektronenvolt (MeV) noetig, um nutzbare Transmissionswerte zu erreichen. Ein wichtiger Faktor fuer die Qualitaet hochenergetischer Roentgentomographien ist der Anteil der Streustrahlung auf den CT-Bildern. Roentgenstrahlung kann sowohl im zu untersuchenden Objekt, als auch vom Messinstrument und -umfeld streuen und fuehrt zu einem verfaelschten

  19. FSU High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Prosper, Harrison B. [Florida State Univ., Tallahassee, FL (United States); Adams, Todd [Florida State Univ., Tallahassee, FL (United States); Askew, Andrew [Florida State Univ., Tallahassee, FL (United States); Berg, Bernd [Florida State Univ., Tallahassee, FL (United States); Blessing, Susan K. [Florida State Univ., Tallahassee, FL (United States); Okui, Takemichi [Florida State Univ., Tallahassee, FL (United States); Owens, Joseph F. [Florida State Univ., Tallahassee, FL (United States); Reina, Laura [Florida State Univ., Tallahassee, FL (United States); Wahl, Horst D. [Florida State Univ., Tallahassee, FL (United States)

    2014-12-01

    The High Energy Physics group at Florida State University (FSU), which was established in 1958, is engaged in the study of the fundamental constituents of matter and the laws by which they interact. The group comprises theoretical and experimental physicists, who sometimes collaborate on projects of mutual interest. The report highlights the main recent achievements of the group. Significant, recent, achievements of the group’s theoretical physicists include progress in making precise predictions in the theory of the Higgs boson and its associated processes, and in the theoretical understanding of mathematical quantities called parton distribution functions that are related to the structure of composite particles such as the proton. These functions are needed to compare data from particle collisions, such as the proton-proton collisions at the CERN Large Hadron Collider (LHC), with theoretical predictions. The report also describes the progress in providing analogous functions for heavy nuclei, which find application in neutrino physics. The report highlights progress in understanding quantum field theory on a lattice of points in space and time (an area of study called lattice field theory), the progress in constructing several theories of potential new physics that can be tested at the LHC, and interesting new ideas in the theory of the inflationary expansion of the very early universe. The focus of the experimental physicists is the Compact Muon Solenoid (CMS) experiment at CERN. The report, however, also includes results from the D0 experiment at Fermilab to which the group made numerous contributions over a period of many years. The experimental group is particularly interested in looking for new physics at the LHC that may provide the necessary insight to extend the standard model (SM) of particle physics. Indeed, the search for new physics is the primary task of contemporary particle physics, one motivated by the need to explain certain facts, such as the

  20. Quantitative assessment of scattering contributions in high energy cone-beam computed tomography; Quantitative Untersuchung der Streubeitraege in Hochenergie-Roentgencomputertomografie

    Energy Technology Data Exchange (ETDEWEB)

    Stritt, Carina; Schuetz, Philipp; Plamondon, Mathieu; Hofmann, Juergen; Sennhauser, Urs [Empa, Duebendorf (Switzerland). Reliability Science and Technology Laboratory; Flisch, Alexander [Empa, Duebendorf (Switzerland). Reliability Science and Technology Laboratory; Empa, Duebendorf (Switzerland). Center for X-Ray Analytics

    2016-02-01

    X-ray computed tomography (CT) is an established method in the fields of failure analysis and quality control. The energy of the X-ray beam determines the penetration length of the radiation and hereby limits the size and the density of the object that is investigated. For the case of large, dense and heavy objects, X-ray energies exceeding one mega electronvolt (MeV) are needed to achieve measureable transmission values. An important factor for the quality of X-ray CT is the contribution of scattered radiation in the radiographies. X-ray photons can be scattered from the object as well as the instrumentation and the environment which leads to a distorted transmission image. Besides scattered radiation, the physical effect of pair production has to be taken into account for radiation in the range of MeV. This work investigates the impact of each of the scattering processes on the radiography. Detailed Monte Carlo simulations help to distinguish the physical interactions as well as scattered radiation from system components. In contrast to previous studies, not only a set of simple geometric objects made of different materials is examined, but also models of the components of a CT scanner are used to estimate the contribution of scattering of various system components.

  1. Natural radiation contribution to renewable energy searching

    Energy Technology Data Exchange (ETDEWEB)

    Balcazar, M.; Lopez, A. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Flores, M.; Huerta, M., E-mail: miguel.balcazar@inin.gob.mx [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Alejandro Volta 655, 58290 Morelia, Michoacan (Mexico)

    2014-08-15

    High anomalies of naturally occurring radon in geothermal fields are becoming an additional geophysics tool for determining the areas of geothermal activity underground. Under close collaboration with the Federal Electricity Board in Mexico (CFE), we have study four geothermal fields (Los Azufres, Tres Virgenes, Humeros and Acoculco) for extending the energy potentially. The heat source in hydrothermal systems produces geothermal gasses, which transport radon to the surface faster than the common diffusion process in absence of a geothermal activity. This paper presents: mechanism of radon production, main physical and chemical features that make it an excellent indicator for locating heat sources of geothermal reservoirs, the detection basis of in situ radon concentration using a high sensitive radiation chamber and the planning experimental strategy for successful use of this technique. (author)

  2. High energy semiconductor switch

    Science.gov (United States)

    Risberg, R. L.

    1989-02-01

    The objective was a controller for electric motors. By operating standard Nema B induction motors at variable speed a great deal of energy is saved. This is especially true in pumping and air conditioning applications. To allow wider use of variable speed AC drives, and to provide improved performance, a better semiconductor switch was sought. This was termed the High Energy Semiconductor Switch.

  3. High Energy Density Laboratory Astrophysics

    CERN Document Server

    Lebedev, Sergey V

    2007-01-01

    During the past decade, research teams around the world have developed astrophysics-relevant research utilizing high energy-density facilities such as intense lasers and z-pinches. Every two years, at the International conference on High Energy Density Laboratory Astrophysics, scientists interested in this emerging field discuss the progress in topics covering: - Stellar evolution, stellar envelopes, opacities, radiation transport - Planetary Interiors, high-pressure EOS, dense plasma atomic physics - Supernovae, gamma-ray bursts, exploding systems, strong shocks, turbulent mixing - Supernova remnants, shock processing, radiative shocks - Astrophysical jets, high-Mach-number flows, magnetized radiative jets, magnetic reconnection - Compact object accretion disks, x-ray photoionized plasmas - Ultrastrong fields, particle acceleration, collisionless shocks. These proceedings cover many of the invited and contributed papers presented at the 6th International Conference on High Energy Density Laboratory Astrophys...

  4. High-energy detector

    Science.gov (United States)

    Bolotnikov, Aleksey E [South Setauket, NY; Camarda, Giuseppe [Farmingville, NY; Cui, Yonggang [Upton, NY; James, Ralph B [Ridge, NY

    2011-11-22

    The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

  5. High Energy Exoplanet Transits

    Science.gov (United States)

    Llama, Joe; Shkolnik, Evgenya L.

    2017-10-01

    X-ray and ultraviolet transits of exoplanets allow us to probe the atmospheres of these worlds. High energy transits have been shown to be deeper but also more variable than in the optical. By simulating exoplanet transits using high-energy observations of the Sun, we can test the limits of our ability to accurately measure the properties of these planets in the presence of stellar activity. We use both disk-resolved images of the Solar disk spanning soft X-rays, the ultraviolet, and the optical and also disk-integrated Sun-as-a-star observations of the Lyα irradiance to simulate transits over a wide wavelength range. We find that for stars with activity levels similar to the Sun, the planet-to-star radius ratio can be overestimated by up to 50% if the planet occults an active region at high energies. We also compare our simulations to high energy transits of WASP-12b, HD 189733, 55 Cnc b, and GJ 436b.

  6. High energy battery. Hochenergiebatterie

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, H.; Beyermann, G.; Bulling, M.

    1992-03-26

    In a high energy battery with a large number of individual cells in a housing with a cooling medium flowing through it, it is proposed that the cooling medium should be guided so that it only affects one or both sides of the cells thermally.

  7. High energy particle astronomy.

    Science.gov (United States)

    Buffington, A.; Muller, R. A.; Smith, L. H.; Smoot, G. F.

    1972-01-01

    Discussion of techniques currently used in high energy particle astronomy for measuring charged and neutral cosmic rays and their isotope and momentum distribution. Derived from methods developed for accelerator experiments in particle physics, these techniques help perform important particle astronomy experiments pertaining to nuclear cosmic ray and gamma ray research, electron and position probes, and antimatter searches.

  8. Theoretical High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Christ, Norman H.; Weinberg, Erick J.

    2014-07-14

    we provide reports from each of the six faculty supported by the Department of Energy High Energy Physics Theory grant at Columbia University. Each is followed by a bibliography of the references cited. A complete list of all of the publications in the 12/1/2010-04/30/2014 period resulting from research supported by this grant is provided in the following section. The final section lists the Ph.D. dissertations based on research supported by the grant that were submitted during this period.

  9. URBox : High tech energy and informal housing

    NARCIS (Netherlands)

    Cuperus, Y.J.; Smets, D.

    2011-01-01

    This paper reports on the URBox concept encompassing the high tech end of solar energy and informal low cost and affordable housing. It aims to contribute to solving the global energy crisis by building solar energy settlements in deserts where land is affordable and sunshine in abundance. First the

  10. High Energy Particle Accelerators

    CERN Multimedia

    Audio Productions, Inc, New York

    1960-01-01

    Film about the different particle accelerators in the US. Nuclear research in the US has developed into a broad and well-balanced program.Tour of accelerator installations, accelerator development work now in progress and a number of typical experiments with high energy particles. Brookhaven, Cosmotron. Univ. Calif. Berkeley, Bevatron. Anti-proton experiment. Negative k meson experiment. Bubble chambers. A section on an electron accelerator. Projection of new accelerators. Princeton/Penn. build proton synchrotron. Argonne National Lab. Brookhaven, PS construction. Cambridge Electron Accelerator; Harvard/MIT. SLAC studying a linear accelerator. Other research at Madison, Wisconsin, Fixed Field Alternate Gradient Focusing. (FFAG) Oakridge, Tenn., cyclotron. Two-beam machine. Comments : Interesting overview of high energy particle accelerators installations in the US in these early years. .

  11. Determination of macronutrients, by chemical analysis, of home-prepared milk feeding bottles and their contribution to the energy and protein requirements of infants from high and low socioeconomic classes.

    Science.gov (United States)

    Morais, Tania Beninga; Sigulem, Dirce Maria

    2002-06-01

    To determine the macronutrients composition of home-prepared milk feeding bottles, by chemical analysis, and assess their contribution to the energy and protein requirements of children under two years of age from high (HSE) and low (LSE) socioeconomic classes. 72 samples were analyzed for energy density and protein, fat and carbohydrate content: 41 from the LSE group and 31 from the HSE group. The assessment of the percentages of the energy and protein requirements met by the consumption of the milk bottles was calculated as follows: the energy and protein per 100 mL obtained through chemical analysis were multiplied by the volume consumed at each feeding, then by the number of feedings per day, the results divided by the energy and protein requirements and multiplied by 100. Energy and protein requirements were those recommended by the FAO/WHO/UNU Committee and the Food and Nutrition Board. The children's weight-for-age index was assessed. Unmodified cow's milk was largely consumed by both groups. The addition of sugar and other ingredients to the milk was significantly higher in the LSE group. Moisture, protein and fat content were lower in the LSE group, whereas carbohydrate and energy content were higher. The percentages of energy and protein requirements provided by feeding bottles were higher in the LSE group. Children in the LSE group had lower z-scores for weight-for-age. Differences in the preparation practices led to differences in the chemical results. The feeding bottles in the LSE group were high in energy, due to the addition of sugar and cereals to the milk in the bottle. The milk feeding bottles were an important weaning food providing more than 50% and 100% of the children's energy and protein requirements, respectively. The children's weight-for-age index was within the normal limits.

  12. Energy system contributions in indoor rock climbing.

    Science.gov (United States)

    Bertuzzi, Rômulo Cássio de Moraes; Franchini, Emerson; Kokubun, Eduardo; Kiss, Maria Augusta Peduti Dal Molin

    2007-10-01

    The present study cross-sectionally investigated the influence of training status, route difficulty and upper body aerobic and anaerobic performance of climbers on the energetics of indoor rock climbing. Six elite climbers (EC) and seven recreational climbers (RC) were submitted to the following laboratory tests: (a) anthropometry, (b) upper body aerobic power, and (c) upper body Wingate test. On another occasion, EC subjects climbed an easy, a moderate, and a difficult route, whereas RC subjects climbed only the easy route. The fractions of the aerobic (W(AER)), anaerobic alactic (W(PCR)) and anaerobic lactic (W[La(-)]) systems were calculated based on oxygen uptake, the fast component of excess post-exercise oxygen uptake, and changes in net blood lactate, respectively. On the easy route, the metabolic cost was significantly lower in EC [40.3 (6.5) kJ] than in RC [60.1 (8.8) kJ] (P climbing an easy route were 39.7 (5.0), 34.0 (5.8), and 26.3% (3.8), respectively. These results indicate that the main energy systems required during indoor rock climbing are the aerobic and anaerobic alactic systems. In addition, climbing economy seems to be more important for the performance of these athletes than improved energy metabolism.

  13. Shielding high energy accelerators

    CERN Document Server

    Stevenson, Graham Roger

    2001-01-01

    After introducing the subject of shielding high energy accelerators, point source, line-of-sight models, and in particular the Moyer model. are discussed. Their use in the shielding of proton and electron accelerators is demonstrated and their limitations noted. especially in relation to shielding in the forward direction provided by large, flat walls. The limitations of reducing problems to those using it cylindrical geometry description are stressed. Finally the use of different estimators for predicting dose is discussed. It is suggested that dose calculated from track-length estimators will generally give the most satisfactory estimate. (9 refs).

  14. High energy cosmic rays

    CERN Document Server

    Stanev, Todor

    2010-01-01

    Offers an accessible text and reference (a cosmic-ray manual) for graduate students entering the field and high-energy astrophysicists will find this an accessible cosmic-ray manual Easy to read for the general astronomer, the first part describes the standard model of cosmic rays based on our understanding of modern particle physics. Presents the acceleration scenario in some detail in supernovae explosions as well as in the passage of cosmic rays through the Galaxy. Compares experimental data in the atmosphere as well as underground are compared with theoretical models

  15. Estimating the energy contribution during single and repeated sprint swimming.

    Science.gov (United States)

    Peyrebrune, M C; Toubekis, A G; Lakomy, H K A; Nevill, M E

    2014-04-01

    The extent to which aerobic processes contribute to energy supply during short duration sprint swimming is not known. Therefore, the energy contribution to a maximal 30 s fully tethered swim (FTS), and repeated 4 × 30 s high intensity semi-tethered swimming bouts (STS) with 30 s of passive rest at 95% of the 30 s FTS intensity was estimated in eight elite male swimmers. Blood lactate concentration and pH after the 4 × 30 s test were 12.1 ± 3.6 mmol/L and 7.2 ± 0.1, respectively. Accumulated oxygen demand was estimated to be 50.9 ± 9.6 mL/kg and 48.3 ± 8.4, 47.2 ± 8.5, 47.4 ± 8.3, and 45.6 ± 6.8 mL/kg for the 30 s FTS and 4 × 30 s bouts, respectively. Accumulated oxygen uptake was 16.6 ± 3.6 for the 30 s FTS and progressively increased during the 4 × 30 s bouts 12.2 ± 2.1, 21.6 ± 2.5, 22.8 ± 1.8, and 23.5 ± 2.0 mL/kg (P importance of aerobic energy contribution during single and repeated high intensity swimming, which should be considered when prescribing swimming training sets of this nature. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. The unrecognized contribution of renewable energy to Europe's energy savings target

    NARCIS (Netherlands)

    Harmsen, R.; Wesselink, B.; Eichhammer, W.; Worrell, E.

    2011-01-01

    We show that renewable energy contributes to Europe's 2020 primary energy savings target. This contribution, which is to a large extent still unknown and not recognized by policy makers, results from the way renewable energy is dealt with in Europe's energy statistics. We discuss the policy

  17. High energy astrophysical techniques

    CERN Document Server

    Poggiani, Rosa

    2017-01-01

    This textbook presents ultraviolet and X-ray astronomy, gamma-ray astronomy, cosmic ray astronomy, neutrino astronomy, and gravitational wave astronomy as distinct research areas, focusing on the astrophysics targets and the requirements with respect to instrumentation and observation methods. The purpose of the book is to bridge the gap between the reference books and the specialized literature. For each type of astronomy, the discussion proceeds from the orders of magnitude for observable quantities. The physical principles of photon and particle detectors are then addressed, and the specific telescopes and combinations of detectors, presented. Finally the instruments and their limits are discussed with a view to assisting readers in the planning and execution of observations. Astronomical observations with high-energy photons and particles represent the newest additions to multimessenger astronomy and this book will be of value to all with an interest in the field.

  18. High energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-07-01

    This proposal is for the continuation of the High Energy Physics program at the University of California at Riverside. In hadron collider physics the authors will complete their transition from experiment UA1 at CERN to the DZERO experiment at Fermilab. On experiment UA1 their effort will concentrate on data analysis at Riverside. At Fermilab they will coordinate the high voltage system for all detector elements. They will also carry out hardware/software development for the D0 muon detector. The TPC/Two-Gamma experiment has completed its present phase of data-taking after accumulating 160 pb{sup {minus}}1 of luminosity. The UC Riverside group will continue data and physics analysis and make minor hardware improvement for the high luminosity run. The UC Riverside group is participating in design and implementation of the data acquisition system for the OPAL experiment at LEP. Mechanical and electronics construction of the OPAL hadron calorimeter strip readout system is proceeding on schedule. Data analysis and Monte Carlo detector simulation efforts are proceeding in preparation for the first physics run when IEP operation comenses in fall 1989.

  19. Contributions to the financial mathematics of energy markets

    NARCIS (Netherlands)

    Permana, F.J.

    2008-01-01

    This thesis provides several contributions to quantitative finance for energy markets: electricity price modelling, implying oil price volatilities, pricing and hedging of exotic commodity options. Electricity spot prices are characterized by spikes (jumps) because electricity is non-storable. A

  20. NIFS contributions to 19th IAEA fusion energy conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-11-01

    NIFS has presented 21 papers at the 19th IAEA Fusion Energy Conference (Lyon, France, 14-19 October 2002). The contributed papers are collected in this report. The 21 papers are indexed individually. (J.P.N.)

  1. Prior low- or high-intensity exercise alters pacing strategy, energy system contribution and performance during a 4-km cycling time trial.

    Science.gov (United States)

    Correia-Oliveira, Carlos Rafaell; Santos, Ralmony Alcantara; Silva-Cavalcante, Marcos David; Bertuzzi, Romulo; Kiss, Maria Augusta Peduti Dal'Molin; Bishop, David John; Lima-Silva, Adriano Eduardo

    2014-01-01

    We analyzed the influence of prior exercise designed to reduce predominantly muscle glycogen in either type I or II fibers on pacing and performance during a 4-km cycling time trial (TT). After preliminary and familiarization trials, in a randomized, repeated-measures crossover design, ten amateur cyclists performed: 1) an exercise designed to reduce glycogen of type I muscle fibers, followed by a 4-km TT (EX-FIB I); 2) an exercise designed to reduce glycogen of type II muscle fibers, followed by a 4-km TT (EX-FIB II) and; 3) a 4-km TT, without the prior exercise (CONT). The muscle-glycogen-reducing exercise in both EX-FIB I and EX-FIB II was performed in the evening, ∼12 h before the 4-km TT. Performance time was increased and power output (PO) was reduced in EX-FIB I (432.8±8.3 s and 204.9±10.9 W) and EX-FIB II (428.7±6.7 s and 207.5±9.1 W) compared to CONT (420.8±6.4 s and 218.4±9.3 W; P0.05). The PO was lower in EX-FIB I than in CONT at the beginning and middle of the trial (P0.05). The integrated electromyography was unchanged between conditions (P>0.05). Performance may have been impaired in EX-FIB I due a more conservative pacing at the beginning and middle, which was associated with a reduced aerobic contribution. In turn, the PO profile adopted in EX-FIB II was also reduced throughout the trial, but the impairment in performance may be attributed to a reduced glycolytic contribution (i.e. reduced lactate accumulation).

  2. Prior low- or high-intensity exercise alters pacing strategy, energy system contribution and performance during a 4-km cycling time trial.

    Directory of Open Access Journals (Sweden)

    Carlos Rafaell Correia-Oliveira

    Full Text Available We analyzed the influence of prior exercise designed to reduce predominantly muscle glycogen in either type I or II fibers on pacing and performance during a 4-km cycling time trial (TT. After preliminary and familiarization trials, in a randomized, repeated-measures crossover design, ten amateur cyclists performed: 1 an exercise designed to reduce glycogen of type I muscle fibers, followed by a 4-km TT (EX-FIB I; 2 an exercise designed to reduce glycogen of type II muscle fibers, followed by a 4-km TT (EX-FIB II and; 3 a 4-km TT, without the prior exercise (CONT. The muscle-glycogen-reducing exercise in both EX-FIB I and EX-FIB II was performed in the evening, ∼12 h before the 4-km TT. Performance time was increased and power output (PO was reduced in EX-FIB I (432.8±8.3 s and 204.9±10.9 W and EX-FIB II (428.7±6.7 s and 207.5±9.1 W compared to CONT (420.8±6.4 s and 218.4±9.3 W; P0.05. The PO was lower in EX-FIB I than in CONT at the beginning and middle of the trial (P0.05. The integrated electromyography was unchanged between conditions (P>0.05. Performance may have been impaired in EX-FIB I due a more conservative pacing at the beginning and middle, which was associated with a reduced aerobic contribution. In turn, the PO profile adopted in EX-FIB II was also reduced throughout the trial, but the impairment in performance may be attributed to a reduced glycolytic contribution (i.e. reduced lactate accumulation.

  3. High Energy Density Capacitors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA?s future space science missions cannot be realized without the state of the art energy storage devices which require high energy density, high reliability, and...

  4. Addressing Energy System Modelling Challenges: The Contribution of the Open Energy Modelling Framework (oemof)

    DEFF Research Database (Denmark)

    Hilpert, Simon; Günther, Stephan; Kaldemeyer, Cord

    2017-01-01

    complexity of energy systems and high uncertainties on different levels. In addition, interdisciplinary modelling is necessary for getting insight in mechanisms of an integrated world. At the same time models need to meet scientific standards as public acceptance becomes increasingly important......The process of modelling energy systems is accompanied by challenges inherently connected with mathematical modelling. However, due to modern realities in the 21st century, existing challenges are gaining in magnitude and are supplemented with new ones. Modellers are confronted with a rising....... In this intricate environment model application as well as result communication and interpretation is also getting more difficult. In this paper we present the open energy modelling framework (oemof) as a novel approach for energy system modelling and derive its contribution to existing challenges. Therefore, based...

  5. High energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-07-01

    This proposal is for the continuation of the High Energy Physics Program at the University of California, Riverside. In 1990, we will concentrate on analysis of LEP data from the OPAL detector. We expect to record 10{sup 5} Z`s by the end of 1989 and 10{sup 6} in 1990. This data will be used to measure the number of quark-lepton families in the universe. In the second half of 1990 we will also be occupied with the installation of the D-Zero detector in the Tevatron Collider and the preparation of software for the 1991 run. A new initiative made possible by generous university support is a laboratory for detector development at UCR. The focus will be on silicon strip tracking detectors both for the D-Zero upgrade and for SSC physics. The theory program will pursue further various mass-generating radiative mechanisms for understanding small quark and lepton masses as well as some novel phenomenological aspects of supersymmetry.

  6. Dosimetry of high energy radiation

    CERN Document Server

    Sahare, P D

    2018-01-01

    High energy radiation is hazardous to living beings and a threat to mankind. The correct estimation of the high energy radiation is a must and a single technique may not be very successful. The process of estimating the dose (the absorbed energy that could cause damages) is called dosimetry. This book covers the basic technical knowledge in the field of radiation dosimetry. It also makes readers aware of the dangers and hazards of high energy radiation.

  7. MEET ISOLDE - High Energy Physics

    CERN Multimedia

    2017-01-01

    Meet ISOLDE - High Energy Physics. ISOLDE is always developing, equipment moves on and off the hall floor, new groups start and end experiments regularly, visiting scientists come and go and experiments evolve. So it was a natural step for ISOLDE to expand from its core low energy science into high-energies.

  8. Energy peaks: A high energy physics outlook

    Science.gov (United States)

    Franceschini, Roberto

    2017-12-01

    Energy distributions of decay products carry information on the kinematics of the decay in ways that are at the same time straightforward and quite hidden. I will review these properties and discuss their early historical applications, as well as more recent ones in the context of (i) methods for the measurement of masses of new physics particle with semi-invisible decays, (ii) the characterization of Dark Matter particles produced at colliders, (iii) precision mass measurements of Standard Model particles, in particular of the top quark. Finally, I will give an outlook of further developments and applications of energy peak method for high energy physics at colliders and beyond.

  9. Consistent estimation of Gibbs energy using component contributions.

    Directory of Open Access Journals (Sweden)

    Elad Noor

    Full Text Available Standard Gibbs energies of reactions are increasingly being used in metabolic modeling for applying thermodynamic constraints on reaction rates, metabolite concentrations and kinetic parameters. The increasing scope and diversity of metabolic models has led scientists to look for genome-scale solutions that can estimate the standard Gibbs energy of all the reactions in metabolism. Group contribution methods greatly increase coverage, albeit at the price of decreased precision. We present here a way to combine the estimations of group contribution with the more accurate reactant contributions by decomposing each reaction into two parts and applying one of the methods on each of them. This method gives priority to the reactant contributions over group contributions while guaranteeing that all estimations will be consistent, i.e. will not violate the first law of thermodynamics. We show that there is a significant increase in the accuracy of our estimations compared to standard group contribution. Specifically, our cross-validation results show an 80% reduction in the median absolute residual for reactions that can be derived by reactant contributions only. We provide the full framework and source code for deriving estimates of standard reaction Gibbs energy, as well as confidence intervals, and believe this will facilitate the wide use of thermodynamic data for a better understanding of metabolism.

  10. Energy-System Contributions to Simulated Judo Matches.

    Science.gov (United States)

    Julio, Ursula F; Panissa, Valéria L G; Esteves, João V; Cury, Rubiana L; Agostinho, Marcus F; Franchini, Emerson

    2017-05-01

    To estimate the contribution of the 3 energy systems to simulated judo matches. Twelve judo athletes (18 ± 1 y, 175.1 ± 5.3 cm, 74.3 ± 10.5 kg, 11.7% ± 1.5% body fat, 8 ± 2 y of practice) performed 5 combats with different durations (1, 2, 3, 4, and 5 min), against the same opponent, on different days and blinded to the duration. The estimated energy contributions for the oxidative, glycolytic, and ATP-PCr systems were calculated based on oxygen uptake (V̇O2) during activity, Delta of lactate, and the fast phase of excess V ̇ O2, respectively. Analysis of mixed models for repeated measures was used to compare the contribution of the 3 energy systems and different durations of judo matches, followed by a post hoc Bonferroni test. The oxidative system's contribution (70%) was higher than those of the glycolytic (8%; P < .001) and ATP-PCr (21%; P < .001) energy systems (in all durations), and the ATP-PCr contribution was higher than that of the glycolytic energy system (up to 3 min). In addition, during the match there was an increase in the oxidative (from 50% to 81%; P < .001), a decrease in the ATP-PCr (from 40% to 12%; P < .001), and maintenance of the glycolytic contributions (between 6% and 10%). There is a predominance of the oxidative system to supply the energy cost of judo matches from the first minute of combat up to the end, compared with the anaerobic systems.

  11. Experimental High Energy Physics Research

    Energy Technology Data Exchange (ETDEWEB)

    Hohlmann, Marcus [Florida Inst. of Technology, Melbourne, FL (United States). Dept. of Physics and Space Sciences

    2016-01-13

    This final report summarizes activities of the Florida Tech High Energy Physics group supported by DOE under grant #DE-SC0008024 during the period June 2012 – March 2015. We focused on one of the main HEP research thrusts at the Energy Frontier by participating in the CMS experiment. We were exploiting the tremendous physics opportunities at the Large Hadron Collider (LHC) and prepared for physics at its planned extension, the High-Luminosity LHC. The effort comprised a physics component with analysis of data from the first LHC run and contributions to the CMS Phase-2 upgrades in the muon endcap system (EMU) for the High-Luminosity LHC. The emphasis of our hardware work was the development of large-area Gas Electron Multipliers (GEMs) for the CMS forward muon upgrade. We built a production and testing site for such detectors at Florida Tech to complement future chamber production at CERN. The first full-scale CMS GE1/1 chamber prototype ever built outside of CERN was constructed at Florida Tech in summer 2013. We conducted two beam tests with GEM prototype chambers at CERN in 2012 and at FNAL in 2013 and reported the results at conferences and in publications. Principal Investigator Hohlmann served as chair of the collaboration board of the CMS GEM collaboration and as co-coordinator of the GEM detector working group. He edited and authored sections of the detector chapter of the Technical Design Report (TDR) for the GEM muon upgrade, which was approved by the LHCC and the CERN Research Board in 2015. During the course of the TDR approval process, the GEM project was also established as an official subsystem of the muon system by the CMS muon institution board. On the physics side, graduate student Kalakhety performed a Z' search in the dimuon channel with the 2011 and 2012 CMS datasets that utilized 20.6 fb⁻¹ of p-p collisions at √s = 8 TeV. For the dimuon channel alone, the 95% CL lower limits obtained on the mass of a Z' resonance are 2770 Ge

  12. High Energy Materials

    Indian Academy of Sciences (India)

    IAS Admin

    sition giving out heat, light, sound and large volumes of gases. The amount of energy released varies with the ... Explosives are classified according to applications either for. 2 Pyrotechnics is the art of manu- facturing or .... rockets are based on Newton's Third Law: an action will always have an equal and opposite reaction.

  13. High energy neutrinos from GRBs

    CERN Document Server

    De Paolis, F; Orlando, D; Perrone, L

    2001-01-01

    It is by now recognized that GRBs can accelerate protons to relativistic energies and that high density media may be present nearby the source. We compute the high-energy gamma-ray and neutrino fluxes from the decay of pions produced through the interaction of accelerated protons with nucleons in the surrounding medium. Then, we estimate the flux of high-energy muons induced on a detector by upward-going neutrinos interacting through charge current processes with the surrounding matter.

  14. Importance of configurational contributions to the free energy of nanoclusters

    Directory of Open Access Journals (Sweden)

    M. Posselt

    2013-07-01

    Full Text Available An effective simulation method based on the Wang-Landau Monte Carlo algorithm is used in order to demonstrate the significance of the configurational contributions to the free energy of embedded nanoclusters. Starting from the most stable cluster configuration the simulation provides all geometrically different, but simply connected and sufficiently compact configurations of a nanocluster of a given size and the respective formation energies. The knowledge of these data allows the calculation of the free formation and free binding energy of the cluster at T ≠ 0. The method is applied to coherent Cu clusters in bcc-Fe. It is shown that even at moderate temperatures the configurational contributions to the free formation and binding energy must not be neglected. The dependence of the monomer free binding energy on clusters size is found to change significantly with increasing temperature which has a considerable effect on the pathway of cluster evolution. Therefore, present investigations provide an essential contribution to the improvement of the input parameters for object kinetic Monte Carlo simulations and rate theory used in multi-scale simulations of the nanostructure evolution. The calculation scheme developed in this work is rather general and applicable to many types of embedded nanoclusters. Compared to the method of overlapping distributions hitherto used in some cases to determine the configurational part of the free energy the new method has major advantages. Various tests are performed in order verify the presented approach and to compare with the results of the other calculation procedure. A roadmap is proposed to include the vibrational contributions to the free energy of the clusters within the framework of the method employed in this work.

  15. High-energy communication

    CERN Multimedia

    CERN Communication Group

    2015-01-01

    On Wednesday at 10.40 a.m., the LHC operators declared “stable beams” after two years of technical stop and a few months of commissioning. It was an exciting day for all the teams involved, including those who worked on communicating the news to the public and the media on multiple platforms.   CERN’s most successful tweet on 3 June featured collision images from ALICE, ATLAS, CMS and LHCb and was shared 800 times by the Twitter audience. Live blogging, social media posts, a live webcast, and a constant outpouring of photos and videos: Wednesday morning was a crazy time for the communication teams from CERN, the experiments and various institutes around the world. Even though the event started very early in the morning (the live CCC blog started at 7 a.m. and the live webcast at 8.20 a.m.), the public and the media tuned in to follow and generously cover the start of the LHC’s physics run at an unprecedented energy of 13 TeV. The statistics showed th...

  16. High energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-07-01

    Hadron collider studies will focus on: (i) the search for the top quark with the newly installed D0 detector at the Fermilab Tevatron collider, (ii) the upgrade of the D0 detector to match the new main injector luminosity and (iii) R&D on silicon microstrip tracking devices for the SSC. High statistics studies of Z{sup 0} decay will continue with the OPAL detector at LEP. These studies will include a direct measurement of Z decay to neutrinos, the search for Higgs and heavy quark decays of Z. Preparations for the Large Scintillation Neutrino Detector (LSND) to measure neutrino oscillations at LAMPF will focus on data acquisition and testing of photomultiplier tubes. In the theoretical area E. Ma will concentrate on mass-generating radiative mechanisms for light quarks and leptons in renormalizable gauge field theories. J. Wudka`s program includes a detailed investigation of the magnetic-flip approach to the solar neutrino.

  17. High energy physics

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-10

    The Counter Group continues to work on data analysis for Fermilab Experiment E653. Altogether, they expect several thousand reconstructed charm events and approximately 25 B pair events of which 12 have been observed thus far. Preparation continue for Fermilab Experiment E781, a high statistics study of charm baryon production. In the Theory Group, Cutkosky and collaborators study hadron phenomenology and non-perturbative QCD calculations. Levine has a long standing program in computational QED to obtain improved theoretical values for g-2 of the electron. Wolfenstein, Li, and their collaborators have worked on areas of weak interaction phenomenology that may yield insights beyond the standard model, e.g. CP violation and non-zero neutrino masses. Holman has been concerned with phase transitions in gauge theories relevant to cosmological problems. During 1991 most of the group effort was concentrated on the L3 experiment at CERN. Highlights of the results from the analysis of the Z[degrees] resonance include (a) a measurement of the strong coupling constant [alpha][sub s] for b quarks (b) a precision measurement of the average time of B hadrons and (c) a direct determination of the number of light neutrino faculties from the reaction e[sup +]e[sup [minus

  18. High energy physics

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-10

    The Counter Group continues to work on data analysis for Fermilab Experiment E653. Altogether, they expect several thousand reconstructed charm events and approximately 25 B pair events of which 12 have been observed thus far. Preparation continue for Fermilab Experiment E781, a high statistics study of charm baryon production. In the Theory Group, Cutkosky and collaborators study hadron phenomenology and non-perturbative QCD calculations. Levine has a long standing program in computational QED to obtain improved theoretical values for g-2 of the electron. Wolfenstein, Li, and their collaborators have worked on areas of weak interaction phenomenology that may yield insights beyond the standard model, e.g. CP violation and non-zero neutrino masses. Holman has been concerned with phase transitions in gauge theories relevant to cosmological problems. During 1991 most of the group effort was concentrated on the L3 experiment at CERN. Highlights of the results from the analysis of the Z{degrees} resonance include (a) a measurement of the strong coupling constant {alpha}{sub s} for b quarks (b) a precision measurement of the average time of B hadrons and (c) a direct determination of the number of light neutrino faculties from the reaction e{sup +}e{sup {minus}} {yields} {nu}{bar {nu}}{gamma}. We also began a major upgrade of the L3 luminosity monitor by replacing PWC chamber by a Si strip system in front of the BGO calorimeters. Finally we have continued our SSC R&D work on BaF{sub 2} by joining the GEM collaboration.

  19. Low energy hadronic contribution to the QED vacuum polarization

    CERN Document Server

    Burkhardt, H

    2005-01-01

    Recent improvements in the low energy e+e- annihilation data and their influence on the determination of the hadronic contribution to the running of the QED fine structure constant at m_Z are discussed. Using CMD-2 and KLOE measurements in the rho region we obtain Delta alpha(5)_had(s) = 0.02758 +/- 0.00035 at s = m_Z^2.

  20. Developments in high energy theory

    Indian Academy of Sciences (India)

    It provides a panoramic view of the main theoretical developments in high energy physics since its inception more than half a century ago, a period in which experiments have spanned an enormous range of energies, theories have been developed leading up to the Standard Model, and proposals – including the radical ...

  1. The contributions of the white book on the energies; Les contributions au livre blanc sur les energies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This document provides the contributions to the white book on the energies of the following associations: the Academy of Technology, the ADECA (association for the development of agricultural fuels), the ADEME (agency of the environment and the energy mastership), the AEPN (association of ecologists for the nuclear), the AFG (french association of the gas) and Uprigaz (professional union of the private industries of the gas) and CFPB (french committee of the butane and the propane), the AMORCE (association of local and professional collectivities responsible of the cogeneration, the local energy management and the municipal wastes management), the APSA (association for the protection of the Abers sites), the ATEE (technical association energy environment), Jean Besson, the CEA (atomic energy center), the CFE-CGC (french confederation of the frame CGC), the CFTC (french confederation of the christian), CLER (joining committee on the renewable energies), CNISF (national council of french engineers and scientists), CNPA (national council of the automotive industry, branch of fuels retailers), Concorde energy, B. Dessus and B. Laponche, right to the energy-SOS Futur, EAF (french autonomous electric power), EDF, FEE (France wind energy), FFPI (french federation of independent oil fielders) and UFIP (french union of petroleum industries) and UIP (union of oil importers), FG3E (french federation of administrator enterprises in equipment services, the energy and the environment), FILMM (national syndicate of isolating mineral wools manufacturers) and SNPA (national syndicate of cell plastics), Gaz de Bordeaux, Gaz De France, GPAE (Group of autonomous producers of hydro-energy), HESPUL, IFP (french institute of petroleum), H. Nifenecker, PS (socialist party), RARE (regional agencies of the energy and the environment), Rhonalenergie-environment, RTE (electric power transport network), SER (syndicat of the renewable energies), SFEN (french society of the nuclear energy

  2. High-energy astroparticle physics

    CERN Document Server

    Semikoz, A

    2010-01-01

    In these three lectures I discuss the present status of high-energy astroparticle physics including Ultra-High-Energy Cosmic Rays (UHECR), high-energy gamma rays, and neutrinos. The first lecture is devoted to ultra-high-energy cosmic rays. After a brief introduction to UHECR I discuss the acceleration of charged particles to highest energies in the astrophysical objects, their propagation in the intergalactic space, recent observational results by the Auger and HiRes experiments, anisotropies of UHECR arrival directions, and secondary gamma rays produced by UHECR. In the second lecture I review recent results on TeV gamma rays. After a short introduction to detection techniques, I discuss recent exciting results of the H.E.S.S., MAGIC, and Milagro experiments on the point-like and diffuse sources of TeV gamma rays. A special section is devoted to the detection of extragalactic magnetic fields with TeV gammaray measurements. Finally, in the third lecture I discuss Ultra-High-Energy (UHE) neutrinos. I review t...

  3. STACKING FAULT ENERGY IN HIGH MANGANESE ALLOYS

    Directory of Open Access Journals (Sweden)

    Eva Mazancová

    2009-04-01

    Full Text Available Stacking fault energy of high manganese alloys (marked as TWIP and TRIPLEX is an important parameter determining deformation mechanism type realized in above mentioned alloys. Stacking fault energy level can be asserted with a gliding of partial and/or full dislocations, b gliding mechanism and twinning deformation process in connection with increasing of fracture deformation level (deformation elongation and with increasing of simultaneously realized work hardening proces., c gliding mechanism and deformation induced e-martensite formation. In contribution calculated stacking fault energies are presented for various chemical compositions of high manganese alloys. Stacking fault energy dependences on manganese, carbon, iron and alluminium contents are presented. Results are confronted with some accessible papers.The aim of work is to deepen knowledge of presented data. The TWIP and TRIPLEX alloys can be held for promissing new automotive materials.

  4. Canadian contributions to high temperature superconductivity research

    Energy Technology Data Exchange (ETDEWEB)

    Berlinsky, A.J.

    This paper presents a review of contributions from Canadian researchers to the field of investigating superconductivity in the range of 35/sup 0/K and up. Research projects since January 1987 are described or mentioned, including investigation of superconducting materials, theories of superconducting behavior, measurements of local magnetic fields in superconductors, and the production and modification of new oxide superconductors.

  5. Assessing high wind energy penetration

    DEFF Research Database (Denmark)

    Tande, J.O.

    1995-01-01

    In order to convincingly promote installing wind power capacity as a substantial part of the energy supply system, a set of careful analyses must be undertaken. This paper applies a case study concentrated on assessing the cost/benefit of high wind energy penetration. The case study considers...... expanding the grid connected wind power capacity in Praia, the capital of Cape Verde. The currently installed 1 MW of wind power is estimated to supply close to 10% of the electric energy consumption in 1996. Increasing the wind energy penetration to a higher level is considered viable as the project...... with the existing wind power, supply over 30% of the electric consumption in 1996. Applying the recommended practices for estimating the cost of wind energy, the life-cycle cost of this 2.4 MW investment is estimated at a 7% discount rate and a 20 year lifetime to 0.26 DKK/kW h....

  6. Geomicrobiological analysis of highly mineralized geothermal waters as a contribution to the optimum use of geothermal energy; Geomikrobiologische Forschungsarbeiten an hochmineralisierten Tiefenwaessern als Beitrag zur optimalen Nutzung geothermischer Energie

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, M.; Voelsgen, F.; Hofmann, K.; Bochning, S. [URST Umwelt- und Rohstoff-Technologie, Greifswald (Germany); Keller, T. [Geothermie Neubrandenburg GmbH (Germany)

    1997-12-01

    In the context of a BMBF-funded project for Mecklenburg-Vorpommern, `Geomicrobiological analysis of geothermal waters used for energy generation`, the authors continued the series of microbiological analyses of the thermal water of the geothermal heating station at Neustadt-Glewe beyond full commissioning of the plant in April 1995. Their activities also included performance of model experiments for examination of the conditions causing massive development of microorganisms in the aquifer or in the thermal water loops of the heating station. The experimental results show that compliance with the findings and recommended operational measures will guarantee long-term operating stability of the heating station. However, in-service microbiological monitoring routines are required in order to early detect and prevent unwanted processes in the thermal water system. (orig.) [Deutsch] Im Rahmen des vom BMBF gefoerderten Projektes `Geomikrobiologische Untersuchungen an geothermisch genutzten Tiefenwaessern Nordostdeutschlands` (Mecklenburg-Vorpommern) haben wir uns auch nach voller Inbetriebnahme des Erdwaerme-Heizwerkes Neustadt-Glewe (April 1995) auf die mikrobiologische Analyse des Thermalwassers konzentriert. Darueber hinaus wurde in Modellversuchen geprueft, unter welchen Bedingungen eine Massenentwicklung von Mikroorganismen im Aquifer bzw. Thermalwasserkreislauf moeglich ist. Die Versuche haben gezeigt, dass unter Beachtung der erzielten Befunde bei sachgemaesser Betriebsfuehrung die Langzeitstabilitaet der Anlage gewaehrleistet ist. Jedoch sind mikrobiologische Betriebskontrollen unerlaesslich, um unerwuenschte Prozesse im Thermalwassersystem rechtzeitig erkenn en und verhindern zu koennen. (orig.)

  7. High-energy scissors mode

    Energy Technology Data Exchange (ETDEWEB)

    Nojarov, R.; Faessler, A.; Dingfelder, M. [Institut fuer Theoretische Physik, Universitaet Tuebingen, Auf der Morgenstelle 14, D-72076 Tuebingen (Germany)

    1995-05-01

    All the orbital {ital M}1 excitations, at both low and high energies, obtained from a rotationally invariant quasiparticle random-phase approximation, represent the fragmented scissors mode. The high-energy {ital M}1 strength is almost purely orbital and resides in the region of the isovector giant quadrupole resonance. In heavy deformed nuclei the high-energy scissors model is strongly fragmented between 17 and 25 MeV (with uncertainties arising from the poor knowledge of the isovector potential). The coherent scissors motion is hindered by the fragmentation and {ital B}({ital M}1){lt}0.25{mu}{sub {ital N}}{sup 2} for single transitions in this region. The ({ital e},{ital e}{prime}) cross sections for excitations above 17 MeV are one order of magnitude larger for {ital E}2 than for {ital M}1 excitations even at backward angles.

  8. High energy astrophysics. An introduction

    Energy Technology Data Exchange (ETDEWEB)

    Courvoisier, Thierry J.L. [Geneva Univ., Versoix (Switzerland). ISDC, Data Centre for Astrophysics

    2013-07-01

    Based on observational examples this book reveals and explains high-energy astrophysical processes. Presents the theory of astrophysical processes in a didactic approach by deriving equations step by step. With several attractive astronomical pictures. High-energy astrophysics has unveiled a Universe very different from that only known from optical observations. It has revealed many types of objects in which typical variability timescales are as short as years, months, days, and hours (in quasars, X-ray binaries, and other objects), and even down to milli-seconds in gamma ray bursts. The sources of energy that are encountered are only very seldom nuclear fusion, and most of the time gravitation, a paradox when one thinks that gravitation is, by many orders of magnitude, the weakest of the fundamental interactions. The understanding of these objects' physical conditions and the processes revealed by high-energy astrophysics in the last decades is nowadays part of astrophysicists' culture, even of those active in other domains of astronomy. This book evolved from lectures given to master and PhD students at the University of Geneva since the early 1990s. It aims at providing astronomers and physicists intending to be active in high-energy astrophysics a broad basis on which they should be able to build the more specific knowledge they will need. While in the first part of the book the physical processes are described and derived in detail, the second part studies astrophysical objects in which high-energy astrophysics plays a crucial role. This two-pronged approach will help students recognise physical processes by their observational signatures in contexts that may differ widely from those presented here.

  9. High-energy atomic physics

    CERN Document Server

    Drukarev, Evgeny G

    2016-01-01

    This self-contained text introduces readers to the field of high-energy atomic physics - a new regime of photon-atom interactions in which the photon energies significantly exceed the atomic or molecular binding energies, and which opened up with the recent advent of new synchrotron sources. From a theoretical point of view, a small-parameter characteristic of the bound system emerged, making it possible to perform analytic perturbative calculations that can in turn serve as benchmarks for more powerful numerical computations. The first part of the book introduces readers to the foundations of this new regime and its theoretical treatment. In particular, the validity of the small-parameter perturbation expansion and of the lowest-order approximation is critically reviewed. The following chapters then apply these insights to various atomic processes, such as photoionization as a many-body problem, dominant mechanisms for the production of ions at higher energies, Compton scattering and ionization accompanied b...

  10. Contribution of Nanostructures in High Performance Solar Cells

    Science.gov (United States)

    Aly, Abouelmaaty M.; Ebrahim, Essamudin A.; Sweelem, Emad

    2017-08-01

    Nanotechnology has great contributions in various fields, especially in solar energy conversion through solar cells (SCs). Nanostructured SCs can provide high performance with lower fabrication costs. The transition from fossil fuel energy to renewable sustainable energy represents a major technological challenge for the world. In the last years, the industry of SCs has grown rapidly due to strong attention in renewable energy in order to handle the problem of global climate change that is now believed to occur due to use of the fossil fuels. Cost is an influential factor in the eventual success of any solar technology, since inexpensive SCs are needed to produce electricity, especially for rural areas and for third world countries. Therefore, new developments in nanotechnology may open the door for the production of inexpensive and more efficient SCs by reducing the manufacturing costs of SCs. Utilizing nanotechnology in cheaper SCs will help maintain the environment. This article covers a review of the progress that has been made to-date to enhance efficiencies of various nanostructures used in SCs, including utilizations of all the wavelengths present in of the solar spectrum.

  11. Contribution of Nanostructures in High Performance Solar Cells

    Science.gov (United States)

    Aly, Abouelmaaty M.; Ebrahim, Essamudin A.; Sweelem, Emad

    2017-11-01

    Nanotechnology has great contributions in various fields, especially in solar energy conversion through solar cells (SCs). Nanostructured SCs can provide high performance with lower fabrication costs. The transition from fossil fuel energy to renewable sustainable energy represents a major technological challenge for the world. In the last years, the industry of SCs has grown rapidly due to strong attention in renewable energy in order to handle the problem of global climate change that is now believed to occur due to use of the fossil fuels. Cost is an influential factor in the eventual success of any solar technology, since inexpensive SCs are needed to produce electricity, especially for rural areas and for third world countries. Therefore, new developments in nanotechnology may open the door for the production of inexpensive and more efficient SCs by reducing the manufacturing costs of SCs. Utilizing nanotechnology in cheaper SCs will help maintain the environment. This article covers a review of the progress that has been made to-date to enhance efficiencies of various nanostructures used in SCs, including utilizations of all the wavelengths present in of the solar spectrum.

  12. Autophagy contributes to nighttime energy availability for growth in Arabidopsis.

    Science.gov (United States)

    Izumi, Masanori; Hidema, Jun; Makino, Amane; Ishida, Hiroyuki

    2013-04-01

    Autophagy is an intracellular process leading to the vacuolar degradation of cytoplasmic components. Autophagic degradation of chloroplasts is particularly activated in leaves under conditions of low sugar availability. Here, we investigated the importance of autophagy in the energy availability and growth of Arabidopsis (Arabidopsis thaliana). autophagy-deficient (atg) mutants showed reduced growth under short-day conditions. This growth inhibition was largely relieved under continuous light or under short-day conditions combined with feeding of exogenous sucrose, suggesting that autophagy is involved in energy production at night for growth. Arabidopsis accumulates starch during the day and degrades it for respiration at night. Nighttime energy availability is perturbed in starchless mutants, in which a lack of starch accumulation causes a transient sugar deficit at night. We generated starchless and atg double mutants and grew them under different photoperiods. The double mutants showed more severe phenotypes than did atg or starchless single mutants: reduced growth and early cell death in leaves were observed when plants were grown under 10-h photoperiods. Transcript analysis of dark-inducible genes revealed that the sugar starvation symptoms observed in starchless mutants became more severe in starchless atg double mutants. The contents of free amino acids (AAs) increased, and transcript levels of several genes involved in AA catabolism were elevated in starchless mutant leaves. The increases in branched-chain AA and aromatic AA contents were partially compromised in starchless atg double mutants. We conclude that autophagy can contribute to energy availability at night by providing a supply of alternative energy sources such as AAs.

  13. Developments in high energy theory

    Indian Academy of Sciences (India)

    High-energy physics; gauge theories; Standard Model; physics beyond the ... elusive goal. The Standard Model describes the electromagnetic, weak and strong interactions, but only unifies the first two. Despite its spectacular success in ex ..... Towards the end of the 1960s, a path-breaking new 'deep inelastic' electron scat-.

  14. Society and High Skills: contributions and prospects

    Directory of Open Access Journals (Sweden)

    Thais Aline Casseb da Silva

    2010-12-01

    Full Text Available The intention of this research is to investigate and understand the importance of investing in high-skilled individual and how the family influences that context. For this, we seek the concepts of intelligence and high ability / giftedness to determine the characteristics of this individual and also to demonstrate through a literature and society and the family influence the behavior of a gifted person.

  15. Beverages contribute extra calories to meals and daily energy intake in overweight and obese women.

    Science.gov (United States)

    Appelhans, Bradley M; Bleil, Maria E; Waring, Molly E; Schneider, Kristin L; Nackers, Lisa M; Busch, Andrew M; Whited, Matthew C; Pagoto, Sherry L

    2013-10-02

    Caloric beverages may promote obesity by yielding energy without producing satiety, but prior laboratory and intervention studies are inconclusive. This study examined whether the diets of free-living overweight and obese women show evidence that calories from beverages are offset by reductions in solid food within individual eating occasions and across entire days. Eighty-two women weighed and recorded all consumed foods and beverages for seven days. Beverages were coded as high-calorie (≥ 0.165 kcal/g) or low-calorie (calorie or low-calorie beverages and those with no reported beverage. Energy intake from solid food was also unrelated to the number of high-calorie or low-calorie beverages consumed per day. On average, eating occasions that included a high-calorie beverage were 169 kcal higher in total energy than those with no reported beverage, and 195 kcal higher in total energy than those that included a low-calorie beverage. Each high-calorie beverage consumed per day contributed an additional 147 kcal to women's daily energy intake, whereas low-calorie beverage intake was unrelated to daily energy intake. Beverages contributed to total energy intake in a near-additive fashion among free-living overweight and obese women, suggesting a need to develop more effective interventions to reduce caloric beverage intake in the context of weight management, and to potentially reexamine dietary guidelines. © 2013.

  16. Scalar Contribution to the Graviton Self-Energy During Inflation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sohyun [Univ. of Florida, Gainesville, FL (United States)

    2012-01-01

    We use dimensional regularization to evaluate the one loop contribution to the graviton self-energy from a massless, minimally coupled scalar on a locally de Sitter background. For noncoincident points our result agrees with the stress tensor correlators obtained recently by Perez-Nadal, Roura and Verdaguer. We absorb the ultraviolet divergences using the R2 and C2 counterterms first derived by ’t Hooft and Veltman, and we take the D = 4 limit of the finite remainder. The renormalized result is expressed as the sum of two transverse, 4th order differential operators acting on nonlocal, de Sitter invariant structure functions. In this form it can be used to quantum-correct the linearized Einstein equations so that one can study how the inflationary production of infrared scalars affects the propagation of dynamical gravitons and the force of gravity. We have seen that they have no effect on the propagation of dynamical gravitons. Our computation motivates a conjecture for the first correction to the vacuum state wave functional of gravitons. We comment as well on performing the same analysis for the more interesting contribution from inflationary gravitons, and on inferring one loop corrections to the force of gravity.

  17. Hydrogen evolution by fermentation using seaweed as substrates and the contribution to the clean energy production

    Energy Technology Data Exchange (ETDEWEB)

    Tanisho, S.; Suganuma, T.; Yamaguchi, A. [Yokohama National Univ. (Japan). Dept. of Environmental Sciences

    2001-07-01

    It is an important theme in Japan to use the sea for energy production, because Japan is surrounded by seas on all sides. Brown algae such as Laminaria have high value as the substrate of fermentative hydrogen production, since they have very high growth rate and also have high ability on the productivity of mannitol. I would like to present about the affection of salt concentration on the hydrogen production of Enterobacter aerogenes, and also the contribution on clean energy production by the seaweed cultivation in Japan. (orig.)

  18. High energy density aluminum battery

    Science.gov (United States)

    Brown, Gilbert M.; Paranthaman, Mariappan Parans; Dai, Sheng; Dudney, Nancy J.; Manthiram, Arumugan; McIntyre, Timothy J.; Sun, Xiao-Guang; Liu, Hansan

    2016-10-11

    Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a material capable of intercalating aluminum or lithium ions during a discharge cycle and deintercalating the aluminum or lithium ions during a charge cycle. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of aluminum or lithium at the cathode.

  19. A high energy physics perspective

    Energy Technology Data Exchange (ETDEWEB)

    Marciano, W.J.

    1997-01-13

    The status of the Standard model and role of symmetry in its development are reviewed. Some outstanding problems are surveyed and possible solutions in the form of additional {open_quotes}Hidden Symmetries {close_quotes} are discussed. Experimental approaches to uncover {open_quotes}New Physics{close_quotes} associated with those symmetries are described with emphasis on high energy colliders. An outlook for the future is given.

  20. Quantum chromodynamics at high energy

    CERN Document Server

    Kovchegov, Yuri V

    2012-01-01

    Filling a gap in the current literature, this book is the first entirely dedicated to high energy QCD including parton saturation. It presents groundbreaking progress on the subject and describes many of the problems at the forefront of research, bringing postgraduate students, theorists and advanced experimentalists up to date with the current status of the field. A broad range of topics in high energy QCD are covered, most notably on the physics of parton saturation and the Color Glass Condensate (CGC). The material is presented in a pedagogical way, with numerous examples and exercises. Discussion ranges from the quasi-classical McLerran–Venugopalan model to the linear and non-linear BFKL/BK/JIMWLK small-x evolution equations. The authors adopt both a theoretical and experimental outlook and present the physics of strong interactions in a universal way, making it useful to physicists from various sub-communities and applicable to processes studied at high energy accelerators around the world.

  1. Contribution to global computation infrastructure: inter-platform delegation, integration of standard services and application to high-energy physics; Contribution aux infrastructures de calcul global: delegation inter plates-formes, integration de services standards et application a la physique des hautes energies

    Energy Technology Data Exchange (ETDEWEB)

    Lodygensky, Oleg [Laboratoire de Recherche en Informatique, Laboratoire de l' Accelerateur Lineaire, Bat. 200, 91898 Orsay Cedex (France)

    2006-07-01

    The generalization and implementation of the current information resources, particularly the large storing capacities and the networks allow conceiving new methods of work and ways of entertainment. Centralized stand-alone, monolithic computing stations have been gradually replaced by distributed client-tailored architectures which in turn are challenged by the new distributed systems called 'pair-by pair' systems. This migration is no longer with the specialists' realm but users of more modest skills get used with this new techniques for e-mailing commercial information and exchanging various sorts of files on a 'equal-to-equal' basis. Trade, industry and research as well make profits largely of the new technique called 'grid', this new technique of handling information at a global scale. The present work concerns the grid utilisation for computation. A synergy was created with Paris-Sud University at Orsay, between the Information Research Laboratory (LRI) and the Linear Accelerator Laboratory (LAL) in order to foster the works on grid infrastructure of high research interest for LRI and offering new working methods for LAL. The results of the work developed within this inter-disciplinary-collaboration are based on XtremWeb, the research and production platform for global computation elaborated at LRI. First one presents the current status of the large-scale distributed systems, their basic principles and user-oriented architecture. The XtremWeb is then described focusing the modifications which were effected upon both architecture and implementation in order to fulfill optimally the requirements imposed to such a platform. Then one presents studies with the platform allowing a generalization of the inter-grid resources and development of a user-oriented grid adapted to special services, as well,. Finally one presents the operation modes, the problems to solve and the advantages of this new platform for the high-energy research

  2. Energy, added sugar, and saturated fat contributions of taxed beverages and foods in Mexico

    Directory of Open Access Journals (Sweden)

    Carolina Batis

    2017-08-01

    Full Text Available Objective. To estimate the dietary contribution of taxed beverages and foods. Materials and methods. Using 24-hour diet recall data from the Ensanut 2012 (n=10 096, we estimated the contribution of the items which were taxed in 2014 to the total energy, added sugar, and saturated fat intakes in the entire sample and by sociodemographic characteristics. Results. The contributions for energy, added sugar, and saturated fat were found to be 5.5, 38.1, and 0.4%, respectively, for the taxed beverages, and 14.4, 23.8, and 21.4%, respectively, for the taxed foods. Children and adolescents (vs. adults, medium and high socioeconomic status (vs. low, urban area (vs. rural, and North and Center region (vs. South had higher energy contribution of taxed beverages and foods. The energy contribution was similar between males and females. Conclusions. These taxes covered an important proportion of Mexicans’ diet and therefore have the potential to improve it meaningfully.

  3. Photoproduction at high energy and high intensity

    CERN Multimedia

    2002-01-01

    The photon beam used for this programme is tagged and provides a large flux up to very high energies (150-200 GeV). It is also hadron-free, since it is obtained by a two-step conversion method. A spectrometer is designed to exploit this beam and to perform a programme of photoproduction with a high level of sensitivity (5-50 events/picobarn).\\\\ \\\\ Priority will be given to the study of processes exhibiting the point-like behaviour of the photon, especially deep inelastic Compton scattering. The spectrometer has two magnets. Charged tracks are measured by MWPC's located only in field-free regions. Three calorimeters provide a large coverage for identifying and measuring electrons and photons. An iron filter downstream identifies muons. Most of the equipment is existing and recuperated from previous experiments.

  4. Energy efficient engine program contributions to aircraft fuel conservation

    Science.gov (United States)

    Batterton, P. G.

    1984-01-01

    Significant advances in high bypass turbofan technologies that enhance fuel efficiency have been demonstrated in the NASA Energy Efficient Engine Program. This highly successful second propulsion element of the NASA Aircraft Energy Efficiency Program included major contract efforts with both General Electric and Pratt & Whitney. Major results of these efforts will be presented including highlights from the NASA/General Electric E3 research turbofan engine test. Direct application of all the E3 technologies could result in fuel savings of over 18% compared to the CF6-50 and JT9D-7. Application of the E3 technologies to new and derivative engines such as the CF6-80C and PW 2037, as well as others, will be discussed. Significant portions of the fuel savings benefit for these new products can be directly related to the E3 technology program. Finally, results of a study looking at far term advanced turbofan engines will be briefly described. The study shows that substantial additional fuel savings over E3 are possible with additional turbofan technology programs.

  5. Duke University high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Fortney, L.R.; Goshaw, A.T.; Walker, W.D.

    1992-07-01

    This Progress Report presents a review of the research done in 1992 by the Duke High Energy Physics Group. This is the first year of a three-year grant which was approved by the Office of High Energy Physics at DOE after an external review of our research program during the summer of 1991. Our research is centered at Fermilab where we are involved with two active experiments, one using the Tevatron collider (CDF, the Collider Detector Facility) and the other using a proton beam in the high intensity laboratory (E771, study of beauty production). In addition to these running experiments we are continuing the analysis of data from experiments E735 (collider search for a quark-gluon plasma), E705 (fixed target study of direct photon and {sub {Chi}} meson production) and E597 (particle production from hadron-nucleus collisions). Finally, this year has seen an expansion of our involvement with the design of the central tracking detector for the Solenoidal Detector Collaboration (SDC) and an increased role in the governance of the collaboration. Descriptions of these research activities are presented in this report.

  6. The contribution of renewable energy resources on the electrification and development at the Guantanamo Province

    Energy Technology Data Exchange (ETDEWEB)

    Perez, S.; Angel, J. [CUBASOLAR, Guantanamo (Cuba); Moreno Figueredo, C. [Centro de Estudio de Tecnologias Energeticas Renovables (Cuba); Montesinos Larrosa, A. [Sociedad Cubana para la Promocion de las Energias Renovables (Cuba)

    2008-07-01

    Cuba's Guantanamo province is a leader in the application of renewable energy technologies. This paper discussed the socio-economic impact of renewable energy projects that are underway in the Guantanamo province to improve the standard of living in rural areas. More than 400 rural schools and 70 rural medical offices get their electricity from photovoltaic systems. Hydropower provides the energy needs to 3000 rural houses with 11,000 inhabitants. Other applications include remote community solar systems, improved woodstoves for community kitchens, solar cookers and solar dryers. This paper demonstrated how the high penetration of these renewable energy technologies has contributed to the sustainable development of the province. The lessons learned in energy management by the local governments and research institutions were also outlined. 1 tab.

  7. Computing support for High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Avery, P.; Yelton, J. [Univ. of Florida, Gainesville, FL (United States)

    1996-12-01

    This computing proposal (Task S) is submitted separately but in support of the High Energy Experiment (CLEO, Fermilab, CMS) and Theory tasks. The authors have built a very strong computing base at Florida over the past 8 years. In fact, computing has been one of the main contributions to their experimental collaborations, involving not just computing capacity for running Monte Carlos and data reduction, but participation in many computing initiatives, industrial partnerships, computing committees and collaborations. These facts justify the submission of a separate computing proposal.

  8. Energy deposition by heavy ions: Additivity of kinetic and potential energy contributions in hillock formation on CaF2

    Science.gov (United States)

    Wang, Y. Y.; Grygiel, C.; Dufour, C.; Sun, J. R.; Wang, Z. G.; Zhao, Y. T.; Xiao, G. Q.; Cheng, R.; Zhou, X. M.; Ren, J. R.; Liu, S. D.; Lei, Y.; Sun, Y. B.; Ritter, R.; Gruber, E.; Cassimi, A.; Monnet, I.; Bouffard, S.; Aumayr, F.; Toulemonde, M.

    2014-01-01

    Modification of surface and bulk properties of solids by irradiation with ion beams is a widely used technique with many applications in material science. In this study, we show that nano-hillocks on CaF2 crystal surfaces can be formed by individual impact of medium energy (3 and 5 MeV) highly charged ions (Xe22+ to Xe30+) as well as swift (kinetic energies between 12 and 58 MeV) heavy xenon ions. For very slow highly charged ions the appearance of hillocks is known to be linked to a threshold in potential energy (Ep) while for swift heavy ions a minimum electronic energy loss per unit length (Se) is necessary. With our results we bridge the gap between these two extreme cases and demonstrate, that with increasing energy deposition via Se the Ep-threshold for hillock production can be lowered substantially. Surprisingly, both mechanisms of energy deposition in the target surface seem to contribute in an additive way, which can be visualized in a phase diagram. We show that the inelastic thermal spike model, originally developed to describe such material modifications for swift heavy ions, can be extended to the case where both kinetic and potential energies are deposited into the surface. PMID:25034006

  9. Energy deposition by heavy ions: additivity of kinetic and potential energy contributions in hillock formation on CaF2.

    Science.gov (United States)

    Wang, Y Y; Grygiel, C; Dufour, C; Sun, J R; Wang, Z G; Zhao, Y T; Xiao, G Q; Cheng, R; Zhou, X M; Ren, J R; Liu, S D; Lei, Y; Sun, Y B; Ritter, R; Gruber, E; Cassimi, A; Monnet, I; Bouffard, S; Aumayr, F; Toulemonde, M

    2014-07-18

    Modification of surface and bulk properties of solids by irradiation with ion beams is a widely used technique with many applications in material science. In this study, we show that nano-hillocks on CaF2 crystal surfaces can be formed by individual impact of medium energy (3 and 5 MeV) highly charged ions (Xe(22+) to Xe(30+)) as well as swift (kinetic energies between 12 and 58 MeV) heavy xenon ions. For very slow highly charged ions the appearance of hillocks is known to be linked to a threshold in potential energy (Ep) while for swift heavy ions a minimum electronic energy loss per unit length (Se) is necessary. With our results we bridge the gap between these two extreme cases and demonstrate, that with increasing energy deposition via Se the Ep-threshold for hillock production can be lowered substantially. Surprisingly, both mechanisms of energy deposition in the target surface seem to contribute in an additive way, which can be visualized in a phase diagram. We show that the inelastic thermal spike model, originally developed to describe such material modifications for swift heavy ions, can be extended to the case where both kinetic and potential energies are deposited into the surface.

  10. Current Perspectives in High Energy Astrophysics

    Science.gov (United States)

    Ormes, Jonathan F. (Editor)

    1996-01-01

    High energy astrophysics is a space-age discipline that has taken a quantum leap forward in the 1990s. The observables are photons and particles that are unable to penetrate the atmosphere and can only be observed from space or very high altitude balloons. The lectures presented as chapters of this book are based on the results from the Compton Gamma-Ray Observatory (CGRO) and Advanced Satellite for Cosmology and Astrophysics (ASCA) missions to which the Laboratory for High Energy Astrophysics at NASA's Goddard Space Flight Center made significant hardware contributions. These missions study emissions from very hot plasmas, nuclear processes, and high energy particle interactions in space. Results to be discussed include gamma-ray beaming from active galactic nuclei (AGN), gamma-ray emission from pulsars, radioactive elements in the interstellar medium, X-ray emission from clusters of galaxies, and the progress being made to unravel the gamma-ray burst mystery. The recently launched X-ray Timing Explorer (XTE) and prospects for upcoming Astro-E and Advanced X-ray Astronomy Satellite (AXAF) missions are also discussed.

  11. Data Preservation in High Energy Physics

    CERN Document Server

    Kogler, Roman; Steder, Michael

    2011-01-01

    Data from high-energy physics experiments are collected with significant financial and human effort and are mostly unique. However, until recently no coherent strategy existed for data preservation and re-use, and many important and complex data sets have simply been lost. While the current focus is on the LHC at CERN, in the current period several important and unique experimental programs at other facilities are coming to an end, including those at HERA, b-factories and the Tevatron. To address this issue, an inter-experimental study group on HEP data preservation and long-term analysis (DPHEP) was convened at the end of 2008. The group now aims to publish a full and detailed review of the present status of data preservation in high energy physics. This contribution summarises the results of the DPHEP study group, describing the challenges of data preservation in high energy physics and the group's first conclusions and recommendations. The physics motivation for data preservation, generic computing and pre...

  12. Tactical high-energy laser

    Science.gov (United States)

    Shwartz, Josef; Wilson, Gerald T.; Avidor, Joel M.

    2002-06-01

    The Nautilus Project was started in 1995 as a joint US-Israel feasibility study for using laser systems to defend against short-range artillery rockets. It has now matured into a successful laser weapon demonstration program - the Tactical High Energy Laser (THEL) Advanced Concept Technology Demonstration (ACTD) Program. By now the THEL Demonstrator has engaged and destroyed a large number of artillery rockets in mid-flight in an extended series of demonstration tests at the US Army's White Sands Missile Range in New Mexico. The THEL ACTD hardware and development process are described in this paper, as well as the major test results. The paper also describes the operational concept for a deployed THEL weapon system and some possible growth paths for the THEL ACTD Program.

  13. High temperature thermoelectric energy conversion

    Science.gov (United States)

    Wood, Charles

    1987-01-01

    The theory and current status of materials research for high-temperature thermoelectric energy conversion are reviewed. Semiconductors are shown to be the preferred class of materials for this application. Optimization of the figure of merit of both broadband and narrow-band semiconductors is discussed as a function of temperature. Phonon scattering mechanisms are discussed, and basic material guidelines are given for reduction of thermal conductivity. Two general classes of materials show promise for high temperature figure of merit (Z) values, namely the rare earth chalcogenides and the boron-rich borides. The electronic transport properties of the rare earth chalcogenides are explicable on the basis of degenerate or partially degenerate n-type semiconductors. Boron and boron-rich borides exhibit p-type hopping conductivity, with detailed explanations proposed for the transport differing from compound to compound. Some discussion is presented on the reasons for the low thermal conductivities in these materials. Also, ZTs greater than one appear to have been realized at high temperature in many of these compounds.

  14. GEDAE-LaB: A Free Software to Calculate the Energy System Contributions during Exercise.

    Science.gov (United States)

    Bertuzzi, Rômulo; Melegati, Jorge; Bueno, Salomão; Ghiarone, Thaysa; Pasqua, Leonardo A; Gáspari, Arthur Fernandes; Lima-Silva, Adriano E; Goldman, Alfredo

    2016-01-01

    The aim of the current study is to describe the functionality of free software developed for energy system contributions and energy expenditure calculation during exercise, namely GEDAE-LaB. Eleven participants performed the following tests: 1) a maximal cycling incremental test to measure the ventilatory threshold and maximal oxygen uptake (V̇O2max); 2) a cycling workload constant test at moderate domain (90% ventilatory threshold); 3) a cycling workload constant test at severe domain (110% V̇O2max). Oxygen uptake and plasma lactate were measured during the tests. The contributions of the aerobic (AMET), anaerobic lactic (LAMET), and anaerobic alactic (ALMET) systems were calculated based on the oxygen uptake during exercise, the oxygen energy equivalents provided by lactate accumulation, and the fast component of excess post-exercise oxygen consumption, respectively. In order to assess the intra-investigator variation, four different investigators performed the analyses independently using GEDAE-LaB. A direct comparison with commercial software was also provided. All subjects completed 10 min of exercise at moderate domain, while the time to exhaustion at severe domain was 144 ± 65 s. The AMET, LAMET, and ALMET contributions during moderate domain were about 93, 2, and 5%, respectively. The AMET, LAMET, and ALMET contributions during severe domain were about 66, 21, and 13%, respectively. No statistical differences were found between the energy system contributions and energy expenditure obtained by GEDAE-LaB and commercial software for both moderate and severe domains (P > 0.05). The ICC revealed that these estimates were highly reliable among the four investigators for both moderate and severe domains (all ICC ≥ 0.94). These findings suggest that GEDAE-LaB is a free software easily comprehended by users minimally familiarized with adopted procedures for calculations of energetic profile using oxygen uptake and lactate accumulation during exercise. By

  15. Activities Contributing to Total Energy Expenditure in the United States: Results from the NHAPS Study

    Directory of Open Access Journals (Sweden)

    Block Gladys

    2004-02-01

    Full Text Available Abstract Background Physical activity is increasingly recognized as an important factor influencing health and disease status. Total energy expenditure, both low-intensity and high-intensity, contributes to maintenance of healthy body weight. This paper presents the results of a quantitative approach to determining the activities that contribute to total energy expenditure in the United States. Methods Data from the National Human Activity Pattern Survey (NHAPS were used. In 1992–1994 the NHAPS sampled 4,185 females and 3,330 males, aged 18 years and over, weighted to be representative of the 48 contiguous United States. A detailed report of each activity performed in the previous 24 hours was obtained. A score was created for each activity, by multiplying duration and intensity for each individual and summing across individuals. This score was then used to rank each activity according to its contribution to total population energy expenditure, for the total sample and separately for each gender, race, age, region, and season. Results This analysis reveals our society to be primarily sedentary; leisure time physical activity contributed only approximately 5% of the population's total energy expenditure. Not counting sleeping, the largest contributor to energy expenditure was "Driving a car", followed by "Office work" and "Watching TV". Household activities accounted for 20.1% and 33.3% of energy expenditure for males and females respectively. Conclusion The information presented in this paper may be useful in identifying common activities that could be appropriate targets for behavioral interventions to increase physical activity.

  16. High energy astrophysical neutrino flux and modified dispersion relations

    DEFF Research Database (Denmark)

    Alba, J. L. Bazo; Bustamante, M.; Gago, A. M.

    2009-01-01

    Motivated by the interest in searches for violation of CPT invariance, we study its possible effects in the flavour ratios of high-energy neutrinos coming from cosmic accelerators. In particular, we focus on the effect of an energy independent new physics contribution to the neutrino flavour osci...

  17. Laboratory high-energy astrophysics on lasers

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, W.H.; Liedahl, D.A.; Walling, R.S.; Foord, M.E.; Osterheld, A.L.; Wilson, B.G.

    1994-12-01

    The tremendous range of temperatures and densities spanned by astrophysical plasmas has significant overlap with conditions attainable using high-power laser facilities. These facilities provide an opportunity to create, control, and characterize plasmas in the laboratory that mirror conditions in some of the most important cosmological systems. Moreover, laboratory experiments can enhance astrophysical understanding by focusing on and isolating important physical processes, without necessarily reproducing the exact conditions of the integral system. Basic study of radiative properties, transport phenomena, thermodynamic response and hydrodynamic evolution in plasmas under properly scaled conditions leads both directly and indirectly to improved models of complex astrophysical systems. In this paper, we will discuss opportunities for current and planned highpower lasers to contribute to the study of high-energy astrophysics.

  18. Contributions to the financial mathematics of energy markets

    Energy Technology Data Exchange (ETDEWEB)

    Permana, F.J.

    2008-02-01

    This thesis provides several contributions to quantitative finance for energy markets: electricity price modelling, implying oil price volatilities, pricing and hedging of exotic commodity options. Electricity spot prices are characterized by spikes (jumps) because electricity is non-storable. A widely used model for stochastic component of electricity spot prices, a mean-reversion jump-diffusion model, is only partially successful to capture spikes. We propose the so-called potential Levy model, incorporating a potential function and a class of Levy process, i.e. those with a-stable distributions. In this model, after a jump, the potential function has higher mean-reversion rate than the 'normal' mean-reversion rate. Modelling stochastic price fluctuations using an a-stable distribution has several advantages: disentangling stochastic price fluctuations as a part of stochastic dynamics and jump dynamics, and assumption that the jump inter-arrival times are exponentially distributed are not necessary. This distribution is also heavy-tailed enough to capture spikes. The implied volatility obtained from liquid option prices by inverting the Black-Scholes formula is often considered as the best volatility forecast. The Black-Scholes model assumes a constant volatility for options on the same underlying asset. In practice, the implied volatilities vary across the strike prices and the times to maturity. We develop the so-called semi-parametric model for fitting the implied volatility surface, incorporating the simplicity of a parametric method and the flexibility of a non-parametric method. Such a model can capture the smile, skew or smirk shape and can deal with limited amount of option price data. A basket option is a convenient market risk management tool for a company whose portfolio consists of several assets. The difficulty in valuing basket options is that the weighted sum of log-normal random variables is not log-normally distributed anymore, which is

  19. High energy chemical laser system

    Science.gov (United States)

    Gregg, D.W.; Pearson, R.K.

    1975-12-23

    A high energy chemical laser system is described wherein explosive gaseous mixtures of a reducing agent providing hydrogen isotopes and interhalogen compounds are uniformly ignited by means of an electrical discharge, flash- photolysis or an electron beam. The resulting chemical explosion pumps a lasing chemical species, hydrogen fluoride or deuterium fluoride which is formed in the chemical reaction. The generated lasing pulse has light frequencies in the 3- micron range. Suitable interhalogen compounds include bromine trifluoride (BrF$sub 3$), bromine pentafluoride (BrF$sub 5$), chlorine monofluoride (ClF), chlorine trifluoride (ClF$sub 3$), chlorine pentafluoride (ClF$sub 5$), iodine pentafluoride (IF$sub 5$), and iodine heptafluoride (IF$sub 7$); and suitable reducing agents include hydrogen (H$sub 2$), hydrocarbons such as methane (CH$sub 4$), deuterium (D$sub 2$), and diborane (B$sub 2$H$sub 6$), as well as combinations of the gaseous compound and/or molecular mixtures of the reducing agent.

  20. Evaluation of drinks contribution to energy intake in summer and winter.

    Science.gov (United States)

    Malisova, Olga; Bountziouka, Vassiliki; Zampelas, Antonis; Kapsokefalou, Maria

    2015-05-15

    All drinks hydrate and most also provide nutrients and energy. Our objective was to evaluate the contribution of drinks to total energy intake in summer and winter. Data were obtained using the Water Balance Questionnaire (WBQ) from a sample of the general population in Athens, Greece (n = 984), 473 individuals (42 ± 18 years) in summer and 511 individuals (38 ± 20 years) in winter stratified by sex and age. The WBQ embeds a semi-quantitative food frequency questionnaire of 58 foods and the Short International Physical Activity Questionnaire. Data were analyzed for the contribution of drinks to total energy intake. In winter, total energy intake was 2082 ± 892 kcal/day; energy intake from drinks was 479 ± 286 kcal/day and energy expenditure 1860 ± 390 kcal/day. In summer, total energy intake was 1890 ± 894 kcal/day, energy intake from drinks 492 ± 499 kcal/day and energy expenditure 1830 ± 491 kcal/day. Energy intake from drinks in summer was higher than in winter (p drinks, milk, chocolate milk and alcoholic drinks contributed approximately 75% of energy from drinks. Fruit juice and sugar-sweetened drinks, including soft drinks and fruit juice based drinks, were consumed less frequently contributing up to 25% of drink energy intake. Drinks contribute approximately 1/4 of total energy intake depending on the energy content of the drink and frequency of consumption. Coffee, dairy and alcoholic drinks were the main energy contributors.

  1. Contribution of anaerobic energy expenditure to whole body thermogenesis

    Directory of Open Access Journals (Sweden)

    Scott Christopher B

    2005-06-01

    Full Text Available Abstract Heat production serves as the standard measurement for the determination of energy expenditure and efficiency in animals. Estimations of metabolic heat production have traditionally focused on gas exchange (oxygen uptake and carbon dioxide production although direct heat measurements may include an anaerobic component particularly when carbohydrate is oxidized. Stoichiometric interpretations of the ratio of carbon dioxide production to oxygen uptake suggest that both anaerobic and aerobic heat production and, by inference, all energy expenditure – can be accounted for with a measurement of oxygen uptake as 21.1 kJ per liter of oxygen. This manuscript incorporates contemporary bioenergetic interpretations of anaerobic and aerobic ATP turnover to promote the independence of these disparate types of metabolic energy transfer: each has different reactants and products, uses dissimilar enzymes, involves different types of biochemical reactions, takes place in separate cellular compartments, exploits different types of gradients and ultimately each operates with distinct efficiency. The 21.1 kJ per liter of oxygen for carbohydrate oxidation includes a small anaerobic heat component as part of anaerobic energy transfer. Faster rates of ATP turnover that exceed mitochondrial respiration and that are supported by rapid glycolytic phosphorylation with lactate production result in heat production that is independent of oxygen uptake. Simultaneous direct and indirect calorimetry has revealed that this anaerobic heat does not disappear when lactate is later oxidized and so oxygen uptake does not adequately measure anaerobic efficiency or energy expenditure (as was suggested by the "oxygen debt" hypothesis. An estimate of anaerobic energy transfer supplements the measurement of oxygen uptake and may improve the interpretation of whole-body energy expenditure.

  2. High energy laser demonstrators for defense applications

    Science.gov (United States)

    Jung, M.; Riesbeck, Th.; Schmitz, J.; Baumgärtel, Th.; Ludewigt, K.; Graf, A.

    2017-01-01

    Rheinmetall Waffe Munition has worked since 30 years in the area of High Energy Laser (HEL) for defence applications, starting from pulsed CO2 to pulsed glass rods lasers. In the last decade Rheinmetall Waffe Munition changed to diode pumped solid state laser (DPSSL) technology and has successfully developed, realised and tested a variety of versatile HEL weapon demonstrators for air- and ground defence scenarios like countering rocket, artillery, mortar, missile (RAMM), unmanned aerial systems (UAS) and unexploded ordnances clearing. By employing beam superimposing technology and a modular laser weapon concept, the total optical power has been successively increased. Stationary weapon platforms, military vehicles and naval platforms have been equipped with high energy laser effectors. The contribution gives a summary of the most recent development stages of Rheinmetalls HEL weapon program. In addition to the stationary 30 kW laser weapon demonstrator, we present vehicle based HEL demonstrators: the 5 kW class Mobile HEL Effector Track V, the 20 kW class Mobile HEL Effector Wheel XX and the 50 kW class Mobile HEL Effector Container L and the latest 10 kW HEL effector integrated in the naval weapon platform MLG 27. We describe the capabilities of these demonstrators against different potential targets. Furthermore, we will show the capability of the 30 kW stationary Laser Weapon Demonstrator integrated into an existing ground based air defence system to defeat saturated attacks of RAMM and UAS targets.

  3. Hydropower's Contribution to Energy Security

    Energy Technology Data Exchange (ETDEWEB)

    Altinbilek, D.; Abdel-Malek, R.; Devernay, J.M.; Gill, R.; Leney, S.; Moss, Terry; Schiffer, H.P.; Taylor, R.M.

    2007-07-01

    The role of hydropower within mixed power systems is analysed from the point of view of both quantitative and qualitative performance. Interrelationships with all other generation technologies are discussed and synergies identified. Resources, sustainability criteria and investment challenges are reviewed in the context of development. The objective of the paper is to define hydropower's contribution within the clean, clever and competitive markets of the future.

  4. Evaluation of Drinks Contribution to Energy Intake in Summer and Winter

    Science.gov (United States)

    Malisova, Olga; Bountziouka, Vassiliki; Zampelas, Antonis; Kapsokefalou, Maria

    2015-01-01

    All drinks hydrate and most also provide nutrients and energy. Our objective was to evaluate the contribution of drinks to total energy intake in summer and winter. Data were obtained using the Water Balance Questionnaire (WBQ) from a sample of the general population in Athens, Greece (n = 984), 473 individuals (42 ± 18 years) in summer and 511 individuals (38 ± 20 years) in winter stratified by sex and age. The WBQ embeds a semi-quantitative food frequency questionnaire of 58 foods and the Short International Physical Activity Questionnaire. Data were analyzed for the contribution of drinks to total energy intake. In winter, total energy intake was 2082 ± 892 kcal/day; energy intake from drinks was 479 ± 286 kcal/day and energy expenditure 1860 ± 390 kcal/day. In summer, total energy intake was 1890 ± 894 kcal/day, energy intake from drinks 492 ± 499 kcal/day and energy expenditure 1830 ± 491 kcal/day. Energy intake from drinks in summer was higher than in winter (p energy from drinks. Fruit juice and sugar-sweetened drinks, including soft drinks and fruit juice based drinks, were consumed less frequently contributing up to 25% of drink energy intake. Drinks contribute approximately 1/4 of total energy intake depending on the energy content of the drink and frequency of consumption. Coffee, dairy and alcoholic drinks were the main energy contributors. PMID:25988765

  5. Policy report. Contributions of energy efficiency measures to climate protection within the European Union until 2050

    Energy Technology Data Exchange (ETDEWEB)

    Bossmann, Tobias; Eichhammer, Wolfgang; Elsland, Rainer [Fraunhofer-Institut fuer System- und Innovationsforschung (ISI), Karlsruhe (Germany)

    2012-06-15

    Given the risks associated with global warming and its potential consequences due to the emissions of greenhouse gases (GHG), the European Union (EU) has pledged to reduce its emissions by at least 20 percent until 2020 and by at least 80 percent until 2050 compared to 1990 levels. In this context, the energy sector plays a crucial role, since approximately 80 percent of European GHG emissions in 2009 originate from this sector. Moreover, this sector offers the chance of almost complete decarbonisation based on a variety of technologies ranging from carbon-neutral electricity generation through highly-efficient energy conversion processes to energy saving options. The political challenge consists of developing a set of technology options which will ensure the shift takes place towards a sustainable European energy system which still complies with the constraints imposed by competitiveness and the security of supply. Since energy efficiency represents a powerful option to tackle these objectives, the present study analyses in detail to what extent energy savings can contribute to GHG emission mitigation in the EU until the year 2050 and which technologies are required for the energy saving potentials identified. This policy report contains a summary of the main results. The accompanying scientific report provides much more detailed information on the potentials and the technologies behind. The technology-based, bottom-up approach distinguishes this study from most of the other existing reports. The study comparison clearly shows that most of the time energy efficiency options are not being considered to their full extent as a technology option for carbon mitigation in the various scenarios. Moreover, the level of detail regarding the deployment of efficiency measures is well below the accuracy usually applied to the analysis of the energy supply side, particularly the power sector. The analysis of the different sectors reveals the largest final energy saving

  6. Sustainable Biofuel Contributions to Carbon Mitigation and Energy Independence

    Directory of Open Access Journals (Sweden)

    Phillip Steele

    2011-10-01

    Full Text Available The growing interest in US biofuels has been motivated by two primary national policy goals, (1 to reduce carbon emissions and (2 to achieve energy independence. However, the current low cost of fossil fuels is a key barrier to investments in woody biofuel production capacity. The effectiveness of wood derived biofuels must consider not only the feedstock competition with low cost fossil fuels but also the wide range of wood products uses that displace different fossil intensive products. Alternative uses of wood result in substantially different unit processes and carbon impacts over product life cycles. We developed life cycle data for new bioprocessing and feedstock collection models in order to make life cycle comparisons of effectiveness when biofuels displace gasoline and wood products displace fossil intensive building materials. Wood products and biofuels can be joint products from the same forestland. Substantial differences in effectiveness measures are revealed as well as difficulties in valuing tradeoffs between carbon mitigation and energy independence.

  7. High Energy Density Electrolytic Capacitor

    Science.gov (United States)

    Evans, David A.

    1996-01-01

    A new type of electrolytic capacitor which combines an electrolytic capacitor anode with an electrochemical capacitor cathode was developed. The resulting capacitor has a four time higher energy density than standard electrolytic capacitors, with comparable electric performance. The prototype, a 480 microFarad, 200 V device, has an energy density exceeding 4 J/cc. Now a 680 microFarad 50 V, MIL-style all tantalum device has been constructed and is undergoing qualification testing. Pending a favorable outcome, work will begin on other ratings. The potential for commercially significant development exists in applying this technology to aluminum-based electrolytic capacitors. It is possible to at least double the energy density of aluminum electrolytics, while using existing manufacturing methods, and without adding material expense. Data presented include electrical characteristics and performance measurements of the 200 V and 50 V hybrid capacitors and results from ongoing qualification testing of the MIL-style tantalum capacitors.

  8. Developments in high energy theory

    Indian Academy of Sciences (India)

    them aimed at a final unification of all fundamental forces including gravity. Attempts have been made to extend the reach of some of these theories, based on an underlying string-theory picture, all the way to the Planck energy scale MPl = (8πGN). −1/2,. GN being Newton's gravitational constant. MPl is. Keywords.

  9. The global contribution of energy consumption by product exports from China.

    Science.gov (United States)

    Tang, Erzi; Peng, Chong

    2017-06-01

    This paper presents a model to analyze the mechanism of the global contribution of energy usage by product exports. The theoretical analysis is based on the perspective that contribution estimates should be in relatively smaller sectors in which the production characteristics could be considered, such as the productivity distribution for each sector. Then, we constructed a method to measure the global contribution of energy usage. The simple method to estimate the global contribution is the percentage of goods export volume compared to the GDP as a multiple of total energy consumption, but this method underestimates the global contribution because it ignores the structure of energy consumption and product export in China. According to our measurement method and based on the theoretical analysis, we calculated the global contribution of energy consumption only by industrial manufactured product exports in a smaller sector per industry or manufacturing sector. The results indicated that approximately 42% of the total energy usage in the whole economy for China in 2013 was contributed to foreign regions. Along with the primary products and service export in China, the global contribution of energy consumption for China in 2013 by export was larger than 42% of the total energy usage.

  10. Split School of High Energy Physics 2015

    CERN Document Server

    2015-01-01

    Split School of High Energy Physics 2015 (SSHEP 2015) was held at the Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture (FESB), University of Split, from September 14 to September 18, 2015. SSHEP 2015 aimed at master and PhD students who were interested in topics pertaining to High Energy Physics. SSHEP 2015 is the sixth edition of the High Energy Physics School. Previous five editions were held at the Department of Physics, University of Sarajevo, Bosnia and Herzegovina.

  11. High-energy electron diffraction and microscopy

    CERN Document Server

    Peng, L M; Whelan, M J

    2011-01-01

    This book provides a comprehensive introduction to high energy electron diffraction and elastic and inelastic scattering of high energy electrons, with particular emphasis on applications to modern electron microscopy. Starting from a survey of fundamental phenomena, the authors introduce the most important concepts underlying modern understanding of high energy electron diffraction. Dynamical diffraction in transmission (THEED) and reflection (RHEED) geometries is treated using ageneral matrix theory, where computer programs and worked examples are provided to illustrate the concepts and to f

  12. GEDAE-LaB: A Free Software to Calculate the Energy System Contributions during Exercise

    Science.gov (United States)

    Bertuzzi, Rômulo; Melegati, Jorge; Bueno, Salomão; Ghiarone, Thaysa; Pasqua, Leonardo A.; Gáspari, Arthur Fernandes; Lima-Silva, Adriano E.; Goldman, Alfredo

    2016-01-01

    Purpose The aim of the current study is to describe the functionality of free software developed for energy system contributions and energy expenditure calculation during exercise, namely GEDAE-LaB. Methods Eleven participants performed the following tests: 1) a maximal cycling incremental test to measure the ventilatory threshold and maximal oxygen uptake (V˙O2max); 2) a cycling workload constant test at moderate domain (90% ventilatory threshold); 3) a cycling workload constant test at severe domain (110% V˙O2max). Oxygen uptake and plasma lactate were measured during the tests. The contributions of the aerobic (AMET), anaerobic lactic (LAMET), and anaerobic alactic (ALMET) systems were calculated based on the oxygen uptake during exercise, the oxygen energy equivalents provided by lactate accumulation, and the fast component of excess post-exercise oxygen consumption, respectively. In order to assess the intra-investigator variation, four different investigators performed the analyses independently using GEDAE-LaB. A direct comparison with commercial software was also provided. Results All subjects completed 10 min of exercise at moderate domain, while the time to exhaustion at severe domain was 144 ± 65 s. The AMET, LAMET, and ALMET contributions during moderate domain were about 93, 2, and 5%, respectively. The AMET, LAMET, and ALMET contributions during severe domain were about 66, 21, and 13%, respectively. No statistical differences were found between the energy system contributions and energy expenditure obtained by GEDAE-LaB and commercial software for both moderate and severe domains (P > 0.05). The ICC revealed that these estimates were highly reliable among the four investigators for both moderate and severe domains (all ICC ≥ 0.94). Conclusion These findings suggest that GEDAE-LaB is a free software easily comprehended by users minimally familiarized with adopted procedures for calculations of energetic profile using oxygen uptake and lactate

  13. High Energy Astrophysics Science Archive Research Center

    Data.gov (United States)

    National Aeronautics and Space Administration — The High Energy Astrophysics Science Archive Research Center (HEASARC) is the primary archive for NASA missions dealing with extremely energetic phenomena, from...

  14. High Energy Solid State Laser Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — A suite of laboratories with advanced spectroscopic and laser equipment, this facility develops materials and techniques for advanced solid state high energy lasers....

  15. Energy contribution of NOVA food groups and sociodemographic determinants of ultra-processed food consumption in the Mexican population.

    Science.gov (United States)

    Marrón-Ponce, Joaquín A; Sánchez-Pimienta, Tania G; Louzada, Maria Laura da Costa; Batis, Carolina

    2018-01-01

    To identify the energy contributions of NOVA food groups in the Mexican diet and the associations between individual sociodemographic characteristics and the energy contribution of ultra-processed foods (UPF). We classified foods and beverages reported in a 24 h recall according to the NOVA food framework into: (i) unprocessed or minimally processed foods; (ii) processed culinary ingredients; (iii) processed foods; and (iv) UPF. We estimated the energy contribution of each food group and ran a multiple linear regression to identify the associations between sociodemographic characteristics and UPF energy contribution. Mexican National Health and Nutrition Survey 2012. Individuals ≥1 years old (n 10 087). Unprocessed or minimally processed foods had the highest dietary energy contribution (54·0 % of energy), followed by UPF (29·8 %), processed culinary ingredients (10·2 %) and processed foods (6·0 %). The energy contribution of UPF was higher in: pre-school-aged children v. other age groups (3·8 to 12·5 percentage points difference (pp)); urban areas v. rural (5·6 pp); the Central and North regions v. the South (2·7 and 8·4 pp, respectively); medium and high socio-economic status v. low (4·5 pp, in both); and with higher head of household educational level v. without education (3·4 to 7·8 pp). In 2012, about 30 % of energy in the Mexican diet came from UPF. Our results showed that younger ages, urbanization, living in the North region, high socio-economic status and high head of household educational level are sociodemographic factors related to higher consumption of UPF in Mexico.

  16. The interaction region of high energy protons

    CERN Document Server

    Dremin, I.M.

    2016-01-01

    The spatial view of the interaction region of colliding high energy protons (in terms of impact parameter) is considered. It is shown that the region of inelastic collisions has a very peculiar shape. It saturates for central collisions at an energy of 7 TeV. We speculate on the further evolution with energy, which is contrasted to the "black disk" picture.

  17. UPR/Mayaguez High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    López, Angel M. [Univ. of Puerto Rico, Mayaguez (Puerto Rico)

    2015-10-27

    For the period of sixteen years covered by this report (June 1, 1997 - July 31, 2013) the High Energy Physics Group at the University of Puerto Rico’s Mayaguez Campus (UPRM) carried out an extensive research program that included major experiments at Fermi National Accelerator Laboratory (Fermilab), the Cornell Electron-positron Collider and CERN. In particular, these were E831 (FOCUS) at Fermilab, CLEOc at Cornell and the Compact Muon Solenoid (CMS) at the Large Hadron Collider (LHC) at CERN. The group’s history is one of successful execution and growth. Beginning with one faculty researcher in 1985, it eventually included four faculty researchers, one post-doctoral research associate, two undergraduates and as many as six graduate students at one time working on one of the experiments that discovered the Higgs boson. Some of this expansion was due to the group’s leveraging of funds from the Department of Energy’s core grant to attract funds from National Science Foundation programs not targeted to high energy physics. Besides the group’s research productivity, its other major contribution was the training of a large number of MS students who later went on to successful technical careers in industry as well as academia including many who obtained PhD degrees at US universities. In an attempt to document this history, this final report gives a general description of the Group’s work prior to June 1, 2010, the starting date for the last grant renewal period. Much more detail can, of course, be found in the annual reports submitted up to that date. The work during the last grant period is discussed in detail in a separate section. To summarize the group’s scientific accomplishments, one can point to the results of the experiments. Both FOCUS and CLEOc were designed to carry out precise measurements of processes involving the heavy quarks, charm and bottom. Heavy quarks are particularly interesting because, due to their mass, theoretical calculations

  18. High-Energy Neutrino Interactions

    CERN Multimedia

    2002-01-01

    This experiment studies neutrino interactions in iron at the highest available energies using the narrow-band neutrino beam N3 and the wide-band neutrino beam N1. The basis of the detector is a massive target-calorimeter in which the energy deposited by a neutrino (or antineutrino) is measured by electronic techniques and the momentum of outgoing muons is determined by magnetic deflection. The detector is constructed in the form of a 20 m long iron-cored toroidal magnet, composed of modules of length 70~cm and 90~cm, and of 3.75~m diameter. Drift chambers placed in between each module measure the trajectory of muons from the neutrino interactions. The modules are of three types. The first ten modules are constructed of 2.5~cm iron plates with 20~scintillator planes inserted between the plates. The next five modules are constructed of 5~cm plates with 15~planes of scintillator and the last six modules are constructed of 15~cm plates with 5~planes of scintillators. The total mass of the detector is @=~1400 tons...

  19. Sign preference in ion-induced nucleation: contributions to the free energy barrier.

    Science.gov (United States)

    Keasler, Samuel J; Kim, Hyunmi; Chen, Bin

    2012-11-07

    We have performed a series of computer simulations using the AVUS-HR approach to better understand the origin of the sign preference in ion-induced nucleation. In particular, we emphasize the importance of distinguishing between the total formation free energy of a cluster, and the nucleation free energy, which involves only those steps contributing to the free energy barrier. We have separately considered how the ion-water potential energy, the water-water potential energy, and the entropy contribute to both the cluster formation free energy, and the nucleation free energy. These simulations have shown that while the ion-water potential energies make the largest contribution to the formation free energy difference between positive and negative ions, the entropy is the contribution leading to lower nucleation free energy barriers for negative ions. The primary reason for this is the larger stable (but precritical) clusters formed around negative ions. We have further shown that the distinction between formation and nucleation free energies is of particular importance when comparing small cations with larger anions where the formation free energies can be much lower for the cationic clusters, even though the nucleation barriers are lower for the anionic clusters.

  20. High Energy Particles from the Universe

    CERN Document Server

    Ong, R A

    2000-01-01

    The field of high energy particle astronomy is exciting and rapidly developing. In the last few years, we have detected extragalactic sources of intense TeV gamma radiation and individual cosmic ray particles with energies exceeding 25 Joules. Understanding the workings of astrophysics under extreme conditions is the primary goal of this field. Also important is the possibility of using high energy particles from space to probe beyond the standard models of particle physics and cosmology. This paper presents a review of high energy particle astronomy using photons, cosmic rays, and neutrinos.

  1. High Energy Density Capacitors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Capacitor size and reliability are often limiting factors in pulse power, high speed switching, and power management and distribution (PMAD) systems. T/J...

  2. High energy interactions of cosmic ray particles

    Science.gov (United States)

    Jones, L. W.

    1986-01-01

    The highlights of seven sessions of the Conference dealing with high energy interactions of cosmic rays are discussed. High energy cross section measurements; particle production-models of experiments; nuclei and nuclear matter; nucleus-nucleus collision; searches for magnetic monopoles; and studies of nucleon decay are covered.

  3. Indonesian residential high rise buildings: A life cycle energy assessment

    Energy Technology Data Exchange (ETDEWEB)

    Utama, Agya; Gheewala, Shabbir H. [The Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand)

    2009-11-15

    This study evaluates the effect of building envelopes on the life cycle energy consumption of high rise residential buildings in Jakarta, Indonesia. For high rise residential buildings, the enclosures contribute 10-50% of the total building cost, 14-17% of the total material mass and 20-30% of the total heat gain. The direct as well as indirect influence of the envelope materials plays an important role in the life cycle energy consumption of buildings. The initial embodied energy of typical double wall and single wall envelopes for high residential buildings is 79.5 GJ and 76.3 GJ, respectively. Over an assumed life span of 40 years, double walls have better energy performance than single walls, 283 GJ versus 480 GJ, respectively. Material selection, which depends not only on embodied energy but also thermal properties, should, therefore, play a crucial role during the design of buildings. (author)

  4. Evaluation of Drinks Contribution to Energy Intake in Summer and Winter

    Directory of Open Access Journals (Sweden)

    Olga Malisova

    2015-05-01

    Full Text Available All drinks hydrate and most also provide nutrients and energy. Our objective was to evaluate the contribution of drinks to total energy intake in summer and winter. Data were obtained using the Water Balance Questionnaire (WBQ from a sample of the general population in Athens, Greece (n = 984, 473 individuals (42 ± 18 years in summer and 511 individuals (38 ± 20 years in winter stratified by sex and age. The WBQ embeds a semi-quantitative food frequency questionnaire of 58 foods and the Short International Physical Activity Questionnaire. Data were analyzed for the contribution of drinks to total energy intake. In winter, total energy intake was 2082 ± 892 kcal/day; energy intake from drinks was 479 ± 286 kcal/day and energy expenditure 1860 ± 390 kcal/day. In summer, total energy intake was 1890 ± 894 kcal/day, energy intake from drinks 492 ± 499 kcal/day and energy expenditure 1830 ± 491 kcal/day. Energy intake from drinks in summer was higher than in winter (p < 0.001 and in men higher than in women in both seasons (p < 0.001 in summer, p = 0.02 in winter. Coffee, coffee drinks, milk, chocolate milk and alcoholic drinks contributed approximately 75% of energy from drinks. Fruit juice and sugar-sweetened drinks, including soft drinks and fruit juice based drinks, were consumed less frequently contributing up to 25% of drink energy intake. Drinks contribute approximately 1/4 of total energy intake depending on the energy content of the drink and frequency of consumption. Coffee, dairy and alcoholic drinks were the main energy contributors.

  5. High energy physics at UCR

    Energy Technology Data Exchange (ETDEWEB)

    Kernan, A.; Shen, B.C.

    1997-07-01

    The hadron collider group is studying proton-antiproton interactions at the world`s highest collision energy 2 TeV. Data-taking with the D0 detector is in progress at Fermilab and the authors have begun the search for the top quark. S. Wimpenny is coordinating the effort to detect t{bar t} decaying to two leptons, the most readily identifiable channel. At UC Riverside design and testing for a silicon tracker for the D0 upgrade is in progress; a parallel development for the SDC detector at SSC is also underway. The major group effort of the lepton group has been devoted to the OPAL experiment at LEP. They will continue to focus on data-taking to improve the quality and quantity of their data sample. A large number of papers have been published based on approximately 500,000 events taken so far. The authors will concentrate on physics analysis which provides stringent tests of the Standard Model. The authors are continuing participation in the RD5 experiment at the SPS to study muon triggering and tracking. The results of this experiment will provide critical input for the design of the Compact Muon Solenoid experiment being proposed for the LHC. The theory group has been working on problems concerning the possible vilation of e-{mu}-{tau} universality, effective Lagrangians, neutrino physics, as well as quark and lepton mass matrices.

  6. Relative contribution of different muscle energy consumption processes in an energy-based muscle load sharing cost function

    NARCIS (Netherlands)

    Nikooyan, A.A.; Veeger, H.E.J.; Westerhoff, P.; Bergmann, G.; van der Helm, F.C.T.

    2013-01-01

    The aim of this study is to quantify the relative contributions of two muscle energy consumption processes (the detachment of cross-bridges and calcium-pumping) incorporated in a recently developed muscle load sharing cost function, namely the energy-based criterion, by using in vivo measured

  7. High energy density lithium batteries

    CERN Document Server

    Aifantis, Katerina E; Kumar, R Vasant

    2010-01-01

    Cell phones, portable computers and other electronic devices crucially depend on reliable, compact yet powerful batteries. Therefore, intensive research is devoted to improving performance and reducing failure rates. Rechargeable lithium-ion batteries promise significant advancement and high application potential for hybrid vehicles, biomedical devices, and everyday appliances. This monograph provides special focus on the methods and approaches for enhancing the performance of next-generation batteries through the use of nanotechnology. Deeper understanding of the mechanisms and strategies is

  8. Characteristics Contributing to High-Technology Start-Up Success

    DEFF Research Database (Denmark)

    Goslin, L.; Brown, W.; Palm, T.

    1993-01-01

    The factors contributing to the success of high technology start-up firms have received much discussion in current business literature. The discussion of the characteristics of success has been based on increasing substantiation by empirical research. The available information suggests that the p......The factors contributing to the success of high technology start-up firms have received much discussion in current business literature. The discussion of the characteristics of success has been based on increasing substantiation by empirical research. The available information suggests...... across national borders and how, if at all, national origin may influence the successful high technology firm. This paper discusses the results of a limited study, which compared the management/organizational characteristics of a small sample of firms. Some of the firms were venture capital funded high...... technology start-up firms. For each country set an information base was developed on characteristics of the high technology start-up situation. The information relates to an expanding common data base (U.S.: Goslin, Kiehi; Canadian: Doutriaux) which is being developed. Additional information was obtained...

  9. High Energy Physics Research at Louisiana Tech

    Energy Technology Data Exchange (ETDEWEB)

    Sawyer, Lee [Louisiana State Univ., Baton Rouge, LA (United States); Greenwood, Zeno [Louisiana State Univ., Baton Rouge, LA (United States); Wobisch, Marcus [Louisiana State Univ., Baton Rouge, LA (United States)

    2013-06-28

    The goal of this project was to create, maintain, and strengthen a world-class, nationally and internationally recognized experimental high energy physics group at Louisiana Tech University, focusing on research at the energy frontier of collider-based particle physics, first on the DØ experiment and then with the ATLAS experiment, and providing leadership within the US high energy physics community in the areas of jet physics, top quark and charged Higgs decays involving tau leptons, as well as developing leadership in high performance computing.

  10. New accelerators in high-energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Blewett, J.P.

    1982-01-01

    First, I should like to mention a few new ideas that have appeared during the last few years in the accelerator field. A couple are of importance in the design of injectors, usually linear accelerators, for high-energy machines. Then I shall review some of the somewhat sensational accelerator projects, now in operation, under construction or just being proposed. Finally, I propose to mention a few applications of high-energy accelerators in fields other than high-energy physics. I realize that this is a digression from my title but I hope that you will find it interesting.

  11. CERN and the high energy frontier

    Directory of Open Access Journals (Sweden)

    Tsesmelis Emmanuel

    2014-04-01

    Full Text Available This paper presents the particle physics programme at CERN at the high-energy frontier. Starting from the key open questions in particle physics and the large-scale science facilities existing at CERN, concentrating on the Large Hadron Collider(LHC, this paper goes on to present future possibilities for global projects in high energy physics. The paper presents options for future colliders, all being within the framework of the recently updated European Strategy for Particle Physics, and all of which have a unique value to add to experimental particle physics. The paper concludes by outlining key messages for the way forward for high-energy physics research.

  12. Three Decades of High Energy Transients

    Science.gov (United States)

    Kouveliotou, Chryssa

    2012-01-01

    Gamma-Ray Bursts are the most brilliant explosions in space. The first GRB was discovered on 1967, just over 40 years ago. It took several years and multiple generations of space and ground instruments to unravel some of the mysteries of this phenomenon. However, many questions remain open today. I will discuss the history, evolution and current status of the GRB field and its contributions in our understanding of the transient high energy sky. Finally, I will describe how GRBs can be utilized in future missions as tools, to probe the cosmic chemical evolution of the Universe Magnetars are magnetically powered rotating neutron stars with extreme magnetic fields (over 10(exp 14) Gauss). They were discovered in the X- and gamma-rays where they predominantly emit their radiation. Very few sources (roughly 24) have been found since their discovery in 1987. NASA's Fermi Gamma-ray Space Telescope was launched June 11, 2009; since then the Fermi Gamma-ray Burst Monitor (GBM) recorded emission from several magnetar sources. In total, six new sources were discovered between 2008 and 2011, with a synergy between Swift, RXTE, Fermi and the Interplanetary Network (IPN). I will give a short history of magnetars and describe how this, once relatively esoteric field, has emerged as a link between several astrophysical areas including Gamma-Ray Bursts.

  13. Decoupling the contribution of surface energy and surface area on the cohesion of pharmaceutical powders.

    Science.gov (United States)

    Shah, Umang V; Olusanmi, Dolapo; Narang, Ajit S; Hussain, Munir A; Tobyn, Michael J; Hinder, Steve J; Heng, Jerry Y Y

    2015-01-01

    Surface area and surface energy of pharmaceutical powders are affected by milling and may influence formulation, performance and handling. This study aims to decouple the contribution of surface area and surface energy, and to quantify each of these factors, on cohesion. Mefenamic acid was processed by cryogenic milling. Surface energy heterogeneity was determined using a Surface Energy Analyser (SEA) and cohesion measured using a uniaxial compression test. To decouple the surface area and surface energy contributions, milled mefenamic acid was "normalised" by silanisation with methyl groups, confirmed using X-ray Photoelectron Spectroscopy. Both dispersive and acid-base surface energies were found to increase with increasing milling time. Cohesion was also found to increase with increasing milling time. Silanised mefenamic acid possessed a homogenous surface with a surface energy of 33.1 ± 1.4 mJ/m(2) , for all milled samples. The cohesion for silanised mefenamic acid was greatly reduced, and the difference in the cohesion can be attributed solely to the increase in surface area. For mefenamic acid, the contribution from surface energy and surface area on cohesion was quantified to be 57% and 43%, respectively. Here, we report an approach for decoupling and quantifying the contribution from surface area and surface energy on powder cohesion.

  14. Mixing and electronic entropy contributions to thermal energy storage in low melting point alloys

    Science.gov (United States)

    Shamberger, Patrick J.; Mizuno, Yasushi; Talapatra, Anjana A.

    2017-07-01

    Melting of crystalline solids is associated with an increase in entropy due to an increase in configurational, rotational, and other degrees of freedom of a system. However, the magnitude of chemical mixing and electronic degrees of freedom, two significant contributions to the entropy of fusion, remain poorly constrained, even in simple 2 and 3 component systems. Here, we present experimentally measured entropies of fusion in the Sn-Pb-Bi and In-Sn-Bi ternary systems, and decouple mixing and electronic contributions. We demonstrate that electronic effects remain the dominant contribution to the entropy of fusion in multi-component post-transition metal and metalloid systems, and that excess entropy of mixing terms can be equal in magnitude to ideal mixing terms, causing regular solution approximations to be inadequate in the general case. Finally, we explore binary eutectic systems using mature thermodynamic databases, identifying eutectics containing at least one semiconducting intermetallic phase as promising candidates to exceed the entropy of fusion of monatomic endmembers, while simultaneously maintaining low melting points. These results have significant implications for engineering high-thermal conductivity metallic phase change materials to store thermal energy.

  15. Studies In Theoretical High Energy Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Keung, Wai Yee [Univ. of Illinois, Chicago, IL (United States)

    2017-07-01

    This is a final technical report for grant no. DE-SC0007948 describing research activities in theoretical high energy physics at University of Illinois at Chicago for the whole grant period from July 1, 2012 to March 31, 2017.

  16. Research in High Energy Physics. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Conway, John S.

    2013-08-09

    This final report details the work done from January 2010 until April 2013 in the area of experimental and theoretical high energy particle physics and cosmology at the University of California, Davis.

  17. The evolution of high energy accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Courant, E.D.

    1989-10-01

    In this lecture I would like to trace how high energy particle accelerators have grown from tools used for esoteric small-scale experiments to gigantic projects being hotly debated in Congress as well as in the scientific community.

  18. 1570 nm High Energy Fiber Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase I project proposes a single frequency high energy fiber laser for remote sensing. Current state-of-art technologies can not provide all features of...

  19. High Energy Single Frequency Resonant Amplifier Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase I project proposes a single frequency high energy resonant amplifier for remote sensing. Current state-of-art technologies can not provide all...

  20. High-energy cosmic-ray acceleration

    CERN Document Server

    Bustamante, M; de Paula, W; Duarte Chavez, J A; Gago, A M; Hakobyan, H; Jez, P; Monroy Montañez, J A; Ortiz Velasquez, A; Padilla Cabal, F; Pino Rozas, M; Rodriguez Patarroyo, D J; Romeo, G L; Saldaña-Salazar , U J; Velasquez, M; von Steinkirch, M

    2010-01-01

    We briefly review the basics of ultrahigh-energy cosmic-ray acceleration. The Hillas criterion is introduced as a geometrical criterion that must be fulfilled by potential acceleration sites, and energy losses are taken into account in order to obtain a more realistic scenario. The different available acceleration mechanisms are presented, with special emphasis on Fermi shock acceleration and its prediction of a power-law cosmic-ray energy spectrum. We conclude that first-order Fermi acceleration, though not entirely satisfactory, is the most promising mechanism for explaining the ultra-high-energy cosmic-ray flux.

  1. European School of High-Energy Physics

    CERN Document Server

    2007-01-01

    The European School of High-Energy Physics is intended to give young experimental and phenomenological physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain lecture notes on the Standard Model of electroweak interactions, Monte Carlo generators, relativistic heavy-ion physics, the flavour dynamics and CP violation in the Standard Model, cosmology, and high-energy neutrino astronomy with IceCube.

  2. Future of high energy physics some aspects

    CERN Document Server

    Prokofiev, Kirill

    2017-01-01

    This book comprises 26 carefully edited articles with well-referenced and up-to-date material written by many of the leading experts. These articles originated from presentations and dialogues at the second HKUST Institute for Advanced Study Program on High Energy Physics are organized into three aspects, Theory, Accelerator, and Experiment, focusing on in-depth analyses and technical aspects that are essential for the developments and expectations for the future high energy physics.

  3. New developments in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Neal, H.A.

    1977-01-01

    Some of the important developments in the field of high energy physics are reviewed. Starting from the status of knowledge of the structure of matter the details of experiments leading to the discovery of charmed particles and psi resonances are emphasized. Also some of the areas of activity of the Indiana University High Energy group are reviewed and related to the principal unsolved problems in the field. (JFP)

  4. Heavy Quark Production at High Energy

    CERN Document Server

    Ball, R D

    2001-01-01

    We report on QCD radiative corrections to heavy quark production valid at high energy. The formulae presented will allow a matched calculation of the total cross section which is correct at $O(\\as^3)$ and includes resummation of all terms of order $\\as^3 [\\as \\ln (s/m^2)]^n$. We also include asymptotic estimates of the effect of the high energy resummation. A complete description of the calculation of the heavy quark impact factor is included in an appendix.

  5. Elementary particle physics and high energy phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Barker, A.R.; Cumalat, J.P.; de Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    This report discusses the following research in high energy physics: the properties of the z neutral boson with the SLD detector; the research and development program for the SDC muon detector; the fixed-target k-decay experiments; the Rocky Mountain Consortium for HEP; high energy photoproduction of states containing heavy quarks; and electron-positron physics with the CLEO II and Mark II detectors. (LSP).

  6. Institute for High Energy Density Science

    Energy Technology Data Exchange (ETDEWEB)

    Wootton, Alan [Univ. of Texas, Austin, TX (United States)

    2017-01-13

    The project objective was for the Institute of High Energy Density Science (IHEDS) at the University of Texas at Austin to help grow the High Energy Density (HED) science community, by connecting academia with the Z Facility (Z) and associated staff at Sandia National Laboratories (SNL). IHEDS was originally motivated by common interests and complementary capabilities at SNL and the University of Texas System (UTX), in 2008.

  7. Contribution of air conditioning adoption to future energy use under global warming

    Science.gov (United States)

    Davis, Lucas W.; Gertler, Paul J.

    2015-01-01

    As household incomes rise around the world and global temperatures go up, the use of air conditioning is poised to increase dramatically. Air conditioning growth is expected to be particularly strong in middle-income countries, but direct empirical evidence is scarce. In this paper we use high-quality microdata from Mexico to describe the relationship between temperature, income, and air conditioning. We describe both how electricity consumption increases with temperature given current levels of air conditioning, and how climate and income drive air conditioning adoption decisions. We then combine these estimates with predicted end-of-century temperature changes to forecast future energy consumption. Under conservative assumptions about household income, our model predicts near-universal saturation of air conditioning in all warm areas within just a few decades. Temperature increases contribute to this surge in adoption, but income growth by itself explains most of the increase. What this will mean for electricity consumption and carbon dioxide emissions depends on the pace of technological change. Continued advances in energy efficiency or the development of new cooling technologies could reduce the energy consumption impacts. Similarly, growth in low-carbon electricity generation could mitigate the increases in carbon dioxide emissions. However, the paper illustrates the enormous potential impacts in this sector, highlighting the importance of future research on adaptation and underscoring the urgent need for global action on climate change. PMID:25918391

  8. Contribution of air conditioning adoption to future energy use under global warming.

    Science.gov (United States)

    Davis, Lucas W; Gertler, Paul J

    2015-05-12

    As household incomes rise around the world and global temperatures go up, the use of air conditioning is poised to increase dramatically. Air conditioning growth is expected to be particularly strong in middle-income countries, but direct empirical evidence is scarce. In this paper we use high-quality microdata from Mexico to describe the relationship between temperature, income, and air conditioning. We describe both how electricity consumption increases with temperature given current levels of air conditioning, and how climate and income drive air conditioning adoption decisions. We then combine these estimates with predicted end-of-century temperature changes to forecast future energy consumption. Under conservative assumptions about household income, our model predicts near-universal saturation of air conditioning in all warm areas within just a few decades. Temperature increases contribute to this surge in adoption, but income growth by itself explains most of the increase. What this will mean for electricity consumption and carbon dioxide emissions depends on the pace of technological change. Continued advances in energy efficiency or the development of new cooling technologies could reduce the energy consumption impacts. Similarly, growth in low-carbon electricity generation could mitigate the increases in carbon dioxide emissions. However, the paper illustrates the enormous potential impacts in this sector, highlighting the importance of future research on adaptation and underscoring the urgent need for global action on climate change.

  9. Fundamentals of high energy electron beam generation

    Science.gov (United States)

    Turman, B. N.; Mazarakis, M. G.; Neau, E. L.

    High energy electron beam accelerator technology has been developed over the past three decades in response to military and energy-related requirements for weapons simulators, directed-energy weapons, and inertially-confined fusion. These applications required high instantaneous power, large beam energy, high accelerated particle energy, and high current. These accelerators are generally referred to as 'pulsed power' devices, and are typified by accelerating potential of millions of volts (MV), beam current in thousands of amperes (KA), pulse duration of tens to hundreds of nanoseconds, kilojoules of beam energy, and instantaneous power of gigawatts to teffawatts (10(exp 9) to 10(exp 12) watts). Much of the early development work was directed toward single pulse machines, but recent work has extended these pulsed power devices to continuously repetitive applications. These relativistic beams penetrate deeply into materials, with stopping range on the order of a centimeter. Such high instantaneous power deposited in depth offers possibilities for new material fabrication and processing capabilities that can only now be explored. Fundamental techniques of pulse compression, high voltage requirements, beam generation and transport under space-charge-dominated conditions will be discussed in this paper.

  10. Identifying the nature of high energy Astroparticles

    CERN Document Server

    Mora, Karen Salomé Caballero

    2016-01-01

    High energy Astroparticles include Cosmic Ray, gamma ray and neutrinos, all of them coming from the universe. The origin and production, acceleration and propagation mechanisms of ultrahigh-energy CR (up to $10^{20}$ eV) are still unknown. Knowledge on particle interactions taking place at those energies, useful for studying current theories on particle physics, can be obtained only from measurements of high energy astroparticles. In the present document some techniques on data analysis of mass composition of UHECR with the Pierre Auger Observatory are described. The relevance of the muon component of air showers produced by the primary CR, as well as some low energy simulations of that component, are explained.

  11. Identifying the nature of high energy Astroparticles

    Science.gov (United States)

    Salomé Caballero Mora, Karen

    2016-10-01

    High energy Astroparticles include Cosmic Ray (CR), gamma ray and neutrinos, all of them coming from the universe. The origin and production, acceleration and propagation mechanisms of ultrahigh-energy CR (UHECR ∼ 1020 eV) are still unknown. Knowledge on particle interactions taking place at those energies, useful for studying current theories on particle physics, can be obtained only from measurements of high energy astroparticles. In the present document some techniques on data analysis of mass composition of UHECR with the Pierre Auger Observatory are described. The relevance of the muon component of air showers produced by the primary CR, as well as some low energy simulations of that component, are explained.

  12. Ultra-High-Energy Cosmic Rays

    CERN Document Server

    Dova, M.T.

    2015-05-22

    The origin of the ultra high energy cosmic rays (UHECR) with energies above E > 10 17 eV, is still unknown. The discovery of their sources will reveal the engines of the most energetic astrophysical accelerators in the universe. This is a written version of a series of lectures devoted to UHECR at the 2013 CERN-Latin-American School of High-Energy Physics. We present anintroduction to acceleration mechanisms of charged particles to the highest energies in astrophysical objects, their propagation from the sources to Earth, and the experimental techniques for their detection. We also discuss some of the relevant observational results from Telescope Array and Pierre Auger Observatory. These experiments deal with particle interactions at energies orders of magnitude higher than achieved in terrestrial accelerators.

  13. Progress toward high energy electron cooling

    Energy Technology Data Exchange (ETDEWEB)

    Sergei Nagaitsev

    2001-07-20

    All electron cooling systems in operation to date can be classified as low energy systems. The electron beam kinetic energy in such a system is limited to about 0.6-1 MeV by the use of a conventional commercial Cockcroft-Walton high-voltage power supply. This, in turn, bounds the maximum ion kinetic energy, accessible for cooling with today's standard technology, to about 2 GeV/nucleon (about a factor of 2-3 times higher than the electron systems in operation today). Electron cooling systems with kinetic energies above 1 MeV could provide economically justifiable improvements in the performance of many existing and proposed accelerator complexes, such as RHIC, Tevatron and HERA. This paper reviews the status of the development of the technology needed for high energy electron cooling.

  14. Coalmines as Underground Pumped Storage Power Plants (UPP) - A Contribution to a Sustainable Energy Supply?

    Science.gov (United States)

    Luick, H.; Niemann, A.; Perau, E.; Schreiber, U.

    2012-04-01

    In Europe, electrical power generation from renewable energy sources rose by about 50% in the last 20 years. In Germany, renewable electricity is mainly provided by wind power and photovoltaic. Energy output depends on weather conditions like wind speed or solar radiation and may therefore vary considerably. Rapid fluctuations in power generation already require regulation of conventional power plants by the distribution network operators to stabilize and ensure grid frequency and overall system stability. In order to avoid future blackouts caused by intermittent energy sources, it is necessary to increase the storage capacity for electric power. Theoretically, there are many technologies for storing energy, like accumulators, hydrogen storage systems, biomethane facilities (hydrocarbon synthesis) or compressed air storage. Only a few technologies combine sufficient capacity, fast response, high efficiency, low storage loss and long-term application experience. A pumped storage power plant (PSPP) is a state of the art technology which combines all of these aspects. Energy is stored in form of potential energy by pumping water to an upper reservoir in times of energy surplus or low energy costs. In times of insufficient power supply or high energy costs, the water is released through turbines to produce electric energy. The efficiency of state-of-the-art systems is about 70-80%. The total head (geodetic height between upper and lower reservoirs) and the storage capacity of the reservoirs as given in a mountainous terrain, determine the energy storage capacity of a PSPP. An alternative is the use of man-made geodetic height differences as given in ore, coal or open cast lignite mines. In these cases, the lower reservoir of the plant is located in the drifts or at the bottom of the mine. Energieforschungszentrum Niedersachsen (EFZN) has already explored the installation of a PSPP in abandoned ore mines in the Harz-region/Germany (Beck 2011). In 2011/2012 a basic

  15. Helicity conservation in gauge boson scattering at high energy.

    Science.gov (United States)

    Gounaris, G J; Renard, F M

    2005-04-08

    We remark that the high energy gauge boson scattering processes involving two-body initial and final states satisfy certain selection rules described as helicity conservation of the gauge boson amplitudes (GBHC). These rules are valid at the Born level, as well as at the level of the leading and subleading 1-loop logarithmic corrections, in both the standard model and the minimal supersymmetric standard model (MSSM). A "fermionic equivalence" theorem is also proved, which suggests that GBHC is valid at all orders in the MSSM at sufficiently high energies, where the mass suppressed contributions are neglected.

  16. Energy system contribution in a maximal incremental test: correlations with pacing and overall performance in a 10-km running trial

    Directory of Open Access Journals (Sweden)

    M.V. Damasceno

    2015-11-01

    Full Text Available This study aimed to verify the association between the contribution of energy systems during an incremental exercise test (IET, pacing, and performance during a 10-km running time trial. Thirteen male recreational runners completed an incremental exercise test on a treadmill to determine the respiratory compensation point (RCP, maximal oxygen uptake (V˙O2max, peak treadmill speed (PTS, and energy systems contribution; and a 10-km running time trial (T10-km to determine endurance performance. The fractions of the aerobic (WAER and glycolytic (WGLYCOL contributions were calculated for each stage based on the oxygen uptake and the oxygen energy equivalents derived by blood lactate accumulation, respectively. Total metabolic demand (WTOTAL was the sum of these two energy systems. Endurance performance during the T10-km was moderately correlated with RCP, V˙O2maxand PTS (P<@0.05, and moderate-to-highly correlated with WAER, WGLYCOL, and WTOTAL (P<0.05. In addition, WAER, WGLYCOL, and WTOTAL were also significantly correlated with running speed in the middle (P<0.01 and final (P<0.01 sections of the T10-km. These findings suggest that the assessment of energy contribution during IET is potentially useful as an alternative variable in the evaluation of endurance runners, especially because of its relationship with specific parts of a long-distance race.

  17. Explaining the Microtubule Energy Balance: Contributions Due to Dipole Moments, Charges, van der Waals and Solvation Energy.

    Science.gov (United States)

    Ayoub, Ahmed Taha; Staelens, Michael; Prunotto, Alessio; Deriu, Marco A; Danani, Andrea; Klobukowski, Mariusz; Tuszynski, Jack Adam

    2017-09-22

    Microtubules are the main components of mitotic spindles, and are the pillars of the cellular cytoskeleton. They perform most of their cellular functions by virtue of their unique dynamic instability processes which alternate between polymerization and depolymerization phases. This in turn is driven by a precise balance between attraction and repulsion forces between the constituents of microtubules (MTs)-tubulin dimers. Therefore, it is critically important to know what contributions result in a balance of the interaction energy among tubulin dimers that make up microtubules and what interactions may tip this balance toward or away from a stable polymerized state of tubulin. In this paper, we calculate the dipole-dipole interaction energy between tubulin dimers in a microtubule as part of the various contributions to the energy balance. We also compare the remaining contributions to the interaction energies between tubulin dimers and establish a balance between stabilizing and destabilizing components, including the van der Waals, electrostatic, and solvent-accessible surface area energies. The energy balance shows that the GTP-capped tip of the seam at the plus end of microtubules is stabilized only by - 9 kcal/mol, which can be completely reversed by the hydrolysis of a single GTP molecule, which releases + 14 kcal/mol and destabilizes the seam by an excess of + 5 kcal/mol. This triggers the breakdown of microtubules and initiates a disassembly phase which is aptly called a catastrophe.

  18. Explaining the Microtubule Energy Balance: Contributions Due to Dipole Moments, Charges, van der Waals and Solvation Energy

    Directory of Open Access Journals (Sweden)

    Ahmed Taha Ayoub

    2017-09-01

    Full Text Available Microtubules are the main components of mitotic spindles, and are the pillars of the cellular cytoskeleton. They perform most of their cellular functions by virtue of their unique dynamic instability processes which alternate between polymerization and depolymerization phases. This in turn is driven by a precise balance between attraction and repulsion forces between the constituents of microtubules (MTs—tubulin dimers. Therefore, it is critically important to know what contributions result in a balance of the interaction energy among tubulin dimers that make up microtubules and what interactions may tip this balance toward or away from a stable polymerized state of tubulin. In this paper, we calculate the dipole–dipole interaction energy between tubulin dimers in a microtubule as part of the various contributions to the energy balance. We also compare the remaining contributions to the interaction energies between tubulin dimers and establish a balance between stabilizing and destabilizing components, including the van der Waals, electrostatic, and solvent-accessible surface area energies. The energy balance shows that the GTP-capped tip of the seam at the plus end of microtubules is stabilized only by − 9 kcal/mol, which can be completely reversed by the hydrolysis of a single GTP molecule, which releases + 14 kcal/mol and destabilizes the seam by an excess of + 5 kcal/mol. This triggers the breakdown of microtubules and initiates a disassembly phase which is aptly called a catastrophe.

  19. Opportunities for high wind energy penetration

    DEFF Research Database (Denmark)

    Tande, J.O.; Hansen, J.C.

    1997-01-01

    Wind power is today a mature technology, which at windy locations, is economically competitive to conventional power generation technologies. This and growing global environmental concerns have led governments to encourage and plan for wind energy development, a typical aim being 10% of electricity...... consumption. The successful operation of the three major power systems of Cape Verde, with a total wind energy penetration of about 15% since December 1994, demonstrates that power systems can be operated with high penetration of wind energy by adding simple control and monitoring systems only. Thorough...... analyses conclude that expanding to even above 15% wind energy penetration in the Cape Verde power systems is economical. Worldwide, numerous locations with favorable wind conditions and power systems similar to the Capeverdean provide good opportunities for installing wind farms and achieving high wind...

  20. Identifying high ability students: a contribution from neuropsychological indicators

    Directory of Open Access Journals (Sweden)

    Dora Cortat Simonetti

    2010-06-01

    Full Text Available This paper presents some data on the convergence between psychometric intelligence measurements (IQ tests and physiological signs of mental activity found in high ability adolescents. The research study focus on a small group of 15 subjects submitted to electric encephalograms, previously chosen from a larger group of 77 classmates on the basis of scores on the WISC-III IQ Test. The results suggest continuous predominance of Alpha waves for the gifted group (higher frequency percentile and higher amplitude what was not observed in the group without any superior intellectual ability. Even taking into account methodological limitations, this study may contribute to the understanding of a relationship between the intellectual quotient (IQ and alpha waves frequency and amplitude, as observed during performance on cognitive tasks. Such results may suggest a possibility to complement psychometric measures with encephalic registers in giftedness research studies.

  1. Study of the energy matrix of Minas Gerais considering the contribution of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Filho, Wilson P.B., E-mail: wilson.filho@meioambiente.mg.gov.br [Fundaco Estadual do Meio Ambiente, Belo Horizonte, MG (Brazil); Costa, Antonella L.; Pinheiro, Ricardo B.; Fortini, Angela, E-mail: antonella@nuclear.ufmg.br, E-mail: rbrantp@gmail.com, E-mail: fortini@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2015-07-01

    The integrated energy planning is a very important tool for long-term study, projections and reviews of the energy mix of a country or region. By dealing with energy supply and demand projections is therefore related to the needs of society and its development index within a context of sustainability. The aim of this study is to provide information about the Minas Gerais electric matrix and propose solutions for the need of future energy import. In this way, it is proposed a possible deployment of nuclear power plants, in parallel with wind and solar energy, for the necessary energy expansion in the face of population growth framework and energy use in Minas Gerais. Thus, the study tends to contribute to decision-making related to public policies. (author)

  2. The contribution of renewable energy to a sustainable energy system; Volume 2 in the CASCADE MINTS project

    Energy Technology Data Exchange (ETDEWEB)

    Uyterlinde, M.A.; Martinus, G.H.; Rosler, H. [ECN Policy Studies, Petten (Netherlands); Kouvaritakis, N.; Panos, V.; Mantzos, L.; Zeka-Paschou, M. [National Technical University of Athens NTUA, Athens (Greece); Kypreos, S.; Rafaj, P. [Paul Scherrer Institute, Villigen (Switzerland); Blesl, M.; Ellersdorfer, I.; Fahl, U. [Institute of Energy Economics and the Rational Use of Energy IER, Stuttgart (Germany); Keppo, I.; Riahi, K. [The International Institute for Applied Systems Analysis IIASA, Laxenburg (Austria); Boehringer, C.; Loeschel, A. [Zentrum fuer Europaeische Wirtschaftsforschung ZEW, Mannheim (Germany); Sano, F.; Akimoto, K.; Homma, T.; Tomada, T. [Research Institute of Innovative Technology for the Earth RITE, Kyoto (Japan); Pratlong, F.; Le Mouel, P. [ERASME, Equipe de Recherche en Analyse des Systemes et Modelisation Economiques, University of Paris, Paris (France); Szabo, L.; Russ, P. [Institute for Prospective Technological Studies IPTS, Joint Research Centre JRC, Sevilla (Spain); Kydes, A. [Energy Information Administration EIA, US Department of Energy US-DoE, Washington, DC (United States)

    2005-07-01

    This report provides an overview of the main results from the scenarios analysed in the CASCADE MINTS project to assess the role of renewables in solving global and European energy and environmental issues. The main conclusion is that renewable energy can make a substantial contribution to reducing greenhouse gas emissions and improving diversification of the European energy production portfolio, although other technologies will also be needed in order to achieve post Kyoto targets. The report outlines the impacts, costs and benefits of ambitious renewables targets for Europe in the medium term. It also presents lessons learned from taking the global perspective.

  3. Utilization of Wind Energy at High Altitude

    OpenAIRE

    Bolonkin, Alexander

    2007-01-01

    Ground based, wind energy extraction systems have reached their maximum capability. The limitations of current designs are: wind instability, high cost of installations, and small power output of a single unit. The wind energy industry needs of revolutionary ideas to increase the capabilities of wind installations. This article suggests a revolutionary innovation which produces a dramatic increase in power per unit and is independent of prevailing weather and at a lower cost per unit of energ...

  4. Additivity of kinetic and potential energy contributions in modification of graphene supported on SiO2

    Science.gov (United States)

    Zhang, Xitong; Zhao, Shijun; Wang, Yuyu; Xue, Jianming

    2017-04-01

    The damage production induced by MeV highly charged ions (HCI) irradiations in graphene supported on a SiO2 substrate is investigated using molecular dynamics method. We get results in agreement with our recent experiments. We find that the electronic energy loss and potential energy deposition have similar effects on the defects creation in SiO2 substrate-supported graphene and both mechanisms of energy deposition seem to contribute in an additive way. The influences of the energy deposition depth and radius are studied. Only the energy deposited below the surface within 2.5 nm will induce the damage in graphene. Hence, the HCI can be a powerful tool to induce defects in graphene without causing deep damage of the substrate. When charge of incident Xeq+ is above 30, a nanopore is formed and the size of nanopore in graphene can be controlled by changing the incident charge state.

  5. Oklahoma Center for High Energy Physics (OCHEP)

    Energy Technology Data Exchange (ETDEWEB)

    Nandi, S; Strauss, M J; Snow, J; Rizatdinova, F; Abbott, B; Babu, K; Gutierrez, P; Kao, C; Khanov, A; Milton, K A; Neaman, H; H Severini, P Skubic

    2012-02-29

    The DOE EPSCoR implementation grant, with the support from the State of Oklahoma and from the three universities, Oklahoma State University, University of Oklahoma and Langston University, resulted in establishing of the Oklahoma Center for High Energy Physics (OCHEP) in 2004. Currently, OCHEP continues to flourish as a vibrant hub for research in experimental and theoretical particle physics and an educational center in the State of Oklahoma. All goals of the original proposal were successfully accomplished. These include foun- dation of a new experimental particle physics group at OSU, the establishment of a Tier 2 computing facility for the Large Hadron Collider (LHC) and Tevatron data analysis at OU and organization of a vital particle physics research center in Oklahoma based on resources of the three universities. OSU has hired two tenure-track faculty members with initial support from the grant funds. Now both positions are supported through OSU budget. This new HEP Experimental Group at OSU has established itself as a full member of the Fermilab D0 Collaboration and LHC ATLAS Experiment and has secured external funds from the DOE and the NSF. These funds currently support 2 graduate students, 1 postdoctoral fellow, and 1 part-time engineer. The grant initiated creation of a Tier 2 computing facility at OU as part of the Southwest Tier 2 facility, and a permanent Research Scientist was hired at OU to maintain and run the facility. Permanent support for this position has now been provided through the OU university budget. OCHEP represents a successful model of cooperation of several universities, providing the establishment of critical mass of manpower, computing and hardware resources. This led to increasing Oklahoma's impact in all areas of HEP, theory, experiment, and computation. The Center personnel are involved in cutting edge research in experimental, theoretical, and computational aspects of High Energy Physics with the research areas ranging

  6. Food, energy and macronutrient contribution of out-of-home foods in school-going adolescents in Cotonou, Benin.

    Science.gov (United States)

    Nago, Eunice S; Lachat, Carl K; Huybregts, Lieven; Roberfroid, Dominique; Dossa, Romain A; Kolsteren, Patrick W

    2010-01-01

    The objective of the present study was to document the food, energy and macronutrient contribution of out-of-home prepared foods in school-going adolescents in Cotonou (Benin) and compare the food, energy and macronutrient intakes of low and high out-of-home consumers. We used a cross-sectional study with 24 h dietary recalls on two non-consecutive school days to collect food intake data. Low and high consumers were defined respectively as subjects whose percentage of daily energy intake from out-of-home foods was in the first and the third terciles of the sample distribution. The setting was twelve secondary schools in Cotonou with 656 adolescents aged 13-19 years. Out-of-home prepared foods contributed more than 40 % of the daily energy, fat, protein, carbohydrate and fibre intakes and of the daily weight of food in the adolescents. They were highly present at breakfast and as afternoon snacks in high consumers, providing respectively 94 and 82 % of the energy intake of high consumers at breakfast and as afternoon snacks. Low consumers ate more fruit and vegetables and cereal grain products than high consumers whereas high consumers consumed more sweet energy-dense foods. Both categories had a diet poor in fruit and vegetables (hardly one-fourth of the recommended 400 g) and high in fat. We concluded that out-of-home foods are important in the diet of urban school adolescents in Benin. Therefore, they should be investigated in depth and taken into account in the development of interventions to promote healthy diet and lifestyles in adolescents.

  7. Contributions from the Department of Wind Energy and Atmospheric Physics to EWEC `99 in Nice, France

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Gunner C.; Westermann, Kirsten; Noergaard, Per [eds.

    1999-03-01

    The first conference following the merger of the series of European Union Wind Energy Conference and the European Wind Energy Conferences - EWEC`99 - was held in Nice, France during the period 1-5 March 1999. About 600 delegates, mainly from Europe but also from other parts of the world, attended the conference. The conference contributions included 96 oral presentations and 305 posters. The Department of Wind Energy and Atmospheric Physics contributed with 29 oral presentations and 36 posters with members of the department as authors or co-authors. The present report contains the set of these papers available at the deadline 19 March 1999. The contributions cover a wide spectrum of subjects including wind resources, aerodynamics, reliability and load assessment, grid connection, measurement methods, innovative wind turbines and market aspects. (au)

  8. High energy particles and quanta in astrophysics

    Science.gov (United States)

    Mcdonald, F. B. (Editor); Fichtel, C. E.

    1974-01-01

    The various subdisciplines of high-energy astrophysics are surveyed in a series of articles which attempt to give an overall view of the subject as a whole by emphasizing the basic physics common to all fields in which high-energy particles and quanta play a role. Successive chapters cover cosmic ray experimental observations, the abundances of nuclei in the cosmic radiation, cosmic electrons, solar modulation, solar particles (observation, relationship to the sun acceleration, interplanetary medium), radio astronomy, galactic X-ray sources, the cosmic X-ray background, and gamma ray astronomy. Individual items are announced in this issue.

  9. A Parton Shower for High Energy Jets

    DEFF Research Database (Denmark)

    Andersen, Jeppe Rosenkrantz; Lonnblad, Leif; M. Smillie, Jennifer

    2011-01-01

    We present a method to match the multi-parton states generated by the High Energy Jets Monte Carlo with parton showers generated by the Ariadne program using the colour dipole model. The High Energy Jets program already includes a full resummation of soft divergences. Hence, in the matching...... it is important that the corresponding divergences in the parton shower are subtracted, keeping only the collinear parts. We present a novel, shower-independent method for achieving this, enabling us to generate fully exclusive and hadronized events with multiple hard jets, in hadronic collisions. We discuss...

  10. Strongly Interacting Matter at High Energy Density

    Energy Technology Data Exchange (ETDEWEB)

    McLerran,L.

    2008-09-07

    This lecture concerns the properties of strongly interacting matter (which is described by Quantum Chromodynamics) at very high energy density. I review the properties of matter at high temperature, discussing the deconfinement phase transition. At high baryon density and low temperature, large N{sub c} arguments are developed which suggest that high baryonic density matter is a third form of matter, Quarkyonic Matter, that is distinct from confined hadronic matter and deconfined matter. I finally discuss the Color Glass Condensate which controls the high energy limit of QCD, and forms the low x part of a hadron wavefunction. The Glasma is introduced as matter formed by the Color Glass Condensate which eventually thermalizes into a Quark Gluon Plasma.

  11. High-energy cosmic neutrino puzzle: a review.

    Science.gov (United States)

    Ahlers, Markus; Halzen, Francis

    2015-12-01

    We appraise the status of high-energy neutrino astronomy and summarize the observations that define the 'IceCube puzzle.' The observations are closing in on the source candidates that may contribute to the observation. We highlight the potential of multi-messenger analysis to assist in the identification of the sources. We also give a brief overview of future search strategies that include the realistic possibility of constructing a next-generation detector larger by one order of magnitude in volume.

  12. High Energy Description of Processes with Multiple Hard Jets

    CERN Document Server

    Andersen, Jeppe R

    2010-01-01

    High Energy Jets (HEJ) is a new framework for approximating the all-order perturbative corrections to multi-jet processes, with a focus on the hard, wide-angle QCD emissions, which underpins the perturbative description of hard jets. In this contribution we review the basic concepts of HEJ, and present some new predictions for observables in dijet-production, and for W-boson production in association with at least 3 jets.

  13. High Energy Description of Processes with Multiple Hard Jets

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Jeppe R. [Theory Division, Physics Department, CERN, CH-1211 Geneva 23 (Switzerland); Smillie, Jennifer M. [Department of Physics, UCL, Gower Street, WC1E 6BT (United Kingdom)

    2010-08-15

    High Energy Jets (HEJ) is a new framework for approximating the all-order perturbative corrections to multi-jet processes, with a focus on the hard, wide-angle QCD emissions, which underpins the perturbative description of hard jets. In this contribution we review the basic concepts of HEJ, and present some new predictions for observables in dijet-production, and for W-boson production in association with at least 3 jets.

  14. High-energy anomalous scattering: Is it semiclassical

    Energy Technology Data Exchange (ETDEWEB)

    Mattis, M.P. (Theoretical Division T-8, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)); McLerran, L. (Department of Physics, University of Minnesota, Minneapolis, MI (United States)); Yaffe, L.G. (Department of Physics, University of Washington, Seattle, Washington 98195 (United States))

    1992-06-01

    We discuss the possibility of a semiclassical evaluation of baryon-number-nonconserving scattering amplitudes at nonperturbative'' energies of order {ital M}{sub {ital W}}/{alpha}{sub {ital W}}. Semiclassical expansions around standard instanton configurations are known {ital not} to be valid at these energies: multiloop radiative corrections are not suppressed relative to tree-graph contributions. Despite this pathology, we present a conjecture showing how anomalous scattering at such nonperturbative energies may nevertheless remain semiclassically calculable, and discuss partial results supporting this conjecture. To determine the correct weak-coupling behavior of high-energy anomalous scattering amplitudes, we argue that one must solve a modified set of classical field equations, or equivalently sum suitably modified tree graphs.

  15. Energy compensation after sprint- and high-intensity interval training.

    Science.gov (United States)

    Schubert, Matthew M; Palumbo, Elyse; Seay, Rebekah F; Spain, Katie K; Clarke, Holly E

    2017-01-01

    Many individuals lose less weight than expected in response to exercise interventions when considering the increased energy expenditure of exercise (ExEE). This is due to energy compensation in response to ExEE, which may include increases in energy intake (EI) and decreases in non-exercise physical activity (NEPA). We examined the degree of energy compensation in healthy young men and women in response to interval training. Data were examined from a prior study in which 24 participants (mean age, BMI, & VO2max = 28 yrs, 27.7 kg•m-2, and 32 mL∙kg-1∙min-1) completed either 4 weeks of sprint-interval training or high-intensity interval training. Energy compensation was calculated from changes in body composition (air displacement plethysmography) and exercise energy expenditure was calculated from mean heart rate based on the heart rate-VO2 relationship. Differences between high (≥ 100%) and low (high levels of energy compensation gained fat mass, lost fat-free mass, and had lower change scores for VO2max and NEPA. Linear regression results indicated that lower levels of energy compensation were associated with increases in ΔVO2max (p interval training. In agreement with prior work, increases in ΔVO2max and ΔNEPA were associated with lower energy compensation. Future studies should focus on identifying if a dose-response relationship for energy compensation exists in response to interval training, and what underlying mechanisms and participant traits contribute to the large variation between individuals.

  16. The Energy & Raw Materials Factory: Role and Potential Contribution to the Circular Economy of the Netherlands.

    Science.gov (United States)

    van Leeuwen, Kees; de Vries, Eli; Koop, Stef; Roest, Kees

    2018-01-30

    Water is an abundant resource worldwide, but fresh and clean water is scarce in many areas of the world. Increases in water consumption and climate change will affect global water security even further in the near future. With increasing numbers of people living in metropolitan areas, water, energy, and materials need to be used carefully, reused and renewed. Resource scarcity is the driver behind the circular economy. The recovery of materials and energy can add significant new value streams and improve cost recovery and water quality. In this paper, we present the creation of the Energy & Raw Materials Factory (ERMF) of the Dutch Water Authorities, also known as the Resource Factory, as one of the solutions to this global challenge of water in the circular economy. Resources like cellulose, bioplastics, phosphate, alginate-like exopolymers from aerobic granular sludge (bio-ALE), and biomass can be recovered. Bio-ALE is an alginate-like polymer of sugars and proteins and can be used in agriculture and horticulture, the paper industry, medical, and construction industries. The ERMF demands significant investments but the return on investment is high both from a financial and environmental perspective, provided that markets can be realized. Experiences in the Netherlands show that the concept of the ERMF is viable and adds to the creation of a circular economy. Achieving climate neutrality and production of new and promising resources like bio-ALE are possible. The ERMF can contribute to the sustainable development goals (SDGs) of the United Nations on water and sanitation, once fully operational.

  17. High-energy, high-rate materials processing

    Science.gov (United States)

    Marcus, H. L.; Bourell, D. L.; Eliezer, Z.; Persad, C.; Weldon, W.

    1987-12-01

    The increasingly available range of pulsed-power, high energy kinetic storage devices, such as low-inductance pulse-forming networks, compulsators, and homopolar generators, is presently considered as a basis for industrial high energy/high rate (HEHR) processing to accomplish shock hardening, drilling, rapid surface alloying and melting, welding and cutting, transformation hardening, and cladding and surface melting in metallic materials. Time-temperature-transformation concepts furnish the basis for a fundamental understanding of the potential advantages of this direct pulsed power processing. Attention is given to the HEHR processing of a refractory molybdenum alloy, a nickel-base metallic glass, tungsten, titanium aluminides, and metal-matrix composites.

  18. A Gas Calorimeter for High-Energy Experiment and Study of High-Energy Cascade Shower

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Hitoshi [Tsukuba U.

    1984-01-01

    High energy behavior of the electromagnetic cascade shower has been studied. high energy showers were created by electron and hadron beams with energies between 25 GeV and 150 GeV at Fermi National Accelerator Laboratory. The showers were observed by a shower detector consisting of multi-layer of lead plates and proportional chambers. The experimental results were analyzed with special emphasis on the fluctuation problem of the electromagnetic cascade shower....

  19. High-Energy Physics: Exit America?

    CERN Multimedia

    Seife, Charles

    2005-01-01

    Budget cuts and cancellations threaten to end U.S. exploration of the particle frontier. Fermilab's Tevatron, due to shut down around 200, could be the last large particle accelerator in the United States; the Large Hadron Collider in Geneva should ensure European dominance of high-energy physics (3 pages)

  20. Hard scattering in high-energy QCD

    CERN Document Server

    Mangano, Michelangelo L

    2000-01-01

    I review the recent results in the field of QCD at high energy presented to this Conference. In particular, I will concentrate on measurements of $\\as$ from studies of event structures and jet rates, jet production in hadronic collisions, and heavy quark production.

  1. Perspective in high energy physics instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, L. [INFN, Genoa (Italy)

    1995-10-01

    The discovery potential of the next generation of particle accelerators, and in particular of the large hadron collider (LHC), can only be fully exploited by very sophisticated particle detectors. The basics of detectors for momentum and energy measurement is here presented together with a recollection of recent developments which are relevant for use at high luminosity accelerators.

  2. Detecting ultra high energy neutrinos with LOFAR

    NARCIS (Netherlands)

    Mevius, M.; Buitink, S.; Falcke, H.; Horandel, J.; James, C. W.; McFadden, R.; Scholten, O.; Singh, K.; Stappers, B.; ter Veen, S.

    2012-01-01

    The NuMoon project aims to detect signals of Ultra High Energy (UHE) Cosmic Rays with radio telescopes on Earth using the Lunar Cherenkov technique at low frequencies (similar to 150 MHz). The advantage of using low frequencies is the much larger effective detecting volume, with as trade-off the

  3. Maximal Entanglement in High Energy Physics

    NARCIS (Netherlands)

    Cervera-Lierta, Alba; Latorre, José I.; Rojo, Juan; Rottoli, Luca

    2017-01-01

    We analyze how maximal entanglement is generated at the fundamental level in QED by studying correlations between helicity states in tree-level scattering processes at high energy. We demonstrate that two mechanisms for the generation of maximal entanglement are at work: i) $s$-channel processes

  4. High energy bosons do not propagate

    Energy Technology Data Exchange (ETDEWEB)

    Kurkov, M.A., E-mail: Kurkov@na.infn.it [Dipartimento di Fisica, Università di Napoli Federico II (Italy); INFN, Sezione di Napoli (Italy); Lizzi, Fedele, E-mail: fedele.lizzi@na.infn.it [Dipartimento di Fisica, Università di Napoli Federico II (Italy); INFN, Sezione di Napoli (Italy); Departament de Estructura i Constituents de la Matèria, Institut de Ciéncies del Cosmos, Universitat de Barcelona, Barcelona, Catalonia (Spain); Vassilevich, Dmitri, E-mail: dvassil@gmail.com [CMCC, Universidade Federal do ABC, Santo André, S.P. (Brazil)

    2014-04-04

    We discuss the propagation of bosons (scalars, gauge fields and gravitons) at high energy in the context of the spectral action. Using heat kernel techniques, we find that in the high-momentum limit the quadratic part of the action does not contain positive powers of the derivatives. We interpret this as the fact that the two-point Green functions vanish for nearby points, where the proximity scale is given by the inverse of the cutoff.

  5. Automatic Energy Schemes for High Performance Applications

    Energy Technology Data Exchange (ETDEWEB)

    Sundriyal, Vaibhav [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    Although high-performance computing traditionally focuses on the efficient execution of large-scale applications, both energy and power have become critical concerns when approaching exascale. Drastic increases in the power consumption of supercomputers affect significantly their operating costs and failure rates. In modern microprocessor architectures, equipped with dynamic voltage and frequency scaling (DVFS) and CPU clock modulation (throttling), the power consumption may be controlled in software. Additionally, network interconnect, such as Infiniband, may be exploited to maximize energy savings while the application performance loss and frequency switching overheads must be carefully balanced. This work first studies two important collective communication operations, all-to-all and allgather and proposes energy saving strategies on the per-call basis. Next, it targets point-to-point communications to group them into phases and apply frequency scaling to them to save energy by exploiting the architectural and communication stalls. Finally, it proposes an automatic runtime system which combines both collective and point-to-point communications into phases, and applies throttling to them apart from DVFS to maximize energy savings. The experimental results are presented for NAS parallel benchmark problems as well as for the realistic parallel electronic structure calculations performed by the widely used quantum chemistry package GAMESS. Close to the maximum energy savings were obtained with a substantially low performance loss on the given platform.

  6. Geological subsurface will contribute significantly to the implementation of the energy policy towards renewables in Germany

    Science.gov (United States)

    Martens, Sonja; Kühn, Michael

    2015-04-01

    The demands to exploit the geological subsurface are increasing. In addition to the traditional production of raw materials such as natural gas and petroleum, or potable groundwater extraction the underground will most likely also be used to implement the climate and energy policy objectives in the context of the energy transition to renewables. These include the storage of energy from renewable sources (e.g. hydrogen and methane), the use of geothermal energy and possibly the long-term storage of carbon dioxide to reduce the release of greenhouse gases into the atmosphere. The presentation addresses the question which realistic contribution can be expected from the geo-resource subsurface for the energy revolution, the detachment of fossil and nuclear fuels as well as the reduction of CO2 emissions. The study of Henning and Palzer [1] that models the energy balance of the electricity and heat sector including all renewable energy converters, storage components and loads for a future German energy system shows that provision with 100% renewables is economically feasible by 2050. Based on their work, our estimates underline that already in 2015 more than 100% of the required methane storage capacities therein are available and more than 100% of the heat pump demands might be covered by shallow and deep geothermal energy production in the future. In addition we show that a newly developed energy storage system [2-3] could be applied to store 20-60% of the surplus energy from renewables expected for 2050 with integrated gas storage of methane and CO2. [1] Henning H-M, Palzer A (2014) A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies -- Part I: Methodology. Renewable and Sustainable Energy Reviews 30, 1003-1018. doi: 10.1016/j.rser.2013.09.012 [2] Kühn M, Nakaten N, Streibel M, Kempka T (2014) CO2 geological storage and utilization for a carbon neutral "power

  7. Contribution of pitcher fragrance and fluid viscosity to high prey ...

    Indian Academy of Sciences (India)

    This study focused on distinguishing between the prey trapping mechanisms, and assessing their relative contribution to prey diversity. Arthropod richness and diversity of both visitors and prey in the two types of pitchers were analysed to quantify the relative contribution of attraction to prey trapping. Rate of insect visits to ...

  8. Vehicle energy consumption - A contribution to the Coherent Energy and Environmental System Analysis (CEESA) project

    Energy Technology Data Exchange (ETDEWEB)

    Schaltz, E.

    2011-01-15

    In this report simulation models of a Battery Electric Vehicle (BEV) and a Fuel Cell Hybrid Electric Vehicle (FCHEV) have been developed. The models have two features: they both design the vehicles and calculates the energy consumption, efficiency, mass, volume, and cost due to a given drive cycle. The vehicles are designed to fulfill a drive cycle which consist of city, road, and motorway driving, as it is desired that the vehicles should have the same performance as traditional internal combustion engine (ICE) vehicles. For this reason its also chosen to use a midsize car, i.e. a Toyota Avensis, as reference vehicle. The simulation models consist of several sub-models, which have been modeled by use of data sheets. The models have therefore not been verified be experimental results, which is strongly recommenced for future work. The energy consumption per km and efficiency are significant better for the BEV than for the FCHEV. The average energy consumption per km is 304.1 Wh/km and 635.7 Wh/km for the BEV and FCHEV, respectively. The average tank-to-wheel efficiency of the BEV and FCHEV are 54.0% and 23.4%, respectively. For the total car mass and cost and volume of the power system, the results are two-sided. For short distance the BEV is lighter, has smaller volume of the power system, and are cheaper than the FCHEV. However, when the traveling distance increases the difference becomes smaller, and at long distances the FCHEV are the lightest, smallest, and cheapest. (Author)

  9. Electrostatic polarization makes a substantial contribution to the free energy of avidin-biotin binding.

    Science.gov (United States)

    Tong, Yan; Mei, Ye; Li, Yong L; Ji, Chang G; Zhang, John Z H

    2010-04-14

    Avidin-biotin is one of the strongest protein-ligand binding systems, with broad applications in biomedical science. Here we report a quantum-based computational study to help elucidate the mechanism of binding avidin to biotin (BTN1) and its close analogue, 2'-iminobiotin (BTN2). Our study reveals that electronic polarization of protein plays a critical role in stabilizing the beta sheet (Thr113-Arg122) at the binding site and makes a substantial contribution to the free energy of avidin-biotin binding. The current finding is in contradiction to the previous notion that electrostatic interaction has no effect on or makes an unfavorable contribution to the free energy of avidin-biotin binding. Our calculations also show that the difference in binding free energy of avidin to BTN1 and BTN2 is almost entirely due to the contribution of electrostatic interaction resulting from polarization-induced stabilization of a hydrogen bond between avidin and BTN1. The current result provides strong evidence that protein polarization accounts for the electrostatic contribution to binding free energy that was missing in previous studies of avidin-biotin binding.

  10. Photons as Ultra High Energy Cosmic Rays ?

    CERN Document Server

    Kalashev, O E; Semikoz, D V; Tkachev, Igor I

    2001-01-01

    We study spectra of the Ultra High Energy Cosmic Rays assuming primaries are protons and photons, and that their sources are extragalactic. We assume power low for the injection spectra and take into account the influence of cosmic microwave, infrared, optical and radio backgrounds as well as extragalactic magnetic fields on propagation of primaries. Our additional free parameters are the maximum energy of injected particles and the distance to the nearest source. We find a parameter range where the Greisen-Zatsepin-Kuzmin cut-off is avoided.

  11. High Energy Emission From Millisecond Pulsars

    Science.gov (United States)

    Harding, Alice K.

    2003-01-01

    Emission at X-ray and gamma-ray energies has been detected from millisecond pulsars, both isolated and in binary systems. Although these pulsars have low surface magnetic fields, their short periods allow them to have large magnetospheric potential drops, so that high-energy emission from these sources is not unexpected. In fact, several nearby energetic millisecond pulsars that have been detected in X-rays could easily have been detected in gamma-rays by EGRET, but they were not. The reason for this may lie in a high-energy spectrum that is very different in these sources from that of normal pulsars. Both polar cap and outer gap models predict a two-component spectrum, one component peaking in hard X-rays and the other peaking above 1 GeV, with a gap at EGRET peak sensitivity. I will discuss the models for high-energy emission from millisecond pulsars, highlighting the differences between polar cap and outer gap models in spectrum and geometry of the emission.

  12. Proposal for a High Energy Nuclear Database

    Energy Technology Data Exchange (ETDEWEB)

    Brown, David A.; Vogt, Ramona

    2005-03-31

    We propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interface. This database will be searchable and cross-indexed with relevant publications, including published detector descriptions. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This database should eventually contain all published data from Bevalac and AGS to RHIC to CERN-LHC energies, proton-proton to nucleus-nucleus collisions as well as other relevant systems, and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of old and new experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion and target and source development for upcoming facilities such as the Next Linear Collider. To enhance the utility of this database, we propose periodically performing evaluations of the data and summarizing the results in topical reviews.

  13. Energy harvesting in high voltage measuring techniques

    Science.gov (United States)

    Żyłka, Pawel; Doliński, Marcin

    2016-02-01

    The paper discusses selected problems related to application of energy harvesting (that is, generating electricity from surplus energy present in the environment) to supply autonomous ultra-low-power measurement systems applicable in high voltage engineering. As a practical example of such implementation a laboratory model of a remote temperature sensor is presented, which is self-powered by heat generated in a current-carrying busbar in HV- switchgear. Presented system exploits a thermoelectric harvester based on a passively cooled Peltier module supplying micro-power low-voltage dc-dc converter driving energy-efficient temperature sensor, microcontroller and a fibre-optic transmitter. Performance of the model in laboratory simulated conditions are presented and discussed.

  14. A contribution to the identification of promising technologies for SwissEnergy R and D policy in 2050

    Energy Technology Data Exchange (ETDEWEB)

    Buerer, M. [E4tech Switzerland, Lausanne (Switzerland); Cremer, C. [Swiss Federal Institute of Technology (ETH), Centre for Energy Policy and Economics (CEPE), Zuerich (Switzerland)

    2006-07-01

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) takes a look at the conclusions of a study-project on promising energy technologies that could make a contribution to Swiss energy supply in the future. A review of literature on the subject is presented and the methodology used for the identification of the promising technologies is described. Four future possibilities of combining low or high levels of decentralisation of power generation with a low or high degree of fossil fuel utilisation are presented and discussed. The opinions for industry and the Swiss economy on the subject are looked at, as is research currently being carried out. Also, the so-called '2000-Watt Society' is briefly looked at. European aspects are discussed. Finally, exemplary prioritisation for the four options mentioned above along with the case of nothing being done at all are discussed.

  15. The High Energy Telescope for STEREO

    Science.gov (United States)

    von Rosenvinge, T. T.; Reames, D. V.; Baker, R.; Hawk, J.; Nolan, J. T.; Ryan, L.; Shuman, S.; Wortman, K. A.; Mewaldt, R. A.; Cummings, A. C.; Cook, W. R.; Labrador, A. W.; Leske, R. A.; Wiedenbeck, M. E.

    2008-04-01

    The IMPACT investigation for the STEREO Mission includes a complement of Solar Energetic Particle instruments on each of the two STEREO spacecraft. Of these instruments, the High Energy Telescopes (HETs) provide the highest energy measurements. This paper describes the HETs in detail, including the scientific objectives, the sensors, the overall mechanical and electrical design, and the on-board software. The HETs are designed to measure the abundances and energy spectra of electrons, protons, He, and heavier nuclei up to Fe in interplanetary space. For protons and He that stop in the HET, the kinetic energy range corresponds to ˜13 to 40 MeV/n. Protons that do not stop in the telescope (referred to as penetrating protons) are measured up to ˜100 MeV/n, as are penetrating He. For stopping He, the individual isotopes 3He and 4He can be distinguished. Stopping electrons are measured in the energy range ˜0.7 6 MeV.

  16. High energy electron-positron physics

    CERN Document Server

    Ali, Ahmed

    1988-01-01

    With the termination of the physics program at PETRA, and with the start of TRISTAN and the SLC and later LEP, an era of e+e- physics has come to an end and a new one begins. The field is changing from a field of few specialists, to becoming one of the mainstream efforts of the high energy community. It seems appropriate at this moment to summarize what has been learned over the past years, in a way most useful to any high energy physicists, in particular to newcomers in the e+e- field. This is the purpose of the book. This book should be used as a reference for future workers in the field of

  17. High energy physics at UC Riverside

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    This report discusses progress made for the following two tasks: experimental high energy physics, Task A, and theoretical high energy physics, Task B. Task A1 covers hadron collider physics. Information for Task A1 includes: personnel/talks/publications; D0: proton-antiproton interactions at 2 TeV; SDC: proton-proton interactions at 40 TeV; computing facilities; equipment needs; and budget notes. The physics program of Task A2 has been the systematic study of leptons and hadrons. Information covered for Task A2 includes: personnel/talks/publications; OPAL at LEP; OPAL at LEP200; CMS at LHC; the RD5 experiment; LSND at LAMPF; and budget notes. The research activities of the Theory Group are briefly discussed and a list of completed or published papers for this period is given.

  18. High energy density redox flow device

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Yet-Ming; Carter, Craig W.; Ho, Bryan Y.; Duduta, Mihai; Limthongkul, Pimpa

    2017-10-10

    Redox flow devices are described in which at least one of the positive electrode or negative electrode-active materials is a semi-solid or is a condensed ion-storing electroactive material, and in which at least one of the electrode-active materials is transported to and from an assembly at which the electrochemical reaction occurs, producing electrical energy. The electronic conductivity of the semi-solid is increased by the addition of conductive particles to suspensions and/or via the surface modification of the solid in semi-solids (e.g., by coating the solid with a more electron conductive coating material to increase the power of the device). High energy density and high power redox flow devices are disclosed. The redox flow devices described herein can also include one or more inventive design features. In addition, inventive chemistries for use in redox flow devices are also described.

  19. New Prospects in High Energy Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Blandford, Roger; /KIPAC, Menlo Park

    2011-11-15

    Recent discoveries using TeV, X-ray and radio telescopes as well as Ultra High Energy Cosmic Ray arrays are leading to new insights into longstanding puzzles in high energy astrophysics. Many of these insights come from combining observations throughout the electromagnetic and other spectra as well as evidence assembled from different types of source to propose general principles. Issues discussed in this general overview include methods of accelerating relativistic particles, and amplifying magnetic field, the dynamics of relativistic outflows and the nature of the prime movers that power them. Observational approaches to distinguishing hadronic, leptonic and electromagnetic outflows and emission mechanisms are discussed along with probes of the velocity field and the confinement mechanisms. Observations with GLAST promise to be very prescriptive for addressing these problems.

  20. Maximal Entanglement in High Energy Physics

    Directory of Open Access Journals (Sweden)

    Alba Cervera-Lierta, José I. Latorre, Juan Rojo, Luca Rottoli

    2017-11-01

    Full Text Available We analyze how maximal entanglement is generated at the fundamental level in QED by studying correlations between helicity states in tree-level scattering processes at high energy. We demonstrate that two mechanisms for the generation of maximal entanglement are at work: i $s$-channel processes where the virtual photon carries equal overlaps of the helicities of the final state particles, and ii the indistinguishable superposition between $t$- and $u$-channels. We then study whether requiring maximal entanglement constrains the coupling structure of QED and the weak interactions. In the case of photon-electron interactions unconstrained by gauge symmetry, we show how this requirement allows reproducing QED. For $Z$-mediated weak scattering, the maximal entanglement principle leads to non-trivial predictions for the value of the weak mixing angle $\\theta_W$. Our results are a first step towards understanding the connections between maximal entanglement and the fundamental symmetries of high-energy physics.

  1. High Energy Vibration for Gas Piping

    Science.gov (United States)

    Lee, Gary Y. H.; Chan, K. B.; Lee, Aylwin Y. S.; Jia, ShengXiang

    2017-07-01

    In September 2016, a gas compressor in offshore Sarawak has its rotor changed out. Prior to this change-out, pipe vibration study was carried-out by the project team to evaluate any potential high energy pipe vibration problems at the compressor’s existing relief valve downstream pipes due to process condition changes after rotor change out. This paper covers high frequency acoustic excitation (HFAE) vibration also known as acoustic induced vibration (AIV) study and discusses detailed methodologies as a companion to the Energy Institute Guidelines for the avoidance of vibration induced fatigue failure, which is a common industry practice to assess and mitigate for AIV induced fatigue failure. Such detailed theoretical studies can help to minimize or totally avoid physical pipe modification, leading to reduce offshore plant shutdown days to plant shutdowns only being required to accommodate gas compressor upgrades, reducing cost without compromising process safety.

  2. High-Temperature Thermoelectric Energy Conversion

    Science.gov (United States)

    Wood, C.

    1987-01-01

    Theory of thermoelectric energy conversion at high temperatures and status of research on conversion materials reviewed in report. Shows highest values of thermoelectric figure of merit, Z, found in semiconductor materials. Semiconductors keep wide choice of elements and compounds. Electrical properties tailored to particular application by impurity doping and control of stoichiometry. Report develops definition of Z useful for comparing materials and uses it to evaluate potentials of different classes of materialsmetals, semiconductors, and insulators.

  3. High-Energy Compton Scattering Light Sources

    CERN Document Server

    Hartemann, Fred V; Barty, C; Crane, John; Gibson, David J; Hartouni, E P; Tremaine, Aaron M

    2005-01-01

    No monochromatic, high-brightness, tunable light sources currently exist above 100 keV. Important applications that would benefit from such new hard x-ray sources include: nuclear resonance fluorescence spectroscopy, time-resolved positron annihilation spectroscopy, and MeV flash radiography. The peak brightness of Compton scattering light sources is derived for head-on collisions and found to scale with the electron beam brightness and the drive laser pulse energy. This gamma 2

  4. MASS SEPARATION OF HIGH ENERGY PARTICLES

    Science.gov (United States)

    Marshall, L.

    1962-09-25

    An apparatus and method are described for separating charged, high energy particles of equal momentum forming a beam where the particles differ slightly in masses. Magnetic lenses are utilized to focus the beam and maintain that condition while electrostatic fields located between magnetic lenses are utilized to cause transverse separation of the particles into two beams separated by a sufficient amount to permit an aperture to block one beam. (AEC)

  5. Energy compensation after sprint- and high-intensity interval training.

    Directory of Open Access Journals (Sweden)

    Matthew M Schubert

    Full Text Available Many individuals lose less weight than expected in response to exercise interventions when considering the increased energy expenditure of exercise (ExEE. This is due to energy compensation in response to ExEE, which may include increases in energy intake (EI and decreases in non-exercise physical activity (NEPA. We examined the degree of energy compensation in healthy young men and women in response to interval training.Data were examined from a prior study in which 24 participants (mean age, BMI, & VO2max = 28 yrs, 27.7 kg•m-2, and 32 mL∙kg-1∙min-1 completed either 4 weeks of sprint-interval training or high-intensity interval training. Energy compensation was calculated from changes in body composition (air displacement plethysmography and exercise energy expenditure was calculated from mean heart rate based on the heart rate-VO2 relationship. Differences between high (≥ 100% and low (< 100% levels of energy compensation were assessed. Linear regressions were utilized to determine associations between energy compensation and ΔVO2max, ΔEI, ΔNEPA, and Δresting metabolic rate.Very large individual differences in energy compensation were noted. In comparison to individuals with low levels of compensation, individuals with high levels of energy compensation gained fat mass, lost fat-free mass, and had lower change scores for VO2max and NEPA. Linear regression results indicated that lower levels of energy compensation were associated with increases in ΔVO2max (p < 0.001 and ΔNEPA (p < 0.001.Considerable variation exists in response to short-term, low dose interval training. In agreement with prior work, increases in ΔVO2max and ΔNEPA were associated with lower energy compensation. Future studies should focus on identifying if a dose-response relationship for energy compensation exists in response to interval training, and what underlying mechanisms and participant traits contribute to the large variation between individuals.

  6. High energy neutrinos from the sun

    Science.gov (United States)

    Masip, Manuel

    2018-01-01

    The Sun is a main source of high energy neutrinos. These neutrinos appear as secondary particles after the Sun absorbs high-energy cosmic rays, that find there a low-density environment (much thinner than our atmosphere) where most secondary pions, kaons and muons can decay before they lose energy. The main uncertainty in a calculation of the solar neutrino flux is due to the effects of the magnetic fields on the absorption rate of charged cosmic rays. We use recent data from HAWC on the cosmic-ray shadow of the Sun to estimate this rate. We evaluate the solar neutrino flux and show that at 1 TeV it is over ten times larger than the atmospheric one at zenith θz =30∘ /150∘ . The flux that we obtain has a distinct spectrum and flavor composition: it is harder and richer in antineutrinos and tau/electron neutrinos than the atmospheric background. This solar flux could be detected in current and upcoming neutrino telescopes. KM3NeT, in particular, looks very promising: it will see the Sun high in the sky (the atmospheric flux is lower there than near the horizon) and expects a very good angular resolution (the Sun's radius is just 0.27°).

  7. EURATOM-CEA association contributions to the 18. IAEA fusion energy conference

    Energy Technology Data Exchange (ETDEWEB)

    Ghendrih, Ph.; Peysson, Y.; Hoang, G.T. [and others

    2000-12-01

    The 9 contributions of EURATOM-Cea association to the fusion energy conference hold at Sorrento are gathered in this document with 7 additional papers. The different titles are: 1) Ergodic divertor experiments on the route to steady state operation of Tore-Supra, 2) High power lower hybrid current drive experiments in Tore-Supra tokamak, 3) Electron transport and improved confinement on Tore-Supra, 4) ECRH experiments and developments for long pulse in Tore-Supra, 5) Impurity penetration and contamination in Tore-Supra ergodic divertor experiments, 6) Real time plasma feed-back control: an overview of Tore-Supra achievements, 7) Numerical assessment of the ion turbulent thermal transport scaling laws, 8) Design of next step tokamak: consistent analysis of plasma flux consumption and poloidal, 9) Large superconducting conductors and joints for fusion magnets: from conceptual design to test at full size scale, 10) Burst-prone transport in tokamaks with internal transport barriers, 11) Electrostatic turbulence with finite parallel correlation length and radial electric field generation, 12) Theoretical issues in tokamak confinement: internal-edge transport barriers and runaway avalanche confinement, 13) Core and edge confinement studies with different heating methods in JET, 14) Confinement and transport studies of conventional scenarios in ASDEX upgrade, 15) First test results for the ITER central solenoid model coil, and 16) Progress of the ITER central solenoid model coil program.

  8. Embolism of high energy firearm projectile

    Directory of Open Access Journals (Sweden)

    Jaime Álvarez Soler

    2016-12-01

    Full Text Available The embolism of a projectile is very rare and out of the normal context, so the cor-oner in front of a wound projectile firearm must make a very judicious and careful analysis to recover the projectile and/or its fragments. This case presents evidence how modern military high-velocity weapons have a high kinetic energy which is transferred to body tissues, so including their fragments and parts of the projectile can cause serious injury and embolism, requiring a great effort scientific and in-terdisciplinary to give technical support to justice.

  9. EXTRACTOR FOR HIGH ENERGY CHARGED PARTICLES

    Science.gov (United States)

    Lambertson, G.R.

    1964-04-01

    A particle-extracting apparatus for use with a beam of high-energy charged particles such as travel in an evacuated chamber along a circular equilibrium axis is described. A magnetized target is impacted relatively against the beam whereby the beam particles are deflected from the beam by the magnetic induction in the target. To this end the target may be moved into the beam or the beam may coast into the target and achieve high angular particle deflection and slow extraction. A deflecting septum magnet may additionally be used for deflection at even sharper angles. (AEC)

  10. Quantum Phenomena in High Energy Density Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Murnane, Margaret [Univ. of Colorado, Boulder, CO (United States); Kapteyn, Henry [Univ. of Colorado, Boulder, CO (United States)

    2017-05-10

    The possibility of implementing efficient (phase matched) HHG upconversion of deep- UV lasers in multiply-ionized plasmas, with potentially unprecedented conversion efficiency is a fascinating prospect. HHG results from the extreme nonlinear response of matter to intense laser light:high harmonics are radiated as a result of a quantum coherent electron recollision process that occurs during laser field ionization of an atom. Under current support from this grant in work published in Science in 2015, we discovered a new regime of bright HHG in highly-ionized plasmas driven by intense UV lasers, that generates bright harmonics to photon energies >280eV

  11. Highly Compressed Ion Beams for High Energy Density Science

    CERN Document Server

    Friedman, Alex; Briggs, Richard J; Callahan, Debra; Caporaso, George; Celata, C M; Davidson, Ronald C; Faltens, Andy; Grant-Logan, B; Grisham, Larry; Grote, D P; Henestroza, Enrique; Kaganovich, Igor D; Lee, Edward; Lee, Richard; Leitner, Matthaeus; Nelson, Scott D; Olson, Craig; Penn, Gregory; Reginato, Lou; Renk, Tim; Rose, David; Sessler, Andrew M; Staples, John W; Tabak, Max; Thoma, Carsten H; Waldron, William; Welch, Dale; Wurtele, Jonathan; Yu, Simon

    2005-01-01

    The Heavy Ion Fusion Virtual National Laboratory (HIF-VNL) is developing the intense ion beams needed to drive matter to the High Energy Density (HED) regimes required for Inertial Fusion Energy (IFE) and other applications. An interim goal is a facility for Warm Dense Matter (WDM) studies, wherein a target is heated volumetrically without being shocked, so that well-defined states of matter at 1 to 10 eV are generated within a diagnosable region. In the approach we are pursuing, low to medium mass ions with energies just above the Bragg peak are directed onto thin target "foils," which may in fact be foams or "steel wool" with mean densities 1% to 100% of solid. This approach complements that being pursued at GSI, wherein high-energy ion beams deposit a small fraction of their energy in a cylindrical target. We present the requirements for warm dense matter experiments, and describe suitable accelerator concepts, including novel broadband traveling wave pulse-line, drift-tube linac, RF, and single-gap approa...

  12. Analysis of Factors Contributing to Changes in Energy Consumption in Tangshan City between 2007 and 2012

    Directory of Open Access Journals (Sweden)

    Jialing Zou

    2017-03-01

    Full Text Available The aim of this paper is to identify the correlations between energy consumption and the factors that control usage in the city of Tangshan. To do this, we first analyze the current status of Tangshan’s economic development and energy consumption, and then applied the logarithmic mean Divisia index to identify the factors affecting the changes in energy consumption of all sectors. The findings are summarized as follows: (1 secondary industry accounts for an extremely high percentage of industry in Tangshan city, much higher than the national average; from 2007 to 2012, the proportion of secondary industry increased in Tangshan city; (2 Tangshan’s energy consumption in 2013 was nearly twice that in 2005. Coal and coke coal consumption was responsible for 96.2% of total energy consumption in 2005 and 95.1% in 2013; (3 Tangshan’s energy intensity decreased from 3.00 tce/thousand Yuan in 2005 to 1.85 tce/thousand Yuan in 2013. However, the energy intensity of Tangshan was far more than the average for China, and the decline in Tangshan’s energy intensity was much slower than the average for China; (4 The technical effect plays a dominant role in decreasing energy consumption in most sectors, and the scale effect is the most important contributor to increasing energy consumption in all sectors. Input structural and final use structural effects play different roles in energy consumption in different sectors.

  13. Energy system contributions and determinants of performance in sprint cross-country skiing

    DEFF Research Database (Denmark)

    Andersson, E; Björklund, G; Holmberg, H-C

    2017-01-01

    To improve current understanding of energy contributions and determinants of sprint-skiing performance, 11 well-trained male cross-country skiers were tested in the laboratory for VO2max , submaximal gross efficiency (GE), maximal roller skiing velocity, and sprint time-trial (STT) performance...... contribution was 18 ± 5%, with an accumulated O2 deficit of 45 ± 13 mL/kg. Block-wise multiple regression revealed that VO2 , O2 deficit, and GE explained 30%, 15%, and 53% of the variance in STT time, respectively (all P skiing...

  14. The Contribution of Energy Consumption to Climate Change: A Feasible Policy Direction

    Directory of Open Access Journals (Sweden)

    Usenobong Friday Akpan

    2012-01-01

    Full Text Available Mitigating climate change is one of the biggest challenges that confront mankind in the present millennium. The problem has continued to dominate public debates in terms of its origin, sources, potential impacts and possibly adaptation strategies. In this paper, the contributions of energy to the climate change debate are explored. The analysis shows that since about 1850, the global use of fossil fuels (coal, oil and gas has increased and dominated world energy consumption and supply. The rapid rise in fossil fuel combustion has produced a corresponding rapid growth in CO2 emissions and accounts for over 80% of global anthropogenic green house gas emissions (GHGs in 2008. It was shown that a substantial amount of CO2 emissions still emanates from the increased use of heavy polluting fuel like coal by industrializing countries like the United States, Japan and China. Historically, the developed countries have contributed the most to cumulative global CO2 emissions and still have the highest total historical emission. A disaggregated analysis indicates that two sectors of the economy, electricity and heat as well as the transport sector (majorly road transport, emit greater amounts of GHGs. Some mitigation mechanisms have been suggested including improved energy efficiency, energy pricing reforms, imposition of carbon emission taxes, promoting investment in renewable energy technologies and creating public environmental awareness.

  15. Science panel to study mega-computers to assess potential energy contributions

    CERN Multimedia

    Jones, D

    2003-01-01

    "Energy Department advisers plan to examine high-end computing in the coming year and assess how computing power could be used to further DOE's basic research agenda on combustion, fusion and other topics" (1 page).

  16. High Energy High Power Battery Exceeding PHEV40 Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Rempel, Jane [TIAX LLC, Lexington, MA (United States)

    2016-03-31

    TIAX has developed long-life lithium-ion cells that can meet and exceed the energy and power targets (200Wh/kg and 800W/kg pulse power) set out by DOE for PHEV40 batteries. To achieve these targets, we selected and scaled-up a high capacity version of our proprietary high energy and high power CAM-7® cathode material. We paired the cathode with a blended anode containing Si-based anode material capable of delivering high capacity and long life. Furthermore, we optimized the anode blend composition, cathode and anode electrode design, and selected binder and electrolyte compositions to achieve not only the best performance, but also long life. By implementing CAM-7 with a Si-based blended anode, we built and tested prototype 18650 cells that delivered measured specific energy of 198Wh/kg total energy and 845W/kg at 10% SOC (projected to 220Wh/kg in state-of-the-art 18650 cell hardware and 250Wh/kg in 15Ah pouch cells). These program demonstration cells achieved 90% capacity retention after 500 cycles in on-going cycle life testing. Moreover, we also tested the baseline CAM-7/graphite system in 18650 cells showing that 70% capacity retention can be achieved after ~4000 cycles (20 months of on-going testing). Ultimately, by simultaneously meeting the PHEV40 power and energy targets and providing long life, we have developed a Li-ion battery system that is smaller, lighter, and less expensive than current state-of-the-art Li-ion batteries.

  17. Contribution to energy optimization, management and processing; Contribution a l'optimisation, la gestion et le traitement de l'energie

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, C.

    2003-12-15

    Nowadays, renewable energies become an alternative solution to the classical energies obtained from fossil resources. Renewable energies have reached a high level of development, mainly in terms of cost and production facilities. However, the electrical conversion systems are often not optimized in terms of reliability, electrical efficiency and cost production. For that, there is a lot of reticence to install these systems in home sites or in big centrals for mass energy production. Since 1997 LAAS-CNRS has focused his research in the optimization of the power conversion chains from a system point of view. Indeed, due to the inexistence of optimal solutions for these electrical systems and the absence of research groups in France interested in this problem, the research goals were finally centered on the electrical conversion and thermal management of photovoltaic energy systems. First works were focused in the optimization of conversion efficiency. For that, LAAS-CNRS has developed and installed a complete outdoor photovoltaic system. The PV demonstration site has 1 kW of peak power and an automatic measurement system capable of characterize the electrical efficiency of different power conversion structures with high level of precision. Novel power conversion structures devoted for photovoltaic systems have been developed in collaboration of foreign research groups like the GAEI from University Rovira i Virgili (Tarragona) and the EPIC from the Polytechnic University of Catalonia (Barcelona). Meteorological dependence of the renewable energy sources produces a low level of predictability of the energy production. In order to produce energy without strong variations we have coupled different energy sources like PV generators and small wind generators by means of batteries. Additional studies have been made regarding to the optimal battery management. Maturity in the studies of the photovoltaic systems shows news trends and new possible applications of this systems

  18. Evaluation of Drinks Contribution to Energy Intake in Summer and Winter

    OpenAIRE

    Olga Malisova; Vassiliki Bountziouka; Antonis Zampelas; Maria Kapsokefalou

    2015-01-01

    All drinks hydrate and most also provide nutrients and energy. Our objective was to evaluate the contribution of drinks to total energy intake in summer and winter. Data were obtained using the Water Balance Questionnaire (WBQ) from a sample of the general population in Athens, Greece (n = 984), 473 individuals (42 ± 18 years) in summer and 511 individuals (38 ± 20 years) in winter stratified by sex and age. The WBQ embeds a semi-quantitative food frequency questionnaire of 58 foods and the...

  19. Theory Summary: Very High Energy Cosmic Rays

    Directory of Open Access Journals (Sweden)

    Sarkar Subir

    2013-06-01

    Full Text Available This is a summary of ISVHECRI 2012 from a theorist’s perspective. A hundred years after their discovery, there is renewed interest in very high energy cosmic raysand their interactions which can provide unique information on new physics well beyond the Standard Model if only we knew how to unambiguously decipher the experimental data. While the observational situation has improved dramatically on the past decade with regard to both improved statistics and better understood systematics, the long standing questions regarding the origin of cosmic rays remain only partially answered, while further questions have been raised by new data. A recent development discussed at this Symposium is the advent of forward physics data from several experiments at the LHC, which have broadly vindicated the air shower simulation Monte Carlos currently in use and reduced their uncertainties further. Nevertheless there is still a major extrapolation required to interpret the highest energy air showers observed which appear to be undergoing a puzzling change in their elemental composition, even casting doubt on whether the much vaunted GZK cutoff has indeedbeen observed. The situation is further compounded by the apparent disagreement between Auger and Telescope Array data. A crucial diagnostic will be provided by the detection of the accompanying ultra-high energy cosmic neutrinos — two intriguing events have recently been recorded by IceCube.

  20. Perspectives on future high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Samios, N.P.

    1996-12-31

    The author states two general ways in which one must proceed in an attempt to forecast the future of high energy physics. The first is to utilize the state of knowledge in the field and thereby provide theoretical and experimental guidance on future directions. The second approach is technical, namely, how well can one do in going to higher energies with present techniques or new accelerator principles. He concludes that the future strategy is straightforward. The present accelerator facilities must be upgraded and run to produce exciting and forefront research. At the same time, the theoretical tools should be sharpened both extrapolating from lower energies (100 GeV) to high (multi TeV) and vice versa. The US should be involved in the LHC, both in the accelerator and experimental areas. There should be an extensive R and D program on accelerators for a multi-TeV capability, emphasizing e{sup +}e{sup {minus}} and {mu}{sup +}{mu}{sup {minus}} colliders. Finally, the international cooperative activities should be strengthened and maintained.

  1. Extreme Transients in the High Energy Universe

    Science.gov (United States)

    Kouveliotou, Chryssa

    2013-01-01

    The High Energy Universe is rich in diverse populations of objects spanning the entire cosmological (time)scale, from our own present-day Milky Way to the re-ionization epoch. Several of these are associated with extreme conditions irreproducible in laboratories on Earth. Their study thus sheds light on the behavior of matter under extreme conditions, such as super-strong magnetic fields (in excess of 10^14 G), high gravitational potentials (e.g., Super Massive Black Holes), very energetic collimated explosions resulting in relativistic jet flows (e.g., Gamma Ray Bursts, exceeding 10^53 ergs). In the last thirty years, my work has been mostly focused on two apparently different but potentially linked populations of such transients: magnetars (highly magnetized neutron stars) and Gamma Ray Bursts (strongly beamed emission from relativistic jets), two populations that constitute unique astrophysical laboratories, while also giving us the tools to probe matter conditions in the Universe to redshifts beyond z=10, when the first stars and galaxies were assembled. I did not make this journey alone I have either led or participated in several international collaborations studying these phenomena in multi-wavelength observations; solitary perfection is not sufficient anymore in the world of High Energy Astrophysics. I will describe this journey, present crucial observational breakthroughs, discuss key results and muse on the future of this field.

  2. High energy microlaser and compact MOPA transmitter

    Science.gov (United States)

    Brickeen, Brian K.; Bernot, Dave; Geathers, Eliot; Mosovsky, Joseph

    2011-06-01

    A compact micro-oscillator incorporating a dual-bounce, grazing incidence gain module with a folded resonator cavity is presented. The gain module, previously developed for Nd:YVO4, is embodied in highly doped ceramic Nd:YAG to generate improved Q-switch performance while maintaining localized pump absorption. The cavity design utilizes a doubly folded optics path around the gain crystal to increase the intra-cavity mode for a more optimum overlap with the pump light volume produced by standard lensed laser diode bars. A modified CS-package diode mount is developed to facilitate the reduced size of the oscillator without sacrificing the ability to use a high-energy, side-pumping arrangement. The oscillator is combined with a high gain, high energy extraction VHGM amplifier to generate a transmitter source on the order of 50 mJ. Cooling for both the oscillator and amplifier modules is provided via a conductive path through the base of the package. Both devices are mounted on opposite sides of a phase-change cooling reservoir to enable self-contained, burst-mode operation. Beam shaping of the oscillator output, in preparation for injection into the amplifier, is contained in a small cut-away path on the reservoir side.

  3. 52nd Rencontres de Moriond on Very High Energy Phenomena in the Universe

    CERN Document Server

    Dumarchez, Jacques; Tran Thanh Van, Jean; Moriond VHEPU 2017; VHEPU 2017; VHEPU2017

    2017-01-01

    The Rencontres de Moriond session on Very High Energy Phenomena in the Universe will review the subject 4 years after the last edition. The main topics of the conference are: - Origin and Propagation of Cosmic Rays - Compact Objects - High Energy Cosmic Rays - Gamma Ray Astronomy - Gamma Ray Bursts - High Energy Neutrino Astronomy - Dark Matter searches - Nature and Origin of Dark Matter The conference will include both review and contributed talks and will be organized only in plenary sessions

  4. Extremely High Current, High-Brightness Energy Recovery Linac

    CERN Document Server

    Ben-Zvi, Ilan; Beavis, Dana; Blaskiewicz, Michael; Bluem, Hans; Brennan, Joseph M; Burger, Al; Burrill, Andrew; Calaga, Rama; Cameron, Peter; Chang, Xiangyun; Cole, Michael; Connolly, Roger; Delayen, Jean R; Favale, Anthony; Gassner, David M; Grimes, Jacob T; Hahn, Harald; Hershcovitch, Ady; Holmes, Douglas; Hseuh Hsiao Chaun; Johnson, Peter; Kayran, Dmitry; Kewisch, Jorg; Kneisel, Peter; Lambiase, Robert; Litvinenko, Vladimir N; McIntyre, Gary; Meng, Wuzheng; Nehring, Thomas; Nicoletti, Tony; Oerter, Brian; Pate, David; Phillips, Larry; Preble, Joseph P; Rank, Jim; Rao, Triveni; Rathke, John; Roser, Thomas; Russo, Thomas; Scaduto, Joseph; Schultheiss, Tom; Segalov, Zvi; Smith, Kevin T; Todd, Alan M M; Warren-Funk, L; Williams, Neville; Wu, Kuo-Chen; Yakimenko, Vitaly; Yip, Kin; Zaltsman, Alex; Zhao, Yongxiang

    2005-01-01

    Next generation ERL light-sources, high-energy electron coolers, high-power Free-Electron Lasers, powerful Compton X-ray sources and many other accelerators were made possible by the emerging technology of high-power, high-brightness electron beams. In order to get the anticipated performance level of ampere-class currents, many technological barriers are yet to be broken. BNL's Collider-Accelerator Department is pursuing some of these technologies for its electron cooling of RHIC application, as well as a possible future electron-hadron collider. We will describe work on CW, high-current and high-brightness electron beams. This will include a description of a superconducting, laser-photocathode RF gun and an accelerator cavity capable of producing low emittance (about 1 micron rms normalized) one nano-Coulomb bunches at currents of the order of one ampere average.

  5. Grid Computing in High Energy Physics

    Science.gov (United States)

    Avery, Paul

    2004-09-01

    Over the next two decades, major high energy physics (HEP) experiments, particularly at the Large Hadron Collider, will face unprecedented challenges to achieving their scientific potential. These challenges arise primarily from the rapidly increasing size and complexity of HEP datasets that will be collected and the enormous computational, storage and networking resources that will be deployed by global collaborations in order to process, distribute and analyze them. Coupling such vast information technology resources to globally distributed collaborations of several thousand physicists requires extremely capable computing infrastructures supporting several key areas: (1) computing (providing sufficient computational and storage resources for all processing, simulation and analysis tasks undertaken by the collaborations); (2) networking (deploying high speed networks to transport data quickly between institutions around the world); (3) software (supporting simple and transparent access to data and software resources, regardless of location); (4) collaboration (providing tools that allow members full and fair access to all collaboration resources and enable distributed teams to work effectively, irrespective of location); and (5) education, training and outreach (providing resources and mechanisms for training students and for communicating important information to the public). It is believed that computing infrastructures based on Data Grids and optical networks can meet these challenges and can offer data intensive enterprises in high energy physics and elsewhere a comprehensive, scalable framework for collaboration and resource sharing. A number of Data Grid projects have been underway since 1999. Interestingly, the most exciting and far ranging of these projects are led by collaborations of high energy physicists, computer scientists and scientists from other disciplines in support of experiments with massive, near-term data needs. I review progress in this

  6. Experimental Facilities at the High Energy Frontier

    CERN Document Server

    Jenni, P.

    2016-01-01

    The main theme of the lectures covered the experimental work at hadron colliders, with a clear focus on the Large Hadron Collider (LHC) and on the roadmap that led finally to the discovery of the Higgs boson. The lectures were not a systematic course on machine and detector technologies, but rather tried to give a physics-motivated overview of many experimental aspects that were all relevant for making the discovery. The actual lectures covered a much broader scope than what is documented here in this write- up. The successful concepts for the experiments at the LHC have benefitted from the experience gained with previous generations of detectors at lower- energy machines. The lectures included also an outlook to the future experimental programme at the LHC, with its machine and experiments upgrades, as well as a short discussion of possible facilities at the high energy frontier beyond LHC.

  7. High energy neutrinos from the Fermi bubbles.

    Science.gov (United States)

    Lunardini, Cecilia; Razzaque, Soebur

    2012-06-01

    Recently the Fermi-LAT data have revealed two gamma-ray emitting bubble-shaped structures at the Galactic center. If the observed gamma rays have hadronic origin (collisions of accelerated protons), the bubbles must emit high energy neutrinos as well. This new, Galactic, neutrino flux should trace the gamma-ray emission in spectrum and spatial extent. Its highest energy part, above 20-50 TeV, is observable at a kilometer-scale detector in the northern hemisphere, such as the planned KM3NeT, while interesting constraints on it could be obtained by the IceCube Neutrino Observatory at the South Pole. The detection or exclusion of neutrinos from the Fermi bubbles will discriminate between hadronic and leptonic models, thus bringing unique information on the still mysterious origin of these objects and on the time scale of their formation.

  8. High Current Energy Recovery Linac at BNL

    CERN Document Server

    Litvinenko, Vladimir N; Ben-Zvi, Ilan; Blaskiewicz, Michael; Bluem, Hans; Brennan, Joseph M; Burger, Al; Burrill, Andrew; Calaga, Rama; Cameron, Peter; Chang, Xiangyun; Cole, Michael; Connolly, Roger; Delayen, Jean R; Favale, Anthony; Gassner, David M; Hahn, Harald; Hershcovitch, Ady; Holmes, Douglas; Hseuh Hsiao Chaun; Johnson, Peter; Kayran, Dmitry; Kewisch, Jorg; Lambiase, Robert; Mahler, George; McIntyre, Gary; Meng, Wuzheng; Nehring, Thomas; Nicoletti, Tony; Oerter, Brian; Pate, David; Phillips, Larry; Preble, Joseph P; Rank, Jim; Rao, Triveni; Rathke, John; Roser, Thomas; Russo, Thomas; Scaduto, Joseph; Schultheiss, Tom; Smith, Kevin T; Todd, Alan M M; Warren Funk, L; Williams, Neville; Wu, Kuo-Chen; Yakimenko, Vitaly; Yip, Kin; Zaltsman, Alex; Zhao, Yongxiang

    2004-01-01

    We present the design and the parameters of a small Energy Recovery Linac (ERL) facility, which is under construction at BNL. This R&D facility has goals to demonstrate CW operation of ERL with average beam current in the range of 0.1 - 1 ampere, combined with very high efficiency of energy recovery. The possibility for future up-grade to a two-pass ERL is being considered. The heart of the facility is a 5-cell 703.75 MHz super-conducting RF linac with HOM damping. Flexible lattice of ERL provides a test-bed for testing issues of transverse and longitudinal instabilities and diagnostics of intense CW e-beam. We present the status and plans for this facility.

  9. QCD and high-energy nuclear collisions

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    Six years ago, Relativistic Heavy Ion Collider at Brookhaven started colliding heavy nuclei at record center-of-mass energies of up to 200 GeV/nucleon. Very soon, the Large Hadron Collider at CERN will push the energy of the ions to an astounding 5 TeV/nucleon. What can be learnt from the experiments at these machines? What do we know about the physics of super--dense matter already? I will argue that heavy ion accelerators bring us to the new frontiers of physical knowledge by creating strong color fields and very high densities of partons, at which qualitatively new phenomena emerge. I will also discuss the cross-disciplinary implications for cosmology, astrophysics, and connections to condensed matter physics.

  10. High-energy neutrinos from AGN

    Energy Technology Data Exchange (ETDEWEB)

    Toschke, Marius [Ruhr-Universitaet Bochum (Germany); TU Dortmund (Germany); Becker Tjus, Julia [Ruhr-Universitaet Bochum (Germany); Rhode, Wolfgang [TU Dortmund (Germany)

    2016-07-01

    In the outer space there are galactic and extragalactic sources like gamma-ray bursts (GRB), active galactic nuclei (AGN), supernovae or other phenomena which produce high-energy neutrinos. In contrast to supernovae, GRBs and AGN are supposed to generate neutrinos at the highest energies. Neutrinos have a tiny cross section as they mainly suffer from the weak interaction. Therefore, they are useful messenger particles providing information about the direction of the source. With observations of the gamma flux from galactic and extragalactic sources, it is possible to make predictions for the neutrino flux. We suppose that neutrinos are predominantly generated by inelastic proton-proton interactions and derive the possible galactic and extragalactic sources. In this talk, first results are presented.

  11. High Current Energy Recovery Linac at BNL

    Energy Technology Data Exchange (ETDEWEB)

    Vladimir N. Litvinenko; Donald Barton; D. Beavis; Ilan Ben-Zvi; Michael Blaskiewicz; J.M. Brennan; A. Burrill; R. Calaga; P. Cameron; X. Chang; Roger Connolly; D. Gassner; H. Hahn; A. Hershcovitch; H.C. Hseuh; P. Johnson; D. Kayran; J. Kewisch; R. Lambiase; G. McIntyre; W. Meng; T. C. Nehring; A. Nicoletti; D. Pate; J. Rank; T. Roser; T. Russo; J. Scaduto; K. Smith; T. Srinivasan-Rao; N. Williams; K.-C. Wu; Vitaly Yakimenko; K. Yip; A. Zaltsman; Y. Zhao; H. Bluem; A. Burger; Mike Cole; A. Favale; D. Holmes; John Rathke; Tom Schultheiss; A. Todd; J. Delayen; W. Funk; L. Phillips; Joe Preble

    2004-08-01

    We present the design, the parameters of a small test Energy Recovery Linac (ERL) facility, which is under construction at Collider-Accelerator Department, BNL. This R&D facility has goals to demonstrate CW operation of ERL with average beam current in the range of 0.1 - 1 ampere, combined with very high efficiency of energy recovery. A possibility for future up-grade to a two-pass ERL is considered. The heart of the facility is a 5-cell 700 MHz super-conducting RF linac with HOM damping. Flexible lattice of ERL provides a test-bed for testing issues of transverse and longitudinal instabilities and diagnostics of intense CW e-beam. ERL is also perfectly suited for a far-IR FEL. We present the status and our plans for construction and commissioning of this facility.

  12. Recipients of 2013 EPS High Energy & Particle Physics Prize

    CERN Multimedia

    ATLAS, Experiment

    2014-01-01

    (From left) Joe Incandela, Peter Higgs, Francois Englert, Tejinder Virdee, Dave Charlton, and Peter Jenni. Higgs and Englert gave the prizes to the recipients of the 2013 European Physical Society's High Energy and Particle Physics Prize, for an outstanding contribution to high energy physics. "For the discovery of a Higgs boson, as predicted by the Brout-Englert-Higgs mechanism," the prize was awarded to the ATLAS and CMS collaborations. Spokesperson for CMS, Incandela, and Spokesperson for ATLAS, Charlton, accepted the awards on their collaborations' behalf. "For their pioneering and outstanding leadership roles in the making of the ATLAS and CMS experiments," the prize was awarded to Jenni, Virdee, and Michel Della Negra (not present). Image: ATLAS

  13. [Energy drinks and their contribution to current health concerns for children and adolescents].

    Science.gov (United States)

    Cichocki, Michał

    2012-01-01

    Carbonated beverages including energy drinks make up an increasing percentage of energy intake amongst adults as well as children and adolescents. Due to high content of di- or monosaccharides and biologically active compounds (mainly caffeine), their regular intake may involve addictions and potential health risks, including diabetes. Although consumption of energy drinks is usually not recommended by the manufacturers to the children under the age of 16, due to its popularity and unrestricted availability on market energy drinks are easily accessible to younger children. Low awareness of the potential health risks involved with such beverages in society together with unrestricted distribution and advertising requires undertaking general information campaign concerning energy drinks. In this paper a critical review has been made to discuss potential somatic and psychological health risks issue. Moreover, conclusions were supported with the results of the survey conducted among college and high-school adolescents.

  14. High-energy gamma-ray and neutrino backgrounds from star-forming galaxies

    NARCIS (Netherlands)

    Tamborra, I.

    2015-01-01

    Star-forming galaxies have been predicted to contribute considerably to the isotropic diffuse gamma-ray background. The hadronic interactions responsible for high-energy gamma rays also produce high-energy neutrinos. Assuming that at least 100 PeV cosmic rays can be produced and confined in

  15. University of Oklahoma - High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Skubic, Patrick L. [University of Oklahoma

    2013-07-31

    The High Energy Physics program at the University of Oklahoma, Pat Skubic, Principal Investigator, is attempting to understand nature at the deepest level using the most advanced experimental and theoretical tools. The four experimental faculty, Brad Abbott, Phil Gutierrez, Pat Skubic, and Mike Strauss, together with post-doctoral associates and graduate students, are finishing their work as part of the D0 collaboration at Fermilab, and increasingly focusing their investigations at the Large Hadron Collidor (LHC) as part of the ATLAS Collaboration. Work at the LHC has become even more exciting with the recent discovery by ATLAS and the other collaboration, CMS, of the long-sought Higgs boson, which plays a key role in generating masses for the elementary constituents of matter. Work of the OUHEP group has been in the three areas of hardware, software, and analysis. Now that the Higgs boson has been discovered, completing the Standard Model of fundamental physics, new efforts will focus on finding hints of physics beyond the standard model, such as supersymmetry. The OUHEP theory group (Kim Milton, PI) also consists of four faculty members, Howie Baer, Chung Kao, Kim Milton, and Yun Wang, and associated students and postdocs. They are involved in understanding fundamental issues in formulating theories of the microworld, and in proposing models that carry us past the Standard Model, which is an incomplete description of nature. They therefore work in close concert with their experimental colleagues. One also can study fundamental physics by looking at the large scale structure of the universe; in particular the ``dark energy'' that seems to be causing the universe to expand at an accelerating rate, effectively makes up about 3/4 of the energy in the universe, and yet is totally unidentified. Dark energy and dark matter, which together account for nearly all of the energy in the universe, are an important probe of fundamental physics at the very shortest

  16. The Contribution of Multilateral Nuclear Approaches (MNAs) to the Sustainability of Nuclear Energy

    OpenAIRE

    Yusuke Kuno; Makiko Tazaki

    2012-01-01

    Multilateral Nuclear Approaches (MNAs) is a concept of international and/or multilateral control of nuclear material and/or nuclear fuel cycle facilities. It is a strategy for contributing to and promoting the sustainability of nuclear energy while enhancing nuclear nonproliferation, by ensuring nuclear fuel supplies and fuel cycle services, and risk control and reducing risk regarding nuclear safety. In order to establish such a MNA, the authors draw out 12 features of the MNA by analyzing v...

  17. Energy Systems Contribution in the Running-based Anaerobic Sprint Test.

    Science.gov (United States)

    Milioni, F; Zagatto, A M; Barbieri, R A; Andrade, V L; Dos Santos, J W; Gobatto, C A; da Silva, A S R; Santiago, P R P; Papoti, M

    2017-03-01

    The aims of the present study were to verify the contributions of the energy systems during repeated sprints with a short recovery time and the associations of the time- and power-performance of repeated sprints with energetic contributions and aerobic and anaerobic variables. 13 healthy men performed the running-based anaerobic sprint test (RAST) followed by an incremental protocol for lactate minimum intensity determination. During the RAST, the net energy system was estimated using the oxygen consumption and the blood lactate responses. The relative contributions of oxidative phosphorylation, glycolytic, and phosphagen pathways were 38, 34, and 28%, respectively. The contribution of the oxidative pathway increased significantly during RAST especially from the third sprint, at the same time that power- and time-performances decreases significantly. The phosphagen pathway was associated with power-performance (peak power=432±107 W, r=0.65; mean power=325±80 W, r=0.65; minimum power=241±77 W, r=0.57; force impulse=1 846±478 N·s, r=0.74; p+0.65; p0.58; p<0.05). The oxidative pathway appears to play an important role in better recovery between sprints, and the continued use of the glycolytic metabolic pathway seems to decrease sprint performances. Finally, the phosphagen pathway was linked to power production/maintenance. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Tibiofibula Transposition in High-Energy Fractures

    Directory of Open Access Journals (Sweden)

    Peter R. Loughenbury

    2016-01-01

    Full Text Available We report two cases of failed attempts at closed reduction of high-energy tibial fractures with an associated fibula fracture. The first case was a 39-year-old male involved in high-speed motorbike collision, while the second was a 14-year-old male who injured his leg following a fall of three metres. Emergency medical services at the scenes of the accidents reported a 90-degree valgus deformity of the injured limb and both limbs were realigned on scene and stabilized. Adequate alignment of the tibia could not be achieved by manipulation under sedation or anaesthesia. Open reduction and exposure of the fracture sites revealed that the distal fibula fragment was “transposed” and entrapped in the medulla of the proximal tibial fragment. Reduction required simulation of the mechanism of injury in order to disengage the fragments and allow reduction. Tibiofibula transposition is a rare complication of high-energy lower limb fractures which has not previously been reported and may prevent adequate closed reduction. Impaction of the distal fibula within the tibial medulla occurs as the limb is realigned by paramedic staff before transfer to hospital. We recommend that when this complication is identified the patient is transferred to the operating room for open reduction and stabilization of the fracture.

  19. UNIVERSITY OF ARIZONA HIGH ENERGY PHYSICS PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Rutherfoord, John P. [University of Arizona; Johns, Kenneth A. [University of Arizona; Shupe, Michael A. [University of Arizona; Cheu, Elliott C. [University of Arizona; Varnes, Erich W. [University of Arizona; Dienes, Keith [University of Arizona; Su, Shufang [University of Arizona; Toussaint, William Doug [University of Arizona; Sarcevic, Ina [University of Arizona

    2013-07-29

    The High Energy Physics Group at the University of Arizona has conducted forefront research in elementary particle physics. Our theorists have developed new ideas in lattice QCD, SUSY phenomenology, string theory phenomenology, extra spatial dimensions, dark matter, and neutrino astrophysics. The experimentalists produced significant physics results on the ATLAS experiment at CERN's Large Hadron Collider and on the D0 experiment at the Fermilab Tevatron. In addition, the experimentalists were leaders in detector development and construction, and on service roles in these experiments.

  20. Data Preservation in High Energy Physics

    CERN Document Server

    Mount, Richard; Le Diberder, Francois; Dubois-Felsmann, Gregory; Neal, Homer; Bellis, Matt; Boehnlein, Amber; Votava, Margaret; White, Vicky; Wolbers, Stephen; Konigsberg, Jacobo; Roser, Robert; Snider, Rick; Lucchesi, Donatella; Denisov, Dmitri; Soldner-Rembold, Stefan; Li, Qizhong; Varnes, Erich; Jonckheere, Alan; Gasthuber, Martin; Gülzow, Volker; Kemp, Yves; Ozerov, Dmitri; Diaconu, Cristinel; South, David; Lobodzinski, Bogdan; Olsson, Jan; Haas, Tobias; Wrona, Krzysztof; Szuba, Janusz; Schnell, Gunar; Sasaki, Takashi; Katayama, Nobu; Hernandez, Fabio; Mele, Salvatore; Holzner, Andre; Hemmer, Frederic; Schroeder, Matthias; Barring, Olof; Brun, Rene; Maggi, Marcello; Igo-Kemenes, Peter; Van Wezel, Jos; Heiss, Andreas; Chen, Gang; Wang, Yifang; Asner, David; Riley, Daniel; Corney, David; Gordon, John

    2009-01-01

    Data from high-energy physics (HEP) experiments are collected with significant financial and human effort and are mostly unique. At the same time, HEP has no coherent strategy for data preservation and re-use. An inter-experimental Study Group on HEP data preservation and long-term analysis was convened at the end of 2008 and held two workshops, at DESY (January 2009) and SLAC (May 2009). This document is an intermediate report to the International Committee for Future Accelerators (ICFA) of the reflections of this Study Group.

  1. Weak interactions at high energies. [Lectures, review

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, J.

    1978-08-01

    Review lectures are presented on the phenomenological implications of the modern spontaneously broken gauge theories of the weak and electromagnetic interactions, and some observations are made about which high energy experiments probe what aspects of gauge theories. Basic quantum chromodynamics phenomenology is covered including momentum dependent effective quark distributions, the transverse momentum cutoff, search for gluons as sources of hadron jets, the status and prospects for the spectroscopy of fundamental fermions and how fermions may be used to probe aspects of the weak and electromagnetic gauge theory, studies of intermediate vector bosons, and miscellaneous possibilities suggested by gauge theories from the Higgs bosons to speculations about proton decay. 187 references. (JFP)

  2. Advanced Analysis Methods in High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Pushpalatha C. Bhat

    2001-10-03

    During the coming decade, high energy physics experiments at the Fermilab Tevatron and around the globe will use very sophisticated equipment to record unprecedented amounts of data in the hope of making major discoveries that may unravel some of Nature's deepest mysteries. The discovery of the Higgs boson and signals of new physics may be around the corner. The use of advanced analysis techniques will be crucial in achieving these goals. The author discusses some of the novel methods of analysis that could prove to be particularly valuable for finding evidence of any new physics, for improving precision measurements and for exploring parameter spaces of theoretical models.

  3. Reclustering of high energy physics data

    CERN Document Server

    Schaller, M

    1999-01-01

    The coming high energy physics experiments will store Petabytes of data into object databases. Analysis jobs will frequently traverse collections containing millions of stored objects. Clustering is one of the most effective means $9 to enhance the performance of these applications. The paper presents a reclustering algorithm for independent objects contained in multiple possibly overlapping collections on secondary storage. The algorithm decomposes the stored $9 objects into a number of independent chunks and then maps these chunks to a traveling salesman problem. Under a set of realistic assumptions, the number of disk seeks is reduced almost to the theoretical minimum. Experimental results $9 obtained from a prototype are included. (17 refs).

  4. Photomask specifications for high energy physics detectors

    CERN Document Server

    Pindo, M

    2002-01-01

    Planar technologies used for radiation detector fabrication imply an extensive use of photomasks whose characteristics are critical in determining final detector performance. Compatibly with their manufacturing process, photomasks must satisfy the application-specific requirements dictated both by wafer manufacturers and detector final users. The design and realization of microstrip and pixel detectors, widely used in high energy physics experiments, ask for intensive scientific effort, advanced technology and important economical investments. Photomask specification definition is one of the fundamental steps to optimize detector fabrication processes and fulfill experimental requirements at the most appropriate cost.

  5. Predictions of High Energy Experimental Results

    Directory of Open Access Journals (Sweden)

    Comay E.

    2010-10-01

    Full Text Available Eight predictions of high energy experimental results are presented. The predictions contain the $Sigma ^+$ charge radius and results of two kinds of experiments using energetic pionic beams. In addition, predictions of the failure to find the following objects are presented: glueballs, pentaquarks, Strange Quark Matter, magnetic monopoles searched by their direct interaction with charges and the Higgs boson. The first seven predictions rely on the Regular Charge-Monopole Theory and the last one relies on mathematical inconsistencies of the Higgs Lagrangian density.

  6. Particle identification methods in High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Va' Vra, J.

    2000-01-27

    This paper deals with two major particle identification methods: dE/dx and Cherenkov detection. In the first method, the authors systematically compare existing dE/dx data with various predictions available in the literature, such as the Particle Data group recommendation, and judge the overall consistency. To my knowledge, such comparison was not done yet in a published form for the gaseous detectors used in High-Energy physics. As far as the second method, there are two major Cherenkov light detection techniques: the threshold and the Ring imaging methods. The authors discuss the recent trend in these techniques.

  7. [Experimental and theoretical high energy physics program

    Energy Technology Data Exchange (ETDEWEB)

    Finley, J.; Gaidos, J.A.; Loeffler, F.J.; McIlwain, R.L.; Miller, D.H.; Palfrey, T.R.; Shibata, E.I.; Shipsey, I.P.

    1993-04-01

    Experimental and theoretical high-energy physics research at Purdue is summarized in a number of reports. Subjects treated include the following: the CLEO experiment for the study of heavy flavor physics; gas microstrip detectors; particle astrophysics; affine Kac{endash}Moody algebra; nonperturbative mass bounds on scalar and fermion systems due to triviality and vacuum stability constraints; resonance neutrino oscillations; e{sup +}e{sup {minus}} collisions at CERN; {bar p}{endash}p collisions at FNAL; accelerator physics at Fermilab; development work for the SDC detector at SSC; TOPAZ; D-zero physics; physics beyond the standard model; and the Collider Detector at Fermilab. (RWR)

  8. GEM applications outside high energy physics

    CERN Document Server

    Duarte Pinto, Serge

    2013-01-01

    From its invention in 1997, the Gas Electron Multiplier has been applied in nuclear and high energy physics experiments. Over time however, other applications have also exploited the favorable properties of GEMs. The use of GEMs in these applications will be explained in principle and practice. This paper reviews applications in research, beam instrumentation and homeland security. The detectors described measure neutral radiations such as photons, x-rays, gamma rays and neutrons, as well as all kinds of charged radiation. This paper provides an overview of the still expanding range of possibilities of this versatile detector concept.

  9. Transformation research for a sustainable energy system. Contributions; Transformationsforschung fuer ein nachhaltiges Energiesystem. Beitraege

    Energy Technology Data Exchange (ETDEWEB)

    Stadermann, Gerd; Szczepanski, Petra; Wunschick, Franziska; Martin, Niklas (comps.)

    2012-03-15

    Within the 2011 annual meeting of the Renewable Energy Research Association (Berlin, Federal Republic of Germany) from 12th to 13th October 2011, the following lectures were held: (1) Environmentally safe and socially compatible transformation of energy systems (G. Schuette); (2) Open questions on the transformation of energy systems (E. Weber); (3) System analysis on the transformation of energy systems up to 2050 (J. Schmid); (4) Economic aspects: Chances, markets and workplaces (F. Staiss); (5) Perspectives for an interplay of energy efficiency and renewable energy resources as well as their implementation in the energy system (A. Bett); (6) New accents of research promotion for a more rapid development of renewable energy sources (K. Deller); (7) The 6th Energy Research Program of the Federal Government (R. Tryfonidou); (8) Recommendations of the FVEE for the research policy of the Research Government (G. Sadermann); (9) How can research and politics promote the system transformation (M. Hustedt); (10) The energy system of tomorrow - Strategies and research for the transformation of high amounts of renewable energy resources (W. Duerrschmidt); (11) Long-term strategies for the development of renewable energies in Germany (J. Nitsch); (12) Development of storage capacities for an efficient power generation by renewable energy resources in Germany and Europe by 2050 (Y. Scholz); (13) Prognoses of temporal and spatial variability of renewable energy resources (B. Lange); (14) Smart Grids - Transformation of our electrical energy supply (G. Ebert); (15) Model regions for intelligently networked energy systems; (16) Cities and concepts of neighbourhood - model cities (D. Schmidt); (17) Transformation of the German power system to a decentral regenerative economy (U. Leprich); (18) Alteration of the general conditions for new incentive models, heat acts, restoration of buildings (M. Schmidt); (19) Acceptance and participation research on energy sustainability (P

  10. Contribution of electric energy to the process of elimination of low emission sources in Cracow

    Energy Technology Data Exchange (ETDEWEB)

    Lach, J.; Mejer, T.; Wybranski, A. [Power Distribution Plant, Cracow (Poland)

    1995-12-31

    At present energy supply belongs to the most important global problems. A significant part of energy is consumed for residential heating purposes. Depending on climatic conditions, fuel distribution and the level of technological development, the contribution of these purposes ranges between ca. 50% (Poland) and ca. 12% (Spain). The power engineering structure in Poland is based almost exclusively upon solid fuels, i.e. hard and brown coal. Chemical compounds (carbon dioxide, sulfur dioxide and nitrogen oxides) produced in combustion process influence negatively the natural environment. The contribution of residential heating in this negative effect is rather significant. Because of the fact, that the resources of fossil fuels (the most important source of energy at present) are limited and their influence on natural environment is negative, efforts are made to find out more effective ways of energy consumption and to reduce the pollutant emission from heating sources. This problem is a topical issue in Cracow, especially during the heating season because the coal-fired stoves situated in the central part of the town remain the most important source of pollutant emission. These sources cause serious menace to the health of inhabitants; furthermore the pollutants destroy Cracow monuments entered in the UNESCO world list of human heritage.

  11. Improved Model for Predicting the Free Energy Contribution of Dinucleotide Bulges to RNA Duplex Stability.

    Science.gov (United States)

    Tomcho, Jeremy C; Tillman, Magdalena R; Znosko, Brent M

    2015-09-01

    Predicting the secondary structure of RNA is an intermediate in predicting RNA three-dimensional structure. Commonly, determining RNA secondary structure from sequence uses free energy minimization and nearest neighbor parameters. Current algorithms utilize a sequence-independent model to predict free energy contributions of dinucleotide bulges. To determine if a sequence-dependent model would be more accurate, short RNA duplexes containing dinucleotide bulges with different sequences and nearest neighbor combinations were optically melted to derive thermodynamic parameters. These data suggested energy contributions of dinucleotide bulges were sequence-dependent, and a sequence-dependent model was derived. This model assigns free energy penalties based on the identity of nucleotides in the bulge (3.06 kcal/mol for two purines, 2.93 kcal/mol for two pyrimidines, 2.71 kcal/mol for 5'-purine-pyrimidine-3', and 2.41 kcal/mol for 5'-pyrimidine-purine-3'). The predictive model also includes a 0.45 kcal/mol penalty for an A-U pair adjacent to the bulge and a -0.28 kcal/mol bonus for a G-U pair adjacent to the bulge. The new sequence-dependent model results in predicted values within, on average, 0.17 kcal/mol of experimental values, a significant improvement over the sequence-independent model. This model and new experimental values can be incorporated into algorithms that predict RNA stability and secondary structure from sequence.

  12. Predicting Induced Radioactivity at High Energy Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Fasso, Alberto

    1999-08-27

    Radioactive nuclides are produced at high-energy electron accelerators by different kinds of particle interactions with accelerator components and shielding structures. Radioactivity can also be induced in air, cooling fluids, soil and groundwater. The physical reactions involved include spallations due to the hadronic component of electromagnetic showers, photonuclear reactions by intermediate energy photons and low-energy neutron capture. Although the amount of induced radioactivity is less important than that of proton accelerators by about two orders of magnitude, reliable methods to predict induced radioactivity distributions are essential in order to assess the environmental impact of a facility and to plan its decommissioning. Conventional techniques used so far are reviewed, and a new integrated approach is presented, based on an extension of methods used at proton accelerators and on the unique capability of the FLUKA Monte Carlo code to handle the whole joint electromagnetic and hadronic cascade, scoring residual nuclei produced by all relevant particles. The radiation aspects related to the operation of superconducting RF cavities are also addressed.

  13. Grid computing in high energy physics

    CERN Document Server

    Avery, P

    2004-01-01

    Over the next two decades, major high energy physics (HEP) experiments, particularly at the Large Hadron Collider, will face unprecedented challenges to achieving their scientific potential. These challenges arise primarily from the rapidly increasing size and complexity of HEP datasets that will be collected and the enormous computational, storage and networking resources that will be deployed by global collaborations in order to process, distribute and analyze them. Coupling such vast information technology resources to globally distributed collaborations of several thousand physicists requires extremely capable computing infrastructures supporting several key areas: (1) computing (providing sufficient computational and storage resources for all processing, simulation and analysis tasks undertaken by the collaborations); (2) networking (deploying high speed networks to transport data quickly between institutions around the world); (3) software (supporting simple and transparent access to data and software r...

  14. High energy gravitational scattering: a numerical study

    CERN Document Server

    Marchesini, Giuseppe

    2008-01-01

    The S-matrix in gravitational high energy scattering is computed from the region of large impact parameters b down to the regime where classical gravitational collapse is expected to occur. By solving the equation of an effective action introduced by Amati, Ciafaloni and Veneziano we find that the perturbative expansion around the leading eikonal result diverges at a critical value signalling the onset of a new regime. We then discuss the main features of our explicitly unitary S-matrix down to the Schwarzschild's radius R=2G s^(1/2), where it diverges at a critical value b ~ 2.22 R of the impact parameter. The nature of the singularity is studied with particular attention to the scaling behaviour of various observables at the transition. The numerical approach is validated by reproducing the known exact solution in the axially symmetric case to high accuracy.

  15. Supernovae and supernova remnants at high energies

    Science.gov (United States)

    Chevalier, Roger A.

    1990-01-01

    The physical phenomena that are observable with X- and gamma-ray observations of supernovae are discussed with respect to possible high-energy astrophysics experiments. Prompt photospheric emission and its echo are discussed, supernova radioactivity and neutron star effects are examined, and circumstellar and interstellar interaction are reviewed. The primary uncertainties are found to be the hardening of the spectrum by non-LTE effects and the amount of absorption of the radiation from the initial soft X-ray burst. The radioactivity in supernovae is theorized to lead to gamma-ray lines and continuum emission unless the event is low-mass type II. Gamma-ray observations are proposed to examine the efficiency of particle acceleration, and high-resolution spectroscopy can provide data regarding ionization, temperature, composition, and velocities of the X-ray-emitting gas.

  16. Composite flywheel material design for high-speed energy storage

    Directory of Open Access Journals (Sweden)

    Michael A. Conteh

    2016-06-01

    Full Text Available Lamina and laminate mechanical properties of materials suitable for flywheel high-speed energy storage were investigated. Low density, low modulus and high strength composite material properties were implemented for the constant stress portion of the flywheel while higher density, higher modulus and strength were implemented for the constant thickness portion of the flywheel. Design and stress analysis were used to determine the maximum energy densities and shape factors for the flywheel. Analytical studies along with the use of the CADEC-online software were used to evaluate the lamina and laminate properties. This study found that a hybrid composite of M46J/epoxy–T1000G/epoxy for the flywheel exhibits a higher energy density when compared to known existing flywheel hybrid composite materials such as boron/epoxy–graphite/epoxy. Results from this study will contribute to further development of the flywheel that has recently re-emerged as a promising application for energy storage due to significant improvements in composite materials and technology.

  17. UPR/Mayaguez High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, Hector [Univ. of Puerto Rico, Mayaguez (Puerto Rico)

    2014-10-31

    This year the University of Puerto Rico at Mayaguez (UPRM) High Energy Physics (HEP) group continued with the ongoing research program outlined in the grant proposal. The program is centered on the Compact Muon Solenoid (CMS) experiment at the proton-proton (pp) collisions at the Large Hadron Collider (LHC) at CERN in Geneva, Switzerland. The main research focus is on data analysis and on the preparation for the High Luminosity (HL) LHC or experiment detector upgrade. The physics data analysis included Higgs Doublet Search and measurement of the (1) Λ0b branching fraction, (2) B meson mass, and (3) hyperon θ-b lifetime. The detector upgrade included work on the preparations for the Forward Pixel (FPIX) detector Silicon Sensor Testing in a production run at Fermilab. In addition, the group has taken responsibilities on the Software Release through our former research associate Dr. Eric Brownson who acted until last December as a Level Two Offline Manager for the CMS Upgrade. In support of the CMS data analysis activities carried out locally, the UPRM group has built and maintains an excellent Tier3 analysis center in Mayaguez. This allowed us to analyze large data samples and to continue the development of algorithms for the upgrade tracking robustness we started several years ago, and we plan to resume in the near future. This project involves computer simulation of the radiation damage to be suffered at the higher luminosities of the upgraded LHC. This year we continued to serve as a source of outstanding students for the field of high energy physics. Three of our graduate students finished their MS work in May, 2014, Their theses research were on data analysis of heavy quark b-physics. All of them are currently enrolled at Ph.D. physics program across the nation. One of them (Hector Moreno) at New Mexico University (Hector Moreno), one at University of New Hampshire (Sandra Santiesteban) and one at University of

  18. The Advanced Telescope for High Energy Astrophysics

    Science.gov (United States)

    Guainazzi, Matteo

    2017-08-01

    Athena (the Advanced Telescope for High Energy Astrophysics) is a next generation X-ray observatory currently under study by ESA for launch in 2028. Athena is designed to address the Hot and Energetic Universe science theme, which addresses two key questions: 1) How did ordinary matter evolve into the large scale structures we see today? 2) How do black holes grow and shape the Universe. To address these topics Athena employs an innovative X-ray telescope based on Silicon Pore Optics technology to deliver extremely light weight and high throughput, while retaining excellent angular resolution. The mirror can be adjusted to focus onto one of two focal place instruments: the X-ray Integral Field Unit (X-IFU) which provides spatially-resolved, high resolution spectroscopy, and the Wide Field Imager (WFI) which provides spectral imaging over a large field of view, as well as high time resolution and count rate tolerance. Athena is currently in Phase A and the study status will be reviewed, along with the scientific motivations behind the mission.

  19. High Waste Contributes to Low Food Intake in Hospitalized Patients

    NARCIS (Netherlands)

    van Bokhorst-de van der Schueren, M.A.E.; Roosemalen, M.M.; Weijs, P.J.M.; Langius, J.A.E.

    2012-01-01

    Background: The prevalence of disease-related malnutrition in hospital inpatients is high; many patients do not meet individual nutrition requirements while hospitalized. To better understand the reasons for inadequate nutrition intake, this study describes patient satisfaction, food provision, food

  20. New High-Energy Nanofiber Anode Materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiangwu [North Carolina State Univ., Raleigh, NC (United States); Fedkiw, Peter [North Carolina State Univ., Raleigh, NC (United States); Khan, Saad [North Carolina State Univ., Raleigh, NC (United States); Huang, Alex [North Carolina State Univ., Raleigh, NC (United States); Fan, Jiang [North Carolina State Univ., Raleigh, NC (United States)

    2013-11-15

    The overall goal of the proposed work was to use electrospinning technology to integrate dissimilar materials (lithium alloy and carbon) into novel composite nanofiber anodes, which simultaneously had high energy density, reduced cost, and improved abuse tolerance. The nanofiber structure allowed the anodes to withstand repeated cycles of expansion and contraction. These composite nanofibers were electrospun into nonwoven fabrics with thickness of 50 μm or more, and then directly used as anodes in a lithium-ion battery. This eliminated the presence of non-active materials (e.g., conducting carbon black and polymer binder) and resulted in high energy and power densities. The nonwoven anode structure also provided a large electrode-electrolyte interface and, hence, high rate capacity and good lowtemperature performance capability. Following are detailed objectives for three proposed project periods. During the first six months: Obtain anodes capable of initial specific capacities of 650 mAh/g and achieve ~50 full charge/discharge cycles in small laboratory scale cells (50 to 100 mAh) at the 1C rate with less than 20 percent capacity fade; In the middle of project period: Assemble, cycle, and evaluate 18650 cells using proposed anode materials, and demonstrate practical and useful cycle life (750 cycles of ~70% state of charge swing with less than 20% capacity fade) in 18650 cells with at least twice improvement in the specific capacity than that of conventional graphite electrodes; At the end of project period: Deliver 18650 cells containing proposed anode materials, and achieve specific capacities greater than 1200 mAh/g and cycle life longer than 5000 cycles of ~70% state of charge swing with less than 20% capacity fade.

  1. Dual-Readout Calorimetry for High-Quality Energy Measurements

    CERN Document Server

    Wigmans, R

    2010-01-01

    During the past seven years, the DREAM Collaboration has systematically investigated all factors that determine and limit the precision with which the properties of hadrons and jets can be measured in calorimeters. Using simultaneous detection of the deposited energy and the Cerenkov light produced in hadronic shower development (dual readout), the fluctuations in the electromagnetic shower fraction could be measured event by event and their effects on signal linearity, response function and energy resolution eliminated. Detailed measurement of the time structure of the signals made it possible to measure the contributions of nuclear evaporation to the signals and thus reduce the effects of fluctuations in “invisible energy”. We are now embarking on the construction of a full-scale calorimeter which incorporates all these elements and which should make it possible to measure the four-vectors of both electrons, hadrons and jets with very high precision, in an instrument that can be simply calibrated with e...

  2. LuAG:Ce fibers for high energy calorimetry

    CERN Document Server

    Dujardin, C; Ledoux, G; Perrodin, D; Ovanesyan, K L; Amans, D; Abler, D; Petrosyan, A; Auffray, E; Mancini, C

    2010-01-01

    The main objective of this contribution is to point out the potentialities of cerium doped LuAG single crystal as pixels and fibers. We first show that after optimization of growth conditions using Bridgman technology, this composition exhibits very good performances for scintillating applications (up to 26 000 photons/MeV). When grown with the micropulling down technology, fiber shapes can be obtained while the intrinsic performances are preserved. For the future high energy experiments requiring new detector concepts capable of delivering much richer informations about x- or gamma-ray energy deposition, unusual fiber shaped dense materials need to be developed. We demonstrate in this frame that cerium doped LuAG is a serious candidate for the next generation of ionizing radiation calorimeters. (C) 2010 American Institute of Physics. {[}doi: 10.1063/1.3452358

  3. Energy efficiency indicators for high electric-load buildings

    Energy Technology Data Exchange (ETDEWEB)

    Aebischer, Bernard; Balmer, Markus A.; Kinney, Satkartar; Le Strat, Pascale; Shibata, Yoshiaki; Varone, Frederic

    2003-06-01

    Energy per unit of floor area is not an adequate indicator for energy efficiency in high electric-load buildings. For two activities, restaurants and computer centres, alternative indicators for energy efficiency are discussed.

  4. High-energy gamma-rays from Cyg X-1

    Science.gov (United States)

    Zdziarski, Andrzej A.; Malyshev, Denys; Chernyakova, Maria; Pooley, Guy G.

    2017-11-01

    We have obtained a firm detection of Cyg X-1 during its hard and intermediate spectral states in the energy range of 40 MeV-60 GeV based on observations by the Fermi Large Area Telescope, confirming the independent results at ≥60 MeV of a previous work. The detection significance is ≃8σ in the 0.1-10 GeV range. In the soft state, we have found only upper limits on the emission at energies ≳0.1 MeV. However, we have found emission with a very soft spectrum in the 40-80 MeV range, not detected previously. This is likely to represent the high-energy cut-off of the high-energy power-law tail observed in the soft state. Similarly, we have detected a γ-ray soft excess in the hard state, which appears to be of similar origin. We have also confirmed the presence of an orbital modulation of the detected emission in the hard state, expected if the γ-rays are from Compton upscattering of stellar blackbody photons. However, the observed modulation is significantly weaker than that predicted if the blackbody upscattering were the dominant source of γ-rays. This argues for a significant contribution from γ-rays produced by the synchrotron self-Compton process. We have found that such strong contribution is possible if the jet is strongly clumped. We reproduce the observed hard-state average broad-band spectrum using a self-consistent jet model, taking into account all the relevant emission processes, e± pair absorption and clumping. This model also reproduces the amplitude of the observed orbital modulation.

  5. On the Origin of Ultra High Energy Cosmic Rays

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, T; Colgate, S; Li, H

    2009-07-01

    Turbulence-driven plasma accelerators produced by magnetized accretion disks around black holes are proposed as the mechanism mainly responsible for observed cosmic ray protons with ultra high energies 10{sup 19}-10{sup 21} eV. The magnetized disk produces a voltage comparable to these cosmic ray energies. Here we present a Poynting model in which this voltage provides all of the energy to create the jet-like structures observed to be ejected from accretion disks, and this voltage also accelerates ions to high energies at the top of the expanding structure. Since the inductive electric field E = -v x B driving expansion has no component parallel to the magnetic field B, ion acceleration requires plasma wave generation - either a coherent wave accelerator as recently proposed, or instability-driven turbulence. We find that turbulence can tap the full inductive voltage as a quasi-steady accelerator, and even higher energies are produced by transient events on this structure. We find that both MHD modes due to the current and ion diffusion due to kinetic instability caused by the non-Maxwellian ion distribution contribute to acceleration. We apply our results to extragalactic giant radiolobes, whose synchrotron emissions serve to calibrate the model, and we discuss extrapolating to other astrophysical structures. Approximate calculations of the cosmic ray intensity and energy spectrum are in rough agreement with data and serve to motivate more extensive MHD and kinetic simulations of turbulence that could provide more accurate cosmic ray and synchrotron spectra to be compared with observations. A distinctive difference from previous models is that the cosmic ray and synchrotron emissions arise from different parts of the magnetic structure, thus providing a signature for the model.

  6. Highlights from e-EPS: the 2015 EPS High Energy Physics Prize winners

    CERN Multimedia

    Thomas Lohse, e-EPS News

    2015-01-01

    The EPS High Energy Physics Division announces the winners of its 2015 prizes, which will be awarded at the Europhysics Conference on High-Energy Physics (EPS-HEP 2015), Vienna (Austria) 22−29 July. Many people from CERN were among the winners.   The 2015 High Energy and Particle Physics Prize, for an outstanding contribution to High Energy Physics, is awarded to James D. Bjorken “for his prediction of scaling behaviour in the structure of the proton that led to a new understanding of the b interaction”, and to Guido Altarelli, Yuri L. Dokshitzer, Lev Lipatov, and Giorgio Parisi “for developing a probabilistic field theory framework for the dynamics of quarks and gluons, enabling a quantitative understanding of high-energy collisions involving hadrons”. The 2015 Giuseppe and Vanna Cocconi Prize, for an outstanding contribution to Particle Astrophysics and Cosmology in the past 15 years, is awarded to Francis Halzen “for his visiona...

  7. High-Intensity Sweeteners and Energy Balance

    Science.gov (United States)

    Swithers, Susan E.; Martin, Ashley A.; Davidson, Terry L.

    2010-01-01

    Recent epidemiological evidence points to a link between a variety of negative health outcomes (e.g. metabolic syndrome, diabetes and cardiovascular disease) and the consumption of both calorically sweetened beverages and beverages sweetened with high-intensity, non-caloric sweeteners. Research on the possibility that non-nutritive sweeteners promote food intake, body weight gain, and metabolic disorders has been hindered by the lack of a physiologically-relevant model that describes the mechanistic basis for these outcomes. We have suggested that based on Pavlovian conditioning principles, consumption of non-nutritive sweeteners could result in sweet tastes no longer serving as consistent predictors of nutritive postingestive consequences. This dissociation between the sweet taste cues and the caloric consequences could lead to a decrease in the ability of sweet tastes to evoke physiological responses that serve to regulate energy balance. Using a rodent model, we have found that intake of foods or fluids containing non-nutritive sweeteners was accompanied by increased food intake, body weight gain, accumulation of body fat, and weaker caloric compensation, compared to consumption of foods and fluids containing glucose. Our research also provided evidence consistent with the hypothesis that these effects of consuming saccharin may be associated with a decrement in the ability of sweet taste to evoke thermic responses, and perhaps other physiological, cephalic phase, reflexes that are thought to help maintain energy balance. PMID:20060008

  8. Precision timing calorimeter for high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Dustin; Apresyan, Artur [California Institute of Technology, Pasadena, CA 91125 (United States); Bornheim, Adolf, E-mail: bornheim@hep.caltech.edu [California Institute of Technology, Pasadena, CA 91125 (United States); Duarte, Javier; Peña, Cristián; Spiropulu, Maria; Trevor, Jason; Xie, Si [California Institute of Technology, Pasadena, CA 91125 (United States); Ronzhin, Anatoly [Fermi National Accelerator Laboratory, PO Box 500, Batavia, IL 60510-5011 (United States)

    2016-07-11

    Scintillator based calorimeter technology is studied with the aim to achieve particle detection with a time resolution on the order of a few 10 ps for photons and electrons at energies of a few GeV and above. We present results from a prototype of a 1.4×1.4×11.4 cm{sup 3} sampling calorimeter cell consisting of tungsten absorber plates and Cerium-doped Lutetium Yttrium Orthosilicate (LYSO) crystal scintillator plates. The LYSO plates are read out with wave lengths shifting fibers which are optically coupled to fast photo detectors on both ends of the fibers. The measurements with electrons were performed at the Fermilab Test Beam Facility (FTBF) and the CERN SPS H2 test beam. In addition to the baseline setup plastic scintillation counter and a MCP-PMT were used as trigger and as a reference for a time of flight measurement (TOF). We also present measurements with a fast laser to further characterize the response of the prototype and the photo sensors. All data were recorded using a DRS4 fast sampling digitizer. These measurements are part of an R&D program whose aim is to demonstrate the feasibility of building a large scale electromagnetic calorimeter with a time resolution on the order of 10 ps, to be used in high energy physics experiments.

  9. Precision timing calorimeter for high energy physics

    Science.gov (United States)

    Anderson, Dustin; Apresyan, Artur; Bornheim, Adolf; Duarte, Javier; Peña, Cristián; Spiropulu, Maria; Trevor, Jason; Xie, Si; Ronzhin, Anatoly

    2016-07-01

    Scintillator based calorimeter technology is studied with the aim to achieve particle detection with a time resolution on the order of a few 10 ps for photons and electrons at energies of a few GeV and above. We present results from a prototype of a 1.4×1.4×11.4 cm3 sampling calorimeter cell consisting of tungsten absorber plates and Cerium-doped Lutetium Yttrium Orthosilicate (LYSO) crystal scintillator plates. The LYSO plates are read out with wave lengths shifting fibers which are optically coupled to fast photo detectors on both ends of the fibers. The measurements with electrons were performed at the Fermilab Test Beam Facility (FTBF) and the CERN SPS H2 test beam. In addition to the baseline setup plastic scintillation counter and a MCP-PMT were used as trigger and as a reference for a time of flight measurement (TOF). We also present measurements with a fast laser to further characterize the response of the prototype and the photo sensors. All data were recorded using a DRS4 fast sampling digitizer. These measurements are part of an R&D program whose aim is to demonstrate the feasibility of building a large scale electromagnetic calorimeter with a time resolution on the order of 10 ps, to be used in high energy physics experiments.

  10. Energy storage via high temperature superconductivity (SMES)

    Energy Technology Data Exchange (ETDEWEB)

    Mikkonen, R. [Tampere Univ. of Technology (Finland)

    1998-10-01

    The technology concerning high temperature superconductors (HTS) is matured to enabling different kind of prototype applications including SMES. Nowadays when speaking about HTS systems, attention is focused on the operating temperature of 20-30 K, where the critical current and flux density are fairly close to 4.2 K values. In addition by defining the ratio of the energy content of a novel HTS magnetic system and the required power to keep the system at the desired temperature, the optimum settles to the above mentioned temperature range. In the frame of these viewpoints a 5 kJ HTS SMES system has been designed and tested at Tampere University of Technology with a coil manufactured by American Superconductor (AMSC). The HTS magnet has inside and outside diameters of 252 mm and 317 mm, respectively and axial length of 66 mm. It operates at 160 A and carries a total of 160 kA-turns to store the required amount of energy. The effective magnetic inductance is 0.4 H and the peak axial field is 1.7 T. The magnet is cooled to the operating temperature of 20 K with a two stage Gifford-McMahon type cryocooler with a cooling power of 60 W at 77 K and 8 W at 20 K. The magnetic system has been demonstrated to compensate a short term loss of power of a sensitive consumer

  11. Transverse microanalysis of high energy Ion implants

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, S.P.; Jamieson, D.N.; Nugent, K.W.; Prawer, S. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    High energy ion implants in semiconductor materials have been analyzed by Channeling Contrast Microscopy (CCM) perpendicular to the implant direction, allowing imaging of the entire ion track. The damage produced by Channeled and Random 1.4 MeV H{sup +} implants into the edge of a <100> type IIa diamond wafer were analyzed by channeling into the face of the crystal. The results showed negligible damage in the surface region of the implants, and swelling induced misalignment at the end of range of the implants. Channeled 1.4 MeV H{sup +} implants in diamond had a range only 9% deeper than Random implants, which could be accounted for by dechanneling of the beam. The channeling of H{sup +}{sub 2} ions has been previously found to be identical to that of protons of half energy, however the current experiment has shown a 1% increase in {chi}{sub min} for H{sup +}{sub 2} in diamond compared to H{sup +} at 1,2 MeV per proton. This is due to repulsion between protons within the same channel. 5 refs., 2 figs.

  12. High peak power diode stacks for high energy lasers

    Science.gov (United States)

    Negoita, Viorel C.; Vethake, Thilo; Jiang, John; Roff, Robert; Shih, Ming; Duck, Richard; Bauer, Marc; Mite, Roberto; Boucke, Konstantin; Treusch, Georg

    2015-02-01

    High energy solid state lasers are being developed for fusion experiments and other research applications where high energy per pulse is required but the repetition rate is rather low, around 10Hz. We report our results on high peak power diode laser stacks used as optical pumps for these lasers. The stacks are based on 10 mm bars with 4 mm cavity length and 55% fill factor, with peak power exceeding 500 W per bar. These bars are stacked and mounted on a cooler which provides backside cooling and electrical insulation. Currently we mount 25 bars per cooler for a nominal peak power of 12.5 kW, but in principle the mounting scheme can be scaled to a different number of devices depending on the application. Pretesting of these bars before soldering on the cooler enables us to select devices with similar wavelength and thus we maintain tight control of the spectral width (FWHM less than 6 nm). Fine adjustments of the centroid wavelength can be done by means of temperature of the cooling fluid or bias current. The available wavelength range spans from 880 nm to 1000 nm, and the wavelength of the entire assembly of stacks can be controlled to within 0.5 nm of the target value, which makes these stacks suitable for pumping a variety of gain media. The devices are fast axis collimated, with over 95% power being collimated in 6 mrad (full angle). The slow axis divergence is 9° (full angle) for 95% power content.

  13. High-energy laser weapons since the early 1960s

    Science.gov (United States)

    Cook, Joung

    2013-02-01

    Both the U.S. and Russia/USSR have made great strides toward developing high-energy laser weapons for their future national defense systems since the early 1960s. Many billions of dollars and rubles were invested in the effort. Many hundreds of gifted scientists and engineers devoted their careers to working on the problems. They achieved major technological advances and made impressive and successful demonstrations. After more than half a century, however, neither side has yet adapted the first laser weapon for a military use. Why? This paper discusses the history of key technological advancements and successes, as well as some of the difficulties encountered. It also discusses fundamental technological advantages and limitations of high-energy laser weapons, and also the unique social, cultural, and political environments that have contributed to the history. The high-energy laser technical community is in the process of finding ways to adapt to the new warfare environment by taking advantage of the lessons learned in the past while incorporating the new technologies and ideas evolved in recent years.

  14. Monolithic pixel detectors for high energy physics

    CERN Document Server

    Snoeys, W

    2013-01-01

    Monolithic pixel detectors integrating sensor matrix and readout in one piece of silicon have revolutionized imaging for consumer applications, but despite years of research they have not yet been widely adopted for high energy physics. Two major requirements for this application, radiation tolerance and low power consumption, require charge collection by drift for the most extreme radiation levels and an optimization of the collected signal charge over input capacitance ratio ( Q / C ). It is shown that monolithic detectors can achieve Q / C for low analog power consumption and even carryout the promise to practically eliminate analog power consumption, but combining suf fi cient Q / C , collection by drift, and integration of readout circuitry within the pixel remains a challenge. An overview is given of different approaches to address this challenge, with possible advantages and disadvantages.

  15. Polarized targets in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Cates, G.D. Jr. [Princeton Univ., NJ (United States)

    1994-12-01

    Various approaches are discussed for producing polarized nuclear targets for high energy physics experiments. As a unifying theme, examples are drawn from experiments to measure spin dependent structure functions of nucleons in deep inelastic scattering. This single physics goal has, over roughly two decades, been a driving force in advances in target technology. Actual or planned approaches have included solid targets polarized by dynamic nuclear polarization (DNP), several types of internal targets for use in storage rings, and gaseous {sup 3}He targets polarized by spin-exchange optical pumping. This last approach is the type of target adopted for SLAC E-142, an experiment to measure the spin structure function of the neutron, and is described in detail.

  16. Nonextensive statistical mechanics and high energy physics

    Directory of Open Access Journals (Sweden)

    Tsallis Constantino

    2014-04-01

    Full Text Available The use of the celebrated Boltzmann-Gibbs entropy and statistical mechanics is justified for ergodic-like systems. In contrast, complex systems typically require more powerful theories. We will provide a brief introduction to nonadditive entropies (characterized by indices like q, which, in the q → 1 limit, recovers the standard Boltzmann-Gibbs entropy and associated nonextensive statistical mechanics. We then present somerecent applications to systems such as high-energy collisions, black holes and others. In addition to that, we clarify and illustrate the neat distinction that exists between Lévy distributions and q-exponential ones, a point which occasionally causes some confusion in the literature, very particularly in the LHC literature

  17. High energy physics, past, present and future

    Science.gov (United States)

    Sugawara, Hirotaka

    2017-03-01

    At the beginning of last century we witnessed the emergence of new physics, quantum theory and gravitational theory, which gave us correct understanding of the world of atoms and deep insight into the structure of universe we live in. Towards the end of the century, string theory emerged as the most promising candidate to unify these two theories. In this talk, I would like to assert that the understanding of the origin of physical constants, ℏ (Planck constant) for quantum theory, and G (Newton’s gravitational constant) for gravitational theory within the framework of string theory is the key to understanding string theory. Then, I will shift to experimental high energy physics and discuss the necessity of world-wide collaboration in the area of superconducting technology which is essential in constructing the 100 TeV hadron collider.

  18. Microfluidic Scintillation Detectors for High Energy Physics

    CERN Document Server

    Maoddi, Pietro; Mapelli, Alessandro

    This thesis deals with the development and study of microfluidic scintillation detectors, a technology of recent introduction for the detection of high energy particles. Most of the interest for such devices comes from the use of a liquid scintillator, which entails the possibility of changing the active material in the detector, leading to increased radiation resistance. A first part of the thesis focuses on the work performed in terms of design and modelling studies of novel prototype devices, hinting to new possibilities and applications. In this framework, the simulations performed to validate selected designs and the main technological choices made in view of their fabrication are addressed. The second part of this thesis deals with the microfabrication of several prototype devices. Two different materials were studied for the manufacturing of microfluidic scintillation detectors, namely the SU-8 photosensitive epoxy and monocrystalline silicon. For what concerns the former, an original fabrication appro...

  19. The high energy telescope on EXIST

    Science.gov (United States)

    Hong, J.; Grindlay, J. E.; Allen, B.; Barthelmy, S. D.; Skinner, G. K.; Gehrels, N.

    2009-08-01

    The Energetic X-ray Imaging Survey Telescope (EXIST) is a proposed next generation multi-wavelength survey mission. The primary instrument is a High Energy telescope (HET) that conducts the deepest survey for Gamma-ray Bursts (GRBs), obscured-accreting and dormant Supermassive Black Holes and Transients of all varieties for immediate followup studies by the two secondary instruments: a Soft X-ray Imager (SXI) and an Optical/Infrared Telescope (IRT). EXIST will explore the early Universe using high redshift GRBs as cosmic probes and survey black holes on all scales. The HET is a coded aperture telescope employing a large array of imaging CZT detectors (4.5 m2, 0.6 mm pixel) and a hybrid Tungsten mask. We review the current HET concept which follows an intensive design revision by the HET imaging working group and the recent engineering studies in the Instrument and Mission Design Lab at the Goddard Space Flight Center. The HET will locate GRBs and transients quickly (<10-30 sec) and accurately (< 20") for rapid (< 1-3 min) onboard followup soft X-ray and optical/IR (0.3-2.2 μm) imaging and spectroscopy. The broad energy band (5-600 keV) and the wide field of view (~90° × 70&° at 10% coding fraction) are optimal for capturing GRBs, obscured AGNs and rare transients. The continuous scan of the entire sky every 3 hours will establish a finely-sampled long-term history of many X-ray sources, opening up new possibilities for variability studies.

  20. Free Energy Contribution to Gas Chromatographic Separation of Petroselinate and Oleate Esters

    OpenAIRE

    Chanida Sansa-ard; Kornkanok Aryusuk; Supathra Lilitchan; Kanit Krisnangkura

    2011-01-01

    The ease of separation by gas chromatography between petroselinic and oleic acids depends on the alcohol moieties of their esters. The esters of higher molecular weight alcohols tend to be better separated on a 90%-biscyanopropyl-10%-cyanopropylphenyl polysiloxane capillary column (30 m × 0.25 mm i.d.). By analysis of free energies contribution from different parts of the molecules, it is tentatively concluded that the interaction between the double bond and the column stationary phase is int...

  1. Free Energy Contribution to Gas Chromatographic Separation of Petroselinate and Oleate Esters

    Directory of Open Access Journals (Sweden)

    Chanida Sansa-ard

    2011-01-01

    Full Text Available The ease of separation by gas chromatography between petroselinic and oleic acids depends on the alcohol moieties of their esters. The esters of higher molecular weight alcohols tend to be better separated on a 90%-biscyanopropyl-10%-cyanopropylphenyl polysiloxane capillary column (30 m × 0.25 mm i.d.. By analysis of free energies contribution from different parts of the molecules, it is tentatively concluded that the interaction between the double bond and the column stationary phase is interfered by the bulky alkyl group, and it is the major driving force for the separation of the two fatty acids.

  2. Contribution to the Chapter on Wind Power, in: Energy Technology Perspectives 2008, IEA

    DEFF Research Database (Denmark)

    Lemming, Jørgen Kjærgaard; Morthorst, Poul Erik; Clausen, Niels-Erik

    Over the last 5 years the growth rate in wind energy has been as high as 30% an on average nearly 25% in all continents, and a considerable number of countries have very ambitious goals concerning their wind energy development, therefore it could be likely to cover as much as 20% of the world’s...... electricity consumption by wind in 2030 and 35% in 2050, although on the shorter term growth is expected to take place mainly in Europe, USA and China. The market is maturing, therefore achieving more stable economies in the wind energy sector. As a result, better electrical grids suited for wind power...... are being developed and better planning tools as well as other frameworks, which benefit the market for installation of wind turbines, are being implemented across all wind energy countries. The cost of wind-generated electricity has fallen steadily for the last two decades, driven largely by technological...

  3. Electroweak splitting functions and high energy showering

    Science.gov (United States)

    Chen, Junmou; Han, Tao; Tweedie, Brock

    2017-11-01

    We derive the electroweak (EW) collinear splitting functions for the Standard Model, including the massive fermions, gauge bosons and the Higgs boson. We first present the splitting functions in the limit of unbroken SU(2) L × U(1) Y and discuss their general features in the collinear and soft-collinear regimes. These are the leading contributions at a splitting scale ( k T ) far above the EW scale ( v). We then systematically incorporate EW symmetry breaking (EWSB), which leads to the emergence of additional "ultra-collinear" splitting phenomena and naive violations of the Goldstone-boson Equivalence Theorem. We suggest a particularly convenient choice of non-covariant gauge (dubbed "Goldstone Equivalence Gauge") that disentangles the effects of Goldstone bosons and gauge fields in the presence of EWSB, and allows trivial book-keeping of leading power corrections in v/ k T . We implement a comprehensive, practical EW showering scheme based on these splitting functions using a Sudakov evolution formalism. Novel features in the implementation include a complete accounting of ultra-collinear effects, matching between shower and decay, kinematic back-reaction corrections in multi-stage showers, and mixed-state evolution of neutral bosons ( γ/ Z/ h) using density-matrices. We employ the EW showering formalism to study a number of important physical processes at O (1-10 TeV) energies. They include (a) electroweak partons in the initial state as the basis for vector-boson-fusion; (b) the emergence of "weak jets" such as those initiated by transverse gauge bosons, with individual splitting probabilities as large as O (35%); (c) EW showers initiated by top quarks, including Higgs bosons in the final state; (d) the occurrence of O (1) interference effects within EW showers involving the neutral bosons; and (e) EW corrections to new physics processes, as illustrated by production of a heavy vector boson ( W ') and the subsequent showering of its decay products.

  4. Processed Food Contributions to Energy and Nutrient Intake Differ among US Children by Race/Ethnicity

    Directory of Open Access Journals (Sweden)

    Heather A. Eicher-Miller

    2015-12-01

    Full Text Available This study determined and compared the mean daily intake of energy and nutrients from processed foods by level of processing (minimally processed; processed for preservation, nutrient enhancement, and freshness; mixtures of combined ingredients; ready-to-eat processed foods; and prepared foods/meals among non-Hispanic white, non-Hispanic black, and Mexican American US children. Data from participants 2–18 years old (n = 10,298 of the nationally representative cross-sectional National Health and Nutrition Examination Survey 2003–2008 with a complete one day, 24-h dietary recall were used to determine mean intake of energy and nutrients recommended for increase and decrease, as per the 2010 Dietary Guidelines for Americans, among child race/ethnic groups by category of food processing. Regression analysis was used to estimate and compare covariate-adjusted (gender, age, and poverty-income-level least square means (p < 0.05/3 race/ethnic groups. All children, regardless of race or ethnicity consumed processed foods. Approximately 66% to 84% of total daily energy, saturated fat, cholesterol, fiber, total sugar, added sugars, calcium, vitamin D, potassium, and sodium intake are contributed by one of the five categories of processed foods. Clinicians and policy should primarily advise consideration of the energy and nutrient composition of foods, rather than the processing level, when selecting a healthy diet for children.

  5. Processed Food Contributions to Energy and Nutrient Intake Differ among US Children by Race/Ethnicity

    Science.gov (United States)

    Eicher-Miller, Heather A.; Fulgoni, Victor L.; Keast, Debra R.

    2015-01-01

    This study determined and compared the mean daily intake of energy and nutrients from processed foods by level of processing (minimally processed; processed for preservation, nutrient enhancement, and freshness; mixtures of combined ingredients; ready-to-eat processed foods; and prepared foods/meals) among non-Hispanic white, non-Hispanic black, and Mexican American US children. Data from participants 2–18 years old (n = 10,298) of the nationally representative cross-sectional National Health and Nutrition Examination Survey 2003–2008 with a complete one day, 24-h dietary recall were used to determine mean intake of energy and nutrients recommended for increase and decrease, as per the 2010 Dietary Guidelines for Americans, among child race/ethnic groups by category of food processing. Regression analysis was used to estimate and compare covariate-adjusted (gender, age, and poverty-income-level) least square means (p foods. Approximately 66% to 84% of total daily energy, saturated fat, cholesterol, fiber, total sugar, added sugars, calcium, vitamin D, potassium, and sodium intake are contributed by one of the five categories of processed foods. Clinicians and policy should primarily advise consideration of the energy and nutrient composition of foods, rather than the processing level, when selecting a healthy diet for children. PMID:26633491

  6. Processed Food Contributions to Energy and Nutrient Intake Differ among US Children by Race/Ethnicity.

    Science.gov (United States)

    Eicher-Miller, Heather A; Fulgoni, Victor L; Keast, Debra R

    2015-12-02

    This study determined and compared the mean daily intake of energy and nutrients from processed foods by level of processing (minimally processed; processed for preservation, nutrient enhancement, and freshness; mixtures of combined ingredients; ready-to-eat processed foods; and prepared foods/meals) among non-Hispanic white, non-Hispanic black, and Mexican American US children. Data from participants 2-18 years old (n = 10,298) of the nationally representative cross-sectional National Health and Nutrition Examination Survey 2003-2008 with a complete one day, 24-h dietary recall were used to determine mean intake of energy and nutrients recommended for increase and decrease, as per the 2010 Dietary Guidelines for Americans, among child race/ethnic groups by category of food processing. Regression analysis was used to estimate and compare covariate-adjusted (gender, age, and poverty-income-level) least square means (p processed foods. Approximately 66% to 84% of total daily energy, saturated fat, cholesterol, fiber, total sugar, added sugars, calcium, vitamin D, potassium, and sodium intake are contributed by one of the five categories of processed foods. Clinicians and policy should primarily advise consideration of the energy and nutrient composition of foods, rather than the processing level, when selecting a healthy diet for children.

  7. 75 FR 17701 - High Energy Physics Advisory Panel

    Science.gov (United States)

    2010-04-07

    ... Energy Physics Advisory Panel AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the High Energy Physics Advisory Panel (HEPAP.... FOR FURTHER INFORMATION CONTACT: John Kogut, Executive Secretary; High Energy Physics Advisory Panel...

  8. 78 FR 50405 - High Energy Physics Advisory Panel

    Science.gov (United States)

    2013-08-19

    ... Energy Physics Advisory Panel AGENCY: Office of Science, Department of Energy. ACTION: Notice of Intent... hereby given that the High Energy Physics Advisory Panel will be renewed for a two-year period beginning...-range planning and priorities in the national high-energy physics program. Additionally, the renewal of...

  9. Translational Science: How experimental research has contributed to the understanding of spontaneous Physical Activity and Energy Homeostasis

    Directory of Open Access Journals (Sweden)

    Izabelle D Benfato

    2017-05-01

    Full Text Available Abstract Spontaneous physical activity (SPA consists of all daily living activities other than volitional exercise (e.g. sports and fitness-related activities. SPA is an important component of energy expenditure and may protect from overweight and obesity. Little is known about the biological regulation of SPA, but animal researchhas contributedsignificantly to expand our knowledge in this field. Studies in rodents have shown that SPA is influenced by nutrients and volitional exercise. High-fat diet seems to decrease SPA, which contributes to weigh gain. Volitional exercisemayalso reduce SPA, helping to explain the commonly reported low efficiency of exercise to cause weight loss, and highlighting the need to finda volume/intensity of exercise to maximize total daily energy expenditure. Animal studieshave also allowed for the identification of some brain areas and chemical mediatorsinvolved in SPA regulation. These discoveries could enable the development of new therapeutics aiming to enhance SPA.

  10. Long Life, High Energy Cell Development Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has a need to develop higher energy density battery systems to meet the power requirements of future energy devices. In this proposed Phase I program, PSI will...

  11. Decoupling the contribution of dispersive and acid-base components of surface energy on the cohesion of pharmaceutical powders.

    Science.gov (United States)

    Shah, Umang V; Olusanmi, Dolapo; Narang, Ajit S; Hussain, Munir A; Tobyn, Michael J; Heng, Jerry Y Y

    2014-11-20

    This study reports an experimental approach to determine the contribution from two different components of surface energy on cohesion. A method to tailor the surface chemistry of mefenamic acid via silanization is established and the role of surface energy on cohesion is investigated. Silanization was used as a method to functionalize mefenamic acid surfaces with four different functional end groups resulting in an ascending order of the dispersive component of surface energy. Furthermore, four haloalkane functional end groups were grafted on to the surface of mefenamic acid, resulting in varying levels of acid-base component of surface energy, while maintaining constant dispersive component of surface energy. A proportional increase in cohesion was observed with increases in both dispersive as well as acid-base components of surface energy. Contributions from dispersive and acid-base surface energy on cohesion were determined using an iterative approach. Due to the contribution from acid-base surface energy, cohesion was found to increase ∼11.7× compared to the contribution from dispersive surface energy. Here, we provide an approach to deconvolute the contribution from two different components of surface energy on cohesion, which has the potential of predicting powder flow behavior and ultimately controlling powder cohesion. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Modular, Reconfigurable, High-Energy Technology Development

    Science.gov (United States)

    Carrington, Connie; Howell, Joe

    2006-01-01

    The Modular, Reconfigurable High-Energy (MRHE) Technology Demonstrator project was to have been a series of ground-based demonstrations to mature critical technologies needed for in-space assembly of a highpower high-voltage modular spacecraft in low Earth orbit, enabling the development of future modular solar-powered exploration cargo-transport vehicles and infrastructure. MRHE was a project in the High Energy Space Systems (HESS) Program, within NASA's Exploration Systems Research and Technology (ESR&T) Program. NASA participants included Marshall Space Flight Center (MSFC), the Jet Propulsion Laboratory (JPL), and Glenn Research Center (GRC). Contractor participants were the Boeing Phantom Works in Huntsville, AL, Lockheed Martin Advanced Technology Center in Palo Alto, CA, ENTECH, Inc. in Keller, TX, and the University of AL Huntsville (UAH). MRHE's technical objectives were to mature: (a) lightweight, efficient, high-voltage, radiation-resistant solar power generation (SPG) technologies; (b) innovative, lightweight, efficient thermal management systems; (c) efficient, 100kW-class, high-voltage power delivery systems from an SPG to an electric thruster system; (d) autonomous rendezvous and docking technology for in-space assembly of modular, reconfigurable spacecraft; (e) robotic assembly of modular space systems; and (f) modular, reconfigurable distributed avionics technologies. Maturation of these technologies was to be implemented through a series of increasingly-inclusive laboratory demonstrations that would have integrated and demonstrated two systems-of-systems: (a) the autonomous rendezvous and docking of modular spacecraft with deployable structures, robotic assembly, reconfiguration both during assembly and (b) the development and integration of an advanced thermal heat pipe and a high-voltage power delivery system with a representative lightweight high-voltage SPG array. In addition, an integrated simulation testbed would have been developed

  13. Conversion of zero point energy into high-energy photons

    Energy Technology Data Exchange (ETDEWEB)

    Ivlev, B. I. [Universidad Autonoma de San Luis Potosi, Instituto de Fisica, Av. Manuel Nava No. 6, Zona Universitaria, 78290 San Luis Potosi, SLP (Mexico)

    2016-11-01

    An unusual phenomenon, observed in experiments is studied. X-ray laser bursts of keV energy are emitted from a metal where long-living states, resulting in population inversion, are totally unexpected. Anomalous electron-photon states are revealed to be formed inside the metal. These states are associated with narrow, 10{sup -11} cm, potential well created by the local reduction of zero point electromagnetic energy. In contrast to analogous van der Waals potential well, leading to attraction of two hydrogen atoms, the depth of the anomalous well is on the order of 1 MeV. The states in that well are long-living which results in population inversion and subsequent laser generation observed. The X-ray emission, occurring in transitions to lower levels, is due to the conversion of zero point electromagnetic energy. (Author)

  14. High contributions of sea ice derived carbon in polar bear (Ursus maritimus) tissue

    Science.gov (United States)

    Galicia, Melissa P.; Thiemann, Gregory W.; Belt, Simon T.; Yurkowski, David J.; Dyck, Markus G.

    2018-01-01

    Polar bears (Ursus maritimus) rely upon Arctic sea ice as a physical habitat. Consequently, conservation assessments of polar bears identify the ongoing reduction in sea ice to represent a significant threat to their survival. However, the additional role of sea ice as a potential, indirect, source of energy to bears has been overlooked. Here we used the highly branched isoprenoid lipid biomarker-based index (H-Print) approach in combination with quantitative fatty acid signature analysis to show that sympagic (sea ice-associated), rather than pelagic, carbon contributions dominated the marine component of polar bear diet (72–100%; 99% CI, n = 55), irrespective of differences in diet composition. The lowest mean estimates of sympagic carbon were found in Baffin Bay bears, which were also exposed to the most rapidly increasing open water season. Therefore, our data illustrate that for future Arctic ecosystems that are likely to be characterised by reduced sea ice cover, polar bears will not only be impacted by a change in their physical habitat, but also potentially in the supply of energy to the ecosystems upon which they depend. This data represents the first quantifiable baseline that is critical for the assessment of likely ongoing changes in energy supply to Arctic predators as we move into an increasingly uncertain future for polar ecosystems. PMID:29360849

  15. Low Energy Lorentz Violation from Modified Dispersion at High Energies.

    Science.gov (United States)

    Husain, Viqar; Louko, Jorma

    2016-02-12

    Many quantum theories of gravity propose Lorentz-violating dispersion relations of the form ω=|k|f(|k|/M⋆), with recovery of approximate Lorentz invariance at energy scales much below M⋆. We show that a quantum field with this dispersion predicts drastic low energy Lorentz violation in atoms modeled as Unruh-DeWitt detectors, for any f that dips below unity somewhere. As an example, we show that polymer quantization motivated by loop quantum gravity predicts such Lorentz violation below current ion collider rapidities.

  16. Interpreting New Data from the High Energy Frontier

    Energy Technology Data Exchange (ETDEWEB)

    Thaler, Jesse [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2016-09-26

    This is the final technical report for DOE grant DE-SC0006389, "Interpreting New Data from the High Energy Frontier", describing research accomplishments by the PI in the field of theoretical high energy physics.

  17. Antennas tune in to high-energy particles

    CERN Document Server

    Gorham, P W

    2001-01-01

    After 40 years of research, physicists met at the first international workshop on the radio detection of high energy particles to discuss the detection of high-energy cosmic rays and neutrinos using radio waves. (0 refs).

  18. Jet Physics at High Energy Colliders

    Science.gov (United States)

    Chien, Yang-Ting

    The future of new physics searches at the LHC will be to look for hadronic signals with jets. In order to distinguish a hadronic signal from its background, it is important to develop advanced collider physics techniques that make accurate theoretical predictions. This work centers on phenomenological and formal studies of Quantum Chromodynamics (QCD), including resummation of hadronic observables using Soft Collinear Effective Theory (SCET), calculating anomalous dimensions of multi-Wilson line operators in AdS, and improving jet physics analysis using multiple event interpretations. Hadronic observables usually involve physics at different energy scales, and the calculations depend on large logarithms of the energy ratios. We can prove factorization theorems of observables and resum large logarithms using renormalization-group techniques. The heavy jet mass distribution for e +e- collisions is calculated at next-to-next-to-next-to leading logarithmic order (N3LL), and we measure the strong coupling constant at 0.3% accuracy. We also calculate the jet-mass distribution at partial N2LL in gamma + jet events at the LHC. The effect of non-global logarithms in resummation estimated, and it is significant only at the peak region. Soft QCD interactions among jets can be described by multi-Wilson line operators, with each Wilson line pointing along one of the jet directions. The anomalous dimensions of these operators are key for higher-order resummation. We study these operators using radial quantization and conformal gauge, which leads to a drastic simplification of the two-loop anomalous dimension calculation. We also find that the anomalous dimension calculation is closely related to a corresponding Witten diagram calculation. Jets are complicated objects to identify in high energy collider experiments. A single interpretation of each event can only extract a limited amount of information. We propose telescoping jet algorithms which give multiple event

  19. Fifth high-energy heavy-ion study

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-01

    This was the fifth of a continuing series of summer studies held at LBL to discuss high energy heavy ion collisions. Recently, a similar meeting has been held on alternate years at GSI (Darmstadt); and, in 1979, we held a meeting at LBL exclusively devoted to ultra-relativistic nuclear collisions. Two new features distinguish this study from earlier meetings in the series. First, the energy range for discussion was broadened by including collisions from about 20 MeV/nucleon to the highest available in the cosmic radiation. The lower range, particularly below 100 MeV/nucleon, will be under intense study in the near future with machines such as the upgraded Bevalac, Michigan State University Superconducting Cyclotron, GANIL in France, and the SC at CERN. Recently, the high energy collision regime has been expanded by the successful operation of the CERN ISR with alpha particles. Second, in addition to an extensive program of invited talks, we decided for the first time to actively solicit contributions. Forty-seven individual items from the conference were prepared separately for the data base. (GHT)

  20. Contribution of inter- and intramolecular energy transfers to heat conduction in liquids

    Science.gov (United States)

    Torii, Daichi; Nakano, Takeo; Ohara, Taku

    2008-01-01

    The molecular dynamics expression of heat flux, originally derived by Irving and Kirkwood [J. Chem. Phys. 18, 817 (1950)] for pairwise potentials, is generalized in this paper for systems with many-body potentials. The original formula consists of a kinetic part and a potential part, and the latter term is found in the present study to be expressible as a summation of contributions from all the many-body potentials defined in the system. The energy transfer among a set of sites for which a many-body potential is defined is discussed and evaluated by the rate of increase in the kinetic energy of each site due to the potential, and its accumulation over all the potentials in the system is shown to make up the potential part of the generalized expression. A molecular dynamics simulation for liquid n-octane was performed to demonstrate the applicability of the new expression obtained in this study to measure the heat flux and to elucidate the contributions of inter- and intramolecular potentials to heat conduction.

  1. Concentrating solar power. Its potential contribution to a sustainable energy future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-11-15

    This report summarises the findings and recommendations of a study of concentrating solar power (CSP). The study has examined the potential contribution of CSP in Europe, the Middle East and North Africa (the MENA region) over the period to 2050, and the scientific and technical developments that will be required to realise that potential. This study critically reviews existing work and describes the scientific consensus on the status and prospects of this technology. It also identifies key outstanding issues and where knowledge gaps need to be filled for CSP to fulfil its potential contribution in Europe and the MENA region. Based on these findings, the study makes recommendations on how to improve national and European support programmes for CSP development and deployment. Specific aims of the study have been the following: (1) to review the current status of CSP technologies and identify the technological developments and research and development (R and D) needed to achieve reliable operation and cost competitiveness with fossil fuelled electricity generation; (2) to consider how issues associated with the intermittent nature of CSP for electricity generation due to the daily pattern of insolation and the potential for cloudy days can best be addressed; (3) to identify the environmental impacts and infrastructure requirements of CSP, and comment on the significance of these in relation to other options for electricity supply; and, consequently, (4) to develop a view of the potential contribution that CSP located in Europe, the Middle East and North Africa could make to the energy mix in those regions by 2020 and 2050. This report focuses primarily on the generation of electricity from CSP, but it is recognised that there are other potentially significant 'products' from CSP such as process steam for industry, water desalination, alternative energy carriers such as hydrogen and syngas, and decontamination of water supplies. Although not discussed in

  2. Addressing the main challenges of energy security in the twenty-first century – Contributions of the conferences on Sustainable Development of Energy, Water and Environment Systems

    DEFF Research Database (Denmark)

    Markovska, Natasa; Duić, Neven; Mathiesen, Brian Vad

    2016-01-01

    Climate change and fossil fuel reserve depletion both pose challenges for energy security and for wellbeing in general. The top ten among them include: Decarbonising the world economy; Enhancing the energy efficiency and energy savings in buildings; Advancing the energy technologies; Moving towards...... energy systems based on variable renewables; Electrifying the transport and some industrial processes; Liberalizing and extending the energy markets; Integrating energy sectors to Smart Energy Systems; Making the cities and communities smart; Diversifying the energy sources; and Building more...... biorefineries. Presenting the contributions of selected conference papers published in the special issues of leading scientific journals (including all the papers from the current Energy special issue), this review demonstrates the capacity of the Conferences on Sustainable Development of Energy, Water...

  3. Vestibular contributions to high-level sensorimotor functions.

    Science.gov (United States)

    Medendorp, W Pieter; Selen, Luc J P

    2017-10-01

    The vestibular system, which detects motion and orientation of the head in space, is known to be important in controlling gaze to stabilize vision, to ensure postural stability and to provide our sense of self-motion. While the brain's computations underlying these functions are extensively studied, the role of the vestibular system in higher level sensorimotor functions is less clear. This review covers new research on the vestibular influence on perceptual judgments, motor decisions, and the ability to learn multiple motor actions. Guided by concepts such as optimization, inference, estimation and control, we focus on how the brain determines causal relationships between memorized and visual representations in the updating of visual space, and how vestibular, visual and efferent motor information are integrated in the estimation of body motion. We also discuss evidence that these computations involve multiple coordinate representations, some of which can be probed in parietal cortex using neuronal oscillations derived from EEG. In addition, we describe work on decision making during self-motion, showing a clear modulation of bottom-up acceleration signals on decisions in the saccadic system. Finally, we consider the importance of vestibular signals as contextual cues in motor learning and recall. Taken together, these results emphasize the impact of vestibular information on high-level sensorimotor functions, and identify future directions for theoretical, behavioral, and neurophysiological investigations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Energy Metabolism Disorder as a Contributing Factor of Rheumatoid Arthritis: A Comparative Proteomic and Metabolomic Study.

    Directory of Open Access Journals (Sweden)

    Xin Yu Yang

    increased in FLS cells after HIF-1α knockdown.It was found that enhanced anaerobic catabolism and reduced aerobic oxidation regulated by HIF pathway are newly recognized factors contributing to the progression of RA, and low glucose and high lactic acid concentration in synovial fluid may be the potential biomarker of RA.

  5. Contribution of 'noncore' foods and beverages to the energy intake and weight status of Australian children.

    Science.gov (United States)

    Bell, A C; Kremer, P J; Magarey, A M; Swinburn, B A

    2005-05-01

    The Australian Guide to Healthy Eating is based on five core food groups and water. Foods or beverages that do not fit into these groups are considered extra or 'noncore'. We tested the hypotheses that noncore foods and beverages make a greater proportional contribution to mean daily energy intakes of: (1) children, compared with other age groups; and (2) overweight and obese children, compared with healthy weight children. We used data from 13 858 participants aged 2 to 80+ y who had 24-h dietary recall data collected in the 1995 cross-sectional Australian National Nutrition Survey. ANOVA was used to compare the percentage of energy provided by noncore foods and beverages by age and weight status. Children (5 to 12 y) and adolescents (13 to 18 y) obtained significantly more (P food energy from noncore foods (41.5 and 43.4%, respectively) than all other age groups. These age groups also obtained significantly more (P healthy weight range. Younger children may also have consumed a greater quantity of foods and beverages. Under-reporting may have obscured similar results for older children. By definition, noncore foods and beverages are surplus to the requirements of a healthy diet. We found that Australian children consume these foods and beverages in excess.

  6. Spin structure in high energy processes

    Science.gov (United States)

    Deporcel, L.; Dunwoodie, C.

    1994-12-01

    This report contains papers of the following topics: Spin, Mass, and Symmetry; physics with polarized Z(sup 0)s; spin and precision electroweak physics; polarized electron sources; polarization phenomena in quantum chromodynamics; polarized lepton-nucleon scattering; polarized targets in high energy physics; spin dynamics in storage rings and linear accelerators; spin formalism and applications to new physics searches; precision electroweak physics at LEP; recent results on heavy flavor physics from LEP experiments using 1990--1992 data; precise measurement of the left-right cross section asymmetry in Z boson production by electron-positron collisions; preliminary results on heavy flavor physics at SLD; QCD tests with SLD and polarized beams; recent results from TRISTAN at KEK; recent B physics results from CLEO; searching for the H dibaryon at Brookhaven; recent results from the compton observatory; the spin structure of the deuteron; spin structure of the neutron ((sup 3)HE) and the Bjoerken sum rule; a consumer's guide to lattice QCD results; top ten models constrained by b yields sy; a review of the Fermilab fixed target program; results from the D0 experiment; results from CDF at FNAL; quantum-mechanical suppression of bremsstrahlung; report from the ZEUS collaboration at HERA; physics from the first year of H1 at HERA, and hard diffraction. These papers have been cataloged separately elsewhere.

  7. Nuclear and High-Energy Astrophysics

    Science.gov (United States)

    Weber, Fridolin

    2003-10-01

    There has never been a more exciting time in the overlapping areas of nuclear physics, particle physics and relativistic astrophysics than today. Orbiting observatories such as the Hubble Space Telescope, Rossi X-ray Timing Explorer (RXTE), Chandra X-ray satellite, and the X-ray Multi Mirror Mission (XMM) have extended our vision tremendously, allowing us to see vistas with an unprecedented clarity and angular resolution that previously were only imagined, enabling astrophysicists for the first time ever to perform detailed studies of large samples of galactic and extragalactic objects. On the Earth, radio telescopes (e.g., Arecibo, Green Bank, Parkes, VLA) and instruments using adaptive optics and other revolutionary techniques have exceeded previous expectations of what can be accomplished from the ground. The gravitational wave detectors LIGO, LISA VIRGO, and Geo-600 are opening up a window for the detection of gravitational waves emitted from compact stellar objects such as neutron stars and black holes. Together with new experimental forefront facilities like ISAC, ORLAND and RIA, these detectors provide direct, quantitative physical insight into nucleosynthesis, supernova dynamics, accreting compact objects, cosmic-ray acceleration, and pairproduction in high energy sources which reinforce the urgent need for a strong and continuous feedback from nuclear and particle theory and theoretical astrophysics. In my lectures, I shall concentrate on three selected topics, which range from the behavior of superdense stellar matter, to general relativistic stellar models, to strange quark stars and possible signals of quark matter in neutron stars.

  8. Automatic keywording of High Energy Physics

    CERN Document Server

    Dallman, David Peter

    1999-01-01

    Bibliographic databases were developed from the traditional library card catalogue in order to enable users to access library documents via various types of bibliographic information, such as title, author, series or conference date. In addition these catalogues sometimes contained some form of indexation by subject, such as the Universal (or Dewey) Decimal Classification used for books. With the introduction of the eprint archives, set up by the High Energy Physics (HEP) Community in the early 90s, huge collections of documents in several fields have been made available on the World Wide Web. These developments however have not yet been followed up from a keywording point of view. We will see in this paper how important it is to attribute keywords to all documents in the area of HEP Grey Literature. As libraries are facing a future with less and less manpower available and more and more documents, we will explore the possibility of being helped by automatic classification software. We will specifically menti...

  9. Spin structure in high energy processes: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    DePorcel, L.; Dunwoodie, C. [eds.

    1994-12-01

    This report contains papers as the following topics: Spin, Mass, and Symmetry; physics with polarized Z{sup 0}s; spin and precision electroweak physics; polarized electron sources; polarization phenomena in quantum chromodynamics; polarized lepton-nucleon scattering; polarized targets in high energy physics; spin dynamics in storage rings and linear accelerators; spin formalism and applications to new physics searches; precision electroweak physics at LEP; recent results on heavy flavor physics from LEP experiments using 1990--1992 data; precise measurement of the left-right cross section asymmetry in Z boson production by electron-positron collisions; preliminary results on heavy flavor physics at SLD; QCD tests with SLD and polarized beams; recent results from TRISTAN at KEK; recent B physics results from CLEO; searching for the H dibaryon at Brookhaven; recent results from the compton observatory; the spin structure of the deuteron; spin structure of the neutron ({sup 3}HE) and the Bjoerken sum rule; a consumer`s guide to lattice QCD results; top ten models constrained by b {yields} sy; a review of the Fermilab fixed target program; results from the D0 experiment; results from CDF at FNAL; quantum-mechanical suppression of bremsstrahlung; report from the ZEUS collaboration at HERA; physics from the first year of H1 at HERA, and hard diffraction. These papers have been cataloged separately elsewhere.

  10. Aspen Winter Conferences on High Energy

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2011-02-12

    The 2011 Aspen Winter Conference on Particle Physics was held at the Aspen Center for Physics from February 12 to February 18, 2011. Ninety-four participants from ten countries, and several universities and national labs attended the workshop titled, "New Data From the Energy Frontier." There were 54 formal talks, and a considerable number of informal discussions held during the week. The week's events included a public lecture ("The Hunt for the Elusive Higgs Boson" given by Ben Kilminster from Ohio State University) and attended by 119 members of the public, and a physics cafe geared for high schoolers that is a discussion with physicists. The 2011 Aspen Winter Conference on Astroparticle physics held at the Aspen Center for Physics was "Indirect and Direct Detection of Dark Matter." It was held from February 6 to February 12, 2011. The 70 participants came from 7 countries and attended 53 talks over five days. Late mornings through the afternoon are reserved for informal discussions. In feedback received from participants, it is often these unplanned chats that produce the most excitement due to working through problems with fellow physicists from other institutions and countries or due to incipient collaborations. In addition, Blas Cabrera of Stanford University gave a public lecture titled "What Makes Up Dark Matter." There were 183 members of the general public in attendance. Before the lecture, 45 people attended the physics cafe to discuss dark matter. This report provides the attendee lists, programs, and announcement posters for each event.

  11. High Energy Electron Detectors on Sphinx

    Science.gov (United States)

    Thompson, J. R.; Porte, A.; Zucchini, F.; Calamy, H.; Auriel, G.; Coleman, P. L.; Bayol, F.; Lalle, B.; Krishnan, M.; Wilson, K.

    2008-11-01

    Z-pinch plasma radiation sources are used to dose test objects with K-shell (˜1-4keV) x-rays. The implosion physics can produce high energy electrons (> 50keV), which could distort interpretation of the soft x-ray effects. We describe the design and implementation of a diagnostic suite to characterize the electron environment of Al wire and Ar gas puff z-pinches on Sphinx. The design used ITS calculations to model detector response to both soft x-rays and electrons and help set upper bounds to the spurious electron flux. Strategies to discriminate between the known soft x-ray emission and the suspected electron flux will be discussed. H.Calamy et al, ``Use of microsecond current prepulse for dramatic improvements of wire array Z-pinch implosion,'' Phys Plasmas 15, 012701 (2008) J.A.Halbleib et al, ``ITS: the integrated TIGER series of electron/photon transport codes-Version 3.0,'' IEEE Trans on Nuclear Sci, 39, 1025 (1992)

  12. Precision probes of QCD at high energies

    Science.gov (United States)

    Alioli, Simone; Farina, Marco; Pappadopulo, Duccio; Ruderman, Joshua T.

    2017-07-01

    New physics, that is too heavy to be produced directly, can leave measurable imprints on the tails of kinematic distributions at the LHC. We use energetic QCD processes to perform novel measurements of the Standard Model (SM) Effective Field Theory. We show that the dijet invariant mass spectrum, and the inclusive jet transverse momentum spectrum, are sensitive to a dimension 6 operator that modifies the gluon propagator at high energies. The dominant effect is constructive or destructive interference with SM jet production. We compare differential next-to-leading order predictions from POWHEG to public 7 TeV jet data, including scale, PDF, and experimental uncertainties and their respective correlations. We constrain a New Physics (NP) scale of 3.5 TeV with current data. We project the reach of future 13 and 100 TeV measurements, which we estimate to be sensitive to NP scales of 8 and 60 TeV, respectively. As an application, we apply our bounds to constrain heavy vector octet colorons that couple to the QCD current. We project that effective operators will surpass bump hunts, in terms of coloron mass reach, even for sequential couplings.

  13. Data Preservation in High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Mount, Richard; Brooks, Travis; /SLAC; Le Diberder, Francois; /Orsay, LAL; Dubois-Felsmann, Gregory; Neal, Homer; /SLAC; Bellis, Matt; /Stanford U.; Boehnlein, Amber; Votava, Margaret; White, Vicky; Wolbers, Stephen; /Fermilab; Konigsberg, Jacobo; /Florida U.; Roser, Robert; Snider, Rick; /Fermilab; Lucchesi, Donatella; /INFN, Padua; Denisov, Dmitri; /Fermilab; Soldner-Rembold, Stefan; /Manchester U.; Li, Qizhong; /Fermilab; Varnes, Erich; /Arizona U.; Jonckheere, Alan; /Fermilab; Gasthuber, Martin; Gulzow, Volker; /DESY /Marseille, CPPM /Dortmund U. /DESY /Gent U. /DESY, Zeuthen /KEK, Tsukuba /CC, Villeurbanne /CERN /INFN, Bari /Gjovik Coll. Engineering /Karlsruhe, Forschungszentrum /Beijing, Inst. High Energy Phys. /Carleton U. /Cornell U. /Rutherford

    2012-04-03

    Data from high-energy physics (HEP) experiments are collected with significant financial and human effort and are mostly unique. At the same time, HEP has no coherent strategy for data preservation and re-use. An inter-experimental Study Group on HEP data preservation and long-term analysis was convened at the end of 2008 and held two workshops, at DESY (January 2009) and SLAC (May 2009). This document is an intermediate report to the International Committee for Future Accelerators (ICFA) of the reflections of this Study Group. Large data sets accumulated during many years of detector operation at particle accelerators are the heritage of experimental HEP. These data sets offer unique opportunities for future scientific studies, sometimes long after the shut-down of the actual experiments: new theoretical input; new experimental results and analysis techniques; the quest for high-sensitivity combined analyses; the necessity of cross checks. In many cases, HEP data sets are unique; they cannot and most likely will not be superseded by data from newer generations of experiments. Once lost, or in an unusable state, HEP data samples cannot be reasonably recovered. The cost of conserving this heritage through a collaborative, target-oriented long-term data preservation program would be small, compared to the costs of past experimental projects or to the efforts to re-do experiments. However, this cost is not negligible, especially for collaborations close or past their end-date. The preservation of HEP data would provide today's collaborations with a secure way to complete their data analysis and enable them to seize new scientific opportunities in the coming years. The HEP community will benefit from preserved data samples through reanalysis, combination, education and outreach. Funding agencies would receive more scientific return, and a positive image, from their initial investment leading to the production and the first analysis of preserved data.

  14. High specific energy, high capacity nickel-hydrogen cell design

    Science.gov (United States)

    Wheeler, James R.

    1993-01-01

    A 3.5 inch rabbit-ear-terminal nickel-hydrogen cell was designed and tested to deliver high capacity at steady discharge rates up to and including a C rate. Its specific energy yield of 60.6 wh/kg is believed to be the highest yet achieved in a slurry-process nickel-hydrogen cell, and its 10 C capacity of 113.9 AH the highest capacity yet of any type in a 3.5 inch diameter size. The cell also demonstrated a pulse capability of 180 amps for 20 seconds. Specific cell parameters and performance are described. Also covered is an episode of capacity fading due to electrode swelling and its successful recovery by means of additional activation procedures.

  15. Machine Protection and High Energy Density States in Matter for High Energy Hadron Accelerators

    CERN Document Server

    Blanco Sancho, Juan; Schmidt, R

    The Large Hadron Collider (LHC) is the largest accelerator in the world. It is designed to collide two proton beams with unprecedented particle energy of 7TeV. The energy stored in each beam is 362MJ, sufficient to melt 500kg of copper. An accidental release of even a small fraction of the beam energy can result in severe damage to the equipment. Machine protection systems are essential to safely operate the accelerator and handle all possible accidents. This thesis deals with the study of different failure scenarios and its possible consequences. It addresses failure scenarios ranging from low intensity losses on high-Z materials and superconductors to high intensity losses on carbon and copper collimators. Low beam losses are sufficient to quench the superconducting magnets and the stabilized superconducting cables (bus-bars) that connects the main magnets. If this occurs and the energy from the bus-bar is not extracted fast enough it can lead to a situation similar to the accident in 2008 at LHC during pow...

  16. The economic contribution of high-growth firms: Do definitions matter?

    OpenAIRE

    Daunfeldt, Sven-Olov; Elert, Niklas; Johansson, Dan

    2010-01-01

    Prior studies have defined high-growth firms (HGFs) in terms of sales or employment, and analyzed their contribution to employment growth. We define HGFs by employment and sales and add definitions of value added and productivity. We examine the contribution of HGFs to employment growth, economic growth, productivity growth, and sales growth. All HGFs give a disproportionately large positive contribution to economic growth and most also give large positive contributions to growth in employmen...

  17. Oxygen uptake kinetics and energy system's contribution around maximal lactate steady state swimming intensity.

    Science.gov (United States)

    Pelarigo, Jailton Gregório; Machado, Leandro; Fernandes, Ricardo Jorge; Greco, Camila Coelho; Vilas-Boas, João Paulo

    2017-01-01

    The purpose of this study was to examine the oxygen uptake ([Formula: see text]) kinetics and the energy systems' contribution at 97.5, 100 and 102.5% of the maximal lactate steady state (MLSS) swimming intensity. Ten elite female swimmers performed three-to-five 30 min submaximal constant swimming bouts at imposed paces for the determination of the swimming velocity (v) at 100%MLSS based on a 7 x 200 m intermittent incremental protocol until voluntary exhaustion to find the v associated at the individual anaerobic threshold. [Formula: see text] kinetics (cardiodynamic, primary and slow component phases) and the aerobic and anaerobic energy contributions were assessed during the continuous exercises, which the former was studied for the beginning and second phase of exercise. Subjects showed similar time delay (TD) (mean = 11.5-14.3 s) and time constant (τp) (mean = 13.8-16.3 s) as a function of v, but reduced amplitude of the primary component for 97.5% (35.7 ± 7.3 mL.kg.min-1) compared to 100 and 102.5%MLSS (41.0 ± 7.0 and 41.3 ± 5.4 mL.kg.min-1, respectively), and τp decreased (mean = 9.6-10.8 s) during the second phase of exercise. Despite the slow component did not occur for all swimmers at all swim intensities, when observed it tended to increase as a function of v. Moreover, the total energy contribution was almost exclusively aerobic (98-99%) at 97.5, 100 and 102.5%MLSS. We suggest that well-trained endurance swimmers with a fast TD and τp values may be able to adjust faster the physiological requirements to minimize the amplitude of the slow component appearance, parameter associated with the fatigue delay and increase in exhaustion time during performance, however, these fast adjustments were not able to control the progressive fatigue occurred slightly above MLSS, and most of swimmers reached exhaustion before 30min swam.

  18. Fuzzy systems in high-energy physics

    Science.gov (United States)

    Castellano, Marcello; Masulli, Francesco; Penna, Massimo

    1996-06-01

    Decision making is one of the major subjects of interest in physics. This is due to the intrinsic finite accuracy of measurement that leads to the possible results to span a region for each quantity. In this way, to recognize a particle type among the others by a measure of a feature vector, a decision must be made. The decision making process becomes a crucial point whenever a low statistical significance occurs as in space cosmic ray experiments where searching in rare events requires us to reject as many background events as possible (high purity), keeping as many signal events as possible (high efficiency). In the last few years, interesting theoretical results on some feedforward connectionist systems (FFCSs) have been obtained. In particular, it has been shown that multilayer perceptrons (MLPs), radial basis function networks (RBFs), and some fuzzy logic systems (FLSs) are nonlinear universal function approximators. This property permits us to build a system showing intelligent behavior , such as function estimation, time series forecasting, and pattern classification, and able to learn their skill from a set of numerical data. From the classification point of view, it has been demonstrated that non-parametric classifiers based FFCSs holding the universal function approximation property, can approximate the Bayes optimal discriminant function and then minimize the classification error. In this paper has been studied the FBF when applied to a high energy physics problem. The FBF is a powerful neuro-fuzzy system (or adaptive fuzzy logic system) holding the universal function approximation property and the capability of learning from examples. The FBF is based on product-inference rule (P), the Gaussian membership function (G), a singleton fuzzifier (S), and a center average defuzzifier (CA). The FBF can be regarded as a feedforward connectionist system with just one hidden layer whose units correspond to the fuzzy MIMO rules. The FBF can be identified both by

  19. Innovation development for highly energy-efficient housing

    NARCIS (Netherlands)

    Mlecnik, E.

    2014-01-01

    Buildings account for 40% of EU final energy demand and policy developments like the Energy Performance of Buildings Directive are stimulating the innovation development for nearly zero-energy housing. However, businesses switching to innovative products for highly energy-efficient houses is a

  20. 76 FR 53119 - High Energy Physics Advisory Panel

    Science.gov (United States)

    2011-08-25

    ... Energy Physics Advisory Panel AGENCY: Department of Energy. ACTION: Notice of renewal. SUMMARY: Pursuant... Energy Physics Advisory Panel will be renewed for a two-year period, beginning on August 12, 2011. The... priorities in the national High Energy Physics program. Additionally, the renewal of the HEPAP has been...

  1. Energy Efficient Beam Transfer Channels for High Energy Particle Accelerators

    CERN Document Server

    Gardlowski, Philipp; Ondreka, David

    2016-01-01

    conducting (NC) magnets or high current pulsed (HCP) magnets are an economic solution. For high repetition rates above 1.0 Hz, superconducting Cos(N) (SC) magnets or superferric (SF) magnets are more attractive; at least if they are operated in DC mode and if no dynamic losses occur in the cryogenic system. Unfortunately, a range between these values exist, in which no...

  2. High energy neutrinos from the tidal disruption of stars

    Science.gov (United States)

    Lunardini, Cecilia; Winter, Walter

    2017-06-01

    We study the production of high energy neutrinos in jets from the tidal disruption of stars by supermassive black holes. The diffuse neutrino flux expected from these tidal disruption events (TDEs) is calculated both analytically and numerically, taking into account the dependence of the rate of TDEs on the redshift and black hole mass. We find that ˜10 % of the observed diffuse flux at IceCube at an energy of about 1 PeV can come from TDEs if the characteristics of known jetted tidal disruption events are assumed to apply to the whole population of these sources. If, however, plausible scalings of the jet Lorentz factor or variability time scale with the black hole mass are taken into account, the contribution of the lowest mass black holes to the neutrino flux is enhanced. In this case, TDEs can account for most of the neutrino flux detected at IceCube, describing both the neutrino flux normalization and spectral shape with moderate baryonic loadings. While the uncertainties on our assumptions are large, a possible signature of TDEs as the origin of the IceCube signal is the transition of the flux flavor composition from a pion beam to a muon damped source at the highest energies, which will also result in a suppression of Glashow resonance events.

  3. Phase conjugation of high energy lasers.

    Energy Technology Data Exchange (ETDEWEB)

    Bliss, David E; Valley, Michael T.; Atherton, Briggs W.; Bigman, Verle Howard; Boye, Lydia Ann; Broyles, Robin Scott; Kimmel, Mark W.; Law, Ryan J.; Yoder, James R.

    2013-01-01

    In this report we explore claims that phase conjugation of high energy lasers by stimulated Brillouin scattering (SBS) can compensate optical aberrations associated with severely distorted laser amplifier media and aberrations induced by the atmosphere. The SBS media tested was a gas cell pressurized up to 300 psi with SF6 or Xe or both. The laser was a 10 Hz, 3J, Q-switched Nd:YAG with 25 ns wide pulses. Atmospheric aberrations were created with space heaters, helium jets and phase plates designed with a Kolmogorov turbulence spectrum characterized by a Fried parameter, ro , ranging from 0.6 6.0 mm. Phase conjugate tests in the laboratory were conducted without amplification. For the strongest aberrations, D/ro ~ 20, created by combining the space heaters with the phase plate, the Strehl ratio was degraded by a factor of ~50. Phase conjugation in SF6 restored the peak focusable intensity to about 30% of the original laser. Phase conjugate tests at the outdoor laser range were conducted with laser amplifiers providing gain in combination with the SBS cell. A large 600,000 BTU kerosene space heater was used to create turbulence along the beam path. An atmospheric structure factor of Cn2 = 5x10-13 m2/3 caused the illumination beam to expand to a diameter 250mm and overfill the receiver. The phase conjugate amplified return could successfully be targeted back onto glints 5mm in diameter. Use of a lenslet arrays to lower the peak focusable intensity in the SBS cell failed to produce a useful phase conjugate beam; The Strehl ratio was degraded with multiple random lobes instead of a single focus. I will review literature results which show how multiple beams can be coherently combined by SBS when a confocal reflecting geometry is used to focus the laser in the SBS cell.

  4. High energy particle collisions near black holes

    Science.gov (United States)

    Zaslavskii, O. B.

    2016-10-01

    If two geodesic particles collide near a rotating black hole, their energy in the centre of mass frame Ec.m. can become unbound under certain conditions (the so-called BSW effect). The special role is played here by so-called critical geodesics when one of particles has fine-tuned energy and angular momentum. The nature of geodesics reveals itself also in fate of the debris after collisions. One of particles moving to a remote observer is necessarily near-critical. We discuss, when such a collision can give rise not only unboud Ec.m. but also unbound Killing energy E (so-called super-Penrose process).

  5. High-energy photoemission spectroscopy for investigating bulk electronic structures of strongly correlated systems

    Energy Technology Data Exchange (ETDEWEB)

    Sekiyama, Akira, E-mail: sekiyama@mp.es.osaka-u.ac.jp [Division of Materials Physics, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Osaka (Japan); SPring-8/RIKEN, Sayo 679-5148, Hyogo (Japan)

    2016-04-15

    Progress of high-energy photoemission spectroscopy for investigating the bulk electronic structures of strongly correlated electron systems is reviewed. High-resolution soft X-ray photoemission has opened the door for revealing the bulk strongly correlated spectral functions overcoming the surface contributions. More bulk-sensitive hard X-ray photoemission spectroscopy (HAXPES) enables us to study the electronic structure with negligible surface contribution. The recent development of the polarization-dependent HAXPES is also described in this short review.

  6. FLUKA as a new high energy cosmic ray generator

    Energy Technology Data Exchange (ETDEWEB)

    Battistoni, Giuseppe [INFN, Sezione di Milano, Via Celoria 16, I-20133, Milano (Italy); Margiotta, Annarita, E-mail: margiotta@bo.infn.i [Dipartimento di Fisica dell' Universita di Bologna and INFN, Sezione di Bologna, V.le Berti Pichat 6/2, I-40127, Bologna (Italy); Muraro, Silvia [INFN, Sezione di Milano, Via Celoria 16, I-20133, Milano (Italy); Sioli, Maximiliano [Dipartimento di Fisica dell' Universita di Bologna and INFN, Sezione di Bologna, V.le Berti Pichat 6/2, I-40127, Bologna (Italy)

    2011-01-21

    FLUKA is a multipurpose Monte Carlo code, which can transport particles over a wide range of energies in user-defined geometries. Here we present a new FLUKA library, which allows the interaction and propagation of high energy cosmic rays in the Earth atmosphere and the transport of high energy muons in underground/underwater environments.

  7. Novel Lithium Ion High Energy Battery Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Under this SBIR project a new chemistry for Li-ion cells will be developed that will enable a major advance in secondary battery gravimetric and volumetric energy...

  8. US scientific contributions to the water resources program of the International Atomic Energy Agency

    Science.gov (United States)

    Aggarwal, P. K.; Schneider, V. R.

    2007-12-01

    It is well recognized that a better understanding of the water cycle and increased availability of hydrological information for surface and groundwater resources are key factors in the ability to sustainably manage water resources. Since its inception in 1957, the International Atomic Energy Agency (IAEA) has played a critical role in developing isotope applications for hydrology and building scientific capacity in developing countries. Through an active technical cooperation program with a funding of nearly $8M per biennium, the IAEA assists developing countries in using isotope techniques for the assessment and monitoring of water resources, in particular, groundwater resources. In addition, substantial human resources and institutional capacity are built through the provision of training and appropriate equipment for monitoring. The water resources program of the IAEA is implemented with the support of a number of experts and the United States contributes extensively to this program. Although spanning the entire 50 year history of the IAEA, the contribution of US scientists, and particularly those from the US Geological Survey, has been substantial over the past 10 years. These contributions have included assistance in technical cooperation projects in Africa, Latin America and Asia, as well as internationally coordinated research projects in vadose zone hydrology, surface water - groundwater interactions, and regional aquifer studies. In Ethiopia, a national groundwater assessment program was formulated and a computer database was provided to manage hydrological information. A robust program of capacity building in cooperation with the USGS and Argonne National Laboratory has provided training to a number of IAEA-sponsored candidates from Africa and Latin America. This paper will describe the objectives and results of some of these cooperative efforts.

  9. Adventures in high energy theory and phenomenology

    Science.gov (United States)

    Robinson, Dean Jonathan

    Various studies of high energy theory and phenomenology are presented. We first present a mechanism that naturally produces light Dirac neutrinos. The central idea is that the right-handed neutrinos are composite. Any realistic composite model must involve 'hidden flavor' chiral symmetries. In general some of these symmetries may survive confinement, and in particular, if a U(1) survives it must imply an exact B -- L symmetry at low energies. Dirac neutrinos are therefore produced, which are naturally light due to compositeness. In general, elementary keV sterile Dirac neutrinos can be a natural ingredient of this composite neutrino scenario. For a certain class of composite neutrino theories, these sterile neutrinos naturally have the appropriate mixing angles to be resonantly produced warm dark matter (WDM). Alternatively, we show these sterile neutrinos can be WDM produced by an entropy-diluted thermal freeze-out, with the necessary entropy production arising not from an out-of-equilibrium decay, but rather from the confinement of the composite neutrino sector, provided there is sufficient supercooling. We next present a formalism for the flavor oscillation of unstable particles that relies only upon the analytic structure of the time Fourier-transformed two-point function. We derive exact oscillation probability and integrated oscillation probability formulae, and verify that our results reproduce the known results for both neutrino and neutral meson oscillation in the expected regimes of parameter space. The generality of our approach permits us to investigate flavor oscillation in exotic parameter regimes, and present the corresponding oscillation formulae. Kinematic edges in cascade decays provide a probe of the masses of new particles. In some new physics scenarios the decay chain involves intermediate particles of different flavors that can mix and oscillate. We discuss the implication of such oscillation, and in particular its interplay with the non

  10. Scintillator developments for high energy physics and medical imaging

    CERN Document Server

    Lecoq, P

    2000-01-01

    Scintillating crystals have been for a long time developed as a basic component in particle detectors with a strong spin-off in the field of medical imaging. A typical example is BGO, which has become the main component of PET scanners since the large effort made by the L3 experiment at CERN to develop low cost production methods for this crystal. Systematic R&D on basic mechanism in inorganic scintillators, initiated by the Crystal Clear Collaboration at CERN 10 years ago, has contributed not to a small amount, to the development of new materials for high energy physics and for a new generation of medical imaging devices with increased resolution and sensitivity. The examples of the lead tungstate crystal for the CMS experiment at CERN (high energy physics) as well as of new materials under development for medical imaging will be described with an emphasis on the mutual benefit both fields can extract from a common R&D effort. (14 refs).

  11. Hard processes at high energies in the Reggeized-parton approach

    Science.gov (United States)

    Karpishkov, A. V.; Nefedov, M. A.; Saleev, V. A.; Shipilova, A. V.

    2017-09-01

    Dominant contributions to the cross sections of hard processes at high energies come from the processes with multi-Regge kinematics which reflect the Reggeization of partonic amplitudes as a fundamental property of quantum-field gauge theories. The report briefly describes the Reggeized-parton approach based on the k T factorization at high energies and on the Lipatov's effective field theory for Reggeized gluons and quarks.

  12. Energy Design Guidelines for High Performance Schools: Tropical Island Climates

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-11-01

    Design guidelines outline high performance principles for the new or retrofit design of K-12 schools in tropical island climates. By incorporating energy improvements into construction or renovation plans, schools can reduce energy consumption and costs.

  13. High Energy Density Lithium Air Batteries for Oxygen Concentrators Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For NASA's Exploration Medical Capabilities mission, extremely high specific energy power sources, with specific energy over 2000 Wh/kg, are urgently sought after....

  14. Energy Design Guidelines for High Performance Schools: Tropical Island Climates

    Energy Technology Data Exchange (ETDEWEB)

    2004-11-01

    The Energy Design Guidelines for High Performance Schools--Tropical Island Climates provides school boards, administrators, and design staff with guidance to help them make informed decisions about energy and environmental issues important to school systems and communities. These design guidelines outline high performance principles for the new or retrofit design of your K-12 school in tropical island climates. By incorporating energy improvements into their construction or renovation plans, schools can significantly reduce energy consumption and costs.

  15. High energy particle collisions near black holes

    Directory of Open Access Journals (Sweden)

    Zaslavskii O. B.

    2016-01-01

    Full Text Available If two geodesic particles collide near a rotating black hole, their energy in the centre of mass frame Ec.m. can become unbound under certain conditions (the so-called BSW effect. The special role is played here by so-called critical geodesics when one of particles has fine-tuned energy and angular momentum. The nature of geodesics reveals itself also in fate of the debris after collisions. One of particles moving to a remote observer is necessarily near-critical. We discuss, when such a collision can give rise not only unboud Ec.m. but also unbound Killing energy E (so-called super-Penrose process.

  16. Observation of high energy gamma rays in intermediate energy nucleus-nucleus collisions

    NARCIS (Netherlands)

    Beard, K.B.; Benenson, W.; Bloch, C.; Kashy, E.; Stevenson, J.; Morrissey, D.J.; Plicht, J. van der; Sherrill, B.; Winfield, J.S.

    1985-01-01

    High energy electrons and positrons observed in medium energy nucleus-nucleus collisions are shown to be primarily due to the external conversion of high energy gamma rays. The reaction 14N+Cu was studied at E/A=40 MeV, and a magnetic spectrograph was used with a specially constructed multiwire

  17. High energy physics advisory panel`s subpanel on vision for the future of high-energy physics

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    This report was requested by the Secretary of Energy to (1) define a long-term program for pursuing the most important high-energy physics goals since the termination of the Superconducting Super Collider (SSC) project, (2) assess the current US high-energy physics program, and (3) make recommendations regarding the future of the field. Subjects on which recommendations were sought and which the report addresses were: high-energy physics funding priorities; facilitating international collaboration for future construction of large high-energy physics facilities; optimizing uses of the investment made in the SSC; how to encourage displaced scientists and engineers to remain in high-energy physics and to attract young scientists to enter the field in the future. The report includes a description of the state of high-energy physics research in the context of history, a summary of the SSC project, and documentation of the report`s own origins and development.

  18. High energy nuclear collisions: Theory overview

    Indian Academy of Sciences (India)

    The Universe a few microseconds after the Big Bang was filled with a hot and dense phase of matter. We believe that quarks and gluons at those temperatures, above. 1012 K, were deconfined and existed as a quark gluon plasma (QGP). These ideas can be tested in collisions of nuclei at ultra-relativistic energies.

  19. The high energy source 3C 273

    Science.gov (United States)

    Vonmontigny, Corinna

    1990-01-01

    The properties of 3C 273 are reviewed and an attempt is made to find an answer to the question why 3C 273 is the only extragalactic source so far, which was detected at energies greater than or equal to 50 MeV.

  20. High-energy band structure of gold

    DEFF Research Database (Denmark)

    Christensen, N. Egede

    1976-01-01

    The band structure of gold for energies far above the Fermi level has been calculated using the relativistic augmented-plane-wave method. The calculated f-band edge (Γ6-) lies 15.6 eV above the Fermi level is agreement with recent photoemission work. The band model is applied to interpret...

  1. High-Energy Solar Particle Events in Cycle 24

    Science.gov (United States)

    Gopalswamy, N.; Makela, P.; Yashiro, S.; Xie, H.; Akiyama, S.; Thakur, N.

    2015-01-01

    The Sun is already in the declining phase of cycle 24, but the paucity of high-energy solar energetic particle (SEP) events continues with only two ground level enhancement (GLE) events as of March 31, 2015. In an attempt to understand this, we considered all the large SEP events of cycle 24 that occurred until the end of 2014. We compared the properties of the associated CMEs with those in cycle 23. We found that the CME speeds in the sky plane were similar, but almost all those cycle-24 CMEs were halos. A significant fraction of (16%) of the frontside SEP events were associated with eruptive prominence events. CMEs associated with filament eruption events accelerate slowly and attain peak speeds beyond the typical GLE release heights. When we considered only western hemispheric events that had good connectivity to the CME nose, there were only 8 events that could be considered as GLE candidates. One turned out to be the first GLE event of cycle 24 (2012 May 17). In two events, the CMEs were very fast (>2000 km/s) but they were launched into a tenuous medium (high Alfven speed). In the remaining five events, the speeds were well below the typical GLE CME speed (2000 km/s). Furthermore, the CMEs attained their peak speeds beyond the typical heights where GLE particles are released. We conclude that several factors contribute to the low rate of high-energy SEP events in cycle 24: (i) reduced efficiency of shock acceleration (weak heliospheric magnetic field), (ii) poor latitudinal and longitudinal connectivity), and (iii) variation in local ambient conditions (e.g., high Alfven speed).

  2. Evaluation of Monte Carlo tools for high energy atmospheric physics

    NARCIS (Netherlands)

    C. Rutjes (Casper); D. Sarria (David); A.B. Skeltved (Alexander Broberg); A. Luque (Alejandro); G. Diniz (Gabriel); N. Østgaard (Nikolai); U. Ebert (Ute)

    2016-01-01

    textabstractThe emerging field of high energy atmospheric physics (HEAP) includes terrestrial gamma-ray flashes, electron-positron beams and gamma-ray glows from thunderstorms. Similar emissions of high energy particles occur in pulsed high voltage discharges. Understanding these phenomena requires

  3. Nuclear reactions induced by high-energy alpha particles

    Science.gov (United States)

    Shen, B. S. P.

    1974-01-01

    Experimental and theoretical studies of nuclear reactions induced by high energy protons and heavier ions are included. Fundamental data needed in the shielding, dosimetry, and radiobiology of high energy particles produced by accelerators were generated, along with data on cosmic ray interaction with matter. The mechanism of high energy nucleon-nucleus reactions is also examined, especially for light target nuclei of mass number comparable to that of biological tissue.

  4. Summaries of FY 1977, research in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    1977-10-01

    The U.S. Department of Energy, through the Office of Energy Research and the Division of High Energy and Nuclear Physics, provides approximately 90% of the total federal support for high energy physics research effort in the United States. The High Energy Physics Program primarily utilizes four major U.S. high energy accelerator facilities and over 50 universities under contract to do experimental and theoretical investigations on the properties, structure and transformation of matter and energy in their most basic forms. This compilation of research summaries is intended to present a convenient report of the scope and nature of high energy physics research presently funded by the U.S. Department of Energy. The areas covered include conception, design, construction, and operation of particle accelerators; experimental research using the accelerators and ancillary equipment; theoretical research; and research and development programs to advance accelerator technology, particle detector systems, and data analysis capabilities. Major concepts and experimental facts in high energy physics have recently been discovered which have the promise of unifying the fundamental forces and of understanding the basic nature of matter and energy. The summaries contained in this document were reproduced in essentially the form submitted by contractors as of January 1977.

  5. Studies of High Energy Particle Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Nitz, David F [Michigan Technological University; Fick, Brian E [Michigan Technological University

    2014-07-30

    This report covers the progress of the Michigan Technological University particle astrophysics group during the period April 15th, 2011 through April 30th, 2014. The principal investigator is Professor David Nitz. Professor Brian Fick is the Co-PI. The focus of the group is the study of the highest energy cosmic rays using the Pierre Auger Observatory. The major goals of the Pierre Auger Observatory are to discover and understand the source or sources of cosmic rays with energies exceeding 10**19 eV, to identify the particle type(s), and to investigate the interactions of those cosmic particles both in space and in the Earth's atmosphere. The Pierre Auger Observatory in Argentina was completed in June 2008 with 1660 surface detector stations and 24 fluorescence telescopes arranged in 4 stations. It has a collecting area of 3,000 square km, yielding an aperture of 7,000 km**2 sr.

  6. High-energy particles. [in Jovian magnetosphere

    Science.gov (United States)

    Schardt, A. W.; Goertz, C. K.

    1983-01-01

    It is pointed out that the magnetosphere of Jupiter is in many respects quite different from that of the earth. The energy required to drive the Jovian magnetosphere is apparently extracted from Jupiter's rotational energy rather than from the solar wind. Jupiter is a strong source of energetic charged particles which can be detected as far away as the orbit of Mercury. The structure and dynamics of the energetic particle distribution in the inner magnetosphere is discussed, taking into account observations, transport and losses in the inner magnetosphere, satellite interactions, and electron synchrotron radiation. The subsolar hemisphere is considered, giving attention to particle fluxes in the subsolar magnetosphere, conditions in the middle magnetosphere, and the characteristics of the outer magnetosphere. A description of the predawn magnetosphere is also provided.

  7. High energy physics in cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Lawrence W. [University of Michigan, Ann Arbor, Michigan (United States)

    2013-02-07

    In the first half-century of cosmic ray physics, the primary research focus was on elementary particles; the positron, pi-mesons, mu-mesons, and hyperons were discovered in cosmic rays. Much of this research was carried out at mountain elevations; Pic du Midi in the Pyrenees, Mt. Chacaltaya in Bolivia, and Mt. Evans/Echo Lake in Colorado, among other sites. In the 1960s, claims of the observation of free quarks, and satellite measurements of a significant rise in p-p cross sections, plus the delay in initiating accelerator construction programs for energies above 100 GeV, motivated the Michigan-Wisconsin group to undertake a serious cosmic ray program at Echo Lake. Subsequently, with the succession of higher energy accelerators and colliders at CERN and Fermilab, cosmic ray research has increasingly focused on cosmology and astrophysics, although some groups continue to study cosmic ray particle interactions in emulsion chambers.

  8. Temporal optimization of ultrabroadband high-energy OPCPA

    National Research Council Canada - National Science Library

    Jeffrey Moses; Cristian Manzoni; Shu-Wei Huang; Giulio Cerullo; Franz X. Kaertner

    2009-01-01

    We present general guidelines for the design of ultrabroadband, high-energy optical parametric chirped-pulse amplifiers, where maximization of both conversion efficiency and bandwidth and simultaneous...

  9. Predicting the statistics of high-energy astrophysical backgrounds

    NARCIS (Netherlands)

    Feyereisen, M.R.

    2017-01-01

    This thesis presents improvements to a methodology for predicting the probability distribution of diffuse isotropic astrophysical backgrounds, applied to high-energy extragalactic gamma rays and neutrinos.

  10. High Energy Gamma-rays from FR I Jets

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, Marek

    2003-07-22

    Thanks to Hubble and Chandra telescopes, some of the large scale jets in extragalactic radio sources are now being observed at optical and X-ray frequencies. For the FR I objects the synchrotron nature of this emission is surely established, although a lot of uncertainties--connected for example with the particle acceleration processes involved--remain. In this paper we study production of high energy {gamma}-rays in FR I kiloparsec-scale jets by inverse-Compton emission of the synchrotron-emitting electrons. We consider different origin of seed photons contributing to the inverse-Compton scattering, including nuclear jet radiation as well as ambient, stellar and circumstellar emission of the host galaxies. We discuss how future detections or non-detections of the evaluated {gamma}-ray fluxes can provide constraints on the unknown large scale jet parameters, i.e. the magnetic field intensity and the jet Doppler factor. For the nearby sources Centaurus A and M 87, we find measurable fluxes of TeV photons resulting from synchrotron self-Compton process and from comptonization of the galactic photon fields, respectively. In the case of Centaurus A, we also find a relatively strong emission component due to comptonization of the nuclear blazar photons, which could be easily observed by GLAST at energy {approx} 10 GeV, providing important test for the unification of FR I sources with BL Lac objects.

  11. High tonnage harvesting and skidding for loblolly pine energy plantations

    Science.gov (United States)

    Patrick Jernigan; Tom Gallagher; Dana Mitchell; Mathew Smidt; Larry Teeter

    2016-01-01

    The southeastern United States has a promising source for renewable energy in the form of woody biomass. To meet the energy needs, energy plantations will likely be utilized. These plantations will contain a high density of small-stem pine trees. Since the stems are relatively small when compared with traditional product removal, the harvesting costs will increase. The...

  12. Optimization of a neutron dosimeter for the high energy accelerators

    Directory of Open Access Journals (Sweden)

    Sokolov Alexey

    2017-01-01

    Full Text Available In high energy accelerator facilities the neutron radiation should be continuously measured during operation to control the ambient dose. This requires a reliable neutron dosimeter in a wide energy range. In this work we present an optimization of a compact cylindrical passive neutron dosimeter for the usage in wide energy neutron fields.

  13. Electron-emission processes in highly charged Ar and Xe ions impinging on highly ordered pyrolytic graphite at energies just above the kinetic threshold

    NARCIS (Netherlands)

    Bodewits, E.; Hoekstra, R.; Dobes, K.; Aumayr, F.

    2014-01-01

    At keV energies, many electronic processes contribute to the emission of secondary electrons in the interaction of highly charged ions on surfaces. To unravel contributions resulting from isolated hollow atoms in front of the surface or embedded in the electron gas of the target, heavy highly

  14. Contribution of Renewable Cooling to the Renewable Energy Target of the EU. Policy report

    Energy Technology Data Exchange (ETDEWEB)

    Kenkmann, T.; Buerger, V. [The Oeko-Institut, Freiburg (Germany)

    2012-06-15

    Renewable cooling technologies do not play a major role in the climate protection discussion in the European Union today. At the same time the cooling demand is expected to increase significantly in the coming decades. Renewable cooling technologies could contribute to the EU renewable energy target if an appropriate political framework for a further spread of the technologies is created. This renewable cooling policy report intends to support the dissemination of renewable cooling technologies. It provides an overview of the situation, technologies and potential for cool-ing from renewable sources and identifies key areas in which further investigation is required. The report shows that there is a great need for the creation of a political framework supporting the market diffusion of renewable cooling technologies. Firstly the question of a commonly accepted definition on renewable cooling is being addressed. Secondly renewable cooling technologies are described and the today's role of cooling in European statistics and policies is analysed. In the next step existing studies are evaluated to compare the expected development of the cooling demand in Europe to the market potential of renewable cooling. At the end of the paper a long-term vision for renewable cooling is described and first steps towards a European roadmap for renewable cooling are given.

  15. Trajectories of high energy electrons in a plasma focus

    Science.gov (United States)

    Harries, W. L.; Lee, J. H.; Mcfarland, D. R.

    1978-01-01

    Measurements are made of high-energy electron trajectories in a plasma focus as functions of position, time, energy, and angle of emission. The spatial resolution of the X-ray emission shows that low-energy X-rays are emitted from the anode surface. It is also suggested that the highest energy X-rays originate from a small region on the axis. The so-called shadow technique shows that the electron beam is perpendicular to the anode surface. Polar diagrams of medium and high-energy X-rays agree with the bremsstrahlung emission from a relativistic electron beam, the current of which is several 100 A.

  16. Contribution to the chapter on wind power in: Energy technology perspectives 2008, IEA

    Energy Technology Data Exchange (ETDEWEB)

    Lemming, J.; Morthorst, P.E.; Clausen, Niels-Erik; Hjuler Jensen, P.

    2009-01-15

    Over the last 5 years the growth rate in wind energy has been as high as 30% an on average nearly 25% in all continents, and a considerable number of countries have very ambitious goals concerning their wind energy development, therefore it could be likely to cover as much as 20% of the world's electricity consumption by wind in 2030 and 35% in 2050, although on the shorter term growth is expected to take place mainly in Europe, USA and China. The market is maturing, therefore achieving more stable economies in the wind energy sector. As a result, better electrical grids suited for wind power are being developed and better planning tools as well as other frameworks, which benefit the market for installation of wind turbines, are being implemented across all wind energy countries. The cost of wind-generated electricity has fallen steadily for the last two decades, driven largely by technological advances, increased production levels and the use of larger turbines. Between 1985 and 2005, production costs energy from of wind turbines decreased by nearly 100% in 2006 prices. The price rises seen in last three years due to capacity problems in the industry are expected to stop, once supply system constraints are overcome. Onshore wind is considered commercial at sites with good wind resources and grid access. Cost reductions in both turbines and infrastructure are expected to bring investment costs to 0.88 mill. Euro/MW in 2030 and 0.8 mill. Euro/MW in 2050. On the other hand, offshore wind is in pre-commercial development phase. Considerable costs improvements are expected in all areas making costs go down to 1. 4 mill. Euro/MW in 2030 and 1.3 mill. Euro/MW in 2050. Priority RD and D areas to foster continued growth in wind power are to increase the value and reduce uncertainties. This will mean further cost reductions on longer terms, enabling large-scale use by improved grid integration and storage facilities and minimizing environmental impact. (au)

  17. Contribution of regional brain melanocortin receptor subtypes to elevated activity energy expenditure in lean, active rats.

    Science.gov (United States)

    Shukla, C; Koch, L G; Britton, S L; Cai, M; Hruby, V J; Bednarek, M; Novak, C M

    2015-12-03

    Physical activity and non-exercise activity thermogenesis (NEAT) are crucial factors accounting for individual differences in body weight, interacting with genetic predisposition. In the brain, a number of neuroendocrine intermediates regulate food intake and energy expenditure (EE); this includes the brain melanocortin (MC) system, consisting of MC peptides as well as their receptors (MCR). MC3R and MC4R have emerged as critical modulators of EE and food intake. To determine how variance in MC signaling may underlie individual differences in physical activity levels, we examined behavioral response to MC receptor agonists and antagonists in rats that show high and low levels of physical activity and NEAT, that is, high- and low-capacity runners (HCR, LCR), developed by artificial selection for differential intrinsic aerobic running capacity. Focusing on the hypothalamus, we identified brain region-specific elevations in expression of MCR 3, 4, and also MC5R, in the highly active, lean HCR relative to the less active and obesity-prone LCR. Further, the differences in activity and associated EE as a result of MCR activation or suppression using specific agonists and antagonists were similarly region-specific and directly corresponded to the differential MCR expression patterns. The agonists and antagonists investigated here did not significantly impact food intake at the doses used, suggesting that the differential pattern of receptor expression may by more meaningful to physical activity than to other aspects of energy balance regulation. Thus, MCR-mediated physical activity may be a key neural mechanism in distinguishing the lean phenotype and a target for enhancing physical activity and NEAT. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Co-axial, high energy gamma generator

    Science.gov (United States)

    Reijonen, Jani Petteri [Princeton, NJ; Gicquel, Frederic [Pennington, NJ

    2011-08-16

    A gamma ray generator includes an ion source in a first chamber. A second chamber is configured co-axially around the first chamber at a lower second pressure. Co-axially arranged plasma apertures separate the two chambers and provide for restricted passage of ions and gas from the first to the second chamber. The second chamber is formed by a puller electrode having at least one long channel aperture to draw ions from the first chamber when the puller electrode is subject to an appropriate applied potential. A plurality of electrodes rings in the third chamber in third pressure co-axially surround the puller electrode and have at least one channel corresponding to the at least one puller electrode aperture and plasma aperture. The electrode rings increase the energy of the ions to a selected energy in stages in passing between successive pairs of the electrodes by application of an accelerating voltage to the successive pairs of accelerator electrodes. A target disposed co-axially around the plurality of electrodes receives the beam of accelerated ions, producing gamma rays.

  19. High energy neutrinos from pulsar wind nebulae

    Science.gov (United States)

    Di Palma, Irene

    2017-09-01

    Several Pulsar Wind Nebulae have been detected in the TeV band in the last decade.The TeV emission is typically interpreted in a purely leptonic scenario, but this usually requires that the magnetic field in the Nebula be much lower than the equipartition value and the assumption of an enhanced target radiation at IR frequencies. In this work we consider the possibility that, in addition to the relativistic electrons, also relativistic hadrons are present in these nebulae. Assuming that part of the emitted TeV photons are of hadronic origin, we compute the associated flux of ˜ 1 - 100 TeV neutrinos. We use the IceCube non detection to put constraints on the fraction of TeV photons that might be contributed by hadrons and estimate the number of neutrino events that can be expected from these sources in IceCube, ANTARES and in KM3Net.

  20. Free Energy Contribution Analysis Using Response Kernel Approximation: Insights into the Acylation Reaction of a Beta-Lactamase.

    Science.gov (United States)

    Asada, Toshio; Ando, Kanta; Bandyopadhyay, Pradipta; Koseki, Shiro

    2016-09-08

    A widely applicable free energy contribution analysis (FECA) method based on the quantum mechanical/molecular mechanical (QM/MM) approximation using response kernel approaches has been proposed to investigate the influences of environmental residues and/or atoms in the QM region on the free energy profile. This method can evaluate atomic contributions to the free energy along the reaction path including polarization effects on the QM region within a dramatically reduced computational time. The rate-limiting step in the deactivation of the β-lactam antibiotic cefalotin (CLS) by β-lactamase was studied using this method. The experimentally observed activation barrier was successfully reproduced by free energy perturbation calculations along the optimized reaction path that involved activation by the carboxylate moiety in CLS. It was found that the free energy profile in the QM region was slightly higher than the isolated energy and that two residues, Lys67 and Lys315, as well as water molecules deeply influenced the QM atoms associated with the bond alternation reaction in the acyl-enzyme intermediate. These facts suggested that the surrounding residues are favorable for the reactant complex and prevent the intermediate from being too stabilized to proceed to the following deacylation reaction. We have demonstrated that the free energy contribution analysis should be a useful method to investigate enzyme catalysis and to facilitate intelligent molecular design.

  1. Apparatus for advancing a wellbore using high power laser energy

    Science.gov (United States)

    Zediker, Mark S.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Koblick, Yeshaya; Moxley, Joel F.

    2014-09-02

    Delivering high power laser energy to form a borehole deep into the earth using laser energy. Down hole laser tools, laser systems and laser delivery techniques for advancement, workover and completion activities. A laser bottom hole assembly (LBHA) for the delivery of high power laser energy to the surfaces of a borehole, which assembly may have laser optics, a fluid path for debris removal and a mechanical means to remove earth.

  2. Contribution of health motive to cannabis use among high-school students.

    Science.gov (United States)

    Chabrol, Henri; Beck, Charline; Laconi, Stéphanie

    2017-01-01

    The Marijuana Motives Measure (MMM), which is derived from a scale measuring alcohol use motives, has been the main instrument used to explore the role of motives in cannabis use and related problems. Two studies attempted to developed specific cannabis use motives but none of them showed a unique association to cannabis use and problems when controlling for MMM motives. The aim of our study was to examine if additional motives contributed to problematic use beyond MMM motives and psychopathological symptoms. Participants were 249 high-school students who completed the Cannabis Use Disorder Identification Test-Revised (CUDIT-R) assessing cannabis use and problematic use, the MMM and a new scale measuring motives derived from clinical experience with adolescents using cannabis (CED motives), and scales measuring anxiety and depressive symptoms and borderline personality traits. Among the 107 participants using cannabis, 39 reached the cut-off score for problematic cannabis use. Hierarchical multiple regression analyses controlling for psychopathological variables showed that only one CED motives, Health (sleep, form, energy, appetite, health), was a significant predictor of both frequency of use and problematic use symptoms. The importance of Health motive may be linked to the role of depressive symptoms and may have implication for treatment. We suggest to add the Health subscale to the MMM and to further study the role of health motive in both use and dependence. Copyright © 2016. Published by Elsevier Ltd.

  3. Italian Meeting on High Energy Physics

    CERN Document Server

    Nicrosini, Oreste; Vercesi, Valerio; IFAE 2006; Incontri Di Fisica Delle Alte Energie

    2007-01-01

    This book collects the Proceedings of the Workshop ``Incontri di Fisica delle Alte Energie (IFAE) 2006, Pavia, 19-21 April 2006". This is the fifth edition of a new series of meetings on fundamental research in particle physics and was attended by more than 150 researchers. Presentations, both theoretical and experimental, addressed the status of Standard Model and Flavour phyiscs, Neutrino and Cosmological topics, new insights beyond the present understanding of particle physics and cross-fertilization in areas such as medicine, biology, technological spin-offs and computing. Special emphasis was given to the expectations of the forthcoming Large Hadron Collider, due in operation in 2007. The venue of plenary sessions interleaved with parallel ones allowed for a rich exchange of ideas, presented in these Proceedings, that form a coherent picture of the findings and of the open questions in this extremely challenging cultural field.

  4. High energy asymptotics of the scattering amplitude for the ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    High energy asymptotics of the scattering amplitude for the. Schrödinger equation. D YAFAEV. Department of Mathematics, University Rennes-1, Campus Beaulieu, 35042 Rennes,. France. Abstract. We find an explicit function approximating at high energies the kernel of the scattering matrix with arbitrary accuracy.

  5. Participation in High Energy Physics at the University of Chicago

    Energy Technology Data Exchange (ETDEWEB)

    Martinec, Emil J. [Univ. of Chicago, IL (United States). Enrico Fermi Inst.

    2013-06-27

    This report covers research at the University of Chicago in theoretical high energy physics and its connections to cosmology, over the period Nov. 1, 2009 to April 30, 2013. This research is divided broadly into two tasks: Task A, which covers a broad array of topics in high energy physics; and task C, primarily concerned with cosmology.

  6. CZT drift strip detectors for high energy astrophysics

    DEFF Research Database (Denmark)

    Kuvvetli, Irfan; Budtz-Jørgensen, Carl; Caroli, E.

    2010-01-01

    Requirements for X- and gamma ray detectors for future High Energy Astrophysics missions include high detection efficiency and good energy resolution as well as fine position sensitivity even in three dimensions.We report on experimental investigations on the CZT drift detector developed DTU Space...

  7. Space and Astrophysical Plasmas: High energy universe–Satellite ...

    Indian Academy of Sciences (India)

    A variety of satellite missions to observe the high energy universe are currently operating and some more with more versatility and capability are on the anvil. In this paper, after giving a brief introduction to the constituents of the high energy universe and the related plasma physical problems, general as well as specific ...

  8. Metal azides under pressure: An emerging class of high energy ...

    Indian Academy of Sciences (India)

    Metal azides are well-known for their explosive properties such as detonation or deflagration. As chemically pure sources of nitrogen, alkali metal azides under high pressure have the ability to form polymeric nitrogen, an ultimate green high energy density material with energy density three times greater than that of known ...

  9. Hadron-hadron total cross sections and soft high-energy scattering on the lattice

    OpenAIRE

    Giordano, M.; Meggiolaro, E.

    2011-01-01

    The nonperturbative approach to soft high-energy hadron-hadron scattering, based on the analytic continuation of Euclidean Wilson-loop correlation functions, makes possible the investigation of the problem of the asymptotic energy dependence of hadron-hadron total cross sections by means of lattice calculations. In this contribution we compare the lattice numerical results to analytic results obtained with various nonperturbative techniques. We also discuss the possibility to obtain indicatio...

  10. Crystal collimator systems for high energy frontier

    Science.gov (United States)

    Sytov, A. I.; Tikhomirov, V. V.; Lobko, A. S.

    2017-07-01

    Crystalline collimators can potentially considerably improve the cleaning performance of the presently used collimator systems using amorphous collimators. A crystal-based collimation scheme which relies on the channeling particle deflection in bent crystals has been proposed and extensively studied both theoretically and experimentally. However, since the efficiency of particle capture into the channeling regime does not exceed ninety percent, this collimation scheme partly suffers from the same leakage problems as the schemes using amorphous collimators. To improve further the cleaning efficiency of the crystal-based collimation system to meet the requirements of the FCC, we suggest here a double crystal-based collimation scheme, to which the second crystal is introduced to enhance the deflection of the particles escaping the capture to the channeling regime in its first crystal. The application of the effect of multiple volume reflection in one bent crystal and of the same in a sequence of crystals is simulated and compared for different crystal numbers and materials at the energy of 50 TeV. To enhance also the efficiency of use of the first crystal of the suggested double crystal-based scheme, we propose: the method of increase of the probability of particle capture into the channeling regime at the first crystal passage by means of fabrication of a crystal cut and the method of the amplification of nonchanneled particle deflection through the multiple volume reflection in one bent crystal, accompanying the particle channeling by a skew plane. We simulate both of these methods for the 50 TeV FCC energy.

  11. High power and high energy electrodes using carbon nanotubes

    Science.gov (United States)

    Martini, Fabrizio; Brambilla, Nicolo Michele; Signorelli, Riccardo

    2015-04-07

    An electrode useful in an energy storage system, such as a capacitor, includes an electrode that includes at least one to a plurality of layers of compressed carbon nanotube aggregate. Methods of fabrication are provided. The resulting electrode exhibits superior electrical performance in terms of gravimetric and volumetric power density.

  12. Influence of high energy electrons on ECRH in LHD

    Directory of Open Access Journals (Sweden)

    Ogasawara S.

    2012-09-01

    Full Text Available The central bulk electron temperature of more than 20 keV is achieved in LHD as a result of increasing the injection power and the lowering the electron density near 2 × 1018 m−3. Such collision-less regime is important from the aspect of the neoclassical transport and also the potential structure formation. The presences of appreciable amount of high energy electrons are indicated from hard X-ray PHA, and the discrepancy between the stored energy and kinetic energy estimated from Thomson scattering. ECE spectrum are also sensitive to the presence of high energy electrons and discussed by solving the radiation transfer equation. The ECRH power absorption to the bulk and the high energy electrons are dramatically affected by the acceleration and the confinement of high energy electrons. The heating mechanisms and the acceleration process of high energy electrons are discussed by comparing the experimental results and the ray tracing calculation under assumed various density and mean energy of high energy electrons.

  13. Effects of fissioning nuclei distributions on fragment mass distributions for high energy fission

    Directory of Open Access Journals (Sweden)

    Rossi P C R

    2012-02-01

    Full Text Available We study the effects of fissioning nuclei mass- and energy-distributions on the formation of fragments for fission induced by high energy probes. A Monte Carlo code called CRISP was used for obtaining mass distributions and spectra of the fissioning nuclei for reactions induced by 660 MeV protons on 241Am and on 239Np, by 500 MeV protons on 208Pb, and by Bremsstrahlung photons with end-point energies at 50 MeV and 3500 MeV on 238U. The results show that even at high excitation energies, asymmetric fission may still contribute significantly to the fission cross section of actinide nuclei, while it is the dominante mode in the case of lead. However, more precise data for high energy fission on actinide are necessary in order to allow definite conclusions.

  14. High energy physics program at Texas A and M University

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    The Texas A M experimental high energy physics program continued to reach significant milestones in each of its research initiatives during the course of the past year. We are participating in two major operating experiments, CDF and MACRO. In CDF, the Texas A M group has spearheaded the test beam program to recalibrate the Forward Hadron Calorimeter for the upcoming CDF data run, as well as contributing to the ongoing analysis work on jets and b-quarks. In MACRO, we have assisted in the development of the final version of the wave form digitizing system being implemented for the entire scintillator system. The construction of the first six supermodules of the detector has been completed and all six are currently taking data with streamer chambers while four have the completed scintillator counter system up and running. We have built and tested prototypes of a liquid-scintillator fiber calorimeter system, in which internally reflecting channels are imbedded in a lead matrix and filled with liquid scintillator. This approach combines the performance features of fiber calorimetry and the radiation hardness of liquid scintillator, and is being developed for forward calorimetry at the SSC. The microstrip chamber is a new technology for precision track chambers that offers the performance required for future hadron colliders. The theoretical high energy physics program has continued to develop during the past funding cycle. We have continued the study of their very successful string-derived model that unifies all known interactions; flipped SU(5), which is the leading candidate for a TOE. Work has continued on some generalizations of the symmetries of string theory, known as W algebras. These are expected to have applications in two-dimensional conformal field theory, two-dimensional extensions of gravity and topological gravity and W-string theory.

  15. High energy. Progress report, March 1, 1992--February 28, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Bonner, B.E.; Roberts, J.B. Jr.

    1996-09-01

    The Bonner Lab High Energy Group at Rice University has major hardware and software design and construction responsibilities in three of the flagship experiments of US High Energy Physics: D0, CMS, and KTeV. These commitments were undertaken after managing boards of the collaborations had evaluated the unique capabilities that Bonner Lab has to offer. Although fiscal constraints prohibited their participation in the final year of the SMC experiment (1996) on the spin dependent structure functions of nucleons, they played a major role there since it was proposed in 1988. The new results from the SMC data taken in previous years continue to generate a buzz of theoretical activity--and to increase understanding of the nucleon structure functions and their behavior as a function of Q{sup 2} and x. They have also spawned large new experimental spin physics programs at HERA and at RHIC that ultimately will provide answers to these fundamental questions. This is a direct result of the unprecedented precision and kinematic range of the SMC results. Such precision would not have been possible without the improvement in the knowledge of the muon beam polarization using the Rice-designed beam polarimeter. In D0 Bonner Lab has been active in data taking, data analysis, upgrade design, and upgrade construction projects. In CMS they are responsible for the design and construction of the trigger electronics for one of the crucial subsystems: the end cap muon detectors. Other responsibilities are fully expected as the US commitment to LHC projects becomes clearer. The technical capabilities are well matched to the enormous challenges posed by the physics measurements being contemplated for the CMS detector. KTeV will be taking data shortly. Rice made major contributions to the construction and commissioning of this experiment. The long list of publications and presentations during the past five years attests to the fact that the group has been working hard and productively.

  16. VLA-Max '91 tests of high energy flare physics

    Science.gov (United States)

    Lang, Kenneth R.; Willson, Robert F.

    1989-01-01

    The potential for the Very Large Array (VLA) contributions during the coming maximum in solar activity is illustrated by unpublished observations of solar flares on 28 May, 8 June, 24 June, and 30 September 1988. Some of this data appears in the two papers by Willson et al., referenced in this article. The VLA can be used to spatially resolve flaring active regions and their magnetic fields. These results can be compared with simultaneous x ray and gamma ray observations from space. Examples are provided in which spatially separated radio sources are resolved for the pre-burst, impulsive and decay phases of solar flares. The emergence of precursor coronal loops probably triggers the release of stored magnetic energy in adjacent coronal loops. Noise storm enhancements can originate in large-scale coronal loops on opposite sides of the visible solar disk. An interactive feedback mechanism may exist between activity in high-lying 90 cm coronal loops and lower-lying 20 cm ones.

  17. Refractory materials for high-temperature thermoelectric energy conversion

    Science.gov (United States)

    Wood, C.; Emin, D.

    1984-01-01

    Theoretical work of two decades ago adequately explained the transport behavior and effectively guided the development of thermoelectric materials of high conversion efficiencies of conventional semiconductors (e.g., SiGe alloys). The more significant contributions involved the estimaiation of optimum doping concentrations, the reduction of thermal conductivity by solid solution doping and the development of a variety of materials with ZT approx. 1 in the temperature range 300 K to 1200 K. ZT approx. 1 is not a theoretical limitation although, experimentally, values in excess of one were not achieved. Work has continued with emphasis on higher temperature energy conversion. A number of promising materials have been discovered in which it appears that ZT 1 is realizable. These materials are divided into two classes: (1) the rare-earth chalcogenides which behave as itinerant highly-degenerate n-type semiconductors at room-temperature, and (2) the boron-rich borides, which exhibit p-type small-polaronic hopping conductivity.

  18. Refractory materials for high-temperature thermoelectric energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Wood, C.; Emin, D.

    1983-01-01

    Theoretical work of two decades ago adequately explained the transport behavior and effectively guided the development of thermoelectric materials of high conversion efficiencies of conventional semiconductors (e.g., SiGe alloys). The more significant contributions involved the estimation of optimum doping concentrations, the reduction of thermal conductivity by solid solution doping and the development of a variety of materials with ZT approx. 1 in the temperature range 300 K to 1200 K. It was also shown that ZT approx. 1 is not a theoretical limitation although, experimentally, values in excess of one were not achieved. Work has continued with emphasis on higher temperature energy conversion. A number of promising materials have been discovered in which it appears that ZT > 1 is realizable. These materials can be divided into two classes: (i) the rare-earth chalcogenides, which behave as itinerant highly-degenerate n-type semiconductors at room-temperature, and (ii) the boron-rich borides, which exhibit p-type small-polaronic hopping conductivity.

  19. A Simple Engineering Analysis of Solar Particle Event High Energy Tails and Their Impact on Vehicle Design

    Science.gov (United States)

    Singleterry, Robert C., Jr.; Walker, Steven A.; Clowdsley, Martha S.

    2016-01-01

    The mathematical models for Solar Particle Event (SPE) high energy tails are constructed with several di erent algorithms. Since limited measured data exist above energies around 400 MeV, this paper arbitrarily de nes the high energy tail as any proton with an energy above 400 MeV. In order to better understand the importance of accurately modeling the high energy tail for SPE spectra, the contribution to astronaut whole body e ective dose equivalent of the high energy portions of three di erent SPE models has been evaluated. To ensure completeness of this analysis, simple and complex geometries were used. This analysis showed that the high energy tail of certain SPEs can be relevant to astronaut exposure and hence safety. Therefore, models of high energy tails for SPEs should be well analyzed and based on data if possible.

  20. Sustaining high-energy orbits of bi-stable energy harvesters by attractor selection

    Science.gov (United States)

    Udani, Janav P.; Arrieta, Andres F.

    2017-11-01

    Nonlinear energy harvesters have the potential to efficiently convert energy over a wide frequency range; however, difficulties in attaining and sustaining high-energy oscillations restrict their applicability in practical scenarios. In this letter, we propose an actuation methodology to switch the state of bi-stable harvesters from the low-energy intra-well configuration to the coexisting high-energy inter-well configuration by controlled phase shift perturbations. The strategy is designed to introduce a change in the system state without creating distinct metastable attractors by exploiting the basins of attraction of the coexisting stable attractors. Experimental results indicate that the proposed switching strategy yields a significant improvement in energy transduction capabilities, is highly economical, enabling the rapid recovery of energy spent in the disturbance, and can be practically implemented with widely used low-strain piezoelectric transducers.

  1. Electron clouds in high energy hadron accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, Fedor

    2013-08-29

    The formation of electron clouds in accelerators operating with positrons and positively charge ions is a well-known problem. Depending on the parameters of the beam the electron cloud manifests itself differently. In this thesis the electron cloud phenomenon is studied for the CERN Super Proton Synchrotron (SPS) and Large Hadron Collider (LHC) conditions, and for the heavy-ion synchrotron SIS-100 as a part of the FAIR complex in Darmstadt, Germany. Under the FAIR conditions the extensive use of slow extraction will be made. After the acceleration the beam will be debunched and continuously extracted to the experimental area. During this process, residual gas electrons can accumulate in the electric field of the beam. If this accumulation is not prevented, then at some point the beam can become unstable. Under the SPS and LHC conditions the beam is always bunched. The accumulation of electron cloud happens due to secondary electron emission. At the time when this thesis was being written the electron cloud was known to limit the maximum intensity of the two machines. During the operation with 25 ns bunch spacing, the electron cloud was causing significant beam quality deterioration. At moderate intensities below the instability threshold the electron cloud was responsible for the bunch energy loss. In the framework of this thesis it was found that the instability thresholds of the coasting beams with similar space charge tune shifts, emittances and energies are identical. First of their kind simulations of the effect of Coulomb collisions on electron cloud density in coasting beams were performed. It was found that for any hadron coasting beam one can choose vacuum conditions that will limit the accumulation of the electron cloud below the instability threshold. We call such conditions the ''good'' vacuum regime. In application to SIS-100 the design pressure 10{sup -12} mbar corresponds to the good vacuum regime. The transition to the bad vacuum

  2. High-frequency energy in singing and speech

    Science.gov (United States)

    Monson, Brian Bruce

    While human speech and the human voice generate acoustical energy up to (and beyond) 20 kHz, the energy above approximately 5 kHz has been largely neglected. Evidence is accruing that this high-frequency energy contains perceptual information relevant to speech and voice, including percepts of quality, localization, and intelligibility. The present research was an initial step in the long-range goal of characterizing high-frequency energy in singing voice and speech, with particular regard for its perceptual role and its potential for modification during voice and speech production. In this study, a database of high-fidelity recordings of talkers was created and used for a broad acoustical analysis and general characterization of high-frequency energy, as well as specific characterization of phoneme category, voice and speech intensity level, and mode of production (speech versus singing) by high-frequency energy content. Directionality of radiation of high-frequency energy from the mouth was also examined. The recordings were used for perceptual experiments wherein listeners were asked to discriminate between speech and voice samples that differed only in high-frequency energy content. Listeners were also subjected to gender discrimination tasks, mode-of-production discrimination tasks, and transcription tasks with samples of speech and singing that contained only high-frequency content. The combination of these experiments has revealed that (1) human listeners are able to detect very subtle level changes in high-frequency energy, and (2) human listeners are able to extract significant perceptual information from high-frequency energy.

  3. International Wilhelm and Else Heraeus Physics School: Diffractive and electromagnetic processes at high energies

    CERN Document Server

    2015-01-01

    The school "Diffractive and electromagnetic processes at high energies" is held in Bad Honnef, August 17-21, 2015. Applications from students and postdocs are encouraged. The school programme consists of invited talks of the HERA, RHIC, TEVATRON and CERN programmes, invited lectures and talks contributed by the participants.

  4. The contribution of technological progress to a sustainable energy system. Volume 5 in the CASCADE MINTS project

    Energy Technology Data Exchange (ETDEWEB)

    Uyterlinde, M.A.; Martinus, G.H.; Rosler, H. [ECN Policy Studies, Petten (Netherlands); Kouvaritakis, N.; Panos, V.; Mantzos, L.; Zeka-Paschou, M. [National Technical University of Athens NTUA, Athens (Greece); Kypreos, S. [Paul Scherrer Institute, Villigen (Switzerland); Jokisch, S. [Zentrum fuer Europaeische Wirtschaftsforschung ZEW, Mannheim (Germany); Blesl, M.; Ellersdorfer, I.; Zuern, M.; Fahl, U. [Institute of Energy Economics and the Rational Use of Energy IER, Stuttgart (Germany); Pratlong, F.; Le Mouel, P. [Equipe de Recherche en Analyse des Systemes et Modelisation Economiques ERASME, Ecole Centrale Paris, Paris (France); Keppo, I. [The International Institute for Applied Systems Analysis IIASA, Laxenburg (Austria); Sano, F.; Akimoto, K.; Homma, T.; Tomada, T. [Research Institute of Innovative Technology for the Earth RITE, Kyoto (Japan); Szabo, L.; Russ, P.; Suwala, W. [Institute for Prospective Technological Studies IPTS, Joint Research Centre JRC, Sevilla (Spain)

    2007-03-15

    This report focuses on the possible role and impact of enhanced technological progress in the energy system, combined with variations of CO2 values and oil and gas prices. Based on the results of 11 advanced energy and economic models, it provides an overview of the scenarios analysed in the CASCADE MINTS project. It concludes that the global energy system can meet the challenge of a strong climate policy, with carbon prices up to 100 euro/tCO2, through a mix of options. In the power sector, penetration of renewable and nuclear technologies up to 50% combined with the deployment of CO2 capture and storage can result in emission reductions up to 40%. Similarly, in Europe, CO2 emissions can be reduced with 21% - 54% in 2050. The contribution of coal remains uncertain, as it depends on the estimates for costs and potential for CCS. Secondly, the implications of high oil and gas prices are not necessarily environmentally favourable, as there is a tendency towards coal, even though renewables also benefit. The additional effect of enhanced technological progress is strongest in the transport sector, where it can stimulate hydrogen, but also biofuels, to reduce the dominance of petroleum-based automotive fuels. Third, enhanced technological progress - modelled in terms of investment cost reductions due to additional R and D policies - appears to have the most significant impacts on hydrogen production, storage and consumption and on the use of renewables (wind and solar PV) for power generation. This case set-up does not cover all possibilities for progress in the techno-economic characteristics of technologies.

  5. Highly efficient distributed generation and high-capacity energy storage

    DEFF Research Database (Denmark)

    Hemmes, Kas; Guerrero, Josep M.; Zhelev, Toshko

    2012-01-01

    and solar that deliver electricity to the grid. Solution directions are the development of smart grids, demand side management, virtual power plants and storage of electricity. These are directions that, rightly so, are already attracting a lot of attention and R&D funding. In this paper critical issues......With the growing amount of decentralized power production the design and operation of the grid has to be reconsidered. New problems include the two-way flow of electricity and maintaining the power balance given the increased amount of uncertain and fluctuating renewable energy sources like wind...... are identified and specified. However, we will also explore new solution directions based on an integrative approach as proposed by the Dutch Royal Academy of Science foresight committee on renewable energy conversions. These alternative solutions include flexible coproduction and local production of chemicals...

  6. High-energy photoproduction of neutral mesons

    CERN Document Server

    Charity, Tim

    1987-01-01

    This thesis presents results from the first full period of data-taking of the experiment WA69 at the Omega^'^ectrometer, CERN, Geneva. The experiment used a tagged photon beam of energy 60-180 GeV incident on a liquid hydrogen target to study photoproduction of hadronic states. The various components of the experiment are described, with particular emphasis on the electromagnetic calorimeters, and the associated offline software for event reconstruction and acceptance calculation. The performance of the outer calorimeter is discussed, and the pi^0 detection and reconstruction efficiency is examined by comparison with pi^{+/- } production. Searches for photoproduction of neutral meson states reveal a clear signal for the pi^0, eta^0 , and omega^0 mesons. The cross-section for elastic omega^0 production is estimated, and found to be consistent with the established value of 1 mub. The cross-section for inclusive pi^0 and eta^0 production is studied using the variable Feynman-x (x_{F }), and pi^0 production as a ...

  7. Contributions of Icelandic and other high-latitude sources to mineral dust in the Arctic

    Science.gov (United States)

    Groot Zwaaftink, Christine; Grythe, Henrik; Arnalds, Olafur; Dagsson-Waldhauserova, Pavla; Skov, Henrik; Jóhannsson, Thorsteinn; Eckhardt, Sabine; Stohl, Andreas

    2017-04-01

    Impurities in the Arctic atmosphere and cryosphere, such as mineral dust, can strongly affect the atmospheric radiation- and surface energy balance. Mineral dust can be transported into the Arctic from remote regions, but is also generated at high latitudes, for instance Iceland. With the dust mobilization scheme FLEXDUST and the Lagrangian atmospheric dispersion model FLEXPART we investigate sources of mineral dust at northern high latitudes. FLEXDUST simulations over three years indicate that about 3% of global dust emission originate from northern high-latitude (>60°N) dust sources. About 10% thereof comes from Iceland. Due to limited up-lifting of this dust and relatively small transport distances, dust from nothern high-latitude sources contributes strongly to dust deposition ( 90%) and dust surface concentrations ( 85%) in the Arctic, according to our simulations. With increasing altitude, remote sources become more important for dust concentrations, thus influencing total atmospheric dust load rather than surface concentrations and contributing to dust deposition at higher altitude locations. Total atmospheric dust loads in the Arctic are strongly influenced by Asian ( 38%) and African ( 32%) dust. Only at higher altitudes, such as on the Greenland Ice Sheet, larger fractions of deposited dust originate from remote sources. At lower altitudes, deposited dust appears to originate mostly from northern high-latitude sources. Dust mobilization from these sources is, however, rarely studied in detail. With some adaptations to FLEXDUST, we study dust emission, transport and deposition of Icelandic dust at high resolution for one year. We used a high-resolution map of soil types in Iceland and threshold friction velocity in dust sources was based on previous observations. Snow cover and precipitation were included as factors limiting dust mobilization. In a one-year high-resolution simulation for 2012, driven with hourly meteorological data from the European

  8. Contribution to modeling and dynamic risk hedging in energy markets; Contribution a la modelisation et a la gestion dynamique du risque des marches de l'energie

    Energy Technology Data Exchange (ETDEWEB)

    Noufel, Frikha

    2010-12-15

    This thesis is concerned with probabilistic numerical problems about modeling, risk control and risk hedging motivated by applications to energy markets. The main tool is based on stochastic approximation and simulation methods. This thesis consists of three parts. The first one is devoted to the computation of two risk measures of the portfolio loss distribution L: the Value-at-Risk (VaR) and the Conditional Value-at-Risk (CVaR). This computation uses a stochastic algorithm combined with an adaptive variance reduction technique. The first part of this chapter deals with the finite dimensional case, the second part extends the results of the first part to the case of a path-dependency process and the last one deals low discrepancy sequences. The second chapter is devoted with risk minimizing hedging strategies in an incomplete market operating in discrete time using quantization based stochastic approximation. Theoretical results on CVaR hedging are presented then numerical aspects are addressed in a Markovian framework. The last part deals with joint modeling of Gas and Electricity spot prices. The multi-factor model presented is based on stationary Ornstein process with parameterized diffusion coefficient. (author)

  9. High Energy Computed Tomographic Inspection of Munitions

    Science.gov (United States)

    2016-11-01

    Picatinny scientists test body armor integrity, protect Soldiers’ lives,” http://www.army.mil/ article /94448, Picatinny Arsenal, NJ, 2013. 2. Youngberg, J...The citation in this report of the names of commercial firms or commercially available products or services does not constitute official endorsement by...munitions and weapon systems. In many cases, the use of CT is overlooked or discounted due to its lack of use in high throughput production settings

  10. Mitigation Theme Report: Energy Efficiency : Contribution to the MCA4climate initiative

    NARCIS (Netherlands)

    de Visser, Erika; Blok, K.|info:eu-repo/dai/nl/07170275X

    2011-01-01

    Striving for energy efficiency means trying to obtain a certain result with a minimum of input (Schipper and Meyers, 1992; Blok, 2007). As energy is used to fulfil human needs, one may define the energy efficiency of an activity as the degree to which given human needs can be fulfilled with a

  11. Contribution of beverages to energy, macronutrient and micronutrient intake of third- and fourth-grade schoolchildren in Quetzaltenango, Guatemala.

    Science.gov (United States)

    Montenegro-Bethancourt, Gabriela; Vossenaar, Marieke; Doak, Colleen M; Solomons, Noel W

    2010-04-01

    Beverages are selected based on availability, culture, taste preference, health, safety and social context. Beverages may be important to energy and to the macronutrient and micronutrient quality of overall intake. The aim of this study was to determine the contribution of beverages to the dietary energy and estimated macro- and micronutrient intake to the diet of young schoolchildren. We analyzed data from third- and fourth-grade urban Guatemalan school-children aged predominantly 8-10 years old. One-day pictorial registries of all beverages, foods and snacks consumed over a 24-h period were collected from children from private (n = 219) and public (n = 230) schools. Food composition nutrient values were assigned to the items consumed. Eleven main categories of beverages were identified. The contribution of each of the 11 beverage categories to energy, macro- and micronutrients was evaluated. The estimated intake of beverages was 475,300 mL, as reported by the 449 children. As a group, the beverage consumed in the greatest quantity was coffee (126,500 mL), followed by plain water (62,000 mL). Beverages represented a mean energy contribution of 418 +/- 26 kcal (21.5% of total dietary energy). The beverages varied in energy density from 0 (water) to 1.5 kcal mL(-1) (thin gruels). Beverages contributed one-third of the dietary carbohydrate. Through the contribution of fortified drinks, beverages were important sources of vitamin A (55%), vitamin C (38%), zinc (21%) and calcium (19%). Milk was an important source for vitamin D (10%). These results show the importance of drinks to nutrition and the balance of concerns of overweight/obesity with micronutrient quality.

  12. Contribution of foods consumed away from home to energy intake in Brazilian urban areas: the 2008-9 Nationwide Dietary Survey.

    Science.gov (United States)

    Bezerra, Ilana Nogueira; de Moura Souza, Amanda; Pereira, Rosangela Alves; Sichieri, Rosely

    2013-04-14

    The objectives of the present study were to estimate the dietary contribution of away-from-home food consumption, to describe the contribution of away-from-home foods to energy intake, and to investigate the association between eating away from home and total energy intake in Brazilian urban areas. In the first Brazilian Nationwide Dietary Survey, conducted in 2008-9, food records were collected from 25 753 individuals aged 10 years or older, living in urban areas of Brazil. Foods were grouped into thirty-three food groups, and the mean energy intake provided by away-from-home food consumption was estimated. Linear regression models were used to evaluate the association between away-from-home food consumption and total energy intake. All analyses considered the sample design effect. Of the total population, 43 % consumed at least one food item away from home. The mean energy intake from foods consumed away from home was 1408 kJ (337 kcal), averaging 18 % of total energy intake. Eating away from home was associated with increased total energy intake, except for men in the highest income level. The highest percentage of away-from-home energy sources was for food with a high content of energy, such as alcoholic beverages (59 %), baked and deep-fried snacks (54 %), pizza (42 %), soft drinks (40 %), sandwiches (40 %), and sweets and desserts (30 %). The consumption of foods away from home was related to a greater energy intake. The characterisation of away-from-home food habits is necessary in order to properly design strategies to promote healthy food consumption in the away-from-home environment.

  13. The contribution of attitudes of students and teachers to junior high ...

    African Journals Online (AJOL)

    This study investigated the extent to which Ghanaian junior high school students' attitude towards mathematics and the attitude of their teachers contribute to students' achievement in mathematics. In all, 400 junior high school students in their third year (i.e., the ninth grade), comprising 230 boys and 170 girls, randomly ...

  14. High-Performance Energy Applications and Systems

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Barton [Univ. of Wisconsin, Madison, WI (United States)

    2014-01-01

    The Paradyn project has a history of developing algorithms, techniques, and software that push the cutting edge of tool technology for high-end computing systems. Under this funding, we are working on a three-year agenda to make substantial new advances in support of new and emerging Petascale systems. The overall goal for this work is to address the steady increase in complexity of these petascale systems. Our work covers two key areas: (1) The analysis, instrumentation and control of binary programs. Work in this area falls under the general framework of the Dyninst API tool kits. (2) Infrastructure for building tools and applications at extreme scale. Work in this area falls under the general framework of the MRNet scalability framework. Note that work done under this funding is closely related to work done under a contemporaneous grant, “Foundational Tools for Petascale Computing”, SC0003922/FG02-10ER25940, UW PRJ27NU.

  15. School for Young High Energy Physicists

    CERN Document Server

    Evans, M E

    2003-01-01

    Forty-seven experimental particle physicists attended the 2002 Summer School, held, as usual, at The Cosener's House in Abingdon during September. The weather was glorious allowing a number of tutorials and impromptu seminars to take place in the lovely gardens. The lectures were of a high standard and were delivered and received enthusiastically, providing material for lively discussions in tutorials and elsewhere. The students each gave a ten-minute seminar and the general quality of the talks was impressive and the time keeping excellent. The activities described ranged from front-line physics analysis to preparations for the next generation of machines and detectors, and gave a clear indication of the breadth of particle physics activities in the UK

  16. The contribution of economic theory to the energy debates; L'apport de la theorie economique aux debats energetiques

    Energy Technology Data Exchange (ETDEWEB)

    Percebois, J.

    1999-11-01

    This paper proposes a brief overview of the contributions of the micro- and macro-economic theory to the answer of the following four main questions: 1 - how will change the world energy demand with respect to the economic activity and what will be the determining factors of this demand, globally and per energy source? What are the respective roles of energy prices and technological innovations? How will change the petroleum price and what will be the share of economical and political weight in this change? 2 - how passing on this price to the end-user taking into consideration the national preferences? Is there an optimum price when the energy producing, transporting and distributing company is a monopoly? 3 - what is the optimal structure of a network industry? 4 - how to integrate the local and global externalities characteristic of the energy sector in the economical calculus? (J.S.)

  17. High-energy drinks may provoke aortic dissection.

    Science.gov (United States)

    Jonjev, Zivojin S; Bala, Gustav

    2013-05-01

    High-energy drinks have become extremely popular after Red Bull's promotion at 1987 in Austria and 1997 in the United States. Since then, we witnessed spectacular increase in different brands, caffeine content and market consumption all over the world. However, there are no reports published in the scientific literature related with detrimental side effects after heavy consumption of high-energy drinks. We report a series of three high-risk cardiovascular patients who had aortic dissection (De Bakey type I and II) following significant consumption of high-energy drinks. All of them required emergency surgical procedure and were remaining stable after surgery. We propose that uncontrolled consumption of high-energy drinks, especially in patients with underlying heart disease, could provoke potentially lethal cardiovascular events as well as acute aortic dissection.

  18. High Energy Ion Acceleration by Extreme Laser Radiation Pressure

    Science.gov (United States)

    2017-03-14

    AFRL-AFOSR-UK-TR-2017-0015 High energy ion acceleration by extreme laser radiation pressure Paul McKenna UNIVERSITY OF STRATHCLYDE VIZ ROYAL COLLEGE...MM-YYYY)   14-03-2017 2. REPORT TYPE  Final 3. DATES COVERED (From - To)  01 May 2013 to 31 Dec 2016 4. TITLE AND SUBTITLE High energy ion acceleration...Prescribed by ANSI Std. Z39.18 Page 1 of 1FORM SF 298 3/15/2017https://livelink.ebs.afrl.af.mil/livelink/llisapi.dll 1 HIGH ENERGY ION ACCELERATION BY

  19. High-Energy-Density Physics at the National Ignition Facility

    Science.gov (United States)

    Hurricane, O. A.; Herrmann, M. C.

    2017-10-01

    At modern laser facilities, energy densities ranging from 1 Mbar to many hundreds of gigabars can regularly be achieved. These high-energy states of matter last for mere moments, measured in nanoseconds to tens of picoseconds, but during those times numerous high-precision instruments can be employed, revealing remarkable compressed matter physics, radiation-hydrodynamics physics, laser-matter interaction physics, and nuclear physics processes. We review the current progress of high-energy-density physics at the National Ignition Facility and describe the underlying physical principles.

  20. Multi-energy ion implantation from high-intensity laser

    OpenAIRE

    Cutroneo Mariapompea; Torrisi Lorenzo; Ullschmied Jiri; Dudzak Roman

    2016-01-01

    The laser-matter interaction using nominal laser intensity above 1015 W/cm2 generates in vacuum non-equilibrium plasmas accelerating ions at energies from tens keV up to hundreds MeV. From thin targets, using the TNSA regime, plasma is generated in the forward direction accelerating ions above 1 MeV per charge state and inducing high-ionization states. Generally, the ion energies follow a Boltzmann-like distribution characterized by a cutoff at high energy and by a Coulomb-shift towards high ...

  1. High-current pulses from inductive energy stores

    Science.gov (United States)

    Wipf, S. L.

    1981-11-01

    Superconducting inductive energy stores can be used for high power pulse supplies if a suitable current multiplication scheme is used. The concept of an inductive Marx generator is superior to a transformer. A third scheme, a variable flux linkage device, is suggested; in multiplying current it also compresses energy. Its function is in many ways analogous to that of a horsewhip. Superconductor limits indicate that peak power levels of TW can be reached for stored energies above 1 MJ.

  2. Robust Energy Management for Microgrids With High-Penetration Renewables

    OpenAIRE

    Zhang, Yu; Gatsis, Nikolaos; Georgios B. Giannakis

    2012-01-01

    Due to its reduced communication overhead and robustness to failures, distributed energy management is of paramount importance in smart grids, especially in microgrids, which feature distributed generation (DG) and distributed storage (DS). Distributed economic dispatch for a microgrid with high renewable energy penetration and demand-side management operating in grid-connected mode is considered in this paper. To address the intrinsically stochastic availability of renewable energy sources (...

  3. A time of flight detector for high energy heavy particles

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Z.; O`Connor, D.J. [Newcastle Univ., NSW (Australia). Dept. of Physics

    1993-12-31

    As a commonly used method to measure the energy of a particle with known mass, the flight time of the particle travelling over a certain distance is measured. A detector based on this principle is called a time-of-flight (TOF) detector which has attracted interests constantly during the last 15 years. For high energy heavy particle energy detection, TOF detector is an appropriated choice and such a system, developed recently, is described in this paper. 8 refs., 3 figs.

  4. High-Energy Emission From Millisecond Pulsars

    Science.gov (United States)

    Harding, Alice K.; Usov, Vladimir V.; Muslimov, Alex G.

    2004-01-01

    The X-ray and gamma-ray spectrum of rotation-powered millisecond pulsars is investigated in a model for acceleration and pair cascades on open field lines above the polar caps. Although these pulsars have low surface magnetic fields, their short periods allow them to have large magnetospheric potential drops, but the majority do not produce sufficient pairs to completely screen the accelerating electric field. In these sources, the primary and secondary electrons continue to accelerate to high altitude and their Lorentz factors are limited by curvature and synchrotron radiation reaction. The accelerating particles maintain high Lorentz factors and undergo cyclotron resonant absorption of radio emission, that produces and maintains a large pitch angle, resulting in a strong synchrotron component. The resulting spectra consist of several distinct components: curvature radiation from primary electrons dominating from 1 - 100 GeV, synchrotron radiation from primary and secondary electrons dominating up to about 100 MeV, and much weaker inverse-Compton radiation from primary electrons a t 0.1 - 1 TeV. We find that the relative size of these components depends on pulsar period, period derivative, and neutron star mass and radius with the level of the synchrotron component also depending sensitively on the radio emission properties. This model is successful in describing the observed X-ray and gamma-ray spectrum of PSR J0218+4232 as synchrotron radiation, peaking around 100 MeV and extending up to a turnover around several GeV. The predicted curvature radiation components from a number of millisecond pulsars, as well as the collective emission from the millisecond pulsars in globular clusters, should be detectable with AGILE and GLAST. We also discuss a hidden population of X-ray-quiet and radio-quiet millisecond pulsars which have evolved below the pair death line, some of which may be detectable by telescopes sensitive above 1 GeV. Subject headings: pulsars: general

  5. Discovering the desirable alleles contributing to the lignocellulosic biomass traits in Saccharum germplasm collections for energy cane improvement

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jianping [Univ. of Florida, Gainesville, FL (United States); Sandhu, Hardev [Univ. of Florida, Gainesville, FL (United States)

    2017-03-23

    1) The success in crop improvement programs depends largely on the extent of genetic variability available. Germplasm collections assembles all the available genetic resources and are critical for long-term crop improvement. This world sugarcane germplasm collection contains enormous genetic variability for various morphological traits, biomass yield components, adaptation and many quality traits, prospectively imbeds a large number of valuable alleles for biofuel traits such as high biomass yield, quantity and quality of lignocelluloses, stress tolerance, and nutrient use efficiency. The germplasm collection is of little value unless it is characterized and utilized for crop improvement. In this project, we phenotypically and genotypically characterized the sugarcane world germplasm collection (The results were published in two papers already and another two papers are to be published). This data will be made available for public to refer to for germplasm unitization specifically in the sugarcane and energy cane breeding programs. In addition, we are identifying the alleles contributing to the biomass traits in sugarcane germplasm. This part of project is very challenging due to the large genome and highly polyploid level of this crop. We firstly established a high throughput sugarcane genotyping pipeline in the genome and bioinformatics era (a paper is published in 2016). We identified and modified a software for genome-wide association analysis of polyploid species. The results of the alleles associated to the biomass traits will be published soon, which will help the scientific community understand the genetic makeup of the biomass components of sugarcane. Molecular breeders can develop markers for marker assisted selection of biomass traits improvement. Further, the development and release of new energy cane cultivars through this project not only improved genetic diversity but also improved dry biomass yields and resistance to diseases. These new cultivars

  6. Fullerenes, PAHs, Amino Acids and High Energy Astrophysics

    Directory of Open Access Journals (Sweden)

    Susana Iglesias-Groth

    2014-12-01

    Full Text Available We present theoretical, observational and laboratory work on the spectral properties of fullerenes and hydrogenated fullerenes. Fullerenes in its various forms (individual, endohedral, hydrogenated, etc. can contribute to the UV bump in the extinction curves measured in many lines of sight of the Galaxy. They can also produce a large number of absorption features in the optical and near infrared which could be associated with diffuse interstellar bands. We summarise recent laboratory work on the spectral characterisation of fullerenes and hydrogenated fullerenes (for a range of temperatures. The recent detection of mid-IR bands of fullerenes in various astrophysical environments (planetary nebulae, reflection nebulae provide additional evidence for a link between fullerene families and diffuse interstellar bands. We describe recent observational work on near IR bands of C60+ in a protoplanetary nebula which support fullerene formation during the post-AGB phase. We also report on the survival of fullerenes to irradiation by high energy particles and gamma photons and laboratory work to explore the chemical  reactions that take place when fullerenes are exposed to this radiations in the presence of water, ammonia and other molecules as a potential path to form amino acids.

  7. High energy factorization in nucleus-nucleus collisions, I

    CERN Document Server

    Gelis, François; Venugopalan, Raju

    2008-01-01

    We derive a high energy factorization theorem for inclusive gluon production in A+A collisions. Our factorized formula resums i) all order leading logarithms (g^2 \\ln(1/x_{1,2}))^n of the incoming partons momentum fractions, and ii) all contributions (g \\rho_{1,2})^n that are enhanced when the color charge densities in the two nuclei are of order of the inverse coupling-- \\rho_{1,2}\\sim g^{-1}. The resummed inclusive gluon spectrum can be expressed as a convolution of gauge invariant distributions W[\\rho_{1,2}] from each of the nuclei with the leading order gluon number operator. These distributions are shown to satisfy the JIMWLK equation describing the evolution of nuclear wavefunctions with rapidity. As a by-product, we demonstrate that the JIMWLK Hamiltonian can be derived entirely in terms of retarded light cone Green's functions without any ambiguities in their pole prescriptions. We comment on the implications of our results for understanding the Glasma produced at early times in A+A collisions at coll...

  8. High Energy Gamma-rays from FR I Jets

    CERN Document Server

    Sikora, M

    2003-01-01

    Thanks to Hubble and Chandra telescopes, some of the large scale jets in extragalactic radio sources are now being observed at optical and X-ray frequencies. For the FR I objects the synchrotron nature of this emission is surely established, although a lot of uncertainties--connected for example with the particle acceleration processes involved--remain. In this paper we study production of high energy gamma-rays in FR I kiloparsec-scale jets by inverse-Compton emission of the synchrotron-emitting electrons. We consider different origin of seed photons contributing to the inverse-Compton scattering, including nuclear jet radiation as well as ambient, stellar and circumstellar emission of the host galaxies. We discuss how future detections or non-detections of the evaluated gamma-ray fluxes can provide constraints on the unknown large scale jet parameters, i.e. the magnetic field intensity and the jet Doppler factor. For the nearby sources Centaurus A and M 87, we find measurable fluxes of TeV photons resulting...

  9. Workshop on Non-Imaging Cherenkov at High Energy

    CERN Document Server

    2013-01-01

    The non-Imaging Cherenkov air shower measurement technique holds great promise in furthering our understanding the Knee-to-Ankle region of the cosmic ray spectrum. In particular, this technique offers a unique way to determine the evolution of the cosmic ray nuclear composition, and an example is given by the recent spectrum results of the Tunka Collaboration. With this in mind, we are organizing a workshop, to be held at the University of Utah, to bring together the various practitioners of this cosmic ray measurement technique to share simulations, analyses, detector designs, and past experimental results amongst the community. The workshop will also be in support of our effort, NICHE, to extend the reach of the TA/TALE detector systems down to the Knee. We anticipate that the workshop will result in a white paper on the scientific importance of these high-energy cosmic ray measurements and on using the Cherenkov technique to accomplish them. Our goal is to have contributions from members of the previous ge...

  10. High Voltage in Noble Liquids for High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Rebel, B. [Fermilab; Bernard, E. [Yale U.; Faham, C. H. [LBL, Berkeley; Ito, T. M. [Los Alamos; Lundberg, B. [Maryland U.; Messina, M. [Columbia U.; Monrabal, F. [Valencia U., IFIC; Pereverzev, S. P. [LLNL, Livermore; Resnati, F. [Zurich, ETH; Rowson, P. C. [SLAC; Soderberg, M. [Fermilab; Strauss, T. [Bern U.; Tomas, A. [Imperial Coll., London; Va' vra, J. [SLAC; Wang, H. [UCLA

    2014-08-22

    A workshop was held at Fermilab November 8-9, 2013 to discuss the challenges of using high voltage in noble liquids. The participants spanned the fields of neutrino, dark matter, and electric dipole moment physics. All presentations at the workshop were made in plenary sessions. This document summarizes the experiences and lessons learned from experiments in these fields at developing high voltage systems in noble liquids.

  11. Cosmogenic neutrinos and ultra-high energy cosmic ray models

    Energy Technology Data Exchange (ETDEWEB)

    Aloisio, R.; Petrera, S. [Gran Sasso Science Institute (INFN), L' Aquila (Italy); Boncioli, D.; Grillo, A.F. [INFN/Laboratori Nazionali Gran Sasso, Assergi (Italy); Di Matteo, A. [INFN and Department of Physical and Chemical Sciences, University of L' Aquila, L' Aquila (Italy); Salamida, F., E-mail: aloisio@arcetri.astro.it, E-mail: denise.boncioli@lngs.infn.it, E-mail: armando.dimatteo@aquila.infn.it, E-mail: aurelio.grillo@lngs.infn.it, E-mail: sergio.petrera@aquila.infn.it, E-mail: salamida@ipno.in2p3.fr [Institut de Physique Nucléaire d' Orsay (IPNO), Université Paris 11, CNRS-IN2P3, Orsay (France)

    2015-10-01

    We use an updated version of SimProp, a Monte Carlo simulation scheme for the propagation of ultra-high energy cosmic rays, to compute cosmogenic neutrino fluxes expected on Earth in various scenarios. These fluxes are compared with the newly detected IceCube events at PeV energies and with recent experimental limits at EeV energies of the Pierre Auger Observatory. This comparison allows us to draw some interesting conclusions about the source models for ultra-high energy cosmic rays. We will show how the available experimental observations are almost at the level of constraining such models, mainly in terms of the injected chemical composition and cosmological evolution of sources. The results presented here will also be important in the evaluation of the discovery capabilities of the future planned ultra-high energy cosmic ray and neutrino observatories.

  12. Study of High Energy Positron Annihilation in GEANT4

    CERN Document Server

    Chikuma, Naruhiro

    2014-01-01

    A high energy positron may annihilate with an electron in atoms not only into two photons, but also into muon pairs or hadrons if the energy is over the energy threshold, 43.69 GeV in laboratory frame with electrons at rest. This report shows modication of high energy electromagnetic processes in GEANT4(version 10.01.b01) in order to include these annihilation processes properly, validation of GEANT4 cross-sections of these processes by theoretical calculation, and the results of simulation for high energy processes in a simple setup. As a results of simulation, both of annihilation to muon pairs and to hadrons happen by the probability of 10-6 to 10-5.

  13. Vagus nerve contributes to metabolic syndrome in high-fat diet-fed young and adult rats.

    Science.gov (United States)

    Barella, Luiz F; Miranda, Rosiane A; Franco, Claudinéia C S; Alves, Vander S; Malta, Ananda; Ribeiro, Tatiane A S; Gravena, Clarice; Mathias, Paulo C F; de Oliveira, Júlio C

    2015-01-01

    What is the central question of this study? Different nerve contributes periods of life are known for their differential sensitivity to interventions, and increased parasympathetic activity affects the development and maintenance of obesity. Thus, we evaluated the involvement of the vagus nerve by performing a vagotomy in young or adult rats that were offered an obesogenic high-fat diet. What is the main finding and its importance? Although the accumulation of adipose tissue decreased in both younger and older groups, the younger rats showed a greater response to the effects of vagotomy in general. In addition to the important role of the parasympathetic activity, we suggest that the vagus nerve contributes to the condition of obesity. Obesity has become a global problem, and this condition develops primarily because of an imbalance between energy intake and expenditure. The high complexity involved in the regulation of energy metabolism results from several factors besides endocrine factors. It has been suggested that obesity could be caused by an imbalance in the autonomous nervous system, which could lead to a condition of high parasympathetic activity in counterpart to low sympathetic tonus. High-fat (HF) diets have been used to induce obesity in experimental animals, and their use in animals leads to insulin resistance, hyperinsulinaemia and high parasympathetic activity, among other disorders. The aim of this work was to evaluate the effects of a vagotomy performed at the initiation of a HF diet at two different stages of life, weaning and adulthood. The vagotomy reduced parasympathetic activity (-32 and -51% in normal fat-fed rats and -43 and -55% in HF diet-fed rats; P vagus nerve, in addition to the important role of parasympathetic activity, contributes to the condition of obesity, and that non-vagal pathways may be involved along with the imbalanced autonomic nervous system. © 2014 The Authors. Experimental Physiology © 2014 The Physiological Society.

  14. Basic aspects and contributions to the optimization of energy systems exploitation of a super tanker ship

    Science.gov (United States)

    Faitar, C.; Novac, I.

    2017-08-01

    Today, the concept of energy efficiency or energy optimization in ships has become one of the main problems of engineers in the whole world. To increase the fiability of a crude oil super tanker ship it means, among other things, to improve the energy performance and optimize the fuel consumption of ship through the development of engines and propulsion system or using alternative energies. Also, the importance of having an effective and reliable Power Management System (PMS) in a vessel operating system means to reduce operational costs and maintain power system of machine parts working in minimum stress in all operating conditions. Studying the Energy Efficiency Design Index and Energy Efficiency Operational Indicator for a crude oil super tanker ship, it allows us to study the reconfiguration of ship power system introducing new generation systems.

  15. Update of the Dutch PV specific yield for determination of PV contribution to renewable energy production: 25% more energy!

    NARCIS (Netherlands)

    van Sark, Wilfried|info:eu-repo/dai/nl/074628526; Bosselaar, L.; Gerrissen, P.; Esmeijer, K.B.D.; Moraitis, Panagiotis|info:eu-repo/dai/nl/413292975; van den Donker, M.; Emsbroek, G.

    2014-01-01

    Statistics Netherlands (CBS) annually publishes the contribution of renewables to the Dutch electricity supply, by following a national protocol. The amount of electricity generated by photovoltaic (PV) technology is calculated from the average installed capacity in a particular year multiplied by a

  16. The contribution of the EC energy certificate in improving sustainability of the housing stock

    OpenAIRE

    Beerepoot, M.; Sunikka, M.

    2005-01-01

    In 2003 the European Commission introduced the EC Directive on the energy performance of buildings in recognition of the importance of energy savings in the urban housing stock. The Directive gives the member states freedom to design the different elements in practice. The energy certificate for existing buildings demanded by the EC Directive can be used as a communicative instrument, or combined with economic or regulatory principles. The authors discuss the anticipated efficiency and effect...

  17. The Contribution of Environmental Siting and Permitting Requirements to the Cost of Energy for Wave Energy Devices

    Energy Technology Data Exchange (ETDEWEB)

    Copping, Andrea E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Geerlofs, Simon H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hanna, Luke A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-06-01

    Responsible deployment of marine and hydrokinetic (MHK) devices in estuaries, coastal areas, and major rivers requires that biological resources and ecosystems be protected through siting and permitting (consenting) processes. Scoping appropriate deployment locations, collecting pre-installation (baseline) and post-installation data all add to the cost of developing MHK projects, and hence to the cost of energy. Under the direction of the U.S. Department of Energy, Pacific Northwest National Laboratory scientists have developed logic models that describe studies and processes for environmental siting and permitting. Each study and environmental permitting process has been assigned a cost derived from existing and proposed tidal, wave, and riverine MHK projects. Costs have been developed at the pilot scale and for commercial arrays for a surge wave energy converter

  18. Diffuse emission of high-energy neutrinos from gamma-ray burst fireballs

    Energy Technology Data Exchange (ETDEWEB)

    Tamborra, Irene; Ando, Shin' ichiro, E-mail: i.tamborra@uva.nl, E-mail: s.ando@uva.nl [GRAPPA Institute, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam (Netherlands)

    2015-09-01

    Gamma-ray bursts (GRBs) have been suggested as possible sources of the high-energy neutrino flux recently detected by the IceCube telescope. We revisit the fireball emission model and elaborate an analytical prescription to estimate the high-energy neutrino prompt emission from pion and kaon decays, assuming that the leading mechanism for the neutrino production is lepto-hadronic. To this purpose, we include hadronic, radiative and adiabatic cooling effects and discuss their relevance for long- (including high- and low-luminosity) and short-duration GRBs. The expected diffuse neutrino background is derived, by requiring that the GRB high-energy neutrino counterparts follow up-to-date gamma-ray luminosity functions and redshift evolutions of the long and short GRBs. Although dedicated stacking searches have been unsuccessful up to now, we find that GRBs could contribute up to a few % to the observed IceCube high-energy neutrino flux for sub-PeV energies, assuming that the latter has a diffuse origin. Gamma-ray bursts, especially low-luminosity ones, could however be the main sources of the IceCube high-energy neutrino flux in the PeV range. While high-luminosity and low-luminosity GRBs have comparable intensities, the contribution from the short-duration component is significantly smaller. Our findings confirm the most-recent IceCube results on the GRB searches and suggest that larger exposure is mandatory to detect high-energy neutrinos from high-luminosity GRBs in the near future.

  19. EFFECTIVE FRACTURE ENERGY OF ULTRA-HIGH-PERFORMANCE FIBRE-REINFORCED CONCRETE UNDER INCREASED STRAIN RATES

    Directory of Open Access Journals (Sweden)

    Radoslav Sovják

    2014-10-01

    Full Text Available The main objective of this paper is to contribute to the development of ultra-high performance fibre reinforced concrete (UHPFRC with respect to its effective fracture energy. Effective fracture energy was investigated in this paper considering different fibre volume fractions and different strain rates. It was concluded that the effective fracture energy is dependent on the strain rate. In addition, it was found that higher fibre volume fractions tend to decrease the sensitivity of the UHPFRC to increased strain rates.

  20. Crack formation and fracture energy of normal and high strength ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. The crack path through composite materials such as concrete depends on the mechanical interaction of inclusions with the cement-based matrix. Fracture energy depends on the deviations of a real crack from an idealized crack plane. Fracture energy and strain softening of normal, high strength, and self- ...

  1. On the bremsstrahlung background correction to the high-energy ...

    Indian Academy of Sciences (India)

    A methodology for bremsstrahlung (BS) background correction to extract a true Compton profile in high-energy Compton scattering experiments is presented. The BS background profiles for Hg, computed within the Born approximation, are estimated for different values of incident energy. It is seen for the first time that the BS ...

  2. On the bremsstrahlung background correction to the high-energy ...

    Indian Academy of Sciences (India)

    Abstract. A methodology for bremsstrahlung (BS) background correction to extract a true Compton profile in high-energy Compton scattering experiments is presented. The. BS background profiles for Hg, computed within the Born approximation, are estimated for different values of incident energy. It is seen for the first time ...

  3. Working group report: High energy and collider physics

    Indian Academy of Sciences (India)

    and Rishikesh Vaidya20. 1Tata Institute of Fundamental Research, Mumbai 400 005, India ... The projects undertaken in the working group I on high energy and collider physics can be classified into (i) Higgs ...... lous couplings for realistic polarization and integrated luminosity at a design LC energy of √s = 500 GeV.

  4. High Energy Charged Particles in Space at One Astronomical Unit

    Science.gov (United States)

    Feynman, J.; Gabriel, S. B.

    1995-01-01

    Single event effects and many other spacecraft anomalies are caused by positively charged high energy particles impinging on the vehicle and its component parts. Reviewed here are the current knowledge of the interplanetary particle environment in the energy ranges that are most important for these effects. State-of-the-art engineering models are briefly described along with comments on the future work required.

  5. Application of Plasma Waveguides to High Energy Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Milchberg, Howard M

    2013-03-30

    The eventual success of laser-plasma based acceleration schemes for high-energy particle physics will require the focusing and stable guiding of short intense laser pulses in reproducible plasma channels. For this goal to be realized, many scientific issues need to be addressed. These issues include an understanding of the basic physics of, and an exploration of various schemes for, plasma channel formation. In addition, the coupling of intense laser pulses to these channels and the stable propagation of pulses in the channels require study. Finally, new theoretical and computational tools need to be developed to aid in the design and analysis of experiments and future accelerators. Here we propose a 3-year renewal of our combined theoretical and experimental program on the applications of plasma waveguides to high-energy accelerators. During the past grant period we have made a number of significant advances in the science of laser-plasma based acceleration. We pioneered the development of clustered gases as a new highly efficient medium for plasma channel formation. Our contributions here include theoretical and experimental studies of the physics of cluster ionization, heating, explosion, and channel formation. We have demonstrated for the first time the generation of and guiding in a corrugated plasma waveguide. The fine structure demonstrated in these guides is only possible with cluster jet heating by lasers. The corrugated guide is a slow wave structure operable at arbitrarily high laser intensities, allowing direct laser acceleration, a process we have explored in detail with simulations. The development of these guides opens the possibility of direct laser acceleration, a true miniature analogue of the SLAC RF-based accelerator. Our theoretical studies during this period have also contributed to the further development of the simulation codes, Wake and QuickPIC, which can be used for both laser driven and beam driven plasma based acceleration schemes. We

  6. Contribution of high-nl shells to electron-impact ionization processes

    CERN Document Server

    Jonauskas, V; Merkelis, G; Gaigalas, G; Kisielius, R; Kučas, S; Masys, Š; Radžiūtė, L; Rynkun, P

    2015-01-01

    The contribution to electron-impact ionization cross sections from excitations to high-nl shells and a consequent autoionization is investigated. We perform relativistic subconfiguration-average and detailed level-to-level calculations for this process. Ionization cross sections for the W27+ ion are presented to illustrate the large influence of the high shells (n >= 9) and orbitals (l >= 4) in the excitation-autoionization process. The obtained results show that the excitations to the high shells (n >= 9) increase cross sections of the indirect ionization process by a factor of 2 compared to the excitations to the lower shells (n <= 8). The excitations to the shells with orbital quantum number l = 4 give the largest contribution comparedwith the other orbital quantum numbers l. Radiative damping reduces the cross sections of the indirect process approximately twofold in the case of the level-to-level calculations. Determined data show that the excitation-autoionization process contributes approximately 40...

  7. Evaluation of energy response of neutron rem monitor applied to high-energy accelerator facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nakane, Yoshihiro; Harada, Yasunori; Sakamoto, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2003-03-01

    A neutron rem monitor was newly developed for applying to the high-intensity proton accelerator facility (J-PARC) that is under construction as a joint project between the Japan Atomic Energy Research Institute and the High Energy Accelerator Research Organization. To measure the dose rate accurately for wide energy range of neutrons from thermal to high-energy region, the neutron rem monitor was fabricated by adding a lead breeder layer to a conventional neutron rem monitor. The energy response of the monitor was evaluated by using neutron transport calculations for the energy range from thermal to 150 MeV. For verifying the results, the response was measured at neutron fields for the energy range from thermal to 65 MeV. The comparisons between the energy response and dose conversion coefficients show that the newly developed neutron rem monitor has a good performance in energy response up to 150 MeV, suggesting that the present study offered prospects of a practical fabrication of the rem monitor applicable to the high intensity proton accelerator facility. (author)

  8. Overview. Department of High Energy Physics. Section 5

    Energy Technology Data Exchange (ETDEWEB)

    Coghen, T. [Institute of Nuclear Physics, Cracow (Poland)

    1995-12-31

    The activities of Department of High Energy Physics in 1994 have been presented. They cover a variety of problems of experimental and theoretical high energy elementary particle physics: hadronic and leptonic interactions with nucleons and nuclei (mainly characteristics of particle production , including heavy quark physics), e{sup +} e{sup -} interactions and tests of the Standard Model (also evaluations of radiative corrections), ultrarelativistic heavy ion interactions and search for the quark-gluon plasma, as well as spectra, composition and interactions of high energy cosmic ray particles.Research on detectors and development of apparatus for high energy physics experiments at future accelerators such as LHC or RHIC were also carried out. The short information about personnel employed in the Department, seminars, publication, conferences and reports is also given.

  9. The role of technology in high-energy research

    CERN Document Server

    Carreras, Rafel

    1974-01-01

    A brief survey of the activities of CERN is presented, and examples of technological problems occurring in the performance of high-energy physics experiments are given. The main fields discussed are: acceleration, production of particles, detectors, and data handling.

  10. Theoretical high energy physics research at the University of Chicago

    Energy Technology Data Exchange (ETDEWEB)

    Rosner, J.L.; Martinec, E.J.; Sachs, R.G.

    1990-09-01

    This report discusses research being done at the University of Chicago in High Energy Physics. Some topic covered are: CP violation; intermediate vector bosons; string models; supersymmetry; and rare decay of kaons. (LSP)

  11. Final Report. Research in Theoretical High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Greensite, Jeffrey P. [San Francisco State Univ., CA (United States); Golterman, Maarten F.L. [San Francisco State Univ., CA (United States)

    2015-04-30

    Grant-supported research in theoretical high-energy physics, conducted in the period 1992-2015 is briefly described, and a full listing of published articles result from those research activities is supplied.

  12. Silicon-embedded copper nanostructure network for high energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Tianyue

    2018-01-23

    Provided herein are nanostructure networks having high energy storage, electrochemically active electrode materials including nanostructure networks having high energy storage, as well as electrodes and batteries including the nanostructure networks having high energy storage. According to various implementations, the nanostructure networks have high energy density as well as long cycle life. In some implementations, the nanostructure networks include a conductive network embedded with electrochemically active material. In some implementations, silicon is used as the electrochemically active material. The conductive network may be a metal network such as a copper nanostructure network. Methods of manufacturing the nanostructure networks and electrodes are provided. In some implementations, metal nanostructures can be synthesized in a solution that contains silicon powder to make a composite network structure that contains both. The metal nanostructure growth can nucleate in solution and on silicon nanostructure surfaces.

  13. Silicon-embedded copper nanostructure network for high energy storage

    Science.gov (United States)

    Yu, Tianyue

    2016-03-15

    Provided herein are nanostructure networks having high energy storage, electrochemically active electrode materials including nanostructure networks having high energy storage, as well as electrodes and batteries including the nanostructure networks having high energy storage. According to various implementations, the nanostructure networks have high energy density as well as long cycle life. In some implementations, the nanostructure networks include a conductive network embedded with electrochemically active material. In some implementations, silicon is used as the electrochemically active material. The conductive network may be a metal network such as a copper nanostructure network. Methods of manufacturing the nanostructure networks and electrodes are provided. In some implementations, metal nanostructures can be synthesized in a solution that contains silicon powder to make a composite network structure that contains both. The metal nanostructure growth can nucleate in solution and on silicon nanostructure surfaces.

  14. Vacuum-packaged piezoelectric vibration energy harvesters: Damping contributions and autonomy for a wireless sensor system

    NARCIS (Netherlands)

    Elfrink, R.; Renaud, M.; Kamel, T.M.; Nooijer, C. de; Jambunathan, M.; Goedbloed, M.; Hohlfeld, D.; Matova, S.; Pop, V.; Caballero, L.; Schaijk, R. van

    2010-01-01

    This paper describes the characterization of thin-film MEMS vibration energy harvesters based on aluminum nitride as piezoelectric material. A record output power of 85 μW is measured. The parasitic-damping and the energy-harvesting performances of unpackaged and packaged devices are investigated.

  15. Potential contribution of hydro power plants to the energy consumption of East Asian islands

    NARCIS (Netherlands)

    Hoes, O.A.C.; Meijer, L.J.J.; Sarfianto, D.R.; Van der Ent, R.J.

    2014-01-01

    Population growth, increasing energy demand and depleting fossil fuel resei-ves put a pressure on conventional methods of electricity generation. Hydropower is an alternative energy source that is known to have a large capacity potential. However, previous estimations of the potential capacity have

  16. Major food sources contributing to energy intake--a nationwide survey of Brazilians aged 10 years and older.

    Science.gov (United States)

    Sichieri, Rosely; Bezerra, Ilana Nogueira; Araújo, Marina Campos; de Moura Souza, Amanda; Yokoo, Edna Massae; Pereira, Rosangela Alves

    2015-05-28

    Identification of major sources of energy in the diet helps to implement dietary recommendations to reduce obesity. To determine the food sources of energy consumed by Brazilians, we used the traditional method of ranking energy contribution of selected food groups and also compared days with and without consumption of specific food groups. Analysis was based on two non-consecutive days of dietary record from the Brazilian National Dietary Survey, conducted among 34,003 Brazilians (aged 10 years or more), taking into account the complex design of the survey. Comparison of days with and without consumption gave more consistent results, with sweets and cookies as the most important contributors to energy intake, increasing 992 kJ/d (95% CI 883, 1096) for those days when consumption of cakes, cookies and desserts was reported compared to days without their consumption. Savoury snacks, cheese and sugar-sweetened beverages (SSB) also increase energy intake by about 600 kJ. The only group associated with decreased energy intake was vegetable (-155 kJ; 95% CI -272, -37). Consumption of beans, milk and fruits increased the energy intake by about 210 kJ. In total, the mean energy intake of the group was 8000 kJ. Except for the consumption of vegetables, all of the other ten food groups analysed were associated with increased energy intake. Sweets and cookies may increase the energy intake by 12% and SSB by 7%, indicating that these two groups are major targets for improving healthy eating by reducing energy intake; whereas vegetable intake is associated with the reduction of energy content of the diet.

  17. The contribution of hypothalamic macroglia to the regulation of energy homeostasis.

    Science.gov (United States)

    Buckman, Laura B; Ellacott, Kate L J

    2014-01-01

    The hypothalamus is critical for the regulation of energy homeostasis. Genetic and pharmacologic studies have identified a number of key hypothalamic neuronal circuits that integrate signals controlling food intake and energy expenditure. Recently, studies have begun to emerge demonstrating a role for non-neuronal cell types in the regulation of energy homeostasis. In particular the potential importance of different glial cell types is increasingly being recognized. A number of studies have described changes in the activity of hypothalamic macroglia (principally astrocytes and tanycytes) in response to states of positive and negative energy balance, such as obesity and fasting. This article will review these studies and discuss how these findings are changing our understanding of the cellular mechanisms by which energy homeostasis is regulated.

  18. The contribution of hypothalamic macroglia to the regulation of energy homeostasis

    Directory of Open Access Journals (Sweden)

    Laura B Buckman

    2014-10-01

    Full Text Available The hypothalamus is critical for the regulation of energy homeostasis. Genetic and pharmacologic studies have identified a number of key hypothalamic neuronal circuits that integrate signals controlling food intake and energy expenditure. Recently studies have begun to emerge demonstrating a role for non-neuronal cell types in the regulation of energy homeostasis. In particular the potential importance of different glial cell types is increasingly being recognized. A number of studies have described changes in the activity of hypothalamic macroglia (principally astrocytes and tanycytes in response to states of positive and negative energy balance, such as obesity and fasting. This article will review these studies and discuss how these findings are changing our understanding of the cellular mechanisms by which energy homeostasis is regulated.

  19. Fifth International Conference on High Energy Density Physics

    Energy Technology Data Exchange (ETDEWEB)

    Beg, Farhat

    2017-07-05

    The Fifth International Conference on High Energy Density Physics (ICHED 2015) was held in the Catamaran Hotel in San Diego from August 23-27, 2015. This meeting was the fifth in a series which began in 2008 in conjunction with the April meeting of the American Physical Society (APS). The main goal of this conference has been to bring together researchers from all fields of High Energy Density Science (HEDS) into one, unified meeting.

  20. High-energy diffraction microscopy at the advanced photon source

    DEFF Research Database (Denmark)

    Lienert, U.; Li, S. F.; Hefferan, C. M.

    2011-01-01

    The status of the High Energy Diffraction Microscopy (HEDM) program at the 1-ID beam line of the Advanced Photon Source is reported. HEDM applies high energy synchrotron radiation for the grain and sub-grain scale structural and mechanical characterization of polycrystalline bulk materials in situ....... Complementary information is obtained by post mortem electron microscopy on the same sample volume previously investigated by HEDM....

  1. 11th Latin American Symposium on High Energy Physics

    CERN Document Server

    2016-01-01

    SILAFAE is one of the premier series of international meetings – High energy physics in Latin America. The present edition will be held in the city of Antigua Guatemala, from November 14 - 18th 2016. The program contains plenary talks aimed at reviewing the status of the recent advances in frontier topics in High Energy Physics, both theoretical and experimental. It also includes parallel sessions of specialized talks.

  2. Workshop on extremely high energy density plasmas and their diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Shozo (ed.)

    2001-09-01

    Compiled are the papers presented at the workshop on 'Extremely High Energy Density Plasmas and Their Diagnostics' held at National Institute for Fusion Science. The papers cover physics and applications of extremely high-energy density plasmas such as dense z-pinch, plasma focus, and intense pulsed charged beams. Separate abstracts were presented for 7 of the papers in this report. The remaining 25 were considered outside the subject scope of INIS. (author)

  3. High Energy Density Capacitors for Pulsed Power Applications

    Science.gov (United States)

    2009-07-01

    resistor in terms of shock and vibration, mounting requirements, total volume, system reliability, and cost. All of these parameters were improved...protection from shock and vibration on a deployed system. III. STATE OF THE ART FOR HIGH ENERGY DENSITY CAPACITOR AND NEAR TERM PROJECTIONS The...it t tipo ymer m qua y an capac or cons ruc on. Energy Density of 10,000 Shot High Efficiency Pulse Power Capacitors The primary driver was 1 5

  4. High Energy Density Regenerative Fuel Cell Systems for Terrestrial Applications

    Science.gov (United States)

    Burke, Kenneth A.

    1999-01-01

    Regenerative Fuel Cell System (RFCS) technology for energy storage has been a NASA power system concept for many years. Compared to battery-based energy storage systems, RFCS has received relatively little attention or resources for development because the energy density and electrical efficiency were not sufficiently attractive relative to advanced battery systems. Even today, RFCS remains at a very low technology readiness level (TRL of about 2 indicating feasibility has been demonstrated). Commercial development of the Proton Exchange Membrane (PEM) fuel cells for automobiles and other terrestrial applications and improvements in lightweight pressure vessel design to reduce weight and improve performance make possible a high energy density RFCS energy storage system. The results from this study of a lightweight RFCS energy storage system for a remotely piloted, solar-powered, high altitude aircraft indicate an energy density up to 790 w-h/kg with electrical efficiency of 53.4% is attainable. Such an energy storage system would allow a solar-powered aircraft to carry hundreds of kilograms of payload and remain in flight indefinitely for use in atmospheric research, earth observation, resource mapping. and telecommunications. Future developments in the areas of hydrogen and oxygen storage, pressure vessel design, higher temperature and higher- pressure fuel cell operation, unitized regenerative fuel cells, and commercial development of fuel cell technology will improve both the energy density and electrical efficiency of the RFCS.

  5. High Energy Measurement of the Deuteron Photodisintegration Differential Cross Section

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, Elaine [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2002-05-01

    New measurements of the high energy deuteron photodisintegration differential cross section were made at the Thomas Jefferson National Accelerator Facility in Newport News, Virginia. Two experiments were performed. Experiment E96-003 was performed in experimental Hall C. The measurements were designed to extend the highest energy differential cross section values to 5.5 GeV incident photon energy at forward angles. This builds upon previous high energy measurements in which scaling consistent with the pQCD constituent counting rules was observed at 90 degrees and 70 degrees in the center of mass. From the new measurements, a threshold for the onset of constituent counting rule scaling seems present at transverse momentum approximately 1.3 GeV/c. The second experiment, E99-008, was performed in experimental Hall A. The measurements were designed to explore the angular distribution of the differential cross section at constant energy. The measurements were made symmetric about 90 degrees

  6. Searching for ultra-high energy cosmic rays with smartphones

    Science.gov (United States)

    Whiteson, Daniel; Mulhearn, Michael; Shimmin, Chase; Cranmer, Kyle; Brodie, Kyle; Burns, Dustin

    2016-06-01

    We propose a novel approach for observing cosmic rays at ultra-high energy (>1018 eV) by repurposing the existing network of smartphones as a ground detector array. Extensive air showers generated by cosmic rays produce muons and high-energy photons, which can be detected by the CMOS sensors of smartphone cameras. The small size and low efficiency of each sensor is compensated by the large number of active phones. We show that if user adoption targets are met, such a network will have significant observing power at the highest energies.

  7. Energy sources of the high latitude upper atmosphere

    Science.gov (United States)

    Banks, P. M.

    1981-01-01

    Electrodynamic (Joule) dissipation and plasma wave heating are reviewed as sources of energy for the upper atmosphere at high latitudes. Electrodynamic heating in the thermosphere is described by a generalized energy balance equation taking into account a variety of inelastic processes and energy losses, and the use of height-integrated values of the Joule heating rate to estimate the importance of electrodynamic heating at high latitudes is discussed. Observations of electrons between 95 and 115 km altitude that are up to 1000 K hotter than the neutral atmosphere is presented as evidence for atmospheric heating due to unstable plasma waves arising from the Farley-Buneman modified two-stream instability.

  8. Peripheral and Central Glucocorticoid Signaling Contributes to Positive Energy Balance in Rats.

    Science.gov (United States)

    Borba, Tássia Karin; Galindo, Lígia Cristina Monteiro; Ferraz-Pereira, Kelli Nogueira; da Silva Aragão, Raquel; Toscano, Ana Elisa; Guzmán-Quevedo, Omar; Manhães-de-Castro, Raul

    2017-06-01

    The obesity epidemic has been the target of several studies to understand its etiology. The pathophysiological processes that take to obesity generally relate to the rupture of energy balance. This imbalance can result from environmental and/or endogenous events. Among the endogenous events, the hypothalamic-pituitary-adrenal axis, which promotes stress response via glucocorticoid activity, is considered a modulator of energy balance. However, it remains controversial whether the increase in plasma levels of glucocorticoids results in a positive or negative energy balance. Furthermore, there are no studies comparing different routes of administration of glucocorticoids in this context. Here, we investigated the effects of intraperitoneal (i.p.) or intracerebroventricular (i.c.v.) administration of a specific agonist for glucocorticoid receptors on food intake and energy expenditure in rats. Sixty-day old rats were treated with i.p. or i.c.v. dexamethasone. Food intake and satiety were evaluated, as well as locomotor activity in order to determine energy expenditure. Both i.p. and i.c.v. dexamethasone increased food intake and decreased energy expenditure. Moreover, i.c.v. dexamethasone delayed the onset of satiety. Together, these results confirm that central glucocorticoid signaling promotes a positive energy balance and supports the role of the glucocorticoid system as the underlying cause of psychological stress-induced obesity. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Contribution to energy management in vehicles; Beitrag zum Energiemanagement in Kfz-Bordnetzen

    Energy Technology Data Exchange (ETDEWEB)

    Fabis, R.M.

    2006-07-01

    Modern vehicles have faced a continuous rise in power demand over the last decade. It is neither possible to cover all energy needs reliably, nor to guarantee a successful cranking. Therefore new solutions are needed, such as energy management or the introduction of 42V-technology (mild hybrid). This dissertation discusses the design requirements of energy management systems (e.g. power-train dimensioning) and considers some interventions (e.g. reduction of power demand, motor idle speed lifting), as well as the associated consequences (battery state, consumer satisfaction). The dissertation contains an example of the energy management system, which is based on the battery- and alternator specific data. Different aspects are emphasised regarding the 42V-technology: impact of the energy management on the battery state, optimisation of the battery state of charge, support of the combustion engine by the electrical system when cranking and/or bringing up to speed, and recovery of the braking energy. The dissertation shows the methods for the validation of energy management systems, which are based on Matlab/Simulink simulations. Several battery-, alternator- and consumer models are shown. Finally a tool chain is presented, which allows the automation of simulation processes. (orig.)

  10. CEOS Contributions to Informing Energy Management and Policy Decision Making Using Space-Based Earth Observations

    Science.gov (United States)

    Eckman, Richard S.

    2009-01-01

    Earth observations are playing an increasingly significant role in informing decision making in the energy sector. In renewable energy applications, space-based observations now routinely augment sparse ground-based observations used as input for renewable energy resource assessment applications. As one of the nine Group on Earth Observations (GEO) societal benefit areas, the enhancement of management and policy decision making in the energy sector is receiving attention in activities conducted by the Committee on Earth Observation Satellites (CEOS). CEOS has become the "space arm" for the implementation of the Global Earth Observation System of Systems (GEOSS) vision. It is directly supporting the space-based, near-term tasks articulated in the GEO three-year work plan. This paper describes a coordinated program of demonstration projects conducted by CEOS member agencies and partners to utilize Earth observations to enhance energy management end-user decision support systems. I discuss the importance of engagement with stakeholders and understanding their decision support needs in successfully increasing the uptake of Earth observation products for societal benefit. Several case studies are presented, demonstrating the importance of providing data sets in formats and units familiar and immediately usable by decision makers. These projects show the utility of Earth observations to enhance renewable energy resource assessment in the developing world, forecast space-weather impacts on the power grid, and improve energy efficiency in the built environment.

  11. Evaluation of energy response of neutron rem monitor applied to high-energy accelerator facilities

    CERN Document Server

    Nakane, Y; Sakamoto, Y

    2003-01-01

    A neutron rem monitor was newly developed for applying to the high-intensity proton accelerator facility (J-PARC) that is under construction as a joint project between the Japan Atomic Energy Research Institute and the High Energy Accelerator Research Organization. To measure the dose rate accurately for wide energy range of neutrons from thermal to high-energy region, the neutron rem monitor was fabricated by adding a lead breeder layer to a conventional neutron rem monitor. The energy response of the monitor was evaluated by using neutron transport calculations for the energy range from thermal to 150 MeV. For verifying the results, the response was measured at neutron fields for the energy range from thermal to 65 MeV. The comparisons between the energy response and dose conversion coefficients show that the newly developed neutron rem monitor has a good performance in energy response up to 150 MeV, suggesting that the present study offered prospects of a practical fabrication of the rem monitor applicable...

  12. CALET: High energy cosmic ray observatory on International Space Station

    Science.gov (United States)

    Mori, Masaki; CALET Collaboration

    2012-12-01

    The CALorimeteric Electron Telescope (CALET) is a Japanese-led international mission being developed as part of the utilization plan for the International Space Station (ISS). CALET will be launched by an H-II B rocket utilizing the Japanese developed HTV (H-II Transfer Vehicle) in 2014. The instrument will be robotically emplaced upon the Exposed Facility attached to the Japanese Experiment Module (JEM-EF). CALET is a calorimeter based instrument which will have superior energy resolution and excellent separation between hadrons and electrons and between charged particles and gamma rays in the GeV to trans-TeV energy range. CALET will address many questions in high energy astrophysics, including (1) the nature of the sources of high energy particles and photons, through the high energy electron spectrum, (2) signatures of dark matter, in either the high energy electron or gamma ray spectrum, (3) the details of particle propagation in the Galaxy, by a combination of energy spectrum measurements of electrons, protons and highercharged nuclei. In this paper the outline and current status of CALET are summarized.

  13. The Contribution of Environmental Siting and Permitting Requirements to the Cost of Energy for Oscillating Water Column Wave Energy Devices

    Energy Technology Data Exchange (ETDEWEB)

    Copping, Andrea E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Geerlofs, Simon H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hanna, Luke A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-09-01

    Responsible deployment of marine and hydrokinetic (MHK) devices in estuaries, coastal areas, and major rivers requires that biological resources and ecosystems be protected through siting and permitting (consenting) processes. Scoping appropriate deployment locations, collecting pre-installation (baseline) and post-installation data all add to the cost of developing MHK projects, and hence to the cost of energy. Under the direction of the U.S. Department of Energy, Pacific Northwest National Laboratory scientists have developed logic models that describe studies and processes for environmental siting and permitting. Each study and environmental permitting process has been assigned a cost derived from existing and proposed tidal, wave, and riverine MHK projects, as well as expert opinion of marine environmental research professionals. Cost estimates have been developed at the pilot and commercial scale. The reference model described in this document is an oscillating water column device deployed in Northern California at approximately 50 meters water depth.

  14. Solar energy contribution to the energy demand for air conditioning system in an office building under Tripoli climate conditions

    Directory of Open Access Journals (Sweden)

    Musbah Mohamed H.

    2014-01-01

    Full Text Available The feasibility of solar assisted air conditioning in an office building under Tripoli weather conditions is investigated in this paper. A single-effect lithium bromide absorption cycle powered by means of flat-plate solar collectors was modeled in order to predict the potential of the solar energy share. The cooling load profile was generated by using an detailed hourly based program and Typical meteorological year for Tripoli. System performance and solar energy fraction were calculated by varying two major parameters (collector’s slope angle and collector area. The maximum solar fraction of 48% was obtained by means of 1400 m2 of collector surface area. Analysis of results showed that, besides the collector surface area, the main factors affecting the solar fraction were the local weather conditions (intensity of incident solar radiation and the time of day when the plant was operated.

  15. Balanced contribution of glycolytic and adenylate pool in supply of metabolic energy in platelets.

    Science.gov (United States)

    Verhoeven, A J; Mommersteeg, M E; Akkerman, J W

    1985-03-10

    When platelets are treated with H2O2 the metabolic ATP content decreases sharply (Holmsen, H., and Robkin, L. (1977) J. Biol. Chem. 252, 1752-1757). Here we report that the loss of metabolic energy is fully recovered in phosphorylated glycolytic intermediates. A mixture of antimycin A/2-deoxy-D-glucose/D-gluconic acid-1,5-lactone blocks mitochondrial ATP resynthesis and prevents the entry of sugars into the glycolytic sequence. The energy-rich phosphates in the adenylate and the glycolytic pool are then consumed in a specific order. First, the glycolytic pool is consumed at a rate of 4.5 mumol of ATP equivalents/min/10(11) cells, and metabolic ATP and ADP are kept stable; then the consumption of the glycolytic pool decreases and metabolic ATP and ADP are consumed, together keeping up with the same rate of energy consumption. Thrombin stimulation increases the energy consumption to about 17 mumol of ATPeq/min/10(11) cells which is now furnished by both the glycolytic and the adenylate pool, again with a preferential consumption of the former. The results show that H2O2 triggers a shift of energy-rich phosphates from the adenylate to the glycolytic pool and that the latter remains rapidly accessible to energy consumption thereby stabilizing the level of metabolic ATP. The adenylate energy charge is independent of the distribution of energy among the two pools, which extends its importance to the regulation of energy supply and demand beyond the adenylate pool.

  16. Advanced Telescope for High Energy Nuclear Astrophysics (ATHENA)

    Science.gov (United States)

    1995-01-01

    contributions of supernovae , novae, and massive stars, discover many sites of galactic supernovae in 44Ti (last 1000 yrs) and 26Al (last 106 yrs) and...map interactions of low energy cosmic rays in the interstellar medium and molecular clouds. 2) Detect fresh radioactivity from several extragalactic...Type Ia supernovae per year, determine the nature of Type Ia events, and evaluate their use as a cosmic distance indicator. 3) Test the explosive

  17. High energy high intensity coherent photon beam for the SSC

    Energy Technology Data Exchange (ETDEWEB)

    Tannenbaum, M.J.

    1984-01-01

    What is proposed for the 20 TeV protons hitting a fixed target is to make a tertiary electron beam similar to that which is the basis of the tagged photon beam at Fermilab. Briefly, a zero degree neutral beam is formed by sweeping out the primary proton beam and any secondary charged particles. Then the photons, from the decay of ..pi../sup 0/ in the neutral beam, are converted to e/sup +/e/sup -/ pairs in a lead converter and a high quality electron beam is formed. This beam is brought to the target area where it is converted to a photon beam by Bremsstrahlung in a radiator.

  18. The contribution of body composition, substrates, and hormones to the variability in energy expenditure and substrate utilization in premenopausal women

    DEFF Research Database (Denmark)

    Astrup, A; Buemann, B; Christensen, N J

    1992-01-01

    circumference, plasma nonesterified fatty acids, and estradiol concentrations explained 49% of the variance in 24-h lipid oxidation. An obese subgroup of women (n = 27) had significantly higher 24-h energy expenditure, lipid, and carbohydrate oxidation rates than an age-matched normal weight group (n = 16......), but the entire group difference in energy expenditure was explained by differences in body composition. We conclude that physiological variations in plasma androstenedione and T3 concentrations contribute to the interindividual variance in energy expenditure of women, and their role is not different in obese...... women. A positive energy balance and increased insulin action may be mediators of the higher carbohydrate oxidation in obesity, whereas an increased substrate availability seems to bring about the increased lipid oxidation....

  19. Solar Energy Education. Renewable energy activities for junior high/middle school science

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    Some basic topics on the subject of solar energy are outlined in the form of a teaching manual. The manual is geared toward junior high or middle school science students. Topics include solar collectors, solar water heating, solar radiation, insulation, heat storage, and desalination. Instructions for the construction of apparatus to demonstrate the solar energy topics are provided. (BCS)

  20. Variably spaced superlattice energy filter, a new device design concept for high-energy electron injection

    Science.gov (United States)

    Summers, C. J.; Brennan, K. F.

    1986-01-01

    A new variably spaced superlattice energy filter is proposed which provides high-energy injection of electrons into a bulk semiconductor layer based on resonant tunneling between adjacent quantum well levels which are brought into alignment by an applied bias. Applications of this concept to a variety of optoelectronic devices and to thin-film electroluminescent devices and photodetectors are discussed.

  1. Theoretical aspects of heavy-flavour production at ultra-high cosmic ray energies

    Directory of Open Access Journals (Sweden)

    Gonçalves V. P.

    2015-01-01

    Full Text Available The main theoretical aspects of heavy-flavour production at ultra-high cosmic ray energies are reviewed, with particular emphasis in the new dynamical effects which are expected to be present in the kinematical range probed by the IceCube and Pierre Auger Observatories. The gluon saturation effects for heavy quark production and the contribution of double parton scattering processes are analysed. Finally, the intrinsic heavy quark hypothesis is presented and some of its phenomenological implications at high energies are discussed.

  2. Solar Flares and the High Energy Solar Spectroscopic Imager (HESSI)

    Science.gov (United States)

    Holman, Gordon D.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Solar flares are the biggest explosions in the solar system. They are important both for understanding explosive events in the Universe and for their impact on human technology and communications. The satellite-based HESSI is designed to study the explosive release of energy and the acceleration of electrons, protons, and other charged particles to high energies in solar flares. HESSI produces "color" movies of the Sun in high-energy X rays and gamma rays radiated by these energetic particles. HESSI's X-ray and gamma-ray images of flares are obtained using techniques similar to those used in radio interferometry. Ground-based radio observations of the Sun provide an important complement to the HESSI observations of solar flares. I will describe the HESSI Project and the high-energy aspects of solar flares, and how these relate to radio astronomy techniques and observations.

  3. High-energy X-ray spectra of five sources.

    Science.gov (United States)

    Ricker, G. R.; Mcclintock, J. E.; Gerassimenko, M.; Lewin , W. H. G.

    1973-01-01

    On October 15-16, 1970, we carried out balloon X-ray observations from Australia at energies above 15 keV. We present the high-energy X-ray spectra of three sources discovered by us, GX 301-2, GX 304-1, and GX 1 + 4. The data suggest that these high-energy sources correspond to the sources 2U 1223-62, 2U 1258-61, and 2U 1728-24 respectively. We also present the spectra for two additional sources, GX 5-1 (2U 1757-25) and GX 3 + 1 (2U 1744-26). The average intensity of the highly variable source GX 301-2 was observed to be as great as Tau X-1 in the energy range 15-50 keV.

  4. Spectral shape variation of interstellar electrons at high energies

    Science.gov (United States)

    Tan, L. C.

    1985-01-01

    The high energy electron spectrum analysis has shown that the electron intensity inside the H2 cloud region, or in a spiral arm, should be much lower than that outside it and the observed electron energy spectrum should flatten again at about 1 TeV. In the framework of the leady box model the recently established rigidity dependence of the escape pathlength of cosmic rays would predict a high energy electron spectrum which is flatter than the observed one. This divergence is explained by assuming that the leaky box model can only apply to cosmic ray heavy nuclei, and light nuclei and electrons in cosmic rays may have different behaviors in the interstellar propagation. Therefore, the measured data on high energy electrons should be analyzed based on the proposed nonuniform galactic disk (NUGD) mode.

  5. Biomass Residues from Agriculture and Potential Contribution towards Modern Energy Supply in West Africa

    DEFF Research Database (Denmark)

    Ackom, Emmanuel

    2016-01-01

    Access to modern energy services especially in developing countries is an urgent issue. Globally, 1.3 billion people do not have access to modern energy and the services associated with it. Sub-Saharan Africa is one of the regions have profound lack of modern energy access. The objective...... 106MWh (Ghana), 4.5 x 106-13 x 10 6MWh (Nigeria), 0.5 x 106-1.2 x 106 MWh (Senegal) and 0.2 x 106–1.3 x 106 MWh (Togo). This could help bring increased electrification from a renewable energy source to the countries especially in the farming communities where the residue abounds thus ensuring good...... prospect for improved quality of life, poverty alleviation and sustainable development....

  6. Soft pions at high energy and the flavor asymmetry of the light sea quarks in the nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Koretune, Susumu [Department of Physics, Shimane Medical University, Izumo, Shimane (Japan)

    2000-05-01

    The modified Gottfried sum rule makes clear importance of the high energy region not only in the theoretical meaning but also in the numerical analysis. In this talk, it is shown that the soft pion theorem in the inclusive reaction at high energy can explain the magnitude about 0.02-0.04 in the NMC deficit. The main contribution comes from the small x region. We also estimate the soft pion contribution to the Ellis-Jaffe sum rule and show it to be negligible. However we find that the contribution to g{sub 1}{sup ep} becomes positive below x=0.002. (author)

  7. Contribution of CSB interactions in binding energy difference of mirror nuclei

    Directory of Open Access Journals (Sweden)

    M. Asghari

    2006-03-01

    Full Text Available   Nolen-Schiffer Anomaly in mirror nuclei due to the NN interactions with isospin mixing between T=0 and T=1 mesons of the same spin and parity are investigated. With the computation of coulomb energy along with the charge symmetry breaking (CSB effects provide a reasonably accurate description of binding energy differences between  39ca- 39k- , 41cs- 41ca mirror nuclei. 

  8. Passive energy recapture in jellyfish contributes to propulsive advantage over other metazoans

    OpenAIRE

    Gemmell, Brad J.; Costello, John H.; Colin, Sean P.; Stewart, Colin J.; Dabiri, John O.; Tafti, Danesh; Priya, Shashank

    2013-01-01

    Jellyfish have the ability to bloom and take over perturbed ecosystems, but this is counterintuitive because jellyfish are described as inefficient swimmers and rely on direct contact with prey to feed. To understand how jellyfish can outcompete effective visual hunters, such as fish, we investigate the energetics of propulsion. We find that jellyfish exhibit a unique mechanism of passive energy recapture, which can reduce metabolic energy demand by swimming muscles. Contrary to prevailing vi...

  9. Experimental Contribution to High Precision Characterization of Magnetic Forces in Active Magnetic Bearings

    DEFF Research Database (Denmark)

    Kjølhede, Klaus; Santos, Ilmar

    2006-01-01

    contribution of the work is the characterization of magnetic forces by using two different experimental approaches. Such approaches are investigated and described in detail. A special test rig is designed where the 4 pole - AMB is able to generate forces up to 1900 N. The high precision characterization...

  10. The Factors Contribute to Career Adaptability of High-School Students

    Science.gov (United States)

    Karacan-Ozdemir, Nurten; Yerin Guneri, Oya

    2017-01-01

    Purpose: Regarded as an important means of career development, preparation, and transition, career adaptability is a lifelong skill that can enable individuals to overcome 21st-century work--life requirements and challenges. This study aims to investigate the factors contributing career adaptability of high-school students, which pose beneficial…

  11. Contributions of Self-Explanation to Comprehension of High- and Low-Cohesion Texts

    Science.gov (United States)

    Ozuru, Yasuhiro; Briner, Stephen; Best, Rachel; McNamara, Danielle S.

    2010-01-01

    This study examined how the contribution of self-explanation to science text comprehension is affected by the cohesion of a text at a local level. Psychology undergraduates read and self-explained a science text with either low or high local cohesion. Local cohesion was manipulated by the presence or absence of connectives and referential words or…

  12. Best (configurations of) practices and how do they contribute to high performance?

    DEFF Research Database (Denmark)

    Laugen, Bjørge Timenes; Boer, Harry; Acur, Nuran

    2005-01-01

    Much literature exists about best practices and there are many contributions on how to achieve high operational performance. However, there is a lack of theory on the relationships between practices and performance(s). Furthermore, the implementation process of action programmes and especially...... with directions for further research....

  13. Comparison of analytical and Monte Carlo calculations of multi-photon effects in bremsstrahlung emission by high-energy electrons

    Energy Technology Data Exchange (ETDEWEB)

    Mangiarotti, A. [Laboratorio de Instrumentacao e Fisica Experimental de Particulas, Coimbra (Portugal); Departamento de Fisica, Faculdade de Ciencias e Tecnologia da Universidade de Coimbra, Coimbra (Portugal); Sona, P., E-mail: pietro.sona@fi.infn.it [Dipartimento di Fisica e Astronomia, Universita degli Studi di Firenze, Polo Scientifico, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); INFN, Sezione di Firenze (Italy); Ballestrero, S. [Department of Physics University of Johannesburg, Johannesburg (South Africa); CERN PH/ADT, Geneve (Switzerland); Uggerhoj, U.I.; Andersen, K.K. [Department of Physics and Astronomy, University of Aarhus, Aarhus (Denmark)

    2012-10-15

    Approximate analytical calculations of multi-photon effects in the spectrum of total radiated energy by high-energy electrons crossing thin targets are compared to the results of Monte Carlo type simulations. The limits of validity of the analytical expressions found in the literature are established. The separate contributions to spectral distortion of electromagnetic processes other than bremsstrahlung are also studied in detail.

  14. Contributions of divergent and nondivergent winds to the kinetic energy balance of a severe storm environment

    Science.gov (United States)

    Browning, P. A.; Fuelberg, H. E.

    1983-01-01

    Divergent and rotational components of the synoptic scale kinetic energy balance are presented using rawinsonde data at 3 and 6 h intervals from the Atmospheric Variability Experiment (AVE 4). Two intense thunderstorm complexes occurred during the period. Energy budgets are described for the entire computational region and for limited volumes that enclose and move with the convection. Although small in magnitude, the divergent wind component played an important role in the cross contour generation and horizontal flux divergence of kinetic energy. The importance of V sub D appears directly to the presence and intensity of convection within the area. Although K sub D usually comprised less than 10 percent of the total kinetic energy content within the storm environment, as much as 87 percent of the total horizontal flux divergence and 68 percent of the total cross contour generation was due to the divergent component in the upper atmosphere. Generation of kinetic energy by the divergent component appears to be a major factor in the creation of an upper level wind maximum on the poleward side of one of the complexes. A random error analysis is presented to assess confidence limits in the various energy parameters.

  15. NASA Contributions to Improve Understanding of Extreme Events in the Global Energy and Water Cycle

    Science.gov (United States)

    Lapenta, William M.

    2008-01-01

    The U.S. Climate Change Science Program (CCSP) has established the water cycle goals of the Nation's climate change program. Accomplishing these goals will require, in part, an accurate accounting of the key reservoirs and fluxes associated with the global water and energy cycle, including their spatial and temporal variability. through integration of all necessary observations and research tools, To this end, in conjunction with NASA's Earth science research strategy, the overarching long-term NASA Energy and Water Cycle Study (NEWS) grand challenge can he summarized as documenting and enabling improved, observationally based, predictions of water and energy cycle consequences of Earth system variability and change. This challenge requires documenting and predicting trends in the rate of the Earth's water and energy cycling that corresponds to climate change and changes in the frequency and intensity of naturally occurring related meteorological and hydrologic events, which may vary as climate may vary in the future. The cycling of water and energy has obvious and significant implications for the health and prosperity of our society. The importance of documenting and predicting water and energy cycle variations and extremes is necessary to accomplish this benefit to society.

  16. Contribution of adaptive thermogenesis to the hypothalamic regulation of energy balance.

    Science.gov (United States)

    Lage, Ricardo; Fernø, Johan; Nogueiras, Rubén; Diéguez, Carlos; López, Miguel

    2016-11-15

    Obesity and its related disorders are among the most pervasive diseases in contemporary societies, and there is an urgent need for new therapies and preventive approaches. Given (i) our poor social capacity to correct unhealthy habits, and (ii) our evolutionarily genetic predisposition to store excess energy as fat, the current environment of caloric surplus makes the treatment of obesity extremely difficult. During the last few decades, an increasing number of methodological approaches have increased our knowledge of the neuroanatomical basis of the control of energy balance. Compelling evidence underlines the role of the hypothalamus as a homeostatic integrator of metabolic information and its ability to adjust energy balance. A greater understanding of the neural basis of the hypothalamic regulation of energy balance might indeed pave the way for new therapeutic targets. In this regard, it has been shown that several important peripheral signals, such as leptin, thyroid hormones, oestrogens and bone morphogenetic protein 8B, converge on common energy sensors, such as AMP-activated protein kinase to modulate sympathetic tone on brown adipose tissue. This knowledge may open new ways to counteract the chronic imbalance underlying obesity. Here, we review the current state of the art on the role of hypothalamus in the regulation of energy balance with particular focus on thermogenesis. © 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  17. Dose equivalent measurements in mixed and time varying radiation fields around high-energy accelerators

    CERN Document Server

    Mayer, S

    2003-01-01

    Measurements of ambient dose equivalent in stray radiation fields behind the shielding of high-energy accelerators are a challenging task. Several radiation components (photons, neutrons, charged particles, muons, etc.), spanning a wide range of energies, contribute to the total dose equivalent. The radiation fields are produced by beam losses interacting with structural material during the acceleration or at the ejection to experimental areas or other accelerators. The particle beam is usually not continuous but separated in "bunches" or pulses, which further complicates dose measurements at high-energy accelerators. An ideal dosimeter for operational radiation protection should measure dose equivalent for any composition of radiation components in the entire energy range even when the field is strongly pulsed. The objective of this work was to find out if an ionisation chamber operated as a "recombination chamber" and a TEPC instrument using the variance-covariance method ("Sievert Instrument") are capable ...

  18. Contribution of Neutron Beta Decay to Radiation Belt Pumping from High Altitude Nuclear Explosion

    Energy Technology Data Exchange (ETDEWEB)

    Marrs, R

    2002-11-13

    In 1962, several satellites were lost following high altitude nuclear tests by the United States and the Soviet Union. These satellite failures were caused by energetic electrons injected into the earth's radiation belts from the beta decay of bomb produced fission fragments and neutrons. It has been 40 years since the last high altitude nuclear test; there are now many more satellites in orbit, and it is important to understand their vulnerability to radiation belt pumping from nuclear explosions at high altitude or in space. This report presents the results of a calculation of the contribution of neutron beta decay to artificial belt pumping. For most high altitude nuclear explosions, neutrons are expected to make a smaller contribution than fission products to the total trapped electron inventory, and their contribution is usually neglected. However, the neutron contribution may dominate in cases where the fission product contribution is suppressed due to the altitude or geomagnetic latitude of the nuclear explosion, and for regions of the radiation belts with field lines far from the detonation point. In any case, an accurate model of belt pumping from high altitude nuclear explosions, and a self-consistent explanation of the 1962 data, require inclusion of the neutron contribution. One recent analysis of satellite measurements of electron flux from the 1962 tests found that a better fit to the data is obtained if the neutron contribution to the trapped electron inventory was larger than that of the fission products [l]. Belt pumping from high altitude nuclear explosions is a complicated process. Fission fragments are dispersed as part of the ionized bomb debris, which is constrained and guided by the earth's magnetic field. Those fission products that beta decay before being lost to the earth's atmosphere can contribute trapped energetic electrons to the earth's radiation belts. There has been a large effort to develop computer models for

  19. Contributions from the Department of Meteorology and Wind Energy to the EUWEC`96 conference in Goeteborg, Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, G.C. [ed.

    1996-08-01

    The 5th European Union Wind Energy Conference and Exhibition-EUWEC `96- was held in Gothenburg, Sweden during the period 20-24 May 1996. 520 delegates, mainly from Europe but also from other parts of the world, attended the conference. The conference contributions included roughly 70 oral presentations and 200 posters. The Department of Meteorology and Wind Energy contributed with 17 oral presentations and 15 posters with members of the department as authors or co-authors. The present report contains the full set of these papers, covering a wide spectrum of subjects including research strategy, wind resources, power quality, grid connection, wind-diesel systems, aerodynamics, load assessment and reliability, and certification. (au) 49 tabs., 146 ills., 228 refs.

  20. Contributions from the Department of Meteorology and Wind Energy to the EWEC`94 conference in Thessaloniki, Greece

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, G.C. [ed.

    1995-01-01

    The 5`th European Wind Energy Association Conference and Exhibition - EWEC`94 - was held in Thessaloniki, Greece during the period 10-14 October 1994. 461 delegates, mainly from Europe but also from other parts of the world, attended the conference. The conference contributions included 235 oral presentations and 143 posters. The Department of Meteorology and Wind Energy contributed with 18 oral presentations and 3 poster with members of the department as authors or co-authors. The present report contains the full set of these papers, covering a wide spectrum of subjects including wind resources, reliability and load assessment, grid connection, wind-diesel systems, and marked aspects. (au) (36 tabs., 163 ills., 150 refs.)

  1. Autonomic nervous system in the control of energy balance and body weight: personal contributions.

    Science.gov (United States)

    Messina, G; De Luca, V; Viggiano, An; Ascione, A; Iannaccone, T; Chieffi, S; Monda, M

    2013-01-01

    The prevalence of obesity is increasing in the industrialized world, so that the World Health Organization considers obesity as a "pandemia" in rich populations. The autonomic nervous system plays a crucial role in the control of energy balance and body weight. This review summarizes our own data and perspectives, emphasizing the influence exerted by autonomic nervous system on energy expenditure and food intake, which are able to determine the body weight. Activation of the sympathetic discharge causes an increase in energy expenditure and a decrease in food intake, while reduction of food intake and body weight loss determines a reduction of the sympathetic activity. On the other hand, pathophysiological mechanisms of the obesity involve alterations of the sympathetic nervous system in accordance with the "Mona Lisa Hypothesis," an acronym for "most obesities known are low in sympathetic activity." Furthermore, the parasympathetic influences on the energy expenditure are analyzed in this review, showing that an increase in parasympathetic activity can induce a paradoxical enhancement of energy consumption.

  2. Autonomic Nervous System in the Control of Energy Balance and Body Weight: Personal Contributions

    Directory of Open Access Journals (Sweden)

    G. Messina

    2013-01-01

    Full Text Available The prevalence of obesity is increasing in the industrialized world, so that the World Health Organization considers obesity as a “pandemia” in rich populations. The autonomic nervous system plays a crucial role in the control of energy balance and body weight. This review summarizes our own data and perspectives, emphasizing the influence exerted by autonomic nervous system on energy expenditure and food intake, which are able to determine the body weight. Activation of the sympathetic discharge causes an increase in energy expenditure and a decrease in food intake, while reduction of food intake and body weight loss determines a reduction of the sympathetic activity. On the other hand, pathophysiological mechanisms of the obesity involve alterations of the sympathetic nervous system in accordance with the “Mona Lisa Hypothesis,” an acronym for “most obesities known are low in sympathetic activity.” Furthermore, the parasympathetic influences on the energy expenditure are analyzed in this review, showing that an increase in parasympathetic activity can induce a paradoxical enhancement of energy consumption.

  3. Evaluation of Monte Carlo tools for high energy atmospheric physics

    Science.gov (United States)

    Rutjes, Casper; Sarria, David; Broberg Skeltved, Alexander; Luque, Alejandro; Diniz, Gabriel; Østgaard, Nikolai; Ebert, Ute

    2016-11-01

    The emerging field of high energy atmospheric physics (HEAP) includes terrestrial gamma-ray flashes, electron-positron beams and gamma-ray glows from thunderstorms. Similar emissions of high energy particles occur in pulsed high voltage discharges. Understanding these phenomena requires appropriate models for the interaction of electrons, positrons and photons of up to 40 MeV energy with atmospheric air. In this paper, we benchmark the performance of the Monte Carlo codes Geant4, EGS5 and FLUKA developed in other fields of physics and of the custom-made codes GRRR and MC-PEPTITA against each other within the parameter regime relevant for high energy atmospheric physics. We focus on basic tests, namely on the evolution of monoenergetic and directed beams of electrons, positrons and photons with kinetic energies between 100 keV and 40 MeV through homogeneous air in the absence of electric and magnetic fields, using a low energy cutoff of 50 keV. We discuss important differences between the results of the different codes and provide plausible explanations. We also test the computational performance of the codes. The Supplement contains all results, providing a first benchmark for present and future custom-made codes that are more flexible in including electrodynamic interactions.

  4. Evaluation of Monte Carlo tools for high energy atmospheric physics

    Directory of Open Access Journals (Sweden)

    C. Rutjes

    2016-11-01

    Full Text Available The emerging field of high energy atmospheric physics (HEAP includes terrestrial gamma-ray flashes, electron–positron beams and gamma-ray glows from thunderstorms. Similar emissions of high energy particles occur in pulsed high voltage discharges. Understanding these phenomena requires appropriate models for the interaction of electrons, positrons and photons of up to 40 MeV energy with atmospheric air. In this paper, we benchmark the performance of the Monte Carlo codes Geant4, EGS5 and FLUKA developed in other fields of physics and of the custom-made codes GRRR and MC-PEPTITA against each other within the parameter regime relevant for high energy atmospheric physics. We focus on basic tests, namely on the evolution of monoenergetic and directed beams of electrons, positrons and photons with kinetic energies between 100 keV and 40 MeV through homogeneous air in the absence of electric and magnetic fields, using a low energy cutoff of 50 keV. We discuss important differences between the results of the different codes and provide plausible explanations. We also test the computational performance of the codes. The Supplement contains all results, providing a first benchmark for present and future custom-made codes that are more flexible in including electrodynamic interactions.

  5. On the Anisotropy in the Arrival Directions of Ultra-high-energy Cosmic Rays

    Science.gov (United States)

    Wittkowski, David; Kampert, Karl-Heinz

    2018-02-01

    We present results of elaborate four-dimensional simulations of the propagation of ultra-high-energy cosmic rays (UHECRs), which are based on a realistic astrophysical scenario. The distribution of the arrival directions of the UHECRs is found to have a pronounced dipolar anisotropy and rather weak higher-order contributions to the angular power spectrum. This finding agrees well with the recent observation of a dipolar anisotropy for UHECRs with arrival energies above 8 {EeV} by the Pierre Auger Observatory and constitutes an important prediction for other energy ranges and higher-order angular contributions for which sufficient experimental data are not yet available. Since our astrophysical scenario enables simulations that are completely consistent with the available data, this scenario will be a very useful basis for related future studies.

  6. Time correlations of high energy muons in an underground detector

    CERN Document Server

    Becherini, Y; Chiarusi, T; Cozzi, M; Dekhissi, H; Derkaoui, J; Esposito, L S; Giacomelli, G; Giglietto, N; Giorgini, M; Maaroufi, F; Mandrioli, G; Manzoor, S; Margiotta, A; Moussa, A

    2005-01-01

    We present the result of a search for correlations in the arrival times of high energy muons collected from 1995 till 2000 with the streamer tube system of the complete MACRO detector at the underground Gran Sasso Lab. Large samples of single muons (8.6 million), double muons (0.46 million) and multiple muons with multiplicities from 3 to 6 (0.08 million) were selected. These samples were used to search for time correlations of cosmic ray particles coming from the whole upper hemisphere or from selected space cones. The results of our analyses confirm with high statistics a random arrival time distribution of high energy cosmic rays.

  7. Contribution of Physical Education and Active Transport to Energy Expenditure in Dutch Adolescents

    NARCIS (Netherlands)

    drs Menno Slingerland; dr. Lars B. Borghouts

    2010-01-01

    Introduction: It has been suggested that physical education (PE) can make a meaningful contribution to children's physical activity (PA) levels. The amount of moderate-to-vigorous physical activity (MVPA) in PE has been quantified in various manners, including heart rate monitoring and direct

  8. Energy Efficient and Compact RF High-Power Amplifiers

    NARCIS (Netherlands)

    Calvillo Cortés, D.A.

    2014-01-01

    The main objectives of this thesis are to improve the energy efficiency and physical form-factor of high-power amplifiers in base station applications. As such, the focus of this dissertation is placed on the outphasing amplifier concept, which can offer high-efficiency, good linearity and excellent

  9. High-energy pediatric pelvic and acetabular fractures

    NARCIS (Netherlands)

    Amorosa, Louis F.; Kloen, Peter; Helfet, David L.

    2014-01-01

    Pediatric pelvic and acetabular fractures are rare injuries. They are almost always the result of a high-energy injury mechanism. A full trauma protocol should be instituted, having a high index of suspicion for associated life-threatening injuries. In the past, it was recommended that almost all of

  10. High energy neutrino scattering results from NuTeV

    Science.gov (United States)

    Naples, D.; Adams, T.; Alton, A.; Avvakumov, S.; de Barbaro, L.; de Barbaro, P.; Bernstein, R. H.; Bodek, A.; Bolton, T.; Brau, J.; Buchholz, D.; Budd, H.; Conrad, J.; Drucker, R. B.; Fleming, B. T.; Formaggio, J.; Frey, R.; Goldman, J.; Goncharov, M.; Harris, D. A.; Kim, J. H.; Koutsoliotas, S.; Johnson, R. A.; Lamm, M. J.; McDonald, J.; Marsh, W.; Mason, D.; McFarland, K. S.; McNulty, C.; Nienaber, P.; Radescu, V.; Romosan, A.; Sakumoto, W. K.; Schellman, H.; Shaevitz, M. H.; Spentzouris, P.; Stern, E. G.; Suwonjandee, N.; Tobien, N.; Tzanov, M.; Vaitaitis, A.; Vakili, M.; Yang, U. K.; Yu, J.; Zeller, G. P.; Zimmerman, E. D.

    2003-04-01

    The NuTeV experiment at Fermilab has obtained a unique high statistics sample of neutrino and antineutrino interactions using a novel high-energy sign-selected neutrino beam. Recent results from this sample are presented including a precision measurement of the electroweak parameter sin2≡ W, which is observed to be three standard deviations above the standard model prediction.

  11. Graphene supercapacitor with both high power and energy density

    Science.gov (United States)

    Yang, Hao; Kannappan, Santhakumar; Pandian, Amaresh S.; Jang, Jae-Hyung; Lee, Yun Sung; Lu, Wu

    2017-11-01

    Supercapacitors, based on fast ion transportation, are specialized to provide high power, long stability, and efficient energy storage using highly porous electrode materials. However, their low energy density excludes them from many potential applications that require both high energy density and high power density performances. Using a scalable nanoporous graphene synthesis method involving an annealing process in hydrogen, here we show supercapacitors with highly porous graphene electrodes capable of achieving not only a high power density of 41 kW kg-1 and a Coulombic efficiency of 97.5%, but also a high energy density of 148.75 Wh kg-1. A high specific gravimetric and volumetric capacitance (306.03 F g-1 and 64.27 F cm-3) are demonstrated. The devices can retain almost 100% capacitance after 7000 charging/discharging cycles at a current density of 8 A g-1. The superior performance of supercapacitors is attributed to their ideal pore size, pore uniformity, and good ion accessibility of the synthesized graphene.

  12. Advanced Detectors for Nuclear, High Energy and Astroparticle Physics

    CERN Document Server

    Das, Supriya; Ghosh, Sanjay

    2018-01-01

    The book presents high-quality papers presented at a national conference on ‘Advanced Detectors for Nuclear, High Energy and Astroparticle Physics’. The conference was organized to commemorate 100 years of Bose Institute. The book is based on the theme of the conference and provides a clear picture of basics and advancement of detectors for nuclear physics, high-energy physics and astroparticle physics together. The topics covered in the book include detectors for accelerator-based high energy physics; detectors for non-accelerator particle physics; nuclear physics detectors; detection techniques in astroparticle physics and dark matter; and applications and simulations. The book will be a good reference for researchers and industrial personnel working in the area of nuclear and astroparticle physics.

  13. Sorghum. A contribution to the diversification of the portfolio of energy plants; Sorghumhirsen. Ein Beitrag zur Diversifizierung des Energiepflanzenspektrums

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-19

    Within the joint project 'Cultivation technology sorghum - A contribution to the diversification of the portfolio of energy plants' extensive investigations of the cultivation technology in sorghum were conducted. Within this joint project sorghum will be tested under various conditions according to its suitability as a raw material for the production of biogas. Additionally, the cultivation of sorghum in Germany shall be optimized under cultivation techniques and environmental aspects.

  14. Socio-scientific research contribution to energy practice; Sozialwissenschaftlicher Forschungsbeitrag fuer die Energiepraxis

    Energy Technology Data Exchange (ETDEWEB)

    Artho, J.; Soland, M.

    2009-01-15

    This final report for the Swiss Federal Office of Energy (SFOE) takes a look at the findings of a study made by the University of Zurich, Switzerland, on socio-scientific aspects of energy use. Basic socio-psychological mechanisms are examined on which energy policy instruments can be based. Basic mechanisms are discussed such as enforced behaviour, non-enforced action, habitual acts and action taken on the basis of heuristics and rules-of-thumb. The second part of the paper looks at examples of the use of these principles, discussing, amongst other things, cost-benefit and moral reasoning, habits, mental accounting and boomerang effects. Finally the analyses are summarised and further research needed as a result of these analyses is noted.

  15. Technology development and application of solar energy in desalination: MEDRC contribution

    KAUST Repository

    Ghaffour, Noreddine

    2011-12-01

    Desalination has become one of the sources for water supply in several countries especially in the Middle East and North Africa region. There is a great potential to develop solar desalination technologies especially in this region where solar source is abundantly available. The success in implementing solar technologies in desalination at a commercial scale depends on the improvements to convert solar energy into electrical and/or thermal energies economically as desalination processes need these types of energies. Since desalination is energy intensive, the wider use of solar technologies in desalination will eventually increase the demand on these technologies, making it possible to go for mass production of photovoltaic (PV) cells, collectors and solar thermal power plants. This would ultimately lead to the reduction in the costs of these technologies. The energy consumed by desalination processes has been significantly reduced in the last decade meaning that, if solar technologies are to be used, less PV modules and area for collectors would be needed. The main aspects to be addressed to make solar desalination a viable option in remote location applications is to develop new materials or improve existing solar collectors and find the best combinations to couple the different desalination processes with appropriate solar collector. In the objective to promote solar desalination in MENA, the Middle East Desalination Research Center has concentrated on various aspects of solar desalination in the last twelve years by sponsoring 17 research projects on different technologies and Software packages development for coupling desalination and renewable energy systems to address the limitations of solar desalination and develop new desalination technologies and hybrid systems suitable for remote areas. A brief description of some of these projects is highlighted in this paper. The full details of all these projects are available the Centers website. © 2011 Elsevier

  16. The contributions of 49ers to the measurements and models of ultrafast photosynthetic energy transfer

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, Graham R. [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-02-28

    Progress in measuring and understanding the mechanism of the elementary energy transfer steps in photosynthetic light harvesting from roughly 1949 to the present is sketched with a focus on the group of scientists born in 1949 ± 1. Improvements in structural knowledge, laser spectroscopic methods, and quantum dynamical theories have led to the ability to record and calculate with reasonable accuracy the timescales of elementary energy transfer steps. The importance of delocalized excited states and of near-field Coulombic coupling is noted. The microscopic understanding enables consistent coarse graining and should enable a much-improved understanding of the regulation of photosynthetic light harvesting.

  17. Two-meson cloud contribution to the baryon antidecuplet self-energy

    Energy Technology Data Exchange (ETDEWEB)

    Hyodo, T. [Research Center for Nuclear Physics (RCNP), Ibaraki, Osaka 567-0047 (Japan); Hosaka, A. [Research Center for Nuclear Physics (RCNP), Ibaraki, Osaka 567-0047 (Japan); Llanes-Estrada, F.J. [Universidad Complutense de Madrid, Depto. Fisica Teorica I, 28040 Madrid (Spain); Oset, E. [Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, Aptd. 22085, 46071 Valencia (Spain); Pelaez, J.R. [Universidad Complutense de Madrid, Depto. Fisica Teorica II, 28040 Madrid (Spain); Vicente Vacas, M.J. [Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, Aptd. 22085, 46071 Valencia (Spain)

    2005-06-13

    We study the self-energy of the SU(3) antidecuplet coming from two-meson virtual clouds. Assuming that the exotic {theta}{sup +} belongs to an antidecuplet representation with N(1710) as nucleon partner, we derive effective Lagrangians that describe the decay of N(1710) into N{pi}{pi} with two pions in s- or p-wave. It is found that the self-energies for all members of the antidecuplet are attractive, and the larger strangeness particle is more bound. From two-meson cloud, we obtain about 20% of the empirical mass splitting between states with different strangeness.

  18. The contributions of 49ers to the measurements and models of ultrafast photosynthetic energy transfer.

    Science.gov (United States)

    Fleming, Graham R

    2018-03-01

    Progress in measuring and understanding the mechanism of the elementary energy transfer steps in photosynthetic light harvesting from roughly 1949 to the present is sketched with a focus on the group of scientists born in 1949 ± 1. Improvements in structural knowledge, laser spectroscopic methods, and quantum dynamical theories have led to the ability to record and calculate with reasonable accuracy the timescales of elementary energy transfer steps. The significance of delocalized excited states and of near-field Coulombic coupling is noted. The microscopic understanding enables consistent coarse graining and should enable a much-improved understanding of the regulation of photosynthetic light harvesting.

  19. Ring wall storages. An essential contribution of the geotechnics to te energy storage; Ringwallspeicher. Ein essentieller Beitrag der Geotechnik zur Energiespeicherung

    Energy Technology Data Exchange (ETDEWEB)

    Popp, Matthias [Matthias Popp Ingenieurbuero Erneuerbare Energien, Energiespeicherung, Wuppertal (Germany)

    2012-11-01

    The author of the contribution under consideration reports on ring wall storages as an essential contribution to the geotechnical engineering for energy storage. At first, renewable energies as well as the storage requirements for the compensation of the volatility of electricity from wind power and solar energy are described. Subsequently, the storage technologies for energy management requirements as well as the need for water and land area of pumped storage systems are presented with special emphasis of ring wall storages.

  20. Energy contribution from non-breastmilk items in low-income Guatemalan infantsin their sixth month of life

    Directory of Open Access Journals (Sweden)

    Marieke Vossenaar

    2015-03-01

    Full Text Available Objective. To examine the nature and energy contribution of complementary feeding in breastfed infants in their sixth month of life, and the prevalence of the use of bottles as a delivery method. Materials and methods. We recruited 156 breastfeeding infants at a health clinic in metropolitan Quetzaltenango, Guatemala. A previous-day recall was performed. Results. Sixty nine mothers (44% reported offering items other than breastmilk. The median contribution of energy from complementary foods among infants with mixed feeding (n=66 was 197 kcal/day (interquartile range [IQR] 49-353. The median energy contribution of formula or cow’s milk among consumers (n=39 was 212 kcal/day (IQR 84-394. Bottles were used on the previous day by 55 (80% of the 69 mothers not offering exclusive breastfeeding. Conclusions. Premature introduction of non-breastmilk items is commonly practiced in feeding Guatemalan infants. Adherence to the internationally recognized guidelines for early infant feeding should be an intervention priority for this population.