WorldWideScience

Sample records for high energy cardioversion

  1. Clinical application of low energy intracardiac cardioversion of atrial fibrillation

    International Nuclear Information System (INIS)

    Wu Liqun; Gu Gang; Su Kan; Su Renying; Shen Yongchu; Shen Weifeng

    2002-01-01

    Objective: To evaluate the efficacy and safety of low energy intracardiac cardioversion in persistent atria fibrillation. Methods: Low energy intracardiac cardioversion was performed by delivering R wave-synchronized biphasic shocks in 7 patients (4 men, 3 women) with persistent atrial fibrillation. Prior to the procedure, all patients underwent transesophageal echocardiographic examinations to rule out the presence of intracardiac thrombus and received subcutaneous injection of low molecular weight heparin for 3-5 days. Two custom-made 6 Fr catheters (Rhythm Technologies of Getz, USA) were used for de-fibrillation shock delivery. One catheter was positioned in the lower right atrium so that the majority of the catheter electrodes had firm contact with the right atrial free wall. The second catheter was placed randomly either in coronary sinus through right internal jugular vein or in the left pulmonary artery through femoral vein. In addition, a standard diagnostic 6-F quadrupolar catheter was placed at the right ventricular apex for ventricular synchronization and postshock ventricular pacing. Shocks were delivered by Implant Support Device (Model 4510, Teleceronics). After conversion, all patients were treated with intravenous amiodarone in the first 24 hours followed by oral administration. Results: In all 7 patients cardioversion of atrial fibrillation to sinus rhythm was successfully obtained. A mean of 2 ± 1 shocks per patient has been delivered with a total amount of 13 shocks. The average delivered energy was 7.8 ± 2.2 Joules. No complication occurred. At a mean follow-up of 18 ± 9 months, 4 of the 7 patients treated successfully showed sinus rhythm there after. Atrial fibrillation recurred in 3 patients at the second, fifth day and eighth month after cardioversion. Conclusions: Low energy intracardiac cardioversion is effective and safe, and can be easily performed in patients without general anesthesia. It offers a new option for restoring sinus

  2. Electrical cardioversion

    Science.gov (United States)

    Sucu, Murat; Davutoglu, Vedat; Ozer, Orhan

    2009-01-01

    External electrical cardioversion was first performed in the 1950s. Urgent or elective cardioversions have specific advantages, such as termination of atrial and ventricular tachycardia and recovery of sinus rhythm. Electrical cardioversion is life-saving when applied in urgent circumstances. The succcess rate is increased by accurate tachycardia diagnosis, careful patient selection, adequate electrode (paddles) application, determination of the optimal energy and anesthesia levels, prevention of embolic events and arrythmia recurrence and airway conservation while minimizing possible complications. Potential complications include ventricular fibrillation due to general anesthesia or lack of synchronization between the direct current (DC) shock and the QRS complex, thromboembolus due to insufficient anticoagulant therapy, non-sustained VT, atrial arrhythmia, heart block, bradycardia, transient left bundle branch block, myocardial necrosis, myocardial dysfunction, transient hypotension, pulmonary edema and skin burn. Electrical cardioversion performed in patients with a pacemaker or an incompatible cardioverter defibrillator may lead to dysfunction, namely acute or chronic changes in the pacing or sensitivity threshold. Although this procedure appears fairly simple, serious consequences might occur if inappropriately performed. PMID:19448376

  3. Changes in oral anticoagulation for elective cardioversion: results from a European cardioversion registry.

    Science.gov (United States)

    Papp, Judit; Zima, Endre; Bover, Ramon; Karaliute, Rasa; Rossi, Andrea; Szymanski, Catherine; Troccoli, Rossella; Schneider, Jonas; Fagerland, Morten Wang; Camm, A John; Atar, Dan

    2017-07-01

    In patients with atrial fibrillation (AF) pharmacological or electrical cardioversion may be performed to restore sinus rhythm. The procedure is associated with an increased risk of thromboembolic events, which can be significantly reduced by adequate anticoagulation (OAC). Our aim was to create a partly prospective, partly retrospective cardioversion registry, particularly focusing on OAC strategies in different European countries, and on emerging choice of OAC over time. From September 2014 to October 2015, cardioversions due to AF performed in six European city hospitals in five European countries (Hungary: Budapest-1 and -2; Italy: Bari and Pisa; France: Amiens; Spain: Madrid; and Lithuania: Kaunas) were recorded in the registry. A total of 1101 patients (retrospective/prospective: 679/422, male/female: 742/359, mean age: 67.3 years ± 11.2) were registered. Most of the cardioversions were electrical (97%). Oral anticoagulants were administered in 87% of the patient, the usage of non-VKA oral anticoagulants (NOACs) vs Vitamin K antagonists (VKA) was 31.5% vs 68.5%, respectively. Seventy seven percent of the patients were given oral anticoagulants more than 3 weeks prior to the procedure, and 86% more than 4 weeks after the procedure. When using VKA, international normalized ratio (INR) at cardioversion was above 2.0 in 76% of the cases. A decline in VKA usage (P = 0.033) in elective cardioversion over approximately 1 year was observed. During the observation period, there was an increase in apixaban (P < 0.001), a slight increase in rivaroxaban (P = 0.028) and no changes in dabigatran (P = 0.34) usage for elective cardioversion. There were differences in use of OAC between the countries: Spain used most VKA (89%), while France used least VKA (39%, P < 0.001). According to current AF guidelines, NOACs are adequate alternatives to VKA for thromboembolic prevention in AF patients undergoing elective cardioversion. Our results indicate that

  4. Low-energy cardioversion of spontaneous atrial fibrillation. Immediate and long-term results.

    Science.gov (United States)

    Lévy, S; Ricard, P; Gueunoun, M; Yapo, F; Trigano, J; Mansouri, C; Paganelli, F

    1997-07-01

    Recent studies have suggested that induced atrial fibrillation (AF) could be successfully terminated by using a two-catheter electrode system and low energy (energy cardioversion in spontaneous chronic and paroxysmal AF. Forty-two consecutive patients with spontaneous AF underwent low-energy electrical cardioversion. AF was chronic (> or = 1 month) with a mean duration of 9 +/- 19 months in 28 patients (group I) or paroxysmal with a history of recurrent attacks and a mean duration of the present episode of 7 +/- 16 days in 14 patients (group II). An underlying heart disease was present in 28 patients. A 3/3-ms biphasic shock was delivered between catheters positioned in the right atrium and the coronary sinus in 32 patients. In 10 patients, the left pulmonary artery branch was used. The catheters were connected to a custom external defibrillator. The shocks were synchronized to the R wave. Following a test shock of 60 V, the energy was increased in 40-V steps until a maximum of 400 V or restoration of sinus rhythm. Sinus rhythm was restored in 22 of the 28 patients (78%) of group I by using a mean leading-edge voltage of 297 +/- 57 V (mean energy 3.3 +/- 1.3 J) and in 11 of 14 patients (78%) of group II by using a mean leading-edge voltage of 223 +/- 41 V (mean energy, 1.8 +/- 0.7 J). The energy required for terminating chronic AF was significantly (P energy between two intracardiac catheters with an electrical field between the right and left atria and the protocol used is feasible in patients with persistent spontaneous AF. The technique is safe provided synchronization to the R wave is achieved. A low recurrence rate of AF was seen in patients in whom sinus rhythm was restored.

  5. Intracardiac impedance response during acute AF internal cardioversion using novel rectilinear and capacitor-discharge waveforms.

    Science.gov (United States)

    Rababah, A S; Walsh, S J; Manoharan, G; Walsh, P R; Escalona, O J

    2016-07-01

    Intracardiac impedance (ICI) is a major determinant of success during internal cardioversion of atrial fibrillation (AF). However, there have been few studies that have examined the dynamic behaviour of atrial impedance during internal cardioversion in relation to clinical outcome. In this study, voltage and current waveforms captured during internal cardioversion of acute AF in ovine models using novel radiofrequency (RF) generated low-tilt rectilinear and conventional capacitor-discharge based shock waveforms were retrospectively analysed using a digital signal processing algorithm to investigate the dynamic behaviour of atrial impedance during cardioversion. The algorithm was specifically designed to facilitate the simultaneous analysis of multiple impedance parameters, including: mean intracardiac impedance (Z M), intracardiac impedance variance (ICIV) and impedance amplitude spectrum area (IAMSA) for each cardioversion event. A significant reduction in ICI was observed when comparing two successive shocks of increasing energy where cardioversion outcome was successful. In addition, ICIV and IAMSA variables were found to inversely correlate to the magnitude of energy delivered; with a stronger correlation found to the former parameter. In conclusion, ICIV and IAMSA have been evidenced as two key dynamic intracardiac impedance variables that may prove useful in better understanding of the cardioversion process and that could potentially act as prognostic markers with respect to clinical outcome.

  6. Cardioversion for atrial fibrillation in current European practice

    DEFF Research Database (Denmark)

    Hernández-Madrid, Antonio; Svendsen, Jesper Hastrup; Lip, Gregory Y.H.

    2013-01-01

    This survey was conducted to provide an insight into the current clinical practice regarding the use of cardioversion for atrial fibrillation (AF) in Europe. Responses were received from 57 centres across Europe, 71.9% of which were university hospitals. For electrical cardioversion, general...... anaesthesia was managed by an anaesthesiologist in 73.9% of centres and by a cardiologist in 37%. In the majority of centres, electrical cardioversion was performed using a biphasic defibrillator (85.1%). Antiarrhythmic drugs were routinely prescribed prior to electrical cardioversion by 54.3% of hospitals...

  7. High-sensitivity C-reactive protein is predictive of successful cardioversion for atrial fibrillation and maintenance of sinus rhythm after conversion.

    Science.gov (United States)

    Watanabe, Eiichi; Arakawa, Tomoharu; Uchiyama, Tatsushi; Kodama, Itsuo; Hishida, Hitoshi

    2006-04-14

    Cardioversion for atrial fibrillation (AF) is the most effective treatment for the restoration of sinus rhythm (SR). Recently, an elevated level of hs-CRP has been shown to be associated with AF burden, suggesting that inflammation increases the propensity for persistence of AF. We examined whether the level of high-sensitivity C-reactive protein (hs-CRP) was predictive of the outcome of cardioversion for AF. One hundred and six patients with a history of symptomatic AF lasting > or =1 day (age 63+/-14 years, mean+/-S.D.) underwent cardioversion. Echocardiography and hs-CRP assay were performed immediately prior to cardioversion. SR was restored in 84 patients (79%). By using selected cutoff values, multiple discriminant analysis revealed significant associations between successful cardioversion and a shorter duration of AF (AF duration or =60%, OR 0.92, 95% CI 0.86-0.99), and lower hs-CRP level (hs-CRP or =0.06 mg/dL, Cox proportional-hazards regression model found that only hs-CRP level was an independent predictor of AF recurrence (OR 5.30, 95% CI 2.46-11.5) after adjustment for coexisting cardiovascular risks. When patients were divided by the hs-CRP level of 0.06 mg/dL, percentage of maintenance of SR below and above the cutoff was 53% and 4%, respectively (log-rank test, pmaintenance of SR after conversion.

  8. Acute Embolic Myocardial Infarction in a Patient with Paroxysmal Atrial Fibrillation Receiving Direct-current Cardioversion

    Directory of Open Access Journals (Sweden)

    Tung-Chao Lin

    2009-03-01

    Full Text Available Coronary embolism with acute myocardial infarction (MI following direct-current (DC cardioversion of atrial fibrillation (AF has rarely been reported. We present the case of a 34-year-old female with severe aortic regurgitation and highly symptomatic paroxysmal AF. Acute embolic MI occurred 4 days after DC cardioversion of AF, although there was no left atrial thrombus detected before this procedure. Insufficient anticoagulation therapy during the post-cardioversion period was the cause, leading to embolic MI.

  9. Rivaroxaban vs. vitamin K antagonists for cardioversion in atrial fibrillation.

    Science.gov (United States)

    Cappato, Riccardo; Ezekowitz, Michael D; Klein, Allan L; Camm, A John; Ma, Chang-Sheng; Le Heuzey, Jean-Yves; Talajic, Mario; Scanavacca, Maurício; Vardas, Panos E; Kirchhof, Paulus; Hemmrich, Melanie; Lanius, Vivian; Meng, Isabelle Ling; Wildgoose, Peter; van Eickels, Martin; Hohnloser, Stefan H

    2014-12-14

    X-VeRT is the first prospective randomized trial of a novel oral anticoagulant in patients with atrial fibrillation undergoing elective cardioversion. We assigned 1504 patients to rivaroxaban (20 mg once daily, 15 mg if creatinine clearance was between 30 and 49 mL/min) or dose-adjusted vitamin K antagonists (VKAs) in a 2:1 ratio. Investigators selected either an early (target period of 1-5 days after randomization) or delayed (3-8 weeks) cardioversion strategy. The primary efficacy outcome was the composite of stroke, transient ischaemic attack, peripheral embolism, myocardial infarction, and cardiovascular death. The primary safety outcome was major bleeding. The primary efficacy outcome occurred in 5 (two strokes) of 978 patients (0.51%) in the rivaroxaban group and in 5 (two strokes) of 492 patients (1.02%) in the VKA group [risk ratio 0.50; 95% confidence interval (CI) 0.15-1.73]. In the rivaroxaban group, four patients experienced primary efficacy events following early cardioversion (0.71%) and one following delayed cardioversion (0.24%). In the VKA group, three patients had primary efficacy events following early cardioversion (1.08%) and two following delayed cardioversion (0.93%). Rivaroxaban was associated with a significantly shorter time to cardioversion compared with VKAs (P four patients (0.8%) in the VKA group (risk ratio 0.76; 95% CI 0.21-2.67). Oral rivaroxaban appears to be an effective and safe alternative to VKAs and may allow prompt cardioversion. Clinicaltrials.gov; NCT01674647. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  10. Cardioversion and Risk of Adverse Events with Dabigatran versus Warfarin

    DEFF Research Database (Denmark)

    Pallisgaard, J. L.; Lindhardt, T. B.; Hansen, M. L.

    2015-01-01

    AIM: Cardioversion can rapidly and effectively restore sinus rhythm in patients with persistent atrial fibrillation. Since 2011 dabigatran has been available as an alternative to warfarin to prevent thromboembolic events in patients with non-valvular atrial fibrillation undergoing cardioversion. We......-valvular atrial fibrillation and first time cardioversion from 2011 to 2012; 37% in the dabigatran group (n = 456), and 63% in the warfarin group (n = 774). Median time to cardioversion was 4.0 (interquartile range [IQR] 2.9 to 6.5) and 6.9 (IQR 3.9 to 12.1) weeks in the dabigatran and warfarin groups...... respectively, and the adjusted odds ratio of cardioversion within the first 4 weeks was 2.3 (95% confidence interval [CI] 1.7 to 3.1) in favor of dabigatran. The cumulative incidence of composite endpoint of stroke, bleeding or death were 2.0% and 1.0% at 30 weeks in the warfarin and dabigatran groups...

  11. Cardioversion and subsequent quality of life and natural history of atrial fibrillation.

    Science.gov (United States)

    Pokorney, Sean D; Kim, Sunghee; Thomas, Laine; Fonarow, Gregg C; Kowey, Peter R; Gersh, Bernard J; Mahaffey, Kenneth W; Peterson, Eric D; Piccini, Jonathan P

    2017-03-01

    Cardioversion is a class I procedure for patients with symptomatic atrial fibrillation (AF) pursuing rhythm control. There are few contemporary reports on quality of life and outcomes after cardioversion. Using the nationwide prospective ORBIT-AF registry, cardioversion patients were propensity matched 3:1 to noncardioverted patients and Cox proportional hazards modeling evaluated hospitalization at 1 year in those with and without cardioversion. Cardiovascular outcomes, AF progression, and quality of life were evaluated for the matched cohorts with and without cardioversion. Among 9,642 patients, 817 patients (8%) underwent 906 cardioversions during a median follow-up of 12 (interquartile range 6-18) months. Among matched cardioverted and noncardioverted patients, 1-year cardiovascular hospitalization rates were 43% vs 21% (adjusted hazard ratio 2.2, 95% CI 1.8-2.8, Pquality of life or less progression. Many patients who undergo cardioversion do not receive adjunctive rhythm control therapies. These findings may help to better inform therapeutic decision making. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Low energy transvenous cardioversion of short duration atrial tachyarrhythmias in humans using a single lead system.

    Science.gov (United States)

    Heisel, A; Jung, J; Fries, R; Stopp, M; Sen, S; Schieffer, H; Ozbek, C

    1997-01-01

    The purpose of this study was to investigate the efficacy and safety of atrial cardioversion using an endocardial single lead system presently used for ventricular defibrillation. The study population consisted of 26 recipients of an ICD in combination with a conventional endocardial single lead system with the proximal spring electrode as anode in the SVC and the distal as cathode in the apex of the RV. Atrial tachyarrhythmias were induced by right atrial burst pacing. If the arrhythmia sustained > 1 minute, biphasic shocks synchronized with the R wave were delivered using the implanted device, beginning with an energy of 4 J. If 4 J failed to terminate the arrhythmia, energy was increased stepwise, if the first shock was successful, a step-down testing was performed after reinduction of atrial tachyarrhythmias. The mean atrial defibrillation threshold was 2.3 +/- 1.2 J (range, 0.5-5 J). A total of 154 shocks were delivered and no adverse effects were observed. The mean defibrillation threshold for atrial flutter was somewhat lower than that for AF (1.8 +/- 1 J vs 2.7 +/- 1.4 J, P = 0.08). There was no correlation between the atrial defibrillation threshold and a history of previously occurring atrial tachyarrhythmias, the kind of the underlying heart disease, a prescription of antiarrhythmic drugs, the dimension of the LA, the LVEF, or the ventricular DFT. Internal atrial cardioversion of short duration atrial tachyarrhythmias using a transvenous single lead system designed for ventricular defibrillation is feasible and safe at low energies, and may have important clinical applications.

  13. Cardiac pacemaker battery discharge after external electrical cardioversion for broad QRS Complex Tachycardia.

    Science.gov (United States)

    Annamaria, Martino; Andrea, Scapigliati; Michela, Casella; Tommaso, Sanna; Gemma, Pelargonio; Antonio, Dello Russo; Roberto, Zamparelli; Stefano, De Paulis; Fulvio, Bellocci; Rocco, Schiavello

    2008-08-01

    External electrical cardioversion or defibrillation may be necessary in patients with implanted cardiac pacemaker (PM) or implantable cardioverter defibrillator (ICD). Sudden discharge of high electrical energy employed in direct current (DC) transthoracic countershock may damage the PM/ICD system resulting in a series of possible device malfunctions. For this reason, when defibrillation or cardioversion must be attempted in a patient with a PM or ICD, some precautions should be taken, particularly in PM dependent patients, in order to prevent damage to the device. We report the case of a 76-year-old woman with a dual chamber PM implanted in the right subclavicular region, who received two consecutive transthoracic DC shocks to treat haemodynamically unstable broad QRS complex tachycardia after cardiac surgery performed with a standard sternotomic approach. Because of the sternal wound and thoracic drainage tubes together with the severe clinical compromise, the anterior paddle was positioned near the pulse generator. At the following PM test, a complete battery discharge was detected.

  14. Effectiveness of direct-current cardioversion for treatment of supraventricular tachyarrhythmias, in particular atrial fibrillation, in surgical intensive care patients.

    Science.gov (United States)

    Mayr, Andreas; Ritsch, Nicole; Knotzer, Hans; Dünser, Martin; Schobersberger, Wolfgang; Ulmer, Hanno; Mutz, Norbert; Hasibeder, Walter

    2003-02-01

    To evaluate primary success rate and effectiveness of direct-current cardioversion in postoperative critically ill patients with new-onset supraventricular tachyarrhythmias. Prospective intervention study. Twelve-bed surgical intensive care unit in a university teaching hospital. Thirty-seven consecutive, adult surgical intensive care unit patients with new-onset supraventricular tachyarrhythmias without previous history of tachyarrhythmias. Direct-current cardioversion using a monophasic, damped sinus-wave defibrillator. Energy levels used were 50, 100, 200, and 300 J for regular supraventricular tachyarrhythmias (n = 6) and 100, 200, and 360 J for irregular supraventricular tachyarrhythmias (n = 31). None of the patients was hypoxic, hypokalemic, or hypomagnesemic at onset of supraventricular tachyarrhythmia. Direct-current cardioversion restored sinus rhythm in 13 of 37 patients (35% primary responders). Most patients responded to the first or second direct-current cardioversion shock. Only one of 25 patients requiring more than two direct-current cardioversion shocks converted into sinus rhythm. Primary responders were significantly younger and demonstrated significant differences in arterial Po2 values at onset of supraventricular tachyarrhythmias compared with nonresponders. At 24 and 48 hrs, only six (16%) and five (13.5%) patients remained in sinus rhythm, respectively. In contrast to recent literature, direct-current cardioversion proved to be an ineffective method for treatment of new-onset supraventricular tachyarrhythmias and, in particular, atrial fibrillation with a rapid ventricular response in surgical intensive care unit patients.

  15. Pharmacologic versus direct-current electrical cardioversion of atrial flutter and fibrillation

    NARCIS (Netherlands)

    Van Gelder, IC; Tuinenburg, AE; Schoonderwoerd, BS; Tieleman, RG; Crijns, HJGM

    1999-01-01

    Conversion of atrial flutter and atrial fibrillation (AF) can be achieved by either pharmacologic or direct-current (DC) electrical cardioversion. DC electrical cardioversion is more effective and restores sinus rhythm instantaneously; however, general anesthesia is necessary, which can cause severe

  16. Cardioversion and Risk of Adverse Events with Dabigatran versus Warfarin-A Nationwide Cohort Study.

    Directory of Open Access Journals (Sweden)

    Jannik Langtved Pallisgaard

    Full Text Available Cardioversion can rapidly and effectively restore sinus rhythm in patients with persistent atrial fibrillation. Since 2011 dabigatran has been available as an alternative to warfarin to prevent thromboembolic events in patients with non-valvular atrial fibrillation undergoing cardioversion. We studied time to cardioversion, risk of adverse events, and risk of readmission with atrial fibrillation after cardioversion according to anticoagulation therapy.Through the nationwide Danish registries we included 1,230 oral anticoagulation naïve patients with first time non-valvular atrial fibrillation and first time cardioversion from 2011 to 2012; 37% in the dabigatran group (n = 456, and 63% in the warfarin group (n = 774. Median time to cardioversion was 4.0 (interquartile range [IQR] 2.9 to 6.5 and 6.9 (IQR 3.9 to 12.1 weeks in the dabigatran and warfarin groups respectively, and the adjusted odds ratio of cardioversion within the first 4 weeks was 2.3 (95% confidence interval [CI] 1.7 to 3.1 in favor of dabigatran. The cumulative incidence of composite endpoint of stroke, bleeding or death were 2.0% and 1.0% at 30 weeks in the warfarin and dabigatran groups respectively, with an adjusted hazard ratio of 1.33 (95% CI 0.33 to 5.42. Cumulative incidence of readmission with atrial fibrillation after 30 weeks were 9% and 11% in the warfarin and dabigatran groups, respectively, and an adjusted hazard ratio of 0.66 (95% CI 0.41 to 1.08.Anticoagulation treatment with dabigatran allows shorter time to cardioversion for atrial fibrillation than warfarin, and appears to be an effective and safe alternative treatment strategy to warfarin.

  17. Pharmacological cardioversion of atrial fibrillation with vernakalant: evidence in support of the ESC Guidelines.

    Science.gov (United States)

    Savelieva, Irene; Graydon, Richard; Camm, A John

    2014-02-01

    Pharmacological rhythm control (often including electrical or pharmacological cardioversion) is an integral part of therapy for atrial fibrillation (AF) worldwide. Antiarrhythmic drug strategies would be preferred in many patients provided effective and safe antiarrhythmic agents are available. Also, pharmacological cardioversion could be the preferred option if the limitations of currently available drugs, such as restriction to patients without structural heart disease (flecainide and propafenone), risk of torsade de pointes (ibutilide), and slow onset of action (amiodarone), were overcome. The intravenous formulation of vernakalant (Brinavess, Cardiome) has been approved for pharmacological cardioversion of recent-onset AF (≤7 days) and early (≤3 days) post-operative AF in the European Union, Iceland, and Norway. Vernakalant has a high affinity to ion channels specifically involved in repolarization of atrial tissue and has minimal effects in the ventricles and thus, is thought to have a low proarrhythmic potential. Vernakalant is administered as a 10 min infusion of 3 mg/kg, and if AF persists after 15 min, an additional dose of 2 mg/kg can be given. The efficacy and safety of the drug has been extensively investigated in randomized controlled trials against placebo and an active comparator (amiodarone). The placebo-extracted efficacy of vernakalant is ∼47%. A significant advantage is a rapid effect, with the median to conversion ranging between 8 and 14 min, with the majority of patients (75-82%) converting after the first dose. Vernakalant retained its efficacy in subgroups of patients with associated cardiovascular disease such as hypertension and ischaemic heart disease, but its benefit may be lower and risk of adverse effects is higher in patients with heart failure. In the post-market reports, cardioversion rates with vernakalant are 65-70%. This review focuses on the role of vernakalant in pharmacological cardioversion for AF.

  18. Atrial and ventricular function after cardioversion of atrial fibrillation.

    Science.gov (United States)

    Xiong, C.; Sonnhag, C.; Nylander, E.; Wranne, B.

    1995-01-01

    OBJECTIVE--Previous studies on atrial recovery after cardioversion of atrial fibrillation have not taken into account new knowledge about the pathophysiology of transmitral and transtricuspid flow velocity patterns. It is possible to shed further light on this problem if atrioventricular inflow velocity, venous filling pattern, and atrioventricular annulus motion are recorded and interpreted together. DESIGN--Prospective examinations of mitral and tricuspid transvalvar flow velocities, superior caval and pulmonary venous filling, and mitral and tricuspid annulus motion were recorded using Doppler echocardiography. Examinations were performed before and 24 hours, 1 month, and 20 months after cardioversion. SETTING--Tertiary referral centre for cardiac disease with facilities for invasive and non-invasive investigation. PATIENTS--16 patients undergoing cardioversion of atrial fibrillation in whom sinus rhythm had persisted for 24 hours or more. RESULTS--Before conversion there was no identifiable A wave in transvalvar flow recordings. The total motion of the tricuspid and mitral annulus was subnormal and there was no identifiable atrial component. Venous flow patterns in general showed a low systolic velocity. After conversion, A waves and atrial components were seen in all patients and increased significantly (P atrial components, an increased systolic component of venous inflow, an increased A wave velocity, and a decreased E/A ratio of the transvalvar velocity curves. The ventricular component of annulus motion was unchanged. Changes in general occurred earlier on the right side than the left. CONCLUSIONS--This study indicates that, in addition to the previously known electromechanical dissociation of atrial recovery that exists after cardioversion of atrial fibrillation, there may also be a transient deterioration of ventricular function modulating the transvalvar inflow velocity recordings. Function on the right side generally becomes normal earlier than on the

  19. A randomized trial comparing monophasic and biphasic waveform shocks for external cardioversion of atrial fibrillation

    NARCIS (Netherlands)

    Koster, Rudolph W.; Dorian, Paul; Chapman, Fred W.; Schmitt, Paul W.; O'Grady, Sharon G.; Walker, Robert G.

    2004-01-01

    Background We compared efficacy of and pain felt after biphasic truncated exponential (BTE) and monophasic damped sine (MDS) shocks in patients undergoing external cardioversion of atrial fibrillation (AF). Methods Patients with AF were randomized to BTE or MDS waveform cardioversion. Successive

  20. Cardioversion for atrial fibrillation in current European practice : results of the European Heart Rhythm Association survey

    NARCIS (Netherlands)

    Hernandez-Madrid, Antonio; Svendsen, Jesper Hastrup; Lip, Gregory Y. H.; Van Gelder, Isabelle C.; Dobreanu, Dan; Blomstrom-Lundqvist, Carina

    This survey was conducted to provide an insight into the current clinical practice regarding the use of cardioversion for atrial fibrillation (AF) in Europe. Responses were received from 57 centres across Europe, 71.9 of which were university hospitals. For electrical cardioversion, general

  1. An unusual case of cardiac tamponade following electrical cardioversion

    NARCIS (Netherlands)

    Jessurun, GAJ; Crijns, HJGM; vanWijngaarden, J

    The clinical presentation of cardiac tamponade may uncover underlying pericardial disease. We describe a patient who was being treated for lone atrial fibrillation, In this case, direct current cardioversion for recurrence of atrial fibrillation was complicated by a life-threatening hemopericardium.

  2. The predictive value of transthoracic echocardiographic variables for sinus rhythm maintenance after electrical cardioversion of atrial fibrillation. Results from the CAPRAF study, a prospective, randomized, placebo-controlled study.

    Science.gov (United States)

    Grundvold, Irene; Tveit, Arnljot; Smith, Pål; Seljeflot, Ingebjørg; Abdelnoor, Michael; Arnesen, Harald

    2008-01-01

    The recurrence rate of atrial fibrillation after electrical cardioversion is disappointingly high. The aim of the present study was to prospectively investigate if standard echocardiographic variables at the day of cardioversion could predict sinus rhythm maintenance. Transthoracic echocardiographic examination was performed within 4 h after cardioversion for all the patients in the CAPRAF (Candesartan in the Prevention of Relapsing Atrial Fibrillation) study. Cardioversion was successful for 137 patients not given specific antiarrhythmic therapy, and only 41 (30%) maintained sinus rhythm at 6-month follow-up. There were significant (p = 0.05) lower transmitral A wave velocities in the group with relapsing atrial fibrillation compared with the group with sinus rhythm at 6-month follow-up. All patients with the lowest A wave velocities had an early recurrence of atrial fibrillation. There were no differences between the groups regarding atrial dimensions or left ventricular function. The use of the angiotensin II receptor antagonist candesartan had no influence on the echocardiographic variables, nor on the recurrence rate of atrial fibrillation after cardioversion. Transthoracic echocardiographic examination performed a short time after electrical cardioversion of atrial fibrillation showed that only A wave peak velocities were significantly predictive of sinus rhythm maintenance 6 months after the procedure. (c) 2008 S. Karger AG, Basel.

  3. The Stressors and Coping Strategies of Older Adults With Persistent Atrial Fibrillation Prior to and Following Direct Current Cardioversion.

    Science.gov (United States)

    Rush, Kathy L; Hatt, Linda; Shay, Matt; Gorman, Nicole; Laberge, Carol G; Reid, R Colin; Wilson, Ryan

    2017-09-01

    The purpose of this study was to explore the stressors and coping strategies of older adults with persistent atrial fibrillation (AF) before and after direct current cardioversion. The study used a qualitative descriptive design. Sixteen patients were recruited through an AF clinic to participate in individual interviews prior to the cardioversion and at 6 and 12 weeks post procedure. Pre-cardioversion, older adults experienced symptom and health care-related stressors superimposed on existing non-AF stressors. They used a range of emotion and problem-focused coping. Non-AF stressors increased post procedure at the same time that participants perceived less need for coping strategies with a return to regular rhythm. There was a shift from AF to non-AF related stressors following the cardioversion but a decrease in coping strategies. Older adults with AF should be encouraged to maintain use of coping strategies to manage ongoing stress and reduce the risk of AF recurrence.

  4. Cardioversion of atrial fibrillation in a real-world setting

    DEFF Research Database (Denmark)

    Frederiksen, Anne Sofie; Albertsen, Andi Eie; Christesen, Amanda Marie Somer

    2017-01-01

    .10-11.81). Major bleeding events occurred in four patients (0.58%) in the NOAC group and 11 patients (0.75%) in the warfarin group (RR 0.78; 95% CI 0.25-2.43). Conclusion: In a real-world clinical setting with anticoagulation handled in a structured multidisciplinary AF clinic, the waiting time to cardioversion...

  5. Safety of transvenous low energy cardioversion of atrial fibrillation in patients with a history of ventricular tachycardia: effects of rate and repolarization time on proarrhythmic risk.

    Science.gov (United States)

    Simons, G R; Newby, K H; Kearney, M M; Brandon, M J; Natale, A

    1998-02-01

    The objective of this study was to assess the safety and efficacy of transvenous low energy cardioversion of atrial fibrillation in patients with ventricular tachycardia and atrial fibrillation and to study the mechanisms of proarrhythmia. Previous studies have demonstrated that cardioversion of atrial fibrillation using low energy, R wave synchronized, direct current shocks applied between catheters in the coronary sinus and right atrium is feasible. However, few data are available regarding the risk of ventricular proarrhythmia posed by internal atrial defibrillation shocks among patients with ventricular arrhythmias or structural heart disease. Atrial defibrillation was performed on 32 patients with monomorphic ventricular tachycardia and left ventricular dysfunction. Shocks were administered during atrial fibrillation (baseline shocks), isoproterenol infusion, ventricular pacing, ventricular tachycardia, and atrial pacing. Baseline shocks were also administered to 29 patients with a history of atrial fibrillation but no ventricular arrhythmias. A total of 932 baseline shocks were administered. No ventricular proarrhythmia was observed after well-synchronized baseline shocks, although rare inductions of ventricular fibrillation occurred after inappropriate T wave sensing. Shocks administered during wide-complex rhythms (ventricular pacing or ventricular tachycardia) frequently induced ventricular arrhythmias, but shocks administered during atrial pacing at identical ventricular rates did not cause proarrhythmia. The risk of ventricular proarrhythmia after well-synchronized atrial defibrillation shocks administered during narrow-complex rhythms is low, even in patients with a history of ventricular tachycardia. The mechanism of proarrhythmia during wide-complex rhythms appears not to be related to ventricular rate per se, but rather to the temporal relationship between shock delivery and the repolarization time of the previous QRS complex.

  6. [The prediction of atrial fibrillation recurrence after electrical cardioversion with the chemoreflex sensitivity].

    Science.gov (United States)

    Budeus, M; Hennersdorf, M; Perings, C; Strauer, B E

    2004-04-01

    Patients with paroxysmal atrial fibrillation have a lower chemoreflex sensitivity (CHRS) which is characterized as an autonomic dysfunction. Because of this observation we examined the theory of an autonomic dysfunction as the reason for the reccurrence of atrial fibrilation after electrical cardioversion. We measured the CHRS among 43 patients 24 h after successful electrical cardioversion and the patients were controlled for at least 6 months. During the six months of follow-up a recurrence was observed in 18 patients with a mean of 8.3 days. There was no difference in organic heart disease or in the use of drugs. Left atrial diameter was not significantly larger in patients with a recurrence. Patients with a recurrence have a significantly lower CHRS than patients with sinus rhythm (2.41 +/- 1.82 vs 5.62 +/- 3.02 ms/mmHg, p atrial fibrillation. The predictive power of the method has to be examined by prospective investigations of a larger patient population and a longer follow-up. Patients with paroxysmal atrial fibrillation have a lower chemoreflex sensitivity (CHRS) which is characterized as an autonomic dysfunction. Because of this observation we examined the theory of an autonomic dysfunction as the reason for the recurrence of atrial fibrillation after electrical cardioversion.

  7. Safety and efficacy of vernakalant for acute cardioversion of atrial fibrillation: an update

    Science.gov (United States)

    Tsuji, Yukiomi; Dobrev, Dobromir

    2013-01-01

    Intravenous vernakalant has recently been approved in Europe as an atrial-selective antiarrhythmic drug for the conversion of recent-onset atrial fibrillation (AF). It inhibits atrial-selective K+ currents (IK,ACh and IKur) and causes rate-dependent atrial-predominant Na+ channel block, with only a small inhibitory effect on the rapid delayed rectifier K+ current (IKr) in the ventricle. Due to its atrial-selective properties, vernakalant prolongs the effective refractory period of the atria with minimal effects on the ventricles, being associated with a low proarrhythmic risk for torsades de pointes arrhythmias. Five pivotal clinical trials consistently demonstrated that vernakalant rapidly terminates AF with stable maintenance of sinus rhythm for up to 24 hours. A head-to-head comparative trial showed that the 90-minute conversion rate of vernakalant was substantially higher than that of amiodarone. Initially, a longer-acting oral formulation of vernakalant was shown to be effective and safe in preventing AF recurrence after cardioversion in a Phase IIb study. However, the clinical studies testing oral vernakalant for maintenance of sinus rhythm after AF cardioversion were prematurely halted for undisclosed reasons. This review article provides an update on the safety and efficacy of intravenous vernakalant for the rapid cardioversion of AF. PMID:23637539

  8. A new therapeutic strategy for electrical cardioversion of atrial fibrillation.

    Science.gov (United States)

    de Luca, I; Sorino, M; Del Salvatore, B; de Luca, L

    2001-11-01

    The conventional approach to cardioversion of atrial fibrillation includes a period of anticoagulation with oral anticoagulant therapy (OAT) extending from 3 weeks precardioversion to 4 weeks postcardioversion. The protocol of rapid anticoagulation (such as that of the ACUTE study) consists of a precardioversion transesophageal echocardiography (TEE) followed by OAT for 4 weeks. In the last few years low-molecular-weight heparins have established themselves as a safe and efficacious alternative to traditional antithrombotic therapies. The aim of this study was to demonstrate that the exclusion of thrombi by precardioversion TEE together with the exclusion of atrial stunning by a second TEE performed after 1 week, to date not suggested in the literature, could reduce to 7 days the period of pericardioversion anticoagulation. This therapy would be carried out using low-molecular-weight heparins with no need for biological monitoring and with the possibility of self-administration. We have studied 57 consecutive patients who had atrial fibrillation or flutter with a history of atrial fibrillation lasting > 48 hours. All patients received enoxaparin at a dosage of 100 IU antiXa/kg twice daily before undergoing multiplane TEE. Previous informed consent and ethical committee authorization had been obtained. Twenty-four hours following TEE, in the absence of thrombi and/or spontaneous moderate/severe echocontrast in the atrial chambers, the patients underwent electrical cardioversion and were discharged within 24 hours of sinus rhythm restoration. These patients were prescribed enoxaparin at the indicated dosage twice daily until TEE, performed in an outpatients setting 7 days following cardioversion. In the absence of thrombi and/or atrial and/or left atrial appendage stunning, OAT was terminated. Enoxaparin was associated with OAT for the following 3 weeks if any of the following signs of stunning were present: A wave inferior to the normal value for age at transmitral

  9. Thromboembolic risk in 16 274 atrial fibrillation patients undergoing direct current cardioversion with and without oral anticoagulant therapy

    DEFF Research Database (Denmark)

    Hansen, Morten Lock; Jepsen, Rikke Malene H G; Olesen, Jonas Bjerring

    2015-01-01

    -time DC cardioversion for atrial fibrillation between 2000 and 2008. Use of oral anticoagulant therapy within 90 days prior and 360 days after DC cardioversion was obtained from the Danish Register of Medicinal Product Statistics. The risk of thromboembolism was estimated by calculating incidence rates......AIMS: To study the risk of thromboembolism in a nationwide cohort of atrial fibrillation patients undergoing direct current (DC) cardioversion with or without oral anticoagulant coverage. METHODS AND RESULTS: A retrospective study of 16 274 patients in Denmark discharged from hospital after a first...... and by multivariable adjusted Cox proportional-hazard models. During the initial 30 days following discharge, the thromboembolic incidence rate was 10.33 per 100 patient-years for the no prior oral anticoagulant therapy group [n = 5084 (31.2%)], as compared with 4.00 per 100 patient-years for the prior oral...

  10. Atypical cardioversion in unstable arrhythmia caused by clavicle surgery

    Directory of Open Access Journals (Sweden)

    Stefan Bushuven

    2017-12-01

    Full Text Available We report on a 54-year old male with traumatic brain injury, flail chest and floating shoulder undergoing intramedullary stabilization of a midshaft clavicle fracture in beach chair position. Intraoperatively the patient developed instable atrial fibrillation triggered by implantation of intramedullary nail. Secondary this case shows feasibility of cardioversion in latero-lateral electrode-position due to inaccessible standard positions and patient fixation between the operation table and the X-ray apparatus.

  11. Budget impact analysis of rivaroxaban vs. warfarin anticoagulation strategy for direct current cardioversion in non-valvular atrial fibrillation patients: the MonaldiVert Economic Study.

    Science.gov (United States)

    Russo, Vincenzo; Rago, Anna; Papa, Andrea A; Bianchi, Valter; Tavoletta, Vincenzo; DE Vivo, Stefano; Cavallaro, Ciro; Nigro, Gerardo; D'Onofrio, Antonio

    2018-02-01

    Rivaroxaban is the first novel oral anticoagulant to receive regulatory approval for non-valvular atrial fibrillation (NVAF) patients who require cardioversion. The MonaldiVert real life experience showed positive benefit-risk profile of short term rivaroxaban administration for transesophageal echocardiogram guided cardioversion in patients who had not achieved adequate pre-procedural vitamin K antagonist (VKA) anticoagulation. Aim of our study was to perform a budget impact analysis of MonaldiVert anticoagulation strategy for direct current cardioversion in NVAF patients and to compare the following costs borne by the Regional Healthcare System (RHS) with those for a hypothetical cohort of identical patients underwent from the beginning to early rivaroxaban treatment before direct current cardioversion. The mean costs per each NVAF patient treated with VKA strategy and rivaroxaban rescue strategy were € 134.53 and € 189.83, respectively. Considering a hypothetical scenario in which all study population would be treated from the beginning with rivaroxaban (rivaroxaban early strategy), the mean cost per patient would have been € 81.11. The total cost borne by the RHS, including the cost of the cardioversion procedure, for the two therapeutic strategies carried out at Monaldi Hospital (VKA strategy and Rivaroxaban rescue strategy) was € 88,458.53. The total cost would be borne by the RHS for rivaroxaban early strategy, if applied to all study population, would have been € 69,989.15 with a saving of € 18,469.38 compared to the actually applied strategy. Rivaroxaban rescue strategy for transesophageal echocardiography guided direct current cardioversion in NVAF patients, who had not achieved adequate pre-procedural VKA anticoagulation, is an effective and safe strategy, which allows to not delay the procedure, reducing times and wastage of cardioversion slots, without substantial costs increase.

  12. Safety and efficacy of vernakalant for acute cardioversion of atrial fibrillation: an update

    Directory of Open Access Journals (Sweden)

    Dobrev D

    2013-04-01

    Full Text Available Yukiomi Tsuji,1 Dobromir Dobrev1–3 1Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen, Essen, 2Division of Experimental Cardiology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 3Deutsches Zentrum für Herz-Kreislauf-Forshcung [German Center for Cardiovascular Research], partner site Heidelberg/Mannheim, Mannheim, Germany Abstract: Intravenous vernakalant has recently been approved in Europe as an atrial-selective antiarrhythmic drug for the conversion of recent-onset atrial fibrillation (AF. It inhibits atrial-selective K+ currents (IK,ACh and IKur and causes rate-dependent atrial-predominant Na+ channel block, with only a small inhibitory effect on the rapid delayed rectifier K+ current (IKr in the ventricle. Due to its atrial-selective properties, vernakalant prolongs the effective refractory period of the atria with minimal effects on the ventricles, being associated with a low proarrhythmic risk for torsades de pointes arrhythmias. Five pivotal clinical trials consistently demonstrated that vernakalant rapidly terminates AF with stable maintenance of sinus rhythm for up to 24 hours. A head-to-head comparative trial showed that the 90-minute conversion rate of vernakalant was substantially higher than that of amiodarone. Initially, a longer-acting oral formulation of vernakalant was shown to be effective and safe in preventing AF recurrence after cardioversion in a Phase IIb study. However, the clinical studies testing oral vernakalant for maintenance of sinus rhythm after AF cardioversion were prematurely halted for undisclosed reasons. This review article provides an update on the safety and efficacy of intravenous vernakalant for the rapid cardioversion of AF. Keywords: atrial fibrillation, antiarrhythmic drug, atrial-selective K+ currents, Na+ channel block, ventricles

  13. Left atrial appendage thrombosis during therapy with rivaroxaban in elective cardioversion for permanent atrial fibrillation

    Directory of Open Access Journals (Sweden)

    Walter Serra

    2015-09-01

    Full Text Available Electric external cardioversion (EEC for permanent atrial fibrillation (AF carries a risk of thromboembolic events (TE. The use of transesophageal echocardiography (TEE to guide the management of atrial fibrillation may be considered a clinically effective alternative strategy to conventional therapy for patients in whom elective cardioversion is planned. Therapeutic anticoagulation with novel oral anticoagulants (NOAC is recommended for 3 to 4 weeks before and an anticoagulation life-long therapy is recommended after EEC to reduce TE, in patients with high CHA2DS2-VASc score; however, only few data are currently available about safety of shortterm anticoagulation with NOAC in the setting of EEC. Patients with increased risk of thromboembolism have not been adequately studied and the monitoring of anticoagulant effects can also have important benefits in case of drug interactions. We report a case of a 68-year old man with AF from September 2014. Moderate depression of global left ventricular systolic function was detected by echocardiographic exam. On the basis of a high thromboembolic risk, an anticoagulant therapy with rivaroxaban, at the dose of 20 mg/day, was started. TEE showed a thrombus in the left atrial appendage. This case demonstrates the utility of performing TEE prior than EEC in patients with hypokinetic cardiomyopathy other than AF in therapy with NOAC. We underline the presence of significant pharmacodynamic interference of rivaroxaban with other drugs such as oxcarbazepine.

  14. Left Atrial Sphericity Index Predicts Early Recurrence of Atrial Fibrillation After Direct-Current Cardioversion

    DEFF Research Database (Denmark)

    Osmanagic, Armin; Möller, Sören; Osmanagic, Azra

    2016-01-01

    BACKGROUND: Attempts to achieve rhythm control using direct-current cardioversion (DCC) are common in those with persistent atrial fibrillation (AF). Although often successful, AF recurs within 1 month in as many as 57% of patients. The aim of this study was to assess whether a baseline left atri...

  15. Role of spiral wave pinning in inhomogeneous active media in the termination of atrial fibrillation by electrical cardioversion.

    Science.gov (United States)

    Kuklik, Pawel; Wong, Christopher X; Brooks, Anthony G; Zebrowski, Jan Jacek; Sanders, Prashanthan

    2010-03-01

    Atrial fibrillation is the most common type of arrhythmia to affect humans. One of the treatment modalities for atrial fibrillation is an electrical cardioversion. Electrical cardioversion can result in one of three outcomes: an immediate termination of arrhythmic activity, a delayed termination or unsuccessful termination. The mechanism of delayed termination is unknown. Here we present a model of an atrial fibrillation as a coexistence of several spiral waves pinned to the inhomogeneities in active media. We show that in inhomogeneous system delayed termination can be explained as the unpinning of a spiral wave from inhomogeneities and its termination after collision with the edge of the system. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  16. Pacemaker System Malfunction Resulting from External Electrical Cardioversion: A Case Report

    Directory of Open Access Journals (Sweden)

    Taku Nishida, MD

    2009-01-01

    Full Text Available In May 2005 a 68-year-old woman received a VDD pacemaker implantation in the right pectoral region at our hospital for the treatment of complete atrioventricular block. In July 2008, she was diagnosed with dilated cardiomyopathy based on histological testing. In November 2008, she developed syncope due to ventricular tachycardia while at another hospital. She underwent external electrical cardioversion with an anterior-lateral paddle position using a single shock of 100 J. This shock led to severe bradycardia resulting in a transfer to our hospital. The physician who provided the shock could not have been aware that the patient had an implanted pacemaker. The skin above the pulse generator was burned. The electrocardiogram showed no pacing spikes or ventricular escape rhythm. Investigation of the pacemaker 3 hours after cardioversion revealed reprogramming of the device and a marked rise in the lead impedance (>3,000 ohm. Removal of the generator and implantation of a biventricular cardioverter defibrillator were required. The emergency situation, the small size of the generator, the small incision made using the buried suture method, and the patient's obesity all probably contributed to the physician's not noticing the implanted pacemaker. It is important to increase awareness of the severe consequences that may follow if the physician administering external defibrillation does not know about the patient's implanted pacemaker.

  17. Time and frequency recurrence analysis of persistent atrial fibrillation after electrical cardioversion

    International Nuclear Information System (INIS)

    Alcaraz, Raúl; Rieta, José Joaquín

    2009-01-01

    Electrical cardioversion (ECV) has become a mainstay of therapy for the treatment of persistent atrial fibrillation (AF), which is an arrhythmia that affects up to 1% of the general population. The procedure is initially effective, but it is also characterized by a high rate of AF recurrence. As a consequence, it would be clinically useful to predict normal sinus rhythm (NSR) maintenance after ECV before it is attempted. In this respect, several clinical, echocardiographic and demographic parameters have been analyzed by other authors. However, these indices are weak predictors of ECV outcome. In this work, surface electrocardiographic (ECG) recordings were used to extract the atrial activity (AA) signal and parametrize the fibrillatory (f) waves, both in time and frequency, to obtain AF recurrence predictors. Parameters as f waves amplitude (fWA), AA mean power, dominant atrial frequency (DAF), its first harmonic, etc were studied. Obtained results showed that fWA was the most significant predictor of AF recurrence 1 month later. Concretely, 72.73% of the patients resulting in NSR, 83.87% relapsing to AF and 80.0% with unsuccessful ECV, were correctly identified. Therefore, fWA classified satisfactorily 79.37% of the analyzed patients. In addition, a forward stepwise discriminant analysis, with a leave-one-out cross validation approach, proved that fWA and DAF combination provided an improved diagnostic ability of 85.71%. In this case 86.36%, 83.87% and 90% of the patients who resulted in NSR, relapsed to AF and with unsuccessful ECV, were correctly discerned, respectively. In conclusion, fWA could be considered as a promising predictor of ECV outcome during the first month following the procedure. Additionally, time and frequency indices could yield complementary information useful to predict the cardioversion outcome. Finally, further studies are needed to validate the robustness of these parameters and the repeatability of the obtained results on wider

  18. COMPARISON OF DIRECT COSTS OF DABIGATRAN AND WARFARIN THERAPY IN PATIENTS WITH NON-VALVULAR ATRIAL FIBRILLATION DURING PREPARATION FOR ELECTIVE CARDIOVERSION IN THE REAL CLINICAL PRACTICE

    Directory of Open Access Journals (Sweden)

    L. E. Kuvshinova

    2015-09-01

    Full Text Available Aim. To compare direct medical costs of dabigatran and warfarin therapy in patients with non-valvular atrial fibrillation (NVAF during preparation for elective cardioversion. Material and methods. An open non-randomized study was conducted to evaluate direct medical costs (cost of drug, cost of the international normalized ratio (INR adjust- ment in outpatient clinic, cost of visits to cardiologist. Patients (n=62 with persistent NVAF (AF paroxysm duration > 48 hours were enrolled. All of them requested medical as- sistance and were decided to perform an elective cardioversion. The patients received warfarin (n=32 or dabigatran (n=30. The patients of the both groups were similar in the main clinical characteristics and thromboembolic risk levels according to CHA2DS2-VASc scale.Results. Treatment duration before elective cardioversion was 21±2 and 30.5±4.5 days for dabigatran and warfarin groups, respectively (p<0.05. Average costs of visits to cardiologists were 3,720 and 744 RUB in warfarin and dabigatran groups, respectively (p<0.05, and drug costs were 53.63 and 1,172.01 RUB, respectively (p<0.05. The costs of laboratory INR monitoring were 3,058 RUB in warfarin group. Total costs per patient were 6,831.63 and 1,916.01 RUB in warfarin and dabigatran groups, respectively (p<0.05. Conclusion. In the real clinical practice in patients with NVAF dabigatran antithromboembolic therapy substantially reduces direct medical costs in comparison with warfarin ther- apy during preparation for elective cardioversion. Dabigatran therapy reduces time from the decision of elective cardioversion and antithromboembolic therapy start to car- dioversion performance.

  19. COMPARISON OF DIRECT COSTS OF DABIGATRAN AND WARFARIN THERAPY IN PATIENTS WITH NON-VALVULAR ATRIAL FIBRILLATION DURING PREPARATION FOR ELECTIVE CARDIOVERSION IN THE REAL CLINICAL PRACTICE

    Directory of Open Access Journals (Sweden)

    L. E. Kuvshinova

    2013-01-01

    Full Text Available Aim. To compare direct medical costs of dabigatran and warfarin therapy in patients with non-valvular atrial fibrillation (NVAF during preparation for elective cardioversion. Material and methods. An open non-randomized study was conducted to evaluate direct medical costs (cost of drug, cost of the international normalized ratio (INR adjust- ment in outpatient clinic, cost of visits to cardiologist. Patients (n=62 with persistent NVAF (AF paroxysm duration > 48 hours were enrolled. All of them requested medical as- sistance and were decided to perform an elective cardioversion. The patients received warfarin (n=32 or dabigatran (n=30. The patients of the both groups were similar in the main clinical characteristics and thromboembolic risk levels according to CHA2DS2-VASc scale.Results. Treatment duration before elective cardioversion was 21±2 and 30.5±4.5 days for dabigatran and warfarin groups, respectively (p<0.05. Average costs of visits to cardiologists were 3,720 and 744 RUB in warfarin and dabigatran groups, respectively (p<0.05, and drug costs were 53.63 and 1,172.01 RUB, respectively (p<0.05. The costs of laboratory INR monitoring were 3,058 RUB in warfarin group. Total costs per patient were 6,831.63 and 1,916.01 RUB in warfarin and dabigatran groups, respectively (p<0.05. Conclusion. In the real clinical practice in patients with NVAF dabigatran antithromboembolic therapy substantially reduces direct medical costs in comparison with warfarin ther- apy during preparation for elective cardioversion. Dabigatran therapy reduces time from the decision of elective cardioversion and antithromboembolic therapy start to car- dioversion performance.

  20. Early recurrences of atrial fibrillation after electrical cardioversion : A result of fibrillation-induced electrical remodeling of the atria?

    NARCIS (Netherlands)

    Tieleman, RG; Van Gelder, IC; Crijns, HJGM; De Kam, PJ; Van den Berg, MP; Haaksma, J; Van der Woude, HJ; Allessie, MA

    Objectives, We sought to investigate whether, in humans, the timing and incidence of a relapse of atrial fibrillation (AF) during the first month after cardioversion indicates the presence of electrical remodeling and whether this could be influenced by prevention of intracellular calcium overload

  1. Activation of generalised inflammatory reaction following electrical cardioversion.

    Science.gov (United States)

    Gajek, Jacek; Zyśko, Dorota; Mysiak, Andrzej; Mazurek, Walentyna

    2004-09-01

    Restoration of sinus rhythm in patients with atrial fibrillation (AF) is associated with an increased risk of thrombo-embolic complications due to delayed return of the left atrial and left atrial appendage systolic function. Direct current cardioversion (DC), used for AF termination, may cause myocardial injury and subsequent activation of inflammatory response. A C-reactive protein (CRP) is a non-specific marker of inflammation. To examine the effects of external DC of AF or atrial flutter (AFlut) on inflammatory processes. The study group consisted of 35 patients (20 females and 15 males, mean age 67.9+/-9.7 years, range 46-83 years) with paroxysmal or persistent AF/AFlut who underwent elective DC. CRP plasma concentration was measured before and 24 hours after DC. The mean total DC energy was 431.2 J. CRP plasma concentration increased significantly following DC - from 3.9+/-3.4 ng/ml before DC to 7.2+/-6.7 ng/ml after DC (p<0.0001). CRP level correlated with body mass index (r=0.34, p<0.05), however, this correlation became non-significant after inclusion of the presence of diabetes into the statistical model. There was also a positive correlation between CRP values before and after DC (r=0.72, p<0.0001). No correlation between CRP and gender, total power of DC nor the number of DC shocks was detected. External DC of AF/Aflut causes activation of inflammatory processes measured as a significant increase in the CRP plasma concentration.

  2. Improvement of the myocardial performance index in atrial fibrilation patients treated with amiodarone after cardioversion.

    Science.gov (United States)

    Besli, Feyzullah; Basar, Cengiz; Kecebas, Mesut; Turker, Yasin

    2015-03-01

    This study evaluated the response to electrical cardioversion (EC) and the effect on the myocardial performance index (MPI) in patients with persistent and long-standing persistent atrial fibrillation (AF). We enrolled 103 patients (mean age 69.6 ± 8.9 years, 40.7% males) with a diagnosis of persistent and long-standing persistent AF. EC was applied to all patients after one g of amiodarone administration. Echocardiographic findings before EC were compared in patients with successful versus unsuccessful cardioversions and in patients with maintained sinus rhythm (SR) versus those with AF recurrence at the end of the first month. We also compared echocardiographic data before EC versus at the end of the first month in the same patients with maintained SR. SR was achieved in 72.8% of patients and was continued at the end of the first month in 69.3% of the patients. The MPI value of all patients was found to be 0.73 ± 0.21. The size of the left atrium was determined to be an independent predictor of the maintenance of SR at 1 month. In subgroup analyses, when we compared echocardiographic findings before EC and at the end of the first month in patients with maintained SR, the MPI (0.66 ± 0.14 vs 0.56 ± 0.09, p < 0.001) values were significantly decreased. Our study is the first to show impairment of the MPI, which is an indicator of systolic and diastolic function, in patients with persistent and long-standing persistent AF and improvement of the MPI after successful EC.

  3. Rate control is more cost-effective than rhythm control for patients with persistent atrial fibrillation - results from the RAte Control versus Electrical cardioversion (RACE) study

    NARCIS (Netherlands)

    Hagens, VE; Vermeulen, KM; TenVergert, EM; Van Veldhuisen, JGP; Bosker, HA; Kamp, O; Kingma, JH; Tijssen, JGP; Crijns, HJGM; Van Gelder, IC

    Aims To evaluate costs between a rate and rhythm control strategy in persistent atrial. fibrillation. Methods and results In a prospective substudy of RACE (Rate control versus electrical cardioversion for persistent atrial. fibrillation) in 428 of the total 522 patients (206 rate control and 222

  4. Prognostic impact of hs-CRP and IL-6 in patients with persistent atrial fibrillation treated with electrical cardioversion

    DEFF Research Database (Denmark)

    Henningsen, Kristoffer Mads Aaris; Therkelsen, Susette Krohn; Bruunsgaard, Helle

    2009-01-01

    OBJECTIVE: The aim of this study was to assess the role of inflammatory processes in the development of atrial fibrillation (AF) and the prognostic impact of inflammatory markers in predicting long-term risk of AF recurrence after electrical cardioversion (CV). METHODS: High-sensitivity C......-reactive protein (hs-CRP) and interleukin-6 (IL-6) were measured in 56 patients with persistent AF (lasting mean 128 days (range 14-960), mean age 65 years (34-84)), 19 healthy volunteers and 19 patients with permanent AF. Patients with persistent AF underwent CV. Blood samples were taken prior to CV and after 1......, 30 and 180 days. RESULTS: The immediate success rate of CV was 88%, while the total recurrence rate after 180 days was 68%. Patients with permanent AF had significantly higher levels of hs-CRP and IL-6 than patients with persistent AF (p = 0.0011, p

  5. Recurrent Direct Current Cardioversion Induced Takotsubo Cardiomyopathy. A Case Report and Literature Review

    Directory of Open Access Journals (Sweden)

    Athanasios Smyrlis

    2015-01-01

    Full Text Available Stress cardiomyopathy (SCM, also called broken heart syndrome and Takotsubo cardiomyopathy is an increasingly reported syndrome generally characterized by transient systolic dysfunction of the apical and or mid segments of the left ventricle that mimics myocardial infarction, in the absence of obstructive coronary artery disease. Typically patients present within a few hours of exposure to physical or emotional stress. However, the mechanism by which these stressors result in myocardial dysfunction is unclear. Proposed factors include catecholamine excess and coronary vasospasm1. We present the case of a 61-year-old female who experienced acute pulmonary edema secondary to stress cardiomyopathy, on two occasions immediately after undergoing elective direct current cardioversion (DCCV for atrial fibrillation (Afib. After an urgent hospitalization for management of acute left ventricular failure, she made a complete clinical and echocardiographic recovery. The incidence, clinical implications and prognosis of DCCV induced SCM is unknown. Given DCCV for Afib is a common outpatient procedure and DCCV induced SCM can lead to acute clinical deterioration it is important that physicians are vigilant about this newly recognized DCCV complication.

  6. Left Atrial 4D Blood Flow Dynamics and Hemostasis following Electrical Cardioversion of Atrial Fibrillation

    Directory of Open Access Journals (Sweden)

    Merih Cibis

    2017-12-01

    Full Text Available Background: Electrical cardioversion in patients with atrial fibrillation is followed by a transiently impaired atrial mechanical function, termed atrial stunning. During atrial stunning, a retained risk of left atrial thrombus formation exists, which may be attributed to abnormal left atrial blood flow patterns. 4D Flow cardiovascular magnetic resonance (CMR enables blood flow assessment from the entire three-dimensional atrial volume throughout the cardiac cycle. We sought to investigate left atrial 4D blood flow patterns and hemostasis during left atrial stunning and after left atrial mechanical function was restored.Methods: 4D Flow and morphological CMR data as well as blood samples were collected in fourteen patients at two time-points: 2–3 h (Time-1 and 4 weeks (Time-2 following cardioversion. The volume of blood stasis and duration of blood stasis were calculated. In addition, hemostasis markers were analyzed.Results: From Time-1 to Time-2: Heart rate decreased (61 ± 7 vs. 56 ± 8 bpm, p = 0.01; Maximum change in left atrial volume increased (8 ± 4 vs. 22 ± 15%, p = 0.009; The duration of stasis (68 ± 11 vs. 57 ± 8%, p = 0.002 and the volume of stasis (14 ± 9 vs. 9 ± 7%, p = 0.04 decreased; Thrombin-antithrombin complex (TAT decreased (5.2 ± 3.3 vs. 3.3 ± 2.2 μg/L, p = 0.008. A significant correlation was found between TAT and the volume of stasis (r2 = 0.69, p < 0.001 at Time-1 and between TAT and the duration of stasis (r2 = 0.34, p = 0.04 at Time-2.Conclusion: In this longitudinal study, left atrial multidimensional blood flow was altered and blood stasis was elevated during left atrial stunning compared to the restored left atrial mechanical function. The coagulability of blood was also elevated during atrial stunning. The association between blood stasis and hypercoagulability proposes that assessment of left atrial 4D flow can add to the pathophysiological understanding of thrombus formation during atrial fibrillation

  7. Left Atrial 4D Blood Flow Dynamics and Hemostasis following Electrical Cardioversion of Atrial Fibrillation

    Science.gov (United States)

    Cibis, Merih; Lindahl, Tomas L.; Ebbers, Tino; Karlsson, Lars O.; Carlhäll, Carl-Johan

    2017-01-01

    Background: Electrical cardioversion in patients with atrial fibrillation is followed by a transiently impaired atrial mechanical function, termed atrial stunning. During atrial stunning, a retained risk of left atrial thrombus formation exists, which may be attributed to abnormal left atrial blood flow patterns. 4D Flow cardiovascular magnetic resonance (CMR) enables blood flow assessment from the entire three-dimensional atrial volume throughout the cardiac cycle. We sought to investigate left atrial 4D blood flow patterns and hemostasis during left atrial stunning and after left atrial mechanical function was restored. Methods: 4D Flow and morphological CMR data as well as blood samples were collected in fourteen patients at two time-points: 2–3 h (Time-1) and 4 weeks (Time-2) following cardioversion. The volume of blood stasis and duration of blood stasis were calculated. In addition, hemostasis markers were analyzed. Results: From Time-1 to Time-2: Heart rate decreased (61 ± 7 vs. 56 ± 8 bpm, p = 0.01); Maximum change in left atrial volume increased (8 ± 4 vs. 22 ± 15%, p = 0.009); The duration of stasis (68 ± 11 vs. 57 ± 8%, p = 0.002) and the volume of stasis (14 ± 9 vs. 9 ± 7%, p = 0.04) decreased; Thrombin-antithrombin complex (TAT) decreased (5.2 ± 3.3 vs. 3.3 ± 2.2 μg/L, p = 0.008). A significant correlation was found between TAT and the volume of stasis (r2 = 0.69, p < 0.001) at Time-1 and between TAT and the duration of stasis (r2 = 0.34, p = 0.04) at Time-2. Conclusion: In this longitudinal study, left atrial multidimensional blood flow was altered and blood stasis was elevated during left atrial stunning compared to the restored left atrial mechanical function. The coagulability of blood was also elevated during atrial stunning. The association between blood stasis and hypercoagulability proposes that assessment of left atrial 4D flow can add to the pathophysiological understanding of thrombus formation during atrial fibrillation related

  8. Feasibility of a cardiologist-only approach to sedation for electrical cardioversion of atrial fibrillation: a randomized, open-blinded, prospective study.

    Science.gov (United States)

    Guerra, Federico; Pavoni, Ilaria; Romandini, Andrea; Baldetti, Luca; Matassini, Maria Vittoria; Brambatti, Michela; Luzi, Mario; Pupita, Giuseppe; Capucci, Alessandro

    2014-10-20

    Sedation with propofol should be administered by personnel trained in advanced airway management. To overcome this limitation, the use of short acting benzodiazepines by cardiologists spread widely, causing concerns about the safety of this procedure in the absence of anesthesiology assistance. The aim of the study was to compare feasibility of a cardiologist-only approach with an anesthesiologist-assisted sedation protocol during elective direct-current cardioversion (DCC) of persistent atrial fibrillation (AF). This prospective, open-blinded, randomized study included 204 patients, which were admitted for scheduled cardioversion of persistent AF, and randomized in a 1:1 fashion to either propofol or midazolam treatment arm. Patients in the propofol group underwent DCC with anesthesiologist assistance, while patients in the midazolam group saw the cardiologist as the only responsible for both sedation and DCC. Twenty-three adverse events occurred: 13 in the propofol group and 10 in the midazolam group (p=NS). Most of them were related to bradyarrhythmias and respiratory depressions. There was no need of intubation or other advanced resuscitation techniques in any of these patients. No differences were found regarding procedure tolerability and safety endpoints between the two groups. DCC procedures with anesthesiology support were burdened by higher delay from scheduled time and higher costs. Sedation with midazolam administered by cardiologist-only appears to be as safe as sedation with propofol and anesthesiologist assistance. Adverse events were few in both groups and easily handled by the cardiologist alone. A cardiologist-only approach to sedation provides less procedural delay, thus being easier to schedule and correlated with fewer costs. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Efficiency of Electrical Cardioversion of Paroxysmal Atrial Fibrillation in the Use of Bipolar QuasiSinusoidal Impulse in Patients with Coronary Heart Disease

    Directory of Open Access Journals (Sweden)

    V. A. Vostrikov

    2014-01-01

    Full Text Available Objective: to study the dose-dependent efficacy of bipolar quasisinusoidal (BPQS impulse in eliminating 24—48-hour atrial  fibrillation  (AF  in  patients  with  different  clinical  forms  and  course  of  coronary  heart  disease  (CHD  and  different transthoracic  resistance  (TTR. Subjects  and  method.  Ninety-seven  patients  (103  AF  episodes  who  had  undergone transthoracic electrical cardioversion (ECV with a BPQS impulse according to the protocol of dose escalation (from 1—2 to 5 discharges were analyzed. The discharge power range was from ≤40—65 to 195 J. The diameter of electrodes was 12 cm; its location was anterolateral. Results. Elimination of 70% of the AF episodes required 1—2 discharges; that of 18.3 and 11.7% of the episodes needed 3 and 4—5 discharges, respectively. Low-power (40—85 J discharges were found to be highly effective (90% in eliminating 24-hour AF; ~90% ECV success was recorded in patients with 28—48-hour episodes when greater power (≤115 J discharges were applied to 17% of the patients. The total success rate for cardioversion was 94.2%; that of emergency ECV was 81% (p=0.022. The ECV success rate was 88.6% in patients with clinically relevant and severe (acute chronic heart failure (HF, 98% in those with mild HF and without its clinical signs (p<0.05, and 83% in those with acute myocardial infarction. The patients with acute and chronic alveolar lung edema and hydrothorax were recorded to have  the  lowest  BPQS  impulse  efficacy  (73.5%  (by  24.3%  less  than  those  without  lung  edema  and  hydrothorax (p<0.001.  It  was  ascertained  that  TTR  was  in  the  range  of  70  to  142  ohms  (versus  the  lowest  values  substantially decreased the efficacy of smaller power (as high as ~70 J discharges.Conclusion. The findings are indicative of the high (90% efficacy of low-power (≤85—115 J discharges of the BPQS

  10. Utilization and Predictors of Electrical Cardioversion in Patients Hospitalized for Atrial Fibrillation

    Directory of Open Access Journals (Sweden)

    Yogita M. Rochlani

    2016-01-01

    Full Text Available Atrial fibrillation (AF is a common arrhythmia in adults associated with thromboembolic complications. External electrical cardioversion (DCCV is a safe procedure used to convert AF to normal sinus rhythm. We sought to study factors that affect utilization of DCCV in hospitalized patients with AF. The study sample was drawn from the Nationwide Inpatient Sample (NIS of the Healthcare Cost and Utilization Project in the United States. Patients with a primary discharge diagnosis of AF that received DCCV during hospitalization in the years 2000–2010 were included. An estimated 2,810,530 patients with a primary diagnosis of AF were hospitalized between 2001 and 2010, of which 1,19,840 (4.26% received DCCV. The likelihood of receiving DCCV was higher in patients who were males, whites, privately insured, and aged < 40 years and those with fewer comorbid conditions. Higher CHADS2 score was found to have an inverse association with DCCV use. In-hospital stroke, in-hospital mortality, length of stay, and cost for hospitalization were significantly lower for patients undergoing DCCV during AF related hospitalization. Further research is required to study the contribution of other disease and patient related factors affecting the use of this procedure as well as postprocedure outcomes.

  11. Trends in the use of electrical cardioversion for atrial fibrillation: influence of major trials and guidelines on clinical practice

    Directory of Open Access Journals (Sweden)

    Alegret Josep M

    2012-06-01

    Full Text Available Abstract Background The purpose of the present study was to assess the trends in the use of ECV following published studies that had compared rhythm and rate control strategies on atrial fibrillation (AF, and the recommendations included in the current clinical practice guidelines. Methods The REVERCAT is a population-based assessment of the use of electrical cardioversion (ECV in treating persistent AF in Catalonia (Spain. The initial survey was conducted in 2003 and the follow-up in 2010. Results We observed a decrease of 9% in the absolute numbers of ECV performed (436 in 2003 vs. 397 in 2010. This is equivalent to 27% when considering population increases over this period. The patients treated with ECV in 2010 were younger, had a lower prevalence of previous embolism, a higher prevalence of diabetes, and increased body weight. Underlying heart disease factors indicated, in 2010, a higher proportion of NYHA ≥ II and left ventricular ejection fraction vs. 57% in 2010; p = 0.9 despite the greater use of biphasic energy in 2010 and a similar prescription of anti-arrhythmic drugs. Conclusions Although we observed a decrease in the number of ECVs performed over the 7 year period between the two studies, this technique remains a common option for treating patients with persistent AF. The change in the characteristics of candidate patients did not translate into better outcomes.

  12. The relationship of renal function to outcome: A post hoc analysis from the EdoxabaN versus warfarin in subjectS UndeRgoing cardiovErsion of Atrial Fibrillation (ENSURE-AF) study.

    Science.gov (United States)

    Lip, Gregory Y H; Al-Saady, Naab; Ezekowitz, Michael D; Banach, Maciej; Goette, Andreas

    2017-11-01

    The ENSURE-AF study (NCT 02072434) of anticoagulation for electrical cardioversion in nonvalvular atrial fibrillation (NVAF) showed comparable low rates of bleeding and thromboembolism between the edoxaban and the enoxaparin-warfarin treatment arms. This post hoc analysis investigated the relationship between renal function and clinical outcomes. ENSURE-AF was a multicenter, PROBE evaluation trial of edoxaban 60 mg, or dose reduced to 30 mg/d for weight≤60 kg, creatinine clearance (CrCl; Cockcroft-Gault) ≤50 mL/min, or concomitant P-glycoprotein inhibitors compared with therapeutically monitored enoxaparin-warfarin in 2,199 NVAF patients undergoing electrical cardioversion. Efficacy and safety outcomes and time in therapeutic range in the warfarin arm were analyzed in relation to CrCl in prespecified ranges ≥15 and ≤30, >30 and ≤50, >50 and warfarin. Mean age was 64.3±10 and 64.2±11 years. Mean time in therapeutic range was progressively lower with reducing CrCl strata, being 66.8% in those with CrCl >30 to ≤50 compared with 71.8% in those with CrCl ≥80. The odds ratios for the primary efficacy and safety end points were comparable for the different predefined renal function strata; given the small numbers, the 95% CI included 1.0. In the subset of those with CrCl ≥95, the odds ratios showed consistency with the other CrCl strata. When CrCl was assessed as a continuous variable, there was a nonsignificant trend toward higher major or clinically relevant nonmajor bleeding with reducing CrCl levels, with no significant differences between the 2 treatment arms. When we assessed CrCl at baseline compared with end of treatment, there were no significant differences in CrCl change between the edoxaban and enoxaparin-warfarin arms. The proportions with worsening of renal function (defined as a decrease of >20% from baseline) were similar in the 2 treatment arms. Given the small number of events in ENSURE-AF, no effect of renal (dys)function was

  13. [Cardioversion for paroxysmal supraventricular tachycardia during lung surgery in a patient with concealed Wolff-Parkinson-White syndrome].

    Science.gov (United States)

    Sato, Yoshiharu; Nagata, Hirofumi; Inoda, Ayako; Miura, Hiroko; Watanabe, Yoko; Suzuki, Kenji

    2014-10-01

    We report a case of paroxysmal supraventricular tachycardia (PSVT) that occurred during video-assisted thoracoscopic (VATS) lobectomy in a patient with concealed Wolff-Parkinson-White (WPW) syndrome. A 59-year-old man with lung cancer was scheduled for VATS lobectomy under general anesthesia. After inserting a thoracic epidural catheter, general anesthesia was induced with intravenous administration of propofol. Anesthesia was maintained with inhalation of desfurane in an air/oxygen mixture and intravenous infusion of remifentanil. Recurrent PSVT occurred three times, and the last episode of PSVT continued for 50 minutes regardless of administration of antiarrhythmic drugs. Synchronized electric shock via adhesive electrode pads on the patient's chest successfully converted PSVT back to normal sinus rhythm. The remaining course and postoperative period were uneventful. An electrophysiological study performed after hospital discharge detected concealed WPW syndrome, which had contributed to the development of atrioventricular reciprocating tachycardia. Concealed WPW syndrome is a rare, but critical complication that could possibly cause lethal atrial tachyarrhythmias during the perioperative period. In the present case, cardioversion using adhesive electrode pads briefly terminated PSVT in a patient with concealed WPW syndrome.

  14. Towards Low Energy Atrial Defibrillation

    Directory of Open Access Journals (Sweden)

    Philip Walsh

    2015-09-01

    Full Text Available A wireless powered implantable atrial defibrillator consisting of a battery driven hand-held radio frequency (RF power transmitter (ex vivo and a passive (battery free implantable power receiver (in vivo that enables measurement of the intracardiac impedance (ICI during internal atrial defibrillation is reported. The architecture is designed to operate in two modes: Cardiac sense mode (power-up, measure the impedance of the cardiac substrate and communicate data to the ex vivo power transmitter and cardiac shock mode (delivery of a synchronised very low tilt rectilinear electrical shock waveform. An initial prototype was implemented and tested. In low-power (sense mode, >5 W was delivered across a 2.5 cm air-skin gap to facilitate measurement of the impedance of the cardiac substrate. In high-power (shock mode, >180 W (delivered as a 12 ms monophasic very-low-tilt-rectilinear (M-VLTR or as a 12 ms biphasic very-low-tilt-rectilinear (B-VLTR chronosymmetric (6ms/6ms amplitude asymmetric (negative phase at 50% magnitude shock was reliably and repeatedly delivered across the same interface; with >47% DC-to-DC (direct current to direct current power transfer efficiency at a switching frequency of 185 kHz achieved. In an initial trial of the RF architecture developed, 30 patients with AF were randomised to therapy with an RF generated M-VLTR or B-VLTR shock using a step-up voltage protocol (50–300 V. Mean energy for successful cardioversion was 8.51 J ± 3.16 J. Subsequent analysis revealed that all patients who cardioverted exhibited a significant decrease in ICI between the first and third shocks (5.00 Ω (SD(σ = 1.62 Ω, p < 0.01 while spectral analysis across frequency also revealed a significant variation in the impedance-amplitude-spectrum-area (IAMSA within the same patient group (|∆(IAMSAS1-IAMSAS3[1 Hz − 20 kHz] = 20.82 Ω-Hz (SD(σ = 10.77 Ω-Hz, p < 0.01; both trends being absent in all patients that failed to cardiovert

  15. demystifying the shock of shocking

    African Journals Online (AJOL)

    (with a pulse), atrial fibrillation and atrial flutter. The energy dose in cardioversion is less (0.5. - 2 J/kg) than in defibrillation (2 - 4 J/kg). In cardioversion the shock is discharged synchronously with the native R wave of the patient. Without synchronisation,. VF can be induced if a shock is delivered during the refractory period ...

  16. Why high energy physics

    International Nuclear Information System (INIS)

    Diddens, A.N.; Van de Walle, R.T.

    1981-01-01

    An argument is presented for high energy physics from the point of view of the practitioners. Three different angles are presented: The cultural consequence and scientific significance of practising high energy physics, the potential application of the results and the discovery of high energy physics, and the technical spin-offs from the techniques and methods used in high energy physics. (C.F.)

  17. Systematic analysis of ECG predictors of sinus rhythm maintenance after electrical cardioversion for persistent atrial fibrillation.

    Science.gov (United States)

    Lankveld, Theo; de Vos, Cees B; Limantoro, Ione; Zeemering, Stef; Dudink, Elton; Crijns, Harry J; Schotten, Ulrich

    2016-05-01

    Electrical cardioversion (ECV) is one of the rhythm control strategies in patients with persistent atrial fibrillation (AF). Unfortunately, recurrences of AF are common after ECV, which significantly limits the practical benefit of this treatment in patients with AF. The objectives of this study were to identify noninvasive complexity or frequency parameters obtained from the surface electrocardiogram (ECG) to predict sinus rhythm (SR) maintenance after ECV and to compare these ECG parameters with clinical predictors. We studied a wide variety of ECG-derived time- and frequency-domain AF complexity parameters in a prospective cohort of 502 patients with persistent AF referred for ECV. During 1-year follow-up, 161 patients (32%) maintained SR. The best clinical predictor of SR maintenance was antiarrhythmic drug (AAD) treatment. A model including clinical parameters predicted SR maintenance with a mean cross-validated area under the receiver operating characteristic curve (AUC) of 0.62 ± 0.05. The best single ECG parameter was the dominant frequency (DF) on lead V6. Combining several ECG parameters predicted SR maintenance with a mean AUC of 0.64 ± 0.06. Combining clinical and ECG parameters improved prediction to a mean AUC of 0.67 ± 0.05. Although the DF was affected by AAD treatment, excluding patients taking AADs did not significantly lower the predictive performance captured by the ECG. ECG-derived parameters predict SR maintenance during 1-year follow-up after ECV at least as good as known clinical predictors of rhythm outcome. The DF proved to be the most powerful ECG-derived predictor. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  18. High energy neutron radiography

    International Nuclear Information System (INIS)

    Gavron, A.; Morley, K.; Morris, C.; Seestrom, S.; Ullmann, J.; Yates, G.; Zumbro, J.

    1996-01-01

    High-energy spallation neutron sources are now being considered in the US and elsewhere as a replacement for neutron beams produced by reactors. High-energy and high intensity neutron beams, produced by unmoderated spallation sources, open potential new vistas of neutron radiography. The authors discuss the basic advantages and disadvantages of high-energy neutron radiography, and consider some experimental results obtained at the Weapons Neutron Research (WNR) facility at Los Alamos

  19. High to ultra-high power electrical energy storage.

    Science.gov (United States)

    Sherrill, Stefanie A; Banerjee, Parag; Rubloff, Gary W; Lee, Sang Bok

    2011-12-14

    High power electrical energy storage systems are becoming critical devices for advanced energy storage technology. This is true in part due to their high rate capabilities and moderate energy densities which allow them to capture power efficiently from evanescent, renewable energy sources. High power systems include both electrochemical capacitors and electrostatic capacitors. These devices have fast charging and discharging rates, supplying energy within seconds or less. Recent research has focused on increasing power and energy density of the devices using advanced materials and novel architectural design. An increase in understanding of structure-property relationships in nanomaterials and interfaces and the ability to control nanostructures precisely has led to an immense improvement in the performance characteristics of these devices. In this review, we discuss the recent advances for both electrochemical and electrostatic capacitors as high power electrical energy storage systems, and propose directions and challenges for the future. We asses the opportunities in nanostructure-based high power electrical energy storage devices and include electrochemical and electrostatic capacitors for their potential to open the door to a new regime of power energy.

  20. High-energy detector

    Science.gov (United States)

    Bolotnikov, Aleksey E [South Setauket, NY; Camarda, Giuseppe [Farmingville, NY; Cui, Yonggang [Upton, NY; James, Ralph B [Ridge, NY

    2011-11-22

    The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

  1. Energy Systems High-Pressure Test Laboratory | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Energy Systems High-Pressure Test Laboratory Energy Systems High-Pressure Test Laboratory In the Energy Systems Integration Facility's High-Pressure Test Laboratory, researchers can safely test high-pressure hydrogen components. Photo of researchers running an experiment with a hydrogen fuel

  2. Very high energy colliders

    International Nuclear Information System (INIS)

    Richter, B.

    1986-03-01

    The luminosity and energy requirements are considered for both proton colliders and electron-positron colliders. Some of the basic design equations for high energy linear electron colliders are summarized, as well as design constraints. A few examples are given of parameters for very high energy machines. 4 refs., 6 figs

  3. High energy physics advisory panel's subpanel on vision for the future of high-energy physics

    International Nuclear Information System (INIS)

    1994-05-01

    This report was requested by the Secretary of Energy to (1) define a long-term program for pursuing the most important high-energy physics goals since the termination of the Superconducting Super Collider (SSC) project, (2) assess the current US high-energy physics program, and (3) make recommendations regarding the future of the field. Subjects on which recommendations were sought and which the report addresses were: high-energy physics funding priorities; facilitating international collaboration for future construction of large high-energy physics facilities; optimizing uses of the investment made in the SSC; how to encourage displaced scientists and engineers to remain in high-energy physics and to attract young scientists to enter the field in the future. The report includes a description of the state of high-energy physics research in the context of history, a summary of the SSC project, and documentation of the report's own origins and development

  4. Dosimetry of high energy radiation

    CERN Document Server

    Sahare, P D

    2018-01-01

    High energy radiation is hazardous to living beings and a threat to mankind. The correct estimation of the high energy radiation is a must and a single technique may not be very successful. The process of estimating the dose (the absorbed energy that could cause damages) is called dosimetry. This book covers the basic technical knowledge in the field of radiation dosimetry. It also makes readers aware of the dangers and hazards of high energy radiation.

  5. High energy physics advisory panel`s subpanel on vision for the future of high-energy physics

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    This report was requested by the Secretary of Energy to (1) define a long-term program for pursuing the most important high-energy physics goals since the termination of the Superconducting Super Collider (SSC) project, (2) assess the current US high-energy physics program, and (3) make recommendations regarding the future of the field. Subjects on which recommendations were sought and which the report addresses were: high-energy physics funding priorities; facilitating international collaboration for future construction of large high-energy physics facilities; optimizing uses of the investment made in the SSC; how to encourage displaced scientists and engineers to remain in high-energy physics and to attract young scientists to enter the field in the future. The report includes a description of the state of high-energy physics research in the context of history, a summary of the SSC project, and documentation of the report`s own origins and development.

  6. High energy hadron scattering

    International Nuclear Information System (INIS)

    Johnson, R.C.

    1980-01-01

    High energy and small momentum transfer 2 'yields' 2 hadronic scattering processes are described in the physical framework of particle exchange. Particle production in high energy collisions is considered with emphasis on the features of inclusive reactions though with some remarks on exclusive processes. (U.K.)

  7. High- and middle-energy geothermics

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    High and middle energy geothermal resources correspond to temperature intervals of 220-350 C and 90-180 C, respectively, and are both exploited for electricity production. Exploitation techniques and applications of high and of middle energy geothermics are different. High energy geothermics is encountered in active volcanic and tectonic zones, such as the circum-Pacific fire-belt, the lesser Antilles, the peri-Mediterranean Alpine chain or the African rift zone. The geothermal steam is directly expanded in a turbine protected against gas and minerals corrosion. About 350 high energy plants are distributed in more than 20 different countries and represent 6000 M We. The cost of high energy installed geothermal kWh ranges from 0.20 to 0.50 French Francs. Middle energy geothermics is encountered in sedimentary basins (between 2000 and 4000 m of depth), in localized fractured zones or at lower depth in the high energy geothermal fields. Heat exchangers with organic fluid Rankine cycle technology is used to produce electricity. Unit power of middle energy plants generally ranges from few hundreds of k W to few MW and correspond to a worldwide installed power of about 400 M We. The annual progression of geothermal installed power is estimated to 4 to 8 % in the next years and concerns principally the circum-Pacific countries. In France, geothermal resources are mainly localized in overseas departments. (J.S.). 3 photos

  8. Superconducting magnets in high energy physics

    International Nuclear Information System (INIS)

    Prodell, A.G.

    1978-01-01

    The applications of superconducting magnets in high energy physics in the last ten years have made feasible developments which are vital to high energy research. These developments include high magnetic field, large volume detectors, such as bubble chambers, required for effective resolution of high energy particle trajectories, particle beam transport magnets, and superconducting focusing and bending magnets for the very high energy accelerators and storage rings needed to pursue the study of interactions between elementary particles. The acceptance of superconductivity as a proven technology in high energy physics was reinforced by the recognition that the existing large accelerators using copper-iron magnets had reached practical limits in terms of magnetic field intensity, cost, space, and energy usage, and that large-volume, high-field, copper-iron magnets were not economically feasible. Some of the superconducting magnets and associated systems being used in and being developed for high energy physics are described

  9. Internal defibrillation: where we have been and where we should be going?

    Science.gov (United States)

    Lévy, Samuel

    2005-08-01

    Internal cardioversion has been developed as an alternative technique for patients who are resistant to external DC cardioversion of atrial fibrillation (AF) and was found to be associated with higher success rates. It used initially high energies (200-300 J) delivered between an intracardiac catheter and a backplate. Subsequent studies have shown that it is possible to terminate with energies of 1 to 6 Joules, paroxysmal or induced AF in 90 percent of patients and persistent AF in 75 percent of patients, using biphasic shocks delivered between a right atrium-coronary sinus vectors. Consequently, internal atrial defibrillation can be performed under sedation only without the need for general anesthesia. Recently developed external defibrillators, capable of delivering biphasic shocks, have increased the success rates of external cardioversion and reduced the need for internal cardioversion. However, internal defibrillation is still useful in overweight or obese patients, in patients with chronic obstructive pulmonary disease or asthma who are more difficult to defibrillate, and in patients with implanted devices which may be injured by high energy shocks. Low energy internal defibrillation has also proven to be safe and this has prompted the development of implantable devices for terminating AF. The first device used was the Metrix system, a stand-alone atrial defibrillator (without ventricular defibrillation) which was found to be safe and effective in selected groups of patients. Unfortunately, this device is no longer being marketed. Only double chamber defibrillators with pacing capabilities are presently available: the Medtronic GEM III AT, an updated version of the Jewel AF and the Guidant PRIZM AVT. These devices can be patient-activated or programmed to deliver automatically ounce atrial tachyarrhythmias are detected, therapies including pacing or/and shocks. Attempts to define the group of patients who might benefit from these devices are described but the

  10. High energy colliders

    International Nuclear Information System (INIS)

    Palmer, R.B.; Gallardo, J.C.

    1997-02-01

    The authors consider the high energy physics advantages, disadvantages and luminosity requirements of hadron (pp, p anti p), lepton (e + e - , μ + μ - ) and photon-photon colliders. Technical problems in obtaining increased energy in each type of machine are presented. The machines relative size are also discussed

  11. High Average Power, High Energy Short Pulse Fiber Laser System

    Energy Technology Data Exchange (ETDEWEB)

    Messerly, M J

    2007-11-13

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  12. Energy dependence of ulrathin LiF-dosemeters for high energy electrons and high energy X-radiation

    International Nuclear Information System (INIS)

    Kupfer, T.

    1977-02-01

    The energy dependence of ultrathin LiF-dosemeters for high energy electrons (5-40 MeV) and high energy X-radiation (6 MV, 42 MV) is experimentally determined. The experimental values are compared to values calculted earlier by other authors. The influence of the thickness of the dosemeters have been considered by comparison of experimental values for 0.03 mm thick dosemeters and theoretical values for 0.13 mm and 0.38 mm thick ones. Also different commersially available dosemeters have been compared by experiments. It is difficult to draw any other conclutions about the energy dependence than that the variation of the relative responce is within +- 3 percent (2S). However the results seems to be sulficient for clinical applications

  13. The high energy galaxy

    International Nuclear Information System (INIS)

    Cesarsky, C.J.

    1986-08-01

    The galaxy is host to a wide variety of high energy events. I review here recent results on large scale galactic phenomena: cosmic-ray origin and confinement, the connexion to ultra high energy gamma-ray emission from X-ray binaries, gamma ray and synchrotron emission in interstellar space, galactic soft and hard X-ray emission

  14. High energy physics and grid computing

    International Nuclear Information System (INIS)

    Yu Chuansong

    2004-01-01

    The status of the new generation computing environment of the high energy physics experiments is introduced briefly in this paper. The development of the high energy physics experiments and the new computing requirements by the experiments are presented. The blueprint of the new generation computing environment of the LHC experiments, the history of the Grid computing, the R and D status of the high energy physics grid computing technology, the network bandwidth needed by the high energy physics grid and its development are described. The grid computing research in Chinese high energy physics community is introduced at last. (authors)

  15. Future of high energy physics

    International Nuclear Information System (INIS)

    Panofsky, W.K.H.

    1984-06-01

    A rough overview is given of the expectations for the extension of high energy colliders and accelerators into the xtremely high energy range. It appears likely that the SSC or something like it will be the last gasp of the conventional method of producing high energy proton-proton collisions using synchrotron rings with superconducting magnets. It is likely that LEP will be the highest energy e+e - colliding beam storage ring built. The future beyond that depends on the successful demonstrations of new technologies. The linear collider offers hope in this respect for some extension in energy for electrons, and maybe even for protons, but is too early to judge whether, by how much, or when such an extension will indeed take place

  16. A Gas Calorimeter for High-Energy Experiment and Study of High-Energy Cascade Shower

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Hitoshi [Univ. of Tsukuba (Japan)

    1984-09-01

    High energy behavior of the electromagnetic cascade shower has been studied. high energy showers were created by electron and hadron beams with energies between 25 GeV and 150 GeV at Fermi National Accelerator Laboratory. The showers were observed by a shower detector consisting of multi-layer of lead plates and proportional chambers. The experimental results were analyzed with special emphasis on the fluctuation problem of the electromagnetic cascade shower.

  17. High energy cosmic ray astronomy

    International Nuclear Information System (INIS)

    Fonseca, V.

    1996-01-01

    A brief introduction to High Energy Cosmic Ray Astronomy is presented. This field covers a 17 decade energy range (2.10 4 -10 20 ) eV. Recent discoveries done with gamma-ray detectors on-board satellites and ground-based Cherenkov devices are pushing for a fast development of new and innovative techniques, specially in the low energy region which includes the overlapping of satellite and ground-based measurements in the yet unexplored energy range 20 keV-250 GeV. Detection of unexpected extremely high energy events have triggered the interest of the international scientific community. (orig.)

  18. High energy dosimetry

    International Nuclear Information System (INIS)

    Ruhm, W.

    2010-01-01

    Full text: Currently, quantification of doses from high-energy radiation fields is a topical issue. This is so because high-energy neutrons play an important role for radiation exposure of air crew members and personnel outside the shielding of ion therapy facilities. In an effort to study air crew exposure from cosmic radiation in detail, two Bonner Sphere Spectrometers (BSSs) have recently been installed to measure secondary neutrons from cosmic radiation, one at the environmental research station 'Schneefernerhaus' at an altitude of 2650 m on the Zugspitze mountain, Germany, the other at the Koldewey station close to the North Pole on Spitsbergen. Based on the measured neutron fluence distributions and on fluence-to-dose conversion coefficients, mean ambient dose equivalent rate values of 75.0 ± 2.9 nSv/h and 8.7 ± 0.6 nSv/h were obtained for October 2008, respectively. Neutrons with energies above about 20 MeV contribute about 50% to dose, at 2650 m. Ambient dose equivalent rates measured by means of a standard rem counter and an extended rem counter at the Schneefernerhaus confirm this result. In order to study the response of state-of-the-art radiation instrumentation in such a high-energy radiation field, a benchmark exercise that included both measurements in and simulation of the stray neutron radiation field at the high-energy particle accelerator at GSI, Germany, were performed. This CONRAD (COordinated Network for RAdiation Dosimetry) project was funded by the European Commission, and the organizational framework was provided by the European Radiation Dosimetry Group, EURADOS. The Monte Carlo simulations of the radiation field and the experimental determination of the neutron spectra with various Bonner Sphere Spectrometers suggest the neutron fluence distributions to be very similar to those of secondary neutrons from cosmic radiation. The results of this intercomparison exercise in terms of ambient dose equivalent are also discussed

  19. Moderate energy ions for high energy density physics experiments

    International Nuclear Information System (INIS)

    Grisham, L.R.

    2004-01-01

    This paper gives the results of a preliminary exploration of whether moderate energy ions (≅0.3-3 MeV/amu) could be useful as modest-cost drivers for high energy density physics experiments. It is found that if the target thickness is chosen so that the ion beam enters and then leaves the target in the vicinity of the peak of the dE/dX (stopping power) curve, high uniformity of energy deposition may be achievable while also maximizing the amount of energy per beam particle deposited within the target

  20. High energy hadron spin-flip amplitude

    International Nuclear Information System (INIS)

    Selyugin, O.V.

    2016-01-01

    The high-energy part of the hadron spin-flip amplitude is examined in the framework of the new high-energy general structure (HEGS) model of the elastic hadron scattering at high energies. The different forms of the hadron spin-flip amplitude are compared in the impact parameter representation. It is shown that the existing experimental data of the proton-proton and proton-antiproton elastic scattering at high energy in the region of the diffraction minimum and at large momentum transfer give support in the presence of the energy-independent part of the hadron spin-flip amplitude with the momentum dependence proposed in the works by Galynskii-Kuraev. [ru

  1. Computing in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Watase, Yoshiyuki

    1991-09-15

    The increasingly important role played by computing and computers in high energy physics is displayed in the 'Computing in High Energy Physics' series of conferences, bringing together experts in different aspects of computing - physicists, computer scientists, and vendors.

  2. Computing in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Sarah; Devenish, Robin [Nuclear Physics Laboratory, Oxford University (United Kingdom)

    1989-07-15

    Computing in high energy physics has changed over the years from being something one did on a slide-rule, through early computers, then a necessary evil to the position today where computers permeate all aspects of the subject from control of the apparatus to theoretical lattice gauge calculations. The state of the art, as well as new trends and hopes, were reflected in this year's 'Computing In High Energy Physics' conference held in the dreamy setting of Oxford's spires. The conference aimed to give a comprehensive overview, entailing a heavy schedule of 35 plenary talks plus 48 contributed papers in two afternoons of parallel sessions. In addition to high energy physics computing, a number of papers were given by experts in computing science, in line with the conference's aim – 'to bring together high energy physicists and computer scientists'.

  3. Computing in high energy physics

    International Nuclear Information System (INIS)

    Watase, Yoshiyuki

    1991-01-01

    The increasingly important role played by computing and computers in high energy physics is displayed in the 'Computing in High Energy Physics' series of conferences, bringing together experts in different aspects of computing - physicists, computer scientists, and vendors

  4. High Energy Physics Departments - Overview

    International Nuclear Information System (INIS)

    Bartke, J.

    1999-01-01

    Following the tradition, the activities of the seven new units created in 1997 on the basis of the former Department of High Energy Physics are presented under a common header, they are: Department of Particle Theory (Dept 5); Department of Leptonic Interactions (Dept 11); Department of Hadron Structure (Dept 12); Department of High Energy Nuclear Interactions (Dept 13); The ALICE Experiment Laboratory (NAL); The ATLAS Experiment Laboratory (NAT); High Energy Physics Detector Construction Group (PBD). The research covers a variety of problems of the experimental and theoretical high energy particle physics: the hadronic and leptonic interactions with nucleons and nuclei (characteristics of particle production, including heavy quark physics), e + e - interactions and tests of the Standard Model (also radiative corrections), ultrarelativistic heavy ion interactions and search for the quark-gluon plasma, as well as the spectra, composition and interactions of high energy cosmic ray particles. Research on detectors and accelerator components as well as the development of the apparatus for the high energy physics experiments at future accelerators: LHC (CERN, Geneva), RHIC (Brookhaven), B-Factory (KEK, Tsukuba) and TESLA (DESY) is also presented. The technology of new materials with unique properties such as carbon-carbon composites is also worked on from the point of view of their application in high energy physics experiments. The Division is located in a separate building on the campus of the University of Mining and Metallurgy (UMM). This location, close to the Jagiellonian University (JU), facilitates the collaboration with the latter and with the UMM. The joint weekly seminars carried out for nearly 40 years prove this long term tradition. A substantial part of the activities is teaching and training students from the academic community in Cracow. Joint research, teaching and academic training in the high energy physics are carried out within the M. Miesowicz

  5. Computing in high energy physics

    International Nuclear Information System (INIS)

    Smith, Sarah; Devenish, Robin

    1989-01-01

    Computing in high energy physics has changed over the years from being something one did on a slide-rule, through early computers, then a necessary evil to the position today where computers permeate all aspects of the subject from control of the apparatus to theoretical lattice gauge calculations. The state of the art, as well as new trends and hopes, were reflected in this year's 'Computing In High Energy Physics' conference held in the dreamy setting of Oxford's spires. The conference aimed to give a comprehensive overview, entailing a heavy schedule of 35 plenary talks plus 48 contributed papers in two afternoons of parallel sessions. In addition to high energy physics computing, a number of papers were given by experts in computing science, in line with the conference's aim – 'to bring together high energy physicists and computer scientists'

  6. Electro-optical equivalent calibration technology for high-energy laser energy meters

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Ji Feng, E-mail: wjfcom2000@163.com [State Key Laboratory of Precision Measurement Technology and Instrument, Tsinghua University, Beijing 100084 (China); Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900 (China); Graduate School of China Academy of Engineering Physics, Beijing 100088 (China); Key Laboratory of Laser Science and Technology, China Academy of Engineering Physics, Mianyang 621900 (China); Chang, Yan; Zhang, Kai; Hu, Xiao Yang; Zhang, Wei [Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900 (China); Key Laboratory of Laser Science and Technology, China Academy of Engineering Physics, Mianyang 621900 (China); Sun, Li Qun [State Key Laboratory of Precision Measurement Technology and Instrument, Tsinghua University, Beijing 100084 (China)

    2016-04-15

    Electro-optical equivalent calibration with high calibration power and high equivalence is particularly well-suited to the calibration of high-energy laser energy meters. A large amount of energy is reserved during this process, however, which continues to radiate after power-off. This study measured the radiation efficiency of a halogen tungsten lamp during power-on and after power-off in order to calculate the total energy irradiated by a lamp until the high-energy laser energy meter reaches thermal equilibrium. A calibration system was designed based on the measurement results, and the calibration equivalence of the system was analyzed in detail. Results show that measurement precision is significantly affected by the absorption factor of the absorption chamber and by heat loss in the energy meter. Calibration precision is successfully improved by enhancing the equivalent power and reducing power-on time. The electro-optical equivalent calibration system, measurement uncertainty of which was evaluated as 2.4% (k = 2), was used to calibrate a graphite-cone-absorption-cavity absolute energy meter, yielding a calibration coefficient of 1.009 and measurement uncertainty of 3.5% (k = 2). A water-absorption-type high-energy laser energy meter with measurement uncertainty of 4.8% (k = 2) was considered the reference standard, and compared to the energy meter calibrated in this study, yielded a correction factor of 0.995 (standard deviation of 1.4%).

  7. High energy physics and cloud computing

    International Nuclear Information System (INIS)

    Cheng Yaodong; Liu Baoxu; Sun Gongxing; Chen Gang

    2011-01-01

    High Energy Physics (HEP) has been a strong promoter of computing technology, for example WWW (World Wide Web) and the grid computing. In the new era of cloud computing, HEP has still a strong demand, and major international high energy physics laboratories have launched a number of projects to research on cloud computing technologies and applications. It describes the current developments in cloud computing and its applications in high energy physics. Some ongoing projects in the institutes of high energy physics, Chinese Academy of Sciences, including cloud storage, virtual computing clusters, and BESⅢ elastic cloud, are also described briefly in the paper. (authors)

  8. High-energy cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Gaisser, Thomas K. [Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States)]. E-mail: gaisser@bartol.udel.edu; Stanev, Todor [Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States)

    2006-10-17

    After a brief review of galactic cosmic rays in the GeV to TeV energy range, we describe some current problems of interest for particles of very high energy. Particularly interesting are two features of the spectrum, the knee above 10{sup 15} eV and the ankle above 10{sup 18} eV. An important question is whether the highest-energy particles are of extra-galactic origin and, if so, at what energy the transition occurs. A theme common to all energy ranges is use of nuclear abundances as a tool for understanding the origin of the cosmic radiation.

  9. Computing in high-energy physics

    International Nuclear Information System (INIS)

    Mount, Richard P.

    2016-01-01

    I present a very personalized journey through more than three decades of computing for experimental high-energy physics, pointing out the enduring lessons that I learned. This is followed by a vision of how the computing environment will evolve in the coming ten years and the technical challenges that this will bring. I then address the scale and cost of high-energy physics software and examine the many current and future challenges, particularly those of management, funding and software-lifecycle management. Lastly, I describe recent developments aimed at improving the overall coherence of high-energy physics software

  10. Computing in high-energy physics

    Science.gov (United States)

    Mount, Richard P.

    2016-04-01

    I present a very personalized journey through more than three decades of computing for experimental high-energy physics, pointing out the enduring lessons that I learned. This is followed by a vision of how the computing environment will evolve in the coming ten years and the technical challenges that this will bring. I then address the scale and cost of high-energy physics software and examine the many current and future challenges, particularly those of management, funding and software-lifecycle management. Finally, I describe recent developments aimed at improving the overall coherence of high-energy physics software.

  11. High Energy Density Laboratory Astrophysics

    CERN Document Server

    Lebedev, Sergey V

    2007-01-01

    During the past decade, research teams around the world have developed astrophysics-relevant research utilizing high energy-density facilities such as intense lasers and z-pinches. Every two years, at the International conference on High Energy Density Laboratory Astrophysics, scientists interested in this emerging field discuss the progress in topics covering: - Stellar evolution, stellar envelopes, opacities, radiation transport - Planetary Interiors, high-pressure EOS, dense plasma atomic physics - Supernovae, gamma-ray bursts, exploding systems, strong shocks, turbulent mixing - Supernova remnants, shock processing, radiative shocks - Astrophysical jets, high-Mach-number flows, magnetized radiative jets, magnetic reconnection - Compact object accretion disks, x-ray photoionized plasmas - Ultrastrong fields, particle acceleration, collisionless shocks. These proceedings cover many of the invited and contributed papers presented at the 6th International Conference on High Energy Density Laboratory Astrophys...

  12. High energy radiation detector

    International Nuclear Information System (INIS)

    Vosburgh, K.G.

    1975-01-01

    The high energy radiation detector described comprises a set of closely spaced wedge reflectors. Each wedge reflector is composed of three sides forming identical isoceles triangles with a common apex and an open base forming an equilateral triangle. The length of one side of the base is less than the thickness of the coat of material sensitive to high energy radiation. The wedge reflectors reflect the light photons spreading to the rear of the coat in such a way that each reflected track is parallel to the incident track of the light photon spreading rearwards. The angle of the three isosceles triangles with a common apex is between 85 and 95 deg. The first main surface of the coat of high energy radiation sensitive material is in contact with the projecting edges of the surface of the wedge reflectors of the reflecting element [fr

  13. High-frequency energy in singing and speech

    Science.gov (United States)

    Monson, Brian Bruce

    While human speech and the human voice generate acoustical energy up to (and beyond) 20 kHz, the energy above approximately 5 kHz has been largely neglected. Evidence is accruing that this high-frequency energy contains perceptual information relevant to speech and voice, including percepts of quality, localization, and intelligibility. The present research was an initial step in the long-range goal of characterizing high-frequency energy in singing voice and speech, with particular regard for its perceptual role and its potential for modification during voice and speech production. In this study, a database of high-fidelity recordings of talkers was created and used for a broad acoustical analysis and general characterization of high-frequency energy, as well as specific characterization of phoneme category, voice and speech intensity level, and mode of production (speech versus singing) by high-frequency energy content. Directionality of radiation of high-frequency energy from the mouth was also examined. The recordings were used for perceptual experiments wherein listeners were asked to discriminate between speech and voice samples that differed only in high-frequency energy content. Listeners were also subjected to gender discrimination tasks, mode-of-production discrimination tasks, and transcription tasks with samples of speech and singing that contained only high-frequency content. The combination of these experiments has revealed that (1) human listeners are able to detect very subtle level changes in high-frequency energy, and (2) human listeners are able to extract significant perceptual information from high-frequency energy.

  14. High energy positron imaging

    International Nuclear Information System (INIS)

    Chen Shengzu

    2003-01-01

    The technique of High Energy Positron Imaging (HEPI) is the new development and extension of Positron Emission Tomography (PET). It consists of High Energy Collimation Imaging (HECI), Dual Head Coincidence Detection Imaging (DHCDI) and Positron Emission Tomography (PET). We describe the history of the development and the basic principle of the imaging methods of HEPI in details in this paper. Finally, the new technique of the imaging fusion, which combined the anatomical image and the functional image together are also introduced briefly

  15. Some health aspects of high-energy society

    International Nuclear Information System (INIS)

    Cook, E.

    1975-01-01

    The intensive use of inanimate energy in industrialized or high-energy society has subsidized research, development, and higher education and has brought about changes in nutrition and life-style that have led to great advances in public health and medicine. The emergence of high-energy society, however, has brought with it a new set of health problems, within which the direct effects of measurable pollution may turn out to be more easily dealt with than some of the indirect and hard-to-calculate consequences of high energy use. High-energy society is critically dependent on energy-intensive transport systems, and these systems in turn are dependent upon a continual supply of petroleum products. In the short-term, the aorta of any industrialized nation is its petroleum-supply network. In the longer run, high-energy society faces the depletion and exhaustion of all the nonrenewable resources on which it has fed. Even if technology provides adequate substitute energy systems, high-energy society may deteriorate socially from inability to cope with affluence

  16. Ultra-High-Energy Cosmic Rays

    CERN Document Server

    Dova, M.T.

    2015-05-22

    The origin of the ultra high energy cosmic rays (UHECR) with energies above E > 10 17 eV, is still unknown. The discovery of their sources will reveal the engines of the most energetic astrophysical accelerators in the universe. This is a written version of a series of lectures devoted to UHECR at the 2013 CERN-Latin-American School of High-Energy Physics. We present anintroduction to acceleration mechanisms of charged particles to the highest energies in astrophysical objects, their propagation from the sources to Earth, and the experimental techniques for their detection. We also discuss some of the relevant observational results from Telescope Array and Pierre Auger Observatory. These experiments deal with particle interactions at energies orders of magnitude higher than achieved in terrestrial accelerators.

  17. Conference on High Energy Physics

    CERN Document Server

    2016-01-01

    Conference on High Energy Physics (HEP 2016) will be held from August 24 to 26, 2016 in Xi'an, China. This Conference will cover issues on High Energy Physics. It dedicates to creating a stage for exchanging the latest research results and sharing the advanced research methods. HEP 2016 will be an important platform for inspiring international and interdisciplinary exchange at the forefront of High Energy Physics. The Conference will bring together researchers, engineers, technicians and academicians from all over the world, and we cordially invite you to take this opportunity to join us for academic exchange and visit the ancient city of Xi’an.

  18. Theoretical high energy physics

    International Nuclear Information System (INIS)

    Lee, T.D.

    1991-01-01

    This report discusses theoretical research in high energy physics at Columbia University. Some of the research topics discussed are: quantum chromodynamics with dynamical fermions; lattice gauge theory; scattering of neutrinos by photons; atomic physics constraints on the properties of ultralight-ultraweak gauge bosons; black holes; Chern- Simons physics; S-channel theory of superconductivity; charged boson system; gluon-gluon interactions; high energy scattering in the presence of instantons; anyon physics; causality constraints on primordial magnetic manopoles; charged black holes with scalar hair; properties of Chern-Aimona-Higgs solitons; and extended inflationary universe

  19. High energy astrophysics

    International Nuclear Information System (INIS)

    Engel, A.R.

    1979-01-01

    High energy astrophysical research carried out at the Blackett Laboratory, Imperial College, London is reviewed. Work considered includes cosmic ray particle detection, x-ray astronomy, gamma-ray astronomy, gamma and x-ray bursts. (U.K.)

  20. High energy astrophysics. An introduction

    Energy Technology Data Exchange (ETDEWEB)

    Courvoisier, Thierry J.L. [Geneva Univ., Versoix (Switzerland). ISDC, Data Centre for Astrophysics

    2013-07-01

    Based on observational examples this book reveals and explains high-energy astrophysical processes. Presents the theory of astrophysical processes in a didactic approach by deriving equations step by step. With several attractive astronomical pictures. High-energy astrophysics has unveiled a Universe very different from that only known from optical observations. It has revealed many types of objects in which typical variability timescales are as short as years, months, days, and hours (in quasars, X-ray binaries, and other objects), and even down to milli-seconds in gamma ray bursts. The sources of energy that are encountered are only very seldom nuclear fusion, and most of the time gravitation, a paradox when one thinks that gravitation is, by many orders of magnitude, the weakest of the fundamental interactions. The understanding of these objects' physical conditions and the processes revealed by high-energy astrophysics in the last decades is nowadays part of astrophysicists' culture, even of those active in other domains of astronomy. This book evolved from lectures given to master and PhD students at the University of Geneva since the early 1990s. It aims at providing astronomers and physicists intending to be active in high-energy astrophysics a broad basis on which they should be able to build the more specific knowledge they will need. While in the first part of the book the physical processes are described and derived in detail, the second part studies astrophysical objects in which high-energy astrophysics plays a crucial role. This two-pronged approach will help students recognise physical processes by their observational signatures in contexts that may differ widely from those presented here.

  1. High-Energy Beam Transport system

    International Nuclear Information System (INIS)

    Melson, K.E.; Farrell, J.A.; Liska, D.J.

    1979-01-01

    The High-Energy Beam Transport (HEBT) system for the Fusion Materials Irradiation Test (FMIT) Facility is to be installed at the Hanford Engineering Development Laboratory (HEDL) at Richland, Washington. The linear accelerator must transport a large emittance, high-current, high-power, continuous-duty deuteron beam with a large energy spread either to a lithium target or a beam stop. A periodic quadrupole and bending-magnet system provides the beam transport and focusing on target with small beam aberrations. A special rf cavity distributes the energy in the beam so that the Bragg Peak is distributed within the lithium target. Operation of the rf control system, the Energy Dispersion Cavity (EDC), and the beam transport magnets is tested on the beam stop during accelerator turn-on. Characterizing the beam will require extensions of beam diagnostic techniques and noninterceptive sensors. Provisions are being made in the facility for suspending the transport system from overhead supports using a cluster system to simplify maintenance and alignment techniques

  2. High energy astrophysics an introduction

    CERN Document Server

    Courvoisier, Thierry J -L

    2013-01-01

    High-energy astrophysics has unveiled a Universe very different from that only known from optical observations. It has revealed many types of objects in which typical variability timescales are as short as years, months, days, and hours (in quasars, X-ray binaries, and other objects), and even down to milli-seconds in gamma ray bursts. The sources of energy that are encountered are only very seldom nuclear fusion, and most of the time gravitation, a paradox when one thinks that gravitation is, by many orders of magnitude, the weakest of the fundamental interactions. The understanding of these objects' physical conditions and the processes revealed by high-energy astrophysics in the last decades is nowadays part of astrophysicists' culture, even of those active in other domains of astronomy. This book evolved from lectures given to master and PhD students at the University of Geneva since the early 1990s. It aims at providing astronomers and physicists intending to be active in high-energy astrophysics a broad...

  3. Progress with High-Field Superconducting Magnets for High-Energy Colliders

    Science.gov (United States)

    Apollinari, Giorgio; Prestemon, Soren; Zlobin, Alexander V.

    2015-10-01

    One of the possible next steps for high-energy physics research relies on a high-energy hadron or muon collider. The energy of a circular collider is limited by the strength of bending dipoles, and its maximum luminosity is determined by the strength of final focus quadrupoles. For this reason, the high-energy physics and accelerator communities have shown much interest in higher-field and higher-gradient superconducting accelerator magnets. The maximum field of NbTi magnets used in all present high-energy machines, including the LHC, is limited to ˜10 T at 1.9 K. Fields above 10 T became possible with the use of Nb3Sn superconductors. Nb3Sn accelerator magnets can provide operating fields up to ˜15 T and can significantly increase the coil temperature margin. Accelerator magnets with operating fields above 15 T require high-temperature superconductors. This review discusses the status and main results of Nb3Sn accelerator magnet research and development and work toward 20-T magnets.

  4. High-energy electron diffraction and microscopy

    CERN Document Server

    Peng, L M; Whelan, M J

    2011-01-01

    This book provides a comprehensive introduction to high energy electron diffraction and elastic and inelastic scattering of high energy electrons, with particular emphasis on applications to modern electron microscopy. Starting from a survey of fundamental phenomena, the authors introduce the most important concepts underlying modern understanding of high energy electron diffraction. Dynamical diffraction in transmission (THEED) and reflection (RHEED) geometries is treated using ageneral matrix theory, where computer programs and worked examples are provided to illustrate the concepts and to f

  5. Quantum Sensing for High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Zeeshan; et al.

    2018-03-29

    Report of the first workshop to identify approaches and techniques in the domain of quantum sensing that can be utilized by future High Energy Physics applications to further the scientific goals of High Energy Physics.

  6. High Energy Physics

    Science.gov (United States)

    Untitled Document [Argonne Logo] [DOE Logo] High Energy Physics Home Division ES&H Personnel Collider Physics Cosmic Frontier Cosmic Frontier Theory & Computing Detector R&D Electronic Design Mechanical Design Neutrino Physics Theoretical Physics Seminars HEP Division Seminar HEP Lunch Seminar HEP

  7. Energy peaks: A high energy physics outlook

    Science.gov (United States)

    Franceschini, Roberto

    2017-12-01

    Energy distributions of decay products carry information on the kinematics of the decay in ways that are at the same time straightforward and quite hidden. I will review these properties and discuss their early historical applications, as well as more recent ones in the context of (i) methods for the measurement of masses of new physics particle with semi-invisible decays, (ii) the characterization of Dark Matter particles produced at colliders, (iii) precision mass measurements of Standard Model particles, in particular of the top quark. Finally, I will give an outlook of further developments and applications of energy peak method for high energy physics at colliders and beyond.

  8. Lasers and future high energy colliders

    International Nuclear Information System (INIS)

    Parsa, Z.

    1998-02-01

    Future high energy colliders, directions for particle physics and relationship to new technology such as lasers are discussed. Experimental approaches to explore New Physics with emphasis on the utility of high energy colliders are also discussed

  9. 76 FR 53119 - High Energy Physics Advisory Panel

    Science.gov (United States)

    2011-08-25

    ... DEPARTMENT OF ENERGY High Energy Physics Advisory Panel AGENCY: Department of Energy. ACTION... hereby given that the High Energy Physics Advisory Panel will be renewed for a two-year period, beginning...-range planning and priorities in the national High Energy Physics program. Additionally, the renewal of...

  10. Shielding for high energy, high intensity electron accelerator installation

    International Nuclear Information System (INIS)

    Warawas, C.; Chongkum, S.

    1997-03-01

    The utilization of electron accelerators (eBA) is gradually increased in Thailand. For instance, a 30-40 MeV eBA are used for tumor and cancer therapy in the hospitals, and a high current eBA in for gemstone colonization. In the near future, an application of eBA in industries will be grown up in a few directions, e.g., flue gases treatment from the coal fire-power plants, plastic processing, rubber vulcanization and food preservation. It is the major roles of Office of Atomic Energy for Peace (OAEP) to promote the peaceful uses of nuclear energy and to regulate the public safety and protection of the environment. By taking into account of radiation safety aspect, high energy electrons are not only harmful to human bodies, but the radioactive nuclides can be occurred. This report presents a literature review by following the National Committee on Radiation Protection and Measurements (NCRP) report No.31. This reviews for parametric calculation and shielding design of the high energy (up to 100 MeV), high intensity electron accelerator installation

  11. High energy proton PIXE [HEPP

    International Nuclear Information System (INIS)

    McKee, J.S.C.

    1993-01-01

    Studies of particle induced X-ray emission (PIXE) have been widespread and detailed in recent years and despite the fact that most data obtained are from low energy 1-3 MeV experiments, the value of higher energy proton work with its emphasis on K X-ray emission has become more marked as time has progressed. The purpose of this review paper is to outline the history of analysis using high energy protons and to compare and contrast the results obtained with those from lower energy analysis using more firmly established analytical techniques. The work described will concentrate exclusively on proton induced processes and will attempt to outline the rationale for selecting an energy, greater than 20 and up to 70 MeV protons for initiating particles. The relative ease and accuracy of the measurements obtained will be addressed. Clearly such X-ray studies should be seen as complementing low energy work in many instances rather than competing directly with them. However, it will be demonstrated that above a Z value of approximately 20, K X-ray analysis using high energy protons is the only way to go in this type of analysis. (author)

  12. High-energy hadron-hadron collisions

    International Nuclear Information System (INIS)

    Yang, C.N.

    1983-01-01

    While high energy collision experiments yield a wealth of complicated patterns, there are a few general and very striking features that stand out. Because of the universality of these features, and because of the dominating influence they have on high energy phenomena, it is the authors opinion that a physical picture of high energy collisions must address itself first of all to these features before going into specific details. In this short talk these general and striking features are stated and a physical picture developed in the last few years to specifically accommodate these features is described. The picture was originally discussed for elastic scattering. But it leads naturally, indeed inevitably as they shall discuss, to conclusions about inelastic processes, resulting in an idea called the hypothesis of limiting fragmentation

  13. Ultra high energy gamma-ray astronomy

    International Nuclear Information System (INIS)

    Wdowczyk, J.

    1986-01-01

    The experimental data on ultra high energy γ-rays are reviewed and a comparison of the properties of photon and proton initiated shower is made. The consequences of the existence of the strong ultra high energy γ-ray sources for other observations is analysed and possible mechanisms for the production of ultra high energy γ-rays in the sources are discussed. It is demonstrated that if the γ-rays are produced via cosmic ray interactions the sources have to produce very high fluxes of cosmic ray particles. In fact it is possible that a small number of such sources can supply the whole Galactic cosmic ray flux

  14. Practical neutron dosimetry at high energies

    International Nuclear Information System (INIS)

    McCaslin, J.B.; Thomas, R.H.

    1980-10-01

    Dosimetry at high energy particle accelerators is discussed with emphasis on physical measurements which define the radiation environment and provide an immutable basis for the derivation of any quantities subsequently required for risk evaluation. Results of inter-laboratory dosimetric comparisons are reviewed and it is concluded that a well-supported systematic program is needed which would make possible detailed evaluations and inter-comparisons of instruments and techniques in well characterized high energy radiation fields. High-energy dosimetry is so coupled with radiation transport that it is clear their study should proceed concurrently

  15. High Energy Density Sciences with High Power Lasers at SACLA

    Science.gov (United States)

    Kodama, Ryosuke

    2013-10-01

    One of the interesting topics on high energy density sciences with high power lasers is creation of extremely high pressures in material. The pressures of more than 0.1 TPa are the energy density corresponding to the chemical bonding energy, resulting in expectation of dramatic changes in the chemical reactions. At pressures of more than TPa, most of material would be melted on the shock Hugoniot curve. However, if the temperature is less than 1eV or lower than a melting point at pressures of more than TPa, novel solid states of matter must be created through a pressured phase transition. One of the interesting materials must be carbon. At pressures of more than TPa, the diamond structure changes to BC and cubic at more than 3TPa. To create such novel states of matter, several kinds of isentropic-like compression techniques are being developed with high power lasers. To explore the ``Tera-Pascal Science,'' now we have a new tool which is an x-ray free electron laser as well as high power lasers. The XFEL will clear the details of the HED states and also efficiently create hot dense matter. We have started a new project on high energy density sciences using an XFEL (SACLA) in Japan, which is a HERMES (High Energy density Revolution of Matter in Extreme States) project.

  16. Very high energy colliders

    International Nuclear Information System (INIS)

    Richter, B.

    1985-05-01

    The conclusions are relatively simple, but represent a considerable challenge to the machine builder. High luminosity is essential. We may in the future discover some new kind of high cross section physics, but all we know now indicates that the luminosity has to increase as the square of the center of mass energy. A reasonable luminosity to scale from for electron machines would be 10 33 cm -2 s -1 at a center of mass energy of 3 TeV. The required emittances in very high energy machines are small. It will be a real challenge to produce these small emittances and to maintain them during acceleration. The small emittances probably make acceleration by laser techniques easier, if such techniques will be practical at all. The beam spot sizes are very small indeed. It will be a challenge to design beam transport systems with the necessary freedom from aberration required for these small spot sizes. It would of course help if the beta functions at the collision points could be reduced. Beam power will be large - to paraphrase the old saying, ''power is money'' - and efficient acceleration systems will be required

  17. Responding to high energy prices: energy management services

    International Nuclear Information System (INIS)

    Raynolds, M.

    2001-01-01

    Rapid growth in the number and sophistication of energy management companies has been observed in the wake of rising energy prices. These companies offer energy-efficiency consulting services to utilities, government and industry with the promise of improved cost efficiency, marketplace competitiveness and environmental commitments. The environmental benefits result from the reduction in emissions and pollutants associated with power production and natural gas used for space heating. In general, the stock in trade of these energy management companies is the energy audit involving evaluation of existing equipment in buildings and facilities and the resulting recommendations to install energy-efficient equipment such as lighting retrofits, boiler replacement, chiller replacement, variable speed drives, high-efficiency motors, improved insulation and weather proofing, water heaters and piping. The North American market for energy management services was estimated in 1997 at $208 billion (rising to $350 billion by 2004). Current market penetration is less than two per cent

  18. High energy particle accelerators as radiation Sources

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, M E [National Center for Nuclear Safety and Radiation Vontrol, Atomic Energy Authority, Cairo (Egypt)

    1997-12-31

    Small accelerators in the energy range of few million electron volts are usually used as radiation sources for various applications, like radiotherapy, food irradiation, radiation sterilization and in other industrial applications. High energy accelerators with energies reaching billions of electron volts also find wide field of applications as radiation sources. Synchrotrons with high energy range have unique features as radiation sources. This review presents a synopsis of cyclic accelerators with description of phase stability principle of high energy accelerators with emphasis on synchrotrons. Properties of synchrotron radiation are given together with their applications in basic and applied research. 13 figs.,1 tab.

  19. IV. Workshop on High Energy Spin Physics

    International Nuclear Information System (INIS)

    Nurushev, S.

    1992-01-01

    In this proceedings the results on high energy spin physics are summarized. The theory of spin phenomenon and the experimental results at intermediate energy and at high energy spin physics and new technical developments in polarization experiments are presented

  20. 78 FR 50405 - High Energy Physics Advisory Panel

    Science.gov (United States)

    2013-08-19

    ... DEPARTMENT OF ENERGY High Energy Physics Advisory Panel AGENCY: Office of Science, Department of..., General Services Administration, notice is hereby given that the High Energy Physics Advisory Panel will... Sciences Directorate (NSF), on long-range planning and priorities in the national high-energy physics...

  1. High Energy Physics Departments - Overview

    International Nuclear Information System (INIS)

    Bartke, J.

    2000-01-01

    Full text: Following our long-time tradition we will present under a common header the activities of the seven new units created in 1997 on the basis of the former Department of High Energy Physics: Department of Particle Theory (Dept. V); Department of Leptonic Interactions (Dept XI); Department of Hadron Structure (Dept XII); Department of High Energy Nuclear Interactions (Dept XIII); The ALICE Experiment Laboratory (NAL); The ATLAS Experiment Laboratory (NAT); High Energy Physics Detector Construction Group (PBD). At the end we will list our common activities: lectures and courses as well as seminars. Our research covers a variety of problems of the experimental and theoretical high energy particle physics: the hadronic and leptonic interactions with nucleons and nuclei (characteristics of particle production, including heavy quark physics), e + e - interactions and tests of the Standard Model (also evaluation of radiative corrections), ultrarelativistic heavy ion interactions and search for the quark-gluon plasma, as well as the spectra, composition and interactions of high energy cosmic ray particles. Research on detectors and accelerator components as well as the development of the apparatus for the high energy physics experiments at future accelerators: LHC (CERN, Geneva), RHIC (Brookhaven), B-Factory (KEK, Tsukuba) and TESLA (DESY, Hamburg) is also carried out. The technology of new materials with unique properties such as carbon-carbon composites is also worked on from the point of view of their application in high energy physics experiments. The Division is located in a separate building on the campus of the University of Mining and Metallurgy. This location, close to the Jagiellonian University, facilitates the collaboration with the latter and with the University of Mining and Metallurgy. The joint weekly seminars carried out for nearly 40 years prove this long term tradition. A substantial part of our activities is teaching and training students from

  2. High energy astrophysics

    International Nuclear Information System (INIS)

    Shklorsky, I.S.

    1979-01-01

    A selected list of articles of accessible recent review articles and conference reports, wherein up-to-date summaries of various topics in the field of high energy astrophysics can be found, is presented. A special report outlines work done in the Soviet Union in this area. (Auth.)

  3. Biological effects of high-energy radiation

    International Nuclear Information System (INIS)

    Curtis, S.B.

    1976-01-01

    The biological effects of high-energy radiation are reviewed, with emphasis on the effects of the hadronic component. Proton and helium ion effects are similar to those of the more conventional and sparsely ionizing x- and γ-radiation. Heavy-ions are known to be more biologically effective, but the long term hazard from accumulated damage has yet to be assessed. Some evidence of widely varying but dramatically increased effectiveness of very high-energy (approximately 70 GeV) hadron beams is reviewed. Finally, the importance of the neutron component in many situations around high-energy accelerators is pointed out

  4. New accelerators in high-energy physics

    International Nuclear Information System (INIS)

    Blewett, J.P.

    1982-01-01

    First, I should like to mention a few new ideas that have appeared during the last few years in the accelerator field. A couple are of importance in the design of injectors, usually linear accelerators, for high-energy machines. Then I shall review some of the somewhat sensational accelerator projects, now in operation, under construction or just being proposed. Finally, I propose to mention a few applications of high-energy accelerators in fields other than high-energy physics. I realize that this is a digression from my title but I hope that you will find it interesting

  5. Radiation processing with high-energy X-rays

    International Nuclear Information System (INIS)

    Cleland, Marshall R.; Stichelbaut, Frederic

    2009-01-01

    The physical, chemical or biological characteristics of selected commercial products and materials can be improved by radiation processing. The ionizing energy can be provided by accelerated electrons with energies between 75 keV and 10 MeV, gamma rays from cobalt-60 with average energies of 1.25 MeV or X-rays with maximum energies up to 7.5 MeV. Electron beams are preferred for thin products, which are processed at high speeds. Gamma rays are used for products that are too thick for treatment with electron beams. High-energy X-rays can also be used for these purposes because their penetration in solid materials is similar to or even slightly greater than that of gamma rays. Previously, the use of X-rays had been inhibited by their slower processing rates and higher costs when compared with gamma rays. Since then, the price of cobalt-60 sources has been increased and the radiation intensity from high-energy, high-power X-ray generators has also increased. For facilities requiring at least 2 MCi of cobalt-60, the capital and operating costs of X-ray facilities with equivalent processing rates can be less than that of gamma-ray irradiators. Several high-energy electron beam facilities have been equipped with removable X-ray targets so that irradiation processes can be done with either type of ionizing energy. A new facility is now being built which will be used exclusively in the X-ray mode to sterilize medical products. Operation of this facility will show that high-energy, high-power X-ray generators are practical alternatives to large gamma-ray sources. (author)

  6. Cosmic physics: the high energy frontier

    International Nuclear Information System (INIS)

    Stecker, F W

    2003-01-01

    Cosmic rays have been observed up to energies 10 8 times larger than those of the best particle accelerators. Studies of astrophysical particles (hadrons, neutrinos and photons) at their highest observed energies have implications for fundamental physics as well as astrophysics. Thus, the cosmic high energy frontier is the nexus to new particle physics. This overview discusses recent advances being made in the physics and astrophysics of cosmic rays and cosmic γ-rays at the highest observed energies as well as the related physics and astrophysics of very high energy cosmic neutrinos. These topics touch on questions of grand unification, violations of Lorentz invariance as well as Planck scale physics and quantum gravity. (topical review)

  7. High-spin research with HERA [High Energy-Resolution Array

    International Nuclear Information System (INIS)

    Diamond, R.M.

    1987-06-01

    The topic of this report is high spin research with the High Energy Resolution Array (HERA) at Lawrence Berkeley Laboratory. This is a 21 Ge detector system, the first with bismuth germanate (BGO) Compton suppression. The array is described briefly and some of the results obtained during the past year using this detector facility are discussed. Two types of studies are described: observation of superdeformation in the light Nd isotopes, and rotational damping at high spin and excitation energy in the continuum gamma ray spectrum

  8. Laser fusion and high energy density science

    International Nuclear Information System (INIS)

    Kodama, Ryosuke

    2005-01-01

    High-power laser technology is now opening a variety of new fields of science and technology using laser-produced plasmas. The laser plasma is now recognized as one of the important tools for the investigation and application of matter under extreme conditions, which is called high energy density science. This chapter shows a variety of applications of laser-produced plasmas as high energy density science. One of the more attractive industrial and science applications is the generation of intense pulse-radiation sources, such as the generation of electro-magnetic waves in the ranges of EUV (Extreme Ultra Violet) to gamma rays and laser acceleration of charged particles. The laser plasma is used as an energy converter in this regime. The fundamental science applications of high energy density physics are shown by introducing laboratory astrophysics, the equation of state of high pressure matter, including warm dense matter and nuclear science. Other applications are also presented, such as femto-second laser propulsion and light guiding. Finally, a new systematization is proposed to explore the possibility of the high energy density plasma application, which is called high energy plasma photonics''. This is also exploration of the boundary regions between laser technology and beam optics based on plasma physics. (author)

  9. High energy nuclear physics

    International Nuclear Information System (INIS)

    Meyer, J.

    1988-01-01

    The 1988 progress report of the High Energy Nuclear Physics laboratory (Polytechnic School, France), is presented. The Laboratory research program is focused on the fundamental physics of interactions, on the new techniques for the acceleration of charged particles and on the nuclei double beta decay. The experiments are performed on the following topics: the measurement of the π 0 inclusive production and the photons production in very high energy nuclei-nuclei interactions and the nucleon stability. Concerning the experiments under construction, a new detector for LEP, the study and simulation of the hadronic showers in a calorimeter and the H1 experiment (HERA), are described. The future research programs and the published papers are listed [fr

  10. PASOTRON high-energy microwave source

    Science.gov (United States)

    Goebel, Dan M.; Schumacher, Robert W.; Butler, Jennifer M.; Hyman, Jay, Jr.; Santoru, Joseph; Watkins, Ron M.; Harvey, Robin J.; Dolezal, Franklin A.; Eisenhart, Robert L.; Schneider, Authur J.

    1992-04-01

    A unique, high-energy microwave source, called PASOTRON (Plasma-Assisted Slow-wave Oscillator), has been developed. The PASOTRON utilizes a long-pulse E-gun and plasma- filled slow-wave structure (SWS) to produce high-energy pulses from a simple, lightweight device that utilizes no externally produced magnetic fields. Long pulses are obtained from a novel E-gun that employs a low-pressure glow discharge to provide a stable, high current- density electron source. The electron accelerator consists of a high-perveance, multi-aperture array. The E-beam is operated in the ion-focused regime where the plasma filling the SWS space-charge neutralizes the beam, and the self-pinch force compresses the beamlets and increases the beam current density. A scale-model PASOTRON, operating as a backward- wave oscillator in C-band with a 100-kV E-beam, has produced output powers in the 3 to 5 MW range and pulse lengths of over 100 microsecond(s) ec, corresponding to an integrated energy per pulse of up to 500 J. The E-beam to microwave-radiation power conversion efficiency is about 20%.

  11. High energy physics in the United States

    International Nuclear Information System (INIS)

    Month, M.

    1985-01-01

    The US program in high energy physics from 1985 to 1995 is reviewed. The program depends primarily upon work at the national accelerator centers, but includes a modest but diversified nonaccelerator program. Involvement of universities is described. International cooperation in high energy physics is discussed, including the European, Japanese, USSR, and the People's Republic of China's programs. Finally, new facilities needed by the US high energy physics program are discussed, with particular emphasis given to a Superconducting Super Collider for achieving ever higher energies in the 20 TeV range

  12. High energy physics in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Month, M.

    1985-10-16

    The US program in high energy physics from 1985 to 1995 is reviewed. The program depends primarily upon work at the national accelerator centers, but includes a modest but diversified nonaccelerator program. Involvement of universities is described. International cooperation in high energy physics is discussed, including the European, Japanese, USSR, and the People's Republic of China's programs. Finally, new facilities needed by the US high energy physics program are discussed, with particular emphasis given to a Superconducting Super Collider for achieving ever higher energies in the 20 TeV range. (LEW)

  13. Phenomenon of energy concentration in super-high energy γ-hadron families

    International Nuclear Information System (INIS)

    Dai Zhiqiang; Xue Liang; Li Jinyu; Zhang Xueyao; Feng Cunfeng; Fu Yu; Li Jie; Cao Peiyuan; Zhang Naijian; He Mao; Wang Chengrui; Ren Jingru; Lu Suiling

    2000-01-01

    The family events observed with iron emulsion chambers at Mt. Kanbala are analyzed and compared with the simulations by the COSMOS code and CORSIKA code respectively. A detailed study on the production of super-high energy γ-hadron families with energy concentration behavior is carried out. The preliminary conclusions are: 1) the energy concentration behavior of super-high energy γ-hadron families is the external embodiment of high energy central shower clusters contained in the families. 2) the mean lateral spread of these clusters is about 0.37 cm. 3) the frequency of this phenomenon appeared under the conditions of R≤10 mm and X 10 ≥90% is (20.5 +- 3.1)%. 4) compared to the COSMOS code based on the phenomenological multi-cluster model, the simulation by the CORSIKA code that adopts SIBYLL model is closer to the analytical results of experiment

  14. Intercomparison of high energy neutron personnel dosimeters

    International Nuclear Information System (INIS)

    McDonald, J.C.; Akabani, G.; Loesch, R.M.

    1993-03-01

    An intercomparison of high-energy neutron personnel dosimeters was performed to evaluate the uniformity of the response characteristics of typical neutron dosimeters presently in use at US Department of Energy (DOE) accelerator facilities. It was necessary to perform an intercomparison because there are no national or international standards for high-energy neutron dosimetry. The testing that is presently under way for the Department of Energy Laboratory Accreditation Program (DOELAP) is limited to the use of neutron sources that range in energy from about 1 keV to 2 MeV. Therefore, the high-energy neutron dosimeters presently in use at DOE accelerator facilities are not being tested effectively. This intercomparison employed neutrons produced by the 9 Be(p,n) 9 B interaction at the University of Washington cyclotron, using 50-MeV protons. The resulting neutron energy spectrum extended to a maximum of approximately 50-MeV, with a mean energy of about 20-MeV. Intercomparison results for currently used dosimeters, including Nuclear Type A (NTA) film, thermoluminescent dosimeter (TLD)-albedo, and track-etch dosimeters (TEDs), indicated a wide variation in response to identical doses of high-energy neutrons. Results of this study will be discussed along with a description of plans for future work

  15. Low energy current accumulator for high-energy proton rings

    International Nuclear Information System (INIS)

    Month, M.

    1977-01-01

    Building current in high-energy p-p colliding beam machines is most appropriately done in a low-energy (small circumference) current accumulator. Three significant factors favor such a procedure: First, large rings tend to be susceptible to unstable longitudinal density oscillations. These can be avoided by pumping up the beam in the accumulator. When the current stack is injected into the storage ring, potentially harmful instability is essentially neutralized. Second, high-field magnets characteristic of future high energy proton rings are designed with superconducting coils within the iron magnetic shield. This means coil construction and placement errors propagate rapidly within the beam aperture. An intermediate ''stacking ring'' allows the minimum use of the superconducting ring aperture. Finally, the coils are vulnerable to radiation heating and possible magnet quenching. By minimizing beam manipulaion in the superconducting environment and using only the central portion of the beam aperture, coil vulnerability can be put at a minimum

  16. CERN and the high energy frontier

    Directory of Open Access Journals (Sweden)

    Tsesmelis Emmanuel

    2014-04-01

    Full Text Available This paper presents the particle physics programme at CERN at the high-energy frontier. Starting from the key open questions in particle physics and the large-scale science facilities existing at CERN, concentrating on the Large Hadron Collider(LHC, this paper goes on to present future possibilities for global projects in high energy physics. The paper presents options for future colliders, all being within the framework of the recently updated European Strategy for Particle Physics, and all of which have a unique value to add to experimental particle physics. The paper concludes by outlining key messages for the way forward for high-energy physics research.

  17. On the Future High Energy Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, Vladimir [Fermilab

    2015-09-28

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). A number of the next generation collider facilities have been proposed and are currently under consideration for the medium and far-future of accelerator-based high energy physics. In this paper we offer a uniform approach to evaluation of various accelerators based on the feasibility of their energy reach, performance potential and cost range.

  18. Expectations for ultra-high energy interactions

    International Nuclear Information System (INIS)

    Feynman, R.P.

    1978-01-01

    Strong interactions at ultra-high energies are discussed with emphasis on the hadrons produced in high energy collisions. Evidence is considered that quantum chromodynamics might be the right theory, and also some estimates are given of quantum chromodynamics asymptotic-freedom phenomena, the work under discussion being very preliminary. 6 references

  19. High yield of low-energy pions from a high-energy primary proton beam

    International Nuclear Information System (INIS)

    Bertin, A.; Capponi, S.; De Castro, S.

    1987-01-01

    This paper presents the results of the first measurement on the yield of pions with momentum smaller than 220 MeV/c, produced by a 300 GeV/c proton beam. The measurements, performed at the CERN super proton synchrotron using tungsten production targets of different lengths, are discussed referring to the possibility of extending to high-energy laboratories the access to fundamental research involving low-energy pions and muons

  20. High-energy green supercapacitor driven by ionic liquid electrolytes as an ultra-high stable next-generation energy storage device

    Science.gov (United States)

    Thangavel, Ranjith; Kannan, Aravindaraj G.; Ponraj, Rubha; Thangavel, Vigneysh; Kim, Dong-Won; Lee, Yun-Sung

    2018-04-01

    Development of supercapacitors with high energy density and long cycle life using sustainable materials for next-generation applications is of paramount importance. The ongoing challenge is to elevate the energy density of supercapacitors on par with batteries, while upholding the power and cyclability. In addition, attaining such superior performance with green and sustainable bio-mass derived compounds is very crucial to address the rising environmental concerns. Herein, we demonstrate the use of watermelon rind, a bio-waste from watermelons, towards high energy, and ultra-stable high temperature green supercapacitors with a high-voltage ionic liquid electrolyte. Supercapacitors assembled with ultra-high surface area, hierarchically porous carbon exhibits a remarkable performance both at room temperature and at high temperature (60 °C) with maximum energy densities of ∼174 Wh kg-1 (25 °C), and 177 Wh kg-1 (60 °C) - based on active mass of both electrodes. Furthermore, an ultra-high specific power of ∼20 kW kg-1 along with an ultra-stable cycling performance with 90% retention over 150,000 cycles has been achieved even at 60 °C, outperforming supercapacitors assembled with other carbon based materials. These results demonstrate the potential to develop high-performing, green energy storage devices using eco-friendly materials for next generation electric vehicles and other advanced energy storage systems.

  1. Machine Protection and High Energy Density States in Matter for High Energy Hadron Accelerators

    CERN Document Server

    Blanco Sancho, Juan; Schmidt, R

    The Large Hadron Collider (LHC) is the largest accelerator in the world. It is designed to collide two proton beams with unprecedented particle energy of 7TeV. The energy stored in each beam is 362MJ, sufficient to melt 500kg of copper. An accidental release of even a small fraction of the beam energy can result in severe damage to the equipment. Machine protection systems are essential to safely operate the accelerator and handle all possible accidents. This thesis deals with the study of different failure scenarios and its possible consequences. It addresses failure scenarios ranging from low intensity losses on high-Z materials and superconductors to high intensity losses on carbon and copper collimators. Low beam losses are sufficient to quench the superconducting magnets and the stabilized superconducting cables (bus-bars) that connects the main magnets. If this occurs and the energy from the bus-bar is not extracted fast enough it can lead to a situation similar to the accident in 2008 at LHC during pow...

  2. High-energy cosmic-ray acceleration

    CERN Document Server

    Bustamante, M; de Paula, W; Duarte Chavez, J A; Gago, A M; Hakobyan, H; Jez, P; Monroy Montañez, J A; Ortiz Velasquez, A; Padilla Cabal, F; Pino Rozas, M; Rodriguez Patarroyo, D J; Romeo, G L; Saldaña-Salazar , U J; Velasquez, M; von Steinkirch, M

    2010-01-01

    We briefly review the basics of ultrahigh-energy cosmic-ray acceleration. The Hillas criterion is introduced as a geometrical criterion that must be fulfilled by potential acceleration sites, and energy losses are taken into account in order to obtain a more realistic scenario. The different available acceleration mechanisms are presented, with special emphasis on Fermi shock acceleration and its prediction of a power-law cosmic-ray energy spectrum. We conclude that first-order Fermi acceleration, though not entirely satisfactory, is the most promising mechanism for explaining the ultra-high-energy cosmic-ray flux.

  3. Ultra high energy cosmic rays

    International Nuclear Information System (INIS)

    Watson, A.A.

    1986-01-01

    Cosmic radiation was discovered 70 years ago but its origin remains an open question. The background to this problem is outlined and attempts to discover the origin of the most energetic and rarest group above 10 15 eV are described. Measurements of the energy spectrum and arrival direction pattern of the very highest energy particles, mean energy about 6 x 10 19 eV, are used to argue that these particles originate outside our galaxy. Recent evidence from the new field of ultra high energy γ-ray astronomy are discussed in the context of a galactic origin hypothesis for lower energy cosmic rays. (author)

  4. Intermediate/high energy nuclear physics

    International Nuclear Information System (INIS)

    Vary, J.P.

    1992-01-01

    Progress during the last year is reviewed under the following topics: relativistic hadron--nucleus and nucleus--nucleus collisions (heavy meson production, photon production and fragmentation functions--direct photon production with the QCM and photon fragmentation functions, Cronin efffect and multiple scattering, effective nuclear parton distributions); solving quantum field theories in nonperturbative regime; light-front dynamics and high-spin states (soft form factor of the pion and nucleon for transverse and longitudinal momentum transfers, light front spinors for high-spin objects); high-energy spin physics; relativistic wave equations, quarkonia, and e + e - resonances; associated production of Higgs boson at collider energies, and microscopic nuclear many-body theory and reactions. 135 refs

  5. Quantum chromodynamics at high energy

    CERN Document Server

    Kovchegov, Yuri V

    2012-01-01

    Filling a gap in the current literature, this book is the first entirely dedicated to high energy QCD including parton saturation. It presents groundbreaking progress on the subject and describes many of the problems at the forefront of research, bringing postgraduate students, theorists and advanced experimentalists up to date with the current status of the field. A broad range of topics in high energy QCD are covered, most notably on the physics of parton saturation and the Color Glass Condensate (CGC). The material is presented in a pedagogical way, with numerous examples and exercises. Discussion ranges from the quasi-classical McLerran–Venugopalan model to the linear and non-linear BFKL/BK/JIMWLK small-x evolution equations. The authors adopt both a theoretical and experimental outlook and present the physics of strong interactions in a universal way, making it useful to physicists from various sub-communities and applicable to processes studied at high energy accelerators around the world.

  6. Progress in high-energy laser technology

    International Nuclear Information System (INIS)

    Miyanaga, Noriaki; Kitagawa, Yoneyoshi; Nakatsuka, Masahiro; Kanabe, Tadashi; Okuda, Isao

    2005-01-01

    The technological development of high-energy lasers is one of the key issues in laser fusion research. This paper reviews several technologies on the Nd:glass laser and KrF excimer laser that are being used in the current laser fusion experiments and related plasma experiments. Based on the GEKKO laser technology, a new high-energy Nd: glass laser system, which can deliver energy from 10 kJ (boad-band operation) to 20 kJ (narrow-band operation), is under construction. The key topics in KrF laser development are improved efficiency and repetitive operation, which aim at the development of a laser driven for fusion reactor. Ultra-intense-laser technology is also very important for fast ignition research. The key technology for obtaining the petawatt output with high beam quality is reviewed. Regarding the uniform laser irradiation required for high-density compression, the beam-smoothing methods on the GEKKO XII laser are reviewed. Finally, we discuss the present status of MJ-class lasers throughout the world, and summarize by presenting the feasibility of various applications of the high-energy lasers to a wide range of scientific and technological fields. (author)

  7. The high energy accelerator program in Japan

    International Nuclear Information System (INIS)

    Ozaki, S.

    1987-01-01

    The author observes that in order to survey the intentions of Japanese high energy physicists and to make a recommendation to the High Energy Committee on future plans for high energy physics in Japan, including accelerators after TRISTAN, international collaboration projects and non-accelerator physics, a subcommittee of fifteen members is formed. The committee recommendation reads: A) For a new energy frontier, 1. Immediate initiation of R/D efforts for an e/sup +/e/sup -/ linear collider of TeV class, constructs a possible home-based facility, 2. Promotes international collaborative experiments using the SSC for the hadron sector, B) As projects of immediate concern: 1. The energy of the TRISTAN main ring increases further makes a possible low energy, high luminosity e/sup +/e/sup -/ collider operation in the TRISTAN complex, 2. The intensity of the 12 GeV PS at KEK increases, 3. Experiments in non-accelerator particle physics are promoted. In this contribution, the current status of the TRISTAN project and some of the R/D program on accelerator technology are reported

  8. Harvard University High Energy Physics progress report

    International Nuclear Information System (INIS)

    1992-01-01

    The principal goals of this work are to carry out forefront programs in high energy physics research and to provide first rate educational opportunities for students. The experimental program supported through HEPL is carried out at the major accelerator centers in the world and addresses some of the most important questions in high energy physics. The program is based at Harvard's High Energy Physics Laboratory, which has offices, computing facilities, and engineering support, and both electronics and machine shops

  9. Particle accelerators and lasers high energy sources

    International Nuclear Information System (INIS)

    Watteau, J.P.

    1985-04-01

    Particle accelerators and lasers are to-day precious devices for physicist and engineer. Their performance and scope do not stop growing. Producing thin beams of high energy particles or photons, they are able to be very high energy sources which interact strongly with matter. Numerous applications use them: research, industry, communication, medicine, agroalimentary, defence, and soon. In this note, their operation principles are described and some examples of their use as high energy sources are given [fr

  10. High energy particles from {gamma}-ray bursts

    Energy Technology Data Exchange (ETDEWEB)

    Waxman, E [Weizmann Institute of Science, Rehovot (Israel)

    2001-11-15

    A review is presented of the fireball model of {gamma}-ray bursts (GRBs), and of the production in GRB fireballs of high energy protons and neutrinos. Constraints imposed on the model by recent afterglow observations, which support the association of GRB and ultra-high energy cosmic-ray (UHECR) sources, are discussed. Predictions of the GRB model for UHECR production, which can be tested with planned large area UHECR detectors and with planned high energy neutrino telescopes, are reviewed. (author)

  11. Biological effectiveness of high-energy protons - Target fragmentation

    International Nuclear Information System (INIS)

    Cucinotta, F.A.; Katz, R.; Wilson, J.W.; Townsend, L.W.; Shinn, J.; Hajnal, F.

    1991-01-01

    High-energy protons traversing tissue produce local sources of high-linear-energy-transfer ions through nuclear fragmentation. The contribution of these target fragments to the biological effectiveness of high-energy protons using the cellular track model is examined. The effects of secondary ions are treated in terms of the production collision density using energy-dependent parameters from a high-energy fragmentation model. Calculations for mammalian cell cultures show that at high dose, at which intertrack effects become important, protons deliver damage similar to that produced by gamma rays, and with fragmentation the relative biological effectiveness (RBE) of protons increases moderately from unity. At low dose, where sublethal damage is unimportant, the contribution from target fragments dominates, causing the proton effectiveness to be very different from that of gamma rays with a strongly fluence-dependent RBE. At high energies, the nuclear fragmentation cross sections become independent of energy. This leads to a plateau in the proton single-particle-action cross section, below 1 keV/micron, since the target fragments dominate. 29 refs

  12. Stringy symmetries and their high-energy limits

    International Nuclear Information System (INIS)

    Chan, C.-T.; Lee, J.-C.

    2005-01-01

    We derive stringy symmetries with conserved charges of arbitrarily high spins from the decoupling of two types of zero-norm states in the old covariant first quantized (OCFQ) spectrum of open bosonic string. These symmetries are valid to all energy α ' and all loop orders χ in string perturbation theory. The high-energy limit α ' ->∞ of these stringy symmetries can then be used to fix the proportionality constants between scattering amplitudes of different string states algebraically without referring to Gross and Mende's saddle point calculation of high-energy string-loop amplitudes. These proportionality constants are, as conjectured by Gross, independent of the scattering angle φ CM and the order χ of string perturbation theory. However, we also discover some new nonzero components of high-energy amplitudes not found previously by Gross and Manes. These components are essential to preserve massive gauge invariances or decouple massive zero-norm states of string theory. A set of massive scattering amplitudes and their high energy limit are calculated explicitly to justify our results

  13. High energy devices versus low energy devices in orthopedics treatment modalities

    Science.gov (United States)

    Schultheiss, Reiner

    2003-10-01

    The orthopedic consensus group defined in 1997 the 42 most likely relevant parameters of orthopedic shock wave devices. The idea of this approach was to correlate the different clinical outcomes with the physical properties of the different devices with respect to their acoustical waves. Several changes in the hypothesis of the dose effect relationship have been noticed since the first orthopedic treatments. The relation started with the maximum pressure p+, followed by the total energy, the energy density; and finally the single treatment approach using high, and then the multiple treatment method using low energy. Motivated by the reimbursement situation in Germany some manufacturers began to redefine high and low energy devices independent of the treatment modality. The OssaTron as a high energy, single treatment electro hydraulic device gained FDA approval as the first orthopedic ESWT device for plantar fasciitis and, more recently, for lateral epicondylitis. Two low energy devices have now also gained FDA approval based upon a single treatment. Comparing the acoustic data, differences between the OssaTron and the other devices are obvious and will be elaborated upon. Cluster analysis of the outcomes and the acoustical data are presented and new concepts will be suggested.

  14. Unitarity corrections and high field strengths in high energy hard collisions

    International Nuclear Information System (INIS)

    Kovchegov, Y.V.; Mueller, A.H.

    1997-01-01

    Unitarity corrections to the BFKL description of high energy hard scattering are viewed in large N c QCD in light-cone quantization. In a center of mass frame unitarity corrections to high energy hard scattering are manifestly perturbatively calculable and unrelated to questions of parton saturation. In a frame where one of the hadrons is initially at rest unitarity corrections are related to parton saturation effects and involve potential strengths A μ ∝1/g. In such a frame we describe the high energy scattering in terms of the expectation value of a Wilson loop. The large potentials A μ ∝1/g are shown to be pure gauge terms allowing perturbation theory to again describe unitarity corrections and parton saturation effects. Genuine nonperturbative effects only come in at energies well beyond those energies where unitarity constraints first become important. (orig.)

  15. Highly Compressed Ion Beams for High Energy Density Science

    CERN Document Server

    Friedman, Alex; Briggs, Richard J; Callahan, Debra; Caporaso, George; Celata, C M; Davidson, Ronald C; Faltens, Andy; Grant-Logan, B; Grisham, Larry; Grote, D P; Henestroza, Enrique; Kaganovich, Igor D; Lee, Edward; Lee, Richard; Leitner, Matthaeus; Nelson, Scott D; Olson, Craig; Penn, Gregory; Reginato, Lou; Renk, Tim; Rose, David; Sessler, Andrew M; Staples, John W; Tabak, Max; Thoma, Carsten H; Waldron, William; Welch, Dale; Wurtele, Jonathan; Yu, Simon

    2005-01-01

    The Heavy Ion Fusion Virtual National Laboratory (HIF-VNL) is developing the intense ion beams needed to drive matter to the High Energy Density (HED) regimes required for Inertial Fusion Energy (IFE) and other applications. An interim goal is a facility for Warm Dense Matter (WDM) studies, wherein a target is heated volumetrically without being shocked, so that well-defined states of matter at 1 to 10 eV are generated within a diagnosable region. In the approach we are pursuing, low to medium mass ions with energies just above the Bragg peak are directed onto thin target "foils," which may in fact be foams or "steel wool" with mean densities 1% to 100% of solid. This approach complements that being pursued at GSI, wherein high-energy ion beams deposit a small fraction of their energy in a cylindrical target. We present the requirements for warm dense matter experiments, and describe suitable accelerator concepts, including novel broadband traveling wave pulse-line, drift-tube linac, RF, and single-gap approa...

  16. High and medium high energy lines in France. The SATURNE case

    International Nuclear Information System (INIS)

    Milleret, G.

    1994-01-01

    Located in the Paris area, the SATURNE accelerator produces high energy charged particles: protons, deuterons, helium 3, helium 4, neutrons. The beams, with very flexible characteristics (linear energy transfer, flexible environment, dimension and intensity) for simulation of cosmic particles or high energy accelerator environments, allow for testing various individual or complete components. The various commercial offers and prices are presented. 5 fig., 2 ref

  17. Individual Dosimetry for High Energy Radiation Fields

    International Nuclear Information System (INIS)

    Spurny, F.

    1999-01-01

    The exposure of individuals on board aircraft increased interest in individual dosimetry in high energy radiation fields. These fields, both in the case of cosmic rays as primary radiation and at high energy particle accelerators are complex, with a large diversity of particle types, their energies, and linear energy transfer (LET). Several already existing individual dosemeters have been tested in such fields. For the component with high LET (mostly neutrons) etched track detectors were tested with and without fissile radiators, nuclear emulsions, bubble detectors for both types available and an albedo dosemeter. Individual dosimetry for the low LET component has been performed with thermoluminescent detectors (TLDs), photographic film dosemeters and two types of electronic individual dosemeters. It was found that individual dosimetry for the low LET component was satisfactory with the dosemeters tested. As far as the high LET component is concerned, there are problems with both the sensitivity and the energy response. (author)

  18. The HESP (High Energy Solar Physics) project

    Science.gov (United States)

    Kai, K.

    1986-01-01

    A project for space observations of solar flares for the coming solar maximum phase is briefly described. The main objective is to make a comprehensive study of high energy phenomena of flares through simultaneous imagings in both hard and soft X-rays. The project will be performed with collaboration from US scientists. The HESP (High Energy Solar Physics) WG of ISAS (Institute of Space and Astronautical Sciences) has extensively discussed future aspects of space observations of high energy phenomena of solar flares based on successful results of the Hinotori mission, and proposed a comprehensive research program for the next solar maximum, called the HESP (SOLAR-A) project. The objective of the HESP project is to make a comprehensive study of both high energy phenomena of flares and quiet structures including pre-flare states, which have been left uncovered by SMM and Hinotori. For such a study simultaneous imagings with better resolutions in space and time in a wide range of energy will be extremely important.

  19. High energy nuclear excitations

    International Nuclear Information System (INIS)

    Gogny, D.; Decharge, J.

    1983-09-01

    The main purpose of this talk is to see whether a simple description of the nuclear excitations permits one to characterize some of the high energy structures recently observed. The discussion is based on the linear response to different external fields calculated using the Random Phase Approximation. For those structure in heavy ion collisions at excitation energies above 50 MeV which cannot be explained with such a simple approach, we discuss a possible mechanism for this heavy ion scattering

  20. Split School of High Energy Physics 2015

    CERN Document Server

    2015-01-01

    Split School of High Energy Physics 2015 (SSHEP 2015) was held at the Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture (FESB), University of Split, from September 14 to September 18, 2015. SSHEP 2015 aimed at master and PhD students who were interested in topics pertaining to High Energy Physics. SSHEP 2015 is the sixth edition of the High Energy Physics School. Previous five editions were held at the Department of Physics, University of Sarajevo, Bosnia and Herzegovina.

  1. Research on high energy density plasmas and applications

    International Nuclear Information System (INIS)

    1999-01-01

    Recently, technologies on lasers, accelerators, and pulse power machines have been significantly advanced and input power density covers the intensity range from 10 10 W/cm 2 to higher than 10 20 W/cm 2 . As the results, high pressure gas and solid targets can be heated up to very high temperature to create hot dense plasmas which have never appeared on the earth. The high energy density plasmas opened up new research fields such as inertial confinement fusion, high brightness X-ray radiation sources, interiors of galactic nucleus,supernova, stars and planets, ultra high pressure condensed matter physics, plasma particle accelerator, X-ray laser, and so on. Furthermore, since these fields are intimately connected with various industrial sciences and technologies, the high energy density plasma is now studied in industries, government institutions, and so on. This special issue of the Journal of Plasma Physics and Nuclear Fusion Research reviews the high energy density plasma science for the comprehensive understanding of such new fields. In May, 1998, the review committee for investigating the present status and the future prospects of high energy density plasma science was established in the Japan Society of Plasma Science and Nuclear Fusion Research. We held three committee meetings to discuss present status and critical issues of research items related to high energy density plasmas. This special issue summarizes the understandings of the committee. This special issue consists of four chapters: They are Chapter 1: Physics important in the high energy density plasmas, Chapter 2: Technologies related to the plasma generation; drivers such as lasers, pulse power machines, particle beams and fabrication of various targets, Chapter 3: Plasma diagnostics important in high energy density plasma experiments, Chapter 4: A variety of applications of high energy density plasmas; X-ray radiation, particle acceleration, inertial confinement fusion, laboratory astrophysics

  2. High energy physics: Experimental, theoretical and phenomenology institute

    International Nuclear Information System (INIS)

    Barger, V.; Camerini, U.; Carlsmith, D.; Durand, B.; Durand, L.; Erwin, A.; Fry, W.; Goebel, C.; Halzen, F.; Loveless, R.; March, R.; Morse, R.; Olsson, M.; Pondrom, L.; Prepost, R.; Reeder, D.; Sheaff, M.; Smith, W.; Thompson, M.; Wu, S.L.

    1991-01-01

    This report discusses research in the following task: hadron physics at Fermilab; Lepton hadron scattering; electromagnetic ampersand weak interactions at the Stanford Linear Accelerator Center - SLAC; hyperon beam program - hadroproduction of heavy beam flavors at Fermilab; ultra high energy colliding beam physics; Institute for high energy physics phenomenology; weak ampersand electromagnetic interactions using PETRA at DESY ampersand LEP at CERN; theoretical high energy physics; DUMAND; study of ultra high energy gamma rays; data analysis facility; and R ampersand D for major subsystems for the SSC detectors

  3. Performance Limitations in High-Energy Ion Colliders

    CERN Document Server

    Fischer, Wolfram

    2005-01-01

    High-energy ion colliders (hadron colliders operating with species other than protons) are premier research tools for nuclear physics. The collision energy and high luminosity are important design and operations considerations. However, the experiments also expect flexibility with frequent changes in the collision energy, lattice configuration, and ion species, including asymmetric collisions. For the creation, acceleration, and storage of bright intense ion beams, attention must be paid to space charge, charge exchange, and intra-beam scattering effects. The latter leads to luminosity lifetimes of only a few hours for heavy ions. Ultimately cooling at full energy is needed to overcome this effect. Currently, the Relativistic Heavy Ion Collider at BNL is the only operating high-energy ion collider. The Large Hadron Collider, under construction at CERN, will also run with heavy ions.

  4. Report of the Subpanel on High Energy Physics Manpower of the High Energy Physics Advisory Panel

    International Nuclear Information System (INIS)

    1978-06-01

    A report of a study by a Subpanel which was appointed by the High Energy Physics Advisory Panel (HEPAP) to examine the production in recent years of new researchers in high energy physics and the rate at which they have moved into short term and permanent positions in the field. The Subpanel made use of the 1973 and 1975 ERDA Census data, statistics collected by others, as well as a number of surveys conducted by the Subpanel itself. Even though many uncertainties and gaps exist in the available data, several important points are presented. (1) New Ph.D. production in high energy physics has decreased in recent years even more rapidly than in physics as a whole. (2) New Ph.D.'s in experimental and theoretical high energy physics have been produced for many years in roughly equal numbers in spite of the fact that employment in the field at all levels shows a ratio of experiment-to-theory approaching two-to-one. (3) A very large fraction of the approximately 1700 Ph.D.'s in high energy physics (employed at 78 universities and 5 national laboratories) hold tenured positions (383 theorists and 640 experimentalists). (4) The age distribution of those in the tenured ranks reveals that the number of retirements will be extremely small during the next decade but will then start to have a significant impact on the opportunities for those who are seeking careers in the field. (5) Promotions to tenure at the universities during the 4 year interval AY72/73-AY76/77 have averaged about 10 per year in experiment and 10 per year in theory

  5. CAMAC high energy physics electronics hardware

    International Nuclear Information System (INIS)

    Kolpakov, I.F.

    1977-01-01

    CAMAC hardware for high energy physics large spectrometers and control systems is reviewed as is the development of CAMAC modules at the High Energy Laboratory, JINR (Dubna). The total number of crates used at the Laboratory is 179. The number of CAMAC modules of 120 different types exceeds 1700. The principles of organization and the structure of developed CAMAC systems are described. (author)

  6. Summaries of FY 1984 research in high energy physics

    International Nuclear Information System (INIS)

    1984-12-01

    The US Department of Energy, through the Office of Energy Research, Division of High Energy and Nuclear Physics, provides approximately 90 percent of the total federal support for high energy physics research effort in the United States. The High Energy Physics Program primarily utilizes four major US high energy accelerator facilities and over 90 universities under contract to do experimental and theoretical investigations on the properties, structure, and transformation of matter and energy in their most basic forms. This compilation of research summaries is intended to present a convenient report of the scope and nature of high energy physics research presently funded by the US Department of Energy. The areas covered include: (1) conception, design, construction, and operation of particle accelerators; (2) experimental research using the accelerators and ancillary equipment; (3) theoretical research; and (4) research and development programs to advance accelerator technology, particle detector systems, and data analysis capabilities. Major concepts and experimental facts in high energy physics have recently been discovered which have the promise of unifying the fundamental forces and of unerstanding the basic nature of matter and energy

  7. Theoretical interpretation of high-energy nuclear collisions

    International Nuclear Information System (INIS)

    Fai, G.

    1992-06-01

    Nuclear collisions are interpreted theoretically. The nuclear equation of state is studied in a wide energy range. Subnucleonic degrees of freedom are invoked at high energy densities and at short length-scales. Questions of dynamical collision simulations are investigated. Direct support is provided for experiment in the form of collaborative projects. The major objective of this nuclear theory program is a better understanding of the properties of strongly interacting matter on the nuclear energy scale, as manifested in high-energy heavy-ion collisions

  8. A high-energy electron beam ion trap for production of high-charge high-Z ions

    International Nuclear Information System (INIS)

    Knapp, D.A.; Marrs, R.E.; Elliott, S.R.; Magee, E.W.; Zasadzinski, R.

    1993-01-01

    We have developed a new high-energy electron beam ion trap, the first laboratory source of low-energy, few-electron, high-Z ions. We describe the device and report measurements of its performance, including the electron beam diameter, current density and energy, and measurements of the ionization balance for several high-Z elements in the trap. This device opens up a wide range of possible experiments in atomic physics, plasma physics, and nuclear physics. (orig.)

  9. Influence of high energy electrons on ECRH in LHD

    Directory of Open Access Journals (Sweden)

    Ogasawara S.

    2012-09-01

    Full Text Available The central bulk electron temperature of more than 20 keV is achieved in LHD as a result of increasing the injection power and the lowering the electron density near 2 × 1018 m−3. Such collision-less regime is important from the aspect of the neoclassical transport and also the potential structure formation. The presences of appreciable amount of high energy electrons are indicated from hard X-ray PHA, and the discrepancy between the stored energy and kinetic energy estimated from Thomson scattering. ECE spectrum are also sensitive to the presence of high energy electrons and discussed by solving the radiation transfer equation. The ECRH power absorption to the bulk and the high energy electrons are dramatically affected by the acceleration and the confinement of high energy electrons. The heating mechanisms and the acceleration process of high energy electrons are discussed by comparing the experimental results and the ray tracing calculation under assumed various density and mean energy of high energy electrons.

  10. Theoretical High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Christ, Norman H.; Weinberg, Erick J.

    2014-07-14

    we provide reports from each of the six faculty supported by the Department of Energy High Energy Physics Theory grant at Columbia University. Each is followed by a bibliography of the references cited. A complete list of all of the publications in the 12/1/2010-04/30/2014 period resulting from research supported by this grant is provided in the following section. The final section lists the Ph.D. dissertations based on research supported by the grant that were submitted during this period.

  11. High energy hadron-hadron collisions

    International Nuclear Information System (INIS)

    Chou, T.T.

    1990-01-01

    Results of a study on high energy collision with the geometrical model are summarized in three parts: (i) the elastic hadron-hadron collision, (ii) the inelastic hadron-hadron collision, and (iii) the e + e - annihilation. The geometrical description of high-energy elastic scattering developed earlier is still in general agreement with experiments at the CERN-S bar ppS energies. A simple one-parameter expression for the blackness of bar pp system has been proposed recently which describes very well all existing data from ISR to S bar ppS energies. The geometrical description has also been extended to include processes of fragmentation and diffraction dissociation and other phenomena. In the past five years, a unified physical picture for multiparticle emission in hadron-hadron and e + e - collisions was developed. It focuses on the idea of the wide range of values for the total angular momentum in hadron-hadron collisions. An extension of this consideration yields a theory for the momentum distribution of the outgoing particles which agrees with bar pp and e + e - collision experiments. The results and conclusions of this theory have been extrapolated to higher energies and yielded many predictions which can be experimentally tested. 37 refs

  12. High energy experimental physics: Progress report

    International Nuclear Information System (INIS)

    Rosen, J.; Miller, D.

    1988-01-01

    This report contains papers of high energy physics experiments and detector equipment design. Proposals are also given for future experiments. Some of the topics covered in this report are: high energy predictions for /bar char/pp and pp elastic scattering and total cross sections; D0 forward drift chambers; polarized beam facility; analyzing power measurment in inclusive pion production at high transverse momentum; Skyrme model for baryons; string models for color flux tubes; hadronic decays for the /tau/ lepton; and meson form factors in perturbative QCD

  13. HIGH ENERGY PHYSICS POTENTIAL AT MUON COLLIDERS

    International Nuclear Information System (INIS)

    PARSA, Z.

    2000-01-01

    In this paper, high energy physics possibilities and future colliders are discussed. The μ + μ - collider and experiments with high intensity muon beams as the stepping phase towards building Higher Energy Muon Colliders (HEMC) are briefly reviewed and encouraged

  14. Spectra of gamma-ray bursts at high energies

    International Nuclear Information System (INIS)

    Matz, S.M.

    1986-01-01

    Between 1980 February and 1983 August the Gamma-Ray Spectrometer (GRS) on the Solar Maximum Mission satellite (SMM) observed 71 gamma-ray bursts. These events form a representative subset of the class of classical gamma-ray bursts. Since their discovery more than 15 years ago, hundreds of gamma-ray bursts have been detected; however, most observations have been limited to an energy range of roughly 30 keV-1 MeV. The large sensitive area and spectral range of the GRS allow, for the first time, an investigation of the high energy (>1 MeV) behavior of a substantial number of gamma-ray bursts. It is found that high-energy emission is seen in a large fraction of all events and that the data are consistent with all bursts emitting to at least 5 MeV with no cut-offs. Further, no burst spectrum measured by GRS has a clear high-energy cut-off. The high-energy emission can be a significant part of the total burst energy on the average about 30% of the observed energy above 30 keV is contained in the >1 MeV photons. The fact that the observations are consistent with the presence of high-energy emission in all events implies a limit on the preferential beaming of high-energy photons, from any mechanism. Single-photon pair-production in a strong magnetic field produces such beaming; assuming that the low-energy emission is isotropic, the data imply an upper limit of 1 x 10 12 G on the typical magnetic field at burst radiation sites

  15. Multiple embolier efter DC-konvertering hos en patient forbehandlet med dabigatran

    DEFF Research Database (Denmark)

    Buch, Torben Nicolai; Holm, Jakob; Munck, Lars Kristian

    2013-01-01

    A 65-year-old man, who had been treated with dabigatran for 66 days prior to electrical cardioversion, developed extensive intestinal, renal and cerebral thromboembolism five days after cardioversion. There is limited information available on the treatment of thromboembolism in patients being tre...

  16. High-energy atomic physics

    CERN Document Server

    Drukarev, Evgeny G

    2016-01-01

    This self-contained text introduces readers to the field of high-energy atomic physics - a new regime of photon-atom interactions in which the photon energies significantly exceed the atomic or molecular binding energies, and which opened up with the recent advent of new synchrotron sources. From a theoretical point of view, a small-parameter characteristic of the bound system emerged, making it possible to perform analytic perturbative calculations that can in turn serve as benchmarks for more powerful numerical computations. The first part of the book introduces readers to the foundations of this new regime and its theoretical treatment. In particular, the validity of the small-parameter perturbation expansion and of the lowest-order approximation is critically reviewed. The following chapters then apply these insights to various atomic processes, such as photoionization as a many-body problem, dominant mechanisms for the production of ions at higher energies, Compton scattering and ionization accompanied b...

  17. Opportunities for high wind energy penetration

    DEFF Research Database (Denmark)

    Tande, J.O.; Hansen, J.C.

    1997-01-01

    Wind power is today a mature technology, which at windy locations, is economically competitive to conventional power generation technologies. This and growing global environmental concerns have led governments to encourage and plan for wind energy development, a typical aim being 10% of electricity...... consumption. The successful operation of the three major power systems of Cape Verde, with a total wind energy penetration of about 15% since December 1994, demonstrates that power systems can be operated with high penetration of wind energy by adding simple control and monitoring systems only. Thorough...... analyses conclude that expanding to even above 15% wind energy penetration in the Cape Verde power systems is economical. Worldwide, numerous locations with favorable wind conditions and power systems similar to the Capeverdean provide good opportunities for installing wind farms and achieving high wind...

  18. Evaluation of energy response of neutron rem monitor applied to high-energy accelerator facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nakane, Yoshihiro; Harada, Yasunori; Sakamoto, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2003-03-01

    A neutron rem monitor was newly developed for applying to the high-intensity proton accelerator facility (J-PARC) that is under construction as a joint project between the Japan Atomic Energy Research Institute and the High Energy Accelerator Research Organization. To measure the dose rate accurately for wide energy range of neutrons from thermal to high-energy region, the neutron rem monitor was fabricated by adding a lead breeder layer to a conventional neutron rem monitor. The energy response of the monitor was evaluated by using neutron transport calculations for the energy range from thermal to 150 MeV. For verifying the results, the response was measured at neutron fields for the energy range from thermal to 65 MeV. The comparisons between the energy response and dose conversion coefficients show that the newly developed neutron rem monitor has a good performance in energy response up to 150 MeV, suggesting that the present study offered prospects of a practical fabrication of the rem monitor applicable to the high intensity proton accelerator facility. (author)

  19. Scaling violations at ultra-high energies

    International Nuclear Information System (INIS)

    Tung, W.K.

    1979-01-01

    The paper discusses some of the features of high energy lepton-hadron scattering, including the observed (Bjorken) scaling behavior. The cross-sections where all hadron final states are summed over, are examined and the general formulas for the differential cross-section are examined. The subjects of scaling, breaking and phenomenological consequences are studied, and a list of what ultra-high energy neutrino physics can teach QCD is given

  20. High energy elastic hadron scattering

    International Nuclear Information System (INIS)

    Fearnly, T.A.

    1986-04-01

    The paper deals with the WA7 experiment at the CERN super proton synchrotron (SPS). The elastic differential cross sections of pion-proton, kaon-proton, antiproton-proton, and proton-proton at lower SPS energies over a wide range of momentum transfer were measured. Some theoretical models in the light of the experimental results are reviewed, and a comprehensive impact parameter analysis of antiproton-proton elastic scattering over a wide energy range is presented. A nucleon valence core model for high energy proton-proton and antiproton-proton elastic scattering is described

  1. Precision measurements of high-energy conversion electron lines and determination of neutron binding energies

    International Nuclear Information System (INIS)

    Braumandl, F.

    1979-01-01

    The paper first discusses the energy accuracy of the BILL conversion electron spectrometer at the Grenoble high flux reactor. With an improved temperature stabilisation of the magnets, an energy accuracy of ΔE/E -5 can be reached. After this, highly exact measurements of high-energy conversion electron lines of the 200 Hg, 114 Cd, 165 Dy, 168 Er, 239 U nuclei and the 13 C, 28 Al 3 H and 92 Zr photoelectron lines were carried out. Energy calibration of the spectrometer was carried out in the 1.5 MeV to 6.5 MeV range with intensive high-energy transitions of the 200 Hg nucleus. Systematic calibration errors could be investigated by means of combinations between the calibration lines. A calibration for absolute energies was obtained by comparing low-energy gamma transitions of 200 Hg with the 411.8 keV gold standard. (orig.) [de

  2. Summaries of FY 1977, research in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    1977-10-01

    The U.S. Department of Energy, through the Office of Energy Research and the Division of High Energy and Nuclear Physics, provides approximately 90% of the total federal support for high energy physics research effort in the United States. The High Energy Physics Program primarily utilizes four major U.S. high energy accelerator facilities and over 50 universities under contract to do experimental and theoretical investigations on the properties, structure and transformation of matter and energy in their most basic forms. This compilation of research summaries is intended to present a convenient report of the scope and nature of high energy physics research presently funded by the U.S. Department of Energy. The areas covered include conception, design, construction, and operation of particle accelerators; experimental research using the accelerators and ancillary equipment; theoretical research; and research and development programs to advance accelerator technology, particle detector systems, and data analysis capabilities. Major concepts and experimental facts in high energy physics have recently been discovered which have the promise of unifying the fundamental forces and of understanding the basic nature of matter and energy. The summaries contained in this document were reproduced in essentially the form submitted by contractors as of January 1977.

  3. Summaries of FY 1977, research in high energy physics

    International Nuclear Information System (INIS)

    1977-10-01

    The U.S. Department of Energy, through the Office of Energy Research and the Division of High Energy and Nuclear Physics, provides approximately 90% of the total federal support for high energy physics research effort in the United States. The High Energy Physics Program primarily utilizes four major U.S. high energy accelerator facilities and over 50 universities under contract to do experimental and theoretical investigations on the properties, structure and transformation of matter and energy in their most basic forms. This compilation of research summaries is intended to present a convenient report of the scope and nature of high energy physics research presently funded by the U.S. Department of Energy. The areas covered include conception, design, construction, and operation of particle accelerators; experimental research using the accelerators and ancillary equipment; theoretical research; and research and development programs to advance accelerator technology, particle detector systems, and data analysis capabilities. Major concepts and experimental facts in high energy physics have recently been discovered which have the promise of unifying the fundamental forces and of understanding the basic nature of matter and energy. The summaries contained in this document were reproduced in essentially the form submitted by contractors as of January 1977

  4. Electrode/Dielectric Strip For High-Energy-Density Capacitor

    Science.gov (United States)

    Yen, Shiao-Ping S.

    1994-01-01

    Improved unitary electrode/dielectric strip serves as winding in high-energy-density capacitor in pulsed power supply. Offers combination of qualities essential for high energy density: high permittivity of dielectric layers, thinness, and high resistance to breakdown of dielectric at high electric fields. Capacitors with strip material not impregnated with liquid.

  5. Strong interactions at high energy

    International Nuclear Information System (INIS)

    Anselmino, M.

    1995-01-01

    Spin effects in strong interaction high energy processes are subtle phenomena which involve both short and long distance physics and test perturbative and non perturbative aspects of QCD. Moreover, depending on quantities like interferences between different amplitudes and relative phases, spin observables always test a theory at a fundamental quantum mechanical level; it is then no surprise that spin data are often difficult to accommodate within the existing models. A report is made on the main issues and contributions discussed in the parallel Session on the open-quote open-quote Strong interactions at high energy close-quote close-quote in this Conference. copyright 1995 American Institute of Physics

  6. Impacts of high energy prices on long-term energy-economic scenarios for Germany

    Energy Technology Data Exchange (ETDEWEB)

    Krey, V.; Markewitz, P. [Research Center Juelich, Inst. of Energy Res., Systems Analysis and Technology Evaluation, Juelich (Germany); Horn, M. [DIW Berlin, Berlin (Germany); Matthes, C.; Graichen, V.; Harthan, R.O.; Repenning, J. [Oeko-Institut, Berlin (Germany)

    2007-05-15

    Prices of oil and other fossil fuels on global markets have reached a high level in recent years. These levels were not able to be reproduced on the basis of scenarios and prognoses that were published in the past. New scenarios, based on higher energy price trajectories, have appeared only recently. The future role of various energy carriers and technologies in energy-economic scenarios will greatly depend on the level of energy prices. Therefore, an analysis of the impact of high energy prices on long-term scenarios for Germany was undertaken. Based on a reference scenario with moderate prices, a series of consistent high price scenarios for primary and secondary energy carriers were developed. Two scenarios with (i) continuously rising price trajectories and (ii) a price shock with a price peak during the period 2010-15 and a subsequent decline to the reference level are analysed. Two types of models have been applied in the analysis. The IKARUS energy systems optimisation model covers the whole of the German energy system from primary energy supply down to the end-use sectors. Key results in both high price scenarios include a replacement of natural gas by hard coal and renewable energy sources in electricity and heat generation. Backstop technologies like coal liquefaction begin to play a role under such conditions. Up to 10% of final energy consumption is saved in the end-use sectors, with the residential and transport sector being the greatest contributors. Even without additional restrictions, CO{sub 2} emissions significantly drop in comparison to the reference scenario. The ELIAS electricity investment analysis model focuses on the power sector. In the reference scenario with current allocation rules in the emissions trading scheme, the CO{sub 2} emissions decrease relatively steadily. The development is characterised by the phaseout of nuclear energy which is counterweighted by the increase of renewable. In the high price scenario, the CO{sub 2

  7. High energy neutrinos: sources and fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark DE 19716 (United States)

    2006-05-15

    We discuss briefly the potential sources of high energy astrophysical neutrinos and show estimates of the neutrino fluxes that they can produce. A special attention is paid to the connection between the highest energy cosmic rays and astrophysical neutrinos.

  8. Feasibility of High Energy Lasers for Interdiction Activities

    Science.gov (United States)

    2017-12-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS FEASIBILITY OF HIGH ENERGY LASERS FOR INTERDICTION ACTIVITIES by Carlos Abel Javier Romero... ENERGY LASERS FOR INTERDICTION ACTIVITIES 5. FUNDING NUMBERS 6. AUTHOR(S) Carlos Abel Javier Romero Chero 7. PERFORMING ORGANIZATION NAME(S) AND...the people or cargo. High Energy Laser (HEL) weapons are an effective way to deliver energy precisely from a relative long range. This thesis studies

  9. Pi-nucleon phenomenology at high energies

    International Nuclear Information System (INIS)

    Kogitz, S.

    1973-01-01

    A brief introduction to the phenomenology of strong interactions at high energy is presented. This includes discussion of the topics including absorption, finite energy sum rules, and duality. The application of these ideas to two-particle inelastic reactions is examined. (author)

  10. 78 FR 69839 - DOE/NSF High Energy Physics Advisory Panel

    Science.gov (United States)

    2013-11-21

    ... DEPARTMENT OF ENERGY DOE/NSF High Energy Physics Advisory Panel AGENCY: Department of Energy.../NSF High Energy Physics Advisory Panel (HEPAP). The Federal Advisory Committee Act (Pub. L. 92-463, 86... CONTACT: John Kogut, Executive Secretary; High Energy Physics Advisory Panel; U.S. Department of Energy...

  11. 75 FR 57463 - DOE/NSF High Energy Physics Advisory Panel

    Science.gov (United States)

    2010-09-21

    ... DEPARTMENT OF ENERGY DOE/NSF High Energy Physics Advisory Panel AGENCY: Department of Energy.../NSF High Energy Physics Advisory Panel (HEPAP). Federal Advisory Committee Act (Pub. L. 92-463, 86... Secretary; High Energy Physics Advisory Panel; U.S. Department of Energy; SC-25/ Germantown Building, 1000...

  12. 77 FR 4027 - DOE/NSF High Energy Physics Advisory Panel

    Science.gov (United States)

    2012-01-26

    ... DEPARTMENT OF ENERGY DOE/NSF High Energy Physics Advisory Panel AGENCY: Department of Energy.../NSF High Energy Physics Advisory Panel (HEPAP). The Federal Advisory Committee Act (Pub. L. 92-463, 86... Secretary; High Energy Physics Advisory Panel; U.S. Department of Energy; SC-25/ Germantown Building, 1000...

  13. 76 FR 41234 - DOE/NSF High Energy Physics Advisory Panel

    Science.gov (United States)

    2011-07-13

    ... DEPARTMENT OF ENERGY DOE/NSF High Energy Physics Advisory Panel AGENCY: Department of Energy.../NSF High Energy Physics Advisory Panel (HEPAP). The Federal Advisory Committee Act (Pub. L. 92-463, 86... Secretary; High Energy Physics Advisory Panel; U.S. Department of Energy; SC-25/ Germantown Building, 1000...

  14. 76 FR 8358 - DOE/NSF High Energy Physics Advisory Panel

    Science.gov (United States)

    2011-02-14

    ... DEPARTMENT OF ENERGY DOE/NSF High Energy Physics Advisory Panel AGENCY: Department of Energy.../NSF High Energy Physics Advisory Panel (HEPAP). Federal Advisory Committee Act (Pub. L. 92-463, 86... Secretary; High Energy Physics Advisory Panel; U.S. Department of Energy; SC-25/ Germantown Building, 1000...

  15. Transverse-energy distribution in proton-nucleus collisions at high energy

    International Nuclear Information System (INIS)

    Liu, F.H.

    2001-01-01

    Based on the model of nuclear-collision geometry, the independent N - N collision picture and participant contribution picture are used to describe the transverse-energy distribution in p-A collisions at high energy. In the independent N - N collision picture, the energy loss of leading proton in each p-N collision is considered. The calculated results are in agreement with the experimental data of p-Al, p-Cu, p-U collisions at 200 GeV/c. (author)

  16. Theoretical high energy physics

    International Nuclear Information System (INIS)

    Lee, T.D.

    1992-01-01

    This progress report discusses research by Columbia University staff in high energy physics. Some of the topics discussed are as follows: lattice gauge theory; quantum chromodynamics; parity doublets; solitons; baryon number violation; black holes; magnetic monopoles; gluon plasma; Chern-Simons theory; and the inflationary universe

  17. High energy battery. Hochenergiebatterie

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, H.; Beyermann, G.; Bulling, M.

    1992-03-26

    In a high energy battery with a large number of individual cells in a housing with a cooling medium flowing through it, it is proposed that the cooling medium should be guided so that it only affects one or both sides of the cells thermally.

  18. High energy multi-cycle terahertz generation

    International Nuclear Information System (INIS)

    Ahr, Frederike Beate

    2017-10-01

    Development of compact electron accelerators and free-electron lasers requires novel acceleration schemes at shorter driving wavelengths. The Axsis project seeks to develop terahertz based electron acceleration as well as the high energy terahertz sources required. This thesis explores the methods and optical material required for the generation of highenergy multi-cycle terahertz pulses. Two experimental concepts to generate high energy terahertz radiation are presented. In addition the theoretical background and the optical properties of pertinent optical materials in the terahertz range are discussed. Investigations of the materials are performed with a terahertz time domain spectrometer and a Fourier transform infrared spectrometer. The nonlinear optical crystal lithium niobate as well as other crystals suitable for the terahertz generation and in addition polymers and other radiation attenuators are characterized in the range from 0.2 to 1 THz. The theory describing the generation of narrowband terahertz radiation is evaluated. The experimental setups to generate terahertz radiation and to characterize its properties are described. The specific crystals - periodically poled lithium niobate (PPLN) - used in the experiments to generate the multi-cycle terahertz radiation are examined to determine e.g. the poling period. The first experimental concept splits the ultra fast, broadband pump pulses into a pulse train in order to pump the PPLN at a higher fluence while increasing the damage limit. The measurements confirm that a pulse train of ultra short, broadband pump pulses increases not only the terahertz energy but also the energy conversion efficiency. The second experimental concept utilizes chirped and delayed infrared laser pulses. This pulse format makes it possible to pump the crystal with high energy pulses resulting in high energy terahertz radiation. The concept is optimized to reach energies up to 127 μJ exceeding the existing results of narrowband

  19. High energy multi-cycle terahertz generation

    Energy Technology Data Exchange (ETDEWEB)

    Ahr, Frederike Beate

    2017-10-15

    Development of compact electron accelerators and free-electron lasers requires novel acceleration schemes at shorter driving wavelengths. The Axsis project seeks to develop terahertz based electron acceleration as well as the high energy terahertz sources required. This thesis explores the methods and optical material required for the generation of highenergy multi-cycle terahertz pulses. Two experimental concepts to generate high energy terahertz radiation are presented. In addition the theoretical background and the optical properties of pertinent optical materials in the terahertz range are discussed. Investigations of the materials are performed with a terahertz time domain spectrometer and a Fourier transform infrared spectrometer. The nonlinear optical crystal lithium niobate as well as other crystals suitable for the terahertz generation and in addition polymers and other radiation attenuators are characterized in the range from 0.2 to 1 THz. The theory describing the generation of narrowband terahertz radiation is evaluated. The experimental setups to generate terahertz radiation and to characterize its properties are described. The specific crystals - periodically poled lithium niobate (PPLN) - used in the experiments to generate the multi-cycle terahertz radiation are examined to determine e.g. the poling period. The first experimental concept splits the ultra fast, broadband pump pulses into a pulse train in order to pump the PPLN at a higher fluence while increasing the damage limit. The measurements confirm that a pulse train of ultra short, broadband pump pulses increases not only the terahertz energy but also the energy conversion efficiency. The second experimental concept utilizes chirped and delayed infrared laser pulses. This pulse format makes it possible to pump the crystal with high energy pulses resulting in high energy terahertz radiation. The concept is optimized to reach energies up to 127 μJ exceeding the existing results of narrowband

  20. Nuclear reactions induced by high-energy alpha particles

    Science.gov (United States)

    Shen, B. S. P.

    1974-01-01

    Experimental and theoretical studies of nuclear reactions induced by high energy protons and heavier ions are included. Fundamental data needed in the shielding, dosimetry, and radiobiology of high energy particles produced by accelerators were generated, along with data on cosmic ray interaction with matter. The mechanism of high energy nucleon-nucleus reactions is also examined, especially for light target nuclei of mass number comparable to that of biological tissue.

  1. Report on high energy neutron dosimetry workshop

    International Nuclear Information System (INIS)

    Alvar, K.R.; Gavron, A.

    1993-01-01

    The workshop was called to assess the performance of neutron dosimetry per the responses from ten DOE accelerator facilities to an Office of Energy Research questionnaire regarding implementation of a personnel dosimetry requirement in DRAFT DOE 5480.ACC, ''Safety of Accelerator Facilities''. The goals of the workshop were to assess the state of dosimetry at high energy accelerators and if such dosimetry requires improvement, to reach consensus on how to proceed with such improvements. There were 22 attendees, from DOE Programs and contract facilities, DOE, Office of Energy Research (ER), Office of Environmental Safety and Health (EH), Office of Fusion Energy, and the DOE high energy accelerator facilities. A list of attendees and the meeting agenda are attached. Copies of the presentations are also attached

  2. Outlook and application analysis of energy storage in power system with high renewable energy penetration

    Science.gov (United States)

    Feng, Junshu; Zhang, Fuqiang

    2018-02-01

    To realize low-emission and low-carbon energy production and consumption, large-scale development and utilization of renewable energy has been put into practice in China. And it has been recognized that power system of future high renewable energy shares can operate more reliably with the participation of energy storage. Considering the significant role of storage playing in the future power system, this paper focuses on the application of energy storage with high renewable energy penetration. Firstly, two application modes are given, including demand side application mode and centralized renewable energy farm application mode. Afterwards, a high renewable energy penetration scenario of northwest region in China is designed, and its production simulation with application of energy storage in 2050 has been calculated and analysed. Finally, a development path and outlook of energy storage is given.

  3. Non-critical strings at high energy

    CERN Document Server

    Aoki, Kenichiro; Aoki, Kenichiro; Hoker, Eric D'

    1996-01-01

    We consider scattering amplitudes in non-critical string theory of $N$ external states in the limit where the energy of all external states is large compared to the string tension. We argue that the amplitudes are naturally complex analytic in the matter central charge $c$ and we propose to define the amplitudes for arbitrary value of $c$ by analytic continuation. We show that the high energy limit is dominated by a saddle point that can be mapped onto an equilibrium electro-static energy configuration of an assembly of $N$ pointlike (Minkowskian) charges, together with a density of charges arising from the Liouville field. We argue that the Liouville charges accumulate on segments of curves, and produce quadratic branch cuts on the worldsheet. The electro-statics problem is solved for string tree level in terms of hyper-elliptic integrals and is given explicitly for 3- and 4-point functions. We show that the high energy limit should behave in a string-like fashion with exponential dependence on the energy sc...

  4. A high-energy nuclear database proposal

    International Nuclear Information System (INIS)

    Brown, D.A.; Vogt, R.; UC Davis, CA

    2006-01-01

    We propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interface. This database will be searchable and cross-indexed with relevant publications, including published detector descriptions. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This database should eventually contain all published data from the Bevalac, AGS and SPS to RHIC and LHC energies, proton-proton to nucleus-nucleus collisions as well as other relevant systems, and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of old and new experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion and target and source development for upcoming facilities such as the Next Linear Collider. To enhance the utility of this database, we propose periodically performing evaluations of the data and summarizing the results in topical reviews. (author)

  5. Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes

    Science.gov (United States)

    Cheng, Yingwen; Zhang, Hongbo; Lu, Songtao; Varanasi, Chakrapani V.; Liu, Jie

    2013-01-01

    Supercapacitors with both high energy and high power densities are critical for many practical applications. In this paper, we discuss the design and demonstrate the fabrication of flexible asymmetric supercapacitors based on nanocomposite electrodes of MnO2, activated carbon, carbon nanotubes and graphene. The combined unique properties of each of these components enable highly flexible and mechanically strong films that can serve as electrodes directly without using any current collectors or binders. Using these flexible electrodes and a roll-up approach, asymmetric supercapacitors with 2 V working voltage were successfully fabricated. The fabricated device showed excellent rate capability, with 78% of the original capacitance retained when the scan rate was increased from 2 mV s-1 to 500 mV s-1. Owing to the unique composite structure, these supercapacitors were able to deliver high energy density (24 W h kg-1) under high power density (7.8 kW kg-1) conditions. These features could enable supercapacitor based energy storage systems to be very attractive for a variety of critical applications, such as the power sources in hybrid electric vehicles and the back-up powers for wind and solar energy, where both high energy density and high power density are required.Supercapacitors with both high energy and high power densities are critical for many practical applications. In this paper, we discuss the design and demonstrate the fabrication of flexible asymmetric supercapacitors based on nanocomposite electrodes of MnO2, activated carbon, carbon nanotubes and graphene. The combined unique properties of each of these components enable highly flexible and mechanically strong films that can serve as electrodes directly without using any current collectors or binders. Using these flexible electrodes and a roll-up approach, asymmetric supercapacitors with 2 V working voltage were successfully fabricated. The fabricated device showed excellent rate capability, with 78% of

  6. 75 FR 63450 - DOE/NSF High Energy Physics Advisory Panel

    Science.gov (United States)

    2010-10-15

    ... DEPARTMENT OF ENERGY DOE/NSF High Energy Physics Advisory Panel AGENCY: Department of Energy.../NSF High Energy Physics Advisory Panel (HEPAP). Federal Advisory Committee Act (Pub. L. 92-463, 86... 20852. FOR FURTHER INFORMATION CONTACT: John Kogut, Executive Secretary; High Energy Physics Advisory...

  7. Chemistry of high-energy materials

    Energy Technology Data Exchange (ETDEWEB)

    Klapoetke, Thomas M. [Ludwig-Maximilians-Univ., Muenchen (Germany). Dept. of Chemistry; Maryland Univ., College Park, MD (US). Center of Energetic Concepts Development (CECD)

    2011-07-01

    The graduate-level textbook Chemistry of High-Energy Materials provides an introduction to and an overview of primary and secondary (high) explosives as well as propellant charges, rocket propellants and pyrotechnics. After a brief historical overview, the main classes of energetic materials are discussed systematically. Thermodynamic aspects, as far as relevant to energetic materials, are discussed, as well as modern computational approaches to predict performance and sensitivity parameters. The most important performance criteria such as detonation velocity, detonation pressure and heat of explosion, as well as the relevant sensitivity parameters suc as impact and friction sensitivity and electrostatic discharge sensitivity are explored in detail. Modern aspects of chemical synthesis including lead-free primary explosives and high-nitrogen compounds are also included in this book together with a discussion of high-energy materials for future defense needs. The most important goal of this book, based on a lecture course which has now been held at LMU Munich for over 12 years, is to increase knowledge and know-how in the synthesis and safe handling of high-energy materials. Society needs now as much as ever advanced explosives, propellant charges, rocket propellants and pyrotechnics to meet the demands in defense and engineering. This book is first and foremost aimed at advanced students in chemistry, engineering and materials sciences. However, it is also intended to provide a good introduction to the chemistry of energetic materials and chemical defense technology for scientists in the defense industry and government-run defense organizations. (orig.)

  8. High energy physics. Ultimate structure of matter and energy

    International Nuclear Information System (INIS)

    1979-04-01

    Some of the principle discoveries and insights and their development up to today are sketched. It is shown how one layer after another was discovered by penetrating farther into the structure of matter. Covered are the mounting energy scale, discoveries at high energy frontier, the families of quarks and leptons, the four forces of nature, some achievements of the past few years, particle accelerators and experimental apparatus. A glossary of terms is included

  9. 78 FR 46330 - DOE/NSF High Energy Physics Advisory Panel

    Science.gov (United States)

    2013-07-31

    ... DEPARTMENT OF ENERGY DOE/NSF High Energy Physics Advisory Panel AGENCY: Office of Science... High Energy Physics Advisory Panel (HEPAP). Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat... CONTACT: John Kogut, Executive Secretary; High Energy Physics Advisory Panel; U.S. Department of Energy...

  10. 76 FR 19986 - DOE/NSF High Energy Physics Advisory Panel

    Science.gov (United States)

    2011-04-11

    ... DEPARTMENT OF ENERGY DOE/NSF High Energy Physics Advisory Panel AGENCY: Department of Energy.../NSF High Energy Physics Advisory Panel (HEPAP). The Federal Advisory Committee Act (Pub. L. 92-463, 86... FURTHER INFORMATION CONTACT: John Kogut, Executive Secretary; High Energy Physics Advisory Panel; U.S...

  11. High energy physics and nuclear structure

    International Nuclear Information System (INIS)

    Measday, D.F.; Thomas, A.W.

    1980-01-01

    These proceedings contain the papers presented at the named conference. These concern eletromagnetic interactions, weak interactions, strong interactions at intermediate energy, pion reactions, proton reactions, strong interactions at high energy, as well as new facilities and applications. See hints under the relevant topics. (HSI)

  12. Astrophysics at very high energies

    International Nuclear Information System (INIS)

    Aharonian, Felix; Bergstroem, Lars; Dermer, Charles

    2013-01-01

    Presents three complementary lectures on very-high-energy astrophysics given by worldwide leaders in the field. Reviews the recent advances in and prospects of gamma-ray astrophysics and of multi-messenger astronomy. Prepares readers for using space and ground-based gamma-ray observatories, as well as neutrino and other multi-messenger detectors. With the success of Cherenkov Astronomy and more recently with the launch of NASA's Fermi mission, very-high-energy astrophysics has undergone a revolution in the last years. This book provides three comprehensive and up-to-date reviews of the recent advances in gamma-ray astrophysics and of multi-messenger astronomy. Felix Aharonian and Charles Dermer address our current knowledge on the sources of GeV and TeV photons, gleaned from the precise measurements made by the new instrumentation. Lars Bergstroem presents the challenges and prospects of astro-particle physics with a particular emphasis on the detection of dark matter candidates. The topics covered by the 40th Saas-Fee Course present the capabilities of current instrumentation and the physics at play in sources of very-high-energy radiation to students and researchers alike. This book will encourage and prepare readers for using space and ground-based gamma-ray observatories, as well as neutrino and other multi-messenger detectors.

  13. High energy electron positron physics

    International Nuclear Information System (INIS)

    Ali, A.; Soding, P.

    1987-01-01

    With the termination of the physics program at PETRA in a year from now, and with the start of TRISTAN and the SLC and later LEP, an era of e/sup +/e/sup -/ physics will come to an end and a new one begins. The field is changing from a field of a few specialists, to becoming one of the mainstream efforts of the high energy community. It seems appropriate at this moment to summarize what has been learned over the past years, in a way more useful to any high energy physicist in particular to newcomers in the e/sup +/e/sup -/ field. This is the purpose of the book. This book should be used as a reference for future workers in the field of e/sup +/e/sup -/ interactions. It includes the most relevant data, parametrizations, theoretical background, and a chapter on detectors. Contents: Foreword; Detectors for High Energy e/sup +/e/sup -/ Physics; Lepton Pair Production and Electroweak Parameters; Hadron Production, Strong and Electroweak Properties; tau Physics; Recent Results on the Charm Sector; Bottom Physics; Lifetime Measurements of tau, Charmed and Beauty Hadrons; Υ Spectroscopy; Hadronic Decays of the Υ; Quark and Gluon Fragmentation in the e/sup +/e/sup -/ Continuum; Jet Production and QCD; Two Photon Physics; Search for New Particles

  14. 77 FR 33449 - DOE/NSF High Energy Physics Advisory Panel

    Science.gov (United States)

    2012-06-06

    ... DEPARTMENT OF ENERGY DOE/NSF High Energy Physics Advisory Panel AGENCY: Office of Science... High Energy Physics Advisory Panel (HEPAP). The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat..., Executive Secretary; High Energy Physics Advisory Panel; U.S. Department of Energy; SC-25/ Germantown...

  15. Overview. Department of High Energy Physics. Section 5

    International Nuclear Information System (INIS)

    Coghen, T.

    1995-01-01

    The activities of Department of High Energy Physics in 1994 have been presented. They cover a variety of problems of experimental and theoretical high energy elementary particle physics: hadronic and leptonic interactions with nucleons and nuclei (mainly characteristics of particle production , including heavy quark physics), e + e - interactions and tests of the Standard Model (also evaluations of radiative corrections), ultrarelativistic heavy ion interactions and search for the quark-gluon plasma, as well as spectra, composition and interactions of high energy cosmic ray particles.Research on detectors and development of apparatus for high energy physics experiments at future accelerators such as LHC or RHIC were also carried out. The short information about personnel employed in the Department, seminars, publication, conferences and reports is also given

  16. Overview. Department of High Energy Physics. Section 5

    Energy Technology Data Exchange (ETDEWEB)

    Coghen, T. [Institute of Nuclear Physics, Cracow (Poland)

    1995-12-31

    The activities of Department of High Energy Physics in 1994 have been presented. They cover a variety of problems of experimental and theoretical high energy elementary particle physics: hadronic and leptonic interactions with nucleons and nuclei (mainly characteristics of particle production , including heavy quark physics), e{sup +} e{sup -} interactions and tests of the Standard Model (also evaluations of radiative corrections), ultrarelativistic heavy ion interactions and search for the quark-gluon plasma, as well as spectra, composition and interactions of high energy cosmic ray particles.Research on detectors and development of apparatus for high energy physics experiments at future accelerators such as LHC or RHIC were also carried out. The short information about personnel employed in the Department, seminars, publication, conferences and reports is also given.

  17. Overview. Department of High Energy Physics. Section 5

    Energy Technology Data Exchange (ETDEWEB)

    Coghen, T [Institute of Nuclear Physics, Cracow (Poland)

    1996-12-31

    The activities of Department of High Energy Physics in 1994 have been presented. They cover a variety of problems of experimental and theoretical high energy elementary particle physics: hadronic and leptonic interactions with nucleons and nuclei (mainly characteristics of particle production , including heavy quark physics), e{sup +} e{sup -} interactions and tests of the Standard Model (also evaluations of radiative corrections), ultrarelativistic heavy ion interactions and search for the quark-gluon plasma, as well as spectra, composition and interactions of high energy cosmic ray particles.Research on detectors and development of apparatus for high energy physics experiments at future accelerators such as LHC or RHIC were also carried out. The short information about personnel employed in the Department, seminars, publication, conferences and reports is also given.

  18. High energy physics problems

    International Nuclear Information System (INIS)

    Arbuzov, B.A.

    1977-01-01

    Described are modern views on the particle structure and particle interactions at high energies. According to the latest data recieved, all particles can be classified in three groups: 1) strong interacting hadrons; 2) leptons, having no strong interactions; 3) photon. The particle structure is described in a quark model, and with the use of gluons. The elementary particle theory is based on the quantum field theory. The energy increase of interacting particles enables to check the main theory principles, such as conventions for causality, relativistic invariance and unitarity. Investigations of weak interactions are of great importance. The progress in this field is connected with unified gauge theories of weak and electromagnetic interactions. For weak interactions promissing are the experiments with colliding electron-proton rings. The new data, especially at higher energies, will lead to a further refinement of the nature of particles and their interactions

  19. Multiprocessors for high energy physics

    International Nuclear Information System (INIS)

    Pohl, M.

    1987-01-01

    I review the role, status and progress of multiprocessor projects relevant to high energy physics. A short overview of the large variety of multiprocessors architectures is given, with special emphasis on machines suitable for experimental data reconstruction. A lot of progress has been made in the attempt to make the use of multiprocessors less painful by creating a ''Parallel Programming Environment'' supporting the non-expert user. A high degree of usability has been reached for coarse grain (event level) parallelism. The program development tools available on various systems (subroutine packages, preprocessors and parallelizing compilers) are discussed in some detail. Tools for execution control and debugging are also developing, thus opening the path from dedicated systems for large scale, stable production towards support of a more general job mix. At medium term, multiprocessors will thus cover a growing fraction of the typical high energy physics computing task. (orig.)

  20. High energy particle transport code NMTC/JAM

    International Nuclear Information System (INIS)

    Niita, K.; Takada, H.; Meigo, S.; Ikeda, Y.

    2001-01-01

    We have developed a high energy particle transport code NMTC/JAM, which is an upgrade version of NMTC/JAERI97. The available energy range of NMTC/JAM is, in principle, extended to 200 GeV for nucleons and mesons including the high energy nuclear reaction code JAM for the intra-nuclear cascade part. We compare the calculations by NMTC/JAM code with the experimental data of thin and thick targets for proton induced reactions up to several 10 GeV. The results of NMTC/JAM code show excellent agreement with the experimental data. From these code validation, it is concluded that NMTC/JAM is reliable in neutronics optimization study of the high intense spallation neutron utilization facility. (author)

  1. Assessing high wind energy penetration

    DEFF Research Database (Denmark)

    Tande, J.O.

    1995-01-01

    In order to convincingly promote installing wind power capacity as a substantial part of the energy supply system, a set of careful analyses must be undertaken. This paper applies a case study concentrated on assessing the cost/benefit of high wind energy penetration. The case study considers...... expanding the grid connected wind power capacity in Praia, the capital of Cape Verde. The currently installed 1 MW of wind power is estimated to supply close to 10% of the electric energy consumption in 1996. Increasing the wind energy penetration to a higher level is considered viable as the project...... with the existing wind power, supply over 30% of the electric consumption in 1996. Applying the recommended practices for estimating the cost of wind energy, the life-cycle cost of this 2.4 MW investment is estimated at a 7% discount rate and a 20 year lifetime to 0.26 DKK/kW h....

  2. A unified treatment of high energy interactions

    International Nuclear Information System (INIS)

    Drescher, H.J.; Werner, K.; Ostapchenko, S.; Centre National de la Recherche Scientifique, 44 - Nantes

    1999-01-01

    It is well known that high energy interactions as different as electron-positron annihilation, deep inelastic lepton-nucleon scattering, proton-proton interactions, and nucleus-nucleus collisions have many features in common. Based upon this observation, a model for all these interactions is constructed which relies on the fundamental hypothesis that the behavior of high energy interactions is universal. (author)

  3. Theoretical interpretation of high-energy nuclear collisions

    International Nuclear Information System (INIS)

    Fai, G.

    1991-07-01

    Nuclear collision data are interpreted theoretically. The nuclear equation of state is investigated with particular emphasis on momentum-dependent mean field effects. Subnucleonic degrees of freedom are invoked at high energies and densities, and a short length-scales. A nontopological soliton model for baryons is studied in which effective meson fields are generated from extended quark-antiquark pairs. The major objective of this nuclear theory project is a better understanding of the properties of strongly interacting matter on the nuclear energy scale, as manifested in high-energy heavy-ion collisions

  4. High energy gamma-ray production in nuclear reactions

    International Nuclear Information System (INIS)

    Pinston, J.A.; Nifenecker, H.; Nifenecker, H.

    1989-01-01

    Experimental techniques used to study high energy gamma-ray production in nuclear reactions are reviewed. High energy photon production in nucleus-nucleus collisions is discussed. Semi-classical descriptions of the nucleus-nucleus gamma reactions are introduced. Nucleon-nucleon gamma cross sections are considered, including theoretical aspects and experimental data. High energy gamma ray production in proton-nucleus reactions is explained. Theoretical explanations of photon emission in nucleus-nucleus collisions are treated. The contribution of charged pion currents to photon production is mentioned

  5. Interpreting New Data from the High Energy Frontier

    Energy Technology Data Exchange (ETDEWEB)

    Thaler, Jesse [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2016-09-26

    This is the final technical report for DOE grant DE-SC0006389, "Interpreting New Data from the High Energy Frontier", describing research accomplishments by the PI in the field of theoretical high energy physics.

  6. Interferometry of high energy nuclear collisions

    International Nuclear Information System (INIS)

    Padula, S.S.

    1990-01-01

    The interferometry is used for determining large space time dimensions of the Quark Gluon Plasma formed in high energy nuclear collisions or in high multiplicity fluctuations in p-barp collisions. (M.C.K.)

  7. 75 FR 17701 - High Energy Physics Advisory Panel

    Science.gov (United States)

    2010-04-07

    ... DEPARTMENT OF ENERGY High Energy Physics Advisory Panel AGENCY: Department of Energy, Office of... Physics Advisory Panel (HEPAP). Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires... Energy Physics Advisory Panel; U.S. Department of Energy; SC-25/ Germantown Building, 1000 Independence...

  8. Miniaturization of high-energy physics detectors. Vol. 14

    International Nuclear Information System (INIS)

    Stefanini, A.

    1983-01-01

    Continued experimental research in high-energy physics requires the reduction in size and cost of the advanced technical equipment involved. A new technology is rapidly evolving that promises to replace today's massive high-energy physics instruments--which may be composed of several thousand tons of sensitive parts--with miniaturized equivalents. Smaller, less expensive apparatus would create more opportunities for research worldwide, and many types of experiments now considered impractical could then be carried out. Scientists and engineers from many countries have contributed to this volume to provide a broad panorama of the new miniaturization technology in high-energy physics. They describe a wide range of new instruments and their applications, discuss limitations and technological problems, and explore the connections between technology and progress in the field of high-energy physics

  9. Harvard University High Energy Physics

    International Nuclear Information System (INIS)

    1993-01-01

    The mainly experimental research program in high energy physics at Harvard is summarized in a descriptive fashion according to the following outline: Proton endash antiproton colliding beam program at Fermilab -- CDF (forward/backward electromagnetic calorimeters -- FEM, central muon extension -- CMX, gas calorimetry and electronics development, front-end electronics upgrades, software development, physics analysis, timetable), electron -- positron collisions in the upsilon region -- CLEO (the hardware projects including CLEO II barrel TOF system and silicon drift detector R ampersand D, physics analysis), search for ν μ to ν τ oscillations with the NOMAD experiment at CERN, the solenoidal detector collaboration at the SSC, muon scattering at FNAL -- E665, the L3 experiment, and phenomenological analysis of high-energy bar pp cross sections. 149 refs

  10. Rapid conversion of persistent atrial fibrillation to sinus rhythm by intravenous AZD7009

    DEFF Research Database (Denmark)

    Geller, J Christoph; Egstrup, Kenneth; Kulakowski, Piotr

    2009-01-01

    This randomized, double-blind trial compared cardioversion rates between AZD7009 infusion (15-minute 3.25 mg/min, 15-minute 4.4 mg/min, or 30-minute 3.25 mg/min) and placebo infusion (15 or 30 minutes) in patients with atrial fibrillation (AF) scheduled for DC cardioversion. One hundred sixty...

  11. High energy HF pulsed lasers

    International Nuclear Information System (INIS)

    Patterson, E.L.; Gerber, R.A.

    1976-01-01

    Recent experiments show that pulsed HF lasers are capable of producing high energy with good efficiency. Preliminary experiments show that the laser radiation from the high-gain medium can be controlled with a low-power probe laser beam or with low-level feedback. These results indicate that the HF laser may have potential for second-generation laser fusion experiments

  12. URBox : High tech energy and informal housing

    NARCIS (Netherlands)

    Cuperus, Y.J.; Smets, D.

    2011-01-01

    This paper reports on the URBox concept encompassing the high tech end of solar energy and informal low cost and affordable housing. It aims to contribute to solving the global energy crisis by building solar energy settlements in deserts where land is affordable and sunshine in abundance. First the

  13. High energy beam cooling

    International Nuclear Information System (INIS)

    Berger, H.; Herr, H.; Linnecar, T.; Millich, A.; Milss, F.; Rubbia, C.; Taylor, C.S.; Meer, S. van der; Zotter, B.

    1980-01-01

    The group concerned itself with the analysis of cooling systems whose purpose is to maintain the quality of the high energy beams in the SPS in spite of gas scattering, RF noise, magnet ripple and beam-beam interactions. Three types of systems were discussed. The status of these activities is discussed below. (orig.)

  14. Energy loss effect in high energy nuclear Drell-Yan process

    International Nuclear Information System (INIS)

    Duan, C.G.; Song, L.H.; Huo, L.J.; Li, G.L.

    2003-01-01

    The energy loss effect in nuclear matter, which is a nuclear effect apart from the nuclear effect on the parton distribution as in deep-inelastic scattering process, can be measured best by the nuclear dependence of the high energy nuclear Drell-Yan process. By means of the nuclear parton distribution studied only with lepton deep-inelastic scattering experimental data, the measured Drell-Yan production cross sections for 800 GeV proton incident on a variety of nuclear targets are analyzed within the Glauber framework which takes into account the energy loss of the beam proton. It is shown that the theoretical results with considering the energy loss effect are in good agreement with the FNAL E866 data. (orig.)

  15. Long-term optimal energy mix planning towards high energy security and low GHG emission

    International Nuclear Information System (INIS)

    Thangavelu, Sundar Raj; Khambadkone, Ashwin M.; Karimi, Iftekhar A.

    2015-01-01

    Highlights: • We develop long-term energy planning considering the future uncertain inputs. • We analyze the effect of uncertain inputs on the energy cost and energy security. • Conventional energy mix prone to cause high energy cost and energy security issues. • Stochastic and optimal energy mix show benefits over conventional energy planning. • Nuclear option consideration reduces the energy cost and carbon emissions. - Abstract: Conventional energy planning focused on energy cost, GHG emission and renewable contribution based on future energy demand, fuel price, etc. Uncertainty in the projected variables such as energy demand, volatile fuel price and evolution of renewable technologies will influence the cost of energy when projected over a period of 15–30 years. Inaccurate projected variables could affect energy security and lead to the risk of high energy cost, high emission and low energy security. The energy security is an ability of generation capacity to meet the future energy demand. In order to minimize the risks, a generic methodology is presented to determine an optimal energy mix for a period of around 15 years. The proposed optimal energy mix is a right combination of energy sources that minimize the risk caused due to future uncertainties related to the energy sources. The proposed methodology uses stochastic optimization to address future uncertainties over a planning horizon and minimize the variations in the desired performance criteria such as energy security and costs. The developed methodology is validated using a case study for a South East Asian region with diverse fuel sources consists of wind, solar, geothermal, coal, biomass and natural gas, etc. The derived optimal energy mix decision outperformed the conventional energy planning by remaining stable and feasible against 79% of future energy demand scenarios at the expense of 0–10% increase in the energy cost. Including the nuclear option in the energy mix resulted 26

  16. New aspects of high energy density plasma

    International Nuclear Information System (INIS)

    Hotta, Eiki

    2005-10-01

    The papers presented at the symposium on 'New aspects of high energy density plasma' held at National Institute for Fusion Science are collected in this proceedings. The papers reflect the present status and recent progress in the experiments and theoretical works on high energy density plasma produced by pulsed power technology. The 13 of the presented papers are indexed individually. (J.P.N.)

  17. High-energy behavior of non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Nieh, H.T.; Yao, Y.

    1976-01-01

    This paper is a detailed account of a study in perturbation theory of the high-energy behavior of non-Abelian gauge theories. The fermion-fermion scattering amplitude is calculated up to sixth order in the coupling constant in the high-energy limit s → infinity with fixed t, in the approximation of keeping only the leading logarithmic terms. Results indicate that the high-energy behavior of non-Abelian gauge theories are complicated, and quite different from the known behaviors of other field theories studied so far

  18. CHESS-the Cornell High Energy Synchrotron Source

    International Nuclear Information System (INIS)

    Batterman, B.W.; Cornell Univ., Ithaca, NY

    1980-01-01

    The Wilson Laboratory at Cornell University has done pioneering work on development of high energy synchrotrons. In the last decade, the 12 GeV synchrotron has been the most energetic electron synchrotron in the world. In 1975 plans were formulated to build a 4-8 GeV storage ring in the same tunnel as the synchrotron and to use the latter as the injector for the storage ring. This small radius (the normal bend magnets have R = 87 m), coupled with the relatively high electron energy of the storage ring, makes these magnets potent sources of synchrotron radiation. In June of 1978 the National Science Foundation funded a project to create CHESS, the Cornell High Energy Synchrotron Source. (orig./FKS)

  19. High beam quality and high energy short-pulse laser with MOPA

    Science.gov (United States)

    Jin, Quanwei; Pang, Yu; Jiang, JianFeng; Tan, Liang; Cui, Lingling; Wei, Bin; Sun, Yinhong; Tang, Chun

    2018-03-01

    A high energy, high beam quality short-pulse diode-pumped Nd:YAG master oscillator power-amplifier (MOPA) laser with two amplifier stages is demonstrated. The two-rod birefringence compensation was used as beam quality controlling methods, which presents a short-pulse energy of 40 mJ with a beam quality value of M2 = 1.2 at a repetition rate of 400Hz. The MOPA system delivers a short-pulse energy of 712.5 mJ with a pulse width of 12.4 ns.The method of spherical aberration compensation is improved the beam quality, a M2 factor of 2.3 and an optical-to-optical efficiency of 27.7% is obtained at the maximum laser out power.The laser obtained 1.4J out energy with polarization integration.

  20. Energy confinement of high-density tokamaks

    NARCIS (Netherlands)

    Schüller, F.C.; Schram, D.C.; Coppi, B.; Sadowski, W.

    1977-01-01

    Neoclassical ion heat conduction is the major energy loss mechanism in the center of an ohmically heated high-d. tokamak discharge (n>3 * 1020 m-3). This fixes the mutual dependence of plasma quantities on the axis and leads to scaling laws for the poloidal b and energy confinement time, given the

  1. 78 FR 12043 - DOE/NSF High Energy Physics Advisory Panel

    Science.gov (United States)

    2013-02-21

    ... DEPARTMENT OF ENERGY DOE/NSF High Energy Physics Advisory Panel AGENCY: Office of Science... High Energy Physics Advisory Panel (HEPAP). The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat... INFORMATION CONTACT: John Kogut, Executive Secretary; High Energy Physics Advisory Panel; U.S. Department of...

  2. Research in high energy physics

    International Nuclear Information System (INIS)

    1992-01-01

    This report discusses research being conducted in high energy physics in the following areas; quantum chromodynamics; drift chambers; proton-antiproton interactions; particle decays; particle production; polarimeters; quark-gluon plasma; and conformed field theory

  3. Research in high energy physics

    International Nuclear Information System (INIS)

    1992-01-01

    This report discusses research being conducted in high energy physics in the following areas: quantum chromodynamics; drift chambers; proton-antiproton interactions; particle decays; particle production; polarimeters; quark-gluon plasma; and conformed field theory

  4. Ultra high temperature latent heat energy storage and thermophotovoltaic energy conversion

    OpenAIRE

    Datas Medina, Alejandro; Ramos Cabal, Alba; Martí Vega, Antonio; Cañizo Nadal, Carlos del; Luque López, Antonio

    2016-01-01

    A conceptual energy storage system design that utilizes ultra high temperature phase change materials is presented. In this system, the energy is stored in the form of latent heat and converted to electricity upon demand by TPV (thermophotovoltaic) cells. Silicon is considered in this study as PCM (phase change material) due to its extremely high latent heat (1800 J/g or 500 Wh/kg), melting point (1410 C), thermal conductivity (~25 W/mK), low cost (less than $2/kg or $4/kWh) and a...

  5. High-energy capacitance electrostatic micromotors

    Science.gov (United States)

    Baginsky, I. L.; Kostsov, E. G.

    2003-03-01

    The design and parameters of a new electrostatic micromotor with high energy output are described. The motor is created by means of microelectronic technology. Its operation is based on the electromechanic energy conversion during the electrostatic rolling of the metallic films (petals) on the ferroelectric film surface. The mathematical simulation of the main characteristics of the rolling process is carried out. The experimentally measured parameters of the petal step micromotors are shown. The motor operation and its efficiency are investigated.

  6. Developments in high energy theory

    Indian Academy of Sciences (India)

    journal of. July 2009 physics pp. 3–60. Developments in high energy theory .... and operated by CERN (European Organization for Nuclear Research), this ma- ...... [2] S Dodelson, Modern cosmology (Academic Press, Amsterdam, 2003).

  7. Unfolding methods in high-energy physics experiments

    International Nuclear Information System (INIS)

    Blobel, V.

    1985-01-01

    Distributions measured in high-energy physics experiments are often distorted or transformed by limited acceptance and finite resolution of the detectors. The unfolding of measured distributions is an important, but due to inherent instabilities a very difficult problem. Methods for unfolding, applicable for the analysis of high-energy physics experiments, and their properties are discussed. An introduction is given to the method of regularization. (orig.)

  8. Unfolding methods in high-energy physics experiments

    International Nuclear Information System (INIS)

    Blobel, V.

    1984-12-01

    Distributions measured in high-energy physics experiments are often distorted or transformed by limited acceptance and finite resolution of the detectors. The unfolding of measured distributions is an important, but due to inherent instabilities a very difficult problem. Methods for unfolding, applicable for the analysis of high-energy physics experiments, and their properties are discussed. An introduction is given to the method of regularization. (orig.)

  9. Elementary particle physics and high energy phenomena

    International Nuclear Information System (INIS)

    Barker, A.R.; Cumalat, J.P.; de Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    This report discusses the following research in high energy physics: the properties of the z neutral boson with the SLD detector; the research and development program for the SDC muon detector; the fixed-target k-decay experiments; the Rocky Mountain Consortium for HEP; high energy photoproduction of states containing heavy quarks; and electron-positron physics with the CLEO II and Mark II detectors. (LSP)

  10. Elementary particle physics and high energy phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Barker, A.R.; Cumalat, J.P.; de Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    This report discusses the following research in high energy physics: the properties of the z neutral boson with the SLD detector; the research and development program for the SDC muon detector; the fixed-target k-decay experiments; the Rocky Mountain Consortium for HEP; high energy photoproduction of states containing heavy quarks; and electron-positron physics with the CLEO II and Mark II detectors. (LSP).

  11. The evolution of high energy accelerators

    International Nuclear Information System (INIS)

    Courant, E.D.

    1994-01-01

    Accelerators have been devised and built for two reasons: In the first place, by physicists who needed high energy particles in order to have a means to explore the interactions between particles that probe the fundamental elementary forces of nature. And conversely, sometimes accelerator builders produce new machines for higher energy than ever before just because it can be done, and then challenge potential users to make new discoveries with the new means at hand. These two approaches or motivations have gone hand in hand. This lecture traces how high energy particle accelerators have grown from tools used for esoteric small-scale experiments to the gigantic projects of today. So far all the really high-energy machines built and planned in the world--except the SLC--have been ring accelerators and storage rings using the strong-focusing method. But this method has not removed the energy limit, it has only pushed it higher. It would seem unlikely that one can go beyond the Large Hadron Collider (LHC)--but in fact a workshop was held in Sicily in November 1991, concerned with the question of extrapolating to 100 TeV. Other acceleration and beam-forming methods are now being discussed--collective fields, laser acceleration, wake-field accelerators etc., all aimed primarily at making linear colliders possible and more attractive than with present radiofrequency methods. So far it is not entirely clear which of these schemes will dominate particle physics in the future--maybe something that has not been thought of as yet

  12. Experimental microdosimetry in high energy radiation fields

    International Nuclear Information System (INIS)

    Spurny, F.; Bednar, J.; Vlcek, B.; Bottollier-Depois, J.-F.; Molokanov, A.G.

    2000-01-01

    To determine microdosimetric characteristics in the beams and fields of high energy panicles with the goal, also, to compare the classical method of experimental microdosimetry, a tissue equivalent low pressure proportional counter (TEPC) with the linear energy transfer (LET) spectrometer based on a chemically etched polyallyldiglycolcarbonate as a track etched detector (TED). To test the use of TED LET spectrometer in the conditions, where the use or TEPC is not possible (high energy charged particle beams at high dose rates). The results obtained with the TEPC NAUSICAA were used in this work to compare them with other data. This TEPC measures directly the linear energy in the interval between 0.15 and 1500 keV/μm in tissue, the low gas pressure (propan based TE mixture) permits to simulate a tissue element of about 3 μm. It can be used in the fields with instantaneous dose equivalent rates between 1 μSv/hour and 1 mSv/ hour. TED LET spectrometer developed to determine LET spectra between 10 and 700 keV/μm in tissue. Primarily, track-to-bulk etch rate ratios are determined through the track parameters measurements, the spectra of these ratios are convened to LET spectra using the calibration curve established by means of heavy charge panicles. The critical volume of thi spectrometer is supposed to be a few nm. There is no limit of use for the dose rate, the background tracks limit the lowest threshold to about 1 mSv, the overlapping of tracks (the highest one) to 100 mSv. Both experimental microdosimetry methods have been used in on board aircraft radiation fields, in on-Earth high energy radiation reference fields, and in the beams of protons with energies up to 300 MeV (Dubna, Moscow, Loma Linda). First, it should be emphasized, that in all high energy radiation fields studied, we concentrated our analysis on the region, where both methods overlap, i.e. between 10 and 1000 keV/μm in tissue. It should be also stressed, that the events observed in this region

  13. Low energy ion implantation and high energy heavy ion irradiation in C60 films

    International Nuclear Information System (INIS)

    Narayanan, K.L.; Yamaguchi, M.; Dharmarasu, N.; Kojima, N.; Kanjilal, D.

    2001-01-01

    C 60 films have been bombarded with low energy boron ions and high energy swift heavy ions (SHI) of silver and oxygen at different doses. Raman scattering and Fourier transform infrared (FTIR) studies were carried out on the virgin and irradiated films and the results are in good agreement with each other. The films subject to low energy boron ion implantation showed destruction of the bukky balls whereas the films subject to high energy ion irradiation did not show appreciable effects on their structure. These results indicate that C 60 films are more prone to defects by elastic collision and subsequent implantation at lower energy. Irradiation at higher energy was less effective in creating appreciable defects through electronic excitation by inelastic collisions at similar energy density

  14. Energy changes in massive target-nuclei, induced by high-energy hadronic projectiles

    International Nuclear Information System (INIS)

    Strugalski, Z.; Strugalska-Gola, E.

    1997-01-01

    Now it turned out that it is real to estimate by experiments the energy changes in massive target-nuclei, induced by high-energy hadronic projectiles. The subject matter in this work is to present results of the quantitative estimations of the energy changes in intranuclear matter at various stages of hadron-nucleus collision reactions. Appropriate formulas are proposed for the energy balances - as following from the experimentally based mechanism of the hadron-nucleus collision reactions

  15. Portable high energy gamma ray imagers

    International Nuclear Information System (INIS)

    Guru, S.V.; Squillante, M.R.

    1996-01-01

    To satisfy the needs of high energy gamma ray imagers for industrial nuclear imaging applications, three high energy gamma cameras are presented. The RMD-Pinhole camera uses a lead pinhole collimator and a segmented BGO detector viewed by a 3 in. square position sensitive photomultiplier tube (PSPMT). This pinhole gamma camera displayed an energy resolution of 25.0% FWHM at the center of the camera at 662 keV and an angular resolution of 6.2 FWHM at 412 keV. The fixed multiple hole collimated camera (FMCC), used a multiple hole collimator and a continuous slab of NaI(Tl) detector viewed by the same PSPMT. The FMCC displayed an energy resolution of 12.4% FWHM at 662 keV at the center of the camera and an angular resolution of 6.0 FWHM at 412 keV. The rotating multiple hole collimated camera (RMCC) used a 180 antisymmetric rotation modulation collimator and CsI(Tl) detectors coupled to PIN silicon photodiodes. The RMCC displayed an energy resolution of 7.1% FWHM at 662 keV and an angular resolution of 4.0 FWHM at 810 keV. The performance of these imagers is discussed in this paper. (orig.)

  16. Research activities on dosimetry for high energy neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Yasuhiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    The external dosimetry research group of JAERI has been calculating dose conversion coefficients for high-energy radiations using particle transport simulation codes. The group has also been developing radiation dose measurement techniques for high-energy neutrons in collaboration with some university groups. (author)

  17. Ultra high-energy cosmic ray composition

    International Nuclear Information System (INIS)

    Longley, N.P.

    1993-01-01

    The Soudan 2 surface-underground cosmic ray experiment can simultaneously measure surface shower size, underground muon multiplicity, and underground muon separation for ultra high energy cosmic ray showers. These measurements are sensitive to the primary composition. Analysis for energies from 10 1 to 10 4 TeV favors a light flux consisting of predominantly H and He nuclei

  18. Biopolymer-nanocarbon composite electrodes for use as high-energy high-power density electrodes

    Science.gov (United States)

    Karakaya, Mehmet; Roberts, Mark; Arcilla-Velez, Margarita; Zhu, Jingyi; Podila, Ramakrishna; Rao, Apparao

    2014-03-01

    Supercapacitors (SCs) address our current energy storage and delivery needs by combining the high power, rapid switching, and exceptional cycle life of a capacitor with the high energy density of a battery. Although activated carbon is extensively used as a supercapacitor electrode due to its inexpensive nature, its low specific capacitance (100-120 F/g) fundamentally limits the energy density of SCs. We demonstrate that a nano-carbon based mechanically robust, electrically conducting, free-standing buckypaper electrode modified with an inexpensive biorenewable polymer, viz., lignin increases the electrode's specific capacitance (~ 600-700 F/g) while maintaining rapid discharge rates. In these systems, the carbon nanomaterials provide the high surface area, electrical conductivity and porosity, while the redox polymers provide a mechanism for charge storage through Faradaic charge transfer. The design of redox polymers and their incorporation into nanomaterial electrodes will be discussed with a focus on enabling high power and high energy density electrodes. Research supported by US NSF CMMI Grant 1246800.

  19. Microelectromechanical high-density energy storage/rapid release system

    Science.gov (United States)

    Rodgers, M. Steven; Allen, James J.; Meeks, Kent D.; Jensen, Brian D.; Miller, Samuel L.

    1999-08-01

    One highly desirable characteristic of electrostatically driven microelectromechanical systems (MEMS) is that they consume very little power. The corresponding drawback is that the force they produce may be inadequate for many applications. It has previously been demonstrated that gear reduction units or microtransmissions can substantially increase the torque generated by microengines. Operating speed, however, is also reduced by the transmission gear ratio. Some applications require both high speed and high force. If this output is only required for a limited period of time, then energy could be stored in a mechanical system and rapidly released upon demand. We have designed, fabricated, and demonstrated a high-density energy storage/rapid release system that accomplishes this task. Built using a 5-level surface micromachining technology, the assembly closely resembles a medieval crossbow. Energy releases on the order of tens of nanojoules have already been demonstrated, and significantly higher energy systems are under development.

  20. High energy physics computing in Japan

    International Nuclear Information System (INIS)

    Watase, Yoshiyuki

    1989-01-01

    A brief overview of the computing provision for high energy physics in Japan is presented. Most of the computing power for high energy physics is concentrated in KEK. Here there are two large scale systems: one providing a general computing service including vector processing and the other dedicated to TRISTAN experiments. Each university group has a smaller sized mainframe or VAX system to facilitate both their local computing needs and the remote use of the KEK computers through a network. The large computer system for the TRISTAN experiments is described. An overview of a prospective future large facility is also given. (orig.)

  1. A Low-Cost Neutral Zinc-Iron Flow Battery with High Energy Density for Stationary Energy Storage.

    Science.gov (United States)

    Xie, Congxin; Duan, Yinqi; Xu, Wenbin; Zhang, Huamin; Li, Xianfeng

    2017-11-20

    Flow batteries (FBs) are one of the most promising stationary energy-storage devices for storing renewable energy. However, commercial progress of FBs is limited by their high cost and low energy density. A neutral zinc-iron FB with very low cost and high energy density is presented. By using highly soluble FeCl 2 /ZnBr 2 species, a charge energy density of 56.30 Wh L -1 can be achieved. DFT calculations demonstrated that glycine can combine with iron to suppress hydrolysis and crossover of Fe 3+ /Fe 2+ . The results indicated that an energy efficiency of 86.66 % can be obtained at 40 mA cm -2 and the battery can run stably for more than 100 cycles. Furthermore, a low-cost porous membrane was employed to lower the capital cost to less than $ 50 per kWh, which was the lowest value that has ever been reported. Combining the features of low cost, high energy density and high energy efficiency, the neutral zinc-iron FB is a promising candidate for stationary energy-storage applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. 77 FR 64799 - DOE/NSF High Energy Physics Advisory Panel

    Science.gov (United States)

    2012-10-23

    ... DEPARTMENT OF ENERGY DOE/NSF High Energy Physics Advisory Panel AGENCY: Department of Energy... Physics Advisory Panel (HEPAP). Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires... Kogut, Executive Secretary; High Energy Physics Advisory Panel; U.S. Department of Energy; SC-25...

  3. Energy efficiency indicators for high electric-load buildings

    Energy Technology Data Exchange (ETDEWEB)

    Aebischer, Bernard; Balmer, Markus A.; Kinney, Satkartar; Le Strat, Pascale; Shibata, Yoshiaki; Varone, Frederic

    2003-06-01

    Energy per unit of floor area is not an adequate indicator for energy efficiency in high electric-load buildings. For two activities, restaurants and computer centres, alternative indicators for energy efficiency are discussed.

  4. Ultra-High Energy Cosmic Rays and Neutrinos

    International Nuclear Information System (INIS)

    Nagataki, Shigehiro

    2011-01-01

    In this paper, simulation of propagation of UHE-protons from nearby galaxies is presented. We found good parameter sets to explain the arrival distribution of UHECRs reported by AGASA and energy spectrum reported by HiRes. Using a good parameter set, we demonstrated how the distribution of arrival direction of UHECRs will be as a function of event numbers. We showed clearly that 1000-10000 events are necessary to see the clear source distribution. We also showed that effects of interactions and trapping of UHE-Nuclei in a galaxy cluster are very important. Especially, when a UHECR source is a bursting source such as GRB/AGN flare, heavy UHE-Nuclei are trapped for a long time in the galaxy cluster, which changes the spectrum and chemical composition of UHECRs coming from the galaxy cluster. We also showed that such effects can be also important when there have been sources of UHE-Nuclei in Milky Way. Since light nuclei escape from Milky Way in a short timescale, the chemical composition of UHECRs observed at the Earth can be heavy at high-energy range. Finally, we showed how much high-energy neutrinos are produced in GRBs. Since GRB neutrinos do not suffer from magnetic field bending, detection of high-energy neutrinos are very important to identify sources of UHECRs. Especially, for the case of GRBs, high-energy neutrinos arrive at the earth with gamma-rays simultaneously, which is very strong feature to identify the sources of UHECRs.

  5. Proposal for a High Energy Nuclear Database

    International Nuclear Information System (INIS)

    Brown, David A.; Vogt, Ramona

    2005-01-01

    We propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interface. This database will be searchable and cross-indexed with relevant publications, including published detector descriptions. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This database should eventually contain all published data from Bevalac and AGS to RHIC to CERN-LHC energies, proton-proton to nucleus-nucleus collisions as well as other relevant systems, and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of old and new experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion and target and source development for upcoming facilities such as the Next Linear Collider. To enhance the utility of this database, we propose periodically performing evaluations of the data and summarizing the results in topical reviews

  6. US/Japan cooperation in high energy physics

    Science.gov (United States)

    1993-11-01

    The objective of the Implementing Arrangement was to further the energy programs of both countries by establishing a framework for cooperation in the field of high energy physics, including research, accelerator and detector instrumentation research and development, the fabrication and subsequent use of new experimental devices and facilities, and related joint efforts as may be mutually agreed. Over the years, this cooperation has been very effective and has strengthened the overall collaborative efforts and the understanding between our nations and their citizens. It has demonstrated to the world our ability to work together to attack difficult problems. High Energy Physics goes across national borders; the bond is clearly intellectual and common ground is shared for the benefit of all in a most effective manner. This review covers the activities conducted under the aegis of the US/Japan Committee for Cooperation in High Energy Physics during the past five years (1988-1993). This was the second such US review of the US/Japan cooperative activities; the first was held in 1987.

  7. Rare earth magnets with high energy products

    International Nuclear Information System (INIS)

    Hirosawa, S.; Kaneko, Y.

    1998-01-01

    High energy-products exceeding 430 kj/m 3 (54 MGOe) have been realized on anisotropic permanent magnets based on the Nd 2 Fe 14 B phase, recently. To produce extremely high-energy-product permanent magnets, special processes have been designed in order to realize the minimum oxygen content, the maximum volume fraction of the hard magnetic Nd 2 Fe 14 B phase, the highest orientation of the easy axis of magnetization, and small and homogeneous crystalline grain sizes in the finished magnets. For the powder metallurgical process, special techniques such as low-oxygen fine powder processing and magnetic alignment using pulsed magnetic fields have been developed. It has been shown that a good control of both homogeneity of distribution of constituent phases and the narrowness of the size distribution in the starting powder have great influences on the magnetic energy products. It is emphasized that the recently developed techniques are applicable in a large-scale production, meaning that extremely high-energy-product magnets are available on commercial basis. (orig.)

  8. CZT drift strip detectors for high energy astrophysics

    DEFF Research Database (Denmark)

    Kuvvetli, Irfan; Budtz-Jørgensen, Carl; Caroli, E.

    2010-01-01

    Requirements for X- and gamma ray detectors for future High Energy Astrophysics missions include high detection efficiency and good energy resolution as well as fine position sensitivity even in three dimensions.We report on experimental investigations on the CZT drift detector developed DTU Space...

  9. Numerical analysis of energy density and particle density in high energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Fu Yuanyong; Lu Zhongdao

    2004-01-01

    Energy density and particle density in high energy heavy-ion collisions are calculated with infinite series expansion method and Gauss-Laguerre formulas in numerical integration separately, and the results of these two methods are compared, the higher terms and linear terms in series expansion are also compared. The results show that Gauss-Laguerre formulas is a good method in calculations of high energy heavy-ion collisions. (author)

  10. High Energy Transport Code HETC

    International Nuclear Information System (INIS)

    Gabriel, T.A.

    1985-09-01

    The physics contained in the High Energy Transport Code (HETC), in particular the collision models, are discussed. An application using HETC as part of the CALOR code system is also given. 19 refs., 5 figs., 3 tabs

  11. Organisation of high-energy physics

    CERN Document Server

    Kluyver, J C

    1981-01-01

    Tabulates details of major accelerator laboratories in western Europe, USA, and USSR, and describes the various organisations concerned with high-energy physics. The Dutch organisation uses the NIKHEF laboratory in Amsterdam and cooperates with CERN. (0 refs).

  12. Energy Storage of Polyarylene Ether Nitriles at High Temperature

    Science.gov (United States)

    Tang, Xiaohe; You, Yong; Mao, Hua; Li, Kui; Wei, Renbo; Liu, Xiaobo

    2018-03-01

    Polyarylene ether nitrile (PEN) was synthesized and used as film capacitors for energy storage at high temperature. Scanning electron microscopy observation indicated that the films of PEN have pinholes at nanoscales which restricted the energy storage properties of the material. The pinhole shadowing effect through which the energy storage properties of PEN were effectively improved to be 2.3 J/cm3 was observed by using the overlapped film of PEN. The high glass transition temperature (T g) of PEN was as high as 216 °C and PEN film showed stable dielectric constant, breakdown strength and energy storage density before the T g. The PEN films will be a potential candidate as high performance electronic storage materials used at high temperature.

  13. Photodisintegration of the deuteron at high energy

    International Nuclear Information System (INIS)

    Holt, R.J.

    1992-01-01

    Measurements of the angular distribution for the γd→+pn reaction were performed at SLAC for photon energies between 0.7 and 1.8 GeV (experiment NE8) and between 1.6 and 4.4. GeV (experiment NE17). The final results for experiment NE8 will be presented, but only preliminary results for NE17 will be discussed. The data at θ cm = 90 degrees appear to follow the constituent counting rules. The angular distribution at high photon energies exhibit large values of the cross section at forward angles. There is evidence that the cross section may also be large at backward angles and high energies

  14. The High Field Path to Practical Fusion Energy

    Science.gov (United States)

    Mumgaard, Robert; Whyte, D.; Greenwald, M.; Hartwig, Z.; Brunner, D.; Sorbom, B.; Marmar, E.; Minervini, J.; Bonoli, P.; Irby, J.; Labombard, B.; Terry, J.; Vieira, R.; Wukitch, S.

    2017-10-01

    We propose a faster, lower cost development path for fusion energy enabled by high temperature superconductors, devices at high magnetic field, innovative technologies and modern approaches to technology development. Timeliness, scale, and economic-viability are the drivers for fusion energy to combat climate change and aid economic development. The opportunities provided by high-temperature superconductors, innovative engineering and physics, and new organizational structures identified over the last few years open new possibilities for realizing practical fusion energy that could meet mid-century de-carbonization needs. We discuss re-factoring the fusion energy development path with an emphasis on concrete risk retirement strategies utilizing a modular approach based on the high-field tokamak that leverages the broader tokamak physics understanding of confinement, stability, and operational limits. Elements of this plan include development of high-temperature superconductor magnets, simplified immersion blankets, advanced long-leg divertors, a compact divertor test tokamak, efficient current drive, modular construction, and demountable magnet joints. An R&D plan culminating in the construction of an integrated pilot plant and test facility modeled on the ARC concept is presented.

  15. [Research in high energy physics

    International Nuclear Information System (INIS)

    1991-01-01

    This report discusses progress in the following research in high energy physics: The crystal ball experiment; delco at PEP; proton decay experiment; MACRO detector; mark III detector; SLD detector; CLEO II detector; and the caltech L3 group

  16. High-energy behavior of field-strength interactions

    International Nuclear Information System (INIS)

    Levin, D.N.

    1976-01-01

    It is known that spontaneously broken gauge theories are the only renormalizable theories of massive spin-one particles with mass dimension less than or equal to 4. This paper describes a search for renormalizable interactions with higher mass dimension. Specifically, we examine the high-energy behavior of a class of models which involve field-strength interactions. Power counting shows that the high-energy behavior of these models is no worse than the naively estimated high-energy behavior of a gauge theory in the U gauge. Therefore, there may be a ''soft'' symmetry-breaking mechanism (for instance, a soft divergence of an antisymmetric tensor current) which enforces renormalizable high-energy behavior in the same way that spontaneously broken gauge invariance guarantees the renormalizability of gauge theories. This hope is supported by the existence of ''gauge theories'' of strings, which describe analogous interactions of strings and field strengths. Unfortunately, this idea is tarnished by explicit calculations in which renormalizability is imposed in the form of unitarity bounds. These unitarity bounds imply that all possible field-strength couplings must be zero and that the remaining interactions describe a spontaneously broken gauge theory. Thus this result supports an earlier conjecture that gauge theories are the only renormalizable theories of massive vector bosons

  17. Atrial anatomy and function postcardioversion: insights from transthoracic and transesophageal echocardiography.

    Science.gov (United States)

    Manning, W J; Silverman, D I

    1996-01-01

    Echocardiography provides a valuable tool for the evaluation and assessment of atrial function in patients with atrial fibrilation (AF). Atrial morphology after restoration of sinus rhythm is dynamic, with a decrease in atrial size if sinus rhythm is maintained and atrial growth among those with sustained AF. Restoration of electrocardiographic sinus rhythm is frequently accompanied by relatively depressed atrial mechanical function, with recovery that appears to be related to multiple factors, including the duration of AF before cardioversion and the mode of cardioversion. Such delay appears to confer ongoing risk for thrombus formation and thromboembolism in the days after cardioversion and argues strongly for the need to maintain therapeutic anticoagulation during the pericardioversion and postcardioversion period.

  18. Recycled Thermal Energy from High Power Light Emitting Diode Light Source.

    Science.gov (United States)

    Ji, Jae-Hoon; Jo, GaeHun; Ha, Jae-Geun; Koo, Sang-Mo; Kamiko, Masao; Hong, JunHee; Koh, Jung-Hyuk

    2018-09-01

    In this research, the recycled electrical energy from wasted thermal energy in high power Light Emitting Diode (LED) system will be investigated. The luminous efficiency of lights has been improved in recent years by employing the high power LED system, therefore energy efficiency was improved compared with that of typical lighting sources. To increase energy efficiency of high power LED system further, wasted thermal energy should be re-considered. Therefore, wasted thermal energy was collected and re-used them as electrical energy. The increased electrical efficiency of high power LED devices was accomplished by considering the recycled heat energy, which is wasted thermal energy from the LED. In this work, increased electrical efficiency will be considered and investigated by employing the high power LED system, which has high thermal loss during the operating time. For this research, well designed thermoelement with heat radiation system was employed to enhance the collecting thermal energy from the LED system, and then convert it as recycled electrical energy.

  19. Computing in high energy physics

    International Nuclear Information System (INIS)

    Hertzberger, L.O.; Hoogland, W.

    1986-01-01

    This book deals with advanced computing applications in physics, and in particular in high energy physics environments. The main subjects covered are networking; vector and parallel processing; and embedded systems. Also examined are topics such as operating systems, future computer architectures and commercial computer products. The book presents solutions that are foreseen as coping, in the future, with computing problems in experimental and theoretical High Energy Physics. In the experimental environment the large amounts of data to be processed offer special problems on-line as well as off-line. For on-line data reduction, embedded special purpose computers, which are often used for trigger applications are applied. For off-line processing, parallel computers such as emulator farms and the cosmic cube may be employed. The analysis of these topics is therefore a main feature of this volume

  20. Energy intensities and the impact of high energy prices on producing and consuming sectors in Malaysia

    OpenAIRE

    Klinge Jacobsen, Henrik

    2007-01-01

    The increase in oil prices has put pressure on the global economy. Even economies that have a high degree of self-sufficiency concerning oil products are experiencing rising production costs and price increases for households energy use. Therefore, changes in energy policies are under consideration for countries highly dependent on imported energy as well as countries with a high degree of self-sufficiency. Examination of dependence on cheap energy sources for economic growth in different...

  1. Operation of the LHC with Protons at High Luminosity and High Energy

    CERN Document Server

    Papotti, Giulia; Alemany-Fernandez, Reyes; Crockford, Guy; Fuchsberger, Kajetan; Giachino, Rossano; Giovannozzi, Massimo; Hemelsoet, Georges-Henry; Höfle, Wolfgang; Jacquet, Delphine; Lamont, Mike; Nisbet, David; Normann, Lasse; Pojer, Mirko; Ponce, Laurette; Redaelli, Stefano; Salvachua, Belen; Solfaroli Camillocci, Matteo; Suykerbuyk, Ronaldus; Uythoven, Jan; Wenninger, Jorg

    2016-01-01

    In 2015 the Large Hadron Collider (LHC) entered the first year in its second long Run, after a 2-year shutdown that prepared it for high energy. The first two months of beam operation were dedicated to setting up the nominal cycle for proton-proton operation at 6.5 TeV/beam, and culminated with the first physics with 3 nominal bunches/ring at 13 TeV CoM on 3 June. The year continued with a stepwise intensity ramp up that allowed reaching 2244 bunches/ring for a peak luminosity of ~5·10³³ cm⁻²s^{−1} and a total of just above 4 fb-1 delivered to the high luminosity experiments. Beam operation was shaped by the high intensity effects, e.g. electron cloud and macroparticle-induced fast losses (UFOs), which on a few occasions caused the first beam induced quenches at high energy. This paper describes the operational experience with high intensity and high energy at the LHC, together with the issues that had to be tackled along the way.

  2. Problems of high energy physics

    International Nuclear Information System (INIS)

    Kadyshevskij, V.G.

    1989-01-01

    Some problems of high energy physics are discussed. The main attention is paid to describibg the standard model. The model comprises quantum chromodynamics and electroweak interaction theory. The problem of CP breaking is considered as well. 8 refs.; 1 tab

  3. High frequency energy measurements

    International Nuclear Information System (INIS)

    Stotlar, S.C.

    1981-01-01

    High-frequency (> 100 MHz) energy measurements present special problems to the experimenter. Environment or available electronics often limit the applicability of a given detector type. The physical properties of many detectors are frequency dependent and in some cases, the physical effect employed can be frequency dependent. State-of-the-art measurements generally involve a detection scheme in association with high-speed electronics and a method of data recording. Events can be single or repetitive shot requiring real time, sampling, or digitizing data recording. Potential modification of the pulse by the detector and the associated electronics should not be overlooked. This presentation will review typical applications, methods of choosing a detector, and high-speed detectors. Special considerations and limitations of some applications and devices will be described

  4. ARRONAX, a high-energy and high-intensity cyclotron for nuclear medicine

    International Nuclear Information System (INIS)

    Haddad, Ferid; Guertin, Arnaud; Michel, Nathalie; Ferrer, Ludovic; Carlier, Thomas; Barbet, Jacques; Chatal, Jean-Francois

    2008-01-01

    This study was aimed at establishing a list of radionuclides of interest for nuclear medicine that can be produced in a high-intensity and high-energy cyclotron. We have considered both therapeutic and positron emission tomography radionuclides that can be produced using a high-energy and a high-intensity cyclotron such as ARRONAX, which will be operating in Nantes (France) by the end of 2008. Novel radionuclides or radionuclides of current limited availability have been selected according to the following criteria: emission of positrons, low-energy beta or alpha particles, stable or short half-life daughters, half-life between 3 h and 10 days or generator-produced, favourable dosimetry, production from stable isotopes with reasonable cross sections. Three radionuclides appear well suited to targeted radionuclide therapy using beta ( 67 Cu, 47 Sc) or alpha ( 211 At) particles. Positron emitters allowing dosimetry studies prior to radionuclide therapy ( 64 Cu, 124 I, 44 Sc), or that can be generator-produced ( 82 Rb, 68 Ga) or providing the opportunity of a new imaging modality ( 44 Sc) are considered to have a great interest at short term whereas 86 Y, 52 Fe, 55 Co, 76 Br or 89 Zr are considered to have a potential interest at middle term. Several radionuclides not currently used in routine nuclear medicine or not available in sufficient amount for clinical research have been selected for future production. High-energy, high-intensity cyclotrons are necessary to produce some of the selected radionuclides and make possible future clinical developments in nuclear medicine. Associated with appropriate carriers, these radionuclides will respond to a maximum of unmet clinical needs. (orig.) 5

  5. Proposed activity - Budget for research in high energy physics

    International Nuclear Information System (INIS)

    Barger, V.; Camerini, U.; Carlsmith, D.

    1989-01-01

    This paper contains task reports on the following topics: Hadron physics at Fermilab; Lepton hadron scattering; Electroweak and weak interactions at the Stanford Linear Accelerator Center; Hyperon beam program/hadroproduction of heavy flavors at Fermilab; High energy physics colliding beam detector facility at Fermilab; Data analysis facility; Institute for Elementary Particle Physics research; Study of weak and electromagnetic interactions at Desy and Cern; Theoretical high energy physics; Dumand; and Ultra high energy gamma rays

  6. Energy intensities and the impact of high energy prices on producing and consuming sectors in Malaysia

    OpenAIRE

    Klinge Jacobsen, Henrik

    2007-01-01

    The increase in oil prices has put pressure on the global economy. Even economies that have a high degree of self-sufficiency concerning oil products are experiencing rising production costs and price increases for households energy use. Therefore, changes in energy policies are under consideration for countries highly dependent on imported energy as well as countries with a high degree of self-sufficiency. Examination of dependence on cheap energy sources for economic growth in different eco...

  7. High energy physics

    International Nuclear Information System (INIS)

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-01-01

    This proposal is for the continuation of the High Energy Physics program at the University of California at Riverside. In hadron collider physics the authors will complete their transition from experiment UA1 at CERN to the DZERO experiment at Fermilab. On experiment UA1 their effort will concentrate on data analysis at Riverside. At Fermilab they will coordinate the high voltage system for all detector elements. They will also carry out hardware/software development for the D0 muon detector. The TPC/Two-Gamma experiment has completed its present phase of data-taking after accumulating 160 pb - 1 of luminosity. The UC Riverside group will continue data and physics analysis and make minor hardware improvement for the high luminosity run. The UC Riverside group is participating in design and implementation of the data acquisition system for the OPAL experiment at LEP. Mechanical and electronics construction of the OPAL hadron calorimeter strip readout system is proceeding on schedule. Data analysis and Monte Carlo detector simulation efforts are proceeding in preparation for the first physics run when IEP operation comenses in fall 1989

  8. Theoretical high energy physics

    International Nuclear Information System (INIS)

    Lee, T.D.

    1990-05-01

    This report discusses progress on theoretical high energy physics at Columbia University in New York City. Some of the topics covered are: Chern-Simons gauge field theories; dynamical fermion QCD calculations; lattice gauge theory; the standard model of weak and electromagnetic interactions; Boson-fermion model of cuprate superconductors; S-channel theory of superconductivity and axial anomaly and its relation to spin in the parton model

  9. Final cooling for a high-energy high-luminosity lepton collider

    Science.gov (United States)

    Neuffer, D.; Sayed, H.; Acosta, J.; Hart, T.; Summers, D.

    2017-07-01

    A high-energy muon collider requires a "final cooling" system that reduces transverse emittance by a factor of ~ 10, while allowing the longitudinal emittance to increase. The baseline approach has low-energy transverse cooling within high-field solenoids, with strong longitudinal heating. This approach and its recent simulation are discussed. Alternative approaches, which more explicitly include emittance exchange are also presented. Round-to-flat beam transform, transverse slicing, and longitudinal bunch coalescence are possible components of an alternative approach. Wedge-based emittance exchange could provide much of the required transverse cooling with longitudinal heating. Li-lens and quadrupole focusing systems could also provide much of the required final cooling.

  10. Final Cooling for a High-Energy High-Luminosity Lepton Collider

    Energy Technology Data Exchange (ETDEWEB)

    Neuffer, David [Fermilab; Sayed, H. [Brookhaven; Hart, T. [Mississippi U.; Summers, D. [Mississippi U.

    2015-12-03

    A high-energy muon collider scenario require a “final cooling” system that reduces transverse emittance by a factor of ~10 while allowing longitudinal emittance increase. The baseline approach has low-energy transverse cooling within high-field solenoids, with strong longitudinal heating. This approach and its recent simulation are discussed. Alternative approaches which more explicitly include emittance exchange are also presented. Round-to-flat beam transform, transverse slicing, and longitudinal bunch coalescence are possible components of an alternative approach. Wedge-based emittance exchange could provide much of the required transverse cooling with longitudinal heating. Li-lens and quadrupole focusing systems could also provide much of the required final cooling.

  11. The high energy X-ray spectra of supernova remnants

    Science.gov (United States)

    Pravdo, S. H.; Nugent, J. J.

    The results of fitting an ionization-nonequilibrium (INE) model to the high-energy (above 5-keV) X-ray spectra of the young supernova remnants Cas A and Tycho are presented. As an additional constraint, the models must simultaneously fit lower-energy, higher-resolution data. For Cas A, a single INE component cannot adequately reproduce the features for the entire X-ray spectrum because the ionization structure of iron ions responsible for the K emission is inconsistent with that of the ions responsible for the lower-energy lines, and the flux of the highest-energy X-rays is underestimated. The iron K line and the high-energy continuum could arise from the same INE component, but the identification of this component with either the blast wave or the ejecta in the standard model is difficult. In Tycho, the high-energy data rule out a class of models for the lower-energy data which have too large a continuum contribution.

  12. High energy hadron-nucleus scattering

    International Nuclear Information System (INIS)

    Koplik, J.; Mueller, A.H.

    1975-01-01

    Theoretical expectations for hadron-nucleus scattering at high energy if the basic hadron-hadron interaction is due to Regge poles and cuts arising in multiperipheral or soft field theory models are described. Experiments at Fermilab may provide a critical test of such models

  13. Perspectives on future high energy physics

    International Nuclear Information System (INIS)

    Samios, N.P.

    1996-01-01

    The author states two general ways in which one must proceed in an attempt to forecast the future of high energy physics. The first is to utilize the state of knowledge in the field and thereby provide theoretical and experimental guidance on future directions. The second approach is technical, namely, how well can one do in going to higher energies with present techniques or new accelerator principles. He concludes that the future strategy is straightforward. The present accelerator facilities must be upgraded and run to produce exciting and forefront research. At the same time, the theoretical tools should be sharpened both extrapolating from lower energies (100 GeV) to high (multi TeV) and vice versa. The US should be involved in the LHC, both in the accelerator and experimental areas. There should be an extensive R and D program on accelerators for a multi-TeV capability, emphasizing e + e - and μ + μ - colliders. Finally, the international cooperative activities should be strengthened and maintained

  14. Proposal for a high-energy nuclear database

    International Nuclear Information System (INIS)

    Brown, D.A.; Vogt, R.

    2006-01-01

    We propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interface. This database will be searchable and cross-indexed with relevant publications, including published detector descriptions. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This database should eventually contain all published data from Bevalac, AGS and SPS to RHIC and LHC energies, proton-proton to nucleus-nucleus collisions as well as other relevant systems, and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of old and new experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion and target and source development for upcoming facilities such as the Next Linear Collider. To enhance the utility of this database, we propose periodically performing evaluations of the data and summarizing the results in topical reviews. (author)

  15. Proposal for a High Energy Nuclear Database

    International Nuclear Information System (INIS)

    Brown, D A; Vogt, R

    2005-01-01

    The authors propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interface. This database will be searchable and cross-indexed with relevant publications, including published detector descriptions. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This database should eventually contain all published data from Bevalac, AGS and SPS to RHIC and CERN-LHC energies, proton-proton to nucleus-nucleus collisions as well as other relevant systems, and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of old and new experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion and target and source development for upcoming facilities such as the Next Linear Collider. To enhance the utility of this database, they propose periodically performing evaluations of the data and summarizing the results in topical reviews

  16. Quantum energy duplication using super high output pulse laser

    International Nuclear Information System (INIS)

    Sugisaki, Kiwamu; Koyama, Kazuyoshi; Tanimoto, Mitsumori; Saito, Naoaki

    2000-01-01

    This study aims at elucidation on phenomena induced by strong electric field of super high output ultra short laser pulse to carry out development of basic technology required for promotion of a study on generation of high energy particle and photon using them, in order to contribute to application of super high output ultra short laser pulse and high energy plasma formed by it. In 1998 fiscal year of the last fiscal year in this study, by intending to increase the output by narrowing pulse width of the super high output laser, some basic experiments such as verification due to experiment on relativity theoretical self-convergence, generation of high energy particles, and so forth were carried out to establish a forecasting on future application. And, by conducting plasma generation experiment, self-guide and high energy particle formation experiment in plasma of super high intensity laser pulse important for its applications, and so forth, various technologies constituting foundation of future developments were developed, and more results could be obtained than those at proposal of this study. (G.K.)

  17. [Experimental and theoretical high energy physics

    International Nuclear Information System (INIS)

    Boulware, D.

    1988-01-01

    We are carrying out a research program in high energy experimental particle physics. Studies of high energy hadronic interactions and leptoproduction processes continue using several experimental techniques. Progress has been made on the study of multiparticle production processes in nuclei. Ultra-high energy cosmic ray nucleus-nucleus interactions have been investigated by the Japanese American Cosmic Emulsion Experiment (JACEE) using balloon-borne emulsion chamber detectors. In the area of particle astrophysics, our studies of cosmic ray nuclear interactions have enabled us to make the world's most accurate determination of the composition of the cosmic rays above 10 13 eV. We have the only detector that can observe interaction vertices and identify particles at energies up to 10--15 eV. Our observations are getting close to placing limits on the acceleration mechanisms postulated for pulsars in which the spin and magnetic moment axes are at different angles. In June, 1989 approval was given by NASA for our participation in the Space Station program. The SCINATT experiment will make use of emulsion chamber detectors, similar to the planned JACEE hybrid balloon flight detectors. These detectors will permit precise determination of secondary particle charges, momenta and rapidities, and the accumulation of data will be at least a factor of 10 to 100 greater than in balloon experiments. Emulsion chamber techniques are also employed in an experiment using accelerator heavy ion beams at CERN and Brookhaven National Laboratory to investigate particle production processes in central collisions of nuclei in the energy range 15--200A GeV. Our study of hadroproduction in lepton interactions is continuing with approval of another 8 months run for deep inelastic muon scattering experiment E665 at Fermilab

  18. Treatment of foods with high-energy X rays

    International Nuclear Information System (INIS)

    Cleland, M.R.; Meissner, J.; Herer, A.S.; Beers, E.W.

    2001-01-01

    The treatment of foods with ionizing energy in the form of gamma rays, accelerated electrons, and X rays can produce beneficial effects, such as inhibiting the sprouting in potatoes, onions, and garlic, controlling insects in fruits, vegetables, and grains, inhibiting the growth of fungi, pasteurizing fresh meat, poultry, and seafood, and sterilizing spices and food additives. After many years of research, these processes have been approved by regulatory authorities in many countries and commercial applications have been increasing. High-energy X rays are especially useful for treating large packages of food. The most attractive features are product penetration, absorbed dose uniformity, high utilization efficiency and short processing time. The ability to energize the X-ray source only when needed enhances the safety and convenience of this technique. The availability of high-energy, high-power electron accelerators, which can be used as X-ray generators, makes it feasible to process large quantities of food economically. Several industrial accelerator facilities already have X-ray conversion equipment and several more will soon be built with product conveying systems designed to take advantage of the unique characteristics of high-energy X rays. These concepts will be reviewed briefly in this paper

  19. Treatment of foods with high-energy X rays

    Science.gov (United States)

    Cleland, M. R.; Meissner, J.; Herer, A. S.; Beers, E. W.

    2001-07-01

    The treatment of foods with ionizing energy in the form of gamma rays, accelerated electrons, and X rays can produce beneficial effects, such as inhibiting the sprouting in potatoes, onions, and garlic, controlling insects in fruits, vegetables, and grains, inhibiting the growth of fungi, pasteurizing fresh meat, poultry, and seafood, and sterilizing spices and food additives. After many years of research, these processes have been approved by regulatory authorities in many countries and commercial applications have been increasing. High-energy X rays are especially useful for treating large packages of food. The most attractive features are product penetration, absorbed dose uniformity, high utilization efficiency and short processing time. The ability to energize the X-ray source only when needed enhances the safety and convenience of this technique. The availability of high-energy, high-power electron accelerators, which can be used as X-ray generators, makes it feasible to process large quantities of food economically. Several industrial accelerator facilities already have X-ray conversion equipment and several more will soon be built with product conveying systems designed to take advantage of the unique characteristics of high-energy X rays. These concepts will be reviewed briefly in this paper.

  20. X-ray absorption intensity at high-energy region

    International Nuclear Information System (INIS)

    Fujikawa, Takashi; Kaneko, Katsumi

    2012-01-01

    We theoretically discuss X-ray absorption intensity in high-energy region far from the deepest core threshold to explain the morphology-dependent mass attenuation coefficient of some carbon systems, carbon nanotubes (CNTs), highly oriented pyrolytic graphite (HOPG) and fullerenes (C 60 ). The present theoretical approach is based on the many-body X-ray absorption theory including the intrinsic losses (shake-up losses). In the high-energy region the absorption coefficient has correction term dependent on the solid state effects given in terms of the polarization part of the screened Coulomb interaction W p . We also discuss the tail of the valence band X-ray absorption intensity. In the carbon systems C 2s contribution has some influence on the attenuation coefficient even in the high energy region at 20 keV.

  1. High energy particle experiment for the GEOTAIL mission

    International Nuclear Information System (INIS)

    1989-09-01

    The high energy particle experiment for GEOTAIL mission was designed to understand the particle acceleration mechanism, energy flow, boundary dynamics and magnetic reconnection mechanism in the geotail region, solar flare particle acceleration mechanism, the propagation mechanism through interplanetary space, and the origin, lifetime and propagation mechanism of cosmic ray heavy ions. In order to achieve these objectives, particle detectors, burst detectors, medium energy isotope telescopes and a high energy isotope telescope will be placed in the spacecraft which will be launched in 1992 as one of the spacecraft missions in the International Solar Terrestrial Physics program. With these detectors, electrons, protons and helium, carbon, silicon and iron particles will be detected. The characteristics and the main technique used for each instrument to observe high energy particles are summarized. The details of the scientific objectives, the basic principle of particle identification, the electronic system and data processing system, key parameter information, telemetry data formats, preflight and in-flight calibration method and data an analysis plan are described in this report. (K.I.)

  2. Search for new light bosons in high energy astronomy

    International Nuclear Information System (INIS)

    Wouters, Denis

    2014-01-01

    High-Energy astronomy studies the most violent phenomena in the universe with observations in a large spectrum of energies ranging from X rays to very high energy gamma rays (1 keV - 100 TeV). Such phenomena could be for instance supernovae explosions and their remnants, pulsars and pulsar wind nebulae or ultra relativistic jets formation by active galactic nuclei. Understanding these phenomena requires to use well-known particle physics processes. By means of high energy photons, studying such phenomena enables one to search for physics beyond the standard model. Concepts regarding the emission and propagation of high-energy photons are introduced and applied to study their emission by extragalactic sources and to constrain the extragalactic background light which affects their propagation. In this thesis, these high-energy extragalactic emitters are observed in order to search for new light bosons such as axion-like particles (ALPs). The theoretical framework of this family of hypothetical particles is reviewed as well as the associated phenomenology. In particular, because of their coupling to two photons, ALPs oscillate with photons in an external magnetic field. A new signature of such oscillations in turbulent magnetic fields, under the form of stochastic irregularities in the source energy spectrum, is introduced and discussed. A search for ALPs with the HESS telescopes with this new signature is presented, resulting in the first constraints on ALPs parameters coming from high-energy astronomy. Current constraints on ALPs at very low masses are improved by searching for the same signature in X-ray observations. An extension of these constraints to scalar field models for modified gravity in the framework of dark energy is then discussed. The potential of the search for ALPs with CTA, the prospected gamma-ray astronomy instrument, is eventually studied; in particular, a new observable is proposed that relies on the high number of sources that are expected to

  3. Elementary particle physics and high energy phenomena

    International Nuclear Information System (INIS)

    Barker, A.R.; Cumalat, J.P.; De Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    Experimental and theoretical high-energy physics programs at the University of Colorado are reported. Areas of concentration include the following: study of the properties of the Z 0 with the SLD detector; fixed-target K-decay experiments; the R ampersand D program for the muon system: the SDC detector; high-energy photoproduction of states containing heavy quarks; electron--positron physics with the CLEO II detector at CESR; lattice QCD; and spin models and dynamically triangulated random surfaces. 24 figs., 2 tabs., 117 refs

  4. High energy collisions of nuclei: experiments

    International Nuclear Information System (INIS)

    Heckman, H.H.

    1977-09-01

    Heavy-ion nuclear reactions with projectile energies up to 2.1 GeV/A are reviewed. The concept of ''rapidity'' is elucidated, and the reactions discussed are divided into sections dealing with target fragmentation, projectile fragmentation, and the intermediate region, with emphasis on the production of light nuclei in high-energy heavy-ion collisions. Target fragmentation experiments using nuclear emulsion and AgCl visual track detectors are also summarized. 18 figures

  5. High-Energy Electron Beam Application to Air Pollutants Removal

    International Nuclear Information System (INIS)

    Ighigeanu, D.; Martin, D.; Manaila, E.; Craciun, G.; Calinescu, I.

    2009-01-01

    The advantage of electron beam (EB) process in pollutants removal is connected to its high efficiency to transfer high amount of energy directly into the matter under treatment. Disadvantage which is mostly related to high investment cost of accelerator may be effectively overcome in future as the result of use accelerator new developments. The potential use of medium to high-energy high power EB accelerators for air pollutants removal is demonstrated in [1]. The lower electrical efficiencies of accelerators with higher energies are partially compensated by the lower electron energy losses in the beam windows. In addition, accelerators with higher electron energies can provide higher beam powers with lower beam currents [1]. The total EB energy losses (backscattering, windows and in the intervening air space) are substantially lower with higher EB incident energy. The useful EB energy is under 50% for 0.5 MeV and about 95% above 3 MeV. In view of these arguments we decided to study the application of high energy EB for air pollutants removal. Two electron beam accelerators are available for our studies: electron linear accelerators ALIN-10 and ALID-7, built in the Electron Accelerator Laboratory, INFLPR, Bucharest, Romania. Both accelerators are of traveling-wave type, operating at a wavelength of 10 cm. They utilize tunable S-band magnetrons, EEV M 5125 type, delivering 2 MW of power in 4 μ pulses. The accelerating structure is a disk-loaded tube operating in the 2 mode. The optimum values of the EB peak current IEB and EB energy EEB to produce maximum output power PEB for a fixed pulse duration EB and repetition frequency fEB are as follows: for ALIN-10: EEB = 6.23 MeV; IEB =75 mA; PEB 164 W (fEB = 100 Hz, EB = 3.5 s) and for ALID-7: EEB 5.5 MeV; IEB = 130 mA; PEB = 670 W (fEB = 250 Hz, EB = 3.75 s). This paper presents a special designed installation, named SDI-1, and several representative results obtained by high energy EB application to SO 2 , NOx and VOCs

  6. High energy behaviour of particles and unified statistics

    International Nuclear Information System (INIS)

    Chang, Y.

    1984-01-01

    Theories and experiments suggest that particles at high energy appear to possess a new statistics unifying Bose-Einstein and Fermi-Dirac statistics via the GAMMA distribution. This hypothesis can be obtained from many models, and agrees quantitatively with scaling, the multiplicty, large transverse momentum, the mass spectrum, and other data. It may be applied to scatterings at high energy, and agrees with experiments and known QED's results. The Veneziano model and other theories have implied new statistics, such as, the B distribution and the Polya distribution. They revert to the GAMMA distribution at high energy. The possible inapplicability of Pauli's exclusion principle within the unified statistics is considered and associated to the quark constituents

  7. Metal hydrides based high energy density thermal battery

    International Nuclear Information System (INIS)

    Fang, Zhigang Zak; Zhou, Chengshang; Fan, Peng; Udell, Kent S.; Bowman, Robert C.; Vajo, John J.; Purewal, Justin J.; Kekelia, Bidzina

    2015-01-01

    Highlights: • The principle of the thermal battery using advanced metal hydrides was demonstrated. • The thermal battery used MgH 2 and TiMnV as a working pair. • High energy density can be achieved by the use of MgH 2 to store thermal energy. - Abstract: A concept of thermal battery based on advanced metal hydrides was studied for heating and cooling of cabins in electric vehicles. The system utilized a pair of thermodynamically matched metal hydrides as energy storage media. The pair of hydrides that was identified and developed was: (1) catalyzed MgH 2 as the high temperature hydride material, due to its high energy density and enhanced kinetics; and (2) TiV 0.62 Mn 1.5 alloy as the matching low temperature hydride. Further, a proof-of-concept prototype was built and tested, demonstrating the potential of the system as HVAC for transportation vehicles

  8. Progress report 1986. Laboratory of high energy nuclear physics

    International Nuclear Information System (INIS)

    1987-01-01

    A study of hadron structure using neutrino interactions; high energy photon interactions; a search for gluinos; a spectrometer for the study of quark fusion and structure functions; measurement of the real part of the pp - scattering amplitude at 546 GeV; measurement of photon production in the fragmentation region of pp - interactions at 630 GeV; investigation of very high energy nucleus-nucleus interactions: the quagma; an experience on nucleon stability; as well as high energy nuclear physics research facilities are described [fr

  9. High-energy ion implantation of materials

    International Nuclear Information System (INIS)

    Williams, J.M.

    1991-11-01

    High-energy ion implantation is an extremely flexible type of surface treatment technique, in that it offers the possibility of treating almost any type of target material or product with ions of almost any chemical species, or combinations of chemical species. In addition, ion implantations can be combined with variations in temperature during or after ion implantation. As a result, the possibility of approaching a wide variety of surface-related materials science problems exists with ion implantation. This paper will outline factors pertinent to application of high-energy ion implantation to surface engineering problems. This factors include fundamental advantages and limitations, economic considerations, present and future equipment, and aspects of materials science

  10. Are inflationary predictions sensitive to very high energy physics?

    International Nuclear Information System (INIS)

    Burgess, C.P.; Lemieux, F.; Holman, R.; Cline, J.M.

    2003-01-01

    It has been proposed that the successful inflationary description of density perturbations on cosmological scales is sensitive to the details of physics at extremely high (trans-Planckian) energies. We test this proposal by examining how inflationary predictions depend on higher-energy scales within a simple model where the higher-energy physics is well understood. We find the best of all possible worlds: inflationary predictions are robust against the vast majority of high-energy effects, but can be sensitive to some effects in certain circumstances, in a way which does not violate ordinary notions of decoupling. This implies both that the comparison of inflationary predictions with CMB data is meaningful, and that it is also worth searching for small deviations from the standard results in the hopes of learning about very high energies. (author)

  11. High energy density capacitors fabricated by thin film technology

    International Nuclear Information System (INIS)

    Barbee, T W; Johnson, G W; Wagner, A V.

    1999-01-01

    Low energy density in conventional capacitors severely limits efforts to miniaturize power electronics and imposes design limitations on electronics in general. We have successfully applied physical vapor deposition technology to greatly increase capacitor energy density. The high dielectric breakdown strength we have achieved in alumina thin films allows high energy density to be achieved with this moderately low dielectric constant material. The small temperature dependence of the dielectric constant, and the high reliability, high resistivity, and low dielectric loss of Al 2 O 3 , make it even more appealing. We have constructed single dielectric layer thin film capacitors and shown that they can be stacked to form multilayered structures with no loss in yield for a given capacitance. Control of film growth morphology is critical for achieving the smooth, high quality interfaces between metal and dielectric necessary for device operation at high electric fields. Most importantly, high rate deposition with extremely low particle generation is essential for achieving high energy storage at a reasonable cost. This has been achieved by reactive magnetron sputtering in which the reaction to form the dielectric oxide has been confined to the deposition surface. By this technique we have achieved a yield of over 50% for 1 cm 2 devices with an energy density of 14 J per cubic centimeter of Al 2 O 3 dielectric material in 1.2 kV, 4 nF devices. By further reducing defect density and increasing the dielectric constant of the material, we will be able to increase capacitance and construct high energy density devices to meet the requirements of applications in power electronics

  12. Experimental and theoretical high energy physics research

    International Nuclear Information System (INIS)

    1992-01-01

    Progress in the various components of the UCLA High-Energy Physics Research program is summarized, including some representative figures and lists of resulting presentations and published papers. Principal efforts were directed at the following: (I) UCLA hadronization model, PEP4/9 e + e - analysis, bar P decay; (II) ICARUS and astroparticle physics (physics goals, technical progress on electronics, data acquisition, and detector performance, long baseline neutrino beam from CERN to the Gran Sasso and ICARUS, future ICARUS program, and WIMP experiment with xenon), B physics with hadron beams and colliders, high-energy collider physics, and the φ factory project; (III) theoretical high-energy physics; (IV) H dibaryon search, search for K L 0 → π 0 γγ and π 0 ν bar ν, and detector design and construction for the FNAL-KTeV project; (V) UCLA participation in the experiment CDF at Fermilab; and (VI) VLPC/scintillating fiber R ampersand D

  13. Duke University high energy physics

    International Nuclear Information System (INIS)

    Fortney, L.R.; Goshaw, A.T.; Walker, W.D.

    1992-07-01

    This Progress Report presents a review of the research done in 1992 by the Duke High Energy Physics Group. This is the first year of a three-year grant which was approved by the Office of High Energy Physics at DOE after an external review of our research program during the summer of 1991. Our research is centered at Fermilab where we are involved with two active experiments, one using the Tevatron collider (CDF, the Collider Detector Facility) and the other using a proton beam in the high intensity laboratory (E771, study of beauty production). In addition to these running experiments we are continuing the analysis of data from experiments E735 (collider search for a quark-gluon plasma), E705 (fixed target study of direct photon and Χ meson production) and E597 (particle production from hadron-nucleus collisions). Finally, this year has seen an expansion of our involvement with the design of the central tracking detector for the Solenoidal Detector Collaboration (SDC) and an increased role in the governance of the collaboration. Descriptions of these research activities are presented in this report

  14. High energy particle physics in the United Kingdom

    International Nuclear Information System (INIS)

    1985-06-01

    The paper reviews the U.K. participation in High Energy Particle Physics (HEPP) research. The funding of science in Higher Education and the Research Councils; high energy particle physics; relevance of particle physics to science and technology; particle physics in the U.K.; CERN; and the opportunity cost of HEPP within the science budget; are all discussed. (U.K.)

  15. High-energy density physics at Los Alamos

    International Nuclear Information System (INIS)

    Byrnes, P.; Younger, S.M.

    1993-03-01

    This brochure describes the facilities of the Above Ground Experiments II (AGEX II) and the Inertial Confinement Fusion (ICF) programs at Los Alamo. Combined, these programs represent, an unparalleled capability to address important issues in high-energy density physics that are critical to the future defense, energy, and research needs of th e United States. The mission of the AGEX II program at Los Alamos is to provide additional experimental opportunities for the nuclear weapons program. For this purpose we have assembled at Los Alamos the broadest array of high-energy density physics facilities of any laboratory in the world. Inertial confinement fusion seeks to achieve thermonuclear burn on a laboratory scale through the implosion of a small quantity of deuterium and tritium fuel to very high Pressure and temperature.The Los Alamos ICF program is focused on target physics. With the largest scientific computing center in the world, We can perform calculations of unprecedented sophistication and precision. We field experiments at facilities worldwide-including our own Trident and Mercury lasers-to confirm our understanding and to provide the necessary data base to proceed toward the historic goal of controlled fusion in the laboratory. In addition to direct programmatic high-energy density physics is a nc scientific endeavor in itself. The ultrahigh magnetic fields produced in our high explosive pulsed-power generators can be used in awide variety of solid state physics and temperature superconductor studies. The structure and dynamics of planetary atmospheres can be simulated through the compression of gas mixtures

  16. HEPAP White Paper on planning for U.S. high-energy physics [High Energy Physics Advisory Panel

    International Nuclear Information System (INIS)

    2000-01-01

    High-energy physicists seek to understand what the universe is made of, how it works, and where it has come from. They investigate the most basic particles and the forces between them. Experiments and theoretical insights over the past several decades have made it possible to see the deep connection between apparently unrelated phenomena, and to piece together more of the story of how a rich and complex cosmos could evolve from just a few kinds of elementary particles. The 1998 Subpanel of the High Energy Physics Advisory Panel (HEPAP) laid out a strategy for U.S. high-energy physics for the next decade. That strategy balanced exciting near-term opportunities with preparations for the most important discovery possibilities in the longer-term. Difficult choices were made to end several highly productive programs and to reduce others. This year HEPAP was charged to take the plan given in the Subpanel's report, understand it in the context of worldwide progress, and update it. In response to that charge, this White Paper provides an assessment of where we stand, states the next steps to take in the intermediate term, and serves as input for a longer range planning process involving a new HEPAP subpanel and high-energy physics community evaluation in 2001. Since the 1998 Subpanel, there have been important developments and a number of the Subpanel's recommendations have been implemented. Notably, construction of the B-factory at SLAC, the Main Injector at Fermilab, and the upgrade of CESR at Cornell have all been finished on schedule and on budget. We have gained great confidence in the performance of these accelerators and the associated detectors. The B-factory at SLAC is already operating above design luminosity and plans are in place to reach three times the design in the next few years. In addition, there have been major physics developments that lead us to believe that these completed projects are guaranteed to produce frontier physics results and have an

  17. Energy spectra variations of high energy electrons in magnetic storms observed by ARASE and HIMAWARI

    Science.gov (United States)

    Takashima, T.; Higashio, N.; Mitani, T.; Nagatsuma, T.; Yoshizumi, M.

    2017-12-01

    The ARASE spacecraft was launched in December 20, 2016 to investigate mechanisms for acceleration and loss of relativistic electrons in the radiation belts during space storms. The six particle instruments with wide energy range (a few eV to 10MeV) are onboard the ARASE spacecraft. Especially, two particle instruments, HEP and XEP observe high energy electron with energy range from 70keV to over 10Mev. Those instruments observed several geomagnetic storms caused by coronal hole high speed streams or coronal mass ejections from March in 2017. The relativistic electrons in the outer radiation belt were disappeared/increased and their energy spectra were changed dynamically in some storms observed by XEP/HEP onboard the ARASE spacecraft. In the same time, SEDA-e with energy range 200keV-4.5MeV for electron on board the HIMAWARI-8, Japanese weather satellite on GEO, observed increase of relativistic electron in different local time. We will report on energy spectra variations of high energy electrons including calibrations of differential flux between XEP and HEP and discuss comparisons with energy spectra between ARAE and HIMAWARI that observed each storm in different local time.

  18. High Tc superconducting energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Werfel, Frank [Adelwitz Technologiezentrum GmbH (ATZ), Arzberg-Adelwitz (Germany)

    2012-07-01

    Electric energy is basic to heat and light our homes, to power our businesses and to transport people and goods. Powerful storage techniques like SMES, Flywheel, Super Capacitor, and Redox - Flow batteries are needed to increase the overall efficiency, stability and quality of electrical grids. High-Tc superconductors (HTS) possess superior physical and technical properties and can contribute in reducing the dissipation and losses in electric machines as motors and generators, in electric grids and transportation. The renewable energy sources as solar, wind energy and biomass will require energy storage systems even more as a key technology. We survey the physics and the technology status of superconducting flywheel energy storage (FESS) and magnetic energy storage systems (SMES) for their potential of large-scale commercialization. We report about a 10 kWh / 250 kW flywheel with magnetic stabilization of the rotor. The progress of HTS conductor science and technological engineering are basic for larger SMES developments. The performance of superconducting storage systems is reviewed and compared. We conclude that a broad range of intensive research and development in energy storage is urgently needed to produce technological options that can allow both climate stabilization and economic development.

  19. ENERGY CORRECTION FOR HIGH POWER PROTON/H MINUS LINAC INJECTORS.

    Energy Technology Data Exchange (ETDEWEB)

    RAPARIA, D.; LEE, Y.Y.; WEI, J.

    2005-05-16

    High-energy proton/H minus energy (> GeV) linac injector suffer from energy jitter due to RF amplitude and phase stability. Especially in high power injectors this energy jitter result beam losses more than 1 W/m that require for hand on maintenance. Depending upon the requirements for next accelerator in the chain, this energy jitter may or may not require to be corrected. This paper will discuss the sources of this energy jitter, correction schemes with specific examples.

  20. Energy spectrum measurement of high power and high energy(6 and 9 MeV) pulsed x-ray source for industrial use

    Energy Technology Data Exchange (ETDEWEB)

    Takagi, Hiroyuki [Hitachi, Ltd. Power Systems Company, Ibaraki (Japan); Murata, Isao [Graduate School of Engineering, Osaka University, Osaka (Japan)

    2016-06-15

    Industrial X-ray CT system is normally applied to non-destructive testing (NDT) for industrial product made from metal. Furthermore there are some special CT systems, which have an ability to inspect nuclear fuel assemblies or rocket motors, using high power and high energy (more than 6 MeV) pulsed X-ray source. In these case, pulsed X-ray are produced by the electron linear accelerator, and a huge number of photons with a wide energy spectrum are produced within a very short period. Consequently, it is difficult to measure the X-ray energy spectrum for such accelerator-based X-ray sources using simple spectrometry. Due to this difficulty, unexpected images and artifacts which lead to incorrect density information and dimensions of specimens cannot be avoided in CT images. For getting highly precise CT images, it is important to know the precise energy spectrum of emitted X-rays. In order to realize it we investigated a new approach utilizing the Bayesian estimation method combined with an attenuation curve measurement using step shaped attenuation material. This method was validated by precise measurement of energy spectrum from a 1 MeV electron accelerator. In this study, to extend the applicable X-ray energy range we tried to measure energy spectra of X-ray sources from 6 and 9 MeV linear accelerators by using the recently developed method. In this study, an attenuation curves are measured by using a step-shaped attenuation materials of aluminum and steel individually, and the each X-ray spectrum is reconstructed from the measured attenuation curve by the spectrum type Bayesian estimation method. The obtained result shows good agreement with simulated spectra, and the presently developed technique is adaptable for high energy X-ray source more than 6 MeV.

  1. Cosmic very high-energy {gamma}-rays

    Energy Technology Data Exchange (ETDEWEB)

    Plaga, R. [Max-Planck-Institut fur Physik, Muenchen (Germany)

    1998-12-31

    The article gives a brief overview, aimed at nonspecialists, about the goals and selected recent results of the detection of very-high energy {gamma}-rays (energies above 100 GeV) with ground based detectors. The stress is on the physics questions, specially the origin of Galactic Cosmic Rays and the emission of TeV {gamma}-radiation from active galaxies. Moreover some particle-physics questions which are addressed in this area are discussed.

  2. Report of the 1985 High Energy Physics Advisory Panel Study of the US High Energy Physics Program, 1985-1995

    International Nuclear Information System (INIS)

    1985-09-01

    The present study was motivated by the desire to examine the US High Energy Physics Program in depth, to reassess the Superconducting Super Collider (SSC) goal in light of recent scientific and technical developments, and to understand how this project would affect and interact with the US high energy program in the period before it becomes operational. It is recommended that the SSC research and development be given highest priority in the US High Energy Physics Program so that the project can proceed to an early construction start and rapid completion. A limited number of programs are identified as ''forefront programs'' - those which enter a new experimental regime in such a way as to have clear promise for new fundamental discoveries - and it is recommended that these proceed with priority. Research opportunities available during the next ten years are explored, including proton-antiproton colliders, electron-proton collider, electron-positron colliders, fixed-target experiments, and non-accelerator experiments

  3. Current situation of energy conservation in high energy-consuming industries in Taiwan

    International Nuclear Information System (INIS)

    Chan, D.Y.-L.; Yang, K.-H.; Hsu, C.-H.; Chien, M.-H.; Hong, G.-B.

    2007-01-01

    Growing concern in Taiwan has arisen about energy consumption and its adverse environmental impact. The current situation of energy conservation in high energy-consuming industries in Taiwan, including the iron and steel, chemical, cement, pulp and paper, textiles and electric/electrical industries has been presented. Since the energy consumption of the top 100 energy users (T100) comprised over 50% of total industry energy consumption, focusing energy consumption reduction efforts on T100 energy users can achieve significant results. This study conducted on-site energy audits of 314 firms in Taiwan during 2000-2004, and identified potential electricity savings of 1,022,656 MWH, fuel oil savings of 174,643 kiloliters (KL), steam coal savings of 98,620 ton, and natural gas (NG) savings of 10,430 kilo cubic meters. The total potential energy saving thus was 489,505 KL of crude oil equivalent (KLOE), representing a reduction of 1,447,841 ton in the carbon dioxide emissions, equivalent to the annual carbon dioxide absorption capacity of a 39,131-ha plantation forest

  4. An Experimental and Theoretical High Energy Physics Program

    Energy Technology Data Exchange (ETDEWEB)

    Shipsey, Ian

    2012-07-31

    The Purdue High Energy Physics Group conducts research in experimental and theoretical elementary particle physics and experimental high energy astrophysics. Our goals, which we share with high energy physics colleagues around the world, are to understand at the most fundamental level the nature of matter, energy, space and time, and in order to explain the birth, evolution and fate of the Universe. The experiments in which we are currently involved are: CDF, CLEO-c, CMS, LSST, and VERITAS. We have been instrumental in establishing two major in-house facilities: The Purdue Particle Physics Microstructure Detector Facility (P3MD) in 1995 and the CMS Tier-2 center in 2005. The research efforts of the theory group span phenomenological and theoretical aspects of the Standard Model as well as many of its possible extensions. Recent work includes phenomenological consequences of supersymmetric models, string theory and applications of gauge/gravity duality, the cosmological implications of massive gravitons, and the physics of extra dimensions.

  5. Metal hydrides based high energy density thermal battery

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zhigang Zak, E-mail: zak.fang@utah.edu [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Zhou, Chengshang; Fan, Peng [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Udell, Kent S. [Department of Metallurgical Engineering, The University of Utah, 50 S. Central Campus Dr., Room 2110, Salt Lake City, UT 84112-0114 (United States); Bowman, Robert C. [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Vajo, John J.; Purewal, Justin J. [HRL Laboratories, LLC, 3011 Malibu Canyon Road, Malibu, CA 90265 (United States); Kekelia, Bidzina [Department of Metallurgical Engineering, The University of Utah, 50 S. Central Campus Dr., Room 2110, Salt Lake City, UT 84112-0114 (United States)

    2015-10-05

    Highlights: • The principle of the thermal battery using advanced metal hydrides was demonstrated. • The thermal battery used MgH{sub 2} and TiMnV as a working pair. • High energy density can be achieved by the use of MgH{sub 2} to store thermal energy. - Abstract: A concept of thermal battery based on advanced metal hydrides was studied for heating and cooling of cabins in electric vehicles. The system utilized a pair of thermodynamically matched metal hydrides as energy storage media. The pair of hydrides that was identified and developed was: (1) catalyzed MgH{sub 2} as the high temperature hydride material, due to its high energy density and enhanced kinetics; and (2) TiV{sub 0.62}Mn{sub 1.5} alloy as the matching low temperature hydride. Further, a proof-of-concept prototype was built and tested, demonstrating the potential of the system as HVAC for transportation vehicles.

  6. High-Energy Physics: Exit America?

    CERN Multimedia

    Seife, Charles

    2005-01-01

    Budget cuts and cancellations threaten to end U.S. exploration of the particle frontier. Fermilab's Tevatron, due to shut down around 200, could be the last large particle accelerator in the United States; the Large Hadron Collider in Geneva should ensure European dominance of high-energy physics (3 pages)

  7. Multiplicity distributions in high energy collisions

    International Nuclear Information System (INIS)

    Giovannini, A.; Lupia, S.; Ugoccioni, R.

    1992-01-01

    We discuss the important phases in the evolution of our understanding of multiplicity distributions in high energy collisions with particular emphasis to intermittent behavior and shoulder structure problem. (orig.)

  8. Multiplicity distributions in high energy collisions

    Energy Technology Data Exchange (ETDEWEB)

    Giovannini, A.; Lupia, S.; Ugoccioni, R. (Dipt. di Fisica Teorica, Univ. Turin (Italy) INFN, Turin (Italy))

    1992-03-01

    We discuss the important phases in the evolution of our understanding of multiplicity distributions in high energy collisions with particular emphasis to intermittent behavior and shoulder structure problem. (orig.).

  9. High energy medical accelerators

    International Nuclear Information System (INIS)

    Mandrillon, P.

    1990-01-01

    The treatment of tumours with charged particles, ranging from protons to 'light ions' (carbon, oxygen, neon), has many advantages, but up to now has been little used because of the absence of facilities. After the successful pioneering work carried out with accelerators built for physics research, machines dedicated to this new radiotherapy are planned or already in construction. These high energy medical accelerators are presented in this paper. (author) 15 refs.; 14 figs.; 8 tabs

  10. Creating high performance buildings: Lower energy, better comfort

    International Nuclear Information System (INIS)

    Brager, Gail; Arens, Edward

    2015-01-01

    Buildings play a critical role in the challenge of mitigating and adapting to climate change. It is estimated that buildings contribute 39% of the total U.S. greenhouse gas (GHG) emissions [1] primarily due to their operational energy use, and about 80% of this building energy use is for heating, cooling, ventilating, and lighting. An important premise of this paper is about the connection between energy and comfort. They are inseparable when one talks about high performance buildings. Worldwide data suggests that we are significantly overcooling buildings in the summer, resulting in increased energy use and problems with thermal comfort. In contrast, in naturally ventilated buildings without mechanical cooling, people are comfortable in much warmer temperatures due to shifting expectations and preferences as a result of occupants having a greater degree of personal control over their thermal environment; they have also become more accustomed to variable conditions that closely reflect the natural rhythms of outdoor climate patterns. This has resulted in an adaptive comfort zone that offers significant potential for encouraging naturally ventilated buildings to improve both energy use and comfort. Research on other forms for providing individualized control through low-energy personal comfort systems (desktop fans, foot warmed, and heated and cooled chairs) have also demonstrated enormous potential for improving both energy and comfort performance. Studies have demonstrated high levels of comfort with these systems while ambient temperatures ranged from 64–84°F. Energy and indoor environmental quality are inextricably linked, and must both be important goals of a high performance building

  11. Very high energy emission sources beyond the Galaxy

    Directory of Open Access Journals (Sweden)

    Sinitsyna V.G.

    2017-01-01

    Full Text Available Active Galactic Nuclei (AGN are considered as potential extragalactic sources of very and ultra high energy cosmic rays. According to theoretical predictions cosmic ray acceleration can take place at the shock created by the expanding cocoons around active galactic nuclei as well as at AGN jets. The measurements of AGN TeV spectra, the variability time scale of TeV emission can provide essential information on the dynamics of AGN jets, the localization of acceleration region and an estimation of its size. SHALON observations yielded data on extragalactic sources of different AGN types in the energy range of 800 GeV–100 TeV. The data from SHALON observations are compared with those from other experiments at high and very high energies.

  12. Silicon-embedded copper nanostructure network for high energy storage

    Science.gov (United States)

    Yu, Tianyue

    2016-03-15

    Provided herein are nanostructure networks having high energy storage, electrochemically active electrode materials including nanostructure networks having high energy storage, as well as electrodes and batteries including the nanostructure networks having high energy storage. According to various implementations, the nanostructure networks have high energy density as well as long cycle life. In some implementations, the nanostructure networks include a conductive network embedded with electrochemically active material. In some implementations, silicon is used as the electrochemically active material. The conductive network may be a metal network such as a copper nanostructure network. Methods of manufacturing the nanostructure networks and electrodes are provided. In some implementations, metal nanostructures can be synthesized in a solution that contains silicon powder to make a composite network structure that contains both. The metal nanostructure growth can nucleate in solution and on silicon nanostructure surfaces.

  13. Silicon-embedded copper nanostructure network for high energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Tianyue

    2018-01-23

    Provided herein are nanostructure networks having high energy storage, electrochemically active electrode materials including nanostructure networks having high energy storage, as well as electrodes and batteries including the nanostructure networks having high energy storage. According to various implementations, the nanostructure networks have high energy density as well as long cycle life. In some implementations, the nanostructure networks include a conductive network embedded with electrochemically active material. In some implementations, silicon is used as the electrochemically active material. The conductive network may be a metal network such as a copper nanostructure network. Methods of manufacturing the nanostructure networks and electrodes are provided. In some implementations, metal nanostructures can be synthesized in a solution that contains silicon powder to make a composite network structure that contains both. The metal nanostructure growth can nucleate in solution and on silicon nanostructure surfaces.

  14. Conference summary on new trends in high-energy physics

    International Nuclear Information System (INIS)

    Terazawa, H.

    2001-01-01

    Concluding remarks on over forty papers contributed to the International Conference on New Trends in High-Energy Physics, Yalta, Crimea, Ukraine, September 22 - 29, 2001 are presented. Also presented are some comments on future prospects in high energy physics

  15. High energy physicists and graduate students: 1981 census

    International Nuclear Information System (INIS)

    1982-02-01

    This listing of physicists and students associated with the US high energy physics program has been compiled in the Division of High Energy Physics of the Office of Energy Research of the US Department of Energy. This listing has been obtained by asking the research groups, laboratories, and other agencies involved to update previous information. This volume is in two parts. The first part is an alphabetical listing and includes only the name, rank, and institution of high energy physicists and graduate students. The second part of the volume is arranged by institution. Within each institution, the faculty (or permanent staff) and the graduate students are presented in separate alphabetical lists. For each person the entry indicates their birthdate, the year and institution of their highest degree, their rank and institutional affiliation with starting dates, up to three items selected from a list of research specialties, and their sources of federal support. For the graduate students, there is also indicated an estimated date for their degree. Where appropriate, a person is listed at more than one institution. Except as noted in the headings, the information is intended to indicate the situation as of January 1, 1981

  16. High Energy Density Polymer Film Capacitors

    National Research Council Canada - National Science Library

    Boufelfel, Ali

    2006-01-01

    High-energy-density capacitors that are compact and light-weight are extremely valuable in a number of critical DoD systems that include portable field equipment, pulsed lasers, detection equipment...

  17. Fifth high-energy heavy-ion study

    International Nuclear Information System (INIS)

    1981-10-01

    This was the fifth of a continuing series of summer studies held at LBL to discuss high energy heavy ion collisions. Recently, a similar meeting has been held on alternate years at GSI (Darmstadt); and, in 1979, we held a meeting at LBL exclusively devoted to ultra-relativistic nuclear collisions. Two new features distinguish this study from earlier meetings in the series. First, the energy range for discussion was broadened by including collisions from about 20 MeV/nucleon to the highest available in the cosmic radiation. The lower range, particularly below 100 MeV/nucleon, will be under intense study in the near future with machines such as the upgraded Bevalac, Michigan State University Superconducting Cyclotron, GANIL in France, and the SC at CERN. Recently, the high energy collision regime has been expanded by the successful operation of the CERN ISR with alpha particles. Second, in addition to an extensive program of invited talks, we decided for the first time to actively solicit contributions. Forty-seven individual items from the conference were prepared separately for the data base

  18. Fifth high-energy heavy-ion study

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-01

    This was the fifth of a continuing series of summer studies held at LBL to discuss high energy heavy ion collisions. Recently, a similar meeting has been held on alternate years at GSI (Darmstadt); and, in 1979, we held a meeting at LBL exclusively devoted to ultra-relativistic nuclear collisions. Two new features distinguish this study from earlier meetings in the series. First, the energy range for discussion was broadened by including collisions from about 20 MeV/nucleon to the highest available in the cosmic radiation. The lower range, particularly below 100 MeV/nucleon, will be under intense study in the near future with machines such as the upgraded Bevalac, Michigan State University Superconducting Cyclotron, GANIL in France, and the SC at CERN. Recently, the high energy collision regime has been expanded by the successful operation of the CERN ISR with alpha particles. Second, in addition to an extensive program of invited talks, we decided for the first time to actively solicit contributions. Forty-seven individual items from the conference were prepared separately for the data base. (GHT)

  19. Perspectives on future high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Samios, N.P.

    1996-12-31

    The author states two general ways in which one must proceed in an attempt to forecast the future of high energy physics. The first is to utilize the state of knowledge in the field and thereby provide theoretical and experimental guidance on future directions. The second approach is technical, namely, how well can one do in going to higher energies with present techniques or new accelerator principles. He concludes that the future strategy is straightforward. The present accelerator facilities must be upgraded and run to produce exciting and forefront research. At the same time, the theoretical tools should be sharpened both extrapolating from lower energies (100 GeV) to high (multi TeV) and vice versa. The US should be involved in the LHC, both in the accelerator and experimental areas. There should be an extensive R and D program on accelerators for a multi-TeV capability, emphasizing e{sup +}e{sup {minus}} and {mu}{sup +}{mu}{sup {minus}} colliders. Finally, the international cooperative activities should be strengthened and maintained.

  20. Research of high energy radioactivity identification detector

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Kyun; Lee, Yong Bum; Hwang, Jong Sun; Choi, Seok Ki

    1998-07-01

    {Delta} {Epsilon}-{Epsilon} telescope high radioactivity detector was designed, fabricated, and tested at the 35 MeV proton energy. We developed the computer code to calculate the energy loss of projectile ions in the matter. Using the code, we designed and fabricated a detector to measure 15-50 MeV protons. The detector was successfully tested to measure the energy of protons and deuterons and to identify the ions. In future, we would like to extend the present result to the development of a higher energy proton detector and a heavy ion detector. (author). 10 refs., 3 tabs., 14 figs

  1. Instrumentation in high energy physics

    International Nuclear Information System (INIS)

    Serin, L.

    2007-01-01

    The instrumentation in high energy physics is a wide and advanced domain which cannot be covered in a single lesson. The main basic physics processes for charged and neutral particles are recalled with the definition of a few concepts needed to understand or design a detector. The application of these principles to charged particle measurement devices (momentum), light detection or energy measurement are presented mostly with examples from collider experiments. The particle identification which is often the combination of different techniques in a same experiment is also discussed. Finally in a very short section, a few considerations about electronics/processing with their impact on the detector performance are given

  2. Compilation of current high-energy-physics experiments

    International Nuclear Information System (INIS)

    Wohl, C.G.; Kelly, R.L.; Armstrong, F.E.

    1980-04-01

    This is the third edition of a compilation of current high energy physics experiments. It is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and ten participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), the Institute for Nuclear Study, Tokyo (INS), KEK, Rutherford (RHEL), Serpukhov (SERP), and SLAC. The compilation includes summaries of all high energy physics experiments at the above laboratories that (1) were approved (and not subsequently withdrawn) before about January 1980, and (2) had not completed taking of data by 1 January 1976

  3. High-current pulses from inductive energy stores

    International Nuclear Information System (INIS)

    Wipf, S.L.

    1981-01-01

    Superconducting inductive energy stores can be used for high power pulse supplies if a suitable current multiplication scheme is used. The concept of an inductive Marx generator is superior to a transformer. A third scheme, a variable flux linkage device, is suggested; in multiplying current it also compresses energy. Its function is in many ways analogous to that of a horsewhip. Superconductor limits indicate that peak power levels of TW can be reached for stored energies above 1 MJ

  4. High energy physics

    International Nuclear Information System (INIS)

    Fortney, L.R.; Goshaw, A.T.; Walker, W.D.

    1991-01-01

    This progress report presents a review of research done over the past five years by the Duke High Energy Physics Group. This research has been centered at Fermilab where we have had a continuing involvement with both the Tevatron collider and fixed-target programs. In 1988 we began extensive detector R ampersand D for the SSC through its Major Subsystem Program. Duke has been an active member of the Solenoidal Detector Collaboration (SDC) since its formation. These last five years has also been used to finish the analysis of data from a series of hybrid bubble chamber experiments which formed the core of Duke's research program in the early 1980's

  5. Unparticles: Scales and high energy probes

    International Nuclear Information System (INIS)

    Bander, Myron; Feng, Jonathan L.; Rajaraman, Arvind; Shirman, Yuri

    2007-01-01

    Unparticles from hidden conformal sectors provide qualitatively new possibilities for physics beyond the standard model. In the theoretical framework of minimal models, we clarify the relation between energy scales entering various phenomenological analyses. We show that these relations always counteract the effective field theory intuition that higher dimension operators are more highly suppressed, and that the requirement of a significant conformal window places strong constraints on possible unparticle signals. With these considerations in mind, we examine some of the most robust and sensitive probes and explore novel effects of unparticles on gauge coupling evolution and fermion production at high energy colliders. These constraints are presented both as bounds on four-fermion interaction scales and as constraints on the fundamental parameter space of minimal models

  6. New Prospects in High Energy Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Blandford, Roger; /KIPAC, Menlo Park

    2011-11-15

    Recent discoveries using TeV, X-ray and radio telescopes as well as Ultra High Energy Cosmic Ray arrays are leading to new insights into longstanding puzzles in high energy astrophysics. Many of these insights come from combining observations throughout the electromagnetic and other spectra as well as evidence assembled from different types of source to propose general principles. Issues discussed in this general overview include methods of accelerating relativistic particles, and amplifying magnetic field, the dynamics of relativistic outflows and the nature of the prime movers that power them. Observational approaches to distinguishing hadronic, leptonic and electromagnetic outflows and emission mechanisms are discussed along with probes of the velocity field and the confinement mechanisms. Observations with GLAST promise to be very prescriptive for addressing these problems.

  7. Liquid lithium target as a high intensity, high energy neutron source

    Science.gov (United States)

    Parkin, Don M.; Dudey, Norman D.

    1976-01-01

    This invention provides a target jet for charged particles. In one embodiment the charged particles are high energy deuterons that bombard the target jet to produce high intensity, high energy neutrons. To this end, deuterons in a vacuum container bombard an endlessly circulating, free-falling, sheet-shaped, copiously flowing, liquid lithium jet that gushes by gravity from a rectangular cross-section vent on the inside of the container means to form a moving web in contact with the inside wall of the vacuum container. The neutrons are produced via break-up of the beam in the target by stripping, spallation and compound nuclear reactions in which the projectiles (deuterons) interact with the target (Li) to produce excited nuclei, which then "boil off" or evaporate a neutron.

  8. Liquid lithium target as a high intensity, high energy neutron source

    International Nuclear Information System (INIS)

    Parkin, D.M.; Dudey, N.D.

    1976-01-01

    The invention described provides a target jet for charged particles. In one embodiment the charged particles are high energy deuterons that bombard the target jet to produce high intensity, high energy neutrons. To this end, deuterons in a vacuum container bombard an endlessly circulating, free-falling, sheet-shaped, copiously flowing, liquid lithium jet that gushes by gravity from a rectangular cross-section vent on the inside of the container means to form a moving web in contact with the inside wall of the vacuum container. The neutrons are produced via break-up of the beam in the target by stripping, spallation and compound nuclear reactions in which the projectiles (deuterons) interact with the target (Li) to produce excited nuclei, which then ''boil off'' or evaporate a neutron

  9. Modular calorimeter system for use in high energy physics

    International Nuclear Information System (INIS)

    Yost, B.T.; Corcoran, M.D.; Cormell, L.

    1978-10-01

    A modular hadron calorimeter was designed and built for the study of high energy particle interactions which produce particles of high transverse momentum. The energy resolution of this system and the triggering method for selecting the interactions of interest are described

  10. High-Power-Density, High-Energy-Density Fluorinated Graphene for Primary Lithium Batteries

    Directory of Open Access Journals (Sweden)

    Guiming Zhong

    2018-03-01

    Full Text Available Li/CFx is one of the highest-energy-density primary batteries; however, poor rate capability hinders its practical applications in high-power devices. Here we report a preparation of fluorinated graphene (GFx with superior performance through a direct gas fluorination method. We find that the so-called “semi-ionic” C-F bond content in all C-F bonds presents a more critical impact on rate performance of the GFx in comparison with sp2 C content in the GFx, morphology, structure, and specific surface area of the materials. The rate capability remains excellent before the semi-ionic C-F bond proportion in the GFx decreases. Thus, by optimizing semi-ionic C-F content in our GFx, we obtain the optimal x of 0.8, with which the GF0.8 exhibits a very high energy density of 1,073 Wh kg−1 and an excellent power density of 21,460 W kg−1 at a high current density of 10 A g−1. More importantly, our approach opens a new avenue to obtain fluorinated carbon with high energy densities without compromising high power densities.

  11. Color sextet quarks and new high-energy interactions

    International Nuclear Information System (INIS)

    White, A.R.; Kang, Kyungsik

    1992-01-01

    We review the implications of adding a flavor doublet of color sextet quarks to QCD. Theoretical attractions include -- ''minimal'' dynamical symmetry breaking of the electroweak interaction, solution of the Strong CP problem via the ''heavy axion'' η 6 , and Critical Pomeron Scaling at asymptotic energies. Related experimental phenomena, which there may be evidence for, include -- production of the η 6 at LEP, large cross-sections for W + W - and Z o Z o pairs and very high energy jets in hadron colliders, and a hadronic threshold above which high-energy ''exotic'' diffractive processes appear in Cosmic Ray events

  12. Geometrical scaling in high energy hadron collisions

    International Nuclear Information System (INIS)

    Kundrat, V.; Lokajicek, M.V.

    1984-06-01

    The concept of geometrical scaling for high energy elastic hadron scattering is analyzed and its basic equations are solved in a consistent way. It is shown that they are applicable to a rather small interval of momentum transfers, e.g. maximally for |t| 2 for pp scattering at the ISR energies. (author)

  13. High energy hadron-hadron collisions. Annual progress report

    International Nuclear Information System (INIS)

    Chou, T.T.

    1979-03-01

    Work on high energy hadron-hadron collisions in the geometrical model, performed under the DOE Contract No. EY-76-S-09-0946, is summarized. Specific items studied include the behavior of elastic hadron scatterings at super high energies and the existence of many dips, the computation of meson radii in the geometrical model, and the hadronic matter current effects in inelastic two-body collisions

  14. A fast isotope switching system for high energy ions

    International Nuclear Information System (INIS)

    Niklaus, T.R.; Sie, S.H.; Suter, G.F.

    1998-01-01

    A fast bouncing system for the high energy end of an Accelerator Mass Spectrometry system has been devised for the AUSTRALIS at the CSIRO HIAF laboratory. Based on a method designed for excitation function measurements, it has been adapted as an isotope sequencer for AMS at the high energy side. In this scheme, different isotopes of the same energy are deflected off axis in the orbit plane by varying amounts at the entrance to the magnet and returned to the main axis at the exit by another deflection of the same magnitude in the same plane. Synchronised with the low energy side bouncer, the system will enable isotope ratios measurements with high precision by overcoming drifts in the source, beam transport and the accelerator itself

  15. Silicon-Based Lithium-Ion Capacitor for High Energy and High Power Application

    Science.gov (United States)

    Wu, James J.; Demattia, Brianne; Loyselle, Patricia; Reid, Concha; Kohout, Lisa

    2017-01-01

    Si-based Li-ion capacitor has been developed and demonstrated. The results show it is feasible to improve both power density and energy density in this configuration. The applied current density impacts the power and energy density: low current favors energy density while high current favors power density. Active carbon has a better rate capability than Si. Next StepsFuture Directions. Si electrode needs to be further studied and improved. Further optimization of SiAC ratio and evaluation of its impact on energy density and power density.

  16. High energy chemistry. Modern state and trends in development

    International Nuclear Information System (INIS)

    Pikaev, A.K.

    1990-01-01

    In the review modern state of studies in the field of high energy chemistry is considered. The most important achievements and problems of further development of radiation chemistry, plasmochemistry, photochemistry, laser chemistry and some other branches of high energy chemistry are discussed

  17. Mean charged hadron multiplicities in high-energy collisions

    Energy Technology Data Exchange (ETDEWEB)

    Albini, E [Istituto di Matematica dell' Universita Cattolica di Brescia (Italy); Capiluppi, P; Giacomelli, G; Rossi, A M [Bologna Univ. (Italy). Istituto di Fisica

    1976-03-01

    A collection of mean charged hadron multiplicities per inelastic collision in various high-energy processes is presented. An extensive list of fits of as a function of energy is presented and discussed. As the energy increases the multiplicities for different collisions tend to a unique curve, independent of the type of colliding particles.

  18. Hadron interactions at high energy in QCD

    International Nuclear Information System (INIS)

    Levin, E.M.; Ryskin, M.G.

    1988-01-01

    Well known the typical hadronic interactions at high energy are soft processes occurring at large distances where the mysterious confinement forces should be essential. Due to this fact, discussing these processes at first sight the authors are to use and really use some models that incorporate their educated guess about the confinement and utilize the QCD degrees of freedom. But really these models use the QCD terminology rather than the explicit form of the QCD interaction. Up to now the multiparticle dynamics had been the dynamics of reggeons with some detailization coming from their hypothesis about confinement. It is the Reggeon Calculus or the reggeon phenomenology that allows them to describe the main properties of exclusive and inclusive reactions at high energy in agreement with experiment. This paper discusses this problem at this Symposium in many details. However, such pure phenomenological understanding cannot satisfy all of us at the moment. The authors would like to understand the multiparticle production and other soft processes at high energy in more microscopic way using directly the form of the QCD Lagrangian

  19. High energy behaviour of nonabelian gauge theories

    International Nuclear Information System (INIS)

    Bartels, J.

    1979-10-01

    The high energy behavior (in the Regge limit) of nonabelian gauge theories is reviewed. After a general remark concerning the question to what extent the Regge limit can be approached within perturbation theory, we first review the reggeization of elementary particles within nonabelian gauge theories. Then the derivation of a unitary high energy description of a massive (= spontaneously broken) nonabelian gauge model is described, which results in a complete reggeon calculus. There is strong evidence that the zero mass limit of this reggeon calculus exists, thus giving rise to the hope that the Regge behavior in pure Yang-Mills theories (QCD) can be reached in this way. In the final part of these lectures two possible strategies for solving this reggeon calculus (both for the massive and the massless case) are outlined. One of them leads to a geometrical picture in which the distribution of the wee partons obeys a diffusion law. The other one makes contact with reggeon field theory and predicts that QCD in the high energy limit is described by critical reggeon field theory. (orig.)

  20. Barriers and opportunities for labels for highly energy-efficient houses

    International Nuclear Information System (INIS)

    Mlecnik, Erwin; Visscher, Henk; Van Hal, Anke

    2010-01-01

    Promoting energy efficiency in the building sector is essential if the agreements of the Kyoto Protocol are to be honoured. Different initiatives for energy labelling of highly energy-efficient residential buildings have emerged throughout Europe as an essential method to stimulate market demand, to control grants or to ensure the quality of demonstration projects with excellent energy performance. The paper identifies the barriers and opportunities for the further diffusion of labels for highly energy-efficient houses. A model based on the theory of the diffusion of innovation is developed to analyse perceived attributes of existing European labels. The paper investigates the innovation characteristics of existing labels in Europe, with a focus on advanced countries. The question of compatibility with the development of the European Energy Performance of Buildings Directive (EPBD) is examined in detail. We found that the diffusion of emerging and already existing voluntary European labels for highly energy-efficient houses is needed. Their complexity can be lowered and relative advantage, trialability, observability, and compatibility can be increased. EPBD calculation procedures should be able to receive highly energy-efficient houses. In the framework of the recast of the EPBD, official recognition of existing voluntary labels is recommended. (author)

  1. Phenomenon of energy concentration in high-energy family events of cosmic rays

    CERN Document Server

    Wang He; Dai Zhi Qiang; Xue Liang; Feng Cun Feng; Zhang Xue Yao; Li Jin; Zhang Nai Jian; He Mao; Wang Cheng Rui; Ren Jing Ru; Lu Sui Ling

    2002-01-01

    The phenomenon of energy concentration in high-energy family events of cosmic rays is studied by comparing the results of family events of total visible energies 100-400 TeV observed in the Kanbala emulsion chamber experiment with the Monte Carlo simulation data. The simulation is made by the program CORSIKA in which QGSJET is applied as the hadronic interaction model, and the chemical composition of primary cosmic rays is obtained from the rigidity-cut model and the extrapolation of new results of direct measurements. This shows that the whole distribution tendency of the rate of energy concentration of simulated family events is basically consistent with that of the experiment

  2. Production processes at extremely high energies

    CERN Document Server

    Gastmans, R; Wu, Tai Tsun

    2013-01-01

    The production processes are identified that contribute to the rise of the total cross section in proton-proton scattering at extremely high energies, s->~. At such energies, the scattering can be described by a black disk (completely absorptive) with a radius expanding logarithmically with energy surrounded by a gray fringe (partially absorptive). For the leading term of (lns)^2 in the increasing total cross section, the gray fringe is neglected, and geometrical optics is generalized to production processes. It is known that half of the rise in the total cross section is due to elastic scattering. The other half is found to originate from the production of jets with relatively small momenta in the center-of-mass system.

  3. High temperature electrical energy storage: advances, challenges, and frontiers.

    Science.gov (United States)

    Lin, Xinrong; Salari, Maryam; Arava, Leela Mohana Reddy; Ajayan, Pulickel M; Grinstaff, Mark W

    2016-10-24

    With the ongoing global effort to reduce greenhouse gas emission and dependence on oil, electrical energy storage (EES) devices such as Li-ion batteries and supercapacitors have become ubiquitous. Today, EES devices are entering the broader energy use arena and playing key roles in energy storage, transfer, and delivery within, for example, electric vehicles, large-scale grid storage, and sensors located in harsh environmental conditions, where performance at temperatures greater than 25 °C are required. The safety and high temperature durability are as critical or more so than other essential characteristics (e.g., capacity, energy and power density) for safe power output and long lifespan. Consequently, significant efforts are underway to design, fabricate, and evaluate EES devices along with characterization of device performance limitations such as thermal runaway and aging. Energy storage under extreme conditions is limited by the material properties of electrolytes, electrodes, and their synergetic interactions, and thus significant opportunities exist for chemical advancements and technological improvements. In this review, we present a comprehensive analysis of different applications associated with high temperature use (40-200 °C), recent advances in the development of reformulated or novel materials (including ionic liquids, solid polymer electrolytes, ceramics, and Si, LiFePO 4 , and LiMn 2 O 4 electrodes) with high thermal stability, and their demonstrative use in EES devices. Finally, we present a critical overview of the limitations of current high temperature systems and evaluate the future outlook of high temperature batteries with well-controlled safety, high energy/power density, and operation over a wide temperature range.

  4. Solar Energy Education. Renewable energy activities for junior high/middle school science

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    Some basic topics on the subject of solar energy are outlined in the form of a teaching manual. The manual is geared toward junior high or middle school science students. Topics include solar collectors, solar water heating, solar radiation, insulation, heat storage, and desalination. Instructions for the construction of apparatus to demonstrate the solar energy topics are provided. (BCS)

  5. Percolation Effects in Very-High-Energy Cosmic Rays

    International Nuclear Information System (INIS)

    Dias de Deus, J.; Santo, M.C. Espirito; Pimenta, M.; Pajares, C.

    2006-01-01

    Cosmic ray data at high energies present a number of well-known puzzles. At very high energies (E∼10 20 eV) there are indications of a discrepancy between ground array experiments and fluorescence detectors. On the other hand, the dependence of the depth of the shower maximum X max with the primary energy shows a change in slope (E∼10 17 eV) which is usually explained assuming a composition change. Both effects could be accounted for in models predicting that above a certain energy showers would develop deeper in the atmosphere. In this Letter we argue that this can be done naturally by including percolation effects in the description of the shower development, which cause a change in the behavior of the inelasticity K above E≅10 17 eV

  6. Probing neutrino dark energy with extremely high-energy cosmic neutrinos

    International Nuclear Information System (INIS)

    Ringwald, A.; Schrempp, L.

    2006-06-01

    Recently, a new non-Standard Model neutrino interaction mediated by a light scalar field was proposed, which renders the big-bang relic neutrinos of the cosmic neutrino background a natural dark energy candidate, the so-called Neutrino Dark Energy. As a further consequence of this interaction, the neutrino masses become functions of the neutrino energy densities and are thus promoted to dynamical, time/redshift dependent quantities. Such a possible neutrino mass variation introduces a redshift dependence into the resonance energies associated with the annihilation of extremely high-energy cosmic neutrinos on relic anti-neutrinos and vice versa into Z-bosons. In general, this annihilation process is expected to lead to sizeable absorption dips in the spectra to be observed on earth by neutrino observatories operating in the relevant energy region above 10 13 GeV. In our analysis, we contrast the characteristic absorption features produced by constant and varying neutrino masses, including all thermal background effects caused by the relic neutrino motion. We firstly consider neutrinos from astrophysical sources and secondly neutrinos originating from the decomposition of topological defects using the appropriate fragmentation functions. On the one hand, independent of the nature of neutrino masses, our results illustrate the discovery potential for the cosmic neutrino background by means of relic neutrino absorption spectroscopy. On the other hand, they allow to estimate the prospects for testing its possible interpretation as source of Neutrino Dark Energy within the next decade by the neutrino observatories ANITA and LOFAR. (Orig.)

  7. Theoretical high energy physics

    International Nuclear Information System (INIS)

    Lee, T.D.

    1993-01-01

    Brief reports are given on the work of several professors. The following areas are included: quantum chromodynamics calculations using numerical lattice gauge theory and a high-speed parallel computer; the ''spin wave'' description of bosonic particles moving on a lattice with same-site exclusion; a high-temperature expansion to 13th order for the O(4)-symmetric φ 4 model on a four-dimensional F 4 lattice; spin waves and lattice bosons; superconductivity of C 60 ; meson-meson interferometry in heavy-ion collisions; baryon number violation in the Standard Model in high-energy collisions; hard thermal loops in QCD; electromagnetic interactions of anyons; the relation between Bose-Einstein and BCS condensations; Euclidean wormholes with topology S 1 x S 2 x R; vacuum decay and symmetry breaking by radiative corrections; inflationary solutions to the cosmological horizon and flatness problems; and magnetically charged black holes

  8. Quenching ilmenite with a high-temperature and high-pressure phase using super-high-energy ball milling.

    Science.gov (United States)

    Hashishin, Takeshi; Tan, Zhenquan; Yamamoto, Kazuhiro; Qiu, Nan; Kim, Jungeum; Numako, Chiya; Naka, Takashi; Valmalette, Jean Christophe; Ohara, Satoshi

    2014-04-25

    The mass production of highly dense oxides with high-temperature and high-pressure phases allows us to discover functional properties that have never been developed. To date, the quenching of highly dense materials at the gramme-level at ambient atmosphere has never been achieved. Here, we provide evidence of the formation of orthorhombic Fe2TiO4 from trigonal FeTiO3 as a result of the high-temperature (>1250 K) and high-pressure (>23 GPa) condition induced by the high collision energy of 150 gravity generated between steel balls. Ilmenite was steeply quenched by the surrounding atmosphere, when iron-rich ilmenite (Fe2TiO4) with a high-temperature and high-pressure phase was formed by planetary collisions and was released from the collision points between the balls. Our finding allows us to infer that such intense planetary collisions induced by high-energy ball milling contribute to the mass production of a high-temperature and high-pressure phase.

  9. Low-energy physics of high-temperature superconductors

    International Nuclear Information System (INIS)

    Emery, V.J.; Kivelson, S.A.

    1992-01-01

    It is argued that the low-energy properties of high temperature superconductors are dominated by the interaction between the mobile holes and a particular class of collective modes, corresponding to local large-amplitude low-energy fluctuations in the hole density. The latter are a consequence of the competition between the effects of long-range Coulomb interactions and the tendency of a low concentration of holes in an antiferromagnet to phase separate. The low-energy behavior of the system is governed by the same fixed point as the two-channel Kondo problem, which accounts for the ''universality'' of the properties of the cuprate superconductors. Predictions of the optical properties and the spin dynamics are compared with experiment. The pairing resonance of the two Kondo problem gives a mechanism of high temperature superconductivity with an unconventional symmetry of the order parameter

  10. Individual monitoring in high-energy stray radiation fields

    International Nuclear Information System (INIS)

    Hoefert, M.; Stevenson, G.R.

    1995-01-01

    Due to the lack of passive or active devices that could be considered as personal dosemeters in high-energy stray fields one can at present only perform individual monitoring around high energy accelerators. Of all detectors currently available it is shown that the NTA film is the most suitable method for individually monitoring the neutron exposure of more than 3000 persons regularly, reliably, and cost effectively like at CERN. (author)

  11. Laser focusing of high-energy charged-particle beams

    International Nuclear Information System (INIS)

    Channell, P.J.

    1986-01-01

    It is shown that laser focusing of high-energy charged-particle beams using the inverse Cherenkov effect is well suited for applications with large linear colliders. Very high gradient (>0.5 MG/cm) lenses result that can be added sequentially without AG cancellation. These lenses are swell understood, have small geometric aberrations, and offer the possibility of correlating phase and energy aberrations to produce an achromatic final focus

  12. Anti-Ferroelectric Ceramics for High Energy Density Capacitors

    Directory of Open Access Journals (Sweden)

    Aditya Chauhan

    2015-11-01

    Full Text Available With an ever increasing dependence on electrical energy for powering modern equipment and electronics, research is focused on the development of efficient methods for the generation, storage and distribution of electrical power. In this regard, the development of suitable dielectric based solid-state capacitors will play a key role in revolutionizing modern day electronic and electrical devices. Among the popular dielectric materials, anti-ferroelectrics (AFE display evidence of being a strong contender for future ceramic capacitors. AFE materials possess low dielectric loss, low coercive field, low remnant polarization, high energy density, high material efficiency, and fast discharge rates; all of these characteristics makes AFE materials a lucrative research direction. However, despite the evident advantages, there have only been limited attempts to develop this area. This article attempts to provide a focus to this area by presenting a timely review on the topic, on the relevant scientific advancements that have been made with respect to utilization and development of anti-ferroelectric materials for electric energy storage applications. The article begins with a general introduction discussing the need for high energy density capacitors, the present solutions being used to address this problem, and a brief discussion of various advantages of anti-ferroelectric materials for high energy storage applications. This is followed by a general description of anti-ferroelectricity and important anti-ferroelectric materials. The remainder of the paper is divided into two subsections, the first of which presents various physical routes for enhancing the energy storage density while the latter section describes chemical routes for enhanced storage density. This is followed by conclusions and future prospects and challenges which need to be addressed in this particular field.

  13. High energy radiation in cancer treatment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1959-10-15

    Certain basic recommendations on the use of supervoltage radiation and radioisotope teletherapy in the treatment of malignant growths have been made by an expert study group which met in Vienna in August this y ear. The group, convened jointly by the International Atomic Energy Agency and the World Health Organization, was composed of 20 radiotherapists and radiation physicists from 12 countries. High energy radiation, used in the treatment of malignant tumours, can be either in the form of gamma- or X-rays or in the form of beams of accelerated electrons. The source of radiation is kept at a certain distance from the patient. The study group was agreed on the value of supervoltage radiotherapy, including gamma-ray and high voltage x-ray therapy as well as electron beam therapy. The required gamma radiation can be obtained from large sources of radioactive materials like cobalt 60 or caesium 137, while electron beams are produced by high voltage accelerators. The experts considered the sources in four broad categories: large supervoltage units, intermediate units, small isotope units and units of electron beams or very high energy x-rays. Each group of source was described including its usage. The experts made it clear that while supervoltage radiation should be a part of an organized radiotherapy department, the radiation facilities at any particular establishment should not be of the supervoltage type alone. The high energy facilities could be fruitfully used only when there was a background of general radiotherapy. The group emphasized that supervoltage radiotherapy, in common with other forms of radiotherapy, should be conducted only by adequately trained and qualified personnel, including radiation physicists, and specified the training and qualifications required of such personnel. It was felt that specialized training was one of the main requirements at the present stage and the training programmes of IAEA and WHO should be utilized extensively for this

  14. High energy radiation in cancer treatment

    International Nuclear Information System (INIS)

    1959-01-01

    Certain basic recommendations on the use of supervoltage radiation and radioisotope teletherapy in the treatment of malignant growths have been made by an expert study group which met in Vienna in August this y ear. The group, convened jointly by the International Atomic Energy Agency and the World Health Organization, was composed of 20 radiotherapists and radiation physicists from 12 countries. High energy radiation, used in the treatment of malignant tumours, can be either in the form of gamma- or X-rays or in the form of beams of accelerated electrons. The source of radiation is kept at a certain distance from the patient. The study group was agreed on the value of supervoltage radiotherapy, including gamma-ray and high voltage x-ray therapy as well as electron beam therapy. The required gamma radiation can be obtained from large sources of radioactive materials like cobalt 60 or caesium 137, while electron beams are produced by high voltage accelerators. The experts considered the sources in four broad categories: large supervoltage units, intermediate units, small isotope units and units of electron beams or very high energy x-rays. Each group of source was described including its usage. The experts made it clear that while supervoltage radiation should be a part of an organized radiotherapy department, the radiation facilities at any particular establishment should not be of the supervoltage type alone. The high energy facilities could be fruitfully used only when there was a background of general radiotherapy. The group emphasized that supervoltage radiotherapy, in common with other forms of radiotherapy, should be conducted only by adequately trained and qualified personnel, including radiation physicists, and specified the training and qualifications required of such personnel. It was felt that specialized training was one of the main requirements at the present stage and the training programmes of IAEA and WHO should be utilized extensively for this

  15. Experiments on very high energy heavy ions

    International Nuclear Information System (INIS)

    Willis, W.J.

    1981-01-01

    In this paper I describe experimental techniques which could be used to investigate central collision of very high energy heavy ions. For my purposes, the energy range is defined by the number of pions produced, Nsub(π) >> 100, and consequently Nsub(π) >> Nsub(nucleon). In this regime we may expect that new phenomena will appear. (orig.)

  16. Crystal Ball: On the Future High Energy Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, Vladimir [Fermilab

    2015-09-20

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). A number of next generation collider facilities have been proposed and are currently under consideration for the medium- and far-future of the accelerator-based high energy physics. In this paper we offer a uniform approach to evaluation of various accelerators based on the feasibility of their energy reach, performance reach and cost range. We briefly review such post-LHC options as linear e+e- colliders in Japan (ILC) or at CERN (CLIC), muon collider, and circular lepton or hadron colliders in China (CepC/SppC) and Europe (FCC). We conclude with a look into ultimate energy reach accelerators based on plasmas and crystals, and some perspectives for the far future of accelerator-based particle physics.

  17. Laboratory for Nuclear Science. High Energy Physics Program

    Energy Technology Data Exchange (ETDEWEB)

    Milner, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2014-07-30

    High energy and nuclear physics research at MIT is conducted within the Laboratory for Nuclear Science (LNS). Almost half of the faculty in the MIT Physics Department carry out research in LNS at the theoretical and experimental frontiers of subatomic physics. Since 2004, the U.S. Department of Energy has funded the high energy physics research program through grant DE-FG02-05ER41360 (other grants and cooperative agreements provided decades of support prior to 2004). The Director of LNS serves as PI. The grant supports the research of four groups within LNS as “tasks” within the umbrella grant. Brief descriptions of each group are given here. A more detailed report from each task follows in later sections. Although grant DE-FG02-05ER41360 has ended, DOE continues to fund LNS high energy physics research through five separate grants (a research grant for each of the four groups, as well as a grant for AMS Operations). We are pleased to continue this longstanding partnership.

  18. Electroweak precision tests in high-energy diboson processes

    Science.gov (United States)

    Franceschini, Roberto; Panico, Giuliano; Pomarol, Alex; Riva, Francesco; Wulzer, Andrea

    2018-02-01

    A promising avenue to perform precision tests of the SM at the LHC is to measure differential cross-sections at high invariant mass, exploiting in this way the growth with the energy of the corrections induced by heavy new physics. We classify the leading growing-with-energy effects in longitudinal diboson and in associated Higgs production processes, showing that they can be encapsulated in four real "high-energy primary" parameters. We assess the reach on these parameters at the LHC and at future hadronic colliders, focusing in particular on the fully leptonic W Z channel that appears particularly promising. The reach is found to be superior to existing constraints by one order of magnitude, providing a test of the SM electroweak sector at the per-mille level, in competition with LEP bounds. Unlike LHC run-1 bounds, which only apply to new physics effects that are much larger than the SM in the high-energy tail of the distributions, the probe we study applies to a wider class of new physics scenarios where such large departures are not expected.

  19. High energy physics at UC Riverside

    International Nuclear Information System (INIS)

    1997-01-01

    This report discusses progress made for the following two tasks: experimental high energy physics, Task A, and theoretical high energy physics, Task B. Task A1 covers hadron collider physics. Information for Task A1 includes: personnel/talks/publications; D0: proton-antiproton interactions at 2 TeV; SDC: proton-proton interactions at 40 TeV; computing facilities; equipment needs; and budget notes. The physics program of Task A2 has been the systematic study of leptons and hadrons. Information covered for Task A2 includes: personnel/talks/publications; OPAL at LEP; OPAL at LEP200; CMS at LHC; the RD5 experiment; LSND at LAMPF; and budget notes. The research activities of the Theory Group are briefly discussed and a list of completed or published papers for this period is given

  20. A Beam Interlock System for CERN High Energy Accelerators

    CERN Document Server

    Todd, Benjamin; Schmidt, R

    2006-01-01

    The Large Hadron Collider (LHC) at CERN (The European Organisation for Nuclear Research) is one of the largest and most complicated machines envisaged to date. The LHC has been conceived and designed over the course of the last 25 years and represents the cutting edge of accelerator technology with a collision energy of 14TeV, having a stored beam energy over 100 times more powerful than the nearest competitor. Commissioning of the machine is already nderway and operation with beam is intended for Autumn 2007, with 7TeV operation expected in 2008. The LHC is set to answer some of the fundemental questions in theoretical physics, colliding particles with such high energy that the inner workings of the quantum world can be revealed. Colliding particles together at such high energy makes very high demands on machine operation and protection. The specified beam energy requires strong magnetic fields that are made in superconducting dipole magnets, these magnets are kept only around two degrees above absolute zero...

  1. High-energy string-brane scattering: leading eikonal and beyond

    CERN Document Server

    D'Appollonio, Giuseppe; Russo, Rodolfo; Veneziano, Gabriele

    2010-01-01

    We extend previous techniques for calculations of transplanckian-energy string-string collisions to the high-energy scattering of massless closed strings from a stack of N Dp-branes in Minkowski spacetime. We show that an effective non-trivial metric emerges from the string scattering amplitudes by comparing them against the semiclassical dynamics of high-energy strings in the extremal p-brane background. By changing the energy, impact parameter and effective open string coupling, we are able to explore various interesting regimes and to reproduce classical expectations, including tidal-force excitations, even beyond the leading-eikonal approximation.

  2. Developments in high energy physics

    International Nuclear Information System (INIS)

    Mukhi, Sunil; Roy, Probir

    2009-01-01

    This non-technical review article is aimed at readers with some physics background, including beginning research students. It provides a panoramic view of the main theoretical developments in high energy physics since its inception more than half a century ago, a period in which experiments have spanned an enormous range of energies, theories have been developed leading up to the standard model, and proposals - including the radical paradigm of string theory - have been made to go beyond the standard model. The list of references provided here is not intended to properly credit all original work but rather to supply the reader with a few pointers to the literature, specifically highlighting work done by Indian authors. (author)

  3. High-energy diffraction microscopy at the advanced photon source

    DEFF Research Database (Denmark)

    Lienert, U.; Li, S. F.; Hefferan, C. M.

    2011-01-01

    The status of the High Energy Diffraction Microscopy (HEDM) program at the 1-ID beam line of the Advanced Photon Source is reported. HEDM applies high energy synchrotron radiation for the grain and sub-grain scale structural and mechanical characterization of polycrystalline bulk materials in situ...

  4. QMD and JAM calculations for high energy nucleon-nucleus collisions

    International Nuclear Information System (INIS)

    Niita, Koji

    2002-01-01

    We describe the two simulation codes, QMD and JAM (Jet AA Microscopic Transport Model), for high energy nuclear reactions. QMD can treat the nucleus-nucleus reactions as well as nucleon-nucleus reactions based on the molecular dynamics. We have applied the QMD code intensively to nucleon-nucleus reactions and checked its validity. The cross sections obtained by the QMD are now used for evaluation of high energy nuclear data in JAERI. JAM is a hadronic cascade code including the resonance and string model for the hadron-hadron collisions at high energy up to 200 GeV. We have developed a high energy particle transport code NMTC/JAM by including the JAM code for the intra-nuclear cascade part. (author)

  5. The practical Pomeron for high energy proton collimation

    Energy Technology Data Exchange (ETDEWEB)

    Appleby, R.B. [University of Manchester, The Cockcroft Institute, Manchester (United Kingdom); Barlow, R.J.; Toader, A. [The University of Huddersfield, Huddersfield (United Kingdom); Molson, J.G. [Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, LAL, Orsay (France); Serluca, M. [CERN, Geneva (Switzerland)

    2016-10-15

    We present a model which describes proton scattering data from ISR to Tevatron energies, and which can be applied to collimation in high energy accelerators, such as the LHC and FCC. Collimators remove beam halo particles, so that they do not impinge on vulnerable regions of the machine, such as the superconducting magnets and the experimental areas. In simulating the effect of the collimator jaws it is crucial to model the scattering of protons at small momentum transfer t, as these protons can subsequently survive several turns of the ring before being lost. At high energies these soft processes are well described by Pomeron exchange models. We study the behaviour of elastic and single-diffractive dissociation cross sections over a wide range of energy, and show that the model can be used as a global description of the wide variety of high energy elastic and diffractive data presently available. In particular it models low mass diffraction dissociation, where a rich resonance structure is present, and thus predicts the differential and integrated cross sections in the kinematical range appropriate to the LHC. We incorporate the physics of this model into the beam tracking code MERLIN and use it to simulate the resulting loss maps of the beam halo lost in the collimators in the LHC. (orig.)

  6. The practical Pomeron for high energy proton collimation

    Science.gov (United States)

    Appleby, R. B.; Barlow, R. J.; Molson, J. G.; Serluca, M.; Toader, A.

    2016-10-01

    We present a model which describes proton scattering data from ISR to Tevatron energies, and which can be applied to collimation in high energy accelerators, such as the LHC and FCC. Collimators remove beam halo particles, so that they do not impinge on vulnerable regions of the machine, such as the superconducting magnets and the experimental areas. In simulating the effect of the collimator jaws it is crucial to model the scattering of protons at small momentum transfer t, as these protons can subsequently survive several turns of the ring before being lost. At high energies these soft processes are well described by Pomeron exchange models. We study the behaviour of elastic and single-diffractive dissociation cross sections over a wide range of energy, and show that the model can be used as a global description of the wide variety of high energy elastic and diffractive data presently available. In particular it models low mass diffraction dissociation, where a rich resonance structure is present, and thus predicts the differential and integrated cross sections in the kinematical range appropriate to the LHC. We incorporate the physics of this model into the beam tracking code MERLIN and use it to simulate the resulting loss maps of the beam halo lost in the collimators in the LHC.

  7. Evaluation of Monte Carlo tools for high energy atmospheric physics

    NARCIS (Netherlands)

    C. Rutjes (Casper); D. Sarria (David); A.B. Skeltved (Alexander Broberg); A. Luque (Alejandro); G. Diniz (Gabriel); N. Østgaard (Nikolai); U. M. Ebert (Ute)

    2016-01-01

    textabstractThe emerging field of high energy atmospheric physics (HEAP) includes terrestrial gamma-ray flashes, electron-positron beams and gamma-ray glows from thunderstorms. Similar emissions of high energy particles occur in pulsed high voltage discharges. Understanding these phenomena requires

  8. Evaluation of monte carlo tools for high energy atmospheric physics

    NARCIS (Netherlands)

    Rutjes, Casper; Sarria, David; Skeltved, Alexander Broberg; Luque, Alejandro; Diniz, Gabriel; Østgaard, Nikolai; Ebert, Ute

    2016-01-01

    The emerging field of high energy atmospheric physics (HEAP) includes terrestrial gamma-ray flashes, electron-positron beams and gamma-ray glows from thunderstorms. Similar emissions of high energy particles occur in pulsed high voltage discharges. Understanding these phenomena requires appropriate

  9. Challenge of high energy radiation dosimetry and protection

    International Nuclear Information System (INIS)

    Nelson, W.R.; Jenkins, T.M.

    1976-08-01

    An accelerator health physicist can make contributions in many fields of science in addition to the various operational tasks that he is charged with. He can support others in his laboratory by designing shielding for new accelerators and storage rings, by consulting with experimenters on background radiation problems that they may encounter, by helping the high energy physicist select appropriate radiation sources for checking out his equipment, by providing him with low energy atomic and nuclear physics calculations, and many other ways. Most of all, he can perform and publish research using the many tools and techniques that are at his disposal at a high-energy accelerator laboratory

  10. Zero-norm states and high-energy symmetries of string theory

    International Nuclear Information System (INIS)

    Chan, C.-T.; Lee, J.-C.

    2004-01-01

    We derive stringy Ward identities from the decoupling of two types of zero-norm states in the old covariant first quantized (OCFQ) spectrum of open bosonic string. These Ward identities are valid to all energy α' and all loop orders χ in string perturbation theory. The high-energy limit α'→∞ of these stringy Ward identities can then be used to fix the proportionality constants between scattering amplitudes of different string states algebraically without referring to Gross and Mende's saddle point calculation of high-energy string-loop amplitudes. As examples, all Ward identities for the mass level M 2 =4,6 are derived, their high-energy limits are calculated and the proportionality constants between scattering amplitudes of different string states are determined. In addition to those identified before, we discover some new nonzero components of high-energy amplitudes not found previously by Gross and Manes. These components are essential to preserve massive gauge invariances or decouple massive zero-norm states of string theory. A set of massive scattering amplitudes and their high-energy limits are calculated explicitly for each mass level M 2 =4,6 to justify our results

  11. Prizes reward high-energy physics

    CERN Multimedia

    2005-01-01

    The European Physical Society (EPS) has recognized four individuals and a collaboration for their work on charge-parity (CP) violation, gamma-ray astronomy, cosmology and outreach activities. Heinrich Wahl, formerly of CERN, and the NA31 collaboration share the 2005 High Energy and Particle Physics Prize for their work on CP violation at CERN (½ page)

  12. Advanced Detectors for Nuclear, High Energy and Astroparticle Physics

    CERN Document Server

    Das, Supriya; Ghosh, Sanjay

    2018-01-01

    The book presents high-quality papers presented at a national conference on ‘Advanced Detectors for Nuclear, High Energy and Astroparticle Physics’. The conference was organized to commemorate 100 years of Bose Institute. The book is based on the theme of the conference and provides a clear picture of basics and advancement of detectors for nuclear physics, high-energy physics and astroparticle physics together. The topics covered in the book include detectors for accelerator-based high energy physics; detectors for non-accelerator particle physics; nuclear physics detectors; detection techniques in astroparticle physics and dark matter; and applications and simulations. The book will be a good reference for researchers and industrial personnel working in the area of nuclear and astroparticle physics.

  13. 75 FR 6651 - Office of Science; High Energy Physics Advisory Panel

    Science.gov (United States)

    2010-02-10

    ... DEPARTMENT OF ENERGY Office of Science; High Energy Physics Advisory Panel AGENCY: Department of... Physics Advisory Panel (HEPAP). Federal Advisory Committee Act (Public Law 92- 463, 86 Stat. 770) requires...; High Energy Physics Advisory Panel; U.S. Department of Energy; SC-25/ Germantown Building, 1000...

  14. Energy flow in high speed perforation and cutting

    International Nuclear Information System (INIS)

    van Thiel, M.

    1980-01-01

    It is demonstrated that effects of long rod penetrators on targets can be modeled by introducing a high pressure (energy) column on the penetration path in place of the projectile. This energy can be obtained from the kinetic energy of the penetrator; the equations of state of the materials used and a Bernoulli penetration condition. The model is supported by detailed hydro calculations

  15. Generation and detection of high-energy phonons by superconducting junctions

    International Nuclear Information System (INIS)

    Singer, I.L.

    1976-01-01

    Superconducting tunnel junctions are used to investigate the dynamics of energy exchange that takes place in superconductors driven out of equilibrium. In a Sn junction biased at a voltage V much greater than 2Δ(Sn)/e, the tunneling current sustains a continual energy exchange amongst the quasiparticles, phonons, and Cooper pairs. Repeatedly, high-energy quasiparticles decay, emitting phonons; and phonons with energy greater than 2Δ(Sn) break pairs, producing quasiparticles. The phonon-induced component of the current is recovered by synchronously detecting the full tunneling current with respect to a small modulation current in the generator. Sharp onsets observed at intervals of the gap energies require that the escaping phonons are produced by the direct decay of the injected quasiparticles and are not merely the high-energy tail of the thermalized phonons. Both primary and secondary phonons can be abserved distinctly. Theoretical transconductance curves have been computed. The experimental and theoretical curves are in good qualitative agreement. A more detailed comparison suggests that the escape rate of high-energy phonons depends on the energy of the phonons. The dependence of the observed transconductance signal on the temperature and the total junction thickness suggests that the presence of quasiparticles plays a major role in the escape of high-energy phonons. The dependence on temperature can be fitted to exp(b/kT), 0.74 less than b less than 1.05 MeV. It is speculated that the excitation energy is first transported across the superconductor and then carried out of the film by the phonons. It is concluded that high-energy phonons are a sensitive probe of the very reabsorption effects that make their escape so unlikely, and analysis of the detected phonons rich details of the behavior of superconductors removed from equilibrium

  16. Plasma Photonic Devices for High Energy Density Science

    International Nuclear Information System (INIS)

    Kodama, R.

    2005-01-01

    High power laser technologies are opening a variety of attractive fields of science and technology using high energy density plasmas such as plasma physics, laboratory astrophysics, material science, nuclear science including medical applications and laser fusion. The critical issues in the applications are attributed to the control of intense light and enormous density of charged particles including efficient generation of the particles such as MeV electrons and protons with a current density of TA/cm2. Now these application possibilities are limited only by the laser technology. These applications have been limited in the control of the high power laser technologies and their optics. However, if we have another device consisted of the 4th material, i.e. plasma, we will obtain a higher energy density condition and explore the application possibilities, which could be called high energy plasma device. One of the most attractive devices has been demonstrated in the fast ignition scheme of the laser fusion, which is cone-guiding of ultra-intense laser light in to high density regions1. This is one of the applications of the plasma device to control the ultra-intense laser light. The other role of the devices consisted of transient plasmas is control of enormous energy-density particles in a fashion analogous to light control with a conventional optical device. A plasma fibre (5?m/1mm), as one example of the devices, has guided and deflected the high-density MeV electrons generated by ultra-intense laser light 2. The electrons have been well collimated with either a lens-like plasma device or a fibre-like plasma, resulting in isochoric heating and creation of ultra-high pressures such as Giga bar with an order of 100J. Plasmas would be uniquely a device to easily control the higher energy density particles like a conventional optical device as well as the ultra-intense laser light, which could be called plasma photonic device. (Author)

  17. Fifth International Conference on High Energy Density Physics

    Energy Technology Data Exchange (ETDEWEB)

    Beg, Farhat

    2017-07-05

    The Fifth International Conference on High Energy Density Physics (ICHED 2015) was held in the Catamaran Hotel in San Diego from August 23-27, 2015. This meeting was the fifth in a series which began in 2008 in conjunction with the April meeting of the American Physical Society (APS). The main goal of this conference has been to bring together researchers from all fields of High Energy Density Science (HEDS) into one, unified meeting.

  18. First high energy hydrogen cluster beams

    International Nuclear Information System (INIS)

    Gaillard, M.J.; Genre, R.; Hadinger, G.; Martin, J.

    1993-03-01

    The hydrogen cluster accelerator of the Institut de Physique Nucleaire de Lyon (IPN Lyon) has been upgraded by adding a Variable Energy Post-accelerator of RFQ type (VERFQ). This operation has been performed in the frame of a collaboration between KfK Karlsruhe, IAP Frankfurt and IPN Lyon. The facility has been designed to deliver beams of mass selected Hn + clusters, n chosen between 3 and 49, in the energy range 65-100 keV/u. For the first time, hydrogen clusters have been accelerated at energies as high as 2 MeV. This facility opens new fields for experiments which will greatly benefit from a velocity range never available until now for such exotic projectiles. (author) 13 refs.; 1 fig

  19. Energy compensation after sprint- and high-intensity interval training.

    Science.gov (United States)

    Schubert, Matthew M; Palumbo, Elyse; Seay, Rebekah F; Spain, Katie K; Clarke, Holly E

    2017-01-01

    Many individuals lose less weight than expected in response to exercise interventions when considering the increased energy expenditure of exercise (ExEE). This is due to energy compensation in response to ExEE, which may include increases in energy intake (EI) and decreases in non-exercise physical activity (NEPA). We examined the degree of energy compensation in healthy young men and women in response to interval training. Data were examined from a prior study in which 24 participants (mean age, BMI, & VO2max = 28 yrs, 27.7 kg•m-2, and 32 mL∙kg-1∙min-1) completed either 4 weeks of sprint-interval training or high-intensity interval training. Energy compensation was calculated from changes in body composition (air displacement plethysmography) and exercise energy expenditure was calculated from mean heart rate based on the heart rate-VO2 relationship. Differences between high (≥ 100%) and low (high levels of energy compensation gained fat mass, lost fat-free mass, and had lower change scores for VO2max and NEPA. Linear regression results indicated that lower levels of energy compensation were associated with increases in ΔVO2max (p interval training. In agreement with prior work, increases in ΔVO2max and ΔNEPA were associated with lower energy compensation. Future studies should focus on identifying if a dose-response relationship for energy compensation exists in response to interval training, and what underlying mechanisms and participant traits contribute to the large variation between individuals.

  20. A topological screening heuristic for low-energy, high-index surfaces

    Science.gov (United States)

    Sun, Wenhao; Ceder, Gerbrand

    2018-03-01

    Robust ab initio investigations of nanoparticle surface properties require a method to identify candidate low-energy surface facets a priori. By assuming that low-energy surfaces are planes with high atomic density, we devise an efficient algorithm to screen for low-energy surface orientations, even if they have high (hkl) miller indices. We successfully predict the observed low-energy, high-index { 10 12 bar } and { 10 1 bar 4 } surfaces of hematite α-Fe2O3, the {311} surfaces of cuprite Cu2O, and the {112} surfaces of anatase TiO2. We further tabulate candidate low-energy surface orientations for nine of the most common binary oxide structures. Screened surfaces are found to be generally applicable across isostructural compounds with varying chemistries, although relative surface energies between facets may vary based on the preferred coordination of the surface atoms.

  1. Possible Lead Free Nanocomposite Dielectrics for High Energy Storage Applications

    Directory of Open Access Journals (Sweden)

    Srinivas Kurpati

    2017-03-01

    Full Text Available There is an increasing demand to improve the energy density of dielectric capacitors for satisfying the next generation material systems. One effective approach is to embed high dielectric constant inclusions such as lead zirconia titanate in polymer matrix. However, with the increasing concerns on environmental safety and biocompatibility, the need to expel lead (Pb from modern electronics has been receiving more attention. Using high aspect ratio dielectric inclusions such as nanowires could lead to further enhancement of energy density. Therefore, the present brief review work focuses on the feasibility of development of a lead-free nanowire reinforced polymer matrix capacitor for energy storage application. It is expected that Lead-free sodium Niobate nanowires (NaNbO3 and Boron nitride will be a future candidate to be synthesized using simple hydrothermal method, followed by mixing them with polyvinylidene fluoride (PVDF/ divinyl tetramethyl disiloxanebis (benzocyclobutene matrix using a solution-casting method for Nanocomposites fabrication. The energy density of NaNbO3 and BN based composites are also be compared with that of lead-containing (PbTiO3/PVDF Nano composites to show the feasibility of replacing lead-containing materials from high-energy density dielectric capacitors. Further, this paper explores the feasibility of these materials for space applications because of high energy storage capacity, more flexibility and high operating temperatures. This paper is very much useful researchers who would like to work on polymer nanocomposites for high energy storage applications.

  2. High-energy X-ray diffraction studies of disordered materials

    International Nuclear Information System (INIS)

    Kohara, Shinji; Suzuya, Kentaro

    2003-01-01

    With the arrival of the latest generation of synchrotron sources and the introduction of advanced insertion devices (wigglers and undulators), the high-energy (E≥50 keV) X-ray diffraction technique has become feasible, leading to new approaches in the quantitative study of the structure of disordered materials. High-energy X-ray diffraction has several advantages: higher resolution in real space due to a wide range of scattering vector Q, smaller correction terms (especially the absorption correction), reduction of truncation errors, the feasibility of running under extreme environments, including high-temperatures and high-pressures, and the ability to make direct comparisons between X-ray and neutron diffraction data. Recently, high-energy X-ray diffraction data have been combined with neutron diffraction data from a pulsed source to provide more detailed and reliable structural information than that hitherto available

  3. High energy cosmic rays: sources and fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor; Gaisser, Thomas K.; Tilav, Serap

    2014-04-01

    We discuss the production of a unique energy spectrum of the high energy cosmic rays detected with air showers by shifting the energy estimates of different detectors. After such a spectrum is generated we fit the spectrum with three or four populations of cosmic rays that might be accelerated at different cosmic ray sources. We also present the chemical composition that the fits of the spectrum generates and discuss some new data sets presented this summer at the ICRC in Rio de Janeiro that may require new global fits.

  4. OMEGA EP high-energy petawatt laser: progress and prospects

    International Nuclear Information System (INIS)

    Maywar, D N; Kelly, J H; Waxer, L J; Morse, S F B; Begishev, I A; Bromage, J; Dorrer, C; Edwards, J L; Folnsbee, L; Guardalben, M J; Jacobs, S D; Jungquist, R; Kessler, T J; Kidder, R W; Kruschwitz, B E; Loucks, S J; Marciante, J R; McCrory, R L; Meyerhofer, D D; Okishev, A V

    2008-01-01

    OMEGA EP (extended performance) is a petawatt-class addition to the existing 30-kJ, 60-beam OMEGA Laser Facility at the University of Rochester. It will enable high-energy picosecond backlighting of high-energy-density experiments and inertial confinement fusion implosions, the investigation of advanced-ignition experiments such as fast ignition, and the exploration of high-energy-density phenomena. The OMEGA EP short-pulse beams have the flexibility to be directed to either the existing OMEGA target chamber, or the new, auxiliary OMEGA EP target chamber for independent experiments. This paper will detail progress made towards activation, which is on schedule for completion in April 2008

  5. 22nd DAE High Energy Physics Symposium

    CERN Document Server

    2018-01-01

    These proceedings gather invited and contributed talks presented at the XXII DAE-BRNS High Energy Physics (HEP) Symposium, which was held at the University of Delhi, India, on 12–16 December 2016. The contributions cover a variety of topics in particle physics, astroparticle physics, cosmology and related areas from both experimental and theoretical perspectives, namely (1) Neutrino Physics, (2) Standard Model Physics (including Electroweak, Flavour Physics), (3) Beyond Standard Model Physics, (4) Heavy Ion Physics & QCD (Quantum Chromodynamics), (5) Particle Astrophysics & Cosmology, (6) Future Experiments and Detector Development, (7) Formal Theory, and (8) Societal Applications: Medical Physics, Imaging, etc. The DAE-BRNS High Energy Physics Symposium, widely considered to be one of the leading symposiums in the field of Elementary Particle Physics, is held every other year in India and supported by the Board of Research in Nuclear Sciences (BRNS), Department of Atomic Energy (DAE), India. As man...

  6. Photoproduction at high energy and high intensity

    CERN Multimedia

    2002-01-01

    The photon beam used for this programme is tagged and provides a large flux up to very high energies (150-200 GeV). It is also hadron-free, since it is obtained by a two-step conversion method. A spectrometer is designed to exploit this beam and to perform a programme of photoproduction with a high level of sensitivity (5-50 events/picobarn).\\\\ \\\\ Priority will be given to the study of processes exhibiting the point-like behaviour of the photon, especially deep inelastic Compton scattering. The spectrometer has two magnets. Charged tracks are measured by MWPC's located only in field-free regions. Three calorimeters provide a large coverage for identifying and measuring electrons and photons. An iron filter downstream identifies muons. Most of the equipment is existing and recuperated from previous experiments.

  7. Achieving High-Energy-High-Power Density in a Flexible Quasi-Solid-State Sodium Ion Capacitor.

    Science.gov (United States)

    Li, Hongsen; Peng, Lele; Zhu, Yue; Zhang, Xiaogang; Yu, Guihua

    2016-09-14

    Simultaneous integration of high-energy output with high-power delivery is a major challenge for electrochemical energy storage systems, limiting dual fine attributes on a device. We introduce a quasi-solid-state sodium ion capacitor (NIC) based on a battery type urchin-like Na2Ti3O7 anode and a capacitor type peanut shell derived carbon cathode, using a sodium ion conducting gel polymer as electrolyte, achieving high-energy-high-power characteristics in solid state. Energy densities can reach 111.2 Wh kg(-1) at power density of 800 W kg(-1), and 33.2 Wh kg(-1) at power density of 11200 W kg(-1), which are among the best reported state-of-the-art NICs. The designed device also exhibits long-term cycling stability over 3000 cycles with capacity retention ∼86%. Furthermore, we demonstrate the assembly of a highly flexible quasi-solid-state NIC and it shows no obvious capacity loss under different bending conditions.

  8. Emission of high-energy, light particles from intermediate-energy heavy-ion reactions

    International Nuclear Information System (INIS)

    Ball, J.B.; Auble, R.L.

    1982-01-01

    One of the early surprises in examining reaction products from heavy ion reactions at 10 MeV/nucleon and above was the large yield of light particles emitted and the high energies to which the spectra of these particles extended. The interpretation of the origin of the high energy light ions has evolved from a picture of projectile excitation and subsequent evaporation to one of pre-equilibrium (or nonequilibrium) emission. The time scale for particle emission has thus moved from one that occurs following the initial collision to one that occurs at the very early stages of the collision. Research at ORNL on this phenomenon is reviewed

  9. THE ERL HIGH-ENERGY COOLER FOR RHIC

    International Nuclear Information System (INIS)

    BEN-ZVI, I.

    2006-01-01

    Electron cooling [1] entered a new era with the July 2005 cooling of the Tevatron recycler ring [2] at Fermilab, using γ = 9.5. Considering that the cooling rate decreases as faster than γ 2 and the electron energy forces higher electron currents, new acceleration techniques, high-energy electron cooling presents special challenges to the accelerator scientists and engineers. For example, electron cooling of RHIC at collisions requires electron beam energy up to about 54 MeV at an average current of between 50 to 100 mA and a particularly bright electron beam. The accelerator chosen to generate this electron beam is a superconducting Energy Recovery Linac (ERL) with a superconducting RF gun with a laser-photocathode

  10. The creation of high energy densities with antimatter beams

    International Nuclear Information System (INIS)

    Gibbs, W.R.; Kruk, J.W.; Rice Univ., Houston, TX

    1989-01-01

    The use of antiprotons (and antideuterons) for the study of the behavior of nuclear matter at high energy density is considered. It is shown that high temperatures and high energy densities can be achieved for small volumes. Also investigated is the strangeness production in antimatter annihilation. It is found that the high rate of Lambda production seen in a recent experiment is easily understood. The Lambda and K-short rapidity distributions are also reproduced by the model considered. 11 refs., 6 figs

  11. The evolution of high energy accelerators

    International Nuclear Information System (INIS)

    Courant, E.D.

    1989-10-01

    In this lecture I would like to trace how high energy particle accelerators have grown from tools used for esoteric small-scale experiments to gigantic projects being hotly debated in Congress as well as in the scientific community

  12. Ultra high energy cosmic rays and magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor; Engel, Ralph; Alvarez-Muniz, Jaime; Seckel, David

    2002-07-01

    We follow the propagation of ultra high energy protons in the presence of random and regular magnetic fields and discuss some of the changes in the angular and energy distributions of these particles introduced by the scattering in the magnetic fields.

  13. Ultra high energy cosmic rays and magnetic fields

    International Nuclear Information System (INIS)

    Stanev, Todor; Engel, Ralph; Alvarez-Muniz, Jaime; Seckel, David

    2002-01-01

    We follow the propagation of ultra high energy protons in the presence of random and regular magnetic fields and discuss some of the changes in the angular and energy distributions of these particles introduced by the scattering in the magnetic fields

  14. Low-energy particle production and residual nuclei production from high-energy hadron-nucleus collisions

    International Nuclear Information System (INIS)

    Alsmiller, F.S.; Alsmiller, R.G. Jr.; Hermann, O.W.

    1987-01-01

    The high-energy hadron-nucleus collision model, EVENTQ, has been modified to include a calculation of the excitation and kinetic energy of the residual compound nucleus. The specific purpose of the modification is to make it possible to use the model in the high-energy radiation transport code, HETC, which, in conjunction with MORSE, is used to transport the low energy particles. It is assumed that the nucleons in the nucleus move in a one-dimensional potential well and have the momentum distribution of a degenerate Fermi gas. The low energy particles produced by the deexcitation of the residual compound nucleus, and the final residual nucleus, are determined from an evaporation model. Comparisons of multiplicities and residual nuclei distributions with experimental data are given. The ''grey'' particles, i.e., charged particles with 0.25 < β < 0.7, are in good agreement with experimental data but the residual nuclei distributions are not. 12 refs., 3 figs

  15. Large-area high-power VCSEL pump arrays optimized for high-energy lasers

    Science.gov (United States)

    Wang, Chad; Geske, Jonathan; Garrett, Henry; Cardellino, Terri; Talantov, Fedor; Berdin, Glen; Millenheft, David; Renner, Daniel; Klemer, Daniel

    2012-06-01

    Practical, large-area, high-power diode pumps for one micron (Nd, Yb) as well as eye-safer wavelengths (Er, Tm, Ho) are critical to the success of any high energy diode pumped solid state laser. Diode efficiency, brightness, availability and cost will determine how realizable a fielded high energy diode pumped solid state laser will be. 2-D Vertical-Cavity Surface-Emitting Laser (VCSEL) arrays are uniquely positioned to meet these requirements because of their unique properties, such as low divergence circular output beams, reduced wavelength drift with temperature, scalability to large 2-D arrays through low-cost and high-volume semiconductor photolithographic processes, high reliability, no catastrophic optical damage failure, and radiation and vacuum operation tolerance. Data will be presented on the status of FLIR-EOC's VCSEL pump arrays. Analysis of the key aspects of electrical, thermal and mechanical design that are critical to the design of a VCSEL pump array to achieve high power efficient array performance will be presented.

  16. Multifunctional Structures for High-Energy Lightweight Load-Bearing Storage

    Science.gov (United States)

    Loyselle, Patricia L.

    2018-01-01

    This is a pull-up banner of the Multifunctional Structures for High-Energy Lightweight Load-bearing Storage (M-SHELLS) technology that will be on display at the SciTech Conference in January 2018. Efforts in Multifunctional Structures for High Energy Load-Bearing Storage (M-Shells) are pushing the boundaries of development for hybrid electric propulsion for future commercial aeronautical transport. The M-Shells hybrid material would serve as the power/energy storage of the vehicle and provide structural integrity, freeing up usable volume and mass typically occupied by bulky batteries. The ultimate goal is to demonstrate a system-level mass savings with a multifunctional structure with energy storage.

  17. Indiana University High Energy Physics, Task A

    International Nuclear Information System (INIS)

    Brabson, B.; Crittenden, R.; Dzierba, A.

    1993-01-01

    This report discusses research at Indians University on the following high energy physics experiments: A search for mesons with unusual quantum numbers; hadronic states produced in association with high-mass dimuons; FNAL E740 (D0); superconducting super collider; and OPAL experiment at CERN

  18. Bell inequalities in high energy physics

    International Nuclear Information System (INIS)

    Ding Yibing; Li Junli; Qiao Congfeng

    2007-01-01

    We review in this paper the research status on testing the completeness of Quantum mechanics in High Energy Physics, especially on the Bell Inequalities. We briefly introduce the basic idea of Einstein, Podolsky, and Rosen paradox and the results obtained in photon experiments. In the content of testing the Bell inequalities in high energy physics, the early attempts of using spin correlations in particle decays and later on the mixing of neutral mesons used to form the quasi-spin entangled states are covered. The related experimental results in K 0 and B 0 systems are presented and discussed. We introduce the new scheme, which is based on the non-maximally entangled state and proposed to implement in φ factory, in testing the Local Hidden Variable Theory. And, we also discuss about the possibility of realising it to the tau charm factory. (authors)

  19. Prospects of High Energy Laboratory Astrophysics

    International Nuclear Information System (INIS)

    Ng, Johnny S.T.; SLAC

    2006-01-01

    Ultra high energy cosmic rays (UHECR) have been observed but their sources and production mechanisms are yet to be understood. We envision a laboratory astrophysics program that will contribute to the understanding of cosmic accelerators with efforts to: (1) test and calibrate UHECR observational techniques, and (2) elucidate the underlying physics of cosmic acceleration through laboratory experiments and computer simulations. Innovative experiments belonging to the first category have already been done at the SLAC FFTB. Results on air fluorescence yields from the FLASH experiment are reviewed. Proposed future accelerator facilities can provided unprecedented high-energy-densities in a regime relevant to cosmic acceleration studies and accessible in a terrestrial environment for the first time. We review recent simulation studies of nonlinear plasma dynamics that could give rise to cosmic acceleration, and discuss prospects for experimental investigation of the underlying mechanisms

  20. Computer simulation of high energy displacement cascades

    International Nuclear Information System (INIS)

    Heinisch, H.L.

    1990-01-01

    A methodology developed for modeling many aspects of high energy displacement cascades with molecular level computer simulations is reviewed. The initial damage state is modeled in the binary collision approximation (using the MARLOWE computer code), and the subsequent disposition of the defects within a cascade is modeled with a Monte Carlo annealing simulation (the ALSOME code). There are few adjustable parameters, and none are set to physically unreasonable values. The basic configurations of the simulated high energy cascades in copper, i.e., the number, size and shape of damage regions, compare well with observations, as do the measured numbers of residual defects and the fractions of freely migrating defects. The success of these simulations is somewhat remarkable, given the relatively simple models of defects and their interactions that are employed. The reason for this success is that the behavior of the defects is very strongly influenced by their initial spatial distributions, which the binary collision approximation adequately models. The MARLOWE/ALSOME system, with input from molecular dynamics and experiments, provides a framework for investigating the influence of high energy cascades on microstructure evolution. (author)

  1. Deuteron-deuteron elastic scattering at high energies

    International Nuclear Information System (INIS)

    Fazal-e-Aleem; Ali, S.

    1991-01-01

    The eikonal picture which has theoretical foundations in some areas of physics has been successful in explaining various aspects of elastic scattering at high energies. Chou and Yang first proposed a preliminary version of the eikonal model for hadron-hadron elastic scattering. The model is based on geometrical considerations in which hadrons are treated as extended objects. Elastic scattering then results from the propagation of attenuated wave function. By assuming that at high energies the scattering amplitude is purely imaginary and that the hadronic matter distribution is proportional to the charge distribution on protons, Durand and Lipes studied high energy pp scattering on the basis of this prestine model. Later on, the model was extended to other elastic reactions. However, a survey of literature shows that it has been successful only in the diffraction peak region. It has been shown that the pristine Chou-Yange model can explain the differential cross section for deuteron-deuteron elastic scattering at √s = 53 GeV in the diffraction peak region. In order to fit the large momentum transfer data, the generalized Chou-Yang model is used

  2. Source composition of cosmic rays at high energy

    International Nuclear Information System (INIS)

    Juliusson, E.; Cesarsky, C.J.; Meneguzzi, M.; Casse, M.

    1975-01-01

    The source composition of the cosmic ray is usually calculated at an energy of a few GeV per nucleon. Recent measurements have however indicated that the source composition may be energy dependent. In order to give a quantitative answer to this question the source composition at 50GeV/nucleon has been calculated using an exponential distribution of path lengths and in the slab approximation. The results obtained at high energy agree very well with the source composition obtained at lower energies, except the abundance of carbon which is significantly lower than the generally accepted value of low energies [fr

  3. High energy neutrino astronomy; past, present and future

    International Nuclear Information System (INIS)

    Learned, J.G.

    1993-01-01

    The nascent field of high energy neutrino astronomy seems to be near to blossoming in the next few years, after decades of speculation and preliminary experimental work. The motivation for the endeavor, anticipated types of sources, consideration of energy regime for first attempts, scale size needed, and techniques are qualitatively reviewed. A summary of relevant current projects is presented with emphasis on the new initiatives with detectors of the 10,000m 2 class. It seems that by the end of the decade there may be a few such new generation instruments in operation, and that with luck the business of high energy neutrino astrophysics will be underway by the turn of the century. (orig.)

  4. Models of high energy nuclear collisions

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1978-06-01

    The discussion covers nuclear collisions at relativistic energies including classes of high energy nucleus--nucleus collisions, and the kinetics of a central collision; and the asymptotic hadron spectrum including known and unknown hadrons, the relevance of the spectrum and the means of its study, thermodynamics of hadronic matter, examples of hadronic spectra, the temperature, composition of the initial fireball and its expansion, isoergic expansion with no pre-freezeout radiation, isentropic expansion of the fireball, the quasi-dynamical expansion, and finally antinuclei, hypernuclei, and the quark phase. 28 references

  5. Saving energy via high-efficiency fans.

    Science.gov (United States)

    Heine, Thomas

    2016-08-01

    Thomas Heine, sales and market manager for EC Upgrades, the retrofit arm of global provider of air movement solutions, ebm-papst A&NZ, discusses the retrofitting of high-efficiency fans to existing HVAC equipment to 'drastically reduce energy consumption'.

  6. [Studies of high energy phenomena using muons

    International Nuclear Information System (INIS)

    Albanese, R.C.

    1990-01-01

    This report covers the activities of the NIU high energy physics group as supported by DOE contract AC02-87ER40368 during the period from March--December of 1990. Our group has two primary efforts. The first is the D0 experiment at the Fermilab proton-antiproton collider, with major emphasis on its muon system. The second is the involvement of a portion of the group in Fermilab Experiments 772 and 789. Finally, we are also participating in the design of detectors for the SSC. A more detailed description of the work of the NIU high energy physics group may be found in the narrative accompanying our contract renewal proposal

  7. Superconducting Magnet Technology for Future High Energy Proton Colliders

    Science.gov (United States)

    Gourlay, Stephen

    2017-01-01

    Interest in high field dipoles has been given a boost by new proposals to build a high-energy proton-proton collider to follow the LHC and programs around the world are taking on the task to answer the need. Studies aiming toward future high-energy proton-proton colliders at the 100 TeV scale are now being organized. The LHC and current cost models are based on technology close to four decades old and point to a broad optimum of operation using dipoles with fields between 5 and 12T when site constraints, either geographical or political, are not a factor. Site geography constraints that limit the ring circumference can drive the required dipole field up to 20T, which is more than a factor of two beyond state-of-the-art. After a brief review of current progress, the talk will describe the challenges facing future development and present a roadmap for moving high field accelerator magnet technology forward. This work was supported by the Director, Office of Science, High Energy Physics, US Department of Energy, under contract No. DE-AC02-05CH11231.

  8. Prospects at high energies

    International Nuclear Information System (INIS)

    Quigg, C.

    1988-11-01

    I discuss some possibilities for neutrino experiments in the fixed-target environment of the SPS, Tevatron, and UNK, with their primary proton beams of 0.4, 0.9, and 3.0 TeV. The emphasis is on unfinished business: issues that have been recognized for some time, but not yet resolved. Then I turn to prospects for proton-proton colliders to explore the 1-TeV scale. I review the motivation for new physics in the neighborhood of 1 TeV and mention some discovery possibilities for high-energy, high-luminosity hadron colliders and the implications they would have for neutrino physics. I raise the possibility of the direct study of neutrino interactions in hadron colliders. I close with a report on the status of the SSC project. 38 refs., 17 figs

  9. Energy Design Guidelines for High Performance Schools: Tropical Island Climates

    Energy Technology Data Exchange (ETDEWEB)

    2004-11-01

    The Energy Design Guidelines for High Performance Schools--Tropical Island Climates provides school boards, administrators, and design staff with guidance to help them make informed decisions about energy and environmental issues important to school systems and communities. These design guidelines outline high performance principles for the new or retrofit design of your K-12 school in tropical island climates. By incorporating energy improvements into their construction or renovation plans, schools can significantly reduce energy consumption and costs.

  10. Radiation monitoring in high energy research facility

    International Nuclear Information System (INIS)

    Miyajima, Mitsuhiro

    1975-01-01

    In High Energy Physics Research Laboratory, construction of high energy proton accelerator is in progress. The accelerator is a cascaded machine comprising Cockcroft type (50 keV), linac (20 MeV), booster synchrotron (500 MeV), and synchrotron (8-12 GeV). Its proton beam intensity is 1x10 13 photons/pulse, and acceleration is carried out at the rate of every 2 minutes. The essential problems of radiation control in high energy accelerators are those of various radiations generated secondarily by proton beam and a number of induced radiations simultaneously originated with such secondary particles. In the Laboratory, controlled areas are divided into color-coded four regions, red, orange, yellow and green, based on each dose-rate. BF 3 counters covered with thick paraffin are used as neutron detectors, and side-window GM tubes, NaI (Tl) scintillators and ionization chambers as γ-detectors. In red region, however, ionization chambers are applied to induced radiation detection, and neutrons are not monitored. NIM standards are adopted for the circuits of all above monitors considering easy maintenance, economy and interchangeability. Notwithstanding the above described systems, these monitors are not sufficient to complete the measurement of whole radiations over wide energy region radiated from the accelerators. Hence separate radiation field measurement is required periodically. An example of the monitoring systems in National Accelerator Laboratory (U.S.) is referred at the last section. (Wakatsuki, Y.)

  11. Highly conductive paper for energy-storage devices

    KAUST Repository

    Hu, L.

    2009-12-07

    Paper, invented more than 2,000 years ago and widely used today in our everyday lives, is explored in this study as a platform for energy-storage devices by integration with 1D nanomaterials. Here, we show that commercially available paper can be made highly conductive with a sheet resistance as low as 1 ohm per square (Omega/sq) by using simple solution processes to achieve conformal coating of single-walled carbon nanotube (CNT) and silver nanowire films. Compared with plastics, paper substrates can dramatically improve film adhesion, greatly simplify the coating process, and significantly lower the cost. Supercapacitors based on CNT-conductive paper show excellent performance. When only CNT mass is considered, a specific capacitance of 200 F/g, a specific energy of 30-47 Watt-hour/kilogram (Wh/kg), a specific power of 200,000 W/kg, and a stable cycling life over 40,000 cycles are achieved. These values are much better than those of devices on other flat substrates, such as plastics. Even in a case in which the weight of all of the dead components is considered, a specific energy of 7.5 Wh/kg is achieved. In addition, this conductive paper can be used as an excellent lightweight current collector in lithium-ion batteries to replace the existing metallic counterparts. This work suggests that our conductive paper can be a highly scalable and low-cost solution for high-performance energy storage devices.

  12. Task A, High energy physics program experiment and theory: Task B, High energy physics program numerical simulation

    International Nuclear Information System (INIS)

    1990-01-01

    This report discusses progress in experimental and theoretical High Energy Physics at Florida State University. Fixed target experiments, collider experiments, computing, networking, VAX upgrade, SSC preparation, detector development, and particle theory are some of the areas covered

  13. Foldable, High Energy Density Lithium Ion Batteries

    Science.gov (United States)

    Suresh, Shravan

    Lithium Ion Batteries (LIBs) have become ubiquitous owing to its low cost, high energy density and, power density. Due to these advantages, LIBs have garnered a lot of attention as the primary energy storage devices in consumer electronics and electric vehicles. Recent advances in the consumer electronics research and, the drive to reduce greenhouse gases have created a demand for a shape conformable, high energy density batteries. This thesis focuses on the aforementioned two aspects of LIBs: (a) shape conformability (b) energy density and provides potential solutions to enhance them. This thesis is divided into two parts viz. (i) achieving foldability in batteries and, (ii) improving its energy density. Conventional LIBs are not shape conformable due to two limitations viz. inelasticity of metallic foils, and delamination of the active materials while bending. In the first part of the thesis (in Chapter 3), this problem is solved by replacing metallic current collector with Carbon Nanotube Macrofilms (CNMs). CNMs are superelastic films comprising of porous interconnected nanotube network. Using Molecular Dynamics (MD) simulation, we found that in the presence of an interconnected nanotube network CNMs can be fully folded. This is because the resultant stress due to bending and, the effective bending angle at the interface is reduced due to the network of nanotubes. Hence, unlike an isolated nanotube (which ruptures beyond 120 degrees of bending), a network of nanotubes can be completely folded. Thus, by replacing metallic current collector foils with CNMs, the flexibility limitation of a conventional LIB can be transcended. The second part of this thesis focusses on enhancing the energy density of LIBs. Two strategies adopted to achieve this goal are (a) removing the dead weight of the batteries, and (b) incorporating high energy density electrode materials. By incorporating CNMs, the weight of the batteries was reduced by 5-10 times due to low mass loading of

  14. Applications of neural networks in high energy physics

    International Nuclear Information System (INIS)

    Cutts, D.; Hoftun, J.S.; Nesic, D.; Sornborger, A.; Johnson, C.R.; Zeller, R.T.

    1990-01-01

    Neural network techniques provide promising solutions to pattern recognition problems in high energy physics. We discuss several applications of back propagation networks, and in particular describe the operation of an electron algorithm based on calorimeter energies. 5 refs., 5 figs., 1 tab

  15. Energy spectrum of tau leptons induced by the high energy Earth-skimming neutrinos

    International Nuclear Information System (INIS)

    Tseng, J.-J.; Yeh, T.-W.; Lee, F.-F.; Lin, G.-L.; Athar, H.; Huang, M.A.

    2003-01-01

    We present a semianalytic calculation of the tau-lepton flux emerging from the Earth induced by incident high energy neutrinos interacting inside the Earth for 10 5 ≤E ν /GeV≤10 10 . We obtain results for the energy dependence of the tau-lepton flux coming from the Earth-skimming neutrinos, because of the neutrino-nucleon charged-current scattering as well as the resonant ν(bar sign) e e - scattering. We illustrate our results for several anticipated high energy astrophysical neutrino sources such as the active galactic nuclei, the gamma-ray bursts, and the Greisen-Zatsepin-Kuzmin neutrino fluxes. The tau-lepton fluxes resulting from rock-skimming and ocean-skimming neutrinos are compared. Such comparisons can render useful information about the spectral indices of incident neutrino fluxes

  16. High-efficiency pumps drastically reduce energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2002-05-01

    Wilo's Stratos pumps for air conditioning and other domestic heating applications combine the advantages of wet runner technology with an innovative electronic commutator motor. The energy consumption of these high-efficiency pumps is halved compared with similar wet runner designs. With vast numbers of pumps used in buildings across Europe alone, the adoption of this technology potentially offers significant energy sayings. (Author)

  17. GRID computing for experimental high energy physics

    International Nuclear Information System (INIS)

    Moloney, G.R.; Martin, L.; Seviour, E.; Taylor, G.N.; Moorhead, G.F.

    2002-01-01

    Full text: The Large Hadron Collider (LHC), to be completed at the CERN laboratory in 2006, will generate 11 petabytes of data per year. The processing of this large data stream requires a large, distributed computing infrastructure. A recent innovation in high performance distributed computing, the GRID, has been identified as an important tool in data analysis for the LHC. GRID computing has actual and potential application in many fields which require computationally intensive analysis of large, shared data sets. The Australian experimental High Energy Physics community has formed partnerships with the High Performance Computing community to establish a GRID node at the University of Melbourne. Through Australian membership of the ATLAS experiment at the LHC, Australian researchers have an opportunity to be involved in the European DataGRID project. This presentation will include an introduction to the GRID, and it's application to experimental High Energy Physics. We will present the results of our studies, including participation in the first LHC data challenge

  18. High-energy limit of collision-induced false vacuum decay

    Energy Technology Data Exchange (ETDEWEB)

    Demidov, Sergei; Levkov, Dmitry [Institute for Nuclear Research of the Russian Academy of Sciences,60-th October Anniversary Prospect 7a, Moscow, 117312 (Russian Federation)

    2015-06-17

    We develop a consistent semiclassical description of field-theoretic collision-induced tunneling at arbitrary high collision energies. As a playground we consider a (1+1)-dimensional false vacuum decay initiated by a collision of N particles at energy E, paying special attention to the realistic case of N=2 particles. We demonstrate that the cross section of this process is exponentially suppressed at all energies. Moreover, the respective suppressesion exponent F{sub N}(E) exhibits a specific behavior which is significant for our semiclassical method and assumed to be general: it decreases with energy, reaches absolute minimum F=F{sub min}(N) at a certain threshold energy E=E{sub rt}(N), and stays constant at higher energies. We show that the minimal suppression F{sub min}(N) and threshold energy can be evaluated using a special class of semiclassical solutions which describe exponentially suppressed transitions but nevertheless evolve in real time. Importantly, we argue that the cross section at energies above E{sub rt}(N) is computed perturbatively in the background of the latter solutions, and the terms of this perturbative expansion stay bounded in the infinite-energy limit. Transitions in the high-energy regime proceed via emission of many soft quanta with total energy E{sub rt}; the energy excess E−E{sub rt} remains in the colliding particles till the end of the process.

  19. Immediate Dose-Response Effect of High-Energy Versus Low-Energy Extracorporeal Shock Wave Therapy on Cutaneous Microcirculation.

    Science.gov (United States)

    Kraemer, Robert; Sorg, Heiko; Forstmeier, Vinzent; Knobloch, Karsten; Liodaki, Eirini; Stang, Felix Hagen; Mailaender, Peter; Kisch, Tobias

    2016-12-01

    Elucidation of the precise mechanisms and therapeutic options of extracorporeal shock wave therapy (ESWT) is only at the beginning. Although immediate real-time effects of ESWT on cutaneous hemodynamics have recently been described, the dose response to different ESWT energies in cutaneous microcirculation has never been examined. Thirty-nine Sprague-Dawley rats were randomly assigned to three groups that received either focused high-energy shock waves (group A: total of 1000 impulses, 10 J) to the lower leg of the hind limb, focused low-energy shock waves (group B: total of 300 impulses, 1 J) or placebo shock wave treatment (group C: 0 impulses, 0 J) using a multimodality shock wave delivery system (Duolith SD-1 T-Top, Storz Medical, Tägerwilen, Switzerland). Immediate microcirculatory effects were assessed with the O2C (oxygen to see) system (LEA Medizintechnik, Giessen, Germany) before and for 20 min after application of ESWT. Cutaneous tissue oxygen saturation increased significantly higher after high-energy ESWT than after low-energy and placebo ESWT (A: 29.4% vs. B: 17.3% vs. C: 3.3%; p = 0.003). Capillary blood velocity was significantly higher after high-energy ESWT and lower after low-energy ESWT versus placebo ESWT (group A: 17.8% vs. group B: -22.1% vs. group C: -5.0%, p = 0.045). Post-capillary venous filling pressure was significantly enhanced in the high-energy ESWT group in contrast to the low-energy ESWT and placebo groups (group A: 25% vs. group B: 2% vs. group C: -4%, p = 0.001). Both high-energy and low-energy ESWT affect cutaneous hemodynamics in a standard rat model. High-energy ESWT significantly increases parameters of cutaneous microcirculation immediately after application, resulting in higher tissue oxygen saturation, venous filling pressure and blood velocity, which suggests higher tissue perfusion with enhanced oxygen saturation, in contrast to low-energy as well as placebo ESWT. Low-energy ESWT also increased tissue oxygen

  20. Plasma instability control toward high fluence, high energy x-ray continuum source

    Science.gov (United States)

    Poole, Patrick; Kirkwood, Robert; Wilks, Scott; Blue, Brent

    2017-10-01

    X-ray source development at Omega and NIF seeks to produce powerful radiation with high conversion efficiency for material effects studies in extreme fluence environments. While current K-shell emission sources can achieve tens of kJ on NIF up to 22 keV, the conversion efficiency drops rapidly for higher Z K-alpha energies. Pulsed power devices are efficient generators of MeV bremsstrahlung x-rays but are unable to produce lower energy photons in isolation, and so a capability gap exists for high fluence x-rays in the 30 - 100 keV range. A continuum source under development utilizes instabilities like Stimulated Raman Scattering (SRS) to generate plasma waves that accelerate electrons into high-Z converter walls. Optimizing instabilities using existing knowledge on their elimination will allow sufficiently hot and high yield electron distributions to create a superior bremsstrahlung x-ray source. An Omega experiment has been performed to investigate the optimization of SRS and high energy x-rays using Au hohlraums with parylene inner lining and foam fills, producing 10× greater x-ray yield at 50 keV than conventional direct drive experiments on the facility. Experiment and simulation details on this campaign will be presented. This work was performed under the auspices of the US DoE by LLNL under Contract No. DE-AC52-07NA27344.

  1. The application analysis of high energy electron accelerator in food irradiation processing

    International Nuclear Information System (INIS)

    Deng Wenmin; Chen Hao; Feng Lei; Zhang Yaqun; Chen Xun; Li Wenjun; Xiang Chengfen; Pei Ying; Wang Zhidong

    2012-01-01

    Irradiation technology of high energy electron accelerator has been highly concerned in food processing industry with its fast development, especially in the field of food irradiation processing. In this paper, equipment and research situation of high energy electron accelerator were collected, meanwhile, the similarities and differences between high energy electron beam and 60 Co γ-rays were discussed. In order to provide more references of high energy electron beam irradiation, the usages of high energy electron in food irradiation processing was prospected. These information would promote the development of domestic food irradiation industry and give a useful message to irradiation enterprises and researchers. (authors)

  2. Injury Characteristics of Low-Energy Lisfranc Injuries Compared With High-Energy Injuries.

    Science.gov (United States)

    Renninger, Christopher H; Cochran, Grant; Tompane, Trevor; Bellamy, Joseph; Kuhn, Kevin

    2017-09-01

    Lisfranc injuries result from high- and low-energy mechanisms though the literature has been more focused on high-energy mechanisms. A comparison of high-energy (HE) and low-energy (LE) injury patterns is lacking. The objective of this study was to report injury patterns in LE Lisfranc joint injuries and compare them to HE injury patterns. Operative Lisfranc injuries were identified over a 5-year period. Patient demographics, mechanism of injury, injury pattern, associated injuries, missed diagnoses, clinical course, and imaging studies were reviewed and compared. HE mechanism was defined as motor vehicle crash, motorcycle crash, direct crush, and fall from greater than 4 feet and LE mechanism as athletic activity, ground level twisting, or fall from less than 4 feet. Thirty-two HE and 48 LE cases were identified with 19.3 months of average follow-up. There were no differences in demographics or missed diagnosis frequency (21% HE vs 18% LE). Time to seek care was not significantly different. HE injuries were more likely to have concomitant nonfoot fractures (37% vs 6%), concomitant foot fractures (78% vs 4%), cuboid fractures (31% vs 6%), metatarsal base fractures (84% vs 29%), displaced intra-articular fractures (59% vs 4%), and involvement of all 5 rays (23% vs 6%). LE injuries were more commonly ligamentous (68% vs 16%), with fewer rays involved (2.7 vs 4.1). LE mechanisms were a more common cause of Lisfranc joint injury in this cohort. These mechanisms generally resulted in an isolated, primarily ligamentous injury sparing the lateral column. Both types had high rates of missed injury that could result in delayed treatment. Differences in injury patterns could help direct future research to optimize treatment algorithms. Level III, comparative series.

  3. High energy ion implantation

    International Nuclear Information System (INIS)

    Ziegler, J.F.

    1985-01-01

    High energy ion implantation offers the oppertunity for unique structures in semiconductor processing. The unusual physical properties of such implantations are discussed as well as the special problems in masking and damage annealing. A review is made of proposed circuit structures which involve deep implantation. Examples are: deep buried bipolar collectors fabricated without epitaxy, barrier layers to reduce FET memory sensitivity to soft-fails, CMOS isolation well structures, MeV implantation for customization and correction of completed circuits, and graded reach-throughs to deep active device components. (orig.)

  4. High energy cosmic rays

    CERN Document Server

    Stanev, Todor

    2010-01-01

    Offers an accessible text and reference (a cosmic-ray manual) for graduate students entering the field and high-energy astrophysicists will find this an accessible cosmic-ray manual Easy to read for the general astronomer, the first part describes the standard model of cosmic rays based on our understanding of modern particle physics. Presents the acceleration scenario in some detail in supernovae explosions as well as in the passage of cosmic rays through the Galaxy. Compares experimental data in the atmosphere as well as underground are compared with theoretical models

  5. ATLAS and ultra high energy cosmic ray physics

    Directory of Open Access Journals (Sweden)

    Pinfold James

    2017-01-01

    Full Text Available After a brief introduction to extended air shower cosmic ray physics the current and future deployment of forward detectors at ATLAS is discussed along with the various aspects of the current and future ATLAS programs to explore hadronic physics. The emphasis is placed on those results and future plans that have particular relevance for high-energy, and ultra high-energy, cosmic ray physics. The possible use of ATLAS as an “underground” cosmic muon observatory is briefly considered.

  6. Bringing together high energy physicist and computer scientist

    International Nuclear Information System (INIS)

    Bock, R.K.

    1989-01-01

    The Oxford Conference on Computing in High Energy Physics approached the physics and computing issues with the question, ''Can computer science help?'' always in mind. This summary is a personal recollection of what I considered to be the highlights of the conference: the parts which contributed to my own learning experience. It can be used as a general introduction to the following papers, or as a brief overview of the current states of computer science within high energy physics. (orig.)

  7. High energy physics and cosmology

    International Nuclear Information System (INIS)

    Silk, J.I.

    1991-01-01

    This research will focus on the implications of recent theories and experiments in high energy physics of the evolution of the early universe, and on the constraints that cosmological considerations can place on such theories. Several problems are under investigation, including studies of the nature of dark matter and the signature of annihilations in the galactic halo, where the resulting γ-ray fluxes are potentially observable, and in stars, where stellar evolution may be affects. We will develop constraints on the inflationary predictions of scale-free primordial fluctuations in a universe at critical closure density by studying their linear and non-linear evolution after they re-enter the particle horizon, examining the observable imprint of primordial density fluctuations on the cosmic microwave background radiation in both flat and curved cosmological models, and implications for observations of large-scale galaxy clustering and structure formation theories. We will also study spectral distortions in the microwave background radiation that are produced by exotic particle decays in the very early universe. We expect such astrophysical considerations to provide fruitful insights both into high-energy particle physics and into possible cosmological for the early universe

  8. Assessing high wind energy penetration

    International Nuclear Information System (INIS)

    Tande, J.O.

    1995-01-01

    In order to convincingly promote installing wind power capacity as a substantial part of the energy supply system, a set of careful analyses must be undertaken. This paper applies a case study concentrated on assessing the cost/benefit of high wind energy penetration. The case study considers expanding the grid connected wind power capacity in Praia, the capital of Cape Verde. The currently installed 1 MW of wind power is estimated to supply close to 10% of the electric energy consumption in 1996. Increasing the wind energy penetration to a higher level is considered viable as the project settings are close to ideal, including a very capable national utility company, Electra, a conventional power supply system based on imported heavy fuel and gas oil, and favourable wind conditions with an estimated annual average of 9.3 m/s at the hub height of the wind turbines. With the applied case study assumptions, simulations with WINSYS over the lifetime of the assessed wind power investment show that investments up to 4.2 MW are economically viable. The economic optimum is found at 2.4 MW reaching an internal rate of return of almost 8% p.a. This 2.4 MW of wind power would, together with the existing wind power, supply over 30% of the electric consumption in 1996. Applying the recommended practices for estimating the cost of wind energy, the life-cycle cost of this 2.4 MW investment is estimated at a 7% discount rate and a 20 year lifetime to 0.26 DKK/kW h. (Author)

  9. Energy compensation after sprint- and high-intensity interval training.

    Directory of Open Access Journals (Sweden)

    Matthew M Schubert

    Full Text Available Many individuals lose less weight than expected in response to exercise interventions when considering the increased energy expenditure of exercise (ExEE. This is due to energy compensation in response to ExEE, which may include increases in energy intake (EI and decreases in non-exercise physical activity (NEPA. We examined the degree of energy compensation in healthy young men and women in response to interval training.Data were examined from a prior study in which 24 participants (mean age, BMI, & VO2max = 28 yrs, 27.7 kg•m-2, and 32 mL∙kg-1∙min-1 completed either 4 weeks of sprint-interval training or high-intensity interval training. Energy compensation was calculated from changes in body composition (air displacement plethysmography and exercise energy expenditure was calculated from mean heart rate based on the heart rate-VO2 relationship. Differences between high (≥ 100% and low (< 100% levels of energy compensation were assessed. Linear regressions were utilized to determine associations between energy compensation and ΔVO2max, ΔEI, ΔNEPA, and Δresting metabolic rate.Very large individual differences in energy compensation were noted. In comparison to individuals with low levels of compensation, individuals with high levels of energy compensation gained fat mass, lost fat-free mass, and had lower change scores for VO2max and NEPA. Linear regression results indicated that lower levels of energy compensation were associated with increases in ΔVO2max (p < 0.001 and ΔNEPA (p < 0.001.Considerable variation exists in response to short-term, low dose interval training. In agreement with prior work, increases in ΔVO2max and ΔNEPA were associated with lower energy compensation. Future studies should focus on identifying if a dose-response relationship for energy compensation exists in response to interval training, and what underlying mechanisms and participant traits contribute to the large variation between individuals.

  10. Nuclear emulsion and high-energy physics

    International Nuclear Information System (INIS)

    Sun Hancheng; Zhang Donghai

    2008-01-01

    The history of the development of nuclear emulsion and its applications in high-energy physics, from the discovery of pion to the discovery of tau neutrino, are briefly reviewed in this paper. A new stage of development of nuclear-emulsion technique is discussed

  11. High energy eye-safe and mid-infrared optical parametric oscillator

    International Nuclear Information System (INIS)

    Liu, J; Liu, Q; Huang, L; Gong, M

    2010-01-01

    A high energy eye-safe and mid-infrared optical parametric oscillator (OPO) is demonstrated. The nonlinear media is a Y-cut KTA crystal with the length of 20 mm, which is pumped by a Nd:YAG laser. Both eye-safe and mid-infrared laser are output with high energy. When the pump energy is 1 J and the pulse duration is 10 ns, we get 53 mJ idler at 3.632 μm and 151 mJ signal at 1.505 μm. As we know, the idler energy is the highest at the wavelength beyond 3.5 μm and the signal energy is the highest with Y-cut KTA. The results prove that the Y-cut KTA crystal can produce the signal and idler with the energies as high as these in the paper. We have tested the temperature-tuning characters and the coefficient of the idler is 0.26 nm/°C

  12. Grid Computing in High Energy Physics

    International Nuclear Information System (INIS)

    Avery, Paul

    2004-01-01

    Over the next two decades, major high energy physics (HEP) experiments, particularly at the Large Hadron Collider, will face unprecedented challenges to achieving their scientific potential. These challenges arise primarily from the rapidly increasing size and complexity of HEP datasets that will be collected and the enormous computational, storage and networking resources that will be deployed by global collaborations in order to process, distribute and analyze them.Coupling such vast information technology resources to globally distributed collaborations of several thousand physicists requires extremely capable computing infrastructures supporting several key areas: (1) computing (providing sufficient computational and storage resources for all processing, simulation and analysis tasks undertaken by the collaborations); (2) networking (deploying high speed networks to transport data quickly between institutions around the world); (3) software (supporting simple and transparent access to data and software resources, regardless of location); (4) collaboration (providing tools that allow members full and fair access to all collaboration resources and enable distributed teams to work effectively, irrespective of location); and (5) education, training and outreach (providing resources and mechanisms for training students and for communicating important information to the public).It is believed that computing infrastructures based on Data Grids and optical networks can meet these challenges and can offer data intensive enterprises in high energy physics and elsewhere a comprehensive, scalable framework for collaboration and resource sharing. A number of Data Grid projects have been underway since 1999. Interestingly, the most exciting and far ranging of these projects are led by collaborations of high energy physicists, computer scientists and scientists from other disciplines in support of experiments with massive, near-term data needs. I review progress in this

  13. Very high energy gamma-ray astronomy

    International Nuclear Information System (INIS)

    Weekes, T.C.

    1988-01-01

    Current interest in gamma-ray astronomy at energies above 100 GeV comes from the identification of Cygnus X-3 and other X-ray binaries as sources. In addition there are reports of emission from radio pulsars and a variety of other objects. The statistical significance of many of the observations is not high and many reported effects await confirmation, but there are a sufficient number of independent reports that very high energy gamma-ray astronomy must now be considered to have an observational basis. The observations are summarized with particular emphasis on those reported since 1980. The techniques used - the detection of small air showers using the secondary photons and particles at ground level - are unusual and are described. Future prospects for the field are discussed in relation to new ground-based experiments, satellite gamma-ray studies and proposed neutrino astronomy experiments. (orig.) With 296 refs

  14. High Energy Vibration for Gas Piping

    Science.gov (United States)

    Lee, Gary Y. H.; Chan, K. B.; Lee, Aylwin Y. S.; Jia, ShengXiang

    2017-07-01

    In September 2016, a gas compressor in offshore Sarawak has its rotor changed out. Prior to this change-out, pipe vibration study was carried-out by the project team to evaluate any potential high energy pipe vibration problems at the compressor’s existing relief valve downstream pipes due to process condition changes after rotor change out. This paper covers high frequency acoustic excitation (HFAE) vibration also known as acoustic induced vibration (AIV) study and discusses detailed methodologies as a companion to the Energy Institute Guidelines for the avoidance of vibration induced fatigue failure, which is a common industry practice to assess and mitigate for AIV induced fatigue failure. Such detailed theoretical studies can help to minimize or totally avoid physical pipe modification, leading to reduce offshore plant shutdown days to plant shutdowns only being required to accommodate gas compressor upgrades, reducing cost without compromising process safety.

  15. Data and analytics to inform energy retrofit of high performance buildings

    International Nuclear Information System (INIS)

    Hong, Tianzhen; Yang, Le; Hill, David; Feng, Wei

    2014-01-01

    Highlights: • High performance buildings can be retrofitted using measured data and analytics. • Data of energy use, systems operating and environmental conditions are needed. • An energy data model based on the ISO Standard 12655 is key for energy benchmarking. • Three types of analytics are used: energy profiling, benchmarking, and diagnostics. • The case study shows 20% of electricity can be saved by retrofit. - Abstract: Buildings consume more than one-third of the world’s primary energy. Reducing energy use in buildings with energy efficient technologies is feasible and also driven by energy policies such as energy benchmarking, disclosure, rating, and labeling in both the developed and developing countries. Current energy retrofits focus on the existing building stocks, especially older buildings, but the growing number of new high performance buildings built around the world raises a question that how these buildings perform and whether there are retrofit opportunities to further reduce their energy use. This is a new and unique problem for the building industry. Traditional energy audit or analysis methods are inadequate to look deep into the energy use of the high performance buildings. This study aims to tackle this problem with a new holistic approach powered by building performance data and analytics. First, three types of measured data are introduced, including the time series energy use, building systems operating conditions, and indoor and outdoor environmental parameters. An energy data model based on the ISO Standard 12655 is used to represent the energy use in buildings in a three-level hierarchy. Secondly, a suite of analytics were proposed to analyze energy use and to identify retrofit measures for high performance buildings. The data-driven analytics are based on monitored data at short time intervals, and cover three levels of analysis – energy profiling, benchmarking and diagnostics. Thirdly, the analytics were applied to a high

  16. Small magnetic energy storage systems using high temperature superconductors

    International Nuclear Information System (INIS)

    Kumar, B.

    1991-01-01

    This paper reports on magnetic energy storage for power systems that has been considered for commercial utility power, air and ground mobile power sources, and spacecraft applications. Even at the current technology limits of energy storage (100 KJ/Kg*), superconducting magnetic energy storage inductors do not offer a strong advantage over state-of-the-art batteries. The commercial utility application does not have a weight and volume limitation, and is under intense study in several countries for diurnal cycle energy storage and high power delivery. The advent of high temperature superconductors has reduced one of the penalties of superconducting magnetic energy storage in that refrigeration and cryocontainers become greatly simplified. Still, structural and current density issues that limit the energy density and size of superconducting inductors do not change. Cold weather starting of aircraft engines is an application where these limitations are not as significant, and where current systems lack performance. The very cold environments make it difficult to achieve high power densities in state-of-the-art batteries and hydraulically activated starters. The same cold environments make it possible to cool superconducting systems for weeks using a single charge of liquid nitrogen. At the same, the ground carts can handle the size and weight of superconducting magnetic storage (SMES) devices

  17. Photoionization of water molecules by high energy photons

    Directory of Open Access Journals (Sweden)

    Lara Martini

    2017-07-01

    Full Text Available We theoretically study the photoionization of water molecules by high energy photon impact. We develop a model in which the final state wavefunction is given by a Coulomb continuum wavefunction with effective charges and the water molecule bound states are represented using the Moccia's monocentric wavefunctions. We obtain analytical expressions for the transition matrix element that enable the computation of cross sections by numerical quadratures. We compare our predictions for photon energies between 20 and 300 eV with more elaborated theoretical results and experiments. We obtain a very good agreement with experiments, in particular, at enough high energies where there is a lack of elaborated results due to their high computational cost. Received: 15 March 2017, Accepted: 25 June 2017; Edited by: S. Kais; DOI: http://dx.doi.org/10.4279/PIP.090006 Cite as: L Martini, D I R Boll, O A Fojón, Papers in Physics 9, 090006 (2017

  18. High-energy krypton fluoride lasers for inertial fusion.

    Science.gov (United States)

    Obenschain, Stephen; Lehmberg, Robert; Kehne, David; Hegeler, Frank; Wolford, Matthew; Sethian, John; Weaver, James; Karasik, Max

    2015-11-01

    Laser fusion researchers have realized since the 1970s that the deep UV light from excimer lasers would be an advantage as a driver for robust high-performance capsule implosions for inertial confinement fusion (ICF). Most of this research has centered on the krypton-fluoride (KrF) laser. In this article we review the advantages of the KrF laser for direct-drive ICF, the history of high-energy KrF laser development, and the present state of the art and describe a development path to the performance needed for laser fusion and its energy application. We include descriptions of the architecture and performance of the multi-kilojoule Nike KrF laser-target facility and the 700 J Electra high-repetition-rate KrF laser that were developed at the U.S. Naval Research Laboratory. Nike and Electra are the most advanced KrF lasers for inertial fusion research and energy applications.

  19. Experimental and theoretical high energy physics research. [UCLA

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, Charles D.; Cline, David B.; Byers, N.; Ferrara, S.; Peccei, R.; Hauser, Jay; Muller, Thomas; Atac, Muzaffer; Slater, William; Cousins, Robert; Arisaka, Katsushi

    1992-01-01

    Progress in the various components of the UCLA High-Energy Physics Research program is summarized, including some representative figures and lists of resulting presentations and published papers. Principal efforts were directed at the following: (I) UCLA hadronization model, PEP4/9 e{sup +}e{sup {minus}} analysis, {bar P} decay; (II) ICARUS and astroparticle physics (physics goals, technical progress on electronics, data acquisition, and detector performance, long baseline neutrino beam from CERN to the Gran Sasso and ICARUS, future ICARUS program, and WIMP experiment with xenon), B physics with hadron beams and colliders, high-energy collider physics, and the {phi} factory project; (III) theoretical high-energy physics; (IV) H dibaryon search, search for K{sub L}{sup 0} {yields} {pi}{sup 0}{gamma}{gamma} and {pi}{sup 0}{nu}{bar {nu}}, and detector design and construction for the FNAL-KTeV project; (V) UCLA participation in the experiment CDF at Fermilab; and (VI) VLPC/scintillating fiber R D.

  20. Radio observations of a galactic high energy gamma-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Giacani, E.; Rovero, A.C. [Instituto de Astronomia y Fisica del Espacio, Buenos Aires (Argentina)

    2001-10-01

    PSR B1706-44 is one of the very few galactic pulsars that has been discovered at TeV energies. PSR B1706-44 has been also detected in the X-ray domain. It has been suggested that the high energy radiation could be due to inverse Compton radiation from a pulsar wind nebula (PWN). It was reported on VLA high-resolution observations of a region around the pulsar PSR B1706-44 at 1.4, 4.8 and 8.4 GHz. The pulsar appears embedded in a synchrotron nebula. It was proposed that this synchrotron nebula is the radio counterpart of the high energy emission powered by the spin-down energy of the pulsar.

  1. Pacemaker implantation after catheter ablation for atrial fibrillation.

    Science.gov (United States)

    Deshmukh, Abhishek J; Yao, Xiaoxi; Schilz, Stephanie; Van Houten, Holly; Sangaralingham, Lindsey R; Asirvatham, Samuel J; Friedman, Paul A; Packer, Douglas L; Noseworthy, Peter A

    2016-01-01

    Sinus node dysfunction requiring pacemaker implantation is commonly associated with atrial fibrillation (AF), but may not be clinically apparent until restoration of sinus rhythm with ablation or cardioversion. We sought to determine frequency, time course, and predictors for pacemaker implantation after catheter ablation, and to compare the overall rates to a matched cardioversion cohort. We conducted a retrospective analysis using a large US commercial insurance database and identified 12,158 AF patients who underwent catheter ablation between January 1, 2005 and December 31, 2012. Over an average of 2.4 years of follow-up, 5.6 % of the patients underwent pacemaker implantation. Using the Cox proportional hazards models, we found that risk of risks of pacemaker implantation was associated with older age (50-64 and ≥65 versus pacemaker implantation between ablation patients and propensity score (PS)-matched cardioversion groups (3.5 versus. 4.1 % at 1 year and 8.8 versus 8.3 % at 5 years). Overall, pacemaker implantation occurs in about 1/28 patients within 1 year of catheter ablation. The overall implantation rate decreased between 2005 and 2012. Furthermore, the risk after ablation is similar to cardioversion, suggesting that patients require pacing due to a common underlying electrophysiologic substrate, rather than the ablation itself.

  2. Engineering High-Energy Interfacial Structures for High-Performance Oxygen-Involving Electrocatalysis.

    Science.gov (United States)

    Guo, Chunxian; Zheng, Yao; Ran, Jingrun; Xie, Fangxi; Jaroniec, Mietek; Qiao, Shi-Zhang

    2017-07-10

    Engineering high-energy interfacial structures for high-performance electrocatalysis is achieved by chemical coupling of active CoO nanoclusters and high-index facet Mn 3 O 4 nano-octahedrons (hi-Mn 3 O 4 ). A thorough characterization, including synchrotron-based near edge X-ray absorption fine structure, reveals that strong interactions between both components promote the formation of high-energy interfacial Mn-O-Co species and high oxidation state CoO, from which electrons are drawn by Mn III -O present in hi-Mn 3 O 4 . The CoO/hi-Mn 3 O 4 demonstrates an excellent catalytic performance over the conventional metal oxide-based electrocatalysts, which is reflected by 1.2 times higher oxygen evolution reaction (OER) activity than that of Ru/C and a comparable oxygen reduction reaction (ORR) activity to that of Pt/C as well as a better stability than that of Ru/C (95 % vs. 81 % retained OER activity) and Pt/C (92 % vs. 78 % retained ORR activity after 10 h running) in alkaline electrolyte. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. High speed reaction wheels for satellite attitude control and energy storage

    Science.gov (United States)

    Studer, P.; Rodriguez, E.

    1985-01-01

    The combination of spacecraft attitude control and energy storage (ACES) functions in common hardware, to synergistically maintain three-axis attitude control while supplying electrical power during earth orbital eclipses, allows the generation of control torques by high rotating speed wheels that react against the spacecraft structure via a high efficiency bidirectional energy conversion motor/generator. An ACES system encompasses a minimum of four wheels, controlling power and the three torque vectors. Attention is given to the realization of such a system with composite flywheel rotors that yield high energy density, magnetic suspension technology yielding low losses at high rotational speeds, and an ironless armature permanent magnet motor/generator yielding high energy conversion efficiency.

  4. A high energy physics perspective

    International Nuclear Information System (INIS)

    Marciano, W.J.

    1997-01-01

    The status of the Standard model and role of symmetry in its development are reviewed. Some outstanding problems are surveyed and possible solutions in the form of additional open-quotes Hidden Symmetries close quotes are discussed. Experimental approaches to uncover open-quotes New Physicsclose quotes associated with those symmetries are described with emphasis on high energy colliders. An outlook for the future is given

  5. High energy KrCl electric discharge laser

    Science.gov (United States)

    Sze, Robert C.; Scott, Peter B.

    1981-01-01

    A high energy KrCl laser for producing coherent radiation at 222 nm. Output energies on the order of 100 mJ per pulse are produced utilizing a discharge excitation source to minimize formation of molecular ions, thereby minimizing absorption of laser radiation by the active medium. Additionally, HCl is used as a halogen donor which undergoes a harpooning reaction with metastable Kr.sub.M * to form KrCl.

  6. Reentry Tachycardia in Children: Adenosine Can Make It Worse.

    Science.gov (United States)

    Hien, Maximilian D; Benito Castro, Fernando; Fournier, Philippe; Filleron, Anne; Tran, Tu-Anh

    2016-10-08

    We report on a rare but severe complication of adenosine use in a child with reentry tachycardia. Treatment with adenosine, which is the standard medical therapy of atrioventricular reentry tachycardia, led to the development of an irregular wide complex tachycardia, caused by rapid ventricular response to atrial fibrillation. The girl was finally stabilized with electrical cardioversion. We analyze the pathomechanism and discuss possible treatment options. Atrial fibrillation, as well as its conduction to the ventricles, can be caused by adenosine. Rapid ventricular response in children with Wolff-Parkinson-White syndrome is more frequent than previously believed. A patient history of atrial fibrillation is a contraindication for cardioversion with adenosine and needs to be assessed in children with reentry tachycardia. High-risk patients may potentially profit from prophylactic comedication with antiarrhythmic agents, such as flecainide, ibutilide, or vernakalant, before adenosine administration.

  7. High-energy chemical processes: Laser irradiation of aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Trifunac, A.D.; Liu, A.D.; Loffredo, D.M.

    1994-01-01

    Recent studies of the high-energy photochemical degradation of polycyclic aromatic hydrocarbons (PAHs) in solution have furthered our fundamental understanding of the way in which radiation interacts with matter. A new comprehensive mechanism that unifies many of the seemingly contradictory observations in radiation and photochemistry has been proposed on basis of evidence gathered using specialized techniques such as transient optical spectroscopy and transient dc conductivity. The PAH molecules were activated by two-photon ionization, and behavior of the transient ions were monitored as a function of photon energy. It was found that a greater percentage of ions retain sufficient energy to decompose when higher energy light was used. When these cations decompose they leave a trail of products that establish a ''high-energy'' decomposition pathway that involves proton transfer from the ion, a mechanism hitherto not considered in photoionization processes

  8. IceCube: Particle Astrophysics with High Energy Neutrinos

    CERN Multimedia

    Université de Genève

    2012-01-01

    GENEVA UNIVERSITY École de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 Genève 4 Tél.: (022) 379 62 73 Fax: (022) 379 69 92 Monday 7 May 2012 17h. - Ecole de Physique, Auditoire Stueckelberg IceCube: Particle Astrophysics with High Energy Neutrinos Prof. Francis Halzen / University of Wisconsin, Madison Construction and commissioning of the cubic-kilometer IceCube neutrino detector and its low energy extension DeepCore have been completed. The instrument detects neutrinos over a wide energy range: from 10 GeV atmospheric neutrinos to 1010 GeV cosmogenic neutrinos. We will discuss initial results based on a subsample of the ~100,000 neutrino events recorded during construction. We will emphasize the first measurement of the high-energy atmospheric neutrino spectrum, the search for the still enigmatic sources of the Galactic and extragalactic cosmic rays and for the particle nature of dark matter. Une ve...

  9. Ultra high energy electrons powered by pulsar rotation.

    Science.gov (United States)

    Mahajan, Swadesh; Machabeli, George; Osmanov, Zaza; Chkheidze, Nino

    2013-01-01

    A new mechanism of particle acceleration, driven by the rotational slow down of the Crab pulsar, is explored. The rotation, through the time dependent centrifugal force, can efficiently excite unstable Langmuir waves in the electron-positron (hereafter e(±)) plasma of the star magnetosphere. These waves, then, Landau damp on electrons accelerating them in the process. The net transfer of energy is optimal when the wave growth and the Landau damping times are comparable and are both very short compared to the star rotation time. We show, by detailed calculations, that these are precisely the conditions for the parameters of the Crab pulsar. This highly efficient route for energy transfer allows the electrons in the primary beam to be catapulted to multiple TeV (~ 100 TeV) and even PeV energy domain. It is expected that the proposed mechanism may, unravel the puzzle of the origin of ultra high energy cosmic ray electrons.

  10. High-pressure pair distribution function (PDF) measurement using high-energy focused x-ray beam

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Xinguo, E-mail: xhong@bnl.gov; Weidner, Donald J. [Mineral Physics Institute, Stony Brook University, Stony Brook, NY 11794 (United States); Ehm, Lars [Mineral Physics Institute, Stony Brook University, Stony Brook, NY 11794 (United States); National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973 (United States); Zhong, Zhong; Ghose, Sanjit [National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973 (United States); Duffy, Thomas S. [Department of Geosciences, Princeton University, Princeton, NJ 08544 (United States)

    2016-07-27

    In this paper, we report recent development of the high-pressure pair distribution function (HP-PDF) measurement technique using a focused high-energy X-ray beam coupled with a diamond anvil cell (DAC). The focusing optics consist of a sagittally bent Laue monochromator and Kirkpatrick-Baez (K–B) mirrors. This combination provides a clean high-energy X-ray beam suitable for HP-PDF research. Demonstration of the HP-PDF technique for nanocrystalline platinum under quasi-hydrostatic condition above 30 GPa is presented.

  11. High-energy tritium beams as current drivers in tokamak reactors

    International Nuclear Information System (INIS)

    Mikkelsen, D.R.; Grisham, L.R.

    1983-04-01

    The effect on neutral-beam design and reactor performance of using high-energy (approx. 3-10 MeV) tritium neutral beams to drive steady-state tokamak reactors is considered. The lower current of such beams leads to several advantages over lower-energy neutral beams. The major disadvantage is the reduction of the reactor output caused by the lower current-drive efficiency of the high-energy beams

  12. A Parton Shower for High Energy Jets

    CERN Document Server

    Andersen, Jeppe R; Smillie, Jennifer M

    2011-01-01

    We present a method to match the multi-parton states generated by the High Energy Jets Monte Carlo with parton showers generated by the Ariadne program using the colour dipole model. The High Energy Jets program already includes a full resummation of soft divergences. Hence, in the matching it is important that the corresponding divergences in the parton shower are subtracted, keeping only the collinear parts. We present a novel, shower-independent method for achieving this, enabling us to generate fully exclusive and hadronized events with multiple hard jets, in hadronic collisions. We discuss in detail the arising description of the soft, collinear and hard regions by examples in pure QCD jet-production.

  13. [Studies of high energy phenomena using muons

    International Nuclear Information System (INIS)

    1990-01-01

    This report covers the activities of the NIU high energy physics group as supported by DOE contract AC02-87ER40368 during the period from March through December of 1990. Our group has two primary efforts. The first is the D0 experiment at the Fermilab proton-antiproton collider, with major emphasis on its muon system. The second is the involvement of a portion of the group in Fermilab Experiments 772 and 789. Finally, we are also participating in the design of detectors for the SSC. A more detailed description of the work of the NIU high energy physics group may be found in the narrative accompanying our contract renewal proposal

  14. Compilation of current high energy physics experiments

    International Nuclear Information System (INIS)

    1978-09-01

    This compilation of current high-energy physics experiments is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and the nine participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), KEK, Rutherford (RHEL), Serpukhov (SERP), and SLAC. Nominally, the compilation includes summaries of all high-energy physics experiments at the above laboratories that were approved (and not subsequently withdrawn) before about June 1978, and had not completed taking of data by 1 January 1975. The experimental summaries are supplemented with three indexes to the compilation, several vocabulary lists giving names or abbreviations used, and a short summary of the beams at each of the laboratories (except Rutherford). The summaries themselves are included on microfiche

  15. High-Energy String Scattering Amplitudes and Signless Stirling Number Identity

    Directory of Open Access Journals (Sweden)

    Jen-Chi Lee

    2012-07-01

    Full Text Available We give a complete proof of a set of identities (7 proposed recently from calculation of high-energy string scattering amplitudes. These identities allow one to extract ratios among high-energy string scattering amplitudes in the fixed angle regime from high-energy amplitudes in the Regge regime. The proof is based on a signless Stirling number identity in combinatorial theory. The results are valid for arbitrary real values L rather than only for L=0,1 proved previously. The identities for non-integer real value L were recently shown to be realized in high-energy compactified string scattering amplitudes [He S., Lee J.C., Yang Y., arXiv:1012.3158]. The parameter L is related to the mass level of an excited string state and can take non-integer values for Kaluza-Klein modes.

  16. Heavy ion fragmentation in high energy

    International Nuclear Information System (INIS)

    Nemes, M.C.

    1985-01-01

    A review is made on the theoretical aspects of heavy ion collisions at high energies. A comparison with several experimental data obtained in a large variety of experiments is present. An emphasis is given on the basis of Glauber's theory of scattering. (L.C.) [pt

  17. Development and application of high energy imaging technology

    International Nuclear Information System (INIS)

    Chen Shengzu

    1999-01-01

    High Energy Positron Imaging (HEPI) is a new technology. The idea of positron imaging can be traced back to early 1950's. HEPI imaging is formed by positron emitter radionuclide produced by cyclotron, such as 15 O, 13 N, 11 C and 18 F, which are most abundant elements in human body. Clinical applications of HEPI have been witnessed rapidly in recent years. HEPI imaging can be obtained by both PET and SPECT, namely high energy collimation imaging, Mdecular Coincidence Detection (MCD) and positron emission tomography

  18. High-Energy Spectroscopic Astrophysics Swiss Society for Astrophysics and Astronomy

    CERN Document Server

    Kahn, Steven M; von Ballmoos, Peter

    2005-01-01

    After three decades of intense research in X-ray and gamma-ray astronomy, the time was ripe to summarize basic knowledge on X-ray and gamma-ray spectroscopy for interested students and researchers ready to become involved in new high-energy missions. This volume exposes both the scientific basics and modern methods of high-energy spectroscopic astrophysics. The emphasis is on physical principles and observing methods rather than a discussion of particular classes of high-energy objects, but many examples and new results are included in the three chapters as well.

  19. High Energy Solid State Laser Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — A suite of laboratories with advanced spectroscopic and laser equipment, this facility develops materials and techniques for advanced solid state high energy lasers....

  20. Explanation for the Low Flux of High Energy Astrophysical Muon Neutrinos

    International Nuclear Information System (INIS)

    Pakvasa, Sandip; Joshipura, Anjan; Mohanty, Subhendra

    2014-01-01

    There has been some concern about the unexpected paucity of cosmic high energy muon neutrinos in detectors probing the energy region beyond 1 PeV. As a possible solution we consider the possibility that some exotic neutrino property is responsible for reducing the muon neutrino flux at high energies from distant sources; specifically, we consider: (i) neutrino decay and (ii) neutrinos being pseudo-Dirac particles. This would provide a mechanism for the reduction of high energy muon events in the IceCube detector, for example

  1. Budget projections - 1991 through 1996 for research in high energy physics

    International Nuclear Information System (INIS)

    1991-05-01

    This research program in high energy physics is carried out under the general supervision of a committee which is composed of G.W. Brandenburg, G.J. Feldman, M.E. Franklin, R.J. Glauber, K. Kinoshita, F.M. Pipkin, K. Strauch, R. Wilson, and H. Yamamoto. Professor G.J. Feldman currently serves as chair of this committee. Dr. Brandenburg is the Director of the High Energy Physics Laboratory and administers the DOE high energy physics contract. In the fall of 1991 S. Mishra will join this committee. Harvard is planning to make one or two additional senior faculty appointments in experimental high energy physics over the next two years. The principal goals of the work described here are to carry out forefront programs in high energy physics research and to provide first rate educational opportunities for students. The experimental program supported through HEPL is carried out at the major accelerator centers in the world and addresses some of the most important questions in high energy physics. Harvard's educational efforts are concentrated in graduate education, where they are currently supporting thirteen research students. In addition, undergraduate students work in projects at HEPL during the academic year and over summers. These budget projections cover all of the Harvard based high energy physics experimental activities. The open-quotes umbrellaclose quotes nature of this contract greatly simplifies support of essential central technical and computer services and helps the group to take advantage of new physics opportunities and to respond to unexpected needs. The funding for the operation of the HEPL facility is shared proportionally by the experimental groups. Harvard financially supports this high energy physics research program in many ways

  2. High-energy astrophysics and the search for sources of gravitational waves

    Science.gov (United States)

    O'Brien, P. T.; Evans, P.

    2018-05-01

    The dawn of the gravitational-wave (GW) era has sparked a greatly renewed interest into possible links between sources of high-energy radiation and GWs. The most luminous high-energy sources-gamma-ray bursts (GRBs)-have long been considered as very likely sources of GWs, particularly from short-duration GRBs, which are thought to originate from the merger of two compact objects such as binary neutron stars and a neutron star-black hole binary. In this paper, we discuss: (i) the high-energy emission from short-duration GRBs; (ii) what other sources of high-energy radiation may be observed from binary mergers; and (iii) how searches for high-energy electromagnetic counterparts to GW events are performed with current space facilities. While current high-energy facilities, such as Swift and Fermi, play a crucial role in the search for electromagnetic counterparts, new space missions will greatly enhance our capabilities for joint observations. We discuss why such facilities, which incorporate new technology that enables very wide-field X-ray imaging, are required if we are to truly exploit the multi-messenger era. This article is part of a discussion meeting issue `The promises of gravitational-wave astronomy'.

  3. High energy particle transport code NMTC/JAM

    International Nuclear Information System (INIS)

    Niita, Koji; Meigo, Shin-ichiro; Takada, Hiroshi; Ikeda, Yujiro

    2001-03-01

    We have developed a high energy particle transport code NMTC/JAM, which is an upgraded version of NMTC/JAERI97. The applicable energy range of NMTC/JAM is extended in principle up to 200 GeV for nucleons and mesons by introducing the high energy nuclear reaction code JAM for the intra-nuclear cascade part. For the evaporation and fission process, we have also implemented a new model, GEM, by which the light nucleus production from the excited residual nucleus can be described. According to the extension of the applicable energy, we have upgraded the nucleon-nucleus non-elastic, elastic and differential elastic cross section data by employing new systematics. In addition, the particle transport in a magnetic field has been implemented for the beam transport calculations. In this upgrade, some new tally functions are added and the format of input of data has been improved very much in a user friendly manner. Due to the implementation of these new calculation functions and utilities, consequently, NMTC/JAM enables us to carry out reliable neutronics study of a large scale target system with complex geometry more accurately and easily than before. This report serves as a user manual of the code. (author)

  4. Colloquium: Multimessenger astronomy with gravitational waves and high-energy neutrinos

    NARCIS (Netherlands)

    Ando, S.; Baret, B.; Bartos, I.; Bouhou, B.; Chassande-Mottin, E.; Corsi, A.; Di Palma, I.; Dietz, A.; Donzaud, C.; Eichler, D.; Finley, C.; Guetta, D.; Halzen, F.; Jones, G.; Kandhasamy, S.; Kotake, K.; Kouchner, A.; Mandic, V.; Márka, S.; Márka, Z.; Moscoso, L.; Papa, M.A.; Piran, T.; Pradier, T.; Romero, G.E.; Sutton, P.; Thrane, E.; van Elewyck, V.; Waxman, E.

    2013-01-01

    Many of the astrophysical sources and violent phenomena observed in our Universe are potential emitters of gravitational waves and high-energy cosmic radiation, including photons, hadrons, and presumably also neutrinos. Both gravitational waves (GW) and high-energy neutrinos (HEN) are cosmic

  5. Review of methodologies and polices for evaluation of energy efficiency in high energy-consuming industry

    International Nuclear Information System (INIS)

    Li, Ming-Jia; Tao, Wen-Quan

    2017-01-01

    Highlights: • The classification of the industrial energy efficiency index has been summarized. • The factors of energy efficiency and their implement in industries are discussed. • Four main evaluation methodologies of energy efficiency in industries are concluded. • Utilization of the methodologies in energy efficiency evaluations are illustrated. • Related polices and suggestions based on energy efficiency evaluations are provided. - Abstract: Energy efficiency of high energy-consuming industries plays a significant role in social sustainability, economic performance and environmental protection of any nation. In order to evaluate the energy efficiency and guide the sustainability development, various methodologies have been proposed for energy demand management and to measure the energy efficiency performance accurately in the past decades. A systematical review of these methodologies are conducted in the present paper. First, the classification of the industrial energy efficiency index has been summarized to track the previous application studies. The single measurement indicator and the composite index benchmarking are highly recognized as the modeling tools for power industries and policy-making in worldwide countries. They are the pivotal figures to convey the fundamental information in energy systems for improving the performance in fields such as economy, environment and technology. Second, the six factors that influence the energy efficiency in industry are discussed. Third, four major evaluation methodologies of energy efficiency are explained in detail, including stochastic frontier analysis, data envelopment analysis, exergy analysis and benchmarking comparison. The basic models and the developments of these methodologies are introduced. The recent utilization of these methodologies in the energy efficiency evaluations are illustrated. Some drawbacks of these methodologies are also discussed. Other related methods or influential indicators

  6. High Energy Density Physics and Exotic Acceleration Schemes

    International Nuclear Information System (INIS)

    Cowan, T.; Colby, E.

    2005-01-01

    The High Energy Density and Exotic Acceleration working group took as our goal to reach beyond the community of plasma accelerator research with its applications to high energy physics, to promote exchange with other disciplines which are challenged by related and demanding beam physics issues. The scope of the group was to cover particle acceleration and beam transport that, unlike other groups at AAC, are not mediated by plasmas or by electromagnetic structures. At this Workshop, we saw an impressive advancement from years past in the area of Vacuum Acceleration, for example with the LEAP experiment at Stanford. And we saw an influx of exciting new beam physics topics involving particle propagation inside of solid-density plasmas or at extremely high charge density, particularly in the areas of laser acceleration of ions, and extreme beams for fusion energy research, including Heavy-ion Inertial Fusion beam physics. One example of the importance and extreme nature of beam physics in HED research is the requirement in the Fast Ignitor scheme of inertial fusion to heat a compressed DT fusion pellet to keV temperatures by injection of laser-driven electron or ion beams of giga-Amp current. Even in modest experiments presently being performed on the laser-acceleration of ions from solids, mega-amp currents of MeV electrons must be transported through solid foils, requiring almost complete return current neutralization, and giving rise to a wide variety of beam-plasma instabilities. As keynote talks our group promoted Ion Acceleration (plenary talk by A. MacKinnon), which historically has grown out of inertial fusion research, and HIF Accelerator Research (invited talk by A. Friedman), which will require impressive advancements in space-charge-limited ion beam physics and in understanding the generation and transport of neutralized ion beams. A unifying aspect of High Energy Density applications was the physics of particle beams inside of solids, which is proving to

  7. High energy, low inductance, high current fiberglass energy storage capacitor for the Atlas Machine Marx modules

    CERN Document Server

    Cooper, R A; Ennis, J B; Cochrane, J C; Reass, W A; Parsons, W M

    1999-01-01

    The Los Alamos National Laboratory's Atlas Marx design team envisioned a double ended plastic case 60 kV, 15 nH, 650 kA, energy storage capacitor. A design specification was established and submitted to various vendors. Maxwell Energy Products drew from its development of large fiberglass case, high voltage, low inductance "FASTCAP" capacitors manufactured for Maxwell Technologies' ACE II, ACE III and ACE IV machines. This paper discusses the LANL specification and Maxwell Energy Products' successful design, Model No. 39232, 34.1 mu F, 60 kV, 13*29*27", the only capacitor qualified by LANL for the 23 Mega Joule Atlas application. Maxwell's past experience in this type of capacitor is covered. The performance data is reviewed and the life test data compared to the original calculated design life. Challenges included Maxwell's "keep it simple " design goal which was maintained to minimize the effort required to create and manufacture a nearly 600 pound capacitor. (1 refs).

  8. Baryon number violation in high energy collisions

    International Nuclear Information System (INIS)

    Farrar, G.R.; Meng, R.

    1990-08-01

    We study the phenomenology of baryon number violation induced by electroweak instantons. We find that if the naive-instanton amplitudes were valid for arbitrarily high energies, the event rate at the SSC would be a few per hour, with a typical event consisting of 3 'primary' antileptons and 7 'primary' antiquark jets, accompanied by ≅ 85 electroweak gauge bosons, having a sharp threshold in the total sub-energy at about 17 TeV. We describe how to establish their electroweak-instanton-induced origin. The naive instanton approximation is known to overestimate the rate for these processes, so this work focusses attention on the need for more accurate calculations, and for a calculational method which is appropriate when the energy of the initial particles is above the sphaleron energy. (orig.)

  9. High Energy Astrophysics Science Archive Research Center

    Data.gov (United States)

    National Aeronautics and Space Administration — The High Energy Astrophysics Science Archive Research Center (HEASARC) is the primary archive for NASA missions dealing with extremely energetic phenomena, from...

  10. Proceedings of the symposium on high energy detectors

    International Nuclear Information System (INIS)

    1980-02-01

    Since the study meeting on measuring instruments held three years ago, large change has arisen. Valuable experiences have been accumulated by the successful conclusion of the first term experiments in the National Laboratory for High Energy Physics. The improvement of detectors and the development of new detectors are strongly desired just before starting the future plans. In low energy field also, the steady advance has been accomplished. This symposium was held in such situation on September 18 and 19, 1979, at KEK, and aimed at clarifying the present status and accomplishment of high energy detectors, and setting forth the future prospect. On the first day, the review of recent topics concerning position detectors and particle-identifying detectors, and the reports on drift chambers, liquid wire chambers and the single wire chambers using charge division method were mainly presented. On the second day, the reports on the electronics related to position detectors, particle-identifying detectors, calorimeters, and the development of new detectors, the consideration on multiple tracks as the future plan, and the review of transition radiation detectors were presented. The results of this symposium will surely be utilized for the high energy experiments hereafter. The 26 papers presented are outlined. (Kako, I.)

  11. Integration of adaptive optics into highEnergy laser modeling and simulation

    Science.gov (United States)

    2017-06-01

    contain hundreds of actuators with high control bandwidths and low hysteresis, all of which are ideal parameters for accurate reconstruction of higher... Available : https://web.archive.org/web/20110111093235/http: //csis.org/blog/missile-defense-umbrella [10] C. Kopp, “ High energy laser directed energy...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS INTEGRATION OF ADAPTIVE OPTICS INTO HIGH ENERGY LASER MODELING AND SIMULATION by Donald Puent

  12. Recent research on nuclear reaction using high-energy proton and neutron

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Tokushi [Tokyo Univ., Tanashi (Japan). Inst. for Nuclear Study

    1997-11-01

    The presently available high-energy neutron beam facilities are introduced. Then some interesting research on nuclear reaction using high-energy protons are reported such as the intermediate mass fragments emission and neutron spectrum measurements on various targets. As the important research using high-energy neutron, the (p,n) reactions on Mn, Fe, and Ni, the elastic scattering of neutrons, and the shielding experiments are discussed. (author)

  13. Trends in experimental high-energy physics

    International Nuclear Information System (INIS)

    Sanford, T.W.L.

    1982-06-01

    Data from a scan of papers in Physical Review Letters and Physical Review are used to demonstrate that American high-energy physicists show a pattern of accelerator and instrumentation usage characteristic of that expected from the logistic-substitution model of Marchetti and of Fischer and Pry

  14. Microphysics, cosmology, and high energy astrophysics

    International Nuclear Information System (INIS)

    Hoyle, F.

    1974-01-01

    The discussion of microphysics, cosmology, and high energy astrophysics includes particle motion in an electromagnetic field, conformal transformations, conformally invariant theory of gravitation, particle orbits, Friedman models with k = 0, +-1, the history and present status of steady-state cosmology, and the nature of mass. (U.S.)

  15. High energy excitations in itinerant ferromagnets

    International Nuclear Information System (INIS)

    Prange, R.E.

    1984-01-01

    Itinerant magnets, those whose electrons move throughout the crystal, are described by band theory. Single particle excitations offer confirmation of band theory, but their description requires important corrections. The energetics of magnetism in iron and nickel is also described in band theory but requires complex bands. Magnetism above the critical temperature and the location of the critical temperature offer discriminants between the two major models of magnetism at high temperature and can be addressed by high energy excitations

  16. Hardon cross sections at ultra high energies

    International Nuclear Information System (INIS)

    Yodh, G.B.

    1987-01-01

    A review of results on total hadronic cross sections at ultra high energies obtained from a study of longitudinal development of cosmic ray air showers is given. The experimental observations show that proton-air inelastic cross section increases from 275 mb to over 500 mb as the collision energy in the center of mass increases from 20 GeV to 20 TeV. The proton-air inelastic cross section, obtained from cosmic ray data at √s = 30 TeV, is compared with calculations using various different models for the energy variation of the parameters of the elementary proton-proton interaction. Three conclusions are derived

  17. An investigation of fission models for high-energy radiation transport calculations

    International Nuclear Information System (INIS)

    Armstrong, T.W.; Cloth, P.; Filges, D.; Neef, R.D.

    1983-07-01

    An investigation of high-energy fission models for use in the HETC code has been made. The validation work has been directed checking the accuracy of the high-energy radiation transport computer code HETC to investigate the appropriate model for routine calculations, particularly for spallation neutron source applications. Model calculations are given in terms of neutron production, fission fragment energy release, and residual nuclei production for high-energy protons incident on thin uranium targets. The effect of the fission models on neutron production from thick uranium targets is also shown. (orig.)

  18. Maximal Entanglement in High Energy Physics

    Directory of Open Access Journals (Sweden)

    Alba Cervera-Lierta, José I. Latorre, Juan Rojo, Luca Rottoli

    2017-11-01

    Full Text Available We analyze how maximal entanglement is generated at the fundamental level in QED by studying correlations between helicity states in tree-level scattering processes at high energy. We demonstrate that two mechanisms for the generation of maximal entanglement are at work: i $s$-channel processes where the virtual photon carries equal overlaps of the helicities of the final state particles, and ii the indistinguishable superposition between $t$- and $u$-channels. We then study whether requiring maximal entanglement constrains the coupling structure of QED and the weak interactions. In the case of photon-electron interactions unconstrained by gauge symmetry, we show how this requirement allows reproducing QED. For $Z$-mediated weak scattering, the maximal entanglement principle leads to non-trivial predictions for the value of the weak mixing angle $\\theta_W$. Our results are a first step towards understanding the connections between maximal entanglement and the fundamental symmetries of high-energy physics.

  19. New aspects of high energy heavy-ion transfer reactions

    International Nuclear Information System (INIS)

    Scott, D.K.

    1975-03-01

    New aspects of heavy ion reactions at incident energies in the region of 10 MeV/nucleon are discussed with an emphasis on the peripheral nature of the collisions, which leads to simplicities in the differential cross sections. The distortion of the peripheral distribution through the interference of direct and multistep processes is used to illustrate aspects of high energy reactions unique to heavy ions. The simplicities of the distributions for reactions on lighter nuclei are exploited to give new information about nuclear structure from direct and compound reactions at high energy. (16 figures, 32 references) (U.S.)

  20. High efficiency, monolithic fiber chirped pulse amplification system for high energy femtosecond pulse generation.

    Science.gov (United States)

    Peng, Xiang; Kim, Kyungbum; Mielke, Michael; Jennings, Stephen; Masor, Gordon; Stohl, Dave; Chavez-Pirson, Arturo; Nguyen, Dan T; Rhonehouse, Dan; Zong, Jie; Churin, Dmitriy; Peyghambarian, N

    2013-10-21

    A novel monolithic fiber-optic chirped pulse amplification (CPA) system for high energy, femtosecond pulse generation is proposed and experimentally demonstrated. By employing a high gain amplifier comprising merely 20 cm of high efficiency media (HEM) gain fiber, an optimal balance of output pulse energy, optical efficiency, and B-integral is achieved. The HEM amplifier is fabricated from erbium-doped phosphate glass fiber and yields gain of 1.443 dB/cm with slope efficiency >45%. We experimentally demonstrate near diffraction-limited beam quality and near transform-limited femtosecond pulse quality at 1.55 µm wavelength. With pulse energy >100 µJ and pulse duration of 636 fs (FWHM), the peak power is estimated to be ~160 MW. NAVAIR Public Release Distribution Statement A-"Approved for Public release; distribution is unlimited".