WorldWideScience

Sample records for high endothelial cells

  1. High-density lipoprotein endocytosis in endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Stefanie; Fruhwürth; Margit; Pavelka; Robert; Bittman; Werner; J; Kovacs; Katharina; M; Walter; Clemens; Rhrl; Herbert; Stangl

    2013-01-01

    AIM: To describe the way stations of high-density lipoprotein(HDL) uptake and its lipid exchange in endothelial cells in vitro and in vivo. METHODS: A combination of fluorescence microscopy using novel fluorescent cholesterol surrogates and electron microscopy was used to analyze HDL endocytosis in great detail in primary human endothelial cells. Further, HDL uptake was quantified using radio-labeled HDL particles. To validate the in vitro findings mice were injected with fluorescently labeled HDL and particle uptake in the liver was analyzed using fluorescencemicroscopy. RESULTS: HDL uptake occurred via clathrin-coated pits, tubular endosomes and multivesicular bodies in human umbilical vein endothelial cells. During uptake and resecretion, HDL-derived cholesterol was exchanged at a faster rate than cholesteryl oleate, resembling the HDL particle pathway seen in hepatic cells. In addition, lysosomes were not involved in this process and thus HDL degradation was not detectable. In vivo, we found HDL mainly localized in mouse hepatic endothelial cells. HDL was not detected in parenchymal liver cells, indicating that lipid transfer from HDL to hepatocytes occurs primarily via scavenger receptor, class B, type Ⅰ mediated selective uptake without concomitant HDL endocytosis. CONCLUSION: HDL endocytosis occurs via clathrincoated pits, tubular endosomes and multivesicular bodies in human endothelial cells. Mouse endothelial cells showed a similar HDL uptake pattern in vivo indicating that the endothelium is one major site of HDL endocytosis and transcytosis.

  2. High glucose augments stress-induced apoptosis in endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Wenwen Zhong; Yang Liu; Hui Tian

    2009-01-01

    Hyperglycemia has been identified as one of the important factors involved in the microvascular complications of diabetes, and has been related to increased cardiovascular mortality. Endothelial damage and dysfunction result from diabetes; therefore, the aim of this study was to determine the response of endothelial cells to stressful stimuli, modelled in normal and high glucose concentrations in vitro. Eahy 926 endothelial cells were cultured in 5 mmol/L or 30 mmol/L glucose conditions for a 24 hour period and oxidative stress was induced by exposure to hydrogen peroxide (H2O2) or tumour necrosis factor- α (TNF- α ), following which the protective effect of the glucocorticoid dexamethasone was assessed. Apoptosis, necrosis and cell viability were determined using an ELISA for DNA fragmentation, an enzymatic lactate dehydrogenase assay and an MTT assay, respectively. High glucose significantly increased the susceptibility of Eahy 926 cells to apoptosis in the presence of 500 μmol/L H2O2, above that induced in normal glucose (P<0.02). A reduction of H2O2- and TNF- α -induced apoptosis occurred in both high and low glucose after treatment with dexametha-sone (P<0.05). Conclusion high glucose is effective in significantly augmenting stress caused by H2O2, but not in causing stress alone. These findings suggest a mechanism by which short term hyperglycemia may facilitate and augment endothelial damage.

  3. High glucose mediates endothelial-to-chondrocyte transition in human aortic endothelial cells

    Directory of Open Access Journals (Sweden)

    Tang Rining

    2012-09-01

    Full Text Available Abstract Background Vascular calcification is one of the common complications in diabetes mellitus. Many studies have shown that high glucose (HG caused cardiovascular calcification, but its underlying mechanism is not fully understood. Recently, medial calcification has been most commonly described in the vessels of patients with diabetes. Chondrocytes were involved in the medial calcification. Recent studies have shown that the conversion into mesenchymal stem cells (MSCs via the endothelial-to-mesenchymal transition (EndMT could be triggered in chondrocytes. Our previous research has indicated that HG induced EndMT in human aortic endothelial cells (HAECs. Therefore, we addressed the question of whether HG-induced EndMT could be transitioned into MSCs and differentiated into chondrocytes. Methods HAECs were divided into three groups: a normal glucose (NG group, HG group (30 mmol/L, and mannitol (5.5 mmol/L NG + 24.5 mmol/L group. Pathological changes were investigated using fluorescence microscopy and electron microscopy. Immunofluorescence staining was performed to detect the co-expression of endothelial markers, such as CD31, and fibroblast markers, such as fibroblast-specific protein 1 (FSP-1. The expression of FSP-1 was detected by real time-PCR and western blots. Endothelial-derived MSCs were grown in MSC medium for one week. The expression of the MSCs markers STRO-1, CD44, CD10 and the chondrocyte marker SOX9 was detected by immunofluorescence staining and western blots. Chondrocyte expression was detected by alcian blue staining. Calcium deposits were analyzed by alizarin red staining. Results The incubation of HAECs exposed to HG resulted in a fibroblast-like phenotype. Double staining of the HAECs indicated a co-localization of CD31 and FSP-1. The expression of FSP-1 was significantly increased in the HG group, and the cells undergoing EndMT also expressed STRO-1, CD44 and SOX9 compared with the controls (P  Conclusions Our

  4. Propofol protects against high glucose-induced endothelial adhesion molecules expression in human umbilical vein endothelial cells

    Directory of Open Access Journals (Sweden)

    Zhu Minmin

    2013-01-01

    Full Text Available Abstract Background Hyperglycemia could induce oxidative stress, activate transcription factor nuclear factor kappa B (NF-κB, up-regulate expression of endothelial adhesion molecules, and lead to endothelial injury. Studies have indicated that propofol could attenuate oxidative stress and suppress NF-κB activation in some situations. In the present study, we examined whether and how propofol improved high glucose-induced up-regulation of endothelial adhesion molecules in human umbilical vein endothelial cells (HUVECs. Methods Protein expression of endothelial adhesion molecules, NF-κB, inhibitory subunit of NF-κBα (IκBα, protein kinase Cβ2 (PKCβ2, and phosphorylation of PKCβ2 (Ser660 were measured by Western blot. NF-κB activity was measured by electrophoretic mobility shift assay. PKC activity was measured with SignaTECT PKC assay system. Superoxide anion (O2.- accumulation was measured with the reduction of ferricytochrome c assay. Human peripheral mononuclear cells were prepared with Histopaque-1077 solution. Results High glucose induced the expression of endothelial selectin (E-selectin, intercellular adhesion molecule 1 (ICAM-1, vascular cell adhesion molecule 1 (VCAM-1, and increased mononuclear-endothelial adhesion. High glucose induced O2.- accumulation, PKCβ2 phosphorylation and PKC activation. Further, high glucose decreased IκBα expression in cytoplasm, increased the translocation of NF-κB from cytoplasm to nuclear, and induced NF-κB activation. Importantly, we found these high glucose-mediated effects were attenuated by propofol pretreatment. Moreover, CGP53353, a selective PKCβ2 inhibitor, decreased high glucose-induced NF-κB activation, adhesion molecules expression, and mononuclear-endothelial adhesion. Conclusion Propofol, via decreasing O2.- accumulation, down-regulating PKCβ2 Ser660 phosphorylation and PKC as well as NF-κB activity, attenuated high glucose-induced endothelial adhesion molecules expression

  5. High precision measurement of electrical resistance across endothelial cell monolayers.

    Science.gov (United States)

    Tschugguel, W; Zhegu, Z; Gajdzik, L; Maier, M; Binder, B R; Graf, J

    1995-05-01

    Effects of vasoactive agonists on endothelial permeability was assessed by measurement of transendothelial electrical resistance (TEER) of human umbilical vein endothelial cells (HUVECs) grown on porous polycarbonate supports. Because of the low values of TEER obtained in this preparation (< 5 omega cm2) a design of an Ussing type recording chamber was chosen that provided for a homogeneous electric field across the monolayer and for proper correction of series resistances. Precision current pulses and appropriate rates of sampling and averaging of the voltage signal allowed for measurement of < 0.1 omega resistance changes of the endothelium on top of a 21 omega series resistance of the support and bathing fluid layers. Histamine (10 microM) and thrombin (10 U/ml) induced an abrupt and substantial decrease of TEER, bradykinin (1 microM) was less effective, PAF (380 nM) and LTC4 (1 microM) had no effect. TEER was also reduced by the calcium ionophore A-23187 (10 microM). The technique allows for measurements of TEER in low resistance monolayer cultures with high precision and time resolution. The results obtained extend previous observations in providing quantitative data on the increase of permeability of HUVECs in response to vasoactive agonists.

  6. Tumor endothelial cells express high pentraxin 3 levels.

    Science.gov (United States)

    Hida, Kyoko; Maishi, Nako; Kawamoto, Taisuke; Akiyama, Kosuke; Ohga, Noritaka; Hida, Yasuhiro; Yamada, Kenji; Hojo, Takayuki; Kikuchi, Hiroshi; Sato, Masumi; Torii, Chisaho; Shinohara, Nobuo; Shindoh, Masanobu

    2016-12-01

    It has been described that tumor progression has many similarities to inflammation and wound healing in terms of the signaling processes involved. Among biological responses, angiogenesis, which is necessary for tumor progression and metastasis, is a common hallmark; therefore, tumor blood vessels have been considered as important therapeutic targets in anticancer therapy. We focused on pentraxin 3 (PTX3), which is a marker of cancer-related inflammation, but we found no reports on its expression and function in tumor blood vessels. Here we showed that PTX3 is expressed in mouse and human tumor blood vessels based on immunohistochemical analysis. We found that PTX3 is upregulated in primary mouse and human tumor endothelial cells compared to normal endothelial cells. We also showed that PTX3 plays an important role in the proliferation of the tumor endothelial cells. These results suggest that PTX3 is an important target for antiangiogenic therapy.

  7. Converting enzyme inhibitor temocaprilat prevents high glucose-mediated suppression of human aortic endothelial cell proliferation.

    Science.gov (United States)

    Yasunari, Kenichi; Maeda, Kensaku; Watanabe, Takanori; Nakamura, Munehiro; Asada, Akira; Yoshikawa, Junichi

    2003-12-01

    We examined the involvement of the oxidative stress in high glucose-induced suppression of human aortic endothelial cell proliferation. Chronic glucose treatment for 72 h concentration-dependently (5.6-22.2 mol/l) inhibited human coronary endothelial cell proliferation. Temocaprilat, an angiotensin-converting enzyme inhibitor, at 10 nmol/l to 1 micromol/l inhibited high glucose (22.2 mmol/l)-mediated suppression of human aortic endothelial cell proliferation. Temocaprilat at 1 micromol/l inhibited high glucose-induced membrane-bound protein kinase C activity in human aortic endothelial cells. The protein kinase C inhibitors calphostin C 100 nmol/l or chelerythrine 1 micromol/l inhibited high glucose-mediated suppression of human aortic endothelial cell proliferation. Chronic high glucose treatment for 72 h increased intracellular oxidative stress, directly measured by flow cytometry using carboxydichlorofluorescein diacetate bis-acetoxymethyl ester, and this increase was significantly suppressed by temocaprilat 10 nmol/l to 1 micromol/l. Bradykinin B2 receptor antagonist icatibant 100 nmol/l significantly reduced the action of temocaprilat; whereas bradykinin B1 receptor antagonist des-Arg9-Leu8-bradykinin 100 nmol/l had no effect. These findings suggest that high glucose inhibits human aortic endothelial cell proliferation and that the angiotensin-converting enzyme inhibitor temocaprilat inhibits high glucose-mediated suppression of human aortic endothelial cell proliferation, possibly through suppression of protein kinase C, bradykinin B2 receptors and oxidative stress.

  8. Expansion of Endothelial Progenitor Cells in High Density Dot Culture of Rat Bone Marrow Cells

    Science.gov (United States)

    Wang, Ling; Kretlow, James D.; Zhou, Guangdong; Cao, Yilin; Liu, Wei; Zhang, Wen Jie

    2014-01-01

    In vitro expansion of endothelial progenitor cells (EPCs) remains a challenge in stem cell research and its application. We hypothesize that high density culture is able to expand EPCs from bone marrow by mimicking cell-cell interactions of the bone marrow niche. To test the hypothesis, rat bone marrow cells were either cultured in high density (2×105 cells/cm2) by seeding total 9×105 cells into six high density dots or cultured in regular density (1.6×104 cells/cm2) with the same total number of cells. Flow cytometric analyses of the cells cultured for 15 days showed that high density cells exhibited smaller cell size and higher levels of marker expression related to EPCs when compared to regular density cultured cells. Functionally, these cells exhibited strong angiogenic potentials with better tubal formation in vitro and potent rescue of mouse ischemic limbs in vivo with their integration into neo-capillary structure. Global gene chip and ELISA analyses revealed up-regulated gene expression of adhesion molecules and enhanced protein release of pro-angiogenic growth factors in high density cultured cells. In summary, high density cell culture promotes expansion of bone marrow contained EPCs that are able to enhance tissue angiogenesis via paracrine growth factors and direct differentiation into endothelial cells. PMID:25254487

  9. Human endothelial progenitor cells internalize high-density lipoprotein.

    Science.gov (United States)

    Srisen, Kaemisa; Röhrl, Clemens; Meisslitzer-Ruppitsch, Claudia; Ranftler, Carmen; Ellinger, Adolf; Pavelka, Margit; Neumüller, Josef

    2013-01-01

    Endothelial progenitor cells (EPCs) originate either directly from hematopoietic stem cells or from a subpopulation of monocytes. Controversial views about intracellular lipid traffic prompted us to analyze the uptake of human high density lipoprotein (HDL), and HDL-cholesterol in human monocytic EPCs. Fluorescence and electron microscopy were used to investigate distribution and intracellular trafficking of HDL and its associated cholesterol using fluorescent surrogates (bodipy-cholesterol and bodipy-cholesteryl oleate), cytochemical labels and fluorochromes including horseradish peroxidase and Alexa Fluor® 568. Uptake and intracellular transport of HDL were demonstrated after internalization periods from 0.5 to 4 hours. In case of HDL-Alexa Fluor® 568, bodipy-cholesterol and bodipy-cholesteryl oleate, a photooxidation method was carried out. HDL-specific reaction products were present in invaginations of the plasma membrane at each time of treatment within endocytic vesicles, in multivesicular bodies and at longer periods of uptake, also in lysosomes. Some HDL-positive endosomes were arranged in form of "strings of pearl"- like structures. HDL-positive multivesicular bodies exhibited intensive staining of limiting and vesicular membranes. Multivesicular bodies of HDL-Alexa Fluor® 568-treated EPCs showed multilamellar intra-vacuolar membranes. At all periods of treatment, labeled endocytic vesicles and organelles were apparent close to the cell surface and in perinuclear areas around the Golgi apparatus. No HDL-related particles could be demonstrated close to its cisterns. Electron tomographic reconstructions showed an accumulation of HDL-containing endosomes close to the trans-Golgi-network. HDL-derived bodipy-cholesterol was localized in endosomal vesicles, multivesicular bodies, lysosomes and in many of the stacked Golgi cisternae and the trans-Golgi-network Internalized HDL-derived bodipy-cholesteryl oleate was channeled into the lysosomal intraellular

  10. Human endothelial progenitor cells internalize high-density lipoprotein.

    Directory of Open Access Journals (Sweden)

    Kaemisa Srisen

    Full Text Available Endothelial progenitor cells (EPCs originate either directly from hematopoietic stem cells or from a subpopulation of monocytes. Controversial views about intracellular lipid traffic prompted us to analyze the uptake of human high density lipoprotein (HDL, and HDL-cholesterol in human monocytic EPCs. Fluorescence and electron microscopy were used to investigate distribution and intracellular trafficking of HDL and its associated cholesterol using fluorescent surrogates (bodipy-cholesterol and bodipy-cholesteryl oleate, cytochemical labels and fluorochromes including horseradish peroxidase and Alexa Fluor® 568. Uptake and intracellular transport of HDL were demonstrated after internalization periods from 0.5 to 4 hours. In case of HDL-Alexa Fluor® 568, bodipy-cholesterol and bodipy-cholesteryl oleate, a photooxidation method was carried out. HDL-specific reaction products were present in invaginations of the plasma membrane at each time of treatment within endocytic vesicles, in multivesicular bodies and at longer periods of uptake, also in lysosomes. Some HDL-positive endosomes were arranged in form of "strings of pearl"- like structures. HDL-positive multivesicular bodies exhibited intensive staining of limiting and vesicular membranes. Multivesicular bodies of HDL-Alexa Fluor® 568-treated EPCs showed multilamellar intra-vacuolar membranes. At all periods of treatment, labeled endocytic vesicles and organelles were apparent close to the cell surface and in perinuclear areas around the Golgi apparatus. No HDL-related particles could be demonstrated close to its cisterns. Electron tomographic reconstructions showed an accumulation of HDL-containing endosomes close to the trans-Golgi-network. HDL-derived bodipy-cholesterol was localized in endosomal vesicles, multivesicular bodies, lysosomes and in many of the stacked Golgi cisternae and the trans-Golgi-network Internalized HDL-derived bodipy-cholesteryl oleate was channeled into the lysosomal

  11. Heme oxygenase-1-derived bilirubin protects endothelial cells against high glucose-induced damage.

    Science.gov (United States)

    He, Meihua; Nitti, Mariapaola; Piras, Sabrina; Furfaro, Anna Lisa; Traverso, Nicola; Pronzato, Maria Adelaide; Mann, Giovanni E

    2015-12-01

    Hyperglycemia and diabetes are associated with endothelial cell dysfunction arising from enhanced oxidative injury, leading to the progression of diabetic vascular pathologies. The redox-sensitive transcription factor nuclear factor-E2-related factor 2 (Nrf2) is a master regulator of antioxidant genes, such as heme oxygenase-1 (HO-1), involved in cellular defenses against oxidative stress. We have investigated the pathways involved in high glucose-induced activation of HO-1 in endothelial cells and examined the molecular mechanisms underlying cytoprotection. Elevated d-glucose increased intracellular generation of reactive oxygen species (ROS), leading to nuclear translocation of Nrf2 and HO-1 expression in bovine aortic endothelial cells, with no changes in cell viability. Superoxide scavenging and inhibition of endothelial nitric oxide synthase (eNOS) abrogated upregulation of HO-1 expression by elevated glucose. Inhibition of HO-1 increased the sensitivity of endothelial cells to high glucose-mediated damage, while addition of bilirubin restored cell viability. Our findings establish that exposure of endothelial cells to high glucose leads to activation of endogenous antioxidant defense genes via the Nrf2/ARE pathway. Upregulation of HO-1 provides cytoprotection against high glucose-induced oxidative stress through the antioxidant properties of bilirubin. Modulation of the Nrf2 pathway in the early stages of diabetes may thus protect against sustained damage by hyperglycemia during progression of the disease.

  12. Identification of Tumor Endothelial Cells with High Aldehyde Dehydrogenase Activity and a Highly Angiogenic Phenotype

    Science.gov (United States)

    Maishi, Nako; Ohga, Noritaka; Hida, Yasuhiro; Kawamoto, Taisuke; Iida, Junichiro; Shindoh, Masanobu; Tsuchiya, Kunihiko; Shinohara, Nobuo; Hida, Kyoko

    2014-01-01

    Tumor blood vessels play an important role in tumor progression and metastasis. It has been reported that tumor endothelial cells (TECs) exhibit highly angiogenic phenotypes compared with those of normal endothelial cells (NECs). TECs show higher proliferative and migratory abilities than those NECs, together with upregulation of vascular endothelial growth factor (VEGF) and VEGF receptor 2 (VEGFR2). Furthermore, compared with NECs, stem cell markers such as Sca-1, CD90, and multidrug resistance 1 are upregulated in TECs, suggesting that stem-like cells exist in tumor blood vessels. In this study, to reveal the biological role of stem-like TECs, we analyzed expression of the stem cell marker aldehyde dehydrogenase (ALDH) in TECs and characterized ALDHhigh TECs. TECs and NECs were isolated from melanoma-xenografted nude mice and normal dermis, respectively. ALDH mRNA expression and activity were higher in TECs than those in NECs. Next, ALDHhigh/low TECs were isolated by fluorescence-activated cell sorting to compare their characteristics. Compared with ALDHlow TECs, ALDHhigh TECs formed more tubes on Matrigel-coated plates and sustained the tubular networks longer. Furthermore, VEGFR2 expression was higher in ALDHhigh TECs than that in ALDHlow TECs. In addition, ALDH was expressed in the tumor blood vessels of in vivo mouse models of melanoma and oral carcinoma, but not in normal blood vessels. These findings indicate that ALDHhigh TECs exhibit an angiogenic phenotype. Stem-like TECs may have an essential role in tumor angiogenesis. PMID:25437864

  13. Identification of tumor endothelial cells with high aldehyde dehydrogenase activity and a highly angiogenic phenotype.

    Directory of Open Access Journals (Sweden)

    Hitomi Ohmura-Kakutani

    Full Text Available Tumor blood vessels play an important role in tumor progression and metastasis. It has been reported that tumor endothelial cells (TECs exhibit highly angiogenic phenotypes compared with those of normal endothelial cells (NECs. TECs show higher proliferative and migratory abilities than those NECs, together with upregulation of vascular endothelial growth factor (VEGF and VEGF receptor 2 (VEGFR2. Furthermore, compared with NECs, stem cell markers such as Sca-1, CD90, and multidrug resistance 1 are upregulated in TECs, suggesting that stem-like cells exist in tumor blood vessels. In this study, to reveal the biological role of stem-like TECs, we analyzed expression of the stem cell marker aldehyde dehydrogenase (ALDH in TECs and characterized ALDHhigh TECs. TECs and NECs were isolated from melanoma-xenografted nude mice and normal dermis, respectively. ALDH mRNA expression and activity were higher in TECs than those in NECs. Next, ALDHhigh/low TECs were isolated by fluorescence-activated cell sorting to compare their characteristics. Compared with ALDHlow TECs, ALDHhigh TECs formed more tubes on Matrigel-coated plates and sustained the tubular networks longer. Furthermore, VEGFR2 expression was higher in ALDHhigh TECs than that in ALDHlow TECs. In addition, ALDH was expressed in the tumor blood vessels of in vivo mouse models of melanoma and oral carcinoma, but not in normal blood vessels. These findings indicate that ALDHhigh TECs exhibit an angiogenic phenotype. Stem-like TECs may have an essential role in tumor angiogenesis.

  14. Angiopoietin-1 protects myocardial endothelial cell function blunted by angiopoietin-2 and high glucose condition

    Institute of Scientific and Technical Information of China (English)

    Qin-hui TUO; Guo-zuo XIONG; Heng ZENG; Hei-di YU; Shao-wei SUN; Hong-yan LING; Bing-yang ZHU; Duan-fang LIAO; Jian-xiong CHEN

    2011-01-01

    Aim:To evaluate the effects of angiopoietin-1 (Ang-1) on myocardial endothelial cell function under high glucose (HG) condition.Methods:Mouse heart myocardial endothelial cells (MHMECs) were cultured and incubated under HG (25 mmol/L) or normal glucose (NG, 5 mmol/L) conditions for 72 h. MTT was used to determine cellular viability, and TUNEL assay and caspase-3 enzyme linked immunosorbent assays were used to assay endothelial apoptosis induced by serum starvation. Immunoprecipitation and Western blot analysis were used to analyze protein phosphorylation and expression. Endothelial tube formation was used as an in vitro assay for angiogenesis.Results:Exposure of MHMECs to HG resulted in dramatic decreases in phosphorylation of the Tie-2 receptor and its downstream signaling partners, Akt/eNOS, compared to that under NG conditions. Ang-1 (250 ng/mL) increased Tie-2 activation, inhibited cell apoptosis, and promoted angiogenesis. Ang-1-mediated protection of endothelial function was blunted by Ang-2 (25 ng/mL).Conclusion:Ang-1 activates the Tie-2 pathway and restores hyperglycemia-induced myocardial microvascular endothelial dysfunction.This suggests a protective role of Ang-1 in the ischemic myocardium, particularly in hearts affected by hyperglycemia or diabetes.

  15. [Endothelial cell adhesion molecules].

    Science.gov (United States)

    Ivanov, A N; Norkin, I A; Puchin'ian, D M; Shirokov, V Iu; Zhdanova, O Iu

    2014-01-01

    The review presents current data concerning the functional role of endothelial cell adhesion molecules belonging to different structural families: integrins, selectins, cadherins, and the immunoglobulin super-family. In this manuscript the regulatory mechanisms and factors of adhesion molecules expression and distribution on the surface of endothelial cells are discussed. The data presented reveal the importance of adhesion molecules in the regulation of structural and functional state of endothelial cells in normal conditions and in pathology. Particular attention is paid to the importance of these molecules in the processes of physiological and pathological angiogenesis, regulation of permeability of the endothelial barrier and cell transmigration.

  16. Mecanotransduction and Endothelial Cells

    Institute of Scientific and Technical Information of China (English)

    S.MULLER; JF.; STOLTZ2

    2005-01-01

    1 IntroductionAtherosclerosis preferentially occurs in areas of complex blood flow where there are disturbed flow and low fluid shear stress, whereas laminar blood flow and high shear stress are atheroprotective~([1]). Reports of others and our studies suggest a steady laminar flow decreases some molecules and genes expression of vascular endothelial cells (EC) that may promote atherosclerosis, as well as it can differentially regulate production of many vasoactive factors at the level of gene expression an...

  17. Reverse-D-4F Increases the Number of Endothelial Progenitor Cells and Improves Endothelial Progenitor Cell Dysfunctions in High Fat Diet Mice.

    Science.gov (United States)

    Nana, Yang; Peng, Jiao; Jianlin, Zhang; Xiangjian, Zhang; Shutong, Yao; Enxin, Zhan; Bin, Li; Chuanlong, Zong; Hua, Tian; Yanhong, Si; Yunsai, Du; Shucun, Qin; Hui, Wang

    2015-01-01

    Although high density lipoprotein (HDL) improves the functions of endothelial progenitor cells (EPCs), the effect of HDL ApoAI mimetic peptide reverse-D-4F (Rev-D4F) on EPC mobilization and repair of EPC dysfunctions remains to be studied. In this study, we investigated the effects of Rev-D4F on peripheral blood cell subpopulations in C57 mice treated with a high fat diet and the mechanism of Rev-D4F in improving the function of EPCs impaired by tumor necrosis factor-α (TNF-α). The high fat diet significantly decreased the number of EPCs, EPC migratory functions, and the percentage of lymphocytes in the white blood cells. However, it significantly increased the number of white blood cells, the percentage of monocytes in the white blood cells, and the level of vascular endothelial growth factor (VEGF) and TNF-α in the plasma. Rev-D4F clearly inhibited the effect of the high fat diet on the quantification of peripheral blood cell subpopulations and cytokine levels, and increased stromal cell derived factor 1α (SDF-1α) in the plasma. We provided in vitro evidence that TNF-α impaired EPC proliferation, migration, and tube formation through inactive AKT and eNOS, which was restored by Rev-D4F treatment. In contrast, both the PI3-kinase (PI3K) inhibitor (LY294002) and AKT inhibitor (perifosine) obviously inhibited the restoration of Rev-4F on EPCs impaired by TNF-α. Our results suggested that Rev-D4F increases the quantity of endothelial progenitor cells through increasing the SDF-1α levels and decreasing the TNF-α level of peripheral blood in high fat diet-induced C57BL/6J mice, and restores TNF-α induced dysfunctions of EPCs partly through stimulating the PI3K/AKT signal pathway.

  18. Aldolase B knockdown prevents high glucose-induced methylglyoxal overproduction and cellular dysfunction in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Jianghai Liu

    Full Text Available We used cultured endothelial cells as a model to examine whether up-regulation of aldolase B and enhanced methylglyoxal (MG formation play an important role in high glucose-induced overproduction of advanced glycosylation endproducts (AGEs, oxidative stress and cellular dysfunction. High glucose (25 mM incubation up-regulated mRNA levels of aldose reductase (an enzyme converting glucose to fructose and aldolase B (a key enzyme that catalyzes MG formation from fructose and enhanced MG formation in human umbilical vein endothelial cells (HUVECs and HUVEC-derived EA. hy926 cells. High glucose-increased MG production in EA. hy926 cells was completely prevented by siRNA knockdown of aldolase B, but unaffected by siRNA knockdown of aldolase A, an enzyme responsible for MG formation during glycolysis. In addition, inhibition of cytochrome P450 2E1 or semicarbazide-sensitive amine oxidase which produces MG during the metabolism of lipid and proteins, respectively, did not alter MG production. Both high glucose (25 mM and MG (30, 100 µM increased the formation of N(ε-carboxyethyl-lysine (CEL, a MG-induced AGE, oxidative stress (determined by the generation of oxidized DCF, H(2O(2, protein carbonyls and 8-oxo-dG, O-GlcNAc modification (product of the hexosamine pathway, membrane protein kinase C activity and nuclear translocation of NF-κB in EA. hy926 cells. However, the above metabolic and signaling alterations induced by high glucose were completely prevented by knockdown of aldolase B and partially by application of aminoguanidine (a MG scavenger or alagebrium (an AGEs breaker. In conclusion, efficient inhibition of aldolase B can prevent high glucose-induced overproduction of MG and related cellular dysfunction in endothelial cells.

  19. Propofol attenuates high glucose-induced superoxide anion accumulation in human umbilical vein endothelial cells.

    Science.gov (United States)

    Wang, Jiaqiang; Jiang, Hui; Wang, Jing; Zhao, Yanjun; Zhu, Yun; Zhu, Minmin

    2016-12-01

    Perioperative hyperglycemia is a common clinical metabolic disorder. Hyperglycemia could induce endothelial apoptosis, dysfunction, and inflammation, resulting in endothelial injury. Propofol is a widely used anesthetic drug in clinical settings. Our previous studies indicated that propofol attenuated high glucose-induced endothelial apoptosis, dysfunction, and inflammation via inhibiting reactive oxygen species (ROS) accumulation. However, the mechanisms by which propofol reduces high glucose-induced endothelial ROS accumulation are still obscure. In this study, we examined how propofol attenuates high glucose-induced endothelial ROS accumulation. Compared with 5 mm glucose treatment, 15 mm glucose upregulated the expression of pin-1, phosphatase A2 (PP2A), p66(shc) and mitochondrial p66(shc) expression, increased p66(shc) -Ser(36) phosphorylation, and O2·- accumulation. More importantly, although propofol had no effect on 15 mm glucose-induced p66(shc) -Ser(36) phosphorylation and pin-1 expression, propofol could downregulated PP2A expression and p66(shc) expression in whole-cell and mitochondrion, resulting in the reduction of O2·- accumulation. Moreover, we demonstrated that the antioxidative effect of propofol was similar to that of calyculin A, an inhibitor of PP2A. In contrast, FTY720, an activator of PP2A, antagonized the effect of propofol. Our data indicated that the antioxidative effect of propofol was achieved by downregulating PP2A expression, resulting in the inhibition of p66(shc) -Ser(36) dephosphorylation and mitochondrial p66(shc) expression. © 2016 Société Française de Pharmacologie et de Thérapeutique.

  20. Defining minimum essential factors to derive highly pure human endothelial cells from iPS/ES cells in an animal substance-free system.

    Science.gov (United States)

    Wu, Yu-Ting; I-Shing Yu; Tsai, Kuen-Jer; Shih, Chien-Yu; Hwang, Shiaw-Min; Su, Ih-Jen; Chiang, Po-Min

    2015-04-13

    It is desirable to obtain unlimited supplies of endothelial cells for research and therapeutics. However, current methods of deriving endothelial cells from humans suffer from issues, such as limited supplies, contamination from animal substances, and lengthy/complicated procedures. In this article we developed a way to differentiate human iPS and ES cells to highly pure endothelial cells in 5 days. The chemically defined system is robust, easy to perform, and free of animal substances. Using the system, we verified that combined TGFβ and canonical Wnt agonists are essential and sufficient for iPS/ES cell-to-mesoderm transition. Besides, VEGF-KDR signaling alone is required for endothelial formation at high density while supplementation with FGF allows for colonial endothelial differentiation. Finally, anti-adsorptive agents could enrich the endothelial output by allowing selective attachment of the endothelial precursors. The system was validated to work on multiple iPS/ES cells lines to produce endothelial cells capable of forming capillary-like structures in vitro and integrating into host vasculature in vivo. In sum, the simple yet robust differentiation system permits the unlimited supply of human endothelial cells. The defined and animal substance-free nature of the system is compatible with clinical applications and characterization of endothelial differentiation in an unbiased manner.

  1. Tumour endothelial cells in high metastatic tumours promote metastasis via epigenetic dysregulation of biglycan

    Science.gov (United States)

    Maishi, Nako; Ohba, Yusuke; Akiyama, Kosuke; Ohga, Noritaka; Hamada, Jun-ichi; Nagao-Kitamoto, Hiroko; Alam, Mohammad Towfik; Yamamoto, Kazuyuki; Kawamoto, Taisuke; Inoue, Nobuo; Taketomi, Akinobu; Shindoh, Masanobu; Hida, Yasuhiro; Hida, Kyoko

    2016-01-01

    Tumour blood vessels are gateways for distant metastasis. Recent studies have revealed that tumour endothelial cells (TECs) demonstrate distinct phenotypes from their normal counterparts. We have demonstrated that features of TECs are different depending on tumour malignancy, suggesting that TECs communicate with surrounding tumour cells. However, the contribution of TECs to metastasis has not been elucidated. Here, we show that TECs actively promote tumour metastasis through a bidirectional interaction between tumour cells and TECs. Co-implantation of TECs isolated from highly metastatic tumours accelerated lung metastases of low metastatic tumours. Biglycan, a small leucine-rich repeat proteoglycan secreted from TECs, activated tumour cell migration via nuclear factor-κB and extracellular signal–regulated kinase 1/2. Biglycan expression was upregulated by DNA demethylation in TECs. Collectively, our results demonstrate that TECs are altered in their microenvironment and, in turn, instigate tumour cells to metastasize, which is a novel mechanism for tumour metastasis. PMID:27295191

  2. Effects of endomorphins on human umbilical vein endothelial cells under high glucose.

    Science.gov (United States)

    Liu, Jing; Wei, Suhong; Tian, Limin; Yan, Liping; Guo, Qian; Ma, Xiaoqin

    2011-01-01

    The endomorphin-1 (EM1) and endomorphin-2 (EM2) are endogenous opioid peptides, which modulate extensive bioactivities such as pain, cardiovascular responses, immunological responses and so on. The present study was undertaken to investigate the effects of EM1/EM2 on the primary cultured human umbilical vein endothelial cells (HUVECs) damaged by high glucose. PI AnnexinV-FITC detection was performed to evaluate the apoptosis rate. Levels of nitric oxide (NO) and nitric oxide synthase (NOS) activity were measured by the Griess reaction and the conversion of 3H-arginine to 3H-citrulline, respectively. Endothelin-1 (ET-1) was evaluated by the enzyme-linked immunosorbent assay (ELISA). Cell proliferation was determined by the MTT viability assay. mRNA expression of endothelial nitric oxide synthase (eNOS) and ET-1 were measured by real-time PCR. Our data showed that EM1/EM2 inhibited cell apoptosis. The high glucose induced increase in expression of NO, NOS and ET-1 were significantly attenuated by pretreatment with EM1/EM2 in a dose dependent manner. In addition, EM1/EM2 suppressed the mRNA eNOS and mRNA ET-1 expression in HUVECs under high glucose conditions. Naloxone, the nonselective opioid receptor antagonist, did not influence the mRNA eNOS expression when it was administrated on its own; but it could significantly antagonize the effects induced by EM1/EM2. Furthermore, in all assay systems, EM1 was more potent than EM2. The results suggest that EM1/EM2 have a beneficial effect in protecting against the endothelial dysfunction by high glucose in vitro, and these effects were mediated by the opioid receptors in HUVECs.

  3. Protective Pleiotropic Effect of Flavonoids on NAD+ Levels in Endothelial Cells Exposed to High Glucose

    Directory of Open Access Journals (Sweden)

    Daniëlle M. P. H. J. Boesten

    2015-01-01

    Full Text Available NAD+ is important for oxidative metabolism by serving as an electron transporter. Hyperglycemia decreases NAD+ levels by activation of the polyol pathway and by overactivation of poly(ADP-ribose-polymerase (PARP. We examined the protective role of three structurally related flavonoids (rutin, quercetin, and flavone during high glucose conditions in an in vitro model using human umbilical vein endothelial cells (HUVECs. Additionally we assessed the ability of these flavonoids to inhibit aldose reductase enzyme activity. We have previously shown that flavonoids can inhibit PARP activation. Extending these studies, we here provide evidence that flavonoids are also able to protect endothelial cells against a high glucose induced decrease in NAD+. In addition, we established that flavonoids are able to inhibit aldose reductase, the key enzyme in the polyol pathway. We conclude that this protective effect of flavonoids on NAD+ levels is a combination of the flavonoids ability to inhibit both PARP activation and aldose reductase enzyme activity. This study shows that flavonoids, by a combination of effects, maintain the redox state of the cell during hyperglycemia. This mode of action enables flavonoids to ameliorate diabetic complications.

  4. Tenascin-C in the extracellular matrix promotes the selection of highly proliferative and tubulogenesis-defective endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Tercia Rodrigues [Universidade do Estado do Rio de Janeiro (UERJ), Instituto de Biologia Roberto Alcantara Gomes, Departamento de Biologia Celular, Laboratorio de Biologia da Celula Endotelial e da Angiogenese (LabAngio), Rio de Janeiro (Brazil); Universidade Federal do Rio de Janeiro (UFRJ), Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciencias Biomedicas, INNT/INCT/MCT, Rio de Janeiro (Brazil); Carvalho da Fonseca, Anna Carolina [Universidade Federal do Rio de Janeiro (UFRJ), Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciencias Biomedicas, INNT/INCT/MCT, Rio de Janeiro (Brazil); Nunes, Sara Santana; Oliveira da Silva, Aline [Universidade do Estado do Rio de Janeiro (UERJ), Instituto de Biologia Roberto Alcantara Gomes, Departamento de Biologia Celular, Laboratorio de Biologia da Celula Endotelial e da Angiogenese (LabAngio), Rio de Janeiro (Brazil); Dubois, Luiz Gustavo Feijo; Faria, Jane; Kahn, Suzana Assad [Universidade Federal do Rio de Janeiro (UFRJ), Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciencias Biomedicas, INNT/INCT/MCT, Rio de Janeiro (Brazil); Viana, Nathan Bessa [Universidade Federal do Rio de Janeiro, Laboratorio de Pincas Oticas, Coordenacao de Programas de Estudos Avancados, Instituto de Ciencias Biomedicas, Rio de Janeiro (Brazil); Universidade Federal do Rio de Janeiro, Instituto de Fisica, Rio de Janeiro (Brazil); Marcondes, Jorge [Universidade Federal do Rio de Janeiro, Hospital Universitario Clementino Fraga Filho, Servico de Neurocirurgia, Rio de Janeiro (Brazil); Legrand, Chantal [Institut Universitaire d' Hematologie, Universite Paris-Diderot, Paris 7, INSERM U553, Paris (France); Moura-Neto, Vivaldo [Universidade Federal do Rio de Janeiro (UFRJ), Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciencias Biomedicas, INNT/INCT/MCT, Rio de Janeiro (Brazil); and others

    2011-09-10

    The extracellular matrix (ECM) contains important cues for tissue homeostasis and morphogenesis. The matricellular protein tenascin-C (TN-C) is overexpressed in remodeling tissues and cancer. In the present work, we studied the effect of different ECM-which exhibited a significant diversity in their TN-C content-in endothelial survival, proliferation and tubulogenic differentiation: autologous (endothelial) ECM devoid of TN-C, but bearing large amounts of FN; fibroblast ECM, bearing both high TN-C and FN contents; and finally, glioma-derived matrices, usually poor in FN, but very rich in TN-C. HUVECs initially adhered to the immobilized matrix produced by U373 MG glioma cells, but significantly detached and died by anoikis (50 to 80%) after 24 h, as compared with cells incubated with endothelial and fibroblast matrices. Surviving endothelial cells (20 to 50%) became up to 6-fold more proliferative and formed 74-97% less tube-like structures in vitro than cells grown on non-tumoral matrices. An antibody against the EGF-like repeats of tenascin-C (TN-C) partially rescued cells from the tubulogenic defect, indicating that this molecule is responsible for the selection of highly proliferative and tubulogenic defective endothelial cells. Interestingly, by using defined substrata, in conditions that mimic glioma and normal cell ECM composition, we observed that fibronectin (FN) modulates the TN-C-induced selection of endothelial cells. Our data show that TN-C is able to modulate endothelial branching morphogenesis in vitro and, since it is prevalent in matrices of injured and tumor tissues, also suggest a role for this protein in vascular morphogenesis, in these physiological contexts.

  5. High-Density Lipoprotein-Mediated Transcellular Cholesterol Transport in Mouse Aortic Endothelial Cells

    Science.gov (United States)

    Miao, LiXia; Okoro, Emmanuel U.; Cao, ZhiJan; Yang, Hong; Motley-Johnson, Evangeline; Guo, Zhongmao

    2015-01-01

    Accumulation of unesterified cholesterol-rich lipid vesicles in the subendothelial space contributes to atherogenesis. Transport of cholesterol from the subendothelial intima back to the circulating blood inhibits atherosclerosis development; however, the mechanism for this process has not been fully defined. Using cultured mouse aortic endothelial cells (MAECs), we observed that unesterified cholesterol can be transported across the endothelial cell monolayer from the basolateral to the apical compartment. Administration of high-density lipoprotein (HDL) or apolipoprotein AI (apoAI) to the apical compartment enhanced transendothelial cholesterol transport in a concentration-dependent manner. Knockdown of ATP-binding cassette transporter G1 (ABCG1) or scavenger receptor class B type I (SR-B1), or inhibition of SR-B1 diminished HDL-induced transendothelial cholesterol transport; while knockdown of ABCA1 reduced apoAI-mediated cholesterol transport. HDL enhanced phosphorylation of phosphatidylinositol 3-kinase (PI3K) and Akt in MAECs. However, inhibition PI3K or Akt did not reduce HDL-induced transendothelial cholesterol transport. These results suggest that HDL enhances transendothelial cholesterol transport by activation of a mechanism involving ABCA1, ABCA1 and SR-B1 but not involving PI3K and Akt. PMID:26255968

  6. Morroniside protects cultured human umbilical vein endothelial cells from damage by high ambient glucose

    Institute of Scientific and Technical Information of China (English)

    Hui-qin XU; Hai-ping HAO; Xu ZHANG; Yang PAN

    2004-01-01

    AIM: To determine whether morroniside, a compound in Comus officinalis Sieb et Zucc can prevent cultured human umbilical vein endothelial cells (HUVEC) from damage by high ambient glucose. METHODS: HUVEC was incubated in glucose, 5 or 30 mmol/L, either alone or in the presence of morroniside (final concentration 100, 10,and 1 μmol/L, respectively) for 48 h. The proliferation of HUVEC was quantified by MTT method; its cycle was analyzed by flow cytometry; morphological change was observed with fluorescence microscopy. RESULTS:Survival of HUVEC cultured in high ambient glucose was significantly decreased when compared to that in normal concentration of glucose (P<0.01). High ambient glucose also lowered the rate of cells entering into S-phase, along with severe morphological damage. With the intervention of morroniside (final concentration 100 and 10 μmol/L),the cell survival was significantly recovered (P<0.01, P<0.05, respectively), accompanied with increased S-phase rate and less extent of morphological damage. CONCLUSION: Morroniside protected HUVEC against high ambient glucose induced injury, which suggested that morroniside could exert a beneficial effect on preventing diabetic angiopathies.

  7. Vochysia rufa Stem Bark Extract Protects Endothelial Cells against High Glucose Damage

    Directory of Open Access Journals (Sweden)

    Neire Moura de Gouveia

    2017-02-01

    Full Text Available Background: Increased oxidative stress by persistent hyperglycemia is a widely accepted factor in vascular damage responsible for type 2 diabetes complications. The plant Vochysia rufa (Vr has been used in folk medicine in Brazil for the treatment of diabetes. Thus; the protective effect of a Vr stem bark extract against a challenge by a high glucose concentration on EA.hy926 (EA endothelial cells is evaluated. Methods: Vegetal material is extracted with distilled water by maceration and evaporated until dryness under vacuum. Then; it is isolated by capillary electrophoresis–tandem mass spectrometry. Cell viability is evaluated on EA cells treated with 0.5–100 µg/mL of the Vr extract for 24 h. The extract is diluted at concentrations of 5, 10 and 25 µg/mL and maintained for 24 h along with 30 mM of glucose to evaluate its protective effect on reduced glutathione (GSH; glutathione peroxidase (GPx and reductase (GR and protein carbonyl groups. Results: V. rufa stem bark is composed mainly of sugars; such as inositol; galactose; glucose; mannose; sacarose; arabinose and ribose. Treatment with Vr up to 100 µg/mL for 24 h did not affect cell viability. Treatment of EA cells with 30 mM of glucose for 24 h significantly increased the cell damage. EA cells treated with 30 mM of glucose showed a decrease of GSH concentration and increased Radical Oxygen Species (ROS and activity of antioxidant enzymes and protein carbonyl levels; compared to control. Co-treatment of EA with 30 mM glucose plus 1–10 μg/mL Vr significantly reduced cell damage while 5–25 μg/mL Vr evoked a significant protection against the glucose insult; recovering ROS; GSH; antioxidant enzymes and carbonyls to baseline levels. Conclusion: V. rufa extract protects endothelial cells against oxidative damage by modulating ROS; GSH concentration; antioxidant enzyme activity and protein carbonyl levels.

  8. Autophagy Protects Against Senescence and Apoptosis via the RAS-Mitochondria in High-Glucose-Induced Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Fei Chen

    2014-04-01

    Full Text Available Backgrounds: Autophagy is an important process in the pathogenesis of diabetes and plays a critical role in maintaining cellular homeostasis. However, the autophagic response and its mechanism in diabetic vascular endothelium remain unclear. Methods and Results: We studied high-glucose-induced renin-angiotensin system (RAS-mitochondrial damage and its effect on endothelial cells. With regard to therapeutics, we investigated the beneficial effect of angiotensin-converting enzyme inhibitors (ACEIs or angiotensin II type 1 receptor blockers (ARBs against high-glucose-induced endothelial responses. High glucose activated RAS, enhanced mitochondrial damage and increased senescence, apoptosis and autophagic-responses in endothelial cells, and these effects were mimicked by using angiotensin II (Ang. The use of an ACEI or ARB, however, inhibited the negative effects of high glucose. Direct mitochondrial injury caused by carbonyl cyanide 3-chlorophenylhydrazone (CCCP resulted in similar negative effects of high glucose or Ang and abrogated the protective effects of an ACEI or ARB. Additionally, by impairing autophagy, high-glucose-induced senescence and apoptosis were accelerated and the ACEI- or ARB-mediated beneficial effects were abolished. Furthermore, increases in FragEL™ DNA Fragmentation (TUNEL-positive cells, β-galactosidase activation and the expression of autophagic biomarkers were revealed in diabetic patients and rats, and the treatment with an ACEI or ARB decreased these responses. Conclusions: These data suggest that autophagy protects against senescence and apoptosis via RAS-mitochondria in high-glucose-induced endothelial cells.

  9. Traditional Chinese medicine formula Qing Huo Yi Hao as superoxide anion scavenger in high glucosetreated endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Qiong xu; Bin ZHANG; Xiao-mu LI; Xin GAO

    2012-01-01

    Aim:To investigate the effects of a traditional Chinese medicine formula Qing Huo Yi Hao (QHYH)and its components on hydroxyl radical (HO·)production in vitro and the activity of QHYH against free radicals in cultured endothelial cells induced by high glucose.Methods:Hydroxyl radicals (HO·)were generated through Fenton reactions in vitro,and 5,5-dimethyl-1-pyrroline N-oxide (DMPO)was used as a spin trap to form DMPO/HO·adducts detected using electron paramagnetic resonance (EPR).Immortalized mouse cerebral microvascular endothelial (bEnd.3)cells were treated with high glucose (35 mmol/L).The free radical scavenging ability of QHYH in the cells was evaluated using EPR.Superoxide dismutase (SOD)was used to identify the free radicals scavenged by QHYH in the cells.Results:QHYH and its 8 components concentration-dependently reduced DMPO/HO· signaling.The DMPO/HO· adduct scavenging ability of QHYH was 82.2%,which was higher than each individual component.The free radical scavenging ability of 1% QHYH in high glucose-treated bEnd.3 cells was approximately 70%.In these cells,the free radicals were also specifically reduced by SOD (400 U/mL),implying that the free radicals were primarily superoxide anions.Conclusion:The results demonstrate that the QHYH formula is potent antioxidant acting as scavenge of superoxide anions in high glucose-treated endothelial cells.

  10. Heme Oxygenase-1 Protects Retinal Endothelial Cells against High Glucose- and Oxidative/Nitrosative Stress-Induced Toxicity

    Science.gov (United States)

    Castilho, Áurea F.; Aveleira, Célia A.; Leal, Ermelindo C.; Simões, Núria F.; Fernandes, Carolina R.; Meirinhos, Rita I.; Baptista, Filipa I.; Ambrósio, António F.

    2012-01-01

    Diabetic retinopathy is a leading cause of visual loss and blindness, characterized by microvascular dysfunction. Hyperglycemia is considered the major pathogenic factor for the development of diabetic retinopathy and is associated with increased oxidative/nitrosative stress in the retina. Since heme oxygenase-1 (HO-1) is an enzyme with antioxidant and protective properties, we investigated the potential protective role of HO-1 in retinal endothelial cells exposed to high glucose and oxidative/nitrosative stress conditions. Retinal endothelial cells were exposed to elevated glucose, nitric oxide (NO) and hydrogen peroxide (H2O2). Cell viability and apoptosis were assessed by MTT assay, Hoechst staining, TUNEL assay and Annexin V labeling. The production of reactive oxygen species (ROS) was detected by the oxidation of 2′,7′-dichlorodihydrofluorescein diacetate. The content of HO-1 was assessed by immunobloting and immunofluorescence. HO activity was determined by bilirubin production. Long-term exposure (7 days) of retinal endothelial cells to elevated glucose decreased cell viability and had no effect on HO-1 content. However, a short-time exposure (24 h) to elevated glucose did not alter cell viability, but increased both the levels of intracellular ROS and HO-1 content. Moreover, the inhibition of HO with SnPPIX unmasked the toxic effect of high glucose and revealed the protection conferred by HO-1. Oxidative/nitrosative stress conditions increased cell death and HO-1 protein levels. These effects of elevated glucose and HO inhibition on cell death were confirmed in primary endothelial cells (HUVECs). When cells were exposed to oxidative/nitrosative stress conditions there was also an increase in retinal endothelial cell death and HO-1 content. The inhibition of HO enhanced ROS production and the toxic effect induced by exposure to H2O2 and NOC-18 (NO donor). Overexpression of HO-1 prevented the toxic effect induced by H2O2 and NOC-18. In conclusion, HO-1

  11. Propofol inhibits high glucose-induced PP2A expression in human umbilical vein endothelial cells.

    Science.gov (United States)

    Wu, Qichao; Zhao, Yanjun; Duan, Wenming; Liu, Yi; Chen, Xiangyuan; Zhu, Minmin

    2017-04-01

    Perioperative hyperglycemia is a common clinical metabolic disorder. Hyperglycemia could induce endothelial apoptosis, dysfunction and inflammation, resulting in endothelial injury. Propofol is a widely used anesthetic drug in clinical settings. Our previous studies indicated that propofol, via inhibiting high glucose-induced phosphatase A2 (PP2A) expression, attenuated high glucose-induced reactive oxygen species (ROS) accumulation, thus improving endothelial apoptosis, dysfunction and inflammation. However, the mechanisms by which propofol attenuated high glucose-induced PP2A expression is still obscure. In the present study, we examined how propofol attenuates high glucose-induced endothelial PP2A expression. Compared with 5mM glucose treatment, 15mM glucose up-regulated expression and activity of PP2A, increased cAMP response element binding protein (CREB), Ca(2+)-calmodulin dependent kinase II (CaMK II) phosphorylation and Ca(2+) accumulation. More importantly, propofol decreased PP2A expression and activity, attenuated CREB, CaMK II phosphorylation and Ca(2+) accumulation in a concentration-dependent manner. Moreover, we demonstrated that the effect of propofol was similar to that of MK801, an inhibitor of NMDA receptor. In contrast, rapastinel, an activator of NMDA receptor, antagonized the effect of propofol. Also, the effect of KN93, an inhibitor of CaMK II, was similar to that of propofol, except KN93 had no effect on 15mM glucose-mediated Ca(2+) accumulation. Our data indicated that propofol, via inhibiting NMDA receptor, attenuated 15mM glucose-induced Ca(2+) accumulation, CaMK II and CREB phosphorylation, thus inhibiting PP2A expression and improving 15mM glucose-induced endothelial dysfunction and inflammation. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Downregulation of Endogenous Hydrogen Sulfide Pathway Is Involved in Mitochondrion-Related Endothelial Cell Apoptosis Induced by High Salt

    Directory of Open Access Journals (Sweden)

    Yanfang Zong

    2015-01-01

    Full Text Available Background. The study aimed to investigate whether endogenous H2S pathway was involved in high-salt-stimulated mitochondria-related vascular endothelial cell (VEC apoptosis. Methods. Cultured human umbilical vein endothelial cells (HUVECs were used in the study. H2S content in the supernatant was detected. Western blot was used to detect expression of cystathionine gamma-lyase (CSE, cleaved-caspase-3, and mitochondrial and cytosolic cytochrome c (cytc. Fluorescent probes were used to quantitatively detect superoxide anion generation and measure the in situ superoxide anion generation in HUVEC. Mitochondrial membrane pore opening, mitochondrial membrane potential, and caspase-9 activities were measured. The cell apoptosis was detected by cell death ELISA and TdT-mediated dUTP nick end labeling (TUNEL methods. Results. High-salt treatment downregulated the endogenous VEC H2S/CSE pathway, in association with increased generation of oxygen free radicals, decreased mitochondrial membrane potential, enhanced the opening of mitochondrial membrane permeability transition pore and leakage of mitochondrial cytc, activated cytoplasmic caspase-9 and caspase-3 and subsequently induced VEC apoptosis. However, supplementation of H2S donor markedly inhibited VEC oxidative stress and mitochondria-related VEC apoptosis induced by high salt. Conclusion. H2S/CSE pathway is an important endogenous defensive system in endothelial cells antagonizing high-salt insult. The protective mechanisms for VEC damage might involve inhibiting oxidative stress and protecting mitochondrial injury.

  13. Effects of serum of the rats ventilated with high tidal volume on endothelial cell permeability and therapeutic effects of ulinastatin

    Institute of Scientific and Technical Information of China (English)

    HUO Guo-dong; CAI Shao-xi; CHEN Bo; CHEN Ying-hua

    2006-01-01

    Background With the widespread use of ventilators in treating critically ill patients, the morbidity of ventilator-induced lung injury (VILI) is increasing accordingly. VILI is characterized by a considerable increase in microvascular leakiness and activation of inflammatory processes. In this study we investigated the effects of inflammatory mediators in VILI rat serum on endothelial cytoskeleton and monolayer cellular permeability, as well as the therapeutic effect of ulinastatin, to explore the pathogenesis and the relationship between biotrauma and lung oedema induced by VILI.Methods Thirty healthy male Sprague-Dawley rats were randomly divided into three groups: group A (normal tidal volume ventilation), group B (high tidal volume ventilation) and group C (high tidal volume ventilation plus ulinastatin). The serum of each rat after ventilation was added to endothelial cell line ECV-304 medium for two hours to observe the effects of serum and/or ulinastatin on endothelial fibrous actin and permeability. Results Compared to rats ventilated with normal tidal volume, serum of rats ventilated with high tidal volume caused a striking reorganization of actin cytoskeleton with a weakening of fluorescent intensity at the peripheral filament bands and formation of the long and thick stress fibres in the centre resulting in endothelial contraction and higher permeability. Prior treatment with ulinastatin lessened the above changes significantly. The changes of permeability coefficient of endothelial permeability after group A, B or C rats serum stimulation were (6.95 ±1.66)%, (27.50±7.77)% and (17.71±4.66)% respectively with statistically significant differences (P<0.05)among the three groups.Conclusions The proinflammatory mediators in the serum of the rats given high tidal volume ventilation increases endothelial permeability by reorganizing actin cytoskeleton, and pretreatment with ulinastatin lessens the permeability by inhibiting of proinflammatory mediators.

  14. Sanguis draconis, a dragon's blood resin, attenuates high glucose-induced oxidative stress and endothelial dysfunction in human umbilical vein endothelial cells.

    Science.gov (United States)

    Chang, Yi; Chang, Ting-Chen; Lee, Jie-Jen; Chang, Nen-Chung; Huang, Yung-Kai; Choy, Cheuk-Sing; Jayakumar, Thanasekaran

    2014-01-01

    Hyperglycaemia, a characteristic feature of diabetes mellitus, induces endothelial dysfunction and vascular complications by limiting the proliferative potential of these cells. Here we aimed to investigate the effect of an ethanolic extract of Sanguis draconis (SD), a kind of dragon's blood resin that is obtained from Daemonorops draco (Palmae), on human umbilical vein endothelial cells (HUVEC) under high-glucose (HG) stimulation and its underlying mechanism. Concentration-dependent (0-50 μg/mL) assessment of cell viability showed that SD does not affect cell viability with a similar trend up to 48 h. Remarkably, SD (10-50 μg/mL) significantly attenuated the high-glucose (25 and 50 mM) induced cell toxicity in a concentration-dependent manner. SD inhibited high glucose-induced nitrite (NO) and lipid peroxidation (MDA) production and reactive oxygen species (ROS) formation in HUVEC. Western blot analysis revealed that SD treatments abolished HG-induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERK 1/2), nuclear transcription factor, κB (NF-κB), VCAM-1, and E-selectin, and it also blocked the breakdown of PARP-116 kDa protein in a dose-dependent manner. Furthermore, we found that SD increased the expression of Bcl-2 and decreased Bax protein expression in HG-stimulated HUVEC. Thus, these results of this study demonstrate for the first time that SD inhibits glucose induced oxidative stress and vascular inflammation in HUVEC by inhibiting the ERK/NF-κB/PARP-1/Bax signaling cascade followed by suppressing the activation of VCAM-1 and E-selectin. These data suggest that SD may have a therapeutic potential in vascular inflammation due to the decreased levels of oxidative stress, apoptosis, and PARP-1 activation.

  15. Sanguis draconis, a Dragon’s Blood Resin, Attenuates High Glucose-Induced Oxidative Stress and Endothelial Dysfunction in Human Umbilical Vein Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Yi Chang

    2014-01-01

    Full Text Available Hyperglycaemia, a characteristic feature of diabetes mellitus, induces endothelial dysfunction and vascular complications by limiting the proliferative potential of these cells. Here we aimed to investigate the effect of an ethanolic extract of Sanguis draconis (SD, a kind of dragon’s blood resin that is obtained from Daemonorops draco (Palmae, on human umbilical vein endothelial cells (HUVEC under high-glucose (HG stimulation and its underlying mechanism. Concentration-dependent (0–50 μg/mL assessment of cell viability showed that SD does not affect cell viability with a similar trend up to 48 h. Remarkably, SD (10–50 μg/mL significantly attenuated the high-glucose (25 and 50 mM induced cell toxicity in a concentration-dependent manner. SD inhibited high glucose-induced nitrite (NO and lipid peroxidation (MDA production and reactive oxygen species (ROS formation in HUVEC. Western blot analysis revealed that SD treatments abolished HG-induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERK 1/2, nuclear transcription factor, κB (NF-κB, VCAM-1, and E-selectin, and it also blocked the breakdown of PARP-116 kDa protein in a dose-dependent manner. Furthermore, we found that SD increased the expression of Bcl-2 and decreased Bax protein expression in HG-stimulated HUVEC. Thus, these results of this study demonstrate for the first time that SD inhibits glucose induced oxidative stress and vascular inflammation in HUVEC by inhibiting the ERK/NF-κB/PARP-1/Bax signaling cascade followed by suppressing the activation of VCAM-1 and E-selectin. These data suggest that SD may have a therapeutic potential in vascular inflammation due to the decreased levels of oxidative stress, apoptosis, and PARP-1 activation.

  16. Effect of low level laser therapy and high intensity laser therapy on endothelial cell proliferation in vitro: preliminary communication

    Science.gov (United States)

    Lukowicz, Malgorzata; Szymanska, Justyna; Goralczyk, Krzysztof; Zajac, Andrzej; Rość, Danuta

    2013-01-01

    Background: The main purpose of this study was to analyze the influence of power intensity and wavelength of Low Level Laser Therapy (LLLT) and HILT (High Intensity Laser Therapy) on endothelial cell proliferation. Material and methods: The tests were done on human umbilical vein endothelial cells (HUVEC). Cultures were exposed to laser irradiation of 660 nm and 670 nm at different dosages, power output was 10 - 40 mW as well as 820 nm with power 100 mW and 808 nm with power 1500 mW. Energy density was from 0.28 to 11,43 J/cm2. Cell proliferation of a control and tested culture was evaluated with a colorimetric device to detect live cells. The tests were repeated 8 times. Results: We observed good effects of LLLT on live isolated ECs and no effects in experiments on previous deep-frozen cultures. Also HILT stimulated the proliferation of HUVEC. Conclusion: Endothelial cells play a key role in vascular homeostasis in humans. We observed the stimulatory effect of LLLT and HILT on proliferation of HUVEC. Many factors influence the proliferation of EC, so is it necessary to continue the experiment with different doses, intensity and cell concentration.

  17. Nanomolar Caffeic Acid Decreases Glucose Uptake and the Effects of High Glucose in Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Lucia Natarelli

    Full Text Available Epidemiological studies suggest that moderate and prolonged consumption of coffee is associated with a reduced risk of developing type 2 diabetes but the molecular mechanisms underlying this effect are not known. In this study, we report the effects of physiological concentrations of caffeic acid, easily achievable by normal dietary habits, in endothelial cells cultured in 25 mM of glucose (high glucose, HG. In HG, the presence of 10 nM caffeic acid was associated with a decrease of glucose uptake but not to changes of GLUT-1 membrane localization or mRNA levels. Moreover, caffeic acid countered HG-induced loss of barrier integrity, reducing actin rearrangement and FITC-dextran passage. The decreased flux of glucose associated to caffeic acid affected HG induced apoptosis by down-regulating the expression of initiator (caspase 8 and 9 and effector caspases (caspase 7 and 3 and by increasing the levels of phosphorylated Bcl-2. We also observed that caffeic acid in HG condition was associated to a reduction of p65 subunit nuclear levels with respect to HG alone. NF-κB activation has been shown to lead to apoptosis in HG treated cells and the analysis of the expression of a panel of about 90 genes related to NF-κB signaling pathway revealed that caffeic acid significantly influenced gene expression changes induced by HG. In conclusion, our results suggest that caffeic acid, decreasing the metabolic stress induced by HG, allows the activation of survival mechanisms mediated by a different modulation of NF-κB-related signaling pathways and to the activation of anti-apoptotic proteins.

  18. Scutellarein inhibits hypoxia- and moderately-high glucose-induced proliferation and VEGF expression in human retinal endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Rong GAO; Bang-hao ZHU; Shi-bo TANG; Jiang-feng WANG; Jun REN

    2008-01-01

    Aim: This study was designed to examine the effect of scutellarein on high glu-cose- and hypoxia-stimulated proliferation of human retinal endothelial cells (HREC). Methods: HREC were cultured under normal glucose (NG), moderate, and high glucose (NG supplemented with 10 or 25 mmol/L D-glucose) and/or hypoxic (cobalt chloride treated) conditions. Cell proliferation was evaluated by a cell counting kit. The expression of vascular endothelial growth factor (VEGF) was assessed by Western blot analysis. Results: The proliferation of HREC was significantly elevated in response to moderately-high glucose and hypoxic conditions. The combination of high glucose and hypoxia did not have any additive effects on cell proliferation. Consistent with the proliferation data, the expression of VEGF was also upregulated under both moderately-high glucose and hypoxic conditions. The treatment with scutellarein (1 × 10-11-1 × 10-5 mol/L) significantly inhibited high glucose- or hypoxia-induced cell proliferation and VEGF expression. Conclusion: Both hypoxia and moderately-high glucose were potent stimuli for cell proliferation and VEGF expression in HREC without any significant additive effects. Scutellarein is capable of inhibiting the proliferation of HREC, which is possibly related to its ability to suppress the VEGF expression.

  19. Endothelial cells derived from human embryonic stem cells

    Science.gov (United States)

    Levenberg, Shulamit; Golub, Justin S.; Amit, Michal; Itskovitz-Eldor, Joseph; Langer, Robert

    2002-04-01

    Human embryonic stem cells have the potential to differentiate into various cell types and, thus, may be useful as a source of cells for transplantation or tissue engineering. We describe here the differentiation steps of human embryonic stem cells into endothelial cells forming vascular-like structures. The human embryonic-derived endothelial cells were isolated by using platelet endothelial cell-adhesion molecule-1 (PECAM1) antibodies, their behavior was characterized in vitro and in vivo, and their potential in tissue engineering was examined. We show that the isolated embryonic PECAM1+ cells, grown in culture, display characteristics similar to vessel endothelium. The cells express endothelial cell markers in a pattern similar to human umbilical vein endothelial cells, their junctions are correctly organized, and they have high metabolism of acetylated low-density lipoprotein. In addition, the cells are able to differentiate and form tube-like structures when cultured on matrigel. In vivo, when transplanted into SCID mice, the cells appeared to form microvessels containing mouse blood cells. With further studies, these cells could provide a source of human endothelial cells that could be beneficial for potential applications such as engineering new blood vessels, endothelial cell transplantation into the heart for myocardial regeneration, and induction of angiogenesis for treatment of regional ischemia.

  20. High-throughput screening identifies idarubicin as a preferential inhibitor of smooth muscle versus endothelial cell proliferation.

    Directory of Open Access Journals (Sweden)

    Shakti A Goel

    Full Text Available Intimal hyperplasia is the cause of the recurrent occlusive vascular disease (restenosis. Drugs currently used to treat restenosis effectively inhibit smooth muscle cell (SMC proliferation, but also inhibit the growth of the protective luminal endothelial cell (EC lining, leading to thrombosis. To identify compounds that selectively inhibit SMC versus EC proliferation, we have developed a high-throughput screening (HTS format using human cells and have employed this to screen a multiple compound collection (NIH Clinical Collection. We developed an automated, accurate proliferation assay in 96-well plates using human aortic SMCs and ECs. Using this HTS format we screened a 447-drug NIH Clinical Library. We identified 11 compounds that inhibited SMC proliferation greater than 50%, among which idarubicin exhibited a unique feature of preferentially inhibiting SMC versus EC proliferation. Concentration-response analysis revealed this differential effect most evident over an ∼10 nM-5 µM window. In vivo testing of idarubicin in a rat carotid injury model at 14 days revealed an 80% reduction of intimal hyperplasia and a 45% increase of lumen size with no significant effect on re-endothelialization. Taken together, we have established a HTS assay of human vascular cell proliferation, and identified idarubicin as a selective inhibitor of SMC versus EC proliferation both in vitro and in vivo. Screening of larger and more diverse compound libraries may lead to the discovery of next-generation therapeutics that can inhibit intima hyperplasia without impairing re-endothelialization.

  1. The ATP Receptors P2X7 and P2X4 Modulate High Glucose and Palmitate-Induced Inflammatory Responses in Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Ramasri Sathanoori

    Full Text Available Endothelial cells lining the blood vessels are principal players in vascular inflammatory responses. Dysregulation of endothelial cell function caused by hyperglycemia, dyslipidemia, and hyperinsulinemia often result in impaired vasoregulation, oxidative stress, inflammation, and altered barrier function. Various stressors including high glucose stimulate the release of nucleotides thus initiating signaling via purinergic receptors. However, purinergic modulation of inflammatory responses in endothelial cells caused by high glucose and palmitate remains unclear. In the present study, we investigated whether the effect of high glucose and palmitate is mediated by P2X7 and P2X4 and if they play a role in endothelial cell dysfunction. Transcript and protein levels of inflammatory genes as well as reactive oxygen species production, endothelial-leukocyte adhesion, and cell permeability were investigated in human umbilical vein endothelial cells exposed to high glucose and palmitate. We report high glucose and palmitate to increase levels of extracellular ATP, expression of P2X7 and P2X4, and inflammatory markers. Both P2X7 and P2X4 antagonists inhibited high glucose and palmitate-induced interleukin-6 levels with the former having a significant effect on interleukin-8 and cyclooxygenase-2. The effect of the antagonists was confirmed with siRNA knockdown of the receptors. In addition, P2X7 mediated both high glucose and palmitate-induced increase in reactive oxygen species levels and decrease in endothelial nitric oxide synthase. Blocking P2X7 inhibited high glucose and palmitate-induced expression of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 as well as leukocyte-endothelial cell adhesion. Interestingly, high glucose and palmitate enhanced endothelial cell permeability that was dependent on both P2X7 and P2X4. Furthermore, antagonizing the P2X7 inhibited high glucose and palmitate-mediated activation of p38-mitogen

  2. In Vitro Endothelialization Test of Biomaterials Using Immortalized Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Ken Kono

    Full Text Available Functionalizing biomaterials with peptides or polymers that enhance recruitment of endothelial cells (ECs can reduce blood coagulation and thrombosis. To assess endothelialization of materials in vitro, primary ECs are generally used, although the characteristics of these cells vary among the donors and change with time in culture. Recently, primary cell lines immortalized by transduction of simian vacuolating virus 40 large T antigen or human telomerase reverse transcriptase have been developed. To determine whether immortalized ECs can substitute for primary ECs in material testing, we investigated endothelialization on biocompatible polymers using three lots of primary human umbilical vein endothelial cells (HUVEC and immortalized microvascular ECs, TIME-GFP. Attachment to and growth on polymer surfaces were comparable between cell types, but results were more consistent with TIME-GFP. Our findings indicate that TIME-GFP is more suitable for in vitro endothelialization testing of biomaterials.

  3. AMP-Activated Protein Kinase Attenuates High Salt-Induced Activation of Epithelial Sodium Channels (ENaC in Human Umbilical Vein Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Wei-Wan Zheng

    2016-01-01

    Full Text Available Recent studies suggest that the epithelial sodium channel (ENaC is expressed in the endothelial cells. To test whether high salt affects the NO production via regulation of endothelial ENaC, human umbilical vein endothelial cells (HUVECs were incubated in solutions containing either normal or high sodium (additional 20 mM NaCl. Our data showed that high sodium treatment significantly increased α-, β-, and γ-ENaC expression levels in HUVECs. Using the cell-attached patch-clamp technique, we demonstrated that high sodium treatment significantly increased ENaC open probability (PO. Moreover, nitric oxide synthase (eNOS phosphorylation (Ser 1177 levels and NO production were significantly decreased by high sodium in HUVECs; the effects of high sodium on eNOS phosphorylation and NO production were inhibited by a specific ENaC blocker, amiloride. Our results showed that high sodium decreased AMP-activated kinase (AMPK phosphorylation in endothelial cells. On the other hand, metformin, an AMPK activator, prevented high sodium-induced upregulation of ENaC expression and PO. Moreover, metformin prevented high salt-induced decrease in NO production and eNOS phosphorylation. These results suggest that high sodium stimulates ENaC activation by negatively modulating AMPK activity, thereby leading to reduction in eNOS activity and NO production in endothelial cells.

  4. Isoflavone genistein protects high glucose-induced human aortic endothelial cell apoptosis through estrogen receptor-mediated pathway

    Institute of Scientific and Technical Information of China (English)

    Wenwen Zhong; Yang Liu; Guang Yang; Hui Tian

    2008-01-01

    Objective The aim of this study was to determine if isoflavone genistien has protective effects against high glucose-induced cell apoptosis in human aortic endlthelial cells,and investigate the possible mechanism for this protection.Methods Human aortic endothelial cells subjected to normal (5mmol/L) or high glucose (25mmol/L) were treated with genistein at 0,50,100nmol/L.Parallel experiments were performed with 100nM 17b-estradiol,and also in the presence and absence of the pure anti-estrogen ICI-182,780 (100nmol/L).The effects on cell apoptotic DNA fragmentation were determined using cell death ELISA,and the effects on cellular proliferation were determined using tritiated thymidine incorporation assay.Estrogen receptor expression was detected by Taqman quantitative PCR.Results Genistein at 100nmol/L significantly reduced high glucose-induced DNA fragmentation,and reversed cell DNA synthesis inhibition (P<0.001) after 24 hours' incubation.The effect of genistein was completely blocked by ICI-182,780administration.Estrogen receptor beta,but not alpha was found to be expressed in these cells.Conclusion Isoflavone genistein shows protection against high glucose-induced cell damage through estrogen receptor beta,reducing apoptotic DNA damage and protecting from the inhibition of cell proliferation.

  5. Brazilin Ameliorates High Glucose-Induced Vascular Inflammation via Inhibiting ROS and CAMs Production in Human Umbilical Vein Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Thanasekaran Jayakumar

    2014-01-01

    Full Text Available Vascular inflammatory process has been suggested to play a key role in the initiation and progression of atherosclerosis, a major complication of diabetes mellitus. Recent studies have shown that brazilin exhibits antihepatotoxic, antiplatelet, cancer preventive, or anti-inflammatory properties. Thus, we investigated whether brazilin suppresses vascular inflammatory process induced by high glucose (HG in cultured human umbilical vein endothelial cells (HUVEC. HG induced nitrite production, lipid peroxidation, and intracellular reactive oxygen species formation in HUVEC cells, which was reversed by brazilin. Western blot analysis revealed that brazilin markedly inhibited HG-induced phosphorylation of endothelial nitric oxide synthase. Besides, we investigated the effects of brazilin on the MAPK signal transduction pathway because MAPK families are associated with vascular inflammation under stress. Brazilin blocked HG-induced phosphorylation of extracellular signal-regulated kinase and transcription factor NF-κB. Furthermore, brazilin concentration-dependently attenuated cell adhesion molecules (ICAM-1 and VCAM-1 expression induced by various concentrations of HG in HUVEC. Taken together, the present data suggested that brazilin could suppress high glucose-induced vascular inflammatory process, which may be closely related with the inhibition of oxidative stress, CAMs expression, and NF-κB activation in HUVEC. Our findings may highlight a new therapeutic intervention for the prevention of vascular diseases.

  6. Monomeric adiponectin increases cell viability in porcine aortic endothelial cells cultured in normal and high glucose conditions: Data on kinases activation

    Directory of Open Access Journals (Sweden)

    Elena Grossini

    2016-09-01

    Full Text Available We found that monomeric adiponectin was able to increase cell viability in porcine aortic endothelial cells (PAE cultured both in normal and high glucose condition. Moreover, in normal glucose condition monomeric adiponectin increased p38MAPK, Akt, ERK1/2 and eNOS phosphorylation in a dose- and time-dependent way. Also in high glucose condition monomeric adiponectin increased eNOS and above kinases phosphorylation with similar patterns but at lower extent. For interpretation of the data presented in this article, please see the research article “Monomeric adiponectin modulates nitric oxide release and calcium movements in porcine aortic endothelial cells in normal/high glucose conditions” (Grossini et al., in press [1].

  7. Naringin Protects Against High Glucose-Induced Human Endothelial Cell Injury Via Antioxidation and CX3CL1 Downregulation

    Directory of Open Access Journals (Sweden)

    Guilin Li

    2017-08-01

    Full Text Available Background/Aims: The induction of endothelial injury by hyperglycemia in diabetes has been widely accepted. Naringin is a bio-flavonoid. Some studies showed that naringin alleviates diabetic complications, but the exact mechanisms by which naringin improves diabetic anomalies are not yet fully understood. The aim of this research was to study the protective effect of naringin on high glucose-induced injury of human umbilical vein endothelial cells (HUVECs. Methods: HUVECs were cultured with or without high glucose in the absence or presence of naringin for 5 days. The expression of CX3CL1 was determined by quantitative real-time RT-PCR (qPCR and western blot. The cellular bioenergetic analysis oxygen consumption rate (OCR was measured with a Seahorse Bioscience XF analyzer. Results: The production of reactive oxygen species (ROS, the expression of CX3CL1 and the level of AKT phosphorylation were increased in HUVECs cultured with high glucose compared with controls. However, naringin rescued these increases in ROS production, CX3CL1 expression and AKT phosphorylation. Nitric oxide (NO production and OCR were lower in the high glucose group, and naringin restored the changes induced by high glucose. Molecular docking results suggested that Naringin might interact with the CX3CL1 protein. Conclusion: Naringin protects HUVECs from high-glucose-induced damage through its antioxidant properties by downregulating CX3CL1 and by improving mitochondrial function.

  8. Endothelial cells and the IGF system.

    Science.gov (United States)

    Bach, Leon A

    2015-02-01

    Endothelial cells line blood vessels and modulate vascular tone, thrombosis, inflammatory responses and new vessel formation. They are implicated in many disease processes including atherosclerosis and cancer. IGFs play a significant role in the physiology of endothelial cells by promoting migration, tube formation and production of the vasodilator nitric oxide. These actions are mediated by the IGF1 and IGF2/mannose 6-phosphate receptors and are modulated by a family of high-affinity IGF binding proteins. IGFs also increase the number and function of endothelial progenitor cells, which may contribute to protection from atherosclerosis. IGFs promote angiogenesis, and dysregulation of the IGF system may contribute to this process in cancer and eye diseases including retinopathy of prematurity and diabetic retinopathy. In some situations, IGF deficiency appears to contribute to endothelial dysfunction, whereas IGF may be deleterious in others. These differences may be due to tissue-specific endothelial cell phenotypes or IGFs having distinct roles in different phases of vascular disease. Further studies are therefore required to delineate the therapeutic potential of IGF system modulation in pathogenic processes. © 2015 Society for Endocrinology.

  9. Endothelial cell high-enrichment from endovascular biopsy sample by laser capture microdissection and fluorescence activated cell sorting.

    Science.gov (United States)

    Sun, Zhengda; Su, Hua; Long, Brian; Sinclair, Elizabeth; Hetts, Steven W; Higashida, Randall T; Dowd, Christopher F; Halbach, Van V; Cooke, Daniel L

    2014-12-20

    Endovascular sampling and characterization from patients can provide very useful information about the pathogenesis of different vascular diseases, but it has been limited by the lack of an effective method of endothelial cell (EC) enrichment. We optimized the EC yield and enrichment from conventional guide wires by laser capture microdissection (LCM) and fluorescence activated cell sorting (FACS) technique, and addressed the feasibility of using these enriched ECs for downstream gene expression detection. Iliac artery endovascular samples from 10 patients undergoing routine catheter angiography were collected using conventional 0.038 in. J-shape guide wires. Each of these samples was equally divided into two parts, which were respectively used for EC enrichment by immunocytochemistry-coupled LCM or multiple color FACS. After RNA extraction and reverse transcription, the amplified cDNA was used for quantitative polymerase chain reaction (qPCR). Fixed ECs, with positive CD31 or vWF fluorescent signal and endothelial like nucleus, were successfully separated by LCM and live single ECs were sorted on FACS by a seven color staining panel. EC yields by LCM and FACS were 51 ± 22 and 149 ± 56 respectively (P < 0.001). The minimum number of fixed ECs from ICC-coupled LCM for acceptable qPCR results of endothelial marker genes was 30, while acceptable qPCR results as enriched by FACS were attainable from a single live EC. Both LCM and FACS can be used to enrich ECs from conventional guide wires and the enriched ECs can be used for downstream gene expression detection. FACS generated a higher EC yield and the sorted live ECs may be used for single cell gene expression detection.

  10. Endothelial cell high-enrichment from endovascular biopsy sample by laser capture microdissection and fluorescence activated cell sorting

    Science.gov (United States)

    Sun, Zhengda; Su, Hua; Long, Brian; Sinclair, Elizabeth; Hetts, Steven W.; Higashida, Randall T.; Dowd, Christopher F.; Halbach, Van V.; Cooke, Daniel L.

    2015-01-01

    Background and purpose Endovascular sampling and characterization from patients can provide very useful information about the pathogenesis of different vascular diseases, but it has been limited by the lack of an effective method of endothelial cell (EC) enrichment. We optimized the EC yield and enrichment from conventional guide wires by laser capture microdissection (LCM) and fluorescence activated cell sorting (FACS) technique, and addressed the feasibility of using these enriched ECs for downstream gene expression detection. Methods Iliac artery endovascular samples from 10 patients undergoing routine catheter angiography were collected using conventional 0.038 in. J-shape guide wires. Each of these samples was equally divided into two parts, which were respectively used for EC enrichment by immunocytochemistry-coupled LCM or multiple color FACS. After RNA extraction and reverse transcription, the amplified cDNA was used for quantitative polymerase chain reaction (qPCR). Results Fixed ECs, with positive CD31 or vWF fluorescent signal and endothelial like nucleus, were successfully separated by LCM and live single ECs were sorted on FACS by a seven color staining panel. EC yields by LCM and FACS were 51 ± 22 and 149 ± 56 respectively (P < 0.001). The minimum number of fixed ECs from ICC-coupled LCM for acceptable qPCR results of endothelial marker genes was 30, while acceptable qPCR results as enriched by FACS were attainable from a single live EC. Conclusion Both LCM and FACS can be used to enrich ECs from conventional guide wires and the enriched ECs can be used for downstream gene expression detection. FACS generated a higher EC yield and the sorted live ECs may be used for single cell gene expression detection. PMID:25450638

  11. A high-throughput fluorescence resonance energy transfer (FRET)-based endothelial cell apoptosis assay and its application for screening vascular disrupting agents

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaoming; Fu, Afu [Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University (Singapore); Luo, Kathy Qian, E-mail: kluo@ntu.edu.sg [Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University (Singapore)

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer An endothelial cell apoptosis assay using FRET-based biosensor was developed. Black-Right-Pointing-Pointer The fluorescence of the cells changed from green to blue during apoptosis. Black-Right-Pointing-Pointer This method was developed into a high-throughput assay in 96-well plates. Black-Right-Pointing-Pointer This assay was applied to screen vascular disrupting agents. -- Abstract: In this study, we developed a high-throughput endothelial cell apoptosis assay using a fluorescence resonance energy transfer (FRET)-based biosensor. After exposure to apoptotic inducer UV-irradiation or anticancer drugs such as paclitaxel, the fluorescence of the cells changed from green to blue. We developed this method into a high-throughput assay in 96-well plates by measuring the emission ratio of yellow fluorescent protein (YFP) to cyan fluorescent protein (CFP) to monitor the activation of a key protease, caspase-3, during apoptosis. The Z Prime factor for this assay was above 0.5 which indicates that this assay is suitable for a high-throughput analysis. Finally, we applied this functional high-throughput assay for screening vascular disrupting agents (VDA) which could induce endothelial cell apoptosis from our in-house compounds library and dioscin was identified as a hit. As this assay allows real time and sensitive detection of cell apoptosis, it will be a useful tool for monitoring endothelial cell apoptosis in living cell situation and for identifying new VDA candidates via a high-throughput screening.

  12. High-Yield Method for Isolation and Culture of Endothelial Cells from Rat Coronary Blood Vessels Suitable for Analysis of Intracellular Calcium and Nitric Oxide Biosynthetic Pathways

    Directory of Open Access Journals (Sweden)

    Nistri Silvia

    2002-01-01

    Full Text Available We describe here a method for isolating endothelial cells from rat heart blood vessels by means of coronary microperfusion with collagenase. This methods makes it possible to obtain high amounts of endothelial cells in culture which retain the functional properties of their in vivo counterparts, including the ability to uptake fluorescently-labeled acetylated low-density lipoproteins and to respond to vasoactive agents by modulating intracellular calcium and by upregulating intrinsic nitric oxide generation. The main advantages of our technique are: (i good reproducibility, (ii accurate sterility that can be maintained throughout the isolation procedure and (iii high yield of pure endothelial cells, mainly due to microperfusion and temperature-controlled incubation with collagenase which allow an optimal distribution of this enzyme within the coronary vascular bed.

  13. Endothelial protein C receptor in renal tubular epithelial cells and ...

    African Journals Online (AJOL)

    Jane

    2011-07-20

    Jul 20, 2011 ... placenta, heart, liver and lung endothelial cell. However, there ... The effects of some reagents (high glucose, tumor necrosis factor–α and interleukin-1β) were measured by .... functional domains, including N terminal signal peptide ..... endothelial cell protein C receptor (EPCR) 23bp insert in patients with.

  14. Development of new therapeutic modalities for corneal endothelial disease focused on the proliferation of corneal endothelial cells using animal models.

    Science.gov (United States)

    Koizumi, Noriko; Okumura, Naoki; Kinoshita, Shigeru

    2012-02-01

    This review describes our recent attempts to develop new therapeutic modalities for corneal endothelial disease using animal models including non-human primate model in which the proliferative ability of corneal endothelial cells is severely limited, as is the case in humans. First, we describe our attempt to develop new surgical treatments using cultivated corneal endothelial cells for advanced corneal endothelial dysfunction. It includes two different approaches; a "corneal endothelial cell sheet transplantation" with cells grown on a type-I collagen carrier, and a "cell-injection therapy" combined with the application of Rho-kinase (ROCK) inhibitor. Recently, it was reported that the selective ROCK inhibitor, Y-27632, promotes cell adhesion and proliferation and inhibits the apoptosis of primate corneal endothelial cells in culture. When cultivated corneal endothelial cells were injected into the anterior chamber of animal eyes in the presence of ROCK inhibitor, endothelial cell adhesion was promoted and the cells achieved a high cell density and a morphology similar to corneal endothelial cells in vivo. We are also trying to develop a novel medical treatment for the early phase of corneal endothelial disease by the use of ROCK inhibitor eye drops. In rabbit and monkey experiments using partial endothelial dysfunction models, corneal endothelial wound healing was accelerated by the topical application of ROCK inhibitor to the ocular surface, and resulted in the regeneration of a corneal endothelial monolayer with a high endothelial cell density. We are now trying to advance the clinical application of these new therapies for patients with corneal endothelial dysfunction.

  15. Mesenchymal Stem/Multipotent Stromal Cells from Human Decidua Basalis Reduce Endothelial Cell Activation.

    Science.gov (United States)

    Alshabibi, Manal A; Al Huqail, Al Joharah; Khatlani, Tanvir; Abomaray, Fawaz M; Alaskar, Ahmed S; Alawad, Abdullah O; Kalionis, Bill; Abumaree, Mohamed Hassan

    2017-09-15

    Recently, we reported the isolation and characterization of mesenchymal stem cells from the decidua basalis of human placenta (DBMSCs). These cells express a unique combination of molecules involved in many important cellular functions, which make them good candidates for cell-based therapies. The endothelium is a highly specialized, metabolically active interface between blood and the underlying tissues. Inflammatory factors stimulate the endothelium to undergo a change to a proinflammatory and procoagulant state (ie, endothelial cell activation). An initial response to endothelial cell activation is monocyte adhesion. Activation typically involves increased proliferation and enhanced expression of adhesion and inflammatory markers by endothelial cells. Sustained endothelial cell activation leads to a type of damage to the body associated with inflammatory diseases, such as atherosclerosis. In this study, we examined the ability of DBMSCs to protect endothelial cells from activation through monocyte adhesion, by modulating endothelial proliferation, migration, adhesion, and inflammatory marker expression. Endothelial cells were cocultured with DBMSCs, monocytes, monocyte-pretreated with DBMSCs and DBMSC-pretreated with monocytes were also evaluated. Monocyte adhesion to endothelial cells was examined following treatment with DBMSCs. Expression of endothelial cell adhesion and inflammatory markers was also analyzed. The interaction between DBMSCs and monocytes reduced endothelial cell proliferation and monocyte adhesion to endothelial cells. In contrast, endothelial cell migration increased in response to DBMSCs and monocytes. Endothelial cell expression of adhesion and inflammatory molecules was reduced by DBMSCs and DBMSC-pretreated with monocytes. The mechanism of reduced endothelial proliferation involved enhanced phosphorylation of the tumor suppressor protein p53. Our study shows for the first time that DBMSCs protect endothelial cells from activation by

  16. Follicular dendritic cells, conduits, lymphatic vessels, and high endothelial venules in tertiary lymphoid organs: Parallels with lymph node stroma

    Directory of Open Access Journals (Sweden)

    Sharon eStranford

    2012-11-01

    Full Text Available In this communication, the contribution of stromal, or non-hematopoietic, cells to the structure and function of lymph nodes (LNs, as canonical secondary lymphoid organs (SLOs, is compared to that of tertiary lymphoid tissue or organs (TLOs, also known as ectopic lymphoid tissues. TLOs can arise in non-lymphoid organs during chronic inflammation, as a result of autoimmune responses, graft rejection, atherosclerosis, microbial infection, and cancer. The stromal components found in SLOs including follicular dendritic cells, fibroblast reticular cells, lymphatic vessels, and high endothelial venules and possibly conduits are present in TLOs; their molecular regulation mimics that of LNs. Advances in visualization techniques and the development of transgenic mice that permit in vivo real time imaging of these structures will facilitate elucidation of their precise functions in the context of chronic inflammation. A clearer understanding of the inflammatory signals that drive non lymphoid stromal cells to reorganize into TLOs could allow the design of therapeutic interventions to impede the progression of autoimmune activity, or alternatively, to enhance anti-tumor responses.

  17. Coenzyme Q10 Attenuates High Glucose-Induced Endothelial Progenitor Cell Dysfunction through AMP-Activated Protein Kinase Pathways

    Science.gov (United States)

    Tsai, Hsiao-Ya; Lin, Chih-Pei; Huang, Po-Hsun; Li, Szu-Yuan; Chen, Jia-Shiong; Lin, Feng-Yen; Chen, Jaw-Wen; Lin, Shing-Jong

    2016-01-01

    Coenzyme Q10 (CoQ10), an antiapoptosis enzyme, is stored in the mitochondria of cells. We investigated whether CoQ10 can attenuate high glucose-induced endothelial progenitor cell (EPC) apoptosis and clarified its mechanism. EPCs were incubated with normal glucose (5 mM) or high glucose (25 mM) enviroment for 3 days, followed by treatment with CoQ10 (10 μM) for 24 hr. Cell proliferation, nitric oxide (NO) production, and JC-1 assay were examined. The specific signal pathways of AMP-activated protein kinase (AMPK), eNOS/Akt, and heme oxygenase-1 (HO-1) were also assessed. High glucose reduced EPC functional activities, including proliferation and migration. Additionally, Akt/eNOS activity and NO production were downregulated in high glucose-stimulated EPCs. Administration of CoQ10 ameliorated high glucose-induced EPC apoptosis, including downregulation of caspase 3, upregulation of Bcl-2, and increase in mitochondrial membrane potential. Furthermore, treatment with CoQ10 reduced reactive oxygen species, enhanced eNOS/Akt activity, and increased HO-1 expression in high glucose-treated EPCs. These effects were negated by administration of AMPK inhibitor. Transplantation of CoQ10-treated EPCs under high glucose conditions into ischemic hindlimbs improved blood flow recovery. CoQ10 reduced high glucose-induced EPC apoptosis and dysfunction through upregulation of eNOS, HO-1 through the AMPK pathway. Our findings provide a potential treatment strategy targeting dysfunctional EPC in diabetic patients. PMID:26682233

  18. Circulating Endothelial Cells and Endothelial Progenitor Cells in Pediatric Sepsis.

    Science.gov (United States)

    Zahran, Asmaa Mohamad; Elsayh, Khalid Ibrahim; Mohamad, Ismail Lotfy; Hassan, Gamal Mohamad; Abdou, Madleen Adel A

    2016-03-01

    The aim of the study was to measure the number of circulating endothelial cells (CECs) and circulating endothelial progenitor cells (CEPs) in pediatric patients with sepsis and correlating it with the severity of the disease and its outcome. The study included 19 children with sepsis, 26 with complicated sepsis, and 30 healthy controls. The patients were investigated within 48 hours of pediatric intensive care unit admission together with flow cytometric detection of CECs and CEPs. The levels of both CECs and CEPs were significantly higher in patient with sepsis and complicated sepsis than the controls. The levels of CECs were higher in patients with complicated sepsis, whereas the levels of CEPs were lower in patients with complicated sepsis. Comparing the survival and nonsurvival septic patients, the levels of CEPs were significantly higher in the survival than in nonsurvival patients, whereas the levels of CECs were significantly lower in the survival than in nonsurvival patients. Serum albumin was higher in survival than in nonsurvival patients. Estimation of CECs and CEPs and their correlation with other parameters such as serum albumen could add important information regarding prognosis in septic pediatric patients.

  19. HCdc14A is involved in cell cycle regulation of human brain vascular endothelial cells following injury induced by high glucose, free fatty acids and hypoxia.

    Science.gov (United States)

    Su, Jingjing; Zhou, Houguang; Tao, Yinghong; Guo, Zhuangli; Zhang, Shuo; Zhang, Yu; Huang, Yanyan; Tang, Yuping; Hu, Renming; Dong, Qiang

    2015-01-01

    Cell cycle processes play a vital role in vascular endothelial proliferation and dysfunction. Cell division cycle protein 14 (Cdc14) is an important cell cycle regulatory phosphatase. Previous studies in budding yeast demonstrated that Cdc14 could trigger the inactivation of mitotic cyclin-dependent kinases (Cdks), which are required for mitotic exit and cytokinesis. However, the exact function of human Cdc14 (hCdc14) in cell cycle regulation during vascular diseases is yet to be elucidated. There are two HCdc14 homologs: hCdc14A and hCdc14B. In the current study, we investigated the potential role of hCdc14A in high glucose-, free fatty acids (FFAs)-, and hypoxia-induced injury in cultured human brain vascular endothelial cells (HBVECs). Data revealed that high glucose, FFA, and hypoxia down-regulated hCdc14A expression remarkably, and also affected the expression of other cell cycle-related proteins such as cyclin B, cyclin D, cyclin E, and p53. Furthermore, the combined addition of the three stimuli largely blocked cell cycle progression, decreased cell proliferation, and increased apoptosis. We also determined that hCdc14A was localized mainly to centrosomes during interphase and spindles during mitosis using confocal microscopy, and that it could affect the expression of other cycle-related proteins. More importantly, the overexpression of hCdc14A accelerated cell cycle progression, enhanced cell proliferation, and promoted neoplastic transformation, whereas the knockdown of hCdc14A using small interfering RNA produced the opposite effects. Therefore, these findings provide novel evidence that hCdc14A might be involved in cell cycle regulation in cultured HBVECs during high glucose-, FFA-, and hypoxia-induced injury.

  20. PPAR Gamma and Angiogenesis: Endothelial Cells Perspective

    Directory of Open Access Journals (Sweden)

    Jerzy Kotlinowski

    2016-01-01

    Full Text Available We summarize the current knowledge concerning PPARγ function in angiogenesis. We discuss the mechanisms of action for PPARγ and its role in vasculature development and homeostasis, focusing on endothelial cells, endothelial progenitor cells, and bone marrow-derived proangiogenic cells.

  1. Serum Amyloid A Receptor Blockade and Incorporation into High-Density Lipoprotein Modulates Its Pro-Inflammatory and Pro-Thrombotic Activities on Vascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Belal Chami

    2015-05-01

    Full Text Available The acute phase protein serum amyloid A (SAA, a marker of inflammation, induces expression of pro-inflammatory and pro-thrombotic mediators including ICAM-1, VCAM-1, IL-6, IL-8, MCP-1 and tissue factor (TF in both monocytes/macrophages and endothelial cells, and induces endothelial dysfunction—a precursor to atherosclerosis. In this study, we determined the effect of pharmacological inhibition of known SAA receptors on pro-inflammatory and pro-thrombotic activities of SAA in human carotid artery endothelial cells (HCtAEC. HCtAEC were pre-treated with inhibitors of formyl peptide receptor-like-1 (FPRL-1, WRW4; receptor for advanced glycation-endproducts (RAGE, (endogenous secretory RAGE; esRAGE and toll-like receptors-2/4 (TLR2/4 (OxPapC, before stimulation by added SAA. Inhibitor activity was also compared to high-density lipoprotein (HDL, a known inhibitor of SAA-induced effects on endothelial cells. SAA significantly increased gene expression of TF, NFκB and TNF and protein levels of TF and VEGF in HCtAEC. These effects were inhibited to variable extents by WRW4, esRAGE and OxPapC either alone or in combination, suggesting involvement of endothelial cell SAA receptors in pro-atherogenic gene expression. In contrast, HDL consistently showed the greatest inhibitory action, and often abrogated SAA-mediated responses. Increasing HDL levels relative to circulating free SAA may prevent SAA-mediated endothelial dysfunction and ameliorate atherogenesis.

  2. High syndecan-1 levels in acute myeloid leukemia are associated with bleeding, thrombocytopathy, endothelial cell damage, and leukocytosis

    DEFF Research Database (Denmark)

    Larsen, Anne Mette Vestskov; Leinøe, Eva Birgitte; Johansson, Pär I

    2013-01-01

    perturbation, coagulation and platelet activation were analyzed in 49 AML patients, along with previously collected data on bleeding status and platelet activation markers. High levels of syndecan-1, a marker of endothelial glycocalyx degradation, were associated with bleeding, impaired platelet function...

  3. Targeting Endothelial Cells with Multifunctional GaN/Fe Nanoparticles

    Science.gov (United States)

    Braniste, Tudor; Tiginyanu, Ion; Horvath, Tibor; Raevschi, Simion; Andrée, Birgit; Cebotari, Serghei; Boyle, Erin C.; Haverich, Axel; Hilfiker, Andres

    2017-08-01

    In this paper, we report on the interaction of multifunctional nanoparticles with living endothelial cells. The nanoparticles were synthesized using direct growth of gallium nitride on zinc oxide nanoparticles alloyed with iron oxide followed by core decomposition in hydrogen flow at high temperature. Using transmission electron microscopy, we demonstrate that porcine aortic endothelial cells take up GaN-based nanoparticles suspended in the growth medium. The nanoparticles are deposited in vesicles and the endothelial cells show no sign of cellular damage. Intracellular inert nanoparticles are used as guiding elements for controlled transportation or designed spatial distribution of cells in external magnetic fields.

  4. The pivotal role of high glucose-induced overexpression of PKCβ in the appearance of glucagon-like peptide-1 resistance in endothelial cells.

    Science.gov (United States)

    Pujadas, Gemma; De Nigris, Valeria; La Sala, Lucia; Testa, Roberto; Genovese, Stefano; Ceriello, Antonio

    2016-11-01

    Recently, it has been demonstrated that Glucagon-like peptide-1 (GLP-1) has a protective effect on endothelial cells. Our hypothesis is that this GLP-1 protective effect is partly lost when the cells are exposed to sustained high glucose concentrations. Human umbilical vein endothelial cells (HUVECs) were cultured for 21 days in normal glucose (5 mmol/L, NG) or high glucose (25 mmol/L glucose, HG). GLP-1 (7-37) and Ruboxistaurin were added at 50 and 500 nM, respectively, alone or in combination, 1 h before cell harvesting. Analysis of GLP-1 receptor protein levels, as well as of the gene expression of different ER stress-related genes, proliferation markers, antioxidant cell response-related genes, and PKA subunits, was performed. ROS production was also measured in HUVECs exposed to mentioned treatments. GLP-1 receptor expression was reduced in HUVECs exposed to chronic high glucose concentrations but was partially restored by a chemical PKCβ-specific inhibitor. GLP-1, added as an acute treatment in endothelial cells, had the capacity to induce the expression of Nrf2-detoxifying enzyme targets, to increase transcription levels of scavenger genes, to attenuate the expression of high glucose-induced PKA subunits, ER stress and also the apoptotic phenotype of HUVECs; these effects occured only when high glucose-induced PKCβ overexpression was reduced by Ruboxistaurin. In a similar manner, ROS production induced by high glucose was reduced by GLP-1 in the presence of PKCβ inhibitor. This study suggests that an increase in PKCβ, induced by high glucose, could have a role in endothelial GLP-1 resistance, reducing GLP-1 receptor levels and disrupting the GLP-1 canonical pathway.

  5. High glucose induced oxidative stress and apoptosis in cardiac microvascular endothelial cells are regulated by FoxO3a.

    Directory of Open Access Journals (Sweden)

    Chaoming Peng

    Full Text Available AIM: Cardiac microvascular endothelial cells (CMECs dysfunction contributes to cardiovascular complications in diabetes, whereas, the underlying mechanism is not fully clarified. FoxO transcription factors are involved in apoptosis and reactive oxygen species (ROS production. Therefore, the present study was designed to elucidate the potential role of FoxO3a on the CMECs injury induced by high glucose. MATERIALS AND METHODS: CMECs were isolated from hearts of adult rats and cultured in normal or high glucose medium for 6 h, 12 h and 24 h respectively. To down-regulate FoxO3a expression, CMECs were transfected with FoxO3a siRNA. ROS accumulation and apoptosis in CMECs were assessed by dihydroethidine (DHE staining and TUNEL assay respectively. Moreover, the expressions of Akt, FoxO3a, Bim and BclxL in CMECs were assessed by Western blotting assay. RESULTS: ROS accumulation in CMECs was significantly increased after high glucose incubation for 6 to 24 h. Meanwhile, high glucose also increased apoptosis in CMECs, correlated with decreased the phosphorylation expressions of Akt and FoxO3a. Moreover, high glucose incubation increased the expression of Bim, whereas increased anti-apoptotic protein BclxL. Furthermore, siRNA target FoxO3a silencing enhanced the ROS accumulation, whereas suppressed apoptosis in CMECs. FoxO3a silencing also abolished the disturbance of Bcl-2 proteins induced by high glucose in CMECs. CONCLUSION: Our data provide evidence that high glucose induced FoxO3a activation which suppressed ROS accumulation, and in parallel, resulted in apoptosis of CMECs.

  6. Microvascular endothelial cells of the corpus luteum

    Directory of Open Access Journals (Sweden)

    Spanel-Borowski Katherina

    2003-11-01

    Full Text Available Abstract The cyclic nature of the capillary bed in the corpus luteum offers a unique experimental model to examine the life cycle of endothelial cells, involving discrete physiologically regulated steps of angiogenesis, blood vessel maturation and blood vessel regression. The granulosa cells and theca cells of the developing antral follicle and the steroidogenic cells of the corpus luteum produce and respond to angiogenic factors and vasoactive peptides. Following ovulation the neovascularization during the early stages of corpus luteum development has been compared to the rapid angiogenesis observed during tumor formation. On the other end of the spectrum, the microvascular endothelial cells are the first cells to undergo apoptosis at the onset of corpus luteum regression. Important insights on the morphology and function of luteal endothelial cells have been gained from a combination of in vitro and in vivo studies on endothelial cells. Endothelial cells communicate with cells comprising the functional unit of the corpus luteum, i.e., other vascular cells, steroidogenic cells, and immune cells. This review is designed to provide an overview of the types of endothelial cells present in the corpus luteum and their involvement in corpus luteum development and regression. Available evidence indicates that microvascular endothelial cells of the corpus luteum are not alike, and may differ during the process of angiogenesis and angioregression. The contributions of vasoactive peptides generated by the luteal endothelin-1 and the renin-angiotensin systems are discussed in context with the function of endothelial cells during corpus luteum formation and regression. The ability of two cytokines, tumor necrosis factor alpha and interferon gamma, are evaluated as paracrine mediators of endothelial cell function during angioregression. Finally, chemokines are discussed as a vital endothelial cell secretory products that contribute to the recruitment of

  7. Effects of diabetic HDL on endothelial cell function.

    Science.gov (United States)

    He, Dan; Pan, Bing; Ren, Hui; Zheng, Lemin

    2014-01-01

    Type 2 diabetes mellitus (T2DM) is accompanied by dysfunctional high-density lipoprotein (HDL) and this is characterized by alterations in its composition and structure compared with HDL from normal subjects (N-HDL). HDL from diabetic subjects (D-HDL) has a diminished endothelial protective capacity including reducted ability to exert antioxidative activity, stimulate endothelial cell (EC) production of nitric oxide (NO) and endothelium-dependent vasomotion, promote endothelial progenitor cell (EPC)-mediated endothelial repair. In addition, D-HDL promotes EC proliferation, migration and adhesion to the matrix. The present review provides an overview of these effects of diabetic HDL on EC function, as well as the possible changes of D-HDL structure and composition which may be responsible for the diminished endothelial protective capacity of D-HDL.

  8. High glucose induced alteration of SIRTs in endothelial cells causes rapid aging in a p300 and FOXO regulated pathway.

    Directory of Open Access Journals (Sweden)

    Rokhsana Mortuza

    Full Text Available In diabetes, some of the cellular changes are similar to aging. We hypothesized that hyperglycemia accelerates aging-like changes in the endothelial cells (ECs and tissues leading to structural and functional damage. We investigated glucose-induced aging in 3 types of ECs using senescence associated β-gal (SA β-gal staining and cell morphology. Alterations of sirtuins (SIRTs and their downstream mediator FOXO and oxidative stress were investigated. Relationship of such alteration with histone acetylase (HAT p300 was examined. Similar examinations were performed in tissues of diabetic animals. ECs in high glucose (HG showed evidence of early senescence as demonstrated by increased SA β-gal positivity and reduced replicative capacities. These alterations were pronounced in microvascular ECs. They developed an irregular and hypertrophic phenotype. Such changes were associated with decreased SIRT (1-7 mRNA expressions. We also found that p300 and SIRT1 regulate each other in such process, as silencing one led to increase of the others' expression. Furthermore, HG caused reduction in FOXO1's DNA binding ability and antioxidant target gene expressions. Chemically induced increased SIRT1 activity and p300 knockdown corrected these abnormalities slowing aging-like changes. Diabetic animals showed increased cellular senescence in renal glomerulus and retinal blood vessels along with reduced SIRT1 mRNA expressions in these tissues. Data from this study demonstrated that hyperglycemia accelerates aging-like process in the vascular ECs and such process is mediated via downregulation of SIRT1, causing reduction of mitochondrial antioxidant enzyme in a p300 and FOXO1 mediated pathway.

  9. Normal corneal endothelial cell density in Nigerians

    Directory of Open Access Journals (Sweden)

    Ewete T

    2016-03-01

    Full Text Available Temitope Ewete,1 Efeoghene Uchenna Ani,2 Adegboyega Sunday Alabi1 1MeCure Eye Center, Lagos, 2Department of Ophthalmology, University of Port Harcourt, Port Harcourt, Nigeria Aim: The aim of the study was to describe the corneal endothelial cell density of adults at the MeCure Eye Center and to determine the relationship between age, sex, and corneal endothelial cell density. Methods: This study was a retrospective study looking at those records of individuals who had undergone specular microscopy or corneal endothelial cell count measurement at the MeCure Eye Center. Results: The endothelial cell characteristics of 359 healthy eyes of 201 volunteers were studied. The mean corneal endothelial cell density (MCD was 2,610.26±371.87 cells/mm2 (range, 1,484–3,571 cells/mm2. The MCD decreased from 2,860.70 cells/mm2 in the 20–30-year age group to 2,493.06 cells/mm2 in the >70-year age group, and there was a statistically significant relationship between age and MCD with a P-value of <0.001. There was no statistically significant correlation between sex and corneal endothelial cell density (P=0.45. Conclusion: This study shows that endothelial cell density in Nigerian eyes is less than that reported in the Japanese, American, and Chinese eyes, and is comparable to that seen in Indian and Malaysian eyes. Keywords: corneal, endothelial cell density, Nigerian

  10. Breast cancer cells stimulate osteoprotegerin (OPG production by endothelial cells through direct cell contact

    Directory of Open Access Journals (Sweden)

    Holen Ingunn

    2009-07-01

    Full Text Available Abstract Background Angiogenesis, the sprouting of capillaries from existing blood vessels, is central to tumour growth and progression, however the molecular regulation of this process remains to be fully elucidated. The secreted glycoprotein osteoprotegerin (OPG is one potential pro-angiogenic factor, and clinical studies have demonstrated endothelial cells within a number of tumour types to express high levels of OPG compared to those in normal tissue. Additionally, OPG can increase endothelial cell survival, proliferation and migration, as well as induce endothelial cell tube formation in vitro. This study aims to elucidate the processes involved in the pro-angiogenic effects of OPG in vitro, and also how OPG levels may be regulated within the tumour microenvironment. Results It has previously been demonstrated that OPG can induce tube formation on growth factor reduced matrigel. In this study, we demonstrate that OPG enhances the pro-angiogenic effects of VEGF and that OPG does not stimulate endothelial cell tube formation through activation of the VEGFR2 receptor. We also show that cell contact between HuDMECs and the T47D breast cancer cell line increases endothelial cell OPG mRNA and protein secretion levels in in vitro co-cultures. These increases in endothelial cell OPG secretion were dependent on ανβ3 ligation and NFκB activation. In contrast, the pro-angiogenic factors VEGF, bFGF and TGFβ had no effect on HuDMEC OPG levels. Conclusion These findings suggest that the VEGF signalling pathway is not involved in mediating the pro-angiogenic effects of OPG on endothelial cells in vitro. Additionally, we show that breast cancer cells cause increased levels of OPG expression by endothelial cells, and that direct contact between endothelial cells and tumour cells is required in order to increase endothelial OPG expression and secretion. Stimulation of OPG secretion was shown to involve ανβ3 ligation and NFκB activation.

  11. [Salidroside attenuates high glucose-induced apoptosis in human umbilical vein endothelial cells via activating the Ca(2)+/CaM/CAMKIIδ/eNOS pathway].

    Science.gov (United States)

    Chen, Ziwei; Wu, Xiang

    2014-04-01

    Endothelial oxidative stress plays an important role in the pathogenesis of cardiovascular disease. Salidroside, a phenylpropanoid glycoside isolated from Rhodiola rosea L, could exert potent antioxidant properties. In this study, we investigated the protective effects, and related mechanism of salidroside against high glucose (33 mmol/L)-induced cell damage in human umbilical vein endothelial cells (HUVECs). HUVECs were cultured in normal glucose (5.5 mmol/L), high glucose (33 mmol/L), high salidroside (10 µg/ml+33 mmol/L glucose), moderate salidroside (4 µg/ml+33 mmol/L glucose), low salidroside (1 µg/ml+33 mmol/L glucose) and very low salidroside (0.1 µg/ml+33 mmol/L glucose) for 48 h. Cell viability, the level of malondialdehyde (MDA) , reactive oxygen species (ROS) , nitric oxide (NO) , [Ca(2)+]i, calmodulin (CaM) , calmodulin-dependent kinase (CaMK) IIδ, endothelial nitric oxide synthase (eNOS) , active caspase-3 protein expression and eNOS ser 1177 phosphorylation of HUVECs post various treatments were measured. The cell viability was assessed with MTT assay, and the level of ROS, and [Ca(2)+]i was analyzed using flow cytometry. Nitric oxide and MDA was detected by Nitric Oxide Assay Kit and MDA Assay Kit. Western blot was performed to detect the protein expressions of eNOS, active caspase-3 and eNOS ser 1177 phosphorylation. Comparing to the normal glucose group, high glucose treatment increased the cell damage, the level of NO and [Ca(2)+]i (P Salidroside treatment significantly attenuated high glucose-induce cell damage on cultured HUVECs in a dose-dependent manner. Comparing to the high glucose group, 10 µg/ml Salidroside significantly increased cell viability (P salidroside could attenuate high glucose induced apoptosis in HUVEC, partly through activating the Ca(2)+/CaM/CAMKIIδ/eNOS pathway.

  12. Rapid homogeneous endothelialization of high aspect ratio microvascular networks.

    Science.gov (United States)

    Naik, Nisarga; Hanjaya-Putra, Donny; Haller, Carolyn A; Allen, Mark G; Chaikof, Elliot L

    2015-08-01

    Microvascularization of an engineered tissue construct is necessary to ensure the nourishment and viability of the hosted cells. Microvascular constructs can be created by seeding the luminal surfaces of microfluidic channel arrays with endothelial cells. However, in a conventional flow-based system, the uniformity of endothelialization of such an engineered microvascular network is constrained by mass transfer of the cells through high length-to-diameter (L/D) aspect ratio microchannels. Moreover, given the inherent limitations of the initial seeding process to generate a uniform cell coating, the large surface-area-to-volume ratio of microfluidic systems demands long culture periods for the formation of confluent cellular microconduits. In this report, we describe the design of polydimethylsiloxane (PDMS) and poly(glycerol sebacate) (PGS) microvascular constructs with reentrant microchannels that facilitates rapid, spatially homogeneous endothelial cell seeding of a high L/D (2 cm/35 μm; > 550:1) aspect ratio microchannels. MEMS technology was employed for the fabrication of a monolithic, elastomeric, reentrant microvascular construct. Isotropic etching and PDMS micromolding yielded a near-cylindrical microvascular channel array. A 'stretch - seed - seal' operation was implemented for uniform incorporation of endothelial cells along the entire microvascular area of the construct yielding endothelialized microvascular networks in less than 24 h. The feasibility of this endothelialization strategy and the uniformity of cellularization were established using confocal microscope imaging.

  13. Endothelial cell tumor growth is Ape/ref-1 dependent.

    Science.gov (United States)

    Biswas, Ayan; Khanna, Savita; Roy, Sashwati; Pan, Xueliang; Sen, Chandan K; Gordillo, Gayle M

    2015-09-01

    Tumor-forming endothelial cells have highly elevated levels of Nox-4 that release H2O2 into the nucleus, which is generally not compatible with cell survival. We sought to identify compensatory mechanisms that enable tumor-forming endothelial cells to survive and proliferate under these conditions. Ape-1/ref-1 (Apex-1) is a multifunctional protein that promotes DNA binding of redox-sensitive transcription factors, such as AP-1, and repairs oxidative DNA damage. A validated mouse endothelial cell (EOMA) tumor model was used to demonstrate that Nox-4-derived H2O2 causes DNA oxidation that induces Apex-1 expression. Apex-1 functions as a chaperone to keep transcription factors in a reduced state. In EOMA cells Apex-1 enables AP-1 binding to the monocyte chemoattractant protein-1 (mcp-1) promoter and expression of that protein is required for endothelial cell tumor formation. Intraperitoneal injection of the small molecule inhibitor E3330, which specifically targets Apex-1 redox-sensitive functions, resulted in a 50% decrease in tumor volume compared with mice injected with vehicle control (n = 6 per group), indicating that endothelial cell tumor proliferation is dependent on Apex-1 expression. These are the first reported results to establish Nox-4 induction of Apex-1 as a mechanism promoting endothelial cell tumor formation.

  14. Endothelial progenitor cells in cardiovascular diseases

    Institute of Scientific and Technical Information of China (English)

    Poay; Sian; Sabrina; Lee; Kian; Keong; Poh

    2014-01-01

    Endothelial dysfunction has been associated with the development of atherosclerosis and cardiovascular diseases. Adult endothelial progenitor cells(EPCs) are derived from hematopoietic stem cells and are capable of forming new blood vessels through a process of vas-culogenesis. There are studies which report correlations between circulating EPCs and cardiovascular risk fac-tors. There are also studies on how pharmacotherapies may influence levels of circulating EPCs. In this review, we discuss the potential role of endothelial progenitor cells as both diagnostic and prognostic biomarkers. In addition, we look at the interaction between cardio-vascular pharmacotherapies and endothelial progenitor cells. We also discuss how EPCs can be used directly and indirectly as a therapeutic agent. Finally, we evalu-ate the challenges facing EPC research and how these may be overcome.

  15. The mitochondrial Na+/Ca2+exchanger may reduce high glucose-induced oxidative stress and nucleotide-binding oligomerization domain receptor 3 inflammasome activation in endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Yuan ZU; Li-Juan WAN; Shao-Yuan CUI; Yan-Ping GONG; Chun-Lin LI

    2015-01-01

    Background The mitochondrial Na+/Ca2+exchanger, NCLX, plays an important role in the balance between Ca2+influx and efflux across the mitochondrial inner membrane in endothelial cells. Mitochondrial metabolism is likely to be affected by the activity of NCLX because Ca2+activates several enzymes of the Krebs cycle. It is currently believed that mitochondria are not only centers of energy produc-tion but are also important sites of reactive oxygen species (ROS) generation and nucleotide-binding oligomerization domain receptor 3 (NLRP3) inflammasome activation. Methods&Results This study focused on NCLX function, in rat aortic endothelial cells (RAECs), induced by glucose. First, we detected an increase in NCLX expression in the endothelia of rats with diabetes mellitus, which was induced by an injection of streptozotocin. Next, colocalization of NCLX expression and mitochondria was detected using confocal analysis. Suppression of NCLX expression, using an siRNA construct (siNCLX), enhanced mitochondrial Ca2+influx and blocked efflux induced by glucose. Un-expectedly, silencing of NCLX expression induced increased ROS generation and NLRP3 inflammasome activation. Conclusions These findings suggest that NCLX affects glucose-dependent mitochondrial Ca2+signaling, thereby regulating ROS generation and NLRP3 in-flammasome activation in high glucose conditions. In the early stages of high glucose stimulation, NCLX expression increases to compensate in order to self-protect mitochondrial maintenance, stability, and function in endothelial cells.

  16. High frequency of endothelial colony forming cells marks a non-active myeloproliferative neoplasm with high risk of splanchnic vein thrombosis.

    Directory of Open Access Journals (Sweden)

    Vittorio Rosti

    Full Text Available Increased mobilization of circulating endothelial progenitor cells may represent a new biological hallmark of myeloproliferative neoplasms. We measured circulating endothelial colony forming cells (ECFCs in 106 patients with primary myelofibrosis, fibrotic stage, 49 with prefibrotic myelofibrosis, 59 with essential thrombocythemia or polycythemia vera, and 43 normal controls. Levels of ECFC frequency for patient's characteristics were estimated by using logistic regression in univariate and multivariate setting. The sensitivity, specificity, likelihood ratios, and positive predictive value of increased ECFC frequency were calculated for the significantly associated characteristics. Increased frequency of ECFCs resulted independently associated with history of splanchnic vein thrombosis (adjusted odds ratio = 6.61, 95% CI = 2.54-17.16, and a summary measure of non-active disease, i.e. hemoglobin of 13.8 g/dL or lower, white blood cells count of 7.8×10(9/L or lower, and platelet count of 400×10(9/L or lower (adjusted odds ratio = 4.43, 95% CI = 1.45-13.49 Thirteen patients with splanchnic vein thrombosis non associated with myeloproliferative neoplasms were recruited as controls. We excluded a causal role of splanchnic vein thrombosis in ECFCs increase, since no control had elevated ECFCs. We concluded that increased frequency of ECFCs represents the biological hallmark of a non-active myeloproliferative neoplasm with high risk of splanchnic vein thrombosis. The recognition of this disease category copes with the phenotypic mimicry of myeloproliferative neoplasms. Due to inherent performance limitations of ECFCs assay, there is an urgent need to arrive to an acceptable standardization of ECFC assessment.

  17. Metabolic signatures of Besnoitia besnoiti-infected endothelial host cells and blockage of key metabolic pathways indicate high glycolytic and glutaminolytic needs of the parasite.

    Science.gov (United States)

    Taubert, A; Hermosilla, C; Silva, L M R; Wieck, A; Failing, K; Mazurek, S

    2016-05-01

    Besnoitia besnoiti is an obligate intracellular and emerging coccidian parasite of cattle with a significant economic impact on cattle industry. During acute infection, fast-proliferating tachyzoites are continuously formed mainly in endothelial host cells of infected animals. Given that offspring formation is a highly energy and cell building block demanding process, the parasite needs to exploit host cellular metabolism to meet its metabolic demands. Here, we analyzed the metabolic signatures of B. besnoiti-infected endothelial host cells and aimed to influence parasite proliferation by inhibitors of specific metabolic pathways. The following inhibitors were tested: fluoro 2-deoxy-D-glucose and 2-deoxy-D-glucose (FDG, DG; inhibitors of glycolysis), 6-diazo-5-oxo-L-norleucin (DON; inhibitor of glutaminolysis), dichloroacetate (DCA; inhibitor of pyruvate dehydrogenase kinase which favorites channeling of glucose carbons into the TCA cycle) and adenosine-monophosphate (AMP; inhibitor of ribose 5-P synthesis). Overall, B. besnoiti infections of bovine endothelial cells induced a significant and infection rate-dependent increase of glucose, lactate, glutamine, glutamate, pyruvate, alanine, and serine conversion rates which together indicate a parasite-triggered up-regulation of glycolysis and glutaminolysis. Thus, addition of DON, FDG, and DG into the cultivation medium of B. besnoiti infected endothelial cells led to a dose-dependent inhibition of parasite replication (4 μM DON, 99.5 % inhibition; 2 mM FDG, 99.1 % inhibition; 2 mM DG, 93 % inhibition; and 8 mM DCA, 71.9 % inhibition). In contrast, AMP had no significant effects on total tachyzoite production up to a concentration of 20 mM. Together, these data may open new strategies for the development of therapeutics for B. besnoiti infections.

  18. Tumor-derived circulating endothelial cell clusters in colorectal cancer.

    KAUST Repository

    Cima, Igor

    2016-06-29

    Clusters of tumor cells are often observed in the blood of cancer patients. These structures have been described as malignant entities for more than 50 years, although their comprehensive characterization is lacking. Contrary to current consensus, we demonstrate that a discrete population of circulating cell clusters isolated from the blood of colorectal cancer patients are not cancerous but consist of tumor-derived endothelial cells. These clusters express both epithelial and mesenchymal markers, consistent with previous reports on circulating tumor cell (CTC) phenotyping. However, unlike CTCs, they do not mirror the genetic variations of matched tumors. Transcriptomic analysis of single clusters revealed that these structures exhibit an endothelial phenotype and can be traced back to the tumor endothelium. Further results show that tumor-derived endothelial clusters do not form by coagulation or by outgrowth of single circulating endothelial cells, supporting a direct release of clusters from the tumor vasculature. The isolation and enumeration of these benign clusters distinguished healthy volunteers from treatment-naïve as well as pathological early-stage (≤IIA) colorectal cancer patients with high accuracy, suggesting that tumor-derived circulating endothelial cell clusters could be used as a means of noninvasive screening for colorectal cancer. In contrast to CTCs, tumor-derived endothelial cell clusters may also provide important information about the underlying tumor vasculature at the time of diagnosis, during treatment, and throughout the course of the disease.

  19. Traction Forces of Endothelial Cells under Slow Shear Flow

    Science.gov (United States)

    Perrault, Cecile M.; Brugues, Agusti; Bazellieres, Elsa; Ricco, Pierre; Lacroix, Damien; Trepat, Xavier

    2015-01-01

    Endothelial cells are constantly exposed to fluid shear stresses that regulate vascular morphogenesis, homeostasis, and disease. The mechanical responses of endothelial cells to relatively high shear flow such as that characteristic of arterial circulation has been extensively studied. Much less is known about the responses of endothelial cells to slow shear flow such as that characteristic of venous circulation, early angiogenesis, atherosclerosis, intracranial aneurysm, or interstitial flow. Here we used a novel, to our knowledge, microfluidic technique to measure traction forces exerted by confluent vascular endothelial cell monolayers under slow shear flow. We found that cells respond to flow with rapid and pronounced increases in traction forces and cell-cell stresses. These responses are reversible in time and do not involve reorientation of the cell body. Traction maps reveal that local cell responses to slow shear flow are highly heterogeneous in magnitude and sign. Our findings unveil a low-flow regime in which endothelial cell mechanics is acutely responsive to shear stress. PMID:26488643

  20. The effects of low and high concentrations of luteolin on cultured human endothelial cells under normal and glucotoxic conditions: involvement of integrin-linked kinase and cyclooxygenase-2.

    Science.gov (United States)

    Abbasi, Naser; Akhavan, Maziar Mohammad; Rahbar-Roshandel, Nahid; Shafiei, Massoumeh

    2014-09-01

    Luteolin protects against high glucose (HG)-induced endothelial dysfunction whereas its cytotoxicity has been reported against normal endothelial cells. This study was undertaken to determine luteolin cytoprotective and cytotoxic dose ranges and to elucidate their respective mechanisms. Luteolin prevented HG-induced human umbilical vein endothelial cell (HUVEC) death with an EC50 value of 2.0 ± 0.07 μM. The protective effect of luteolin was associated with decreased intracellular reactive oxygen species (ROS) and Ca(2+) (Cai(2+)) levels and enhanced nitric oxide (NO) production. At high concentrations, luteolin caused HUVEC death in normal glucose (NG) and HG states (LC50 40 ± 2.23 and 38 ± 1.12 μM, respectively), as represented by increased ROS and Cai(2+) and decreased NO. Western blots illustrated that exposure to HG increased cyclooxygenase-2 (COX-2) and integrin-linked kinase (ILK) expression. Luteolin at low concentrations suppressed HG-mediated up-regulation of COX-2 but maintained HG-induced over-expression of ILK while at high concentrations significantly increased COX-2 and decreased ILK expression in both HG and NG states. Our data indicated that cytoprotective action of luteolin was manifested with much lower concentrations, by a factor of approximately 20, compared with cytotoxic activity under both normal or glucotoxic conditions. It appears that luteolin exerts its action, in part, by modulating ILK expression which is associated with regulation of COX-2 expression and NO production in endothelial cells. Copyright © 2014 John Wiley & Sons, Ltd.

  1. The acute impact of high-dose lipid-lowering treatment on endothelial progenitor cells in patients with coronary artery disease—The REMEDY-EPC early substudy

    Science.gov (United States)

    Madonna, Rosalinda; Renna, Francesca Vera; Lanuti, Paola; Perfetti, Matteo; Marchisio, Marco; Briguori, Carlo; Condorelli, Gerolama; Manzoli, Lamberto

    2017-01-01

    Rationale and objective Endothelial progenitor cells (EPCs) play a role in vascular repair, while circulating endothelial cells (CECs) are biomarkers of vascular damage and regeneration. Statins may promote EPC/CEC mobilization in the peripheral blood. We evaluated whether pre-procedural exposure to different lipid-lowering drugs (statins±ezetimibe) can acutely increase levels/activity of EPCs/CECs in patients with stable coronary artery disease (CAD). Methods In a planned sub-analysis of the Rosuvastatin For REduction Of Myocardial DamagE During Coronary AngioplastY (REMEDY) trial, 38 patients with stable CAD on chronic low-dose statin therapy were randomized, in a double-blind, placebo-controlled design, into 4 groups before PCI: i. placebo (n = 11); ii. atorvastatin (80 mg+40 mg, n = 9); iii. rosuvastatin (40 mg twice, n = 9); and iv. rosuvastatin (5 mg) and ezetimibe (10 mg) twice, (n = 9). At baseline and 24 h after treatment–before PCI–, patients underwent blinded analyses of EPCs [colony forming units-endothelial cells (CFU-ECs), endothelial colony-forming cells (ECFCs) and tubulization activity] and CECs in peripheral blood. Results We found no significant treatment effects on parameters investigated such as number of CECs [Median (IQR): i. 0(0), ii. 4.5(27), iii. 1.9(2.3), iv. 1.9(2.3)], CFU-ECs [Median (IQR): i. 27(11), ii. 19(31), iii. 47(36), iv. 30(98)], and ECFCs [Median (IQR): i. 86(84), ii. 7(84), iii. 8/(42.5), iv. 5(2)], as well as tubulization activity [total tubuli (well), Median (IQR): i. 19(7), ii. 5(4), iii. 25(13), iv. 15(24)]. Conclusions In this study, we found no evidence of acute changes in levels or activity of EPCs and CECs after high-dose lipid-lowering therapy in stable CAD patients. PMID:28394933

  2. The acute impact of high-dose lipid-lowering treatment on endothelial progenitor cells in patients with coronary artery disease-The REMEDY-EPC early substudy.

    Science.gov (United States)

    Madonna, Rosalinda; Renna, Francesca Vera; Lanuti, Paola; Perfetti, Matteo; Marchisio, Marco; Briguori, Carlo; Condorelli, Gerolama; Manzoli, Lamberto; De Caterina, Raffaele

    2017-01-01

    Endothelial progenitor cells (EPCs) play a role in vascular repair, while circulating endothelial cells (CECs) are biomarkers of vascular damage and regeneration. Statins may promote EPC/CEC mobilization in the peripheral blood. We evaluated whether pre-procedural exposure to different lipid-lowering drugs (statins±ezetimibe) can acutely increase levels/activity of EPCs/CECs in patients with stable coronary artery disease (CAD). In a planned sub-analysis of the Rosuvastatin For REduction Of Myocardial DamagE During Coronary AngioplastY (REMEDY) trial, 38 patients with stable CAD on chronic low-dose statin therapy were randomized, in a double-blind, placebo-controlled design, into 4 groups before PCI: i. placebo (n = 11); ii. atorvastatin (80 mg+40 mg, n = 9); iii. rosuvastatin (40 mg twice, n = 9); and iv. rosuvastatin (5 mg) and ezetimibe (10 mg) twice, (n = 9). At baseline and 24 h after treatment-before PCI-, patients underwent blinded analyses of EPCs [colony forming units-endothelial cells (CFU-ECs), endothelial colony-forming cells (ECFCs) and tubulization activity] and CECs in peripheral blood. We found no significant treatment effects on parameters investigated such as number of CECs [Median (IQR): i. 0(0), ii. 4.5(27), iii. 1.9(2.3), iv. 1.9(2.3)], CFU-ECs [Median (IQR): i. 27(11), ii. 19(31), iii. 47(36), iv. 30(98)], and ECFCs [Median (IQR): i. 86(84), ii. 7(84), iii. 8/(42.5), iv. 5(2)], as well as tubulization activity [total tubuli (well), Median (IQR): i. 19(7), ii. 5(4), iii. 25(13), iv. 15(24)]. In this study, we found no evidence of acute changes in levels or activity of EPCs and CECs after high-dose lipid-lowering therapy in stable CAD patients.

  3. Angiogenic potential of endothelial progenitor cells and embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Rae Peter C

    2011-05-01

    Full Text Available Abstract Background Endothelial progenitor cells (EPCs are implicated in a range of pathological conditions, suggesting a natural therapeutic role for EPCs in angiogenesis. However, current angiogenic therapies involving EPC transplantation are inefficient due to rejection of donor EPCs. One solution is to derive an expanded population of EPCs from stem cells in vitro, to be re-introduced as a therapeutic transplant. To demonstrate the therapeutic potential of EPCs we performed in vitro transplantation of EPCs into endothelial cell (EC tubules using a gel-based tubule formation assay. We also described the production of highly angiogenic EPC-comparable cells from pluripotent embryonic stem cells (ESCs by direct differentiation using EC-conditioned medium (ECCM. Results The effect on tubule complexity and longevity varied with transplantation quantity: significant effects were observed when tubules were transplanted with a quantity of EPCs equivalent to 50% of the number of ECs originally seeded on to the assay gel but not with 10% EPC transplantation. Gene expression of the endothelial markers VEGFR2, VE-cadherin and CD31, determined by qPCR, also changed dynamically during transplantation. ECCM-treated ESC-derived progenitor cells exhibited angiogenic potential, demonstrated by in vitro tubule formation, and endothelial-specific gene expression equivalent to natural EPCs. Conclusions We concluded the effect of EPCs is cumulative and beneficial, relying on upregulation of the angiogenic activity of transplanted cells combined with an increase in proliferative cell number to produce significant effects upon transplantation. Furthermore, EPCs derived from ESCs may be developed for use as a rapidly-expandable alternative for angiogenic transplantation therapy.

  4. Activation of Endothelial Nitric Oxide (eNOS Occurs through Different Membrane Domains in Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Jason Tran

    Full Text Available Endothelial cells respond to a large range of stimuli including circulating lipoproteins, growth factors and changes in haemodynamic mechanical forces to regulate the activity of endothelial nitric oxide synthase (eNOS and maintain blood pressure. While many signalling pathways have been mapped, the identities of membrane domains through which these signals are transmitted are less well characterized. Here, we manipulated bovine aortic endothelial cells (BAEC with cholesterol and the oxysterol 7-ketocholesterol (7KC. Using a range of microscopy techniques including confocal, 2-photon, super-resolution and electron microscopy, we found that sterol enrichment had differential effects on eNOS and caveolin-1 (Cav1 colocalisation, membrane order of the plasma membrane, caveolae numbers and Cav1 clustering. We found a correlation between cholesterol-induced condensation of the plasma membrane and enhanced high density lipoprotein (HDL-induced eNOS activity and phosphorylation suggesting that cholesterol domains, but not individual caveolae, mediate HDL stimulation of eNOS. Vascular endothelial growth factor (VEGF-induced and shear stress-induced eNOS activity was relatively independent of membrane order and may be predominantly controlled by the number of caveolae on the cell surface. Taken together, our data suggest that signals that activate and phosphorylate eNOS are transmitted through distinct membrane domains in endothelial cells.

  5. Reduced Ang2 expression in aging endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Hohensinner, P.J., E-mail: philipp.hohensinner@meduniwien.ac.at [Department of Internal Medicine II, Medical University of Vienna, Vienna (Austria); Ebenbauer, B. [Department of Internal Medicine II, Medical University of Vienna, Vienna (Austria); Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna (Austria); Kaun, C.; Maurer, G. [Department of Internal Medicine II, Medical University of Vienna, Vienna (Austria); Huber, K. [Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna (Austria); 3rd Medical Department, Wilhelminenhospital, Vienna (Austria); Sigmund Freud University, Medical Faculty, Vienna (Austria); Wojta, J. [Department of Internal Medicine II, Medical University of Vienna, Vienna (Austria); Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna (Austria); Core Facilities, Medical University of Vienna, Vienna (Austria)

    2016-06-03

    Aging endothelial cells are characterized by increased cell size, reduced telomere length and increased expression of proinflammatory cytokines. In addition, we describe here that aging reduces the migratory distance of endothelial cells. Furthermore, we observe an increase of the quiescence protein Ang1 and a decrease of the endothelial activation protein Ang2 upon aging. Supplementing Ang2 to aged endothelial cells restored their migratory capacity. We conclude that aging shifts the balance of the Ang1/Ang2 network favouring a quiescent state. Activation of endothelial cells in aging might be necessary to enhance wound healing capacities. -- Highlights: •Endothelial cells display signs of aging before reaching proliferative senescence. •Aging endothelial cells express more angiopoietin 1 and less angiopoietin 2 than young endothelial cells. •Migratory capacity is reduced in aging endothelial cells.

  6. Sodium renders endothelial cells sticky for red blood cells

    Directory of Open Access Journals (Sweden)

    Hans eOberleithner

    2015-06-01

    Full Text Available Negative charges in the glycocalyx of red blood cells (RBC and vascular endothelial cells (EC facilitate frictionless blood flow through blood vessels. Na+ selectively shields these charges controlling surface electronegativity. The question was addressed whether the ambient Na+ concentration controls RBC-EC interaction. Using atomic force microscopy (AFM adhesion forces between RBC and endothelial glycocalyx were quantified. A single RBC, mounted on an AFM cantilever, was brought in physical contact with the endothelial surface and then pulled off. Adhesion forces were quantified (i after enzymatic removal of negative charges in the glycocalyx, (ii under different ambient Na+ and (iii after applying the intracellular aldosterone receptor antagonist spironolactone. Removal of negative surface charges increases RBC-EC interaction forces. A stepwise increase of ambient Na+ from 133 to 140 mM does not affect them. However, beyond 140 mM Na+ adhesion forces increase sharply (10% increase of adhesion force per 1 mM increase of Na+. Spironolactone prevents this response. It is concluded that negative charges reduce adhesion between RBC and EC. Ambient Na+ concentration determines the availability of free negative charges. Na+ concentrations in the low physiological range (below 140 mM allow sufficient amounts of vacant negative charges so that adhesion of RBC to the endothelial surface is small. In contrast, Na+ in the high physiological range (beyond 140 mM saturates the remaining negative surface charges thus increasing adhesion. Aldosterone receptor blockade by spironolactone prevents Na+ induced RBC adhesion to the endothelial glycocalyx. Extrapolation of in vitro experiments to in vivo conditions leads to the hypothesis that high sodium intake is likely to increase the incidence of thrombotic events.

  7. Sodium renders endothelial cells sticky for red blood cells.

    Science.gov (United States)

    Oberleithner, Hans; Wälte, Mike; Kusche-Vihrog, Kristina

    2015-01-01

    Negative charges in the glycocalyx of red blood cells (RBC) and vascular endothelial cells (EC) facilitate frictionless blood flow through blood vessels. Na(+) selectively shields these charges controlling surface electronegativity. The question was addressed whether the ambient Na(+) concentration controls RBC-EC interaction. Using atomic force microscopy (AFM) adhesion forces between RBC and endothelial glycocalyx were quantified. A single RBC, mounted on an AFM cantilever, was brought in physical contact with the endothelial surface and then pulled off. Adhesion forces were quantified (i) after enzymatic removal of negative charges in the glycocalyx, (ii) under different ambient Na(+) and (iii) after applying the intracellular aldosterone receptor antagonist spironolactone. Removal of negative surface charges increases RBC-EC interaction forces. A stepwise increase of ambient Na(+) from 133 to 140 mM does not affect them. However, beyond 140 mM Na(+) adhesion forces increase sharply (10% increase of adhesion force per 1 mM increase of Na(+)). Spironolactone prevents this response. It is concluded that negative charges reduce adhesion between RBC and EC. Ambient Na(+) concentration determines the availability of free negative charges. Na(+) concentrations in the low physiological range (below 140 mM) allow sufficient amounts of vacant negative charges so that adhesion of RBC to the endothelial surface is small. In contrast, Na(+) in the high physiological range (beyond 140 mM) saturates the remaining negative surface charges thus increasing adhesion. Aldosterone receptor blockade by spironolactone prevents Na(+) induced RBC adhesion to the endothelial glycocalyx. Extrapolation of in vitro experiments to in vivo conditions leads to the hypothesis that high sodium intake is likely to increase the incidence of thrombotic events.

  8. Northern contaminant mixtures induced morphological and functional changes in human coronary artery endothelial cells under culture conditions typifying high fat/sugar diet and ethanol exposure.

    Science.gov (United States)

    Florian, Maria; Yan, Jin; Ulhaq, Saad; Coughlan, Melanie; Laziyan, Mahemuti; Willmore, William; Jin, Xiaolei

    2013-11-16

    It has been reported that Northern populations are exposed to mixtures of various environmental contaminants unique to the Arctic (Northern contaminant mixtures - NCM) at a large range of concentrations, depending on their geological location, age, lifestyle and dietary habits. To determine if these contaminants may contribute to a cardiovascular health risk, especially when combined with a high fat and sugar diet and ethanol exposure, we treated human coronary artery endothelial cells (HCAEC) with two mixtures of 4 organic (NCM1) or 22 organic and inorganic (NCM2) chemicals detected in Northerners' blood during 2004-2005 in the presence or absence of low-density lipoprotein (1.5mg/ml), very-low-density lipoprotein (1.0mg/ml) and glucose (10mmol/L) (LVG), and in the absence or presence of 0.1% ethanol. After 24h of exposure, cell morphology and markers of cytotoxicity and endothelial function were examined. NCM1 treatment did not affect cell viability, but increased cell size, disrupted cell membrane integrity, and decreased cell density, uptake of small peptides, release of endothelin-1 (ET-1) and plasminogen activator inhibitor (PAI), while causing no changes in endothelial nitric oxide synthase (eNOS) protein expression and nitric oxide (NO) release. In contrast, NCM2 decreased cell viability, total protein yield, uptake of small peptides, eNOS protein expression, and NO release and caused membrane damage, but caused no changes in the secretion of ET-1, prostacyclin and PAI. The presence of LVG and/or alcohol did or did not influence the effects of NCM1 or NCM2 depending on the endpoint and the mixture examined. These results suggested that the effects of one or one group of contaminants may be altered by the presence of other contaminants, and that with or without the interaction of high fat and sugar diet and/or ethanol exposure, NCMs at the concentrations used caused endothelial dysfunction in vitro. It remains to be investigated if these effects of NCMs also

  9. Tie-1-directed expression of Cre recombinase in endothelial cells of embryoid bodies and transgenic mice

    DEFF Research Database (Denmark)

    Gustafsson, E; Brakebusch, C; Hietanen, K

    2001-01-01

    the production and screening of multiple transgenic lines we used embryonic stem cell and embryoid body technology to identify recombinant embryonic stem cell clones with high, endothelial-specific Cre activity. One embryonic stem cell clone that showed high Cre activity in endothelial cells was used to generate...

  10. Human iPSC-Derived Endothelial Cell Sprouting Assay in ...

    Science.gov (United States)

    Activation of vascular endothelial cells (ECs) by growth factors initiates a cascade of events in vivo consisting of EC tip cell selection, sprout formation, EC stalk cell proliferation, and ultimately vascular stabilization by support cells. Although EC functional assays can recapitulate one or more aspects of angiogenesis in vitro, they are often limited by a lack of definition to the substratum and lack of dependence on key angiogenic signaling axes. Here, we designed and characterized a chemically-defined model of endothelial sprouting behavior in vitro using human induced pluripotent stem cell-derived endothelial cells (iPSC-ECs). Thiol-ene photopolymerization was used to rapidly encapsulate iPSC-ECs at high density in poly(ethylene glycol) (PEG) hydrogel spheres and subsequently to rapidly encapsulate iPSC-EC-containing hydrogel spheres in a cell-free over-layer. The hydrogel sprouting array here maintained pro-angiogenic phenotype of iPSC-ECs and supported growth factor-dependent proliferation and sprouting behavior. The sprouting model responded appropriately to several reference pharmacological angiogenesis inhibitors, which suggests the functional role of vascular endothelial growth factor, NF-κB, matrix metalloproteinase-2/9, protein kinase activity, and β-tubulin in endothelial sprouting. A blinded screen of 38 putative vascular disrupting compounds (pVDCs) from the US Environmental Protection Agency’s ToxCast library identified five compounds th

  11. Microvesicles Derived from Indoxyl Sulfate Treated Endothelial Cells Induce Endothelial Progenitor Cells Dysfunction.

    Science.gov (United States)

    Carmona, Andres; Guerrero, Fatima; Buendia, Paula; Obrero, Teresa; Aljama, Pedro; Carracedo, Julia

    2017-01-01

    Cardiovascular disease is a major cause of mortality in chronic kidney disease patients. Indoxyl sulfate (IS) is a typical protein-bound uremic toxin that cannot be effectively cleared by conventional dialysis. Increased IS is associated with the progression of chronic kidney disease and development of cardiovascular disease. After endothelial activation by IS, cells release endothelial microvesicles (EMV) that can induce endothelial dysfunction. We developed an in vitro model of endothelial damage mediated by IS to evaluate the functional effect of EMV on the endothelial repair process developed by endothelial progenitor cells (EPCs). EMV derived from IS-treated endothelial cells were isolated by ultracentrifugation and characterized for miRNAs content. The effects of EMV on healthy EPCs in culture were studied. We observed that IS activates endothelial cells and the generated microvesicles (IsEMV) can modulate the classic endothelial roles of progenitor cells as colony forming units and form new vessels in vitro. Moreover, 23 miRNAs were contained in IsEMV including four (miR-181a-5p, miR-4454, miR-150-5p, and hsa-let-7i-5p) that were upregulated in IsEMV compared with control endothelial microvesicles. Other authors have found that miR-181a-5p, miR-4454, and miR-150-5p are involved in promoting inflammation, apoptosis, and cellular senescence. Interestingly, we observed an increase in NFκB and p53, and a decrease in IκBα in EPCs treated with IsEMV. Our data suggest that IS is capable of inducing endothelial vesiculation with different membrane characteristics, miRNAs and other molecules, which makes maintaining of vascular homeostasis of EPCs not fully functional. These specific characteristics of EMV could be used as novel biomarkers for diagnosis and prognosis of vascular disease.

  12. Effect of high glucose and anoxia on Amot expression in vascular endothelial cells with regard to its function in promoting angiogenesis

    Institute of Scientific and Technical Information of China (English)

    禇月颉

    2014-01-01

    Objective To observe the effects of high glucose and anoxia on Amot expression in vascular endothelial cells(VECs),and explore its role in angiogenesis.Methods VECs were incubated with different glucose concentrations for 48 h,and then cultured at normal oxygen concentration or anaerobic condition for 24 h.The protein expressions of p130-Amot and p80-Amot were detected by Western blot.After Amot expression was downregulated in VECs by siRNA,wound healing experiments and angiogenesis experiments were performed to test the effect

  13. Metformin improves endothelial function in aortic tissue and microvascular endothelial cells subjected to diabetic hyperglycaemic conditions.

    Science.gov (United States)

    Ghosh, Suparna; Lakshmanan, Arun P; Hwang, Mu Ji; Kubba, Haidar; Mushannen, Ahmed; Triggle, Chris R; Ding, Hong

    2015-12-01

    The cellular mechanisms whereby metformin, the first line drug for type 2 diabetes (T2DM), mediates its antidiabetic effects remain elusive, particularly as to whether metformin has a direct protective action on the vasculature. This study was designed to determine if a brief 3-h exposure to metformin protects endothelial function against the effects of hyperglycaemia. We investigated the protective effects of metformin on endothelial-dependent vasodilatation (EDV) in thoracic aortae from T2DM db/db mice and on high glucose (HG, 40 mM) induced changes in endothelial nitric oxide synthase (eNOS) signaling in mouse microvascular endothelial cells (MMECs) in culture. Exposure of aortae from db+/? non-diabetic control mice to high glucose (HG, 40 mM) containing Krebs for 3-h significantly (Pmetformin; metformin also improved ACh-induced EDV in aortae from diabetic db/db mice. Immunoblot analysis of MMECs cultured in HG versus NG revealed a significant reduction of the ratio of phosphorylated (p-eNOS)/eNOS and p-Akt/Akt, but not the expression of total eNOS or Akt. The 3-h exposure of MMECs to metformin significantly (Pmetformin can reverse/reduce the impact of HG on endothelial function, via mechanisms linked to increased phosphorylation of eNOS and Akt.

  14. Endothelial cells regulate neural crest and second heart field morphogenesis.

    Science.gov (United States)

    Milgrom-Hoffman, Michal; Michailovici, Inbal; Ferrara, Napoleone; Zelzer, Elazar; Tzahor, Eldad

    2014-07-04

    Cardiac and craniofacial developmental programs are intricately linked during early embryogenesis, which is also reflected by a high frequency of birth defects affecting both regions. The molecular nature of the crosstalk between mesoderm and neural crest progenitors and the involvement of endothelial cells within the cardio-craniofacial field are largely unclear. Here we show in the mouse that genetic ablation of vascular endothelial growth factor receptor 2 (Flk1) in the mesoderm results in early embryonic lethality, severe deformation of the cardio-craniofacial field, lack of endothelial cells and a poorly formed vascular system. We provide evidence that endothelial cells are required for migration and survival of cranial neural crest cells and consequently for the deployment of second heart field progenitors into the cardiac outflow tract. Insights into the molecular mechanisms reveal marked reduction in Transforming growth factor beta 1 (Tgfb1) along with changes in the extracellular matrix (ECM) composition. Our collective findings in both mouse and avian models suggest that endothelial cells coordinate cardio-craniofacial morphogenesis, in part via a conserved signaling circuit regulating ECM remodeling by Tgfb1.

  15. Endothelial cells regulate neural crest and second heart field morphogenesis

    Directory of Open Access Journals (Sweden)

    Michal Milgrom-Hoffman

    2014-07-01

    Full Text Available Cardiac and craniofacial developmental programs are intricately linked during early embryogenesis, which is also reflected by a high frequency of birth defects affecting both regions. The molecular nature of the crosstalk between mesoderm and neural crest progenitors and the involvement of endothelial cells within the cardio–craniofacial field are largely unclear. Here we show in the mouse that genetic ablation of vascular endothelial growth factor receptor 2 (Flk1 in the mesoderm results in early embryonic lethality, severe deformation of the cardio–craniofacial field, lack of endothelial cells and a poorly formed vascular system. We provide evidence that endothelial cells are required for migration and survival of cranial neural crest cells and consequently for the deployment of second heart field progenitors into the cardiac outflow tract. Insights into the molecular mechanisms reveal marked reduction in Transforming growth factor beta 1 (Tgfb1 along with changes in the extracellular matrix (ECM composition. Our collective findings in both mouse and avian models suggest that endothelial cells coordinate cardio–craniofacial morphogenesis, in part via a conserved signaling circuit regulating ECM remodeling by Tgfb1.

  16. Microvascular endothelial cell heterogeneity : general concepts and pharmacological consequences for anti-angiogenic therapy of cancer

    NARCIS (Netherlands)

    Langenkamp, Elise; Molema, Grietje

    2009-01-01

    Microvascular endothelial cells display a large degree of heterogeneity in function depending on their location in the vascular tree. The existence of organ-specific, microvascular-bed-specific, and even intravascular variations in endothelial cell gene expression emphasizes their high cell-to-cell

  17. The Transcription Factor Nrf2 Protects Angiogenic Capacity of Endothelial Colony-Forming Cells in High-Oxygen Radical Stress Conditions

    Directory of Open Access Journals (Sweden)

    Hendrik Gremmels

    2017-01-01

    Full Text Available Background. Endothelial colony forming cells (ECFCs have shown a promise in tissue engineering of vascular constructs, where they act as endothelial progenitor cells. After implantation, ECFCs are likely to be subjected to elevated reactive oxygen species (ROS. The transcription factor Nrf2 regulates the expression of antioxidant enzymes in response to ROS. Methods. Stable knockdown of Nrf2 and Keap1 was achieved by transduction with lentiviral shRNAs; activation of Nrf2 was induced by incubation with sulforaphane (SFN. Expression of Nrf2 target genes was assessed by qPCR, oxidative stress was assessed using CM-DCFDA, and angiogenesis was quantified by scratch-wound and tubule-formation assays. Results. Nrf2 knockdown led to a reduction of antioxidant gene expression and increased ROS. Angiogenesis was disturbed after Nrf2 knockdown even in the absence of ROS. Conversely, angiogenesis was preserved in high ROS conditions after knockdown of Keap1. Preincubation of ECFCs with SFN reduced intracellular ROS in the presence of H2O2 and preserved scratch-wound closure and tubule-formation. Conclusion. The results of this study indicate that Nrf2 plays an important role in the angiogenic capacity of ECFCs, particularly under conditions of increased oxidative stress. Pretreatment of ECFCs with SFN prior to implantation may be a protective strategy for tissue-engineered constructs or cell therapies.

  18. Endothelial cell seeding on crosslinked collagen : Effects of crosslinking on endothelial cell proliferation and functional parameters

    NARCIS (Netherlands)

    Wissink, MJB; van Luyn, MJA; Dijk, F; Poot, AA; Engbers, GHM; Beugeling, T; van Aken, WG; Feijen, J

    Endothelial cell seeding, a promising method to improve the performance of small-diameter vascular grafts, requires a suitable substrate, such as crosslinked collagen. Commonly used crosslinking agents such as glutaraldehyde and formaldehyde cause, however, cytotoxic reactions and thereby hamper

  19. bFGF-Regulating MAPKs Are Involved in High Glucose-Mediated ROS Production and Delay of Vascular Endothelial Cell Migration.

    Directory of Open Access Journals (Sweden)

    Zhong Xin Zhu

    Full Text Available High blood sugar is a symptom of diabetes mellitus (DM. Vascular endothelial cells (VECs directly contact the blood and are damaged when blood sugar levels are high. However, the molecular mechanism underlying this process remains elusive. To analyze the effects of DM on migration, we simulated DM by applying high glucose (HG to the human VEC. HG delayed cell migration and induced phosphorylation of MAPKs (JNK and ERK. By contrast, in presence of bFGF, cell migration was promoted and MAPK phosphorylation levels were reduced. Furthermore, treatment with JNK and ERK inhibitors rescued HG-mediated delay of cell migration. Molecular and cell biological studies demonstrated that HG increased ROS production, whereas treatment with bFGF or JNK/ERK inhibitors blocked HG-induced ROS accumulation. Addition of MnTMPyP, a ROS scavenger, reduced HG-induced ROS production and accelerated cell migration, suggesting that the influence of HG on bFGF-MAPK signaling causes accumulation of ROS, which in turn regulate cell migration. This is the first study to elucidate the molecular mechanism of HG-mediated VEC migration; these findings could facilitate the development of novel therapies for DM.

  20. Endothelial cell promotion of early liver and pancreas development.

    Science.gov (United States)

    Freedman, Deborah A; Kashima, Yasushige; Zaret, Kenneth S

    2007-01-01

    Different steps of embryonic pancreas and liver development require inductive signals from endothelial cells. During liver development, interactions between newly specified hepatic endoderm cells and nascent endothelial cells are crucial for the endoderm's subsequent growth and morphogenesis into a liver bud. Reconstitution of endothelial cell stimulation of hepatic cell growth with embryonic tissue explants demonstrated that endothelial signalling occurs independent of the blood supply. During pancreas development, midgut endoderm interactions with aortic endothelial cells induce Ptf1a, a crucial pancreatic determinant. Endothelial cells also have a later effect on pancreas development, by promoting survival of the dorsal mesenchyme, which in turn produces factors supporting pancreatic endoderm. A major goal of our laboratory is to determine the endothelial-derived molecules involved in these inductive events. Our data show that cultured endothelial cells induce Ptf1a in dorsal endoderm explants lacking an endogenous vasculature. We are purifying endothelial cell line product(s) responsible for this effect. We are also identifying endothelial-responsive regulatory elements in genes such as Ptf1a by genetic mapping and chromatin-based assays. These latter approaches will allow us to track endothelial-responsive signal pathways from DNA targets within progenitor cells. The diversity of organogenic steps dependent upon endothelial cell signalling suggests that cross-regulation of tissue development with its vasculature is a general phenomenon.

  1. Treponema pallidum Invades Intercellular Junctions of Endothelial Cell Monolayers

    Science.gov (United States)

    Thomas, D. Denee; Navab, Mahamad; Haake, David A.; Fogelman, Alan M.; Miller, James N.; Lovett, Michael A.

    1988-05-01

    The pathogenesis of syphilis reflects invasive properties of Treponema pallidum, but the actual mode of tissue invasion is unknown. We have found two in vitro parallels of treponemal invasiveness. We tested whether motile T. pallidum could invade host cells by determining the fate of radiolabeled motile organisms added to a HeLa cell monolayer; 26% of treponemes associated with the monolayer in a trypsin-resistant niche, presumably between the monolayer and the surface to which it adhered, but did not attain intracellularity. Attachment of T. pallidum to cultured human and rabbit aortic and human umbilical vein endothelial cells was 2-fold greater than to HeLa cells. We added T. pallidum to aortic endothelial cells grown on membrane filters under conditions in which tight intercellular junctions had formed. T. pallidum was able to pass through the endothelial cell monolayers without altering tight junctions, as measured by electrical resistance. In contrast, heat-killed T. pallidum and the nonpathogen Treponema phagedenis biotype Reiter failed to penetrate the monolayer. Transmission electron micrographs of sections of the monolayer showed T. pallidum in intercellular junctions. Our in vitro observations suggest that these highly motile spirochetes may leave the circulation by invading the junctions between endothelial cells.

  2. Differences in the primary culture, purification and biological characteristics between endothelial cells and smooth muscle cells from rat aorta

    Institute of Scientific and Technical Information of China (English)

    Shaobo Hu; Zifang Song; Qichang Zheng; Jun Nie

    2009-01-01

    Objective: To investigate the differences of primary culture, purification and biological characteristics between endothelial cells and smooth muscle cells from rat aorta. Methods: Endothelial cells were obtained using the vascular ring adherence, collagenase digestion method and an improved vascular ring adherence method, while smooth muscle cells were separated from tissue sections of rat aorta. Clones of endothelial cells were selected by limiting dilution assay. Both cell types were identified using specific cell immunofluorescent markers,and phase contrast microscopy was used to observe the morphological disparity between endothelial cells and smooth muscle cells at the single cell and colony level. Cell proliferation was determined by the cell counting kit-8. Differences between endothelial cells and smooth muscle cells were evaluated in trypsin digestion 6me, attachment time and recovery after cryopreservation. Results: Endothelial cells were obtained by all three methods. The improved vascular ring method provided the most reproducible results. Cells were in good condition, and of high purity. Smooth muscle cells were cultured successfully by the tissue fragment culture method. Clonal expansion of singleendothelial cells was attained. The two cell types expressed their respective specific markers, and the rate of proliferation of smooth muscle cells exceeded that of endothelial cells. Endothelial cells were more sensitive to trypsin digestion than smooth muscle cells. In addition, they had a shorter adherence time and better recovery following cryopreservation than smooth muscle cells. Conclusion: The improved vascular ring method was optimal for yielding endothelial cells. Limiting dilution is a novel and valid method for purifying primary endothelial cells from rat aorta. Primary rat endothelial cell and vascular smooth muscle cell cultures exhibited different morphological characteristics, proliferation rate, adherence time, susceptibility to trypsin

  3. Endothelial progenitor cell biology in ankylosing spondylitis.

    Science.gov (United States)

    Verma, Inderjeet; Syngle, Ashit; Krishan, Pawan

    2015-03-01

    Endothelial progenitor cells (EPCs) are unique populations which have reparative potential in overcoming endothelial damage and reducing cardiovascular risk. Patients with ankylosing spondylitis (AS) have increased risk of cardiovascular morbidity and mortality. The aim of this study was to investigate the endothelial progenitor cell population in AS patients and its potential relationships with disease variables. Endothelial progenitor cells were measured in peripheral blood samples from 20 AS and 20 healthy controls by flow cytometry on the basis of CD34 and CD133 expression. Disease activity was evaluated by using Bath Ankylosing Spondylitis Disease Activity Index (BASDAI). Functional ability was monitored by using Bath Ankylosing Spondylitis Functional Index (BASFI). EPCs were depleted in AS patients as compared to healthy controls (CD34(+) /CD133(+) : 0.027 ± 0.010% vs. 0.044 ± 0.011%, P < 0.001). EPC depletions were significantly associated with disease duration (r = -0.52, P = 0.01), BASDAI (r = -0.45, P = 0.04) and C-reactive protein (r = -0.5, P = 0.01). This is the first study to demonstrate endothelial progenitor cell depletion in AS patients. EPC depletions inversely correlate with disease duration, disease activity and inflammation, suggesting the pivotal role of inflammation in depletion of EPCs. EPC would possibly also serve as a therapeutic target for preventing cardiovascular disease in AS. © 2014 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  4. METABOLIC CAPACITY REGULATES IRON HOMEOSTATIS IN ENDOTHELIAL CELLS

    Science.gov (United States)

    The sensitivity of endothelial cells to oxidative stress and the high concentrations of iron in mitochondria led us to test the hypotheses that (1) changes in respiratory capacity alter iron homeostasis, and (2) lack of aerobic metabolism decreases labile iron stores and attenuat...

  5. Isolation, Characterization, and Transplantation of Cardiac Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Busadee Pratumvinit

    2013-01-01

    due to difficulties in isolation, cell heterogeneity, lack of specific markers to identify myocardial endothelial cells, and inadequate conditions to maintain long-term cultures. Herein, we developed a method for isolation, characterization, and expansion of cardiac endothelial cells applicable to study endothelial cell biology and clinical applications such as neoangiogenesis. First, we dissociated the cells from murine heart by mechanical disaggregation and enzymatic digestion. Then, we used flow cytometry coupled with specific markers to isolate endothelial cells from murine hearts. CD45+ cells were gated out to eliminate the hematopoietic cells. CD31+/Sca-1+ cells were isolated as endothelial cells. Cells isolated from atrium grew faster than those from ventricle. Cardiac endothelial cells maintain endothelial cell function such as vascular tube formation and acetylated-LDL uptake in vitro. Finally, cardiac endothelial cells formed microvessels in dorsal matrigel plug and engrafted in cardiac microvessels following intravenous and intra-arterial injections. In conclusion, our multicolor flow cytometry method is an effective method to analyze and purify endothelial cells from murine heart, which in turn can be ex vivo expanded to study the biology of endothelial cells or for clinical applications such as therapeutic angiogenesis.

  6. Mycobacteria entry and trafficking into endothelial cells.

    Science.gov (United States)

    Baltierra-Uribe, Shantal Lizbeth; García-Vásquez, Manuel de Jesús; Castrejón-Jiménez, Nayeli Shantal; Estrella-Piñón, Mayra Patricia; Luna-Herrera, Julieta; García-Pérez, Blanca Estela

    2014-09-01

    Endothelial cells are susceptible to infection by mycobacteria, but the endocytic mechanisms that mycobacteria exploit to enter host cells and their mechanisms of intracellular transport are completely unknown. Using pharmacological inhibitors, we determined that the internalization of Mycobacterium tuberculosis (MTB), Mycobacterium smegmatis (MSM), and Mycobacterium abscessus (MAB) is dependent on the cytoskeleton and is differentially inhibited by cytochalasin D, nocodazole, cycloheximide, wortmannin, and amiloride. Using confocal microscopy, we investigated their endosomal trafficking by analyzing Rab5, Rab7, LAMP-1, and cathepsin D. Our results suggest that MSM exploits macropinocytosis to enter endothelial cells and that the vacuoles containing these bacteria fuse with lysosomes. Conversely, the entry of MTB seems to depend on more than one endocytic route, and the observation that only a subset of the intracellular bacilli was associated with phagolysosomes suggests that these bacteria are able to inhibit endosomal maturation to persist intracellularly. The route of entry for MAB depends mainly on microtubules, which suggests that MAB uses a different trafficking pathway. However, MAB is also able to inhibit endosomal maturation and can replicate intracellularly. Together, these findings provide the first evidence that mycobacteria modulate proteins of host endothelial cells to enter and persist within these cells.

  7. Leptin-induced transphosphorylation of vascular endothelial growth factor receptor increases Notch and stimulates endothelial cell angiogenic transformation.

    Science.gov (United States)

    Lanier, Viola; Gillespie, Corey; Leffers, Merle; Daley-Brown, Danielle; Milner, Joy; Lipsey, Crystal; Webb, Nia; Anderson, Leonard M; Newman, Gale; Waltenberger, Johannes; Gonzalez-Perez, Ruben Rene

    2016-10-01

    Leptin increases vascular endothelial growth factor (VEGF), VEGF receptor-2 (VEGFR-2), and Notch expression in cancer cells, and transphosphorylates VEGFR-2 in endothelial cells. However, the mechanisms involved in leptin's actions in endothelial cells are not completely known. Here we investigated whether a leptin-VEGFR-Notch axis is involved in these leptin's actions. To this end, human umbilical vein and porcine aortic endothelial cells (wild type and genetically modified to overexpress VEGFR-1 or -2) were cultured in the absence of VEGF and treated with leptin and inhibitors of Notch (gamma-secretase inhibitors: DAPT and S2188, and silencing RNA), VEGFR (kinase inhibitor: SU5416, and silencing RNA) and leptin receptor, OB-R (pegylated leptin peptide receptor antagonist 2: PEG-LPrA2). Interestingly, in the absence of VEGF, leptin induced the expression of several components of Notch signaling pathway in endothelial cells. Inhibition of VEGFR and Notch signaling significantly decreased leptin-induced S-phase progression, proliferation, and tube formation in endothelial cells. Moreover, leptin/OB-R induced transphosphorylation of VEGFR-1 and VEGFR-2 was essential for leptin's effects. These results unveil for the first time a novel mechanism by which leptin could induce angiogenic features via upregulation/trans-activation of VEGFR and downstream expression/activation of Notch in endothelial cells. Thus, high levels of leptin found in overweight and obese patients might lead to increased angiogenesis by activating VEGFR-Notch signaling crosstalk in endothelial cells. These observations might be highly relevant for obese patients with cancer, where leptin/VEGFR/Notch crosstalk could play an important role in cancer growth, and could be a new target for the control of tumor angiogenesis.

  8. Transition of mesenchymal stem/stromal cells to endothelial cells

    NARCIS (Netherlands)

    M. Crisan (Mihaela)

    2013-01-01

    textabstractMesenchymal stem/stromal cells (MSCs) are heterogeneous. A fraction of these cells constitute multipotent cells that can self-renew and mainly give rise to mesodermal lineage cells such as adipocytes, osteocytes and chondrocytes. The ability of MSCs to differentiate into endothelial cell

  9. Comparison of Endothelial Cell Loss by Specular Microscopy ...

    African Journals Online (AJOL)

    ... was no clinically or statistically significant difference in endothelial cell loss or visual acuity between phacoemulsification and manual SICS at ... captured image was then transferred to the computer ... and iridocorneal endothelial syndrome.

  10. Effects of vascular endothelial growth factor on angiogenesis of the endothelial cells isolated from cavernous malformations

    Institute of Scientific and Technical Information of China (English)

    TAN YuZhen; ZHAO Yao; WANG HaiJie; ZHOU LiangFu; MAO Ying; LIU Rui; SHU Jia; WANG YongFei

    2008-01-01

    Human cerebral cavernous malformation (CM) is a common vascular malformation of the central nervous system. We have investigated the biological characteristics of CM endothelial cells and the cellular and molecular mechanisms of CM angiogenesis to offer new insights into exploring effective measures for treatment of this disease. The endothelial cells were isolated from CM tissue masses dissected during operation and expanded in vitro. Expression of VEGFR-1 and VEGFR-2 was examined with immunocytochemical staining. Proliferation, migration and tube formation of CM endothelial cells were determined using MTT, wounding and transmigration assays, and three-dimensional collagen type Ⅰ gel respectively. The endothelial cells were successfully isolated from the tissue specimens of 25 CMs dissected without dipolar electrocoagulation. The cells show the general characteristics of the vascular endothelial cells. Expression of VEGFR-1 and VEGFR-2 on the cells is higher than that on the normal cerebral microvascular endothelial cells. After treatment with VEGF, numbers of the proliferated and migrated cells, the maximal distance of cell migration and the length and area of capillary-like struc-tures formed in the three-dimensional collagen gel increase significantly. These results demonstrate that expression of VEGFR-1 and VEGFR-2 on CM endothelial cells is up-regulated. By binding to re-ceptors, VEGF may activate the downstream signaling pathways and promote proliferation, migration and tube formation of CM endothelial cells. VEGF/VEGFR signaling pathways play important regulating roles in CM angiogenesis.

  11. Effects of blood products on inflammatory response in endothelial cells in vitro.

    Directory of Open Access Journals (Sweden)

    Martin Urner

    Full Text Available BACKGROUND: Transfusing blood products may induce inflammatory reactions within the vascular compartment potentially leading to a systemic inflammatory response. Experiments were designed to assess the inflammatory potential of different blood products in an endothelial cell-based in vitro model and to compare baseline levels of potentially activating substances in transfusion products. METHODS: The inflammatory response from pre-activated (endotoxin-stimulated and non-activated endothelial cells as well as neutrophil endothelial transmigration in response to packed red blood cells (PRBC, platelet concentrates (PC and fresh frozen plasma (FFP was determined. Baseline inflammatory mediator and lipid concentrations in blood products were evaluated. RESULTS: Following incubation with all blood products, an increased inflammatory mediator release from endothelial cells was observed. Platelet concentrates, and to a lesser extent also FFP, caused the most pronounced response, which was accentuated in already pre-stimulated endothelial cells. Inflammatory response of endothelial cells as well as blood product-induced migration of neutrophils through the endothelium was in good agreement with the lipid content of the according blood product. CONCLUSION: Within the group of different blood transfusion products both PC and FFP have a high inflammatory potential with regard to activation of endothelial cells. Inflammation upon blood product exposure is strongly accentuated when endothelial cells are pre-injured. High lipid contents in the respective blood products goes along with an accentuated inflammatory reaction from endothelial cells.

  12. Arecoline is cytotoxic for human endothelial cells.

    Science.gov (United States)

    Ullah, Mafaz; Cox, Stephen; Kelly, Elizabeth; Boadle, Ross; Zoellner, Hans

    2014-11-01

    Oral submucous fibrosis is a pre-malignant fibrotic condition caused by areca nut use and involves reduced mucosal vascularity. Arecoline is the principal areca nut alkaloid and is cytotoxic for epithelium and fibroblasts. Endothelial cell cycle arrest is reported on exposure to arecoline, as is cytotoxicity for endothelial-lung carcinoma hybrid cells. We here describe cytotoxicity for primary human endothelial cultures from seven separate donors. Human umbilical vein endothelial cells were exposed to increasing concentrations of arecoline and examined by: phase-contrast microscopy, haemocytometer counts, transmission electron microscopy, lactate dehydrogenase release and the methyl-thiazol-tetrazolium assay. Vacuolation and detachment of endothelium were observed at and above arecoline concentrations of 333 μg/ml or more. Ultrastructural features of cellular stress were seen after 24-h treatment with 111 μg/ml arecoline and included reduced ribosomal studding of endoplasmic reticulum, increased autophagolysosomal structures, increased vacuolation and reduced mitochondrial cristae with slight swelling. Similar changes were seen at 4 h with arecoline at 333 μg/ml or above, but with more severe mitochondrial changes including increased electron density of mitochondrial matrix and greater cristal swelling, while by 24 h, these cells were frankly necrotic. Haemocytometer counts were paralleled by both lactate dehydrogenase release and the methyl-thiazol-tetrazolium assays. Arecoline is cytotoxic via necrosis for endothelium, while biochemical assays indicate no appreciable cellular leakage before death and detachment, as well as no clear effect on mitochondrial function in viable cells. Arecoline toxicity may thus contribute to reduced vascularity in oral submucous fibrosis. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Ex Vivo Behaviour of Human Bone Tumor Endothelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Infante, Teresa [SDN-Foundation, Institute of Diagnostic and Nuclear Development, IRCCS, 80143 Naples (Italy); Cesario, Elena [Department of Biochemistry and Biophysics, Second University of Naples, 80138 Naples (Italy); Gallo, Michele; Fazioli, Flavio [Division of Skeletal Muscles Oncology Surgery, National Cancer Institute, Pascale Foundation, 80131 Naples (Italy); De Chiara, Annarosaria [Anatomic Pathology Unit, National Cancer Institute, Pascale Foundation, 80131 Naples (Italy); Tutucci, Cristina; Apice, Gaetano [Medical Oncology of Bone and Soft Sarcoma tissues Unit, National Cancer Institute, Pascale Foundation, 80131 Naples (Italy); Nigris, Filomena de, E-mail: filomena.denigris@unina2.it [Department of Biochemistry and Biophysics, Second University of Naples, 80138 Naples (Italy)

    2013-04-11

    Cooperation between endothelial cells and bone in bone remodelling is well established. In contrast, bone microvasculature supporting the growth of primary tumors and metastasis is poorly understood. Several antiangiogenic agents have recently been undergoing trials, although an extensive body of clinical data and experimental research have proved that angiogenic pathways differ in each tumor type and stage. Here, for the first time, we characterize at the molecular and functional level tumor endothelial cells from human bone sarcomas at different stages of disease and with different histotypes. We selected a CD31{sup +} subpopulation from biopsies that displayed the capability to grow as adherent cell lines without vascular endothelial growth factor (VEGF). Our findings show the existence in human primary bone sarcomas of highly proliferative endothelial cells expressing CD31, CD44, CD105, CD146 and CD90 markers. These cells are committed to develop capillary-like structures and colony formation units, and to produce nitric oxide. We believe that a better understanding of tumor vasculature could be a valid tool for the design of an efficacious antiangiogenic therapy as adjuvant treatment of sarcomas.

  14. The effect of VEGF-immobilized nickel-free high-nitrogen stainless steel on viability and proliferation of vascular endothelial cells.

    Science.gov (United States)

    Sasaki, Makoto; Inoue, Motoki; Katada, Yasuyuki; Taguchi, Tetsushi

    2012-04-01

    Using ester bonds, vascular endothelial growth factor-A (VEGF-A) was immobilized on the surface of a novel biometal, nickel-free high-nitrogen stainless steel (HNS). The biological activity of immobilized VEGF-A was investigated after the culture of human umbilical vein endothelial cells (HUVECs) on the substrate. Immobilization of VEGF-A onto the HNS surface was performed using trisuccinimidyl citrate (TSC) as a linker. Firstly, UV irradiation was employed to amplify hydroxyl groups on the HNS surface. Next, the HNS was dipped into TSC/dimethyl sulfoxide solution at room temperature. From the results of water contact angle measurement and X-ray photoelectron spectroscopy (XPS) analysis, TSC was found to be immobilized on the HNS surface via ester bonds. Quantitative analysis demonstrated that immobilized VEGF-A remained even after immersion in culture medium for 7 days; however, it was gradually deimmobilized by hydrolysis of the ester bonds at the TSC-metal interface. As a result, VEGF-A-immobilized HNS significantly contributed to the stimulation of HUVEC growth for the initial stage of culture, even though the gradual reduction in growth stimulation of HUVECs occurred by the sequential deimmobilization of VEGF-A, which was caused by the hydrolysis of the ester groups. Therefore, VEGF-A-immobilized HNS could be applied as a basic material for coronary stents.

  15. G-CSF protects human brain vascular endothelial cells injury induced by high glucose, free fatty acids and hypoxia through MAPK and Akt signaling.

    Directory of Open Access Journals (Sweden)

    Jingjing Su

    Full Text Available Granulocyte-colony stimulating factor (G-CSF has been shown to play a neuroprotective role in ischemic stroke by mobilizing bone marrow (BM-derived endothelial progenitor cells (EPCs, promoting angiogenesis, and inhibiting apoptosis. Impairments in mobilization and function of the BM-derived EPCs have previously been reported in animal and human studies of diabetes where there is both reduction in the levels of the BM-derived EPCs and its ability to promote angiogenesis. This is hypothesized to account for the pathogenesis of diabetic vascular complications such as stroke. Here, we sought to investigate the effects of G-CSF on diabetes-associated cerebral vascular defect. We observed that pretreatment of the cultured human brain vascular endothelial cells (HBVECs with G-CSF largely prevented cell death induced by the combination stimulus with high glucose, free fatty acids (FFA and hypoxia by increasing cell viability, decreasing apoptosis and caspase-3 activity. Cell ultrastructure measured by transmission electron microscope (TEM revealed that G-CSF treatment nicely reduced combination stimulus-induced cell apoptosis. The results from fluorescent probe Fluo-3/AM showed that G-CSF greatly suppressed the levels of intracellular calcium ions under combination stimulus. We also found that G-CSF enhanced the expression of cell cycle proteins such as human cell division cycle protein 14A (hCdc14A, cyclinB and cyclinE, inhibited p53 activity, and facilitated cell cycle progression following combination stimulus. In addition, activation of extracellular signal-regulated kinase1/2 (ERK1/2 and Akt, and deactivation of c-Jun N terminal kinase (JNK and p38 were proved to be required for the pro-survival effects of G-CSF on HBVECs exposed to combination stimulus. Overall, G-CSF is capable of alleviating HBVECs injury triggered by the combination administration with high glucose, FFA and hypoxia involving the mitogen-activated protein kinases (MAPK and Akt

  16. G-CSF Protects Human Brain Vascular Endothelial Cells Injury Induced by High Glucose, Free Fatty Acids and Hypoxia through MAPK and Akt Signaling

    Science.gov (United States)

    Tao, Yinghong; Guo, Jingchun; Guo, Zhuangli; Zhang, Shuo; Zhang, Yu; Huang, Yanyan; Tang, Yuping; Dong, Qiang; Hu, Renming

    2015-01-01

    Granulocyte-colony stimulating factor (G-CSF) has been shown to play a neuroprotective role in ischemic stroke by mobilizing bone marrow (BM)-derived endothelial progenitor cells (EPCs), promoting angiogenesis, and inhibiting apoptosis. Impairments in mobilization and function of the BM-derived EPCs have previously been reported in animal and human studies of diabetes where there is both reduction in the levels of the BM-derived EPCs and its ability to promote angiogenesis. This is hypothesized to account for the pathogenesis of diabetic vascular complications such as stroke. Here, we sought to investigate the effects of G-CSF on diabetes-associated cerebral vascular defect. We observed that pretreatment of the cultured human brain vascular endothelial cells (HBVECs) with G-CSF largely prevented cell death induced by the combination stimulus with high glucose, free fatty acids (FFA) and hypoxia by increasing cell viability, decreasing apoptosis and caspase-3 activity. Cell ultrastructure measured by transmission electron microscope (TEM) revealed that G-CSF treatment nicely reduced combination stimulus-induced cell apoptosis. The results from fluorescent probe Fluo-3/AM showed that G-CSF greatly suppressed the levels of intracellular calcium ions under combination stimulus. We also found that G-CSF enhanced the expression of cell cycle proteins such as human cell division cycle protein 14A (hCdc14A), cyclinB and cyclinE, inhibited p53 activity, and facilitated cell cycle progression following combination stimulus. In addition, activation of extracellular signal-regulated kinase1/2 (ERK1/2) and Akt, and deactivation of c-Jun N terminal kinase (JNK) and p38 were proved to be required for the pro-survival effects of G-CSF on HBVECs exposed to combination stimulus. Overall, G-CSF is capable of alleviating HBVECs injury triggered by the combination administration with high glucose, FFA and hypoxia involving the mitogen-activated protein kinases (MAPK) and Akt signaling

  17. Functional and gene expression analysis of hTERT overexpressed endothelial cells

    Directory of Open Access Journals (Sweden)

    Haruna Takano

    2008-09-01

    Full Text Available Haruna Takano1, Satoshi Murasawa1,2, Takayuki Asahara1,2,31Institute of Biomedical Research and Innovation, Kobe, Japan; 2RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; 3Tokai University of School of Medicine, Tokai, JapanAbstract: Telomerase dysfunction contributes to cellular senescence. Recent advances indicate the importance of senescence in maintaining vascular cell function in vitro. Human telomerase reverse transcriptase (hTERT overexpression is thought to lead to resistance to apoptosis and oxidative stress. However, the mechanism in endothelial lineage cells is unclear. We tried to generate an immortal endothelial cell line from human umbilical vein endothelial cells using a no-virus system and examine the functional mechanisms of hTERT overexpressed endothelial cell senescence in vitro. High levels of hTERT genes and endothelial cell-specific markers were expressed during long-term culture. Also, angiogenic responses were observed in hTERT overexpressed endothelial cell. These cells showed a delay in senescence and appeared more resistant to stressed conditions. PI3K/Akt-related gene levels were enhanced in hTERT overexpressed endothelial cells. An up-regulated PI3K/Akt pathway caused by hTERT overexpression might contribute to anti-apoptosis and survival effects in endothelial lineage cells.Keywords: endothelial, telomerase, senescence, oxidative stress, anti-apoptosis, PI3K/Akt pathway

  18. Adhesion of endothelial cells and endothelial progenitor cells on peptide-linked polymers in shear flow.

    Science.gov (United States)

    Wang, Xin; Cooper, Stuart

    2013-05-01

    The initial adhesion of human umbilical vein endothelial cells (HUVECs), cord blood endothelial colony-forming cells (ECFCs), and human blood outgrowth endothelial cells (HBOECs) was studied under radial flow conditions. The surface of a variable shear-rate device was either coated with polymer films or covered by synthetic fibers. Spin-coating was applied to produce smooth polymer films, while fibrous scaffolds were generated by electrospinning. The polymer was composed of hexyl methacrylate, methyl methacrylate, poly(ethylene glycol) methacrylate (PEGMA), and CGRGDS peptide. The peptide was incorporated into the polymer system by coupling to an acrylate-PEG-N-hydroxysuccinimide comonomer. A shear-rate-dependent increase of the attached cells with time was observed with all cell types. The adhesion of ECs increased on RGD-linked polymer surfaces compared to polymers without adhesive peptides. The number of attached ECFCs and HBOECs are significantly higher than that of HUVECs within the entire shear-rate range and surfaces examined, especially on RGD-linked polymers at low shear rates. Their superior adhesion ability of endothelial progenitor cells under flow conditions suggests they are a promising source for in vivo seeding of vascular grafts and shows the potential to be used for self-endothelialized implants.

  19. Amyloid β induces adhesion of erythrocytes to endothelial cells and affects endothelial viability and functionality.

    Science.gov (United States)

    Nakagawa, Kiyotaka; Kiko, Takehiro; Kuriwada, Satoko; Miyazawa, Taiki; Kimura, Fumiko; Miyazawa, Teruo

    2011-01-01

    It has been suggested that amyloid β-peptide (Aβ) might mediate the adhesion of erythrocytes to the endothelium which could disrupt the properties of endothelial cells. We provide evidence here that Aβ actually induced the binding of erythrocytes to endothelial cells and decreased endothelial viability, perhaps by the generation of oxidative and inflammatory stress. These changes are likely to contribute to the pathogenesis of Alzheimer's disease.

  20. Functional genomics of vascular endothelial cells

    OpenAIRE

    Wallgard, Elisabet

    2008-01-01

    Angiogenesis, the formation of new blood vessels from preexisting ones, is a process involved in normal development as well as in several pathological conditions, such as cancer, ischemic heart disease, wound healing and certain retinal complications. Antiangiogenic targeting is therefore a promising new therapeutic principle. However, few blood vessel-specific drug targets have been identified, and information is still limited about endothelial cell (EC)-specific molecular ...

  1. Bone marrow-derived cells serve as proangiogenic macrophages but not endothelial cells in wound healing

    OpenAIRE

    Okuno, Yuji; Nakamura-Ishizu, Ayako; Kishi,Kazuo; Suda, Toshio; Kubota, Yoshiaki

    2011-01-01

    Bone marrow-derived cells (BMDCs) contribute to postnatal vascular growth by differentiating into endothelial cells or secreting angiogenic factors. However, the extent of their endothelial differentiation highly varies according to the angiogenic models used. Wound healing is an intricate process in which the skin repairs itself after injury. As a process also observed in cancer progression, neoangiogenesis into wound tissues is profoundly involved in this healing process, suggesting the con...

  2. Are endothelial cell bioeffects from acoustic droplet vaporization proximity dependent?

    Science.gov (United States)

    Seda, Robinson; Li, David; Fowlkes, J. Brian; Bull, Joseph

    2013-11-01

    Acoustic droplet vaporization (ADV) produces gas microbubbles that provide a means of selective occlusion in gas embolotherapy. Vaporization and subsequent occlusion occur inside blood vessels supplying the targeted tissue, such as tumors. Theoretical and computational studies showed that ADV within a vessel can impart high fluid mechanical stresses on the vessel wall. Previous in vitro studies have demonstrated that vaporization at an endothelial layer may affect cell attachment and viability. The current study is aimed at investigating the role of vaporization distance away from the endothelial layer. HUVECs were cultured in OptiCell™ chambers until reaching confluence. Dodecafluoropentane microdroplets were added, attaining a 10:1 droplet to cell ratio. A single ultrasound pulse (7.5 MHz) consisting of 16 cycles (~ 2 μs) and a 5 MPa peak rarefactional pressure was used to produce ADV while varying the vaporization distance from the endothelial layer (0 μm, 500 μm, 1000 μm). Results indicated that cell attachment and viability was significantly different if the distance was 0 μm (at the endothelial layer). Other distances were not significantly different from the control. ADV will significantly affect the endothelium if droplets are in direct contact with the cells. Droplet concentration and flow conditions inside blood vessels may play an important role. This work was supported by NIH grant R01EB006476.

  3. Endothelial progenitor cells with Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    KONG Xiao-dong; ZHANG Yun; LIU Li; SUN Ning; ZHANG Ming-yi; ZHANG Jian-ning

    2011-01-01

    Background Endothelial dysfunction is thought to be critical events in the pathogenesis of Alzheimer's disease (AD).Endothelial progenitor cells (EPCs) have provided insight into maintaining and repairing endothelial function. To study the relation between EPCs and AD, we explored the number of circulating EPCs in patients with AD.Methods A total of 104 patients were recruited from both the outpatients and inpatients of the geriatric neurology department at General Hospital, rianjin Medical University. Consecutive patients with newly diagnosed AD (n=30),patients with vascular dementia (VaD, n=34), and healthy elderly control subjects with normal cognition (n=40) were enrolled after matching for age, gender, body mass index, medical history, current medication and Mini Mental State Examination. Middle cerebral artery flow velocity was examined with transcranial Doppler. Endothelial function was evaluated according to the level of EPCs, and peripheral blood EPCs was counted by flow cytometry.Results There were no significant statistical differences of clinical data in AD, VaD and control groups (P >0.05). The patients with AD showed decreased CD34-positive (CD34+) or CD133-positive (CD133+) levels compared to the control subjects, but there were no significant statistical differences in patients with AD. The patients with AD had significantly lower CD34+CD133+ EPCs(CD34 and CD133 double positive endothelial progenitor cells) than the control subjects (P <0.05). In the patients with AD, a lower CD34+CD133+ EPCs count was independently associated with a lower Mini-Mental State Examination score (r=0.514, P=0.004). Patients with VaD also showed a significant decrease in CD34+CD133+ EPCs levels, but this was not evidently associated with the Mini-Mental State Examination score. The changes of middle cerebral artery flow velocity were similar between AD and VaD. Middle cerebral artery flow velocity was decreased in the AD and VaD groups and significantly lower than

  4. Direct evidence of endothelial injury in acute myocardial infarction and unstable angina by demonstration of circulating endothelial cells.

    Science.gov (United States)

    Mutin, M; Canavy, I; Blann, A; Bory, M; Sampol, J; Dignat-George, F

    1999-05-01

    Circulating endothelial cells (CECs) have been detected in association with endothelial injury and therefore represent proof of serious damage to the vascular tree. Our aim was to investigate, using the technique of immunomagnetic separation, whether the pathological events in unstable angina (UA) or acute myocardial infarction (AMI) could cause desquamation of endothelial cells in circulating blood compared with effort angina (EA) and noncoronary chest pain. A high CEC count was found in AMI (median, 7.5 cells/mL; interquartile range, 4.1 to 43.5, P chest pain as compared with controls (0; 0 to 0 cells/mL) and stable angina (0; 0 to 0 cells/mL). CEC levels in serial samples peaked at 15.5 (2.7 to 39) cells/mL 18 to 24 hours after AMI (P angina, confirming that these diseases have different etiopathogenic mechanisms.

  5. Regulation and function of TRPM7 in human endothelial cells: TRPM7 as a potential novel regulator of endothelial function.

    Directory of Open Access Journals (Sweden)

    Erika Baldoli

    Full Text Available TRPM7, a cation channel of the transient receptor potential channel family, has been identified as a ubiquitous magnesium transporter. We here show that TRPM7 is expressed in endothelial cells isolated from the umbilical vein (HUVEC, widely used as a model of macrovascular endothelium. Quiescence and senescence do not modulate TRPM7 amounts, whereas oxidative stress generated by the addition of hydrogen peroxide increases TRPM7 levels. Moreover, high extracellular magnesium decreases the levels of TRPM7 by activating calpains, while low extracellular magnesium, known to promote endothelial dysfunction, stimulates TRPM7 accumulation partly through the action of free radicals. Indeed, the antioxidant trolox prevents TRPM7 increase by low magnesium. We also demonstrate the unique behaviour of HUVEC in responding to pharmacological and genetic inhibition of TRPM7 with an increase of cell growth and migration. Our results indicate that TRPM7 modulates endothelial behavior and that any condition leading to TRPM7 upregulation might impair endothelial function.

  6. In vitro differentiation of human adipose-derived mesenchymal stem cells into endothelial-like cells

    Institute of Scientific and Technical Information of China (English)

    GUAN Lidong; SHI Shuangshuang; PEI Xuetao; LI Shaoqing; WANG Yunfang; YUE Huimin; LIU Daqing; HE Lijuan; BAI Cixian; YAN Fang; NAN Xue

    2006-01-01

    The neovascularization of ischemic tissue is a crucial initial step for the functional rehabilitation and wound healing. However, the short of seed cell candidate for the foundation of vascular network is still a big issue. Human adipose tissue derived mesenchymal stem cells (hADSCs), which possess multilineage potential, are capable of adipogenic, osteogenic, and chondrogenic differentiation. We examined whether this kind of stem cells could differentiate into endothelial-like cells and participate in blood vessel formation, and whether they could be used as an ideal cell source for therapeutic angiogenesis in ischemic diseases or vascularization of tissue constructs. The results showed that hADSCs, grown under appropriately induced conditions, displayed characteristics similar to those of vessel endothelium. The differentiated cells expressed endothelial cell markers CD34 and vWF, and had high metabolism of acetylated low-density lipoprotein and prostacyclin. In addition, the induced cells were able to form tube-like structures when cultured on matrigel. Our data indicated that induced hADSCs could exhibit characteristics of endothelial cells. Therefore, these cells, as a source of human endothelial cells, may find many applications in such realms as engineering blood vessels, endothelial cell transplantation for myocardial regeneration, and induction of angiogenesis for treatment of regional ischemia.

  7. Endothelial cells, tissue factor and infectious diseases

    Directory of Open Access Journals (Sweden)

    Lopes-Bezerra L.M.

    2003-01-01

    Full Text Available Tissue factor is a transmembrane procoagulant glycoprotein and a member of the cytokine receptor superfamily. It activates the extrinsic coagulation pathway, and induces the formation of a fibrin clot. Tissue factor is important for both normal homeostasis and the development of many thrombotic diseases. A wide variety of cells are able to synthesize and express tissue factor, including monocytes, granulocytes, platelets and endothelial cells. Tissue factor expression can be induced by cell surface components of pathogenic microorganisms, proinflammatory cytokines and membrane microparticles released from activated host cells. Tissue factor plays an important role in initiating thrombosis associated with inflammation during infection, sepsis, and organ transplant rejection. Recent findings suggest that tissue factor can also function as a receptor and thus may be important in cell signaling. The present minireview will focus on the role of tissue factor in the pathogenesis of septic shock, infectious endocarditis and invasive aspergillosis, as determined by both in vivo and in vitro models.

  8. Production of soluble Neprilysin by endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Kuruppu, Sanjaya, E-mail: Sanjaya.Kuruppu@monash.edu [Department of Biochemistry and Molecular Biology, Building 77, Monash University, Wellington Rd, Clayton, Vic 3800 (Australia); Rajapakse, Niwanthi W. [Department of Physiology, Building 13F, Monash University, Wellington Rd, Clayton, Vic 3800 (Australia); Minond, Dmitriy [Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port Saint Lucie, FL 34987 (United States); Smith, A. Ian [Department of Biochemistry and Molecular Biology, Building 77, Monash University, Wellington Rd, Clayton, Vic 3800 (Australia)

    2014-04-04

    Highlights: • A soluble full-length form of Neprilysin exists in media of endothelial cells. • Exosomal release is the key mechanism for the production of soluble Neprilysin. • Inhibition of ADAM-17 by specific inhibitors reduce Neprilysin release. • Exosome mediated release of Neprilysin is dependent on ADAM-17 activity. - Abstract: A non-membrane bound form of Neprilysin (NEP) with catalytic activity has the potential to cleave substrates throughout the circulation, thus leading to systemic effects of NEP. We used the endothelial cell line Ea.hy926 to identify the possible role of exosomes and A Disintegrin and Metalloprotease 17 (ADAM-17) in the production of non-membrane bound NEP. Using a bradykinin based quenched fluorescent substrate (40 μM) assay, we determined the activity of recombinant human NEP (rhNEP; 12 ng), and NEP in the media of endothelial cells (10% v/v; after 24 h incubation with cells) to be 9.35 ± 0.70 and 6.54 ± 0.41 μmols of substrate cleaved over 3 h, respectively. The presence of NEP in the media was also confirmed by Western blotting. At present there are no commercially available inhibitors specific for ADAM-17. We therefore synthesised two inhibitors TPI2155-14 and TPI2155-17, specific for ADAM-17 with IC{sub 50} values of 5.36 and 4.32 μM, respectively. Treatment of cells with TPI2155-14 (15 μM) and TPI2155-17 (4.3 μM) resulted in a significant decrease in NEP activity in media (62.37 ± 1.43 and 38.30 ± 4.70, respectively as a % of control; P < 0.0001), implicating a possible role for ADAM-17 in NEP release. However, centrifuging media (100,000g for 1 h at 4 °C) removed all NEP activity from the supernatant indicating the likely role of exosomes in the release of NEP. Our data therefore indicated for the first time that NEP is released from endothelial cells via exosomes, and that this process is dependent on ADAM-17.

  9. Protective effect of trans-δ-viniferin against high glucose-induced oxidative stress in human umbilical vein endothelial cells through the SIRT1 pathway.

    Science.gov (United States)

    Zhao, Huijun; Ma, Ting; Fan, Boyi; Yang, Lei; Han, Chao; Luo, Jianguang; Kong, Lingyi

    2016-01-01

    Oxidative stress plays a critical role in the pathogenesis of diabetic vascular complications. Trans-δ-viniferin (TVN), a polyphenolic compound, has recently attracted much attention as an antioxidant exhibiting a hypoglycemic potential. In the present study, we aimed at investigating the protective effect of TVN against high glucose-induced oxidative stress in human umbilical vein endothelial cells (HUVECs) and the potential mechanism involved. We found that TVN attenuated reactive oxygen species (ROS) production, increased catalase (CAT) activity and decreased malondialdehyde (MDA) levels to ameliorate cell survival induced by 35 mM glucose. Meanwhile, it inhibited high glucose-induced apoptosis by maintaining Ca(2+) and preserving mitochondrial membrane potential (MMP) levels. The immunoblot analysis indicated that TVN efficiently regulated the cleavage of caspase family, p53, Bax and Bcl-2, all mediated by SIRT1. Furthermore, the increased level of SIRT1 induced by TVN was inhibited by nicotinamide and siRNA-medicated SIRT1 silencing (si-SIRT1), thereby confirming the significant role of SIRT1 in these events. In conclusion, our results indicated that TVN efficiently reduced oxidative stress and maintained mitochondrial function related with activating SIRT1 in high glucose-treated HUVECs. It suggested that TVN is pharmacologically promising for treating diabetic cardiovascular complications.

  10. GenousTM endothelial progenitor cell capturing stent vs. the Taxus Liberte stent in patients with de novo coronary lesions with a high-risk of coronary restenosis: a randomized, single-centre, pilot study

    NARCIS (Netherlands)

    M.A.M. Beijk; M. Klomp; N.J.W. Verouden; N. van Geloven; K.T. Koch; J.P.S. Henriques; J. Baan; M.M. Vis; E. Scheunhage; J.J. Piek; J.G.P. Tijssen; R.J. de Winter

    2010-01-01

    Aims The purpose of this study was to evaluate the Genous(TM) endothelial progenitor cell capturing stent vs. the Taxus Liberté paclitaxel-eluting stent in patients with de novo coronary lesions with a high-risk of coronary restenosis. Methods and results We randomly assigned 193 patients with lesio

  11. Endothelial Progenitor Cells Enter the Aging Arena.

    Directory of Open Access Journals (Sweden)

    Kate eWilliamson

    2012-02-01

    Full Text Available Age is a significant risk factor for the development of vascular diseases, such as atherosclerosis. Although pharmacological treatments, including statins and anti-hypertensive drugs, have improved the prognosis for patients with cardiovascular disease, it remains a leading cause of mortality in those aged 65 years and over. Furthermore, given the increased life expectancy of the population in developed countries, there is a clear need for alternative treatment strategies. Consequently, the relationship between aging and progenitor cell-mediated repair is of great interest. Endothelial progenitor cells (EPCs play an integral role in the cellular repair mechanisms for endothelial regeneration and maintenance. However, EPCs are subject to age-associated changes that diminish their number in circulation and function, thereby enhancing vascular disease risk. A great deal of research is aimed at developing strategies to harness the regenerative capacity of these cells.In this review, we discuss the current understanding of the cells termed ‘EPCs’, examine the impact of age on EPC-mediated repair and identify therapeutic targets with potential for attenuating the age-related decline in vascular health via beneficial actions on EPCs.

  12. Influence of pro-angiogenic cytokines on proliferative activity and survival of endothelial cells

    Directory of Open Access Journals (Sweden)

    Solyanik G. I.

    2010-04-01

    Full Text Available Aim. Tumor angiogenesis in contrast to physiological one is characterized by high level of malignant cell production of proangiogenic cytokines, which have different influence on functional activity of endothelial cells. The goal of the study – to carry out a comparative analysis of the influence of a vascular endothelial growth factor (VEGF and an epidermal growth factor (EGF on proliferative activity and survival of endothelial cells upon their confluent and exponential growth. Methods. The proliferative activity of endothelial cells was determined by MTT-test and their viability was detected by the trypane blue exclusion test. Results. It was shown that EGF (irrespectively of the level of serum factors in concentrations higher than 10 ng/ml activated the proliferative activity of confluent endotheliocytes in a concentration-dependent manner by 18–36 % (ð < 0.05 as compared to the control, while this cytokine didn’t affect the endothelial cells in the exponential growth phase. VEGF in wide concentration range didn’t display the mitogenic effect on endotheliocytes in both confluent and exponential growth phases. Furthermore, VEGF in concentrations higher than 100 ng/ml inhibited proliferative activity of confluent endothelial cells by 12 % (ð < 0.05. In case of deficiency of nutrients, EGF and VEGF promoted the survival of endothelial cells, considerably decreasing their death. Conclusions. EGF, in contrast to VEGF, stimulates proliferation and survival of the endothelial cells, whereas VEGF has significant influence only on the survival of the cells

  13. Far infra-red therapy promotes ischemia-induced angiogenesis in diabetic mice and restores high glucose-suppressed endothelial progenitor cell functions

    Directory of Open Access Journals (Sweden)

    Huang Po-Hsun

    2012-08-01

    Full Text Available Abstract Background Far infra-red (IFR therapy was shown to exert beneficial effects in cardiovascular system, but effects of IFR on endothelial progenitor cell (EPC and EPC-related vasculogenesis remain unclear. We hypothesized that IFR radiation can restore blood flow recovery in ischemic hindlimb in diabetic mice by enhancement of EPCs functions and homing process. Materials and methods Starting at 4 weeks after the onset of diabetes, unilateral hindlimb ischemia was induced in streptozotocine (STZ-induced diabetic mice, which were divided into control and IFR therapy groups (n = 6 per group. The latter mice were placed in an IFR dry sauna at 34°C for 30 min once per day for 5 weeks. Results Doppler perfusion imaging demonstrated that the ischemic limb/normal side blood perfusion ratio in the thermal therapy group was significantly increased beyond that in controls, and significantly greater capillary density was seen in the IFR therapy group. Flow cytometry analysis showed impaired EPCs (Sca-1+/Flk-1+ mobilization after ischemia surgery in diabetic mice with or without IFR therapy (n = 6 per group. However, as compared to those in the control group, bone marrow-derived EPCs differentiated into endothelial cells defined as GFP+/CD31+ double-positive cells were significantly increased in ischemic tissue around the vessels in diabetic mice that received IFR radiation. In in-vitro studies, cultured EPCs treated with IFR radiation markedly augmented high glucose-impaired EPC functions, inhibited high glucose-induced EPC senescence and reduced H2O2 production. Nude mice received human EPCs treated with IFR in high glucose medium showed a significant improvement in blood flow recovery in ischemic limb compared to those without IFR therapy. IFR therapy promoted blood flow recovery and new vessel formation in STZ-induced diabetic mice. Conclusions Administration of IFR therapy promoted collateral flow recovery and new vessel formation in STZ

  14. Enhancing endothelial progenitor cell for clinical use

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Circulating endothelial progenitor cells (EPCs) havebeen demonstrated to correlate negatively with vascularendothelial dysfunction and cardiovascular risk factors.However, translation of basic research into the clinicalpractice has been limited by the lack of unambiguousand consistent definitions of EPCs and reduced EPCcell number and function in subjects requiring them forclinical use. This article critically reviews the definitionof EPCs based on commonly used protocols, their valueas a biomarker of cardiovascular risk factor in subjectswith cardiovascular disease, and strategies to enhanceEPCs for treatment of ischemic diseases.

  15. Transient Surface CCR5 Expression by Naive CD8+ T Cells within Inflamed Lymph Nodes Is Dependent on High Endothelial Venule Interaction and Augments Th Cell-Dependent Memory Response.

    Science.gov (United States)

    Askew, David; Su, Charles A; Barkauskas, Deborah S; Dorand, R Dixon; Myers, Jay; Liou, Rachel; Nthale, Joseph; Huang, Alex Y

    2016-05-01

    In inflamed lymph nodes, Ag-specific CD4(+) and CD8(+) T cells encounter Ag-bearing dendritic cells and, together, this complex enhances the release of CCL3 and CCL4, which facilitate additional interaction with naive CD8(+) T cells. Although blocking CCL3 and CCL4 has no effect on primary CD8(+) T cell responses, it dramatically impairs the development of memory CD8(+) T cells upon Ag rechallenge. Despite the absence of detectable surface CCR5 expression on circulating native CD8(+) T cells, these data imply that naive CD8(+) T cells are capable of expressing surface CCR5 prior to cognate Ag-induced TCR signaling in inflamed lymph nodes; however, the molecular mechanisms have not been characterized to date. In this study, we show that CCR5, the receptor for CCL3 and CCL4, can be transiently upregulated on a subset of naive CD8(+) T cells and that this upregulation is dependent on direct contact with the high endothelial venule in inflamed lymph node. Binding of CD62L and CD11a on T cells to their ligands CD34 and CD54 on the high endothelial venule can be enhanced during inflammation. This enhanced binding and subsequent signaling promote the translocation of CCR5 molecules from intracellular vesicles to the surface of the CD8(+) T cell. The upregulation of CCR5 on the surface of the CD8(+) T cells increases the number of contacts with Ag-bearing dendritic cells, which ultimately results in increased CD8(+) T cell response to Ag rechallenge.

  16. Differentiation state determines neural effects on microvascular endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Muffley, Lara A., E-mail: muffley@u.washington.edu [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Pan, Shin-Chen, E-mail: pansc@mail.ncku.edu.tw [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Smith, Andria N., E-mail: gnaunderwater@gmail.com [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Ga, Maricar, E-mail: marga16@uw.edu [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Hocking, Anne M., E-mail: ahocking@u.washington.edu [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Gibran, Nicole S., E-mail: nicoleg@u.washington.edu [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States)

    2012-10-01

    Growing evidence indicates that nerves and capillaries interact paracrinely in uninjured skin and cutaneous wounds. Although mature neurons are the predominant neural cell in the skin, neural progenitor cells have also been detected in uninjured adult skin. The aim of this study was to characterize differential paracrine effects of neural progenitor cells and mature sensory neurons on dermal microvascular endothelial cells. Our results suggest that neural progenitor cells and mature sensory neurons have unique secretory profiles and distinct effects on dermal microvascular endothelial cell proliferation, migration, and nitric oxide production. Neural progenitor cells and dorsal root ganglion neurons secrete different proteins related to angiogenesis. Specific to neural progenitor cells were dipeptidyl peptidase-4, IGFBP-2, pentraxin-3, serpin f1, TIMP-1, TIMP-4 and VEGF. In contrast, endostatin, FGF-1, MCP-1 and thrombospondin-2 were specific to dorsal root ganglion neurons. Microvascular endothelial cell proliferation was inhibited by dorsal root ganglion neurons but unaffected by neural progenitor cells. In contrast, microvascular endothelial cell migration in a scratch wound assay was inhibited by neural progenitor cells and unaffected by dorsal root ganglion neurons. In addition, nitric oxide production by microvascular endothelial cells was increased by dorsal root ganglion neurons but unaffected by neural progenitor cells. -- Highlights: Black-Right-Pointing-Pointer Dorsal root ganglion neurons, not neural progenitor cells, regulate microvascular endothelial cell proliferation. Black-Right-Pointing-Pointer Neural progenitor cells, not dorsal root ganglion neurons, regulate microvascular endothelial cell migration. Black-Right-Pointing-Pointer Neural progenitor cells and dorsal root ganglion neurons do not effect microvascular endothelial tube formation. Black-Right-Pointing-Pointer Dorsal root ganglion neurons, not neural progenitor cells, regulate

  17. Stiffness of polyelectrolyte multilayer film influences endothelial function of endothelial cell monolayer.

    Science.gov (United States)

    Chang, Hao; Zhang, He; Hu, Mi; Chen, Jia-Yan; Li, Bo-Chao; Ren, Ke-Feng; Martins, M Cristina L; Barbosa, Mário A; Ji, Jian

    2017-01-01

    Endothelialization has proved to be critical for maintaining long-term success of implantable vascular devices. The formation of monolayer of endothelial cells (ECs) on the implant surfaces is one of the most important factors for the endothelialization. However, endothelial function of regenerated EC monolayer, which plays a much more important role in preventing the complications of post-implantation, has not received enough attention. Here, a vascular endothelial growth factor (VEGF)-incorporated poly(l-lysine)/hyaluronan (PLL/HA) polyelectrolyte multilayer film was fabricated. Through varying the crosslinking degree, stiffness of the film was manipulated, offering either soft or stiff film. We demonstrated that ECs were able to adhere and proliferate on both soft and stiff films, subsequently forming an integrated EC monolayer. Furthermore, endothelial functions were evaluated by characterizing EC monolayer integrity, expression of genes correlated with the endothelial functions, and nitric oxide production. It demonstrated that EC monolayer on the soft film displayed higher endothelial function compared to that on the stiff film. Our study highlights the influence of substrate stiffness on endothelial function, which offers a new criterion for surface design of vascular implants. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Asiaticoside Inhibits TNF-α-Induced Endothelial Hyperpermeability of Human Aortic Endothelial Cells.

    Science.gov (United States)

    Fong, Lai Yen; Ng, Chin Theng; Zakaria, Zainul Amiruddin; Baharuldin, Mohamad Taufik Hidayat; Arifah, Abdul Kadir; Hakim, Muhammad Nazrul; Zuraini, Ahmad

    2015-10-01

    The increase in endothelial permeability often promotes edema formation in various pathological conditions. Tumor necrosis factor-alpha (TNF-α), a pro-atherogenic cytokine, impairs endothelial barrier function and causes endothelial dysfunction in early stage of atherosclerosis. Asiaticoside, one of the triterpenoids derived from Centella asiatica, is known to possess antiinflammatory activity. In order to examine the role of asiaticoside in preserving the endothelial barrier, we assessed its effects on endothelial hyperpermeability and disruption of actin filaments evoked by TNF-α in human aortic endothelial cells (HAEC). TNF-α caused an increase in endothelial permeability to fluorescein isothiocyanate (FITC)-dextran. Asiaticoside pretreatment significantly suppressed TNF-α-induced increased permeability. Asiaticoside also prevented TNF-α-induced actin redistribution by suppressing stress fiber formation. However, the increased F to G actin ratio stimulated by TNF-α was not changed by asiaticoside. Cytochalasin D, an actin depolymerizing agent, was used to correlate the anti-hyperpermeability effect of asiaticoside with actin cytoskeleton. Surprisingly, asiaticoside failed to prevent cytochalasin D-induced increased permeability. These results suggest that asiaticoside protects against the disruption of endothelial barrier and actin rearrangement triggered by TNF-α without a significant change in total actin pool. However, asiaticoside seems to work by other mechanisms to maintain the integrity of endothelial barrier rather than stabilizing the F-actin organization.

  19. Modulation of endothelial cell phenotype by physical activity: impact on obesity-related endothelial dysfunction.

    Science.gov (United States)

    Bender, Shawn B; Laughlin, M Harold

    2015-07-01

    Increased levels of physical activity are associated with reduced cardiovascular disease (CVD) risk and mortality in obesity and diabetes. Available evidence suggests that local factors, including local hemodynamics, account for a significant portion of this CVD protection, and numerous studies have interrogated the therapeutic benefit of physical activity/exercise training in CVD. Less well established is whether basal differences in endothelial cell phenotype between/among vasculatures related to muscle recruitment patterns during activity may account for reports of nonuniform development of endothelial dysfunction in obesity. This is the focus of this review. We highlight recent work exploring the vulnerability of two distinct vasculatures with established differences in endothelial cell phenotype. Specifically, based largely on dramatic differences in underlying hemodynamics, arteries perfusing soleus muscle (slow-twitch muscle fibers) and those perfusing gastrocnemius muscle (fast-twitch muscle fibers) in the rat exhibit an exercise training-like versus an untrained endothelial cell phenotype, respectively. In the context of obesity, therefore, arteries to soleus muscle exhibit protection from endothelial dysfunction compared with vulnerable arteries to gastrocnemius muscle. This disparate vulnerability is consistent with numerous animal and human studies, demonstrating increased skeletal muscle blood flow heterogeneity in obesity coincident with reduced muscle function and exercise intolerance. Mechanistically, we highlight emerging areas of inquiry exploring novel aspects of hemodynamic-sensitive signaling in endothelial cells and the time course of physical activity-associated endothelial adaptations. Lastly, further exploration needs to consider the impact of endothelial heterogeneity on the development of endothelial dysfunction because endothelial dysfunction independently predicts CVD events. Copyright © 2015 the American Physiological Society.

  20. Solid tumor therapy by selectively targeting stromal endothelial cells.

    Science.gov (United States)

    Liu, Shihui; Liu, Jie; Ma, Qian; Cao, Liu; Fattah, Rasem J; Yu, Zuxi; Bugge, Thomas H; Finkel, Toren; Leppla, Stephen H

    2016-07-12

    Engineered tumor-targeted anthrax lethal toxin proteins have been shown to strongly suppress growth of solid tumors in mice. These toxins work through the native toxin receptors tumor endothelium marker-8 and capillary morphogenesis protein-2 (CMG2), which, in other contexts, have been described as markers of tumor endothelium. We found that neither receptor is required for tumor growth. We further demonstrate that tumor cells, which are resistant to the toxin when grown in vitro, become highly sensitive when implanted in mice. Using a range of tissue-specific loss-of-function and gain-of-function genetic models, we determined that this in vivo toxin sensitivity requires CMG2 expression on host-derived tumor endothelial cells. Notably, engineered toxins were shown to suppress the proliferation of isolated tumor endothelial cells. Finally, we demonstrate that administering an immunosuppressive regimen allows animals to receive multiple toxin dosages and thereby produces a strong and durable antitumor effect. The ability to give repeated doses of toxins, coupled with the specific targeting of tumor endothelial cells, suggests that our strategy should be efficacious for a wide range of solid tumors.

  1. Endothelial progenitor cell subsets and preeclampsia: Findings and controversies

    Directory of Open Access Journals (Sweden)

    Armin Attar

    2017-10-01

    Full Text Available Vascular remodeling is an essential component of gestation. Endothelial progenitor cells (EPCs play an important role in the regulation of vascular homeostasis. The results of studies measuring the number of EPCs in normal pregnancies and in preeclampsia have been highly controversial or even contradictory because of some variations in technical issues and different methodologies enumerating three distinct subsets of EPCs: circulating angiogenic cells (CAC, colony forming unit endothelial cells (CFU-ECs, and endothelial colony-forming cells (ECFCs. In general, most studies have shown an increase in the number of CACs in the maternal circulation with a progression in the gestational age in normal pregnancies, while functional capacities measured by CFU-ECs and ECFCs remain intact. In the case of preeclampsia, mobilization of CACs and ECFCs occurs in the peripheral blood of pregnant women, but the functional capacities shown by culture of the derived colony-forming assays (CFU-EC and ECFC assays are altered. Furthermore, the number of all EPC subsets will be reduced in umbilical cord blood in the case of preeclampsia. As EPCs play an important role in the homeostasis of vascular networks, the difference in their frequency and functionality in normal pregnancies and those with preeclampsia can be expected. In this review, there was an attempt to provide a justification for these controversies.

  2. Antiproliferative effect of elevated glucose in human microvascular endothelial cells

    Science.gov (United States)

    Kamal, K.; Du, W.; Mills, I.; Sumpio, B. E.

    1998-01-01

    Diabetic microangiopathy has been implicated as a fundamental feature of the pathological complications of diabetes including retinopathy, neuropathy, and diabetic foot ulceration. However, previous studies devoted to examining the deleterious effects of elevated glucose on the endothelium have been performed largely in primary cultured cells of macrovessel origin. Difficulty in the harvesting and maintenance of microvascular endothelial cells in culture have hindered the study of this relevant population. Therefore, the objective of this study was to characterize the effect of elevated glucose on the proliferation and involved signaling pathways of an immortalized human dermal microvascular endothelial cell line (HMEC-1) that possess similar characteristics to their in vivo counterparts. Human dermal microvascular endothelial cells (HMEC-1) were grown in the presence of normal (5 mM) or high D-glucose (20 mM) for 14 days. The proliferative response of HMEC-1 was compared under these conditions as well as the cAMP and PKC pathways by in vitro assays. Elevated glucose significantly inhibited (P diabetic microangiopathy.

  3. The Glycoprofile Patterns of Endothelial Cells in Usual Interstitial Pneumonia

    Directory of Open Access Journals (Sweden)

    A Barkhordari

    2014-09-01

    Full Text Available [THIS ARTICLE HAS BEEN RETRACTED FOR DUPLICATE PUBLICATION] Background: The pathological classification of cryptogenic fibrosing alveolitis has been a matter of debate and controversy for histopathologists. Objective: To identify and specify the glycotypes of capillary endothelial cells in usual interstitial pneumonia (UIP compared to those found in normal tissue. Methods: Sections of formalin-fixed, paraffin-embedded blocks from 16 cases of UIP were studied by lectin histochemistry with a panel of 27 biotinylated lectins and an avidin-peroxidase revealing system. Results: High expression of several classes of glycan was seen de novo in capillary endothelial cells from patients with UIP including small complex and bi/tri-antennary bisected complex N-linked sequences bolund by Concanavalin A and erythro-phytohemagglutinin, respectively, GalNAca1 residues bound by Helix pomatia and Maclura pomifera agglutinins, and L-fucosylated derivatives of type II glycan chains recognized by Ulex europaeus agglutinin-I. Glycans bound by agglutinins from Lycopersicon esculentum (β1,4GlcNAc and Wisteria floribunda (GalNAc as well as GlcNAc oligomers bound by Phytolacca americana and succinylated Wheat Germ agglutinin were also seen in the capillary endothelial cells of UIP. In contrast, L-fucosylated derivatives of type I glycan chains were absent in cells from cases of UIP when Anguilla anguilla agglutinin was applied, unlike the situation in normal tissue. Conclusion: These results may indicate existence of two distinct populations of endothelial cell in UIP with markedly different patterns of glycosylation, reflecting a pattern of differentiation and angiogenesis, which is not detectable morphologically.

  4. Effects of high intensity training and high volume training on endothelial microparticles and angiogenic growth factors.

    Directory of Open Access Journals (Sweden)

    Patrick Wahl

    Full Text Available AIMS: Endothelial microparticles (EMP are complex vesicular structures shed from activated or apoptotic endothelial cells. As endurance exercise affects the endothelium, the objective of the study was to examine levels of EMP and angiogenic growth factors following different endurance exercise protocols. METHODS: 12 subjects performed 3 different endurance exercise protocols: 1. High volume training (HVT; 130 min at 55% peak power output (PPO; 2. 4 × 4 min at 95% PPO; 3. 4 × 30 sec all-out. EMPs were quantified using flow cytometry after staining platelet-poor-plasma. Events positive for Annexin-V and CD31, and negative for CD42b, were classified as EMPs. Vascular endothelial growth factor (VEGF, migratory inhibiting factor (MIF and hepatocyte growth factor (HGF were determined by ELISA technique. For all these measurements venous blood samples were taken pre, 0', 30', 60' and 180' after each intervention. Furthermore, in vitro experiments were performed to explore the effect of collected sera on target endothelial functions and MP uptake capacities. RESULTS: VEGF and HGF significantly increased after HIT interventions. All three interventions caused a significant decrease in EMP levels post exercise compared to pre values. The sera taken after exercise increased the uptake of EMP in target endothelial cells compared to sera taken under resting conditions, which was shown to be phosphatidylserin-dependent. Increased EMP uptake was associated with an improved protection of target cells against apoptosis. Sera taken prior and after exercise promoted target endothelial cell migration, which was abrogated after inhibition of VEGF. CONCLUSION: Physical exercise leads to decreased EMP levels and promotes a phosphatidylserin-dependent uptake of EMP into target endothelial cells, which is associated with a protection of target cells against apoptosis.

  5. Cross-Talk between CLL Cells and Bone Marrow Endothelial Cells: Role of Signal Transducer and Activator of Transcription-3

    Science.gov (United States)

    Badoux, Xavier; Bueso-Ramos, Carlos; Harris, David; Li, Ping; Liu, Zhiming; Burger, Jan; O’Brien, Susan; Ferrajoli, Alessandra; Keating, Michael J.; Estrov, Zeev

    2014-01-01

    Summary Chronic lymphocytic leukemia (CLL) bone marrow is characterized by increased angiogenesis. However, the molecular mediators of neovascularization and the biological significance of increased endothelial cell proliferation in CLL require further investigation. Because signal transducer and activator of transcription (STAT)-3 is constitutively activated in CLL we studied the role of STAT3 in modulating vascular endothelial growth factor (VEGF) expression and the effect of vascular endothelial cells on CLL cells. Using chromatin immunoprecipitation (ChIP) we found that anti-STAT3 antibodies immunoprecipitated DNA of STAT3, VEGF and other STAT3-regulated genes. In addition, STAT3-short interfering RNA significantly reduced mRNA levels of VEGF in CLL cells suggesting that STAT3 induces VEGF expression in CLL. Remarkably, bone marrow CLL cells expressed high levels of VEGF and high VEGF levels were detected in the plasma of patients with untreated CLL and correlated with white blood cell count. CLL bone marrow biopsies revealed increased microvascular density and attachment of CLL cells to endothelial cells. Co-culture of CLL and human umbilical vein endothelial cells (HUVEC) cells showed a similar attachment. Furthermore, co-culture studies with HUVEC showed that HUVEC protected CLL cells from spontaneous apoptosis by direct cell-to-cell contact as assessed by flow cytometry using Annexin V. Our data suggest that constitutively activated STAT3 induces VEGF production by CLL cells and CLL cells derive a survival advantage from endothelial cells via cell-to cell contact. PMID:21733558

  6. Development of Endothelial-Specific Single Inducible Lentiviral Vectors for Genetic Engineering of Endothelial Progenitor Cells.

    Science.gov (United States)

    Yang, Guanghua; Kramer, M Gabriela; Fernandez-Ruiz, Veronica; Kawa, Milosz P; Huang, Xin; Liu, Zhongmin; Prieto, Jesus; Qian, Cheng

    2015-11-27

    Endothelial progenitor cells (EPC) are able to migrate to tumor vasculature. These cells, if genetically modified, can be used as vehicles to deliver toxic material to, or express anticancer proteins in tumor. To test this hypothesis, we developed several single, endothelial-specific, and doxycycline-inducible self-inactivating (SIN) lentiviral vectors. Two distinct expression cassettes were inserted into a SIN-vector: one controlled by an endothelial lineage-specific, murine vascular endothelial cadherin (mVEcad) promoter for the expression of a transactivator, rtTA2S-M2; and the other driven by an inducible promoter, TREalb, for a firefly luciferase reporter gene. We compared the expression levels of luciferase in different vector constructs, containing either the same or opposite orientation with respect to the vector sequence. The results showed that the vector with these two expression cassettes placed in opposite directions was optimal, characterized by a robust induction of the transgene expression (17.7- to 73-fold) in the presence of doxycycline in several endothelial cell lines, but without leakiness when uninduced. In conclusion, an endothelial lineage-specific single inducible SIN lentiviral vector has been developed. Such a lentiviral vector can be used to endow endothelial progenitor cells with anti-tumor properties.

  7. Endothelial progenitor cells and integrins: adhesive needs

    Directory of Open Access Journals (Sweden)

    Caiado Francisco

    2012-03-01

    Full Text Available Abstract In the last decade there have been multiple studies concerning the contribution of endothelial progenitor cells (EPCs to new vessel formation in different physiological and pathological settings. The process by which EPCs contribute to new vessel formation in adults is termed postnatal vasculogenesis and occurs via four inter-related steps. They must respond to chemoattractant signals and mobilize from the bone marrow to the peripheral blood; home in on sites of new vessel formation; invade and migrate at the same sites; and differentiate into mature endothelial cells (ECs and/or regulate pre-existing ECs via paracrine or juxtacrine signals. During these four steps, EPCs interact with different physiological compartments, namely bone marrow, peripheral blood, blood vessels and homing tissues. The success of each step depends on the ability of EPCs to interact, adapt and respond to multiple molecular cues. The present review summarizes the interactions between integrins expressed by EPCs and their ligands: extracellular matrix components and cell surface proteins present at sites of postnatal vasculogenesis. The data summarized here indicate that integrins represent a major molecular determinant of EPC function, with different integrin subunits regulating different steps of EPC biology. Specifically, integrin α4β1 is a key regulator of EPC retention and/or mobilization from the bone marrow, while integrins α5β1, α6β1, αvβ3 and αvβ5 are major determinants of EPC homing, invasion, differentiation and paracrine factor production. β2 integrins are the major regulators of EPC transendothelial migration. The relevance of integrins in EPC biology is also demonstrated by many studies that use extracellular matrix-based scaffolds as a clinical tool to improve the vasculogenic functions of EPCs. We propose that targeted and tissue-specific manipulation of EPC integrin-mediated interactions may be crucial to further improve the usage of

  8. Endothelial cell preservation at hypothermic to normothermic conditions using clinical and experimental organ preservation solutions.

    Science.gov (United States)

    Post, Ivo C J H; de Boon, Wadim M I; Heger, Michal; van Wijk, Albert C W A; Kroon, Jeffrey; van Buul, Jaap D; van Gulik, Thomas M

    2013-10-15

    Endothelial barrier function is pivotal for the outcome of organ transplantation. Since hypothermic preservation (gold standard) is associated with cold-induced endothelial damage, endothelial barrier function may benefit from organ preservation at warmer temperatures. We therefore assessed endothelial barrier integrity and viability as function of preservation temperature and perfusion solution, and hypothesized that endothelial cell preservation at subnormothermic conditions using metabolism-supporting solutions constitute optimal preservation conditions. Human umbilical vein endothelial cells (HUVEC) were preserved at 4-37°C for up to 20 h using Ringer's lactate, histidine-tryptophan-ketoglutarate solution, University of Wisconsin (UW) solution, Polysol, or endothelial cell growth medium (ECGM). Following preservation, the monolayer integrity, metabolic capacity, and ATP content were determined as positive parameters of endothelial cell viability. As negative parameters, apoptosis, necrosis, and cell activation were assayed. A viability index was devised on the basis of these parameters. HUVEC viability and barrier integrity was compromised at 4°C regardless of the preservation solution. At temperatures above 20°C, the cells' metabolic demands outweighed the preservation solutions' supporting capacity. Only UW maintained HUVEC viability up to 20°C. Despite high intracellular ATP content, none of the solutions were capable of sufficiently preserving HUVEC above 20°C except for ECGM. Optimal HUVEC preservation is achieved with UW up to 20°C. Only ECGM maintains HUVEC viability at temperatures above 20°C. © 2013 Elsevier Inc. All rights reserved.

  9. Curcumin Attenuates Rapamycin-induced Cell Injury of Vascular Endothelial Cells.

    Science.gov (United States)

    Guo, Ning; Chen, Fangyuan; Zhou, Juan; Fang, Yuan; Li, Hongbing; Luo, Yongbai; Zhang, Yong

    2015-10-01

    Although drug-eluting stents (DES) effectively improve the clinical efficacy of percutaneous coronary intervention, a high risk of late stent thrombosis and in-stent restenosis also exists after DES implantation. Anti-smooth muscle proliferation drugs, such as rapamycin, coating stents, not only inhibit the growth of vascular smooth muscle cells but also inhibit vascular endothelial cells and delay the reendothelialization. Therefore, the development of an ideal agent that protects vascular endothelial cells from rapamycin-eluting stents is of great importance for the next generation of DES. In this study, we demonstrated that rapamycin significantly inhibited the growth of rat aortic endothelial cells in both dose- and time-dependent manner in vitro. Cell apoptosis was increased and migration was decreased by rapamycin treatments in rat aortic endothelial cells in vitro. Surprisingly, treatment with curcumin, an active ingredient of turmeric, significantly reversed these detrimental effects of rapamycin. Moreover, curcumin increased the expression of vascular nitric oxide synthases (eNOS), which was decreased by rapamycin. Furthermore, caveolin-1, the inhibitor of eNOS, was decreased by curcumin. Knockdown of eNOS by small interfering RNA significantly abrogated the protective effects of curcumin. Taken together, our results suggest that curcumin antagonizes the detrimental effect of rapamycin on aortic endothelial cells in vitro through upregulating eNOS. Therefore, curcumin is a promising combined agent for the rescue of DES-induced reendothelialization delay.

  10. Increased endothelial cell-leukocyte interaction in murine schistosomiasis: possible priming of endothelial cells by the disease.

    Directory of Open Access Journals (Sweden)

    Suellen D S Oliveira

    Full Text Available BACKGROUND AND AIMS: Schistosomiasis is an intravascular parasitic disease associated with inflammation. Endothelial cells control leukocyte transmigration and vascular permeability being modulated by pro-inflammatory mediators. Recent data have shown that endothelial cells primed in vivo in the course of a disease keep the information in culture. Herein, we evaluated the impact of schistosomiasis on endothelial cell-regulated events in vivo and in vitro. METHODOLOGY AND PRINCIPAL FINDINGS: The experimental groups consisted of Schistosoma mansoni-infected and age-matched control mice. In vivo infection caused a marked influx of leukocytes and an increased protein leakage in the peritoneal cavity, characterizing an inflamed vascular and cellular profile. In vitro leukocyte-mesenteric endothelial cell adhesion was higher in cultured cells from infected mice as compared to controls, either in the basal condition or after treatment with the pro-inflammatory cytokine tumor necrosis factor (TNF. Nitric oxide (NO donation reduced leukocyte adhesion to endothelial cells from control and infected groups; however, in the later group the effect was more pronounced, probably due to a reduced NO production. Inhibition of control endothelial NO synthase (eNOS increased leukocyte adhesion to a level similar to the one observed in the infected group. Besides, the adhesion of control leukocytes to endothelial cells from infected animals is similar to the result of infected animals, confirming that schistosomiasis alters endothelial cells function. Furthermore, NO production as well as the expression of eNOS were reduced in cultured endothelial cells from infected animals. On the other hand, the expression of its repressor protein, namely caveolin-1, was similar in both control and infected groups. CONCLUSION/SIGNIFICANCE: Schistosomiasis increases vascular permeability and endothelial cell-leukocyte interaction in vivo and in vitro. These effects are partially

  11. Single-cell analysis of endothelial morphogenesis in vivo.

    Science.gov (United States)

    Yu, Jianxin A; Castranova, Daniel; Pham, Van N; Weinstein, Brant M

    2015-09-01

    Vessel formation has been extensively studied at the tissue level, but the difficulty in imaging the endothelium with cellular resolution has hampered study of the morphogenesis and behavior of endothelial cells (ECs) in vivo. We are using endothelial-specific transgenes and high-resolution imaging to examine single ECs in zebrafish. By generating mosaics with transgenes that simultaneously mark endothelial nuclei and membranes we are able to definitively identify and study the morphology and behavior of individual ECs during vessel sprouting and lumen formation. Using these methods, we show that developing trunk vessels are composed of ECs of varying morphology, and that single-cell analysis can be used to quantitate alterations in morphology and dynamics in ECs that are defective in proper guidance and patterning. Finally, we use single-cell analysis of intersegmental vessels undergoing lumen formation to demonstrate the coexistence of seamless transcellular lumens and single or multicellular enclosed lumens with autocellular or intercellular junctions, suggesting that heterogeneous mechanisms contribute to vascular lumen formation in vivo. The tools that we have developed for single EC analysis should facilitate further rigorous qualitative and quantitative analysis of EC morphology and behavior in vivo. © 2015. Published by The Company of Biologists Ltd.

  12. Nitrones reverse hyperglycemia-induced endothelial dysfunction in bovine aortic endothelial cells.

    Science.gov (United States)

    Headley, Colwyn A; DiSilvestro, David; Bryant, Kelsey E; Hemann, Craig; Chen, Chun-An; Das, Amlan; Ziouzenkova, Ouliana; Durand, Grégory; Villamena, Frederick A

    2016-03-15

    Hyperglycemia has been implicated in the development of endothelial dysfunction through heightened ROS production. Since nitrones reverse endothelial nitric oxide synthase (eNOS) dysfunction, increase antioxidant enzyme activity, and suppress pro-apoptotic signaling pathway and mitochondrial dysfunction from ROS-induced toxicity, the objective of this study was to determine whether nitrone spin traps DMPO, PBN and PBN-LA were effective at duplicating these effects and improving glucose uptake in an in vitro model of hyperglycemia-induced dysfunction using bovine aortic endothelial cells (BAEC). BAEC were cultured in DMEM medium with low (5.5mM glucose, LG) or high glucose (50mM, HG) for 14 days to model in vivo hyperglycemia as experienced in humans with metabolic disease. Improvements in cell viability, intracellular oxidative stress, NO and tetrahydrobiopterin (BH4)​ levels, mitochondrial membrane potential, glucose transport, and activity of antioxidant enzymes were measured from single treatment of BAEC with nitrones for 24h after hyperglycemia. Chronic hyperglycemia significantly increased intracellular ROS by 50%, decreased cell viability by 25%, reduced NO bioavailability by 50%, and decreased (BH4) levels by 15% thereby decreasing NO production. Intracellular glucose transport and superoxide dismutase (SOD) activity were also decreased by 50% and 25% respectively. Nitrone (PBN and DMPO, 50 μM) treatment of BAEC grown in hyperglycemic conditions resulted in the normalization of outcome measures except for SOD and catalase activities. Our findings demonstrate that the nitrones reverse the deleterious effects of hyperglycemia in BAEC. We believe that in vivo testing of these nitrone compounds in models of cardiometabolic disease is warranted.

  13. High serum vascular endothelial growth factor level is an adverse prognostic factor for high-risk diffuse large B-cell lymphoma patients treated with dose-dense chemoimmunotherapy

    DEFF Research Database (Denmark)

    Riihijärvi, Sari; Nurmi, Heidi; Holte, Harald;

    2012-01-01

    To determine whether serum vascular endothelial growth factor (s-VEGF) levels and VEGF gene expression in tumor tissue predict survival of diffuse large B-cell lymphoma (DLBCL) patients treated with chemoimmunotherapy....

  14. Inhibition of the proliferation and acceleration of migration of vascular endothelial cells by increased cysteine-rich motor neuron 1

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, Yukiko; Morimoto, Mayuka [Department of Immunobiology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women' s University, 11-68 Koshien Kyuban-cho, Nishinomiya, Hyogo 663-8179 (Japan); Toda, Ken-ichi [Department of Dermatology, Kitano Hospital, The Tazuke Kofukai Nedical Institute, 2-4-20 Ohgimachi, Kita-ku, Osaka 530-8480 (Japan); Shinya, Tomohiro; Sato, Keizo [Department of Clinical Biochemistry, School of Pharmaceutical Sciences, Kyushu University of Health and Welfare, Nobeoka, Miyazaki 882-8508 (Japan); Takahashi, Satoru, E-mail: imwalrus@mukogawa-u.ac.jp [Department of Immunobiology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women' s University, 11-68 Koshien Kyuban-cho, Nishinomiya, Hyogo 663-8179 (Japan); Institute for Biosciences, Mukogawa Women' s University, 11-68 Koshien Kyuban-cho, Nishinomiya, Hyogo 663-8179 (Japan)

    2015-07-03

    Cysteine-rich motor neuron 1 (CRIM1) is upregulated only in extracellular matrix gels by angiogenic factors such as vascular endothelial growth factor (VEGF). It then plays a critical role in the tube formation of endothelial cells. In the present study, we investigated the effects of increased CRIM1 on other endothelial functions such as proliferation and migration. Knock down of CRIM1 had no effect on VEGF-induced proliferation or migration of human umbilical vein endothelial cells (HUVECs), indicating that basal CRIM1 is not involved in the proliferation or migration of endothelial cells. Stable CRIM1-overexpressing endothelial F-2 cells, termed CR1 and CR2, were constructed, because it was difficult to prepare monolayer HUVECs that expressed high levels of CRIM1. Proliferation was reduced and migration was accelerated in both CR1 and CR2 cells, compared with normal F-2 cells. Furthermore, the transient overexpression of CRIM1 resulted in decreased proliferation and increased migration of bovine aortic endothelial cells. In contrast, neither proliferation nor migration of COS-7 cells were changed by the overexpression of CRIM1. These results demonstrate that increased CRIM1 reduces the proliferation and accelerates the migration of endothelial cells. These CRIM1 effects might contribute to tube formation of endothelial cells. CRIM1 induced by angiogenic factors may serve as a regulator in endothelial cells to switch from proliferating cells to morphological differentiation. - Highlights: • CRIM1 was upregulated only in tubular endothelial cells, but not in monolayers. • Increased CRIM1 reduced the proliferation of endothelial cells. • Increased CRIM1 accelerated the migration of endothelial cells. • Increased CRIM1 had no effect on the proliferation or migration of COS-7 cells.

  15. Factor XII binding to endothelial cells depends on caveolae

    DEFF Research Database (Denmark)

    Schousboe, Inger; Thomsen, Peter; van Deurs, Bo

    2004-01-01

    to human umbilical vein endothelial cells (HUVEC) has never been shown to be localized to these specialized membrane structures. Using microscopical techniques, we here report that FXII binds to specific patches of the HUVEC plasma membrane with a high density of caveolae. Further investigations of FXII...... lipid rafts. Accordingly, cholesterol-depleted cells were found to bind significantly reduced amounts of FXII. These observations, combined with the presence of a minority of u-PAR in caveolae concomitant with FXII binding, indicate that FXII binding to u-PAR may be secondary and depends upon...... the structural elements within caveolae. Thus, FXII binding to HUVEC depends on intact caveolae on the cellular surface....

  16. Endothelial cell compatibility of trovafloxacin and levofloxacin for intravenous use.

    Science.gov (United States)

    Armbruster, C; Robibaro, B; Griesmacher, A; Vorbach, H

    2000-04-01

    Levofloxacin and trovafloxacin have excellent activity against a variety of Gram-positive and Gram-negative organisms resistant to the established agents. One local side-effect closely related to the use of parenteral fluoroquinolones is phlebitis. To evaluate the effect of trovafloxacin and levofloxacin on endothelial cell viability, intracellular levels of adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), guanosine 5'-triphosphate (GTP) and guanosine 5'-diphosphate (GDP) levels were measured using high-performance liquid chromatography. Trovafloxacin at concentrations of 2 and 1 mg/mL reduced the intracellular ATP content from 12.5 +/- 1.7 to 1.9 +/- 0.3 nmol/10(6) cells and 9.3 +/- 0.8 nmol/10(6) cells, respectively, within 60 min. In addition, ADP, GTP and GDP levels were extensively depleted. Levofloxacin at concentrations of 5 and 2.5 mg/mL led to a significant ATP decline from 12.5 +/- 1.7 to 2.3 +/- 0.2 nmol/10(6) cells and 10.3 +/- 0.9 nmol/10(6) cells, respectively, within 60 min. These data indicate that infusions of high doses of trovafloxacin or levofloxacin are not compatible with maintenance of endothelial cell function. Commercial preparations have to be diluted and should be administered into large veins.

  17. Induction of Endothelial Cell Apoptosis by Anti-alpha-enolase Antibody

    Institute of Scientific and Technical Information of China (English)

    Hong-bo Yang; Wen-jie Zheng; Xuan Zhang; Fu-lin Tang

    2011-01-01

    Objective To assess the prevalence of anti-alpha-enolase antibody in systemic autoimmune diseases in Chinese patients and its role in endothelial cell apoptosis.Methods The reactivity of anti-alpha-enolase antibody in a variety of autoimmune disorders in Chinese patients was evaluated by dot blot assay. Endothelial cell apoptosis was investigated by in vitro incubation of endothelial cells with IgG purified from anti-alpha-enolase antibody-positive sera, with or without pre-incubation with recombinant alpha-enolase.Results Anti-alpha-enolase antibody was prevalent in different systemic autoimmune diseases with relatively high reactivity in Chinese patients. In vitro incubation of endothelial cells with IgG containing anti-alpha-enolase antibody induced apoptosis in a time- and dose-dependent manner. Apoptosis was partly inhibited by pre-incubation of the endothelial cells with recombinant alpha-enolase.Conclusions Our data suggest that alpha-enolase is a common auto-antigen recognized by antiendothelial cell antibodies in connective tissue disease. Interaction between alpha-enolase and its autoantibody plays a role in endothelial cell apoptosis. Changes other than cell killing may contribute to the pathogenesis of endothelial damage and microvascular lesions.

  18. Morphological changes in corneal endothelial cells after penetrating keratoplasty.

    Science.gov (United States)

    Laing, R A; Sandstrom, M; Berrospi, A R; Leibowitz, H M

    1976-09-01

    Fifteen patients who had had a successful penetrating keratoplasty were photographed with the clinical specular microscope and the resulting endothelial photomicrographs were analyzed. The average endothelial cell area was one to six times larger and the average endothelial cell perimeter was one to 2 1/2 times larger than that of a normal cornea of a subject the same age as the donor. In each corneal graft, endothelial cell areas and perimeters clustered tightly around a mean value, although the mean value for different corneas varied significantly. The thickness and transparency of each graft was normal, indicating that within the observed limits the success of the transplantation procedure did not depend on final endothelial cell size or perimeter.

  19. Endothelial Cell Toxicity of Vancomycin Infusion Combined with Other Antibiotics.

    Science.gov (United States)

    Drouet, Maryline; Chai, Feng; Barthélémy, Christine; Lebuffe, Gilles; Debaene, Bertrand; Décaudin, Bertrand; Odou, Pascal

    2015-08-01

    French guidelines recommend central intravenous (i.v.) infusion for high concentrations of vancomycin, but peripheral intravenous (p.i.v.) infusion is often preferred in intensive care units. Vancomycin infusion has been implicated in cases of phlebitis, with endothelial toxicity depending on the drug concentration and the duration of the infusion. Vancomycin is frequently infused in combination with other i.v. antibiotics through the same administrative Y site, but the local toxicity of such combinations has been poorly evaluated. Such an assessment could improve vancomycin infusion procedures in hospitals. Human umbilical vein endothelial cells (HUVEC) were challenged with clinical doses of vancomycin over 24 h with or without other i.v. antibiotics. Cell death was measured with the alamarBlue test. We observed an excess cellular death rate without any synergistic effect but dependent on the numbers of combined infusions when vancomycin and erythromycin or gentamicin were infused through the same Y site. Incompatibility between vancomycin and piperacillin-tazobactam was not observed in our study, and rinsing the cells between the two antibiotic infusions did not reduce endothelial toxicity. No endothelial toxicity of imipenem-cilastatin was observed when combined with vancomycin. p.i.v. vancomycin infusion in combination with other medications requires new recommendations to prevent phlebitis, including limiting coinfusion on the same line, reducing the infusion rate, and choosing an intermittent infusion method. Further studies need to be carried out to explore other drug combinations in long-term vancomycin p.i.v. therapy so as to gain insight into the mechanisms of drug incompatibility under multidrug infusion conditions.

  20. Silencing of directional migration in roundabout4 knockdown endothelial cells

    Directory of Open Access Journals (Sweden)

    Roberts David D

    2008-11-01

    Full Text Available Abstract Background Roundabouts are axon guidance molecules that have recently been identified to play a role in vascular guidance as well. In this study, we have investigated gene knockdown analysis of endothelial Robos, in particular roundabout 4 (robo4, the predominant Robo in endothelial cells using small interfering RNA technology in vitro. Results Robo1 and Robo4 knockdown cells display distinct activity in endothelial cell migration assay. The knockdown of robo4 abrogated the chemotactic response of endothelial cells to serum but enhanced a chemokinetic response to Slit2, while robo1 knockdown cells do not display chemotactic response to serum or VEGF. Robo4 knockdown endothelial cells unexpectedly show up regulation of Rho GTPases. Zebrafish Robo4 rescues both Rho GTPase homeostasis and serum reduced chemotaxis in robo4 knockdown cells. Robo1 and Robo4 interact and share molecules such as Slit2, Mena and Vilse, a Cdc42-GAP. In addition, this study mechanistically implicates IRSp53 in the signaling nexus between activated Cdc42 and Mena, both of which have previously been shown to be involved with Robo4 signaling in endothelial cells. Conclusion This study identifies specific components of the Robo signaling apparatus that work together to guide directional migration of endothelial cells.

  1. Caspases and p38 MAPK regulate endothelial cell adhesiveness for mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Irina A Potapova

    Full Text Available Mesenchymal stem cells natively circulating or delivered into the blood stream home to sites of injury. The mechanism of mesenchymal stem cell homing to sites of injury is poorly understood. We have shown that the development of apoptosis in endothelial cells stimulates endothelial cell adhesiveness for mesenchymal stem cells. Adhesion of mesenchymal stem cells to apoptotic endothelial cells depends on the activation of endothelial caspases and p38 MAPK. Activation of p38 MAPK in endothelial cells has a primary effect while the activation of caspases potentiates the mesenchymal stem cell adhesion. Overall, our study of the mesenchymal stem cell interaction with endothelial cells indicates that mesenchymal stem cells recognize and specifically adhere to distressed/apoptotic endothelial cells.

  2. Bone marrow-derived cells serve as proangiogenic macrophages but not endothelial cells in wound healing.

    Science.gov (United States)

    Okuno, Yuji; Nakamura-Ishizu, Ayako; Kishi, Kazuo; Suda, Toshio; Kubota, Yoshiaki

    2011-05-12

    Bone marrow-derived cells (BMDCs) contribute to postnatal vascular growth by differentiating into endothelial cells or secreting angiogenic factors. However, the extent of their endothelial differentiation highly varies according to the angiogenic models used. Wound healing is an intricate process in which the skin repairs itself after injury. As a process also observed in cancer progression, neoangiogenesis into wound tissues is profoundly involved in this healing process, suggesting the contribution of BMDCs. However, the extent of the differentiation of BMDCs to endothelial cells in wound healing is unclear. In this study, using the green fluorescent protein-bone marrow chim-eric experiment and high resolution confocal microscopy at a single cell level, we observed no endothelial differentiation of BMDCs in 2 acute wound healing models (dorsal excisional wound and ear punch) and a chronic wound healing model (decubitus ulcer). Instead, a major proportion of BMDCs were macrophages. Indeed, colony-stimulating factor 1 (CSF-1) inhibition depleted approximately 80% of the BMDCs at the wound healing site. CSF-1-mutant (CSF-1(op/op)) mice showed significantly reduced neoangiogenesis into the wound site, supporting the substantial role of BMDCs as macrophages. Our data show that the proangiogenic effects of macrophages, but not the endothelial differentiation, are the major contribution of BMDCs in wound healing.

  3. Extracellular matrix stiffness modulates VEGF calcium signaling in endothelial cells: individual cell and population analysis.

    Science.gov (United States)

    Derricks, Kelsey E; Trinkaus-Randall, Vickery; Nugent, Matthew A

    2015-09-01

    Vascular disease and its associated complications are the number one cause of death in the Western world. Both extracellular matrix stiffening and dysfunctional endothelial cells contribute to vascular disease. We examined endothelial cell calcium signaling in response to VEGF as a function of extracellular matrix stiffness. We developed a new analytical tool to analyze both population based and individual cell responses. Endothelial cells on soft substrates, 4 kPa, were the most responsive to VEGF, whereas cells on the 125 kPa substrates exhibited an attenuated response. Magnitude of activation, not the quantity of cells responding or the number of local maximums each cell experienced distinguished the responses. Individual cell analysis, across all treatments, identified two unique cell clusters. One cluster, containing most of the cells, exhibited minimal or slow calcium release. The remaining cell cluster had a rapid, high magnitude VEGF activation that ultimately defined the population based average calcium response. Interestingly, at low doses of VEGF, the high responding cell cluster contained smaller cells on average, suggesting that cell shape and size may be indicative of VEGF-sensitive endothelial cells. This study provides a new analytical tool to quantitatively analyze individual cell signaling response kinetics, that we have used to help uncover outcomes that are hidden within the average. The ability to selectively identify highly VEGF responsive cells within a population may lead to a better understanding of the specific phenotypic characteristics that define cell responsiveness, which could provide new insight for the development of targeted anti- and pro-angiogenic therapies.

  4. Mouse lung contains endothelial progenitors with high capacity to form blood and lymphatic vessels

    Directory of Open Access Journals (Sweden)

    Barleon Bernhard

    2010-07-01

    Full Text Available Abstract Background Postnatal endothelial progenitor cells (EPCs have been successfully isolated from whole bone marrow, blood and the walls of conduit vessels. They can, therefore, be classified into circulating and resident progenitor cells. The differentiation capacity of resident lung endothelial progenitor cells from mouse has not been evaluated. Results In an attempt to isolate differentiated mature endothelial cells from mouse lung we found that the lung contains EPCs with a high vasculogenic capacity and capability of de novo vasculogenesis for blood and lymph vessels. Mouse lung microvascular endothelial cells (MLMVECs were isolated by selection of CD31+ cells. Whereas the majority of the CD31+ cells did not divide, some scattered cells started to proliferate giving rise to large colonies (> 3000 cells/colony. These highly dividing cells possess the capacity to integrate into various types of vessels including blood and lymph vessels unveiling the existence of local microvascular endothelial progenitor cells (LMEPCs in adult mouse lung. EPCs could be amplified > passage 30 and still expressed panendothelial markers as well as the progenitor cell antigens, but not antigens for immune cells and hematopoietic stem cells. A high percentage of these cells are also positive for Lyve1, Prox1, podoplanin and VEGFR-3 indicating that a considerabe fraction of the cells are committed to develop lymphatic endothelium. Clonogenic highly proliferating cells from limiting dilution assays were also bipotent. Combined in vitro and in vivo spheroid and matrigel assays revealed that these EPCs exhibit vasculogenic capacity by forming functional blood and lymph vessels. Conclusion The lung contains large numbers of EPCs that display commitment for both types of vessels, suggesting that lung blood and lymphatic endothelial cells are derived from a single progenitor cell.

  5. Variations in mass transfer to single endothelial cells.

    Science.gov (United States)

    Van Doormaal, Mark A; Zhang, Ji; Wada, Shigeo; Shaw, James E; Won, Doyon; Cybulsky, Myron I; Yip, Chris M; Ethier, C Ross

    2009-06-01

    Mass transfer between flowing blood and arterial mural cells (including vascular endothelial cells) may play an important role in atherogenesis. Endothelial cells are known to have an apical surface topography that is not flat, and hence mass transfer patterns to individual endothelial cells are likely affected by the local cellular topography. The purpose of this paper is to investigate the relationship between vascular endothelial cell surface topography and cellular level mass transfer. Confluent porcine endothelial monolayers were cultured under both shear and static conditions and atomic force microscopy was used to measure endothelial cell topography. Using finite element methods and the measured cell topography, flow and concentration fields were calculated for a typical, small, blood-borne solute. A relative Sherwood number was defined as the difference between the computed Sherwood number and that predicted by the Leveque solution for mass transfer over a flat surface: this eliminates the effects of axial location on mass transfer efficiency. The average intracellular relative Sherwood number range was found to be dependent on cell height and not dependent on cell elongation due to shear stress in culture. The mass flux to individual cells reached a maximum at the highest point on the endothelial cell surface, typically corresponding to the nucleus of the cell. Therefore, for small receptor-mediated solutes, increased solute uptake efficiency can be achieved by concentrating receptors near the nucleus. The main conclusion of the work is that although the rate of mass transfer varies greatly over an individual cell, the average mass transfer rate to a cell is close to that predicted for a flat cell. In comparison to other hemodynamic factors, the topography of endothelial cells therefore seems to have little effect on mass transfer rates and is likely physiologically insignificant.

  6. Genipin inhibits endothelial exocytosis via nitric oxide in cultured human umbilical vein endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Guang-fa WANG; Shao-yu WU; Jin-jun RAO; Lin L(U); Wei XU; Jian-xin PANG; Zhong-qiu LIU; Shu-guang WU; Jia-jie ZHANG

    2009-01-01

    Aim: Exocytosis of endothelial Weibel-Palade bodies, which contain von Willebrand factor (VWF), P-selectin and other modulators, plays an important role in both inflammation and thrombosis. The present study investigates whether genipin,an aglycon of geniposide, inhibits endothelial exocytosis.Methods: Human umbilical vein endothelial cells (HUVECs) were isolated from umbilical cords and cultured. The concentration of VWF in cell supernatants was measured using an ELISA Kit. P-selectin translocation on the cell surface was analyzed by cell surface ELISA. Cell viability was measured using a Cell Counting Kit-8. Mouse bleeding times were measured by amputating the tail tip. Western blot analysis was used to determine the amount of endothelial nitric oxide synthase (eNOS) and phospho-eNOS present. Nitric oxide (NO) was measured in the cell supernatants as nitrite using an NO Colorimetric Assay.Results: Genipin inhibited thrombin-induced VWF release and P-selectin translocation in HUVECs in a dose- and time-dependent manner. The drug had no cytotoxic effect on the cells at the same doses that were able to inhibit exocytosis. The functional study that demonstrated that genipin inhibited exocytosis in vivo also showed that genipin prolonged the mouse bleeding time. Furthermore, genipin activated eNOS phosphorylation, promoted enzyme activation and increased NO production. L-NAME, an inhibitor of NOS, reversed the inhibitory effects of genipin on endothelial exocytosis.Conclusion: Genipin inhibits endothelial exocytosis in HUVECs. The mechanism by which this compound inhibits exocytosis may be related to its ability to stimulate eNOS activation and NO production. Our findings suggest a novel antiinflammatory mechanism for genipin. This compound may represent a new treatment for inflammation and/or thrombosis in which excess endothelial exocytosis plays a pathophysiological role.

  7. Lung endothelial cells strengthen, but brain endothelial cells weaken barrier properties of a human alveolar epithelium cell culture model.

    Science.gov (United States)

    Neuhaus, Winfried; Samwer, Fabian; Kunzmann, Steffen; Muellenbach, Ralf M; Wirth, Michael; Speer, Christian P; Roewer, Norbert; Förster, Carola Y

    2012-11-01

    The blood-air barrier in the lung consists of the alveolar epithelium, the underlying capillary endothelium, their basement membranes and the interstitial space between the cell layers. Little is known about the interactions between the alveolar and the blood compartment. The aim of the present study was to gain first insights into the possible interplay between these two neighbored cell layers. We established an in vitro Transwell model of the alveolar epithelium based on human cell line H441 and investigated the influence of conditioned medium obtained from human lung endothelial cell line HPMEC-ST1.6R on the barrier properties of the H441 layers. As control for tissue specificity H441 layers were exposed to conditioned medium from human brain endothelial cell line hCMEC/D3. Addition of dexamethasone was necessary to obtain stable H441 cell layers. Moreover, dexamethasone increased expression of cell type I markers (caveolin-1, RAGE) and cell type II marker SP-B, whereas decreased the transepithelial electrical resistance (TEER) in a concentration dependent manner. Soluble factors obtained from the lung endothelial cell line increased the barrier significantly proven by TEER values and fluorescein permeability on the functional level and by the differential expression of tight junctional proteins on the molecular level. In contrast to this, soluble factors derived from brain endothelial cells weakened the barrier significantly. In conclusion, soluble factors from lung endothelial cells can strengthen the alveolar epithelium barrier in vitro, which suggests communication between endothelial and epithelial cells regulating the integrity of the blood-air barrier.

  8. Autocrine VEGF isoforms differentially regulate endothelial cell behavior

    Directory of Open Access Journals (Sweden)

    Hideki Yamamoto

    2016-09-01

    Full Text Available Vascular endothelial growth factor A (VEGF is involved in all the essential biology of endothelial cells, from proliferation to vessel function, by mediating intercellular interactions and monolayer integrity. It is expressed as three major alternative spliced variants. In mice, these are VEGF120, VEGF164, and VEGF188, each with different affinities for extracellular matrices and cell surfaces, depending on the inclusion of heparin-binding sites, encoded by exons 6 and 7. To determine the role of each VEGF isoform in endothelial homeostasis, we compared phenotypes of primary endothelial cells isolated from lungs of mice expressing single VEGF isoforms in normoxic and hypoxic conditions. The differential expression and distribution of VEGF isoforms affect endothelial cell functions, such as proliferation, adhesion, migration and integrity, which are dependent on the stability of and affinity to VEGF receptor 2 (VEGFR2. We found a correlation between autocrine VEGF164 and VEGFR2 stability, which is also associated with increased expression of proteins involved in cell adhesion. Endothelial cells expressing only VEGF188, which localizes to extracellular matrices or cell surfaces, presented a mesenchymal morphology and weakened monolayer integrity. Cells expressing only VEGF120 lacked stable VEGFR2 and dysfunctional downstream processes, rendering the cells unviable. Endothelial cells expressing these different isoforms in isolation also had differing rates of apoptosis, proliferation, and signaling via nitric oxide (NO synthesis. These data indicate that autocrine signaling of each VEGF isoform has unique functions on endothelial homeostasis and response to hypoxia, due to both distinct VEGF distribution and VEGFR2 stability, which appears to be, at least partly, affected by differential NO production. This study demonstrates that each autocrine VEGF isoform has a distinct effect on downstream functions, namely VEGFR2-regulated endothelial cell

  9. Enterococcus faecalis internalization in human umbilical vein endothelial cells (HUVEC).

    Science.gov (United States)

    Millán, Diana; Chiriboga, Carlos; Patarroyo, Manuel A; Fontanilla, Marta R

    2013-04-01

    Initial Enterococcus faecalis-endothelial cell molecular interactions which lead to enterococci associating in the host endothelial tissue, colonizing it and proliferating there can be assessed using in vitro models. Cultured human umbilical vein endothelial cells (HUVEC) have been used to study other Gram-positive bacteria-cell interactions; however, few studies have been aimed at establishing the relationship of E. faecalis with endothelial cells. The aggregation substance (AS) family of adhesins represents an E. faecalis virulence factor which has been implicated in endocarditis severity and bacterial persistence. The Asc10 protein (a member of this family) promotes bacterium-bacterium aggregation and bacterium-host cell binding. Evaluating Asc10 role in bacterial internalization by cultured enterocytes has shown that this adhesin facilitates E. faecalis endocytosis by HT-29 cells. A few eukaryotic cell structural components, such as cytoskeletal proteins, have been involved in E. faecalis entry into cell-lines; it is thus relevant to determine whether Asc10, as well as microtubules and actin microfilaments, play a role in E. faecalis internalization by cultured endothelial cells. The role of Asc10 and cytoskeleton proteins in E. faecalis ability to enter HUVEC was assessed in the present study, as well as cell apoptosis induction by enterococcal internalization by HUVEC; the data indicated increased cell apoptosis and that cytoskeleton components were partially involved in E. faecalis entry to endothelial cells, thereby suggesting that E. faecalis Asc10 protein would not be a critical factor for bacterial entry to cultured HUVEC.

  10. The Novel Methods for Analysis of Exosomes Released from Endothelial Cells and Endothelial Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Jinju Wang

    2016-01-01

    Full Text Available Exosomes (EXs are cell-derived vesicles that mediate cell-cell communication and could serve as biomarkers. Here we described novel methods for purification and phenotyping of EXs released from endothelial cells (ECs and endothelial progenitor cells (EPCs by combining microbeads and fluorescence quantum dots (Q-dots® techniques. EXs from the culture medium of ECs and EPCs were isolated and detected with cell-specific antibody conjugated microbeads and second antibody conjugated Q-dots by using nanoparticle tracking analysis (NTA system. The sensitivities of the cell origin markers for ECs (CD105, CD144 and EPCs (CD34, KDR were evaluated. The sensitivity and specificity were determined by using positive and negative markers for EXs (CD63, platelets (CD41, erythrocytes (CD235a, and microvesicles (Annexin V. Moreover, the methods were further validated in particle-free plasma and patient samples. Results showed that anti-CD105/anti-CD144 and anti-CD34/anti-KDR had the highest sensitivity and specificity for isolating and detecting EC-EXs and EPC-EXs, respectively. The methods had the overall recovery rate of over 70% and were able to detect the dynamical changes of circulating EC-EXs and EPC-EXs in acute ischemic stroke. In conclusion, we have developed sensitive and specific microbeads/Q-dots fluorescence NTA methods for EC-EX and EPC-EX isolation and detection, which will facilitate the functional study and biomarker discovery.

  11. SECs (Sinusoidal Endothelial Cells), Liver Microenvironment, and Fibrosis

    Science.gov (United States)

    Natarajan, Vaishaali; Harris, Edward N.

    2017-01-01

    Liver fibrosis is a wound-healing response to chronic liver injury such as alcoholic/nonalcoholic fatty liver disease and viral hepatitis with no FDA-approved treatments. Liver fibrosis results in a continual accumulation of extracellular matrix (ECM) proteins and paves the way for replacement of parenchyma with nonfunctional scar tissue. The fibrotic condition results in drastic changes in the local mechanical, chemical, and biological microenvironment of the tissue. Liver parenchyma is supported by an efficient network of vasculature lined by liver sinusoidal endothelial cells (LSECs). These nonparenchymal cells are highly specialized resident endothelial cell type with characteristic morphological and functional features. Alterations in LSECs phenotype including lack of LSEC fenestration, capillarization, and formation of an organized basement membrane have been shown to precede fibrosis and promote hepatic stellate cell activation. Here, we review the interplay of LSECs with the dynamic changes in the fibrotic liver microenvironment such as matrix rigidity, altered ECM protein profile, and cell-cell interactions to provide insight into the pivotal changes in LSEC physiology and the extent to which it mediates the progression of liver fibrosis. Establishing the molecular aspects of LSECs in the light of fibrotic microenvironment is valuable towards development of novel therapeutic and diagnostic targets of liver fibrosis. PMID:28293634

  12. Insulin resistance in vascular endothelial cells promotes intestinal tumour formation

    DEFF Research Database (Denmark)

    Wang, X; Häring, M-F; Rathjen, Thomas

    2017-01-01

    in tumour endothelial cells produces an activated, proinflammatory state that promotes tumorigenesis. Improvement of endothelial dysfunction may reduce colorectal cancer risk in patients with obesity and type 2 diabetes.Oncogene advance online publication, 1 May 2017; doi:10.1038/onc.2017.107....

  13. Actin cytoskeleton-dependent pathways for ADMA-induced NF-κB activation and TGF-β high expression in human renal glomerular endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Liyan Wang; Dongliang Zhang; Junfang Zheng; Yiduo Feng; Yu Zhang; Wenhu Liu

    2012-01-01

    Asymmetric dimethylarginine (ADMA),an endogenous nitric oxide synthase inhibitor,is considered to be an independent risk factor in the progression of chronic kidney diseases (CKD).It can induce kidney fibrosis by increasing transforming growth factor (TGF)-β1 expression,but its molecular mechanism is unclear.The aim of the present study was to investigate the role of actin cytoskeleton in ADMA-induced TGF-β1 high expression in human renal glomerular endothelial cells (HRGECs).The structure of stress fibers was visualized by immunofluorescence,nuclear factor-κB (NF-κB) DNA-binding activity was assessed by an electrophoretic mobility shift assay and TGF-β1 expression was assessed by western blot analysis.Results showed that ADMA induced the assembly of stress fibers,DNA binding of NF-κB,and increasing expression of TGF-β1.When the dynamics of actin cytoskeleton was perturbed by the actin-depolymerizing agent cytochalasin D and the actin-stabilizing agent jasplakinolide,or ablation of stress fiber bundles by the nicotineamide adenine dinucleotide phosphate oxidase inhibitor apocynin and p38 mitogen-activated protein kinase inhibitor SB203580,ADMA-induced DNA binding of NF-κB and TGF-β1 expression were inhibited.These results revealed an actin cytoskeleton-dependent mechanism in ADMA-induced NF-κB activation and TGF-β1 high expression in HRGECs.The specific targeting of the actin cytoskeleton may be a useful strategy to prevent ADMA-activated kidney fibrosis in CKD.

  14. Increased adhesive and inflammatory properties in blood outgrowth endothelial cells from sickle cell anemia patients.

    Science.gov (United States)

    Sakamoto, Tatiana Mary; Lanaro, Carolina; Ozelo, Margareth Castro; Garrido, Vanessa Tonin; Olalla-Saad, Sara Teresinha; Conran, Nicola; Costa, Fernando Ferreira

    2013-11-01

    The endothelium plays an important role in sickle cell anemia (SCA) pathophysiology, interacting with red cells, leukocytes and platelets during the vaso-occlusive process and undergoing activation and dysfunction as a result of intravascular hemolysis and chronic inflammation. Blood outgrowth endothelial cells (BOECs) can be isolated from adult peripheral blood and have been used in diverse studies, since they have a high proliferative capacity and a stable phenotype during in vitro culture. This study aimed to establish BOEC cultures for use as an in vitro study model for endothelial function in sickle cell anemia. Once established, BOECs from steady-state SCA individuals (SCA BOECs) were characterized for their adhesive and inflammatory properties, in comparison to BOECs from healthy control individuals (CON BOECs). Cell adhesion assays demonstrated that control individual red cells adhered significantly more to SCA BOEC than to CON BOEC. Despite these increased adhesive properties, SCA BOECs did not demonstrate significant differences in their expression of major endothelial adhesion molecules, compared to CON BOECs. SCA BOECs were also found to be pro-inflammatory, producing a significantly higher quantity of the cytokine, IL-8, than CON BOECs. From the results obtained, we suggest that BOEC may be a good model for the in vitro study of SCA. Data indicate that endothelial cells of sickle cell anemia patients may have abnormal inflammatory and adhesive properties even outside of the chronic inflammatory and vaso-occlusive environment of patients.

  15. Biophysical Cueing and Vascular Endothelial Cell Behavior

    Directory of Open Access Journals (Sweden)

    Joshua A. Wood

    2010-03-01

    Full Text Available Human vascular endothelial cells (VEC line the vessels of the body and are critical for the maintenance of vessel integrity and trafficking of biochemical cues. They are fundamental structural elements and are central to the signaling environment. Alterations in the normal functioning of the VEC population are associated with a number of vascular disorders among which are some of the leading causes of death in both the United States and abroad. VECs attach to their underlying stromal elements through a specialization of the extracellular matrix, the basement membrane. The basement membrane provides signaling cues to the VEC through its chemical constituents, by serving as a reservoir for cytoactive factors and through its intrinsic biophysical properties. This specialized matrix is composed of a topographically rich 3D felt-like network of fibers and pores on the nano (1–100 nm and submicron (100–1,000 nm size scale. The basement membrane provides biophysical cues to the overlying VECs through its intrinsic topography as well as through its local compliance (relative stiffness. These biophysical cues modulate VEC adhesion, migration, proliferation, differentiation, and the cytoskeletal signaling network of the individual cells. This review focuses on the impact of biophysical cues on VEC behaviors and demonstrates the need for their consideration in future vascular studies and the design of improved prosthetics.

  16. Understanding high endothelial venules: Lessons for cancer immunology.

    Science.gov (United States)

    Ager, Ann; May, Michael J

    2015-06-01

    High endothelial venules (HEVs) are blood vessels especially adapted for lymphocyte trafficking which are normally found in secondary lymphoid organs such as lymph nodes (LN) and Peyer's patches. It has long been known that HEVs develop in non-lymphoid organs during chronic inflammation driven by autoimmunity, infection or allografts. More recently, HEVs have been observed in solid, vascularized tumors and their presence correlated with reduced tumor size and improved patient outcome. It is proposed that newly formed HEV promote antitumor immunity by recruiting naive lymphocytes into the tumor, thus allowing the local generation of cancerous tissue-destroying lymphocytes. Understanding how HEVs develop and function are therefore important to unravel their role in human cancers. In LN, HEVs develop during embryonic and early post-natal life and are actively maintained by the LN microenvironment. Systemic blockade of lymphotoxin-β receptor leads to HEV de-differentiation, but the LN components that induce HEV differentiation have remained elusive. Recent elegant studies using gene-targeted mice have demonstrated clearly that triggering the lymphotoxin-β receptor in endothelial cells (EC) induces the differentiation of HEV and that CD11c(+) dendritic cells play a crucial role in this process. It will be important to determine whether lymphotoxin-β receptor-dependent signaling in EC drives the development of HEV during tumorigenesis and which cells have HEV-inducer properties. This may reveal therapeutic approaches to promote HEV neogenesis and determine the impact of newly formed HEV on tumor immunity.

  17. Rickettsia massiliae and Rickettsia conorii Israeli Spotted Fever Strain Differentially Regulate Endothelial Cell Responses.

    Science.gov (United States)

    Bechelli, Jeremy; Smalley, Claire; Milhano, Natacha; Walker, David H; Fang, Rong

    2015-01-01

    Rickettsiae primarily target microvascular endothelial cells. However, it remains elusive how endothelial cell responses to rickettsiae play a role in the pathogenesis of rickettsial diseases. In the present study, we employed two rickettsial species with high sequence homology but differing virulence to investigate the pathological endothelial cell responses. Rickettsia massiliae is a newly documented human pathogen that causes a mild spotted fever rickettsiosis. The "Israeli spotted fever" strain of R. conorii (ISF) causes severe disease with a mortality rate up to 30% in hospitalized patients. At 48 hours post infection (HPI), R. conorii (ISF) induced a significant elevation of IL-8 and IL-6 while R. massiliae induced a statistically significant elevated amount of MCP-1 at both transcriptional and protein synthesis levels. Strikingly, R. conorii (ISF), but not R. massiliae, caused a significant level of cell death or injury in HMEC-1 cells at 72 HPI, demonstrated by live-dead cell staining, annexin V staining and lactate dehydrogenase release. Monolayers of endothelial cells infected with R. conorii (ISF) showed a statistically significant decrease in electrical resistance across the monolayer compared to both R. massiliae-infected and uninfected cells at 72 HPI, suggesting increased endothelial permeability. Interestingly, pharmacological inhibitors of caspase-1 significantly reduced the release of lactate dehydrogenase by R. conorii (ISF)-infected HMEC-1 cells, which suggests the role of caspase-1 in mediating the death of endothelial cells. Taken together, our data illustrated that a distinct proinflammatory cytokine profile and endothelial dysfunction, as evidenced by endothelial cell death/injury and increased permeability, are associated with the severity of rickettsial diseases.

  18. Genistein Suppression of Matrix Metalloproteinase 2 (MMP-2) and Vascular Endothelial Growth Factor (VEGF) Expression in Mesenchymal Stem Cell Like Cells Isolated from High and Low Grade Gliomas

    Science.gov (United States)

    Yazdani, Yasaman; Sharifi Rad, Mohammad Reza; Taghipour, Mousa; Chenari, Nooshafarin; Ghaderi, Abbas; Razmkhah, Mahboobeh

    2016-12-01

    Objective: Brain tumors cause great mortality and morbidity worldwide, and success rates with surgical treatment remain very low. Several recent studies have focused on introduction of novel effective medical therapeutic approaches. Genistein is a member of the isoflavonoid family which has proved to exert anticancer effects. Here we assessed the effects of genistein on the expression of MMP-2 and VEGF in low and high grade gliomas in vitro. Materials and Methods: High and low grade glioma tumor tissue samples were obtained from a total of 16 patients, washed with PBS, cut into small pieces, digested with collagenase type I and cultured in DMEM containing 10% FBS. When cells reached passage 3, they were exposed to genistein and MMP-2 and VEGF gene transcripts were determined by quantitative real time PCR (qRT-PCR). Results: Expression of MMP-2 demonstrated 580-fold reduction in expression in low grade glioma cells post treatment with genistein compared to untreated cells (P value= 0.05). In cells derived from high grade lesions, expression of MMP-2 was 2-fold lower than in controls (P value> 0.05). Genistein caused a 4.7-fold reduction in VEGF transcript in high grade glioma cells (P value> 0.05) but no effects were evident in low grade glioma cells. Conclusion. Based on the data of the present study, low grade glioma cells appear much more sensitive to genistein and this isoflavone might offer an appropriate therapeutic intervention in these patients. Further investigation of this possibility is clearly warranted.

  19. Inflammation determines the pro-adhesive properties of high extracellular d-glucose in human endothelial cells in vitro and rat microvessels in vivo.

    Directory of Open Access Journals (Sweden)

    Verónica Azcutia

    Full Text Available BACKGROUND: Hyperglycemia is acknowledged as an independent risk factor for developing diabetes-associated atherosclerosis. At present, most therapeutic approaches are targeted at a tight glycemic control in diabetic patients, although this fails to prevent macrovascular complications of the disease. Indeed, it remains highly controversial whether or not the mere elevation of extracellular D-glucose can directly promote vascular inflammation, which favors early pro-atherosclerotic events. METHODS AND FINDINGS: In the present work, increasing extracellular D-glucose from 5.5 to 22 mmol/L was neither sufficient to induce intercellular adhesion molecule-1 (ICAM-1 and vascular cell adhesion molecule-1 (VCAM-1 expression, analyzed by flow cytometry, nor to promote leukocyte adhesion to human umbilical vein endothelial cells (HUVEC in vitro, measured by flow chamber assays. Interestingly, the elevation of D-glucose levels potentiated ICAM-1 and VCAM-1 expression and leukocyte adhesion induced by a pro-inflammatory stimulus, such as interleukin (IL-1beta (5 ng/mL. In HUVEC, high D-glucose augmented the activation of extracellular signal-regulated kinase 1/2 (ERK 1/2 and nuclear transcription factor-kappaB (NF-kappaB elicited by IL-1beta, measured by Western blot and electromobility shift assay (EMSA, respectively, but had no effect by itself. Both ERK 1/2 and NF-kappaB were necessary for VCAM-1 expression, but not for ICAM-1 expression. In vivo, leukocyte trafficking was evaluated in the rat mesenteric microcirculation by intravital microscopy. In accordance with the in vitro data, the acute intraperitoneal injection of D-glucose increased leukocyte rolling flux, adhesion and migration, but only when IL-1beta was co-administered. CONCLUSIONS: These results indicate that the elevation of extracellular D-glucose levels is not sufficient to promote vascular inflammation, and they highlight the pivotal role of a pro-inflammatory environment in diabetes, as

  20. Oct-4+/Tenascin C+ neuroblastoma cells serve as progenitors of tumor-derived endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Annalisa Pezzolo; Silvia Deaglio; Fabio Malavasi; Vito Pistoia; Federica Parodi; Danilo Marimpietri; Lizzia Raffaghello; Claudia Cocco; Angela Pistorio; Manuela Mosconi; Claudio Gambini; Michele Cillj

    2011-01-01

    Neuroblastoma (NB)-associated endothelial microvessels (EMs) may be lined by tumor-derived endothelial cells (TECs),that are genetically unstable and chemoresistant.Here we have addressed the identification of TEC progenitors in NB by focusing on Octamer-binding transcription factor 4 (Oct-4) as a putative marker.Oct-4+ cells were detected in primary NB samples (n = 23),metastatic bone marrow aspirates (n = 10),NB cell lines (n = 4),and orthotopic tumors (n = 10) formed by the HTLA-230 NB cell line in immunodeficient mice.Most Oct-4+ cells showed a perivascular distribution,with 5% of them homing in perinecrotic areas.All Oct-4+ cells were tumor-derived since they shared amplification of MYCN oncogene with malignant cells.Perivascular Oct-4+ cells expressed stem cellrelated,neural progenitor-related and NB-related markers,including surface Tenascin C (TNC),that was absent from perinecrotic Oct-4+ cells and bulk tumor cells.TNC+ but not TNC- HTLA-230 cells differentiated in vitro into endothelial-like cells expressing vascular-endothellal-cadherin,prostate-specific membrane antigen and CD31 upon culture in medium containing vascular endothelial growth factor (VEGF).TNC+ but not TNC- HTLA-230 cells formed neurospheres when cultured in serum-free medium.Both cell fractions were tumorigenic,but only tumors formed by TNC+ cegs contained EMs fined by TECs.In conclusion,we have identified in NB tumors two putative niches containing Oct-4+ tumor cells.Oct-4+/TNC+ perivascular NB cells displayed a high degree of plasticity and served as progenitors of TECs.Therapeutic targeting of Oct4+/TNC+ progenitors may counteract the contribution of NB-derived ECs to tumor relapse and chemoresistance.

  1. Growth of fibroblasts and endothelial cells on wettability gradient surfaces

    NARCIS (Netherlands)

    Ruardy, TG; Moorlag, HE; Schakenraad, JM; VanderMei, HC; Busscher, HJ

    1997-01-01

    The growth, spreading, and shape of human skin fibroblasts (PK 84) and human umbilical cord endothelial cells on dichlorodimethylsilane (DDS) and dimethyloctadecylchlorosilane (DOGS) gradient surfaces were investigated in the presence of serum proteins. Gradient surfaces were prepared on glass using

  2. Term Amniotic membrane is a high throughput source for multipotent Mesenchymal Stem Cells with the ability to differentiate into endothelial cells in vitro

    DEFF Research Database (Denmark)

    Alviano, Francesco; Fossati, Valentina; Marchionni, Cosetta

    2007-01-01

    BACKGROUND: Term Amniotic membrane (AM) is a very attractive source of Mesenchymal Stem Cells (MSCs) due to the fact that this fetal tissue is usually discarded without ethical conflicts, leading to high efficiency in MSC recovery with no intrusive procedures. Here we confirmed that term AM......, as previously reported in the literature, is an abundant source of hMSCs; in particular we further investigated the AM differentiation potential by assessing whether these cells may also be committed to the angiogenic fate. In agreement with the recommendation of the International Society for Cellular Therapy......, the mesenchymal cells herein investigated were named Amniotic Membrane-human Mesenchymal Stromal Cells (AM-hMSC). RESULTS: The recovery of hMSCs and their in vitro expansion potential were greater in amniotic membrane than in bone marrow stroma. At flow cytometry analysis AM-hMSCs showed an immunophenotypical...

  3. Endothelial cell proliferation in swine experimental aneurysm after coil embolization.

    Directory of Open Access Journals (Sweden)

    Yumiko Mitome-Mishima

    Full Text Available After coil embolization, recanalization in cerebral aneurysms adversely influences long-term prognosis. Proliferation of endothelial cells on the coil surface may reduce the incidence of recanalization and further improve outcomes after coil embolization. We aimed to map the expression of proliferating tissue over the aneurysmal orifice and define the temporal profile of tissue growth in a swine experimental aneurysm model. We compared the outcomes after spontaneous thrombosis with those of coil embolization using histological and morphological techniques. In aneurysms that we not coiled, spontaneous thrombosis was observed, and weak, easily detachable proliferating tissue was evident in the aneurysmal neck. In contrast, in the coil embolization group, histological analysis showed endothelial-like cells lining the aneurysmal opening. Moreover, immunohistochemical and morphological analysis suggested that these cells were immature endothelial cells. Our results indicated the existence of endothelial cell proliferation 1 week after coil embolization and showed immature endothelial cells in septal tissue between the systemic circulation and the aneurysm. These findings suggest that endothelial cells are lead to and proliferate in the former aneurysmal orifice. This is the first examination to evaluate the temporal change of proliferating tissue in a swine experimental aneurysm model.

  4. Cellular and molecular biology of aging endothelial cells.

    Science.gov (United States)

    Donato, Anthony J; Morgan, R Garrett; Walker, Ashley E; Lesniewski, Lisa A

    2015-12-01

    Cardiovascular disease (CVD) is the leading cause of death in the United States and aging is a major risk factor for CVD development. One of the major age-related arterial phenotypes thought to be responsible for the development of CVD in older adults is endothelial dysfunction. Endothelial function is modulated by traditional CVD risk factors in young adults, but advancing age is independently associated with the development of vascular endothelial dysfunction. This endothelial dysfunction results from a reduction in nitric oxide bioavailability downstream of endothelial oxidative stress and inflammation that can be further modulated by traditional CVD risk factors in older adults. Greater endothelial oxidative stress with aging is a result of augmented production from the intracellular enzymes NADPH oxidase and uncoupled eNOS, as well as from mitochondrial respiration in the absence of appropriate increases in antioxidant defenses as regulated by relevant transcription factors, such as FOXO. Interestingly, it appears that NFkB, a critical inflammatory transcription factor, is sensitive to this age-related endothelial redox change and its activation induces transcription of pro-inflammatory cytokines that can further suppress endothelial function, thus creating a vicious feed-forward cycle. This review will discuss the two macro-mechanistic processes, oxidative stress and inflammation, that contribute to endothelial dysfunction with advancing age as well as the cellular and molecular events that lead to the vicious cycle of inflammation and oxidative stress in the aged endothelium. Other potential mediators of this pro-inflammatory endothelial phenotype are increases in immune or senescent cells in the vasculature. Of note, genomic instability, telomere dysfunction or DNA damage has been shown to trigger cell senescence via the p53/p21 pathway and result in increased inflammatory signaling in arteries from older adults. This review will discuss the current state

  5. Hyperglycemic switch from mitochondrial nitric oxide to superoxide production in endothelial cells.

    Science.gov (United States)

    Brodsky, Sergey V; Gao, Shujuan; Li, Hong; Goligorsky, Michael S

    2002-11-01

    The accumulated ultrastructural and biochemical evidence is highly suggestive of the existence of mitochondrial nitric oxide (NO) synthase (mtNOS), where local production of NO regulates the electron transport along the respiratory chain. Here, the functional competence of mtNOS in situ in a living cell was examined using an intravital fluorescent NO indicator, 4,5-diaminofluorescein, employing a new procedure for loading it into the mitochondria to demonstrate local NO generation in undisrupted endothelial cells and in isolated mitochondria as well as in human embryonic kidney cells stably expressing endothelial NOS. With the use of this approach, we showed that endothelial cells incubated in the presence of high concentration of D-glucose (but not L-glucose) are characterized by the reduced NO synthetic function of mitochondria despite the unaltered abundance of the enzyme. In parallel, mitochondrial generation of superoxide was augmented in endothelial cells incubated in the presence of a high concentration of D-glucose. Both the NO generation and superoxide production in hyperglycemic environment could be restored to control levels by treating cells with a cell-permeable superoxide dismutase mimetic. In addition, enhanced mitochondrial superoxide production could be suppressed with an inhibitor of NOS in stimulated endothelial cells. In conclusion, the data 1) provide direct evidence of mitochondrial NO production in endothelial cells, 2) demonstrate its suppression and enhanced superoxide generation in hyperglycemic environment, and 3) provide evidence that "uncoupled" mtNOS represents an important source of superoxide anions in endothelial cells incubated in high glucose-containing medium.

  6. Uptake of gold nanoparticles in primary human endothelial cells

    DEFF Research Database (Denmark)

    Klingberg, Henrik; Oddershede, Lene B.; Löschner, Katrin

    2015-01-01

    Gold nanoparticles (AuNPs) are relevant in nanomedicine for drug delivery in the vascular system, where endothelial cells are the first point of contact. We investigated the uptake of 80 nm AuNPs in primary human umbilical vein endothelial cells (HUVECs) by flow cytometry, 3D confocal microscopy....... Uptake of AuNPs in HUVECs occurred mainly by clathrin-mediated endocytosis and trafficking to membrane enclosures in the form of single particles and agglomerates of 2–3 particles....

  7. Endothelial cell apoptosis correlates with low haptoglobin concentrations in diabetes.

    Science.gov (United States)

    Dalan, Rinkoo; Liu, Xiaofeng; Goh, Liuh Ling; Bing, Sun; Luo, Kathy Qian

    2017-08-01

    The haptoglobin 2-2 genotype is associated with lower haptoglobin concentrations and atherosclerosis in diabetes. Endothelial cell apoptosis contributes significantly to atherosclerosis. We studied endothelial cell apoptosis in diabetes patients with haptoglobin 2-2 and non-haptoglobin 2-2 genotype. Approach and results: We pooled plasma from 10 patients with haptoglobin 2-2 and non-haptoglobin 2-2 genotype and quantified endothelial cell apoptosis using a hemodynamic lab-on-chip system. Then, we conducted similar experiments on individual diabetes plasma samples with the haptoglobin 2-2 ( n = 20) and non-haptoglobin 2-2 genotype ( n = 20). Haptoglobin beta concentrations were measured by Western blot analysis. We looked for association with demographic, metabolic variables, inflammation and oxidative stress. In pooled plasma, endothelial cell apoptosis was higher in haptoglobin 2-2 group (haptoglobin 2-2: 23.18% vs non-haptoglobin 2-2:15.32%). In individual samples, univariate analysis showed that endothelial cell apoptosis correlated with haptoglobin beta concentration [ β = -10.29 (95% confidence interval: -13.44, -7.14), p  0.05). These results show that regardless of the haptoglobin genotype, haptoglobin is associated with prevention of endothelial cell apoptosis in diabetes.

  8. Glucose transporter 1-positive endothelial cells in infantile hemangioma exhibit features of facultative stem cells

    Science.gov (United States)

    Huang, Lan; Nakayama, Hironao; Klagsbrun, Michael; Mulliken, John B.; Bischoff, Joyce

    2014-01-01

    Endothelial glucose transporter 1 (GLUT1) is a definitive and diagnostic marker for infantile hemangioma (IH), a vascular tumor of infancy. To date, GLUT1-positive endothelial cells in IH have not been quantified nor directly isolated and studied. We isolated GLUT1-positive and GLUT1-negative endothelial cells from IH specimens and characterized their proliferation, differentiation and response to propranolol, a first-line therapy for IH, and to rapamycin, an mTOR pathway inhibitor used to treat an increasingly wide array of proliferative disorders. Although freshly isolated GLUT1-positive cells, selected using anti-GLUT1 magnetic beads, expressed endothelial markers CD31, VE-Cadherin and VEGFR2, they converted to a mesenchymal phenotype after three weeks in culture. In contrast, GLUT1-negative endothelial cells exhibited a stable endothelial phenotype in vitro. GLUT1-selected cells were clonogenic when plated as single cells and could be induced to re-differentiate into endothelial cells, or into pericyte/smooth muscle cells or into adipocytes, indicating a stem cell-like phenotype. These data demonstrate that, although they appear and function in the tumor as bona fide endothelial cells, the GLUT1-positive endothelial cells display properties of facultative stem cells. Pretreatment with rapamycin for 4 days significantly slowed proliferation of GLUT1-selected cells, whereas propranolol pretreatment had no effect. These results reveal for the first time the facultative nature of GLUT1-positive endothelial cells in infantile hemangioma. PMID:25187207

  9. Mechanism of Corneal Endothelial Cells Lesion during Phacoemulsification and Aspiration

    Institute of Scientific and Technical Information of China (English)

    Songtao Yuan; Lina Xie; Qinghuai Liu; Nanrong Yuan

    2003-01-01

    Purpose: To evaluate the proportions of corneal endothelial lesion caused by differentfactors during phacoemulsification and aspiration.Methods: Fourteen cats (twenty eight eyes) were divided into four groups. The processedfactors were ultrasonic power, lens extraction by phacoemulsification or not, and lensextraction using different levels of ultrasonic power. The density of central cornealendothelial cells was measured before and after operation.Results: There is no statistic difference between pre-operation density and post-operationdensity for releasing ultrasonic power only without lens extraction group. But for the lensextraction group, there is difference in density of central corneal endothelial cells andthe higher level of ultrasonic power, the more the central corneal endothelial cells densitydecreased through operation.Conclusion: The primary factor that causes corneal endothelial lesion duringphacoemulsification and aspiration procedure is debris of lens nucleus, and the otherfactors cause the lesion of corneal endothelium in normal operations just in very smalldegree.

  10. Fullerene derivatives protect endothelial cells against NO-induced damage

    Energy Technology Data Exchange (ETDEWEB)

    Lao Fang; Han Dong; Qu Ying; Liu Ying; Zhao Yuliang; Chen Chunying [CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190 (China); Li Wei [CAS Key Laboratory for Nuclear Analytical Techniques, Institute of High Energy Physics (IHEP), Chinese Academy of Sciences, Beijing 100049 (China)], E-mail: chenchy@nanoctr.cn

    2009-06-03

    Functional fullerene derivatives have been demonstrated with potent antioxidation properties. Nitric oxide (NO) is a free radical that plays a part in leading to brain damage when it is accumulated to a high concentration. The possible scavenging activity of NO by the hydroxylated fullerene derivative C{sub 60}(OH){sub 22} and malonic acid derivative C{sub 60}(C(COOH){sub 2}){sub 2} was investigated using primary rat brain cerebral microvessel endothelial cells (CMECs). Results demonstrate that sodium nitroprusside (SNP), used as an NO donor, caused a marked decrease in cell viability and an increase in apoptosis. However, fullerene derivatives can remarkably protect against the apoptosis induced by NO assault. In addition, fullerene derivatives can also prevent NO-induced depolymerization of cytoskeleton and damage of the nucleus and accelerate endothelial cell repair. Further investigation shows that the sudden increase of the intercellular reactive oxygen species (ROS) induced by NO was significantly attenuated by post-treatment with fullerene derivatives. Our results suggest that functional fullerene derivatives are potential applications for NO-related disorders.

  11. Endothelial induced EMT in breast epithelial cells with stem cell properties

    DEFF Research Database (Denmark)

    Sigurdsson, Valgardur; Hilmarsdottir, Bylgja; Sigmundsdottir, Hekla

    2011-01-01

    endothelial cells might play a role in EMT. Using a 3D culture model we demonstrate that endothelial cells are potent inducers of EMT in D492 an immortalized breast epithelial cell line with stem cell properties. Endothelial induced mesenchymal-like cells (D492M) derived from D492, show reduced expression...... to the vascular rich areas show no or decreased expression of E-Cad and increased N-Cad expression suggesting EMT. Collectively, we have shown in a 3D culture model that endothelial cells are potent inducers of EMT in breast epithelial cells with stem cell properties. Furthermore, we demonstrate that basal...

  12. Interleukin-33 drives a proinflammatory endothelial activation that selectively targets nonquiescent cells.

    Science.gov (United States)

    Pollheimer, Jürgen; Bodin, Johanna; Sundnes, Olav; Edelmann, Reidunn J; Skånland, Sigrid S; Sponheim, Jon; Brox, Mari Johanna; Sundlisaeter, Eirik; Loos, Tamara; Vatn, Morten; Kasprzycka, Monika; Wang, Junbai; Küchler, Axel M; Taskén, Kjetil; Haraldsen, Guttorm; Hol, Johanna

    2013-02-01

    Interleukin (IL)-33 is a nuclear protein that is released from stressed or damaged cells to act as an alarmin. We investigated the effects of IL-33 on endothelial cells, using the prototype IL-1 family member, IL-1β, as a reference. Human umbilical vein endothelial cells were stimulated with IL-33 or IL-1β, showing highly similar phosphorylation of signaling molecules, induction of adhesion molecules, and transcription profiles. However, intradermally injected IL-33 elicited significantly less proinflammatory endothelial activation when compared with IL-1β and led us to observe that quiescent endothelial cells (ppRb(low)p27(high)) were strikingly resistant to IL-33. Accordingly, the IL-33 receptor was preferentially expressed in nonquiescent cells of low-density cultures, corresponding to selective induction of adhesion molecules and chemokines. Multiparameter phosphoflow cytometry confirmed that signaling driven by IL-33 was stronger in nonquiescent cells. Manipulation of nuclear IL-33 expression by siRNA or adenoviral transduction revealed no functional link between nuclear, endogenous IL-33, and exogenous IL-33 responsiveness. In contrast to other inflammatory cytokines, IL-33 selectively targets nonquiescent endothelial cells. By this novel concept, quiescent cells may remain nonresponsive to a proinflammatory stimulus that concomitantly triggers a powerful response in cells that have been released from contact inhibition.

  13. Circulating endothelial cells and procoagulant microparticles in patients with glioblastoma: prognostic value.

    Directory of Open Access Journals (Sweden)

    Gaspar Reynés

    Full Text Available AIM: Circulating endothelial cells and microparticles are prognostic factors in cancer. However, their prognostic and predictive value in patients with glioblastoma is unclear. The objective of this study was to investigate the potential prognostic value of circulating endothelial cells and microparticles in patients with newly diagnosed glioblastoma treated with standard radiotherapy and concomitant temozolomide. In addition, we have analyzed the methylation status of the MGMT promoter. METHODS: Peripheral blood samples were obtained before and at the end of the concomitant treatment. Blood samples from healthy volunteers were also obtained as controls. Endothelial cells were measured by an immunomagnetic technique and immunofluorescence microscopy. Microparticles were quantified by flow cytometry. Microparticle-mediated procoagulant activity was measured by endogen thrombin generation and by phospholipid-dependent clotting time. Methylation status of MGMT promoter was determined by multiplex ligation-dependent probe amplification. RESULTS: Pretreatment levels of circulating endothelial cells and microparticles were higher in patients than in controls (p<0.001. After treatment, levels of microparticles and thrombin generation decreased, and phospholipid-dependent clotting time increased significantly. A high pretreatment endothelial cell count, corresponding to the 99(th percentile in controls, was associated with poor overall survival. MGMT promoter methylation was present in 27% of tumor samples and was associated to a higher overall survival (66 weeks vs 30 weeks, p<0.004. CONCLUSION: Levels of circulating endothelial cells may have prognostic value in patients with glioblastoma.

  14. [Morphometric changes of corneal endothelial cells in pseudoexfoliation syndrome and pseudoexfoliation glaucoma].

    Science.gov (United States)

    de Juan-Marcos, L; Cabrillo-Estévez, L; Escudero-Domínguez, F A; Sánchez-Jara, A; Hernández-Galilea, E

    2013-11-01

    To evaluate the corneal endothelial morphometry and central corneal thickness (CCT) in pseudoexfoliative (PEX) eyes with and without glaucoma and to compare with normal eyes and eyes with primary open-angle glaucoma (POAG). A total of 166 patients were included in this study: 36 eyes with pseudoexfoliation syndrome (PXS), 30 eyes with pseudoexfoliation glaucoma (PXG), 40 eyes with POAG, and 60 normal eyes. Corneal endothelial cell density (ECD), coefficient of variation (CV) in cell size, and percentage of hexagonal cells, were measured using a non-contact specular microscope, whereas CCT was measured with an ultrasonic pachymeter. ECD and percentage of hexagonal cells were lower in PEX groups and in the POAG group compared with normal eyes, while the CV in cell size was greater. There was a tendency for greater cell loss and morphological abnormalities of the corneal endothelial cells in PXG eyes compared to PXS eyes, when all pseudoexfoliative eyes were analyzed together. Changes in endothelial cells increased with age. There were no significant differences in mean CCT between the four groups. Endothelial cell density is significantly decreased, and pleomorphism and polymegathism of cells are increased in PEX eyes, particularly when intraocular pressure is high. Copyright © 2012 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  15. Erythropoietin improves cardiac function through endothelial progenitor cell and vascular endothelial growth factor mediated neovascularization

    NARCIS (Netherlands)

    Westenbrink, B. Daan; Lipsic, Erik; van der Meer, Peter; van der Harst, Pirn; Oeseburg, Hisko; Sarvaas, Gideon J. Du Marchie; Koster, Johan; Voors, Adriaan A.; van Veldhuisen, Dirk J.; van Gilst, Wiek H.; Schoemaker, Regien G.

    2007-01-01

    Aims Erythropoietin (EPO) improves cardiac function and induces neovascutarization in chronic heart failure (CHF), although the exact mechanism has not been elucidated. We studied the effects of EPO on homing and incorporation of endothelial progenitor cells (EPC) into the myocardial microvasculatur

  16. Triazole RGD antagonist reverts TGFβ1-induced endothelial-to-mesenchymal transition in endothelial precursor cells.

    Science.gov (United States)

    Bianchini, Francesca; Peppicelli, Silvia; Fabbrizzi, Pierangelo; Biagioni, Alessio; Mazzanti, Benedetta; Menchi, Gloria; Calorini, Lido; Pupi, Alberto; Trabocchi, Andrea

    2017-01-01

    Fibrosis is the dramatic consequence of a dysregulated reparative process in which activated fibroblasts (myofibroblasts) and Transforming Growth Factor β1 (TGFβ1) play a central role. When exposed to TGFβ1, fibroblast and epithelial cells differentiate in myofibroblasts; in addition, endothelial cells may undergo endothelial-to-mesenchymal transition (EndoMT) and actively participate to the progression of fibrosis. Recently, the role of αv integrins, which recognize the Arg-Gly-Asp (RGD) tripeptide, in the release and signal transduction activation of TGFβ1 became evident. In this study, we present a class of triazole-derived RGD antagonists that interact with αvβ3 integrin. Above different compounds, the RGD-2 specifically interferes with integrin-dependent TGFβ1 EndoMT in Endothelial Colony-Forming Cells (ECPCs) derived from circulating Endothelial Precursor Cells (ECPCs). The RGD-2 decreases the amount of membrane-associated TGFβ1, and reduces both ALK5/TGFβ1 type I receptor expression and Smad2 phosphorylation in ECPCs. We found that RGD-2 antagonist reverts EndoMT, reducing α-smooth muscle actin (α-SMA) and vimentin expression in differentiated ECPCs. Our results outline the critical role of integrin in fibrosis progression and account for the opportunity of using integrins as target for anti-fibrotic therapeutic treatment.

  17. Endothelial Progenitor Cells in Sprouting Angiogenesis: Proteases Pave the Way.

    Science.gov (United States)

    Laurenzana, A; Fibbi, G; Margheri, F; Biagioni, A; Luciani, C; Del Rosso, M; Chillà, A

    2015-01-01

    Sprouting angiogenesis consists of the expansion and remodelling of existing vessels, where the vascular sprouts connect each other to form new vascular loops. Endothelial Progenitor Cells (EPCs) are a subtype of stem cells, with high proliferative potential, able to differentiate into mature Endothelial Cells (ECs) during the neovascularization process. In addition to this direct structural role EPCs improve neovascularization, also secreting numerous pro-angiogenic factors able to enhance the proliferation, survival and function of mature ECs, and other surrounding progenitor cells. While sprouting angiogenesis by mature ECs involves resident ECs, the vasculogenic contribution of EPCs is a high hurdle race. Bone marrowmobilized EPCs have to detach from the stem cell niche, intravasate into bone marrow vessels, reach the hypoxic area or tumour site, extravasate and incorporate into the new vessel lumen, thus complementing the resident mature ECs in sprouting angiogenesis. The goal of this review is to highlight the role of the main protease systems able to control each of these steps. The pivotal protease systems here described, involved in vascular patterning in sprouting angiogenesis, are the matrix-metalloproteinases (MMPs), the serineproteinases urokinase-type plasminogen activator (uPA) associated with its receptor (uPAR) and receptorassociated plasminogen/plasmin, the neutrophil elastase and the cathepsins. Since angiogenesis plays a critical role not only in physiological but also in pathological processes, such as in tumours, controlling the contribution of EPCs to the angiogenic process, through the regulation of the protease systems involved, could yield new opportunities for the therapeutic prospect of efficient control of pathological angiogenesis.

  18. In vivo ultrathin Descemet stripping automated endothelial keratoplasty with a low-energy and high-frequency femtosecond laser

    Directory of Open Access Journals (Sweden)

    Gustavo Victor

    2014-04-01

    Full Text Available This case report describes the production of an ultrathin endothelial donor corneal lamella using a femtosecond laser with low energy and a high frequency. In addition, we report its use in vivo in an eye with pseudophakic bullous keratopathy. The outcomes were observed 3 months after surgery in terms of the change in endothelial donor lamella and full cornea thickness (including pachymetric mapping, visual acuity, and endothelial cell count.

  19. Endothelial Progenitor Cells for Diagnosis and Prognosis in Cardiovascular Disease

    OpenAIRE

    2015-01-01

    Objective. To identify, evaluate, and synthesize evidence on the predictive power of circulating endothelial progenitor cells (EPCs) in cardiovascular disease, through a systematic review of quantitative studies. Data Sources. MEDLINE was searched using keywords related to “endothelial progenitor cells” and “endothelium” and, for the different categories, respectively, “smoking”; “blood pressure”; “diabetes mellitus” or “insulin resistance”; “dyslipidemia”; “aging” or “elderly”; “angina p...

  20. Synergistic effects of telmisartan and simvastatin on endothelial progenitor cells

    OpenAIRE

    Steinmetz, Martin; Brouwers, Caroline; Nickenig, Georg; Wassmann, Sven

    2009-01-01

    Abstract Circulating endothelial progenitor cells (EPC) contribute to endothelial replenishment. Telmisartan is an angiotensin-receptor blocker with PPARγ-agonistic properties. PPARγ-agonists and HMG-CoA reductase inhibitors have been shown to enhance EPC number and function. We focused on the effects of telmisartan alone or in combination with simvastatin on EPC. EPC were isolated from healthy human volunteers, cultured and stimulated with telmisartan, simvastatin, or the combination of telm...

  1. The impact of microgravity and hypergravity on endothelial cells.

    Science.gov (United States)

    Maier, Jeanette A M; Cialdai, Francesca; Monici, Monica; Morbidelli, Lucia

    2015-01-01

    The endothelial cells (ECs), which line the inner surface of vessels, play a fundamental role in maintaining vascular integrity and tissue homeostasis, since they regulate local blood flow and other physiological processes. ECs are highly sensitive to mechanical stress, including hypergravity and microgravity. Indeed, they undergo morphological and functional changes in response to alterations of gravity. In particular microgravity leads to changes in the production and expression of vasoactive and inflammatory mediators and adhesion molecules, which mainly result from changes in the remodelling of the cytoskeleton and the distribution of caveolae. These molecular modifications finely control cell survival, proliferation, apoptosis, migration, and angiogenesis. This review summarizes the state of the art on how microgravity and hypergravity affect cultured ECs functions and discusses some controversial issues reported in the literature.

  2. The Impact of Microgravity and Hypergravity on Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Jeanette A. M. Maier

    2015-01-01

    Full Text Available The endothelial cells (ECs, which line the inner surface of vessels, play a fundamental role in maintaining vascular integrity and tissue homeostasis, since they regulate local blood flow and other physiological processes. ECs are highly sensitive to mechanical stress, including hypergravity and microgravity. Indeed, they undergo morphological and functional changes in response to alterations of gravity. In particular microgravity leads to changes in the production and expression of vasoactive and inflammatory mediators and adhesion molecules, which mainly result from changes in the remodelling of the cytoskeleton and the distribution of caveolae. These molecular modifications finely control cell survival, proliferation, apoptosis, migration, and angiogenesis. This review summarizes the state of the art on how microgravity and hypergravity affect cultured ECs functions and discusses some controversial issues reported in the literature.

  3. Multi-scale undulations in human aortic endothelial cell fibers.

    Science.gov (United States)

    Frketic, Jolie B; DeLaPeña, Abigail; Suaris, Melanie G; Zehnder, Steven M; Angelini, Thomas E

    2015-02-01

    Blood vessels often have an undulatory morphology, with excessive bending, kinking, and coiling occuring in diseased vasculature. The underlying physical causes of these morphologies are generally attributed, in combination, to changes in blood pressure, blood flow rate, and cell proliferation or apoptosis. However, pathological vascular morphologies often start during developmental vasculogenesis. At early stages of vasculogenesis, angioblasts (vascular endothelial cells that have not formed a lumen) assemble into primitive vessel-like fibers before blood flow occurs. If loose, fibrous aggregates of endothelial cells can generate multi-cellular undulations through mechanical instabilities, driven by the cytoskeleton, new insight into vasculature morphology may be achieved with simple in vitro models of endothelial cell fibers. Here we study mechanical instabilities in vessel-like structures made from endothelial cells embedded in a collagen matrix. We find that endothelial cell fibers contract radially over time, and undulate at two dominant wavelengths: approximately 1cm and 1mm. Simple mechanical models suggest that the long-wavelength undulation is Euler buckling in rigid confinement, while the short-wavelength buckle may arise from a mismatch between fiber bending energy and matrix deformation. These results suggest a combination of fiber-like geometry, cystoskeletal contractions, and extracellular matrix elasticity may contribute to undulatory blood vessel morphology in the absence of a lumen or blood pressure.

  4. Endothelial cell tropism is a determinant of H5N1 pathogenesis in mammalian species.

    Directory of Open Access Journals (Sweden)

    Smanla Tundup

    2017-03-01

    Full Text Available The cellular and molecular mechanisms underpinning the unusually high virulence of highly pathogenic avian influenza H5N1 viruses in mammalian species remains unknown. Here, we investigated if the cell tropism of H5N1 virus is a determinant of enhanced virulence in mammalian species. We engineered H5N1 viruses with restricted cell tropism through the exploitation of cell type-specific microRNA expression by incorporating microRNA target sites into the viral genome. Restriction of H5N1 replication in endothelial cells via miR-126 ameliorated disease symptoms, prevented systemic viral spread and limited mortality, despite showing similar levels of peak viral replication in the lungs as compared to control virus-infected mice. Similarly, restriction of H5N1 replication in endothelial cells resulted in ameliorated disease symptoms and decreased viral spread in ferrets. Our studies demonstrate that H5N1 infection of endothelial cells results in excessive production of cytokines and reduces endothelial barrier integrity in the lungs, which culminates in vascular leakage and viral pneumonia. Importantly, our studies suggest a need for a combinational therapy that targets viral components, suppresses host immune responses, and improves endothelial barrier integrity for the treatment of highly pathogenic H5N1 virus infections.

  5. Gene delivery of therapeutic polypeptides into brain capillary endothelial cells for protein secretion

    DEFF Research Database (Denmark)

    Larsen, Annette Burkhart; Thomsen, Louiza Bohn; Moos, Torben;

    has been to investigate the usage of BCEC as factories for recombinant protein production. A non-viral gene carrier was prepared from pullulan-spermine conjugated with plasmid DNA (Thomsen et al., 2011). In vitro transfection of Rat Brain Endothelial Cells (RBE4) and Human Brain Microvascular...... Endothelial cells (HBMECs) were conducted with three plasmids bearing cDNA encoding human BDNF, EPO or the FGL peptide. Results revealed a high expression of BDNF, EPO and FGL transcripts in transfected cells compared to the non-transfected cells, which strongly suggest that transfection were successful...

  6. BIGH3 protein and macrophages in retinal endothelial cell apoptosis.

    Science.gov (United States)

    Mondragon, Albert A; Betts-Obregon, Brandi S; Moritz, Robert J; Parvathaneni, Kalpana; Navarro, Mary M; Kim, Hong Seok; Lee, Chi Fung; LeBaron, Richard G; Asmis, Reto; Tsin, Andrew T

    2015-01-01

    Diabetes is a pandemic disease with a higher occurrence in minority populations. The molecular mechanism to initiate diabetes-associated retinal angiogenesis remains largely unknown. We propose an inflammatory pathway of diabetic retinopathy in which macrophages in the diabetic eye provide TGFβ to retinal endothelial cells (REC) in the retinal microvasculature. In response to TGFβ, REC synthesize and secrete a pro-apoptotic BIGH3 (TGFβ-Induced Gene Human Clone 3) protein, which acts in an autocrine loop to induce REC apoptosis. Rhesus monkey retinal endothelial cells (RhREC) were treated with dMCM (cell media of macrophages treated with high glucose and LDL) and assayed for apoptosis (TUNEL), BIGH3 mRNA (qPCR), and protein (Western blots) expressions. Cells were also treated with ΤGFβ1 and 2 for BIGH3 mRNA and protein expression. Inhibition assays were carried out using antibodies for TGFβ1 and for BIGH3 to block apoptosis and mRNA expression. BIGH3 in cultured RhREC cells were identified by immunohistochemistry (IHC). Distribution of BIGH3 and macrophages in the diabetic mouse retina was examined with IHC. RhRECs treated with dMCM or TGFβ showed a significant increase in apoptosis and BIGH3 protein expression. Recombinant BIGH3 added to RhREC culture medium led to a dose-dependent increase in apoptosis. Antibodies (Ab) directed against BIGH3 and TGFβ, as well as TGFβ receptor blocker resulted in a significant reduction in apoptosis induced by either dMCM, TGFβ or BIGH3. IHC showed that cultured RhREC constitutively expressed BIGH3. Macrophage and BIGH3 protein were co-localized to the inner retina of the diabetic mouse eye. Our results support a novel inflammatory pathway for diabetic retinopathy. This pathway is initiated by TGFβ released from macrophages, which promotes synthesis and release of BIGH3 protein by REC and REC apoptosis.

  7. Characterization of vascular endothelial progenitor cells from chicken bone marrow

    Directory of Open Access Journals (Sweden)

    Bai Chunyu

    2012-05-01

    Full Text Available Abstract Background Endothelial progenitor cells (EPC are a type of stem cell used in the treatment of atherosclerosis, vascular injury and regeneration. At present, most of the EPCs studied are from human and mouse, whereas the study of poultry-derived EPCs has rarely been reported. In the present study, chicken bone marrow-derived EPCs were isolated and studied at the cellular level using immunofluorescence and RT-PCR. Results We found that the majority of chicken EPCs were spindle shaped. The growth-curves of chicken EPCs at passages (P 1, -5 and -9 were typically “S”-shaped. The viability of chicken EPCs, before and after cryopreservation was 92.2% and 81.1%, respectively. Thus, cryopreservation had no obvious effects on the viability of chicken EPCs. Dil-ac-LDL and FITC-UAE-1 uptake assays and immunofluorescent detection of the cell surface markers CD34, CD133, VEGFR-2 confirmed that the cells obtained in vitro were EPCs. Observation of endothelial-specific Weibel-Palade bodies using transmission electron microscopy further confirmed that the cells were of endothelial lineage. In addition, chicken EPCs differentiated into endothelial cells and smooth muscle cells upon induction with VEGF and PDGF-BB, respectively, suggesting that the chicken EPCs retained multipotency in vitro. Conclusions These results suggest that chicken EPCs not only have strong self-renewal capacity, but also the potential to differentiate into endothelial and smooth muscle cells. This research provides theoretical basis and experimental evidence for potential therapeutic application of endothelial progenitor cells in the treatment of atherosclerosis, vascular injury and diabetic complications.

  8. Hypoxia, leptin, and vascular endothelial growth factor stimulate vascular endothelial cell differentiation of human adipose tissue-derived stem cells.

    Science.gov (United States)

    Bekhite, Mohamed M; Finkensieper, Andreas; Rebhan, Jennifer; Huse, Stephanie; Schultze-Mosgau, Stefan; Figulla, Hans-Reiner; Sauer, Heinrich; Wartenberg, Maria

    2014-02-15

    The plasticity of human adipose tissue-derived stem cells (hASCs) is promising, but differentiation in vitro toward endothelial cells is poorly understood. Flow cytometry demonstrated that hASCs isolated from excised fat tissue were positive for CD29, CD44, CD70, CD90, CD105, and CD166 and negative for the endothelial marker CD31, and the hematopoietic cell markers CD34 and CD133. hASCs differentiated into adipocytes after cultivation in adipogenic medium. Exposure of hASCs for 10 days under hypoxia (3% oxygen) in combination with leptin increased the percentage of CD31(+) endothelial cells as well as CD31, VE-Cadherin, Flk-1, Tie2, von Willebrand factor, and endothelial cell nitric oxide synthase mRNA expression. This was enhanced on co-incubation of vascular endothelial growth factor (VEGF) and leptin, whereas VEGF alone was not sufficient. Moreover, hASCs cultured on a matrigel surface under hypoxia/VEGF/leptin, showed a stable branching network. Hypoxic conditions significantly decreased apoptosis as evaluated by cleaved caspase-3, and increased prolyl hydroxylase domain 3 mRNA expression. Hypoxia increased expression of VEGF as well as leptin transcripts, which were significantly inhibited on co-incubation with either VEGF or leptin or a combination of both. Furthermore, leptin treatment of hypoxic cells increased the expression of the long/signaling form of the leptin receptor (ObRL), which was augmented on co-incubation with VEGF. The observed endothelial differentiation was dependent on the Akt pathway, as co-administration with Akt inhibitor abolished the observed effects. In conclusion, our data demonstrate that hASCs can be efficiently differentiated to endothelial cells by mimicking the hypoxic and pro-angiogenic microenvironment of adipose tissue.

  9. Fibroblast nemosis induces angiogenic responses of endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Enzerink, Anna, E-mail: anna.enzerink@helsinki.fi [Haartman Institute, University of Helsinki, P.O. BOX 21, FIN-00014 Helsinki (Finland); Rantanen, Ville, E-mail: ville.rantanen@helsinki.fi [Computational Systems Biology Laboratory, Institute of Biomedicine and Genome-Scale Biology Research Program, University of Helsinki, P.O. BOX 63, 00014 Helsinki (Finland); Vaheri, Antti, E-mail: antti.vaheri@helsinki.fi [Haartman Institute, University of Helsinki, P.O. BOX 21, FIN-00014 Helsinki (Finland)

    2010-03-10

    Increasing evidence points to a central link between inflammation and activation of the stroma, especially of fibroblasts therein. However, the mechanisms leading to such activation mostly remain undescribed. We have previously characterized a novel type of fibroblast activation (nemosis) where clustered fibroblasts upregulated the production of cyclooxygenase-2, secretion of prostaglandins, proteinases, chemotactic cytokines, and hepatocyte growth factor (HGF), and displayed activated nuclear factor-{kappa}B. Now we show that nemosis drives angiogenic responses of endothelial cells. In addition to HGF, nemotic fibroblasts secreted vascular endothelial growth factor (VEGF), and conditioned medium from spheroids promoted sprouting and networking of human umbilical venous endothelial cells (HUVEC). The response was partly inhibited by function-blocking antibodies against HGF and VEGF. Conditioned nemotic fibroblast medium promoted closure of HUVEC and human dermal microvascular endothelial cell monolayer wounds, by increasing the motility of the endothelial cells. Wound closure in HUVEC cells was partly inhibited by the antibodies against HGF. The stromal microenvironment regulates wound healing responses and often promotes tumorigenesis. Nemosis offers clues to the activation process of stromal fibroblasts and provides a model to study the part they play in angiogenesis-related conditions, as well as possibilities for therapeutical approaches desiring angiogenesis in tissue.

  10. Acrylamide induces accelerated endothelial aging in a human cell model.

    Science.gov (United States)

    Sellier, Cyril; Boulanger, Eric; Maladry, François; Tessier, Frédéric J; Lorenzi, Rodrigo; Nevière, Rémi; Desreumaux, Pierre; Beuscart, Jean-Baptiste; Puisieux, François; Grossin, Nicolas

    2015-09-01

    Acrylamide (AAM) has been recently discovered in food as a Maillard reaction product. AAM and glycidamide (GA), its metabolite, have been described as probably carcinogenic to humans. It is widely established that senescence and carcinogenicity are closely related. In vitro, endothelial aging is characterized by replicative senescence in which primary cells in culture lose their ability to divide. Our objective was to assess the effects of AAM and GA on human endothelial cell senescence. Human umbilical vein endothelial cells (HUVECs) cultured in vitro were used as model. HUVECs were cultured over 3 months with AAM or GA (1, 10 or 100 μM) until growth arrest. To analyze senescence, β-galactosidase activity and telomere length of HUVECs were measured by cytometry and semi-quantitative PCR, respectively. At all tested concentrations, AAM or GA reduced cell population doubling compared to the control condition (p < 0.001). β-galactosidase activity in endothelial cells was increased when exposed to AAM (≥10 μM) or GA (≥1 μM) (p < 0.05). AAM (≥10 μM) or GA (100 μM) accelerated telomere shortening in HUVECs (p < 0.05). In conclusion, in vitro chronic exposure to AAM or GA at low concentrations induces accelerated senescence. This result suggests that an exposure to AAM might contribute to endothelial aging.

  11. Characterization and comparison of embryonic stem cell-derived KDR+ cells with endothelial cells.

    Science.gov (United States)

    Sun, Xuan; Cheng, Lamei; Duan, Huaxin; Lin, Ge; Lu, Guangxiu

    2012-09-01

    Growing interest in utilizing endothelial cells (ECs) for therapeutic purposes has led to the exploration of human embryonic stem cells (hESCs) as a potential source for endothelial progenitors. In this study, ECs were induced from hESC lines and their biological characteristics were analyzed and compared with both cord blood endothelial progenitor cells (CBEPCs) and human umbilical vein endothelial cells (HUVECs) in vitro. The results showed that isolated embryonic KDR+ cells (EC-KDR+) display characteristics that were similar to CBEPCs and HUVECs. EC-KDR+, CBEPCs and HUVECs all expressed CD31 and CD144, incorporated DiI-Ac-LDL, bound UEA1 lectin, and were able to form tube-like structures on Matrigel. Compared with CBEPCs and HUVECs, the expression level of endothelial progenitor cell markers such as CD133 and KDR in EC-KDR+ was significantly higher, while the mature endothelial marker vWF was lowly expressed in EC-KDR+. In summary, the study showed that EC-KDR+ are primitive endothelial-like progenitors and might be a potential source for therapeutic vascular regeneration and tissue engineering.

  12. Endothelial cell-derived pentraxin 3 limits the vasoreparative therapeutic potential of circulating angiogenic cells.

    Science.gov (United States)

    O'Neill, Christina L; Guduric-Fuchs, Jasenka; Chambers, Sarah E J; O'Doherty, Michelle; Bottazzi, Barbara; Stitt, Alan W; Medina, Reinhold J

    2016-12-01

    Circulating angiogenic cells (CACs) promote revascularization of ischaemic tissues although their underlying mechanism of action and the consequences of delivering varying number of these cells for therapy remain unknown. This study investigates molecular mechanisms underpinning CAC modulation of blood vessel formation. CACs at low (2 × 10(5) cells/mL) and mid (2 × 10(6) cells/mL) cellular densities significantly enhanced endothelial cell tube formation in vitro, while high density (HD) CACs (2 × 10(7) cells/mL) significantly inhibited this angiogenic process. In vivo, Matrigel-based angiogenesis assays confirmed mid-density CACs as pro-angiogenic and HD CACs as anti-angiogenic. Secretome characterization of CAC-EC conditioned media identified pentraxin 3 (PTX3) as only present in the HD CAC-EC co-culture. Recombinant PTX3 inhibited endothelial tube formation in vitro and in vivo. Importantly, our data revealed that the anti-angiogenic effect observed in HD CAC-EC co-cultures was significantly abrogated when PTX3 bioactivity was blocked using neutralizing antibodies or PTX3 siRNA in endothelial cells. We show evidence for an endothelial source of PTX3, triggered by exposure to HD CACs. In addition, we confirmed that PTX3 inhibits fibroblast growth factor (FGF) 2-mediated angiogenesis, and that the PTX3 N-terminus, containing the FGF-binding site, is responsible for such anti-angiogenic effects. Endothelium, when exposed to HD CACs, releases PTX3 which markedly impairs the vascular regenerative response in an autocrine manner. Therefore, CAC density and accompanying release of angiocrine PTX3 are critical considerations when using these cells as a cell therapy for ischaemic disease. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Cardiology.

  13. Isolation and culture of human umbilical vein endothelial cells (HUVEC).

    Science.gov (United States)

    Cheung, Ambrose L

    2007-02-01

    Human-derived endothelial cells can now be routinely harvested from human umbilical veins. Studies with human umbilical vein endothelial cells (HUVEC) have been conducted with cells from passage 2 to 5. It is now also possible to cryopreserve primary and early-passaged HUVEC for future propagation and for forwarding to an end user by express courier. Stored HUVEC have been stably retrieved even after several years. These retrieval techniques have facilitated the deployment of HUVEC for many studies, including those for homeostasis, inflammatory disorders, atherosclerosis, cancer, and microbial adhesion and invasion. In this unit, we will delineate the procedure for harvesting, propagation, and storage of HUVEC.

  14. Mechanism of induction of fibroblast to corneal endothelial cell.

    Science.gov (United States)

    Jiang, Yan; Fu, Wei-Cai; Zhang, Lin

    2014-08-01

    To explore mechanism of nduction of fibroblast to corneal endothelial cell. Rabbit conjunctiva fibroblasts were used as feeder cells, rabbit oral mucosa epithelial cells were used as seed cells, and human denuded amniotic membrane was used as carrier to establish tissue engineering corneal endothelium. The transformation effect was observed. As concentration of mitomycin C increased, cell survival rate gradually decreased, cell proliferation was obviously inhibited when concentration≥25 μg/mL; 5 days after being treated by 5 μg/mL mitomycin C, cell body was enlarged and extended without cell fusion, however after being treated by 0.5 μg/mL mitomycin C, cell body was significantly proliferated and gradually fused; after 3 weeks of culture, stratified epithelium appeared on rabbit oral mucosa epithelial cells, differentiation layers were 4-5 and were well differentiated, the morphology was similar to corneal endothelial cells; Under electron microscope, surface layer of cells were polygonal, tightly connected to another with microvilli on the border, there was hemidesmosome between basal cells and human denuded amniotic membrane. Fibroblast cells have the potential of multi-directional differentiation, effective induction can promote emergence of intercellular desmosomes between seed cells and emergence of epithelial surface microvilli, and differentiate to the corneal endothelial cell. However, clinical application still needs more research and safety evaluation. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  15. Infection of hepatitis B virus in extrahepatic endothelial tissues mediated by endothelial progenitor cells

    Directory of Open Access Journals (Sweden)

    Zhang Lili

    2007-04-01

    Full Text Available Abstract Background Hepatitis B virus (HBV replication has been reported to be involved in many extrahepatic viral disorders; however, the mechanism by which HBV is trans-infected into extrahepatic tissues such as HBV associated myocarditis remains largely unknown. Results In this study, we showed that human cord blood endothelial progenitor cells (EPCs, but not human umbilical vein endothelial cells (HUVECs could be effectively infected by uptake of HBV in vitro. Exposure of EPCs with HBV resulted in HBV DNA and viral particles were detected in EPCs at day 3 after HBV challenge, which were peaked around day 7 and declined in 3 weeks. Consistently, HBV envelope surface and core antigens were first detected in EPCs at day 3 after virus challenge and were retained to be detectable for 3 weeks. In contrast, HBV covalently closed circular DNA was not detected in EPCs at any time after virus challenge. Intravenous transplantation of HBV-treated EPCs into myocardial infarction and acute renal ischemia mouse model resulted in incorporation of HBV into injured heart, lung, and renal capillary endothelial tissues. Conclusion These results strongly support that EPCs serve as virus carrier mediating HBV trans-infection into the injured endothelial tissues. The findings might provide a novel mechanism for HBV-associated myocarditis and other HBV-related extrahepatic diseases as well.

  16. Nanofiber density determines endothelial cell behavior on hydrogel matrix

    Energy Technology Data Exchange (ETDEWEB)

    Berti, Fernanda V., E-mail: fernanda@intelab.ufsc.br [Department of Chemical and Food Engineering, Federal University of Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Rambo, Carlos R. [Department of Electrical Engineering, Federal University of Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Dias, Paulo F. [Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Porto, Luismar M. [Department of Chemical and Food Engineering, Federal University of Santa Catarina, 88040-900 Florianópolis, SC (Brazil)

    2013-12-01

    When cultured under static conditions, bacterial cellulose pellicles, by the nature of the polymer synthesis that involves molecular oxygen, are characterized by two distinct surface sides. The upper surface is denser in fibers (entangled) than the lower surface that shows greater surface porosity. Human umbilical vein endothelial cells (HUVECs) were used to exploit how the microarchitecture (i.e., surface porosity, fiber network structure, surface topology, and fiber density) of bacterial cellulose pellicle surfaces influence cell–biomaterial interaction and therefore cell behavior. Adhesion, cell ingrowth, proliferation, viability and cell death mechanisms were evaluated on the two pellicle surface sides. Cell behavior, including secondary necrosis, is influenced only by the microarchitecture of the surface, since the biomaterial is extremely pure (constituted of cellulose and water only). Cell–cellulose fiber interaction is the determinant signal in the cell–biomaterial responses, isolated from other frequently present interferences such as protein and other chemical traces usually present in cell culture matrices. Our results suggest that microarchitecture of hydrogel materials might determine the performance of biomedical products, such as bacterial cellulose tissue engineering constructs (BCTECs). - Highlights: • Topography of BC pellicle is relevant to determine endothelial cells' fate. • Cell–biomaterial response is affected by the topography of BC-pellicle surface. • Endothelial cells exhibit different behavior depending on the BC topography. • Apoptosis and necrosis of endothelial cells were affected by the BC topography.

  17. In vitro behaviour of endothelial cells on a titanium surface

    Directory of Open Access Journals (Sweden)

    Oliveira-Filho Ricardo

    2008-07-01

    Full Text Available Abstract Background Endothelial cells play an important role in the delivery of cells to the inflammation site, chemotaxis, cell adhesion and extravasation. Implantation of a foreign material into the human body determines inflammatory and repair reactions, involving different cell types with a plethora of released chemical mediators. The evaluation of the interaction of endothelial cells and implanted materials must take into account other parameters in addition to the analysis of maintenance of cell viability. Methods In the present investigation, we examined the behavior of human umbilical vein endothelial cells (HUVECs harvested on titanium (Ti, using histological and immunohistochemical methods. The cells, after two passages, were seeded in a standard density on commercially plate-shaped titanium pieces, and maintained for 1, 7 or 14 days. Results After 14 days, we could observe a confluent monolayer of endothelial cells (ECs on the titanium surface. Upon one-day Ti/cell contact the expression of fibronectin was predominantly cytoplasmatic and stronger than on the control surface. It was observed strong and uniform cell expression along the time of α5β1 integrin on the cells in contact with titanium. Conclusion The attachment of ECs on titanium was found to be related to cellular-derived fibronectin and the binding to its specific receptor, the α5β1 integrin. It was observed that titanium effectively serves as a suitable substrate for endothelial cell attachment, growth and proliferation. However, upon a 7-day contact with Ti, the Weibel-Palade bodies appeared to be not fully processed and exhibited an anomalous morphology, with corresponding alterations of PECAM-1 localization.

  18. Mycoplasma suis infection results endothelial cell damage and activation: new insight into the cell tropism and pathogenicity of hemotrophic mycoplasma

    Directory of Open Access Journals (Sweden)

    Sokoli Albina

    2013-02-01

    Full Text Available Abstract Hemotrophic mycoplasmas (HM are highly specialized red blood cell parasites that cause infectious anemia in a variety of mammals, including humans. To date, no in vitro cultivation systems for HM have been available, resulting in relatively little information about the pathogenesis of HM infection. In pigs, Mycoplasma suis-induced infectious anemia is associated with hemorrhagic diathesis, and coagulation dysfunction. However, intravasal coagulation and subsequent consumption coagulopathy can only partly explain the sequence of events leading to hemorrhagic diathesis manifesting as cyanosis, petechial bleeding, and ecchymosis, and to disseminated coagulation. The involvement of endothelial activation and damage in M. suis-associated pathogenesis was investigated using light and electron microscopy, immunohistochemistry, and cell sorting. M. suis interacted directly with endothelial cells in vitro and in vivo. Endothelial activation, widespread endothelial damage, and adherence of red blood cells to the endothelium were evident in M. suis-infected pigs. These alterations of the endothelium were accompanied by hemorrhage, intravascular coagulation, vascular occlusion, and massive morphological changes within the parenchyma. M. suis biofilm-like microcolonies formed on the surface of endothelial cells, and may represent a putative persistence mechanism of M. suis. In vitro analysis demonstrated that M. suis interacted with the endothelial cytoskeletal protein actin, and induced actin condensation and activation of endothelial cells, as determined by the up-regulation of ICAM, PECAM, E-selectin, and P-selectin. These findings demonstrate an additional cell tropism of HM for endothelial cells and suggest that M. suis interferes with the protective function of the endothelium, resulting in hemorrhagic diathesis.

  19. Endothelial Cells Stimulate Self-Renewal and Expand Neurogenesis of Neural Stem Cells

    Science.gov (United States)

    Shen, Qin; Goderie, Susan K.; Jin, Li; Karanth, Nithin; Sun, Yu; Abramova, Natalia; Vincent, Peter; Pumiglia, Kevin; Temple, Sally

    2004-05-01

    Neural stem cells are reported to lie in a vascular niche, but there is no direct evidence for a functional relationship between the stem cells and blood vessel component cells. We show that endothelial cells but not vascular smooth muscle cells release soluble factors that stimulate the self-renewal of neural stem cells, inhibit their differentiation, and enhance their neuron production. Both embryonic and adult neural stem cells respond, allowing extensive production of both projection neuron and interneuron types in vitro. Endothelial coculture stimulates neuroepithelial cell contact, activating Notch and Hes1 to promote self-renewal. These findings identify endothelial cells as a critical component of the neural stem cell niche.

  20. Double suicide genes selectively kill human umbilical vein endothelial cells

    Directory of Open Access Journals (Sweden)

    Liu Lunxu

    2011-02-01

    Full Text Available Abstract Background To construct a recombinant adenovirus containing CDglyTK double suicide genes and evaluate the killing effect of the double suicide genes driven by kinase domain insert containing receptor (KDR promoter on human umbilical vein endothelial cells. Methods Human KDR promoter, Escherichia coli (E. coli cytosine deaminase (CD gene and the herpes simplex virus-thymidine kinase (TK gene were cloned using polymerase chain reaction (PCR. Plasmid pKDR-CDglyTK was constructed with the KDR promoter and CDglyTK genes. A recombinant adenoviral plasmid AdKDR-CDglyTK was then constructed and transfected into 293 packaging cells to grow and harvest adenoviruses. KDR-expressing human umbilical vein endothelial cells (ECV304 and KDR-negative liver cancer cell line (HepG2 were infected with the recombinant adenoviruses at different multiplicity of infection (MOI. The infection rate was measured by green fluorescent protein (GFP expression. The infected cells were cultured in culture media containing different concentrations of prodrugs ganciclovir (GCV and/or 5-fluorocytosine (5-FC. The killing effects were measured using two different methods, i.e. annexin V-FITC staining and terminal transferase-mediated dUTP nick end-labeling (TUNEL staining. Results Recombinant adenoviruses AdKDR-CDglyTK were successfully constructed and they infected ECV304 and HepG2 cells efficiently. The infection rate was dependent on MOI of recombinant adenoviruses. ECV304 cells infected with AdKDR-CDglyTK were highly sensitive to GCV and 5-FC. The cell survival rate was dependent on both the concentration of the prodrugs and the MOI of recombinant adenoviruses. In contrast, there were no killing effects in the HepG2 cells. The combination of two prodrugs was much more effective in killing ECV304 cells than GCV or 5-FC alone. The growth of transgenic ECV304 cells was suppressed in the presence of prodrugs. Conclusion AdKDR-CDglyTK/double prodrog system may be a useful

  1. Crimean-Congo hemorrhagic fever virus activates endothelial cells.

    Science.gov (United States)

    Connolly-Andersen, Anne-Marie; Moll, Guido; Andersson, Cecilia; Akerström, Sara; Karlberg, Helen; Douagi, Iyadh; Mirazimi, Ali

    2011-08-01

    Crimean-Congo hemorrhagic fever virus (CCHFV) causes viral hemorrhagic fever with high case-fatality rates and is geographically widely distributed. Due to the requirement for a biosafety level 4 (BSL-4) laboratory and the lack of an animal model, knowledge of the viral pathogenesis is limited. Crimean-Congo hemorrhagic fever (CCHF) is characterized by hemorrhage and vascular permeability, indicating the involvement of endothelial cells (ECs). The interplay between ECs and CCHFV is therefore important for understanding the pathogenesis of CCHF. In a previous study, we found that CCHFV-infected monocyte-derived dendritic cells (moDCs) activated ECs; however, the direct effect of CCHFV on ECs was not investigated. Here, we report that ECs are activated upon infection, as demonstrated by upregulation of mRNA levels for E-selectin, vascular cell adhesion molecule 1 (VCAM1), and intercellular adhesion molecule 1 (ICAM1). Protein levels and cell surface expression of ICAM1 responded in a dose-dependent manner to increasing CCHFV titers with concomitant increase in leukocyte adhesion. Furthermore, we examined vascular endothelial (VE) cadherin in CCHFV-infected ECs by different approaches. Infected ECs released higher levels of interleukin 6 (IL-6) and IL-8; however, stimulation of resting ECs with supernatants derived from infected ECs did not result in increased ICAM1 expression. Interestingly, the moDC-mediated activation of ECs was abrogated by addition of neutralizing tumor necrosis factor alpha (TNF-α) antibody to moDC supernatants, thereby identifying this soluble mediator as the key cytokine causing EC activation. We conclude that CCHFV can exert both direct and indirect effects on ECs.

  2. Transcriptional and functional adaptations of human endothelial cells to physiological chronic low oxygen.

    Science.gov (United States)

    Jiang, Yi-Zhou; Wang, Kai; Li, Yan; Dai, Cai-Feng; Wang, Ping; Kendziorski, Christina; Chen, Dong-Bao; Zheng, Jing

    2013-05-01

    Endothelial cells chronically reside in low-O2 environments in vivo (2%-13% O2), which are believed to be critical for cell homeostasis. To elucidate the roles of this physiological chronic normoxia in human endothelial cells, we examined transcriptomes of human umbilical vein endothelial cells (HUVECs), proliferation and migration of HUVECs in response to fibroblast growth factor 2 (FGF2) and vascular endothelial growth factor A (VEGFA), and underlying signaling mechanisms under physiological chronic normoxia. Immediately after isolation, HUVECs were cultured steadily under standard cell culture normoxia (SCN; 21% O2) or physiological chronic normoxia (PCN; 3% O2) up to 25 days. We found that PCN up-regulated 41 genes and down-regulated 21 genes, 90% of which differed from those previously reported from HUVECs cultured under SCN and exposed to acute low O2. Gene ontology analysis indicated that PCN-regulated genes were highly related to cell proliferation and migration, consistent with the results from benchtop assays that showed that PCN significantly enhanced FGF2- and VEGFA-stimulated cell proliferation and migration. Interestingly, preexposing the PCN cells to 21% O2 up to 5 days did not completely diminish PCN-enhanced cell proliferation and migration. These PCN-enhanced cell proliferations and migrations were mediated via augmented activation of MEK1/MEK2/ERK1/ERK2 and/or PI3K/AKT1. Importantly, these PCN-enhanced cellular responses were associated with an increase in activation of VEGFR2 but not FGFR1, without altering their expression. Thus, PCN programs endothelial cells to undergo dramatic changes in transcriptomes and sensitizes cellular proliferative and migratory responses to FGF2 and VEGFA. These PCN cells may offer a unique endothelial model, more closely mimicking the in vivo states.

  3. Experiment Study of Effect of Perfiuorohexyloctane on Corneal Endothelial Cells

    Institute of Scientific and Technical Information of China (English)

    Xiaoyan Ding; Chunfang Li; Lin Lu; Guanguang Feng; Huling Zheng

    2001-01-01

    Purpose: To investigate the effect of Perfluorohexyloctane (F6H8)on corneal endothelial celIs(CEC) of rabbit eyes. Methods: Fifteen New Zealand white rabbits were devided into two groups:experimental group(F6H8) and control group(BSS) . All rabbits underwent anterior chamber injection of 0. 15ml F6H8 or BSS. Slit-lamp biomicroscopy and corneal endothelium photography were performed pre-operatively and postoperatively. Histopathological examination and Transmission electron microscopy(TEM) were done after the rabbits were sacrificed. Results: All the corneas were clear. Since 4 weeks after operation, the endothelial cells were markedly irregular in size and shape and the number of endothelial cells was markedly decreased. Multilayered retrocorneal membranes (RCM)grew gradually 2 weeks after surgery. Vacuolar degeneration was seen in some endothelial cells. Nuclear degeneration and edema of plasma were seen in TEM. Conclusion: Corneal endothelial cell degenerated after contacting with F6H8 for 2 ~4weeks. As a silicone solvent, it should be removed completely after injection. We don't recommend it to be used as a new intraocular temponade. Eye Science 2001: 17:21 ~ 26.

  4. Targeting brain microvascular endothelial cells: a therapeutic approach to neuroprotection against stroke

    Directory of Open Access Journals (Sweden)

    Qi-jin Yu

    2015-01-01

    Full Text Available Brain microvascular endothelial cells form the interface between nervous tissue and circulating blood, and regulate central nervous system homeostasis. Brain microvascular endothelial cells differ from peripheral endothelial cells with regards expression of specific ion transporters and receptors, and contain fewer fenestrations and pinocytotic vesicles. Brain microvascular endothelial cells also synthesize several factors that influence blood vessel function. This review describes the morphological characteristics and functions of brain microvascular endothelial cells, and summarizes current knowledge regarding changes in brain microvascular endothelial cells during stroke progression and therapies. Future studies should focus on identifying mechanisms underlying such changes and developing possible neuroprotective therapeutic interventions.

  5. Magnetizable stent-grafts enable endothelial cell capture

    Science.gov (United States)

    Tefft, Brandon J.; Uthamaraj, Susheil; Harburn, J. Jonathan; Hlinomaz, Ota; Lerman, Amir; Dragomir-Daescu, Dan; Sandhu, Gurpreet S.

    2017-04-01

    Emerging nanotechnologies have enabled the use of magnetic forces to guide the movement of magnetically-labeled cells, drugs, and other therapeutic agents. Endothelial cells labeled with superparamagnetic iron oxide nanoparticles (SPION) have previously been captured on the surface of magnetizable 2205 duplex stainless steel stents in a porcine coronary implantation model. Recently, we have coated these stents with electrospun polyurethane nanofibers to fabricate prototype stent-grafts. Facilitated endothelialization may help improve the healing of arteries treated with stent-grafts, reduce the risk of thrombosis and restenosis, and enable small-caliber applications. When placed in a SPION-labeled endothelial cell suspension in the presence of an external magnetic field, magnetized stent-grafts successfully captured cells to the surface regions adjacent to the stent struts. Implantation within the coronary circulation of pigs (n=13) followed immediately by SPION-labeled autologous endothelial cell delivery resulted in widely patent devices with a thin, uniform neointima and no signs of thrombosis or inflammation at 7 days. Furthermore, the magnetized stent-grafts successfully captured and retained SPION-labeled endothelial cells to select regions adjacent to stent struts and between stent struts, whereas the non-magnetized control stent-grafts did not. Early results with these prototype devices are encouraging and further refinements will be necessary in order to achieve more uniform cell capture and complete endothelialization. Once optimized, this approach may lead to more rapid and complete healing of vascular stent-grafts with a concomitant improvement in long-term device performance.

  6. Opioid-induced proliferation of vascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Sandra Leo

    2009-05-01

    Full Text Available Sandra Leo1,2, Rony Nuydens1, Theo F Meert11Pain and Neurology, CNS Department, Johnson and Johnson Pharmaceutical Research and Development, a division of Janssen Pharmaceutica N.V, Beerse, Belgium; 2Laboratory of Biological Psychology, University of Leuven, Leuven, BelgiumAbstract: Angiogenesis is an important issue in cancer research and opioids are often used to treat pain in cancer patients. Therefore it is important to know if the use of opioids is associated with an aberrant stimulation of tumor growth triggered by the stimulation of angiogenesis in cancer patients. Some studies in the literature have suggested the presence of the μ3 opioid receptor, known as the receptor for many opioids, on endothelial cells, which are key players in the process of angiogenesis. In this study we used endothelial cells known to express the μ3 opioid receptor (MOR3, to evaluate the effects of morphine on angiogenesis. We first investigated the effect of morphine on the proliferation of endothelial cells. We showed that morphine is able to stimulate vascular endothelial cell proliferation in vitro. This effect of morphine is mediated by the mitogen-activated protein kinase (MAPK pathway as pre-treatment with PD98059 inhibited this excessive proliferation. Because previous studies indicated nitric oxide (NO as a downstream messenger we investigated the role of NO in the aberrant proliferation of endothelial cells. Our data could not confirm these findings using intracellular NO measurements and quantitative fluorescence microscopy. The potential use and pitfalls of opioids in cancer patients is discussed in light of these negative findings. Keywords: endothelial cells, morphine, cell proliferation, MAPK, nitric oxide, μ3 opioid receptor, angiogenesis

  7. Propionyl-L-Carnitine Enhances Wound Healing and Counteracts Microvascular Endothelial Cell Dysfunction.

    Directory of Open Access Journals (Sweden)

    Maria Giovanna Scioli

    Full Text Available Impaired wound healing represents a high cost for health care systems. Endothelial dysfunction characterizes dermal microangiopathy and contributes to delayed wound healing and chronic ulcers. Endothelial dysfunction impairs cutaneous microvascular blood flow by inducing an imbalance between vasorelaxation and vasoconstriction as a consequence of reduced nitric oxide (NO production and the increase of oxidative stress and inflammation. Propionyl-L-carnitine (PLC is a natural derivative of carnitine that has been reported to ameliorate post-ischemic blood flow recovery.We investigated the effects of PLC in rat skin flap and cutaneous wound healing. A daily oral PLC treatment improved skin flap viability and associated with reactive oxygen species (ROS reduction, inducible nitric oxide synthase (iNOS and NO up-regulation, accelerated wound healing and increased capillary density, likely favoring dermal angiogenesis by up-regulation for iNOS, vascular endothelial growth factor (VEGF, placental growth factor (PlGF and reduction of NADPH-oxidase 4 (Nox4 expression. In serum-deprived human dermal microvascular endothelial cell cultures, PLC ameliorated endothelial dysfunction by increasing iNOS, PlGF, VEGF receptors 1 and 2 expression and NO level. In addition, PLC counteracted serum deprivation-induced impairment of mitochondrial β-oxidation, Nox4 and cellular adhesion molecule (CAM expression, ROS generation and leukocyte adhesion. Moreover, dermal microvascular endothelial cell dysfunction was prevented by Nox4 inhibition. Interestingly, inhibition of β-oxidation counteracted the beneficial effects of PLC on oxidative stress and endothelial dysfunction.PLC treatment improved rat skin flap viability, accelerated wound healing and dermal angiogenesis. The beneficial effects of PLC likely derived from improvement of mitochondrial β-oxidation and reduction of Nox4-mediated oxidative stress and endothelial dysfunction. Antioxidant therapy and

  8. A SMALL POPULATION OF LIVER ENDOTHELIAL CELLS UNDERGOES ENDOTHELIAL TO MESENCHYMAL TRANSITION IN RESPONSE TO CHRONIC LIVER INJURY.

    Science.gov (United States)

    Ribera, Jordi; Pauta, Montse; Melgar-Lesmes, Pedro; Cordoba, Bernat; Bosch, Anna; Calvo, Maria; Rodrigo-Torres, Daniel; Sancho-Bru, Pau; Mira, Aurea; Jimenez, Wladimiro; Morales-Ruiz, Manuel

    2017-08-10

    Rising evidence points to endothelial-to-mesenchymal transition (EndMT) as a significant source of the mesenchymal cell population in fibrotic diseases. In this context, we hypothesized that liver endothelial cells undergo EndMT during fibrosis progression. Cirrhosis in mice was induced by CCl4 A transgenic mouse expressing a red fluorescent protein reporter under the control of Tie2 promoter (Tie2-tdTomato) was used to trace the acquisition of EndMT. Sinusoidal vascular connectivity was evaluated by intravital microscopy and high resolution 3D confocal microscopy. A modest but significant fraction of liver endothelial cells from both cirrhotic patients and CCl4-treated Tie2-tdTomato mice acquired an EndMT phenotype characterized by the co-expression of CD31 and α-SMA, compared with non-cirrhotic livers. BMP-7 inhibited the acquisition of EndMT induced by TGF-β1 treatment in cultured MLiECs from control mice. EndMT was also reduced significantly in vivo in cirrhotic Tie2-tdTomato mice treated intraperitoneally with BMP-7 compared with untreated mice (1.9±0.2 vs. 3.8±0.3 %, respectively; p<0.05). The decrease of EndMT in cirrhotic livers correlated with a significant decrease in liver fibrosis (p<0.05) and an improvement in the vascular disorganization rate (p<0.05). We demonstrated the acquisition of the EndMT phenotype by a subpopulation of endothelial cells from cirrhotic livers in both animal models and patients. BMP-7 treatment decreases the occurrence of the EndMT phenotype and has a positive impact on the severity of disease by reducing fibrosis and sinusoidal vascular disorganization. Copyright © 2017, American Journal of Physiology-Gastrointestinal and Liver Physiology.

  9. Putative Key Role of Inositol Messengers in Endothelial Cells in Preeclampsia

    Science.gov (United States)

    Kunjara, Sirilaksana; McLean, Patricia; Rademacher, Laurens; Rademacher, Thomas W.; Fascilla, Fabiana; Bettocchi, Stefano

    2016-01-01

    Immunological alterations, endothelial dysfunction, and insulin resistance characterize preeclampsia. Endothelial cells hold the key role in the pathogenesis of this disease. The signaling pathways mediating these biological abnormalities converge on PKB/Akt, an intracellular kinase regulating cell survival, proliferation, and metabolism. Inositol second messengers are involved in metabolic and cell signaling pathways and are highly expressed during preeclampsia. Intracellular action of these molecules is deeply affected by zinc, manganese, and calcium. To evaluate the pathophysiological significance, we present the response of the intracellular pathways of inositol phosphoglycans involved in cellular metabolism and propose a link with the disease. PMID:27738431

  10. Effect of multiple doses of endotoxin on production of nitric oxide by endothelial cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    To study the direct effect of E.Coli endotoxin on the production of nitric oxide by endothelial cells, the second passage of cultured human umbilical cells was stimulated by serial doses of endotoxin (1 g/L, 10 mg/L, 100 μg/L, 10 μg/L, 1 μg/L), and the content of nitric oxide in supematant of culture and the viability of endothelial cells 6 hours after the stimulation were obcerved. The result showed that endotoxin had a slightly inhibitory effect on both the production of nitric oxide and the viability of endothelial cells at low doses (1 μg/L, 10 μg/L, 100 μg/L), especially the dose of 100 μg/L [(608.63±11.64) μmol/L, versus that of unstimulated grouop (629.46±13.36) μmol/L, P<0.05]. While the high doses of endotoxin exerted a big increasing in production of nitric oxide and a big decrease in the viability of endothelial cells, especially the dose of 1 g/L (NO: 722.58 μmol/L±32.18 μmol/L, versus that of unstimulated group P<0.01; viability: 73.63%±8.50%, versus that of unstimulated group, P<0.01). These could be concluded that low doses of endotoxin mainly resulted in functional changes in endothelial cells, such as decrease in relaxing factor (nitrc oxide), while high doses endotoxin exerted lethal effects on endothelial cells accompanied with high production of nitric oxide, which might be related to the death of cells.

  11. Role of TRPM7 channels in hyperglycemia-mediated injury of vascular endothelial cells.

    Directory of Open Access Journals (Sweden)

    Huawei Sun

    Full Text Available This study investigated the change of transient receptor potential melastatin 7 (TRPM7 expression by high glucose and its role in hyperglycemia induced injury of vascular endothelial cells. Human umbilical vein endothelial cells (HUVECs were incubated in the presence or absence of high concentrations of D-glucose (HG for 72 h. RT-PCR, Real-time PCR, Western blotting, Immunofluorescence staining and whole-cell patch-clamp recordings showed that TRPM7 mRNA, TRPM7 protein expression and TRPM7-like currents were increased in HUVECs following exposure to HG. In contrast to D-glucose, exposure of HUVECs to high concentrations of L-glucose had no effect. HG increased reactive oxygen species (ROS generation, cytotoxicity and decreased endothelial nitric oxide synthase protein expression, which could be attenuated by knockdown of TRPM7 with TRPM7 siRNA. The protective effect of silencing TRPM7 against HG induced endothelial injury was abolished by U0126, an inhibitor of the extracellular signal-regulated kinase signaling pathway. These observations suggest that TRPM7 channels play an important role in hyperglycemia-induced injury of vascular endothelial cells.

  12. Induction of hematopoietic and endothelial cell program orchestrated by ETS transcription factor ER71/ETV2.

    Science.gov (United States)

    Liu, Fang; Li, Daofeng; Yu, Yik Yeung Lawrence; Kang, Inyoung; Cha, Min-Ji; Kim, Ju Young; Park, Changwon; Watson, Dennis K; Wang, Ting; Choi, Kyunghee

    2015-05-01

    The ETS factor ETV2 (aka ER71) is essential for the generation of the blood and vascular system, as ETV2 deficiency leads to a complete block in blood and endothelial cell formation and embryonic lethality in the mouse. However, the ETV2-mediated gene regulatory network and signaling governing hematopoietic and endothelial cell development are poorly understood. Here, we map ETV2 global binding sites and carry out in vitro differentiation of embryonic stem cells, and germ line and conditional knockout mouse studies to uncover mechanisms involved in the hemangiogenic fate commitment from mesoderm. We show that ETV2 binds to enhancers that specify hematopoietic and endothelial cell lineages. We find that the hemangiogenic progenitor population in the developing embryo can be identified as FLK1(high)PDGFRα(-). Notably, these hemangiogenic progenitors are exclusively sensitive to ETV2-dependent FLK1 signaling. Importantly, ETV2 turns on other Ets genes, thereby establishing an ETS hierarchy. Consequently, the hematopoietic and endothelial cell program initiated by ETV2 is maintained partly by other ETS factors through an ETS switching mechanism. These findings highlight the critical role that transient ETV2 expression plays in the regulation of hematopoietic and endothelial cell lineage specification and stability. © 2015 The Authors.

  13. Polylactic Acid Nanoparticles Targeted to Brain Microvascular Endothelial Cells

    Institute of Scientific and Technical Information of China (English)

    WANG Huafang; HU Yu; SUN Wangqiang; XIE Changsheng

    2005-01-01

    In this work, blank polylactic acid (PLA) nanoparticles with unstained surface were prepared by the nano-deposition method. On the basis of the preparation, the effect of surface modification on brain microvascular endothelial cells (BMECs) targeting was examined by in vivo experiments and fluorescence microscopy. The results showed that PLA nanoparticles are less toxic than PACA nanoparticles but their BMECs targeting is similar to PACA nanoparticles. The experiments suggest that drugs can be loaded onto the particles and become more stable through adsorption on the surface of PLA nanoparticles with high surface activity. The surface of PLA nanoparticles was obviously modified and the hydrophilicity was increased as well in the presence of non-ionic surfactants on PLA nanoparticles. As a targeting moiety, polysobate 80 (T-80) can facilitate BMECs targeting of PLA nanoparticles.

  14. Stathmin expression in glioma-derived microvascular endothelial cells: a novel therapeutic target.

    Science.gov (United States)

    Dong, Baijing; Mu, Luyan; Qin, Xiangying; Qiao, Wanchen; Liu, Xiaodong; Yang, Liming; Xue, Li; Rainov, Nikolai G; Liu, Xiaoqian

    2012-03-01

    The purpose of this study was to investigate stathmin expression and its mechanisms of action in GDMEC. Microvascular endothelial cells were isolated from human gliomas (n=68) and normal brain specimans (n=20), and purified by magnetic beads coated with anti-CD105 antibody. The expression of stathmin mRNA and protein were detected by RT-PCR and western blotting, respectively. Stathmin expression was silenced by application of specific siRNA in high grade GDMEC. The proliferation, apoptosis and invasion behavior of GDMEC were investigated. The stathmin positive rate of endothelial cells in normal brain, grade I-II glioma and grade III-IV glioma was 20, 66 and 95.5%, respectively (Pstathmin, cell viability was reduced, the apoptosis rate increased and the migration of vascular endothelial cells was suppressed significantly (Pstathmin suppressed neoangiogenesis of glioma and provides a potential target for glioma treatment.

  15. Influence of electrospun scaffolds prepared from distinct polymers on proliferation and viability of endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Matveeva, V. G., E-mail: matveeva-vg@mail.ru; Antonova, L. V., E-mail: antonova.la@mail.ru; Velikanova, E. A.; Sergeeva, E. A.; Krivkina, E. O.; Glushkova, T. V.; Kudryavtseva, Yu. A.; Barbarash, O. L.; Barbarash, L. S. [Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, 650002 (Russian Federation)

    2015-10-27

    We compared electrospun nonwoven scaffolds from polylactic acid (PLA), polycaprolactone (PCL), and polyhydroxybutyrate/valerate (PHBV)/polycaprolactone (PHBV/PCL). The surface of PHBV/PCL and PCL scaffolds was highly porous and consisted of randomly distributed fibers, whilst the surface of PLA scaffolds consisted of thin straight fibers, which located more sparsely, forming large pores. Culture of EA.hy 926 endothelial cells on these scaffolds during 7 days and further fluorescent microscopy demonstrated that the surface of PHBV/PCL scaffolds was most favorable for efficient adhesion, proliferation, and viability of endothelial cells. The lowest proliferation rate and cell viability were detected on PLA scaffolds. Therefore, PHBV/PCL electrospun nonwoven scaffolds demonstrated the best results regarding endothelial cell proliferation and viability as compared to PCL and PLA scaffolds.

  16. Effect of Antioxidants on Endothelial Cell Reactive Oxygen Species (ROI) Generation and Adhesion of Leukocytes to Endothelial Cells

    Institute of Scientific and Technical Information of China (English)

    Huang Qian; Michael Grafe; Kristoph Graf; Hans Lehmkuhl; Eckart Fleck

    2000-01-01

    Objective To investigate whether antioxidants inhibit adhesion of leukocytes to endothelium and furthermore, whether all antioxidants regulate NF-κB activation through a redox sensitive mechanism. Methods The effect of the antioxidative substances pyrrolidin dithiocarbamat (PDTC),dichloroisocumarin (DCI), chrysin and probucol on the endothelial leukocyte adhesion were examined under near physiological flow conditions. The antioxidative activity of antioxidants was measured in a DCF fluorescence assay with flow cytometry. The activation of NF-κB in endothelial cells was investigated in a gel shift assay. Results PDTC and probucol did not show an inhibitory effect to the formation of intracellular H2O2 in TNFct activated human vascular endothelial cells (HUVEC) . Chrysin showed a moderate effect.DCI showed a strong antioxidative effect. In contrast,PDTC and chrysin inhibited the adhesion of HL 60 cells to TNFa-stimulated HUVEC. DCI and probucol did not have influence on the adhesion within the area of the examined shear stresses. Only PDTC inhibited the TNFα-induced activation of NF-kB in endothelial cells.Conclusion The inhibition of the endothelial leukocyte adhesion by antioxidative substances is not to be explained by its antioxidative characteristics only. The inhibitory effect of PDTC on NF-kB activation was probably not related to its antioxidative properties.

  17. Arecoline inhibits endothelial cell growth and migration and the attachment to mononuclear cells

    Directory of Open Access Journals (Sweden)

    Shuei-Kuen Tseng

    2014-09-01

    Conclusion: Arecoline impaired vascular endothelial cells by inhibiting their growth and migration and their adhesion to U937 mononuclear cells. These results reveal that arecoline may contribute to the pathogenesis of oral submucous fibrosis and cardiovascular diseases by affecting endothelial cell function in BQ chewers.

  18. Study of endothelial cell apoptosis using fluorescence resonance energy transfer (FRET) biosensor cell line with hemodynamic microfluidic chip system.

    Science.gov (United States)

    Yu, J Q; Liu, X F; Chin, L K; Liu, A Q; Luo, K Q

    2013-07-21

    To better understand how hyperglycemia induces endothelial cell dysfunction under the diabetic conditions, a hemodynamic microfluidic chip system was developed. The system combines a caspase-3-based fluorescence resonance energy transfer (FRET) biosensor cell line which can detect endothelial cell apoptosis in real-time, post-treatment effect and with a limited cell sample, by using a microfluidic chip which can mimic the physiological pulsatile flow profile in the blood vessel. The caspase-3-based FRET biosensor endothelial cell line (HUVEC-C3) can produce a FRET-based sensor protein capable of probing caspase-3 activation. When the endothelial cells undergo apoptosis, the color of the sensor cells changes from green to blue, thus sensing apoptosis. A double-labeling fluorescent technique (yo pro-1 and propidium iodide) was used to validate the findings revealed by the FRET-based caspase sensor. The results show high rates of apoptosis and necrosis of endothelial cells when high glucose concentration was applied in our hemodynamic microfluidic chip combined with an exhaustive pulsatile flow profile. The two apoptosis detection techniques (fluorescent method and FRET biosensor) are comparable; but FRET biosensor offers more advantages such as real-time observation and a convenient operating process to generate more accurate and reliable data. Furthermore, the activation of the FRET biosensor also confirms the endothelial cell apoptosis induced by the abnormal pulsatile shear stress and high glucose concentration is through caspase-3 pathway. A 12% apoptotic rate (nearly a 4-fold increase compared to the static condition) was observed when the endothelial cells were exposed to a high glucose concentration of 20 mM under 2 h exhaustive pulsatile shear stress of 30 dyne cm(-2) and followed with another 10 h normal pulsatile shear stress of 15 dyne cm(-2). Therefore, the most important finding of this study is to develop a novel endothelial cell apoptosis detection

  19. High-density lipoprotein of patients with type 2 diabetes mellitus upregulates cyclooxgenase-2 expression and prostacyclin I-2 release in endothelial cells: relationship with HDL-associated sphingosine-1-phosphate.

    Science.gov (United States)

    Tong, Xunliang; Peng, Hui; Liu, Donghui; Ji, Liang; Niu, Chenguang; Ren, Jun; Pan, Bing; Hu, Jianying; Zheng, Lemin; Huang, Yining

    2013-01-30

    Dysfunctional high-density lipoprotein (HDL) may have pro-inflammatory effects on the endothelial cells,which causes atherosclerosis in type 2 diabetes mellitus (T2DM). HDL is a major carrier of sphingosine-1-phosphate (S1P) in plasma while S1P exhibits multiple biological activities. However, potential role of HDL and S1P in T2DM remains unexplored. We hypothesized that diabetic HDL with higher contents of S1P exerts beneficial effects on the vascular system. Subjects with T2DM with or without proved large arteries atherosclerosis and normal controls (n=15 for each group) were recruited in the present study. HDL was isolated from the subjects by ultracentrifugation. The levels of HDL-associated S1P were determined by UPLC-MS/MS. The protective function of diabetic HDL and S1P was evaluated by measuring cyclooxygenase-2 (COX-2) expression and prostacyclin I-2 (PGI-2) release by human umbilical vein endothelial cells (HUVECs) using western blot and enzyme-linked immunosorbent assay (ELISA), respectively. The S1P levels in isolated HDL were significantly increased in T2DM subjects compared with controls (235.6 ± 13.4 vs 195.0 ± 6.4 ng/mg, Pdiabetic HDL exerted greater protective effects on inducing COX-2 expression and PGI-2 release by HUVECs than those of control HDL (p HDL-induced COX-2 expression and PGI-2 release. Diabetic HDL carries higher level of S1P compared with normal HDL, which has the potential to contribute to protective effects on endothelial cells by inducing COX-2 expression and PGI-2 release. These findings provide a new insight of S1P function in T2DM patients, possibly leading to a new therapeutic target.

  20. Effects of irradiated biodegradable polymer in endothelial cell monolayer formation

    Energy Technology Data Exchange (ETDEWEB)

    Arbeitman, Claudia R.; Grosso, Mariela F. del [CONICET – Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina); Gerencia de Investigación y Aplicaciones, TANDAR-CNEA (Argentina); Behar, Moni [Instituto de Física, UFRGS, Porto Alegre, RS (Brazil); García Bermúdez, Gerardo, E-mail: ggb@tandar.cnea.gov.ar [CONICET – Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina); Gerencia de Investigación y Aplicaciones, TANDAR-CNEA (Argentina); Escuela de Ciencia y Tecnología, UNSAM (Argentina)

    2013-11-01

    In this work we study cell adhesion, proliferation and cell morphology of endothelial cell cultured on poly-L-lactide acid (PLLA) modified by heavy ion irradiation. Thin films of PLLA samples were irradiated with sulfur (S) at energies of 75 MeV and gold (Au) at 18 MeV ion-beams. Ion beams were provided by the Tandar (Buenos Aires, Argentina) and Tandetron (Porto Alegre, Brazil) accelerators, respectively. The growth of a monolayer of bovine aortic endothelial cells (BAEC) onto unirradiated and irradiated surfaces has been studied by in vitro techniques in static culture. Cell viability and proliferation increased on modified substrates. But the results on unirradiated samples, indicate cell death (necrosis/apoptosis) with the consequent decrease in proliferation. We analyzed the correlation between irradiation parameters and cell metabolism and morphology.

  1. Contractile proteins of endothelial cells, platelets and smooth muscle.

    Science.gov (United States)

    Becker, C G; Nachman, R L

    1973-04-01

    In experiments described herein it was observed, by direct and indirect immunofluorescence technics, that rabbit antisera to human platelet actomyosin (thrombosthenin) stained mature megakaryocytes, blood platelets, endothelial cells and smooth muscle cells of arteries and veins, endothelial cells of liver sinusoids and certain capillaries, uterine smooth muscle cells, myoepithelial cells, perineurial cells of peripheral nerves and "fibroblastic" cells of granulation tissue. The specificity of immunohistologic staining was confirmed by appropriate absorption and blocking studies and immunodiffusional analysis in agarose gel. It was also observed by immunodiffusional analysis in agarose gel, electrophoresis of actomyosin fragments in polyacrylamide gels, immune inhibition of actomyosin ATPase activity and immune aggregation of platelets that uterine and platelet actomyosin are partially, but not completely, identical.

  2. Aberrant production of extracellular matrix proteins and dysfunction in kidney endothelial cells with a short duration of diabetes.

    Science.gov (United States)

    Grutzmacher, Cathy; Park, SunYoung; Zhao, Yun; Morrison, Margaret E; Sheibani, Nader; Sorenson, Christine M

    2013-01-01

    Diabetic nephropathy is the most common cause of end-stage renal disease and is a major risk factor for cardiovascular disease. In the United States, microvascular complications during diabetic nephropathy contribute to high morbidity and mortality rates. However, the cell-autonomous impact of diabetes on kidney endothelial cell function requires further investigation. Male Akita/+ [autosomal dominant mutation in the insulin II gene (Ins2)] mice reproducibly develop diabetes by 4 wk of age. Here, we examined the impact a short duration of diabetes had on kidney endothelial cell function. Kidney endothelial cells were prepared from nondiabetic and diabetic mice (4 wk of diabetes) to delineate the early changes in endothelial cell function. Kidney endothelial cells from Akita/+ mice following 4 wk of diabetes demonstrated aberrant expression of extracellular matrix proteins including decreased osteopontin and increased fibronectin expression which correlated with increased α5-integrin expression. These changes were associated with the attenuation of migration and capillary morphogenesis. Kidney endothelial cells from Akita/+ mice had decreased VEGF levels but increased levels of endothelial nitric oxide synthase(eNOS) and NO, suggesting uncoupling of VEGF-mediated NO production. Knocking down eNOS expression in Akita/+ kidney endothelial cells increased VEGF expression, endothelial cell migration, and capillary morphogenesis. Furthermore, attenuation of sprouting angiogenesis of aortas from Akita/+ mice with 8 wk of diabetes was restored in the presence of the antioxidant N-acetylcysteine. These studies demonstrate that aberrant endothelial cell function with a short duration of diabetes may set the stage for vascular dysfunction and rarefaction at later stages of diabetes.

  3. Inhibition of notch signaling in glioblastoma targets cancer stem cells via an endothelial cell intermediate.

    Science.gov (United States)

    Hovinga, Koos E; Shimizu, Fumiko; Wang, Rong; Panagiotakos, Georgia; Van Der Heijden, Maartje; Moayedpardazi, Hamideh; Correia, Ana Sofia; Soulet, Denis; Major, Tamara; Menon, Jayanthi; Tabar, Viviane

    2010-06-01

    Glioblastoma multiforme (GBM) is a highly heterogeneous malignant tumor. Recent data suggests the presence of a hierarchical organization within the GBM cell population that involves cancer cells with stem-like behavior, capable of repopulating the tumor and contributing to its resistance to therapy. Tumor stem cells are thought to reside within a vascular niche that provides structural and functional support. However, most GBM studies involve isolated tumor cells grown under various culture conditions. Here, we use a novel three-dimensional organotypic "explant" system of surgical GBM specimens that preserves cytoarchitecture and tumor stroma along with tumor cells. Notch inhibition in explants results in decreased proliferation and self-renewal of tumor cells but is also associated with a decrease in endothelial cells. When endothelial cells are selectively eliminated from the explants via a toxin conjugate, we also observed a decrease in self-renewal of tumor stem cells. These findings support a critical role for tumor endothelial cells in GBM stem cell maintenance, mediated at least in part by Notch signaling. The explant system further highlighted differences in the response to radiation between explants and isolated tumor neurospheres. Combination treatment with Notch blockade and radiation resulted in a substantial decrease in proliferation and in self-renewal in tumor explants while radiation alone was less effective. This data suggests that the Notch pathway plays a critical role in linking angiogenesis and cancer stem cell self-renewal and is thus a potential therapeutic target. Three-dimensional explant systems provide a novel approach for the study of tumor and microenvironment interactions.

  4. Endothelial progenitor cells induce a phenotype shift in differentiated endothelial cells towards PDGF/PDGFRβ axis-mediated angiogenesis.

    Directory of Open Access Journals (Sweden)

    Moritz Wyler von Ballmoos

    Full Text Available BACKGROUND: Endothelial Progenitor Cells (EPC support neovascularization and regeneration of injured endothelium both by providing a proliferative cell pool capable of differentiation into mature vascular endothelial cells and by secretion of angiogenic growth factors. OBJECTIVE: The aim of this study was to investigate the role of PDGF-BB and PDGFRβ in EPC-mediated angiogenesis of differentiated endothelial cells. METHODS AND RESULTS: Conditioned medium from human EPC (EPC-CM cultured in hypoxic conditions contained substantially higher levels of PDGF-BB as compared to normoxic conditions (P<0.01. EPC-CM increased proliferation (1.39-fold; P<0.001 and migration (2.13-fold; P<0.001 of isolated human umbilical vein endothelial cells (HUVEC, as well as sprouting of vascular structures from ex vivo cultured aortic rings (2.78-fold increase; P = 0.01. The capacity of EPC-CM to modulate the PDGFRβ expression in HUVEC was assessed by western blot and RT-PCR. All the pro-angiogenic effects of EPC-CM on HUVEC could be partially inhibited by inactivation of PDGFRβ (P<0.01. EPC-CM triggered a distinct up-regulation of PDGFRβ (2.5±0.5; P<0.05 and its phosphorylation (3.6±0.6; P<0.05 in HUVEC. This was not observed after exposure of HUVEC to recombinant human PDGF-BB alone. CONCLUSION: These data indicate that EPC-CM sensitize endothelial cells and induce a pro-angiogenic phenotype including the up-regulation of PDGFRβ, thereby turning the PDGF/PDGFRβ signaling-axis into a critical element of EPC-induced endothelial angiogenesis. This finding may be utilized to enhance EPC-based therapy of ischemic tissue in future.

  5. Relationship between endothelial cell loss and microcoaxial phacoemulsification parameters in noncomplicated cataract surgery.

    Science.gov (United States)

    Mahdy, Mohamed Ae Soliman; Eid, Mohamed Z; Mohammed, Mahmoud Abdel-Badei; Hafez, Amr; Bhatia, Jagdish

    2012-01-01

    To assess the relationship between postoperative endothelial cell loss and microcoaxial phaco parameters using Ozil IP (Alcon Laboratories, Inc, Fort Worth, TX) in noncomplicated cataract surgery. In this prospective observational study, 120 consecutive cases of cataract patients with different grades of nuclear hardness underwent microcoaxial phacoemulsification through a 2.2-mm clear corneal incision. An Alcon Infinity Vision System with Ozil IP (Alcon Laboratories) was used with an Ozil torsional handpiece and a Kelman-style 45° phacoemulsification tip. Patients underwent preoperative and postoperative central endothelial cell counts. The study included 120 cases of age-related cataract whose mean age (standard deviation [SD]) was 59.68 years (9.47). There was a highly statistically significant endothelial cell loss (P phaco parameters. The Spearman's rank-order correlation coefficient values, rho, (ρ) were as follows: CDE (ρ = 0.425), aspiration time (ρ = 0.176), and volume (ρ = 0.278). Also, ECLoss% was significantly correlated with the grade of nuclear opalescence (Kendall's tau τ = 0.42). Microcoaxial phacoemulsification was efficient in removing noncomplicated cataracts; however a statistically significant endothelial cell loss was noted, especially with increased nuclear hardness. This endothelial cell loss was mostly related to the increased cumulative dissipated energy (CDE), aspiration time, and volume of balanced salt solution used.

  6. Effects of Panax notoginseng saponins on vascular endothelial cells in vitro

    Institute of Scientific and Technical Information of China (English)

    關超然; 關加荤

    2000-01-01

    AIM: To investigate the inhibition of endothelium-dependent in vitro vascular relaxation induced by the total saponins (gensenosides) from Panax notoginseng ( PNS ) and the effect of PNS on the cytosolic Ca2 + concentration on cultured bovine pulmonary artery endothelial cells.METHODS: The endothelial-dependent vascular relaxation was assessed using acetylcholine (ACh) or cyclopiazonic acid (CPA) induced relaxation in endothelium-intact rat aorta. Cytosolic Caa + level was assessed in real time using dynamic digital fluorescence ratio imaging.RESULTS: In addition to its direct relaxation of the smooth muscle cells at high concentrations, PNS, at 100 mg/L having little effect on smooth muscle, caused a marked inhibition of endothelium-dependent relaxation brought about by PNS. This inhibitory effect was due to its inhibition of elevation of cytosolic Ca2 + , which is required for the activation of NO generation and release from the vascular endothelial cells. Nifedipine has no effect on either the endothelium-dependent relaxation or the cytosolic Ca2 + level in the cultured endothelial cells.CONCLUSION: Our findings are consistent with the known action of PNS on receptor-operated Ca2 + channels and support our contention that PNS inhibits endotheliumdependent relaxation by preventing the increase of Ca2 + level in endothelial cells via the receptor-operated Ca2 + channels in the presence of ACh or the non-selective cation channels opened by CPA.

  7. Preparation of chitosan films using different neutralizing solutions to improve endothelial cell compatibility.

    Science.gov (United States)

    He, Qing; Ao, Qiang; Gong, Yandao; Zhang, Xiufang

    2011-12-01

    The development of chitosan-based constructs for application in large-size defects or highly vascularized tissues is still a challenging issue. The poor endothelial cell compatibility of chitosan hinders the colonization of vascular endothelial cells in the chitosan-based constructs, and retards the establishment of a functional microvascular network following implantation. The aim of the present study is to prepare chitosan films with different neutralization methods to improve their endothelial cell compatibility. Chitosan salt films were neutralized with either sodium hydroxide (NaOH) aqueous solution, NaOH ethanol solution, or ethanol solution without NaOH. The physicochemical properties and endothelial cell compatibility of the chitosan films were investigated. Results indicated that neutralization with different solutions affected the surface chemistry, swelling ratio, crystalline conformation, nanotopography, and mechanical properties of the chitosan films. The NaOH ethanol solution-neutralized chitosan film (Chi-NaOH/EtOH film) displayed a nanofiber-dominant surface, while the NaOH aqueous solution-neutralized film (Chi-NaOH/H(2)O film) and the ethanol solution-neutralized film (Chi-EtOH film) displayed nanoparticle-dominant surfaces. Moreover, the Chi-NaOH/EtOH films exhibited a higher stiffness as compared to the Chi-NaOH/H(2)O and Chi-EtOH films. Endothelial cell compatibility of the chitosan films was evaluated with a human microvascular endothelial cell line, HMEC-1. Compared with the Chi-NaOH/H(2)O and Chi-EtOH films, HMECs cultured on the Chi-NaOH/EtOH films fully spread and exhibited significantly higher levels of adhesion and proliferation, with retention of the endothelial phenotype and function. Our findings suggest that the surface nanotopography and mechanical properties contribute to determining the endothelial cell compatibility of chitosan films. The nature of the neutralizing solutions can affect the physicochemical properties and

  8. Growth-limiting role of endothelial cells in endoderm development.

    Science.gov (United States)

    Sand, Fredrik Wolfhagen; Hörnblad, Andreas; Johansson, Jenny K; Lorén, Christina; Edsbagge, Josefina; Ståhlberg, Anders; Magenheim, Judith; Ilovich, Ohad; Mishani, Eyal; Dor, Yuval; Ahlgren, Ulf; Semb, Henrik

    2011-04-15

    Endoderm development is dependent on inductive signals from different structures in close vicinity, including the notochord, lateral plate mesoderm and endothelial cells. Recently, we demonstrated that a functional vascular system is necessary for proper pancreas development, and that sphingosine-1-phosphate (S1P) exhibits the traits of a blood vessel-derived molecule involved in early pancreas morphogenesis. To examine whether S1P(1)-signaling plays a more general role in endoderm development, S1P(1)-deficient mice were analyzed. S1P(1) ablation results in compromised growth of several foregut-derived organs, including the stomach, dorsal and ventral pancreas and liver. Within the developing pancreas the reduction in organ size was due to deficient proliferation of Pdx1(+) pancreatic progenitors, whereas endocrine cell differentiation was unaffected. Ablation of endothelial cells in vitro did not mimic the S1P(1) phenotype, instead, increased organ size and hyperbranching were observed. Consistent with a negative role for endothelial cells in endoderm organ expansion, excessive vasculature was discovered in S1P(1)-deficient embryos. Altogether, our results show that endothelial cell hyperplasia negatively influences organ development in several foregut-derived organs.

  9. Endothelial cells stimulate growth of normal and cancerous breast epithelial cells in 3D culture

    Directory of Open Access Journals (Sweden)

    Magnusson Magnus K

    2010-07-01

    Full Text Available Abstract Background Epithelial-stromal interaction provides regulatory signals that maintain correct histoarchitecture and homeostasis in the normal breast and facilitates tumor progression in breast cancer. However, research on the regulatory role of the endothelial component in the normal and malignant breast gland has largely been neglected. The aim of the study was to investigate the effects of endothelial cells on growth and differentiation of human breast epithelial cells in a three-dimensional (3D co-culture assay. Methods Breast luminal and myoepithelial cells and endothelial cells were isolated from reduction mammoplasties. Primary cells and established normal and malignant breast cell lines were embedded in reconstituted basement membrane in direct co-culture with endothelial cells and by separation of Transwell filters. Morphogenic and phenotypic profiles of co-cultures was evaluated by phase contrast microscopy, immunostaining and confocal microscopy. Results In co-culture, endothelial cells stimulate proliferation of both luminal- and myoepithelial cells. Furthermore, endothelial cells induce a subpopulation of luminal epithelial cells to form large acini/ducts with a large and clear lumen. Endothelial cells also stimulate growth and cloning efficiency of normal and malignant breast epithelial cell lines. Transwell and gradient co-culture studies show that endothelial derived effects are mediated - at least partially - by soluble factors. Conclusion Breast endothelial cells - beside their role in transporting nutrients and oxygen to tissues - are vital component of the epithelial microenvironment in the breast and provide proliferative signals to the normal and malignant breast epithelium. These growth promoting effects of endothelial cells should be taken into consideration in breast cancer biology.

  10. Effect of polyhexanide and gentamycin on human osteoblasts and endothelial cells.

    Science.gov (United States)

    Ince, Akif; Schütze, Norbert; Hendrich, Christian; Jakob, Franz; Eulert, Jochen; Löhr, Jochen F

    2007-03-10

    Infection of total joint replacements is painful, disabling and difficult to treat because of the increasing bacterial resistance against antibiotics. In view of this, antiseptics show limited bacterial tolerance and have a broad-spectrum antimicrobial activity. However, the application of antiseptics to bone is insufficiently studied in literature. Therefore, we investigated the biocompatibility of the antiseptic polyhexanide with bone related cells and asked whether supplementation to bone cement is appropriate in the management of total arthroplasty infections. We performed an in vitro study with immortalised human foetal osteoblast cells (hFOB 1.19) and human endothelial cells (EAhy 926). The cultured cells were exposed to media containing various concentrations of gentamicin (12.5-800 microg/ml) and polyhexanide (0.0006-0.01%) for six hours. We measured the phase-contrast microscopy images, the cell viability, cell number and the alkaline phosphatase activity as a parameter for osteogenic function. The exposure of hFOB and endothelial cells to polyhexanide showed a severe reduction of viability and cell number. Gentamicin did not have negative effects on hFOB and endothelial cell number and viability. The alkaline phosphatase activity of hFOB showed a significant decrease after exposure to polyhexanide and gentamicin. The viability and the cell number of endothelial cells seem more negatively affected by polyhexanide than the parameters of the hFOB-cells. The exposure of human osteoblasts and endothelial cells to polyhexanide at concentrations with questionable antibacterial activity resulted in severe cell damage whereas exposure to high dosed gentamicin did not. These results raise questions as to the feasibility of using antiseptics in bone cement for the treatment of total arthroplasty infections. Further in vivo studies are necessary to show the in vivo relevance of these in vitro findings.

  11. Endothelial progenitor cell differentiation using cryopreserved, umbilical cord blood-derived mononuclear cells

    Institute of Scientific and Technical Information of China (English)

    Jun-ho JANG; Hugh C KIM; Sun-kyung KIM; Jeong-eun CHOI; Young-jin KIM; Hyun-woo LEE; Seok-yun KANG; Joon-seong PARK; Jin-hyuk CHOI; Ho-yeong LIM

    2007-01-01

    Aim: To investigate the endothelial differentiation potentiality of umbilical cord blood (UCB), we induced the differentiation of endothelial progenitor cells (EPC)from cryopreserved UCB-derived mononuclear cells (MNC). Methods: MNC from cryopreserved UCB and peripheral blood (PB) were cultured in M199 medium with endothelial cell growth supplements for 14 d. EPC were characterized by RT-PCR,flow cytometry, and immunocytochemistry analysis. The proliferation of differen-tiated EPC was studied by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTI') assay, and vascular endothelial growth factor (VEGF) concentra-tion was measured using an ELISA kit. Characteristics of UCB-derived EPC were compared with those of PB-derived EPC. Results: A number of round-shaped cells were loosely attached to the bottom after 24 h culture, and numerous spindle-shaped cells began to appear from the round-shaped ones on d 7. Those cells expressed endothelial markers such as, Fit-1/VEGFR-1, ecNOS, VE-cadherin, yon Willebrand factor, and secreted VEGF. The patterns of endothelial markers of EPC from PB and UCB did not show striking differences. The results of the prolifera-tion and secretion of VEGF were also similar. Conclusion: We successfully cul-tured UCB cells stored at -196 ℃ into cells with the quality of endothelial cells.Those EPC could be used for angiogenic therapeutics by activating adjacent endothelial cells and enhancing angiogenesis.

  12. Salvianolic acid B improves the disruption of high glucose-mediated brain microvascular endothelial cells via the ROS/HIF-1α/VEGF and miR-200b/VEGF signaling pathways.

    Science.gov (United States)

    Yang, Ming-Chao; You, Fu-Li; Wang, Zhe; Liu, Xiang-Nan; Wang, Yan-Feng

    2016-09-06

    The study investigated the roles and mechanisms of Salvianolic acid B (Sal B) on permeability of rat brain microvascular endothelial cells (RBMECs) exposed to high glucose. The results demonstrated that Sal B greatly up-regulated the expression of tight junction (TJ) proteins and decreased the permeability of RBMECs compared with the control group. And the increase of reactive oxidative species (ROS) production, the upregulation of hypoxia-inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF) protein induced by high glucose were antagonized by Sal B. In addition, a great decrease of microRNA-200b (miR-200b) was observed in the RBMECs under high-glucose condition, which was significantly increased by Sal B pretreatment. And overexpression of miR-200b markedly attenuated the RBMECs permeability and inhibited the expression of VEGF protein by targeting with 3'-UTR of its mRNA. This led to the conclusion that Sal B-mediated improvement of blood-brain barrier dysfunction induced by high-glucose is related to the ROS/HIF-1α/VEGF and miR-200b/VEGF signaling pathways.

  13. Biomechanical changes in endothelial cells result from an inflammatory response

    Science.gov (United States)

    Vaitkus, Janina; Stroka, Kimberly; Aranda-Espinoza, Helim

    2012-02-01

    During periods of infection and disease, the immune system induces the release of TNF-α, an inflammatory cytokine, from a variety of cell types, such as macrophages. TNF-α, while circulating in the vasculature, binds to the apical surface of endothelial cells and causes a wide range of biological and mechanical changes to the endothelium. While the biological changes have been widely studied, the biomechanical aspects have been largely unexplored. Here, we investigated the biomechanical changes of the endothelium as a function of TNF-α treatment. First, we studied the traction forces applied by the endothelium, an effect that is much less studied than others. Through the use of traction force microscopy, we found that TNF-α causes an increase in traction forces applied by the endothelial cells as compared to non-treated cells. Then, we investigated cell morphology, cell mechanics, migration, and cytoskeletal dynamics. We found that in addition to increasing applied traction forces, TNF-α causes an increase in cell area and aspect ratio on average, as well as a shift in the organization of F-actin filaments within the cell. Combining these findings together, our results show that an inflammatory response heavily impacts the morphology, cell mechanics, migration, cytoskeletal dynamics, and applied traction forces of endothelial cells.

  14. Endothelial Cells Stimulate Self-Renewal and Expand Neurogenesis of Neural Stem Cells

    National Research Council Canada - National Science Library

    Qin Shen; Susan K. Goderie; Li Jin; Nithin Karanth; Yu Sun; Natalia Abramova; Peter Vincent; Kevin Pumiglia; Sally Temple

    2004-01-01

    .... We show that endothelial cells but not vascular smooth muscle cells release soluble factors that stimulate the self-renewal of neural stem cells, inhibit their differentiation, and enhance their neuron production...

  15. Magnesium used in bioabsorbable stents controls smooth muscle cell proliferation and stimulates endothelial cells in vitro.

    Science.gov (United States)

    Sternberg, Katrin; Gratz, Matthias; Koeck, Kathleen; Mostertz, Joerg; Begunk, Robert; Loebler, Marian; Semmling, Beatrice; Seidlitz, Anne; Hildebrandt, Petra; Homuth, Georg; Grabow, Niels; Tuemmler, Conny; Weitschies, Werner; Schmitz, Klaus-Peter; Kroemer, Heyo K

    2012-01-01

    Magnesium-based bioabsorbable cardiovascular stents have been developed to overcome limitations of permanent metallic stents, such as late stent thrombosis. During stent degradation, endothelial and smooth muscle cells will be exposed to locally high magnesium concentrations with yet unknown physiological consequences. Here, we investigated the effects of elevated magnesium concentrations on human coronary artery endothelial and smooth muscle cell (HCAEC, HCASMC) growth and gene expression. In the course of 24 h after incubation with magnesium chloride solutions (1 or 10 mM) intracellular magnesium level in HCASMC raised from 0.55 ± 0.25 mM (1 mM) to 1.38 ± 0.95 mM (10 mM), while no increase was detected in HCAEC. Accordingly, a DNA microarray-based study identified 69 magnesium regulated transcripts in HCAEC, but 2172 magnesium regulated transcripts in HCASMC. Notably, a significant regulation of various growth factors and extracellular matrix components was observed. In contrast, viability and proliferation of HCAEC were increased at concentrations of up to 25 mM magnesium chloride, while in HCASMC viability and proliferation appeared to be unaffected. Taken together, our data indicate that magnesium halts smooth muscle cell proliferation and stimulates endothelial cell proliferation, which might translate into a beneficial effect in the setting of stent associated vascular injury.

  16. Telmisartan Activates Endothelial Nitric Oxide Synthase via Ser1177 Phosphorylation in Vascular Endothelial Cells

    Science.gov (United States)

    Myojo, Masahiro; Nagata, Daisuke; Fujita, Daishi; Kiyosue, Arihiro; Takahashi, Masao; Satonaka, Hiroshi; Morishita, Yoshiyuki; Akimoto, Tetsu; Nagai, Ryozo; Komuro, Issei; Hirata, Yasunobu

    2014-01-01

    Because endothelial nitric oxide synthase (eNOS) has anti-inflammatory and anti-arteriosclerotic functions, it has been recognized as one of the key molecules essential for the homeostatic control of blood vessels other than relaxation of vascular tone. Here, we examined whether telmisartan modulates eNOS function through its pleiotropic effect. Administration of telmisartan to mice significantly increased the phosphorylation level of eNOS (Ser1177) in the aortic endothelium, but administration of valsartan had no effect. Similarly, telmisartan treatment of human umbilical vein endothelial cells significantly increased the phosphorylation levels of AMP-activated protein kinase (Thr172) and eNOS and the concentration of intracellular guanosine 3′,5′-cyclic monophosphate (cGMP). Furthermore, pretreatment with a p38 mitogen-activated protein kinase (p38 MAPK) inhibitor suppressed the increased phosphorylation level of eNOS and intracellular cGMP concentration. These data show that telmisartan increases eNOS activity through Ser1177 phosphorylation in vascular endothelial cells mainly via p38 MAPK signaling. PMID:24827148

  17. Telmisartan activates endothelial nitric oxide synthase via Ser1177 phosphorylation in vascular endothelial cells.

    Directory of Open Access Journals (Sweden)

    Masahiro Myojo

    Full Text Available Because endothelial nitric oxide synthase (eNOS has anti-inflammatory and anti-arteriosclerotic functions, it has been recognized as one of the key molecules essential for the homeostatic control of blood vessels other than relaxation of vascular tone. Here, we examined whether telmisartan modulates eNOS function through its pleiotropic effect. Administration of telmisartan to mice significantly increased the phosphorylation level of eNOS (Ser1177 in the aortic endothelium, but administration of valsartan had no effect. Similarly, telmisartan treatment of human umbilical vein endothelial cells significantly increased the phosphorylation levels of AMP-activated protein kinase (Thr172 and eNOS and the concentration of intracellular guanosine 3',5'-cyclic monophosphate (cGMP. Furthermore, pretreatment with a p38 mitogen-activated protein kinase (p38 MAPK inhibitor suppressed the increased phosphorylation level of eNOS and intracellular cGMP concentration. These data show that telmisartan increases eNOS activity through Ser1177 phosphorylation in vascular endothelial cells mainly via p38 MAPK signaling.

  18. Corneal Endothelial Cell Density and Morphology in Healthy Turkish Eyes

    Directory of Open Access Journals (Sweden)

    Ceyhun Arıcı

    2014-01-01

    Full Text Available Purpose. To describe the normative values of corneal endothelial cell density, morphology, and central corneal thickness in healthy Turkish eyes. Methods. Specular microscopy was performed in 252 eyes of 126 healthy volunteers (M : F, 42 : 84. Parameters studied included mean endothelial cell density (MCD, mean cell area (MCA, coefficient of variation (CV in cell size, percentage of hexagonal cells, and central corneal thickness (CCT. Results. The mean age of volunteers was 44.3±13.5 (range, 20 to 70 years. There was a statistically significant decrease in MCD (P<0.001; correlation, −0.388 and percentage of hexagonal cells, (P<0.001; correlation, −0.199 with age. There was also a statistically significant increase in MCA (P<0.001; correlation, 0.363 with increasing age. There was no statistically significant difference in MCD, MCA, CV in cell size, percentage of hexagonal cells, and CCT between genders and there was also no significant difference in these parameters between fellow eyes of subjects. Conclusions. Normotive data for the endothelium in the Turkish population are reported. Endothelial cell density in the Turkish eyes is less than that described in the Japanese, American, Chinese, and Filipino eyes and higher than that described in Indian, Thai, and Iranian eyes.

  19. Comparative evaluation of the impact on endothelial cells induced by different nanoparticle structures and functionalization

    Directory of Open Access Journals (Sweden)

    Lisa Landgraf

    2015-01-01

    Full Text Available In the research field of nanoparticles, many studies demonstrated a high impact of the shape, size and surface charge, which is determined by the functionalization, of nanoparticles on cell viability and internalization into cells. This work focused on the comparison of three different nanoparticle types to give a better insight into general rules determining the biocompatibility of gold, Janus and semiconductor (quantum dot nanoparticles. Endothelial cells were subject of this study, since blood is the first barrier after intravenous nanoparticle application. In particular, stronger effects on the viability of endothelial cells were found for nanoparticles with an elongated shape in comparison to spherical ones. Furthermore, a positively charged nanoparticle surface (NH2, CyA leads to the strongest reduction in cell viability, whereas neutral and negatively charged nanoparticles are highly biocompatible to endothelial cells. These findings are attributed to a rapid internalization of the NH2-functionalized nanoparticles in combination with the damage of intracellular membranes. Interestingly, the endocytotic pathway seems to be a size-dependent process whereas nanoparticles with a size of 20 nm are internalized by caveolae-mediated endocytosis and nanoparticles with a size of 40 nm are taken up by clathrin-mediated internalization and macropinocytosis. Our results can be summarized to formulate five general rules, which are further specified in the text and which determine the biocompatibility of nanoparticles on endothelial cells. Our findings will help to design new nanoparticles with optimized properties concerning biocompatibility and uptake behavior with respect to the respective intended application.

  20. Endothelial progenitor cell-based neovascularization : implications for therapy

    NARCIS (Netherlands)

    Krenning, Guido; van Luyn, Marja J. A.; Harmsen, Martin C.

    2009-01-01

    Ischemic cardiovascular events are a major cause of death globally. Endothelial progenitor cell (EPC)-based approaches can result in improvement of vascular perfusion and might offer clinical benefit. However, although functional improvement is observed, the lack of long-term engraftment of EPCs int

  1. Endothelial cell density after deep anterior lamellar keratoplasty (Melles technique)

    NARCIS (Netherlands)

    Van Dooren, BTH; Mulder, PGH; Nieuwendaal, CP; Beekhuis, WH; Melles, GRJ

    PURPOSE: To measure the recipient endothelial cell loss after the Melles technique for deep anterior lamellar keratoplasty. METHODS: In 21 eyes of 21 patients, a deep anterior lamellar keratoplasty procedure was performed. Before surgery and at 6, 12, and 24 months after surgery, specular microscopy

  2. Cartographic system for spatial distribution analysis of corneal endothelial cells.

    Science.gov (United States)

    Corkidi, G; Márquez, J; García-Ruiz, M; Díaz-Cintra, S; Graue, E

    1994-07-01

    A combined cartographic and morphometric endothelium analyser has been developed by integrating the HISTO 2000 histological imaging and analysis system with a prototype human corneal endothelium analyser. The complete system allows the elaboration and analysis of cartographies of corneal endothelial tissue, and hence the in vitro study of the spatial distribution of corneal endothelial cells, according to their regional morphometric characteristics (cell size and polygonality). The global cartographic reconstruction is obtained by sequential integration of the data analysed for each microscopic field. Subsequently, the location of each microscopically analysed field is referred to its real position on the histologic preparation by means of X-Y co-ordinates; both are provided by micrometric optoelectronic sensors installed on the optical microscope stage. Some cartographies of an excised human corneal keratoconus button in vitro are also presented. These cartographic images allow a macroscopic view of endothelial cells analysed microscopically. Parametric colour images show the spatial distribution of endothelial cells, according to their specific morphometric parameters, and exhibit the variability in size and cellular shape which depend on the analysed area.

  3. Effects of hypergravity on the angiogenic potential of endothelial cells

    NARCIS (Netherlands)

    Costa-Almeida, R. (Raquel); Carvalho, D.T.O. (Daniel T.O.); Ferreira, M.J.S. (Miguel J.S.); Aresta, G. (Guilherme); Gomes, M.E. (Manuela E.); Van Loon, J.J.W.A. (Jack J.W.A.); K. van der Heiden (Kim); Granja, P.L. (Pedro L.)

    2016-01-01

    textabstractAngiogenesis, the formation of blood vessels from pre-existing ones, is a key event in pathology, including cancer progression, but also in homeostasis and regeneration. As the phenotype of endothelial cells (ECs) is continuously regulated by local biomechanical forces, studying endothel

  4. Effect of propionyl-L-carnitine on human endothelial cells

    NARCIS (Netherlands)

    Hinsbergh, V.W.M. van; Scheffer, M.A.

    1991-01-01

    A possible protective effect of propionyl-L-carnitine on human endothelial cells was studied both under basal culture conditions and in the presence of agents capable of influencing oxidative damage, such as glucose/glucose oxidase and oxidized low-density lipoproteins. Propionyl-L-carnitine had no

  5. Nanoparticle accumulation and transcytosis in brain endothelial cell layers

    NARCIS (Netherlands)

    Ye, Dong; Raghnaill, Michelle Nic; Bramini, Mattia; Mahon, Eugene; Åberg, Christoffer; Salvati, Anna; Dawson, Kenneth A

    2013-01-01

    The blood-brain barrier (BBB) is a selective barrier, which controls and limits access to the central nervous system (CNS). The selectivity of the BBB relies on specialized characteristics of the endothelial cells that line the microvasculature, including the expression of intercellular tight juncti

  6. Estradiol pretreatment attenuated nicotine-induced endothelial cell apoptosis via estradiol functional membrane receptor.

    Science.gov (United States)

    Wang, Li-li; Zhao, Jian-li; Lau, Wayne-Bond; Zhang, Yan-qing; Qiao, Zhong-dong; Wang, Ya-jing

    2011-06-01

    Cigarette smoking is highly associated with increased cardiovascular disease complications. The female population, however, manifests reduced cardiovascular morbidity. We define nicotine's effect upon human umbilical vein endothelial cells (HUVECs), determine whether estradiol might ameliorate endothelial dysfunction via its membrane estrogen receptor (mER), and attempt to elucidate the underlying mechanisms. Endothelial cells were pretreated with estradiol-BSA and measured resultant ion flux across the cells via the patch clamp technique to assess mER is functionality. Estradiol-BSA administration was associated with 30% decreased nicotine-induced apoptosis and also attenuated nicotine-activated phosphorylation of p38 and ERK. Pretreatment of estradiol-BSA triggered a low calcium influx, suggesting ahead low influx calcium played a critical role in the underlying protective mechanisms of estradiol. Furthermore, this estradiol-BSA protection against apoptosis remained effective in the presence of tamoxifen, an intracellular estrogen receptor (iER) inhibitor. Additionally, tamoxifen did not abolish estradiol-BSA's inhibitory effect upon p38 and ERK's activation, giving evidence to the obligatory role of p38 and ERK signaling in the estradiol-BSA's anti-apoptotic action via mER. Our study provides evidence that nicotine enhances endothelial cell apoptosis, but estrogen exerts anti-apoptotic effect through its functional membrane estrogen receptor. Clinically, the nicotine in cigarettes might contribute to endothelial dysfunction, whereas ambient estradiol may provide cellular protection against nicotine-induced injury through its functional membrane receptor via MAPK pathway downregulation.

  7. Extracellular IL-33 cytokine, but not endogenous nuclear IL-33, regulates protein expression in endothelial cells.

    Science.gov (United States)

    Gautier, Violette; Cayrol, Corinne; Farache, Dorian; Roga, Stéphane; Monsarrat, Bernard; Burlet-Schiltz, Odile; Gonzalez de Peredo, Anne; Girard, Jean-Philippe

    2016-10-03

    IL-33 is a nuclear cytokine from the IL-1 family that plays important roles in health and disease. Extracellular IL-33 activates a growing number of target cells, including group 2 innate lymphoid cells, mast cells and regulatory T cells, but it remains unclear whether intracellular nuclear IL-33 has additional functions in the nucleus. Here, we used a global proteomic approach based on high-resolution mass spectrometry to compare the extracellular and intracellular roles of IL-33 in primary human endothelial cells, a major source of IL-33 protein in human tissues. We found that exogenous extracellular IL-33 cytokine induced expression of a distinct set of proteins associated with inflammatory responses in endothelial cells. In contrast, knockdown of endogenous nuclear IL-33 expression using two independent RNA silencing strategies had no reproducible effect on the endothelial cell proteome. These results suggest that IL-33 acts as a cytokine but not as a nuclear factor regulating gene expression in endothelial cells.

  8. File list: ALL.CDV.05.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.05.AllAg.Brachiocephalic_endothelial_cells hg19 All antigens Cardiovascular Brachiocephal...ic endothelial cells DRX014747 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.CDV.05.AllAg.Brachiocephalic_endothelial_cells.bed ...

  9. File list: Pol.CDV.20.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.20.AllAg.Brachiocephalic_endothelial_cells hg19 RNA polymerase Cardiovascular Brachiocephal...ic endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.CDV.20.AllAg.Brachiocephalic_endothelial_cells.bed ...

  10. File list: Unc.CDV.05.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.05.AllAg.Brachiocephalic_endothelial_cells hg19 Unclassified Cardiovascular Brachiocephal...ic endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.CDV.05.AllAg.Brachiocephalic_endothelial_cells.bed ...

  11. File list: Oth.CDV.50.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.50.AllAg.Brachiocephalic_endothelial_cells hg19 TFs and others Cardiovascular Brachiocephal...ic endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.CDV.50.AllAg.Brachiocephalic_endothelial_cells.bed ...

  12. File list: Unc.CDV.20.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.20.AllAg.Brachiocephalic_endothelial_cells hg19 Unclassified Cardiovascular Brachiocephal...ic endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.CDV.20.AllAg.Brachiocephalic_endothelial_cells.bed ...

  13. File list: His.CDV.05.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.05.AllAg.Brachiocephalic_endothelial_cells hg19 Histone Cardiovascular Brachiocephal...ic endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.CDV.05.AllAg.Brachiocephalic_endothelial_cells.bed ...

  14. File list: ALL.CDV.20.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.20.AllAg.Brachiocephalic_endothelial_cells hg19 All antigens Cardiovascular Brachiocephal...ic endothelial cells DRX014747 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.CDV.20.AllAg.Brachiocephalic_endothelial_cells.bed ...

  15. File list: DNS.CDV.20.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.20.AllAg.Brachiocephalic_endothelial_cells hg19 DNase-seq Cardiovascular Brachiocephal...ic endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.20.AllAg.Brachiocephalic_endothelial_cells.bed ...

  16. File list: ALL.CDV.10.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.10.AllAg.Brachiocephalic_endothelial_cells hg19 All antigens Cardiovascular Brachiocephal...ic endothelial cells DRX014747 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.CDV.10.AllAg.Brachiocephalic_endothelial_cells.bed ...

  17. File list: His.CDV.10.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.10.AllAg.Brachiocephalic_endothelial_cells hg19 Histone Cardiovascular Brachiocephal...ic endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.CDV.10.AllAg.Brachiocephalic_endothelial_cells.bed ...

  18. File list: Oth.CDV.20.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.20.AllAg.Brachiocephalic_endothelial_cells hg19 TFs and others Cardiovascular Brachiocephal...ic endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.CDV.20.AllAg.Brachiocephalic_endothelial_cells.bed ...

  19. File list: Pol.CDV.05.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.05.AllAg.Brachiocephalic_endothelial_cells hg19 RNA polymerase Cardiovascular Brachiocephal...ic endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.CDV.05.AllAg.Brachiocephalic_endothelial_cells.bed ...

  20. File list: Pol.CDV.50.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.50.AllAg.Brachiocephalic_endothelial_cells hg19 RNA polymerase Cardiovascular Brachiocephal...ic endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.CDV.50.AllAg.Brachiocephalic_endothelial_cells.bed ...

  1. File list: Unc.CDV.50.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.50.AllAg.Brachiocephalic_endothelial_cells hg19 Unclassified Cardiovascular Brachiocephal...ic endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.CDV.50.AllAg.Brachiocephalic_endothelial_cells.bed ...

  2. File list: Pol.CDV.10.AllAg.Primary_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.10.AllAg.Primary_endothelial_cells hg19 RNA polymerase Cardiovascular Primary... endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.CDV.10.AllAg.Primary_endothelial_cells.bed ...

  3. File list: His.CDV.50.AllAg.Primary_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.50.AllAg.Primary_endothelial_cells hg19 Histone Cardiovascular Primary endo...thelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.CDV.50.AllAg.Primary_endothelial_cells.bed ...

  4. File list: Oth.CDV.50.AllAg.Primary_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.50.AllAg.Primary_endothelial_cells hg19 TFs and others Cardiovascular Primary... endothelial cells SRX393516,SRX244128,SRX393518 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.CDV.50.AllAg.Primary_endothelial_cells.bed ...

  5. File list: Pol.CDV.50.AllAg.Primary_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.50.AllAg.Primary_endothelial_cells hg19 RNA polymerase Cardiovascular Primary... endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.CDV.50.AllAg.Primary_endothelial_cells.bed ...

  6. File list: Oth.CDV.05.AllAg.Primary_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.05.AllAg.Primary_endothelial_cells hg19 TFs and others Cardiovascular Primary... endothelial cells SRX393518,SRX393516,SRX244128 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.CDV.05.AllAg.Primary_endothelial_cells.bed ...

  7. File list: DNS.CDV.20.AllAg.Primary_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.20.AllAg.Primary_endothelial_cells hg19 DNase-seq Cardiovascular Primary en...dothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.20.AllAg.Primary_endothelial_cells.bed ...

  8. File list: His.CDV.20.AllAg.Primary_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.20.AllAg.Primary_endothelial_cells hg19 Histone Cardiovascular Primary endo...thelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.CDV.20.AllAg.Primary_endothelial_cells.bed ...

  9. File list: Oth.CDV.20.AllAg.Primary_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.20.AllAg.Primary_endothelial_cells hg19 TFs and others Cardiovascular Primary... endothelial cells SRX393516,SRX393518,SRX244128 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.CDV.20.AllAg.Primary_endothelial_cells.bed ...

  10. File list: DNS.CDV.50.AllAg.Primary_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.50.AllAg.Primary_endothelial_cells hg19 DNase-seq Cardiovascular Primary en...dothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.50.AllAg.Primary_endothelial_cells.bed ...

  11. File list: Pol.CDV.20.AllAg.Primary_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.20.AllAg.Primary_endothelial_cells hg19 RNA polymerase Cardiovascular Primary... endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.CDV.20.AllAg.Primary_endothelial_cells.bed ...

  12. File list: Unc.CDV.50.AllAg.Primary_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.50.AllAg.Primary_endothelial_cells hg19 Unclassified Cardiovascular Primary... endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.CDV.50.AllAg.Primary_endothelial_cells.bed ...

  13. File list: His.CDV.10.AllAg.Primary_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.10.AllAg.Primary_endothelial_cells hg19 Histone Cardiovascular Primary endo...thelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.CDV.10.AllAg.Primary_endothelial_cells.bed ...

  14. File list: DNS.CDV.10.AllAg.Primary_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.10.AllAg.Primary_endothelial_cells hg19 DNase-seq Cardiovascular Primary en...dothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.10.AllAg.Primary_endothelial_cells.bed ...

  15. File list: Unc.CDV.20.AllAg.Primary_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.20.AllAg.Primary_endothelial_cells hg19 Unclassified Cardiovascular Primary... endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.CDV.20.AllAg.Primary_endothelial_cells.bed ...

  16. File list: Oth.CDV.10.AllAg.Primary_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.10.AllAg.Primary_endothelial_cells hg19 TFs and others Cardiovascular Primary... endothelial cells SRX393516,SRX393518,SRX244128 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.CDV.10.AllAg.Primary_endothelial_cells.bed ...

  17. File list: Unc.CDV.05.AllAg.Primary_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.05.AllAg.Primary_endothelial_cells hg19 Unclassified Cardiovascular Primary... endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.CDV.05.AllAg.Primary_endothelial_cells.bed ...

  18. File list: DNS.CDV.05.AllAg.Primary_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.05.AllAg.Primary_endothelial_cells hg19 DNase-seq Cardiovascular Primary en...dothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.05.AllAg.Primary_endothelial_cells.bed ...

  19. File list: Pol.CDV.05.AllAg.Primary_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.05.AllAg.Primary_endothelial_cells hg19 RNA polymerase Cardiovascular Primary... endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.CDV.05.AllAg.Primary_endothelial_cells.bed ...

  20. File list: Unc.CDV.10.AllAg.Primary_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.10.AllAg.Primary_endothelial_cells hg19 Unclassified Cardiovascular Primary... endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.CDV.10.AllAg.Primary_endothelial_cells.bed ...

  1. File list: Unc.CDV.10.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.10.AllAg.Brachiocephalic_endothelial_cells hg19 Unclassified Cardiovascular Brachio...cephalic endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.CDV.10.AllAg.Brachiocephalic_endothelial_cells.bed ...

  2. File list: ALL.CDV.50.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.50.AllAg.Brachiocephalic_endothelial_cells hg19 All antigens Cardiovascular Brachio...cephalic endothelial cells DRX014747 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.CDV.50.AllAg.Brachiocephalic_endothelial_cells.bed ...

  3. File list: His.CDV.20.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.20.AllAg.Brachiocephalic_endothelial_cells hg19 Histone Cardiovascular Brachiocephalic endothelial... cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.CDV.20.AllAg.Brachiocephalic_endothelial_cells.bed ...

  4. File list: DNS.CDV.50.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.50.AllAg.Brachiocephalic_endothelial_cells hg19 DNase-seq Cardiovascular Brachiocephalic endothelial... cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.50.AllAg.Brachiocephalic_endothelial_cells.bed ...

  5. File list: His.CDV.50.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.50.AllAg.Brachiocephalic_endothelial_cells hg19 Histone Cardiovascular Brachiocephalic endothelial... cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.CDV.50.AllAg.Brachiocephalic_endothelial_cells.bed ...

  6. File list: Oth.CDV.05.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.05.AllAg.Brachiocephalic_endothelial_cells hg19 TFs and others Cardiovascular Brachiocephalic endoth...elial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.CDV.05.AllAg.Brachiocephalic_endothelial_cells.bed ...

  7. File list: Oth.CDV.10.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.10.AllAg.Brachiocephalic_endothelial_cells hg19 TFs and others Cardiovascular Brachiocephalic endoth...elial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.CDV.10.AllAg.Brachiocephalic_endothelial_cells.bed ...

  8. File list: Pol.CDV.10.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.10.AllAg.Brachiocephalic_endothelial_cells hg19 RNA polymerase Cardiovascular Brachiocephalic endoth...elial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.CDV.10.AllAg.Brachiocephalic_endothelial_cells.bed ...

  9. File list: DNS.CDV.05.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.05.AllAg.Brachiocephalic_endothelial_cells hg19 DNase-seq Cardiovascular Brachiocephalic endothelial... cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.05.AllAg.Brachiocephalic_endothelial_cells.bed ...

  10. Physical supports from liver cancer cells are essential for differentiation and remodeling of endothelial cells in a HepG2-HUVEC co-culture model.

    Science.gov (United States)

    Chiew, Geraldine Giap Ying; Fu, Afu; Low, Kar Perng; Luo, Kathy Qian

    2015-06-08

    Blood vessel remodeling is crucial in tumor growth. Growth factors released by tumor cells and endothelium-extracellular matrix interactions are highlighted in tumor angiogenesis, however the physical tumor-endothelium interactions are highly neglected. Here, we report that the physical supports from hepatocellular carcinoma, HepG2 cells, are essential for the differentiation and remodeling of endothelial cells. In a HepG2-HUVEC co-culture model, endothelial cells in direct contact with HepG2 cells could differentiate and form tubular structures similar to those plated on matrigel. By employing HepG2 cell sheet as a supportive layer, endothelial cells formed protrusions and sprouts above it. In separate experiments, fixed HepG2 cells could stimulate endothelial cells differentiation while the conditioned media could not, indicating that physical interactions between tumor and endothelial cells were indispensable. To further investigate the endothelium-remodeling mechanisms, the co-culture model was treated with inhibitors targeting different angiogenic signaling pathways. Inhibitors targeting focal adhesions effectively inhibited the differentiation of endothelial cells, while the growth factor receptor inhibitor displayed little effect. In conclusion, the co-culture model has provided evidences of the essential role of cancer cells in the differentiation and remodeling of endothelial cells, and is a potential platform for the discovery of new anti-angiogenic agents for liver cancer therapy.

  11. Physical supports from liver cancer cells are essential for differentiation and remodeling of endothelial cells in a HepG2-HUVEC co-culture model

    Science.gov (United States)

    Chiew, Geraldine Giap Ying; Fu, Afu; Perng Low, Kar; Qian Luo, Kathy

    2015-01-01

    Blood vessel remodeling is crucial in tumor growth. Growth factors released by tumor cells and endothelium-extracellular matrix interactions are highlighted in tumor angiogenesis, however the physical tumor-endothelium interactions are highly neglected. Here, we report that the physical supports from hepatocellular carcinoma, HepG2 cells, are essential for the differentiation and remodeling of endothelial cells. In a HepG2-HUVEC co-culture model, endothelial cells in direct contact with HepG2 cells could differentiate and form tubular structures similar to those plated on matrigel. By employing HepG2 cell sheet as a supportive layer, endothelial cells formed protrusions and sprouts above it. In separate experiments, fixed HepG2 cells could stimulate endothelial cells differentiation while the conditioned media could not, indicating that physical interactions between tumor and endothelial cells were indispensable. To further investigate the endothelium-remodeling mechanisms, the co-culture model was treated with inhibitors targeting different angiogenic signaling pathways. Inhibitors targeting focal adhesions effectively inhibited the differentiation of endothelial cells, while the growth factor receptor inhibitor displayed little effect. In conclusion, the co-culture model has provided evidences of the essential role of cancer cells in the differentiation and remodeling of endothelial cells, and is a potential platform for the discovery of new anti-angiogenic agents for liver cancer therapy. PMID:26053957

  12. Vascular endothelial cells and dysfunctions: role of melatonin.

    Science.gov (United States)

    Rodella, Luigi Fabrizio; Favero, Gaia; Foglio, Eleonora; Rossini, Claudia; Castrezzati, Stefania; Lonati, Claudio; Rezzani, Rita

    2013-01-01

    Several pathological conditions, including hypertension, atherosclerosis, diabetes, ischemia/reperfusion injury and nicotine-induced vasculopathy, are associated with vascular endothelial dysfunction characterized by altered secretory output of endothelial cells. Therefore there is a search for molecules and interventions that could restore endothelial function, in particular augmenting NO production, reducing the generation of free radicals and vasoconstrictors and preventing undesired inflammation. The pineal hormone melatonin exhibits several endothelium protective properties: it scavenges free radicals, activates antioxidant defence enzymes, normalizes lipid and blood pressure profile and increases NO bioavailability. Melatonin improved vascular function in experimental hypertension, reducing intimal infiltration and restoring NO production. Melatonin improved the NO pathway also in animal models for the study of diabetes and prevented NO down-regulation and adhesive molecules up-regulation in nicotine-induced vasculopathy. The protection against endothelial damage, vasoconstriction, platelet aggregation and leukocyte infiltration might contribute to the beneficial effects against ischemia-reperfusion injury by melatonin. Therefore, melatonin administration has endothelium-protective potential in several pathological conditions. Nevertheless, it still needs to be established, whether melatonin is able to revert already established endothelial dysfunction in these conditions.

  13. A Novel Molecular and Functional Stemness Signature Assessing Human Cord Blood-Derived Endothelial Progenitor Cell Immaturity.

    Directory of Open Access Journals (Sweden)

    Oriane Guillevic

    Full Text Available Endothelial Colony Forming Cells (ECFCs, a distinct population of Endothelial Progenitor Cells (EPCs progeny, display phenotypic and functional characteristics of endothelial cells while retaining features of stem/progenitor cells. Cord blood-derived ECFCs (CB-ECFCs have a high clonogenic and proliferative potentials and they can acquire different endothelial phenotypes, this requiring some plasticity. These properties provide angiogenic and vascular repair capabilities to CB-ECFCs for ischemic cell therapies. However, the degree of immaturity retained by EPCs is still confused and poorly defined. Consequently, to better characterize CB-ECFC stemness, we quantified their clonogenic potential and demonstrated that they were reprogrammed into induced pluripotent stem cells (iPSCs more efficiently and rapidly than adult endothelial cells. Moreover, we analyzed the transcriptional profile of a broad gene panel known to be related to stem cells. We showed that, unlike mature endothelial cells, CB-ECFCs expressed genes involved in the maintenance of embryonic stem cell properties such as DNMT3B, GDF3 or SOX2. Thus, these results provide further evidence and tools to appreciate EPC-derived cell stemness. Moreover this novel stem cell transcriptional signature of ECFCs could help better characterizing and ranging EPCs according to their immaturity profile.

  14. Specific Targeting of Tumor Endothelial Cells by a Shiga-like Toxin-Vascular Endothelial Growth Factor Fusion Protein as a Novel Treatment Strategy for Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Birgit Hotz

    2010-10-01

    Full Text Available PURPOSE: Tumor endothelial cells express vascular endothelial growth factor receptor 2 (VEGFR-2. VEGF can direct toxins to tumor vessels through VEGFR-2 for antiangiogenic therapy. This study aimed to selectively damage the VEGFR-2-overexpressing vasculature of pancreatic cancer by SLT-VEGF fusion protein comprising VEGF and the A subunit of Shiga-like toxin which inhibits protein synthesis of cells with high VEGFR-2 expression. EXPERIMENTAL DESIGN: Expression of VEGF and VEGF receptors was evaluated in human pancreatic cancer cells (AsPC-1, HPAF-2 and in normal human endothelial cells (HUVEC by reverse transcription-polymerase chain reaction. Cells were treated with SLT-VEGF (0.1–10 nM, and cell viability, proliferation, and endothelial tube formation were assessed. Orthotopic pancreatic cancer (AsPC-1, HPAF-2 was induced in nude mice. Animals were treated with SLT-VEGF fusion protein alone or in combination with gemcitabine. Treatment began 3 days or 6 weeks after tumor induction. Primary tumor volume and dissemination were determined after 14 weeks. Microvessel density and expression of VEGF and VEGF receptors were analyzed by immunohistochemistry. RESULTS: SLT-VEGF did not influence proliferation of pancreatic cancer cells; HUVECs (low-level VEGFR-2 reduced their proliferation rate and tube formation but not their viability. SLT-VEGF fusion protein reduced tumor growth and dissemination, increasing 14-week survival (AsPC-1, up to 75%; HPAF-2, up to 83%. Results of gemcitabine were comparable with SLT-VEGF monotherapy. Combination partly increased the therapeutic effects in comparison to the respective monotherapies. Microvessel density was reduced in all groups. Intratumoral VEGFR-2 expression was found in endothelial but not in tumor cells. CONCLUSIONS: SLT-VEGF is toxic for tumor vasculature rather than for normal endothelial or pancreatic cancer cells. SLT-VEGF treatment in combination with gemcitabine may provide a novel approach for

  15. Effect of Excessive Potassium Iodide on Rat Aorta Endothelial Cells.

    Science.gov (United States)

    Zhang, Man; Zou, Xiaoyan; Lin, Xinying; Bian, Jianchao; Meng, Huicui; Liu, Dan

    2015-08-01

    The aim of the current study was to investigate the effect of excess iodine on rat aorta endothelial cells and the potential underlying mechanisms. Rat aorta endothelial cells were cultured with iodide ion (3506, 4076, 4647, 5218, 5789, 6360, 6931, and 7512 mg/L) for 48 h. Morphological changes of cells were observed with microscope after Wright-Giemsa staining and acridine orange staining. Cell proliferation was determined with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and cell apoptosis was assessed with flow cytometry. The activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), endothelial nitric oxide synthase (eNOS), induced nitric oxide synthase (iNOS), and concentrations of malondialdehyde (MDA), glutathione (GSH), and protein carbonyl in culture medium were determined with colorimetric method. The expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) was detected by enzyme linked immunosorbent assay. The results showed that excess iodine induced abnormal morphologic changes of cells, inhibited cell proliferation, and increased apoptosis rate. Iodine also reduced the activity of SOD, GSH-Px, and concentrations of GSH and increased the concentrations of MDA and protein carbonyl in a dose-dependent manner. Moreover, excess iodine decreased the activity of eNOS and increased the activity of iNOS and the expression of ICAM-1 and VCAM-1 in culture medium. Our results suggested that excess iodine exposure increased oxidative stress, caused damage of vascular endothelial cells, and altered the expression of adhesion factors and the activity of NOS. These changes may explain the mechanisms underlying excess iodine-induced vascular injury.

  16. Endothelial progenitor cells regenerate infracted myocardium with neovascularisation development

    Directory of Open Access Journals (Sweden)

    M.T. Abd El Aziz

    2015-03-01

    Full Text Available We achieved possibility of isolation, characterization human umbilical cord blood endothelial progenitor cells (EPCs, examination potency of EPCs to form new blood vessels and differentiation into cardiomyoctes in canines with acute myocardial infarction (AMI. EPCs were separated and cultured from umbilical cord blood. Their phenotypes were confirmed by uptake of double stains dioctadecyl tetramethylindocarbocyanine-labeled acetylated LDL and FITC-labeled Ulex europaeus agglutinin 1 (DILDL-UEA-1. EPCs of cord blood were counted. Human VEGFR-2 and eNOS from the cultured EPCs were assessed by qPCR. Human EPCs was transplanted intramyocardially in canines with AMI. ECG and cardiac enzymes (CK-MB and Troponin I were measured to assess severity of cellular damage. Histopathology was done to assess neovascularisation. Immunostaining was done to detect EPCs transdifferentiation into cardiomyocytes in peri-infarct cardiac tissue. qPCR for human genes (hVEGFR-2, and eNOS was done to assess homing and angiogenic function of transplanted EPCs. Cultured human cord blood exhibited an increased number of EPCs and significant high expression of hVEGFR-2 and eNOS genes in the culture cells. Histopathology showed increased neovascularization and immunostaining showed presence of EPCs newly differentiated into cardiomyocyte-like cells. Our findings suggested that hEPCs can mediate angiogenesis and differentiate into cardiomyoctes in canines with AMI.

  17. JNK2 promotes endothelial cell alignment under flow.

    Directory of Open Access Journals (Sweden)

    Cornelia Hahn

    Full Text Available Endothelial cells in straight, unbranched segments of arteries elongate and align in the direction of flow, a feature which is highly correlated with reduced atherosclerosis in these regions. The mitogen-activated protein kinase c-Jun N-terminal kinase (JNK is activated by flow and is linked to inflammatory gene expression and apoptosis. We previously showed that JNK activation by flow is mediated by integrins and is observed in cells plated on fibronectin but not on collagen or basement membrane proteins. We now show thatJNK2 activation in response to laminar shear stress is biphasic, with an early peak and a later peak. Activated JNK localizes to focal adhesions at the ends of actin stress fibers, correlates with integrin activation and requires integrin binding to the extracellular matrix. Reducing JNK2 activation by siRNA inhibits alignment in response to shear stress. Cells on collagen, where JNK activity is low, align slowly. These data show that an inflammatory pathway facilitates adaptation to laminar flow, thereby revealing an unexpected connection between adaptation and inflammatory pathways.

  18. Brown spider venom toxins interact with cell surface and are endocytosed by rabbit endothelial cells.

    Science.gov (United States)

    Nowatzki, Jenifer; de Sene, Reginaldo Vieira; Paludo, Katia Sabrina; Veiga, Silvio Sanches; Oliver, Constance; Jamur, Maria Célia; Nader, Helena Bonciani; Trindade, Edvaldo S; Franco, Célia Regina C

    2010-09-15

    Bites from the Loxosceles genus (brown spiders) cause severe clinical symptoms, including dermonecrotic injury, hemorrhage, hemolysis, platelet aggregation and renal failure. Histological findings of dermonecrotic lesions in animals exposed to Loxosceles intermedia venom show numerous vascular alterations. Study of the hemorrhagic consequences of the venom in endothelial cells has demonstrated that the degeneration of blood vessels results not only from degradation of the extracellular matrix molecule or massive leukocyte infiltration, but also from a direct and primary activity of the venom on endothelial cells. Exposure of an endothelial cell line in vitro to L. intermedia venom induce morphological alterations, such as cell retraction and disadhesion to the extracellular matrix. The aim of the present study was to investigate the interaction between the venom toxins and the endothelial cell surface and their possible internalization, in order to illuminate the information about the deleterious effect triggered by venom. After treating endothelial cells with venom toxins, we observed that the venom interacts with cell surface. Venom treatment also can cause a reduction of cell surface glycoconjugates. When cells were permeabilized, it was possible to verify that some venom toxins were internalized by the endothelial cells. The venom internalization involves endocytic vesicles and the venom was detected in the lysosomes. However, no damage to lysosomal integrity was observed, suggesting that the cytotoxic effect evoked by L. intermedia venom on endothelial cells is not mediated by venom internalization.

  19. The effects of TSH on human vascular endothelial cells and smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    田利民

    2014-01-01

    Objective To study the effect of thyroid-stimulating hormone(TSH)on human vascular endothelial cells and smooth muscle cells and to explore the roles of TSH in the development of atherosclerosis.Methods Human vascular endothelial cells and smooth muscle cells were cultured in vitro.MTT method was used to assay the effect of TSH on cell viability.Real-time PCR was used

  20. Characterization of Bioeffects on Endothelial Cells under Acoustic Droplet Vaporization.

    Science.gov (United States)

    Seda, Robinson; Li, David S; Fowlkes, J Brian; Bull, Joseph L

    2015-12-01

    Gas embolotherapy is achieved by locally vaporizing microdroplets through acoustic droplet vaporization, which results in bubbles that are large enough to occlude blood flow directed to tumors. Endothelial cells, lining blood vessels, can be affected by these vaporization events, resulting in cell injury and cell death. An idealized monolayer of endothelial cells was subjected to acoustic droplet vaporization using a 3.5-MHz transducer and dodecafluoropentane droplets. Treatments included insonation pressures that varied from 2 to 8 MPa (rarefactional) and pulse lengths that varied from 4 to 16 input cycles. The bubble cloud generated was directly dependent on pressure, but not on pulse length. Cellular damage increased with increasing bubble cloud size, but was limited to the bubble cloud area. These results suggest that vaporization near the endothelium may impact the vessel wall, an effect that could be either deleterious or beneficial depending on the intended overall therapeutic application.

  1. ANTIBODIES DEFINING RAT ENDOTHELIAL-CELLS - RECA-1, A PAN-ENDOTHELIAL CELL-SPECIFIC MONOCLONAL-ANTIBODY

    NARCIS (Netherlands)

    DUIJVESTIJN, AM; VANGOOR, H; KLATTER, F; MAJOOR, GD; VANBUSSEL, E; VRIESMAN, PJCV

    1992-01-01

    We have been searching for antibodies reactive with rat endothelial cells. Two monoclonal antibodies (mAb), named RECA-1 and RECA-2 were produced and tested in immunoperoxidase staining on frozen sections of various rat tissues. Staining patterns were compared to those obtained with the mAbs OX-2, O

  2. The chemotactic activity of beta-carotene in endothelial cell progenitors and human umbilical vein endothelial cells: A microarray analysis

    NARCIS (Netherlands)

    Polus, A.; Kiec-wilk, B.; Hartwich, J.; Balwierz, A.; Stachura, J.; Dyduch, G.; Laidler, P.; Zagajewski, J.; Langman, T.; Schmitz, G.; Goralcsky, R.; Wertz, K.; Riss, G.; Keijer, J.; Dembinska-Kiec, A.

    2006-01-01

    Objectives: Endothelial cells and their progenitors play an important role in angiogenesis that is essential for organogenesis and tissue remodelling, as well as for inflammatory responses and carcinogenesis in all periods of life. In the present study, the authors concentrated on the direct effect

  3. ANTIBODIES DEFINING RAT ENDOTHELIAL-CELLS - RECA-1, A PAN-ENDOTHELIAL CELL-SPECIFIC MONOCLONAL-ANTIBODY

    NARCIS (Netherlands)

    DUIJVESTIJN, AM; VANGOOR, H; KLATTER, F; MAJOOR, GD; VANBUSSEL, E; VRIESMAN, PJCV

    1992-01-01

    We have been searching for antibodies reactive with rat endothelial cells. Two monoclonal antibodies (mAb), named RECA-1 and RECA-2 were produced and tested in immunoperoxidase staining on frozen sections of various rat tissues. Staining patterns were compared to those obtained with the mAbs OX-2, O

  4. Oligo-guanosine nucleotide induces neuropilin-1 internalization in endothelial cells and inhibits angiogenesis

    Science.gov (United States)

    Narazaki, Masashi; Segarra, Marta; Hou, Xu; Tanaka, Toshio; Li, Xuri

    2010-01-01

    Ligand interaction with cognate cell-surface receptor often promotes receptor internalization, protecting cells from prolonged or excessive signaling from extracellular ligands. Compounds that induce internalization of surface receptors prevent ligand binding to cognate cell-surface receptors serving as inhibitors. Here, we show that synthetic polyriboguanosine (poly G) and oligo-deoxyriboguanosine (oligo G) reduce endothelial levels of surface neuropilin-1 (NRP1), a receptor shared by semaphorin 3A and vascular endothelial growth factor (VEGF), which plays critical roles in angiogenesis. Oligo G also reduces levels of cell-surface scavenger receptor expressed by endothelial cells I (SREC-I), but not levels of NRP2, gp130, CD31, VEGFR-1, or VEGFR-2. Poly or oligo A, T, and C do not promote NRP1 or SREC-I internalization. We find that oligo G binds to NRP1 with high affinity (Kd:1.3 ± 0.16nM), bridges the extracellular domain of NRP1 to that of SREC-I, and induces coordinate internalization of NRP1 and SREC-I. In vitro, oligo G blocks the binding and function of VEGF165 in endothelial cells. In vivo, intravitreal administration of oligo G reduces choroidal neovascularization in mice. These results demonstrate that synthetic oligo G is an inhibitor of pathologic angiogenenesis that reduces cell-surface levels and function of NRP1 acting as an internalization inducer. PMID:20606164

  5. Endothelial cell adhesion and growth within a bioassay chamber using microstamped ECM proteins

    Science.gov (United States)

    Rubenstein, David A.; Frame, Mary D.

    2011-06-01

    Our goal was to evaluate microvascular endothelial cell growth on microstamped patterns of extracellular matrix proteins (ECM). A combination of photo- and soft-lithography was used to make features ˜100 μm deep and 150μm wide. Polydimethylsiloxane imprints of features produced positive molds used to stamp collagen I, IV, laminin and fibronectin onto cleaned hydrophilic or hydrophobic glass coverslips. Human dermal microvascular endothelial cells were seeded at an initial density of 800 cells cm-2, and cultured for three days. Explanted murine aortas, serving as an initial source for autologous endothelial cells, were perfused at 240 μL min-1 for 1 day. Cell morphology was also quantified on both the non-patterned glass and within the microstamped patterns. Viability was high (>90%) on all microstamped proteins, regardless of glass hydrophobicity. Viability was reduced on bare hydrophobic glass. Cell density was 4 or 8 fold higher on microstamped ECM proteins compared with hydrophilic or hydrophobic glass, respectively. Confluence was approached more rapidly on microstamped proteins. Thus, rapid concentrated growth of endothelial cells was markedly enhanced within microstamped ECM patterns on hydrophilic and hydrophobic glass.

  6. Matrix Stiffness Regulates Endothelial Cell Proliferation through Septin 9

    Science.gov (United States)

    Yeh, Yi-Ting; Hur, Sung Sik; Chang, Joann; Wang, Kuei-Chun; Chiu, Jeng-Jiann; Li, Yi-Shuan; Chien, Shu

    2012-01-01

    Endothelial proliferation, which is an important process in vascular homeostasis, can be regulated by the extracellular microenvironment. In this study we demonstrated that proliferation of endothelial cells (ECs) was enhanced on hydrogels with high stiffness (HSG, 21.5 kPa) in comparison to those with low stiffness (LSG, 1.72 kPa). ECs on HSG showed markedly prominent stress fibers and a higher RhoA activity than ECs on LSG. Blockade of RhoA attenuated stress fiber formation and proliferation of ECs on HSG, but had little effect on ECs on LSG; enhancement of RhoA had opposite effects. The phosphorylations of Src and Vav2, which are positive RhoA upstream effectors, were higher in ECs on HSG. The inhibition of Src/Vav2 attenuated the HSG-mediated RhoA activation and EC proliferation but exhibited nominal effects on ECs on LSG. Septin 9 (SEPT9), the negative upstream effector for RhoA, was significantly higher in ECs on LSG. The inhibition of SEPT9 increased RhoA activation, Src/Vav2 phosphorylations, and EC proliferation on LSG, but showed minor effects on ECs on HSG. We further demonstrated that the inactivation of integrin αvβ3 caused an increase of SEPT9 expression in ECs on HSG to attenuate Src/Vav2 phosphorylations and inhibit RhoA-dependent EC proliferation. These results demonstrate that the SEPT9/Src/Vav2/RhoA pathway constitutes an important molecular mechanism for the mechanical regulation of EC proliferation. PMID:23118862

  7. Matrix stiffness regulates endothelial cell proliferation through septin 9.

    Directory of Open Access Journals (Sweden)

    Yi-Ting Yeh

    Full Text Available Endothelial proliferation, which is an important process in vascular homeostasis, can be regulated by the extracellular microenvironment. In this study we demonstrated that proliferation of endothelial cells (ECs was enhanced on hydrogels with high stiffness (HSG, 21.5 kPa in comparison to those with low stiffness (LSG, 1.72 kPa. ECs on HSG showed markedly prominent stress fibers and a higher RhoA activity than ECs on LSG. Blockade of RhoA attenuated stress fiber formation and proliferation of ECs on HSG, but had little effect on ECs on LSG; enhancement of RhoA had opposite effects. The phosphorylations of Src and Vav2, which are positive RhoA upstream effectors, were higher in ECs on HSG. The inhibition of Src/Vav2 attenuated the HSG-mediated RhoA activation and EC proliferation but exhibited nominal effects on ECs on LSG. Septin 9 (SEPT9, the negative upstream effector for RhoA, was significantly higher in ECs on LSG. The inhibition of SEPT9 increased RhoA activation, Src/Vav2 phosphorylations, and EC proliferation on LSG, but showed minor effects on ECs on HSG. We further demonstrated that the inactivation of integrin α(vβ(3 caused an increase of SEPT9 expression in ECs on HSG to attenuate Src/Vav2 phosphorylations and inhibit RhoA-dependent EC proliferation. These results demonstrate that the SEPT9/Src/Vav2/RhoA pathway constitutes an important molecular mechanism for the mechanical regulation of EC proliferation.

  8. Nylon-3 polymers that enable selective culture of endothelial cells.

    Science.gov (United States)

    Liu, Runhui; Chen, Xinyu; Gellman, Samuel H; Masters, Kristyn S

    2013-11-06

    Substrates that selectively encourage the growth of specific cell types are valuable for the engineering of complex tissues. Some cell-selective peptides have been identified from extracellular matrix proteins; these peptides have proven useful for biomaterials-based approaches to tissue repair or regeneration. However, there are very few examples of synthetic materials that display selectivity in supporting cell growth. We describe nylon-3 polymers that support in vitro culture of endothelial cells but do not support the culture of smooth muscle cells or fibroblasts. These materials may be promising for vascular biomaterials applications.

  9. An Important Method in the Investigation of Vascular Pathologies: Endothelial Cell Culture

    Directory of Open Access Journals (Sweden)

    Yusufhan Yazır

    2012-12-01

    Full Text Available Endothelial cells line the interior surface of blood vessels and form an interface between circulating blood in the lumen and the rest of the vessel wall. Endothelial cells are involved in many aspects of vascular biology, including barrier function, vasoconstriction, coagulation and inflamation. The endothelial cells in different organs have different functions and surface phenotype. These cells express prostoglandin-I2, platelet activating factor, collagen, endothelin-1, laminin, fibronectin and growth factors including platelet derived growth factor, fibroblast growth factor. İn the cell culture, cells can be isolated, maintened and proliferate in the laboratory conditions. The techniques of the cell culture have allowed scientists to use the cells in vitro for experimental studies, such as the production of vaccine, antibody and enzime, drug research, cell-cell interactions. Human umbilical vein endothelial cell is a good source for endothelial cell, because it is cheaper, easy to find and has the basic features of the normal endothelial cells.

  10. Arterial identity of endothelial cells is controlled by local cues.

    Science.gov (United States)

    Othman-Hassan, K; Patel, K; Papoutsi, M; Rodriguez-Niedenführ, M; Christ, B; Wilting, J

    2001-09-15

    The ephrins and their Eph receptors comprise the largest family of receptor tyrosine kinases. Studies on mice have revealed an important function of ephrin-B2 and Eph-B4 for the development of the arterial and venous vasculature, respectively, but the mechanisms regulating their expression have not been studied yet. We have cloned a chick ephrin-B2 cDNA probe. Expression was observed in endothelial cells of extra- and intraembryonic arteries and arterioles in all embryos studied from day 2 (stage 10 HH, before perfusion of the vessels) to day 16. Additionally, expression was found in the somites and neural tube in early stages, and later also in the smooth muscle cells of the aorta, parts of the Müllerian duct, dosal neural tube, and joints of the limbs. We isolated endothelial cells from the internal carotid artery and the vena cava of 14-day-old quail embryos and grafted them separately into day-3 chick embryos. Reincubation was performed until day 6 and the quail endothelial cells were identified with the QH1 antibody. The grafted arterial and venous endothelial cells expressed ephrin-B2 when they integrated into the lining of arteries. Cells that were not integrated into vessels, or into vessels other than arteries, were ephrin-B2-negative. The studies show that the expression of the arterial marker ephrin-B2 is controlled by local cues in arterial vessels of older embryos. Physical forces or the media smooth muscle cells may be involved in this process.

  11. Adhesion of different cell cycle human hepatoma cells to endothelial cells and roles of integrin β1

    Institute of Scientific and Technical Information of China (English)

    Guan-Bin Song; Jian Qin; Qing Luo; Xiao-Dong Shen; Run-Bin Yan; Shao-Xi Cai

    2005-01-01

    AIM: To investigate the adhesive mechanical properties of different cell cycle human hepatoma cells (SMMC-7721)to human umbilical vein endothelial cells (ECV-304),expression of adhesive molecule integrinβ1 in SMMC-7721cells and its contribution to this adhesive course.METHODS: Adhesive force of SMMC-7721 cells to endothelialcells was measured using micropipette aspiration technique.Synchronous G1 and S phase SMMC-7721 cells wereachieved by thymine-2-deoxyriboside and colchicinessequential blockage method and double thymine-2-deoxyriboside blockage method, respectively. Synchronousrates of SMMC-7721 cells and expression of integrinβ1 inSMMC-7721 cells were detected by flow cytometer.RESULTS: The percentage of cell cycle phases of generalSMMC-7721 cells was 11.01% in G2/M phases, 53.51% inG0/G1 phase, and 35.48% in S phase. The synchronous ratesof G1 and S phase SMMC-7721 cells amounted to 74.09%and 98.29%, respectively. The adhesive force of SMMC-7721cells to endothelial cells changed with the variations ofadhesive time and presented behavior characteristics ofadhesion and de-adhesion. S phase SMMC-7721 cells had higheradhesive forces than G1 phase cells [(307.65±92.10)× 10-10Nvs (195.42±60.72)×10-10N, P<0.01]. The expressivefluorescent intensity of integrinβ1 in G1 phase SMMC-7721cells was depressed more significantly than the values ofS phase and general SMMC-7721cells. The contribution ofadhesive integrinβ1 was about 53% in this adhesive course.CONCLUSION: SMMC-7721 cells can be synchronizedpreferably in G1 and S phases with thymine-2-deoxyribosideand colchicines. The adhesive molecule integrinβ1 expressesa high level in SMMC-7721 cells and shows differences invarious cell cycles, suggesting integrin β1 plays an importantrole in adhesion to endothelial cells. The change of adhesiveforces in different cell cycle SMMC-7721 cells indicatesthat S phase cells play predominant roles possibly whilethey interact with endothelial cells.

  12. Signal transduction pathways in mast cell granule-mediated endothelial cell activation

    Directory of Open Access Journals (Sweden)

    Luqi Chi

    2003-01-01

    Full Text Available Background: We have previously shown that incubation of human endothelial cells with mast cell granules results in potentiation of lipopolysaccharide-induced production of interleukin-6 and interleukin-8.

  13. Isolation of Endothelial Cells and Vascular Smooth Muscle Cells from Internal Mammary Artery Tissue

    Science.gov (United States)

    Moss, Stephanie C.; Bates, Michael; Parrino, Patrick E.; Woods, T. Cooper

    2007-01-01

    Analyses of vascular smooth muscle cell and endothelial cell function through tissue culture techniques are often employed to investigate the underlying mechanisms regulating cardiovascular disease. As diseases such as diabetes mellitus and chronic kidney disease increase a patient's risk of cardiovascular disease, the development of methods for examining the effects of these diseases on vascular smooth muscle cells and endothelial cells is needed. Commercial sources of endothelial cells and vascular smooth muscle cells generally provide minimal donor information and are in limited supply. This study was designed to determine if vascular smooth muscle cells and endothelial cells could be isolated from human internal mammary arteries obtained from donors undergoing coronary artery bypass graft surgery. As coronary artery bypass graft surgery is a commonly performed procedure, this method would provide a new source for these cells that when combined with the donor's medical history will greatly enhance our studies of the effects of complicating diseases on vascular biology. Internal mammary artery tissue was obtained from patients undergoing coronary artery bypass graft surgery. Through a simple method employing two separate tissue digestions, vascular smooth muscle cells and endothelial cells were isolated and characterized. The isolated vascular smooth muscle cells and endothelial cells exhibited the expected morphology and were able to be passaged for further analysis. The vascular smooth muscle cells exhibited positive staining for α-smooth muscle actin and the endothelial cells exhibited positive staining for CD31. The overall purity of the isolations was > 95%. This method allows for the isolation of endothelial cells and vascular smooth muscle cells from internal mammary arteries, providing a new tool for investigations into the interplay of vascular diseases and complicating diseases such as diabetes and kidney disease. PMID:21603530

  14. Innovative Flow Cytometry Allows Accurate Identification of Rare Circulating Cells Involved in Endothelial Dysfunction

    Science.gov (United States)

    Boraldi, Federica; Bartolomeo, Angelica; De Biasi, Sara; Orlando, Stefania; Costa, Sonia; Cossarizza, Andrea; Quaglino, Daniela

    2016-01-01

    Introduction Although rare, circulating endothelial and progenitor cells could be considered as markers of endothelial damage and repair potential, possibly predicting the severity of cardiovascular manifestations. A number of studies highlighted the role of these cells in age-related diseases, including those characterized by ectopic calcification. Nevertheless, their use in clinical practice is still controversial, mainly due to difficulties in finding reproducible and accurate methods for their determination. Methods Circulating mature cells (CMC, CD45-, CD34+, CD133-) and circulating progenitor cells (CPC, CD45dim, CD34bright, CD133+) were investigated by polychromatic high-speed flow cytometry to detect the expression of endothelial (CD309+) or osteogenic (BAP+) differentiation markers in healthy subjects and in patients affected by peripheral vascular manifestations associated with ectopic calcification. Results This study shows that: 1) polychromatic flow cytometry represents a valuable tool to accurately identify rare cells; 2) the balance of CD309+ on CMC/CD309+ on CPC is altered in patients affected by peripheral vascular manifestations, suggesting the occurrence of vascular damage and low repair potential; 3) the increase of circulating cells exhibiting a shift towards an osteoblast-like phenotype (BAP+) is observed in the presence of ectopic calcification. Conclusion Differences between healthy subjects and patients with ectopic calcification indicate that this approach may be useful to better evaluate endothelial dysfunction in a clinical context. PMID:27560136

  15. Antiproliferative Effects of Drugs on Endothelial and Osteoblastic Cells and Altered Release of Angioregulatory Mediators by Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Hilde Kvestad

    2014-01-01

    Full Text Available The combined use of the histone deacetylase inhibitor valproic acid (VPA, the retinoic acid receptor-α agonist all-trans retinoic acid (ATRA, and the deoxyribonucleic acid polymerase-α inhibitor cytarabine (Ara-C is now considered for disease-stabilizing treatment of acute myeloid leukemia (AML. Leukemogenesis and leukemia cell chemoresistance seem to be supported by neighbouring stromal cells in the bone marrow, and we have therefore investigated the effects of these drugs on primary human endothelial cells and the osteoblastic Cal72 cell line. The results show that VPA and Ara-C have antiproliferative effects, and the antiproliferative/cytotoxic effect of Ara-C was seen at low concentrations corresponding to serum levels found during low-dose in vivo treatment. Furthermore, in functional assays of endothelial migration and tube formation VPA elicited an antiangiogenic effect, whereas ATRA elicited a proangiogenic effect. Finally, VPA and ATRA altered the endothelial cell release of angiogenic mediators; ATRA increased levels of CXCL8, PDGF-AA, and VEGF-D, while VPA decreased VEGF-D and PDGF-AA/BB levels and both drugs reduced MMP-2 levels. Several of these mediators can enhance AML cell proliferation and/or are involved in AML-induced bone marrow angiogenesis, and direct pharmacological effects on stromal cells may thus indirectly contribute to the overall antileukemic activity of this triple drug combination.

  16. Suprabasin as a novel tumor endothelial cell marker

    Science.gov (United States)

    Alam, Mohammad T; Nagao-Kitamoto, Hiroko; Ohga, Noritaka; Akiyama, Kosuke; Maishi, Nako; Kawamoto, Taisuke; Shinohara, Nobuo; Taketomi, Akinobu; Shindoh, Masanobu; Hida, Yasuhiro; Hida, Kyoko

    2014-01-01

    Recent studies have reported that stromal cells contribute to tumor progression. We previously demonstrated that tumor endothelial cells (TEC) characteristics were different from those of normal endothelial cells (NEC). Furthermore, we performed gene profile analysis in TEC and NEC, revealing that suprabasin (SBSN) was upregulated in TEC compared with NEC. However, its role in TEC is still unknown. Here we showed that SBSN expression was higher in isolated human and mouse TEC than in NEC. SBSN knockdown inhibited the migration and tube formation ability of TEC. We also showed that the AKT pathway was a downstream factor of SBSN. These findings suggest that SBSN is involved in the angiogenic potential of TEC and may be a novel TEC marker. PMID:25283635

  17. Brain microvascular endothelial cell transplantation ameliorates ischemic white matter damage.

    Science.gov (United States)

    Puentes, Sandra; Kurachi, Masashi; Shibasaki, Koji; Naruse, Masae; Yoshimoto, Yuhei; Mikuni, Masahiko; Imai, Hideaki; Ishizaki, Yasuki

    2012-08-21

    Ischemic insults affecting the internal capsule result in sensory-motor disabilities which adversely affect the patient's life. Cerebral endothelial cells have been reported to exert a protective effect against brain damage, so the transplantation of healthy endothelial cells might have a beneficial effect on the outcome of ischemic brain damage. In this study, endothelin-1 (ET-1) was injected into the rat internal capsule to induce lacunar infarction. Seven days after ET-1 injection, microvascular endothelial cells (MVECs) were transplanted into the internal capsule. Meningeal cells or 0.2% bovine serum albumin-Hank's balanced salt solution were injected as controls. Two weeks later, the footprint test and histochemical analysis were performed. We found that MVEC transplantation improved the behavioral outcome based on recovery of hind-limb rotation angle (P<0.01) and induced remyelination (P<0.01) compared with the control groups. Also the inflammatory response was repressed by MVEC transplantation, judging from fewer ED-1-positive activated microglial cells in the MVEC-transplanted group than in the other groups. Elucidation of the mechanisms by which MVECs ameliorate ischemic damage of the white matter may provide important information for the development of effective therapies for white matter ischemia.

  18. Coniferyl Aldehyde Ameliorates Radiation Intestine Injury via Endothelial Cell Survival

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ye Ji; Jung, Myung Gu; Lee, Yoonjin; Lee, Haejune [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Lee, Yunsil [Ewha Woman' s Univ., Seoul (Korea, Republic of); Ko, Younggyu [Korea Univ., Seoul (Korea, Republic of)

    2014-05-15

    Cancer treatments related gastrointestinal toxicity has also been recognized as a significant economic burden. Especially, extensive apoptosis of microvascular endothelial cell of the lamina propria is the primary lesion initiating intestinal radiation damage after abdominal radiation therapy. Coniferyl aldehyde (CA) is phenolic compounds isolated from cork stoppers, and one of the major pyrolysis products of lignin. Shi H. was support for the empirical use of CA as a medicinal food for cardiovascular diseases. CA has positive effect in broad way but there is no consequence in radiation induced intestine damage. Here, we investigate effect of CA on small intestine after abdominal IR to mice in this study. In this study, CA increased the survival rate in C3H mice against 13.5 Gy abdominal IR. We found CA protects small intestine via preventing endothelial cell apoptosis and enhancing their angiogenic activity. CA also showed protective effect on crypt cell survival. Endothelial cell survival may affect crypt cell protection against IR. From this data, we concluded that CA is effective for protection against abdominal radiation injury. CA could ameliorate side-effect of radiation therapy.

  19. Pharmacologically active microcarriers for endothelial progenitor cell support and survival.

    Science.gov (United States)

    Musilli, Claudia; Karam, Jean-Pierre; Paccosi, Sara; Muscari, Claudio; Mugelli, Alessandro; Montero-Menei, Claudia N; Parenti, Astrid

    2012-08-01

    The regenerative potential of endothelial progenitor cell (EPC)-based therapies is limited due to poor cell viability and minimal retention following application. Neovascularization can be improved by means of scaffolds supporting EPCs. The aim of the present study was to investigate whether human early EPCs (eEPCs) could be efficiently cultured on pharmacologically active microcarriers (PAMs), made with poly(d,l-lactic-coglycolic acid) and coated with adhesion/extracellular matrix molecules. They may serve as a support for stem cells and may be used as cell carriers providing a controlled delivery of active protein such as the angiogenic factor, vascular endothelial growth factor-A (VEGF-A). eEPC adhesion to fibronectin-coated PAMs (FN-PAMs) was assessed by means of microscopic evaluation and by means of Alamar blue assay. Phospho ERK(1/2) and PARP-1 expression was measured by means of Western blot to assess the survival effects of FN-PAMs releasing VEGF-A (FN-VEGF-PAMs). The Alamar blue assay or a modified Boyden chamber assay was employed to assess proliferative or migratory capacity, respectively. Our data indicate that eEPCs were able to adhere to empty FN-PAMs within a few hours. FN-VEGF-PAMs increased the ability of eEPCs to adhere to them and strongly supported endothelial-like phenotype and cell survival. Moreover, the release of VEGF-A by FN-PAMs stimulated in vitro HUVEC migration and proliferation. These data strongly support the use of PAMs for supporting eEPC growth and survival and for stimulating resident mature human endothelial cells.

  20. Protection of Candida parapsilosis from neutrophil killing through internalization by human endothelial cells.

    Science.gov (United States)

    Glass, Kyle A; Longley, Sarah J; Bliss, Joseph M; Shaw, Sunil K

    2015-01-01

    Candida parapsilosis is a fungal pathogen that is associated with hematogenously disseminated disease in premature neonates, acutely ill or immunocompromised patients. In cell culture, C. parapsilosis cells are actively and avidly endocytosed by endothelial cells via actin polymerization mediated by N-WASP. Here we present evidence that C. parapsilosis that were internalized by endothelial cells remained alive, and avoided being acidified or otherwise damaged via the host cell. Internalized fungal cells reproduced intracellularly and eventually burst out of the host endothelial cell. When neutrophils were added to endothelium and C. parapsilosis, they patrolled the endothelial surface and efficiently killed most adherent fungal cells prior to endocytosis. But after endocytosis by endothelial cells, internalized fungal cells evaded neutrophil killing. Silencing endothelial N-WASP blocked endocytosis of C. parapsilosis and left fungal cells stranded on the cell surface, where they were susceptible to neutrophil killing. These observations suggest that for C. parapsilosis to escape from the bloodstream, fungi may adhere to and be internalized by endothelial cells before being confronted and phagocytosed by a patrolling leukocyte. Once internalized by endothelial cells, C. parapsilosis may safely replicate to cause further rounds of infection. Immunosurveillance of the intravascular lumen by leukocytes crawling on the endothelial surface and rapid killing of adherent yeast may play a major role in controlling C. parapsilosis dissemination and infected endothelial cells may be a significant reservoir for fungal persistence.

  1. Effect of Mitomycin-C augmented trabeculectomy on corneal endothelial cells

    Directory of Open Access Journals (Sweden)

    Reza Zarei

    2015-01-01

    Conclusion: MMC application in trabeculectomy seems to cause a small but significant corneal endothelial loss. Most of the damage occurs intraoperatively, or in the early postoperative period, however progressive endothelial cell loss is not a major concern.

  2. A microarray analysis of two distinct lymphatic endothelial cell populations

    Directory of Open Access Journals (Sweden)

    Bernhard Schweighofer

    2015-06-01

    Full Text Available We have recently identified lymphatic endothelial cells (LECs to form two morphologically different populations, exhibiting significantly different surface protein expression levels of podoplanin, a major surface marker for this cell type. In vitro shockwave treatment (IVSWT of LECs resulted in enrichment of the podoplaninhigh cell population and was accompanied by markedly increased cell proliferation, as well as 2D and 3D migration. Gene expression profiles of these distinct populations were established using Affymetrix microarray analyses. Here we provide additional details about our dataset (NCBI GEO accession number GSE62510 and describe how we analyzed the data to identify differently expressed genes in these two LEC populations.

  3. Role of vascular peroxidase 1 in senescence of endothelial cells in diabetes rats.

    Science.gov (United States)

    Liu, Si-Yu; Yuan, Qiong; Li, Xiao-Hui; Hu, Chang-Ping; Hu, Rong; Zhang, Guo-Gang; Li, Dai; Li, Yuan-Jian

    2015-10-15

    Reactive oxygen species (ROS) is thought as a major reason of vascular injury in diabetes. Vascular peroxidase 1 (VPO1) is a newly found peroxidase playing an important role in inducing oxidative stress. In the present experiment, we tested the role of VPO1 in senescence of endothelial cells in streptozotocin (STZ)-induced diabetic rats and cultured endothelial cells. Blood samples were collected from carotid arteries. Vasodilator responses to acetylcholine (Ach) in the isolated aortic rings were measured, serum concentration of glucose, tumor necrosis factor-α (TNF-α) and monocyte chemoattractant protein-1 (MCP-1) and the expression of VPO1 in the aorta were determined. Endothelial cells were treated with high glucose or H2O2, the concentrations of MCP-1, TNF-α and hypochlorous acid (HOCl) and the expression of VPO1 were determined. shRNA of VPO1 was used for mechanism research in cultured cells. Vasodilator responses to Ach were impaired markedly and the serum concentrations of glucose, TNF-α and MCP-1 were significantly increased in diabetic rats. The expression of VPO1 in the aorta was upregulated in diabetic rats. High glucose treatment significantly decreased cell viability and elevated the levels of MCP-1, TNF-α and HOCl and upregulated the expression of VPO1. H2O2 treatment significantly induced cellular senescence, inhibited eNOS expression and NO production. The effects of high glucose and H2O2 were attenuated by shRNA interference of VPO1. VPO1 plays an important role in senescence of endothelial cells and endothelial dysfunction by induction of oxidative stress and inflammatory reaction in type 2 diabetic rats. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Microfluidically supported biochip design for culture of endothelial cell layers with improved perfusion conditions.

    Science.gov (United States)

    Raasch, Martin; Rennert, Knut; Jahn, Tobias; Peters, Sven; Henkel, Thomas; Huber, Otmar; Schulz, Ingo; Becker, Holger; Lorkowski, Stefan; Funke, Harald; Mosig, Alexander

    2015-01-01

    Hemodynamic forces generated by the blood flow are of central importance for the function of endothelial cells (ECs), which form a biologically active cellular monolayer in blood vessels and serve as a selective barrier for macromolecular permeability. Mechanical stimulation of the endothelial monolayer induces morphological remodeling in its cytoskeleton. For in vitro studies on EC biology culture devices are desirable that simulate conditions of flow in blood vessels and allow flow-based adhesion/permeability assays under optimal perfusion conditions. With this aim we designed a biochip comprising a perfusable membrane that serves as cell culture platform multi-organ-tissue-flow (MOTiF biochip). This biochip allows an effective supply with nutrition medium, discharge of catabolic cell metabolites and defined application of shear stress to ECs under laminar flow conditions. To characterize EC layers cultured in the MOTiF biochip we investigated cell viability, expression of EC marker proteins and cell adhesion molecules of ECs dynamically cultured under low and high shear stress, and compared them with an endothelial culture in established two-dimensionally perfused flow chambers and under static conditions. We show that ECs cultured in the MOTiF biochip form a tight EC monolayer with increased cellular density, enhanced cell layer thickness, presumably as the result of a rapid and effective adaption to shear stress by remodeling of the cytoskeleton. Moreover, endothelial layers in the MOTiF biochip express higher amounts of EC marker proteins von-Willebrand-factor and PECAM-1. EC layers were highly responsive to stimulation with TNFα as detected at the level of ICAM-1, VCAM-1 and E-selectin expression and modulation of endothelial permeability in response to TNFα/IFNγ treatment under flow conditions. Compared to static and two-dimensionally perfused cell culture condition we consider MOTiF biochips as a valuable tool for studying EC biology in vitro under

  5. Impact of temporary hyperthermia on corneal endothelial cell survival during organ culture preservation.

    Science.gov (United States)

    Schroeter, Jan; Ruggeri, Alfredo; Thieme, Hagen; Meltendorf, Christian

    2015-05-01

    To evaluate temporary exposure to hyperthermia for its impact on endothelial cell density of porcine corneas in organ culture medium containing dextran with regards to possible negative influences of high temperatures during the storage and transport of corneal grafts. Four groups of central discs (diameter 8 mm) from the corneas of both eyes in 40 pigs were first organ-cultured (MEM with 6% dextran 500) for 24 h at 32°C. Ten corneas were then exposed to 40°C in group 1, to 42°C in group 2, to 44°C in group 3, and to 50°C in group 4 for 12 h each. The paired corneal discs for all groups were not treated, stored at 32°C and served as controls. After further organ culture of all corneas for 48 h at 32°C to allow regenerative processes, corneal endothelium was stained with Alizarin Red S and examined by light microscopy. The endothelial cell densities were determined on three central images using a system for the automatic estimation of morphometric parameters of corneal endothelium. Exposure for 12 h to 40°C as well as to 42°C induced no endothelial cell loss. Statistical analysis showed no significant difference of the endothelial cell density between corneas exposed to 40°C and 42°C and the control corneas (40°C treatment: 4736 ± 426 cells/mm(2) and control: 4762 ± 344 cells/mm(2), p = 0.74; 42°C treatment: 4240 ± 363 cells/mm(2) and control: 4176 ± 448 cells/mm(2), p = 0.40). Exposure to 44°C and 50°C lead to total necrosis of the endothelial cell layer. Exposure of organ cultured porcine corneas in dextran containing medium up to 42°C for 12 h does not compromise the endothelial cell density in a clinically relevant manner. Temperatures above 42°C, as it might be the case during transports from the cornea bank to the ophthalmic surgeon, must be strictly avoided as they damage the endothelial cell layer.

  6. Amino acids and metal ions protect endothelial cells from lethal injury

    Energy Technology Data Exchange (ETDEWEB)

    Varani, J.; Ginsburg, I.; Johnson, K.J.; Gibbs, D.F.; Weinberg, J.M.; Ward, P.A. (Univ. of Michigan, Ann Arbor (United States))

    1991-03-11

    Killing of rat pulmonary artery endothelial cells by activated neutrophils is dependent on generation of hydrogen peroxide and its conversion to a highly toxic radical (presumably the hydroxyl radical) in a ferrous iron-dependent reaction. Glycine (as well as several other amino acids) is capable of inhibiting endothelial cell killing in vitro by either activated neutrophils or reagent hydrogen peroxide. Inhibition of killing is enhanced in the presence of micromolar concentrations of manganous ion (Mn2+). The combined effects of glycine and Mn2+ require concomitant presence of bicarbonate ion and is inhibited by high phosphate levels. Glycine can also protect endothelial cells from lethal injury inducted by ionomycin. There appears to be no enhancement with Mn2+, however against this form of lethal injury. The protective effects of glycine, Mn2+ and bicarbonate ion against injury by hydrogen peroxide is associated with a direct disproportionation of the hydrogen peroxide to water with little generation of molecular oxygen. Either glycine or Mn2+ alone does not have this effect. In addition to protecting endothelial cells from hydrogen peroxide-mediated injury, glycine or MN2+ is almost completely protective. Additionally, treatment of rats with concentrations of EDTA that do not by themselves induce injury greatly accentuates lung injury induced by glucose oxidase. These findings suggest that circulating amino acids in combination with Mn2+ and bicarbonate ions may contribute to the normal anti-oxidant barrier. These findings may also form the basis for a possible new therapeutic approach to oxygen radical-mediated injury.

  7. Mechanical cell-matrix feedback explains pairwise and collective endothelial cell behavior in vitro.

    Directory of Open Access Journals (Sweden)

    René F M van Oers

    2014-08-01

    Full Text Available In vitro cultures of endothelial cells are a widely used model system of the collective behavior of endothelial cells during vasculogenesis and angiogenesis. When seeded in an extracellular matrix, endothelial cells can form blood vessel-like structures, including vascular networks and sprouts. Endothelial morphogenesis depends on a large number of chemical and mechanical factors, including the compliancy of the extracellular matrix, the available growth factors, the adhesion of cells to the extracellular matrix, cell-cell signaling, etc. Although various computational models have been proposed to explain the role of each of these biochemical and biomechanical effects, the understanding of the mechanisms underlying in vitro angiogenesis is still incomplete. Most explanations focus on predicting the whole vascular network or sprout from the underlying cell behavior, and do not check if the same model also correctly captures the intermediate scale: the pairwise cell-cell interactions or single cell responses to ECM mechanics. Here we show, using a hybrid cellular Potts and finite element computational model, that a single set of biologically plausible rules describing (a the contractile forces that endothelial cells exert on the ECM, (b the resulting strains in the extracellular matrix, and (c the cellular response to the strains, suffices for reproducing the behavior of individual endothelial cells and the interactions of endothelial cell pairs in compliant matrices. With the same set of rules, the model also reproduces network formation from scattered cells, and sprouting from endothelial spheroids. Combining the present mechanical model with aspects of previously proposed mechanical and chemical models may lead to a more complete understanding of in vitro angiogenesis.

  8. Differences in Cell Activation by Chlamydophila pneumoniae and Chlamydia trachomatis Infection in Human Endothelial Cells

    Science.gov (United States)

    Krüll, M.; Kramp, J.; Petrov, T.; Klucken, A. C.; Hocke, A. C.; Walter, C.; Schmeck, B.; Seybold, J.; Maass, M.; Ludwig, S.; Kuipers, Jens G.; Suttorp, N.; Hippenstiel, S.

    2004-01-01

    Seroepidemiological studies and demonstration of viable bacteria in atherosclerotic plaques have linked Chlamydophila pneumoniae infection to the development of chronic vascular lesions and coronary heart disease. In this study, we characterized C. pneumoniae-mediated effects on human endothelial cells and demonstrated enhanced phosphorylation and activation of the endothelial mitogen-activated protein kinase (MAPK) family members extracellular receptor kinase (ERK1/2), p38-MAPK, and c-Jun-NH2 kinase (JNK). Subsequent interleukin-8 (IL-8) expression was dependent on p38-MAPK and ERK1/2 activation as demonstrated by preincubation of endothelial cells with specific inhibitors for the p38-MAPK (SB202190) or ERK (U0126) pathway. Inhibition of either MAPK had almost no effect on intercellular cell adhesion molecule 1 (ICAM-1) expression. While Chlamydia trachomatis was also able to infect endothelial cells, it did not induce the expression of endothelial IL-8 or ICAM-1. These effects were specific for a direct stimulation with viable C. pneumoniae and independent of paracrine release of endothelial cell-derived mediators like platelet-activating factor, NO, prostaglandins, or leukotrienes. Thus, C. pneumoniae triggers an early signal transduction cascade in target cells that could lead to endothelial cell activation, inflammation, and thrombosis, which in turn may result in or promote atherosclerosis. PMID:15501794

  9. Cell Communication in a Coculture System Consisting of Outgrowth Endothelial Cells and Primary Osteoblasts

    Directory of Open Access Journals (Sweden)

    David Paul Eric Herzog

    2014-01-01

    Full Text Available Bone tissue is a highly vascularized and dynamic system with a complex construction. In order to develop a construct for implant purposes in bone tissue engineering, a proper understanding of the complex dependencies between different cells and cell types would provide further insight into the highly regulated processes during bone repair, namely, angiogenesis and osteogenesis, and might result in sufficiently equipped constructs to be beneficial to patients and thereby accomplish their task. This study is based on an in vitro coculture model consisting of outgrowth endothelial cells and primary osteoblasts and is currently being used in different studies of bone repair processes with special regard to angiogenesis and osteogenesis. Coculture systems of OECs and pOBs positively influence the angiogenic potential of endothelial cells by inducing the formation of angiogenic structures in long-term cultures. Although many studies have focused on cell communication, there are still numerous aspects which remain poorly understood. Therefore, the aim of this study is to investigate certain growth factors and cell communication molecules that are important during bone repair processes. Selected growth factors like VEGF, angiopoietins, BMPs, and IGFs were investigated during angiogenesis and osteogenesis and their expression in the cultures was observed and compared after one and four weeks of cultivation. In addition, to gain a better understanding on the origin of different growth factors, both direct and indirect coculture strategies were employed. Another important focus of this study was to investigate the role of “gap junctions,” small protein pores which connect adjacent cells. With these bridges cells are able to exchange signal molecules, growth factors, and other important mediators. It could be shown that connexins, the gap junction proteins, were located around cell nuclei, where they await their transport to the cell membrane. In

  10. Selective HDAC6 inhibition prevents TNF-α-induced lung endothelial cell barrier disruption and endotoxin-induced pulmonary edema.

    Science.gov (United States)

    Yu, Jinyan; Ma, Zhongsen; Shetty, Sreerama; Ma, Mengshi; Fu, Jian

    2016-07-01

    Lung endothelial damage contributes to the pathogenesis of acute lung injury. New strategies against lung endothelial barrier dysfunction may provide therapeutic benefits against lung vascular injury. Cell-cell junctions and microtubule cytoskeleton are basic components in maintaining endothelial barrier integrity. HDAC6, a deacetylase primarily localized in the cytoplasm, has been reported to modulate nonnuclear protein function through deacetylation. Both α-tubulin and β-catenin are substrates for HDAC6. Here, we examined the effects of tubastatin A, a highly selective HDAC6 inhibitor, on TNF-α induced lung endothelial cell barrier disruption and endotoxin-induced pulmonary edema. Selective HDAC6 inhibition by tubastatin A blocked TNF-α-induced lung endothelial cell hyperpermeability, which was associated with increased α-tubulin acetylation and microtubule stability. Tubastatin A pretreatment inhibited TNF-α-induced endothelial cell contraction and actin stress fiber formation with reduced myosin light chain phosphorylation. Selective HDAC6 inhibition by tubastatin A also induced β-catenin acetylation in human lung endothelial cells, which was associated with increased membrane localization of β-catenin and stabilization of adherens junctions. HDAC6 knockdown by small interfering RNA also prevented TNF-α-induced barrier dysfunction and increased α-tubulin and β-catenin acetylation in endothelial cells. Furthermore, in a mouse model of endotoxemia, tubastatin A was able to prevent endotoxin-induced deacetylation of α-tubulin and β-catenin in lung tissues, which was associated with reduced pulmonary edema. Collectively, our data indicate that selective HDAC6 inhibition by tubastatin A is a potent approach against lung endothelial barrier dysfunction.

  11. Histone Deacetylase (HDAC Inhibitors Down-Regulate Endothelial Lineage Commitment of Umbilical Cord Blood Derived Endothelial Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Horia Maniu

    2012-11-01

    Full Text Available To test the involvement of histone deacetylases (HDACs activity in endothelial lineage progression, we investigated the effects of HDAC inhibitors on endothelial progenitors cells (EPCs derived from umbilical cord blood (UCB. Adherent EPCs, that expressed the endothelial marker proteins (PCAM-1, CD105, CD133, and VEGFR2 revealed by flow cytometry were treated with three HDAC inhibitors: Butyrate (BuA, Trichostatin A (TSA, and Valproic acid (VPA. RT-PCR assay showed that HDAC inhibitors down-regulated the expression of endothelial genes such as VE-cadherin, CD133, CXCR4 and Tie-2. Furthermore, flow cytometry analysis illustrated that HDAC inhibitors selectively reduce the expression of VEGFR2, CD117, VE-cadherin, and ICAM-1, whereas the expression of CD34 and CD45 remained unchanged, demonstrating that HDAC is involved in endothelial differentiation of progenitor cells. Real-Time PCR demonstrated that TSA down-regulated telomerase activity probably via suppression of hTERT expression, suggesting that HDAC inhibitor decreased cell proliferation. Cell motility was also decreased after treatment with HDAC inhibitors as shown by wound-healing assay. The balance of acethylation/deacethylation kept in control by the activity of HAT (histone acetyltransferases/HDAC enzymes play an important role in differentiation of stem cells by regulating proliferation and endothelial lineage commitment.

  12. A role for activated endothelial cells in red blood cell clearance: implications for vasopathology

    DEFF Research Database (Denmark)

    Fens, Marcel H A M; van Wijk, Richard; Andringa, Grietje

    2012-01-01

    Background Phosphatidylserine exposure by red blood cells is acknowledged as a signal that initiates phagocytic removal of the cells from the circulation. Several disorders and conditions are known to induce phosphatidylserine exposure. Removal of phosphatidylserine-exposing red blood cells gener...... cells play a role in red blood cell clearance in vivo. Significant erythrophagocytosis can induce endothelial cell loss, which may contribute to vasopathological effects as seen, for instance, in sickle cell disease.......Background Phosphatidylserine exposure by red blood cells is acknowledged as a signal that initiates phagocytic removal of the cells from the circulation. Several disorders and conditions are known to induce phosphatidylserine exposure. Removal of phosphatidylserine-exposing red blood cells...... generally occurs by macrophages in the spleen and liver. Previously, however, we have shown that endothelial cells are also capable of erythrophagocytosis. Key players in the erythrophagocytosis by endothelial cells appeared to be lactadherin and αv-integrin. Phagocytosis via the phosphatidylserine...

  13. “Decoding” angiogenesis: new facets controlling endothelial cell behavior

    Directory of Open Access Journals (Sweden)

    Massimo Mattia Santoro

    2016-07-01

    Full Text Available Angiogenesis, the formation of new blood vessels, is a unique and crucial biological process occurring during both development and adulthood. A better understanding of the mechanisms that regulates such process is mandatory to intervene in pathophysiological conditions. Here we highlight some recent argument on new players that are critical in endothelial cells, by summarizing novel discoveries that regulate notorious vascular pathways such as Vascular Endothelial Growth Factor (VEGF, Notch and Planar Cell Polarity, and by discussing more recent findings that put metabolism, redox signaling and hemodynamic forces as novel unforeseen facets in angiogenesis. These new aspects, that critically regulate angiogenesis and vascular homeostasis in health and diseased, represent unforeseen new ground to develop anti-angiogenic therapies.

  14. Endothelial progenitor cells: Exploring the pleiotropic effects of statins

    Science.gov (United States)

    Sandhu, Kully; Mamas, Mamas; Butler, Robert

    2017-01-01

    Statins have become a cornerstone of risk modification for ischaemic heart disease patients. A number of studies have shown that they are effective and safe. However studies have observed an early benefit in terms of a reduction in recurrent infarct and or death after a myocardial infarction, prior to any significant change in lipid profile. Therefore, pleiotropic mechanisms, other than lowering lipid profile alone, must account for this effect. One such proposed pleiotropic mechanism is the ability of statins to augment both number and function of endothelial progenitor cells. The ability to augment repair and maintenance of a functioning endothelium may have profound beneficial effect on vascular repair and potentially a positive impact on clinical outcomes in patients with cardiovascular disease. The following literature review will discuss issues surrounding endothelial progenitor cell (EPC) identification, role in vascular repair, factors affecting EPC numbers, the role of statins in current medical practice and their effects on EPC number. PMID:28163831

  15. Anti-endothelial cell antibodies in vasculitis: A systematic review.

    Science.gov (United States)

    Legendre, Paul; Régent, Alexis; Thiebault, Mathilde; Mouthon, Luc

    2017-02-01

    Anti-endothelial cell antibodies (AECAs) are those that can bind to endothelial cells (ECs) via variable region-specific interactions. The identification and quantification of AECAs varies depending on the technique used. The best approach would be to combine at least two different methods. Thus, AECA measurement cannot be considered a diagnostic tool, but the detection and titers of AECAs are associated with disease activity in various systemic vasculitis diseases. AECAs have been described in almost all primary systemic vasculitis diseases but also in many secondary vasculitis diseases, with the identification of various antigens. AECAs may play a pathogenic role in vasculitis, both in vitro and in vivo, mainly via EC activation and induction of apoptosis. We used a systematic review of the literature to better define the prevalence, clinical association, targeted antigens, possible pathophysiologic role and clinical usefulness of AECAs in various types of vasculitis. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Endothelial cells of intramuscular (infantile) hemangioma express glut1.

    Science.gov (United States)

    Drut, Ricardo; Altamirano, Eugenia

    2007-04-01

    Glut1 is a marker of infantile hemangioma, and its positivity has resulted in defining this tumor at several sites (eg, skin, breast, salivary glands, liver, and placenta). We herein report on the presence of Glut1 positivity in the endothelial cells of 2 examples of intramuscular hemangioma, a peculiar tumor considered to be most probably congenital. The finding expands the sites where infantile hemangioma may be recognized and suggests that this intramuscular variety should be renamed intramuscular infantile hemangioma. An additional previously unreported finding was the presence of a strong membranous pattern of staining for Glut1 in the intralesional fat cells, a known component of the tumor, which parallels that of another endothelial marker, namely CD34. These findings could prove useful for diagnostic purposes in small biopsies.

  17. Human Brain Microvascular Endothelial Cells and Umbilical Vein Endothelial Cells Differentially Facilitate Leukocyte Recruitment and Utilize Chemokines for T Cell Migration

    Directory of Open Access Journals (Sweden)

    Shumei Man

    2008-01-01

    Full Text Available Endothelial cells that functionally express blood brain barrier (BBB properties are useful surrogates for studying leukocyte-endothelial cell interactions at the BBB. In this study, we compared two different endothelial cellular models: transfected human brain microvascular endothelial cells (THBMECs and human umbilical vein endothelial cells (HUVECs. With each grow under optimal conditions, confluent THBMEC cultures showed continuous occludin and ZO-1 immunoreactivity, while HUVEC cultures exhibited punctate ZO-1 expression at sites of cell-cell contact only. Confluent THBMEC cultures on 24-well collagen-coated transwell inserts had significantly higher transendothelial electrical resistance (TEER and lower solute permeability than HUVECs. Confluent THBMECs were more restrictive for mononuclear cell migration than HUVECs. Only THBMECs utilized abluminal CCL5 to facilitate T-lymphocyte migration in vitro although both THBMECs and HUVECs employed CCL3 to facilitate T cell migration. These data establish baseline conditions for using THBMECs to develop in vitro BBB models for studying leukocyte-endothelial interactions during neuroinflammation.

  18. Stem cell-derived vascular endothelial cells and their potential application in regenerative medicine

    Science.gov (United States)

    Although a 'vascular stem cell' population has not been identified or generated, vascular endothelial and mural cells (smooth muscle cells and pericytes) can be derived from currently known pluripotent stem cell sources, including human embryonic stem cells and induced pluripotent stem cells. We rev...

  19. Liver sinusoidal endothelial cells induce immunosuppressive IL-10-producing Th1 cells via the Notch pathway.

    Science.gov (United States)

    Neumann, Katrin; Rudolph, Christine; Neumann, Christian; Janke, Marko; Amsen, Derk; Scheffold, Alexander

    2015-07-01

    Under homeostasis, liver sinusoidal endothelial cells (LSECs) shift intrahepatic T-cell responses towards tolerance. However, the role of LSECs in the regulation of T-cell-induced liver inflammation is less clear. Here, we studied the capacity of LSECs to modulate pro-inflammatory Th1-cell differentiation in mice. Using in vitro co-culture systems and subsequent cytokine analysis, we showed that LSECs induced high amounts of the anti-inflammatory cytokine IL-10 in developing Th1 cells. These LSEC-stimulated Th1 cells had no pro-inflammatory capacity in vivo but instead actively suppressed an inflammatory Th1-cell-induced delayed-type hypersensitivity reaction. Blockage of IL-10 signaling in vivo inhibited immunosuppressive activity of LSEC-stimulated Th1 cells. We identified the Notch pathway as a mechanism how LSECs trigger IL-10 expression in Th1 cells. LSECs expressed high levels of the Delta-like and Jagged family of Notch ligands and induced expression of the Notch target genes hes-1 and deltex-1 in Th1 cells. Blockade of Notch signaling selectively inhibited IL-10 induction in Th1 cells by LSECs. Our findings suggest that LSEC-induced IL-10 expression in Th1 cells via the Notch pathway may contribute to the control of hepatic inflammatory immune responses by induction of a self-regulatory mechanism in pro-inflammatory Th1 cells.

  20. Platelet Endothelial Cell Adhesion Molecule 1 (PECAM-1/CD31): A Multifunctional Vascular Cell Adhesion Molecule.

    Science.gov (United States)

    Delisser, H M; Baldwin, H S; Albelda, S M

    1997-08-01

    PECAM-1/CD31 is a member of the immunoglobulin gene superfamily found on platelets, leukocytes, and endothelial cells, where it concentrates at cell-cell borders. It has been shown to both mediate cell-cell adhesion through homophilic and heterophilic interactions and to transduce intracellular signals that upregulate the function of integrins on leukocytes. Its cellular distribution and ability to mediate adhesive and signaling phenomena suggested that PECAM-1 was a multifunctional vascular cell adhesion molecule involved in leukocyte-endothelial and endothelial-endothelial interactions. These initial suggestions have been largely confirmed as recent studies have implicated PECAM-1 in the inflammatory process and in the formation of blood vessels. As our understanding of the molecular and functional properties of PECAM-1 grows, new insights will be gained that may have therapeutic implications for cardiovascular development and disease. (Trends Cardiovasc Med 1997;7:203-210). © 1997, Elsevier Science Inc.

  1. Relationship between endothelial cell loss and microcoaxial phacoemulsification parameters in noncomplicated cataract surgery

    Directory of Open Access Journals (Sweden)

    Soliman Mahdy MAE

    2012-03-01

    Full Text Available Mohamed AE Soliman Mahdy1,2, Mohamed Z Eid1, Mahmoud Abdel-Badei Mohammed3, Amr Hafez4,5, Jagdish Bhatia21Ophthalmic Department, Al-Hussein University Hospital, Al-Azhar University, Cairo, Egypt; 2Ophthalmic Department, Rustaq Hospital, Rustaq, Sultanate of Oman; 3Research Institute of Ophthalmology, Cairo, Egypt; 4Magrabi Eye and Ear Center, Muscat, Sultanate of Oman; 5Ophthalmic Department, Al-Azhar University Hospital, Assuit, EgyptPurpose: To assess the relationship between postoperative endothelial cell loss and microcoaxial phaco parameters using Ozil IP (Alcon Laboratories, Inc, Fort Worth, TX in noncomplicated cataract surgery.Methods: In this prospective observational study, 120 consecutive cases of cataract patients with different grades of nuclear hardness underwent microcoaxial phacoemulsification through a 2.2-mm clear corneal incision. An Alcon Infinity Vision System with Ozil IP (Alcon Laboratories was used with an Ozil torsional handpiece and a Kelman-style 45° phacoemulsification tip. Patients underwent preoperative and postoperative central endothelial cell counts.Results: The study included 120 cases of age-related cataract whose mean age (standard deviation [SD] was 59.68 years (9.47. There was a highly statistically significant endothelial cell loss (P < 0.001. The endothelial cell loss ranged 11–1149 cells/mm2 with a median (interquartile range of 386 cells/mm2 (184.5–686 cells/mm2. The percentage of postoperative ECLoss% ranged from 0.48% to 47.8% with a median (interquartile range of 15.4% (7.2% to 26.8%. A significant positive correlation was found between the ECLoss% and different phaco parameters. The Spearman’s rank-order correlation coefficient values, rho, (ρ were as follows: CDE (ρ = 0.425, aspiration time (ρ = 0.176, and volume (ρ = 0.278. Also, ECLoss% was significantly correlated with the grade of nuclear opalescence (Kendall’s tau τ = 0.42.Conclusion: Microcoaxial phacoemulsification was efficient

  2. ENDOTHELIAL PROGENITOR CELLS AS SHUTTLE OF ANTICANCER AGENTS.

    Science.gov (United States)

    Laurenzana, Anna; Margheri, Francesca; Chilla', Anastasia; Biagioni, Alessio; Margheri, Giancarlo; Calorini, Lido; Fibbi, Gabriella; Del Rosso, Mario

    2016-08-08

    Cell therapies are treatments in which stem or progenitor cells are induced to differentiate into the specific cell type required to repair damaged or destroyed tissues. Following their discovery, endothelial progenitor cells (EPCs) have stimulated a worldwide interest as possible vehicles to perform an autologous cell-therapy of tumors. Taking into account the tumor-homing properties of EPCs, two different approaches to control cancer progression have been pursued by combining the cell-based therapy with gene therapy or with nanomedicine. The first one is based on the possibility to engineer EPCs to express different transgenes, the second one on the capacity of EPCs to uptake nanomaterials. Here we will review the most important progresses covering the following issues: the characterization of bona fide endothelial progenitor cells, their role in tumor vascularisation and metastasis, and preclinical data about their use in cell-based tumor therapy, considering anti-angiogenic, suicide, immune-stimulating and oncolytic virus gene-therapy. The mixed approach of EPC cell therapy and nanomedicine will be discussed in terms of plasmonic-dependent thermoablation and molecular imaging.

  3. Corneal endothelial cell density and morphology in Phramongkutklao Hospital

    Directory of Open Access Journals (Sweden)

    Narumon Sopapornamorn

    2008-03-01

    Full Text Available Narumon Sopapornamorn1, Manapon Lekskul1, Suthee Panichkul21Department of Ophthalmology, Phramongkutklao Hospital, Bangkok, Thailand; 2Department of Obstetrics and Gynecology, Phramongkutklao College of Medicine, Bangkok, ThailandObjective: To describe the corneal endothelial density and morphology in patients of Phramongkutklao Hospital and the relationship between endothelial cell parameters and other factors.Methods: Four hundred and four eyes of 202 volunteers were included. Noncontact specular microscopy was performed after taking a history and testing the visual acuity, intraocular pressure measurement, Schirmer’s test and routine eye examination by slit lamp microscope. The studied parameters included mean endothelial cell density (MCD, coefficient of variation (CV, and percentage of hexagonality.Results: The mean age of volunteers was 45.73 years; the range being 20 to 80 years old. Their MCD (SD, mean percentage of CV (SD and mean (SD percentage of hexagonality were 2623.49(325 cell/mm2, 39.43(8.23% and 51.50(10.99%, respectively. Statistically, MCD decreased significantly with age (p < 0.01. There was a significant difference in the percentage of CV between genders. There was no statistical significance between parameters and other factors.Conclusion: The normative data of the corneal endothelium of Thai eyes indicated that, statistically, MCD decreased significantly with age. Previous studies have reported no difference in MCD, percentage of CV, and percentage of hexagonality between gender. Nevertheless, significantly different percentages of CV between genders were presented in this study.Keywords: Corneal endothelial cell, parameters, age, gender, smoking, Thailand

  4. Adherence of human basophils to cultured umbilical vein endothelial cells.

    OpenAIRE

    1988-01-01

    The mechanism by which circulating human basophils adhere to vascular endothelium and migrate to sites of allergic reactions is unknown. Agents have been identified which stimulate the adherence of purified basophils to cultured human umbilical vein vascular endothelial cells (HuVEC). Treatment of HuVEC with interleukin 1, tumor necrosis factor (TNF), bacterial endotoxin, and 12-O-tetradecanoylphorbol-13-acetate (TPA) resulted in time and dose-dependent increases of adhesiveness for basophils...

  5. Directionally Solidified Biopolymer Scaffolds: Mechanical Properties and Endothelial Cell Responses

    OpenAIRE

    Meghri, Nichols W.; Donius, Amalie E.; Riblett, Benjamin W.; Martin, Elizabeth J.; Clyne, Alisa Morss; Wegst, Ulrike G.K.

    2010-01-01

    Vascularization is a primary challenge in tissue engineering. To achieve it in a tissue scaffold, an environment with the appropriate structural, mechanical, and biochemical cues must be provided enabling endothelial cells to direct blood vessel growth. While biochemical stimuli such as growth factors can be added through the scaffold material, the culture medium, or both, a well-designed tissue engineering scaffold is required to provide the necessary local structural and mechanical cues. As...

  6. Colominic acid inhibits the proliferation of cultured bovine aortic endothelial cells and injures their monolayers: cell density-dependent effects prevented by sulfation.

    Science.gov (United States)

    Yamamoto, Chika; Morita, Yuki; Yamaguchi, Shinya; Hayashi, Toshimitsu; Kaji, Toshiyuki

    2006-01-18

    Colominic acid (CA), produced by Escherichia coli K1, is a polymer of sialic acid linked through alpha (2-->8) glycosidic linkages. Although there are several studies on the biological activities of chemically sulfated CA, the activity of CA has been incompletely understood. In the present study, we investigated the effects of CA, prepared as an alpha2,8-linked homopolymer of N-acetylneuraminic acid, on the proliferation and monolayer maintenance of bovine aortic endothelial cells in culture. The results indicate that CA potently inhibits the proliferation of sparse endothelial cells without nonspecific cell damage. The inhibitory effect of CA was markedly stronger than those of sodium spirulan and calcium spirulan, known polysaccharides that inhibit endothelial cell proliferation. On the other hand, in dense endothelial cells, CA induced nonspecific cell damage and markedly injured the monolayer. These results indicate that CA has two distinct effects on vascular endothelial cells: one is the inhibition of proliferation when the cell density is low, and the other is the nonspecific cytotoxicity when the cell density is high. Interestingly, these cell density-dependent effects of CA could be prevented by sulfation of the CA chains. Therefore, it is concluded that CA not only inhibits the proliferation of sparse endothelial cells without nonspecific cell damage but also injures dense cells in a monolayer by nonspecific cytotoxicity, which can be prevented by sulfation of the polysaccharide.

  7. The soyabean isoflavone genistein modulates endothelial cell behaviour.

    Science.gov (United States)

    Sandoval, Marisa J; Cutini, Pablo H; Rauschemberger, María Belén; Massheimer, Virginia L

    2010-07-01

    The aim of the present study was to investigate the direct action of the phyto-oestrogen genistein (Gen) on vascular endothelial behaviour, either in the presence or absence of proinflammatory agents. In rat aortic endothelial cell (EC) cultures, 24 h of treatment with Gen significantly increased cell proliferation in a wide range of concentration (0.001-10 nm). This mitogenic action was prevented by the oestrogen receptor (ER) antagonist ICI 182780 or by the presence of the specific NO synthase inhibitor l-nitro-arginine methyl ester. When monocytes adhesion to EC was measured, Gen partially attenuated leucocyte adhesion not only under basal conditions, but also in the presence of bacterial lipopolysaccharides (LPS). The effect of the phyto-oestrogen on the expression of EC adhesion molecules was evaluated. Gen down-regulated the enhancement in mRNA levels of E-selectin, vascular cell adhesion molecule-1 and P-selectin elicited by the proinflammatory agent bacterial LPS. The regulation of EC programmed death induced by the isoflavone was also demonstrated. Incubation with 10 nm Gen prevented DNA fragmentation induced by the apoptosis inductor H2O2. The results presented suggest that Gen would exert a protective effect on vascular endothelium, due to its regulatory action on endothelial proliferation, apoptosis and leucocyte adhesion, events that play a critical role in vascular diseases. The molecular mechanism displayed by the phyto-oestrogen involved the participation of the ER and the activation of the NO pathway.

  8. Interaction of recombinant octameric hemoglobin with endothelial cells.

    Science.gov (United States)

    Gaucher, Caroline; Domingues-Hamdi, Élisa; Prin-Mathieu, Christine; Menu, Patrick; Baudin-Creuza, Véronique

    2015-02-01

    Hemoglobin-based oxygen carriers (HBOCs) may generate oxidative stress, vasoconstriction and inflammation. To reduce these undesirable vasoactive properties, we increased hemoglobin (Hb) molecular size by genetic engineering with octameric Hb, recombinant (r) HbβG83C. We investigate the potential side effects of rHbβG83C on endothelial cells. The rHbβG83C has no impact on cell viability, and induces a huge repression of endothelial nitric oxide synthase gene transcription, a marker of vasomotion. No induction of Intermolecular-Adhesion Molecule 1 and E-selectin (inflammatory markers) transcription was seen. In the presence of rHbβG83C, the transcription of heme oxygenase-1 (oxidative stress marker) is weakly increased compared to the two other HBOCs (references) or Voluven (control). This genetically engineered octameric Hb, based on a human Hb βG83C mutant, leads to little impact at the level of endothelial cell inflammatory response and thus appears as an interesting molecule for HBOC development.

  9. Proteomic profiling of endorepellin angiostatic activity on human endothelial cells

    Directory of Open Access Journals (Sweden)

    Iozzo Renato V

    2008-02-01

    Full Text Available Abstract Background Endorepellin, the C-terminal domain V of the heparan sulfate proteoglycan perlecan, exhibits powerful and targeted anti-angiogenic activity on endothelial cells. To identify proteins involved with endorepellin anti-angiogenic action, we performed an extensive comparative proteomic analysis between vehicle- and endorepellin-treated human endothelial cells. Results Proteomic analysis of endorepellin influence on human umbilical vein endothelial cells identified five differentially expressed proteins, three of which (β-actin, calreticulin, and chaperonin/Hsp60 were down-regulated and two of which (vimentin and the β subunit of prolyl 4-hydroxylase also known as protein disulfide isomerase were up-regulated in response to endorepellin treatment—and associated with a fold change (endorepellin/control ≤ 0.75 and ≥ 2.00, and a statistically significant p-value as determined by Student's t test. Conclusion The proteins identified represent potential target areas involved with endorepellin anti-angiogenic mechanism of action. Further elucidation as such will ultimately provide useful in utilizing endorepellin as an anti-angiogenic therapy in humans.

  10. Endothelial cells downregulate apolipoprotein D expression in mural cells through paracrine secretion and Notch signaling.

    Science.gov (United States)

    Pajaniappan, Mohanasundari; Glober, Nancy K; Kennard, Simone; Liu, Hua; Zhao, Ning; Lilly, Brenda

    2011-09-01

    Endothelial and mural cell interactions are vitally important for proper formation and function of blood vessels. These two cell types communicate to regulate multiple aspects of vessel function. In studying genes regulated by this interaction, we identified apolipoprotein D (APOD) as one gene that is downregulated in mural cells by coculture with endothelial cells. APOD is a secreted glycoprotein that has been implicated in governing stress response, lipid metabolism, and aging. Moreover, APOD is known to regulate smooth muscle cells and is found in abundance within atherosclerotic lesions. Our data show that the regulation of APOD in mural cells is bimodal. Paracrine secretion by endothelial cells causes partial downregulation of APOD expression. Additionally, cell contact-dependent Notch signaling plays a role. NOTCH3 on mural cells promotes the downregulation of APOD, possibly through interaction with the JAGGED-1 ligand on endothelial cells. Our results show that NOTCH3 contributes to the downregulation of APOD and by itself is sufficient to attenuate APOD transcript expression. In examining the consequence of decreased APOD expression in mural cells, we show that APOD negatively regulates cell adhesion. APOD attenuates adhesion by reducing focal contacts; however, it has no effect on stress fiber formation. These data reveal a novel mechanism in which endothelial cells control neighboring mural cells through the downregulation of APOD, which, in turn, influences mural cell function by modulating adhesion.

  11. Effect of endothelial progenitor cells in neovascularization and their application in tumor therapy

    Institute of Scientific and Technical Information of China (English)

    DONG Fang; HA Xiao-qin

    2010-01-01

    Objective To review the effect of endothelial progenitor cells in neovascularization as well as their application to the therapy of tumors.Data sources The data used in this review were mainly from PubMed for relevant English language articles published from 1997 to 2009. The search term was "endothelial progenitor cells".Study selection Articles regarding the role of endothelial progenitor cells in neovascularization and their application to the therapy of tumors were selected.Results Endothelial progenitor cells isolated from bone marrow, umbilical cord blood and peripheral blood can proliferate, mobilize and differentiate into mature endothelial cells. Experiments suggest endothelial progenitor cells take part in forming the tumor vascular through a variety of mechanisms related to vascular endothelial growth factor, matrix metalloproteinases, chemokine stromal cell-derived factor 1 and its receptor C-X-C receptor-4, erythropoietin, Notchsignal pathway and so on. Evidence demonstrates that the number and function change of endothelial progenitor cells in peripheral blood can be used as a biomarker of the response of cancer patients to anti-tumor therapy and predict the prognosis and recurrence. In addition, irradiation temporarily increased endothelial cells number and decreased the endothelial progenitor cell counts in animal models. Meanwhile, in preclinical experiments, therapeutic gene-modified endothelial progenitor cells have been approved to attenuate tumor growth and offer a novel strategy for cell therapy and gene therapy of cancer.Conclusions Endothelial progenitor cells play a particular role in neovascularization and have attractively potential prognostic and therapeutic applications to malignant tumors. However, a series of problems, such as the definitive biomarkers of endothelial progenitor cells, their interrelationship with radiotherapy and their application in cell therapy and gene therapy of tumors, need further investigation.

  12. Oxidized extracellular DNA suppresses nitric oxide production by endothelial NO synthase (eNOS) in human endothelial cells (HUVEC).

    Science.gov (United States)

    Kostyuk, S V; Alekseeva, A Yu; Kon'kova, M S; Glebova, K V; Smirnova, T D; Kameneva, L V; Izhevskaya, V L; Veiko, N N

    2014-06-01

    Circulating DNA from patients with cardiovascular diseases reduce the synthesis of NO in endothelial cells, which is probably related to oxidative modification of DNA. To test this hypothesis, HUVEC cells were cultured in the presence of DNA containing ~1 (nonoxidized DNA), 700, or 2100 8-oxodG/10(6) nucleosides. Nonoxidized DNA stimulated the synthesis of NO, which was associated with an increase in the expression of endothelial NO synthase. Oxidized NO decreased the amount of mRNA and protein for endothelial NO synthase, but increased the relative content of its low active form. These changes were accompanied by reduction of NO production. These findings suggest that oxidative modification of circulating extracellular DNA contributes to endothelial dysfunction manifested in suppression of NO production.

  13. E-selectin is present in proliferating endothelial cells in human hemangiomas.

    Science.gov (United States)

    Kräling, B M; Razon, M J; Boon, L M; Zurakowski, D; Seachord, C; Darveau, R P; Mulliken, J B; Corless, C L; Bischoff, J

    1996-04-01

    E-selectin, an endothelial-cell-specific leukocyte adhesion molecule, may also function in angiogenesis. To investigate its role in a noninflammatory angiogenic disease, E-selectin was analyzed by immunohistochemistry in specimens of proliferative phase and involutive phase hemangiomas. Hemangioma is an endothelial cell tumor of capillary blood vessels that grows rapidly during infancy and regresses spontaneously during childhood. E-selectin expression was high in proliferative phase specimens and was co-localized with dividing microvascular endothelial cells. Relative to the number of blood vessels, E-selectin declined significantly in involutive phase specimens demonstrating that E-selectin correlates with angiogenesis in the tumors. E-selectin was not detected in quiescent endothelium but was co-localized in dividing microvascular endothelial cells in placenta and neonatal foreskin, two tissues with ongoing growth of microvessels. These in vivo studies support the hypothesis that E-selectin functions in angiogenesis and suggest that E-selectin may be a marker for proliferating endothelium.

  14. Constitutively Expressed IFITM3 Protein in Human Endothelial Cells Poses an Early Infection Block to Human Influenza Viruses.

    Science.gov (United States)

    Sun, Xiangjie; Zeng, Hui; Kumar, Amrita; Belser, Jessica A; Maines, Taronna R; Tumpey, Terrence M

    2016-12-15

    A role for pulmonary endothelial cells in the orchestration of cytokine production and leukocyte recruitment during influenza virus infection, leading to severe lung damage, has been recently identified. As the mechanistic pathway for this ability is not fully known, we extended previous studies on influenza virus tropism in cultured human pulmonary endothelial cells. We found that a subset of avian influenza viruses, including potentially pandemic H5N1, H7N9, and H9N2 viruses, could infect human pulmonary endothelial cells (HULEC) with high efficiency compared to human H1N1 or H3N2 viruses. In HULEC, human influenza viruses were capable of binding to host cellular receptors, becoming internalized and initiating hemifusion but failing to uncoat the viral nucleocapsid and to replicate in host nuclei. Unlike numerous cell types, including epithelial cells, we found that pulmonary endothelial cells constitutively express a high level of the restriction protein IFITM3 in endosomal compartments. IFITM3 knockdown by small interfering RNA (siRNA) could partially rescue H1N1 virus infection in HULEC, suggesting IFITM3 proteins were involved in blocking human influenza virus infection in endothelial cells. In contrast, selected avian influenza viruses were able to escape IFITM3 restriction in endothelial cells, possibly by fusing in early endosomes at higher pH or by other, unknown mechanisms. Collectively, our study demonstrates that the human pulmonary endothelium possesses intrinsic immunity to human influenza viruses, in part due to the constitutive expression of IFITM3 proteins. Notably, certain avian influenza viruses have evolved to escape this restriction, possibly contributing to virus-induced pneumonia and severe lung disease in humans. Avian influenza viruses, including H5N1 and H7N9, have been associated with severe respiratory disease and fatal outcomes in humans. Although acute respiratory distress syndrome (ARDS) and progressive pulmonary endothelial damage

  15. Binding of complement inhibitor C4b-binding protein to a highly virulent Streptococcus pyogenes M1 strain is mediated by protein H and enhances adhesion to and invasion of endothelial cells.

    Science.gov (United States)

    Ermert, David; Weckel, Antonin; Agarwal, Vaibhav; Frick, Inga-Maria; Björck, Lars; Blom, Anna M

    2013-11-08

    Streptococcus pyogenes AP1, a strain of the highly virulent M1 serotype, uses exclusively protein H to bind the complement inhibitor C4b-binding protein (C4BP). We found a strong correlation between the ability of AP1 and its isogenic mutants lacking protein H to inhibit opsonization with complement C3b and binding of C4BP. C4BP bound to immobilized protein H or AP1 bacteria retained its cofactor activity for degradation of (125)I-C4b. Furthermore, C4b deposited from serum onto AP1 bacterial surfaces was processed into C4c/C4d fragments, which did not occur on strains unable to bind C4BP. Recombinant C4BP mutants, which (i) lack certain CCP domains or (ii) have mutations in single aa as well as (iii) mutants with additional aa between different CCP domains were used to determine that the binding is mainly mediated by a patch of positively charged amino acid residues at the interface of domains CCP1 and CCP2. Using recombinant protein H fragments, we narrowed down the binding site to the N-terminal domain A. With a peptide microarray, we identified one single 18-amino acid-long peptide comprising residues 92-109, which specifically bound C4BP. Biacore was used to determine KD = 6 × 10(-7) M between protein H and a single subunit of C4BP. C4BP binding also correlated with elevated levels of adhesion and invasion to endothelial cells. Taken together, we identified the molecular basis of C4BP-protein H interaction and found that it is not only important for decreased opsonization but also for invasion of endothelial cells by S. pyogenes.

  16. Fate of cerium dioxide nanoparticles in endothelial cells: exocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Strobel, Claudia, E-mail: Claudia.Strobel@med.uni-jena.de [Jena University Hospital – Friedrich Schiller University Jena, Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology (Germany); Oehring, Hartmut [Jena University Hospital – Friedrich Schiller University Jena, Institute of Anatomy II (Germany); Herrmann, Rudolf [University of Augsburg, Department of Physics (Germany); Förster, Martin [Jena University Hospital – Friedrich Schiller University Jena, Department of Internal Medicine I, Division of Pulmonary Medicine and Allergy/Immunology (Germany); Reller, Armin [University of Augsburg, Department of Physics (Germany); Hilger, Ingrid, E-mail: ingrid.hilger@med.uni-jena.de [Jena University Hospital – Friedrich Schiller University Jena, Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology (Germany)

    2015-05-15

    Although cytotoxicity and endocytosis of nanoparticles have been the subject of numerous studies, investigations regarding exocytosis as an important mechanism to reduce intracellular nanoparticle accumulation are rather rare and there is a distinct lack of knowledge. The current study investigated the behavior of human microvascular endothelial cells to exocytose cerium dioxide (CeO{sub 2}) nanoparticles (18.8 nm) by utilization of specific inhibitors [brefeldin A; nocodazole; methyl-β-cyclodextrin (MβcD)] and different analytical methods (flow cytometry, transmission electron microscopy, inductively coupled plasma mass spectrometry). Overall, it was found that endothelial cells were able to release CeO{sub 2} nanoparticles via exocytosis after the migration of nanoparticle containing endosomes toward the plasma membrane. The exocytosis process occurred mainly by fusion of vesicular membranes with plasma membrane resulting in the discharge of vesicular content to extracellular environment. Nevertheless, it seems to be likely that nanoparticles present in the cytosol could leave the cells in a direct manner. MβcD treatment led to the strongest inhibition of the nanoparticle exocytosis indicating a significant role of the plasma membrane cholesterol content in the exocytosis process. Brefeldin A (inhibitor of Golgi-to-cell-surface-transport) caused a higher inhibitory effect on exocytosis than nocodazole (inhibitor of microtubules). Thus, the transfer from distal Golgi compartments to the cell surface influenced the exocytosis process of the CeO{sub 2} nanoparticles more than the microtubule-associated transport. In conclusion, endothelial cells, which came in contact with nanoparticles, e.g., after intravenously applied nano-based drugs, can regulate their intracellular nanoparticle amount, which is necessary to avoid adverse nanoparticle effects on cells.

  17. Hypoxia-induced reactive oxygen species cause chromosomal abnormalities in endothelial cells in the tumor microenvironment.

    Directory of Open Access Journals (Sweden)

    Miyako Kondoh

    Full Text Available There is much evidence that hypoxia in the tumor microenvironment enhances tumor progression. In an earlier study, we reported abnormal phenotypes of tumor-associated endothelial cells such as those resistant to chemotherapy and chromosomal instability. Here we investigated the role of hypoxia in the acquisition of chromosomal abnormalities in endothelial cells. Tumor-associated endothelial cells isolated from human tumor xenografts showed chromosomal abnormalities, >30% of which were aneuploidy. Aneuploidy of the tumor-associated endothelial cells was also shown by simultaneous in-situ hybridization for chromosome 17 and by immunohistochemistry with anti-CD31 antibody for endothelial staining. The aneuploid cells were surrounded by a pimonidazole-positive area, indicating hypoxia. Human microvascular endothelial cells expressed hypoxia-inducible factor 1 and vascular endothelial growth factor A in response to either hypoxia or hypoxia-reoxygenation, and in these conditions, they acquired aneuploidy in 7 days. Induction of aneuploidy was inhibited by either inhibition of vascular endothelial growth factor signaling with vascular endothelial growth factor receptor 2 inhibitor or by inhibition of reactive oxygen species by N-acetyl-L-cysteine. These results indicate that hypoxia induces chromosomal abnormalities in endothelial cells through the induction of reactive oxygen species and excess signaling of vascular endothelial growth factor in the tumor microenvironment.

  18. Hypoxia-Induced Reactive Oxygen Species Cause Chromosomal Abnormalities in Endothelial Cells in the Tumor Microenvironment

    Science.gov (United States)

    Hida, Yasuhiro; Maishi, Nako; Towfik, Alam Mohammad; Inoue, Nobuo; Shindoh, Masanobu; Hida, Kyoko

    2013-01-01

    There is much evidence that hypoxia in the tumor microenvironment enhances tumor progression. In an earlier study, we reported abnormal phenotypes of tumor-associated endothelial cells such as those resistant to chemotherapy and chromosomal instability. Here we investigated the role of hypoxia in the acquisition of chromosomal abnormalities in endothelial cells. Tumor-associated endothelial cells isolated from human tumor xenografts showed chromosomal abnormalities, >30% of which were aneuploidy. Aneuploidy of the tumor-associated endothelial cells was also shown by simultaneous in-situ hybridization for chromosome 17 and by immunohistochemistry with anti-CD31 antibody for endothelial staining. The aneuploid cells were surrounded by a pimonidazole-positive area, indicating hypoxia. Human microvascular endothelial cells expressed hypoxia-inducible factor 1 and vascular endothelial growth factor A in response to either hypoxia or hypoxia-reoxygenation, and in these conditions, they acquired aneuploidy in 7 days. Induction of aneuploidy was inhibited by either inhibition of vascular endothelial growth factor signaling with vascular endothelial growth factor receptor 2 inhibitor or by inhibition of reactive oxygen species by N-acetyl-L-cysteine. These results indicate that hypoxia induces chromosomal abnormalities in endothelial cells through the induction of reactive oxygen species and excess signaling of vascular endothelial growth factor in the tumor microenvironment. PMID:24260373

  19. Atrial natriuretic peptide prevents cancer metastasis through vascular endothelial cells.

    Science.gov (United States)

    Nojiri, Takashi; Hosoda, Hiroshi; Tokudome, Takeshi; Miura, Koichi; Ishikane, Shin; Otani, Kentaro; Kishimoto, Ichiro; Shintani, Yasushi; Inoue, Masayoshi; Kimura, Toru; Sawabata, Noriyoshi; Minami, Masato; Nakagiri, Tomoyuki; Funaki, Soichiro; Takeuchi, Yukiyasu; Maeda, Hajime; Kidoya, Hiroyasu; Kiyonari, Hiroshi; Shioi, Go; Arai, Yuji; Hasegawa, Takeshi; Takakura, Nobuyuki; Hori, Megumi; Ohno, Yuko; Miyazato, Mikiya; Mochizuki, Naoki; Okumura, Meinoshin; Kangawa, Kenji

    2015-03-31

    Most patients suffering from cancer die of metastatic disease. Surgical removal of solid tumors is performed as an initial attempt to cure patients; however, surgery is often accompanied with trauma, which can promote early recurrence by provoking detachment of tumor cells into the blood stream or inducing systemic inflammation or both. We have previously reported that administration of atrial natriuretic peptide (ANP) during the perioperative period reduces inflammatory response and has a prophylactic effect on postoperative cardiopulmonary complications in lung cancer surgery. Here we demonstrate that cancer recurrence after curative surgery was significantly lower in ANP-treated patients than in control patients (surgery alone). ANP is known to bind specifically to NPR1 [also called guanylyl cyclase-A (GC-A) receptor]. In mouse models, we found that metastasis of GC-A-nonexpressing tumor cells (i.e., B16 mouse melanoma cells) to the lung was increased in vascular endothelium-specific GC-A knockout mice and decreased in vascular endothelium-specific GC-A transgenic mice compared with control mice. We examined the effect of ANP on tumor metastasis in mice treated with lipopolysaccharide, which mimics systemic inflammation induced by surgical stress. ANP inhibited the adhesion of cancer cells to pulmonary arterial and micro-vascular endothelial cells by suppressing the E-selectin expression that is promoted by inflammation. These results suggest that ANP prevents cancer metastasis by inhibiting the adhesion of tumor cells to inflamed endothelial cells.

  20. An Endothelial Planar Cell Model for Imaging Immunological Synapse Dynamics.

    Science.gov (United States)

    Martinelli, Roberta; Carman, Christopher V

    2015-12-24

    Adaptive immunity is regulated by dynamic interactions between T cells and antigen presenting cells ('APCs') referred to as 'immunological synapses'. Within these intimate cell-cell interfaces discrete sub-cellular clusters of MHC/Ag-TCR, F-actin, adhesion and signaling molecules form and remodel rapidly. These dynamics are thought to be critical determinants of both the efficiency and quality of the immune responses that develop and therefore of protective versus pathologic immunity. Current understanding of immunological synapses with physiologic APCs is limited by the inadequacy of the obtainable imaging resolution. Though artificial substrate models (e.g., planar lipid bilayers) offer excellent resolution and have been extremely valuable tools, they are inherently non-physiologic and oversimplified. Vascular and lymphatic endothelial cells have emerged as an important peripheral tissue (or stromal) compartment of 'semi-professional APCs'. These APCs (which express most of the molecular machinery of professional APCs) have the unique feature of forming virtually planar cell surface and are readily transfectable (e.g., with fluorescent protein reporters). Herein a basic approach to implement endothelial cells as a novel and physiologic 'planar cellular APC model' for improved imaging and interrogation of fundamental antigenic signaling processes will be described.

  1. Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy

    Science.gov (United States)

    Kemper, Björn; Bauwens, Andreas; Vollmer, Angelika; Ketelhut, Steffi; Langehanenberg, Patrik; Müthing, Johannes; Karch, Helge; von Bally, Gert

    2010-05-01

    Digital holographic microscopy (DHM) enables quantitative multifocus phase contrast imaging for nondestructive technical inspection and live cell analysis. Time-lapse investigations on human brain microvascular endothelial cells demonstrate the use of DHM for label-free dynamic quantitative monitoring of cell division of mother cells into daughter cells. Cytokinetic DHM analysis provides future applications in toxicology and cancer research.

  2. Coculture of osteoblasts and endothelial cells: optimization of culture medium and cell ratio

    NARCIS (Netherlands)

    Ma, J.; Beucken, J.J. van den; Yang, F.; Both, S.K.; Cui, F.Z.; Pan, J.; Jansen, J.A.

    2011-01-01

    Vascularization strategies in cell-based bone tissue engineering depend on optimal culture conditions. The present study aimed to determine optimal cell culture medium and cell ratio for cocultures of human marrow stromal cells (HMSCs) and human umbilical vein endothelial cells (HUVECs) in view of

  3. Overexpression of Ref-1 Inhibits Lead-induced Endothelial Cell Death via the Upregulation of Catalase.

    Science.gov (United States)

    Lee, Kwon Ho; Lee, Sang Ki; Kim, Hyo Shin; Cho, Eun Jung; Joo, Hee Kyoung; Lee, Eun Ji; Lee, Ji Young; Park, Myoung Soo; Chang, Seok Jong; Cho, Chung-Hyun; Park, Jin Bong; Jeon, Byeong Hwa

    2009-12-01

    The role of apurinic/apyrimidinic endonuclease1/redox factor-1 (Ref-1) on the lead (Pb)-induced cellular response was investigated in the cultured endothelial cells. Pb caused progressive cellular death in endothelial cells, which occurred in a concentration- and time-dependent manner. However, Ref-1 overexpression with AdRef-1 significantly inhibited Pb-induced cell death in the endothelial cells. Also the overexpression of Ref-1 significantly suppressed Pb-induced superoxide and hydrogen peroxide elevation in the endothelial cells. Pb exposure induced the downregulation of catalase, it was inhibited by the Ref-1 overexpression in the endothelial cells. Taken together, our data suggests that the overexpression of Ref-1 inhibited Pb-induced cell death via the upregulation of catalase in the cultured endothelial cells.

  4. Evidence of endothelial inflammation, T cell activation, and T cell reallocation in uncomplicated Plasmodium falciparum malaria

    DEFF Research Database (Denmark)

    Elhassan, I M; Hviid, L; Satti, G

    1994-01-01

    To explain the observation that acute Plasmodium falciparum malaria is associated with a transient inability of peripheral blood cells to respond to antigenic stimulation in vitro, we have postulated the disease-induced reallocation of peripheral lymphocytes, possibly by adhesion to inflamed...... endothelium. We measured plasma levels of soluble markers of endothelial inflammation and T cell activation in 32 patients suffering from acute, uncomplication P. falciparum malaria, as well as in 10 healthy, aparasitemic control donors. All donors were residents of a malaria-endemic area of Eastern State...... with the control donors. In addition, we found a disease-induced depletion of T cells with high expression of the LFA-1 antigen, particularly in the CD4+ subset. The results obtained provide further support for the hypothesis of T cell reallocation to inflamed endothelium in acute P. falciparum malaria....

  5. Antioxidant Effects of Sheep Whey Protein on Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Efthalia Kerasioti

    2016-01-01

    Full Text Available Excessive production of reactive oxygen species (ROS may cause endothelial dysfunction and consequently vascular disease. In the present study, the possible protective effects of sheep whey protein (SWP from tert-butyl hydroperoxide- (tBHP- induced oxidative stress in endothelial cells (EA.hy926 were assessed using oxidative stress biomarkers. These oxidative stress biomarkers were glutathione (GSH and ROS levels determined by flow cytometry. Moreover, thiobarbituric acid-reactive substances (TBARS, protein carbonyls (CARB, and oxidized glutathione (GSSG were determined spectrophotometrically. The results showed that SWP at 0.78, 1.56, 3.12, and 6.24 mg of protein mL−1 increased GSH up to 141%, while it decreased GSSG to 46.7%, ROS to 58.5%, TBARS to 52.5%, and CARB to 49.0%. In conclusion, the present study demonstrated for the first time that SWP protected endothelial cells from oxidative stress. Thus, SWP may be used for developing food supplements or biofunctional foods to attenuate vascular disturbances associated with oxidative stress.

  6. Lipopolysaccharide-induced apoptosis in transformed bovine brain endothelial cells and human dermal microvessel endothelial cells: the role of JNK.

    Science.gov (United States)

    Karahashi, Hisae; Michelsen, Kathrin S; Arditi, Moshe

    2009-06-01

    Stimulation of transformed bovine brain endothelial cells (TBBEC) with LPS leads to apoptosis while human microvessel endothelial cells (HMEC) need the presence of cycloheximide (CHX) with LPS to induce apoptosis. To investigate the molecular mechanism of LPS-induced apoptosis in HMEC or TBBEC, we analyzed the involvement of MAPK and PI3K in TBBEC and HMEC. LPS-induced apoptosis in TBBEC was hallmarked by the activation of caspase 3, caspase 6, and caspase 8 after the stimulation of LPS, followed by poly(ADP-ribose) polymerase cleavage and lactate dehydrogenase release. We also observed DNA cleavage determined by TUNEL staining in TBBEC treated with LPS. Herbimycin A, a tyrosine kinase inhibitor, and SP600125, a JNK inhibitor, suppressed the activation of caspases and lactate dehydrogenase release. Moreover, a PI3K inhibitor (LY294002) suppressed activation of caspases and combined treatment with both SP600125 and LY294002 completely inhibited the activation of caspases. These results suggest that the JNK signaling pathway through the tyrosine kinase and PI3K pathways is involved in the induction of apoptosis in LPS-treated TBBEC. On the other hand, we observed sustained JNK activation in HMEC treated with LPS and CHX, and neither ERK1/2 nor AKT were activated. The addition of SP600125 suppressed phosphorylation of JNK and the activation of caspase 3 in HMEC treated with LPS and CHX. These results suggest that JNK plays an important role in the induction of apoptosis in endothelial cells.

  7. Inhibitory effects of isoproterenol on PAF-induced endothelial cell permeability and morphological changes

    Institute of Scientific and Technical Information of China (English)

    丁自强; 李少华; 吴中立

    1996-01-01

    Using a model to study vascular permeability under hydrostatically perfused bovine pulmonary artery endothelial cell (EC) monolayers and a software to automatically analyse cell morphological parameters in a computer image workstation, the effects of isoproterenol (IPN) on platelet-activating factor (PAF)-induced changes in EC monolayer permeability and cell morphological parameters were studied. Albumin has the fortifying effect on endothelial barrier function. After treatment of EC monolayer with 10-8mol/L PAF, trans-monolayer permeability increased, cell surface area decreased, and intercellular space enlarged. As pretreatment with 10-4mol/L IPN, PAF-induced EC permeability increment and morphological changes were blocked. The results suggest that EC contraction and intercellular gap expansion are important mechanisms for PAF-induced high vascular permeability. IPN inhibits the effects of PAF via stabilization of EC morphology and prevention of intercellular gap formation.

  8. Salvianolic acid B improves vascular endothelial function in diabetic rats with blood glucose fluctuations via suppression of endothelial cell apoptosis.

    Science.gov (United States)

    Ren, Younan; Tao, Shanjun; Zheng, Shuguo; Zhao, Mengqiu; Zhu, Yuanmei; Yang, Jieren; Wu, Yuanjie

    2016-11-15

    Vascular endothelial cell injury is an initial event in atherosclerosis. Salvianolic acid B (Sal B), a main bioactive component in the root of Salvia miltiorrhiza, has vascular protective effect in diabetes, but the underlying mechanisms remain unclear. The present study investigated the effect of Sal B on vascular endothelial function in diabetic rats with blood glucose fluctuations and the possible mechanisms implicated. The results showed that diabetic rats developed marked endothelial dysfunction as exhibited by impaired acetylcholine induced vasodilation. Supplementation with Sal B resulted in an evident improvement of endothelial function. Phosphorylation (Ser 1177) of endothelial nitric oxide synthase (eNOS) was significantly restored in Sal B treated diabetic rats, accompanied by an evident recovery of NO metabolites. Sal B effectively reduced vascular endothelial cell apoptosis, with Bcl-2 protein up-regulated and Bax protein down-regulated markedly. Treatment with Sal B led to an evident amelioration of oxidative stress in diabetic rats as manifested by enhanced antioxidant capacity and decreased contents of malondialdehyde in aortas. Protein levels of NOX2 and NOX4, two main isoforms of NADPH oxidase known as the major source of reactive oxygen species in the vasculature, were markedly decreased in Sal B treated groups. In addition, treatment with Sal B led to an evident decrease of serum lipids. Taken together, this study indicates that Sal B is capable of improving endothelial function in diabetic rats with blood glucose fluctuations, of which the underlying mechanisms might be related to suppression of endothelial cell apoptosis and stimulation of eNOS phosphorylation (Ser 1177).

  9. Geraniol improves endothelial function by inhibiting NOX-2 derived oxidative stress in high fat diet fed mice

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoyu; Zhao, Shiqi; Su, Mengqi; Sun, Li; Zhang, Song; Wang, Dingyu; Liu, Zhaorui; Yuan, Yue; Liu, Yang [Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province (China); Li, Yue, E-mail: ly99ly@vip.163.com [Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province (China); Key Laboratory of Cardiac Diseases and Heart Failure, Harbin Medical University, Harbin, 150001, Heilongjiang Province (China)

    2016-05-20

    Endothelial dysfunction occurs in obese patients and high-fat diet (HFD) fed experimental animals. While geraniol has been reported to ameliorate inflammation and oxidative stress, inhibit tumor cell proliferation, and improve atherosclerosis, its direct effect on endothelial function remains uncharacterized. The present study therefore investigated the effect of geraniol on endothelial function in HFD mice and its underlying mechanisms. C57 BL/6 mice were fed an HFD (n = 40) or a normal diet (n = 20) for 8 weeks. HFD fed mice then were randomized to intraperitoneal treatment with geraniol (n = 20) or vehicle (n = 20) for another 6 weeks. Acetylcholine (Ach)-induced endothelial dependent vasorelaxation was measured on wire myography; reactive oxygen species (ROS) generation was assessed by fluorescence imaging, and NADPH oxidases (NOXs) and adhesive molecules VCAM-1 and ICAM-1 protein expression by western blotting. Geraniol improved endothelial function in HFD fed mice, as evidenced by its: 1. restoring endothelial dependent vasorelaxation induced by Ach, and reversing increased VCAM-1 and ICAM-1 expression; 2. attenuating HFD induced increased serum TBARS and aortic ROS generation; and 3. downregulating aortic NOX-2 expression in both HFD fed mice and in palmitic acid treated endothelial cells. Geraniol therefore protects against endothelial dysfunction induced by HFD through reducing NOX-2 associated ROS generation. -- Highlights: •Geraniol improved endothelial dependent relaxation in high fat diet fed mice. •Geraniol alleviated vascular injury in high fat diet fed mice. •Geraniol inhibited ROS generation through downregulating NOX-2 expression.

  10. In-vivo cell tracking to quantify endothelial cell migration during zebrafish angiogenesis

    Science.gov (United States)

    Menon, Prahlad G.; Rochon, Elizabeth R.; Roman, Beth L.

    2016-03-01

    The mechanism of endothelial cell migration as individual cells or collectively while remaining an integral component of a functional blood vessel has not been well characterized. In this study, our overarching goal is to define an image processing workflow to facilitate quantification of how endothelial cells within the first aortic arch and are proximal to the zebrafish heart behave in response to the onset of flow (i.e. onset of heart beating). Endothelial cell imaging was conducted at this developmental time-point i.e. ~24-28 hours post fertilization (hpf) when flow first begins, using 3D+time two-photon confocal microscopy of a live, wild-type, transgenic, zebrafish expressing green fluorescent protein (GFP) in endothelial cell nuclei. An image processing pipeline comprised of image signal enhancement, median filtering for speckle noise reduction, automated identification of the nuclei positions, extraction of the relative movement of nuclei between consecutive time instances, and finally tracking of nuclei, was designed for achieving the tracking of endothelial cell nuclei and the identification of their movement towards or away from the heart. Pilot results lead to a hypothesis that upon the onset of heart beat and blood flow, endothelial cells migrate collectively towards the heart (by 21.51+/-10.35 μm) in opposition to blood flow (i.e. subtending 142.170+/-21.170 with the flow direction).

  11. Flow-induced Expression and Phosphorylation of VASPin Endothelial Cells

    Institute of Scientific and Technical Information of China (English)

    Muller; SYLYAINE; Jean-FranoisSYOLTZ

    2005-01-01

    1 Introduction It is well known that mechanical forces have important influence on endothelial cells, in particular, on cytoskeleton reorganization. VASP (vasodilator stimulated phosphoprotein) is a 46 KD actin associated protein. It is a member of Ena/VASP protein family and composed of EVH1, proline-rich and EVH2 domains. It is considered as an important component of the sub-cellular regions where remodelling of the actin cytoskeleton takes place, such as the front of spreading lamellipodia in motile cell...

  12. Involvement of MAPKs in ICAM-1 Expression in Glomerular Endothelial Cells in Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    Watanabe,Naomi

    2011-08-01

    Full Text Available Inflammatory processes are involved in the pathogenesis of diabetic nephropathy. The aim of this study was to clarify the role of mitogen-activated protein kinase (MAPK pathways for induction of intercellular adhesion molecule-1 (ICAM-1 expression in glomerular endothelial cells under diabetic conditions. We examined the expression of ICAM-1 in the kidneys of experimental diabetic rats. Human glomerular endothelial cells (GE cells were exposed to normal glucose concentration, high glucose concentration (HG, or high mannitol concentration (HM, and then the expression of the ICAM-1 protein and the phosphorylation of the 3 subfamilies of mitogen-activated protein kinase (MAPK were determined using Western blot analysis. Next, to evaluate the involvement of MAPKs in HG- or HM-induced ICAM-1 expression, we preincubated GE cells with the inhibitors for ERK, p38 or JNK 1h prior to the application of glucose or mannitol. Expression of ICAM-1 was increased in the glomeruli of diabetic rats. Both HG and HM induced ICAM-1 expression and phosphorylation of ERK1/2, p38 and JNK in GE cells. Expression of ICAM-1 was significantly attenuated by inhibitors of ERK, p38 and JNK. We conclude that activation of ERK1/2, p38 and JNK cascades may be involved in ICAM-1 expression in glomerular endothelial cells under diabetic conditions.

  13. Anisotropic poly (glycerol sebacate)-poly (ϵ-caprolactone) electrospun fibers promote endothelial cell guidance.

    Science.gov (United States)

    Gaharwar, Akhilesh K; Nikkhah, Mehdi; Sant, Shilpa; Khademhosseini, Ali

    2014-12-17

    Topographical cell guidance is utilized to engineer highly organized and aligned cellular constructs for numerous tissue engineering applications. Recently, electrospun scaffolds fabricated using poly(glycerol sebacate) (PGS) and poly(ϵ-caprolactone) (PCL) have shown a great promise to support valvular interstitial cell functions for the development of tissue engineered heart valves. However, one of the major drawbacks of PGS-PCL scaffolds is the lack of control over cellular alignment. In this work, we investigate the role of scaffold architecture on the endothelial cell alignment, proliferation and formation of organized cellular structures. In particular, PGS-PCL scaffolds with randomly oriented and highly aligned fibers with tunable mechanical properties were fabricated using electrospinning technique. After one week of culture, endothelial cells on the aligned scaffolds exhibited higher proliferation compared to those cultures on randomly oriented fibrous scaffolds. Furthermore, the endothelial cells reorganized in response to the topographical features of aligned scaffolds forming highly organized cellular constructs. Thus, topographical contact guidance, provided by aligned PGS-PCL scaffolds, is envisioned to be useful in developing cellular structures for vascular tissue engineering.

  14. Galectin-3 induces pulmonary artery endothelial cell morphogenesis and angiogenesis

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li; LI Yu-mei; WANG Xiao-yan; ZHU Da-ling

    2016-01-01

    AIM:Increasing evidence suggests that carbohydrate-binding proteins play an essential role in tumor growth and metastasis .Ga-lectin-3, a multifunctional protein of an expanding family of β-galactoside-binding animal lectins , is the major nonintegrin cellular laminin-binding protein , and is implicated in a variety of biologic events , such as inflammation and angiogenesis .Because galectin-3 expression was shown to participate in mediating tumor angiogenesis and initiate signaling cascades in several diseases .We hypothe-sized that galectin-3 may promote pulmonary vascular endothelial neovascularization .METHODS:Hypoxic and MCT rat model of pul-monary artery remodeling was used .The mRNA and protein levels of galectin-3 in rats were measured by in situ hybrization and West-ern blot analysis.Endothelial cell (EC) proliferation, migration and tube formation were measured using MTT , cell scratch and Matri-gel assays, respectively.Protein expression was quantitated by Western blot analysis .LC 3A/B staining was detected with cellular im-munofluorescence staining .RESULTS:We found that galectin-3 was localized on the intima and adventitial wall .Galectin-3 was in-creased after rat hypoxia and MCT administration .Galectin-3 promoted EC proliferation , migration and tube formation , while its roles were reversed by RNA interference.Galectin-3 induced Atg 5, Beclin-1, LAMP-2, and LC 3A/B expression increases.Galectin-3 al-so increased LC 3A/B staining in ECs.Akt/mTOR and GSK-3βsignaling pathways were activated after galectin-3 treated ECs using its specific phosphorylation antibodies , while blocked it with LY294002 inhibited cell autophagy and EC dynamic alterations induced by galectin-3.CONCLUSION:These findings demonstrate that galectin-3 can induce an Akt signaling cascade leading to cell autoph-agy, and then the differentiation and angiogenesis of pulmonary artery endothelial cells .

  15. Mechanotransductional basis of endothelial cell response to intravascular bubbles.

    Science.gov (United States)

    Klinger, Alexandra L; Pichette, Benjamin; Sobolewski, Peter; Eckmann, David M

    2011-10-01

    Vascular air embolism resulting from too rapid decompression is a well-known risk in deep-sea diving, aviation and space travel. It is also a common complication during surgery or other medical procedures when air or other endogenously administered gas is entrained in the circulation. Preventive and post-event treatment options are extremely limited for this dangerous condition, and none of them address the poorly understood pathophysiology of endothelial response to intravascular bubble presence. Using a novel apparatus allowing precise manipulation of microbubbles in real time fluorescence microscopy studies, we directly measure human umbilical vein endothelial cell responses to bubble contact. Strong intracellular calcium transients requiring extracellular calcium are observed upon cell-bubble interaction. The transient is eliminated both by the presence of the stretch activated channel inhibitor, gadolinium, and the transient receptor potential vanilliod family inhibitor, ruthenium red. No bubble induced calcium upsurge occurs if the cells are pretreated with an inhibitor of actin polymerization, cytochalasin-D. This study explores the biomechanical mechanisms at play in bubble interfacial interactions with endothelial surface layer (ESL) macromolecules, reassessing cell response after selective digestion of glycocalyx glycosoaminoglycans, hyaluran (HA) and heparin sulfate (HS). HA digestion causes reduction of cell-bubble adherence and a more rapid induction of calcium influx after contact. HS depletion significantly decreases calcium transient amplitudes, as does pharmacologically induced sydencan ectodomain shedding. The surfactant perfluorocarbon Oxycyte abolishes any bubble induced calcium transient, presumably through direct competition with ESL macromolecules for interfacial occupancy, thus attenuating the interactions that trigger potentially deleterious biochemical pathways.

  16. Novel Mechanisms of Compromised Lymphatic Endothelial Cell Homeostasis in Obesity: The Role of Leptin in Lymphatic Endothelial Cell Tube Formation and Proliferation.

    Directory of Open Access Journals (Sweden)

    Akinori Sato

    Full Text Available Leptin is a hormone produced by adipose tissue that regulates various physiological processes. Recent studies have shown that the level of circulating leptin is elevated in obese patients and have suggested a relationship between obesity and postoperative lymphedema. However, the mechanisms by which postoperative lymphedema develops in obese patients and the mechanisms by which leptin regulates lymphatic endothelial cell homeostasis such as tube formation and cell proliferation remain unknown. Here we report that leptin regulates tube formation and cell proliferation in human dermal lymphatic endothelial cells (HDLECs by activation of the signal transducer and activator of transcription 3 pathway, which is downstream signaling of the leptin receptor. Additionally, we found that upregulation of suppressor of cytokine signaling 3 underlies the mechanisms by which a high dose of leptin inhibits cell proliferation and tube formation. Leptin also enhanced expression of the proinflammatory cytokine IL-6 in HDLECs. Interestingly, IL-6 rescues the compromised cell proliferation and tube formation caused by treatment with a high dose of leptin in an autocrine or paracrine manner. Taken together, our findings reveal a novel mechanism by which compromised HDLECs maintain their homeostasis during inflammation mediated by leptin and IL-6. Thus, regulating the level of leptin or IL-6 may be a viable strategy to reduce the incidence of postoperative lymphedema.

  17. Endothelial Cell Toxicity of Vancomycin Infusion Combined with Other Antibiotics

    OpenAIRE

    Drouet, Maryline; Chai, Feng; Barthélémy, Christine; Lebuffe, Gilles; Debaene, Bertrand; Décaudin, Bertrand; Odou, Pascal

    2015-01-01

    French guidelines recommend central intravenous (i.v.) infusion for high concentrations of vancomycin, but peripheral intravenous (p.i.v.) infusion is often preferred in intensive care units. Vancomycin infusion has been implicated in cases of phlebitis, with endothelial toxicity depending on the drug concentration and the duration of the infusion. Vancomycin is frequently infused in combination with other i.v. antibiotics through the same administrative Y site, but the local toxicity of such...

  18. Prune melanoidins protect against oxidative stress and endothelial cell death.

    Science.gov (United States)

    Posadino, Anna Maria; Cossu, Annalisa; Piga, Antonio; Madrau, Monica Assunta; Del Caro, Alessandra; Colombino, Maria; Paglietti, Bianca; Rubino, Salvatore; Iaccarino, Ciro; Crosio, Claudia; Sanna, Bastiano; Pintus, Gianfranco

    2011-06-01

    The health-promoting effects of fruit and vegetable consumption are thought to be due to phytochemicals contained in fresh plant material. Whether processed plant foods provide the same benefits as unprocessed ones is an open question. Melanoidins from heat-processed plums (prunes) were isolated and their presence confirmed by hydroxymethylfurfural content and browning index. Oxidative-induced endothelial cell (EC) damage is the trigger for the development of cardiovascular diseases (CVD); therefore the potential protective effect of prune melanoidins on hydrogen peroxide-induced oxidative cell damage was investigated on human endothelial ECV304 cells. Cytoplasmic and mitochondrial redox status was assessed by using the novel, redox-sensitive, ratiometric fluorescent protein sensor (roGFP), while mitochondrial membrane potential (MMP) was investigated with the fluorescent dye, JC-1. Treatment of ECV304 cells with hydrogen peroxide dose-dependently induced both mitochondrial and cytoplasmic oxidation, in addition to MMP dissipation, with ensuing cell death. Pretreatment of ECV304 with prune melanoidins, significantly counteracted and ultimately abolished hydrogen peroxide elicited phenomena, clearly indicating that these polymers protect human EC against oxidative stress.

  19. Recombinant Treponema pallidum protein Tp0965 activates endothelial cells and increases the permeability of endothelial cell monolayer.

    Directory of Open Access Journals (Sweden)

    Rui-Li Zhang

    Full Text Available The recombinant Treponema pallidum protein Tp0965 (rTp0965, one of the many proteins derived from the genome of T. pallidum subsp. pallidum, shows strong immunogenicity and immunoreactivity. In this study, we investigated the effects of rTp0965 on the endothelial barrier. Treatment of human umbilical vein endothelial cells (HUVECs with rTp0965 resulted in increased levels of ICAM-1, E-selectin, and MCP-1 mRNA and protein expression. These increases contributed to the adhesion and chemataxis of monocytes (THP-1 cells to HUVECs preincubated with rTp0965. In addition, rTp0965 induced reorganization of F-actin and decreased expression of claudin-1 in HUVECs. Interestingly, inhibition of the RhoA/ROCK signal pathway protected against rTp0965-induced higher endothelial permeability as well as transendothelial migration of monocytes. These data indicate that Tp0965 protein may play an important role in the immunopathogenesis of syphilis.

  20. Infantile hemangioma-derived stem cells and endothelial cells are inhibited by class 3 semaphorins

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, Hironao [Vascular Biology Program, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Department of Surgery, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295 (Japan); Huang, Lan [Vascular Biology Program, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Department of Surgery, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Kelly, Ryan P.; Oudenaarden, Clara R.L. [Vascular Biology Program, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Dagher, Adelle; Hofmann, Nicole A.; Moses, Marsha A. [Vascular Biology Program, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Department of Surgery, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Bischoff, Joyce, E-mail: joyce.bischoff@childrens.harvard.edu [Vascular Biology Program, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Department of Surgery, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Klagsbrun, Michael, E-mail: michael.klagsbrun@childrens.harvard.edu [Vascular Biology Program, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Department of Surgery, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Department of Pathology, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States)

    2015-08-14

    Class 3 semaphorins were discovered as a family of axon guidance molecules, but are now known to be involved in diverse biologic processes. In this study, we investigated the anti-angiogenic potential of SEMA3E and SEMA3F (SEMA3E&F) in infantile hemangioma (IH). IH is a common vascular tumor that involves both vasculogenesis and angiogenesis. Our lab has identified and isolated hemangioma stem cells (HemSC), glucose transporter 1 positive (GLUT1{sup +}) endothelial cells (designated as GLUT1{sup sel} cells) based on anti-GLUT1 magnetic beads selection and GLUT1-negative endothelial cells (named HemEC). We have shown that these types of cells play important roles in hemangiogenesis. We report here that SEMA3E inhibited HemEC migration and proliferation while SEMA3F was able to suppress the migration and proliferation in all three types of cells. Confocal microscopy showed that stress fibers in HemEC were reduced by SEMA3E&F and that stress fibers in HemSC were decreased by SEMA3F, which led to cytoskeletal collapse and loss of cell motility in both cell types. Additionally, SEMA3E&F were able to inhibit vascular endothelial growth factor (VEGF)-induced sprouts in all three types of cells. Further, SEMA3E&F reduced the level of p-VEGFR2 and its downstream p-ERK in HemEC. These results demonstrate that SEMA3E&F inhibit IH cell proliferation and suppress the angiogenic activities of migration and sprout formation. SEMA3E&F may have therapeutic potential to treat or prevent growth of highly proliferative IH. - Highlights: • SEMA3E&F reduce actin stress fibers and induce cytoskeletal collapse in HemEC. • SEMA3E&F inhibit angiogenic activities of HemEC. • SEMA3E&F can interrupt the VEGF-A-VEGFR2-ERK signaling pathway in HemEC. • Plexin D1 and NRP2 are induced during HemSC/GLUT1{sup sel}-to-EC differentiation.

  1. Short- and long-term effects of silver nanoparticles on human microvascular endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Sara; Castiglioni; Clelia; Caspani; Alessandra; Cazzaniga; Jeanette; AM; Maier

    2014-01-01

    AIM: To study the response to silver nanoparticles(Ag NP) of human microvascular endothelial cells, protagonists of angiogenesis. METHODS: We cultured human microvascular endothelial cells and endothelial colony-forming cells in their corresponding growth medium. Stock solutions of Ag NP were prepared in culture medium and sonicated before use. They were added at different concentrations and for different times to culture media. The toxicity of Ag NP was investigated by measuring the reduction of yellow tetrazolium salt to dark purple formazan(MTT assay) at 575 nm. After staining with trypan blue, cell proliferation was assessed by counting viable cells. The lactate dehydrogenase leakage assay was performed on culture media by following the oxidation of NADH to NAD+ and monitoring the reaction kinetically at 340 nm. Reactive oxygen species production was quantified using 2’-7’-dichlorofluorescein diacetate. The alkaline comet assay was performed after mixing the cells with low melting-point agarose. Electrophoresis was then conducted and the samples were stained with ethidium bromide and analyzed with a fluorescence microscope.RESULTS: Ag NP are cytotoxic in a dose and time dependent fashion for HMEC. At high concentrations, Ag NP determine loss of membrane integrity as demonstrated by the increased activity of lactate dehydrogenase in the culture medium. Ag NP rapidly stimulate the formation of free radicals. However, pre-incubation with Trolox, apocynin, or N-acetyl-L-cysteine, antioxidants which have different structure and act through different mechanisms, is not sufficient to prevent cytotoxicity. Ag NP also induce DNA damage dose-dependently, as shown by comet assay. When exposed to sublethal concentrations of Ag NP for long times, the cells remain viable but are growth retarded. Interestingly, removal of Ag NP partially rescues cell growth. Also genotoxicity is reversible upon removal of Ag NP from culture medium, suggesting that no permanent

  2. Low Molecular Weight Heparin Improves Endothelial Function in Pregnant Women at High Risk of Preeclampsia.

    Science.gov (United States)

    McLaughlin, Kelsey; Baczyk, Dora; Potts, Audrey; Hladunewich, Michelle; Parker, John D; Kingdom, John C P

    2017-01-01

    Low molecular weight heparin (LMWH) has been investigated for the prevention of severe preeclampsia, although the mechanisms of action are unknown. The objective of this study was to investigate the cardiovascular effects of LMWH in pregnant women at high risk of preeclampsia. Pregnant women at high risk of preeclampsia (n=25) and low-risk pregnant controls (n=20) at 22 to 26 weeks' gestation underwent baseline cardiovascular assessments. High-risk women were then randomized to LMWH or saline placebo (30 mg IV bolus and 1 mg/kg subcutaneous dose). Cardiovascular function was assessed 1 and 3 hours post randomization. The in vitro endothelial effects of patient serum and exogenous LMWH on human umbilical venous endothelial cells were determined. High-risk women demonstrated a reduced cardiac output, high resistance hemodynamic profile with impaired radial artery flow-mediated dilation compared with controls. LMWH increased flow-mediated dilation in high-risk women 3 hours after randomization compared with baseline and increased plasma levels of placental growth factor, soluble fms-like tyrosine kinase-1, and myeloperoxidase. Serum from high-risk women impaired endothelial cell angiogenesis and increased PlGF-1 and PlGF-2 transcription compared with serum from low-risk controls. Coexposure of high-risk serum with LMWH improved the in vitro angiogenic response such that it was equivalent to that of low-risk serum and promoted placental growth factor secretion. LMWH improves maternal endothelial function in pregnant women at high risk of developing preeclampsia, possibly mediated through increased placental growth factor bioavailability. © 2016 American Heart Association, Inc.

  3. Duffy antigen receptor for chemokines mediates chemokine endocytosis through a macropinocytosis-like process in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Yani Zhao

    Full Text Available The Duffy antigen receptor for chemokines (DARC shows high affinity binding to multiple inflammatory CC and CXC chemokines and is expressed by erythrocytes and endothelial cells. Recent evidence suggests that endothelial DARC facilitates chemokine transcytosis to promote neutrophil recruitment. However, the mechanism of chemokine endocytosis by DARC remains unclear.We investigated the role of several endocytic pathways in DARC-mediated ligand internalization. Here we report that, although DARC co-localizes with caveolin-1 in endothelial cells, caveolin-1 is dispensable for DARC-mediated (125I-CXCL1 endocytosis as knockdown of caveolin-1 failed to inhibit ligand internalization. (125I-CXCL1 endocytosis by DARC was also independent of clathrin and flotillin-1 but required cholesterol and was, in part, inhibited by silencing Dynamin II expression.(125I-CXCL1 endocytosis was inhibited by amiloride, cytochalasin D, and the PKC inhibitor Gö6976 whereas Platelet Derived Growth Factor (PDGF enhanced ligand internalization through DARC. The majority of DARC-ligand interactions occurred on the endothelial surface, with DARC identified along plasma membrane extensions with the appearance of ruffles, supporting the concept that DARC provides a high affinity scaffolding function for surface retention of chemokines on endothelial cells.These results show DARC-mediated chemokine endocytosis occurs through a macropinocytosis-like process in endothelial cells and caveolin-1 is dispensable for CXCL1 internalization.

  4. Growth factor-and cytokine-stimulated endothelial progenitor cells in post-ischemic cerebral neovascularization

    Institute of Scientific and Technical Information of China (English)

    Philip V.Peplow

    2014-01-01

    Endothelial progenitor cells are resident in the bone marrow blood sinusoids and circulate in the peripheral circulation. They mobilize from the bone marrow after vascular injury and home to the site of injury where they differentiate into endothelial cells. Activation and mobilization of endothelial progenitor cells from the bone marrow is induced via the production and release of endothelial progenitor cell-activating factors and includes speciifc growth factors and cytokines in response to peripheral tissue hypoxia such as after acute ischemic stroke or trauma. Endotheli-al progenitor cells migrate and home to speciifc sites following ischemic stroke via growth factor/cytokine gradients. Some growth factors are less stable under acidic conditions of tissue isch-emia, and synthetic analogues that are stable at low pH may provide a more effective therapeutic approach for inducing endothelial progenitor cell mobilization and promoting cerebral neovas-cularization following ischemic stroke.

  5. Effects of nano-scaled particles on endothelial cell function in vitro: studies on viability, proliferation and inflammation.

    Science.gov (United States)

    Peters, Kirsten; Unger, Ronald E; Kirkpatrick, C James; Gatti, Antonietta M; Monari, Emanuela

    2004-04-01

    Recent studies give support for a connection between the presence of inorganic particles (of microm and nm size) in different organs and tissues and the development of inflammatory foci, called granulomas. As the potential source of particles (e.g. porcelain dental bridges) and the location of particle detection were topographically far apart, a distribution via the blood stream appears highly probable. Thus, endothelial cells, which line the inner surface of blood vessels, would come into direct contact with these particles, making particle-endothelial interactions potentially pathogenically relevant. The objective of this study was to evaluate the effects that five different nano-scaled particles (PVC, TiO2, SiO2, Co, Ni) have on endothelial cell function and viability. Therefore, human endothelial cells were exposed to different amounts of the above-mentioned particles. Although most particle types are shown to be internalised (except Ni-particles), only Co-particles possessed cytotoxic effects. Furthermore, an impairment of the proliferative activity and a pro-inflammatory stimulation of endothelial cells were induced by exposure to Co- and, to a lesser extent, by SiO2-particles. If a pro-inflammatory stimulation of endothelial cells occurs in vivo, a chronic inflammation could be a possible consequence.

  6. Levamisole induced apoptosis in cultured vascular endothelial cells

    Science.gov (United States)

    Artwohl, Michaela; Hölzenbein, Thomas; Wagner, Ludwig; Freudenthaler, Angelika; Waldhäusl, Werner; Baumgartner-Parzer, Sabina M

    2000-01-01

    To better understand the anticancer activity of Levamisole (LMS), which serves as an adjuvant in colon cancer therapy in combination with 5-Fluorouracil, this study analyses LMS' ability to induce apoptosis and growth arrest in cultured human micro- and macrovascular endothelial cells (ECs) and fibroblasts. Cells exposed (24 h) to Levamisole (range: 0.5–2 mmol l−1) alone or in combination with antioxidants (10 mmol l−1 glutathione or 5 mmol l−1 N-Acetylcysteine or 0.1 mmol l−1 Tocopherol) were evaluated for apoptosis (3H-thymidine assays, in situ staining), mRNA/protein expression (Northern/Western blot), and proliferation (3H-thymidine incorporation). Levamisole dose-dependently increased apoptosis in ECs to 230% (HUVECs-human umbilical vein ECs), 525% (adult human venous ECs) and 600% (human uterine microvascular ECs) but not in fibroblasts compared to control cells (set as 100%). Levamisole increased in ECs integrin-dependent matrix adhesion, inhibited proliferation (−70%), reduced expression of survival factors such as clusterin (−30%), endothelin-1 (−43%), bcl-2 (−34%), endothelial NO-synthase (−32%) and pRb (Retinoblastoma protein: −89%), and increased that of growth arrest/death signals such as p21 (+73%) and bak (+50%). LMS (2 mmol l−1)-induced apoptosis was inhibited by glutathione (−50%) and N-Acetylcysteine (−36%), which also counteracted reduction by Levamisole of pRb expression, suggesting reactive oxygen species and pRb play a role in these processes. The ability of LMS to selectively induce apoptosis and growth arrest in endothelial cells potentially hints at vascular targeting to contribute to Levamisole's anticancer activity. PMID:11139434

  7. Role of NADPH Oxidase-4 in Human Endothelial Progenitor Cells

    Science.gov (United States)

    Hakami, Nora Y.; Ranjan, Amaresh K.; Hardikar, Anandwardhan A.; Dusting, Greg J.; Peshavariya, Hitesh M.

    2017-01-01

    Introduction: Endothelial progenitor cells (EPCs) display a unique ability to promote angiogenesis and restore endothelial function in injured blood vessels. NADPH oxidase 4 (NOX4)-derived hydrogen peroxide (H2O2) serves as a signaling molecule and promotes endothelial cell proliferation and migration as well as protecting against cell death. However, the role of NOX4 in EPC function is not completely understood. Methods: EPCs were isolated from human saphenous vein and mammary artery discarded during bypass surgery. NOX4 gene and protein expression in EPCs were measured by real time-PCR and Western blot analysis respectively. NOX4 gene expression was inhibited using an adenoviral vector expressing human NOX4 shRNA (Ad-NOX4i). H2O2 production was measured by Amplex red assay. EPC migration was evaluated using a transwell migration assay. EPC proliferation and viability were measured using trypan blue counts. Results: Inhibition of NOX4 using Ad-NOX4i reduced Nox4 gene and protein expression as well as H2O2 formation in EPCs. Inhibition of NOX4-derived H2O2 decreased both proliferation and migration of EPCs. Interestingly, pro-inflammatory cytokine tumor necrosis factor alpha (TNFα) decreased NOX4 expression and reduced survival of EPCs. However, the survival of EPCs was further diminished by TNF-α in NOX4-knockdown cells, suggesting that NOX4 has a protective role in EPCs. Conclusion: These findings suggest that NOX4-type NADPH oxidase is important for proliferation and migration functions of EPCs and protects against pro-inflammatory cytokine induced EPC death. These properties of NOX4 may facilitate the efficient function of EPCs which is vital for successful neovascularization.

  8. Elevated sodium and dehydration stimulate inflammatory signaling in endothelial cells and promote atherosclerosis.

    Science.gov (United States)

    Dmitrieva, Natalia I; Burg, Maurice B

    2015-01-01

    Cardiovascular diseases (CVDs) are a leading health problem worldwide. Epidemiologic studies link high salt intake and conditions predisposing to dehydration such as low water intake, diabetes and old age to increased risk of CVD. Previously, we demonstrated that elevation of extracellular sodium, which is a common consequence of these conditions, stimulates production by endothelial cells of clotting initiator, von Willebrand Factor, increases its level in blood and promotes thrombogenesis. In present study, by PCR array, using human umbilical vein endothelial cells (HUVECs), we analyzed the effect of high NaCl on 84 genes related to endothelial cell biology. The analysis showed that the affected genes regulate many aspects of endothelial cell biology including cell adhesion, proliferation, leukocyte and lymphocyte activation, coagulation, angiogenesis and inflammatory response. The genes whose expression increased the most were adhesion molecules VCAM1 and E-selectin and the chemoattractant MCP-1. These are key participants in the leukocyte adhesion and transmigration that play a major role in the inflammation and pathophysiology of CVD, including atherosclerosis. Indeed, high NaCl increased adhesion of mononuclear cells and their transmigration through HUVECs monolayers. In mice, mild water restriction that elevates serum sodium by 5 mmol/l, increased VCAM1, E-selectin and MCP-1 expression in mouse tissues, accelerated atherosclerotic plaque formation in aortic root and caused thickening or walls of coronary arteries. Multivariable linear regression analysis of clinical data from the Atherosclerosis Risk in Communities Study (n=12779) demonstrated that serum sodium is a significant predictor of 10 Years Risk of coronary heart disease. These findings indicate that elevation of extracellular sodium within the physiological range is accompanied by vascular changes that facilitate development of CVD. The findings bring attention to serum sodium as a risk factor for

  9. Elevated sodium and dehydration stimulate inflammatory signaling in endothelial cells and promote atherosclerosis.

    Directory of Open Access Journals (Sweden)

    Natalia I Dmitrieva

    Full Text Available Cardiovascular diseases (CVDs are a leading health problem worldwide. Epidemiologic studies link high salt intake and conditions predisposing to dehydration such as low water intake, diabetes and old age to increased risk of CVD. Previously, we demonstrated that elevation of extracellular sodium, which is a common consequence of these conditions, stimulates production by endothelial cells of clotting initiator, von Willebrand Factor, increases its level in blood and promotes thrombogenesis. In present study, by PCR array, using human umbilical vein endothelial cells (HUVECs, we analyzed the effect of high NaCl on 84 genes related to endothelial cell biology. The analysis showed that the affected genes regulate many aspects of endothelial cell biology including cell adhesion, proliferation, leukocyte and lymphocyte activation, coagulation, angiogenesis and inflammatory response. The genes whose expression increased the most were adhesion molecules VCAM1 and E-selectin and the chemoattractant MCP-1. These are key participants in the leukocyte adhesion and transmigration that play a major role in the inflammation and pathophysiology of CVD, including atherosclerosis. Indeed, high NaCl increased adhesion of mononuclear cells and their transmigration through HUVECs monolayers. In mice, mild water restriction that elevates serum sodium by 5 mmol/l, increased VCAM1, E-selectin and MCP-1 expression in mouse tissues, accelerated atherosclerotic plaque formation in aortic root and caused thickening or walls of coronary arteries. Multivariable linear regression analysis of clinical data from the Atherosclerosis Risk in Communities Study (n=12779 demonstrated that serum sodium is a significant predictor of 10 Years Risk of coronary heart disease. These findings indicate that elevation of extracellular sodium within the physiological range is accompanied by vascular changes that facilitate development of CVD. The findings bring attention to serum sodium as a

  10. Human Brain Microvascular Endothelial Cells Derived from the BC1 iPS Cell Line Exhibit a Blood-Brain Barrier Phenotype

    OpenAIRE

    Katt, Moriah E.; Xu, Zinnia S.; Gerecht, Sharon; Searson, Peter C.

    2016-01-01

    The endothelial cells that form capillaries in the brain are highly specialized, with tight junctions that minimize paracellular transport and an array of broad-spectrum efflux pumps that make drug delivery to the brain extremely challenging. One of the major limitations in blood-brain barrier research and the development of drugs to treat central nervous system diseases is the lack of appropriate cell lines. Recent reports indicate that the derivation of human brain microvascular endothelial...

  11. Endothelial RhoGEFs: A systematic analysis of their expression profiles in VEGF-stimulated and tumor endothelial cells.

    Science.gov (United States)

    Hernández-García, Ricardo; Iruela-Arispe, M Luisa; Reyes-Cruz, Guadalupe; Vázquez-Prado, José

    2015-11-01

    Rho guanine nucleotide exchange factors (RhoGEFs) integrate cell signaling inputs into morphological and functional responses. However, little is known about the endothelial repertoire of RhoGEFs and their regulation. Thus, we assessed the expression of 81 RhoGEFs (70 homologous to Dbl and 11 of the DOCK family) in endothelial cells. Further, in the case of DH-RhoGEFs, we also determined their responses to VEGF exposure in vitro and in the context of tumors. A phylogenetic analysis revealed the existence of four groups of DH-RhoGEFs and two of the DOCK family. Among them, we found that the most abundant endothelial RhoGEFs were: Tuba, FGD5, Farp1, ARHGEF17, TRIO, P-Rex1, ARHGEF15, ARHGEF11, ABR, Farp2, ARHGEF40, ALS, DOCK1, DOCK7 and DOCK6. Expression of RASGRF2 and PREX2 increased significantly in response to VEGF, but most other RhoGEFs were unaffected. Interestingly murine endothelial cells isolated from tumors showed that all four phylogenetic subgroups of DH-RhoGEFs were altered when compared to non-tumor endothelial cells. In summary, our results provide a detailed assessment of RhoGEFs expression profiles in the endothelium and set the basis to systematically address their regulation in vascular signaling.

  12. Interactions between endothelial progenitor cells (EPC) and titanium implant surfaces.

    Science.gov (United States)

    Ziebart, Thomas; Schnell, Anne; Walter, Christian; Kämmerer, Peer W; Pabst, Andreas; Lehmann, Karl M; Ziebart, Johanna; Klein, Marc O; Al-Nawas, Bilal

    2013-01-01

    Endothelial cells play an important role in peri-implant angiogenesis during early bone formation. Therefore, interactions between endothelial progenitor cells (EPCs) and titanium dental implant surfaces are of crucial interest. The aim of our in vitro study was to investigate the reactions of EPCs in contact with different commercially available implant surfaces. EPCs from buffy coats were isolated by Ficoll density gradient separation. After cell differentiation, EPC were cultured for a period of 7 days on different titanium surfaces. The test surfaces varied in roughness and hydrophilicity: acid-etched (A), sand-blasted-blasted and acid-etched (SLA), hydrophilic A (modA), and hydrophilic SLA (modSLA). Plastic and fibronectin-coated plastic surfaces served as controls. Cell numbers and morphology were analyzed by confocal laser scanning microscopy. Secretion of vascular endothelial growth factor (VEGF)-A was measured by enzyme-linked immunosorbent assay and expressions of iNOS and eNOS were investigated by real-time polymerase chain reaction. Cell numbers were higher in the control groups compared to the cells of titanium surfaces. Initially, hydrophilic titanium surfaces (modA and modSLA) showed lower cell numbers than hydrophobic surfaces (A and SLA). After 7 days smoother surfaces (A and modA) showed increased cell numbers compared to rougher surfaces (SLA and modSLA). Cell morphology of A, modA, and control surfaces was characterized by a multitude of pseudopodia and planar cell soma architecture. SLA and modSLA promoted small and plump cell soma with little quantity of pseudopodia. The lowest VEGF level was measured on A, the highest on modSLA. The highest eNOS and iNOS expressions were found on modA surfaces. The results of this study demonstrate that biological behaviors of EPCs can be influenced by different surfaces. The modSLA surface promotes an undifferentiated phenotype of EPCs that has the ability to secrete growth factors in great quantities. In

  13. Gene expression profiling in circulating endothelial cells from systemic sclerosis patients shows an altered control of apoptosis and angiogenesis that is modified by iloprost infusion

    Science.gov (United States)

    2010-01-01

    Introduction Circulating endothelial cells are increased in patients affected by systemic sclerosis (SSc) and their number strongly correlates with vascular damage. The effects of iloprost in systemic sclerosis are only partially known. We aimed at studying the gene expression profile of circulating endothelial cells and the effects of iloprost infusion and gene expression in patients with systemic sclerosis. Methods We enrolled 50 patients affected by systemic sclerosis, 37 patients without and 13 patients with digital ulcers. Blood samples were collected from all patients before and 72 hours after either a single day or five days eight hours iloprost infusion. Blood samples were also collected from 50 sex- and age-matched healthy controls. Circulating endothelial cells and endothelial progenitors cells were detected in the peripheral blood of patients with systemic sclerosis by flow cytometry with a four-colour panel of antibodies. Statistical analysis was performed with the SPSS 16 statistical package.Circulating endothelial cells were then isolated from peripheral blood by immunomagnetic CD45 negative selection for the gene array study. Results The number of both circulating endothelial cells and progenitors was significantly higher in patients affected by systemic sclerosis than in controls and among patients in those with digital ulcers than in patients without them. Circulating endothelial cells and progenitors number increased after iloprost infusion. Gene array analysis of endothelial cells showed a different transcriptional profile in patients compared to controls. Indeed, patients displayed an altered expression of genes involved in the control of apoptosis and angiogenesis. Iloprost infusion had a profound impact on endothelial cells gene expression since the treatment was able to modulate a very high number of transcripts. Conclusions We report here that circulating endothelial cells in patients with systemic sclerosis show an altered expression of

  14. A novel minimally-invasive method to sample human endothelial cells for molecular profiling.

    Directory of Open Access Journals (Sweden)

    Stephen W Waldo

    Full Text Available The endothelium is a key mediator of vascular homeostasis and cardiovascular health. Molecular research on the human endothelium may provide insight into the mechanisms underlying cardiovascular disease. Prior methodology used to isolate human endothelial cells has suffered from poor yields and contamination with other cell types. We thus sought to develop a minimally invasive technique to obtain endothelial cells derived from human subjects with higher yields and purity.Nine healthy volunteers underwent endothelial cell harvesting from antecubital veins using guidewires. Fluorescence-activated cell sorting (FACS was subsequently used to purify endothelial cells from contaminating cells using endothelial surface markers (CD34/CD105/CD146 with the concomitant absence of leukocyte and platelet specific markers (CD11b/CD45. Endothelial lineage in the purified cell population was confirmed by expression of endothelial specific genes and microRNA using quantitative polymerase chain reaction (PCR.A median of 4,212 (IQR: 2161-6583 endothelial cells were isolated from each subject. Quantitative PCR demonstrated higher expression of von Willebrand Factor (vWF, P<0.001, nitric oxide synthase 3 (NOS3, P<0.001 and vascular cell adhesion molecule 1 (VCAM-1, P<0.003 in the endothelial population compared to similarly isolated leukocytes. Similarly, the level of endothelial specific microRNA-126 was higher in the purified endothelial cells (P<0.001.This state-of-the-art technique isolates human endothelial cells for molecular analysis in higher purity and greater numbers than previously possible. This approach will expedite research on the molecular mechanisms of human cardiovascular disease, elucidating its pathophysiology and potential therapeutic targets.

  15. A Novel Minimally-Invasive Method to Sample Human Endothelial Cells for Molecular Profiling

    Science.gov (United States)

    Waldo, Stephen W.; Brenner, Daniel A.; McCabe, James M.; Dela Cruz, Mark; Long, Brian; Narla, Venkata A.; Park, Joseph; Kulkarni, Ameya; Sinclair, Elizabeth; Chan, Stephen Y.; Schick, Suzaynn F.; Malik, Namita; Ganz, Peter; Hsue, Priscilla Y.

    2015-01-01

    Objective The endothelium is a key mediator of vascular homeostasis and cardiovascular health. Molecular research on the human endothelium may provide insight into the mechanisms underlying cardiovascular disease. Prior methodology used to isolate human endothelial cells has suffered from poor yields and contamination with other cell types. We thus sought to develop a minimally invasive technique to obtain endothelial cells derived from human subjects with higher yields and purity. Methods Nine healthy volunteers underwent endothelial cell harvesting from antecubital veins using guidewires. Fluorescence-activated cell sorting (FACS) was subsequently used to purify endothelial cells from contaminating cells using endothelial surface markers (CD34 / CD105 / CD146) with the concomitant absence of leukocyte and platelet specific markers (CD11b / CD45). Endothelial lineage in the purified cell population was confirmed by expression of endothelial specific genes and microRNA using quantitative polymerase chain reaction (PCR). Results A median of 4,212 (IQR: 2161 – 6583) endothelial cells were isolated from each subject. Quantitative PCR demonstrated higher expression of von Willebrand Factor (vWF, P<0.001), nitric oxide synthase 3 (NOS3, P<0.001) and vascular cell adhesion molecule 1 (VCAM-1, P<0.003) in the endothelial population compared to similarly isolated leukocytes. Similarly, the level of endothelial specific microRNA-126 was higher in the purified endothelial cells (P<0.001). Conclusion This state-of-the-art technique isolates human endothelial cells for molecular analysis in higher purity and greater numbers than previously possible. This approach will expedite research on the molecular mechanisms of human cardiovascular disease, elucidating its pathophysiology and potential therapeutic targets. PMID:25679506

  16. Influence of cell detachment on the respiration rate of tumor and endothelial cells.

    Science.gov (United States)

    Danhier, Pierre; Copetti, Tamara; De Preter, Géraldine; Leveque, Philippe; Feron, Olivier; Jordan, Bénédicte F; Sonveaux, Pierre; Gallez, Bernard

    2013-01-01

    Cell detachment is a procedure routinely performed in cell culture and a necessary step in many biochemical assays including the determination of oxygen consumption rates (OCR) in vitro. In vivo, cell detachment has been shown to exert profound metabolic influences notably in cancer but also in other pathologies, such as retinal detachment for example. In the present study, we developed and validated a new technique combining electron paramagnetic resonance (EPR) oximetry and the use of cytodex 1 and collagen-coated cytodex 3 dextran microbeads, which allowed the unprecedented comparison of the OCR of adherent and detached cells with high sensitivity. Hence, we demonstrated that both B16F10 melanoma cells and human umbilical vein endothelial cells (HUVEC) experience strong OCR decrease upon trypsin or collagenase treatments. The reduction of cell oxygen consumption was more pronounced with a trypsin compared to a collagenase treatment. Cells remaining in suspension also encounter a marked intracellular ATP depletion and an increase in the lactate production/glucose uptake ratio. These findings highlight the important influence exerted by cell adhesion/detachment on cell respiration, which can be probed with the unprecedented experimental assay that was developed and validated in this study.

  17. Ginsenoside Rg1 promotes endothelial progenitor cell migration and proliferation

    Institute of Scientific and Technical Information of China (English)

    Ai-wu SHI; Xiao-bin WANG; Feng-xiang LU; Min-min ZHU; Xiang-qing KONG; Ke-jiang CAO

    2009-01-01

    Aim: To investigate the effect of ginsenoside Rgl on the migration, adhesion, proliferation, and VEGF expression of endothe-lial progenitor cells (EPCs).Methods: EPCs were isolated from human peripheral blood and incubated with different concentrations of ginsenoside Rgl (0.1, 0.5, 1.0, and 5.0 μmol/L) and vehicle controls. EPC migration was detected with a modified Boyden chamber assay. EPC adhesion was determined by counting adherent cells on fibronectin-coated culture dishes. EPC proliferation was analyzed with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. In vitro vasculogenesis was assayed using an in vitro vasculogenesis detection kit. A VEGF-ELISA kit was used to measure the amount of VEGF protein in the cell culture medium.Results: Ginsenoside Rgl promoted EPC adhesionp proliferation, migration and in vitro vasculogenesis in a dose- and time-dependent manner. Cell cycle analysis showed that 5.0 μmol/L of ginsenoside Rgl significantly increased the EPC prolifera-tive phase (S phase) and decreased the resting phase (G0/G1 phase). Ginsenoside Rgl increased vascular endothelial growth factor production.Conclusion: The results indicate that ginsenoside Rgl promotes proliferation, migration, adhesion and in vitro vasculogen-esis.

  18. Barrier Functionality of Porcine and Bovine Brain Capillary Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Ailar Nakhlband

    2011-09-01

    Full Text Available Introduction: To date, isolated cell based blood-brain barrier (BBB models have been widely used for brain drug delivery and targeting, due to their relatively proper bioelectrical and permeability properties. However, primary cultures of brain capillary endothelial cells (BCECs isolated from different species vary in terms of bioelectrical and permeability properties. Methods: To pursue this, in the current investigation, primary porcine and bovine BCECs (PBCECs and BBCECs, respectively were isolated and used as an in vitro BBB model. The bioelectrical and permeability properties were assessed in BCECs co-cultured with C6 cells with/without hydrocortisone (550 nM. The bioelectrical properties were further validated by means of the permeability coefficients of transcellular and paracellular markers. Results: The primary PBCECs displayed significantly higher trans-endothelial electrical resistance (~900 W.cm2 than BBCECs (~700 W.cm2 - both co-cultured with C6 cells in presence of hydrocortisone. Permeability coefficients of propranolol/diazepam and mannitol/sucrose in PBCECs were ~21 and ~2 (×10-6 cm.sec-1, where these values for BBCECs were ~25 and ~5 (×10-6 cm.sec-1. Conclusion: Upon our bioelectrical and permeability findings, both models display discriminative barrier functionality but porcine BCECs seem to provide a better platform than bovine BCECs for drug screening and brain targeting.

  19. Genetic analysis of blood vessel formation role of endothelial versus smooth muscle cells.

    Science.gov (United States)

    Carmeliet, P; Collen, D

    1997-11-01

    Formation of new blood vessels is vital during embryogenesis, essential for reproduction and wound healing during adulthood, and required to rescue tissue during ischemia. Neovascularization may, however, also contribute to the pathogenesis of several disorders, including tumorigenesis, diabetic vasculopathy, and chronic inflammation. Initially, blood vessels form as endothelium-lined channels by in situ differentiation of endothelial cells. Subsequently, they sprout and remodel into a highly organized and interconnected vascular network. During further maturation of the blood vessels, a sheet of primitive vascular smooth muscle cells surrounds the endothelium-lined channels, which controls endothelial cell function and provides structural support. Recent molecular analyses have identified candidate molecules that affect these processes. Their in vivo role has been further established by targeted gene manipulation in transgenic mice. This review highlights recent developments in the genetic analysis of blood vessel formation, as deduced from analysis of gene-inactivated mice. (Trends Cardiovasc Med 1997;7:271-281). © 1997, Elsevier Science Inc.

  20. The multiple personality disorder phenotype(s) of circulating endothelial cells in cancer.

    Science.gov (United States)

    Bertolini, Francesco; Mancuso, Patrizia; Braidotti, Paola; Shaked, Yuval; Kerbel, Robert S

    2009-08-01

    Circulating endothelial cells (CECs) and circulating endothelial progenitors (CEPs) are currently being investigated in a variety of diseases as markers of vascular turnover or damage and, also in the case of CEPs, vasculogenesis. CEPs appear to have a "catalytic" role in different steps of cancer progression and recurrence after therapy, and there are preclinical and clinical data suggesting that CEC enumeration might be useful to select and stratify patients who are candidates for anti-angiogenic treatments. In some types of cancer, CECs and CEPs might be one of the possible hidden identities of cancer stem cells. The definition of CEC and CEP phenotype and the standardization of CEC and CEP enumeration strategies are highly desirable goals in order to exploit these cells as reliable biomarkers in oncology clinical trials.

  1. Effect of radiation on prostacyclin (PGI2) production by cultured endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Eldor, A.; Vlodavsky, I.; Hyam, E.; Atzmon, R.; Fuks, Z.

    1983-02-01

    The effect of ionizing irradiation on the synthesis of prostacyclin (PGI2) by cultured bovine aortic endothelial cells was determined. PGI2 was measured in the culture medium by a radioimmunoassay for 6-Keto PGF1 alpha. Two phenomena were observed following irradiation: a) Cells which suffered an immediate radiation damage (1000-5000 rads) released high quantities of PGI2 to the culture medium. This was due to a de novo synthesis of PGI2 stimulated by radiation induced cellular damage, since pretreatment with aspirin of the endothelial cell monolayers resulted in a marked inhibition of PGI2 release following irradiation. b) Metabolically active cells which remained confluent and firmly attached to the culture dish following single, low and intermediate doses (200-1200 rads) radiation, exhibited a marked decrease in their capacity to synthesize PGI2 upon exposure to various stimuli of the arachidonic acid cascade. Similar results were observed with cells treated with fractionated radiation. The quantities of PGI2 produced by the endothelial cells decreased as a function of the dose of radiation and time interval between irradiation and subsequent stimulation. The effect of radiation on PGI2 production by the vascular endothelium may be relevant to the development of radiation induced capillary occlusions, and the enhancement of atherosclerotic lesions in large vessels.

  2. Flow bioreactor design for quantitative measurements over endothelial cells using micro-particle image velocimetry

    Science.gov (United States)

    Leong, Chia Min; Voorhees, Abram; Nackman, Gary B.; Wei, Timothy

    2013-04-01

    Mechanotransduction in endothelial cells (ECs) is a highly complex process through which cells respond to changes in hemodynamic loading by generating biochemical signals involving gene and protein expression. To study the effects of mechanical loading on ECs in a controlled fashion, different in vitro devices have been designed to simulate or replicate various aspects of these physiological phenomena. This paper describes the design, use, and validation of a flow chamber which allows for spatially and temporally resolved micro-particle image velocimetry measurements of endothelial surface topography and stresses over living ECs immersed in pulsatile flow. This flow chamber also allows the study of co-cultures (i.e., ECs and smooth muscle cells) and the effect of different substrates (i.e., coverslip and/or polyethylene terepthalate (PET) membrane) on cellular response. In this report, the results of steady and pulsatile flow on fixed endothelial cells seeded on PET membrane and coverslip, respectively, are presented. Surface topography of ECs is computed from multiple two-dimensional flow measurements. The distributions of shear stress and wall pressure on each individual cell are also determined and the importance of both types of stress in cell remodeling is highlighted.

  3. Flow bioreactor design for quantitative measurements over endothelial cells using micro-particle image velocimetry.

    Science.gov (United States)

    Leong, Chia Min; Voorhees, Abram; Nackman, Gary B; Wei, Timothy

    2013-04-01

    Mechanotransduction in endothelial cells (ECs) is a highly complex process through which cells respond to changes in hemodynamic loading by generating biochemical signals involving gene and protein expression. To study the effects of mechanical loading on ECs in a controlled fashion, different in vitro devices have been designed to simulate or replicate various aspects of these physiological phenomena. This paper describes the design, use, and validation of a flow chamber which allows for spatially and temporally resolved micro-particle image velocimetry measurements of endothelial surface topography and stresses over living ECs immersed in pulsatile flow. This flow chamber also allows the study of co-cultures (i.e., ECs and smooth muscle cells) and the effect of different substrates (i.e., coverslip and∕or polyethylene terepthalate (PET) membrane) on cellular response. In this report, the results of steady and pulsatile flow on fixed endothelial cells seeded on PET membrane and coverslip, respectively, are presented. Surface topography of ECs is computed from multiple two-dimensional flow measurements. The distributions of shear stress and wall pressure on each individual cell are also determined and the importance of both types of stress in cell remodeling is highlighted.

  4. Construction and characterization of osteogenic and vascular endothelial cell sheets from rat adipose-derived mesenchymal stem cells.

    Science.gov (United States)

    Zhang, Hualin; Yu, Na; Zhou, Yueli; Ma, Hairong; Wang, Juan; Ma, Xuerong; Liu, Jinsong; Huang, Jin; An, Yilin

    2016-10-01

    In this study, adipose-derived mesenchymal stem cells (ADSCs) were isolated from adipose tissues of rats. Flow cytometry identification showed that ADSCs of passage 3 highly expressed CD29 and CD44, but hardly expressed CD31 and CD45. Adipogenic, osteogenic, and chondrogenic differentiation were confirmed by the results of oil red O staining, alkaline phosphatase (ALP), and alcian blue staining, respectively. ADSCs at a density of 1×10(6)/cm(2) were cultured in the osteogenic medium and the osteogenic cell sheets could be obtained after 14 d. The cell sheets were positive with von kossa staining. The transmission electron microscopy (TEM) result showed that needle-like calcium salt crystals were deposited on the ECM. These results suggested that the osteogenic cell sheets may have potential osteogenesis ability. ADSCs at a density of 1×10(6)/cm(2) were cultured in the endothelial cell growth medium-2 and the endothelial cell sheets can be formed after 16 d of culture. The TEM image confirmed that the Weibel-Palade corpuscle was seen in the cells. The expression of CD31 was positive, suggesting that the endothelial cell sheets may have a strong ability to form blood vessels. In this study, two types of cell sheets with the potential abilities of osteogenesis and blood vessels formation were obtained by induced culture of ADSCs in vitro, which lays a foundation to build vascularized tissue engineered bone for the therapy of bone defects.

  5. Acquisition of anoikis resistance up-regulates syndecan-4 expression in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Bruna Ribeiro Carneiro

    Full Text Available Anoikis is a programmed cell death induced upon cell detachment from extracellular matrix, behaving as a critical mechanism in preventing adherent-independent cell growth and attachment to an inappropriate matrix, thus avoiding colonization of distant organs. Cell adhesion plays an important role in neoplastic transformation. Tumors produce several molecules that facilitate their proliferation, invasion and maintenance, especially proteoglycans. The syndecan-4, a heparan sulfate proteoglycan, can act as a co-receptor of growth factors and proteins of the extracellular matrix by increasing the affinity of adhesion molecules to their specific receptors. It participates together with integrins in cell adhesion at focal contacts connecting the extracellular matrix to the cytoskeleton. Changes in the expression of syndecan-4 have been observed in tumor cells, indicating its involvement in cancer. This study investigates the role of syndecan-4 in the process of anoikis and cell transformation. Endothelial cells were submitted to sequential cycles of forced anchorage impediment and distinct lineages were obtained. Anoikis-resistant endothelial cells display morphological alterations, high rate of proliferation, poor adhesion to fibronectin, laminin and collagen IV and deregulation of the cell cycle, becoming less serum-dependent. Furthermore, anoikis-resistant cell lines display a high invasive potential and a low rate of apoptosis. This is accompanied by an increase in the levels of heparan sulfate and chondroitin sulfate as well as by changes in the expression of syndecan-4 and heparanase. These results indicate that syndecan-4 plays a important role in acquisition of anoikis resistance and that the conferral of anoikis resistance may suffice to transform endothelial cells.

  6. Exogenous endothelial cells as accelerators of hematopoietic reconstitution

    Directory of Open Access Journals (Sweden)

    Mizer J

    2012-11-01

    Full Text Available Abstract Despite the successes of recombinant hematopoietic-stimulatory factors at accelerating bone marrow reconstitution and shortening the neutropenic period post-transplantation, significant challenges remain such as cost, inability to reconstitute thrombocytic lineages, and lack of efficacy in conditions such as aplastic anemia. A possible means of accelerating hematopoietic reconstitution would be administration of cells capable of secreting hematopoietic growth factors. Advantages of this approach would include: a ability to regulate secretion of cytokines based on biological need; b long term, localized production of growth factors, alleviating need for systemic administration of factors that possess unintended adverse effects; and c potential to actively repair the hematopoietic stem cell niche. Here we overview the field of hematopoietic growth factors, discuss previous experiences with mesenchymal stem cells (MSC in accelerating hematopoiesis, and conclude by putting forth the rationale of utilizing exogenous endothelial cells as a novel cellular therapy for acceleration of hematopoietic recovery.

  7. Glycoconjugates and Related Molecules in Human Vascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Norihiko Sasaki

    2013-01-01

    Full Text Available Vascular endothelial cells (ECs form the inner lining of blood vessels. They are critically involved in many physiological functions, including control of vasomotor tone, blood cell trafficking, hemostatic balance, permeability, proliferation, survival, and immunity. It is considered that impairment of EC functions leads to the development of vascular diseases. The carbohydrate antigens carried by glycoconjugates (e.g., glycoproteins, glycosphingolipids, and proteoglycans mainly present on the cell surface serve not only as marker molecules but also as functional molecules. Recent studies have revealed that the carbohydrate composition of the EC surface is critical for these cells to perform their physiological functions. In this paper, we consider the expression and functional roles of endogenous glycoconjugates and related molecules (galectins and glycan-degrading enzymes in human ECs.

  8. Scanning electron microscopic analysis of endothelial cell coverage and quality in large vessels from multi-organ donors: effects of preservation on endothelial cell integrity.

    Science.gov (United States)

    van Leeuwen, E B; Molema, G; van Luyn, M J; de Jong, K P; Dijk, F; Slooff, M J; Ruiters, M H; van der Meer, J

    2000-06-01

    Endothelial cell integrity (coverage and quality) of large donor vessels is important because these vessels are used for vascular reconstructions in solid-organ transplantation. Disruption of the endothelial cell monolayer will initiate blood coagulation and may lead to thrombosis of large vessels, often resulting in the loss of the transplanted organ. Iliac arteries and veins, removed from 10 heart-beating multi-organ donors at the end of the donor procedure, were analyzed using scanning electron microscopy at three different time points of preservation. Endothelial cell coverage and quality were determined immediately after removal from the donor, after 10 h (time of transplantation) and 7 d storage in 'University of Wisconsin' cold preservation solution (UW). Endothelial cell coverage decreased during the preservation of arteries, but was maintained in veins. Storage of the veins for 7 d in plastic bags showed a decreased endothelial cell coverage compared to storage in glass vials. Early removal of the blood vessels and proper storage, free floating and in clean UW, may improve maintenance of the endothelial cell integrity. These findings may be important in order to reduce the risk of thrombosis and, consequently, organ failure after transplantation. Furthermore, vessels with maintained endothelial cell integrity after 7 d may be used for in vitro research.

  9. Cell biology of diabetic nephropathy: Roles of endothelial cells, tubulointerstitial cells and podocytes.

    Science.gov (United States)

    Maezawa, Yoshiro; Takemoto, Minoru; Yokote, Koutaro

    2015-01-01

    Diabetic nephropathy is the major cause of end-stage renal failure throughout the world in both developed and developing countries. Diabetes affects all cell types of the kidney, including endothelial cells, tubulointerstitial cells, podocytes and mesangial cells. During the past decade, the importance of podocyte injury in the formation and progression of diabetic nephropathy has been established and emphasized. However, recent findings provide additional perspectives on pathogenesis of diabetic nephropathy. Glomerular endothelial damage is already present in the normoalbuminuric stage of the disease when podocyte injury starts. Genetic targeting of mice that cause endothelial injury leads to accelerated diabetic nephropathy. Tubulointerstitial damage, previously considered to be a secondary effect of glomerular protein leakage, was shown to have a primary significance in the progression of diabetic nephropathy. Emerging evidence suggests that the glomerular filtration barrier and tubulointerstitial compartment is a composite, dynamic entity where any injury of one cell type spreads to other cell types, and leads to the dysfunction of the whole apparatus. Accumulation of novel knowledge would provide a better understanding of the pathogenesis of diabetic nephropathy, and might lead to a development of a new therapeutic strategy for the disease.

  10. Study of the Mechanism of Essential Garlic Oil Inhibiting Interleukin-1α-Induced Monocyte Adhesion to Endothelial Cells

    Institute of Scientific and Technical Information of China (English)

    葛璐璐; 张薇; 戴云; 臧燕; 黄纯洁

    2001-01-01

    To observe the effects of essential garlic oil (EGO) on vascular cell adhesive molecule-1 (VCAM-1) expression of endothelial cells and monocyte-endothelial cell adhesion rate induced by interleukin-1α (IL-1α). Methods: Human umbilical vein endothelial cells (HUVEC) were isolated by trypsin digestion method and co-cultured with IL-1α or EGO+IL-1α in the absence or presence of U937 monocyte. Monocyte-endothelial cell adhesion rate was examined with reverted microscope. VCAM-1 expression of endothelial cells was measured by ACAS 570 confocal microscope, and the data were presented as mean fluorescent intensity. Results: EGO significantly inhibited IL-1α-induced endothelial expression of VCAM-1, and thus markedly decreased monocyte-endothelial cell adhesion rate. Conclusion: EGO has the effect on antagonizing adhesion of monocyte and vascular endothelial cell, which might be due to its inhibition on adhesive molecular expression on the surface of endothelial cells.

  11. In Vivo Vascularization of Endothelial Cells Derived from Bone Marrow Mesenchymal Stem Cells in SCID Mouse Model

    Directory of Open Access Journals (Sweden)

    Allameh Abdolamir

    2016-07-01

    Full Text Available Objective In vivo and in vitro stem cell differentiation into endothelial cells is a promising area of research for tissue engineering and cell therapy. Materials and Methods We induced human mesenchymal stem cells (MSCs to differentiate to endothelial cells that had the ability to form capillaries on an extracellular matrix (ECM gel. Thereafter, the differentiated endothelial cells at early stage were characterized by expression of specific markers such as von Willebrand factor (vWF, vascular endothelial growth factor (VEGF receptor 2, and CD31. In this experimental model, the endothelial cells were transplanted into the groins of severe combined immunodeficiency (SCID mice. After 30 days, we obtained tissue biopsies from the transplantation sites. Biopsies were processed for histopathological and double immunohistochemistry (DIHC staining. Results Endothelial cells at the early stage of differentiation expressed endothelial markers. Hematoxylin and eosin (H&E staining, in addition to DIHC demonstrated homing of the endothelial cells that underwent vascularization in the injected site. Conclusion The data clearly showed that endothelial cells at the early stage of differentiation underwent neovascularization in vivo in SCID mice. Endothelial cells at their early stage of differentiation have been proven to be efficient for treatment of diseases with impaired vasculogenesis.

  12. Synergism of matrix stiffness and vascular endothelial growth factor on mesenchymal stem cells for vascular endothelial regeneration.

    Science.gov (United States)

    Wingate, Kathryn; Floren, Michael; Tan, Yan; Tseng, Pi Ou Nancy; Tan, Wei

    2014-09-01

    Mesenchymal stem cells (MSCs) hold tremendous potential for vascular tissue regeneration. Research has demonstrated that individual factors in the cell microenvironment such as matrix elasticity and growth factors regulate MSC differentiation to vascular lineage. However, it is not well understood how matrix elasticity and growth factors combine to direct the MSC fate. This study examines the combined effects of matrix elasticity and vascular endothelial growth factor (VEGF) on both MSC differentiation into endothelial lineage and MSC paracrine signaling. MSCs were seeded in soft nanofibrous matrices with or without VEGF, and in Petri dishes with or without VEGF. Only MSCs seeded in three-dimensional soft matrices with VEGF showed significant increases in the expression of endothelial markers (vWF, eNOS, Flt-1, and Flk-1), while eliminating the expression of smooth muscle marker (SM-α-actin). MSCs cultured in VEGF alone on two-dimensional dishes showed increased expression of both early-stage endothelial and smooth muscle markers, indicating immature vascular differentiation. Furthermore, MSCs cultured in soft matrices with VEGF showed faster upregulation of endothelial markers compared with MSCs cultured in VEGF alone. Paracrine signaling studies found that endothelial cells cultured in the conditioned media from MSCs differentiated in the soft matrix and VEGF condition exhibited increased migration and formation of capillary-like structures. These results demonstrate that VEGF and soft matrix elasticity act synergistically to guide MSC differentiation into mature endothelial phenotype while enhancing paracrine signaling. Therefore, it is critical to control both mechanical and biochemical factors to safely regenerate vascular tissues with MSCs.

  13. Arginine deiminase modulates endothelial tip cells via excessive synthesis of reactive oxygen species.

    Science.gov (United States)

    Zhuo, Wei; Song, Xiaomin; Zhou, Hao; Luo, Yongzhang

    2011-10-01

    ADI (arginine deiminase), an enzyme that hydrolyses arginine, has been reported as an anti-angiogenesis agent. However, its molecular mechanism is unclear. We have demonstrated for the first time that ADI modulates the angiogenic activity of endothelial tip cells. By arginine depletion, ADI disturbs actin filament in endothelial tip cells, causing disordered migratory direction and decreased migration ability. Furthermore, ADI induces excessive synthesis of ROS (reactive oxygen species), and activates caspase 8-, but not caspase 9-, dependent apoptosis in endothelial cells. These findings provide a novel mechanism by which ADI inhibits tumour angiogenesis through modulating endothelial tip cells.

  14. Effect of Cytokines Secreted by Human Adipose Stromal Cells on Endothelial Cells

    Institute of Scientific and Technical Information of China (English)

    LI Bingong; ZENG Qiutang; WANG Hongxiang; MAO Xiaobo

    2006-01-01

    To isolate and culture adipose stromal cells (ASCs), and study the effect of cytokines secreted by ASCs on endothelial cells, human adipose tissue was digested with collagenase type Ⅰ solution and ASCs were derived by culture. The cells surface phenotype was examined by flow cytometry. ELISA was used to detect the secretion of VEGF, HGF, SDF-1 α and RT-PCR was employed to detect the expression of their mRNA. Then the ASC medium was utilized to culture human umbilical vein endothelial cells ECV304. Cells were counted by hemacytometer to determine the proliferation and Annexin V/PI was employed for the examination of the apoptosis rate of ECV304. ASCs were derived by culture and expressed CD34, CD105 while they did not express CD31 or CD45. ASCs secreted cytokines such as VEGF, HGF and SDF-1 α so the ASC medium could stimulate proliferation and counteract apoptosis of endothelial cells (P<0.05). Bcl-2 mRNA was also found to be up-regulated in the endothelial cells. It is concluded that ASCs can secrete cytokines and has significant effect on the proliferation of endothelial cells and apoptosis.

  15. Glucagon-like peptide-1 activates endothelial nitric oxide synthase in human umbilical vein endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Li DING; Jin ZHANG

    2012-01-01

    To investigate the effects of glucagon-like peptide-1 (GLP-1) on endothelial NO synthase (eNOS) in human umbilical vein endothelial cells (HUVECs),and elucidate whether GLP-1 receptor (GLP-1R) and GLP-1(9-36) are involved in these effects.Methods:HUVECs were used.The activity of eNOS was measured with NOS assay kit.Phosphorylated and total eNOS proteins were detected using Western blot analysis.The level of eNOS mRNA was quantified with real-time RT-PCR.Results:Incubation of HUVECs with GLP-1 (50-5000 pmol/L) for 30 min significantly increased the activity of eNOS.Incubation of HUVECs with GLP-1 (500-5000 pmol/L) for 5 or 10 min increased eNOS phosphorylated at ser-1177.Incubation with GLP-1 (5000 pmol/L) for 48 h elevated the level of eNOS protein,did not affect the level of eNOS mRNA.GLP-1R agonists exenatide and GLP-1(9-36) at the concentration of 5000 pmol/L increased the activity,phosphorylation and protein level of eNOS.GLP-1R antagonist exendin(9-39) or DPP-4 inhibitor sitagliptin,which abolished GLP-1(9-36) formation,at the concentration of 5000 pmol/L partially blocked the effects of GLP-1 on eNOS.Conclusion:GLP-1 upregulated the activity and protein expression of eNOS in HUVECs through the GLP-1R-dependent and GLP-1(9-36)-related pathways.GLP-1 may prevent or delay the formation of atherosclerosis in diabetes mellitus by improving the function of eNOS.

  16. Subcellular characterization of glucose uptake in coronary endothelial cells.

    Science.gov (United States)

    Gaudreault, N; Scriven, D R L; Laher, I; Moore, E D W

    2008-01-01

    Despite all the evidence linking glucose toxicity to an increased risk of cardiovascular diseases, very little is known about the regulation of glucose uptake in endothelial cells. We have previously reported an asymmetric distribution of the GLUTs (1-5) and SGLT-1 in en face preparations of rat coronary artery endothelia [Gaudreault N., Scriven D.R., Moore E.D., 2004. Characterisation of glucose transporters in the intact coronary artery endothelium in rats: GLUT-2 upregulated by long-term hyperglycaemia. Diabetologia 47(12),2081-2092]. We assessed this time, through immunocytochemistry and wide field fluorescence microscopy coupled to deconvolution, the presence and subcellular distribution of glucose transporters in cultures of human coronary artery endothelial cells (HCAECs). HCAECs express GLUT-1 to 5 and SGLT-1, but their subcellular distribution lacks the luminal/abluminal asymmetry and the proximity to cell-to-cell junctions observed in intact endothelium. To determine the impact of the transporters' distribution on intracellular glucose accumulation, a fluorescent glucose analog (2-NBDG) was used in conjunction with confocal microscopy to monitor uptake in individual cells; the arteries were mounted in an arteriograph chamber with physiological flow rates. The uptake in both preparations was inhibited by cytochalasin-B and d-glucose and stimulated by insulin, but the distribution of the incorporated 2-NBDG mirrored that of the transporters. In HCAEC it was distributed throughout the cell and in the intact arterial endothelium it was restricted to the narrow cytosolic volume adjacent to the cell-to-cell junctions. We suggest that the latter subcellular organization and compartmentalization may facilitate transendothelial transport of glucose in intact coronary artery.

  17. Efficient nanoparticle mediated sustained RNA interference in human primary endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Mukerjee, Anindita; Shankardas, Jwalitha; Ranjan, Amalendu P; Vishwanatha, Jamboor K, E-mail: Jamboor.vishwanatha@unthsc.edu [Department of Molecular Biology and Immunology and Institute for Cancer Research, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107 (United States)

    2011-11-04

    Endothelium forms an important target for drug and/or gene therapy since endothelial cells play critical roles in angiogenesis and vascular functions and are associated with various pathophysiological conditions. RNA mediated gene silencing presents a new therapeutic approach to overcome many such diseases, but the major challenge of such an approach is to ensure minimal toxicity and effective transfection efficiency of short hairpin RNA (shRNA) to primary endothelial cells. In the present study, we formulated shAnnexin A2 loaded poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles which produced intracellular small interfering RNA (siRNA) against Annexin A2 and brought about the downregulation of Annexin A2. The per cent encapsulation of the plasmid within the nanoparticle was found to be 57.65%. We compared our nanoparticle based transfections with Lipofectamine mediated transfection, and our studies show that nanoparticle based transfection efficiency is very high ({approx}97%) and is more sustained compared to conventional Lipofectamine mediated transfections in primary retinal microvascular endothelial cells and human cancer cell lines. Our findings also show that the shAnnexin A2 loaded PLGA nanoparticles had minimal toxicity with almost 95% of cells being viable 24 h post-transfection while Lipofectamine based transfections resulted in only 30% viable cells. Therefore, PLGA nanoparticle based transfection may be used for efficient siRNA transfection to human primary endothelial and cancer cells. This may serve as a potential adjuvant treatment option for diseases such as diabetic retinopathy, retinopathy of prematurity and age related macular degeneration besides various cancers.

  18. Characterization of nicardipine hydrochloride-induced cell injury in human vascular endothelial cells.

    Science.gov (United States)

    Ochi, Masanori; Kawai, Yoshiko; Tanaka, Yoshiyuki; Toyoda, Hiromu

    2015-02-01

    Nicardipine hydrochloride (NIC), a dihydropyridine calcium-channel blocking agent, has been widely used for the treatment of hypertension. Especially, nicardipine hydrochloride injection is used as first-line therapy for emergency treatment of abnormally high blood pressure. Although NIC has an attractive pharmacological profile, one of the dose-limiting factors of NIC is severe peripheral vascular injury after intravenous injection. The goal of this study was to better understand and thereby reduce NIC-mediated vascular injury. Here, we investigated the mechanism of NIC-induced vascular injury using human dermal microvascular endothelial cells (HMVECs). NIC decreased cell viability and increased percent of dead cells in a dose-dependent manner (10-30 μg/mL). Although cell membrane injury was not significant over 9 hr exposure, significant changes of cell morphology and increases in vacuoles in HMVECs were observed within 30 min of NIC exposure (30 μg/mL). Autophagosome labeling with monodansylcadaverine revealed increased autophagosomes in the NIC-treated cells, whereas caspase 3/7 activity was not increased in the NIC-treated cells (30 μg/mL). Additionally, NIC-induced reduction of cell viability was inhibited by 3-methyladenine, an inhibitor of autophagosome formation. These findings suggest that NIC causes severe peripheral venous irritation via induction of autophagic cell death and that inhibition of autophagy could contribute to the reduction of NIC-induced vascular injury.

  19. Endothelial Progenitor Cells for Diagnosis and Prognosis in Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Caterina Oriana Aragona

    2016-01-01

    Full Text Available Objective. To identify, evaluate, and synthesize evidence on the predictive power of circulating endothelial progenitor cells (EPCs in cardiovascular disease, through a systematic review of quantitative studies. Data Sources. MEDLINE was searched using keywords related to “endothelial progenitor cells” and “endothelium” and, for the different categories, respectively, “smoking”; “b