WorldWideScience

Sample records for high efficiency soft

  1. High efficiency spectro graphs for the EUV and soft x-rays

    International Nuclear Information System (INIS)

    Cash, W.

    1983-01-01

    A basic need of modern UV and x-ray astronomy is the capability to perform high resolution spectroscopy of faint stars. The use of modern grazing incidence optics can be coupled to high blaze angle reflection gratings used in the conical diffraction mount to offer a versatile, efficient approach to the design problem. The authors discuss two designs of interest: an echelle spectrograph for use longward of 100 A, and an Objective Reflection Grating Spectrograph for use in the soft x-rays. General design considerations and measurements of grating efficiencies are also presented

  2. Dynamical Origin of Highly Efficient Energy Dissipation in Soft Magnetic Nanoparticles for Magnetic Hyperthermia Applications

    Science.gov (United States)

    Kim, Min-Kwan; Sim, Jaegun; Lee, Jae-Hyeok; Kim, Miyoung; Kim, Sang-Koog

    2018-05-01

    We explore robust magnetization-dynamic behaviors in soft magnetic nanoparticles in single-domain states and find their related high-efficiency energy-dissipation mechanism using finite-element micromagnetic simulations. We also make analytical derivations that provide deeper physical insights into the magnetization dynamics associated with Gilbert damping parameters under applications of time-varying rotating magnetic fields of different strengths and frequencies and static magnetic fields. Furthermore, we find that the mass-specific energy-dissipation rate at resonance in the steady-state regime changes remarkably with the strength of rotating fields and static fields for given damping constants. The associated magnetization dynamics are well interpreted with the help of the numerical calculation of analytically derived explicit forms. The high-efficiency energy-loss power can be obtained using soft magnetic nanoparticles in the single-domain state by tuning the frequency of rotating fields to the resonance frequency; what is more, it is controllable via the rotating and static field strengths for a given intrinsic damping constant. We provide a better and more efficient means of achieving specific loss power that can be implemented in magnetic hyperthermia applications.

  3. High efficiency multilayer blazed gratings for EUV and soft X-rays: Recent developments

    International Nuclear Information System (INIS)

    Voronov, Dmitriy; Ahn, Minseung; Anderson, Erik; Cambie, Rossana; Chang, Chih-Hao; Goray, Leonid; Gullikson, Eric; Heilmann, Ralf; Salmassi, Farhad; Schattenburg, Mark; Warwick, Tony; Yashchuk, Valeriy; Padmore, Howard

    2011-01-01

    Multilayer coated blazed gratings with high groove density are the best candidates for use in high resolution EUV and soft x-ray spectroscopy. Theoretical analysis shows that such a grating can be potentially optimized for high dispersion and spectral resolution in a desired high diffraction order without significant loss of diffraction efficiency. In order to realize this potential, the grating fabrication process should provide a perfect triangular groove profile and an extremely smooth surface of the blazed facets. Here we report on recent progress achieved at the Advanced Light Source (ALS) in fabrication of high quality multilayer coated blazed gratings. The blazed gratings were fabricated using scanning beam interference lithography followed by wet anisotropic etching of silicon. A 200 nm period grating coated with a Mo/Si multilayer composed with 30 bi-layers demonstrated an absolute efficiency of 37.6percent in the 3rd diffraction order at 13.6 nm wavelength. The groove profile of the grating was thoroughly characterized with atomic force microscopy before and after the multilayer deposition. The obtained metrology data were used for simulation of the grating efficiency with the vector electromagnetic PCGrate-6.1 code. The simulations showed that smoothing of the grating profile during the multilayer deposition is the main reason for efficiency losses compared to the theoretical maximum. Investigation of the grating with cross-sectional transmission electron microscopy revealed a complex evolution of the groove profile in the course of the multilayer deposition. Impact of the shadowing and smoothing processes on growth of the multilayer on the surface of the sawtooth substrate is discussed.

  4. The Ultraviolet Surprise. Efficient Soft X-Ray High Harmonic Generation in Multiply-Ionized Plasmas

    International Nuclear Information System (INIS)

    Popmintchev, Dimitar; Hernandez-Garcia, Carlos; Dollar, Franklin; Mancuso, Christopher; Perez-Hernandez, Jose A.; Chen, Ming-Chang; Hankla, Amelia; Gao, Xiaohui; Shim, Bonggu; Gaeta, Alexander L.; Tarazkar, Maryam; Romanov, Dmitri A.; Levis, Robert J.; Gaffney, Jim A.; Foord, Mark; Libby, Stephen B.; Jaron-Becker, Agnieskzka; Becker, Andreas; Plaja, Luis; Muranane, Margaret M.; Kapteyn, Henry C.; Popmintchev, Tenio

    2015-01-01

    High-harmonic generation is a universal response of matter to strong femtosecond laser fields, coherently upconverting light to much shorter wavelengths. Optimizing the conversion of laser light into soft x-rays typically demands a trade-off between two competing factors. Reduced quantum diffusion of the radiating electron wave function results in emission from each species which is highest when a short-wavelength ultraviolet driving laser is used. But, phase matching - the constructive addition of x-ray waves from a large number of atoms - favors longer-wavelength mid-infrared lasers. We identified a regime of high-harmonic generation driven by 40-cycle ultraviolet lasers in waveguides that can generate bright beams in the soft x-ray region of the spectrum, up to photon energies of 280 electron volts. Surprisingly, the high ultraviolet refractive indices of both neutral atoms and ions enabled effective phase matching, even in a multiply ionized plasma. We observed harmonics with very narrow linewidths, while calculations show that the x-rays emerge as nearly time-bandwidt-limited pulse trains of ~100 attoseconds

  5. Efficient 'water window' soft x-ray high-Z plasma source

    International Nuclear Information System (INIS)

    Higashiguchi, T; Otsuka, T; Jiang, W; Endo, A; Li, B; Dunne, P; O'Sullivan, G

    2013-01-01

    Unresolved transition array (UTA) is scalable to shorter wavelengths, and we demonstrate a table-top broadband emission 'water window' soft x-ray source based on laser-produced plasmas. Resonance emission from multiply charged ions merges to produce intense UTAs in the 2 to 4 nm region, extending below the carbon K edge (4.37 nm). An outline of a microscope design for single-shot live cell imaging is proposed based on a bismuth (Bi) plasma UTA source, coupled to multilayer mirror optics

  6. Energy efficiency of mobile soft robots.

    Science.gov (United States)

    Shui, Langquan; Zhu, Liangliang; Yang, Zhe; Liu, Yilun; Chen, Xi

    2017-11-15

    The performance of mobile soft robots is usually characterized by their locomotion/velocity efficiency, whereas the energy efficiency is a more intrinsic and fundamental criterion for the performance evaluation of independent or integrated soft robots. In this work, a general framework is established to evaluate the energy efficiency of mobile soft robots by considering the efficiency of the energy source, actuator and locomotion, and some insights for improving the efficiency of soft robotic systems are presented. Proposed as the ratio of the desired locomotion kinetic energy to the input mechanical energy, the energy efficiency of locomotion is found to play a critical role in determining the overall energy efficiency of soft robots. Four key factors related to the locomotion energy efficiency are identified, that is, the locomotion modes, material properties, geometric sizes, and actuation states. It is found that the energy efficiency of most mobile soft robots reported in the literature is surprisingly low (mostly below 0.1%), due to the inefficient mechanical energy that essentially does not contribute to the desired locomotion. A comparison of the locomotion energy efficiency for several representative locomotion modes in the literature is presented, showing a descending ranking as: jumping ≫ fish-like swimming > snake-like slithering > rolling > rising/turning over > inchworm-like inching > quadruped gait > earthworm-like squirming. Besides, considering the same locomotion mode, soft robots with lower stiffness, higher density and larger size tend to have higher locomotion energy efficiency. Moreover, a periodic pulse actuation instead of a continuous actuation mode may significantly reduce the input mechanical energy, thus improving the locomotion energy efficiency, especially when the pulse actuation matches the resonant states of the soft robots. The results presented herein indicate a large and necessary space for improving the locomotion energy

  7. Design Method for the Coil-System and the Soft Switching Technology for High-Frequency and High-Efficiency Wireless Power Transfer Systems

    Directory of Open Access Journals (Sweden)

    Xu Liu

    2017-12-01

    Full Text Available Increasing the resonant frequency of a wireless power transfer (WPT system effectively improves the power transfer efficiency between the transmit and the receive coils but significantly limits the power transfer capacity with the same coils. Therefore, this paper proposes a coil design method for a series-series (SS compensated WPT system which can power up the same load with the same DC input voltage & current but with increased resonant frequency. For WPT systems with higher resonant frequencies, a new method of realizing soft-switching by tuning driving frequency is proposed which does not need to change any hardware in the WPT system and can effectively reduce switching losses generated in the inverter. Eighty-five kHz, 200 kHz and 500 kHz WPT systems are built up to validate the proposed methods. Experimental results show that all these three WPT systems can deliver around 3.3 kW power to the same load (15 Ω with 200 V input voltage and 20 A input current as expected and achieve more than 85% coil-system efficiency and 79% system overall efficiency. With the soft-switching technique, inverter efficiency can be improved from 81.91% to 98.60% in the 500 kHz WPT system.

  8. High performance soft magnetic materials

    CERN Document Server

    2017-01-01

    This book provides comprehensive coverage of the current state-of-the-art in soft magnetic materials and related applications, with particular focus on amorphous and nanocrystalline magnetic wires and ribbons and sensor applications. Expert chapters cover preparation, processing, tuning of magnetic properties, modeling, and applications. Cost-effective soft magnetic materials are required in a range of industrial sectors, such as magnetic sensors and actuators, microelectronics, cell phones, security, automobiles, medicine, health monitoring, aerospace, informatics, and electrical engineering. This book presents both fundamentals and applications to enable academic and industry researchers to pursue further developments of these key materials. This highly interdisciplinary volume represents essential reading for researchers in materials science, magnetism, electrodynamics, and modeling who are interested in working with soft magnets. Covers magnetic microwires, sensor applications, amorphous and nanocrystalli...

  9. Functionalized layered double hydroxide with nitrogen and sulfur co-decorated carbondots for highly selective and efficient removal of soft Hg2+ and Ag+ ions.

    Science.gov (United States)

    Asiabi, Hamid; Yamini, Yadollah; Shamsayei, Maryam; Molaei, Karam; Shamsipur, Mojtaba

    2018-05-28

    A facile composite was fabricated via direct assembly of nitrogen and sulfur co-decorated carbon dots with abundant oxygen-containing functional groups on the surface of the positively charged layered double hydroxide (N,S-CDs-LDH). The novel N,S-CDs-LDH demonstrates highly selective bindings (M-S) and an extremely efficient removal capacity for soft metal ions such as Ag + and Hg 2+ ions. N,S-CDs-LDH displayed a selectivity order of Ag + > Hg 2+ > Cu 2+ > Pb 2+ > Zn 2+ > Cd 2+ for their adsorption. The enormous capacities for Hg 2+ (625.0 mg g -1 ) and Ag + (714.3 mg g -1 ) and very high distribution coefficients (K d ) of 9.9 × 10 6 mL g -1 (C 0  = 20 mg L -1 ) and 2.0 × 10 7 mL g -1 (C 0  = 20 mg L -1 ) for Hg 2+ and Ag + , respectively, place the N,S-CDs-LDH at the top of LDH based materials known for such removal. The adsorption kinetic curves for Hg 2+ and Ag + fitted well with the pseudo-second order model. For Hg 2+ and Ag + , an exceptionally rapid capture with removal ∼100% within 80 min was observed (C ions  = 30 mg L -1 and V/m ratio of 1000). The adsorption isotherms were well described using Langmuir isotherm. The N,S-CDs-LDH was successfully applied to highly efficient removal of Hg 2+ and Ag + from aqueous solutions. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Measuring and evaluating the soft energy efficiency measures. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Suvilehto, H.-M.; Solid, D. [AaF-Industry Ltd, Solna (Sweden); Rouhiainen, V. [Adato Energia Ltd, Helsinki (Finland); Honkasalo, N.; Sarvaranta, A. [AaF-Consult Ltd, Solna (Sweden)

    2012-07-15

    This study discusses how to quantify the energy savings related to the companies' aims to enhance their customers' energy efficiency which is one target in the Action Plan for Energy Services in the Energy Efficiency Agreement for the Industries. In Finland, a majority of the energy utilities have signed this action plan and are providing their customers services to improve their energy efficiency. Dissemination of information is the most widely used service to the customers and it is provided in a number of ways including printed material, annual energy report, and an internet tool to access and report hourly measurements. Some of the internet tools cover electricity, district heat and water. The focus of the study is in the evaluation of 'soft' measures; in other words, those measures given by energy utilities that principally rely on communication instruments. However, monitoring the impact of information and communication is far from easy. Carrying out a properly designed evaluation of programmes aiming on enhanced energy efficiency is difficult. Evaluation of the impact of a magazine article on energy efficiency is even more challenging, costly and therefore also rare. Distribution of information as measure to enhance energy efficiency is an important part of EU.s energy policy but what are the ways and even more so, are there ways to actually quantify these savings? There has been excessive work by the member states and research institutes to find a common and robust methodology within the EU to evaluate and quantify energy savings from technical measures. The ex-ante and ex-post results from these evaluations can however differ considerably, e.g. the expected energy savings from installing air to air heat pumps in Denmark did not deliver the expected energy savings. The problems with finding a common robust methodology become even more visible when the 'soft' measures are put under the evaluation loop. The 'soft

  11. Energy efficient scheme for cognitive radios utilizing soft sensing

    KAUST Repository

    Alabbasi, Abdulrahman

    2014-04-06

    In this paper we propose an energy efficient cognitive radio system. Our design considers an underlaying resource allocation combined with soft sensing information to achieve a sub-optimum energy efficient system. The sub-optimality is achieved by optimizing over a channel inversion power policy instead of considering a water-filling power policy. We consider an Energy per Goodbit (EPG) metric to express the energy efficient objective function of the system and as an evaluation metric to our system performance. Since our optimization problem is not a known convex problem, we prove its convexity to guarantee its feasibility. We evaluate the proposed scheme comparing to a benchmark system through both analytical and numerical results.

  12. Energy efficient scheme for cognitive radios utilizing soft sensing

    KAUST Repository

    Alabbasi, AbdulRahman; Rezki, Zouheir; Shihada, Basem

    2014-01-01

    In this paper we propose an energy efficient cognitive radio system. Our design considers an underlaying resource allocation combined with soft sensing information to achieve a sub-optimum energy efficient system. The sub-optimality is achieved by optimizing over a channel inversion power policy instead of considering a water-filling power policy. We consider an Energy per Goodbit (EPG) metric to express the energy efficient objective function of the system and as an evaluation metric to our system performance. Since our optimization problem is not a known convex problem, we prove its convexity to guarantee its feasibility. We evaluate the proposed scheme comparing to a benchmark system through both analytical and numerical results.

  13. Highly efficient pulsed power supply system with a two-stage LC generator and a step-up transformer for fast capillary discharge soft x-ray laser at shorter wavelength

    International Nuclear Information System (INIS)

    Sakai, Yusuke; Takahashi, Shnsuke; Komatsu, Takanori; Song, Inho; Watanabe, Masato; Hotta, Eiki

    2010-01-01

    Highly efficient and compact pulsed power supply system for a capillary discharge soft x-ray laser (SXRL) has been developed. The system consists of a 2.2 μF two-stage LC inversion generator, a 2:54 step-up transformer, a 3 nF water capacitor, and a discharge section with a few tens of centimeter length capillary. Adoption of the pulsed transformer in combination with the LC inversion generator enables us to use only one gap switch in the circuit for charging the water capacitor up to about 0.5 MV. Furthermore, step-up ratio of a water capacitor voltage to a LC inversion generator initial charging voltage is about 40 with energy transfer efficiency of about 50%. It also leads to good reproducibility of a capillary discharge which is necessary for lasing a SXRL stably. For the study of the possibility of lasing a SXRL at shorter wavelength in a small laboratory scale, high-density and high-temperature plasma column suitable for the laser can be generated relatively easily with this system.

  14. Analysis of Wastewater Treatment Efficiency in a Soft Drinks Industry

    Science.gov (United States)

    Boguniewicz-Zabłocka, Joanna; Capodaglio, Andrea G.; Vogel, Daniel

    2017-10-01

    During manufacturing processes, most industrial plants generate wastewater which could become harmful to the environment. Discharge of untreated or improperly treated industrial wastewaters into surface water could, in fact, lead to deterioration of the receiving water body's quality. This paper concerns wastewater treatment solutions used in the soft drink production industry: wastewater treatment plant effectiveness analysis was determined in terms of basic pollution indicators, such as BOD, COD, TSS and variable pH. Initially, the performance of mechanic-biological systems for the treatment of wastewater from a specific beverages production process was studied in different periods, due to wastewater flow fluctuation. The study then showed the positive effects on treatment of wastewater augmentation by methanol, nitrogen and phosphorus salts dosed into it during the treatment process. Results confirm that after implemented modification (methanol, nitrogen and phosphorus additions) pollution removal occurs mostly with higher efficiency.

  15. Soft Sensors: Chemoinformatic Model for Efficient Control and Operation in Chemical Plants.

    Science.gov (United States)

    Funatsu, Kimito

    2016-12-01

    Soft sensor is statistical model as an essential tool for controlling pharmaceutical, chemical and industrial plants. I introduce soft sensor, the roles, the applications, the problems and the research examples such as adaptive soft sensor, database monitoring and efficient process control. The use of soft sensor enables chemical industrial plants to be operated more effectively and stably. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Laser-produced multi-charged heavy ions as efficient soft x-ray sources

    International Nuclear Information System (INIS)

    Higashiguchi, Takeshi; Suzuki, Yuhei; Kawasaki, Masato

    2016-01-01

    We demonstrate EUV and soft x-ray sources in the 2 to 7 nm spectral region related to the beyond EUV (BEUV) question at 6x nm and a water window source based on laser-produced high-Z plasmas. Resonance emission from multiply charged ions merges to produce intense unresolved transition arrays (UTAs), extending below the carbon K edge (4.37 nm). An outline of a microscope design for single-shot live cell imaging is proposed based on a high-Z plasma UTA source, coupled to x-ray optics. We will discuss the progress and Z-scaling of UTA emission spectra to achieve lab-scale table-top, efficient, high-brightness high-Z plasma EUV-soft x-ray sources for in vivo bio-imaging applications. (author)

  17. Highly efficient high temperature electrolysis

    DEFF Research Database (Denmark)

    Hauch, Anne; Ebbesen, Sune; Jensen, Søren Højgaard

    2008-01-01

    High temperature electrolysis of water and steam may provide an efficient, cost effective and environmentally friendly production of H-2 Using electricity produced from sustainable, non-fossil energy sources. To achieve cost competitive electrolysis cells that are both high performing i.e. minimum...... internal resistance of the cell, and long-term stable, it is critical to develop electrode materials that are optimal for steam electrolysis. In this article electrolysis cells for electrolysis of water or steam at temperatures above 200 degrees C for production of H-2 are reviewed. High temperature...... electrolysis is favourable from a thermodynamic point of view, because a part of the required energy can be supplied as thermal heat, and the activation barrier is lowered increasing the H-2 production rate. Only two types of cells operating at high temperature (above 200 degrees C) have been described...

  18. HIGH EFFICIENCY TURBINE

    OpenAIRE

    VARMA, VIJAYA KRUSHNA

    2012-01-01

    Varma designed ultra modern and high efficiency turbines which can use gas, steam or fuels as feed to produce electricity or mechanical work for wide range of usages and applications in industries or at work sites. Varma turbine engines can be used in all types of vehicles. These turbines can also be used in aircraft, ships, battle tanks, dredgers, mining equipment, earth moving machines etc, Salient features of Varma Turbines. 1. Varma turbines are simple in design, easy to manufac...

  19. High energy evolution of soft gluon cascades

    International Nuclear Information System (INIS)

    Shuvaev, A.; Wallon, S.

    2006-01-01

    In this paper we derive an evolution equation for the gluon density in soft gluon cascades emitted from any colored source, in the leading logarithmic approximation of perturbative QCD. We show that this equation has the same form as the BFKL equation in the forward case. An explicit expression for the total cascade wavefunction involving an arbitrary number of soft gluons is obtained. Renormalization of the colored source wavefunction turns out to be responsible for the reggeization of the source. (orig.)

  20. High energy evolution of soft gluon cascades

    Energy Technology Data Exchange (ETDEWEB)

    Shuvaev, A. [St. Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg district (Russian Federation); Wallon, S. [Universite Paris XI, Laboratoire de Physique Theorique, Orsay Cedex (France)

    2006-04-15

    In this paper we derive an evolution equation for the gluon density in soft gluon cascades emitted from any colored source, in the leading logarithmic approximation of perturbative QCD. We show that this equation has the same form as the BFKL equation in the forward case. An explicit expression for the total cascade wavefunction involving an arbitrary number of soft gluons is obtained. Renormalization of the colored source wavefunction turns out to be responsible for the reggeization of the source. (orig.)

  1. Parental attitudes towards soft drink vending machines in high schools.

    Science.gov (United States)

    Hendel-Paterson, Maia; French, Simone A; Story, Mary

    2004-10-01

    Soft drink vending machines are available in 98% of US high schools. However, few data are available about parents' opinions regarding the availability of soft drink vending machines in schools. Six focus groups with 33 parents at three suburban high schools were conducted to describe the perspectives of parents regarding soft drink vending machines in their children's high school. Parents viewed the issue of soft drink vending machines as a matter of their children's personal choice more than as an issue of a healthful school environment. However, parents were unaware of many important details about the soft drink vending machines in their children's school, such as the number and location of machines, hours of operation, types of beverages available, or whether the school had contracts with soft drink companies. Parents need more information about the number of soft drink vending machines at their children's school, the beverages available, the revenue generated by soft drink vending machine sales, and the terms of any contracts between the school and soft drink companies.

  2. High-efficiency CARM

    Energy Technology Data Exchange (ETDEWEB)

    Bratman, V.L.; Kol`chugin, B.D.; Samsonov, S.V.; Volkov, A.B. [Institute of Applied Physics, Nizhny Novgorod (Russian Federation)

    1995-12-31

    The Cyclotron Autoresonance Maser (CARM) is a well-known variety of FEMs. Unlike the ubitron in which electrons move in a periodical undulator field, in the CARM the particles move along helical trajectories in a uniform magnetic field. Since it is much simpler to generate strong homogeneous magnetic fields than periodical ones for a relatively low electron energy ({Brit_pounds}{le}1-3 MeV) the period of particles` trajectories in the CARM can be sufficiently smaller than in the undulator in which, moreover, the field decreases rapidly in the transverse direction. In spite of this evident advantage, the number of papers on CARM is an order less than on ubitron, which is apparently caused by the low (not more than 10 %) CARM efficiency in experiments. At the same time, ubitrons operating in two rather complicated regimes-trapping and adiabatic deceleration of particles and combined undulator and reversed guiding fields - yielded efficiencies of 34 % and 27 %, respectively. The aim of this work is to demonstrate that high efficiency can be reached even for a simplest version of the CARM. In order to reduce sensitivity to an axial velocity spread of particles, a short interaction length where electrons underwent only 4-5 cyclotron oscillations was used in this work. Like experiments, a narrow anode outlet of a field-emission electron gun cut out the {open_quotes}most rectilinear{close_quotes} near-axis part of the electron beam. Additionally, magnetic field of a small correcting coil compensated spurious electron oscillations pumped by the anode aperture. A kicker in the form of a sloping to the axis frame with current provided a control value of rotary velocity at a small additional velocity spread. A simple cavity consisting of a cylindrical waveguide section restricted by a cut-off waveguide on the cathode side and by a Bragg reflector on the collector side was used as the CARM-oscillator microwave system.

  3. Efficiency of soft tissue incision with a novel 445-nm semiconductor laser.

    Science.gov (United States)

    Braun, Andreas; Kettner, Moritz; Berthold, Michael; Wenzler, Johannes-Simon; Heymann, Paul Günther Baptist; Frankenberger, Roland

    2018-01-01

    Using a 445-nm semiconductor laser for tissue incision, an effective cut is expected due to the special absorption properties of blue laser light in soft tissues. The aim of the present study was the histological evaluation of tissue samples after incision with a 445-nm diode laser. Forty soft tissue specimens were obtained from pork oral mucosa and mounted on a motorized linear translation stage. The handpiece of a high-frequency surgery device, a 970-nm semiconductor laser, and a 445-nm semiconductor laser were connected to the slide, allowing a constant linear movement (2 mm/s) and the same distance of the working tip to the soft tissue's surface. Four incisions were made each: (I) 970-nm laser with conditioned fiber tip, contact mode at 3-W cw; (II-III): 445-nm laser with non-conditioned fiber tip, contact mode at 2-W cw, and non-contact mode (1 mm) at 2 W; and (IV): high-frequency surgery device with straight working tip, 90° angulation, contact mode at 50 W. Histological analysis was performed after H&E staining of the embedded specimens at 35-fold magnification. The comparison of the incision depths showed a significant difference depending on the laser wavelength and the selected laser parameters. The highest incision depth was achieved with the 445-nm laser contact mode (median depth 0.61 mm, min 0.26, max 1.17, interquartile range 0.58) (p laser, a higher cutting efficiency can be expected when compared with a 970-nm diode laser and high-frequency surgery. Even the 445-nm laser application in non-contact mode shows clinically acceptable incision depths without signs of extensive soft tissue denaturation.

  4. Soft switching circuit to improve efficiency of all solid-state Marx modulator for DBDs

    Science.gov (United States)

    Liqing, TONG; Kefu, LIU; Yonggang, WANG

    2018-02-01

    For an all solid-state Marx modulator applied in dielectric barrier discharges (DBDs), hard switching results in a very low efficiency. In this paper, a series resonant soft switching circuit, which series an inductance with DBD capacitor, is proposed to reduce the power loss. The power loss of the all circuit status with hard switching was analyzed, and the maximum power loss occurred during discharging at the rising and falling edges. The power loss of the series resonant soft switching circuit was also presented. A comparative analysis of the two circuits determined that the soft switching circuit greatly reduced power loss. The experimental results also demonstrated that the soft switching circuit improved the power transmission efficiency of an all solid-state Marx modulator for DBDs by up to 3 times.

  5. Field Efficiency Trial of 72% Streptomycin against Konjac Bacterial Soft Rot

    Institute of Scientific and Technical Information of China (English)

    Huang; Yongsheng; Li; Xiaojun; Zhu; Shijin; Ma; Yongsheng; Wang; Li

    2014-01-01

    72% Streptomycin soluble powder was used to control konjac bacterial soft rot in the study. The control efficiency and yield of different treatments were investigated,and the benefit was analyzed. The control scheme against konjac bacterial soft rot was as follows: spraying 72% atreptomycinon twice on rotation fields after all the seedlings were strong and uniform,or irrigating roots with 72% atreptomycinon once and spraying twice on continuous cropping fields.

  6. Efficiency of autonomous soft nanomachines at maximum power.

    Science.gov (United States)

    Seifert, Udo

    2011-01-14

    We consider nanosized artificial or biological machines working in steady state enforced by imposing nonequilibrium concentrations of solutes or by applying external forces, torques, or electric fields. For unicyclic and strongly coupled multicyclic machines, efficiency at maximum power is not bounded by the linear response value 1/2. For strong driving, it can even approach the thermodynamic limit 1. Quite generally, such machines fall into three different classes characterized, respectively, as "strong and efficient," "strong and inefficient," and "balanced." For weakly coupled multicyclic machines, efficiency at maximum power has lost any universality even in the linear response regime.

  7. High efficiency positron moderation

    International Nuclear Information System (INIS)

    Taqqu, D.

    1990-01-01

    A new positron moderation scheme is proposed. It makes use of electric and magnetic fields to confine the β + emitted by a radioactive source forcing them to slow down within a thin foil. A specific arrangement is described where an intermediary slowed-down beam of energy below 10 keV is produced. By directing it towards a standard moderator optimal conversion into slow positrons is achieved. This scheme is best applied to short lived β + emitters for which a 25% moderation efficiency can be reached. Within the state of the art technology a slow positron source intensity exceeding 2 x 10 10 e + /sec is achievable. (orig.)

  8. Efficiency analysis on a two-level three-phase quasi-soft-switching inverter

    DEFF Research Database (Denmark)

    Geng, Pan; Wu, Weimin; Huang, Min

    2013-01-01

    When designing an inverter, an engineer often needs to select and predict the efficiency beforehand. For the standard inverters, plenty of researches are analyzing the power losses and also many software tools are being used for efficiency calculation. In this paper, the efficiency calculation...... for non-conventional inverters with special shoot-through state is introduced and illustrated through the analysis on a special two-level three-phase quasi-soft-switching inverter. Efficiency comparison between the classical two-stage two-level three-phase inverter and the two-level three-phase quasi......-soft-switching inverter is carried out. A 10 kW/380 V prototype is constructed to verify the analysis. The experimental results show that the efficiency of the new inverter is higher than that of the traditional two-stage two- level three-phase inverter....

  9. High strain-rate soft material characterization via inertial cavitation

    Science.gov (United States)

    Estrada, Jonathan B.; Barajas, Carlos; Henann, David L.; Johnsen, Eric; Franck, Christian

    2018-03-01

    Mechanical characterization of soft materials at high strain-rates is challenging due to their high compliance, slow wave speeds, and non-linear viscoelasticity. Yet, knowledge of their material behavior is paramount across a spectrum of biological and engineering applications from minimizing tissue damage in ultrasound and laser surgeries to diagnosing and mitigating impact injuries. To address this significant experimental hurdle and the need to accurately measure the viscoelastic properties of soft materials at high strain-rates (103-108 s-1), we present a minimally invasive, local 3D microrheology technique based on inertial microcavitation. By combining high-speed time-lapse imaging with an appropriate theoretical cavitation framework, we demonstrate that this technique has the capability to accurately determine the general viscoelastic material properties of soft matter as compliant as a few kilopascals. Similar to commercial characterization algorithms, we provide the user with significant flexibility in evaluating several constitutive laws to determine the most appropriate physical model for the material under investigation. Given its straightforward implementation into most current microscopy setups, we anticipate that this technique can be easily adopted by anyone interested in characterizing soft material properties at high loading rates including hydrogels, tissues and various polymeric specimens.

  10. Soft Pneumatic Actuator Fascicles for High Force and Reliability.

    Science.gov (United States)

    Robertson, Matthew A; Sadeghi, Hamed; Florez, Juan Manuel; Paik, Jamie

    2017-03-01

    Soft pneumatic actuators (SPAs) are found in mobile robots, assistive wearable devices, and rehabilitative technologies. While soft actuators have been one of the most crucial elements of technology leading the development of the soft robotics field, they fall short of force output and bandwidth requirements for many tasks. In addition, other general problems remain open, including robustness, controllability, and repeatability. The SPA-pack architecture presented here aims to satisfy these standards of reliability crucial to the field of soft robotics, while also improving the basic performance capabilities of SPAs by borrowing advantages leveraged ubiquitously in biology; namely, the structured parallel arrangement of lower power actuators to form the basis of a larger and more powerful actuator module. An SPA-pack module consisting of a number of smaller SPAs will be studied using an analytical model and physical prototype. Experimental measurements show an SPA pack to generate over 112 N linear force, while the model indicates the benefit of parallel actuator grouping over a geometrically equivalent single SPA scale as an increasing function of the number of individual actuators in the group. For a module of four actuators, a 23% increase in force production over a volumetrically equivalent single SPA is predicted and validated, while further gains appear possible up to 50%. These findings affirm the advantage of utilizing a fascicle structure for high-performance soft robotic applications over existing monolithic SPA designs. An example of high-performance soft robotic platform will be presented to demonstrate the capability of SPA-pack modules in a complete and functional system.

  11. Soft Pneumatic Actuator Fascicles for High Force and Reliability

    Science.gov (United States)

    Robertson, Matthew A.; Sadeghi, Hamed; Florez, Juan Manuel

    2017-01-01

    Abstract Soft pneumatic actuators (SPAs) are found in mobile robots, assistive wearable devices, and rehabilitative technologies. While soft actuators have been one of the most crucial elements of technology leading the development of the soft robotics field, they fall short of force output and bandwidth requirements for many tasks. In addition, other general problems remain open, including robustness, controllability, and repeatability. The SPA-pack architecture presented here aims to satisfy these standards of reliability crucial to the field of soft robotics, while also improving the basic performance capabilities of SPAs by borrowing advantages leveraged ubiquitously in biology; namely, the structured parallel arrangement of lower power actuators to form the basis of a larger and more powerful actuator module. An SPA-pack module consisting of a number of smaller SPAs will be studied using an analytical model and physical prototype. Experimental measurements show an SPA pack to generate over 112 N linear force, while the model indicates the benefit of parallel actuator grouping over a geometrically equivalent single SPA scale as an increasing function of the number of individual actuators in the group. For a module of four actuators, a 23% increase in force production over a volumetrically equivalent single SPA is predicted and validated, while further gains appear possible up to 50%. These findings affirm the advantage of utilizing a fascicle structure for high-performance soft robotic applications over existing monolithic SPA designs. An example of high-performance soft robotic platform will be presented to demonstrate the capability of SPA-pack modules in a complete and functional system. PMID:28289573

  12. New highly efficient piezoceramic materials

    International Nuclear Information System (INIS)

    Dantsiger, A.Ya.; Razumovskaya, O.N.; Reznichenko, L.A.; Grineva, L.D.; Devlikanova, R.U.; Dudkina, S.I.; Gavrilyachenko, S.V.; Dergunova, N.V.

    1993-01-01

    New high efficient piezoceramic materials with various combination of parameters inclusing high Curie point for high-temperature transducers using in atomic power engineering are worked. They can be used in systems for heated matters nondestructive testing, controllers for varied industrial power plants and other high-temperature equipment

  13. Super soft silicone elastomers with high dielectric permittivity

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Yu, Liyun; Hvilsted, Søren

    2015-01-01

    Dielectric elastomers (DEs) have many favourable properties. The obstacle of high driving voltages, however, limits the commercial viability of the technology at present. Driving voltage can be lowered by decreasing the Young’s modulus and increasing the dielectric permittivity of silicone...... elastomers. A decrease in Young’s modulus, however, is often accompanied by the loss of mechanical stability and thereby the lifetime of the DE. New soft elastomer matrices with high dielectric permittivity and low Young’s modulus, with no loss of mechanical stability, were prepared by two different...... approaches using chloropropyl-functional silicone polymers. The first approach was based on synthesised chloropropyl-functional copolymers that were cross-linkable and thereby formed the basis of new silicone networks with high dielectric permittivity (e.g. a 43% increase). These networks were soft without...

  14. High resolution solar soft X-ray spectrometer

    International Nuclear Information System (INIS)

    Zhang Fei; Wang Huanyu; Peng Wenxi; Liang Xiaohua; Zhang Chunlei; Cao Xuelei; Jiang Weichun; Zhang Jiayu; Cui Xingzhu

    2012-01-01

    A high resolution solar soft X-ray spectrometer (SOX) payload onboard a satellite is developed. A silicon drift detector (SDD) is adopted as the detector of the SOX spectrometer. The spectrometer consists of the detectors and their readout electronics, a data acquisition unit and a payload data handling unit. A ground test system is also developed to test SOX. The test results show that the design goals of the spectrometer system have been achieved. (authors)

  15. Multi-petascale highly efficient parallel supercomputer

    Science.gov (United States)

    Asaad, Sameh; Bellofatto, Ralph E.; Blocksome, Michael A.; Blumrich, Matthias A.; Boyle, Peter; Brunheroto, Jose R.; Chen, Dong; Cher, Chen-Yong; Chiu, George L.; Christ, Norman; Coteus, Paul W.; Davis, Kristan D.; Dozsa, Gabor J.; Eichenberger, Alexandre E.; Eisley, Noel A.; Ellavsky, Matthew R.; Evans, Kahn C.; Fleischer, Bruce M.; Fox, Thomas W.; Gara, Alan; Giampapa, Mark E.; Gooding, Thomas M.; Gschwind, Michael K.; Gunnels, John A.; Hall, Shawn A.; Haring, Rudolf A.; Heidelberger, Philip; Inglett, Todd A.; Knudson, Brant L.; Kopcsay, Gerard V.; Kumar, Sameer; Mamidala, Amith R.; Marcella, James A.; Megerian, Mark G.; Miller, Douglas R.; Miller, Samuel J.; Muff, Adam J.; Mundy, Michael B.; O'Brien, John K.; O'Brien, Kathryn M.; Ohmacht, Martin; Parker, Jeffrey J.; Poole, Ruth J.; Ratterman, Joseph D.; Salapura, Valentina; Satterfield, David L.; Senger, Robert M.; Steinmacher-Burow, Burkhard; Stockdell, William M.; Stunkel, Craig B.; Sugavanam, Krishnan; Sugawara, Yutaka; Takken, Todd E.; Trager, Barry M.; Van Oosten, James L.; Wait, Charles D.; Walkup, Robert E.; Watson, Alfred T.; Wisniewski, Robert W.; Wu, Peng

    2018-05-15

    A Multi-Petascale Highly Efficient Parallel Supercomputer of 100 petaflop-scale includes node architectures based upon System-On-a-Chip technology, where each processing node comprises a single Application Specific Integrated Circuit (ASIC). The ASIC nodes are interconnected by a five dimensional torus network that optimally maximize the throughput of packet communications between nodes and minimize latency. The network implements collective network and a global asynchronous network that provides global barrier and notification functions. Integrated in the node design include a list-based prefetcher. The memory system implements transaction memory, thread level speculation, and multiversioning cache that improves soft error rate at the same time and supports DMA functionality allowing for parallel processing message-passing.

  16. Unconventional, High-Efficiency Propulsors

    DEFF Research Database (Denmark)

    Andersen, Poul

    1996-01-01

    The development of ship propellers has generally been characterized by search for propellers with as high efficiency as possible and at the same time low noise and vibration levels and little or no cavitation. This search has lead to unconventional propulsors, like vane-wheel propulsors, contra-r...

  17. A high throughput architecture for a low complexity soft-output demapping algorithm

    Science.gov (United States)

    Ali, I.; Wasenmüller, U.; Wehn, N.

    2015-11-01

    Iterative channel decoders such as Turbo-Code and LDPC decoders show exceptional performance and therefore they are a part of many wireless communication receivers nowadays. These decoders require a soft input, i.e., the logarithmic likelihood ratio (LLR) of the received bits with a typical quantization of 4 to 6 bits. For computing the LLR values from a received complex symbol, a soft demapper is employed in the receiver. The implementation cost of traditional soft-output demapping methods is relatively large in high order modulation systems, and therefore low complexity demapping algorithms are indispensable in low power receivers. In the presence of multiple wireless communication standards where each standard defines multiple modulation schemes, there is a need to have an efficient demapper architecture covering all the flexibility requirements of these standards. Another challenge associated with hardware implementation of the demapper is to achieve a very high throughput in double iterative systems, for instance, MIMO and Code-Aided Synchronization. In this paper, we present a comprehensive communication and hardware performance evaluation of low complexity soft-output demapping algorithms to select the best algorithm for implementation. The main goal of this work is to design a high throughput, flexible, and area efficient architecture. We describe architectures to execute the investigated algorithms. We implement these architectures on a FPGA device to evaluate their hardware performance. The work has resulted in a hardware architecture based on the figured out best low complexity algorithm delivering a high throughput of 166 Msymbols/second for Gray mapped 16-QAM modulation on Virtex-5. This efficient architecture occupies only 127 slice registers, 248 slice LUTs and 2 DSP48Es.

  18. Dynamic Impacts of Water Droplets onto Icephobic Soft Surfaces at High Weber Numbers

    Science.gov (United States)

    Ma, Liqun; Liu, Yang; Hu, Hui; Wang, Wei; Kota, Arun

    2017-11-01

    An experimental investigation was performed to examine the effects of the stiffness of icephobic soft PDMS materials on the impact dynamics of water drops at high weber numbers pertinent to aircraft icing phenomena. The experimental study was performed in the Icing Research Tunnel available at Iowa State University (ISU-IRT). During the experiments, both the shear modulus of the soft PDMS surface and the Weber numbers of the impinging water droplets are controlled for the comparative study. While the shear modulus of the soft PDMS surface was changed by tuning the recipes to make the PDMS materials, the Weber number of the impinging water droplets was altered by adjusting the airflow speed in the wind tunnel. A suite of advanced flow diagnostic techniques, which include high-speed photographic imaging, digital image projection (DIP), and infrared (IR) imaging thermometry, were used to quantify the transient behavior of water droplet impingement, unsteady heat transfer and dynamic ice accreting process over the icephobic soft airfoil surfaces. The findings derived from the icing physics studies can be used to improve current icing accretion models for more accurate prediction of ice formation and accretion on aircraft wings and to develop effective anti-/deicing strategies for safer and more efficient operation of aircraft in cold weather.

  19. Overview of Ecological Agriculture with High Efficiency

    OpenAIRE

    Huang, Guo-qin; Zhao, Qi-guo; Gong, Shao-lin; Shi, Qing-hua

    2012-01-01

    From the presentation, connotation, characteristics, principles, pattern, and technologies of ecological agriculture with high efficiency, we conduct comprehensive and systematic analysis and discussion of the theoretical and practical progress of ecological agriculture with high efficiency. (i) Ecological agriculture with high efficiency was first advanced in China in 1991. (ii) Ecological agriculture with high efficiency highlights "high efficiency", "ecology", and "combination". (iii) Ecol...

  20. Innovative diffraction gratings for high-resolution resonant inelastic soft x-ray scattering spectroscopy

    International Nuclear Information System (INIS)

    Voronov, D.L.; Warwick, T.; Gullikson, E. M.; Salmassi, F.; Padmore, H. A.

    2016-01-01

    High-resolution Resonant Inelastic X-ray Scattering (RIXS) requires diffraction gratings with very exacting characteristics. The gratings should provide both very high dispersion and high efficiency which are conflicting requirements and extremely challenging to satisfy in the soft x-ray region for a traditional grazing incidence geometry. To achieve high dispersion one should increase the groove density of a grating; this however results in a diffraction angle beyond the critical angle range and results in drastic efficiency loss. The problem can be solved by use of multilayer coated blazed gratings (MBG). In this work we have investigated the diffraction characteristics of MBGs via numerical simulations and have developed a procedure for optimization of grating design for a multiplexed high resolution imaging spectrometer for RIXS spectroscopy to be built in sector 6 at the Advanced Light Source (ALS). We found that highest diffraction efficiency can be achieved for gratings optimized for 4"t"h or 5"t"h order operation. Fabrication of such gratings is an extremely challenging technological problem. We present a first experimental prototype of these gratings and report its performance. High order and high line density gratings have the potential to be a revolutionary new optical element that should have great impact in the area of soft x-ray RIXS.

  1. High-power, high-efficiency FELs

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1989-04-01

    High power, high efficiency FELs require tapering, as the particles loose energy, so as to maintain resonance between the electromagnetic wave and the particles. They also require focusing of the particles (usually done with curved pole faces) and focusing of the electromagnetic wave (i.e. optical guiding). In addition, one must avoid transverse beam instabilities (primarily resistive wall) and longitudinal instabilities (i.e sidebands). 18 refs., 7 figs., 3 tabs

  2. High Efficiency Room Air Conditioner

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, Pradeep [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    This project was undertaken as a CRADA project between UT-Battelle and Geberal Electric Company and was funded by Department of Energy to design and develop of a high efficiency room air conditioner. A number of novel elements were investigated to improve the energy efficiency of a state-of-the-art WAC with base capacity of 10,000 BTU/h. One of the major modifications was made by downgrading its capacity from 10,000 BTU/hr to 8,000 BTU/hr by replacing the original compressor with a lower capacity (8,000 BTU/hr) but high efficiency compressor having an EER of 9.7 as compared with 9.3 of the original compressor. However, all heat exchangers from the original unit were retained to provide higher EER. The other subsequent major modifications included- (i) the AC fan motor was replaced by a brushless high efficiency ECM motor along with its fan housing, (ii) the capillary tube was replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and (iii) the unit was tested with a drop-in environmentally friendly binary mixture of R32 (90% molar concentration)/R125 (10% molar concentration). The WAC was tested in the environmental chambers at ORNL as per the design rating conditions of AHAM/ASHRAE (Outdoor- 95F and 40%RH, Indoor- 80F, 51.5%RH). All these modifications resulted in enhancing the EER of the WAC by up to 25%.

  3. Real-time haptic cutting of high-resolution soft tissues.

    Science.gov (United States)

    Wu, Jun; Westermann, Rüdiger; Dick, Christian

    2014-01-01

    We present our systematic efforts in advancing the computational performance of physically accurate soft tissue cutting simulation, which is at the core of surgery simulators in general. We demonstrate a real-time performance of 15 simulation frames per second for haptic soft tissue cutting of a deformable body at an effective resolution of 170,000 finite elements. This is achieved by the following innovative components: (1) a linked octree discretization of the deformable body, which allows for fast and robust topological modifications of the simulation domain, (2) a composite finite element formulation, which thoroughly reduces the number of simulation degrees of freedom and thus enables to carefully balance simulation performance and accuracy, (3) a highly efficient geometric multigrid solver for solving the linear systems of equations arising from implicit time integration, (4) an efficient collision detection algorithm that effectively exploits the composition structure, and (5) a stable haptic rendering algorithm for computing the feedback forces. Considering that our method increases the finite element resolution for physically accurate real-time soft tissue cutting simulation by an order of magnitude, our technique has a high potential to significantly advance the realism of surgery simulators.

  4. An Energy Efficient Cognitive Radio System with Quantized Soft Sensing and Duration Analysis

    KAUST Repository

    Alabbasi, Abdulrahman

    2015-03-09

    In this paper, an energy efficient cognitive radio system is proposed. The proposed design optimizes the secondary user transmission power and the sensing duration combined with soft-sensing information to minimize the energy per goodbit. Due to the non-convex nature of the problem we prove its pseudo-convexity to guarantee the optimal solution. Furthermore, a quantization scheme, that discretize the softsensing information, is proposed and analyzed to reduce the overload of the continuously adapted power. Numerical results show that our proposed system outperforms the benchmark systems. The impact of the quantization levels and other system parameters is evaluated in the numerical results.

  5. High-efficient electron linacs

    International Nuclear Information System (INIS)

    Glavatskikh, K.V.; Zverev, B.V.; Kalyuzhnyj, V.E.; Morozov, V.L.; Nikolaev, S.V.; Plotnikov, S.N.; Sobenin, N.P.; Vovna, V.A.; Gryzlov, A.V.

    1993-01-01

    Comparison analysis of ELA on running and still waves designed for 10 MeV energy and with high efficiency is carried out. It is shown, that from the point of view of dimensions ELA with a still wave or that of a combined type is more preferable. From the point of view of impedance characteristics in any variant with application of magnetron as HF-generator it is necessary to implement special requirements to the accelerating structure if no ferrite isolation is provided in HF-channel. 3 refs., 4 figs., 1 tab

  6. High thermal conductivity in soft elastomers with elongated liquid metal inclusions

    OpenAIRE

    Bartlett, Michael D.; Kazem, Navid; Powell-Palm, Matthew J.; Huang, Xiaonan; Sun, Wenhuan; Malen, Jonathan A.; Majidi, Carmel

    2017-01-01

    Efficient thermal transport is critical for applications ranging from electronics and energy to advanced manufacturing and transportation; it is essential in emerging domains like wearable computing and soft robotics, which require thermally conductive materials that are also soft and stretchable. However, heat transport within soft materials is limited by the dynamics of phonon transport, which results in a trade-off between thermal conductivity and compliance. We overcome this by engineerin...

  7. Efficacy of highly hydrophilic soft contact lenses for persistent corneal epithelial defects after anterior segment surgery

    Directory of Open Access Journals (Sweden)

    Zhi-Wei Peng

    2015-02-01

    Full Text Available AIM:To investigate the efficacy of highly hydrophilic soft contact lenses for persistent corneal epithelial defects.METHODS:In this retrospective case analysis, 28 patients(28 eyeswith persistent corneal epithelial defects after anterior segment surgery from January 2011 to June 2013 in our hospital were reviewed. After regular treatment for at least 2wk, the persistent corneal epithelial defects were treated with highly hydrophilic soft contact lenses, until the corneal epithelial healing. Continued to wear the same lens no more than 3wk, or in need of replacement the new one. All cases were followed up for 6mo. Key indicators of corneal epithelial healling, corneal fluorescein staining and ocular symptoms improvement were observed.RESULTS: Twenty-one eyes were cured(75.00%, markedly effective in 5 eyes(17.86%, effective in 2 eyes(7.14%, no invalid cases, the total efficiency of 100.00%. Ocular symptoms of 25 cases(89.29%relieved within 2d, the rest 3 cases(10.71%relieved within 1wk. The corneal epithelial of 6 cases(21.43%repaired in 3wk, 13 cases(46.43%in 6wk, 7 cases(25.00%in 9wk, 2 cases(7.14%over 12wk. There were no signs of secondary infection. And no evidence of recurrence in 6mo. CONCLUSION: Highly hydrophilic soft contact lenses could repair persistent corneal epithelial defects after anterior segment surgery significantly, while quickly and effectively relieve a variety of ocular irritation.

  8. High-efficiency photovoltaic cells

    Science.gov (United States)

    Yang, H.T.; Zehr, S.W.

    1982-06-21

    High efficiency solar converters comprised of a two cell, non-lattice matched, monolithic stacked semiconductor configuration using optimum pairs of cells having bandgaps in the range 1.6 to 1.7 eV and 0.95 to 1.1 eV, and a method of fabrication thereof, are disclosed. The high band gap subcells are fabricated using metal organic chemical vapor deposition (MOCVD), liquid phase epitaxy (LPE) or molecular beam epitaxy (MBE) to produce the required AlGaAs layers of optimized composition, thickness and doping to produce high performance, heteroface homojunction devices. The low bandgap subcells are similarly fabricated from AlGa(As)Sb compositions by LPE, MBE or MOCVD. These subcells are then coupled to form a monolithic structure by an appropriate bonding technique which also forms the required transparent intercell ohmic contact (IOC) between the two subcells. Improved ohmic contacts to the high bandgap semiconductor structure can be formed by vacuum evaporating to suitable metal or semiconductor materials which react during laser annealing to form a low bandgap semiconductor which provides a low contact resistance structure.

  9. High spatial resolution soft-x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Meyer-Ilse, W.; Medecki, H.; Brown, J.T. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    A new soft x-ray microscope (XM-1) with high spatial resolution has been constructed by the Center for X-ray Optics. It uses bending magnet radiation from beamline 6.1 at the Advanced Light Source, and is used in a variety of projects and applications in the life and physical sciences. Most of these projects are ongoing. The instrument uses zone plate lenses and achieves a resolution of 43 nm, measured over 10% to 90% intensity with a knife edge test sample. X-ray microscopy permits the imaging of relatively thick samples, up to 10 {mu}m thick, in water. XM-1 has an easy to use interface, that utilizes visible light microscopy to precisely position and focus the specimen. The authors describe applications of this device in the biological sciences, as well as in studying industrial applications including structured polymer samples.

  10. Factors associated with high consumption of soft drinks among Australian secondary-school students.

    Science.gov (United States)

    Scully, Maree; Morley, Belinda; Niven, Philippa; Crawford, David; Pratt, Iain S; Wakefield, Melanie

    2017-09-01

    To examine demographic and behavioural correlates of high consumption of soft drinks (non-alcoholic sugar-sweetened carbonated drinks excluding energy drinks) among Australian adolescents and to explore the associations between high consumption and soft drink perceptions and accessibility. Cross-sectional self-completion survey and height and weight measurements. Australian secondary schools. Students aged 12-17 years participating in the 2012-13 National Secondary Students' Diet and Activity (NaSSDA) survey (n 7835). Overall, 14 % of students reported consuming four or more cups (≥1 litres) of soft drinks each week ('high soft drink consumers'). Demographic factors associated with high soft drink consumption were being male and having at least $AU 40 in weekly spending money. Behavioural factors associated with high soft drink consumption were low fruit intake, consuming energy drinks on a weekly basis, eating fast foods at least once weekly, eating snack foods ≥14 times/week, watching television for >2 h/d and sleeping for good value for money were more likely to be high soft drink consumers, as were students who reported usually buying these drinks when making a beverage purchase from the school canteen/vending machine. High soft drink consumption clusters with other unhealthy lifestyle behaviours among Australian secondary-school students. Interventions focused on reducing the availability of soft drinks (e.g. increased taxes, restricting their sale in schools) as well as improved education on their harms are needed to lower adolescents' soft drink intake.

  11. Heavy Metal Diffusion through Soft Clay under High Hydraulic Gradients

    Directory of Open Access Journals (Sweden)

    Zaheer Ahmed Almani

    2013-04-01

    Full Text Available This study was focused on the determination of contaminant transport parameters of heavy metal Zinc moving through saturated soft Bangkok undisturbed clay under high hydraulic gradients. These parameters were compared with contaminant transport determined under concentration gradient alone (pure diffusion. In total fifteen column tests were conducted and a mathematical model was applied to determine the coefficients. Two different source concentrations conditions, constant and decreasing, were applied. Testing periods were ranged from 15-60 days while hydraulic gradients were ranged from 0-500. The curves between relative concentration and time and pore volume were developed for the constant source condition whereas curves between source reservoirs concentrations and time were developed for decreasing source condition. The effective diffusion and distribution coefficients, De and Kd, were determined by curve fitting using the computer code POLLUTE v 6.3. The results showed that diffusion coefficient increases and distribution coefficient decreases as hydraulic gradient increases from 0 to high value of 500 due to contribution of dispersion and additional molecular diffusion at high advective velocity. Thus, testing at high gradients ensures the safe performance of earthen barriers under worse conditions.

  12. High-concentration planar microtracking photovoltaic system exceeding 30% efficiency

    Science.gov (United States)

    Price, Jared S.; Grede, Alex J.; Wang, Baomin; Lipski, Michael V.; Fisher, Brent; Lee, Kyu-Tae; He, Junwen; Brulo, Gregory S.; Ma, Xiaokun; Burroughs, Scott; Rahn, Christopher D.; Nuzzo, Ralph G.; Rogers, John A.; Giebink, Noel C.

    2017-08-01

    Prospects for concentrating photovoltaic (CPV) power are growing as the market increasingly values high power conversion efficiency to leverage now-dominant balance of system and soft costs. This trend is particularly acute for rooftop photovoltaic power, where delivering the high efficiency of traditional CPV in the form factor of a standard rooftop photovoltaic panel could be transformative. Here, we demonstrate a fully automated planar microtracking CPV system 660× concentration ratio over a 140∘ full field of view. In outdoor testing over the course of two sunny days, the system operates automatically from sunrise to sunset, outperforming a 17%-efficient commercial silicon solar cell by generating >50% more energy per unit area per day in a direct head-to-head competition. These results support the technical feasibility of planar microtracking CPV to deliver a step change in the efficiency of rooftop solar panels at a commercially relevant concentration ratio.

  13. Experimental Evaluation of Energy Efficiency for a Soft Wearable Robotic Suit.

    Science.gov (United States)

    Jin, Shanhai; Iwamoto, Noriyasu; Hashimoto, Kazunobu; Yamamoto, Motoji

    2016-10-12

    This paper presents a new soft wearable robotic suit for energy-efficient walking in daily activities for elderly persons. The presented robotic suit provides a small yet effective assistive force for hip flexion through winding belts that include elastic elements. In addition, it does not restrict the range of movement in the lower limbs. Moreover, its structure is simple and lightweight, and thus wearers can easily take the device on and off by themselves. Experimental results on nine elderly subjects (age = 74.23.7 years) show that the robotic suit worn and powered on (PON) significantly reduced energy expenditure by an average of 5.9 % compared with the condition of worn but powered off (POFF). Furthermore, compared with the POFF condition, there was a significant improvement in gait characteristics in the PON condition for all subjects.

  14. Outstanding efficiency in energy conversion for electric motors constructed by nanocrystalline soft magnetic alloy “NANOMET®” cores

    Directory of Open Access Journals (Sweden)

    N. Nishiyama

    2016-05-01

    Full Text Available Recently updated nanocrystalline soft magnetic Fe-Co-Si-B-P-Cu alloys “NANOMET®” exhibit high saturation magnetic flux density (Bs > 1.8 T, low coercivity (Hc < 10 A/m and low core loss (W1.7/50 ∼ 0.4 W/kg even in a ribbon form with a thickness of up to 40 μm. By utilize excellent magnetic softness, several products such as motors or transformers for electrical appliances are now under developing by industry-academia collaboration. In particular, it is found that a brushless DC motor using NANOMET® core exhibited remarkable improvement in energy consumption. The prototype motor with an outer core diameter of 70 mm and a core thickness of 50 mm was constructed using laminated nano-crystallized NANOMET® ribbons. Core-loss for the constructed motor was improved from 1.4 W to 0.4 W only by replacing the non-oriented Si-steel core with NANOMET® one. The overall motor efficiency is evaluated to be 3% improvement. In this work, the relation between processing and resulting magnetic properties will be presented. In addition, feasibility for commercialization will also be discussed.

  15. Soft apertures to shape high-power laser beams

    International Nuclear Information System (INIS)

    Lukishova, S.G.; Pashinin, P.P.; Batygov, S.K.; Terentiev, B.M.

    1989-01-01

    Soft or apodized apertures with smooth decreasing from center to edges transmission profiles are used in laser physics for beam shaping. This paper gives the results of the studies of four types of these units for UV, visible and IR lasers. They are made of glasses or crystals with the use of one of the following technologies: absorption induced by ionizing radiation; photodestruction of color centers or photooxidation of impurities ions; additive coloration; frustrated total internal reflection. The special feature of such apertures is their high optical damage resistance under the irradiation of single-pulse laser radiation. They are approximately 3-50 mm in diameter by the methods of making them give the possibility to create near-Gaussian and flat-top beams with dimensions less than 1 mm and larger than 200 mm. The results of using them in high-power single-pulse lasers are presented. Damage thresholds of these apertures in such types of lasers have been defined

  16. Towards highly efficient water photoelectrolysis

    Science.gov (United States)

    Elavambedu Prakasam, Haripriya

    ethylene glycol resulted in remarkable growth characteristics of titania nanotube arrays, hexagonal closed packed up to 1 mm in length, with tube aspect ratios of approximately 10,000. For the first time, complete anodization of the starting titanium foil has been demonstrated resulting in back to back nanotube array membranes ranging from 360 mum--1 mm in length. The nanotubes exhibited growth rates of up to 15 mum/hr. A detailed study on the factors affecting the growth rate and nanotube dimensions is presented. It is suggested that faster high field ionic conduction through a thinner barrier layer is responsible for the higher growth rates observed in electrolytes containing ethylene glycol. Methods to fabricate free standing, titania nanotube array membranes ranging in thickness from 50 microm--1000 mum has also been an outcome of this dissertation. In an effort to combine the charge transport properties of titania with the light absorption properties of iron (III) oxide, films comprised of vertically oriented Ti-Fe-O nanotube arrays on FTO coated glass substrates have been successfully synthesized in ethylene glycol electrolytes. Depending upon the Fe content the bandgap of the resulting films varied from about 3.26 to 2.17 eV. The Ti-Fe oxide nanotube array films demonstrated a photocurrent of 2 mA/cm2 under global AM 1.5 illumination with a 1.2% (two-electrode) photoconversion efficiency, demonstrating a sustained, time-energy normalized hydrogen evolution rate by water splitting of 7.1 mL/W·hr in a 1 M KOH solution with a platinum counter electrode under an applied bias of 0.7 V. The Ti-Fe-O material architecture demonstrates properties useful for hydrogen generation by water photoelectrolysis and, more importantly, this dissertation demonstrates that the general nanotube-array synthesis technique can be extended to other ternary oxide compositions of interest for water photoelectrolysis.

  17. HIGH-EFFICIENCY INFRARED RECEIVER

    Directory of Open Access Journals (Sweden)

    A. K. Esman

    2016-01-01

    Full Text Available Recent research and development show promising use of high-performance solid-state receivers of the electromagnetic radiation. These receivers are based on the low-barrier Schottky diodes. The approach to the design of the receivers on the basis of delta-doped low-barrier Schottky diodes with beam leads without bias is especially actively developing because for uncooled receivers of the microwave radiation these diodes have virtually no competition. The purpose of this work is to improve the main parameters and characteristics that determine the practical relevance of the receivers of mid-infrared electromagnetic radiation at the operating room temperature by modifying the electrodes configuration of the diode and optimizing the distance between them. Proposed original design solution of the integrated receiver of mid-infrared radiation on the basis of the low-barrier Schottky diodes with beam leads allows to effectively adjust its main parameters and characteristics. Simulation of the electromagnetic characteristics of the proposed receiver by using the software package HFSS with the basic algorithm of a finite element method which implemented to calculate the behavior of electromagnetic fields on an arbitrary geometry with a predetermined material properties have shown that when the inner parts of the electrodes of the low-barrier Schottky diode is performed in the concentric elliptical convex-concave shape, it can be reduce the reflection losses to -57.75 dB and the standing wave ratio to 1.003 while increasing the directivity up to 23 at a wavelength of 6.09 μm. At this time, the rounded radii of the inner parts of the anode and cathode electrodes are equal 212 nm and 318 nm respectively and the gap setting between them is 106 nm. These parameters will improve the efficiency of the developed infrared optical-promising and electronic equipment for various purposes intended for work in the mid-infrared wavelength range. 

  18. High-efficiency wind turbine

    Science.gov (United States)

    Hein, L. A.; Myers, W. N.

    1980-01-01

    Vertical axis wind turbine incorporates several unique features to extract more energy from wind increasing efficiency 20% over conventional propeller driven units. System also features devices that utilize solar energy or chimney effluents during periods of no wind.

  19. High efficiency, long life terrestrial solar panel

    Science.gov (United States)

    Chao, T.; Khemthong, S.; Ling, R.; Olah, S.

    1977-01-01

    The design of a high efficiency, long life terrestrial module was completed. It utilized 256 rectangular, high efficiency solar cells to achieve high packing density and electrical output. Tooling for the fabrication of solar cells was in house and evaluation of the cell performance was begun. Based on the power output analysis, the goal of a 13% efficiency module was achievable.

  20. Characteristics of an intrinsic germanium detector for measurement of soft x-rays from high-temperature plasmas

    International Nuclear Information System (INIS)

    Kumagai, Katsuaki; Matoba, Tohru; Funahashi, Akimasa; Kawakami, Tomohide

    1976-09-01

    An intrinsic germanium (Ge(I)) detector has been prepared for measurement of soft X-ray spectra from high-temperature tokamak plasmas. Its characteristics of photo-peak efficiency, escape-peak and Compton scattering were calibrated with standard radioisotopes and soft X-rays from the JFT-2a plasma, and compared with those of a lithium-drifted silicon (Si(Li)) detector. Features of the Ge(I) detector are as follows: (i) high detection efficiency in the high energy range, (ii) wide energy range for measurement of soft X-ray spectra, and (iii) low Compton scattering effect in measurement of continuous spectra. Its dead-layer depth is about 0.06μm, and the minimum detectable energies in the Ge(I) detector are similar to those in the Si(Li) detector. The Ge(I) detector is effective for measuring soft X-ray spectra from high-temperature tokamak plasmas. (auth.)

  1. High efficiency turbine blade coatings

    Energy Technology Data Exchange (ETDEWEB)

    Youchison, Dennis L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gallis, Michail A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-06-01

    The development of advanced thermal barrier coatings (TBCs) of yttria stabilized zirconia (YSZ) that exhibit lower thermal conductivity through better control of electron beam - physical vapor deposition (EB-PVD) processing is of prime interest to both the aerospace and power industries. This report summarizes the work performed under a two-year Lab-Directed Research and Development (LDRD) project (38664) to produce lower thermal conductivity, graded-layer thermal barrier coatings for turbine blades in an effort to increase the efficiency of high temperature gas turbines. This project was sponsored by the Nuclear Fuel Cycle Investment Area. Therefore, particular importance was given to the processing of the large blades required for industrial gas turbines proposed for use in the Brayton cycle of nuclear plants powered by high temperature gas-cooled reactors (HTGRs). During this modest (~1 full-time equivalent (FTE)) project, the processing technology was developed to create graded TBCs by coupling ion beam-assisted deposition (IBAD) with substrate pivoting in the alumina-YSZ system. The Electron Beam - 1200 kW (EB-1200) PVD system was used to deposit a variety of TBC coatings with micron layered microstructures and reduced thermal conductivity below 1.5 W/m.K. The use of IBAD produced fully stoichiometric coatings at a reduced substrate temperature of 600°C and a reduced oxygen background pressure of 0.1 Pa. IBAD was also used to successfully demonstrate the transitioning of amorphous PVD-deposited alumina to the -phase alumina required as an oxygen diffusion barrier and for good adhesion to the substrate Ni2Al3 bondcoat. This process replaces the time consuming thermally grown oxide formation required before the YSZ deposition. In addition to the process technology, Direct Simulation Monte Carlo plume modeling and spectroscopic characterization of the PVD plumes were performed. The project consisted of five tasks. These included the

  2. Modeling the focusing efficiency of lobster-eye optics for image shifting depending on the soft x-ray wavelength.

    Science.gov (United States)

    Su, Luning; Li, Wei; Wu, Mingxuan; Su, Yun; Guo, Chongling; Ruan, Ningjuan; Yang, Bingxin; Yan, Feng

    2017-08-01

    Lobster-eye optics is widely applied to space x-ray detection missions and x-ray security checks for its wide field of view and low weight. This paper presents a theoretical model to obtain spatial distribution of focusing efficiency based on lobster-eye optics in a soft x-ray wavelength. The calculations reveal the competition mechanism of contributions to the focusing efficiency between the geometrical parameters of lobster-eye optics and the reflectivity of the iridium film. In addition, the focusing efficiency image depending on x-ray wavelengths further explains the influence of different geometrical parameters of lobster-eye optics and different soft x-ray wavelengths on focusing efficiency. These results could be beneficial to optimize parameters of lobster-eye optics in order to realize maximum focusing efficiency.

  3. Ultra high resolution soft x-ray tomography

    International Nuclear Information System (INIS)

    Haddad, W.S.; Trebes, J.E.; Goodman, D.M.; Lee, H.R.; McNulty, I.; Zalensky, A.O.

    1995-01-01

    Ultra high resolution three dimensional images of a microscopic test object were made with soft x-rays using a scanning transmission x-ray microscope. The test object consisted of two different patterns of gold bars on silicon nitride windows that were separated by ∼5 microm. A series of nine 2-D images of the object were recorded at angles between -50 to +55 degrees with respect to the beam axis. The projections were then combined tomographically to form a 3-D image by means of an algebraic reconstruction technique (ART) algorithm. A transverse resolution of ∼ 1,000 angstrom was observed. Artifacts in the reconstruction limited the overall depth resolution to ∼ 6,000 angstrom, however some features were clearly reconstructed with a depth resolution of ∼ 1,000 angstrom. A specially modified ART algorithm and a constrained conjugate gradient (CCG) code were also developed as improvements over the standard ART algorithm. Both of these methods made significant improvements in the overall depth resolution, bringing it down to ∼ 1,200 angstrom overall. Preliminary projection data sets were also recorded with both dry and re-hydrated human sperm cells over a similar angular range

  4. Ultra high resolution soft x-ray tomography

    International Nuclear Information System (INIS)

    Haddad, W.S.; Trebes, J.E.; Goodman, D.M.

    1995-01-01

    Ultra high resolution three dimensional images of a microscopic test object were made with soft x-rays using a scanning transmission x-ray microscope. The test object consisted of two different patterns of gold bars on silicon nitride windows that were separated by ∼5μm. A series of nine 2-D images of the object were recorded at angles between -50 to +55 degrees with respect to the beam axis. The projections were then combined tomographically to form a 3-D image by means of an algebraic reconstruction technique (ART) algorithm. A transverse resolution of ∼1000 Angstrom was observed. Artifacts in the reconstruction limited the overall depth resolution to ∼6000 Angstrom, however some features were clearly reconstructed with a depth resolution of ∼1000 Angstrom. A specially modified ART algorithm and a constrained conjugate gradient (CCG) code were also developed as improvements over the standard ART algorithm. Both of these methods made significant improvements in the overall depth resolution bringing it down to ∼1200 Angstrom overall. Preliminary projection data sets were also recorded with both dry and re-hydrated human sperm cells over a similar angular range

  5. Measurement of soft X-ray power from high-power Z-pinch plasma

    International Nuclear Information System (INIS)

    Wang Wensheng; Qiu Aici; Sun Fengrong; Luo Jianhui; Zhou Haisheng; He Duohui

    2003-01-01

    A Ni-film bolometer driven by the pulsed constant-voltage supply was developed for measuring soft X-ray energy under 1 keV generated from the Qiang-Guang-I, while the measuring system of the soft X-ray power was established with an X-ray diode detector. Results of the soft X-ray energy and power measurements were obtained at the experiment of Kr gas-puff high-power Z-pinch plasma

  6. Dental plaque pH variation with regular soft drink, diet soft drink and high energy drink: an in vivo study.

    Science.gov (United States)

    Jawale, Bhushan Arun; Bendgude, Vikas; Mahuli, Amit V; Dave, Bhavana; Kulkarni, Harshal; Mittal, Simpy

    2012-03-01

    A high incidence of dental caries and dental erosion associated with frequent consumption of soft drinks has been reported. The purpose of this study was to evaluate the pH response of dental plaque to a regular, diet and high energy drink. Twenty subjects were recruited for this study. All subjects were between the ages of 20 and 25 and had at least four restored tooth surfaces present. The subjects were asked to refrain from brushing for 48 hours prior to the study. At baseline, plaque pH was measured from four separate locations using harvesting method. Subjects were asked to swish with 15 ml of the respective soft drink for 1 minute. Plaque pH was measured at the four designated tooth sites at 5, 10 and 20 minutes intervals. Subjects then repeated the experiment using the other two soft drinks. pH was minimum for regular soft drink (2.65 ± 0.026) followed by high energy drink (3.39 ± 0.026) and diet soft drink (3.78 ± 0.006). The maximum drop in plaque pH was seen with regular soft drink followed by high energy drink and diet soft drink. Regular soft drink possesses a greater acid challenge potential on enamel than diet and high energy soft drinks. However, in this clinical trial, the pH associated with either soft drink did not reach the critical pH which is expected for enamel demineralization and dissolution.

  7. A soft-switching coupled inductor bidirectional DC-DC converter with high-conversion ratio

    Science.gov (United States)

    Chao, Kuei-Hsiang; Jheng, Yi-Cing

    2018-01-01

    A soft-switching bidirectional DC-DC converter is presented herein as a way to improve the conversion efficiency of a photovoltaic (PV) system. Adoption of coupled inductors enables the presented converter not only to provide a high-conversion ratio but also to suppress the transient surge voltage via the release of the energy stored in leakage flux of the coupled inductors, and the cost can kept down consequently. A combined use of a switching mechanism and an auxiliary resonant branch enables the converter to successfully perform zero-voltage switching operations on the main switches and improves the efficiency accordingly. It was testified by experiments that our proposed converter works relatively efficiently in full-load working range. Additionally, the framework of the converter intended for testifying has high-conversion ratio. The results of a test, where a generating system using PV module array coupled with batteries as energy storage device was used as the low-voltage input side, and DC link was used as high-voltage side, demonstrated our proposed converter framework with high-conversion ratio on both high-voltage and low-voltage sides.

  8. A Soft-Switching Inverter for High-Temperature Advanced Hybrid Electric Vehicle Traction Motor Drives

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Jason [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Yu, Wensong [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Sun, Pengwei [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Leslie, Scott [Powerex, Inc., Harrison, OH (United States); Prusia, Duane [Powerex, Inc., Harrison, OH (United States); Arnet, Beat [Azure Dynamics, Oak Park, MI (United States); Smith, Chris [Azure Dynamics, Oak Park, MI (United States); Cogan, Art [Azure Dynamics, Oak Park, MI (United States)

    2012-03-31

    The state-of-the-art hybrid electric vehicles (HEVs) require the inverter cooling system to have a separate loop to avoid power semiconductor junction over temperatures because the engine coolant temperature of 105°C does not allow for much temperature rise in silicon devices. The proposed work is to develop an advanced soft-switching inverter that will eliminate the device switching loss and cut down the power loss so that the inverter can operate at high-temperature conditions while operating at high switching frequencies with small current ripple in low inductance based permanent magnet motors. The proposed tasks also include high-temperature packaging and thermal modeling and simulation to ensure the packaged module can operate at the desired temperature. The developed module will be integrated with the motor and vehicle controller for dynamometer and in-vehicle testing to prove its superiority. This report will describe the detailed technical design of the soft-switching inverters and their test results. The experiments were conducted both in module level for the module conduction and switching characteristics and in inverter level for its efficiency under inductive and dynamometer load conditions. The performance will be compared with the DOE original specification.

  9. Soft- and hard-agglomerate aerosols made at high temperatures.

    Science.gov (United States)

    Tsantilis, Stavros; Pratsinis, Sotiris E

    2004-07-06

    Criteria for aerosol synthesis of soft-agglomerate, hard-agglomerate, or even nonagglomerate particles are developed on the basis of particle sintering and coalescence. Agglomerate (or aggregate) particles are held together by weak, physical van der Waals forces (soft agglomerates) or by stronger chemical or sintering bonds (hard agglomerates). Accounting for simultaneous gas phase chemical reaction, coagulation, and sintering during the formation and growth of silica (SiO2) nanoparticles by silicon tetrachloride (SiCl4) oxidation and neglecting the spread of particle size distribution, the onset of hard-agglomerate formation is identified at the end of full coalescence, while the onset of soft-agglomerate formation is identified at the end of sintering. Process conditions such as the precursor initial volume fraction, maximum temperature, residence time, and cooling rate are explored, identifying regions for the synthesis of particles with a controlled degree of agglomeration (ratio of collision to primary particle diameters).

  10. High efficiency motor selection handbook

    Science.gov (United States)

    McCoy, Gilbert A.; Litman, Todd; Douglass, John G.

    1990-10-01

    Substantial reductions in energy and operational costs can be achieved through the use of energy-efficient electric motors. A handbook was compiled to help industry identify opportunities for cost-effective application of these motors. It covers the economic and operational factors to be considered when motor purchase decisions are being made. Its audience includes plant managers, plant engineers, and others interested in energy management or preventative maintenance programs.

  11. Development of High-frequency Soft Magnetic Materials for Power Electronics

    Directory of Open Access Journals (Sweden)

    LIU Jun-chang

    2017-05-01

    Full Text Available The new requirements of high-frequency magnetic properties are put forward for electronic components with the rapid development of power electronics industry and the use of new electromagnetic materials. The properties of magnetic core, which is the key unit of electronic components, determine the performance of electronic components directly. Therefore, it's necessary to study the high-frequency soft magnetic materials. In this paper, the development history of four types of soft magnetic materials was reviewed. The advantages and disadvantages of each kind of soft magnetic materials and future development trends were pointed out. The emphases were placed on the popular soft magnetic composite materials in recent years. The tendency is to develop high-frequency soft magnetic composite materials with the particle size controllable, uniform coating layer on the core and a mass production method from laboratory to industrialization.

  12. Analysis of water and nitrogen use efficiency for maize (Zea mays L.) grown on soft rock and sand compound soil.

    Science.gov (United States)

    Wang, Huanyuan; Han, Jichang; Tong, Wei; Cheng, Jie; Zhang, Haiou

    2017-06-01

    Maize was grown on compound soils constituted from mixtures of soft rock and sand at different ratios, and water use efficiency (WUE), nitrogen use efficiency (NUE) and fertilizer nitrogen use efficiency (FNUE) were quantified. The data were used to assist in designing strategies for optimizing water and nitrogen management practices for maize on the substrates used. Maize was sown in composite soil prepared at three ratios of soft rock and sand (1:1, 1:2 and 1:5 v/v) in Mu Us Sandy Land, Yuyang district, Yulin city, China. Yields, amount of drainage, nitrogen (N) leaching, WUE and NUE were calculated. Then a water and nitrogen management model (WNMM) was calibrated and validated. No significant difference in evapotranspiration of maize was found among compound soils with soft rock/sand ratios of 1:1, 1:2 and 1:5, while water drainage increased significantly with increasing soft rock/sand ratio. WUE increased to 1.30 kg m -3 in compound soil with 1:2 soft rock/sand ratio. Nitrogen leaching and ammonia volatilization were the main reason for nitrogen loss, and N reduction mainly relied on crop uptake. NUE and FNUE could reach 33.1 and 24.9 kg kg -1 N respectively. Water drainage and nitrogen leaching occurred mostly during heavy rainfall or irrigation. Through a scenario analysis of different rainfall types, water and fertilizer management systems were formulated each year. This study shows that soft rock plays a key role in improving the WUE, NUE and FNUE of maize. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  13. Experimental research on the structural characteristics of high organic soft soil in different deposition ages

    Science.gov (United States)

    Liu, Fei; Lin, Guo-he

    2018-03-01

    High organic soft soil, which is distributed at Ji Lin province in China, has been studied by a lot of scholars. In the paper, structural characteristics with different deposition ages have been researched by experimental tests. Firstly, the characteristics of deposition age, degree of decompositon, high-pressure consolidation and microstructure have been measured by a series of tests. Secondly, structural strengths which were deposited in different ages, have been carried out to test the significant differences of stress-strain relations between remoulded and undisturbed high organic soft soil samples. Results showed that high organic soft soil which is deposited at different ages will influence its structural characteristics.

  14. Soft x-ray driven ablation and its positive use for a new efficient acceleration

    International Nuclear Information System (INIS)

    Yabe, Takashi; Kiyokawa, Shuji; Mochizuki, Takayasu; Sakabe, Shuji; Yamanaka, Chiyoe

    1983-01-01

    The ablation process driven by soft X-ray is investigated by one-dimensional hydrodynamic code coupled with LTE, average ion model and multi-group radiation package. The following two major results are obtained: (1) the ablation pressure and mass ablation rate scalings, and (2) a new acceleration scheme which positively uses the unique property of soft X-ray transport. (author)

  15. High average power, highly brilliant laser-produced plasma source for soft X-ray spectroscopy.

    Science.gov (United States)

    Mantouvalou, Ioanna; Witte, Katharina; Grötzsch, Daniel; Neitzel, Michael; Günther, Sabrina; Baumann, Jonas; Jung, Robert; Stiel, Holger; Kanngiesser, Birgit; Sandner, Wolfgang

    2015-03-01

    In this work, a novel laser-produced plasma source is presented which delivers pulsed broadband soft X-radiation in the range between 100 and 1200 eV. The source was designed in view of long operating hours, high stability, and cost effectiveness. It relies on a rotating and translating metal target and achieves high stability through an on-line monitoring device using a four quadrant extreme ultraviolet diode in a pinhole camera arrangement. The source can be operated with three different laser pulse durations and various target materials and is equipped with two beamlines for simultaneous experiments. Characterization measurements are presented with special emphasis on the source position and emission stability of the source. As a first application, a near edge X-ray absorption fine structure measurement on a thin polyimide foil shows the potential of the source for soft X-ray spectroscopy.

  16. High efficiency focus neutron generator

    Science.gov (United States)

    Sadeghi, H.; Amrollahi, R.; Zare, M.; Fazelpour, S.

    2017-12-01

    In the present paper, the new idea to increase the neutron yield of plasma focus devices is investigated and the results are presented. Based on many studies, more than 90% of neutrons in plasma focus devices were produced by beam target interactions and only 10% of them were due to thermonuclear reactions. While propounding the new idea, the number of collisions between deuteron ions and deuterium gas atoms were increased remarkably well. The COMSOL Multiphysics 5.2 was used to study the given idea in the known 28 plasma focus devices. In this circumstance, the neutron yield of this system was also obtained and reported. Finally, it was found that in the ENEA device with 1 Hz working frequency, 1.1 × 109 and 1.1 × 1011 neutrons per second were produced by D-D and D-T reactions, respectively. In addition, in the NX2 device with 16 Hz working frequency, 1.34 × 1010 and 1.34 × 1012 neutrons per second were produced by D-D and D-T reactions, respectively. The results show that with regards to the sizes and energy of these devices, they can be used as the efficient neutron generators.

  17. Experimental analysis of high-resolution soft x-ray microscopy

    International Nuclear Information System (INIS)

    Chao, Weilun; Anderson, Erik H.; Denbeaux, Gregory; Harteneck, Bruce; Pearson, Angelic L.; Olynick, Deirdre; Schneider, Gerd; Attwood, David

    2001-01-01

    The soft x-ray, full-field microscope XM-1 at Lawrence Berkeley National Laboratory's (LBNL) Advanced Light Source has already demonstrated its capability to resolve 25-nm features. This was accomplished using a micro zone plate (MZP) with an outer zone width of 25 nm. Limited by the aspect ratio of the resist used in the fabrication, the gold-plating thickness of that zone plate is around 40 nm. However, some applications, in particular, biological imaging, prefer improved efficiency, which can be achieved by high-aspect-ratio zone plates. We accomplish this by using a bilayer-resist process in the zone plate fabrication. As our first attempt, a 40-nm-outer-zone-width MZP with a nickel-plating thickness of 150 nm (aspect ratio of 4:1) was successfully fabricated. Relative to the 25-nm MZP, this zone plate is ten times more efficient. Using this high-efficiency MZP, a line test pattern with half period of 30 nm is resolved by the microscope at photon energy of 500 eV. Furthermore, with a new multilayer mirror, the XM-1 can now perform imaging up to 1.8 keV. An image of a line test pattern with half period of 40 nm has a measured modulation of 90%. The image was taken at 1.77 keV with the high-efficiency MZP with an outer zone width of 35 nm and a nickel-plating thickness of 180 nm (aspect ratio of 5:1). XM-1 provides a gateway to high-resolution imaging at high energy. To measure frequency response of the XM-1, a partially annealed gold ''island'' pattern was chosen as a test object. After comparison with the SEM image of the pattern, the microscope has the measured cutoff of 19 nm, close to the theoretical one of 17 nm. The normalized frequency response, which is the ratio of the power density of the soft x-ray image to that of the SEM image, is shown in this paper

  18. An eFTD-VP framework for efficiently generating patient-specific anatomically detailed facial soft tissue FE mesh for craniomaxillofacial surgery simulation.

    Science.gov (United States)

    Zhang, Xiaoyan; Kim, Daeseung; Shen, Shunyao; Yuan, Peng; Liu, Siting; Tang, Zhen; Zhang, Guangming; Zhou, Xiaobo; Gateno, Jaime; Liebschner, Michael A K; Xia, James J

    2018-04-01

    Accurate surgical planning and prediction of craniomaxillofacial surgery outcome requires simulation of soft tissue changes following osteotomy. This can only be achieved by using an anatomically detailed facial soft tissue model. The current state-of-the-art of model generation is not appropriate to clinical applications due to the time-intensive nature of manual segmentation and volumetric mesh generation. The conventional patient-specific finite element (FE) mesh generation methods are to deform a template FE mesh to match the shape of a patient based on registration. However, these methods commonly produce element distortion. Additionally, the mesh density for patients depends on that of the template model. It could not be adjusted to conduct mesh density sensitivity analysis. In this study, we propose a new framework of patient-specific facial soft tissue FE mesh generation. The goal of the developed method is to efficiently generate a high-quality patient-specific hexahedral FE mesh with adjustable mesh density while preserving the accuracy in anatomical structure correspondence. Our FE mesh is generated by eFace template deformation followed by volumetric parametrization. First, the patient-specific anatomically detailed facial soft tissue model (including skin, mucosa, and muscles) is generated by deforming an eFace template model. The adaptation of the eFace template model is achieved by using a hybrid landmark-based morphing and dense surface fitting approach followed by a thin-plate spline interpolation. Then, high-quality hexahedral mesh is constructed by using volumetric parameterization. The user can control the resolution of hexahedron mesh to best reflect clinicians' need. Our approach was validated using 30 patient models and 4 visible human datasets. The generated patient-specific FE mesh showed high surface matching accuracy, element quality, and internal structure matching accuracy. They can be directly and effectively used for clinical

  19. High frequency Soft Switching Half Bridge Series-Resonant DC-DC Converter Utilizing Gallium Nitride FETs

    DEFF Research Database (Denmark)

    Nour, Yasser; Knott, Arnold; Petersen, Lars Press

    2017-01-01

    The need for efficient, smaller, lighter and cheaper power supply units drive the investigation of using high switching frequency soft switching resonant converters. This work presents an 88% efficient 48V nominal input converter switching at 6 MHz and output power of 21 Watts achieving power...... density of 7 W/cm3 for Power-over-Ethernet LED lighting applications. The switching frequency is used to control the output current delivered to the load resistance. The converter was tested using a constant resistance load. The performance and thermal behavior were investigated and reported in this work....

  20. An Investigation into Soft Error Detection Efficiency at Operating System Level

    OpenAIRE

    Asghari, Seyyed Amir; Kaynak, Okyay; Taheri, Hassan

    2014-01-01

    Electronic equipment operating in harsh environments such as space is subjected to a range of threats. The most important of these is radiation that gives rise to permanent and transient errors on microelectronic components. The occurrence rate of transient errors is significantly more than permanent errors. The transient errors, or soft errors, emerge in two formats: control flow errors (CFEs) and data errors. Valuable research results have already appeared in literature at hardware and soft...

  1. Synthesis of FeSiBPNbCu nanocrystalline soft-magnetic alloys with high saturation magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zongzhen [China Iron and Steel Research Institute Group, Advanced Technology and Materials Co., Ltd., Beijing 100081 (China); Wang, Anding; Chang, Chuntao [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 519 Zhuangshi Road, Zhenhai District, Ningbo, Zhejiang 315201 (China); Wang, Yanguo [Institute of Physics, Chinese Academy of Sciences, PO Box 603, Beijing 100080 (China); Dong, Bangshao [China Iron and Steel Research Institute Group, Advanced Technology and Materials Co., Ltd., Beijing 100081 (China); Zhou, Shaoxiong, E-mail: sxzhou@atmcn.com [China Iron and Steel Research Institute Group, Advanced Technology and Materials Co., Ltd., Beijing 100081 (China)

    2014-10-25

    Highlights: • Thermal stability of the FeSiBPNbCu alloys is strongly dependent on the Fe content. • The FeSiBPNbCu alloys with high Fe content exhibit good soft magnetic properties. • The coexistence of Cu, P and Nb leads to the excellent soft magnetic properties. - Abstract: A series of [Fe{sub 0.76+x}(Si{sub 0.4}B{sub 0.4}P{sub 0.2}){sub 0.24−x}]{sub 98.25}Nb{sub 1}Cu{sub 0.75} (x = 0–0.08) nanocrystalline soft-magnetic alloys with high saturation magnetization were synthesized by adjusting Fe content and improving the crystallization behavior, soft-magnetic properties and microstructure. It is found that the temperature interval between the two crystallization peaks is significantly enlarged from 50 to 180 °C when the Fe content of the alloys increases from x = 0 to x = 0.08, which greatly expands the optimum annealing temperature range. The alloys with higher Fe content are prone to form more uniform nanocomposite microstructure with better thermal stability and soft magnetic properties. The Fe-rich FeSiBPNbCu nanocrystalline alloys with x = 0.08 exhibit excellent soft-magnetic properties, including the high saturation magnetic flux density of up to 1.74 T, low coercivity of about 3.3 A/m and high effective permeability of more than 2.2 × 10{sup 4} at 1 kHz under a field of 1 A/m. The combination of excellent soft-magnetic properties, low cost and good productivity makes the FeSiBPNbCu alloys to be a kind of promising soft-magnetic materials for electrical and electronic industry applications.

  2. Critical study of high efficiency deep grinding

    OpenAIRE

    Johnstone, lain

    2002-01-01

    The recent years, the aerospace industry in particular has embraced and actively pursued the development of stronger high performance materials, namely nickel based superalloys and hardwearing steels. This has resulted in a need for a more efficient method of machining, and this need was answered with the advent of High Efficiency Deep Grinding (HEDG). This relatively new process using Cubic Boron Nitride (CBN) electroplated grinding wheels has been investigated through experim...

  3. Pure-iron/iron-based-alloy hybrid soft magnetic powder cores compacted at ultra-high pressure

    Science.gov (United States)

    Saito, Tatsuya; Tsuruta, Hijiri; Watanabe, Asako; Ishimine, Tomoyuki; Ueno, Tomoyuki

    2018-04-01

    We developed Fe/FeSiAl soft magnetic powder cores (SMCs) for realizing the miniaturization and high efficiency of an electromagnetic conversion coil in the high-frequency range (˜20 kHz). We found that Fe/FeSiAl SMCs can be formed with a higher density under higher compaction pressure than pure-iron SMCs. These SMCs delivered a saturation magnetic flux density of 1.7 T and iron loss (W1/20k) of 158 kW/m3. The proposed SMCs exhibited similar excellent characteristics even in block shapes, which are closer to the product shapes.

  4. Pure-iron/iron-based-alloy hybrid soft magnetic powder cores compacted at ultra-high pressure

    Directory of Open Access Journals (Sweden)

    Tatsuya Saito

    2018-04-01

    Full Text Available We developed Fe/FeSiAl soft magnetic powder cores (SMCs for realizing the miniaturization and high efficiency of an electromagnetic conversion coil in the high-frequency range (∼20 kHz. We found that Fe/FeSiAl SMCs can be formed with a higher density under higher compaction pressure than pure-iron SMCs. These SMCs delivered a saturation magnetic flux density of 1.7 T and iron loss (W1/20k of 158 kW/m3. The proposed SMCs exhibited similar excellent characteristics even in block shapes, which are closer to the product shapes.

  5. Planning of the in-situ creep test in sedimentary soft rocks under high temperature

    International Nuclear Information System (INIS)

    Takakura, Nozomu; Yoshikawa, Kazuo; Okada, Tetsuji; Sawada, Masataka; Tani, Kazuo; Takeda, Kayo

    2007-01-01

    Research has been conducted on underground facilities for energy storage and waste disposal in sedimentary soft rocks. One of the research topics is that the long-term mechanical behaviors of sedimentary soft rocks can be affected by various environmental factors such as temperatures or hydraulic conditions. Therefore, it is necessary to develop a method for evaluating the long-term stability of caverns in sedimentary soft rocks as influenced by changes in the external environment. This report presents the plan of field creep test for the purpose to establish the evaluation method of long-term stability of caverns in soft rocks. A series of field creep test is performed to study the influence of high temperature in an underground facility at a depth of 50 meters. (author)

  6. Efficient Buffer Capacity and Scheduler Setting Computation for Soft Real-Time Stream Processing Applications

    NARCIS (Netherlands)

    Bekooij, Marco; Bekooij, Marco Jan Gerrit; Wiggers, M.H.; van Meerbergen, Jef

    2007-01-01

    Soft real-time applications that process data streams can often be intuitively described as dataflow process networks. In this paper we present a novel analysis technique to compute conservative estimates of the required buffer capacities in such process networks. With the same analysis technique

  7. An investigation into soft error detection efficiency at operating system level.

    Science.gov (United States)

    Asghari, Seyyed Amir; Kaynak, Okyay; Taheri, Hassan

    2014-01-01

    Electronic equipment operating in harsh environments such as space is subjected to a range of threats. The most important of these is radiation that gives rise to permanent and transient errors on microelectronic components. The occurrence rate of transient errors is significantly more than permanent errors. The transient errors, or soft errors, emerge in two formats: control flow errors (CFEs) and data errors. Valuable research results have already appeared in literature at hardware and software levels for their alleviation. However, there is the basic assumption behind these works that the operating system is reliable and the focus is on other system levels. In this paper, we investigate the effects of soft errors on the operating system components and compare their vulnerability with that of application level components. Results show that soft errors in operating system components affect both operating system and application level components. Therefore, by providing endurance to operating system level components against soft errors, both operating system and application level components gain tolerance.

  8. An Investigation into Soft Error Detection Efficiency at Operating System Level

    Directory of Open Access Journals (Sweden)

    Seyyed Amir Asghari

    2014-01-01

    Full Text Available Electronic equipment operating in harsh environments such as space is subjected to a range of threats. The most important of these is radiation that gives rise to permanent and transient errors on microelectronic components. The occurrence rate of transient errors is significantly more than permanent errors. The transient errors, or soft errors, emerge in two formats: control flow errors (CFEs and data errors. Valuable research results have already appeared in literature at hardware and software levels for their alleviation. However, there is the basic assumption behind these works that the operating system is reliable and the focus is on other system levels. In this paper, we investigate the effects of soft errors on the operating system components and compare their vulnerability with that of application level components. Results show that soft errors in operating system components affect both operating system and application level components. Therefore, by providing endurance to operating system level components against soft errors, both operating system and application level components gain tolerance.

  9. Gaining efficiency and resolution in soft X-ray emission spectrometers thanks to directly illuminated CCD detectors

    International Nuclear Information System (INIS)

    Dinardo, M.E.; Piazzalunga, A.; Braicovich, L.; Bisogni, V.; Dallera, C.; Giarda, K.; Marcon, M.; Tagliaferri, A.; Ghiringhelli, G.

    2007-01-01

    The back-illuminated charge coupled devices (CCD) are suitable for soft X-ray photon detection. Their nominal performances suggest that they can boost both efficiency and resolving power of X-ray spectrometers based on diffraction gratings and two-dimensional position sensitive detectors. We tested the performances of two commercially available CCDs, intended to replace a more traditional microchannel plate (MCP) detector. Our tests show that the devices have excellent performances in terms of dark current, response linearity, detection efficiency and spatial resolution. We observed that the CCDs have better efficiency (more than 10 times) and better resolution (∼3 times) than the MCP. Moreover we found an intrinsic limit for the spatial resolution, which is almost independent of the detector pixel size and is estimated around 25 μm

  10. Incidence of Staphylococcus aureus nasal colonization and soft tissue infection among high school football players.

    Science.gov (United States)

    Lear, Aaron; McCord, Gary; Peiffer, Jeffrey; Watkins, Richard R; Parikh, Arpan; Warrington, Steven

    2011-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) skin and soft tissue infections have been documented with increasing frequency in both team and individual sports in recent years. It also seems that the level of MRSA skin and soft tissue infections in the general population has increased. One hundred ninety athletes from 6 local high school football teams were recruited for this prospective observational study to document nasal colonization and the potential role this plays in skin and soft tissue infections in football players and, in particular, MRSA infections. Athletes had nasal swabs done before their season started, and they filled out questionnaires regarding potential risk factors for skin and soft tissue infections. Those enrolled in the study were then observed over the course of the season for skin and soft tissue infections. Those infected had data about their infections collected. One hundred ninety of 386 available student athletes enrolled in the study. Forty-four of the subjects had nasal colonization with methicillin-susceptible S. aureus, and none were colonized with MRSA. There were 10 skin and soft tissue infections (8 bacterial and 2 fungal) documented over the course of the season. All were treated as outpatients with oral or topical antibiotics, and none were considered serious. Survey data from the preseason questionnaire showed 21% with skin infection, 11% with methicillin-susceptible S. aureus, and none with MRSA infection during the past year. Three reported a remote history of MRSA infection. We documented an overall skin infection rate of 5.3% among high school football players over a single season. Our results suggest that skin and soft tissue infection may not be widespread among high school athletes in northeast Ohio.

  11. Progress of OLED devices with high efficiency at high luminance

    Science.gov (United States)

    Nguyen, Carmen; Ingram, Grayson; Lu, Zhenghong

    2014-03-01

    Organic light emitting diodes (OLEDs) have progressed significantly over the last two decades. For years, OLEDs have been promoted as the next generation technology for flat panel displays and solid-state lighting due to their potential for high energy efficiency and dynamic range of colors. Although high efficiency can readily be obtained at low brightness levels, a significant decline at high brightness is commonly observed. In this report, we will review various strategies for achieving highly efficient phosphorescent OLED devices at high luminance. Specifically, we will provide details regarding the performance and general working principles behind each strategy. We will conclude by looking at how some of these strategies can be combined to produce high efficiency white OLEDs at high brightness.

  12. Measure Guideline. High Efficiency Natural Gas Furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Brand, L. [Partnership for Advanced Residential Retrofit (PARR), Des Plaines, IL (United States); Rose, W. [Partnership for Advanced Residential Retrofit (PARR), Des Plaines, IL (United States)

    2012-10-01

    This measure guideline covers installation of high-efficiency gas furnaces, including: when to install a high-efficiency gas furnace as a retrofit measure; how to identify and address risks; and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  13. Measure Guideline: High Efficiency Natural Gas Furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Brand, L.; Rose, W.

    2012-10-01

    This Measure Guideline covers installation of high-efficiency gas furnaces. Topics covered include when to install a high-efficiency gas furnace as a retrofit measure, how to identify and address risks, and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  14. Experiments on high efficiency aerosol filtration

    International Nuclear Information System (INIS)

    Mazzini, M.; Cuccuru, A.; Kunz, P.

    1977-01-01

    Research on high efficiency aerosol filtration by the Nuclear Engineering Institute of Pisa University and by CAMEN in collaboration with CNEN is outlined. HEPA filter efficiency was studied as a function of the type and size of the test aerosol, and as a function of flowrate (+-50% of the nominal value), air temperature (up to 70 0 C), relative humidity (up to 100%), and durability in a corrosive atmosphere (up to 140 hours in NaCl mist). In the selected experimental conditions these influences were appreciable but are not sufficient to be significant in industrial HEPA filter applications. Planned future research is outlined: measurement of the efficiency of two HEPA filters in series using a fixed particle size; dependence of the efficiency on air, temperatures up to 300-500 0 C; performance when subject to smoke from burning organic materials (natural rubber, neoprene, miscellaneous plastics). Such studies are relevant to possible accidental fires in a plutonium laboratory

  15. High efficiency, variable geometry, centrifugal cryogenic pump

    International Nuclear Information System (INIS)

    Forsha, M.D.; Nichols, K.E.; Beale, C.A.

    1994-01-01

    A centrifugal cryogenic pump has been developed which has a basic design that is rugged and reliable with variable speed and variable geometry features that achieve high pump efficiency over a wide range of head-flow conditions. The pump uses a sealless design and rolling element bearings to achieve high reliability and the ruggedness to withstand liquid-vapor slugging. The pump can meet a wide range of variable head, off-design flow requirements and maintain design point efficiency by adjusting the pump speed. The pump also has features that allow the impeller and diffuser blade heights to be adjusted. The adjustable height blades were intended to enhance the pump efficiency when it is operating at constant head, off-design flow rates. For small pumps, the adjustable height blades are not recommended. For larger pumps, they could provide off-design efficiency improvements. This pump was developed for supercritical helium service, but the design is well suited to any cryogenic application where high efficiency is required over a wide range of head-flow conditions

  16. Saving energy via high-efficiency fans.

    Science.gov (United States)

    Heine, Thomas

    2016-08-01

    Thomas Heine, sales and market manager for EC Upgrades, the retrofit arm of global provider of air movement solutions, ebm-papst A&NZ, discusses the retrofitting of high-efficiency fans to existing HVAC equipment to 'drastically reduce energy consumption'.

  17. Low delay and area efficient soft error correction in arbitration logic

    Science.gov (United States)

    Sugawara, Yutaka

    2013-09-10

    There is provided an arbitration logic device for controlling an access to a shared resource. The arbitration logic device comprises at least one storage element, a winner selection logic device, and an error detection logic device. The storage element stores a plurality of requestors' information. The winner selection logic device selects a winner requestor among the requestors based on the requestors' information received from a plurality of requestors. The winner selection logic device selects the winner requestor without checking whether there is the soft error in the winner requestor's information.

  18. Elucidating differences in metal absorption efficiencies between terrestrial soft-bodied and aquatic species

    DEFF Research Database (Denmark)

    Owsianiak, Mikolaj; Veltman, Karin; Hauschild, Michael Zwicky

    2014-01-01

    species, with the covalent index being the best predictor. It is hypothesized that metal absorption by soft-bodied species in soil systems is influenced by the rate of metal supply to the membrane, while in aquatic systems accumulation is solely determined by metal affinity to membrane bound transport...... proteins. Our results imply that developing predictive terrestrial bioaccumulation and toxicity models for metals must consider metal interactions with soil solids. This may include desorption of a cation bound to soil solids through ion exchange, or metal release from soil surfaces involving breaking...

  19. Scalable Sub-micron Patterning of Organic Materials Toward High Density Soft Electronics.

    Science.gov (United States)

    Kim, Jaekyun; Kim, Myung-Gil; Kim, Jaehyun; Jo, Sangho; Kang, Jingu; Jo, Jeong-Wan; Lee, Woobin; Hwang, Chahwan; Moon, Juhyuk; Yang, Lin; Kim, Yun-Hi; Noh, Yong-Young; Jaung, Jae Yun; Kim, Yong-Hoon; Park, Sung Kyu

    2015-09-28

    The success of silicon based high density integrated circuits ignited explosive expansion of microelectronics. Although the inorganic semiconductors have shown superior carrier mobilities for conventional high speed switching devices, the emergence of unconventional applications, such as flexible electronics, highly sensitive photosensors, large area sensor array, and tailored optoelectronics, brought intensive research on next generation electronic materials. The rationally designed multifunctional soft electronic materials, organic and carbon-based semiconductors, are demonstrated with low-cost solution process, exceptional mechanical stability, and on-demand optoelectronic properties. Unfortunately, the industrial implementation of the soft electronic materials has been hindered due to lack of scalable fine-patterning methods. In this report, we demonstrated facile general route for high throughput sub-micron patterning of soft materials, using spatially selective deep-ultraviolet irradiation. For organic and carbon-based materials, the highly energetic photons (e.g. deep-ultraviolet rays) enable direct photo-conversion from conducting/semiconducting to insulating state through molecular dissociation and disordering with spatial resolution down to a sub-μm-scale. The successful demonstration of organic semiconductor circuitry promise our result proliferate industrial adoption of soft materials for next generation electronics.

  20. High Efficiency Reversible Fuel Cell Power Converter

    DEFF Research Database (Denmark)

    Pittini, Riccardo

    as well as different dc-ac and dc-dc converter topologies are presented and analyzed. A new ac-dc topology for high efficiency data center applications is proposed and an efficiency characterization based on the fuel cell stack I-V characteristic curve is presented. The second part discusses the main...... converter components. Wide bandgap power semiconductors are introduced due to their superior performance in comparison to traditional silicon power devices. The analysis presents a study based on switching loss measurements performed on Si IGBTs, SiC JFETs, SiC MOSFETs and their respective gate drivers...

  1. Alpha-particle-induced soft errors in high speed bipolar RAM

    International Nuclear Information System (INIS)

    Mitsusada, Kazumichi; Kato, Yukio; Yamaguchi, Kunihiko; Inadachi, Masaaki

    1980-01-01

    As bipolar RAM (Random Access Memory) has been improved to a fast acting and highly integrated device, the problems negligible in the past have become the ones that can not be ignored. The problem of a-particles emitted from the radioactive substances in semiconductor package materials should be specifically noticed, which cause soft errors. The authors have produced experimentally the special 1 kbit bipolar RAM to investigate its soft errors. The package used was the standard 16 pin dual in-line type, with which the practical system mounting test and a-particle irradiation test have been performed. The results showed the occurrence of soft errors at the average rate of about 1 bit/700 device hour. It is concluded that the cause was due to the a-particles emitted from the package materials, and at the same time, it was found that the rate of soft error occurrence was able to be greatly reduced by shielding a-particles. The error rate significantly increased with the decrease of the stand-by current of memory cells and with the accumulated charge determined by time constant. The mechanism of soft error was also investigated, for which an approximate model to estimate the error rate by means of the effective noise charge due to a-particles and of the amount of reversible charges of memory cells is shown to compare it with the experimental results. (Wakatsuki, Y.)

  2. High Efficiency Power Converter for Low Voltage High Power Applications

    DEFF Research Database (Denmark)

    Nymand, Morten

    The topic of this thesis is the design of high efficiency power electronic dc-to-dc converters for high-power, low-input-voltage to high-output-voltage applications. These converters are increasingly required for emerging sustainable energy systems such as fuel cell, battery or photo voltaic based......, and remote power generation for light towers, camper vans, boats, beacons, and buoys etc. A review of current state-of-the-art is presented. The best performing converters achieve moderately high peak efficiencies at high input voltage and medium power level. However, system dimensioning and cost are often...

  3. High Efficiency Centrifugal Compressor for Rotorcraft Applications

    Science.gov (United States)

    Medic, Gorazd; Sharma, Om P.; Jongwook, Joo; Hardin, Larry W.; McCormick, Duane C.; Cousins, William T.; Lurie, Elizabeth A.; Shabbir, Aamir; Holley, Brian M.; Van Slooten, Paul R.

    2017-01-01

    A centrifugal compressor research effort conducted by United Technologies Research Center under NASA Research Announcement NNC08CB03C is documented. The objectives were to identify key technical barriers to advancing the aerodynamic performance of high-efficiency, high work factor, compact centrifugal compressor aft-stages for turboshaft engines; to acquire measurements needed to overcome the technical barriers and inform future designs; to design, fabricate, and test a new research compressor in which to acquire the requisite flow field data. A new High-Efficiency Centrifugal Compressor stage -- splittered impeller, splittered diffuser, 90 degree bend, and exit guide vanes -- with aerodynamically aggressive performance and configuration (compactness) goals were designed, fabricated, and subquently tested at the NASA Glenn Research Center.

  4. High-Temperature High-Efficiency Solar Thermoelectric Generators

    Energy Technology Data Exchange (ETDEWEB)

    Baranowski, LL; Warren, EL; Toberer, ES

    2014-03-01

    Inspired by recent high-efficiency thermoelectric modules, we consider thermoelectrics for terrestrial applications in concentrated solar thermoelectric generators (STEGs). The STEG is modeled as two subsystems: a TEG, and a solar absorber that efficiently captures the concentrated sunlight and limits radiative losses from the system. The TEG subsystem is modeled using thermoelectric compatibility theory; this model does not constrain the material properties to be constant with temperature. Considering a three-stage TEG based on current record modules, this model suggests that 18% efficiency could be experimentally expected with a temperature gradient of 1000A degrees C to 100A degrees C. Achieving 15% overall STEG efficiency thus requires an absorber efficiency above 85%, and we consider two methods to achieve this: solar-selective absorbers and thermally insulating cavities. When the TEG and absorber subsystem models are combined, we expect that the STEG modeled here could achieve 15% efficiency with optical concentration between 250 and 300 suns.

  5. Soft electromagnetic bremsstrahlung in inelastic hadronic collisions at high and intermediate energies

    International Nuclear Information System (INIS)

    Rueckl, R.

    1978-01-01

    Electromagnetic bremsstrahlung in hadronic collisions was studied extensively at low and intermediate energies. It was found that the infrared divergent term of the cross section describes the data well up to surprisingly large photon energies. Using essentially the same soft photon approximation, production of low mass-low energy electron pairs via internal conversion of soft virtual bremsstrahlung accompanying the production of charged hadrons in hadron-hadron collisions at very high and intermediate energies. The resulting electron yields explain, at least in part, the direct electrons with small transverse momenta seen at the ISR, and are in no contradiction to the rates observed at LAMPF

  6. Designing High-Performance Fuzzy Controllers Combining IP Cores and Soft Processors

    Directory of Open Access Journals (Sweden)

    Oscar Montiel-Ross

    2012-01-01

    Full Text Available This paper presents a methodology to integrate a fuzzy coprocessor described in VHDL (VHSIC Hardware Description Language to a soft processor embedded into an FPGA, which increases the throughput of the whole system, since the controller uses parallelism at the circuitry level for high-speed-demanding applications, the rest of the application can be written in C/C++. We used the ARM 32-bit soft processor, which allows sequential and parallel programming. The FLC coprocessor incorporates a tuning method that allows to manipulate the system response. We show experimental results using a fuzzy PD+I controller as the embedded coprocessor.

  7. In-situ heater test in sedimentary soft rocks under high temperature (Phase I)

    International Nuclear Information System (INIS)

    Ikenoya, Takafumi; Takakura, Nozomu; Okada, Tetsuji; Sawada, Masataka; Hirano, Kouhei; Tani, Kazuo

    2008-01-01

    Various researches have been conducted on high level radioactive waste geological disposal in sedimentary soft rocks. It's noted that the long-term mechanical behaviors of sedimentary soft rocks can be affected by various environmental factors such as temperatures or hydraulic conditions. Therefore, in-situ heater test was conducted in an underground cavern at a depth of 50 meters for the purpose of improving thermo-hydro-mechanical coupled analysis code. This report presents the test result demonstrating the changes of temperature and strain distributions with time at the elevated temperature of the heater up to 40 degrees Celsius. (author)

  8. High efficiency and broadband acoustic diodes

    Science.gov (United States)

    Fu, Congyi; Wang, Bohan; Zhao, Tianfei; Chen, C. Q.

    2018-01-01

    Energy transmission efficiency and working bandwidth are the two major factors limiting the application of current acoustic diodes (ADs). This letter presents a design of high efficiency and broadband acoustic diodes composed of a nonlinear frequency converter and a linear wave filter. The converter consists of two masses connected by a bilinear spring with asymmetric tension and compression stiffness. The wave filter is a linear mass-spring lattice (sonic crystal). Both numerical simulation and experiment show that the energy transmission efficiency of the acoustic diode can be improved by as much as two orders of magnitude, reaching about 61%. Moreover, the primary working band width of the AD is about two times of the cut-off frequency of the sonic crystal filter. The cut-off frequency dependent working band of the AD implies that the developed AD can be scaled up or down from macro-scale to micro- and nano-scale.

  9. Complexity-aware high efficiency video coding

    CERN Document Server

    Correa, Guilherme; Agostini, Luciano; Cruz, Luis A da Silva

    2016-01-01

    This book discusses computational complexity of High Efficiency Video Coding (HEVC) encoders with coverage extending from the analysis of HEVC compression efficiency and computational complexity to the reduction and scaling of its encoding complexity. After an introduction to the topic and a review of the state-of-the-art research in the field, the authors provide a detailed analysis of the HEVC encoding tools compression efficiency and computational complexity.  Readers will benefit from a set of algorithms for scaling the computational complexity of HEVC encoders, all of which take advantage from the flexibility of the frame partitioning structures allowed by the standard.  The authors also provide a set of early termination methods based on data mining and machine learning techniques, which are able to reduce the computational complexity required to find the best frame partitioning structures. The applicability of the proposed methods is finally exemplified with an encoding time control system that emplo...

  10. High Efficiency, Low Emission Refrigeration System

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, Brian A [ORNL; Sharma, Vishaldeep [ORNL

    2016-08-01

    Supermarket refrigeration systems account for approximately 50% of supermarket energy use, placing this class of equipment among the highest energy consumers in the commercial building domain. In addition, the commonly used refrigeration system in supermarket applications is the multiplex direct expansion (DX) system, which is prone to refrigerant leaks due to its long lengths of refrigerant piping. This leakage reduces the efficiency of the system and increases the impact of the system on the environment. The high Global Warming Potential (GWP) of the hydrofluorocarbon (HFC) refrigerants commonly used in these systems, coupled with the large refrigerant charge and the high refrigerant leakage rates leads to significant direct emissions of greenhouse gases into the atmosphere. Methods for reducing refrigerant leakage and energy consumption are available, but underutilized. Further work needs to be done to reduce costs of advanced system designs to improve market utilization. In addition, refrigeration system retrofits that result in reduced energy consumption are needed since the majority of applications address retrofits rather than new stores. The retrofit market is also of most concern since it involves large-volume refrigerant systems with high leak rates. Finally, alternative refrigerants for new and retrofit applications are needed to reduce emissions and reduce the impact on the environment. The objective of this Collaborative Research and Development Agreement (CRADA) between the Oak Ridge National Laboratory and Hill Phoenix is to develop a supermarket refrigeration system that reduces greenhouse gas emissions and has 25 to 30 percent lower energy consumption than existing systems. The outcomes of this project will include the design of a low emission, high efficiency commercial refrigeration system suitable for use in current U.S. supermarkets. In addition, a prototype low emission, high efficiency supermarket refrigeration system will be produced for

  11. High efficiency novel window air conditioner

    International Nuclear Information System (INIS)

    Bansal, Pradeep

    2015-01-01

    Highlights: • Use of novel refrigerant mixture of R32/R125 (85/15% molar conc.) to reduce global warming and improve energy efficiency. • Use of novel features such as electronically commuted motor (ECM) fan motor, slinger and sub-merged sub-cooler. • Energy savings of up to 0.1 Quads per year in USA and much more in Asia/Middle East where WACs are used in large numbers. • Payback period of only 1.4 years of the novel efficient WAC. - Abstract: This paper presents the results of an experimental and analytical evaluation of measures to raise the efficiency of window air conditioners (WAC). In order to achieve a higher energy efficiency ratio (EER), the original capacity of a baseline R410A unit was reduced by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. Subsequent major modifications included – replacing the alternating current fan motor with a brushless high efficiency electronically commutated motor (ECM) motor, replacing the capillary tube with a needle valve to better control the refrigerant flow and refrigerant set points, and replacing R410A with a ‘drop-in’ lower global warming potential (GWP) binary mixture of R32/R125 (85/15% molar concentration). All these modifications resulted in significant enhancement in the EER of the baseline WAC. Further, an economic analysis of the new WAC revealed an encouraging payback period

  12. High efficiency carbon nanotube thread antennas

    Science.gov (United States)

    Amram Bengio, E.; Senic, Damir; Taylor, Lauren W.; Tsentalovich, Dmitri E.; Chen, Peiyu; Holloway, Christopher L.; Babakhani, Aydin; Long, Christian J.; Novotny, David R.; Booth, James C.; Orloff, Nathan D.; Pasquali, Matteo

    2017-10-01

    Although previous research has explored the underlying theory of high-frequency behavior of carbon nanotubes (CNTs) and CNT bundles for antennas, there is a gap in the literature for direct experimental measurements of radiation efficiency. These measurements are crucial for any practical application of CNT materials in wireless communication. In this letter, we report a measurement technique to accurately characterize the radiation efficiency of λ/4 monopole antennas made from the CNT thread. We measure the highest absolute values of radiation efficiency for CNT antennas of any type, matching that of copper wire. To capture the weight savings, we propose a specific radiation efficiency metric and show that these CNT antennas exceed copper's performance by over an order of magnitude at 1 GHz and 2.4 GHz. We also report direct experimental observation that, contrary to metals, the radiation efficiency of the CNT thread improves significantly at higher frequencies. These results pave the way for practical applications of CNT thread antennas, particularly in the aerospace and wearable electronics industries where weight saving is a priority.

  13. High Efficiency Power Converter for Low Voltage High Power Applications

    DEFF Research Database (Denmark)

    Nymand, Morten

    The topic of this thesis is the design of high efficiency power electronic dc-to-dc converters for high-power, low-input-voltage to high-output-voltage applications. These converters are increasingly required for emerging sustainable energy systems such as fuel cell, battery or photo voltaic based...

  14. Nurturing Soft Skills Among High School Students Through Space Weather Competition

    Science.gov (United States)

    Abdullah, Mardina; Abd Majid, Rosadah; Bais, Badariah; Syaidah Bahri, Nor

    2016-07-01

    Soft skills fulfill an important role in shaping an individual's personality. It is of high importance for every student to acquire adequate skills beyond academic or technical knowledge. The objective of this project was to foster students' enthusiasm in space science and develop their soft skills such as; interpersonal communication, critical thinking and problem-solving, team work, lifelong learning and information management, and leadership skills. This is a qualitative study and the data was collected via group interviews. Soft skills development among high school students were nurtured through space weather competition in solar flare detection. High school students (16 to 17 years old) were guided by mentors consisting of science teachers to carry out this project based on a module developed by UKM's researchers. Students had to acquire knowledge on antenna development and construct the antenna with recyclable materials. They had to capture graphs and identify peaks that indicate solar flare. Their findings were compared to satellite data for verification. They also presented their work and their findings to the panel of judges. After observation, it can be seen that students' soft skills and interest in learning space science had become more positive after being involved in this project.

  15. High efficiency lithium-thionyl chloride cell

    Science.gov (United States)

    Doddapaneni, N.

    1982-08-01

    The polarization characteristics and the specific cathode capacity of Teflon bonded carbon electrodes in the Li/SOCl2 system have been evaluated. Doping of electrocatalysts such as cobalt and iron phthalocyanine complexes improved both cell voltage and cell rate capability. High efficiency Li/SOCl2 cells were thus achieved with catalyzed cathodes. The electrochemical reduction of SOCl2 seems to undergo modification at catalyzed cathode. For example, the reduction of SOCl2 at FePc catalyzed cathode involves 2-1/2 e-/mole of SOCl2. Furthermore, the reduction mechanism is simplified and unwanted chemical species are eliminated by the catalyst. Thus a potentially safer high efficiency Li/SOCl2 can be anticipated.

  16. Bioblendstocks that Enable High Efficiency Engine Designs

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, Robert L.; Fioroni, Gina M.; Ratcliff, Matthew A.; Zigler, Bradley T.; Farrell, John

    2016-11-03

    The past decade has seen a high level of innovation in production of biofuels from sugar, lipid, and lignocellulose feedstocks. As discussed in several talks at this workshop, ethanol blends in the E25 to E50 range could enable more highly efficient spark-ignited (SI) engines. This is because of their knock resistance properties that include not only high research octane number (RON), but also charge cooling from high heat of vaporization, and high flame speed. Emerging alcohol fuels such as isobutanol or mixed alcohols have desirable properties such as reduced gasoline blend vapor pressure, but also have lower RON than ethanol. These fuels may be able to achieve the same knock resistance benefits, but likely will require higher blend levels or higher RON hydrocarbon blendstocks. A group of very high RON (>150) oxygenates such as dimethyl furan, methyl anisole, and related compounds are also produced from biomass. While providing no increase in charge cooling, their very high octane numbers may provide adequate knock resistance for future highly efficient SI engines. Given this range of options for highly knock resistant fuels there appears to be a critical need for a fuel knock resistance metric that includes effects of octane number, heat of vaporization, and potentially flame speed. Emerging diesel fuels include highly branched long-chain alkanes from hydroprocessing of fats and oils, as well as sugar-derived terpenoids. These have relatively high cetane number (CN), which may have some benefits in designing more efficient CI engines. Fast pyrolysis of biomass can produce diesel boiling range streams that are high in aromatic, oxygen and acid contents. Hydroprocessing can be applied to remove oxygen and consequently reduce acidity, however there are strong economic incentives to leave up to 2 wt% oxygen in the product. This oxygen will primarily be present as low CN alkyl phenols and aryl ethers. While these have high heating value, their presence in diesel fuel

  17. Evaluating performance of high efficiency mist eliminators

    Energy Technology Data Exchange (ETDEWEB)

    Waggoner, Charles A.; Parsons, Michael S.; Giffin, Paxton K. [Mississippi State University, Institute for Clean Energy Technology, 205 Research Blvd, Starkville, MS (United States)

    2013-07-01

    Processing liquid wastes frequently generates off gas streams with high humidity and liquid aerosols. Droplet laden air streams can be produced from tank mixing or sparging and processes such as reforming or evaporative volume reduction. Unfortunately these wet air streams represent a genuine threat to HEPA filters. High efficiency mist eliminators (HEME) are one option for removal of liquid aerosols with high dissolved or suspended solids content. HEMEs have been used extensively in industrial applications, however they have not seen widespread use in the nuclear industry. Filtering efficiency data along with loading curves are not readily available for these units and data that exist are not easily translated to operational parameters in liquid waste treatment plants. A specialized test stand has been developed to evaluate the performance of HEME elements under use conditions of a US DOE facility. HEME elements were tested at three volumetric flow rates using aerosols produced from an iron-rich waste surrogate. The challenge aerosol included submicron particles produced from Laskin nozzles and super micron particles produced from a hollow cone spray nozzle. Test conditions included ambient temperature and relative humidities greater than 95%. Data collected during testing HEME elements from three different manufacturers included volumetric flow rate, differential temperature across the filter housing, downstream relative humidity, and differential pressure (dP) across the filter element. Filter challenge was discontinued at three intermediate dPs and the filter to allow determining filter efficiency using dioctyl phthalate and then with dry surrogate aerosols. Filtering efficiencies of the clean HEME, the clean HEME loaded with water, and the HEME at maximum dP were also collected using the two test aerosols. Results of the testing included differential pressure vs. time loading curves for the nine elements tested along with the mass of moisture and solid

  18. Dental caries experience in high risk soft drinks factory workers of South India: a comparative study.

    Science.gov (United States)

    Kumar, Sandeep; Acharya, Shashidhar; Vasthare, Ramprasad; Singh, Siddharth Kumar; Gupta, Anjali; Debnath, Nitai

    2014-01-01

    The consumption of soft-drinks has been associated with dental caries development. The aim was to evaluate dental caries experience amongst the workers working in soft-drink industries located in South India and compare it with other factory workers. To evaluate the validity of specific caries index (SCI), which is newer index for caries diagnosis. This was a cross-sectional study carried out among 420 workers (210 in soft-drinks factory and 210 in other factories), in the age group of 20-45 years of Udupi district, Karnataka, India. Index used for clinical examination was decayed, missing, filled surfaces (DMFS) index and SCI. The mean and standard deviation (SD) of decayed surface (5.8 ± 1.8), missing surface (4.3 ± 2) and filled surface (1.94 ± 1.95) and total DMFS score (12.11 ± 3.8) in soft-drinks factory workers were found to be significantly higher than the other factory workers. The total SCI score (mean and SD) was found to be significantly higher in soft-drinks factory workers (5.83 ± 1.80) compared with other factory workers (4.56 ± 1.45). There was a high correlation obtained between SCI score and DMFS score. The regression equation given by DMFS = 1.178 + 1.866 (SCI scores). The caries experience was higher in workers working in soft-drinks factory and this study also showed that specific caries index can be used as a valid index for assessing dental caries experience.

  19. High Performance Shape Memory Polyurethane Synthesized with High Molecular Weight Polyol as the Soft Segment

    Directory of Open Access Journals (Sweden)

    Manzoor Ahmad

    2012-05-01

    Full Text Available Shape memory polyurethanes (SMPUs are typically synthesized using polyols of low molecular weight (MW~2,000 g/mol as it is believed that the high density of cross-links in these low molecular weight polyols are essential for high mechanical strength and good shape memory effect. In this study, polyethylene glycol (PEG-6000 with MW ~6000 g/mol as the soft segment and diisocyanate as the hard segment were used to synthesize SMPUs, and the results were compared with the SMPUs with polycaprolactone PCL-2000. The study revealed that although the PEG-6000-based SMPUs have lower maximum elongations at break (425% and recovery stresses than those of PCL-based SMPUs, they have much better recovery ratios (up to 98% and shape fixity (up to 95%, hence better shape memory effect. Furthermore, PEG-based SMPUs showed a much shorter actuation time of < 10 s for up to 90% shape recovery compared to typical actuation times of tens of seconds to a few minutes for common SMPUs, demonstrated their great potential for applications in microsystems and other engineering components.

  20. High efficiency inverter and ballast circuits

    International Nuclear Information System (INIS)

    Nilssen, O.K.

    1984-01-01

    A high efficiency push-pull inverter circuit employing a pair of relatively high power switching transistors is described. The switching on and off of the transistors is precisely controlled to minimize power losses due to common-mode conduction or due to transient conditions that occur in the process of turning a transistor on or off. Two current feed-back transformers are employed in the transistor base drives; one being saturable for providing a positive feedback, and the other being non-saturable for providing a subtractive feedback

  1. Optimization of a high efficiency FEL amplifier

    International Nuclear Information System (INIS)

    Schneidmiller, E.A.; Yurkov, M.V.

    2014-10-01

    The problem of an efficiency increase of an FEL amplifier is now of great practical importance. Technique of undulator tapering in the post-saturation regime is used at the existing X-ray FELs LCLS and SACLA, and is planned for use at the European XFEL, Swiss FEL, and PAL XFEL. There are also discussions on the future of high peak and average power FELs for scientific and industrial applications. In this paper we perform detailed analysis of the tapering strategies for high power seeded FEL amplifiers. Application of similarity techniques allows us to derive universal law of the undulator tapering.

  2. Highly efficient fully transparent inverted OLEDs

    Science.gov (United States)

    Meyer, J.; Winkler, T.; Hamwi, S.; Schmale, S.; Kröger, M.; Görrn, P.; Johannes, H.-H.; Riedl, T.; Lang, E.; Becker, D.; Dobbertin, T.; Kowalsky, W.

    2007-09-01

    One of the unique selling propositions of OLEDs is their potential to realize highly transparent devices over the visible spectrum. This is because organic semiconductors provide a large Stokes-Shift and low intrinsic absorption losses. Hence, new areas of applications for displays and ambient lighting become accessible, for instance, the integration of OLEDs into the windshield or the ceiling of automobiles. The main challenge in the realization of fully transparent devices is the deposition of the top electrode. ITO is commonly used as transparent bottom anode in a conventional OLED. To obtain uniform light emission over the entire viewing angle and a low series resistance, a TCO such as ITO is desirable as top contact as well. However, sputter deposition of ITO on top of organic layers causes damage induced by high energetic particles and UV radiation. We have found an efficient process to protect the organic layers against the ITO rf magnetron deposition process of ITO for an inverted OLED (IOLED). The inverted structure allows the integration of OLEDs in more powerful n-channel transistors used in active matrix backplanes. Employing the green electrophosphorescent material Ir(ppy) 3 lead to IOLED with a current efficiency of 50 cd/A and power efficiency of 24 lm/W at 100 cd/m2. The average transmittance exceeds 80 % in the visible region. The on-set voltage for light emission is lower than 3 V. In addition, by vertical stacking we achieved a very high current efficiency of more than 70 cd/A for transparent IOLED.

  3. Highly dexterous 2-module soft robot for intra-organ navigation in minimally invasive surgery.

    Science.gov (United States)

    Abidi, Haider; Gerboni, Giada; Brancadoro, Margherita; Fras, Jan; Diodato, Alessandro; Cianchetti, Matteo; Wurdemann, Helge; Althoefer, Kaspar; Menciassi, Arianna

    2018-02-01

    For some surgical interventions, like the Total Mesorectal Excision (TME), traditional laparoscopes lack the flexibility to safely maneuver and reach difficult surgical targets. This paper answers this need through designing, fabricating and modelling a highly dexterous 2-module soft robot for minimally invasive surgery (MIS). A soft robotic approach is proposed that uses flexible fluidic actuators (FFAs) allowing highly dexterous and inherently safe navigation. Dexterity is provided by an optimized design of fluid chambers within the robot modules. Safe physical interaction is ensured by fabricating the entire structure by soft and compliant elastomers, resulting in a squeezable 2-module robot. An inner free lumen/chamber along the central axis serves as a guide of flexible endoscopic tools. A constant curvature based inverse kinematics model is also proposed, providing insight into the robot capabilities. Experimental tests in a surgical scenario using a cadaver model are reported, demonstrating the robot advantages over standard systems in a realistic MIS environment. Simulations and experiments show the efficacy of the proposed soft robot. Copyright © 2017 John Wiley & Sons, Ltd.

  4. High Efficiency Colloidal Quantum Dot Phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Kahen, Keith

    2013-12-31

    The project showed that non-Cd containing, InP-based nanocrystals (semiconductor materials with dimensions of ~6 nm) have high potential for enabling next-generation, nanocrystal-based, on chip phosphors for solid state lighting. Typical nanocrystals fall short of the requirements for on chip phosphors due to their loss of quantum efficiency under the operating conditions of LEDs, such as, high temperature (up to 150 °C) and high optical flux (up to 200 W/cm2). The InP-based nanocrystals invented during this project maintain high quantum efficiency (>80%) in polymer-based films under these operating conditions for emission wavelengths ranging from ~530 to 620 nm. These nanocrystals also show other desirable attributes, such as, lack of blinking (a common problem with nanocrystals which limits their performance) and no increase in the emission spectral width from room to 150 °C (emitters with narrower spectral widths enable higher efficiency LEDs). Prior to these nanocrystals, no nanocrystal system (regardless of nanocrystal type) showed this collection of properties; in fact, other nanocrystal systems are typically limited to showing only one desirable trait (such as high temperature stability) but being deficient in other properties (such as high flux stability). The project showed that one can reproducibly obtain these properties by generating a novel compositional structure inside of the nanomaterials; in addition, the project formulated an initial theoretical framework linking the compositional structure to the list of high performance optical properties. Over the course of the project, the synthetic methodology for producing the novel composition was evolved to enable the synthesis of these nanomaterials at a cost approximately equal to that required for forming typical conventional nanocrystals. Given the above results, the last major remaining step prior to scale up of the nanomaterials is to limit the oxidation of these materials during the tens of

  5. Highly Efficient Estimators of Multivariate Location with High Breakdown Point

    NARCIS (Netherlands)

    Lopuhaa, H.P.

    1991-01-01

    We propose an affine equivariant estimator of multivariate location that combines a high breakdown point and a bounded influence function with high asymptotic efficiency. This proposal is basically a location $M$-estimator based on the observations obtained after scaling with an affine equivariant

  6. Formation of soft magnetic high entropy amorphous alloys composites containing in situ solid solution phase

    Science.gov (United States)

    Wei, Ran; Sun, Huan; Chen, Chen; Tao, Juan; Li, Fushan

    2018-03-01

    Fe-Co-Ni-Si-B high entropy amorphous alloys composites (HEAACs), which containing high entropy solid solution phase in amorphous matrix, show good soft magnetic properties and bending ductility even in optimal annealed state, were successfully developed by melt spinning method. The crystallization phase of the HEAACs is solid solution phase with body centered cubic (BCC) structure instead of brittle intermetallic phase. In addition, the BCC phase can transformed into face centered cubic (FCC) phase with temperature rise. Accordingly, Fe-Co-Ni-Si-B high entropy alloys (HEAs) with FCC structure and a small amount of BCC phase was prepared by copper mold casting method. The HEAs exhibit high yield strength (about 1200 MPa) and good plastic strain (about 18%). Meanwhile, soft magnetic characteristics of the HEAs are largely reserved from HEAACs. This work provides a new strategy to overcome the annealing induced brittleness of amorphous alloys and design new advanced materials with excellent comprehensive properties.

  7. High efficiency motors; Motores de alta eficiencia

    Energy Technology Data Exchange (ETDEWEB)

    Uranga Favela, Ivan Jaime [Energia Controlada de Mexico, S. A. de C. V., Mexico, D. F. (Mexico)

    1993-12-31

    This paper is a technical-financial study of the high efficiency and super-premium motors. As it is widely known, more than 60% of the electrical energy generated in the country is used for the operation of motors, in industry as well as in commerce. Therefore the importance that the motors have in the efficient energy use. [Espanol] El presente trabajo es un estudio tecnico-financiero de los motores de alta eficiencia y los motores super premium. Como es ampliamente conocido, mas del 60% de la energia electrica generada en el pais, es utilizada para accionar motores, dentro de la industria y el comercio. De alli la importancia que los motores tienen en el uso eficiente de la energia.

  8. High-efficiency organic glass scintillators

    Science.gov (United States)

    Feng, Patrick L.; Carlson, Joseph S.

    2017-12-19

    A new family of neutron/gamma discriminating scintillators is disclosed that comprises stable organic glasses that may be melt-cast into transparent monoliths. These materials have been shown to provide light yields greater than solution-grown trans-stilbene crystals and efficient PSD capabilities when combined with 0.01 to 0.05% by weight of the total composition of a wavelength-shifting fluorophore. Photoluminescence measurements reveal fluorescence quantum yields that are 2 to 5 times greater than conventional plastic or liquid scintillator matrices, which accounts for the superior light yield of these glasses. The unique combination of high scintillation light-yields, efficient neutron/gamma PSD, and straightforward scale-up via melt-casting distinguishes the developed organic glasses from existing scintillators.

  9. High efficiency motors; Motores de alta eficiencia

    Energy Technology Data Exchange (ETDEWEB)

    Uranga Favela, Ivan Jaime [Energia Controlada de Mexico, S. A. de C. V., Mexico, D. F. (Mexico)

    1992-12-31

    This paper is a technical-financial study of the high efficiency and super-premium motors. As it is widely known, more than 60% of the electrical energy generated in the country is used for the operation of motors, in industry as well as in commerce. Therefore the importance that the motors have in the efficient energy use. [Espanol] El presente trabajo es un estudio tecnico-financiero de los motores de alta eficiencia y los motores super premium. Como es ampliamente conocido, mas del 60% de la energia electrica generada en el pais, es utilizada para accionar motores, dentro de la industria y el comercio. De alli la importancia que los motores tienen en el uso eficiente de la energia.

  10. High efficiency beam splitting for H- accelerators

    International Nuclear Information System (INIS)

    Kramer, S.L.; Stipp, V.; Krieger, C.; Madsen, J.

    1985-01-01

    Beam splitting for high energy accelerators has typically involved a significant loss of beam and radiation. This paper reports on a new method of splitting beams for H - accelerators. This technique uses a high intensity flash of light to strip a fraction of the H - beam to H 0 which are then easily separated by a small bending magnet. A system using a 900-watt (average electrical power) flashlamp and a highly efficient collector will provide 10 -3 to 10 -2 splitting of a 50 MeV H - beam. Results on the operation and comparisons with stripping cross sections are presented. Also discussed is the possibility for developing this system to yield a higher stripping fraction

  11. High Quantum Efficiency OLED Lighting Systems

    Energy Technology Data Exchange (ETDEWEB)

    Shiang, Joseph [General Electric (GE) Global Research, Fairfield, CT (United States)

    2011-09-30

    The overall goal of the program was to apply improvements in light outcoupling technology to a practical large area plastic luminaire, and thus enable the product vision of an extremely thin form factor high efficiency large area light source. The target substrate was plastic and the baseline device was operating at 35 LPW at the start of the program. The target LPW of the program was a >2x improvement in the LPW efficacy and the overall amount of light to be delivered was relatively high 900 lumens. Despite the extremely difficult challenges associated with scaling up a wet solution process on plastic substrates, the program was able to make substantial progress. A small molecule wet solution process was successfully implemented on plastic substrates with almost no loss in efficiency in transitioning from the laboratory scale glass to large area plastic substrates. By transitioning to a small molecule based process, the LPW entitlement increased from 35 LPW to 60 LPW. A further 10% improvement in outcoupling efficiency was demonstrated via the use of a highly reflecting cathode, which reduced absorptive loss in the OLED device. The calculated potential improvement in some cases is even larger, ~30%, and thus there is considerable room for optimism in improving the net light coupling efficacy, provided absorptive loss mechanisms are eliminated. Further improvements are possible if scattering schemes such as the silver nanowire based hard coat structure are fully developed. The wet coating processes were successfully scaled to large area plastic substrate and resulted in the construction of a 900 lumens luminaire device.

  12. High-efficiency concentrator silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sinton, R.A.; Cuevas, A.; King, R.R.; Swanson, R.M. (Stanford Univ., CA (USA). Solid-State Electronics Lab.)

    1990-11-01

    This report presents results from extensive process development in high-efficiency Si solar cells. An advanced design for a 1.56-cm{sup 2} cell with front grids achieved 26% efficiency at 90 suns. This is especially significant since this cell does not require a prismatic cover glass. New designs for simplified backside-contact solar cells were advanced from a status of near-nonfunctionality to demonstrated 21--22% for one-sun cells in sizes up to 37.5 cm{sup 2}. An efficiency of 26% was achieved for similar 0.64-cm{sup 2} concentrator cells at 150 suns. More fundamental work on dopant-diffused regions is also presented here. The recombination vs. various process and physical parameters was studied in detail for boron and phosphorous diffusions. Emitter-design studies based solidly upon these new data indicate the performance vs design parameters for a variety of the cases of most interest to solar cell designers. Extractions of p-type bandgap narrowing and the surface recombination for p- and n-type regions from these studies have a generality that extends beyond solar cells into basic device modeling. 68 refs., 50 figs.

  13. Nanooptics for high efficient photon managment

    Science.gov (United States)

    Wyrowski, Frank; Schimmel, Hagen

    2005-09-01

    Optical systems for photon management, that is the generation of tailored electromagnetic fields, constitute one of the keys for innovation through photonics. An important subfield of photon management deals with the transformation of an incident light field into a field of specified intensity distribution. In this paper we consider some basic aspects of the nature of systems for those light transformations. It turns out, that the transversal redistribution of energy (TRE) is of central concern to achieve systems with high transformation efficiency. Besides established techniques nanostructured optical elements (NOE) are demanded to implement transversal energy redistribution. That builds a bridge between the needs of photon management, optical engineering, and nanooptics.

  14. Efficient soft x-ray generation in short wavelength laser produced plasmas

    International Nuclear Information System (INIS)

    Mochizuki, T.; Yamanaka, C.

    1987-01-01

    Intense x-ray generation in 1.053, 0.53, 0.26 μm laser-produced plasma has been investigated in the photon energy range of 0.1 to 3keV. The x-ray spectrum is found to have several humps which move to the higher energy side as the atomic number of the target increases. This atomic dependence is explained by a semi-Moseley's law and allows us to predict a target material most suitable for generating the photons of desired energies. Conversion efficiencies of 1.5 -- 3keV x-rays are obtained also as a function of laser wavelength at the intensity of 10/sup 13/W/cm/sup 2/. The conversion efficiency of keV x rays has been enhanced by a factor of 2 -- 3 with a controlled prepulse laser. From the semi-Moseley's law we find that cryogenic targets using either Xe or Kr in a liquid or solid phase may be most useful for a number of applications because they radiate 1 -- 3 keV x rays efficiently and never deposit on the x-ray optical components and the objects to be exposed

  15. Highly Efficient Compression Algorithms for Multichannel EEG.

    Science.gov (United States)

    Shaw, Laxmi; Rahman, Daleef; Routray, Aurobinda

    2018-05-01

    The difficulty associated with processing and understanding the high dimensionality of electroencephalogram (EEG) data requires developing efficient and robust compression algorithms. In this paper, different lossless compression techniques of single and multichannel EEG data, including Huffman coding, arithmetic coding, Markov predictor, linear predictor, context-based error modeling, multivariate autoregression (MVAR), and a low complexity bivariate model have been examined and their performances have been compared. Furthermore, a high compression algorithm named general MVAR and a modified context-based error modeling for multichannel EEG have been proposed. The resulting compression algorithm produces a higher relative compression ratio of 70.64% on average compared with the existing methods, and in some cases, it goes up to 83.06%. The proposed methods are designed to compress a large amount of multichannel EEG data efficiently so that the data storage and transmission bandwidth can be effectively used. These methods have been validated using several experimental multichannel EEG recordings of different subjects and publicly available standard databases. The satisfactory parametric measures of these methods, namely percent-root-mean square distortion, peak signal-to-noise ratio, root-mean-square error, and cross correlation, show their superiority over the state-of-the-art compression methods.

  16. High efficiency double sided solar cells

    International Nuclear Information System (INIS)

    Seddik, M.M.

    1990-06-01

    Silicon technology state of the art for single crystalline was given to be limited to less than 20% efficiency. A proposed new form of photovoltaic solar cell of high current high efficiency with double sided structures has been given. The new forms could be n ++ pn ++ or p ++ np ++ double side junctions. The idea of double sided devices could be understood as two solar cells connected back-to-back in parallel electrical connection, in which the current is doubled if the cell is illuminated from both sides by a V-shaped reflector. The cell is mounted to the reflector such that each face is inclined at an angle of 45 deg. C to each side of the reflector. The advantages of the new structure are: a) High power devices. b) Easy to fabricate. c) The cells are used vertically instead of horizontal use of regular solar cell which require large area to install. This is very important in power stations and especially for satellite installation. If the proposal is made real and proved to be experimentally feasible, it would be a new era for photovoltaic solar cells since the proposal has already been extended to even higher currents. The suggested structures could be stated as: n ++ pn ++ Vp ++ np ++ ;n ++ pn ++ Vn ++ pn ++ ORp ++ np ++ Vp ++ np ++ . These types of structures are formed in wedged shape to employ indirect illumination by either parabolic; conic or V-shaped reflectors. The advantages of these new forms are low cost; high power; less in size and space; self concentrating; ... etc. These proposals if it happens to find their ways to be achieved experimentally, I think they will offer a short path to commercial market and would have an incredible impact on solar cell technology and applications. (author). 12 refs, 5 figs

  17. Simple Motor Control Concept Results High Efficiency at High Velocities

    Science.gov (United States)

    Starin, Scott; Engel, Chris

    2013-09-01

    The need for high velocity motors in space applications for reaction wheels and detectors has stressed the limits of Brushless Permanent Magnet Motors (BPMM). Due to inherent hysteresis core losses, conventional BPMMs try to balance the need for torque verses hysteresis losses. Cong-less motors have significantly less hysteresis losses but suffer from lower efficiencies. Additionally, the inherent low inductance in cog-less motors result in high ripple currents or high switching frequencies, which lowers overall efficiency and increases performance demands on the control electronics.However, using a somewhat forgotten but fully qualified technology of Isotropic Magnet Motors (IMM), extremely high velocities may be achieved at low power input using conventional drive electronics. This paper will discuss the trade study efforts and empirical test data on a 34,000 RPM IMM.

  18. Imaging mass spectrometry and genome mining reveal highly antifungal virulence factor of mushroom soft rot pathogen.

    Science.gov (United States)

    Graupner, Katharina; Scherlach, Kirstin; Bretschneider, Tom; Lackner, Gerald; Roth, Martin; Gross, Harald; Hertweck, Christian

    2012-12-21

    Caught in the act: imaging mass spectrometry of a button mushroom infected with the soft rot pathogen Janthinobacterium agaricidamnosum in conjunction with genome mining revealed jagaricin as a highly antifungal virulence factor that is not produced under standard cultivation conditions. The structure of jagaricin was rigorously elucidated by a combination of physicochemical analyses, chemical derivatization, and bioinformatics. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Management and prognosis of patients with high-grade soft tissue sarcomas

    International Nuclear Information System (INIS)

    Alvegaard, T.A.

    1989-01-01

    Doxorubicin is one of the most active single agents in metastatic soft tissue sarcoma. This was the rationale for the evaluation og doxorubicin in an adjuvant situation for patients with high-grade soft tissue sarcoma in a randomized, Scandinavian, multicenter joint care program, which was carried out from January 1981 to February 1986, and included 240 patients. These patients comprised the base series for the investigations of the importance of the surgical margin and radiotherapy for local tumor control; the accuracy of malignancy grading and tumor typing; prognostic factors, including DNA content; and epidemiologic risk factors. The results showed that the use of doxorubicin as adjuvant chemotherapy did not have clinical benefit in patients with high-grade soft tissue sarcoma. The overall local tumor control was high (94 %) for radically operated on extremity-located tumors due to strict classification of surgical margins. The only risk factor for local recurrence was marginal surgery without radiotherapy with a four times higher risk than after compartmental or wide surgery. Twelve percent of the operations reported as radical were classified as marginal, demonstrating the importance of reevaluation of surgical margins, and in these patients the local recurrence rate was 37 %. The 5-year metastasis-free survival for the whole patients series was 55 %, with the extremes 79 % for the patients with no or only one risk factor and 0 % for those with four or five risk factors. The five prognostic factors found could be used for selection of high-risk patients for adjuvant chemotherapy in the future. The epidemiologic study gave limited support for an association between occupational phenoxy-acid exposure and soft tissue sarcoma development. (98 refs.)

  20. High Efficiency, Illumination Quality OLEDs for Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Shiang; James Cella; Kelly Chichak; Anil Duggal; Kevin Janora; Chris Heller; Gautam Parthasarathy; Jeffery Youmans; Joseph Shiang

    2008-03-31

    The goal of the program was to demonstrate a 45 lumen per watt white light device based upon the use of multiple emission colors through the use of solution processing. This performance level is a dramatic extension of the team's previous 15 LPW large area illumination device. The fundamental material system was based upon commercial polymer materials. The team was largely able to achieve these goals, and was able to deliver to DOE a 90 lumen illumination source that had an average performance of 34 LPW a 1000 cd/m{sup 2} with peak performances near 40LPW. The average color temperature is 3200K and the calculated CRI 85. The device operated at a brightness of approximately 1000cd/m{sup 2}. The use of multiple emission colors particularly red and blue, provided additional degrees of design flexibility in achieving white light, but also required the use of a multilayered structure to separate the different recombination zones and prevent interconversion of blue emission to red emission. The use of commercial materials had the advantage that improvements by the chemical manufacturers in charge transport efficiency, operating life and material purity could be rapidly incorporated without the expenditure of additional effort. The program was designed to take maximum advantage of the known characteristics of these material and proceeded in seven steps. (1) Identify the most promising materials, (2) assemble them into multi-layer structures to control excitation and transport within the OLED, (3) identify materials development needs that would optimize performance within multilayer structures, (4) build a prototype that demonstrates the potential entitlement of the novel multilayer OLED architecture (5) integrate all of the developments to find the single best materials set to implement the novel multilayer architecture, (6) further optimize the best materials set, (7) make a large area high illumination quality white OLED. A photo of the final deliverable is shown

  1. Multiscale approaches to high efficiency photovoltaics

    Directory of Open Access Journals (Sweden)

    Connolly James Patrick

    2016-01-01

    Full Text Available While renewable energies are achieving parity around the globe, efforts to reach higher solar cell efficiencies becomes ever more difficult as they approach the limiting efficiency. The so-called third generation concepts attempt to break this limit through a combination of novel physical processes and new materials and concepts in organic and inorganic systems. Some examples of semi-empirical modelling in the field are reviewed, in particular for multispectral solar cells on silicon (French ANR project MultiSolSi. Their achievements are outlined, and the limits of these approaches shown. This introduces the main topic of this contribution, which is the use of multiscale experimental and theoretical techniques to go beyond the semi-empirical understanding of these systems. This approach has already led to great advances at modelling which have led to modelling software, which is widely known. Yet, a survey of the topic reveals a fragmentation of efforts across disciplines, firstly, such as organic and inorganic fields, but also between the high efficiency concepts such as hot carrier cells and intermediate band concepts. We show how this obstacle to the resolution of practical research obstacles may be lifted by inter-disciplinary cooperation across length scales, and across experimental and theoretical fields, and finally across materials systems. We present a European COST Action “MultiscaleSolar” kicking off in early 2015, which brings together experimental and theoretical partners in order to develop multiscale research in organic and inorganic materials. The goal of this defragmentation and interdisciplinary collaboration is to develop understanding across length scales, which will enable the full potential of third generation concepts to be evaluated in practise, for societal and industrial applications.

  2. Efficient worm-like locomotion: slip and control of soft-bodied peristaltic robots

    International Nuclear Information System (INIS)

    Daltorio, Kathryn A; Horchler, Andrew D; Quinn, Roger D; Boxerbaum, Alexander S; Shaw, Kendrick M; Chiel, Hillel J

    2013-01-01

    In this work, we present a dynamic simulation of an earthworm-like robot moving in a pipe with radially symmetric Coulomb friction contact. Under these conditions, peristaltic locomotion is efficient if slip is minimized. We characterize ways to reduce slip-related losses in a constant-radius pipe. Using these principles, we can design controllers that can navigate pipes even with a narrowing in radius. We propose a stable heteroclinic channel controller that takes advantage of contact force feedback on each segment. In an example narrowing pipe, this controller loses 40% less energy to slip compared to the best-fit sine wave controller. The peristaltic locomotion with feedback also has greater speed and more consistent forward progress. (paper)

  3. The use of diffraction efficiency theory in the design of soft x-ray monochromators

    International Nuclear Information System (INIS)

    Padmore, H.A.; Martynov, V.; Hollis, K.; Mount Vernon Hospital, Northwood

    1993-01-01

    In general, the diffraction efficiency of gratings is limited by the constraints imposed by the type of geometry used to scan the photon energy. In the simplest example, the spherical grating monochromator (SGM), the deviation angle, the grating groove width and depth and the groove density are all constrained by considerations of the maximum photon energy and the tuning range for individual gratings. We have examined the case in which these parameters are unconstrained, resulting in predictions of the ultimate performance of lamellar type gratings for groove densities from 300 to 2400 1/mm for gold and nickel coatings. The differential method of Neviere et al was used for modeling the behavior of the gratings and justification is presented for this by rigorous comparison with measurements. The implications of these results for future monochromators based on a variable included angle geometry are discussed

  4. Efficient worm-like locomotion: slip and control of soft-bodied peristaltic robots.

    Science.gov (United States)

    Daltorio, Kathryn A; Boxerbaum, Alexander S; Horchler, Andrew D; Shaw, Kendrick M; Chiel, Hillel J; Quinn, Roger D

    2013-09-01

    In this work, we present a dynamic simulation of an earthworm-like robot moving in a pipe with radially symmetric Coulomb friction contact. Under these conditions, peristaltic locomotion is efficient if slip is minimized. We characterize ways to reduce slip-related losses in a constant-radius pipe. Using these principles, we can design controllers that can navigate pipes even with a narrowing in radius. We propose a stable heteroclinic channel controller that takes advantage of contact force feedback on each segment. In an example narrowing pipe, this controller loses 40% less energy to slip compared to the best-fit sine wave controller. The peristaltic locomotion with feedback also has greater speed and more consistent forward progress

  5. High efficiency thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Hans-Werner [Helmholtz Zentrum Berlin (Germany). Solar Energy

    2012-11-01

    Production of photovoltaics is growing worldwide on a gigawatt scale. Among the thin film technologies, Cu(In,Ga)S,Se{sub 2} (CIS or CIGS) based solar cells have been the focus of more and more attention. This paper aims to analyze the success of CIGS based solar cells and the potential of this technology for future photovoltaics large-scale production. Specific material properties make CIS unique and allow the preparation of the material with a wide range of processing options. The huge potential lies in the possibility to take advantage of modern thin film processing equipment and combine it with very high efficiencies beyond 20% already achieved on the laboratory scale. A sustainable development of this technology could be realized by modifying the materials and replacing indium by abundant elements. (orig.)

  6. Design of High Efficient MPPT Solar Inverter

    Directory of Open Access Journals (Sweden)

    Sunitha K. A.

    2017-01-01

    Full Text Available This work aims to design a High Efficient Maximum Power Point Tracking (MPPT Solar Inverter. A boost converter is designed in the system to boost the power from the photovoltaic panel. By this experimental setup a room consisting of 500 Watts load (eight fluorescent tubes is completely controlled. It is aimed to decrease the maintenance cost. A microcontroller is introduced for tracking the P&O (Perturb and Observe algorithm used for tracking the maximum power point. The duty cycle for the operation of the boost convertor is optimally adjusted by using MPPT controller. There is a MPPT charge controller to charge the battery as well as fed to inverter which runs the load. Both the P&O scheme with the fixed variation for the reference current and the intelligent MPPT algorithm were able to identify the global Maximum power point, however the performance of the MPPT algorithm was better.

  7. High Efficiency Ka-Band Spatial Combiner

    Directory of Open Access Journals (Sweden)

    D. Passi

    2014-12-01

    Full Text Available A Ka-Band, High Efficiency, Small Size Spatial Combiner (SPC is proposed in this paper, which uses an innovatively matched quadruple Fin Lines to microstrip (FLuS transitions. At the date of this paper and at the Author's best knowledge no such FLuS innovative transitions have been reported in literature before. These transitions are inserted into a WR28 waveguide T-junction, in order to allow the integration of 16 Monolithic Microwave Integrated Circuit (MMIC Solid State Power Amplifiers (SSPA's. A computational electromagnetic model using the finite elements method has been implemented. A mean insertion loss of 2 dB is achieved with a return loss better the 10 dB in the 31-37 GHz bandwidth.

  8. The CRRES high efficiency solar panel

    International Nuclear Information System (INIS)

    Trumble, T.M.

    1991-01-01

    This paper reports on the High Efficiency Solar Panel (HESP) experiments which is to provide both engineering and scientific information concerning the effects of space radiation on advanced gallium arsenide (GaAs) solar cells. The HESP experiment consists of an ambient panel, and annealing panel and a programmable load. This experiment, in conjunction with the radiation measurement experiments abroad the CREES, provides the first opportunity to simultaneously measure the trapped radiation belts and the results of radiation damage to solar cells. The engineering information will result in a design guide for selecting the optimum solar array characteristics for different orbits and different lifetimes. The scientific information will provide both correlation of laboratory damage effects to space damage effects and a better model for predicting effective solar cell panel lifetimes

  9. A High-Precision Control for a ZVT PWM Soft-Switching Inverter to Eliminate the Dead-Time Effect

    Directory of Open Access Journals (Sweden)

    Baoquan Kou

    2016-07-01

    Full Text Available Attributing to the advantages of high efficiency, low electromagnetic interference (EMI noise and closest to the pulse-width-modulation (PWM converter counterpart, zero-voltage-transition (ZVT PWM soft-switching inverters are very suitable for high-performance applications. However, the conventional control algorithms intended for high efficiency generally results in voltage distortion. Thus, this paper, for the first time, proposes a high-precision control method to eliminate the dead-time effect through controlling the auxiliary current in the auxiliary resonant snubber inverter (ARSI, which is a typical ZVT PWM inverter. The dead-time effect of ARSI is analyzed, which is distinguished from hard-switching inverters. The proposed high-precision control is introduced based on the investigation of dead-time effect. A prototype was developed to verify the effectiveness of the proposed control. The experimental results shows that the total harmonic distortion (THD of the output current of the ARSI can be reduced compared with that of the hard-switching inverter, because the blanking delay error is eliminated. The quality of the output current and voltage can be further improved by utilizing the proposed control method.

  10. Stabilizing sodium hypochlorite at high pH: effects on soft tissue and dentin.

    Science.gov (United States)

    Jungbluth, Holger; Marending, Monika; De-Deus, Gustavo; Sener, Beatrice; Zehnder, Matthias

    2011-05-01

    When sodium hypochlorite solutions react with tissue, their pH drops and tissue sorption decreases. We studied whether stabilizing a NaOCl solution at a high pH would increase its soft-tissue dissolution capacity and effects on the dentin matrix compared with a standard NaOCl solution of the same concentration and similar initial pH. NaOCl solutions were prepared by mixing (1:1) a 10% stock solution with water (standard) or 2 mol/L NaOH (stabilized). Physiological saline and 1 mol/L NaOH served as the controls. Chlorine content and alkaline capacity of NaOCl solutions were determined. Standardized porcine palatal soft-tissue specimens and human root dentin bars were exposed to test and control solutions. Weight loss percentage was assessed in the soft-tissue dissolution assay. Three-point bending tests were performed on the root dentin bars to determine the modulus of elasticity and flexural strength. Values between groups were compared using one-way analysis of variance with the Bonferroni correction for multiple testing (α pH level of 7.5, respectively. The stabilized NaOCl dissolved significantly more soft tissue than the standard solution, and the pH remained high. It also caused a higher loss in elastic modulus and flexure strength (P < .05) than the control solutions, whereas the standard solution did not. NaOH-stabilized NaOCl solutions have a higher alkaline capacity and are thus more proteolytic than standard counterparts. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  11. Zerodur polishing process for high surface quality and high efficiency

    International Nuclear Information System (INIS)

    Tesar, A.; Fuchs, B.

    1992-08-01

    Zerodur is a glass-ceramic composite importance in applications where temperature instabilities influence optical and mechanical performance, such as in earthbound and spaceborne telescope mirror substrates. Polished Zerodur surfaces of high quality have been required for laser gyro mirrors. Polished surface quality of substrates affects performance of high reflection coatings. Thus, the interest in improving Zerodur polished surface quality has become more general. Beyond eliminating subsurface damage, high quality surfaces are produced by reducing the amount of hydrated material redeposited on the surface during polishing. With the proper control of polishing parameters, such surfaces exhibit roughnesses of < l Angstrom rms. Zerodur polishing was studied to recommend a high surface quality polishing process which could be easily adapted to standard planetary continuous polishing machines and spindles. This summary contains information on a polishing process developed at LLNL which reproducibly provides high quality polished Zerodur surfaces at very high polishing efficiencies

  12. High dose rate brachytherapy for the treatment of soft tissue sarcoma of the extremity

    International Nuclear Information System (INIS)

    Speight, J.L.; Streeter, O.E.; Chawla, S.; Menendez, L.E.

    1996-01-01

    Purpose: we examined the role of preoperative neoadjuvant chemoradiation and adjuvant high-dose rate brachytherapy on the management of prognostically unfavorable soft tissue sarcomas of the extremities. Our goal was to examine the effect of high dose rate interstitial brachytherapy (HDR IBT) on reducing the risk of local recurrence following limb-sparing resection, as well as shortening treatment duration. Materials and methods: eleven patients, ranging in age from 31 to 73 years old, with soft tissue sarcoma of the extremity were treated at USC/Norris Comprehensive Cancer Center during 1994 and 1995. All patients had biopsy proven soft tissue sarcoma, and all were suitable candidates for limb-sparing surgery. All lesions were greater than 5cm in size and were primarily high grade. Tumor histologies included malignant fibrous histiocytoma (45%), liposarcoma (18%) and leiomyosarcoma, synovial cell sarcoma and spindle cell sarcoma (36%). Sites of tumor origin were the lower extremity (55%), upper extremity (18%) and buttock (9%), 1 patient (9%) had lesions in both the upper and lower extremity. Patients received HDR IBT following combined chemotherapy and external beam irradiation (EBRT) and en bloc resection of the sarcoma. Neoadjuvant chemotherapy consisted of three to four cycles of either Ifosfamide/Mesna with or without Adriamycin, or Mesna, Adriamycin, Ifosfamide and Dacarbazine. One patient received Cis-platin in addition to Ifos/Adr. A minimum of two cycles of chemotherapy were administered prior to EBRT. Additional cycles of chemotherapy were completed concurrently with EBRT but prior to HDR IBT. Preoperative EBRT doses ranging from 40 to 59.4 Gy were given in daily fractions of 180 to 200cGy. Following en bloc resection, HDR IBT was administered using the Omnitron tm 2000 remote afterloading system. Doses ranging from 13 to 30 Gy were delivered to the surgical tumor bed at depths of 0.5mm to 0.75mm from the radioactive source. Results: median follow-up was

  13. Highly efficient red electrophosphorescent devices at high current densities

    International Nuclear Information System (INIS)

    Wu Youzhi; Zhu Wenqing; Zheng Xinyou; Sun, Runguang; Jiang Xueyin; Zhang Zhilin; Xu Shaohong

    2007-01-01

    Efficiency decrease at high current densities in red electrophosphorescent devices is drastically restrained compared with that from conventional electrophosphorescent devices by using bis(2-methyl-8-quinolinato)4-phenylphenolate aluminum (BAlq) as a hole and exciton blocker. Ir complex, bis(2-(2'-benzo[4,5-α]thienyl) pyridinato-N,C 3' ) iridium (acetyl-acetonate) is used as an emitter, maximum external quantum efficiency (QE) of 7.0% and luminance of 10000cd/m 2 are obtained. The QE is still as high as 4.1% at higher current density J=100mA/cm 2 . CIE-1931 co-ordinates are 0.672, 0.321. A carrier trapping mechanism is revealed to dominate in the process of electroluminescence

  14. White LED with High Package Extraction Efficiency

    International Nuclear Information System (INIS)

    Yi Zheng; Stough, Matthew

    2008-01-01

    The goal of this project is to develop a high efficiency phosphor converting (white) Light Emitting Diode (pcLED) 1-Watt package through an increase in package extraction efficiency. A transparent/translucent monolithic phosphor is proposed to replace the powdered phosphor to reduce the scattering caused by phosphor particles. Additionally, a multi-layer thin film selectively reflecting filter is proposed between blue LED die and phosphor layer to recover inward yellow emission. At the end of the project we expect to recycle approximately 50% of the unrecovered backward light in current package construction, and develop a pcLED device with 80 lm/W e using our technology improvements and commercially available chip/package source. The success of the project will benefit luminous efficacy of white LEDs by increasing package extraction efficiency. In most phosphor-converting white LEDs, the white color is obtained by combining a blue LED die (or chip) with a powdered phosphor layer. The phosphor partially absorbs the blue light from the LED die and converts it into a broad green-yellow emission. The mixture of the transmitted blue light and green-yellow light emerging gives white light. There are two major drawbacks for current pcLEDs in terms of package extraction efficiency. The first is light scattering caused by phosphor particles. When the blue photons from the chip strike the phosphor particles, some blue light will be scattered by phosphor particles. Converted yellow emission photons are also scattered. A portion of scattered light is in the backward direction toward the die. The amount of this backward light varies and depends in part on the particle size of phosphors. The other drawback is that yellow emission from phosphor powders is isotropic. Although some backward light can be recovered by the reflector in current LED packages, there is still a portion of backward light that will be absorbed inside the package and further converted to heat. Heat generated

  15. Tailored Materials for High Efficiency CIDI Engines

    Energy Technology Data Exchange (ETDEWEB)

    Grant, G.J.; Jana, S.

    2012-03-30

    The overall goal of the project, Tailored Materials for High Efficiency Compression Ignition Direct Injection (CIDI) Engines, is to enable the implementation of new combustion strategies, such as homogeneous charge compression ignition (HCCI), that have the potential to significantly increase the energy efficiency of current diesel engines and decrease fuel consumption and environmental emissions. These strategies, however, are increasing the demands on conventional engine materials, either from increases in peak cylinder pressure (PCP) or from increases in the temperature of operation. The specific objective of this project is to investigate the application of a new material processing technology, friction stir processing (FSP), to improve the thermal and mechanical properties of engine components. The concept is to modify the surfaces of conventional, low-cost engine materials. The project focused primarily on FSP in aluminum materials that are compositional analogs to the typical piston and head alloys seen in small- to mid-sized CIDI engines. Investigations have been primarily of two types over the duration of this project: (1) FSP of a cast hypoeutectic Al-Si-Mg (A356/357) alloy with no introduction of any new components, and (2) FSP of Al-Cu-Ni alloys (Alloy 339) by physically stirring-in various quantities of carbon nanotubes/nanofibers or carbon fibers. Experimental work to date on aluminum systems has shown significant increases in fatigue lifetime and stress-level performance in aluminum-silicon alloys using friction processing alone, but work to demonstrate the addition of carbon nanotubes and fibers into aluminum substrates has shown mixed results due primarily to the difficulty in achieving porosity-free, homogeneous distributions of the particulate. A limited effort to understand the effects of FSP on steel materials was also undertaken during the course of this project. Processed regions were created in high-strength, low-alloyed steels up to 0.5 in

  16. High efficiency diffusion molecular retention tumor targeting.

    Directory of Open Access Journals (Sweden)

    Yanyan Guo

    Full Text Available Here we introduce diffusion molecular retention (DMR tumor targeting, a technique that employs PEG-fluorochrome shielded probes that, after a peritumoral (PT injection, undergo slow vascular uptake and extensive interstitial diffusion, with tumor retention only through integrin molecular recognition. To demonstrate DMR, RGD (integrin binding and RAD (control probes were synthesized bearing DOTA (for (111 In(3+, a NIR fluorochrome, and 5 kDa PEG that endows probes with a protein-like volume of 25 kDa and decreases non-specific interactions. With a GFP-BT-20 breast carcinoma model, tumor targeting by the DMR or i.v. methods was assessed by surface fluorescence, biodistribution of [(111In] RGD and [(111In] RAD probes, and whole animal SPECT. After a PT injection, both probes rapidly diffused through the normal and tumor interstitium, with retention of the RGD probe due to integrin interactions. With PT injection and the [(111In] RGD probe, SPECT indicated a highly tumor specific uptake at 24 h post injection, with 352%ID/g tumor obtained by DMR (vs 4.14%ID/g by i.v.. The high efficiency molecular targeting of DMR employed low probe doses (e.g. 25 ng as RGD peptide, which minimizes toxicity risks and facilitates clinical translation. DMR applications include the delivery of fluorochromes for intraoperative tumor margin delineation, the delivery of radioisotopes (e.g. toxic, short range alpha emitters for radiotherapy, or the delivery of photosensitizers to tumors accessible to light.

  17. High collection efficiency CVD diamond alpha detectors

    International Nuclear Information System (INIS)

    Bergonzo, P.; Foulon, F.; Marshall, R.D.; Jany, C.; Brambilla, A.; McKeag, R.D.; Jackman, R.B.

    1998-01-01

    Advances in Chemical Vapor Deposited (CVD) diamond have enabled the routine use of this material for sensor device fabrication, allowing exploitation of its unique combination of physical properties (low temperature susceptibility (> 500 C), high resistance to radiation damage (> 100 Mrad) and to corrosive media). A consequence of CVD diamond growth on silicon is the formation of polycrystalline films which has a profound influence on the physical and electronic properties with respect to those measured on monocrystalline diamond. The authors report the optimization of physical and geometrical device parameters for radiation detection in the counting mode. Sandwich and co-planar electrode geometries are tested and their performances evaluated with regard to the nature of the field profile and drift distances inherent in such devices. The carrier drift length before trapping was measured under alpha particles and values as high as 40% of the overall film thickness are reported. Further, by optimizing the device geometry, they show that a gain in collection efficiency, defined as the induced charge divided by the deposited charge within the material, can be achieved even though lower bias values are used

  18. Highly ionized copper contribution to the soft X-ray emission in a plasma focus device

    Energy Technology Data Exchange (ETDEWEB)

    Zoita, V; Patran, A [Inst. of Physics and Technology of Radiation Devices, Bucharest (Romania); Larour, J [Ecole Polytechnique, Palaiseau (France). Lab. de Physique des Milieux Ionises

    1997-12-31

    In order to discriminate between the contributions of the gas plasma and of the anode (solid or plasma) to the soft X-ray emission in a plasma focus device, a series of experiments was carried out using the following combinations of experimental conditions: various gases, different absorption filters and viewing different regions in front of the centre electrode. The experiments were performed on the IPF-2/20 plasma focus device using the following working gases: helium, neon and helium-argon mixtures. The diagnostics used: magnetic probe for current derivative, PIN diode for the minimum pinch radius detection, PIN diodes for the soft X-ray emission, scintillator-photomultiplier detector for the hard X-ray emission. From the analysis of the various diagnostics data recorded with very good time correlation, it followed that the soft K-ray signals had a strong contribution from optical transitions of the highly ionised Cu (Cu XX to XXII) emitting in the range 0.8-1.3 nm. (author). 7 figs., 9 refs.

  19. A new soft dielectric silicone elastomer matrix with high mechanical integrity and low losses

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Yu, Liyun; Daugaard, Anders Egede

    2015-01-01

    Though dielectric elastomers (DEs) have many favourable properties, the issue of high driving voltages limits the commercial viability of the technology. Driving voltage can be lowered by decreasing the Young's modulus and increasing the dielectric permittivity of silicone elastomers. A decrease...... in Young's modulus, however, is often accompanied by the loss of mechanical stability and thereby the lifetime of the DE. A new soft elastomer matrix, with no loss of mechanical stability and high dielectric permittivity, was prepared through the use of alkyl chloride-functional siloxane copolymers...

  20. CGC/saturation approach for soft interactions at high energy: long range rapidity correlations

    International Nuclear Information System (INIS)

    Gotsman, E.; Maor, U.; Levin, E.

    2015-01-01

    In this paper we continue our program to construct a model for high energy soft interactions that is based on the CGC/saturation approach. The main result of this paper is that we have discovered a mechanism that leads to large long range rapidity correlations and results in large values of the correlation function R(y 1 , y 2 ) ≥ 1, which is independent of y 1 and y 2 . Such a behavior of the correlation function provides strong support for the idea that at high energies the system of partons that is produced is not only dense but also has strong attractive forces acting between the partons. (orig.)

  1. High bandgap III-V alloys for high efficiency optoelectronics

    Energy Technology Data Exchange (ETDEWEB)

    Alberi, Kirstin; Mascarenhas, Angelo; Wanlass, Mark

    2017-01-10

    High bandgap alloys for high efficiency optoelectronics are disclosed. An exemplary optoelectronic device may include a substrate, at least one Al.sub.1-xIn.sub.xP layer, and a step-grade buffer between the substrate and at least one Al.sub.1-xIn.sub.xP layer. The buffer may begin with a layer that is substantially lattice matched to GaAs, and may then incrementally increase the lattice constant in each sequential layer until a predetermined lattice constant of Al.sub.1-xIn.sub.xP is reached.

  2. Performance of a high efficiency high power UHF klystron

    International Nuclear Information System (INIS)

    Konrad, G.T.

    1977-03-01

    A 500 kW c-w klystron was designed for the PEP storage ring at SLAC. The tube operates at 353.2 MHz, 62 kV, a microperveance of 0.75, and a gain of approximately 50 dB. Stable operation is required for a VSWR as high as 2 : 1 at any phase angle. The design efficiency is 70%. To obtain this value of efficiency, a second harmonic cavity is used in order to produce a very tightly bunched beam in the output gap. At the present time it is planned to install 12 such klystrons in PEP. A tube with a reduced size collector was operated at 4% duty at 500 kW. An efficiency of 63% was observed. The same tube was operated up to 200 kW c-w for PEP accelerator cavity tests. A full-scale c-w tube reached 500 kW at 65 kV with an efficiency of 55%. In addition to power and phase measurements into a matched load, some data at various load mismatches are presented

  3. A soft X-ray source based on a low divergence, high repetition rate ultraviolet laser

    Science.gov (United States)

    Crawford, E. A.; Hoffman, A. L.; Milroy, R. D.; Quimby, D. C.; Albrecht, G. F.

    The CORK code is utilized to evaluate the applicability of low divergence ultraviolet lasers for efficient production of soft X-rays. The use of the axial hydrodynamic code wih one ozone radial expansion to estimate radial motion and laser energy is examined. The calculation of ionization levels of the plasma and radiation rates by employing the atomic physics and radiation model included in the CORK code is described. Computations using the hydrodynamic code to determine the effect of laser intensity, spot size, and wavelength on plasma electron temperature are provided. The X-ray conversion efficiencies of the lasers are analyzed. It is observed that for a 1 GW laser power the X-ray conversion efficiency is a function of spot size, only weakly dependent on pulse length for time scales exceeding 100 psec, and better conversion efficiencies are obtained at shorter wavelengths. It is concluded that these small lasers focused to 30 micron spot sizes and 10 to the 14th W/sq cm intensities are useful sources of 1-2 keV radiation.

  4. Design and simulations of a spectral efficient optical code division multiple access scheme using alternated energy differentiation and single-user soft-decision demodulation

    Science.gov (United States)

    A. Garba, Aminata

    2017-01-01

    This paper presents a new approach to optical Code Division Multiple Access (CDMA) network transmission scheme using alternated amplitude sequences and energy differentiation at the transmitters to allow concurrent and secure transmission of several signals. The proposed system uses error control encoding and soft-decision demodulation to reduce the multi-user interference at the receivers. The design of the proposed alternated amplitude sequences, the OCDMA energy modulators and the soft decision, single-user demodulators are also presented. Simulation results show that the proposed scheme allows achieving spectral efficiencies higher than several reported results for optical CDMA and much higher than the Gaussian CDMA capacity limit.

  5. Efficient soft x-ray emission source at 13.5 nm by use of a femtosecond-laser-produced Li-based microplasma

    International Nuclear Information System (INIS)

    Higashiguchi, Takeshi; Rajyaguru, Chirag; Kubodera, Shoichi; Sasaki, Wataru; Yugami, Noboru; Kikuchi, Takashi; Kawata, Shigeo; Andreev, Alex

    2005-01-01

    A proof-of-principle experiment was demonstrated to optimize a Li-based microjet target coupled to dual subpicosecond laser pulses as a 13.5 nm soft x-ray emission source. An optimum pulse duration of 450 fs to achieve a maximum emission at 13.5 nm was well explained by the resonant absorption process. Utilization of dual femtosecond pulses revealed that the optimum pulse separation around 500 ps was necessary to achieve a maximum soft x-ray conversion efficiency of 0.2%, where plasma hydrodynamics could not be neglected. A one-fluid two-temperature hydrodynamic simulation reproduced this optimum pulse separation behavior

  6. Series-Tuned High Efficiency RF-Power Amplifiers

    DEFF Research Database (Denmark)

    Vidkjær, Jens

    2008-01-01

    An approach to high efficiency RF-power amplifier design is presented. It addresses simultaneously efficiency optimization and peak voltage limitations when transistors are pushed towards their power limits.......An approach to high efficiency RF-power amplifier design is presented. It addresses simultaneously efficiency optimization and peak voltage limitations when transistors are pushed towards their power limits....

  7. Preparation of Fe–Si–Ni soft magnetic composites with excellent high-frequency properties

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wei; Wu, Chen, E-mail: chen_wu@zju.edu.cn; Yan, Mi, E-mail: mse_yanmi@zju.edu.cn

    2015-05-01

    Fe–Si–Ni powders were firstly prepared into soft magnetic composites (SMCs) by ball milling, surface passivation and subsequent compaction. The morphology, phase composition, and magnetic properties of the Fe–Si–Ni powders and their high-frequency performance as SMCs were investigated. The Fe–Si–Ni powders, with saturation magnetization (M{sub s}) of 254.40 emu/g after annealing, were milled down to particle sizes ranging from 40 μm to 150 μm. Surface passivation of the powders was carried out with 0.2–1.0 wt% phosphoric acid solution prior to compaction. Evolution of the high-frequency properties for the Fe–Si–Ni SMCs with the passivator concentration and the molding pressure was studied. With optimized preparation parameters, high saturation flux density (B{sub s}) of 1.23 T, stable permeability, and superior dc-bias property with a percentage permeability above 70% while H=50 Oe were achieved for the Fe–Si–Ni SMC. Minimum core loss (285 mW/cm{sup 3}) was also measured at 50 kHz for B{sub m}=50 mT. - Highlights: • Fe–Si–Ni as a new type of magnetic powder has been prepared into soft magnetic composites. • Effective surface passivation of the Fe–Si–Ni powders can be achieved by phosphate treatment. • Influence of the passivator concentration and molding pressure has been investigated. • The obtained Fe–Si–Ni soft magnetic composites exhibit excellent high-frequency performance.

  8. A model for soft high-energy scattering: Tensor pomeron and vector odderon

    Energy Technology Data Exchange (ETDEWEB)

    Ewerz, Carlo, E-mail: C.Ewerz@thphys.uni-heidelberg.de [Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, D-69120 Heidelberg (Germany); ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, D-64291 Darmstadt (Germany); Maniatis, Markos, E-mail: mmaniatis@ubiobio.cl [Departamento de Ciencias Básicas, Universidad del Bío-Bío, Avda. Andrés Bello s/n, Casilla 447, Chillán 3780000 (Chile); Nachtmann, Otto, E-mail: O.Nachtmann@thphys.uni-heidelberg.de [Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, D-69120 Heidelberg (Germany)

    2014-03-15

    A model for soft high-energy scattering is developed. The model is formulated in terms of effective propagators and vertices for the exchange objects: the pomeron, the odderon, and the reggeons. The vertices are required to respect standard rules of QFT. The propagators are constructed taking into account the crossing properties of amplitudes in QFT and the power-law ansätze from the Regge model. We propose to describe the pomeron as an effective spin 2 exchange. This tensor pomeron gives, at high energies, the same results for the pp and pp{sup -bar} elastic amplitudes as the standard Donnachie–Landshoff pomeron. But with our tensor pomeron it is much more natural to write down effective vertices of all kinds which respect the rules of QFT. This is particularly clear for the coupling of the pomeron to particles carrying spin, for instance vector mesons. We describe the odderon as an effective vector exchange. We emphasise that with a tensor pomeron and a vector odderon the corresponding charge-conjugation relations are automatically fulfilled. We compare the model to some experimental data, in particular to data for the total cross sections, in order to determine the model parameters. The model should provide a starting point for a general framework for describing soft high-energy reactions. It should give to experimentalists an easily manageable tool for calculating amplitudes for such reactions and for obtaining predictions which can be compared in detail with data. -- Highlights: •A general model for soft high-energy hadron scattering is developed. •The pomeron is described as effective tensor exchange. •Explicit expressions for effective reggeon–particle vertices are given. •Reggeon–particle and particle–particle vertices are related. •All vertices respect the standard C parity and crossing rules of QFT.

  9. Multi-petascale highly efficient parallel supercomputer

    Science.gov (United States)

    Asaad, Sameh; Bellofatto, Ralph E.; Blocksome, Michael A.; Blumrich, Matthias A.; Boyle, Peter; Brunheroto, Jose R.; Chen, Dong; Cher, Chen -Yong; Chiu, George L.; Christ, Norman; Coteus, Paul W.; Davis, Kristan D.; Dozsa, Gabor J.; Eichenberger, Alexandre E.; Eisley, Noel A.; Ellavsky, Matthew R.; Evans, Kahn C.; Fleischer, Bruce M.; Fox, Thomas W.; Gara, Alan; Giampapa, Mark E.; Gooding, Thomas M.; Gschwind, Michael K.; Gunnels, John A.; Hall, Shawn A.; Haring, Rudolf A.; Heidelberger, Philip; Inglett, Todd A.; Knudson, Brant L.; Kopcsay, Gerard V.; Kumar, Sameer; Mamidala, Amith R.; Marcella, James A.; Megerian, Mark G.; Miller, Douglas R.; Miller, Samuel J.; Muff, Adam J.; Mundy, Michael B.; O'Brien, John K.; O'Brien, Kathryn M.; Ohmacht, Martin; Parker, Jeffrey J.; Poole, Ruth J.; Ratterman, Joseph D.; Salapura, Valentina; Satterfield, David L.; Senger, Robert M.; Smith, Brian; Steinmacher-Burow, Burkhard; Stockdell, William M.; Stunkel, Craig B.; Sugavanam, Krishnan; Sugawara, Yutaka; Takken, Todd E.; Trager, Barry M.; Van Oosten, James L.; Wait, Charles D.; Walkup, Robert E.; Watson, Alfred T.; Wisniewski, Robert W.; Wu, Peng

    2015-07-14

    A Multi-Petascale Highly Efficient Parallel Supercomputer of 100 petaOPS-scale computing, at decreased cost, power and footprint, and that allows for a maximum packaging density of processing nodes from an interconnect point of view. The Supercomputer exploits technological advances in VLSI that enables a computing model where many processors can be integrated into a single Application Specific Integrated Circuit (ASIC). Each ASIC computing node comprises a system-on-chip ASIC utilizing four or more processors integrated into one die, with each having full access to all system resources and enabling adaptive partitioning of the processors to functions such as compute or messaging I/O on an application by application basis, and preferably, enable adaptive partitioning of functions in accordance with various algorithmic phases within an application, or if I/O or other processors are underutilized, then can participate in computation or communication nodes are interconnected by a five dimensional torus network with DMA that optimally maximize the throughput of packet communications between nodes and minimize latency.

  10. Energy Efficient Graphene Based High Performance Capacitors.

    Science.gov (United States)

    Bae, Joonwon; Kwon, Oh Seok; Lee, Chang-Soo

    2017-07-10

    Graphene (GRP) is an interesting class of nano-structured electronic materials for various cutting-edge applications. To date, extensive research activities have been performed on the investigation of diverse properties of GRP. The incorporation of this elegant material can be very lucrative in terms of practical applications in energy storage/conversion systems. Among various those systems, high performance electrochemical capacitors (ECs) have become popular due to the recent need for energy efficient and portable devices. Therefore, in this article, the application of GRP for capacitors is described succinctly. In particular, a concise summary on the previous research activities regarding GRP based capacitors is also covered extensively. It was revealed that a lot of secondary materials such as polymers and metal oxides have been introduced to improve the performance. Also, diverse devices have been combined with capacitors for better use. More importantly, recent patents related to the preparation and application of GRP based capacitors are also introduced briefly. This article can provide essential information for future study. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Highly efficient silicon light emitting diode

    NARCIS (Netherlands)

    Le Minh, P.; Holleman, J.; Wallinga, Hans

    2002-01-01

    In this paper, we describe the fabrication, using standard silicon processing techniques, of silicon light-emitting diodes (LED) that efficiently emit photons with energy around the silicon bandgap. The improved efficiency had been explained by the spatial confinement of charge carriers due to a

  12. A novel high efficiency solar photovoltalic pump

    NARCIS (Netherlands)

    Diepens, J.F.L.; Smulders, P.T.; Vries, de D.A.

    1993-01-01

    The daily average overall efficiency of a solar pump system is not only influenced by the maximum efficiency of the components of the system, but just as much by the correct matching of the components to the local irradiation pattern. Normally centrifugal pumps are used in solar pump systems. The

  13. Neoadjuvant chemotherapy for high-grade soft-tissue sarcomas of the limbs

    International Nuclear Information System (INIS)

    Ramos, Pedro; Gonzalez, Manuel; Perry, Fernando; Cardona, Andres Felipe

    2005-01-01

    Background: the use of neoadjuvant chemotherapy for high-grade soft-tissue sarcomas of the limbs continues to be an area of controversy; however, the number of clinical studies favoring the use of an anthracycline and iphosphamide-based regimen is increasing steadily. This approach may provide some advantages for facilitating the surgical resection of the tumor and for local disease control. The historical 5-year survival rate of approximately 50% in this high-risk group treated with local therapy alone represents a poor standard of care; thus, there is a need to incorporate systemic therapy early in the management of these patients. Objective: to describe the role of neoadjuvant chemotherapy in the treatment of soft-tissue sarcomas. Materials and methods: the records of 42 patients who attended the national cancer institute of Colombia in search for management of primary soft-tissue sarcomas were retrospectively reviewed. Ten patients with high-grade tumors larger than 8 cm, treated from June 2000 to February 2002 with neoadjuvant chemotherapy based on an anthracycline and iphosphamide regimen, plus vincristin and cisplatinum in selected cases, followed by surgery and adjuvant therapy with chemotherapy combined with local radiotherapy, were included. Evaluations of objective tumor response, survival, and toxicity were carried out. Results: after neoadjuvant therapy, s ix patients underwent conservative and limb-salvage surgery, three required radical interventions, and one refused surgical treatment. Seven experienced an objective response: it was complete in four and partial in three; the disease kept stable in two patients, and the tumor progressed in one case. After an average 46-month follow-up, four patients were permanently free of disease. Hematological and gastrointestinal toxicity was remarkable, and no patient had a long-term morbidity related to the treatment. Conclusions: this limited retrospective review suggests an advantage for the use of

  14. High efficiency targets for high gain inertial confinement fusion

    International Nuclear Information System (INIS)

    Gardner, J.H.; Bodner, S.E.

    1986-01-01

    Rocket efficiencies as high as 15% are possible using short wavelength lasers and moderately high aspect ratio pellet designs. These designs are made possible by two recent breakthroughs in physics constraints. First is the development of the Induced Spatial Incoherence (ISI) technique which allows uniform illumination of the pellet and relaxes the constraint of thermal smoothing, permitting the use of short wavelength laser light. Second is the discovery that the Rayleigh-Taylor growth rate is considerably reduced at the short laser wavelengths. By taking advantage of the reduced constraints imposed by nonuniform laser illumination and Rayleigh-Taylor instability, pellets using 1/4 micron laser light and initial aspect ratios of about 10 (with in flight aspect ratios of about 150 to 200) may produce energy gains as high as 200 to 250

  15. High power klystrons for efficient reliable high power amplifiers

    Science.gov (United States)

    Levin, M.

    1980-11-01

    This report covers the design of reliable high efficiency, high power klystrons which may be used in both existing and proposed troposcatter radio systems. High Power (10 kW) klystron designs were generated in C-band (4.4 GHz to 5.0 GHz), S-band (2.5 GHz to 2.7 GHz), and L-band or UHF frequencies (755 MHz to 985 MHz). The tubes were designed for power supply compatibility and use with a vapor/liquid phase heat exchanger. Four (4) S-band tubes were developed in the course of this program along with two (2) matching focusing solenoids and two (2) heat exchangers. These tubes use five (5) tuners with counters which are attached to the focusing solenoids. A reliability mathematical model of the tube and heat exchanger system was also generated.

  16. High resolution neutron spectroscopy - a tool for the investigation of dynamics of polymers and soft matter

    International Nuclear Information System (INIS)

    Monkenbusch, M.; Richter, D.

    2007-01-01

    Neutron scattering, with the ability to vary the contrast of molecular items by hydrogen/deuterium exchanges, is an invaluable tool for soft matter research. Besides the structural information on the mesoscopic scale that is obtained by diffraction methods like small angle neutron scattering, the slow dynamics of molecular motion on mesoscopic scale is accessible by high resolution neutron spectroscopy. The basic features of neutron backscattering spectroscopy, and in particular neutron spin-echo spectroscopy, are presented, in combination with illustrations of results from polymer melt dynamics to protein dynamics which are obtained by these techniques. (authors)

  17. Generation of Bright, Spatially Coherent Soft X-Ray High Harmonics in a Hollow Waveguide Using Two-Color Synthesized Laser Pulses.

    Science.gov (United States)

    Jin, Cheng; Stein, Gregory J; Hong, Kyung-Han; Lin, C D

    2015-07-24

    We investigate the efficient generation of low-divergence high-order harmonics driven by waveform-optimized laser pulses in a gas-filled hollow waveguide. The drive waveform is obtained by synthesizing two-color laser pulses, optimized such that highest harmonic yields are emitted from each atom. Optimization of the gas pressure and waveguide configuration has enabled us to produce bright and spatially coherent harmonics extending from the extreme ultraviolet to soft x rays. Our study on the interplay among waveguide mode, atomic dispersion, and plasma effect uncovers how dynamic phase matching is accomplished and how an optimized waveform is maintained when optimal waveguide parameters (radius and length) and gas pressure are identified. Our analysis should help laboratory development in the generation of high-flux bright coherent soft x rays as tabletop light sources for applications.

  18. High efficiency quasi-monochromatic infrared emitter

    Energy Technology Data Exchange (ETDEWEB)

    Brucoli, Giovanni; Besbes, Mondher; Benisty, Henri, E-mail: henri.benisty@institutoptique.fr; Greffet, Jean-Jacques [Laboratoire Charles Fabry, UMR 8501, Institut d’Optique, CNRS, Université Paris-Sud 11, 2, Avenue Augustin Fresnel, 91127 Palaiseau Cedex (France); Bouchon, Patrick; Haïdar, Riad [Office National d’Études et de Recherches Aérospatiales, Chemin de la Hunière, 91761 Palaiseau (France)

    2014-02-24

    Incandescent radiation sources are widely used as mid-infrared emitters owing to the lack of alternative for compact and low cost sources. A drawback of miniature hot systems such as membranes is their low efficiency, e.g., for battery powered systems. For targeted narrow-band applications such as gas spectroscopy, the efficiency is even lower. In this paper, we introduce design rules valid for very generic membranes demonstrating that their energy efficiency for use as incandescent infrared sources can be increased by two orders of magnitude.

  19. Soft inertial microfluidics for high throughput separation of bacteria from human blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zhigang; Willing, Ben; Bjerketorp, Joakim; Jansson, Janet K.; Hjort, Klas

    2009-01-05

    We developed a new approach to separate bacteria from human blood cells based on soft inertial force induced migration with flow defined curved and focused sample flow inside a microfluidic device. This approach relies on a combination of an asymmetrical sheath flow and proper channel geometry to generate a soft inertial force on the sample fluid in the curved and focused sample flow segment to deflect larger particles away while the smaller ones are kept on or near the original flow streamline. The curved and focused sample flow and inertial effect were visualized and verified using a fluorescent dye primed in the device. First the particle behavior was studied in detail using 9.9 and 1.0 {micro}m particles with a polymer-based prototype. The prototype device is compact with an active size of 3 mm{sup 2}. The soft inertial effect and deflection distance were proportional to the fluid Reynolds number (Re) and particle Reynolds number (Re{sub p}), respectively. We successfully demonstrated separation of bacteria (Escherichia coli) from human red blood cells at high cell concentrations (above 10{sup 8}/mL), using a sample flow rate of up to 18 {micro}L/min. This resulted in at least a 300-fold enrichment of bacteria at a wide range of flow rates with a controlled flow spreading. The separated cells were proven to be viable. Proteins from fractions before and after cell separation were analyzed by gel electrophoresis and staining to verify the removal of red blood cell proteins from the bacterial cell fraction. This novel microfluidic process is robust, reproducible, simple to perform, and has a high throughput compared to other cell sorting systems. Microfluidic systems based on these principles could easily be manufactured for clinical laboratory and biomedical applications.

  20. FeSiBP bulk metallic glasses with high magnetization and excellent magnetic softness

    Energy Technology Data Exchange (ETDEWEB)

    Makino, Akihiro [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Sendai 980-8577 (Japan)], E-mail: amakino@imr.tohoku.ac.jp; Kubota, Takeshi; Chang, Chuntao [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Sendai 980-8577 (Japan); Makabe, Masahiro [Makabe R and D Co., Ltd., 3-1-25 Nagatake, Sendai 983-0036 (Japan); Inoue, Akihisa [Tohoku University, 2-1-1 Katahira, Sendai 980-8577 (Japan)

    2008-10-15

    Fe-based amorphous alloy ribbons are one of the major soft magnetic materials, because of their superior magnetic properties such as the relatively high saturation magnetization (J{sub s}) of 1.5-1.6 T and good magnetic softness. However, the preparation of the ordinary amorphous magnetic alloys requires cooling rates higher than 10{sup 4} K/s due to the low glass-forming ability (GFA) and thus restricts the material outer shape. Recently, Fe-metalloid-based bulk metallic glasses (BMGs) containing glass-forming elements such as Al, Ga, Nb, Mo, Y and so forth have been developed. These alloys have high GFA, leading to the formation of BMG rod with diameters of mm-order. However, the glass-forming metal elements in BMGs result in a remarkable decrease in magnetization. Basically, J{sub s} depends on Fe content; hence, high J{sub s} requires high Fe content in the Fe-based amorphous alloys or BMGs. On the other hand, high GFA requires a large amount of glass-forming elements in the alloys, which results in lower Fe content. Therefore, in substances, the coexistence of high J{sub s} and high GFA is difficult. Since this matter should be immensely important from academia to industry in the material field, a great deal of effort has been devoted; however, it has remained unsolved for many years. In this paper, we present a novel Fe-rich FeSiBP BMG with high J{sub s} of 1.51 T comparable to the ordinary Fe-Si-B amorphous alloy now in practical use as well as with high GFA leading to a rod-shaped specimen of 2.5 mm in diameter, obtained by Cu-mold casting in air.

  1. Energy efficiency of high-rise buildings

    Science.gov (United States)

    Zhigulina, Anna Yu.; Ponomarenko, Alla M.

    2018-03-01

    The article is devoted to analysis of tendencies and advanced technologies in the field of energy supply and energy efficiency of tall buildings, to the history of the emergence of the concept of "efficiency" and its current interpretation. Also the article show the difference of evaluation criteria of the leading rating systems LEED and BREEAM. Authors reviewed the latest technologies applied in the construction of energy efficient buildings. Methodological approach to the design of tall buildings taking into account energy efficiency needs to include the primary energy saving; to seek the possibility of production and accumulation of alternative electric energy by converting energy from the sun and wind with the help of special technical devices; the application of regenerative technologies.

  2. High Efficiency Refrigeration Process, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — It has been proposed by NASA JSC studies, that the most mass efficient (non-nuclear) method of Lunar habitat cooling is via photovoltaic (PV) direct vapor...

  3. Needle-free injection into skin and soft matter with highly focused microjets.

    Science.gov (United States)

    Tagawa, Yoshiyuki; Oudalov, Nikolai; El Ghalbzouri, A; Sun, Chao; Lohse, Detlef

    2013-04-07

    The development of needle-free drug injection systems is of great importance to global healthcare. However, in spite of its great potential and research history over many decades, these systems are not commonly used. One of the main problems is that existing methods use diffusive jets, which result in scattered penetration and severe deceleration of the jets, causing frequent pain and insufficient penetration. Another long-standing challenge is the development of accurate small volume injections. In this paper we employ a novel method of needle-free drug injection, using highly-focused high speed microjets, which aims to solve these challenges. We experimentally demonstrate that these unique jets are able to penetrate human skin: the focused nature of these microjets creates an injection spot smaller than a mosquito's proboscis and guarantees a high percentage of the liquid being injected. The liquid substances can be delivered to a much larger depth than conventional methods, and create a well-controlled dispersion pattern. Thanks to the excellent controllability of the microjet, small volume injections become feasible. Furthermore, the penetration dynamics is studied through experiments performed on gelatin mixtures (human soft tissue equivalent) and human skin, agreeing well with a viscous stress model which we develop. This model predicts the depth of the penetration into both human skin and soft tissue. The results presented here take needle-free injections a step closer to widespread use.

  4. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism.

    Science.gov (United States)

    Fan, Tingting; Grychtol, Patrik; Knut, Ronny; Hernández-García, Carlos; Hickstein, Daniel D; Zusin, Dmitriy; Gentry, Christian; Dollar, Franklin J; Mancuso, Christopher A; Hogle, Craig W; Kfir, Ofer; Legut, Dominik; Carva, Karel; Ellis, Jennifer L; Dorney, Kevin M; Chen, Cong; Shpyrko, Oleg G; Fullerton, Eric E; Cohen, Oren; Oppeneer, Peter M; Milošević, Dejan B; Becker, Andreas; Jaroń-Becker, Agnieszka A; Popmintchev, Tenio; Murnane, Margaret M; Kapteyn, Henry C

    2015-11-17

    We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform.

  5. Soft Robotics.

    Science.gov (United States)

    Whitesides, George M

    2018-04-09

    This description of "soft robotics" is not intended to be a conventional review, in the sense of a comprehensive technical summary of a developing field. Rather, its objective is to describe soft robotics as a new field-one that offers opportunities to chemists and materials scientists who like to make "things" and to work with macroscopic objects that move and exert force. It will give one (personal) view of what soft actuators and robots are, and how this class of soft devices fits into the more highly developed field of conventional "hard" robotics. It will also suggest how and why soft robotics is more than simply a minor technical "tweak" on hard robotics and propose a unique role for chemistry, and materials science, in this field. Soft robotics is, at its core, intellectually and technologically different from hard robotics, both because it has different objectives and uses and because it relies on the properties of materials to assume many of the roles played by sensors, actuators, and controllers in hard robotics. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Low-Temperature Soft-Cover Deposition of Uniform Large-Scale Perovskite Films for High-Performance Solar Cells.

    Science.gov (United States)

    Ye, Fei; Tang, Wentao; Xie, Fengxian; Yin, Maoshu; He, Jinjin; Wang, Yanbo; Chen, Han; Qiang, Yinghuai; Yang, Xudong; Han, Liyuan

    2017-09-01

    Large-scale high-quality perovskite thin films are crucial to produce high-performance perovskite solar cells. However, for perovskite films fabricated by solvent-rich processes, film uniformity can be prevented by convection during thermal evaporation of the solvent. Here, a scalable low-temperature soft-cover deposition (LT-SCD) method is presented, where the thermal convection-induced defects in perovskite films are eliminated through a strategy of surface tension relaxation. Compact, homogeneous, and convection-induced-defects-free perovskite films are obtained on an area of 12 cm 2 , which enables a power conversion efficiency (PCE) of 15.5% on a solar cell with an area of 5 cm 2 . This is the highest efficiency at this large cell area. A PCE of 15.3% is also obtained on a flexible perovskite solar cell deposited on the polyethylene terephthalate substrate owing to the advantage of presented low-temperature processing. Hence, the present LT-SCD technology provides a new non-spin-coating route to the deposition of large-area uniform perovskite films for both rigid and flexible perovskite devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. High Power High Efficiency Diode Laser Stack for Processing

    Science.gov (United States)

    Gu, Yuanyuan; Lu, Hui; Fu, Yueming; Cui, Yan

    2018-03-01

    High-power diode lasers based on GaAs semiconductor bars are well established as reliable and highly efficient laser sources. As diode laser is simple in structure, small size, longer life expectancy with the advantages of low prices, it is widely used in the industry processing, such as heat treating, welding, hardening, cladding and so on. Respectively, diode laser could make it possible to establish the practical application because of rectangular beam patterns which are suitable to make fine bead with less power. At this power level, it can have many important applications, such as surgery, welding of polymers, soldering, coatings and surface treatment of metals. But there are some applications, which require much higher power and brightness, e.g. hardening, key hole welding, cutting and metal welding. In addition, High power diode lasers in the military field also have important applications. So all developed countries have attached great importance to high-power diode laser system and its applications. This is mainly due their low performance. In this paper we will introduce the structure and the principle of the high power diode stack.

  8. Enthalpy-based equation of state for highly porous materials employing modified soft sphere fluid model

    Science.gov (United States)

    Nayak, Bishnupriya; Menon, S. V. G.

    2018-01-01

    Enthalpy-based equation of state based on a modified soft sphere model for the fluid phase, which includes vaporization and ionization effects, is formulated for highly porous materials. Earlier developments and applications of enthalpy-based approach had not accounted for the fact that shocked states of materials with high porosity (e.g., porosity more than two for Cu) are in the expanded fluid region. We supplement the well known soft sphere model with a generalized Lennard-Jones formula for the zero temperature isotherm, with parameters determined from cohesive energy, specific volume and bulk modulus of the solid at normal condition. Specific heats at constant pressure, ionic and electronic enthalpy parameters and thermal excitation effects are calculated using the modified approach and used in the enthalpy-based equation of state. We also incorporate energy loss from the shock due to expansion of shocked material in calculating porous Hugoniot. Results obtained for Cu, even up to initial porosities ten, show good agreement with experimental data.

  9. Piezoelectric Sensor to Measure Soft and Hard Stiffness with High Sensitivity for Ultrasonic Transducers

    Directory of Open Access Journals (Sweden)

    Yan-Rui Li

    2015-06-01

    Full Text Available During dental sinus lift surgery, it is important to monitor the thickness of the remaining maxilla to avoid perforating the sinus membrane. Therefore, a sensor should be integrated into ultrasonic dental tools to prevent undesirable damage. This paper presents a piezoelectric (PZT sensor installed in an ultrasonic transducer to measure the stiffness of high and low materials. Four design types using three PZT ring materials and a split PZT for actuator and sensor ring materials were studied. Three sensor locations were also examined. The voltage signals of the sensor and the displacement of the actuator were analyzed to distinguish the low and high stiffness. Using sensor type T1 made of the PZT-1 material and the front location A1 provided a high sensitivity of 2.47 Vm/kN. The experimental results demonstrated that our design can measure soft and hard stiffness.

  10. Soft and hard probes of high-temperature matter with the ATLAS experiment

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    Relativistic heavy ion collisions provide an experimental setting for studying a variety of novel QCD phenomena. In particular, they enable the study of QCD at high temperatures and provide accessibility to a medium, the Quark-Gluon Plasma (QGP), containing a high density of unscreened color charges. Measurements performed in the LHC era have revolutionized our understanding of phenomena such as harmonic flow and jet quenching in the QGP and have altered the paradigm underlying proton-ion collisions. The high-quality calorimetry make the ATLAS detector an ideal apparatus to study jet observables and the large acceptance enables detailed measurements of soft particle correlations. In this talk I will summarize measurements performed by the ATLAS Collaboration. These include jet observables that are directly sensitive to jet quenching as well as a comprehensive set of color-neutral probes that provide control over hard scattering rates. Also presented are flow measurements that elucidate the role of initial geo...

  11. Soft magnetic characteristics of laminated magnetic block cores assembled with a high Bs nanocrystalline alloy

    Directory of Open Access Journals (Sweden)

    Atsushi Yao

    2018-05-01

    Full Text Available This paper focuses on an evaluation of core losses in laminated magnetic block cores assembled with a high Bs nanocrystalline alloy in high magnetic flux density region. To discuss the soft magnetic properties of the high Bs block cores, the comparison with amorphous (SA1 block cores is also performed. In the high Bs block core, both low core losses and high saturation flux densities Bs are satisfied in the low frequency region. Furthermore, in the laminated block core made of the high Bs alloy, the rate of increase of iron losses as a function of the magnetic flux density remains small up to around 1.6 T, which cannot be realized in conventional laminated block cores based on amorphous alloy. The block core made of the high Bs alloy exhibits comparable core loss with that of amorphous alloy core in the high-frequency region. Thus, it is expected that this laminated high Bs block core can achieve low core losses and high saturation flux densities in the high-frequency region.

  12. Designing high efficient solar powered lighting systems

    DEFF Research Database (Denmark)

    Poulsen, Peter Behrensdorff; Thorsteinsson, Sune; Lindén, Johannes

    2016-01-01

    Some major challenges in the development of L2L products is the lack of efficient converter electronics, modelling tools for dimensioning and furthermore, characterization facilities to support the successful development of the products. We report the development of 2 Three-Port-Converters respec...

  13. Feasibility of combined modality therapy for localized high-grade soft tissue sarcomas in adults

    International Nuclear Information System (INIS)

    Blum, R.H.; Greenberger, J.S.; Wilson, R.E.; Corson, J.M.

    1979-01-01

    Seventeen consecutive patients with localized, high grade soft tissue sarcomas had resection of their primary tumor, radiation therapy and chemotherapy. The soft tissue sarcoma was primary in 14 patients and regionally recurrent in 3 patients. Chemotherapy consisted of cyclophosphamide 500 mg/M 2 day 1, Adriamycin (ADR) 60 mg/M 2 day 2, and DTIC 400 mg/M 2 days 1 and 2, given every 21 days to a maximum ADR dose of 450 mg/M 2 . Cyclophosphamide and DTIC were then given to a total duration of 1 year. Radiation therapy consisted of 4000 to 5000 rad by megavoltage photons in 5 weeks, and in selected cases, an additional 1500 to 2000 rad by electron beam boost in the tumor bed delivered over 2 additional weeks. Following surgery, 12 patients were treated sequentially with an interval of chemotherapy, radiation therapy and then the completion of chemotherapy. The added morbidity of this sequential approach is minimal: one patient of 12 had delayed primary healing of her wound, 1 of 10 patients required a break in radiation therapy because of skin erythema. Four patients were treated with intensive pre-chemotherapy radiation therapy because of inadequate surgical margins. The median time on study was 18 months from onset of treatment (range, 8 to 41 months). Although there have been no local, regional or distant recurrences, the follow-up time is inadequate to assess the therapeutic benefit of this combined modality treatment

  14. Fast plasma discharge capillary design as a high power throughput soft x-ray emission source.

    Science.gov (United States)

    Wyndham, E S; Favre, M; Valdivia, M P; Valenzuela, J C; Chuaqui, H; Bhuyan, H

    2010-09-01

    We present the experimental details and results from a low energy but high repetition rate compact plasma capillary source for extreme ultraviolet and soft x-ray research and applications. Two lengths of capillary are mounted in two versions of a closely related design. The discharge operates in 1.6 and 3.2 mm inner diameter alumina capillaries of lengths 21 and 36 mm. The use of water both as dielectric and as coolant simplifies the compact low inductance design with nanosecond discharge periods. The stored electrical energy of the discharge is approximately 0.5 J and is provided by directly charging the capacitor plates from an inexpensive insulated-gate bipolar transistor in 1 μs or less. We present characteristic argon spectra from plasma between 30 and 300 Å as well as temporally resolved x-ray energy fluence in discrete bands on axis. The spectra also allow the level of ablated wall material to be gauged and associated with useful capillary lifetime according to the chosen configuration and energy storage. The connection between the electron beams associated with the transient hollow cathode mechanism, soft x-ray output, capillary geometry, and capillary lifetime is reported. The role of these e-beams and the plasma as measured on-axis is discussed. The relation of the electron temperature and the ionization stages observed is discussed in the context of some model results of ionization in a non-Maxwellian plasma.

  15. CGC/saturation approach for soft interactions at high energy: long range rapidity correlations

    Energy Technology Data Exchange (ETDEWEB)

    Gotsman, E.; Maor, U. [Tel Aviv University, Department of Particle Physics, School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Science, Tel Aviv (Israel); Levin, E. [Tel Aviv University, Department of Particle Physics, School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Science, Tel Aviv (Israel); Universidad Tecnica Federico Santa Maria and Centro Cientifico- Tecnologico de Valparaiso, Departemento de Fisica, Valparaiso (Chile)

    2015-11-15

    In this paper we continue our program to construct a model for high energy soft interactions that is based on the CGC/saturation approach. The main result of this paper is that we have discovered a mechanism that leads to large long range rapidity correlations and results in large values of the correlation function R(y{sub 1}, y{sub 2}) ≥ 1, which is independent of y{sub 1} and y{sub 2}. Such a behavior of the correlation function provides strong support for the idea that at high energies the system of partons that is produced is not only dense but also has strong attractive forces acting between the partons. (orig.)

  16. High-precision soft x-ray polarimeter at Diamond Light Source.

    Science.gov (United States)

    Wang, H; Dhesi, S S; Maccherozzi, F; Cavill, S; Shepherd, E; Yuan, F; Deshmukh, R; Scott, S; van der Laan, G; Sawhney, K J S

    2011-12-01

    The development and performance of a high-precision polarimeter for the polarization analysis in the soft x-ray region is presented. This versatile, high-vacuum compatible instrument is supported on a hexapod to simplify the alignment with a resolution less than 5 μrad, and can be moved with its own independent control system easily between different beamlines and synchrotron facilities. The polarimeter can also be used for the characterization of reflection and transmission properties of optical elements. A W/B(4)C multilayer phase retarder was used to characterize the polarization state up to 1200 eV. A fast and accurate alignment procedure was developed, and complete polarization analysis of the APPLE II undulator at 712 eV has been performed.

  17. Robust cladding light stripper for high-power fiber lasers using soft metals.

    Science.gov (United States)

    Babazadeh, Amin; Nasirabad, Reza Rezaei; Norouzey, Ahmad; Hejaz, Kamran; Poozesh, Reza; Heidariazar, Amir; Golshan, Ali Hamedani; Roohforouz, Ali; Jafari, S Naser Tabatabaei; Lafouti, Majid

    2014-04-20

    In this paper we present a novel method to reliably strip the unwanted cladding light in high-power fiber lasers. Soft metals are utilized to fabricate a high-power cladding light stripper (CLS). The capability of indium (In), aluminum (Al), tin (Sn), and gold (Au) in extracting unwanted cladding light is examined. The experiments show that these metals have the right features for stripping the unwanted light out of the cladding. We also find that the metal-cladding contact area is of great importance because it determines the attenuation and the thermal load on the CLS. These metals are examined in different forms to optimize the contact area to have the highest possible attenuation and avoid localized heating. The results show that sheets of indium are very effective in stripping unwanted cladding light.

  18. Phase contrast enhanced high resolution X-ray imaging and tomography of soft tissue

    International Nuclear Information System (INIS)

    Jakubek, Jan; Granja, Carlos; Dammer, Jiri; Hanus, Robert; Holy, Tomas; Pospisil, Stanislav; Tykva, Richard; Uher, Josef; Vykydal, Zdenek

    2007-01-01

    A tabletop system for digital high resolution and high sensitivity X-ray micro-radiography has been developed for small-animal and soft-tissue imaging. The system is based on a micro-focus X-ray tube and the semiconductor hybrid position sensitive Medipix2 pixel detector. Transmission radiography imaging, conventionally based only on absorption, is enhanced by exploiting phase-shift effects induced in the X-ray beam traversing the sample. Phase contrast imaging is realized by object edge enhancement. DAQ is done by a novel fully integrated USB-based readout with online image generation. Improved signal reconstruction techniques make use of advanced statistical data analysis, enhanced beam hardening correction and direct thickness calibration of individual pixels. 2D and 3D micro-tomography images of several biological samples demonstrate the applicability of the system for biological and medical purposes including in-vivo and time dependent physiological studies in the life sciences

  19. Energy efficiency indicators for high electric-load buildings

    Energy Technology Data Exchange (ETDEWEB)

    Aebischer, Bernard; Balmer, Markus A.; Kinney, Satkartar; Le Strat, Pascale; Shibata, Yoshiaki; Varone, Frederic

    2003-06-01

    Energy per unit of floor area is not an adequate indicator for energy efficiency in high electric-load buildings. For two activities, restaurants and computer centres, alternative indicators for energy efficiency are discussed.

  20. Efficient and Highly Aldehyde Selective Wacker Oxidation

    KAUST Repository

    Teo, Peili; Wickens, Zachary K.; Dong, Guangbin; Grubbs, Robert H.

    2012-01-01

    A method for efficient and aldehyde-selective Wacker oxidation of aryl-substituted olefins using PdCl 2(MeCN) 2, 1,4-benzoquinone, and t-BuOH in air is described. Up to a 96% yield of aldehyde can be obtained, and up to 99% selectivity can be achieved with styrene-related substrates. © 2012 American Chemical Society.

  1. Efficient and Highly Aldehyde Selective Wacker Oxidation

    KAUST Repository

    Teo, Peili

    2012-07-06

    A method for efficient and aldehyde-selective Wacker oxidation of aryl-substituted olefins using PdCl 2(MeCN) 2, 1,4-benzoquinone, and t-BuOH in air is described. Up to a 96% yield of aldehyde can be obtained, and up to 99% selectivity can be achieved with styrene-related substrates. © 2012 American Chemical Society.

  2. High-frequency electromagnetic properties of soft magnetic metal-polyimide hybrid thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Woo [Nano-Materials Research Center, Korea Institute of Science and Technology, 39-1 Haweoulgog-dong, Sungbuk-gu, Seoul 136-791 (Korea, Republic of)]. E-mail: swkim@kist.re.kr; Yoon, Chong S. [Division of Advanced Materials Science, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2007-09-15

    Although there are a lot of demands for suppression of unwanted high-frequency electromagnetic noise in highly integrated electronic devices such as mobile phones and notebook computers, electromagnetic thin films that effectively work in the high-frequency range have still been underdeveloped. Soft magnetic metal-polyimide (PI) hybrid films with high electrical resistivity were prepared by thermal imidization and selective oxidation between the metal alloy layer and polyamic acid (PAA) layer. Electromagnetic properties of the hybrid thin films in the radio-frequency range were characterized by using the microstrip line method and were correlated with their material parameters. Although anisotropy field of the CoFe/NiFe hybrid film was two times lower than that of the NiFe hybrid film, the saturation magnetization of the CoFe/NiFe hybrid film was three times higher than that of the NiFe hybrid film. The CoFe/NiFe hybrid film showed higher power loss in the frequency range of 3-6 GHz compared to the NiFe hybrid film. The high power loss of the CoFe/NiFe hybrid film was caused by high relative permeability and high ferromagnetic resonance (FMR) frequency due to high saturation magnetization.

  3. High-frequency electromagnetic properties of soft magnetic metal-polyimide hybrid thin films

    International Nuclear Information System (INIS)

    Kim, Sang Woo; Yoon, Chong S.

    2007-01-01

    Although there are a lot of demands for suppression of unwanted high-frequency electromagnetic noise in highly integrated electronic devices such as mobile phones and notebook computers, electromagnetic thin films that effectively work in the high-frequency range have still been underdeveloped. Soft magnetic metal-polyimide (PI) hybrid films with high electrical resistivity were prepared by thermal imidization and selective oxidation between the metal alloy layer and polyamic acid (PAA) layer. Electromagnetic properties of the hybrid thin films in the radio-frequency range were characterized by using the microstrip line method and were correlated with their material parameters. Although anisotropy field of the CoFe/NiFe hybrid film was two times lower than that of the NiFe hybrid film, the saturation magnetization of the CoFe/NiFe hybrid film was three times higher than that of the NiFe hybrid film. The CoFe/NiFe hybrid film showed higher power loss in the frequency range of 3-6 GHz compared to the NiFe hybrid film. The high power loss of the CoFe/NiFe hybrid film was caused by high relative permeability and high ferromagnetic resonance (FMR) frequency due to high saturation magnetization

  4. High efficiency nebulization for helium inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Jorabchi, Kaveh; McCormick, Ryan; Levine, Jonathan A.; Liu Huiying; Nam, S.-H.; Montaser, Akbar

    2006-01-01

    A pneumatically-driven, high efficiency nebulizer is explored for helium inductively coupled plasma mass spectrometry. The aerosol characteristics and analyte transport efficiencies of the high efficiency nebulizer for nebulization with helium are measured and compared to the results obtained with argon. Analytical performance indices of the helium inductively coupled plasma mass spectrometry are evaluated in terms of detection limits and precision. The helium inductively coupled plasma mass spectrometry detection limits obtained with the high efficiency nebulizer at 200 μL/min are higher than those achieved with the ultrasonic nebulizer consuming 2 mL/min solution, however, precision is generally better with high efficiency nebulizer (1-4% vs. 3-8% with ultrasonic nebulizer). Detection limits with the high efficiency nebulizer at 200 μL/min solution uptake rate approach those using ultrasonic nebulizer upon efficient desolvation with a heated spray chamber followed by a Peltier-cooled multipass condenser

  5. Recent Advances in High Efficiency Solar Cells

    Institute of Scientific and Technical Information of China (English)

    Yoshio; Ohshita; Hidetoshi; Suzuki; Kenichi; Nishimura; Masafumi; Yamaguchi

    2007-01-01

    1 Results The conversion efficiency of sunlight to electricity is limited around 25%,when we use single junction solar cells. In the single junction cells,the major energy losses arise from the spectrum mismatching. When the photons excite carriers with energy well in excess of the bandgap,these excess energies were converted to heat by the rapid thermalization. On the other hand,the light with lower energy than that of the bandgap cannot be absorbed by the semiconductor,resulting in the losses. One way...

  6. High efficiency cyclotron trap assisted positron moderator

    OpenAIRE

    Gerchow, L.; Cooke, D. A.; Braccini, S.; Döbeli, M.; Kirch, K.; Köster, U.; Müller, A.; Van Der Meulen, N. P.; Vermeulen, C.; Rubbia, A.; Crivelli, P.

    2017-01-01

    We report the realisation of a cyclotron trap assisted positron tungsten moderator for the conversion of positrons with a broad keV- few MeV energy spectrum to a mono-energetic eV beam with an efficiency of 1.8(2)% defined as the ratio of the slow positrons divided by the $\\beta^+$ activity of the radioactive source. This is an improvement of almost two orders of magnitude compared to the state of the art of tungsten moderators. The simulation validated with this measurement suggests that usi...

  7. A high-efficiency electromechanical battery

    Science.gov (United States)

    Post, Richard F.; Fowler, T. K.; Post, Stephen F.

    1993-03-01

    In our society there is a growing need for efficient cost-effective means for storing electrical energy. The electric auto is a prime example. Storage systems for the electric utilities, and for wind or solar power, are other examples. While electrochemical cells could in principle supply these needs, the existing E-C batteries have well-known limitations. This article addresses an alternative, the electromechanical battery (EMB). An EMB is a modular unit consisting of an evacuated housing containing a fiber-composite rotor. The rotor is supported by magnetic bearings and contains an integrally mounted permanent magnet array. This article addresses design issues for EMBs with rotors made up of nested cylinders. Issues addressed include rotational stability, stress distributions, generator/motor power and efficiency, power conversion, and cost. It is concluded that the use of EMBs in electric autos could result in a fivefold reduction (relative to the IC engine) in the primary energy input required for urban driving, with a concomitant major positive impact on our economy and on air pollution.

  8. A Soft X-ray Spectrometer using a Highly Dispersive Multilayer Grating

    International Nuclear Information System (INIS)

    Warwick, Tony; Padmore, Howard; Voronov, Dmitriy; Yashchuk, Valeriy

    2010-01-01

    There is a need for higher resolution spectrometers as a tool for inelastic x-ray scattering. Currently, resolving power around R = 10,000 is advertised. Measured RIXS spectra are often limited by this instrumental resolution and higher resolution spectrometers using conventional gratings would be prohibitively large. We are engaged in a development program to build blazed multilayer grating structures for diffracting soft x-rays in high order. This leads to spectrometers with dispersion much higher than is possible using metal coated-gratings. The higher dispersion then provides higher resolution and the multilayer gratings are capable of operating away from grazing incidence as required. A spectrometer design is presented with a total length 3.8 m and capable of 10 5 resolving power.

  9. Soft Magnetic Properties of High-Entropy Fe-Co-Ni-Cr-Al-Si Thin Films

    Directory of Open Access Journals (Sweden)

    Pei-Chung Lin

    2016-08-01

    Full Text Available Soft magnetic properties of Fe-Co-Ni-Al-Cr-Si thin films were studied. As-deposited Fe-Co-Ni-Al-Cr-Si nano-grained thin films showing no magnetic anisotropy were subjected to field-annealing at different temperatures to induce magnetic anisotropy. Optimized magnetic and electrical properties of Fe-Co-Ni-Al-Cr-Si films annealed at 200 °C are saturation magnetization 9.13 × 105 A/m, coercivity 79.6 A/m, out-of-plane uniaxial anisotropy field 1.59 × 103 A/m, and electrical resistivity 3.75 μΩ·m. Based on these excellent properties, we employed such films to fabricate magnetic thin film inductor. The performance of the high entropy alloy thin film inductors is superior to that of air core inductor.

  10. Changes of soft X-ray emission spectra of oxygen and copper in high Tc superconductors

    International Nuclear Information System (INIS)

    Fukushima, Sei; Gohshi, Yohichi; Kohiki, Shigemi; Saitoh, Naoki

    1989-01-01

    X-ray induced soft X-ray emission spectroscopy is one of the bulk analysis methods used to characterize high-Tc superconductor. In this report, some observations on the changes in O Kα and Cu L spectra of thin layer LnBa 2 Cu 3 O 7-δ (Ln=Er,Gd) samples are presented. From the measurement of O Kα, no discernible difference was found between those of Gd compounds which were composed single phase or not. It may be said that the electronic structure of p state localized on the O is not sensitive to the change of Tc or zero-resistance temperature. From the measurement of Cu L spectra, it was found that Cu Lα of only Gd containing compounds has a low energy shoulder

  11. Spectral evolution of soft x-ray emission from optically thin, high electron temperature platinum plasmas

    Directory of Open Access Journals (Sweden)

    Hiroyuki Hara

    2017-08-01

    Full Text Available The soft x-ray spectra of heavy element plasmas are frequently dominated by unresolved transition array (UTA emission. We describe the spectral evolution of an intense UTA under optically thin conditions in platinum plasmas. The UTA was observed to have a peak wavelength around 4.6 nm at line-of-sight averaged electron temperatures less than 1.4 keV at electron densities of (2.5–7.5 × 1013 cm−3. The UTA spectral structure was due to emission from 4d–4f transitions in highly charged ions with average charge states of q = 20–40. A numerical simulation successfully reproduced the observed spectral behavior.

  12. High throughput soft embossing process for micro-patterning of PEDOT thin films

    DEFF Research Database (Denmark)

    Fanzio, Paola; Cagliani, Alberto; Peterffy, Kristof G.

    2017-01-01

    The patterning of conductive polymers is a major challenge in the implementation of these materials in several research and industrial applications, spanning from photovoltaics to biosensors. Within this context, we have developed a reliable technique to pattern a thin layer of the conductive...... polymer poly(3,4-ethylenedioxythiophene) (PEDOT) by means of a low cost and high throughput soft embossing process. We were able to reproduce a functional conductive pattern with a minimum dimension of 1 μm and to fabricate electrically decoupled electrodes. Moreover, the conductivity of the PEDOT films...... has been characterized, finding that a post-processing treatment with Ethylene Glycol allows an increase in conductivity and a decrease in water solubility of the PEDOT film. Finally, cyclic voltammetry demonstrates that the post-treatment also ensures the electrochemical activity of the film. Our...

  13. A Soft X-ray Spectrometer using a Highly Dispersive Multilayer Grating

    International Nuclear Information System (INIS)

    Warwick, Tony; Padmore, Howard; Voronov, Dmitriy; Yashchuk, Valeriy

    2010-01-01

    There is a need for higher resolution spectrometers as a tool for inelastic x-ray scattering. Currently, resolving power around R = 10,000 is advertised. Measured RIXS spectra are often limited by this instrumental resolution and higher resolution spectrometers using conventional gratings would be prohibitively large. We are engaged in a development program to build blazed multilayer grating structures for diffracting soft x-rays in high order. This leads to spectrometers with dispersion much higher than is possible using metal coated-gratings. The higher dispersion then provides higher resolution and the multilayer gratings are capable of operating away from grazing incidence as required. A spectrometer design is presented with a total length 3.8m and capable of 10 5 resolving power.

  14. Next-to-soft corrections to high energy scattering in QCD and gravity

    Energy Technology Data Exchange (ETDEWEB)

    Luna, A.; Melville, S. [SUPA, School of Physics and Astronomy, University of Glasgow,Glasgow G12 8QQ, Scotland (United Kingdom); Naculich, S.G. [Department of Physics, Bowdoin College,Brunswick, ME 04011 (United States); White, C.D. [Centre for Research in String Theory, School of Physics and Astronomy,Queen Mary University of London,327 Mile End Road, London E1 4NS (United Kingdom)

    2017-01-12

    We examine the Regge (high energy) limit of 4-point scattering in both QCD and gravity, using recently developed techniques to systematically compute all corrections up to next-to-leading power in the exchanged momentum i.e. beyond the eikonal approximation. We consider the situation of two scalar particles of arbitrary mass, thus generalising previous calculations in the literature. In QCD, our calculation describes power-suppressed corrections to the Reggeisation of the gluon. In gravity, we confirm a previous conjecture that next-to-soft corrections correspond to two independent deflection angles for the incoming particles. Our calculations in QCD and gravity are consistent with the well-known double copy relating amplitudes in the two theories.

  15. Coherent Sources of XUV Radiation Soft X-Ray Lasers and High-Order Harmonic Generation

    CERN Document Server

    Jaeglé, Pierre

    2006-01-01

    Extreme ultraviolet radiation, also referred to as soft X-rays or XUV, offers very special optical properties. The X-UV refractive index of matter is such that normal reflection cannot take place on polished surfaces whereas beam transmission through one micrometer of almost all materials reduces to zero. Therefore, it has long been a difficult task to imagine and to implement devices designed for complex optics experiments in this wavelength range. Thanks to new sources of coherent radiation - XUV-lasers and High Order Harmonics - the use of XUV radiation, for interferometry, holography, diffractive optics, non-linear radiation-matter interaction, time-resolved study of fast and ultrafast phenomena and many other applications, including medical sciences, is ubiquitous.

  16. Development of high efficiency neutron detectors

    International Nuclear Information System (INIS)

    Pickrell, M.M.; Menlove, H.O.

    1993-01-01

    The authors have designed a novel neutron detector system using conventional 3 He detector tubes and composites of polyethylene and graphite. At this time the design consists entirely of MCNP simulations of different detector configurations and materials. These detectors are applicable to low-level passive and active neutron assay systems such as the passive add-a-source and the 252 Cf shuffler. Monte Carlo simulations of these neutron detector designs achieved efficiencies of over 35% for assay chambers that can accommodate 55-gal. drums. Only slight increases in the number of detector tubes and helium pressure are required. The detectors also have reduced die-away times. Potential applications are coincident and multiplicity neutron counting for waste disposal and safeguards. The authors will present the general design philosophy, underlying physics, calculation mechanics, and results

  17. High efficient white organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, Stefan; Krause, Ralf [Department of Materials Science VI, University of Erlangen-Nuremberg (Germany); Siemens AG, CT MM 1, Erlangen (Germany); Kozlowski, Fryderyk; Schmid, Guenter; Hunze, Arvid [Siemens AG, CT MM 1, Erlangen (Germany); Winnacker, Albrecht [Department of Materials Science VI, University of Erlangen-Nuremberg (Germany)

    2007-07-01

    Due to the rapid progress in the last years the performance of organic light emitting diodes (OLEDs) has reached a level where general lighting presents a most interesting application target. We demonstrate, how the color coordinates of the emission spectrum can be adjusted using a combinatorial evaporation tool to lie on the desired black body curve representing cold and warm white, respectively. The evaluation includes phosphorescent and fluorescent dye approaches to optimize lifetime and efficiency, simultaneously. Detailed results are presented with respect to variation of layer thicknesses and dopant concentrations of each layer within the OLED stack. The most promising approach contains phosphorescent red and green dyes combined with a fluorescent blue one as blue phosphorescent dopants are not yet stable enough to achieve long lifetimes.

  18. High-Efficient Circuits for Ternary Addition

    Directory of Open Access Journals (Sweden)

    Reza Faghih Mirzaee

    2014-01-01

    Full Text Available New ternary adders, which are fundamental components of ternary addition, are presented in this paper. They are on the basis of a logic style which mostly generates binary signals. Therefore, static power dissipation reaches its minimum extent. Extensive different analyses are carried out to examine how efficient the new designs are. For instance, the ternary ripple adder constructed by the proposed ternary half and full adders consumes 2.33 μW less power than the one implemented by the previous adder cells. It is almost twice faster as well. Due to their unique superior characteristics for ternary circuitry, carbon nanotube field-effect transistors are used to form the novel circuits, which are entirely suitable for practical applications.

  19. A high-efficiency superconductor distributed amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Herr, Q P, E-mail: quentin.herr@ngc.co [Northrop Grumman Corporation, 7323 Aviation Boulevard, Baltimore, MD 21240 (United States)

    2010-02-15

    A superconductor output amplifier that converts single-flux-quantum signals to a non-return-to-zero pattern is reported using a twelve-stage distributed amplifier configuration. The output amplitude is measured to be 1.75 mV over a wide bias current range of {+-} 12%. The bit error rate is measured using a Delta-Sigma data pattern to be less than 1 x 10{sup -9} at 10 Gb s{sup -1} per channel. Analysis of the eye diagram suggests that the actual bit error rate may be much lower. The amplifier has power efficiency of 12% neglecting the termination resistor, which may be eliminated from the circuit with a small modification. (rapid communication)

  20. High performance imaging of relativistic soft X-ray harmonics by sub-micron resolution LiF film detectors

    Energy Technology Data Exchange (ETDEWEB)

    Pikuz, Tatiana; Faenov, Anatoly [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kizugawa, Kyoto 619-0215 (Japan); Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412 (Russian Federation); Pirozhkov, Alexander; Esirkepov, Timur; Koga, James; Nakamura, Tatsufumi; Bulanov, Sergei; Fukuda, Yuji; Hayashi, Yukio; Kotaki, Hideyuki; Kando, Masaki [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kizugawa, Kyoto 619-0215 (Japan); Astapov, Artem; Pikuz, Sergey Jr. [Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412 (Russian Federation); Klushin, Georgy [Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412 (Russian Federation); International Laser Center of M.V. Lomonosov Moscow State University, Moscow (Russian Federation); Nagorskiy, Nikolai; Magnitskiy, Sergei [International Laser Center of M.V. Lomonosov Moscow State University, Moscow (Russian Federation); Kato, Yoshiaki [The Graduate School for the Creation of New Photonics Industries, Hamamatsu, Shizuoka (Japan)

    2012-12-15

    The spectrum variation and the coherent properties of the high-order harmonics (HOH) generated by an oscillating electron spikes formed at the joint of the boundaries of a cavity and a bow wave, which are created by a relativistically self-focusing laser in underdense gas jet plasma, are investigated. This new mechanism for HOH generation efficiently produces emission from ultraviolet up to the XUV ''water window'' spectral range. To characterize such source in the wide spectral range a diffraction imaging technique is applied. High spatial resolution EUV and soft X-ray LiF film detector have been used for precise measurements of diffraction patterns. The measurements under observation angle of 8 to the axis of laser beam propagation have been performed. The diffraction patterns were observed on the detector clearly, when the square mesh was placed at the distance of 500 mm from the output of plasma and at the distance of 27.2 mm in front of the detector. It is shown that observed experimental patterns are well consistent with modeled ones for theoretical HOH spectrum, provided by particle-in-cell simulations of a relativistic-irradiance laser pulse interaction with underdense plasma (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Soft X-ray generation via inverse compton scattering between high quality electron beam and high power laser

    International Nuclear Information System (INIS)

    Masakazu Washio; Kazuyuki Sakaue; Yoshimasa Hama; Yoshio Kamiya; Tomoko Gowa; Akihiko Masuda; Aki Murata; Ryo Moriyama; Shigeru Kashiwagi; Junji Urakawa

    2007-01-01

    High quality beam generation project based on High-Tech Research Center Project, which has been approved by Ministry of Education, Culture, Sports, Science and Technology in 1999, has been conducted by advance research institute for science and engineering, Waseda University. In the project, laser photo-cathode RF-gun has been selected for the high quality electron beam source. RF cavities with low dark current, which were made by diamond turning technique, have been successfully manufactured. The low emittance electron beam was realized by choosing the modified laser injection technique. The obtained normalized emmitance was about 3 m.mrad at 100 pC of electron charge. The soft x-ray beam generation with the energy of 370 eV, which is in the energy region of so-called water window, by inverse Compton scattering has been performed by the collision between IR laser and the low emmitance electron beams. (Author)

  2. High Efficiency Regenerative Helium Compressor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Helium plays several critical rolls in spacecraft propulsion. High pressure helium is commonly used to pressurize propellant fuel tanks. Helium cryocoolers can be...

  3. Highly Efficient, Durable Regenerative Solid Oxide Stack, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Precision Combustion, Inc. (PCI) proposes to develop a highly efficient regenerative solid oxide stack design. Novel structural elements allow direct internal...

  4. Soft Functional Silicone Elastomers with High Dielectric Permittivty: Simple Additives vs. Cross-Linked Synthesized Copolymers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Yu, Liyun; Skov, Anne Ladegaard

    Though dielectric elastomers (DEs) have many favorable properties, the issue of high driving voltages limits the commercial viability of the technology. Improved actuation at lower voltages can be obtained by decreasing the Young’s modulus and/or decreasing the dielectric permittivity of the elas......Though dielectric elastomers (DEs) have many favorable properties, the issue of high driving voltages limits the commercial viability of the technology. Improved actuation at lower voltages can be obtained by decreasing the Young’s modulus and/or decreasing the dielectric permittivity...... of the elastomer. A decrease in Young’s modulus, however, is often accompanied by the loss of mechanical stability and thereby the lifetime of the DE whereas addition of high permittivity fillers such as metal oxides often increases Young’s modulus such that improved actuation is not accomplished. New soft...... silicone elastomers with high dielectric permittivity were prepared through the use of chloropropyl-functional silicones. One method was through the synthesis of modular cross-linkable chloropropyl-functional copolymers that allow for a high degree of chemical freedom such that a tuneable silicone...

  5. Clinical signs of hypoxia with high-Dk soft lens extended wear: is the cornea convinced?

    Science.gov (United States)

    Sweeney, Deborah F

    2003-01-01

    To assess the effectiveness of high-Dk soft contact lenses with oxygen transmissibility (Dk/L) beyond the critical level required to avoid corneal edema during overnight wear. The most up-to-date data available on clinical signs of hypoxia with high-Dk contact lenses is reviewed. Chronic corneal edema associated with hypoxia is responsible for the development of large numbers of microcysts, limbal hyperemia, neovascularization, and small increases in myopia. Silicone hydrogel lenses worn continuously for up to 30 nights prevent corneal edema during overnight wear and do not induce a microcyst response. Long-term clinical trials indicate the mean level of limbal redness for patients wearing high-Dk lenses during continuous wear are equivalent to nonlens wearers. No changes in refractive error are associated with continuous wear of high-Dk lenses. High-Dk silicone hydrogel lenses can be worn for up to 3 years with virtual elimination of the hypoxic consequences observed with low-Dk lenses made from conventional lens materials.

  6. Soft electronics for soft robotics

    Science.gov (United States)

    Kramer, Rebecca K.

    2015-05-01

    As advanced as modern machines are, the building blocks have changed little since the industrial revolution, leading to rigid, bulky, and complex devices. Future machines will include electromechanical systems that are soft and elastically deformable, lending them to applications such as soft robotics, wearable/implantable devices, sensory skins, and energy storage and transport systems. One key step toward the realization of soft systems is the development of stretchable electronics that remain functional even when subject to high strains. Liquid-metal traces embedded in elastic polymers present a unique opportunity to retain the function of rigid metal conductors while leveraging the deformable properties of liquid-elastomer composites. However, in order to achieve the potential benefits of liquid-metal, scalable processing and manufacturing methods must be identified.

  7. High-efficiency airfoil rudders applied to submarines

    Directory of Open Access Journals (Sweden)

    ZHOU Yimei

    2017-03-01

    Full Text Available Modern submarine design puts forward higher and higher requirements for control surfaces, and this creates a requirement for designers to constantly innovate new types of rudder so as to improve the efficiency of control surfaces. Adopting the high-efficiency airfoil rudder is one of the most effective measures for improving the efficiency of control surfaces. In this paper, we put forward an optimization method for a high-efficiency airfoil rudder on the basis of a comparative analysis of the various strengths and weaknesses of the airfoil, and the numerical calculation method is adopted to analyze the influence rule of the hydrodynamic characteristics and wake field by using the high-efficiency airfoil rudder and the conventional NACA rudder comparatively; at the same time, a model load test in a towing tank was carried out, and the test results and simulation calculation obtained good consistency:the error between them was less than 10%. The experimental results show that the steerage of a high-efficiency airfoil rudder is increased by more than 40% when compared with the conventional rudder, but the total resistance is close:the error is no more than 4%. Adopting a high-efficiency airfoil rudder brings much greater lifting efficiency than the total resistance of the boat. The results show that high-efficiency airfoil rudder has obvious advantages for improving the efficiency of control, giving it good application prospects.

  8. High Reflectance Nanoscale V/Sc Multilayer for Soft X-ray Water Window Region.

    Science.gov (United States)

    Huang, Qiushi; Yi, Qiang; Cao, Zhaodong; Qi, Runze; Loch, Rolf A; Jonnard, Philippe; Wu, Meiyi; Giglia, Angelo; Li, Wenbin; Louis, Eric; Bijkerk, Fred; Zhang, Zhong; Wang, Zhanshan

    2017-10-10

    V/Sc multilayer is experimentally demonstrated for the first time as a high reflectance mirror for the soft X-ray water window region. It primarily works at above the Sc-L edge (λ = 3.11 nm) under near normal incidence while a second peak appears at above the V-L edge (λ = 2.42 nm) under grazing incidence. The V/Sc multilayer fabricated with a d-spacing of 1.59 nm and 30 bilayers has a smaller interface width (σ = 0.27 and 0.32 nm) than the conventional used Cr/Sc (σ = 0.28 and 0.47 nm). For V/Sc multilayer with 30 bilayers, the introduction of B 4 C barrier layers has little improvement on the interface structure. As the number of bilayers increasing to 400, the growth morphology and microstructure of the V/Sc layers evolves with slightly increased crystallization. Nevertheless, the surface roughness remains to be 0.25 nm. A maximum soft X-ray reflectance of 18.4% is measured at λ = 3.129 nm at 9° off-normal incidence using the 400-bilayers V/Sc multilayer. According to the fitted model, an s-polarization reflectance of 5.2% can also be expected at λ = 2.425 nm under 40° incidence. Based on the promising experimental results, further improvement of the reflectance can be achieved by using a more stable deposition system, exploring different interface engineering methods and so on.

  9. Increase in colony-forming efficiency in soft agar of thymus cells from radiation-induced thymomas of NIH Swiss mice

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Nobuko; Takamori, Yasuhiko; Hori, Yasuharu [Radiation Center of Osaka Prefecture, Sakai (Japan)

    1982-03-01

    Colony-forming efficiency in soft agar of radiation-induced thymoma in NIH Swiss mice was determined in the presence of cultured medium of reticulo-epitherial cells from normal thymus of NIH Swiss mouse as conditioned medium. A similar experiment was done with thymomas spontaneously developed in AKR mice. Most of colonies developed in soft agar were not composed of thymic lymphoma cells, but of macrophage-like cells. The ratio of the number of colonies to that of the seeded cells significantly increased in thymomas comparing with that in normal thymus. This result corresponded with the increased number of macrophages in thymoma, as determined by counting phagocytic cells of adherent cells.

  10. Complementary Constraints from Carbon (13C) and Nitrogen (15N) Isotopes on the Efficiency of the Glacial Ocean's Soft-Tissue Biological Pump

    Science.gov (United States)

    Schmittner, A.; Somes, C. J.

    2016-12-01

    A three-dimensional, process-based model of the ocean's carbon and nitrogen cycles, including 13C and 15N isotopes, is used to explore effects of idealized changes in the soft-tissue biological pump. Results are presented from one preindustrial control run and six simulations of the Last Glacial Maximum (LGM) with increasing values of the spatially constant maximum phytoplankton growth rate μmax, which mimicks iron fertilization. The default LGM simulation, without increasing μmax and with a shallower and weaker Atlantic Meridional Overturning Circulation and increased sea ice cover, leads to 280 Pg more respired organic carbon (Corg) than the pre-industrial control. Dissolved oxygen in the thermocline increase, which reduces water column denitrification and nitrogen fixation, thus increasing the ocean's fixed nitrogen inventory and decreasing δ15NNO3. This simulation already fits observed carbon and nitrogen isotopes relatively well, but it overestimates deep ocean δ13CDIC and underestimates δ15NNO3 at high latitudes. Increasing μmax enhances Corg and lowers deep ocean δ13CDIC, improving the fit. Modest increases in μmax result in higher subpolar δ15NNO3 due to enhanced local nutrient utilization, and better agreement with reconstructions. Large increases in nutrient utilization are inconsistent with nitrogen isotopes although they still fit the carbon isotopes reasonably well. The best fitting models with modest increases in μmax reproduce major features of the glacial δ13CDIC, δ15N, and oxygen reconstructions while simulating increased Corg by 510-670 Pg. These results are consistent with the idea that the soft-tissue pump was more efficient during the LGM. Both circulation and biological nutrient utilization contribute. However, these conclusions are preliminary given our idealized experiments, which do not consider changes in benthic denitrification and spatially inhomogenous changes in aeolian iron fluxes. The analysis illustrates interactions

  11. Fast neutron radiotherapy for soft tissue and cartilaginous sarcomas at high risk for local recurrence

    International Nuclear Information System (INIS)

    Schwartz, David L.; Einck, John; Bellon, Jennifer; Laramore, George E.

    2001-01-01

    Purpose: The practice policy at the University of Washington has been to employ fast neutron radiotherapy for soft tissue sarcoma lesions with prognostic features predictive for poor local control. These include gross residual disease/inoperable disease, recurrent disease, and contaminated surgical margins. Cartilaginous sarcomas have also been included in this high-risk group. This report updates and expands our previously described experience with this approach. Methods and Materials: Eighty-nine soft tissue sarcoma lesions in 72 patients were treated with neutron radiotherapy in our department between 1984 and 1996. Six patients, each with solitary lesions, were excluded from analysis due to lack of follow-up. Seventy-three percent were treated with fast neutron radiation alone, the rest with a combination of neutrons and photons. Median neutron dose was 18.3 nGy (range 4.8-22). Forty-two patients with solitary lesions were treated with curative intent. Thirty-one patients (including 7 previously treated with neutrons) with 41 lesions were treated with the goal of local palliation. Tumors were predominantly located in the extremity and torso. Thirty of 35 (85%) of curative group patients treated postoperatively had close or positive surgical margins. Thirty-four (82%) lesions treated for palliation were unresectable. Thirty-five patients (53%) were treated at the time of recurrence. Median tumor size at initial presentation was 8.0 cm (range 0.6-29), median treated gross disease size was 5.0 cm (range 1-22), and 46/69 evaluable lesions (67%) were judged to be of intermediate to high histologic grade. Fourteen patients (21%) had chondrosarcomas. Results: Median follow-up was 6 months (range 2-47) and 38 months (range 2-175) for the palliative and curative groups, respectively. Kaplan-Meier estimates were obtained for probability of local relapse-free survival (68%), distant disease-free survival (59%), cause-specific survival (68%), and overall survival (66%) at

  12. High Efficiency, High Density Terrestrial Panel. [for solar cell modules

    Science.gov (United States)

    Wohlgemuth, J.; Wihl, M.; Rosenfield, T.

    1979-01-01

    Terrestrial panels were fabricated using rectangular cells. Packing densities in excess of 90% with panel conversion efficiencies greater than 13% were obtained. Higher density panels can be produced on a cost competitive basis with the standard salami panels.

  13. 40 CFR 761.71 - High efficiency boilers.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false High efficiency boilers. 761.71... PROHIBITIONS Storage and Disposal § 761.71 High efficiency boilers. (a) To burn mineral oil dielectric fluid containing a PCB concentration of ≥50 ppm, but boiler shall comply with the following...

  14. High strain rate characterization of soft materials: past, present and possible futures

    Science.gov (United States)

    Siviour, Clive

    2015-06-01

    The high strain rate properties of low impedance materials have long been of interest to the community: the very first paper by Kolsky on his eponymous bars included data from man-made polymers and natural rubber. However, it has also long been recognized that characterizing soft or low impedance specimens under dynamic loading presents a number of challenges, mainly owing to the low sound speed in, and low stresses supported by, these materials. Over the past 20 years, significant progress has been made in high rate testing techniques, including better experimental design, more sensitive data acquisition and better understanding of specimen behavior. Further, a new generation of techniques, in which materials are characterized using travelling waves, rather than in a state of static equilibrium, promise to turn those properties that were previously a drawback into an advantage. This paper will give an overview of the history of high rate characterization, the current state of the art after an exciting couple of decades and some of the techniques currently being developed that have the potential to offer increased quality data in the future.

  15. High-resolution bent-crystal spectrometer for the ultra-soft x-ray region

    International Nuclear Information System (INIS)

    Beiersdorfer, P.; von Goeler, S.; Bitter, M.; Hill, K.W.; Hulse, R.A.; Walling, R.S.

    1988-10-01

    A multichannel vacuum Brag-crystal spectrometer has been developed for high-resolution measurements of the line emission from tokamak plasmas in the wavelength region between 4 and 25 /angstrom/. The spectrometer employs a bent crystal in Johann geometry and a microchannel-plate intensified photodiode array. The instrument is capable of measuring high-resolution spectra (λ/Δλ ∼ 3000) with fast time resolution (4 msec per spectrum) and good spatial resolution (3 cm). The spectral bandwidth is Δλ/λ 0 = 8/angstrom/. A simple tilt mechanism allows access to different wavelength intervals. In order to illustrate the utility of the new spectrometer, time- and space-resolved measurements of the n = 3 to n = 2 spectrum of selenium from the Princeton Large Torus tokamak plasmas are presented. The data are used to determine the plasma transport parameters and to infer the radial distribution of fluorinelike, neonlike, and sodiumlike ions of selenium in the plasma. The new ultra-soft x-ray spectrometer has thus enabled us to demonstrate the utility of high-resolution L-shell spectroscopy of neonlike ions as a fusion diagnostic. 43 refs., 23 figs

  16. HIGH EFFICIENCY DESULFURIZATION OF SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Anirban Mukherjee; Kwang-Bok Yi; Elizabeth J. Podlaha; Douglas P. Harrison

    2001-11-01

    Mixed metal oxides containing CeO{sub 2} and ZrO{sub 2} are being studied as high temperature desulfurization sorbents capable of achieving the DOE Vision 21 target of 1 ppmv of less H{sub 2}S. The research is justified by recent results in this laboratory that showed that reduced CeO{sub 2}, designated CeO{sub n} (1.5 < n < 2.0), is capable of achieving the 1 ppmv target in highly reducing gas atmospheres. The addition of ZrO{sub 2} has improved the performance of oxidation catalysts and three-way automotive catalysts containing CeO{sub 2}, and should have similar beneficial effects on CeO{sub 2} desulfurization sorbents. An electrochemical method for synthesizing CeO{sub 2}-ZrO{sub 2} has been developed and the products have been characterized by XRD and TEM during year 01. Nanocrystalline particles having a diameter of about 5 nm and containing from approximately 10 mol% to 80 mol% ZrO{sub 2} have been prepared. XRD showed the product to be a solid solution at low ZrO{sub 2} contents with a separate ZrO{sub 2} phase emerging at higher ZrO{sub 2} levels. Phase separation did not occur when the solid solutions were heat treated at 700 C. A flow reactor system constructed of quartz and teflon has been constructed, and a gas chromatograph equipped with a pulsed flame photometric detector (PFPD) suitable for measuring sub-ppmv levels of H{sub 2}S has been purchased with LSU matching funds. Preliminary desulfurization tests using commercial CeO{sub 2} and CeO{sub 2}-ZrO{sub 2} in highly reducing gas compositions has confirmed that CeO{sub 2}-ZrO{sub 2} is more effective than CeO{sub 2} in removing H{sub 2}S. At 700 C the product H{sub 2}S concentration using CeO{sub 2}-ZrO{sub 2} sorbent was near the 0.1 ppmv PFPD detection limit during the prebreakthrough period.

  17. Highly efficient induction of chirality in intramolecular

    Science.gov (United States)

    Cossio; Arrieta; Lecea; Alajarin; Vidal; Tovar

    2000-06-16

    Highly stereocontrolled, intramolecular [2 + 2] cycloadditions between ketenimines and imines leading to 1,2-dihydroazeto[2, 1-b]quinazolines have been achieved. The source of stereocontrol is a chiral carbon atom adjacent either to the iminic carbon or nitrogen atom. In the first case, the stereocontrol stems from the preference for the axial conformer in the first transition structure. In the second case, the origin of the stereocontrol lies on the two-electron stabilizing interaction between the C-C bond being formed and the sigma orbital corresponding to the polar C-X bond, X being an electronegative atom. These models can be extended to other related systems for predicting the stereochemical outcome in this intramolecular reaction.

  18. High Efficiency, Low Cost Scintillators for PET

    International Nuclear Information System (INIS)

    Kanai Shah

    2007-01-01

    Inorganic scintillation detectors coupled to PMTs are an important element of medical imaging applications such as positron emission tomography (PET). Performance as well as cost of these systems is limited by the properties of the scintillation detectors available at present. The Phase I project was aimed at demonstrating the feasibility of producing high performance scintillators using a low cost fabrication approach. Samples of these scintillators were produced and their performance was evaluated. Overall, the Phase I effort was very successful. The Phase II project will be aimed at advancing the new scintillation technology for PET. Large samples of the new scintillators will be produced and their performance will be evaluated. PET modules based on the new scintillators will also be built and characterized

  19. Compact and highly efficient laser pump cavity

    Science.gov (United States)

    Chang, Jim J.; Bass, Isaac L.; Zapata, Luis E.

    1999-01-01

    A new, compact, side-pumped laser pump cavity design which uses non-conventional optics for injection of laser-diode light into a laser pump chamber includes a plurality of elongated light concentration channels. In one embodiment, the light concentration channels are compound parabolic concentrators (CPC) which have very small exit apertures so that light will not escape from the pumping chamber and will be multiply reflected through the laser rod. This new design effectively traps the pump radiation inside the pump chamber that encloses the laser rod. It enables more uniform laser pumping and highly effective recycle of pump radiation, leading to significantly improved laser performance. This new design also effectively widens the acceptable radiation wavelength of the diodes, resulting in a more reliable laser performance with lower cost.

  20. HIGH EFFICIENCY DESULFURIZATION OF SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Kwang-Bok Yi; Anirban Mukherjee; Elizabeth J. Podlaha; Douglas P. Harrison

    2004-03-01

    Mixed metal oxides containing ceria and zirconia have been studied as high temperature desulfurization sorbents with the objective of achieving the DOE Vision 21 target of 1 ppmv or less H{sub 2}S in the product gas. The research was justified by recent results in this laboratory that showed that reduced CeO{sub 2}, designated CeOn (1.5 < n < 2.0), is capable of achieving the 1 ppmv target in highly reducing gas atmospheres. The addition of ZrO{sub 2} has improved the performance of oxidation catalysts and three-way automotive catalysts containing CeO{sub 2}, and was postulated to have similar beneficial effects on CeO{sub 2} desulfurization sorbents. An electrochemical method for synthesizing CeO{sub 2}-ZrO{sub 2} mixtures was developed and the products were characterized by XRD and TEM during year 01. Nanocrystalline particles having a diameter of about 5 nm and containing from approximately 10 mol% to 80 mol% ZrO{sub 2} were prepared. XRD analysis showed the product to be a solid solution at low ZrO{sub 2} contents with a separate ZrO{sub 2} phase emerging at higher ZrO{sub 2} levels. Unfortunately, the quantity of CeO{sub 2}-ZrO{sub 2} that could be prepared electrochemically was too small to permit desulfurization testing. Also during year 01 a laboratory-scale fixed-bed reactor was constructed for desulfurization testing. All components of the reactor and analytical systems that were exposed to low concentrations of H{sub 2}S were constructed of quartz, Teflon, or silcosteel. Reactor product gas composition as a function of time was determined using a Varian 3800 gas chromatograph equipped with a pulsed flame photometric detector (PFPD) for measuring low H{sub 2}S concentrations from approximately 0.1 to 10 ppmv, and a thermal conductivity detector (TCD) for higher concentrations of H{sub 2}S. Larger quantities of CeO{sub 2}-ZrO{sub 2} mixtures from other sources, including mixtures prepared in this laboratory using a coprecipitation procedure, were obtained

  1. Design and performance of a soft-x-ray interferometer for ultra-high-resolution fourier transform spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Moler, E.J.; Hussain, Z.; Duarte, R.M.; Howells, M.R. [Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    A Fourier Transform Soft X-ray spectrometer (FT-SX) has been designed and is under construction for the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory as a branch of beamline 9.3.2. The spectrometer is a novel soft x-ray interferometer designed for ultra-high resolution (theoretical resolving power E/{delta}E{approximately}10{sup 6}) spectroscopy in the photon energy region of 60-120 eV. This instrument is expected to provide experimental results which sensitively test models of correlated electron processes in atomic and molecular physics. The design criteria and consequent technical challenges posed by the short wavelengths of x-rays and desired resolving power are discussed. The fundamental and practical aspects of soft x-ray interferometry are also explored.

  2. Hypoxia-inducible factor 1α predicts recurrence in high-grade soft tissue sarcoma of extremities and trunk wall

    DEFF Research Database (Denmark)

    Nyström, H; Jönsson, M; Werner-Hartman, L

    2017-01-01

    BACKGROUND AND AIM: Sarcomas are of mesenchymal origin and typically show abundant tumour stroma and presence of necrosis. In search for novel biomarkers for personalised therapy, we determined the prognostic impact of stromal markers, hypoxia and neovascularity in high-grade soft tissue leiomyos...

  3. Practices and Procedures to Prevent the Transmission of Skin and Soft Tissue Infections in High School Athletes

    Science.gov (United States)

    Fritz, Stephanie A.; Long, Marcus; Gaebelein, Claude J.; Martin, Madeline S.; Hogan, Patrick G.; Yetter, John

    2012-01-01

    Skin and soft tissue infections (SSTIs) are frequent in student athletes and are often caused by community-associated methicillin-resistant "Staphylococcus aureus" (CA-MRSA). We evaluated the awareness of CA-MRSA among high school coaches and athletic directors in Missouri (n = 4,408) and evaluated hygiene practices affecting SSTI…

  4. All passive architecture for high efficiency cascaded Raman conversion

    Science.gov (United States)

    Balaswamy, V.; Arun, S.; Chayran, G.; Supradeepa, V. R.

    2018-02-01

    Cascaded Raman fiber lasers have offered a convenient method to obtain scalable, high-power sources at various wavelength regions inaccessible with rare-earth doped fiber lasers. A limitation previously was the reduced efficiency of these lasers. Recently, new architectures have been proposed to enhance efficiency, but this came at the cost of enhanced complexity, requiring an additional low-power, cascaded Raman laser. In this work, we overcome this with a new, all-passive architecture for high-efficiency cascaded Raman conversion. We demonstrate our architecture with a fifth-order cascaded Raman converter from 1117nm to 1480nm with output power of ~64W and efficiency of 60%.

  5. A HIGH REPETITION RATE VUV-SOFT X-RAY FEL CONCEPT

    International Nuclear Information System (INIS)

    Corlett, J.; Byrd, J.; Fawley, W.M.; Gullans, M.; Li, D.; Lidia, S.M.; Padmore, H.; Penn, G.; Pogorelov, I.; Qiang, J.; Robin, D.; Sannibale, F.; Staples, J.W.; Steier, C.; Venturini, M.; Virostek, S.; Wan, W.; Wells, R.; Wilcox, R.; Wurtele, J.; Zholents, A.

    2007-01-01

    We report on design studies for a seeded FEL light source that is responsive to the scientific needs of the future. The FEL process increases radiation flux by several orders of magnitude above existing incoherent sources, and offers the additional enhancements attainable by optical manipulations of the electron beam: control of the temporal duration and bandwidth of the coherent output, reduced gain length in the FEL, utilization of harmonics to attain shorter wavelengths, and precise synchronization of the x-ray pulse with seed laser systems. We describe an FEL facility concept based on a high repetition rate RF photocathode gun, that would allow simultaneous operation of multiple independent FEL's, each producing high average brightness, tunable over the VUV-soft x-ray range, and each with individual performance characteristics determined by the configuration of the FEL. SASE, enhanced-SASE (ESASE), seeded, harmonic generation, and other configurations making use of optical manipulations of the electron beam may be employed, providing a wide range of photon beam properties to meet varied user demands

  6. Time Integrated Soft X-ray Imaging in High Intensity Laser Experiments (thesis)

    Energy Technology Data Exchange (ETDEWEB)

    Stafford, David [Univ. of California, Davis, CA (United States)

    2009-01-01

    2009 marks a significant achievement and the dawn of a new era in high intensity laser research with the final commissioning of all 192 beams at the National Ignition Facility (NIF). NIF is a department of energy (DOE) funded project more than 10 years in the making located at the Lawrence Livermore National Laboratory (LLNL). The following research was done as one of many preliminary experiments done to prepare for these historic events. The primary focus of the experimental campaign this paper addresses is to test and develop a thermal x-radiation source using a short pulse laser. This data is hoped to provide information about the thermal transport mechanisms important in the development of prediction models in High Energy Density (HED) science. One of several diagnostics fielded was a soft x-ray imager (SXRI) which is detailed in this paper. The SXRI will be used to measure the relative size of the heated region and also the relative level of specific x-ray emissions among several shot and target configurations. The laser system used was the Titan laser located in the Jupiter Laser Facility (JLF) at Lawrence Livermore National Laboratory (LLNL). Titan uses the JLF Janus Nd:glass laser west frontend system with a Optical Parametric Chirped Pulse Amplification (OPCPA) in place of the nanosecond oscillator. The system is capable of producing laser intensities of over a petawatt with several tens of joules delivered in the beam.

  7. Polarized high-brilliance and high-resolution soft x-ray source at ELETTRA: The performance of beamline BACH

    International Nuclear Information System (INIS)

    Zangrando, M.; Zacchigna, M.; Finazzi, M.; Cocco, D.; Rochow, R.; Parmigiani, F.

    2004-01-01

    BACH, a soft x-ray beamline for polarization-dependent experiments at the Italian synchrotron radiation facility ELETTRA, was recently completed and characterized. Its performance, in terms of energy resolution, flux and polarization, is presented. Based on two APPLE II undulators, BACH covers the energy range between 35 and 1600 eV with the control of the light polarization. The monochromator is equipped with four gratings and allows one to work either in a high resolution or in a high flux mode. After the monochromator, the beamline is split into two branches with different refocusing properties. One is optimized to exploit the performance of the soft x-ray spectrometer (ComIXS) available at the beamline. Resolving powers between 12000 at 90 eV photon energy and 6600 near 867 eV were achieved using the high-resolution gratings and the smallest available slit width (10 μm). For the high-brilliance grating, which works between 290 and 1600 eV, resolving powers between 7000 at 400 eV and 2200 at 867 eV were obtained. The flux in the experimental chamber, measured with the high-resolution gratings for linearly polarized light at the best achievable resolution, ranges between 4x10 11 photons/s at 125 eV and 2x10 10 photons/s between 900 and 1250 eV. In circularly polarized mode the flux is two times larger for energies up to 380 eV. A gain of nearly one order of magnitude is obtained for the high-brilliance grating, in accordance with theoretical predictions. Flux beyond 1.3x10 11 photons/s was measured up to 1300 eV, and thus over nearly the complete energy range covered by this high-brilliance grating, with a maximum of 1.6x10 11 photons/s between 800 and 1100 eV. First results from polarization measurements confirm a polarization above 99.7% for both linearly and circularly polarized modes at low energies. Circular dichroism experiments indicate a circular polarization beyond 90% at the Fe L 2 /L 3 edge near 720 eV

  8. High-resolution imprint and soft lithography for patterning self-assembling systems

    NARCIS (Netherlands)

    Duan, X.

    2010-01-01

    This thesis contributes to the continuous development of patterning strategies in several different areas of unconventional nanofabrication. A series of soft lithography approaches (microcontact printing, nanomolding in capillaries), nanoimprint lithography (NIL), and capillary force lithography

  9. Enabling closed-loop control of high degree-of-freedom soft robotic structures

    Data.gov (United States)

    National Aeronautics and Space Administration — To expand the nation’s capabilities for space exploration, a new approach to robotic manipulation is proposed. The approach utilizes soft materials to create an...

  10. Investigating Enhancement Mode Gallium Nitride Power FETs in High Voltage, High Frequency Soft Switching Converters

    DEFF Research Database (Denmark)

    Nour, Yasser; Knott, Arnold; Jørgensen, Ivan Harald Holger

    2016-01-01

    An increased attention has been detected to develop smaller and lighter high voltage power converters in the range of 50V to 400V domain. The main applications for these converters are mainly focused for Power over Ethernet (PoE), LED lighting and AC adapters. This work will discuss a study...

  11. High-pressure duo-multichannel soft x-ray spectrometer for tokamak plasma diagnostics

    International Nuclear Information System (INIS)

    Schwob, J.L.; Wouters, A.W.; Suckewer, S.

    1987-03-01

    A high-resolution, time-resolving soft X-ray multichannel spectrometer (SOXMOS) that permits the simultaneous measurement of emission in two different spectral ranges has been developed and tested extensively for tokamak plasma diagnostics. The basic instrument is a high-resolution, interferometrically adjusted, extreme grazing incidence Schwob-Fraenkel duochromator. The instrument is equipped with two multichannel detectors that are adjusted interferometrically and scan along the Rowland circle. Each consists of an MgF 2 coated, funneled microchannel plate, associated with a phosphor screen image intensifier that is coupled to a 1024-element photodiode array by a flexible fibrer optic conduit. The total wavelength coverage of the instrument is 5 to 340 0 A with a measured resolution (FWHM) of about 0.2 A when equipped with a 600 g/mm grating, and 5 to 85 A with a resolution of about 0.06 A using a 2400 g/mm grating. The simultaneous spectral coverage of each detector varies from 15 A at the short wavelength limit to 70 A at the long wavelength limit with the lower dispersion grating. The minimum read-out time for a full spectral portion is 17 ms, but several individual lines can be measured with 1 ms time resolution by selected pixel readout. Higher time resolution can be achieved by replacing one multichannel detector with a single channel electron multiplier detector. Examples of data from the PLT and TFTR tokamaks are presented to illustrate the instrument's versatility, high spectral resolution, and high signal-to-noise ratio even in the 10 A region. 44 refs., 20 figs

  12. Stabilization void-fill encapsulation high-efficiency particulate filters

    International Nuclear Information System (INIS)

    Alexander, R.G.; Stewart, W.E.; Phillips, S.J.; Serkowski, M.M.; England, J.L.; Boynton, H.C.

    1994-05-01

    This report discusses high-efficiency particulate air (HEPA) filter systems that which are contaminated with radionuclides are part of the nuclear fuel processing systems conducted by the US Department of Energy (DOE) and require replacement and safe and efficient disposal for plant safety. Two K-3 HEPA filters were removed from service, placed burial boxes, buried, and safely and efficiently stabilized remotely which reduced radiation exposure to personnel and the environment

  13. Design of High Efficiency Illumination for LED Lighting

    OpenAIRE

    Chang, Yong-Nong; Cheng, Hung-Liang; Kuo, Chih-Ming

    2013-01-01

    A high efficiency illumination for LED street lighting is proposed. For energy saving, this paper uses Class-E resonant inverter as main electric circuit to improve efficiency. In addition, single dimming control has the best efficiency, simplest control scheme and lowest circuit cost among other types of dimming techniques. Multiple serial-connected transformers used to drive the LED strings as they can provide galvanic isolation and have the advantage of good current distribution against de...

  14. The Energy Efficiency of High Intensity Proton Driver Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Yakovlev, Vyacheslav [Fermilab; Grillenberger, Joachim [PSI, Villigen; Kim, Sang-Ho [ORNL, Oak Ridge (main); Seidel, Mike [PSI, Villigen; Yoshii, Masahito [JAEA, Ibaraki

    2017-05-01

    For MW class proton driver accelerators the energy efficiency is an important aspect; the talk reviews the efficiency of different accelerator concepts including s.c./n.c. linac, rapid cycling synchrotron, cyclotron; the potential of these concepts for very high beam power is discussed.

  15. Association Between Treatment at High-Volume Facilities and Improved Overall Survival in Soft Tissue Sarcomas.

    Science.gov (United States)

    Venigalla, Sriram; Nead, Kevin T; Sebro, Ronnie; Guttmann, David M; Sharma, Sonam; Simone, Charles B; Levin, William P; Wilson, Robert J; Weber, Kristy L; Shabason, Jacob E

    2018-03-15

    Soft tissue sarcomas (STS) are rare malignancies that require complex multidisciplinary management. Therefore, facilities with high sarcoma case volume may demonstrate superior outcomes. We hypothesized that STS treatment at high-volume (HV) facilities would be associated with improved overall survival (OS). Patients aged ≥18 years with nonmetastatic STS treated with surgery and radiation therapy at a single facility from 2004 through 2013 were identified from the National Cancer Database. Facilities were dichotomized into HV and low-volume (LV) cohorts based on total case volume over the study period. OS was assessed using multivariable Cox regression with propensity score-matching. Patterns of care were assessed using multivariable logistic regression analysis. Of 9025 total patients, 1578 (17%) and 7447 (83%) were treated at HV and LV facilities, respectively. On multivariable analysis, high educational attainment, larger tumor size, higher grade, and negative surgical margins were statistically significantly associated with treatment at HV facilities; conversely, black race and non-metropolitan residence were negative predictors of treatment at HV facilities. On propensity score-matched multivariable analysis, treatment at HV facilities versus LV facilities was associated with improved OS (hazard ratio, 0.87, 95% confidence interval, 0.80-0.95; P = .001). Older age, lack of insurance, greater comorbidity, larger tumor size, higher tumor grade, and positive surgical margins were associated with statistically significantly worse OS. In this observational cohort study using the National Cancer Database, receipt of surgery and radiation therapy at HV facilities was associated with improved OS in patients with STS. Potential sociodemographic disparities limit access to care at HV facilities for certain populations. Our findings highlight the importance of receipt of care at HV facilities for patients with STS and warrant further study into improving access to

  16. The Enhancement of Junior High School Students' Abilities in Mathematical Problem Solving Using Soft Skill-based Metacognitive Learning

    OpenAIRE

    Murni, Atma; Sabandar, Jozua; S. Kusumah, Yaya; Kartasamita, Bana Goerbana

    2013-01-01

    The aim of this study is to know the differences of enhancement in mathematical problem solving ability (MPSA) between the students who received soft skill- based metacognitive learning (SSML) with the students who got conventional learning (CL). This research is a quasi experimental design with pretest-postest control group. The population in this study is the students of Junior High School in Pekanbaru city. The sample consist of 135 students, 68 of them are from the high-level...

  17. High Efficiency Lighting with Integrated Adaptive Control (HELIAC), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed project is the continued development of the High Efficiency Lighting with Integrated Adaptive Control (HELIAC) system. Solar radiation is not a viable...

  18. High Efficiency Lighting with Integrated Adaptive Control (HELIAC), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation of the proposed project is the development of High Efficiency Lighting with Integrated Adaptive Control (HELIAC) systems to drive plant growth. Solar...

  19. Efficiency of poly-generating high temperature fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Margalef, Pere; Brown, Tim; Brouwer, Jacob; Samuelsen, Scott [National Fuel Cell Research Center (NFCRC), University of California, Irvine, CA 92697-3550 (United States)

    2011-02-15

    High temperature fuel cells can be designed and operated to poly-generate electricity, heat, and useful chemicals (e.g., hydrogen) in a variety of configurations. The highly integrated and synergistic nature of poly-generating high temperature fuel cells, however, precludes a simple definition of efficiency for analysis and comparison of performance to traditional methods. There is a need to develop and define a methodology to calculate each of the co-product efficiencies that is useful for comparative analyses. Methodologies for calculating poly-generation efficiencies are defined and discussed. The methodologies are applied to analysis of a Hydrogen Energy Station (H{sub 2}ES) showing that high conversion efficiency can be achieved for poly-generation of electricity and hydrogen. (author)

  20. An Improved, Highly Efficient Method for the Synthesis of Bisphenols

    Directory of Open Access Journals (Sweden)

    L. S. Patil

    2011-01-01

    Full Text Available An efficient synthesis of bisphenols is described by condensation of substituted phenols with corresponding cyclic ketones in presence of cetyltrimethylammonium chloride and 3-mercaptopropionic acid as a catalyst in extremely high purity and yields.

  1. High Efficiency S-Band 20 Watt Amplifier

    Data.gov (United States)

    National Aeronautics and Space Administration — This project includes the design and build of a prototype 20 W, high efficiency, S-Band amplifier.   The design will incorporate the latest semiconductor technology,...

  2. X-ray conversion efficiency of high-Z hohlraum wall materials for indirect drive ignition

    International Nuclear Information System (INIS)

    Dewald, E. L.; Rosen, M.; Glenzer, S. H.; Suter, L. J.; Neumayer, P.; Landen, O. L.; Girard, F.; Jadaud, J. P.; Wagon, F.; Huser, G.; Schein, J.; Constantin, C.

    2008-01-01

    The conversion efficiency of 351 nm laser light to soft x rays (0.1-5 keV) was measured for Au, U, and high Z mixture ''cocktails'' used as hohlraum wall materials in indirect drive fusion experiments. For the spherical targets in a direct drive geometry, flattop laser pulses and laser smoothing with phase plates are employed to achieve constant and uniform laser intensities of 10 14 and 10 15 W/cm 2 over the target surface that are relevant for the future ignition experiments at the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Nucl. Fusion 44, 228 (2004)]. The absolute time and spectrally resolved radiation flux is measured with a multichannel soft x-ray power diagnostic. The conversion efficiency is then calculated by dividing the measured x-ray power by the incident laser power from which the measured laser backscattering losses are subtracted. After ∼0.5 ns, the time resolved x-ray conversion efficiency reaches a slowly increasing plateau of 95% at 10 14 W/cm 2 laser intensity and of 80% at 10 15 W/cm 2 . The M-band flux (2-5 keV) is negligible at 10 14 W/cm 2 reaching ∼1% of the total x-ray flux for all target materials. In contrast, the M-band flux is significant and depends on the target material at 10 15 W/cm 2 laser intensity, reaching values between 10% of the total flux for U and 27% for Au. LASNEX simulations [G. B. Zimmerman and W. L. Kruer, Comm. Plasma Phys. Contr. Fusion 2, 51 (1975)] show good agreement in conversion efficiency and radiated spectra with data when using XSN atomic physics model and a flux limiter of 0.15, but they underestimate the generated M-band flux.

  3. X-ray Conversion Efficiency of high-Z hohlraum wall materials for indirect drive ignition

    International Nuclear Information System (INIS)

    Dewald, E.; Rosen, M.; Glenzer, S.H.; Suter, L.J.; Girard, F.; Jadaud, J.P.; Schein, J.; Constantin, C.G.; Neumayer, P.; Landen, O.

    2008-01-01

    We measure the conversion efficiency of 351 nm laser light to soft x-rays (0.1-5 keV) for Au, U and high Z mixtures 'cocktails' used for hohlraum wall materials in indirect drive ICF. We use spherical targets in a direct drive geometry, flattop laser pulses and laser smoothing with phase plates to achieve constant and uniform laser intensities of 10 14 and 10 15 W/cm 2 over the target surface that are relevant for the future ignition experiments on NIF. The absolute time and spectrally-resolved radiation flux is measured with a multichannel soft x-ray power diagnostic. The conversion efficiency is then calculated by dividing the measured x-ray power by the incident laser power from which the measured laser backscattering losses is subtracted. After ∼0.5 ns, the time resolved x-ray conversion efficiency reaches a slowly increasing plateau of 95% at 10 14 W/cm 2 laser intensity and of 80% at 10 15 W/cm 2 . The M-band flux (2-5 keV) is negligible at 10 14 W/cm 2 reaching ∼1% of the total x-ray flux for all target materials. In contrast, the M-band flux is significant and depends on the target material at 10 15 W/cm 2 laser intensity, reaching values between 10% of the total flux for U and 27% for Au. Our LASNEX simulations show good agreement in conversion efficiency and radiated spectra with data when using XSN atomic physics model and a flux limiter of 0.15, but they underestimate the generated M-band flux

  4. SOFT X-RAY FEL BY CASCADING STAGES OF HIGH GAIN HARMONIC GENERATION.

    Energy Technology Data Exchange (ETDEWEB)

    YU,L.H.

    2003-04-17

    Short wavelength Free-Electron Lasers are perceived as the next generation of synchrotron light sources. In the past decade, significant advances have been made in the theory and technology of high brightness electron beams and single pass FELs. These developments facilitate the construction of practical VUV FELs and make x-ray FELs possible. Self-Amplified Spontaneous Emission (SASE) and High Gain Harmonic Generation (HGHG)[17-19] are the two leading candidates for x-ray FELs. The first lasing of HGHG proof-of-principle experiment succeeded in August, 1999 in Brookhaven National Laboratory. The experimental results agree with the theory prediction. Compared with SASE FEL, the following advantages of HGHG FEL were confirmed; (1) Better longitudinal coherence, and hence, much narrower bandwidth than SASE. (2) More stable central wavelength, (3) More stable output energy. In this introduction, we will first briefly describe the principle of HGHG in Section A. Then in Section B, we give a general description about how to produce soft x-ray by cascading HGHG scheme. In section 2, we give a detailed description of the system design. Then, in section 3, we give a description of an analytical estimate for the HGHG process, and the calculation of the parameters of different parts of the system. The estimate is found to agree with simulation within about a factor 2 for most cases we studied. The stability issue, the sensitivity to parameter variation, the harmonic contents of the final output, and the noise degradation issue of such HGHG scheme are discussed in Section 4. The results are presented in Section 4. Finally, in Section 5, we will give some discussion of the challenges in development of the system. The conclusion is given in Section 6.

  5. Process development for high-efficiency silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Gee, J.M.; Basore, P.A.; Buck, M.E.; Ruby, D.S.; Schubert, W.K.; Silva, B.L.; Tingley, J.W.

    1991-12-31

    Fabrication of high-efficiency silicon solar cells in an industrial environment requires a different optimization than in a laboratory environment. Strategies are presented for process development of high-efficiency silicon solar cells, with a goal of simplifying technology transfer into an industrial setting. The strategies emphasize the use of statistical experimental design for process optimization, and the use of baseline processes and cells for process monitoring and quality control. 8 refs.

  6. Highly efficient procedure for the transesterification of vegetable oil

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Xuezheng; Gao, Shan; He, Mingyuan [Shanghai Key Laboratory of Green Chemistry and Chemical Process, Department of Chemistry, East China Normal University, Shanghai 200062 (China); Yang, Jianguo [Shanghai Key Laboratory of Green Chemistry and Chemical Process, Department of Chemistry, East China Normal University, Shanghai 200062 (China); Energy Institute, Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States)

    2009-10-15

    The highly efficient procedure has been developed for the synthesis of biodiesel from vegetable oil and methanol. The KF/MgO has been selected as the most efficient catalyst for the reactions with the yield of 99.3%. Operational simplicity, without need of the purification of raw vegetable oil, low cost of the catalyst used, high activities, no saponification and reusability are the key features of this methodology. (author)

  7. The photonic nanowire: A highly efficient single-photon source

    DEFF Research Database (Denmark)

    Gregersen, Niels

    2014-01-01

    The photonic nanowire represents an attractive platform for a quantum light emitter. However, careful optical engineering using the modal method, which elegantly allows access to all relevant physical parameters, is crucial to ensure high efficiency.......The photonic nanowire represents an attractive platform for a quantum light emitter. However, careful optical engineering using the modal method, which elegantly allows access to all relevant physical parameters, is crucial to ensure high efficiency....

  8. Highly Efficient Spontaneous Emission from Self-Assembled Quantum Dots

    DEFF Research Database (Denmark)

    Johansen, Jeppe; Lund-Hansen, Toke; Hvam, Jørn Märcher

    2006-01-01

    We present time resolved measurements of spontaneous emission (SE) from InAs/GaAs quantum dots (QDs). The measurements are interpreted using Fermi's Golden Rule and from this analysis we establish the parameters for high quantum efficiency.......We present time resolved measurements of spontaneous emission (SE) from InAs/GaAs quantum dots (QDs). The measurements are interpreted using Fermi's Golden Rule and from this analysis we establish the parameters for high quantum efficiency....

  9. Global climate change: Mitigation opportunities high efficiency large chiller technology

    Energy Technology Data Exchange (ETDEWEB)

    Stanga, M.V.

    1997-12-31

    This paper, comprised of presentation viewgraphs, examines the impact of high efficiency large chiller technology on world electricity consumption and carbon dioxide emissions. Background data are summarized, and sample calculations are presented. Calculations show that presently available high energy efficiency chiller technology has the ability to substantially reduce energy consumption from large chillers. If this technology is widely implemented on a global basis, it could reduce carbon dioxide emissions by 65 million tons by 2010.

  10. High efficiency USC power plant - present status and future potential

    Energy Technology Data Exchange (ETDEWEB)

    Blum, R. [Faelleskemikerne I/S Fynsvaerket (Denmark); Hald, J. [Elsam/Elkraft/TU Denmark (Denmark)

    1998-12-31

    Increasing demand for energy production with low impact on the environment and minimised fuel consumption can be met with high efficient coal fired power plants with advanced steam parameters. An important key to this improvement is the development of high temperature materials with optimised mechanical strength. Based on the results of more than ten years of development a coal fired power plant with an efficiency above 50 % can now be realised. Future developments focus on materials which enable an efficiency of 52-55 %. (orig.) 25 refs.

  11. High efficiency USC power plant - present status and future potential

    Energy Technology Data Exchange (ETDEWEB)

    Blum, R [Faelleskemikerne I/S Fynsvaerket (Denmark); Hald, J [Elsam/Elkraft/TU Denmark (Denmark)

    1999-12-31

    Increasing demand for energy production with low impact on the environment and minimised fuel consumption can be met with high efficient coal fired power plants with advanced steam parameters. An important key to this improvement is the development of high temperature materials with optimised mechanical strength. Based on the results of more than ten years of development a coal fired power plant with an efficiency above 50 % can now be realised. Future developments focus on materials which enable an efficiency of 52-55 %. (orig.) 25 refs.

  12. Prevalence of oral soft tissue lesions in HIV-infected minority children treated with highly active antiretroviral therapies.

    Science.gov (United States)

    Flanagan, M A; Barasch, A; Koenigsberg, S R; Fine, D; Houpt, M

    2000-01-01

    This project studied the prevalence of oral soft tissue disease in HIV-infected children treated with highly active antiretroviral therapy (HAART). Thirty-eight HIV-infected children participated in the study. Twenty-three of these patients were treated with HAART while 14 received exclusively reverse transcriptase inhibitors (RTI) and served as controls. The children were examined three times at approximately one-month intervals while their health history and laboratory data were abstracted from medical charts. Analyses were performed to determine differences in lesion prevalence between treatment groups as well as between lesion and no lesion groups with regard to immune differences. Thirty patients (79%) had oral lesions detected in at least one visit. There were no differences in specific lesion prevalence between HAART compared with RTI-treated children. However, a trend for more oral candidiasis in the latter group was observed. Subjects with oral soft tissue lesions had lower CD4 counts (P = 0.04) and percentage (P = 0.01) but similar viral loads when compared to patients without oral soft tissue disease. HAART does not appear to significantly affect oral soft tissue disease prevalence in HIV-infected children. Presence of lesions was associated with decreased immunity and may signal advancing disease.

  13. A soft biomolecule actuator based on a highly functionalized bacterial cellulose nano-fiber network with carboxylic acid groups.

    Science.gov (United States)

    Wang, Fan; Jeon, Jin-Han; Park, Sukho; Kee, Chang-Doo; Kim, Seong-Jun; Oh, Il-Kwon

    2016-01-07

    Upcoming human-related applications such as soft wearable electronics, flexible haptic systems, and active bio-medical devices will require bio-friendly actuating materials. Here, we report a soft biomolecule actuator based on carboxylated bacterial cellulose (CBC), ionic liquid (IL), and poly (3,4-ethylenedioxythiophene)-poly(styrenesulfonate) ( PSS) electrodes. Soft and biocompatible polymer-IL composites were prepared via doping of CBC with ILs. The highly conductive PSS layers were deposited on both sides of the CBC-IL membranes by a dip-coating technique to yield a sandwiched actuator system. Ionic conductivity and ionic exchange capacity of the CBC membrane can be increased up to 22.8 times and 1.5 times compared with pristine bacterial cellulose (BC), respectively, resulting in 8 times large bending deformation than the pure BC actuators with metallic electrodes in an open air environment. The developed CBC-IL actuators show significant progress in the development of biocompatible and soft actuating materials with quick response, low operating voltage and comparatively large bending deformation.

  14. Charge transport in highly efficient iridium cored electrophosphorescent dendrimers

    Science.gov (United States)

    Markham, Jonathan P. J.; Samuel, Ifor D. W.; Lo, Shih-Chun; Burn, Paul L.; Weiter, Martin; Bässler, Heinz

    2004-01-01

    Electrophosphorescent dendrimers are promising materials for highly efficient light-emitting diodes. They consist of a phosphorescent core onto which dendritic groups are attached. Here, we present an investigation into the optical and electronic properties of highly efficient phosphorescent dendrimers. The effect of dendrimer structure on charge transport and optical properties is studied using temperature-dependent charge-generation-layer time-of-flight measurements and current voltage (I-V) analysis. A model is used to explain trends seen in the I-V characteristics. We demonstrate that fine tuning the mobility by chemical structure is possible in these dendrimers and show that this can lead to highly efficient bilayer dendrimer light-emitting diodes with neat emissive layers. Power efficiencies of 20 lm/W were measured for devices containing a second-generation (G2) Ir(ppy)3 dendrimer with a 1,3,5-tris(2-N-phenylbenzimidazolyl)benzene electron transport layer.

  15. Very-High Efficiency, High Power Laser Diodes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — AdTech Photonics, in collaboration with the Center for Advanced Studies in Photonics Research (CASPR) at UMBC, is pleased to submit this proposal entitled ?Very-High...

  16. Coronal temperature diagnostics from high-resolution soft X-ray spectra

    Science.gov (United States)

    Strong, K. T.; Claflin, E. S.; Lemen, J. R.; Linford, G. A.

    1988-01-01

    The problem of deriving the temperature of the coronal plasma from soft X-ray spectra is discussed. Spectral atlas scans of the soft X-ray spectrum from the Flat Crystal Spectrometer on the Solar Maximum Mission are compared with theoretical predictions of the relative intensities of some of the brighter lines to determine which line intensity ratios give the most reliable temperature diagnostics. The techniques considered include line widths, He-like G ratios, intensity ratios, and ratios of lines formed by different elements. It is found that the best temperature diagnostics come from the ratios of lines formed by successive ionization stages of the same element.

  17. CGC/saturation approach for soft interactions at high energy: survival probability of central exclusive production

    Energy Technology Data Exchange (ETDEWEB)

    Gotsman, E.; Maor, U. [Tel Aviv University, Department of Particle Physics, Raymond and Beverly Sackler Faculty of Exact Science, School of Physics and Astronomy, Tel Aviv (Israel); Levin, E. [Tel Aviv University, Department of Particle Physics, Raymond and Beverly Sackler Faculty of Exact Science, School of Physics and Astronomy, Tel Aviv (Israel); Universidad Tecnica Federico Santa Maria, Departemento de Fisica, Centro Cientifico-Tecnologico de Valparaiso, Valparaiso (Chile)

    2016-04-15

    We estimate the value of the survival probability for central exclusive production in a model which is based on the CGC/saturation approach. Hard and soft processes are described in the same framework. At LHC energies, we obtain a small value for the survival probability. The source of the small value is the impact parameter dependence of the hard amplitude. Our model has successfully described a large body of soft data: elastic, inelastic and diffractive cross sections, inclusive production and rapidity correlations, as well as the t-dependence of deep inelastic diffractive production of vector mesons. (orig.)

  18. [Characteristics of phosphorus uptake and use efficiency of rice with high yield and high phosphorus use efficiency].

    Science.gov (United States)

    Li, Li; Zhang, Xi-Zhou; Li, Tinx-Xuan; Yu, Hai-Ying; Ji, Lin; Chen, Guang-Deng

    2014-07-01

    A total of twenty seven middle maturing rice varieties as parent materials were divided into four types based on P use efficiency for grain yield in 2011 by field experiment with normal phosphorus (P) application. The rice variety with high yield and high P efficiency was identified by pot experiment with normal and low P applications, and the contribution rates of various P efficiencies to yield were investigated in 2012. There were significant genotype differences in yield and P efficiency of the test materials. GRLu17/AiTTP//Lu17_2 (QR20) was identified as a variety with high yield and high P efficiency, and its yields at the low and normal rates of P application were 1.96 and 1.92 times of that of Yuxiang B, respectively. The contribution rate of P accumulation to yield was greater than that of P grain production efficiency and P harvest index across field and pot experiments. The contribution rates of P accumulation and P grain production efficiency to yield were not significantly different under the normal P condition, whereas obvious differences were observed under the low P condition (66.5% and 26.6%). The minimal contribution to yield was P harvest index (11.8%). Under the normal P condition, the contribution rates of P accumulation to yield and P harvest index were the highest at the jointing-heading stage, which were 93.4% and 85.7%, respectively. In addition, the contribution rate of P accumulation to grain production efficiency was 41.8%. Under the low P condition, the maximal contribution rates of P accumulation to yield and grain production efficiency were observed at the tillering-jointing stage, which were 56.9% and 20.1% respectively. Furthermore, the contribution rate of P accumulation to P harvest index was 16.0%. The yield, P accumulation, and P harvest index of QR20 significantly increased under the normal P condition by 20.6%, 18.1% and 18.2% respectively compared with that in the low P condition. The rank of the contribution rates of P

  19. High Efficiency of Two Efficient QSDC with Authentication Is at the Cost of Their Security

    International Nuclear Information System (INIS)

    Su-Juan, Qin; Qiao-Yan, Wen; Luo-Ming, Meng; Fu-Chen, Zhu

    2009-01-01

    Two efficient protocols of quantum secure direct communication with authentication [Chin. Phys. Lett. 25 (2008) 2354] were recently proposed by Liu et al. to improve the efficiency of two protocols presented in [Phys. Rev. A 75 (2007) 026301] by four Pauli operations. We show that the high efficiency of the two protocols is at the expense of their security. The authenticator Trent can reach half the secret by a particular attack strategy in the first protocol. In the second protocol, not only Trent but also an eavesdropper outside can elicit half-information about the secret from the public declaration

  20. Tailoring the soft magnetic properties of sputtered multilayers by microstructure engineering for high frequency applications

    Directory of Open Access Journals (Sweden)

    Claudiu V. Falub

    2017-05-01

    Full Text Available Soft magnetic Ni78.5Fe21.5, Co91.5Ta4.5Zr4 and Fe52Co28B20 thin films laminated with SiO2, Al2O3, AlN, and Ta2O5 dielectric interlayers were deposited on 8” Si wafers using DC, pulsed DC and RF cathodes in the industrial, high-throughput Evatec LLS-EVO-II magnetron sputtering system. A typical multilayer consists of a bilayer stack up to 50 periods, with alternating (50-100 nm thick magnetic layers and (2-20 nm thick dielectric interlayers. We introduced the in-plane magnetic anisotropy in these films during sputtering by a combination of a linear magnetic field, seed layer texturing by means of linear collimators, and the oblique incidence inherent to the geometry of the sputter system. Depending on the magnetic material, the anisotropy field for these films was tuned in the range of ∼(7-120 Oe by choosing the appropriate interlayer thickness, the aspect ratios of the linear collimators in front of the targets, and the sputter process parameters (e.g. pressure, power, DC pulse frequency, while the coercivity was kept low, ∼(0.05-0.9 Oe. The alignment of the easy axis (EA on the 8” wafers was typically between ±1.5° and ±4°. We discuss the interdependence of structure and magnetic properties in these films, as revealed by atomic force microscopy (AFM, X-ray reflectivity (XRR with reciprocal space mapping (RSM and magneto-optical Kerr effect (MOKE measurements.

  1. High-resolution soft x-ray photoionization studies of selected molecules

    International Nuclear Information System (INIS)

    Hudson, E.A.

    1993-08-01

    Near-edge soft x-ray photoionization spectra were measured for CO, SF 6 , H 2 S, and D 2 S in the gas phase, using the Free University of Berlin plane-grating SX-700-II monochromator at the synchrotron radiation source BESSY. Photoionization spectra of carbon monoxide were measured near the carbon and oxygen K edges. Vibrational spacings and bond lengths are derived for several resonances. Results are consistent with equivalent-core model and indicate the different influences of the carbon and oxygen Is core holes. Corresponding spectra of H 2 CO and D 2 CO were also measured. Assignment of complex vibrational structure in valence-shell and Rydberg resonances is facilitated by comparison of spectra for the two isotopic species. Geometric and vibrational parameters are derived for several carbon 1s core-excited states. Isotopic shifts are observed in the energies and linewidths of some core-excited states. Sulfur hexafluoride photoionization spectra, measured near the sulfur L 2,3 edges, show several series of weak, narrow Rydberg resonances. High resolution and good counting statistics allow a complete assignment of these states. Lineshapes of the broad inner-well resonances are analyzed to establish the magnitudes of vibrational and lifetime broadening in these states. Spectra of the H 2 S and D 2 S molecules were also measured near the sulfur L 2,3 edges. Besides lower-energy transitions to inner-well states, a complex manifold of overlapping Rydberg resonances is observed. The rich fine structure of these states arises mainly from removal of orbital degeneracies in molecular field. Additional structure due to vibrational excitations in the final state is identified by comparison of the spectra for the two isotopic species

  2. Characterization of a High-Power, High-Frequency, Soft-Switching Power Converter for EMC Considerations

    National Research Council Canada - National Science Library

    Li, S

    2001-01-01

    This report presents the setup, experimental techniques, and results of the radiated emissions tests on the PCM-3 soft-switching power converter using the Gigahertz Transverse Electromagnetic (GTEM) facility...

  3. The emerging High Efficiency Video Coding standard (HEVC)

    International Nuclear Information System (INIS)

    Raja, Gulistan; Khan, Awais

    2013-01-01

    High definition video (HDV) is becoming popular day by day. This paper describes the performance analysis of latest upcoming video standard known as High Efficiency Video Coding (HEVC). HEVC is designed to fulfil all the requirements for future high definition videos. In this paper, three configurations (intra only, low delay and random access) of HEVC are analyzed using various 480p, 720p and 1080p high definition test video sequences. Simulation results show the superior objective and subjective quality of HEVC

  4. Controlling the induced anisotropy in soft magnetic films for high-frequency applications

    NARCIS (Netherlands)

    Chezan, A.R.; Craus, C.B.; Chechenin, N.G.; Vystavel, T.; Hosson, J.Th.M. De; Niesen, L.; Boerma, D.O.

    Nanocrystalline soft magnetic Fe–Zr–N films were successfully deposited by dc magnetron reactive sputtering. The nitrogen content was controlled by varying the Ar/N2 ratio and/or the substrate temperature. The films have saturation magnetization and induced uniaxial anisotropy values in the range

  5. Observation of spectral gain narrowing in a high-order harmonic seeded soft-x-ray amplifier

    Czech Academy of Sciences Publication Activity Database

    Tissandier, F.; Sebban, S.; Ribière, M.; Gautier, J.; Zeitoun, Ph.; Lambert, G.; Barszczak Sardinha, A.; Goddet, J.Ph.; Burgy, F.; Lefrou, T.; Valentin, C.; Rousse, A.; Guilbaud, O.; Klisnick, A.; Nejdl, Jaroslav; Mocek, Tomáš; Maynard, G.

    2010-01-01

    Roč. 81, č. 6 (2010), 063833/1-063833/4 ISSN 1050-2947 R&D Projects: GA AV ČR IAA100100911 Institutional research plan: CEZ:AV0Z10100523 Keywords : high-order harmonic * soft-x-ray * amplification * OFI * gain narrowing * Ni-like krypton plasma Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.861, year: 2010 http://pra.aps.org/abstract/PRA/v81/i6/e063833

  6. High quality, high efficiency welding technology for nuclear power plants

    International Nuclear Information System (INIS)

    Aoki, Shigeyuki; Nagura, Yasumi

    1996-01-01

    For nuclear power plants, it is required to ensure the safety under the high reliability and to attain the high rate of operation. In the manufacture and installation of the machinery and equipment, the welding techniques which become the basis exert large influence to them. For the purpose of improving joint performance and excluding human errors, welding heat input and the number of passes have been reduced, the automation of welding has been advanced, and at present, narrow gap arc welding and high energy density welding such as electron beam welding and laser welding have been put to practical use. Also in the welding of pipings, automatic gas metal arc welding is employed. As for the welding of main machinery and equipment, there are the welding of the joints that constitute pressure boundaries, the build-up welding on the internal surfaces of pressure vessels for separating primary water from them, and the sealing welding of heating tubes and tube plates in steam generators. These weldings are explained. The welding of pipings and the state of development and application of new welding methods are reported. (K.I.)

  7. Development of high-efficiency solar cells on silicon web

    Science.gov (United States)

    Meier, D. L.; Greggi, J.; Okeeffe, T. W.; Rai-Choudhury, P.

    1986-01-01

    Work was performed to improve web base material with a goal of obtaining solar cell efficiencies in excess of 18% (AM1). Efforts in this program are directed toward identifying carrier loss mechanisms in web silicon, eliminating or reducing these mechanisms, designing a high efficiency cell structure with the aid of numerical models, and fabricating high efficiency web solar cells. Fabrication techniques must preserve or enhance carrier lifetime in the bulk of the cell and minimize recombination of carriers at the external surfaces. Three completed cells were viewed by cross-sectional transmission electron microscopy (TEM) in order to investigate further the relation between structural defects and electrical performance of web cells. Consistent with past TEM examinations, the cell with the highest efficiency (15.0%) had no dislocations but did have 11 twin planes.

  8. Efficient Unsteady Flow Visualization with High-Order Access Dependencies

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiang; Guo, Hanqi; Yuan, Xiaoru

    2016-04-19

    We present a novel high-order access dependencies based model for efficient pathline computation in unsteady flow visualization. By taking longer access sequences into account to model more sophisticated data access patterns in particle tracing, our method greatly improves the accuracy and reliability in data access prediction. In our work, high-order access dependencies are calculated by tracing uniformly-seeded pathlines in both forward and backward directions in a preprocessing stage. The effectiveness of our proposed approach is demonstrated through a parallel particle tracing framework with high-order data prefetching. Results show that our method achieves higher data locality and hence improves the efficiency of pathline computation.

  9. Efficient estimation for ergodic diffusions sampled at high frequency

    DEFF Research Database (Denmark)

    Sørensen, Michael

    A general theory of efficient estimation for ergodic diffusions sampled at high fre- quency is presented. High frequency sampling is now possible in many applications, in particular in finance. The theory is formulated in term of approximate martingale estimating functions and covers a large class...

  10. High-Efficiency Klystron Design for the CLIC Project

    CERN Document Server

    Mollard, Antoine; Peauger, Franck; Plouin, Juliette; Beunas, Armel; Marchesin, Rodolphe

    2017-01-01

    The CLIC project requests new type of RF sources for the high power conditioning of the accelerating cavities. We are working on the development of a new kind of high-efficiency klystron to fulfill this need. This work is performed under the EuCARD-2 European program and involves theoretical and experimental study of a brand new klystron concept.

  11. Efficient estimation for high similarities using odd sketches

    DEFF Research Database (Denmark)

    Mitzenmacher, Michael; Pagh, Rasmus; Pham, Ninh Dang

    2014-01-01

    . This means that Odd Sketches provide a highly space-efficient estimator for sets of high similarity, which is relevant in applications such as web duplicate detection, collaborative filtering, and association rule learning. The method extends to weighted Jaccard similarity, relevant e.g. for TF-IDF vector...... and web duplicate detection tasks....

  12. A high efficiency photovoltaic module integrated converter with the asymmetrical half-bridge flyback converter

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Heeje; Kim, Jongrak; Shin, Dongsul [Department of Electrical Engineering, Pusan National University, Jangjeon, Geumjeong, Busan 609-735 (Korea); Kim, Hosung; Lee, Kyungjun [Department of Electrical Engineering, Pusan National University, Jangjeon, Geumjeong, Busan 609-735 (Korea); New and Renewable Energy System Research Center, Korea Electro-technology Research Institute, 28-1, Sungju-dong Changwon-si, Kyungsannam-do, 641-120 (Korea); Kim, Jonghyun; Yoo, Dongwook [New and Renewable Energy System Research Center, Korea Electro-technology Research Institute, 28-1, Sungju-dong Changwon-si, Kyungsannam-do, 641-120 (Korea)

    2010-08-15

    A module integrated converter (MIC) for a photovoltaic (PV) cell is important part of power conditioning system (PCS). It performs maximum power point tracking of a PV cell to generate the power as much as possible from solar energy. There are several methods for connection between the PV modules and the MICs. In order to avoid partial shading effects, converter-per-module approach was proposed. The MIC that performs maximum power point tracking (MPPT), if it is low efficiency, is no use. The MIC whose output is connected to the output of PV module was proposed for high efficiency. However, there are some problems. In this study, an asymmetrical half-bridge flyback converter is proposed instead of the original flyback converter with same method to solve the problems. The proposed MIC was built to verify the performance. The new topology using soft switching technique showed good performance for the efficiency. At the higher power, the efficiency of the proposed converter is higher than existing converter. (author)

  13. Design of High Efficiency Illumination for LED Lighting

    Directory of Open Access Journals (Sweden)

    Yong-Nong Chang

    2013-01-01

    Full Text Available A high efficiency illumination for LED street lighting is proposed. For energy saving, this paper uses Class-E resonant inverter as main electric circuit to improve efficiency. In addition, single dimming control has the best efficiency, simplest control scheme and lowest circuit cost among other types of dimming techniques. Multiple serial-connected transformers used to drive the LED strings as they can provide galvanic isolation and have the advantage of good current distribution against device difference. Finally, a prototype circuit for driving 112 W LEDs in total was built and tested to verify the theoretical analysis.

  14. High-Efficient Low-Cost Photovoltaics Recent Developments

    CERN Document Server

    Petrova-Koch, Vesselinka; Goetzberger, Adolf

    2009-01-01

    A bird's-eye view of the development and problems of recent photovoltaic cells and systems and prospects for Si feedstock is presented. High-efficient low-cost PV modules, making use of novel efficient solar cells (based on c-Si or III-V materials), and low cost solar concentrators are in the focus of this book. Recent developments of organic photovoltaics, which is expected to overcome its difficulties and to enter the market soon, are also included.

  15. Soft-gluon resummation for high-pT inclusive-hadron production at COMPASS

    International Nuclear Information System (INIS)

    Pfeuffer, Melanie

    2013-01-01

    One of the experiments that may be used to probe the nucleon's gluon distribution is the fixed-target lepton scattering experiment COMPASS at CERN, where charged hadrons with high transverse momentum are observed. An aspect that makes the COMPASS experiment quite challenging for the theoretical calculation in perturbative QCD is its fixed-target regime. The hadron's transverse momentum is relatively large compared to the available center-of-mass energy. Thus the partonic process is close to the threshold, where all available partonic center-of-mass energy is just used to produce the high-transverse momentum parton that subsequently hadronizes into the observed hadron, and its recoiling counterpart. Additional real gluon radiation is strongly suppressed and therefore mostly constrained to the emission of soft and/or collinear gluons. This results in a strong imbalance between real and virtual gluon diagrams and the cancellation of infrared singularities leaves behind large logarithmic corrections to the leading order cross section. These logarithms are not only present in the next-to-leading (NLO) corrections, but appear also in all higher order corrections in its perturbation expansion. They dominate the cross section in the kinematic region close to the threshold and thus have to be taken into account order-by-order. A technique that addresses these logarithms is known as threshold resummation. The main goal of this work is to investigate the relevance of higher-order QCD corrections of the unpolarized photoproduction reaction in fixed-target scattering at COMPASS, where the hadron is produced at large transverse momentum. In particular the large logarithmic threshold corrections to the partonic cross sections are addressed, which are resummed to all orders at next-to-leading logarithmic (NLL) accuracy. As new technical ingredient to resummation, the rapidity dependence of the cross section in the resummed calculation is fully included in order to account for all

  16. High efficiency heat transport and power conversion system for cascade

    International Nuclear Information System (INIS)

    Maya, I.; Bourque, R.F.; Creedon, R.L.; Schultz, K.R.

    1985-02-01

    The Cascade ICF reactor features a flowing blanket of solid BeO and LiAlO 2 granules with very high temperature capability (up to approx. 2300 K). The authors present here the design of a high temperature granule transport and heat exchange system, and two options for high efficiency power conversion. The centrifugal-throw transport system uses the peripheral speed imparted to the granules by the rotating chamber to effect granule transport and requires no additional equipment. The heat exchanger design is a vacuum heat transfer concept utilizing gravity-induced flow of the granules over ceramic heat exchange surfaces. A reference Brayton power cycle is presented which achieves 55% net efficiency with 1300 K peak helium temperature. A modified Field steam cycle (a hybrid Rankine/Brayton cycle) is presented as an alternate which achieves 56% net efficiency

  17. Highly Efficient Coherent Optical Memory Based on Electromagnetically Induced Transparency

    Science.gov (United States)

    Hsiao, Ya-Fen; Tsai, Pin-Ju; Chen, Hung-Shiue; Lin, Sheng-Xiang; Hung, Chih-Chiao; Lee, Chih-Hsi; Chen, Yi-Hsin; Chen, Yong-Fan; Yu, Ite A.; Chen, Ying-Cheng

    2018-05-01

    Quantum memory is an important component in the long-distance quantum communication based on the quantum repeater protocol. To outperform the direct transmission of photons with quantum repeaters, it is crucial to develop quantum memories with high fidelity, high efficiency and a long storage time. Here, we achieve a storage efficiency of 92.0 (1.5)% for a coherent optical memory based on the electromagnetically induced transparency scheme in optically dense cold atomic media. We also obtain a useful time-bandwidth product of 1200, considering only storage where the retrieval efficiency remains above 50%. Both are the best record to date in all kinds of schemes for the realization of optical memory. Our work significantly advances the pursuit of a high-performance optical memory and should have important applications in quantum information science.

  18. High-efficiency white OLEDs based on small molecules

    Science.gov (United States)

    Hatwar, Tukaram K.; Spindler, Jeffrey P.; Ricks, M. L.; Young, Ralph H.; Hamada, Yuuhiko; Saito, N.; Mameno, Kazunobu; Nishikawa, Ryuji; Takahashi, Hisakazu; Rajeswaran, G.

    2004-02-01

    Eastman Kodak Company and SANYO Electric Co., Ltd. recently demonstrated a 15" full-color, organic light-emitting diode display (OLED) using a high-efficiency white emitter combined with a color-filter array. Although useful for display applications, white emission from organic structures is also under consideration for other applications, such as solid-state lighting, where high efficiency and good color rendition are important. By incorporating adjacent blue and orange emitting layers in a multi-layer structure, highly efficient, stable white emission has been attained. With suitable host and dopant combinations, a luminance yield of 20 cd/A and efficiency of 8 lm/W have been achieved at a drive voltage of less than 8 volts and luminance level of 1000 cd/m2. The estimated external efficiency of this device is 6.3% and a high level of operational stability is observed. To our knowledge, this is the highest performance reported so far for white organic electroluminescent devices. We will review white OLED technology and discuss the fabrication and operating characteristics of these devices.

  19. High-grade soft tissue sarcoma arising in a desmoid tumor: case report and review of the literature.

    Science.gov (United States)

    Bertucci, François; Faure, Marjorie; Ghigna, Maria-Rosa; Chetaille, Bruno; Guiramand, Jérôme; Moureau-Zabotto, Laurence; Sarran, Anthony; Perrot, Delphine

    2015-01-01

    Desmoid tumors are rare benign monoclonal fibroblastic tumors. Their aggressiveness is local with no potential for metastasis or dedifferentiation. Here we report on a 61-year-old patient who presented a locally advanced breast desmoid tumor diagnosed 20 years after post-operative radiotherapy for breast carcinoma. After 2 years of medical treatment, a high-grade undifferentiated pleomorphic soft tissue sarcoma arose within the desmoid tumor. Despite extensive surgery removing both tumors, the patient showed locoregional relapse by the sarcoma, followed by multimetastatic progression, then death 25 months after the surgery. The arising of a soft tissue sarcoma in a desmoid tumor is an exceptional event since our case is the fourth one reported so far in literature. It reinforces the need for timely and accurate diagnosis when a new mass develops in the region of a preexisting desmoid tumor, and more generally when a desmoid tumor modifies its clinical or radiological aspect.

  20. Low Cost, High Efficiency, High Pressure Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Mark Leavitt

    2010-03-31

    A technical and design evaluation was carried out to meet DOE hydrogen fuel targets for 2010. These targets consisted of a system gravimetric capacity of 2.0 kWh/kg, a system volumetric capacity of 1.5 kWh/L and a system cost of $4/kWh. In compressed hydrogen storage systems, the vast majority of the weight and volume is associated with the hydrogen storage tank. In order to meet gravimetric targets for compressed hydrogen tanks, 10,000 psi carbon resin composites were used to provide the high strength required as well as low weight. For the 10,000 psi tanks, carbon fiber is the largest portion of their cost. Quantum Technologies is a tier one hydrogen system supplier for automotive companies around the world. Over the course of the program Quantum focused on development of technology to allow the compressed hydrogen storage tank to meet DOE goals. At the start of the program in 2004 Quantum was supplying systems with a specific energy of 1.1-1.6 kWh/kg, a volumetric capacity of 1.3 kWh/L and a cost of $73/kWh. Based on the inequities between DOE targets and Quantum’s then current capabilities, focus was placed first on cost reduction and second on weight reduction. Both of these were to be accomplished without reduction of the fuel system’s performance or reliability. Three distinct areas were investigated; optimization of composite structures, development of “smart tanks” that could monitor health of tank thus allowing for lower design safety factor, and the development of “Cool Fuel” technology to allow higher density gas to be stored, thus allowing smaller/lower pressure tanks that would hold the required fuel supply. The second phase of the project deals with three additional distinct tasks focusing on composite structure optimization, liner optimization, and metal.

  1. Soft x-ray source by laser produced Xe plasma

    International Nuclear Information System (INIS)

    Amano, Sho; Masuda, Kazuya; Miyamoto, Shuji; Mochizuki, Takayasu

    2010-01-01

    The laser plasma soft X-ray source in the wavelength rage of 5-17 nm was developed, which consisted of the rotating drum system supplying cryogenic Xe target and the high repetition rate pulse Nd:YAG slab laser. We found the maximum conversion efficiency of 30% and it demonstrated the soft X-ray generation with the high repetition rate pulse of 320 pps and the high average power of 20 W. The soft X-ray cylindrical mirror was developed and successfully focused the soft X-ray with an energy intensity of 1.3 mJ/cm 2 . We also succeeded in the plasma debris mitigation with Ar gas. This will allow a long lifetime of the mirror and a focusing power intensity of 400 mW/cm 2 with 320 pps. The high power soft X-ray is useful for various applications. (author)

  2. High Efficient Bidirectional Battery Converter for residential PV Systems

    DEFF Research Database (Denmark)

    Pham, Cam; Kerekes, Tamas; Teodorescu, Remus

    2012-01-01

    Photovoltaic (PV) installation is suited for the residential environment and the generation pattern follows the distribution of residential power consumption in daylight hours. In the cases of unbalance between generation and demand, the Smart PV with its battery storage can absorb or inject...... the power to balance it. High efficient bidirectional converter for the battery storage is required due high system cost and because the power is processed twice. A 1.5kW prototype is designed and built with CoolMOS and SiC diodes, >;95% efficiency has been obtained with 200 kHz hard switching....

  3. Highly Deformable Liquid Embedded Soft-Matter Capacitors and Inductors for Stretchable Electronics

    Science.gov (United States)

    Fassler, Andrew; Majidi, Carmel

    2013-03-01

    We have developed a family of soft-matter capacitors and inductors that can be stretched to several times their natural length. These circuit elements are composed of microchannels of a liquid-phase Gallium-Indium-Tin alloy (Galinstan) embedded in a soft silicone elastomer (Ecoflex® 00-30). As the elastomer stretches, the embedded liquid channels deform, causing the capacitance and inductance to change monotonically. The relative changes in capacitance and inductance are experimentally measured as a function of stretch in three directions. The relationships found show potential for these devices to be used as strain sensors and tunable electronic filters. Additionally, theoretical predictions derived using finite elasticity kinematics are consistent with these experimentally found relationships.

  4. Non preemptive soft real time scheduler: High deadline meeting rate on overload

    Science.gov (United States)

    Khalib, Zahereel Ishwar Abdul; Ahmad, R. Badlishah; El-Shaikh, Mohamed

    2015-05-01

    While preemptive scheduling has gain more attention among researchers, current work in non preemptive scheduling had shown promising result in soft real time jobs scheduling. In this paper we present a non preemptive scheduling algorithm meant for soft real time applications, which is capable of producing better performance during overload while maintaining excellent performance during normal load. The approach taken by this algorithm has shown more promising results compared to other algorithms including its immediate predecessor. We will present the analysis made prior to inception of the algorithm as well as simulation results comparing our algorithm named gutEDF with EDF and gEDF. We are convinced that grouping jobs utilizing pure dynamic parameters would produce better performance.

  5. Toward high-speed 3D nonlinear soft tissue deformation simulations using Abaqus software.

    Science.gov (United States)

    Idkaidek, Ashraf; Jasiuk, Iwona

    2015-12-01

    We aim to achieve a fast and accurate three-dimensional (3D) simulation of a porcine liver deformation under a surgical tool pressure using the commercial finite element software Abaqus. The liver geometry is obtained using magnetic resonance imaging, and a nonlinear constitutive law is employed to capture large deformations of the tissue. Effects of implicit versus explicit analysis schemes, element type, and mesh density on computation time are studied. We find that Abaqus explicit and implicit solvers are capable of simulating nonlinear soft tissue deformations accurately using first-order tetrahedral elements in a relatively short time by optimizing the element size. This study provides new insights and guidance on accurate and relatively fast nonlinear soft tissue simulations. Such simulations can provide force feedback during robotic surgery and allow visualization of tissue deformations for surgery planning and training of surgical residents.

  6. Redox reaction triggered nanomotors based on soft-oxometalates with high and sustained motility

    Science.gov (United States)

    Mallick, Apabrita; Laskar, Abhrajit; Adhikari, R.; Roy, Soumyajit

    2018-05-01

    The recent interest in self-propulsion raises an immediate challenge in facile and single-step synthesis of active particles. Here, we address this challenge and synthesize soft oxometalate nanomotors that translate ballistically in water using the energy released in a redox reaction of hydrazine fuel with the soft-oxometalates. Our motors reach a maximum speed of ̴ 370 body lengths per second and remain motile over a period of approximately three days. We report measurements of the speed of a single motor as a function of the concentration of hydrazine. It is also possible to induce a transition from single-particle translation to collective motility with biomimetic bands simply by tuning the loading of the fuel. We rationalize the results from a physicochemical hydrodynamic theory. Our nanomotors may also be used for transport of catalytic materials in harsh chemical environments that would otherwise passivate the active catalyst.

  7. Innovative-Simplified Nuclear Power Plant Efficiency Evaluation with High-Efficiency Steam Injector System

    International Nuclear Information System (INIS)

    Shoji, Goto; Shuichi, Ohmori; Michitsugu, Mori

    2006-01-01

    It is possible to establish simplified system with reduced space and total equipment weight using high-efficiency Steam Injectors (SI) instead of low-pressure feedwater heaters in Nuclear Power Plant (NPP). The SI works as a heat exchanger through direct contact between feedwater from condensers and extracted steam from turbines. It can get higher pressure than supplied steam pressure. The maintenance and reliability are still higher than the feedwater ones because SI has no movable parts. This paper describes the analysis of the heat balance, plant efficiency and the operation of this Innovative-Simplified NPP with high-efficiency SI. The plant efficiency and operation are compared with the electric power of 1100 MWe-class BWR system and the Innovative-Simplified BWR system with SI. The SI model is adapted into the heat balance simulator with a simplified model. The results show that plant efficiencies of the Innovated-Simplified BWR system are almost equal to original BWR ones. The present research is one of the projects that are carried out by Tokyo Electric Power Company, Toshiba Corporation, and six Universities in Japan, funded from the Institute of Applied Energy (IAE) of Japan as the national public research-funded program. (authors)

  8. Long-range rapidity correlations in soft interactions at high energies

    International Nuclear Information System (INIS)

    Gotsman, E.; Maor, U.; Levin, E.

    2013-01-01

    In this paper we take the next step (following the successful description of inclusive hadron production) in describing the structure of the bias events without the aid of Monte Carlo codes. Two new results are presented: (i) a method for calculating the two particle correlation functions in the BFKL pomeron calculus in zero transverse dimension; and (ii) an estimation of the values of these correlations in a model of soft interactions. Comparison with the multiplicity data at the LHC is given. (orig.)

  9. A metamaterial electromagnetic energy rectifying surface with high harvesting efficiency

    Directory of Open Access Journals (Sweden)

    Xin Duan

    2016-12-01

    Full Text Available A novel metamaterial rectifying surface (MRS for electromagnetic energy capture and rectification with high harvesting efficiency is presented. It is fabricated on a three-layer printed circuit board, which comprises an array of periodic metamaterial particles in the shape of mirrored split rings, a metal ground, and integrated rectifiers employing Schottky diodes. Perfect impedance matching is engineered at two interfaces, i.e. one between free space and the surface, and the other between the metamaterial particles and the rectifiers, which are connected through optimally positioned vias. Therefore, the incident electromagnetic power is captured with almost no reflection by the metamaterial particles, then channeled maximally to the rectifiers, and finally converted to direct current efficiently. Moreover, the rectifiers are behind the metal ground, avoiding the disturbance of high power incident electromagnetic waves. Such a MRS working at 2.45 GHz is designed, manufactured and measured, achieving a harvesting efficiency up to 66.9% under an incident power density of 5 mW/cm2, compared with a simulated efficiency of 72.9%. This high harvesting efficiency makes the proposed MRS an effective receiving device in practical microwave power transmission applications.

  10. A metamaterial electromagnetic energy rectifying surface with high harvesting efficiency

    Science.gov (United States)

    Duan, Xin; Chen, Xing; Zhou, Lin

    2016-12-01

    A novel metamaterial rectifying surface (MRS) for electromagnetic energy capture and rectification with high harvesting efficiency is presented. It is fabricated on a three-layer printed circuit board, which comprises an array of periodic metamaterial particles in the shape of mirrored split rings, a metal ground, and integrated rectifiers employing Schottky diodes. Perfect impedance matching is engineered at two interfaces, i.e. one between free space and the surface, and the other between the metamaterial particles and the rectifiers, which are connected through optimally positioned vias. Therefore, the incident electromagnetic power is captured with almost no reflection by the metamaterial particles, then channeled maximally to the rectifiers, and finally converted to direct current efficiently. Moreover, the rectifiers are behind the metal ground, avoiding the disturbance of high power incident electromagnetic waves. Such a MRS working at 2.45 GHz is designed, manufactured and measured, achieving a harvesting efficiency up to 66.9% under an incident power density of 5 mW/cm2, compared with a simulated efficiency of 72.9%. This high harvesting efficiency makes the proposed MRS an effective receiving device in practical microwave power transmission applications.

  11. Triggering soft bombs at the LHC

    Science.gov (United States)

    Knapen, Simon; Griso, Simone Pagan; Papucci, Michele; Robinson, Dean J.

    2017-08-01

    Very high multiplicity, spherically-symmetric distributions of soft particles, with p T ˜ few×100 MeV, may be a signature of strongly-coupled hidden valleys that exhibit long, efficient showering windows. With traditional triggers, such `soft bomb' events closely resemble pile-up and are therefore only recorded with minimum bias triggers at a very low efficiency. We demonstrate a proof-of-concept for a high-level triggering strategy that efficiently separates soft bombs from pile-up by searching for a `belt of fire': a high density band of hits on the innermost layer of the tracker. Seeding our proposed high-level trigger with existing jet, missing transverse energy or lepton hardware-level triggers, we show that net trigger efficiencies of order 10% are possible for bombs of mass several × 100 GeV. We also consider the special case that soft bombs are the result of an exotic decay of the 125 GeV Higgs. The fiducial rate for `Higgs bombs' triggered in this manner is marginally higher than the rate achievable by triggering directly on a hard muon from associated Higgs production.

  12. Highly efficient light management for perovskite solar cells.

    Science.gov (United States)

    Wang, Dong-Lin; Cui, Hui-Juan; Hou, Guo-Jiao; Zhu, Zhen-Gang; Yan, Qing-Bo; Su, Gang

    2016-01-06

    Organic-inorganic halide perovskite solar cells have enormous potential to impact the existing photovoltaic industry. As realizing a higher conversion efficiency of the solar cell is still the most crucial task, a great number of schemes were proposed to minimize the carrier loss by optimizing the electrical properties of the perovskite solar cells. Here, we focus on another significant aspect that is to minimize the light loss by optimizing the light management to gain a high efficiency for perovskite solar cells. In our scheme, the slotted and inverted prism structured SiO2 layers are adopted to trap more light into the solar cells, and a better transparent conducting oxide layer is employed to reduce the parasitic absorption. For such an implementation, the efficiency and the serviceable angle of the perovskite solar cell can be promoted impressively. This proposal would shed new light on developing the high-performance perovskite solar cells.

  13. A Low VSWR and High Efficiency Waveguide Feed Antenna Array

    Directory of Open Access Journals (Sweden)

    Zhao Xiao-Fang

    2018-01-01

    Full Text Available A low VSWR and high efficiency antenna array operating in the Ku band for satellite communications is presented in this paper. To achieve high radiation efficiency and broad enough bandwidth, all-metal radiation elements and full-corporate waveguide feeding network are employed. As the general milling method is used in the multilayer antenna array fabrication, the E-plane waveguide feeding network is adopted here to suppress the wave leakage caused by the imperfect connectivity between adjacent layers. A 4 × 8 elements array prototype was fabricated and tested for verification. The measured results of proposed antenna array show bandwidth of 6.9% (13.9–14.8 GHz for VSWR < 1.5. Furthermore, antenna gain and efficiency of higher than 22.2 dBi and 80% are also exhibited, respectively.

  14. Potential high efficiency solar cells: Applications from space photovoltaic research

    Science.gov (United States)

    Flood, D. J.

    1986-01-01

    NASA involvement in photovoltaic energy conversion research development and applications spans over two decades of continuous progress. Solar cell research and development programs conducted by the Lewis Research Center's Photovoltaic Branch have produced a sound technology base not only for the space program, but for terrestrial applications as well. The fundamental goals which have guided the NASA photovoltaic program are to improve the efficiency and lifetime, and to reduce the mass and cost of photovoltaic energy conversion devices and arrays for use in space. The major efforts in the current Lewis program are on high efficiency, single crystal GaAs planar and concentrator cells, radiation hard InP cells, and superlattice solar cells. A brief historical perspective of accomplishments in high efficiency space solar cells will be given, and current work in all of the above categories will be described. The applicability of space cell research and technology to terrestrial photovoltaics will be discussed.

  15. The thermodynamic characteristics of high efficiency, internal-combustion engines

    International Nuclear Information System (INIS)

    Caton, Jerald A.

    2012-01-01

    Highlights: ► The thermodynamics of an automotive engine are determined using a cycle simulation. ► The net indicated thermal efficiency increased from 37.0% to 53.9%. ► High compression ratio, lean mixtures and high EGR were the important features. ► Efficiency increased due to lower heat losses, and increased work conversion. ► The nitric oxides were essentially zero due to the low combustion temperatures. - Abstract: Recent advancements have demonstrated new combustion modes for internal combustion engines that exhibit low nitric oxide emissions and high thermal efficiencies. These new combustion modes involve various combinations of stratification, lean mixtures, high levels of EGR, multiple injections, variable valve timings, two fuels, and other such features. Although the exact combination of these features that provides the best design is not yet clear, the results (low emissions with high efficiencies) are of major interest. The current work is directed at determining some of the fundamental thermodynamic reasons for the relatively high efficiencies and to quantify these factors. Both the first and second laws are used in this assessment. An automotive engine (5.7 l) which included some of the features mentioned above (e.g., high compression ratios, lean mixtures, and high EGR) was evaluated using a thermodynamic cycle simulation. These features were examined for a moderate load (bmep = 900 kPa), moderate speed (2000 rpm) condition. By the use of lean operation, high EGR levels, high compression ratio and other features, the net indicated thermal efficiency increased from 37.0% to 53.9%. These increases are explained in a step-by-step fashion. The major reasons for these improvements include the higher compression ratio and the dilute charge (lean mixture, high EGR). The dilute charge resulted in lower temperatures which in turn resulted in lower heat loss. In addition, the lower temperatures resulted in higher ratios of the specific heats which

  16. High-Speed Soft-Decision Decoding of Two Reed-Muller Codes

    Science.gov (United States)

    Lin, Shu; Uehara, Gregory T.

    1996-01-01

    In his research, we have proposed the (64, 40, 8) subcode of the third-order Reed-Muller (RM) code to NASA for high-speed satellite communications. This RM subcode can be used either alone or as an inner code of a concatenated coding system with the NASA standard (255, 233, 33) Reed-Solomon (RS) code as the outer code to achieve high performance (or low bit-error rate) with reduced decoding complexity. It can also be used as a component code in a multilevel bandwidth efficient coded modulation system to achieve reliable bandwidth efficient data transmission. This report will summarize the key progress we have made toward achieving our eventual goal of implementing a decoder system based upon this code. In the first phase of study, we investigated the complexities of various sectionalized trellis diagrams for the proposed (64, 40, 8) RNI subcode. We found a specific 8-trellis diagram for this code which requires the least decoding complexity with a high possibility of achieving a decoding speed of 600 M bits per second (Mbps). The combination of a large number of states and a hi ch data rate will be made possible due to the utilization of a high degree of parallelism throughout the architecture. This trellis diagram will be presented and briefly described. In the second phase of study which was carried out through the past year, we investigated circuit architectures to determine the feasibility of VLSI implementation of a high-speed Viterbi decoder based on this 8-section trellis diagram. We began to examine specific design and implementation approaches to implement a fully custom integrated circuit (IC) which will be a key building block for a decoder system implementation. The key results will be presented in this report. This report will be divided into three primary sections. First, we will briefly describe the system block diagram in which the proposed decoder is assumed to be operating and present some of the key architectural approaches being used to

  17. Fully Automated Electro Membrane Extraction Autosampler for LC-MS Systems Allowing Soft Extractions for High-Throughput Applications

    DEFF Research Database (Denmark)

    Fuchs, David; Pedersen-Bjergaard, Stig; Jensen, Henrik

    2016-01-01

    was optimized for soft extraction of analytes and high sample throughput. Further, it was demonstrated that by flushing the EME-syringe with acidic wash buffer and reverting the applied electric potential, carry-over between samples can be reduced to below 1%. Performance of the system was characterized (RSD......, a complete analytical workflow of purification, separation, and analysis of sample could be achieved within only 5.5 min. With the developed system large sequences of samples could be analyzed in a completely automated manner. This high degree of automation makes the developed EME-autosampler a powerful tool...

  18. A nuclear standard high-efficiency adsorber for iodine

    International Nuclear Information System (INIS)

    Wang Jianmin; Qian Yinge

    1988-08-01

    The structure of a nuclear standard high-efficiency adsorber, adsorbent and its performance are introduced. The performance and structure were compared with the same kind product of other firms. The results show that the leakage rate is less than 0.005%

  19. Efficiency criteria for high reliability measured system structures

    International Nuclear Information System (INIS)

    Sal'nikov, N.L.

    2012-01-01

    The procedures of structural redundancy are usually used to develop high reliability measured systems. To estimate efficiency of such structures the criteria to compare different systems has been developed. So it is possible to develop more exact system by inspection of redundant system data unit stochastic characteristics in accordance with the developed criteria [ru

  20. Optimization of high-efficiency components; Optimieren auf hohem Niveau

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Eva

    2009-07-01

    High efficiency is a common feature of modern current inverters and is not a unique selling proposition. Other factors that influence the buyer's decision are cost reduction, reliability and service, optimum grid integration, and the challenges of the competitive thin film technology. (orig.)

  1. Orion, a high efficiency 4π neutron detector

    International Nuclear Information System (INIS)

    Crema, E.; Piasecki, E.; Wang, X.M.; Doubre, H.; Galin, J.; Guerreau, D.; Pouthas, J.; Saint-Laurent, F.

    1990-01-01

    In intermediate energy heavy ion collisions the multiplicity of emitted neutrons is strongly connected to energy dissipation and to impact parameter. We present the 4π detector ORION, a high efficiency liquid scintillator detector which permits to get information on the multiplicity of neutrons measured event-wise and on the spatial distribution of these neutrons [fr

  2. High efficiency hydrodynamic DNA fragmentation in a bubbling system

    NARCIS (Netherlands)

    Li, Lanhui; Jin, Mingliang; Sun, Chenglong; Wang, Xiaoxue; Xie, Shuting; Zhou, Guofu; Van Den Berg, Albert; Eijkel, Jan C.T.; Shui, Lingling

    2017-01-01

    DNA fragmentation down to a precise fragment size is important for biomedical applications, disease determination, gene therapy and shotgun sequencing. In this work, a cheap, easy to operate and high efficiency DNA fragmentation method is demonstrated based on hydrodynamic shearing in a bubbling

  3. High efficiency confinement mode by electron cyclotron heating

    International Nuclear Information System (INIS)

    Funahashi, Akimasa

    1987-01-01

    In the medium size nuclear fusion experiment facility JFT-2M in the Japan Atomic Energy Research Institute, the research on the high efficiency plasma confinement mode has been advanced, and in the experiment in June, 1987, the formation of a high efficiency confinement mode was successfully controlled by electron cyclotron heating, for the first time in the world. This result further advanced the control of the formation of a high efficiency plasma confinement mode and the elucidation of the physical mechanism of that mode, and promoted the research and development of the plasma heating by electron cyclotron heating. In this paper, the recent results of the research on a high efficiency confinement mode at the JFT-2M are reported, and the role of the JFT-2M and the experiment on the improvement of core plasma performance are outlined. Now the plasma temperature exceeding 100 million deg C has been attained in large tokamaks, and in medium size facilities, the various measures for improving confinement performance are to be brought forth and their scientific basis is elucidated to assist large facilities. The JFT-2M started the operation in April, 1983, and has accumulated the results smoothly since then. (Kako, I.)

  4. Super Boiler: First Generation, Ultra-High Efficiency Firetube Boiler

    Energy Technology Data Exchange (ETDEWEB)

    None

    2006-06-01

    This factsheet describes a research project whose goal is to develop and demonstrate a first-generation ultra-high-efficiency, ultra-low emissions, compact gas-fired package boiler (Super Boiler), and formulate a long-range RD&D plan for advanced boiler technology out to the year 2020.

  5. High-efficient solar cells with porous silicon

    International Nuclear Information System (INIS)

    Migunova, A.A.

    2002-01-01

    It has been shown that the porous silicon is multifunctional high-efficient coating on silicon solar cells, modifies its surface and combines in it self antireflection and passivation properties., The different optoelectronic effects in solar cells with porous silicon were considered. The comparative parameters of uncovered photodetectors also solar cells with porous silicon and other coatings were resulted. (author)

  6. Benefits of high aerodynamic efficiency to orbital transfer vehicles

    Science.gov (United States)

    Andrews, D. G.; Norris, R. B.; Paris, S. W.

    1984-01-01

    The benefits and costs of high aerodynamic efficiency on aeroassisted orbital transfer vehicles (AOTV) are analyzed. Results show that a high lift to drag (L/D) AOTV can achieve significant velocity savings relative to low L/D aerobraked OTV's when traveling round trip between low Earth orbits (LEO) and alternate orbits as high as geosynchronous Earth orbit (GEO). Trajectory analysis is used to show the impact of thermal protection system technology and the importance of lift loading coefficient on vehicle performance. The possible improvements in AOTV subsystem technologies are assessed and their impact on vehicle inert weight and performance noted. Finally, the performance of high L/D AOTV concepts is compared with the performances of low L/D aeroassisted and all propulsive OTV concepts to assess the benefits of aerodynamic efficiency on this class of vehicle.

  7. High efficiency inductive output tubes with intense annular electron beams

    Science.gov (United States)

    Appanam Karakkad, J.; Matthew, D.; Ray, R.; Beaudoin, B. L.; Narayan, A.; Nusinovich, G. S.; Ting, A.; Antonsen, T. M.

    2017-10-01

    For mobile ionospheric heaters, it is necessary to develop highly efficient RF sources capable of delivering radiation in the frequency range from 3 to 10 MHz with an average power at a megawatt level. A promising source, which is capable of offering these parameters, is a grid-less version of the inductive output tube (IOT), also known as a klystrode. In this paper, studies analyzing the efficiency of grid-less IOTs are described. The basic trade-offs needed to reach high efficiency are investigated. In particular, the trade-off between the peak current and the duration of the current micro-pulse is analyzed. A particle in the cell code is used to self-consistently calculate the distribution in axial and transverse momentum and in total electron energy from the cathode to the collector. The efficiency of IOTs with collectors of various configurations is examined. It is shown that the efficiency of IOTs can be in the 90% range even without using depressed collectors.

  8. How high are option values in energy-efficiency investments?

    International Nuclear Information System (INIS)

    Sanstad, A.H.; Blumstein, C.; Stoft, S.E.; California Univ., Berkeley, CA,

    1995-01-01

    High implicit discount rates in consumers' energy-efficiency investments have long been a source of controversy. In several recent papers, Hassett and Metcalf argue that the uncertainty and irreversibility attendant to such investments, and the resulting option value, account for this anomalously high implicit discounting. Using their model and data, we show that, to the contrary, their analysis falls well short of providing an explanation of this pattern. (author)

  9. Efficiency and Loading Evaluation of High Efficiency Mist Eliminators (HEME) - 12003

    Energy Technology Data Exchange (ETDEWEB)

    Giffin, Paxton K.; Parsons, Michael S.; Waggoner, Charles A. [Institute for Clean Energy Technology, Mississippi State University, 205 Research Blvd Starkville, MS 39759 (United States)

    2012-07-01

    High efficiency mist eliminators (HEME) are filters primarily used to remove moisture and/or liquid aerosols from an air stream. HEME elements are designed to reduce aerosol and particulate load on primary High Efficiency Particulate Air (HEPA) filters and to have a liquid particle removal efficiency of approximately 99.5% for aerosols down to sub-micron size particulates. The investigation presented here evaluates the loading capacity of the element in the absence of a water spray cleaning system. The theory is that without the cleaning system, the HEME element will suffer rapid buildup of solid aerosols, greatly reducing the particle loading capacity. Evaluation consists of challenging the element with a waste surrogate dry aerosol and di-octyl phthalate (DOP) at varying intervals of differential pressure to examine the filtering efficiency of three different element designs at three different media velocities. Also, the elements are challenged with a liquid waste surrogate using Laskin nozzles and large dispersion nozzles. These tests allow the loading capacity of the unit to be determined and the effectiveness of washing down the interior of the elements to be evaluated. (authors)

  10. Heat pumps; Synergy of high efficiency and low carbon electricity

    Energy Technology Data Exchange (ETDEWEB)

    Koike, Akio

    2010-09-15

    Heat pump is attracting wide attention for its high efficiency to utilize inexhaustible and renewable ambient heat in the environment. With its rapid innovation and efficiency improvement, this technology has a huge potential to reduce CO2 emissions by replacing currently widespread fossil fuel combustion systems to meet various heat demands from the residential, commercial and industrial sectors. Barriers to deployment such as low public awareness and a relatively long pay-back period do exist, so it is strongly recommended that each country implement policies to promote heat pumps as a renewable energy option and an effective method to combat global warming.

  11. Development of large area, high efficiency amorphous silicon solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, K.S.; Kim, S.; Kim, D.W. [Yu Kong Taedok Institute of Technology (Korea, Republic of)

    1996-02-01

    The objective of the research is to develop the mass-production technologies of high efficiency amorphous silicon solar cells in order to reduce the costs of solar cells and dissemination of solar cells. Amorphous silicon solar cell is the most promising option of thin film solar cells which are relatively easy to reduce the costs. The final goal of the research is to develop amorphous silicon solar cells having the efficiency of 10%, the ratio of light-induced degradation 15% in the area of 1200 cm{sup 2} and test the cells in the form of 2 Kw grid-connected photovoltaic system. (author) 35 refs., 8 tabs., 67 figs.

  12. Iodine laser of high efficiency and fast repetition rate

    Energy Technology Data Exchange (ETDEWEB)

    Hohla, K; Witte, K J

    1976-07-01

    The scaling laws of an iodine laser of high efficiency and fast repetition rate are reported. The laser is pumped with a new kind of low pressure Hg-UV-lamps which convert 32% of the electrical input in UV-light in the absorption band of the iodine laser and which can be fired up to 100 Hz. Details of a 10 kJ/1 nsec system as dimensions, energy density, repetition rate, flow velocity, gas composition and gas pressure and the overall efficiency are given which is expected to be about 2%.

  13. The problems of high efficient extraction from the isochronous cyclotron

    International Nuclear Information System (INIS)

    Schwabe, J.

    1994-06-01

    The problem of high efficient extraction (η ≥ 50%) from isochronous cyclotrons (with the exception of the stripping method) is not completely solved up to this day. This problem is specifically important, because these cyclotrons are being also applied in the production of medical radioisotopes, labeled pharmaceuticals as well as in neutron therapy (oncology), machine industry, agriculture (plant mutagenesis), etc. The aim of the proposed topic is to solve this problem on the AIC-144 isochronous cyclotron in the INP (Institute of Nuclear Physics). Lately, a beam of 20 MeV deuterons with an efficiency of ca. 15% was extracted from this cyclotron. (author). 25 refs, 14 figs

  14. Depth Probing Soft X-ray Microprobe (DPSXRM) for High Resolution Probing of Earth's Microstructural Samples

    Science.gov (United States)

    Dikedi, P. N.

    2015-12-01

    The Cambrian explosion; occurrence of landslides in very dry weather conditions; rockslides; dead, shriveled-up and crumbled leaves possessing fossil records with the semblance of well preserved, flat leaves; abundance of trilobite tracks in lower and higher rock layers; and sailing stones are enigmas demanding demystifications. These enigmas could be elucidated when data on soil structure, texture and strength are provided by some device with submicrometre accuracy; for these and other reasons, the design of a Depth Probing Soft X-ray Microprobe (DPSXRM), is being proposed; it is expected to deliver soft X-rays, at spatial resolution, ϛ≥600nm and to probe at the depth of 0.5m in 17s. The microprobe is portable compared to a synchrotron radiation facility (Diamond Light Source has land size of 43,300m2); spatial resolution,ϛ , of the DPSXRM surpasses those of the X-ray Fluorescence microanalysis (10µm), electron microprobe (1-3µm) and ion microprobe (5->30µm); the DPSXRM has allowance for multiple targets. Vanadium and Manganese membranes are proposed owing to respective 4.952KeV VKα1 and 5.899KeV MnKα1 X-rays emitted, which best suits micro-probing of Earth's microstructural samples. Compound systems like the Kirk-Patrick and Baez and Wolter optics, aspheric mirrors like elliptical and parabolic optics, small apertures and Abbe sine condition are employed to reduce or remove astigmatism, obliquity, comatic and spherical aberrations—leading to good image quality. Results show that 5.899KeV MnKα1 and 4.952KeV VKα1 soft X-rays will travel a distance of 2.75mm to form circular patches of radii 2.2mm and 2.95mm respectively. Zone plate with nth zone radius of 1.5mm must be positioned 1.5mm and 2mm from the electron gun if circular patches must be formed from 4.952KeV VKα1 and 5.899KeV MnKα1 soft X-rays respectively. The focal lengths of 0.25μm≤ƒ≤1.50μm and 0.04μm≤ƒ≤0.2μm covered by 4.952KeV VKα1 and 5.899KeV Mn Kα1 soft X-Rays, will

  15. Highly Flexible and Efficient Solar Steam Generation Device.

    Science.gov (United States)

    Chen, Chaoji; Li, Yiju; Song, Jianwei; Yang, Zhi; Kuang, Yudi; Hitz, Emily; Jia, Chao; Gong, Amy; Jiang, Feng; Zhu, J Y; Yang, Bao; Xie, Jia; Hu, Liangbing

    2017-08-01

    Solar steam generation with subsequent steam recondensation has been regarded as one of the most promising techniques to utilize the abundant solar energy and sea water or other unpurified water through water purification, desalination, and distillation. Although tremendous efforts have been dedicated to developing high-efficiency solar steam generation devices, challenges remain in terms of the relatively low efficiency, complicated fabrications, high cost, and inability to scale up. Here, inspired by the water transpiration behavior of trees, the use of carbon nanotube (CNT)-modified flexible wood membrane (F-Wood/CNTs) is demonstrated as a flexible, portable, recyclable, and efficient solar steam generation device for low-cost and scalable solar steam generation applications. Benefitting from the unique structural merits of the F-Wood/CNTs membrane-a black CNT-coated hair-like surface with excellent light absorbability, wood matrix with low thermal conductivity, hierarchical micro- and nanochannels for water pumping and escaping, solar steam generation device based on the F-Wood/CNTs membrane demonstrates a high efficiency of 81% at 10 kW cm -2 , representing one of the highest values ever-reported. The nature-inspired design concept in this study is straightforward and easily scalable, representing one of the most promising solutions for renewable and portable solar energy generation and other related phase-change applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. An exploratory study of contrast agents for soft tissue visualization by means of high resolution X-ray computed tomography imaging.

    Science.gov (United States)

    Pauwels, E; Van Loo, D; Cornillie, P; Brabant, L; Van Hoorebeke, L

    2013-04-01

    High resolution X-ray computed tomography (CT), or microCT, is a promising and already widely used technique in various scientific fields. Also for histological purposes it has great potential. Although microCT has proven to be a valuable technique for the imaging of bone structures, the visualization of soft tissue structures is still an important challenge due to their low inherent X-ray contrast. One way to achieve contrast enhancement is to make use of contrast agents. However, contrary to light and electron microscopy, knowledge about contrast agents and staining procedures is limited for X-ray CT. The purpose of this paper is to identify useful X-ray contrast agents for soft tissue visualization, which can be applied in a simple way and are also suited for samples larger than (1 cm)(3) . And 28 chemical substances have been investigated. All chemicals were applied in the form of concentrated aqueous solutions in which the samples were immersed. First, strips of green Bacon were stained to evaluate contrast enhancement between muscle and adipose tissue. Furthermore it was also tested whether the contrast agents remained fixed in the tissue after staining by re-immersing them in water. Based on the results, 12 contrast agents were selected for further testing on postmortem mice hind legs, containing a variety of different tissues, including muscle, fat, bone, cartilage and tendons. It was evaluated whether the contrast agents allowed a clearer distinction between the different soft tissue structures present. Finally also penetration depth was measured. And 26 chemicals resulted in contrast enhancement between muscle and adipose tissue in the Bacon strips. Mercury(II)chloride (HgCl2 ), phosphotungstic acid (PTA), phosphomolybdic acid (PMA) and ammonium orthomolybdate ((NH4 )2 MoO4 ) remained fixed after re-immersion in water. The penetration tests showed that potassium iodide (KI) and sodium tungstate can be most efficiently used for large samples of the order

  17. Improved Survival With Radiation Therapy in High-Grade Soft Tissue Sarcomas of the Extremities: A SEER Analysis

    International Nuclear Information System (INIS)

    Koshy, Matthew; Rich, Shayna E.; Mohiuddin, Majid M.

    2010-01-01

    Purpose: The benefit of radiation therapy in extremity soft tissue sarcomas remains controversial. The purpose of this study was to determine the effect of radiation therapy on overall survival among patients with primary soft tissue sarcomas of the extremity who underwent limb-sparing surgery. Methods and Materials: A retrospective study from the Surveillance, Epidemiology, and End Results (SEER) database that included data from January 1, 1988, to December 31, 2005. A total of 6,960 patients constituted the study population. Overall survival curves were constructed using the Kaplan-Meir method and for patients with low- and high-grade tumors. Hazard ratios were calculated based on multivariable Cox proportional hazards models. Results: Of the cohort, 47% received radiation therapy. There was no significant difference in overall survival among patients with low-grade tumors by radiation therapy. In high-grade tumors, the 3-year overall survival was 73% in patients who received radiation therapy vs. 63% for those who did not receive radiation therapy (p < 0.001). On multivariate analysis, patients with high-grade tumors who received radiation therapy had an improved overall survival (hazard ratio 0.67, 95% confidence interval 0.57-0.79). In patients receiving radiation therapy, 13.5% received it in a neoadjuvant setting. The incidence of patients receiving neoadjuvant radiation did not change significantly between 1988 and 2005. Conclusions: To our knowledge, this is the largest population-based study reported in patients undergoing limb-sparing surgery for soft tissue sarcomas of the extremities. It reports that radiation was associated with improved survival in patients with high-grade tumors.

  18. A prognostic profile of hypoxia-induced genes for localised high-grade soft tissue sarcoma

    DEFF Research Database (Denmark)

    Aggerholm-Pedersen, Ninna; Sørensen, Brita Singers; Overgaard, Jens

    2016-01-01

    sarcoma (STS). METHODS: The hypoxia-induced gene quantification was performed by real-time quantitative PCR (RT-qPCR) of formalin-fixed, paraffin-embedded tissue samples. The gene expression cut-points were determined in a test cohort of 55 STS patients and used to allocate each patient into a more......BACKGROUND: For decades, tumour hypoxia has been pursued as a cancer treatment target. However, prognostic and predictive biomarkers are essential for the use of this target in the clinic. This study investigates the prognostic value of a hypoxia-induced gene profile in localised soft tissue...

  19. Real-time high-resolution measurement of collagen alignment in dynamically loaded soft tissue.

    Science.gov (United States)

    York, Timothy; Kahan, Lindsey; Lake, Spencer P; Gruev, Viktor

    2014-06-01

    A technique for creating maps of the direction and strength of fiber alignment in collagenous soft tissues is presented. The method uses a division of focal plane polarimeter to measure circularly polarized light transmitted through the tissue. The architecture of the sensor allows measurement of the retardance and fiber alignment at the full frame rate of the sensor without any moving optics. The technique compares favorably to the standard method of using a rotating polarizer. How the new technique enables real-time capture of the full angular spread of fiber alignment and retardance under various cyclic loading conditions is illustrated.

  20. Spin spring behavior in exchange coupled soft and high-coercivity hard ferromagnets.

    Energy Technology Data Exchange (ETDEWEB)

    Shull, R. D.; Shapiro, A. J.; Gornakov, V. S.; Nikitenko, V. I.; Jiang, J. S.; Kaper, H.; Leaf, G.; Bader, S. D.

    2000-11-01

    The magnetization reversal processes in an epitaxial Fe/Sm{sub 2}Co{sub 7} structure were investigated using the magneto-optical indicator film technique. The dependence of the magnitude and the orientation of the structure average magnetization have been studied on both cycling and rotating the external magnetic field. It was discovered that the magnetization reversal of the soft ferromagnet can proceed by formation of not only one-dimensional, but also two-dimensional, exchange spin springs. Experimental data is compared with a theoretical estimation of the rotational hysteresis loop for a spin system containing a one-dimensional exchange spring.

  1. Simple processing of high efficiency silicon solar cells

    International Nuclear Information System (INIS)

    Hamammu, I.M.; Ibrahim, K.

    2006-01-01

    Cost effective photovoltaic devices have been an area research since the development of the first solar cells, as cost is the major factor in their usage. Silicon solar cells have the biggest share in the photovoltaic market, though silicon os not the optimal material for solar cells. This work introduces a simplified approach for high efficiency silicon solar cell processing, by minimizing the processing steps and thereby reducing cost. The suggested procedure might also allow for the usage of lower quality materials compared to the one used today. The main features of the present work fall into: simplifying the diffusion process, edge shunt isolation and using acidic texturing instead of the standard alkaline processing. Solar cells of 17% efficiency have been produced using this procedure. Investigations on the possibility of improving the efficiency and using less quality material are still underway

  2. High efficiency graphene coated copper based thermocells connected in series

    Science.gov (United States)

    Sindhuja, Mani; Indubala, Emayavaramban; Sudha, Venkatachalam; Harinipriya, Seshadri

    2018-04-01

    Conversion of low-grade waste heat into electricity had been studied employing single thermocell or flowcells so far. Graphene coated copper electrodes based thermocells connected in series displayed relatively high efficiency of thermal energy harvesting. The maximum power output of 49.2W/m2 for normalized cross sectional electrode area is obtained at 60ºC of inter electrode temperature difference. The relative carnot efficiency of 20.2% is obtained from the device. The importance of reducing the mass transfer and ion transfer resistance to improve the efficiency of the device is demonstrated. Degradation studies confirmed mild oxidation of copper foil due to corrosion caused by the electrolyte.

  3. High Efficiency Graphene Coated Copper Based Thermocells Connected in Series

    Directory of Open Access Journals (Sweden)

    Mani Sindhuja

    2018-04-01

    Full Text Available Conversion of low-grade waste heat into electricity had been studied employing single thermocell or flowcells so far. Graphene coated copper electrodes based thermocells connected in series displayed relatively high efficiency of thermal energy harvesting. The maximum power output of 49.2 W/m2 for normalized cross sectional electrode area is obtained at 60°C of inter electrode temperature difference. The relative carnot efficiency of 20.2% is obtained from the device. The importance of reducing the mass transfer and ion transfer resistance to improve the efficiency of the device is demonstrated. Degradation studies confirmed mild oxidation of copper foil due to corrosion caused by the electrolyte.

  4. Rigid-beam model of a high-efficiency magnicon

    International Nuclear Information System (INIS)

    Rees, D.E.; Tallerico, P.J.; Humphries, S.J. Jr.

    1993-01-01

    The magnicon is a new type of high-efficiency deflection-modulated amplifier developed at the Institute of Nuclear Physics in Novosibirsk, Russia. The prototype pulsed magnicon achieved an output power of 2.4 MW and an efficiency of 73% at 915 MHz. This paper presents the results of a rigid-beam model for a 700-MHz, 2.5-MW 82%-efficient magnicon. The rigid-beam model allows for characterization of the beam dynamics by tracking only a single electron. The magnicon design presented consists of a drive cavity; passive cavities; a pi-mode, coupled-deflection cavity; and an output cavity. It represents an optimized design. The model is fully self-consistent, and this paper presents the details of the model and calculated performance of a 2.5-MW magnicon

  5. HIGH JET EFFICIENCY AND SIMULATIONS OF BLACK HOLE MAGNETOSPHERES

    International Nuclear Information System (INIS)

    Punsly, Brian

    2011-01-01

    This Letter reports on a growing body of observational evidence that many powerful lobe-dominated (FR II) radio sources likely have jets with high efficiency. This study extends the maximum efficiency line (jet power ∼25 times the thermal luminosity) defined in Fernandes et al. so as to span four decades of jet power. The fact that this line extends over the full span of FR II radio power is a strong indication that this is a fundamental property of jet production that is independent of accretion power. This is a valuable constraint for theorists. For example, the currently popular 'no-net-flux' numerical models of black hole accretion produce jets that are two to three orders of magnitude too weak to be consistent with sources near maximum efficiency.

  6. High efficiency particulate removal with sintered metal filters

    International Nuclear Information System (INIS)

    Kirstein, B.E.; Paplawsky, W.J.; Pence, D.T.; Hedahl, T.G.

    1981-01-01

    Because of their particle removal efficiencies and durability, sintered metal filters have been chosen for high efficiency particulate air (HEPA) filter protection in the off-gas treatment system for the proposed Idaho National Engineering Laboratory Transuranic Waste Treatment Facility. Process evaluation of sintered metal filters indicated a lack of sufficient process design data to ensure trouble-free operation. Subsequence pilot scale testing was performed with flyash as the test particulate. The test results showed that the sintered metal filters can have an efficiency greater than 0.9999999 for the specific test conditions used. Stable pressure drop characteristics were observed in pulsed and reversed flow blowback modes of operation. Over 4900 hours of operation were obtained with operating conditions ranging up to approximately 90 0 C and 24 vol % water vapor in the gas stream

  7. 3rd symposium on high-efficiency boiler technology: potential, performance, shortcomings of natural gas fuelled high-efficiency boilers

    International Nuclear Information System (INIS)

    1993-01-01

    The brochure contains abstracts of the papers presented at the symposium. The potential, performance and marketing problems of natural gas high-efficiency boiler systems are outlined, and new ideas are presented for gas utilities, producers of appliances, fitters, and chimneysweeps. 13 papers are available as separate regards in this database. (HW) [de

  8. Monitoring of high temperature area by resistivity tomography during in-situ heating test in sedimentary soft rocks

    International Nuclear Information System (INIS)

    Kubota, Kenji; Suzuki, Koichi; Ikenoya, Takafumi; Takakura, Nozomu; Tani, Kazuo

    2009-01-01

    One of the major issues in disposal of nuclear waste is that the long term behaviors of sedimentary soft rocks can be affected by various environmental factors such as temperature, mechanical conditions or hydraulic conditions. Therefore, it is necessary to develop a method for evaluating the long term stability of caverns in sedimentary soft rocks as subjected to changes of environment. We have conducted in-situ heating test to evaluate the influence of high temperature to the surrounding rock mass at a depth of 50 m. The well with a diameter of 30 cm and 60 cm of height, was drilled and filled with groundwater. The heater was installed in the well for heating the surrounding rock mass. During the heating, temperature and deformation around the well were measured. To evaluate the influence of heating on sedimentary soft rocks, it is important to monitor the extent of heated area. Resistivity monitoring is thought to be effective to map the extent of the high temperature area. So we have conducted resistivity tomography during the heating test. The results demonstrated that the resistivity of the rock mass around the heating well decreased and this area was gradually expanded from the heated area during the heating. The decreasing rate of resistivity on temperature is correlated to that of laboratory experimental result and existing empirical formula between aqueous solution resistivity and temperature. Resistivity is changed by many other factors, but it is expected that resistivity change by other factors is very few in this test. This suggests that high temperature area is detected and spatial distribution of temperature can be mapped by resistivity tomography. So resistivity tomography is expected to be one of the promising methods to monitor the area heated by nuclear waste. (author)

  9. A high-density relativistic reflection origin for the soft and hard X-ray excess emission from Mrk 1044

    Science.gov (United States)

    Mallick, L.; Alston, W. N.; Parker, M. L.; Fabian, A. C.; Pinto, C.; Dewangan, G. C.; Markowitz, A.; Gandhi, P.; Kembhavi, A. K.; Misra, R.

    2018-06-01

    We present the first results from a detailed spectral-timing analysis of a long (˜130 ks) XMM-Newton observation and quasi-simultaneous NuSTAR and Swift observations of the highly-accreting narrow-line Seyfert 1 galaxy Mrk 1044. The broadband (0.3-50 keV) spectrum reveals the presence of a strong soft X-ray excess emission below ˜1.5 keV, iron Kα emission complex at ˜6 -7 keV and a `Compton hump' at ˜15 -30 keV. We find that the relativistic reflection from a high-density accretion disc with a broken power-law emissivity profile can simultaneously explain the soft X-ray excess, highly ionized broad iron line and the Compton hump. At low frequencies ([2 - 6] × 10-5 Hz), the power-law continuum dominated 1.5-5 keV band lags behind the reflection dominated 0.3-1 keV band, which is explained with a combination of propagation fluctuation and Comptonization processes, while at higher frequencies ([1 - 2] × 10-4 Hz), we detect a soft lag which is interpreted as a signature of X-ray reverberation from the accretion disc. The fractional root-mean-squared (rms) variability of the source decreases with energy and is well described by two variable components: a less variable relativistic disc reflection and a more variable direct coronal emission. Our combined spectral-timing analyses suggest that the observed broadband X-ray variability of Mrk 1044 is mainly driven by variations in the location or geometry of the optically thin, hot corona.

  10. Developing students' worksheets applying soft skill-based scientific approach for improving building engineering students' competencies in vocational high schools

    Science.gov (United States)

    Suparno, Sudomo, Rahardjo, Boedi

    2017-09-01

    Experts and practitioners agree that the quality of vocational high schools needs to be greatly improved. Many construction services have voiced their dissatisfaction with today's low-quality vocational high school graduates. The low quality of graduates is closely related to the quality of the teaching and learning process, particularly teaching materials. In their efforts to improve the quality of vocational high school education, the government have implemented Curriculum 2013 (K13) and supplied teaching materials. However, the results of monitoring and evaluation done by the Directorate of Vocational High School, Directorate General of Secondary Education (2014), the provision of tasks for students in the teaching materials was totally inadequate. Therefore, to enhance the quality and the result of the instructional process, there should be provided students' worksheets that can stimulate and improve students' problem-solving skills and soft skills. In order to develop worksheets that can meet the academic requirements, the development needs to be in accordance with an innovative learning approach, which is the soft skill-based scientific approach.

  11. Soft nanomaterials analysed by in situ liquid TEM: Towards high resolution characterisation of nanoparticles in motion

    Directory of Open Access Journals (Sweden)

    Joseph P. Patterson

    2015-12-01

    Full Text Available In this article we present in situ transmission electron microscopy (TEM of soft, synthetic nanoparticles with a comparative analysis using conventional TEM methods. This comparison is made with the simple aim of describing what is an unprecedented example of in situ imaging by TEM. However, we contend the technique will quickly become essential in the characterisation of analogous systems, especially where dynamics are of interest in the solvated state. In this case, particles were studied which were obtained from the direct polymerisation of an oxaliplatin analogue, designed for an ongoing programme in novel chemotherapeutic delivery systems. The resulting nanoparticles provided sufficient contrast for facile imaging in situ, and point towards key design parameters that enable this new characterisation approach for organic nanomaterials. We describe the preparation of the synthetic nanoparticles together with their characterisation in liquid water. Finally, we provide a future perspective of this technique for the analysis of soft and dynamic nanomaterials and discussion the progress which needs to be made in order to bring in situ liquid TEM to its full potential.

  12. High performance twisted and coiled soft actuator with spandex fiber for artificial muscles

    Science.gov (United States)

    Yang, Sang Yul; Cho, Kyeong Ho; Kim, Youngeun; Song, Min-Geun; Jung, Ho Sang; Yoo, Ji Wang; Moon, Hyungpil; Koo, Ja Choon; Nam, Jae-do; Ryeol Choi, Hyouk

    2017-10-01

    This paper reports the twisted and coiled soft actuator (abbreviated with STCA) with spandex fiber. The STCA exhibits higher actuation strain at lower temperature than the previous nylon twisted and coiled soft actuators (abbreviated with NTCAs). While NTCAs are fabricated using a twist-insertion process until coils are formed, a new method is developed to fabricate the STCA using the ultra-stretch of spandex, whereby the STCA is twisted again after the coil has been formed. A 6-gear-twist-insertion device that increases the stability and the fabrication speed is developed to fabricate the STCA. The superior performance exhibited by the STCA is due to the 14% contraction strain of the bare spandex (bare nylon: 4%) and the low spring constant of 0.0115 N mm-1. The maximum tensile actuation strain of STCA was 45% at 130 °C, and the maximum specific work was 1.523 kJ kg-1 at 130 °C. STCA could repeatedly actuate 100 times with a strain change of less than 0.4%.

  13. Universality of hadron jets in soft and hard particle interactions at high energies

    International Nuclear Information System (INIS)

    Baldin, A.M.; Didenko, L.A.; Grishin, V.G.; Kuznetsov, A.A.

    1985-01-01

    The hadron jet production in soft π - p- and cumulative π - pC-interactions at a 40 GeV/c momentum is studied. The collective characteristics of jets and the functions of the quark and diquark fragmentation into charged pions and neutral strange particles are analysed. The results obtained are compared with analogous data for e + e - - and ν(anti ν)p- interactions. The hadron jet properties are also studied using relativistic invariant variables - the squared relative 4-velocities b sub(ik).-(Psub(i)/msub(i)-Psub(k)sup(2)/msub(k) (where Psub(i), Psub(k) are 4-momenta of i-th and K-th particles and msub(i), msub(k) are their masses). The results obtained show that the quark (diquark) fragmentation proceed in a similar manner in soft hadron-hadron collisions, cumulative interactions on light nuclei, in e + e - -annihilation and deep inelastic ν(anti ν)p-scattering

  14. Lightweight High Efficiency Electric Motors for Space Applications

    Science.gov (United States)

    Robertson, Glen A.; Tyler, Tony R.; Piper, P. J.

    2011-01-01

    Lightweight high efficiency electric motors are needed across a wide range of space applications from - thrust vector actuator control for launch and flight applications to - general vehicle, base camp habitat and experiment control for various mechanisms to - robotics for various stationary and mobile space exploration missions. QM Power?s Parallel Path Magnetic Technology Motors have slowly proven themselves to be a leading motor technology in this area; winning a NASA Phase II for "Lightweight High Efficiency Electric Motors and Actuators for Low Temperature Mobility and Robotics Applications" a US Army Phase II SBIR for "Improved Robot Actuator Motors for Medical Applications", an NSF Phase II SBIR for "Novel Low-Cost Electric Motors for Variable Speed Applications" and a DOE SBIR Phase I for "High Efficiency Commercial Refrigeration Motors" Parallel Path Magnetic Technology obtains the benefits of using permanent magnets while minimizing the historical trade-offs/limitations found in conventional permanent magnet designs. The resulting devices are smaller, lower weight, lower cost and have higher efficiency than competitive permanent magnet and non-permanent magnet designs. QM Power?s motors have been extensively tested and successfully validated by multiple commercial and aerospace customers and partners as Boeing Research and Technology. Prototypes have been made between 0.1 and 10 HP. They are also in the process of scaling motors to over 100kW with their development partners. In this paper, Parallel Path Magnetic Technology Motors will be discussed; specifically addressing their higher efficiency, higher power density, lighter weight, smaller physical size, higher low end torque, wider power zone, cooler temperatures, and greater reliability with lower cost and significant environment benefit for the same peak output power compared to typically motors. A further discussion on the inherent redundancy of these motors for space applications will be provided.

  15. Test Program for High Efficiency Gas Turbine Exhaust Diffuser

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Thomas R.

    2009-12-31

    This research relates to improving the efficiency of flow in a turbine exhaust, and thus, that of the turbine and power plant. The Phase I SBIR project demonstrated the technical viability of “strutlets” to control stalls on a model diffuser strut. Strutlets are a novel flow-improving vane concept intended to improve the efficiency of flow in turbine exhausts. Strutlets can help reduce turbine back pressure, and incrementally improve turbine efficiency, increase power, and reduce greenhouse gas emmission. The long-term goal is a 0.5 percent improvement of each item, averaged over the US gas turbine fleet. The strutlets were tested in a physical scale model of a gas turbine exhaust diffuser. The test flow passage is a straight, annular diffuser with three sets of struts. At the end of Phase 1, the ability of strutlets to keep flow attached to struts was demonstrated, but the strutlet drag was too high for a net efficiency advantage. An independently sponsored followup project did develop a highly-modified low-drag strutlet. In combination with other flow improving vanes, complicance to the stated goals was demonstrated for for simple cycle power plants, and to most of the goals for combined cycle power plants using this particular exhaust geometry. Importantly, low frequency diffuser noise was reduced by 5 dB or more, compared to the baseline. Appolicability to other diffuser geometries is yet to be demonstrated.

  16. Efficient Smoothed Concomitant Lasso Estimation for High Dimensional Regression

    Science.gov (United States)

    Ndiaye, Eugene; Fercoq, Olivier; Gramfort, Alexandre; Leclère, Vincent; Salmon, Joseph

    2017-10-01

    In high dimensional settings, sparse structures are crucial for efficiency, both in term of memory, computation and performance. It is customary to consider ℓ 1 penalty to enforce sparsity in such scenarios. Sparsity enforcing methods, the Lasso being a canonical example, are popular candidates to address high dimension. For efficiency, they rely on tuning a parameter trading data fitting versus sparsity. For the Lasso theory to hold this tuning parameter should be proportional to the noise level, yet the latter is often unknown in practice. A possible remedy is to jointly optimize over the regression parameter as well as over the noise level. This has been considered under several names in the literature: Scaled-Lasso, Square-root Lasso, Concomitant Lasso estimation for instance, and could be of interest for uncertainty quantification. In this work, after illustrating numerical difficulties for the Concomitant Lasso formulation, we propose a modification we coined Smoothed Concomitant Lasso, aimed at increasing numerical stability. We propose an efficient and accurate solver leading to a computational cost no more expensive than the one for the Lasso. We leverage on standard ingredients behind the success of fast Lasso solvers: a coordinate descent algorithm, combined with safe screening rules to achieve speed efficiency, by eliminating early irrelevant features.

  17. High Efficiency, High Temperature Foam Core Heat Exchanger for Fission Surface Power Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Fission-based power systems with power levels of 30 to ≥100 kWe will be needed for planetary surface bases. Development of high temperature, high efficiency heat...

  18. Coherent soft X-ray high-order harmonics using tight-focusing laser pulses in the gas mixture.

    Science.gov (United States)

    Lu, Faming; Xia, Yuanqin; Zhang, Sheng; Chen, Deying; Zhao, Yang; Liu, Bin

    2014-01-01

    We experimentally study the harmonics from a Xe-He gas mixture using tight-focusing femtosecond laser pulses. The spectrum in the mixed gases exhibits an extended cutoff region from the harmonic H21 to H27. The potential explanation is that the harmonics photons from Xe contribute the electrons of He atoms to transmit into the excited-state. Therefore, the harmonics are emitted from He atoms easily. Furthermore, we show that there are the suppressed harmonics H15 and H17 in the mixed gases. The underlying mechanism is the destructive interference between harmonics generated from different atoms. Our results indicate that HHG from Xe-He gas mixture is an efficient method of obtaining the coherent soft X-ray source.

  19. Direct transitions from high-K isomers to low-K bands -- {gamma} softness or coriolis coupling

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Yoshifumi R.; Narimatsu, Kanako; Ohtsubo, Shin-Ichi [Kyushu Univ., Fukuoka (Japan)] [and others

    1996-12-31

    Recent measurements of direct transitions from high-K isomers to low-K bands reveal severe break-down of the K-selection rule and pose the problem of how to understand the mechanism of such K-violation. The authors recent systematic calculations by using a simple {gamma}-tunneling model reproduced many of the observed hindrances, indicating the importance of the {gamma} softness. However, there are some data which cannot be explained in terms of the {gamma}-degree of freedom. In this talk, the authors also discuss the results of conventional Coriolis coupling calculations, which is considered to be another important mechanism.

  20. Combustion phasing for maximum efficiency for conventional and high efficiency engines

    International Nuclear Information System (INIS)

    Caton, Jerald A.

    2014-01-01

    Highlights: • Combustion phasing for max efficiency is a function of engine parameters. • Combustion phasing is most affected by heat transfer, compression ratio, burn duration. • Combustion phasing is less affected by speed, load, equivalence ratio and EGR. • Combustion phasing for a high efficiency engine was more advanced. • Exergy destruction during combustion as functions of combustion phasing is reported. - Abstract: The importance of the phasing of the combustion event for internal-combustion engines is well appreciated, but quantitative details are sparse. The objective of the current work was to examine the optimum combustion phasing (based on maximum bmep) as functions of engine design and operating variables. A thermodynamic, engine cycle simulation was used to complete this assessment. As metrics for the combustion phasing, both the crank angle for 50% fuel mass burned (CA 50 ) and the crank angle for peak pressure (CA pp ) are reported as functions of the engine variables. In contrast to common statements in the literature, the optimum CA 50 and CA pp vary depending on the design and operating variables. Optimum, as used in this paper, refers to the combustion timing that provides the maximum bmep and brake thermal efficiency (MBT timing). For this work, the variables with the greatest influence on the optimum CA 50 and CA pp were the heat transfer level, the burn duration and the compression ratio. Other variables such as equivalence ratio, EGR level, engine speed and engine load had a much smaller impact on the optimum CA 50 and CA pp . For the conventional engine, for the conditions examined, the optimum CA 50 varied between about 5 and 11°aTDC, and the optimum CA pp varied between about 9 and 16°aTDC. For a high efficiency engine (high dilution, high compression ratio), the optimum CA 50 was 2.5°aTDC, and the optimum CA pp was 7.8°aTDC. These more advanced values for the optimum CA 50 and CA pp for the high efficiency engine were

  1. High resolution PET breast imager with improved detection efficiency

    Science.gov (United States)

    Majewski, Stanislaw

    2010-06-08

    A highly efficient PET breast imager for detecting lesions in the entire breast including those located close to the patient's chest wall. The breast imager includes a ring of imaging modules surrounding the imaged breast. Each imaging module includes a slant imaging light guide inserted between a gamma radiation sensor and a photodetector. The slant light guide permits the gamma radiation sensors to be placed in close proximity to the skin of the chest wall thereby extending the sensitive region of the imager to the base of the breast. Several types of photodetectors are proposed for use in the detector modules, with compact silicon photomultipliers as the preferred choice, due to its high compactness. The geometry of the detector heads and the arrangement of the detector ring significantly reduce dead regions thereby improving detection efficiency for lesions located close to the chest wall.

  2. The high efficiency steel filters for nuclear air cleaning

    International Nuclear Information System (INIS)

    Bergman, W.; Larsen, G.; Lopez, R.; Williams, K.; Violet, C.

    1990-08-01

    We have, in cooperation with industry, developed high-efficiency filters made from sintered stainless-steel fibers for use in several air-cleaning applications in the nuclear industry. These filters were developed to overcome the failure modes in present high-efficiency particulate air (HEPA) filters. HEPA filters are made from glass paper and glue, and they may fail when they get hot or wet and when they are overpressured. In developing our steel filters, we first evaluated the commercially available stainless-steel filter media made from sintered powder and sintered fiber. The sintered-fiber media performed much better than sintered-powder media, and the best media had the smallest fiber diameter. Using the best media, we then built prototype filters for venting compressed gases and evaluated them in our automated filter tester. 12 refs., 20 figs

  3. High efficiency steel filters for nuclear air cleaning

    International Nuclear Information System (INIS)

    Bergman, W.; Conner, J.; Larsen, G.; Lopez, R.; Turner, C.; Vahla, G.; Violet, C.; Williams, K.

    1991-01-01

    The authors have, in cooperation with industry, developed high-efficiency filters made from sintered stainless-steel fibers for use in several air-cleaning applications in the nuclear industry. These filters were developed to overcome the failure modes in present high-efficiently particulate air (HEPA) filters. HEPA filters are made from glass paper and glue, and they may fail when they get hot or wet and when they are overpressured. In developing steel filters, they first evaluated the commercially available stainless-steel filter media made from sintered powder and sintered fiber. The sintered-fiber media performed much better than sintered-powder media, and the best media had the smallest fiber diameter. Using the best media, prototype filters were then built for venting compressed gases and evaluated in their automated filter tester

  4. Blanket options for high-efficiency fusion power

    International Nuclear Information System (INIS)

    Usher, J.L.; Lazareth, O.W.; Fillo, J.A.; Horn, F.L.; Powell, J.R.

    1980-01-01

    The efficiencies of blankets for fusion reactors are usually in the range of 30 to 40%, limited by the operating temperatures (500 0 C) of conventional structural materials such as stainless steels. In this project two-zone blankets are proposed; these blankets consist of a low-temperature shell surrounding a high-temperature interior zone. A survey of nucleonics and thermal hydraulic parameters has led to a reference blanket design consisting of a water-cooled stainless steel shell around a BeO, ZrO 2 interior (cooled by argon) utilizing Li 2 O for tritium breeding. In this design, approximately 60% of the fusion energy is deposited in the high-temperature interior. The maximum argon temperature is 2230 0 C leading to an overall efficiency estimate of 55 to 60% for this reference case

  5. Fusion blankets for high-efficiency power cycles

    International Nuclear Information System (INIS)

    Usher, J.L.; Lazareth, O.W.; Fillo, J.A.; Horn, F.L.; Powell, J.R.

    1980-01-01

    The efficiencies of blankets for fusion reactors are usually in the range of 30 to 40%, limited by the operating temperatures (500 0 C) of conventional structural materials such as stainless steels. In this project two-zone blankets are proposed; these blankets consist of a low-temperature shell surrounding a high-temperature interior zone. A survey of nucleonics and thermal hydraulic parameters has led to a reference blanket design consisting of a water-cooled stainless steel shell around a BeO, ZrO 2 interior (cooled by argon) utilizing Li 2 O for tritium breeding. In this design, approximately 60% of the fusion energy is deposited in the high-temperature interior. The maximum argon temperature is 2230 0 C leading to an overall efficiency estimate of 55 to 60% for this reference case

  6. Fusion blanket for high-efficiency power cycles

    International Nuclear Information System (INIS)

    Usher, J.L.; Powell, J.R.; Fillo, J.A.; Horn, F.L.; Lazareth, O.W.; Taussig, R.

    1980-01-01

    The efficiencies of blankets for fusion reactors are usually in the range of 30 to 40%, limited by the operating temperature (500 0 C) of conventional structural materials such as stainless steels. In this project two-zone blankets are proposed; these blankets consist of a low-temperature shell surrounding a high-temperature interior zone. A survey of nucleonics and thermal hydraulic parameters has led to a reference blanket design consisting of a water-cooled stainless steel shell around a BeO, ZrO 2 interior (cooled by Ar) utilizing Li 2 O for tritium breeding. In this design, approx. 60% of the fusion energy is deposited in the high-temperature interior. The maximum Ar temperature is 2230 0 C leading to an overall efficiency estimate of 55 to 60% for this reference case

  7. Fusion blankets for high-efficiency power cycles

    International Nuclear Information System (INIS)

    Usher, J.L.; Lazareth, O.W.; Fillo, J.A.; Horn, F.L.; Powell, J.R.

    1981-01-01

    The efficiencies of blankets for fusion reactors are usually in the range of 30 to 40%, limited by the operating temperatures (500 deg C) of conventional structural materials such as stainless steels. In this project 'two-zone' blankets are proposed; these blankets consist of a low-temperature shell surrounding a high-temperature interior zone. A survey of nucleonics and thermal hydraulic parameters has led to a reference blanket design consisting of a water-cooled stainless steel shell around a BeO, ZrO 2 interior (cooled by argon) utilizing Li 2 O for tritium breeding. In this design, approximately 60% of the fusion energy is deposited in the high-temperature interior. The maximum argon temperature is 2230 deg C leading to an overall efficiency estimate of 55 to 60% for this reference case. (author)

  8. Irradiation effects on high efficiency Si solar cells

    International Nuclear Information System (INIS)

    Nguyen Duy, T.; Amingual, D.; Colardelle, P.; Bernard, J.

    1974-01-01

    By optimizing the diffusion parameters, high efficiency cells are obtained with 2ohmsxcm (13.5% AMO) and 10ohmsxcm (12.5% AMO) silicon material. These new cells have been submitted to radiation tests under 1MeV, 2MeV electrons and 2.5MeV protons. Their behavior under irradiation is found to be dependent only on the bulk material. By using the same resistivity silicon, the rate of degradation is exactly the same than those of conventional cells. The power increase, due to a better superficial response of the cell, is maintained after irradiation. These results show that new high efficiency cells offer an E.O.L. power higher than conventional cells [fr

  9. High-level expression of podoplanin in benign and malignant soft tissue tumors: immunohistochemical and quantitative real-time RT-PCR analysis.

    Science.gov (United States)

    Xu, Yongjun; Ogose, Akira; Kawashima, Hiroyuki; Hotta, Tetsuo; Ariizumi, Takashi; Li, Guidong; Umezu, Hajime; Endo, Naoto

    2011-03-01

    Podoplanin is a 38 kDa mucin-type transmembrane glycoprotein that was first identified in rat glomerular epithelial cells (podocytes). It is expressed in normal lymphatic endothelium, but is absent from vascular endothelial cells. D2-40 is a commercially available mouse monoclonal antibody which binds to an epitope on human podoplanin. D2-40 immunoreactivity is therefore highly sensitive and specific for lymphatic endothelium. Recent investigations have shown widespread applications of immunohistochemical staining with D2-40 in evaluating podoplanin expression as an immunohistochemical marker for diagnosis and prognosis in various tumors. To determine whether the podoplanin (D2-40) antibody may be useful for the diagnosis of soft tissue tumors, 125 cases, including 4 kinds of benign tumors, 15 kinds of malignant tumors and 3 kinds of tumor-like lesions were immunostained using the D2-40 antibody. Total RNA was extracted from frozen tumor tissue obtained from 41 corresponding soft tissue tumor patients and 12 kinds of soft tissue tumor cell lines. Quantitative real-time PCR reactions were performed. Immunohistochemical and quantitative real-time RT-PCR analyses demonstrated the expression of the podoplanin protein and mRNA in the majority of benign and malignant soft tissue tumors and tumor-like lesions examined, with the exception of alveolar soft part sarcoma, embryonal and alveolar rhabdomyosarcoma, extraskeletal Ewing's sarcoma/peripheral primitive neuro-ectodermal tumor and lipoma, which were completely negative for podoplanin. Since it is widely and highly expressed in nearly all kinds of soft tissue tumors, especially in spindle cell sarcoma, myxoid type soft tissue tumors and soft tissue tumors of the nervous system, podoplanin is considered to have little value in the differential diagnosis of soft tissue tumors.

  10. Highly efficient electron vortex beams generated by nanofabricated phase holograms

    Energy Technology Data Exchange (ETDEWEB)

    Grillo, Vincenzo, E-mail: vincenzo.grillo@nano.cnr.it [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); CNR-IMEM Parco Area delle Scienze 37/A, I-43124 Parma (Italy); Carlo Gazzadi, Gian [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Karimi, Ebrahim [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 (Canada); Mafakheri, Erfan [Dipartimento di Fisica Informatica e Matematica, Università di Modena e Reggio Emilia, via G Campi 213/a, I-41125 Modena (Italy); Boyd, Robert W. [Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 (Canada); Frabboni, Stefano [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Dipartimento di Fisica Informatica e Matematica, Università di Modena e Reggio Emilia, via G Campi 213/a, I-41125 Modena (Italy)

    2014-01-27

    We propose an improved type of holographic-plate suitable for the shaping of electron beams. The plate is fabricated by a focused ion beam on a silicon nitride membrane and introduces a controllable phase shift to the electron wavefunction. We adopted the optimal blazed-profile design for the phase hologram, which results in the generation of highly efficient (25%) electron vortex beams. This approach paves the route towards applications in nano-scale imaging and materials science.

  11. Holography as a highly efficient RG flow I: Rephrasing gravity

    OpenAIRE

    Behr, Nicolas; Kuperstein, Stanislav; Mukhopadhyay, Ayan

    2015-01-01

    We investigate how the holographic correspondence can be reformulated as a generalisation of Wilsonian RG flow in a strongly interacting large $N$ quantum field theory. We firstly define a \\textit{highly efficient RG flow} as one in which the Ward identities related to local conservation of energy, momentum and charges preserve the same form at each scale -- to achieve this it is necessary to redefine the background metric and external sources at each scale as functionals of the effective sin...

  12. Sm , Bi phosphors with high efficiency white-light-emittin

    Indian Academy of Sciences (India)

    2017-08-29

    Aug 29, 2017 ... Therefore, researches on high efficiency red phos- phors are very important. So far ..... ing concentration and reached a maximum at y = 8 mol%. A .... [10] Xue L P, Wang Y J, Lv P W, Chen D G, Lin Z, Liang J K et al. 2009 Crystal ... [28] Liu J, Xu B, Song C, Luo H, Zou X, Han L et al 2012 Cryst-. EngComm.

  13. High-efficiency pumps drastically reduce energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2002-05-01

    Wilo's Stratos pumps for air conditioning and other domestic heating applications combine the advantages of wet runner technology with an innovative electronic commutator motor. The energy consumption of these high-efficiency pumps is halved compared with similar wet runner designs. With vast numbers of pumps used in buildings across Europe alone, the adoption of this technology potentially offers significant energy sayings. (Author)

  14. Wavy channel transistor for area efficient high performance operation

    KAUST Repository

    Fahad, Hossain M.

    2013-04-05

    We report a wavy channel FinFET like transistor where the channel is wavy to increase its width without any area penalty and thereby increasing its drive current. Through simulation and experiments, we show the effectiveness of such device architecture is capable of high performance operation compared to conventional FinFETs with comparatively higher area efficiency and lower chip latency as well as lower power consumption.

  15. Highly efficient electron vortex beams generated by nanofabricated phase holograms

    International Nuclear Information System (INIS)

    Grillo, Vincenzo; Carlo Gazzadi, Gian; Karimi, Ebrahim; Mafakheri, Erfan; Boyd, Robert W.; Frabboni, Stefano

    2014-01-01

    We propose an improved type of holographic-plate suitable for the shaping of electron beams. The plate is fabricated by a focused ion beam on a silicon nitride membrane and introduces a controllable phase shift to the electron wavefunction. We adopted the optimal blazed-profile design for the phase hologram, which results in the generation of highly efficient (25%) electron vortex beams. This approach paves the route towards applications in nano-scale imaging and materials science

  16. Dose equivalent near the bone-soft tissue interface from nuclear fragments produced by high-energy protons

    Science.gov (United States)

    Shavers, M. R.; Poston, J. W.; Cucinotta, F. A.; Wilson, J. W.

    1996-01-01

    During manned space missions, high-energy nucleons of cosmic and solar origin collide with atomic nuclei of the human body and produce a broad linear energy transfer spectrum of secondary particles, called target fragments. These nuclear fragments are often more biologically harmful than the direct ionization of the incident nucleon. That these secondary particles increase tissue absorbed dose in regions adjacent to the bone-soft tissue interface was demonstrated in a previous publication. To assess radiological risks to tissue near the bone-soft tissue interface, a computer transport model for nuclear fragments produced by high energy nucleons was used in this study to calculate integral linear energy transfer spectra and dose equivalents resulting from nuclear collisions of 1-GeV protons transversing bone and red bone marrow. In terms of dose equivalent averaged over trabecular bone marrow, target fragments emitted from interactions in both tissues are predicted to be at least as important as the direct ionization of the primary protons-twice as important, if recently recommended radiation weighting factors and "worst-case" geometry are used. The use of conventional dosimetry (absorbed dose weighted by aa linear energy transfer-dependent quality factor) as an appropriate framework for predicting risk from low fluences of high-linear energy transfer target fragments is discussed.

  17. High voltage generator circuit with low power and high efficiency applied in EEPROM

    International Nuclear Information System (INIS)

    Liu Yan; Zhang Shilin; Zhao Yiqiang

    2012-01-01

    This paper presents a low power and high efficiency high voltage generator circuit embedded in electrically erasable programmable read-only memory (EEPROM). The low power is minimized by a capacitance divider circuit and a regulator circuit using the controlling clock switch technique. The high efficiency is dependent on the zero threshold voltage (V th ) MOSFET and the charge transfer switch (CTS) charge pump. The proposed high voltage generator circuit has been implemented in a 0.35 μm EEPROM CMOS process. Measured results show that the proposed high voltage generator circuit has a low power consumption of about 150.48 μW and a higher pumping efficiency (83.3%) than previously reported circuits. This high voltage generator circuit can also be widely used in low-power flash devices due to its high efficiency and low power dissipation. (semiconductor integrated circuits)

  18. Development and evaluation of a cleanable high efficiency steel filter

    International Nuclear Information System (INIS)

    Bergman, W.; Larsen, G.; Weber, F.; Wilson, P.; Lopez, R.; Valha, G.; Conner, J.; Garr, J.; Williams, K.; Biermann, A.; Wilson, K.; Moore, P.; Gellner, C.; Rapchun, D.; Simon, K.; Turley, J.; Frye, L.; Monroe, D.

    1993-01-01

    We have developed a high efficiency steel filter that can be cleaned in-situ by reverse air pulses. The filter consists of 64 pleated cylindrical filter elements packaged into a 6l0 x 6l0 x 292 mm aluminum frame and has 13.5 m 2 of filter area. The filter media consists of a sintered steel fiber mat using 2 μm diameter fibers. We conducted an optimization study for filter efficiency and pressure drop to determine the filter design parameters of pleat width, pleat depth, outside diameter of the cylinder, and the total number of cylinders. Several prototype cylinders were then built and evaluated in terms of filter cleaning by reverse air pulses. The results of these studies were used to build the high efficiency steel filter. We evaluated the prototype filter for efficiency and cleanability. The DOP filter certification test showed the filter has a passing efficiency of 99.99% but a failing pressure drop of 0.80 kPa at 1,700 m 3 /hr. Since we were not able to achieve a pressure drop less than 0.25 kPa, the steel filter does not meet all the criteria for a HEPA filter. Filter loading and cleaning tests using AC Fine dust showed the filter could be repeatedly cleaned by reverse air pulses. The next phase of the prototype evaluation consisted of installing the unit and support housing in the exhaust duct work of a uranium grit blaster for a field evaluation at the Y-12 Plant in Oak Ridge, TN. The grit blaster is used to clean the surface of uranium parts and generates a cloud of UO 2 aerosols. We used a 1,700 m 3 /hr slip stream from the 10,200 m 3 /hr exhaust system

  19. Telescoping Solar Array Concept for Achieving High Packaging Efficiency

    Science.gov (United States)

    Mikulas, Martin; Pappa, Richard; Warren, Jay; Rose, Geoff

    2015-01-01

    Lightweight, high-efficiency solar arrays are required for future deep space missions using high-power Solar Electric Propulsion (SEP). Structural performance metrics for state-of-the art 30-50 kW flexible blanket arrays recently demonstrated in ground tests are approximately 40 kW/cu m packaging efficiency, 150 W/kg specific power, 0.1 Hz deployed stiffness, and 0.2 g deployed strength. Much larger arrays with up to a megawatt or more of power and improved packaging and specific power are of interest to mission planners for minimizing launch and life cycle costs of Mars exploration. A new concept referred to as the Compact Telescoping Array (CTA) with 60 kW/cu m packaging efficiency at 1 MW of power is described herein. Performance metrics as a function of array size and corresponding power level are derived analytically and validated by finite element analysis. Feasible CTA packaging and deployment approaches are also described. The CTA was developed, in part, to serve as a NASA reference solar array concept against which other proposed designs of 50-1000 kW arrays for future high-power SEP missions could be compared.

  20. Soft Computing Techniques for the Protein Folding Problem on High Performance Computing Architectures.

    Science.gov (United States)

    Llanes, Antonio; Muñoz, Andrés; Bueno-Crespo, Andrés; García-Valverde, Teresa; Sánchez, Antonia; Arcas-Túnez, Francisco; Pérez-Sánchez, Horacio; Cecilia, José M

    2016-01-01

    The protein-folding problem has been extensively studied during the last fifty years. The understanding of the dynamics of global shape of a protein and the influence on its biological function can help us to discover new and more effective drugs to deal with diseases of pharmacological relevance. Different computational approaches have been developed by different researchers in order to foresee the threedimensional arrangement of atoms of proteins from their sequences. However, the computational complexity of this problem makes mandatory the search for new models, novel algorithmic strategies and hardware platforms that provide solutions in a reasonable time frame. We present in this revision work the past and last tendencies regarding protein folding simulations from both perspectives; hardware and software. Of particular interest to us are both the use of inexact solutions to this computationally hard problem as well as which hardware platforms have been used for running this kind of Soft Computing techniques.

  1. High precision efficiency calibration of a HPGe detector

    International Nuclear Information System (INIS)

    Nica, N.; Hardy, J.C.; Iacob, V.E.; Helmer, R.G.

    2003-01-01

    Many experiments involving measurements of γ rays require a very precise efficiency calibration. Since γ-ray detection and identification also requires good energy resolution, the most commonly used detectors are of the coaxial HPGe type. We have calibrated our 70% HPGe to ∼ 0.2% precision, motivated by the measurement of precise branching ratios (BR) in superallowed 0 + → 0 + β decays. These BRs are essential ingredients in extracting ft-values needed to test the Standard Model via the unitarity of the Cabibbo-Kobayashi-Maskawa matrix, a test that it currently fails by more than two standard deviations. To achieve the required high precision in our efficiency calibration, we measured 17 radioactive sources at a source-detector distance of 15 cm. Some of these were commercial 'standard' sources but we achieved the highest relative precision with 'home-made' sources selected because they have simple decay schemes with negligible side feeding, thus providing exactly matched γ-ray intensities. These latter sources were produced by us at Texas A and M by n-activation or by nuclear reactions. Another critical source among the 17 was a 60 Co source produced by Physikalisch-Technische Bundesanstalt, Braunschweig, Germany: its absolute activity was quoted to better than 0.06%. We used it to establish our absolute efficiency, while all the other sources were used to determine relative efficiencies, extending our calibration over a large energy range (40-3500 keV). Efficiencies were also determined with Monte Carlo calculations performed with the CYLTRAN code. The physical parameters of the Ge crystal were independently determined and only two (unmeasurable) dead-layers were adjusted, within physically reasonable limits, to achieve precise absolute agreement with our measured efficiencies. The combination of measured efficiencies at more than 60 individual energies and Monte Carlo calculations to interpolate between them allows us to quote the efficiency of our

  2. Perioperative fractionated high-dose rate brachytherapy for malignant bone and soft tissue tumors

    International Nuclear Information System (INIS)

    Koizumi, Masahiko; Inoue, Takehiro; Yamazaki, Hideya; Teshima, Teruki; Tanaka, Eiichi; Yoshida, Ken; Imai, Atsushi; Shiomi, Hiroya; Kagawa, Kazufumi; Araki, Nobuto; Kuratsu, Shigeyuki; Uchida, Atsumasa; Inoue, Toshihiko

    1999-01-01

    Purpose: To investigate the viability of perioperative fractionated HDR brachytherapy for malignant bone and soft tissue tumors, analyzing the influence of surgical margin. Methods and Materials: From July 1992 through May 1996, 16 lesions of 14 patients with malignant bone and soft tissue tumors (3 liposarcomas, 3 MFHs, 2 malignant schwannomas, 2 chordomas, 1 osteosarcoma, 1 leiomyosarcoma, 1 epithelioid sarcoma, and 1 synovial sarcoma) were treated at the Osaka University Hospital. The patients' ages ranged from 14 to 72 years (median: 39 years). Treatment sites were the pelvis in 6 lesions, the upper limbs in 5, the neck in 4, and a lower limb in 1. The resection margins were classified as intracapsular in 5 lesions, marginal in 5, and wide in 6. Postoperative fractionated HDR brachytherapy was started on the 4th-13th day after surgery (median: 6th day). The total dose was 40-50 Gy/7-10 fr/ 4-7 day (bid) at 5 or 10 mm from the source. Follow-up periods were between 19 and 46 months (median: 30 months). Results: Local control rates were 75% at 1 year and 48% in 2 years, and ultimate local control was achieved in 8 (50%) of 16 lesions. Of the 8 uncontrolled lesions, 5 (63%) had intracapsular (macroscopically positive) resection margins, and all the 8 controlled lesions (100%) had marginal (microscopically positive) or wide (negative) margins. Of the total, 3 patients died of both tumor and metastasis, 3 of metastasis alone, 1 of tumor alone, and 7 showed no evidence of disease. Peripheral nerve palsy was seen in one case after this procedure, but no infection or delayed wound healing caused by tubing or irradiation has occurred. Conclusion: Perioperative fractionated HDR brachytherapy is safe, well tolerated, and applicable to marginal or wide surgical margin cases

  3. CFD application to advanced design for high efficiency spacer grid

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Kazuo, E-mail: kazuo3_ikeda@ndc.mhi.co.jp

    2014-11-15

    Highlights: • A new LDV was developed to investigate the local velocity in a rod bundle and inside a spacer grid. • The design information that utilizes for high efficiency spacer grid has been obtained. • CFD methodology that predicts flow field in a PWR fuel has been developed. • The high efficiency spacer grid was designed using the CFD methodology. - Abstract: Pressurized water reactor (PWR) fuels have been developed to meet the needs of the market. A spacer grid is a key component to improve thermal hydraulic performance of a PWR fuel assembly. Mixing structures (vanes) of a spacer grid promote coolant mixing and enhance heat removal from fuel rods. A larger mixing vane would improve mixing effect, which would increase the departure from nucleate boiling (DNB) benefit for fuel. However, the increased pressure loss at large mixing vanes would reduce the coolant flow at the mixed fuel core, which would reduce the DNB margin. The solution is to develop a spacer grid whose pressure loss is equal to or less than the current spacer grid and that has higher critical heat flux (CHF) performance. For this reason, a requirement of design tool for predicting the pressure loss and CHF performance of spacer grids has been increased. The author and co-workers have been worked for development of high efficiency spacer grid using Computational Fluid Dynamics (CFD) for nearly 20 years. A new laser Doppler velocimetry (LDV), which is miniaturized with fiber optics embedded in a fuel cladding, was developed to investigate the local velocity profile in a rod bundle and inside a spacer grid. The rod-embedded fiber LDV (rod LDV) can be inserted in an arbitrary grid cell instead of a fuel rod, and has the advantage of not disturbing the flow field since it is the same shape as a fuel rod. The probe volume of the rod LDV is small enough to measure spatial velocity profile in a rod gap and inside a spacer grid. According to benchmark experiments such as flow velocity

  4. CFD application to advanced design for high efficiency spacer grid

    International Nuclear Information System (INIS)

    Ikeda, Kazuo

    2014-01-01

    Highlights: • A new LDV was developed to investigate the local velocity in a rod bundle and inside a spacer grid. • The design information that utilizes for high efficiency spacer grid has been obtained. • CFD methodology that predicts flow field in a PWR fuel has been developed. • The high efficiency spacer grid was designed using the CFD methodology. - Abstract: Pressurized water reactor (PWR) fuels have been developed to meet the needs of the market. A spacer grid is a key component to improve thermal hydraulic performance of a PWR fuel assembly. Mixing structures (vanes) of a spacer grid promote coolant mixing and enhance heat removal from fuel rods. A larger mixing vane would improve mixing effect, which would increase the departure from nucleate boiling (DNB) benefit for fuel. However, the increased pressure loss at large mixing vanes would reduce the coolant flow at the mixed fuel core, which would reduce the DNB margin. The solution is to develop a spacer grid whose pressure loss is equal to or less than the current spacer grid and that has higher critical heat flux (CHF) performance. For this reason, a requirement of design tool for predicting the pressure loss and CHF performance of spacer grids has been increased. The author and co-workers have been worked for development of high efficiency spacer grid using Computational Fluid Dynamics (CFD) for nearly 20 years. A new laser Doppler velocimetry (LDV), which is miniaturized with fiber optics embedded in a fuel cladding, was developed to investigate the local velocity profile in a rod bundle and inside a spacer grid. The rod-embedded fiber LDV (rod LDV) can be inserted in an arbitrary grid cell instead of a fuel rod, and has the advantage of not disturbing the flow field since it is the same shape as a fuel rod. The probe volume of the rod LDV is small enough to measure spatial velocity profile in a rod gap and inside a spacer grid. According to benchmark experiments such as flow velocity

  5. Metamaterial Receivers for High Efficiency Concentrated Solar Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Yellowhair, Julius E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Technologies Dept.; Kwon, Hoyeong [Univ. of Texas, Austin, TX (United States). Dept. of Electrical and Computer Engineering; Alu, Andrea [Univ. of Texas, Austin, TX (United States). Dept. of Electrical and Computer Engineering; Jarecki, Robert L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Technologies Dept.; Shinde, Subhash L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Technologies Dept.

    2016-09-01

    Operation of concentrated solar power receivers at higher temperatures (>700°C) would enable supercritical carbon dioxide (sCO2) power cycles for improved power cycle efficiencies (>50%) and cost-effective solar thermal power. Unfortunately, radiative losses at higher temperatures in conventional receivers can negatively impact the system efficiency gains. One approach to improve receiver thermal efficiency is to utilize selective coatings that enhance absorption across the visible solar spectrum while minimizing emission in the infrared to reduce radiative losses. Existing coatings, however, tend to degrade rapidly at elevated temperatures. In this report, we report on the initial designs and fabrication of spectrally selective metamaterial-based absorbers for high-temperature, high-thermal flux environments important for solarized sCO2 power cycles. Metamaterials are structured media whose optical properties are determined by sub-wavelength structural features instead of bulk material properties, providing unique solutions by decoupling the optical absorption spectrum from thermal stability requirements. The key enabling innovative concept proposed is the use of structured surfaces with spectral responses that can be tailored to optimize the absorption and retention of solar energy for a given temperature range. In this initial study through the Academic Alliance partnership with University of Texas at Austin, we use Tungsten for its stability in expected harsh environments, compatibility with microfabrication techniques, and required optical performance. Our goal is to tailor the optical properties for high (near unity) absorptivity across the majority of the solar spectrum and over a broad range of incidence angles, and at the same time achieve negligible absorptivity in the near infrared to optimize the energy absorbed and retained. To this goal, we apply the recently developed concept of plasmonic Brewster angle to suitably designed

  6. Soft leptogenesis

    International Nuclear Information System (INIS)

    D'Ambrosio, Giancarlo; Giudice, Gian F.; Raidal, Martti

    2003-01-01

    We study 'soft leptogenesis', a new mechanism of leptogenesis which does not require flavour mixing among the right-handed neutrinos. Supersymmetry soft-breaking terms give a small mass splitting between the CP-even and CP-odd right-handed sneutrino states of a single generation and provide a CP-violating phase sufficient to generate a lepton asymmetry. The mechanism is successful if the lepton-violating soft bilinear coupling is unconventionally (but not unnaturally) small. The values of the right-handed neutrino masses predicted by soft leptogenesis can be low enough to evade the cosmological gravitino problem

  7. Highly Efficient Thermoresponsive Nanocomposite for Controlled Release Applications

    KAUST Repository

    Yassine, Omar

    2016-06-23

    Highly efficient magnetic release from nanocomposite microparticles is shown, which are made of Poly (N-isopropylacrylamide) hydrogel with embedded iron nanowires. A simple microfluidic technique was adopted to fabricate the microparticles with a high control of the nanowire concentration and in a relatively short time compared to chemical synthesis methods. The thermoresponsive microparticles were used for the remotely triggered release of Rhodamine (B). With a magnetic field of only 1 mT and 20 kHz a drug release of 6.5% and 70% was achieved in the continuous and pulsatile modes, respectively. Those release values are similar to the ones commonly obtained using superparamagnetic beads but accomplished with a magnetic field of five orders of magnitude lower power. The high efficiency is a result of the high remanent magnetization of the nanowires, which produce a large torque when exposed to a magnetic field. This causes the nanowires to vibrate, resulting in friction losses and heating. For comparison, microparticles with superparamagnetic beads were also fabricated and tested; while those worked at 73 mT and 600 kHz, no release was observed at the low field conditions. Cytotoxicity assays showed similar and high cell viability for microparticles with nanowires and beads.

  8. Highly Efficient Thermoresponsive Nanocomposite for Controlled Release Applications

    KAUST Repository

    Yassine, Omar; Zaher, Amir; Li, Erqiang; Alfadhel, Ahmed; Perez, Jose E.; Kavaldzhiev, Mincho; Contreras, Maria F.; Thoroddsen, Sigurdur T; Khashab, Niveen M.; Kosel, Jü rgen

    2016-01-01

    Highly efficient magnetic release from nanocomposite microparticles is shown, which are made of Poly (N-isopropylacrylamide) hydrogel with embedded iron nanowires. A simple microfluidic technique was adopted to fabricate the microparticles with a high control of the nanowire concentration and in a relatively short time compared to chemical synthesis methods. The thermoresponsive microparticles were used for the remotely triggered release of Rhodamine (B). With a magnetic field of only 1 mT and 20 kHz a drug release of 6.5% and 70% was achieved in the continuous and pulsatile modes, respectively. Those release values are similar to the ones commonly obtained using superparamagnetic beads but accomplished with a magnetic field of five orders of magnitude lower power. The high efficiency is a result of the high remanent magnetization of the nanowires, which produce a large torque when exposed to a magnetic field. This causes the nanowires to vibrate, resulting in friction losses and heating. For comparison, microparticles with superparamagnetic beads were also fabricated and tested; while those worked at 73 mT and 600 kHz, no release was observed at the low field conditions. Cytotoxicity assays showed similar and high cell viability for microparticles with nanowires and beads.

  9. High Efficiency Heat Exchanger for High Temperature and High Pressure Applications

    Energy Technology Data Exchange (ETDEWEB)

    Sienicki, James J. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Lv, Qiuping [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Moisseytsev, Anton [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2017-09-29

    CompRex, LLC (CompRex) specializes in the design and manufacture of compact heat exchangers and heat exchange reactors for high temperature and high pressure applications. CompRex’s proprietary compact technology not only increases heat exchange efficiency by at least 25 % but also reduces footprint by at least a factor of ten compared to traditional shell-and-tube solutions of the same capacity and by 15 to 20 % compared to other currently available Printed Circuit Heat Exchanger (PCHE) solutions. As a result, CompRex’s solution is especially suitable for Brayton cycle supercritical carbon dioxide (sCO2) systems given its high efficiency and significantly lower capital and operating expenses. CompRex has already successfully demonstrated its technology and ability to deliver with a pilot-scale compact heat exchanger that was under contract by the Naval Nuclear Laboratory for sCO2 power cycle development. The performance tested unit met or exceeded the thermal and hydraulic specifications with measured heat transfer between 95 to 98 % of maximum heat transfer and temperature and pressure drop values all consistent with the modeled values. CompRex’s vision is to commercialize its compact technology and become the leading provider for compact heat exchangers and heat exchange reactors for various applications including Brayton cycle sCO2 systems. One of the limitations of the sCO2 Brayton power cycle is the design and manufacturing of efficient heat exchangers at extreme operating conditions. Current diffusion-bonded heat exchangers have limitations on the channel size through which the fluid travels, resulting in excessive solid material per heat exchanger volume. CompRex’s design allows for more open area and shorter fluid proximity for increased heat transfer efficiency while sustaining the structural integrity needed for the application. CompRex is developing a novel improvement to its current heat exchanger design where fluids are directed to alternating

  10. A high efficiency hybrid stirling-pulse tube cryocooler

    Directory of Open Access Journals (Sweden)

    Xiaotao Wang

    2015-03-01

    Full Text Available This article presented a hybrid cryocooler which combines the room temperature displacers and the pulse tube in one system. Compared with a traditional pulse tube cryocooler, the system uses the rod-less ambient displacer to recover the expansion work from the pulse tube cold end to improve the efficiency while still keeps the advantage of the pulse tube cryocooler with no moving parts at the cold region. In the meantime, dual-opposed configurations for both the compression pistons and displacers reduce the cooler vibration to a very low level. In the experiments, a lowest no-load temperature of 38.5 K has been obtained and the cooling power at 80K was 26.4 W with an input electric power of 290 W. This leads to an efficiency of 24.2% of Carnot, marginally higher than that of an ordinary pulse tube cryocooler. The hybrid configuration herein provides a very competitive option when a high efficiency, high-reliability and robust cryocooler is desired.

  11. High-efficiency ballistic electrostatic generator using microdroplets

    Science.gov (United States)

    Xie, Yanbo; Bos, Diederik; de Vreede, Lennart J.; de Boer, Hans L.; van der Meulen, Mark-Jan; Versluis, Michel; Sprenkels, Ad J.; van den Berg, Albert; Eijkel, Jan C. T.

    2014-04-01

    The strong demand for renewable energy promotes research on novel methods and technologies for energy conversion. Microfluidic systems for energy conversion by streaming current are less known to the public, and the relatively low efficiencies previously obtained seemed to limit the further applications of such systems. Here we report a microdroplet-based electrostatic generator operating by an acceleration-deceleration cycle (‘ballistic’ conversion), and show that this principle enables both high efficiency and compact simple design. Water is accelerated by pumping it through a micropore to form a microjet breaking up into fast-moving charged droplets. Droplet kinetic energy is converted to electrical energy when the charged droplets decelerate in the electrical field that forms between membrane and target. We demonstrate conversion efficiencies of up to 48%, a power density of 160 kW m-2 and both high- (20 kV) and low- (500 V) voltage operation. Besides offering striking new insights, the device potentially opens up new perspectives for low-cost and robust renewable energy conversion.

  12. Radiation hardened high efficiency silicon space solar cell

    International Nuclear Information System (INIS)

    Garboushian, V.; Yoon, S.; Turner, J.

    1993-01-01

    A silicon solar cell with AMO 19% Beginning of Life (BOL) efficiency is reported. The cell has demonstrated equal or better radiation resistance when compared to conventional silicon space solar cells. Conventional silicon space solar cell performance is generally ∼ 14% at BOL. The Radiation Hardened High Efficiency Silicon (RHHES) cell is thinned for high specific power (watts/kilogram). The RHHES space cell provides compatibility with automatic surface mounting technology. The cells can be easily combined to provide desired power levels and voltages. The RHHES space cell is more resistant to mechanical damage due to micrometeorites. Micro-meteorites which impinge upon conventional cells can crack the cell which, in turn, may cause string failure. The RHHES, operating in the same environment, can continue to function with a similar crack. The RHHES cell allows for very efficient thermal management which is essential for space cells generating higher specific power levels. The cell eliminates the need for electrical insulation layers which would otherwise increase the thermal resistance for conventional space panels. The RHHES cell can be applied to a space concentrator panel system without abandoning any of the attributes discussed. The power handling capability of the RHHES cell is approximately five times more than conventional space concentrator solar cells

  13. Highly Efficient Spectrally Stable Red Perovskite Light-Emitting Diodes.

    Science.gov (United States)

    Tian, Yu; Zhou, Chenkun; Worku, Michael; Wang, Xi; Ling, Yichuan; Gao, Hanwei; Zhou, Yan; Miao, Yu; Guan, Jingjiao; Ma, Biwu

    2018-05-01

    Perovskite light-emitting diodes (LEDs) have recently attracted great research interest for their narrow emissions and solution processability. Remarkable progress has been achieved in green perovskite LEDs in recent years, but not blue or red ones. Here, highly efficient and spectrally stable red perovskite LEDs with quasi-2D perovskite/poly(ethylene oxide) (PEO) composite thin films as the light-emitting layer are reported. By controlling the molar ratios of organic salt (benzylammonium iodide) to inorganic salts (cesium iodide and lead iodide), luminescent quasi-2D perovskite thin films are obtained with tunable emission colors from red to deep red. The perovskite/polymer composite approach enables quasi-2D perovskite/PEO composite thin films to possess much higher photoluminescence quantum efficiencies and smoothness than their neat quasi-2D perovskite counterparts. Electrically driven LEDs with emissions peaked at 638, 664, 680, and 690 nm have been fabricated to exhibit high brightness and external quantum efficiencies (EQEs). For instance, the perovskite LED with an emission peaked at 680 nm exhibits a brightness of 1392 cd m -2 and an EQE of 6.23%. Moreover, exceptional electroluminescence spectral stability under continuous device operation has been achieved for these red perovskite LEDs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Design Strategies for Ultra-high Efficiency Photovoltaics

    Science.gov (United States)

    Warmann, Emily Cathryn

    While concentrator photovoltaic cells have shown significant improvements in efficiency in the past ten years, once these cells are integrated into concentrating optics, connected to a power conditioning system and deployed in the field, the overall module efficiency drops to only 34 to 36%. This efficiency is impressive compared to conventional flat plate modules, but it is far short of the theoretical limits for solar energy conversion. Designing a system capable of achieving ultra high efficiency of 50% or greater cannot be achieved by refinement and iteration of current design approaches. This thesis takes a systems approach to designing a photovoltaic system capable of 50% efficient performance using conventional diode-based solar cells. The effort began with an exploration of the limiting efficiency of spectrum splitting ensembles with 2 to 20 sub cells in different electrical configurations. Incorporating realistic non-ideal performance with the computationally simple detailed balance approach resulted in practical limits that are useful to identify specific cell performance requirements. This effort quantified the relative benefit of additional cells and concentration for system efficiency, which will help in designing practical optical systems. Efforts to improve the quality of the solar cells themselves focused on the development of tunable lattice constant epitaxial templates. Initially intended to enable lattice matched multijunction solar cells, these templates would enable increased flexibility in band gap selection for spectrum splitting ensembles and enhanced radiative quality relative to metamorphic growth. The III-V material family is commonly used for multijunction solar cells both for its high radiative quality and for the ease of integrating multiple band gaps into one monolithic growth. The band gap flexibility is limited by the lattice constant of available growth templates. The virtual substrate consists of a thin III-V film with the desired

  15. Efficient Four-Parametric with-and-without-Memory Iterative Methods Possessing High Efficiency Indices

    Directory of Open Access Journals (Sweden)

    Alicia Cordero

    2018-01-01

    Full Text Available We construct a family of derivative-free optimal iterative methods without memory to approximate a simple zero of a nonlinear function. Error analysis demonstrates that the without-memory class has eighth-order convergence and is extendable to with-memory class. The extension of new family to the with-memory one is also presented which attains the convergence order 15.5156 and a very high efficiency index 15.51561/4≈1.9847. Some particular schemes of the with-memory family are also described. Numerical examples and some dynamical aspects of the new schemes are given to support theoretical results.

  16. Soft switching bidirectional DC-DC converter for ultracapacitor-batteries interface

    International Nuclear Information System (INIS)

    Adib, Ehsan; Farzanehfard, Hosein

    2009-01-01

    In this paper a new soft switching bidirectional DC-DC converter is introduced which can be applied as the interface circuit between ultracapacitors and batteries or fuel cells. All semiconductor devices in the proposed converter are soft switched while the control circuit remains PWM. Due to achieved soft switching condition, the energy conversion through the proposed converter is highly efficient. The proposed converter is analyzed and a prototype converter is implemented. The presented experimental results confirm the theoretical analysis.

  17. Soft switching bidirectional DC-DC converter for ultracapacitor-batteries interface

    Energy Technology Data Exchange (ETDEWEB)

    Adib, Ehsan; Farzanehfard, Hosein [Dept. of Electrical and Computer Engineering, Isfahan Univ. of Technology (Iran)

    2009-12-15

    In this paper a new soft switching bidirectional DC-DC converter is introduced which can be applied as the interface circuit between ultracapacitors and batteries or fuel cells. All semiconductor devices in the proposed converter are soft switched while the control circuit remains PWM. Due to achieved soft switching condition, the energy conversion through the proposed converter is highly efficient. The proposed converter is analyzed and a prototype converter is implemented. The presented experimental results confirm the theoretical analysis. (author)

  18. Microbial electrolytic disinfection process for highly efficient Escherichia coli inactivation

    DEFF Research Database (Denmark)

    Zhou, Shaofeng; Huang, Shaobin; Li, Xiaohu

    2018-01-01

    extensively studied for recalcitrant organics removal, its application potential towards water disinfection (e.g., inactivation of pathogens) is still unknown. This study investigated the inactivation of Escherichia coli in a microbial electrolysis cell based bio-electro-Fenton system (renamed as microbial......Water quality deterioration caused by a wide variety of recalcitrant organics and pathogenic microorganisms has become a serious concern worldwide. Bio-electro-Fenton systems have been considered as cost-effective and highly efficient water treatment platform technology. While it has been......]OH was identified as one potential mechanism for disinfection. This study successfully demonstrated the feasibility of bio-electro-Fenton process for pathogens inactivation, which offers insight for the future development of sustainable, efficient, and cost-effective biological water treatment technology....

  19. Improved entropy encoding for high efficient video coding standard

    Directory of Open Access Journals (Sweden)

    B.S. Sunil Kumar

    2018-03-01

    Full Text Available The High Efficiency Video Coding (HEVC has better coding efficiency, but the encoding performance has to be improved to meet the growing multimedia applications. This paper improves the standard entropy encoding by introducing the optimized weighing parameters, so that higher rate of compression can be accomplished over the standard entropy encoding. The optimization is performed using the recently introduced firefly algorithm. The experimentation is carried out using eight benchmark video sequences and the PSNR for varying rate of data transmission is investigated. Comparative analysis based on the performance statistics is made with the standard entropy encoding. From the obtained results, it is clear that the originality of the decoded video sequence is preserved far better than the proposed method, though the compression rate is increased. Keywords: Entropy, Encoding, HEVC, PSNR, Compression

  20. Study on a Novel High-Efficiency Bridgeless PFC Converter

    Directory of Open Access Journals (Sweden)

    Cao Taiqiang

    2014-01-01

    Full Text Available In order to implement a high-efficiency bridgeless power factor correction converter, a new topology and operation principles of continuous conduction mode (CCM and DC steady-state character of the converter are analyzed, which show that the converter not only has bipolar-gain characteristic but also has the same characteristic as the traditional Boost converter, while the voltage transfer ratio is not related with the resonant branch parameters and switching frequency. Based on the above topology, a novel bridgeless Bipolar-Gain Pseudo-Boost PFC converter is proposed. With this converter, the diode rectifier bridge of traditional AC-DC converter is eliminated, and zero-current switching of fast recovery diode is achieved. Thus, the efficiency is improved. Next, we also propose the one-cycle control policy of this converter. Finally, experiments are provided to verify the accuracy and feasibility of the proposed converter.

  1. Highly Efficient and Reliable Transparent Electromagnetic Interference Shielding Film.

    Science.gov (United States)

    Jia, Li-Chuan; Yan, Ding-Xiang; Liu, Xiaofeng; Ma, Rujun; Wu, Hong-Yuan; Li, Zhong-Ming

    2018-04-11

    Electromagnetic protection in optoelectronic instruments such as optical windows and electronic displays is challenging because of the essential requirements of a high optical transmittance and an electromagnetic interference (EMI) shielding effectiveness (SE). Herein, we demonstrate the creation of an efficient transparent EMI shielding film that is composed of calcium alginate (CA), silver nanowires (AgNWs), and polyurethane (PU), via a facile and low-cost Mayer-rod coating method. The CA/AgNW/PU film with a high optical transmittance of 92% achieves an EMI SE of 20.7 dB, which meets the requirements for commercial shielding applications. A superior EMI SE of 31.3 dB could be achieved, whereas the transparent film still maintains a transmittance of 81%. The integrated efficient EMI SE and high transmittance are superior to those of most previously reported transparent EMI shielding materials. Moreover, our transparent films exhibit a highly reliable shielding ability in a complex service environment, with 98 and 96% EMI SE retentions even after 30 min of ultrasound treatment and 5000 bending cycles (1.5 mm radius), respectively. The comprehensive performance that is associated with the facile fabrication strategy imparts the CA/AgNW/PU film with great potential as an optimized EMI shielding material in emerging optoelectronic devices, such as flexible solar cells, displays, and touch panels.

  2. Research & Implementation of AC - DC Converter with High Power Factor & High Efficiency

    Directory of Open Access Journals (Sweden)

    Hsiou-Hsian Nien

    2014-05-01

    Full Text Available In this paper, we design and develop a high power factor, high efficiency two-stage AC - DC power converter. This paper proposes a two-stage AC - DC power converter. The first stage is boost active power factor correction circuit. The latter stage is near constant frequency LLC resonant converter. In addition to traditional LLC high efficiency advantages, light-load conversion efficiency of this power converter can be improved. And it possesses high power factor and near constant frequency operating characteristics, can significantly reduce the electromagnetic interference. This paper first discusses the main structure and control manner of power factor correction circuit. And then by the LLC resonant converter equivalent model proceed to circuit analysis to determine the important parameters of the converter circuit elements. Then design a variable frequency resonant tank. The resonant frequency can change automatically on the basis of the load to reach near constant frequency operation and a purpose of high efficiency. Finally, actually design and produce an AC – DC power converter with output of 190W to verify the characteristics and feasibility of this converter. The experimental results show that in a very light load (9.5 W the efficiency is as high as 81%, the highest efficiency of 88% (90 W. Full load efficiency is 87%. At 19 W ~ 190 W power changes, the operating frequency change is only 0.4 kHz (AC 110 V and 0.3 kHz (AC 220 V.

  3. Approaches to achieve high grain yield and high resource use efficiency in rice

    Directory of Open Access Journals (Sweden)

    Jianchang YANG

    2015-06-01

    Full Text Available This article discusses approaches to simultaneously increase grain yield and resource use efficiency in rice. Breeding nitrogen efficient cultivars without sacrificing rice yield potential, improving grain fill in later-flowering inferior spikelets and enhancing harvest index are three important approaches to achieving the dual goal of high grain yield and high resource use efficiency. Deeper root distribution and higher leaf photosynthetic N use efficiency at lower N rates could be used as selection criteria to develop N-efficient cultivars. Enhancing sink activity through increasing sugar-spikelet ratio at the heading time and enhancing the conversion efficiency from sucrose to starch though increasing the ratio of abscisic acid to ethylene in grains during grain fill could effectively improve grain fill in inferior spikelets. Several practices, such as post-anthesis controlled soil drying, an alternate wetting and moderate soil drying regime during the whole growing season, and non-flooded straw mulching cultivation, could substantially increase grain yield and water use efficiency, mainly via enhanced remobilization of stored carbon from vegetative tissues to grains and improved harvest index. Further research is needed to understand synergistic interaction between water and N on crop and soil and the mechanism underlying high resource use efficiency in high-yielding rice.

  4. One-Pot Soft-Template Synthesis of Nanostructured Copper-Supported Mesoporous Carbon FDU-15 Electrocatalysts for Efficient CO2 Reduction.

    Science.gov (United States)

    Şahin, Nihat Ege; Comminges, Clément; Le Valant, Anthony; Kiener, Julien; Parmentier, Julien; Napporn, Teko W; Melinte, Georgian; Ersen, Ovidiu; Kokoh, Kouakou B

    2018-03-14

    Copper-supported mesoporous carbon nanocatalysts (Cu/FDU-15) were synthesized using an easy and convenient one-pot soft-template method for low-overvoltage CO 2 electroreduction. TEM imaging revealed the presence of large Cu nanoparticles (diameter 140 nm) with Cu 2 O nanoparticles (16 nm) as an additional phase. From the electron tomography observations, we found that the copper particles were placed inside and on the exterior surface of the porous FDU-15 support, providing an accessible surface for electrocatalytic reactions. CO 2 electrolyses showed that the mesostructured Cu/FDU-15-350 cathode materials were active towards CO 2 conversion to formic acid with 22 % Faradaic efficiency at a remarkably low overpotential of 290 mV, hydrogen being the only side-product. The catalyst's activity correlates to the calculated metallic surface area, as determined from a geometrical model, confirming that the mesoporous channels act as a diffusion path for the CO 2 molecule, and that the whole Cu surface is accessible to CO 2 , even if particles are entrapped in the carbon matrix. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Effects of brown fish meal replacement with fermented soybean meal on growth performance, feed efficiency and enzyme activities of Chinese soft-shelled turtle, Pelodiscus sinensis

    Science.gov (United States)

    Zou, Yurong; Ai, Qinghui; Mai, Kangsen; Zhang, Wenbing; Zhang, Yanjiao; Xu, Wei

    2012-06-01

    A 120-day feeding experiment was conducted to investigate the effects of partial replacement of brown fish meal (BFM) by fermented soybean meal (FSBM) in diets of Chinese soft-shelled turtle ( Pelodiscus sinensis). The turtles (initial mean body weight, (115.52 ± 1.05) g) were fed with three experimental diets, in which 0%, 4.72% and 9.44% BFM protein was replaced by 0%, 3% and 6% FSBM, respectively. Results showed that the feeding rate (FR), specific growth rate (SGR) and feed efficiency ratio (FER) of turtles fed with the diet containing 3% FSBM were not significantly different from the control group (0% FSBM) ( P > 0.05). However, FR, SGR and FER of turtles fed with the diet containing 6% FSBM were significantly lower than those of the control group ( P 0.05). However, the uric acid concentration in turtles fed with the diet containing 3% or 6% FSBM was significantly lower than that in the control group ( P 0.05). The results suggested that FSBM could replace 4.72% BFM protein in turtle diets without exerting adverse effects on turtle growth, feed utilization and measured immune parameters.

  6. Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption

    Science.gov (United States)

    Zheng, Xueli; Zhang, Bo; de Luna, Phil; Liang, Yufeng; Comin, Riccardo; Voznyy, Oleksandr; Han, Lili; García de Arquer, F. Pelayo; Liu, Min; Dinh, Cao Thang; Regier, Tom; Dynes, James J.; He, Sisi; Xin, Huolin L.; Peng, Huisheng; Prendergast, David; Du, Xiwen; Sargent, Edward H.

    2018-02-01

    The efficiency with which renewable fuels and feedstocks are synthesized from electrical sources is limited at present by the sluggish oxygen evolution reaction (OER) in pH-neutral media. We took the view that generating transition-metal sites with high valence at low applied bias should improve the activity of neutral OER catalysts. Here, using density functional theory, we find that the formation energy of desired Ni4+ sites is systematically modulated by incorporating judicious combinations of Co, Fe and non-metal P. We therefore synthesized NiCoFeP oxyhydroxides and probed their oxidation kinetics with in situ soft X-ray absorption spectroscopy (sXAS). In situ sXAS studies of neutral-pH OER catalysts indicate ready promotion of Ni4+ under low overpotential conditions. The NiCoFeP catalyst outperforms IrO2 and retains its performance following 100 h of operation. We showcase NiCoFeP in a membrane-free CO2 electroreduction system that achieves a 1.99 V cell voltage at 10 mA cm-2, reducing CO2 into CO and oxidizing H2O to O2 with a 64% electricity-to-chemical-fuel efficiency.

  7. Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption.

    Science.gov (United States)

    Zheng, Xueli; Zhang, Bo; De Luna, Phil; Liang, Yufeng; Comin, Riccardo; Voznyy, Oleksandr; Han, Lili; García de Arquer, F Pelayo; Liu, Min; Dinh, Cao Thang; Regier, Tom; Dynes, James J; He, Sisi; Xin, Huolin L; Peng, Huisheng; Prendergast, David; Du, Xiwen; Sargent, Edward H

    2018-02-01

    The efficiency with which renewable fuels and feedstocks are synthesized from electrical sources is limited at present by the sluggish oxygen evolution reaction (OER) in pH-neutral media. We took the view that generating transition-metal sites with high valence at low applied bias should improve the activity of neutral OER catalysts. Here, using density functional theory, we find that the formation energy of desired Ni 4+ sites is systematically modulated by incorporating judicious combinations of Co, Fe and non-metal P. We therefore synthesized NiCoFeP oxyhydroxides and probed their oxidation kinetics with in situ soft X-ray absorption spectroscopy (sXAS). In situ sXAS studies of neutral-pH OER catalysts indicate ready promotion of Ni 4+ under low overpotential conditions. The NiCoFeP catalyst outperforms IrO 2 and retains its performance following 100 h of operation. We showcase NiCoFeP in a membrane-free CO 2 electroreduction system that achieves a 1.99 V cell voltage at 10 mA cm -2 , reducing CO 2 into CO and oxidizing H 2 O to O 2 with a 64% electricity-to-chemical-fuel efficiency.

  8. Soft errors in 10-nm-scale magnetic tunnel junctions exposed to high-energy heavy-ion radiation

    Science.gov (United States)

    Kobayashi, Daisuke; Hirose, Kazuyuki; Makino, Takahiro; Onoda, Shinobu; Ohshima, Takeshi; Ikeda, Shoji; Sato, Hideo; Inocencio Enobio, Eli Christopher; Endoh, Tetsuo; Ohno, Hideo

    2017-08-01

    The influences of various types of high-energy heavy-ion radiation on 10-nm-scale CoFeB-MgO magnetic tunnel junctions with a perpendicular easy axis have been investigated. In addition to possible latent damage, which has already been pointed out in previous studies, high-energy heavy-ion bombardments demonstrated that the magnetic tunnel junctions may exhibit clear flips between their high- and low-resistance states designed for a digital bit 1 or 0. It was also demonstrated that flipped magnetic tunnel junctions still may provide proper memory functions such as read, write, and hold capabilities. These two findings proved that high-energy heavy ions can produce recoverable bit flips in magnetic tunnel junctions, i.e., soft errors. Data analyses suggested that the resistance flips stem from magnetization reversals of the ferromagnetic layers and that each of them is caused by a single strike of heavy ions. It was concurrently found that an ion strike does not always result in a flip, suggesting a stochastic process behind the flip. Experimental data also showed that the flip phenomenon is dependent on the device and heavy-ion characteristics. Among them, the diameter of the device and the linear energy transfer of the heavy ions were revealed as the key parameters. From their dependences, the physical mechanism behind the flip was discussed. It is likely that a 10-nm-scale ferromagnetic disk loses its magnetization due to a local temperature increase induced by a single strike of heavy ions; this demagnetization is followed by a cooling period associated with a possible stochastic recovery process. On the basis of this hypothesis, a simple analytical model was developed, and it was found that the model accounts for the results reasonably well. This model also predicted that magnetic tunnel junctions provide sufficiently high soft-error reliability for use in space, highlighting their advantage over their counterpart conventional semiconductor memories.

  9. Segmentation methodology for automated classification and differentiation of soft tissues in multiband images of high-resolution ultrasonic transmission tomography.

    Science.gov (United States)

    Jeong, Jeong-Won; Shin, Dae C; Do, Synho; Marmarelis, Vasilis Z

    2006-08-01

    This paper presents a novel segmentation methodology for automated classification and differentiation of soft tissues using multiband data obtained with the newly developed system of high-resolution ultrasonic transmission tomography (HUTT) for imaging biological organs. This methodology extends and combines two existing approaches: the L-level set active contour (AC) segmentation approach and the agglomerative hierarchical kappa-means approach for unsupervised clustering (UC). To prevent the trapping of the current iterative minimization AC algorithm in a local minimum, we introduce a multiresolution approach that applies the level set functions at successively increasing resolutions of the image data. The resulting AC clusters are subsequently rearranged by the UC algorithm that seeks the optimal set of clusters yielding the minimum within-cluster distances in the feature space. The presented results from Monte Carlo simulations and experimental animal-tissue data demonstrate that the proposed methodology outperforms other existing methods without depending on heuristic parameters and provides a reliable means for soft tissue differentiation in HUTT images.

  10. High efficiency electrophosphorescence from bilayer organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Li Minghang; Lin, Ming-Te; Shepherd, Nigel D [Department of Material Science and Engineering, University of North Texas, Denton, TX (United States); Chen, Wei-Hsuan; Oswald, Iain; Omary, Mohammad [Department of Chemeistry, University of North Texas, Denton, TX (United States)

    2011-09-14

    An electron mobility of 2.7 x 10{sup -5} cm{sup 2} V{sup -1} s{sup -1} was measured for the phosphorescent emitter bis[3,5-bis(2-pyridyl)-1,2,4-triazolato]platinum(II)(Pt(ptp)2), which prompted its evaluation as both the emissive layer and electron transport layer in organic light emitting diodes with a simple bilayer structure. Power and external quantum efficiencies of 54.0 {+-} 0.2 lm W{sup -1} and 15.9% were obtained, which as far as we could ascertain are amongst the highest reported values for bilayer devices. We ascribe the high device efficiency to the combination of the high electron mobility, short excited-state lifetime (117 ns) and high luminescence quantum yield (60%) of the bis[3,5-bis(2-pyridyl)-1,2,4-triazolato]platinum(II). The colour temperature of the devices was 2855 K at 5 V, which places the emission in the 'warm' light spectral region.

  11. Detecting Android Malwares with High-Efficient Hybrid Analyzing Methods

    Directory of Open Access Journals (Sweden)

    Yu Liu

    2018-01-01

    Full Text Available In order to tackle the security issues caused by malwares of Android OS, we proposed a high-efficient hybrid-detecting scheme for Android malwares. Our scheme employed different analyzing methods (static and dynamic methods to construct a flexible detecting scheme. In this paper, we proposed some detecting techniques such as Com+ feature based on traditional Permission and API call features to improve the performance of static detection. The collapsing issue of traditional function call graph-based malware detection was also avoided, as we adopted feature selection and clustering method to unify function call graph features of various dimensions into same dimension. In order to verify the performance of our scheme, we built an open-access malware dataset in our experiments. The experimental results showed that the suggested scheme achieved high malware-detecting accuracy, and the scheme could be used to establish Android malware-detecting cloud services, which can automatically adopt high-efficiency analyzing methods according to the properties of the Android applications.

  12. High efficiency thermal energy storage system for utility applications

    International Nuclear Information System (INIS)

    Vrable, D.L.; Quade, R.N.

    1979-01-01

    A concept of coupling a high efficiency base loaded coal or nuclear power plant with a thermal energy storage scheme for efficient and low-cost intermediate and peaking power is presented. A portion of the power plant's thermal output is used directly to generate superheated steam for continuous operation of a conventional turbine-generator to product base-load power. The remaining thermal output is used on a continuous basis to heat a conventional heat transfer salt (such as the eutectic composition of KaNO 3 /NaNO 3 /NaNO 2 ), which is stored in a high-temperature reservoir [538 0 C (1000 0 F)]. During peak demand periods, the salt is circulated from the high-temperature reservoir to a low-temperature reservoir through steam generators in order to provide peaking power from a conventional steam cycle plant. The period of operation can vary, but may typically be the equivalent of about 4 to 8 full-power hours each day. The system can be tailored to meet the utilities' load demand by varying the base-load level and the period of operation of the peak-load system

  13. High-efficiency target-ion sources for RIB generation

    International Nuclear Information System (INIS)

    Alton, G.D.

    1993-01-01

    A brief review is given of high-efficiency ion sources which have been developed or are under development at ISOL facilities which show particular promise for use at existing, future, or radioactive ion beam (RIB) facilities now under construction. Emphasis will be placed on those sources which have demonstrated high ionization efficiency, species versatility, and operational reliability and which have been carefully designed for safe handling in the high level radioactivity radiation fields incumbent at such facilities. Brief discussions will also be made of the fundamental processes which affect the realizable beam intensities in target-ion sources. Among the sources which will be reviewed will be selected examples of state-of-the-art electron-beam plasma-type ion sources, thermal-ionization, surface-ionization, ECR, and selectively chosen ion source concepts which show promise for radioactive ion beam generation. A few advanced, chemically selective target-ion sources will be described, such as sources based on the use of laser-resonance ionization, which, in principle, offer a more satisfactory solution to isobaric contamination problems than conventional electromagnetic techniques. Particular attention will be given to the sources which have been selected for initial or future use at the Holifield Radioactive Ion Beam Facility now under construction at the Oak Ridge National Laboratory

  14. Scattering by a plane-parallel layer with high concentration of optically soft particles

    International Nuclear Information System (INIS)

    Loiko, Valery A.; Berdnik, Vladimir V.

    2009-01-01

    A method describing light propagation in a plane-parallel light-scattering layer with large concentration of homogeneous particles is developed. It is based on the radiative transfer equation and the doubling method. The interference approximation is used to take into account collective scattering effects. Spectral dependence of transmitted light for a layer of nonabsorbing optically soft particles with subwavelength-sized particles is investigated. At small volume concentration of the particles the weak spectral dependences of wave exponents for coherently transmitted and diffuse light are observed. It is shown that in a layer with large volume concentration of the subwavelength-sized particles the wave exponent can exceed considerably the value of four, which takes place for the Rayleigh particles. The dependence of wave exponents for coherently transmitted and diffuse light on the refractive index and concentration of particles is investigated in detail. Multiple scattering of light results in the reduction of the exponent. The quantitative results are presented and discussed. It is shown that there is a range of wavelengths where the negative values of the wave exponent at the regime of multiple scattering are implemented.

  15. High-Power Actuation from Molecular Photoswitches in Enantiomerically Paired Soft Springs.

    Science.gov (United States)

    Aßhoff, Sarah J; Lancia, Federico; Iamsaard, Supitchaya; Matt, Benjamin; Kudernac, Tibor; Fletcher, Stephen P; Katsonis, Nathalie

    2017-03-13

    Motion in plants often relies on dynamic helical systems as seen in coiling tendrils, spasmoneme springs, and the opening of chiral seedpods. Developing nanotechnology that would allow molecular-level phenomena to drive such movements in artificial systems remains a scientific challenge. Herein, we describe a soft device that uses nanoscale information to mimic seedpod opening. The system exploits a fundamental mechanism of stimuli-responsive deformation in plants, namely that inflexible elements with specific orientations are integrated into a stimuli-responsive matrix. The device is operated by isomerization of a light-responsive molecular switch that drives the twisting of strips of liquid-crystal elastomers. The strips twist in opposite directions and work against each other until the pod pops open from stress. This mechanism allows the photoisomerization of molecular switches to stimulate rapid shape changes at the macroscale and thus to maximize actuation power. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  16. Highly Efficient and Reproducible Nonfullerene Solar Cells from Hydrocarbon Solvents

    KAUST Repository

    Wadsworth, Andrew; Ashraf, Raja; Abdelsamie, Maged; Pont, Sebastian; Little, Mark; Moser, Maximilian; Hamid, Zeinab; Neophytou, Marios; Zhang, Weimin; Amassian, Aram; Durrant, James R.; Baran, Derya; McCulloch, Iain

    2017-01-01

    With chlorinated solvents unlikely to be permitted for use in solution-processed organic solar cells in industry, there must be a focus on developing nonchlorinated solvent systems. Here we report high-efficiency devices utilizing a low-bandgap donor polymer (PffBT4T-2DT) and a nonfullerene acceptor (EH-IDTBR) from hydrocarbon solvents and without using additives. When mesitylene was used as the solvent, rather than chlorobenzene, an improved power conversion efficiency (11.1%) was achieved without the need for pre- or post-treatments. Despite altering the processing conditions to environmentally friendly solvents and room-temperature coating, grazing incident X-ray measurements confirmed that active layers processed from hydrocarbon solvents retained the robust nanomorphology obtained with hot-processed chlorinated solvents. The main advantages of hydrocarbon solvent-processed devices, besides the improved efficiencies, were the reproducibility and storage lifetime of devices. Mesitylene devices showed better reproducibility and shelf life up to 4000 h with PCE dropping by only 8% of its initial value.

  17. Highly efficient solar-pumped Nd:YAG laser.

    Science.gov (United States)

    Liang, Dawei; Almeida, Joana

    2011-12-19

    The recent progress in solar-pumped laser with Fresnel lens and Cr:Nd:YAG ceramic medium has revitalized solar laser researches, revealing a promising future for renewable reduction of magnesium from magnesium oxide. Here we show a big advance in solar laser collection efficiency by utilizing an economical Fresnel lens and a most widely used Nd:YAG single-crystal rod. The incoming solar radiation from the sun is focused by a 0.9 m diameter Fresnel lens. A dielectric totally internally reflecting secondary concentrator is employed to couple the concentrated solar radiation from the focal zone to a 4 mm diameter Nd:YAG rod within a conical pumping cavity. 12.3 W cw laser power is produced, corresponding to 19.3 W/m(2) collection efficiency, which is 2.9 times larger than the previous results with Nd:YAG single-crystal medium. Record-high slope efficiency of 3.9% is also registered. Laser beam quality is considerably improved by pumping a 3 mm diameter Nd:YAG rod.

  18. EUROGAM: A high efficiency escape suppressed spectrometer array

    Energy Technology Data Exchange (ETDEWEB)

    Nolan, P J [Liverpool Univ. (United Kingdom). Oliver Lodge Lab.

    1992-08-01

    EUROGAM is a UK-France collaboration to develop and build a high efficiency escape suppressed spectrometer array. The project has involved the development of both germanium (Ge) and bismuth germanate (BGO) detectors to produce crystals which are both bigger and have a more complex geometry. As a major investment for the future, the collaboration has developed a new electronics and data acquisition system based on the VXI and VME standards. The array will start its experimental programme in mid 1992 at the Nuclear Structure Facility at Daresbury, U.K. At this stage it will have a total photopeak efficiency (for 1.33 MeV gamma-rays) of {approx} 4.5%. This will give an improvement in sensitivity (relative to presently operating arrays) of a factor of about 10. When EUROGAM moves to France in mid 1993 its photopeak efficiency will have increased to about 8.5% which will result in an increase in sensitivity of a further factor of about 10. In this article I will concentrate on the array which will operate at Daresbury in 1992 and only briefly cover the developments which will take place for the full array before it is used in France in 1993. (author). 13 refs., 2 tabs., 10 figs.

  19. High-efficiency integrated piezoelectric energy harvesting systems

    Science.gov (United States)

    Hande, Abhiman; Shah, Pradeep

    2010-04-01

    This paper describes hierarchically architectured development of an energy harvesting (EH) system that consists of micro and/or macro-scale harvesters matched to multiple components of remote wireless sensor and communication nodes. The micro-scale harvesters consist of thin-film MEMS piezoelectric cantilever arrays and power generation modules in IC-like form to allow efficient EH from vibrations. The design uses new high conversion efficiency thin-film processes combined with novel cantilever structures tuned to multiple resonant frequencies as broadband arrays. The macro-scale harvesters are used to power the collector nodes that have higher power specifications. These bulk harvesters can be integrated with efficient adaptive power management circuits that match transducer impedance and maximize power harvested from multiple scavenging sources with very low intrinsic power consumption. Texas MicroPower, Inc. is developing process based on a composition that has the highest reported energy density as compared to other commercially available bulk PZT-based sensor/actuator ceramic materials and extending it to thin-film materials and miniature conversion transducer structures. The multiform factor harvesters can be deployed for several military and commercial applications such as underground unattended sensors, sensors in oil rigs, structural health monitoring, supply chain management, and battlefield applications such as sensors on soldier apparel, equipment, and wearable electronics.

  20. Highly Efficient and Reproducible Nonfullerene Solar Cells from Hydrocarbon Solvents

    KAUST Repository

    Wadsworth, Andrew

    2017-06-01

    With chlorinated solvents unlikely to be permitted for use in solution-processed organic solar cells in industry, there must be a focus on developing nonchlorinated solvent systems. Here we report high-efficiency devices utilizing a low-bandgap donor polymer (PffBT4T-2DT) and a nonfullerene acceptor (EH-IDTBR) from hydrocarbon solvents and without using additives. When mesitylene was used as the solvent, rather than chlorobenzene, an improved power conversion efficiency (11.1%) was achieved without the need for pre- or post-treatments. Despite altering the processing conditions to environmentally friendly solvents and room-temperature coating, grazing incident X-ray measurements confirmed that active layers processed from hydrocarbon solvents retained the robust nanomorphology obtained with hot-processed chlorinated solvents. The main advantages of hydrocarbon solvent-processed devices, besides the improved efficiencies, were the reproducibility and storage lifetime of devices. Mesitylene devices showed better reproducibility and shelf life up to 4000 h with PCE dropping by only 8% of its initial value.

  1. A High Efficiency PSOFC/ATS-Gas Turbine Power System

    Energy Technology Data Exchange (ETDEWEB)

    W.L. Lundberg; G.A. Israelson; M.D. Moeckel; S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann

    2001-02-01

    A study is described in which the conceptual design of a hybrid power system integrating a pressurized Siemens Westinghouse solid oxide fuel cell generator and the Mercury{trademark} 50 gas turbine was developed. The Mercury{trademark} 50 was designed by Solar Turbines as part of the US. Department of Energy Advanced Turbine Systems program. The focus of the study was to develop the hybrid power system concept that principally would exhibit an attractively-low cost of electricity (COE). The inherently-high efficiency of the hybrid cycle contributes directly to achieving this objective, and by employing the efficient, power-intensive Mercury{trademark} 50, with its relatively-low installed cost, the higher-cost SOFC generator can be optimally sized such that the minimum-COE objective is achieved. The system cycle is described, major system components are specified, the system installed cost and COE are estimated, and the physical arrangement of the major system components is discussed. Estimates of system power output, efficiency, and emissions at the system design point are also presented. In addition, two bottoming cycle options are described, and estimates of their effects on overall-system performance, cost, and COE are provided.

  2. EUROGAM: A high efficiency escape suppressed spectrometer array

    International Nuclear Information System (INIS)

    Nolan, P.J.

    1992-01-01

    EUROGAM is a UK-France collaboration to develop and build a high efficiency escape suppressed spectrometer array. The project has involved the development of both germanium (Ge) and bismuth germanate (BGO) detectors to produce crystals which are both bigger and have a more complex geometry. As a major investment for the future, the collaboration has developed a new electronics and data acquisition system based on the VXI and VME standards. The array will start its experimental programme in mid 1992 at the Nuclear Structure Facility at Daresbury, U.K. At this stage it will have a total photopeak efficiency (for 1.33 MeV gamma-rays) of ∼ 4.5%. This will give an improvement in sensitivity (relative to presently operating arrays) of a factor of about 10. When EUROGAM moves to France in mid 1993 its photopeak efficiency will have increased to about 8.5% which will result in an increase in sensitivity of a further factor of about 10. In this article I will concentrate on the array which will operate at Daresbury in 1992 and only briefly cover the developments which will take place for the full array before it is used in France in 1993. (author). 13 refs., 2 tabs., 10 figs

  3. Cascade: a high-efficiency ICF power reactor

    International Nuclear Information System (INIS)

    Pitts, J.H.

    1985-01-01

    Cascade attains a net power-plant efficiency of 49% and its cost is competitive with high-temperature gas-cooled reactor, pressurized-water reactor, and coal-fired power plants. The Cascade reactor and blanket are made of ceramic materials and activation is 6 times less than that of the MARS Tandem Mirror Reactor operating at comparable power. Hands-on maintenance of the heat exchangers is possible one day after shutdown. Essentially all tritium is recovered in the vacuum system, with the remainder recovered from the helium power conversion loop. Tritium leakage external to the vacuum system and power conversion loop is only 0.03 Ci/d

  4. High-efficiency ventilated metamaterial absorber at low frequency

    Science.gov (United States)

    Wu, Xiaoxiao; Au-Yeung, Ka Yan; Li, Xin; Roberts, Robert Christopher; Tian, Jingxuan; Hu, Chuandeng; Huang, Yingzhou; Wang, Shuxia; Yang, Zhiyu; Wen, Weijia

    2018-03-01

    We demonstrate a ventilated metamaterial absorber operating at low frequency (90%) has been achieved in both simulations and experiments. This high-efficiency absorption under the ventilation condition originates from the weak coupling of two identical split tube resonators constituting the absorber, which leads to the hybridization of the degenerate eigenmodes and breaks the absorption upper limit of 50% for conventional transmissive symmetric acoustic absorbers. The absorber can also be extended to an array and work in free space. The absorber should have potential applications in acoustic engineering where both noise reduction and ventilation are required.

  5. Polarization holograms allow highly efficient generation of complex light beams.

    Science.gov (United States)

    Ruiz, U; Pagliusi, P; Provenzano, C; Volke-Sepúlveda, K; Cipparrone, Gabriella

    2013-03-25

    We report a viable method to generate complex beams, such as the non-diffracting Bessel and Weber beams, which relies on the encoding of amplitude information, in addition to phase and polarization, using polarization holography. The holograms are recorded in polarization sensitive films by the interference of a reference plane wave with a tailored complex beam, having orthogonal circular polarizations. The high efficiency, the intrinsic achromaticity and the simplicity of use of the polarization holograms make them competitive with respect to existing methods and attractive for several applications. Theoretical analysis, based on the Jones formalism, and experimental results are shown.

  6. High efficiency power production from biomass and waste

    Energy Technology Data Exchange (ETDEWEB)

    Rabou, L.P.L.M.; Van Leijenhorst, R.J.C.; Hazewinkel, J.H.O. [ECN Biomass, Coal and Environment, Petten (Netherlands)

    2008-11-15

    Two-stage gasification allows power production from biomass and waste with high efficiency. The process involves pyrolysis at about 550C followed by heating of the pyrolysis gas to about 1300C in order to crack hydrocarbons and obtain syngas, a mixture of H2, CO, H2O and CO2. The second stage produces soot as unwanted by-product. Experimental results are reported on the suppression of soot formation in the second stage for two different fuels: beech wood pellets and Rofire pellets, made from rejects of paper recycling. Syngas obtained from these two fuels and from an industrial waste fuel has been cleaned and fed to a commercial SOFC stack for 250 hours in total. The SOFC stack showed comparable performance on real and synthetic syngas and no signs of accelerated degradation in performance over these tests. The experimental results have been used for the design and analysis of a future 25 MWth demonstration plant. As an alternative, a 2.6 MWth system was considered which uses the Green MoDem approach to convert waste fuel into bio-oil and syngas. The 25 MWth system can reach high efficiency only if char produced in the pyrolysis step is converted into additional syngas by steam gasification, and if SOFC off-gas and system waste heat are used in a steam bottoming cycle for additional power production. A net electrical efficiency of 38% is predicted. In addition, heat can be delivered with 37% efficiency. The 2.6 MWth system with only a dual fuel engine to burn bio-oil and syngas promises nearly 40% electrical efficiency plus 41% efficiency for heat production. If syngas is fed to an SOFC system and off-gas and bio-oil to a dual fuel engine, the electrical efficiency can rise to 45%. However, the efficiency for heat production drops to 15%, as waste heat from the SOFC system cannot be used effectively. The economic analysis makes clear that at -20 euro/tonne fuel, 70 euro/MWh for electricity and 7 euro/GJ for heat the 25 MWth system is not economically viable at the

  7. Next generation of high-efficient waste incinerators. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jappe Frandsen, F.

    2010-11-15

    Modern society produces increasing amounts of combustible waste which may be utilized for heat and power production, at a lower emission of CO{sub 2}, e.g. by substituting a certain fraction of energy from fossil fuel-fired power stations. In 2007, 20.4 % of the district heating and 4.5 % of the power produced in Denmark came from thermal conversion of waste, and waste is a very important part of a future sustainable, and independent, Danish energy supply [Frandsen et al., 2009; Groen Energi, 2010]. In Denmark, approx 3.3 Mtons of waste was produced in 2005, an amount predicted to increase to 4.4 Mtons by the year 2030. According to Affald Danmark, 25 % of the current WtE plant capacity in Denmark is older than 20 years, which is usually considered as the technical and economical lifetime of WtE plants. Thus, there is a need for installation of a significant fraction of new waste incineration capacity, preferentially with an increased electrical efficiency, within the next few years. Compared to fossil fuels, waste is difficult to handle in terms of pre-treatment, combustion, and generation of reusable solid residues. In particular, the content of inorganic species (S, Cl, K, Na, etc.) is problematic, due to enhanced deposition and corrosion - especially at higher temperatures. This puts severe constraints on the electrical efficiency of grate-fired units utilizing waste, which seldom exceeds 26-27%, campared to 46-48 % for coal combustion in suspension. The key parameters when targeting higher electrical efficiency are the pressure and temperature in the steam cycle, which are limited by high-temperature corrosion, boiler- and combustion-technology. This report reviews some of the means that can be applied in order to increase the electrical efficiency in plants firing waste on a grate. (Author)

  8. Advances in a high efficiency commercial pulse tube cooler

    Science.gov (United States)

    Zhang, Yibing; Li, Haibing; Wang, Xiaotao; Dai, Wei; Yang, Zhaohui; Luo, Ercang

    2017-12-01

    The pulse tube cryocooler has the advantage of no moving part at the cold end and offers a high reliability. To further extend its use in commercial applications, efforts are still needed to improve efficiency, reliability and cost effectiveness. This paper generalizes several key innovations in our newest cooler. The cooler consists of a moving magnet compressor with dual-opposed pistons, and a co-axial cold finger. Ambient displacers are employed to recover the expansion work to increase cooling efficiency. Inside the cold finger, the conventional flow straightener screens are replaced by a tapered throat between the cold heat exchanger and the pulse tube to strengthen its immunity to the working gas contamination as well as to simplify the manufacturing processes. The cold heat exchanger is made by copper forging process which further reduces the cost. Inside the compressor, a new gas bearing design has brought in assembling simplicity and running reliability. Besides the cooler itself, electronic controller is also important for actual application. A dual channel and dual driving mode control mechanism has been selected, which reduces the vibration to a minimum, meanwhile the cool-down speed becomes faster and run-time efficiency is higher. With these innovations, the cooler TC4189 reached a no-load temperature of 44 K and provided 15 W cooling power at 80K, with an input electric power of 244 W and a cooling water temperature of 23 ℃. The efficiency reached 16.9% of Carnot at 80 K. The whole system has a total mass of 4.3 kg.

  9. Hexagonal boron nitride neutron detectors with high detection efficiencies

    Science.gov (United States)

    Maity, A.; Grenadier, S. J.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2018-01-01

    Neutron detectors fabricated from 10B enriched hexagonal boron nitride (h-10BN or h-BN) epilayers have demonstrated the highest thermal neutron detection efficiency among solid-state neutron detectors to date at about 53%. In this work, photoconductive-like vertical detectors with a detection area of 1 × 1 mm2 were fabricated from 50 μm thick free-standing h-BN epilayers using Ni/Au and Ti/Al bilayers as ohmic contacts. Leakage currents, mobility-lifetime (μτ) products under UV photoexcitation, and neutron detection efficiencies have been measured for a total of 16 different device configurations. The results have unambiguously identified that detectors incorporating the Ni/Au bilayer on both surfaces as ohmic contacts and using the negatively biased top surface for neutron irradiation are the most desired device configurations. It was noted that high growth temperatures of h-10BN epilayers on sapphire substrates tend to yield a higher concentration of oxygen impurities near the bottom surface, leading to a better device performance by the chosen top surface for irradiation than by the bottom. Preferential scattering of oxygen donors tends to reduce the mobility of holes more than that of electrons, making the biasing scheme with the ability of rapidly extracting holes at the irradiated surface while leaving the electrons to travel a large average distance inside the detector at a preferred choice. When measured against a calibrated 6LiF filled micro-structured semiconductor neutron detector, it was shown that the optimized configuration has pushed the detection efficiency of h-BN neutron detectors to 58%. These detailed studies also provided a better understanding of growth-mediated impurities in h-BN epilayers and their effects on the charge collection and neutron detection efficiencies.

  10. High efficiency, multiterawatt x-ray free electron lasers

    Directory of Open Access Journals (Sweden)

    C. Emma

    2016-02-01

    Full Text Available In this paper we present undulator magnet tapering methods for obtaining high efficiency and multiterawatt peak powers in x-ray free electron lasers (XFELs, a key requirement for enabling 3D atomic resolution single molecule imaging and nonlinear x-ray science. The peak power and efficiency of tapered XFELs is sensitive to time dependent effects, like synchrotron sideband growth. To analyze this dependence in detail we perform a comparative numerical optimization for the undulator magnetic field tapering profile including and intentionally disabling these effects. We show that the solution for the magnetic field taper profile obtained from time independent optimization does not yield the highest extraction efficiency when time dependent effects are included. Our comparative optimization is performed for a novel undulator designed specifically to obtain TW power x-ray pulses in the shortest distance: superconducting, helical, with short period and built-in strong focusing. This design reduces the length of the breaks between modules, decreasing diffraction effects, and allows using a stronger transverse electron focusing. Both effects reduce the gain length and the overall undulator length. We determine that after a fully time dependent optimization of a 100 m long Linac coherent light source-like XFEL we can obtain a maximum efficiency of 7%, corresponding to 3.7 TW peak radiation power. Possible methods to suppress the synchrotron sidebands, and further enhance the FEL peak power, up to about 6 TW by increasing the seed power and reducing the electron beam energy spread, are also discussed.

  11. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER

    Energy Technology Data Exchange (ETDEWEB)

    BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-06-01

    OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from

  12. The analysis of energy efficiency in water electrolysis under high temperature and high pressure

    Science.gov (United States)

    Hourng, L. W.; Tsai, T. T.; Lin, M. Y.

    2017-11-01

    This paper aims to analyze the energy efficiency of water electrolysis under high pressure and high temperature conditions. The effects of temperature and pressure on four different kinds of reaction mechanisms, namely, reversible voltage, activation polarization, ohmic polarization, and concentration polarization, are investigated in details. Results show that the ohmic and concentration over-potentials are increased as temperature is increased, however, the reversible and activation over-potentials are decreased as temperature is increased. Therefore, the net efficiency is enhanced as temperature is increased. The efficiency of water electrolysis at 350°C/100 bars is increased about 17%, compared with that at 80°C/1bar.

  13. High-Order Dielectric Metasurfaces for High-Efficiency Polarization Beam Splitters and Optical Vortex Generators

    Science.gov (United States)

    Guo, Zhongyi; Zhu, Lie; Guo, Kai; Shen, Fei; Yin, Zhiping

    2017-08-01

    In this paper, a high-order dielectric metasurface based on silicon nanobrick array is proposed and investigated. By controlling the length and width of the nanobricks, the metasurfaces could supply two different incremental transmission phases for the X-linear-polarized (XLP) and Y-linear-polarized (YLP) light with extremely high efficiency over 88%. Based on the designed metasurface, two polarization beam splitters working in high-order diffraction modes have been designed successfully, which demonstrated a high transmitted efficiency. In addition, we have also designed two vortex-beam generators working in high-order diffraction modes to create vortex beams with the topological charges of 2 and 3. The employment of dielectric metasurfaces operating in high-order diffraction modes could pave the way for a variety of new ultra-efficient optical devices.

  14. A critical study of high efficiency deep grinding

    International Nuclear Information System (INIS)

    Johnstone, Iain

    2002-01-01

    The recent years, the aerospace industry in particular has embraced and actively pursued the development of stronger high performance materials, namely nickel based superalloys and hardwearing steels. This has resulted in a need for a more efficient method of machining, and this need was answered with the advent of High Efficiency Deep Grinding (HEDG). This relatively new process using Cubic Boron Nitride (CBN) electroplated grinding wheels has been investigated through experimental and theoretical means applied to two widely used materials, M50 bearing steel and IN718 nickel based superalloy. It has been shown that this grinding method using a stiff grinding centre such as the Edgetek 5-axis machine is a viable process. Using a number of experimental designs, produced results which were analysed using a variety of methods including visual assessment, sub-surface microscopy and surface analysis using a Scanning Electron Microscope (SEM), residual stress measurement using X-Ray Diffraction (XRD) techniques, Barkhausen Noise Amplitude (BNA) measurements, surface roughness and Vickers micro-hardness appraisal. It has been shown that the fundamentals of the HEDG process have been understood through experimental as well as theoretical means and that through the various thermal models used, grinding temperatures can be predicted to give more control over this dynamic process. The main contributions to knowledge are made up of a number of elements within the grinding environment, the most important being the demonstration of the HEDG effect, explanation of the phenomenon and the ability to model the process. It has also been shown that grinding is a dynamic process and factors such as wheel wear will result in a continuous change in the optimum grinding conditions for a given material and wheel combination. With the significance of these factors recognised, they can be accounted for within an industrial adaptive control scenario with the process engineer confident of a

  15. MXene molecular sieving membranes for highly efficient gas separation.

    Science.gov (United States)

    Ding, Li; Wei, Yanying; Li, Libo; Zhang, Tao; Wang, Haihui; Xue, Jian; Ding, Liang-Xin; Wang, Suqing; Caro, Jürgen; Gogotsi, Yury

    2018-01-11

    Molecular sieving membranes with sufficient and uniform nanochannels that break the permeability-selectivity trade-off are desirable for energy-efficient gas separation, and the arising two-dimensional (2D) materials provide new routes for membrane development. However, for 2D lamellar membranes, disordered interlayer nanochannels for mass transport are usually formed between randomly stacked neighboring nanosheets, which is obstructive for highly efficient separation. Therefore, manufacturing lamellar membranes with highly ordered nanochannel structures for fast and precise molecular sieving is still challenging. Here, we report on lamellar stacked MXene membranes with aligned and regular subnanometer channels, taking advantage of the abundant surface-terminating groups on the MXene nanosheets, which exhibit excellent gas separation performance with H 2 permeability >2200 Barrer and H 2 /CO 2 selectivity >160, superior to the state-of-the-art membranes. The results of molecular dynamics simulations quantitatively support the experiments, confirming the subnanometer interlayer spacing between the neighboring MXene nanosheets as molecular sieving channels for gas separation.

  16. High efficiency video coding coding tools and specification

    CERN Document Server

    Wien, Mathias

    2015-01-01

    The video coding standard High Efficiency Video Coding (HEVC) targets at improved compression performance for video resolutions of HD and beyond, providing Ultra HD video at similar compressed bit rates as for HD video encoded with the well-established video coding standard H.264 | AVC. Based on known concepts, new coding structures and improved coding tools have been developed and specified in HEVC. The standard is expected to be taken up easily by established industry as well as new endeavors, answering the needs of todays connected and ever-evolving online world. This book presents the High Efficiency Video Coding standard and explains it in a clear and coherent language. It provides a comprehensive and consistently written description, all of a piece. The book targets at both, newbies to video coding as well as experts in the field. While providing sections with introductory text for the beginner, it suits as a well-arranged reference book for the expert. The book provides a comprehensive reference for th...

  17. Large-area high-efficiency flexible PHOLED lighting panels

    Science.gov (United States)

    Pang, Huiqing; Mandlik, Prashant; Levermore, Peter A.; Silvernail, Jeff; Ma, Ruiqing; Brown, Julie J.

    2012-09-01

    Organic Light Emitting Diodes (OLEDs) provide various attractive features for next generation illumination systems, including high efficiency, low power, thin and flexible form factor. In this work, we incorporated phosphorescent emitters and demonstrated highly efficient white phosphorescent OLED (PHOLED) devices on flexible plastic substrates. The 0.94 cm2 small-area device has total thickness of approximately 0.25 mm and achieved 63 lm/W at 1,000 cd/m2 with CRI = 85 and CCT = 2920 K. We further designed and fabricated a 15 cm x 15 cm large-area flexible white OLED lighting panels, finished with a hybrid single-layer ultra-low permeability single layer barrier (SLB) encapsulation film. The flexible panel has an active area of 116.4 cm2, and achieved a power efficacy of 47 lm/W at 1,000 cd/m2 with CRI = 83 and CCT = 3470 K. The efficacy of the panel at 3,000 cd/m2 is 43 lm/W. The large-area flexible PHOLED lighting panel is to bring out enormous possibilities to the future general lighting applications.

  18. Nanocoatings for High-Efficiency Industrial Hydraulic and Tooling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Clifton B. Higdon III

    2011-01-07

    Industrial manufacturing in the U.S. accounts for roughly one third of the 98 quadrillion Btu total energy consumption. Motor system losses amount to 1.3 quadrillion Btu, which represents the largest proportional loss of any end-use category, while pumps alone represent over 574 trillion BTU (TBTU) of energy loss each year. The efficiency of machines with moving components is a function of the amount of energy lost to heat because of friction between contacting surfaces. The friction between these interfaces also contributes to downtime and the loss of productivity through component wear and subsequent repair. The production of new replacement parts requires additional energy. Among efforts to reduce energy losses, wear-resistant, low-friction coatings on rotating and sliding components offer a promising approach that is fully compatible with existing equipment and processes. In addition to lubrication, one of the most desirable solutions is to apply a protective coating or surface treatment to rotating or sliding components to reduce their friction coefficients, thereby leading to reduced wear. Historically, a number of materials such as diamond-like carbon (DLC), titanium nitride (TiN), titanium aluminum nitride (TiAlN), and tungsten carbide (WC) have been examined as tribological coatings. The primary objective of this project was the development of a variety of thin film nanocoatings, derived from the AlMgB14 system, with a focus on reducing wear and friction in both industrial hydraulics and cutting tool applications. Proof-of-concept studies leading up to this project had shown that the constituent phases, AlMgB14 and TiB2, were capable of producing low-friction coatings by pulsed laser deposition. These coatings combine high hardness with a low friction coefficient, and were shown to substantially reduce wear in laboratory tribology tests. Selection of the two applications was based largely on the concept of improved mechanical interface efficiencies for

  19. Dose optimization of intra-operative high dose rate interstitial brachytherapy implants for soft tissue sarcoma

    Directory of Open Access Journals (Sweden)

    Jamema Swamidas

    2009-01-01

    Full Text Available Objective : A three dimensional (3D image-based dosimetric study to quantitatively compare geometric vs. dose-point optimization in combination with graphical optimization for interstitial brachytherapy of soft tissue sarcoma (STS. Materials and Methods : Fifteen consecutive STS patients, treated with intra-operative, interstitial Brachytherapy, were enrolled in this dosimetric study. Treatment plans were generated using dose points situated at the "central plane between the catheters", "between the catheters throughout the implanted volume", at "distances perpendicular to the implant axis" and "on the surface of the target volume" Geometrically optimized plans had dose points defined between the catheters, while dose-point optimized plans had dose points defined at a plane perpendicular to the implant axis and on the target surface. Each plan was graphically optimized and compared using dose volume indices. Results : Target coverage was suboptimal with coverage index (CI = 0.67 when dose points were defined at the central plane while it was superior when the dose points were defined at the target surface (CI=0.93. The coverage of graphically optimized plans (GrO was similar to non-GrO with dose points defined on surface or perpendicular to the implant axis. A similar pattern was noticed with conformity index (0.61 vs. 0.82. GrO were more conformal and less homogeneous compared to non-GrO. Sum index was superior for dose points defined on the surface of the target and relatively inferior for plans with dose points at other locations (1.35 vs. 1.27. Conclusions : Optimization with dose points defined away from the implant plane and on target results in superior target coverage with optimal values of other indices. GrO offer better target coverage for implants with non-uniform geometry and target volume.

  20. Changes in corneal structure with continuous wear of high-Dk soft contact lenses: a pilot study.

    Science.gov (United States)

    González-Méijome, J M; González-Pérez, J; Cerviño, A; Yebra-Pimentel, E; Parafita, M A

    2003-06-01

    Despite numerous studies that have considered the effects of extended wear of high-Dk soft contact lenses on ocular physiology, little attention has been paid to the impact of such lenses on central or peripheral corneal thickness and curvature. The present study aims to report the time course of changes in corneal thickness and curvature that accompanies the 30-night continuous wear of new silicone hydrogel soft contact lenses in a neophyte population in a longitudinal study. Six subjects wore high-Dk lotrafilcon (Dk = 140) on a 30-night replacement schedule for 12 months. Only measurements from the right eye were considered for analysis. Topographical measurements of corneal thickness and curvature were taken. The same parameters were monitored for an additional period of 3 months after lens removal. An almost homogenous increase in corneal radius of curvature was detected for all the locations studied, being statistically significant for the 4-mm cord diameter area. This effect was associated with a progressive thinning effect for the central cornea, whereas midperipheral and peripheral areas did not display such a thinning effect during continuous wear. These effects were still evident for the central cornea 3 months after contact lens wear discontinuation. Continuous wear of high-Dk silicone hydrogel contact lenses is associated with clinically appreciable changes in topographical corneal curvature, whereas only a reduction in corneal thickness is appreciated in the central area. This effect seems to be a result of mechanical pressure induced by these hybrid hyperpermeable materials, characterized by a higher modulus of elasticity. The small sample size compromises the conclusions addressed from this study, and further work will be necessary to confirm the present results.

  1. Development and characterization of high-efficiency, high-specific impulse xenon Hall thrusters

    Science.gov (United States)

    Hofer, Richard Robert

    This dissertation presents research aimed at extending the efficient operation of 1600 s specific impulse Hall thruster technology to the 2000--3000 s range. While recent studies of commercially developed Hall thrusters demonstrated greater than 4000 s specific impulse, maximum efficiency occurred at less than 3000 s. It was hypothesized that the efficiency maximum resulted as a consequence of modern magnetic field designs, optimized for 1600 s, which were unsuitable at high-specific impulse. Motivated by the industry efforts and mission studies, the aim of this research was to develop and characterize xenon Hall thrusters capable of both high-specific impulse and high-efficiency operation. The research divided into development and characterization phases. During the development phase, the laboratory-model NASA-173M Hall thrusters were designed with plasma lens magnetic field topographies and their performance and plasma characteristics were evaluated. Experiments with the NASA-173M version 1 (v1) validated the plasma lens design by showing how changing the magnetic field topography at high-specific impulse improved efficiency. Experiments with the NASA-173M version 2 (v2) showed there was a minimum current density and optimum magnetic field topography at which efficiency monotonically increased with voltage. Between 300--1000 V, total specific impulse and total efficiency of the NASA-173Mv2 operating at 10 mg/s ranged from 1600--3400 s and 51--61%, respectively. Comparison of the thrusters showed that efficiency can be optimized for specific impulse by varying the plasma lens design. During the characterization phase, additional plasma properties of the NASA-173Mv2 were measured and a performance model was derived accounting for a multiply-charged, partially-ionized plasma. Results from the model based on experimental data showed how efficient operation at high-specific impulse was enabled through regulation of the electron current with the magnetic field. The

  2. Highly Efficient TADF Polymer Electroluminescence with Reduced Efficiency Roll-off via Interfacial Exciplex Host Strategy.

    Science.gov (United States)

    Lin, Xingdong; Zhu, Yunhui; Zhang, Baohua; Zhao, Xiaofei; Yao, Bing; Cheng, Yanxiang; Li, Zhanguo; Qu, Yi; Xie, Zhiyuan

    2018-01-10

    Solution-processed organic light-emitting diodes (s-OLED) consisting of TAPC/TmPyPB interfacial exciplex host and polymer PAPTC TADF emitter are prepared, simultaneously displaying ultralow voltages (2.50/2.91/3.51/4.91 V at luminance of 1/100/1000/1000 cd m -2 ), high efficiencies (14.9%, 50.1 lm W -1 ), and extremely low roll-off rates (J 50 of 63.16 mA cm -2 , L 50 of ca. 15000 cd m -2 ). Such performance is distinctly higher than that of pure-PAPTC s-OLED. Compared to pure-PAPTC, the advanced emissive layer structure of TAPC:PAPTC/TmPyPB is unique in much higher PL quantum yield (79.5 vs 36.3%) and nearly 4-fold enhancement in k RISC of the PAPTC emitter to 1.48 × 10 7 s -1 .

  3. VLSI Implementation of a Fixed-Complexity Soft-Output MIMO Detector for High-Speed Wireless

    Directory of Open Access Journals (Sweden)

    Di Wu

    2010-01-01

    Full Text Available This paper presents a low-complexity MIMO symbol detector with close-Maximum a posteriori performance for the emerging multiantenna enhanced high-speed wireless communications. The VLSI implementation is based on a novel MIMO detection algorithm called Modified Fixed-Complexity Soft-Output (MFCSO detection, which achieves a good trade-off between performance and implementation cost compared to the referenced prior art. By including a microcode-controlled channel preprocessing unit and a pipelined detection unit, it is flexible enough to cover several different standards and transmission schemes. The flexibility allows adaptive detection to minimize power consumption without degradation in throughput. The VLSI implementation of the detector is presented to show that real-time MIMO symbol detection of 20 MHz bandwidth 3GPP LTE and 10 MHz WiMAX downlink physical channel is achievable at reasonable silicon cost.

  4. Magnetic Refrigeration Technology for High Efficiency Air Conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Boeder, A; Zimm, C

    2006-09-30

    Magnetic refrigeration was investigated as an efficient, environmentally friendly, flexible alternative to conventional residential vapor compression central air conditioning systems. Finite element analysis (FEA) models of advanced geometry active magnetic regenerator (AMR) beds were developed to minimize bed size and thus magnet mass by optimizing geometry for fluid flow and heat transfer and other losses. Conventional and magnetocaloric material (MCM) regenerator fabrication and assembly techniques were developed and advanced geometry passive regenerators were built and tested. A subscale engineering prototype (SEP) magnetic air conditioner was designed, constructed and tested. A model of the AMR cycle, combined with knowledge from passive regenerator experiments and FEA results, was used to design the regenerator beds. A 1.5 Tesla permanent magnet assembly was designed using FEA and the bed structure and plenum design was extensively optimized using FEA. The SEP is a flexible magnetic refrigeration platform, with individually instrumented beds and high flow rate and high frequency capability, although the current advanced regenerator geometry beds do not meet performance expectations, probably due to manufacturing and assembly tolerances. A model of the AMR cycle was used to optimize the design of a 3 ton capacity magnetic air conditioner, and the system design was iterated to minimize external parasitic losses such as heat exchanger pressure drop and fan power. The manufacturing cost for the entire air conditioning system was estimated, and while the estimated SEER efficiency is high, the magnetic air conditioning system is not cost competitive as currently configured. The 3 ton study results indicate that there are other applications where magnetic refrigeration is anticipated to have cost advantages over conventional systems, especially applications where magnetic refrigeration, through the use of its aqueous heat transfer fluid, could eliminate intermediate

  5. High Efficiency and Low Cost Thermal Energy Storage System

    Energy Technology Data Exchange (ETDEWEB)

    Sienicki, James J. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Lv, Qiuping [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Moisseytsev, Anton [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Bucknor, Matthew [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2017-09-29

    BgtL, LLC (BgtL) is focused on developing and commercializing its proprietary compact technology for processes in the energy sector. One such application is a compact high efficiency Thermal Energy Storage (TES) system that utilizes the heat of fusion through phase change between solid and liquid to store and release energy at high temperatures and incorporate state-of-the-art insulation to minimize heat dissipation. BgtL’s TES system would greatly improve the economics of existing nuclear and coal-fired power plants by allowing the power plant to store energy when power prices are low and sell power into the grid when prices are high. Compared to existing battery storage technology, BgtL’s novel thermal energy storage solution can be significantly less costly to acquire and maintain, does not have any waste or environmental emissions, and does not deteriorate over time; it can keep constant efficiency and operates cleanly and safely. BgtL’s engineers are experienced in this field and are able to design and engineer such a system to a specific power plant’s requirements. BgtL also has a strong manufacturing partner to fabricate the system such that it qualifies for an ASME code stamp. BgtL’s vision is to be the leading provider of compact systems for various applications including energy storage. BgtL requests that all technical information about the TES designs be protected as proprietary information. To honor that request, only non-proprietay summaries are included in this report.

  6. Preliminary field evaluation of high efficiency steel filters

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, W.; Larsen, G.; Lopez, R. [Lawrence Livermore National Laboratory, CA (United States)] [and others

    1995-02-01

    We have conducted an evaluation of two high efficiency steel filters in the exhaust of an uranium oxide grit blaster at the Y-12 Plant in Oak Ridge Tennessee. The filters were installed in a specially designed filter housing with a reverse air-pulse cleaning system for automatically cleaning the filters in-place. Previous tests conducted on the same filters and housing at LLNL under controlled conditions using Arizona road dust showed good cleanability with reverse air pulses. Two high efficiency steel filters, containing 64 pleated cartridge elements housed in the standard 2` x 2` x 1` HEPA frame, were evaluated in the filter test housing using a 1,000 cfm slip stream containing a high concentration of depleted uranium oxide dust. One filter had the pleated cartridges manufactured to our specifications by the Pall Corporation and the other by Memtec Corporation. Test results showed both filters had a rapid increase in pressure drop with time, and reverse air pulses could not decrease the pressure drop. We suspected moisture accumulation in the filters was the problem since there were heavy rains during the evaluations, and the pressure drop of the Memtec filter decreased dramatically after passing clean, dry air through the filter and after the filter sat idle for one week. Subsequent laboratory tests on a single filter cartridge confirmed that water accumulation in the filter was responsible for the increase in filter pressure drop and the inability to lower the pressure drop by reverse air pulses. No effort was made to identify the source of the water accumulation and correct the problem because the available funds were exhausted.

  7. A new approach to a high efficiency inductive store

    International Nuclear Information System (INIS)

    Zowarka, R.C. Jr.; Kajs, J.P.; Price, J.H.; Weldon, W.F.

    1991-01-01

    In the Spring of 1989, Parker Kinetic Design, Inc. (PKD) and the Center for Electromechanics at The University of Texas at Austin (CEM-UT) conducted a study to examine the basic technologies to be used in the construction and operation of a feasible and reliable electromagnetic (EM) gun system. This work was performed for Brown and Root Vickers, Ltd. (BRV) in response to a feasibility analysis requirement of the Royal Armament and Development Establishment (RARDE), Ministry of Defence (MD) of the United Kingdom. This paper summarizes that this study focused on the analysis and evaluation of the suitability and applicability of various pulsed power supply options for the performance goals of the RARDE EM gun program. The existing technologies considered included batteries, compulsators, capacitors, and homopolar generators (HPGs). Primary performance specifications for the electrical energy radius system were that it be capable of providing 12 MJ of muzzle energy; velocities between 2.0 and 3.5 km/s; and a repetitive shot rate of up to 10 shots per day, with no more than a 30-min interval between shots. In addition, the recommended system needed to be reliable, easily maintainable, and capable of routinely firing large numbers of shots. Strict adherence to the goal of designing a system based only on demonstrated technology results in power supplies that are prohibitively expensive and large. As a consequence, candidate system designs represent a modest extrapolation from demonstrated technology well within an acceptable design envelope. A new topology has been developed for a highly efficient inductive store suitable for pulsed-power applications. The new design features high L/R ratios without having to cryogenically cool the conductors. This allows for high efficiency charging of the inductor from low impedance dc sources such as batteries of HPGs

  8. Energy-Efficient Office Buildings at High Latitudes

    Energy Technology Data Exchange (ETDEWEB)

    Lerum, V.

    1996-12-31

    This doctoral thesis describes a method for energy efficient office building design at high latitudes and cold climates. The method combines daylighting, passive solar heating, solar protection, and ventilative cooling. The thesis focuses on optimal design of an equatorial-facing fenestration system. A spreadsheet framework linking existing simplified methods is used. The daylight analysis uses location specific data on frequency distribution of diffuse daylight on vertical surfaces to estimate energy savings from optimal window and room configurations in combination with a daylight-responsive electric lighting system. The passive solar heating analysis is a generalization of a solar load ratio method adapted to cold climates by combining it with the Norwegian standard NS3031 for winter months when the solar savings fraction is negative. The emphasis is on very high computational efficiency to permit rapid and comprehensive examination of a large number of options early in design. The procedure is illustrated for a location in Trondheim, Norway, testing the relative significance of various design improvement options relative to a base case. The method is also tested for two other locations in Norway, at latitudes 58 and 70 degrees North. The band of latitudes between these limits covers cities in Alaska, Canada, Greenland, Iceland, Scandinavia, Finland, Russia, and Northern Japan. A comprehensive study of the ``whole building approach`` shows the impact of integrated daylighting and low-energy design strategies. In general, consumption of lighting electricity may be reduced by 50-80%, even at extremely high latitudes. The reduced internal heat from electric lights is replaced by passive solar heating. 113 refs., 85 figs., 25 tabs.

  9. Quality and efficiency in high dimensional Nearest neighbor search

    KAUST Repository

    Tao, Yufei; Yi, Ke; Sheng, Cheng; Kalnis, Panos

    2009-01-01

    Nearest neighbor (NN) search in high dimensional space is an important problem in many applications. Ideally, a practical solution (i) should be implementable in a relational database, and (ii) its query cost should grow sub-linearly with the dataset size, regardless of the data and query distributions. Despite the bulk of NN literature, no solution fulfills both requirements, except locality sensitive hashing (LSH). The existing LSH implementations are either rigorous or adhoc. Rigorous-LSH ensures good quality of query results, but requires expensive space and query cost. Although adhoc-LSH is more efficient, it abandons quality control, i.e., the neighbor it outputs can be arbitrarily bad. As a result, currently no method is able to ensure both quality and efficiency simultaneously in practice. Motivated by this, we propose a new access method called the locality sensitive B-tree (LSB-tree) that enables fast highdimensional NN search with excellent quality. The combination of several LSB-trees leads to a structure called the LSB-forest that ensures the same result quality as rigorous-LSH, but reduces its space and query cost dramatically. The LSB-forest also outperforms adhoc-LSH, even though the latter has no quality guarantee. Besides its appealing theoretical properties, the LSB-tree itself also serves as an effective index that consumes linear space, and supports efficient updates. Our extensive experiments confirm that the LSB-tree is faster than (i) the state of the art of exact NN search by two orders of magnitude, and (ii) the best (linear-space) method of approximate retrieval by an order of magnitude, and at the same time, returns neighbors with much better quality. © 2009 ACM.

  10. Isolated DC-DC Converter for Bidirectional Power Flow Controlling with Soft-Switching Feature and High Step-Up/Down Voltage Conversion

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2017-03-01

    Full Text Available In this paper, a novel isolated bidirectional DC-DC converter is proposed, which is able to accomplish high step-up/down voltage conversion. Therefore, it is suitable for hybrid electric vehicle, fuel cell vehicle, energy backup system, and grid-system applications. The proposed converter incorporates a coupled inductor to behave forward-and-flyback energy conversion for high voltage ratio and provide galvanic isolation. The energy stored in the leakage inductor of the coupled inductor can be recycled without the use of additional snubber mechanism or clamped circuit. No matter in step-up or step-down mode, all power switches can operate with soft switching. Moreover, there is a inherit feature that metal–oxide–semiconductor field-effect transistors (MOSFETs with smaller on-state resistance can be adopted because of lower voltage endurance at primary side. Operation principle, voltage ratio derivation, and inductor design are thoroughly described in this paper. In addition, a 1-kW prototype is implemented to validate the feasibility and correctness of the converter. Experimental results indicate that the peak efficiencies in step-up and step-down modes can be up to 95.4% and 93.6%, respectively.

  11. High Current Planar Transformer for Very High Efficiency Isolated Boost DC-DC Converters

    DEFF Research Database (Denmark)

    Pittini, Riccardo; Zhang, Zhe; Andersen, Michael A. E.

    2014-01-01

    This paper presents a design and optimization of a high current planar transformer for very high efficiency dc-dc isolated boost converters. The analysis considers different winding arrangements, including very high copper thickness windings. The analysis is focused on the winding ac-resistance a......This paper presents a design and optimization of a high current planar transformer for very high efficiency dc-dc isolated boost converters. The analysis considers different winding arrangements, including very high copper thickness windings. The analysis is focused on the winding ac......-resistance and transformer leakage inductance. Design and optimization procedures are validated based on an experimental prototype of a 6 kW dcdc isolated full bridge boost converter developed on fully planar magnetics. The prototype is rated at 30-80 V 0-80 A on the low voltage side and 700-800 V on the high voltage side...... with a peak efficiency of 97.8% at 80 V 3.5 kW. Results highlights that thick copper windings can provide good performance at low switching frequencies due to the high transformer filling factor. PCB windings can also provide very high efficiency if stacked in parallel utilizing the transformer winding window...

  12. In-situ high efficiency filter testing at AEE Winfrith

    International Nuclear Information System (INIS)

    Fraser, D.C.

    1977-01-01

    This paper discusses experience in the testing of high efficiency filters in a variety of reactor and plant installations at AEE Winfrith. There is rarely any concern about the effectiveness of the filter as supplied by any reputable manufacturer. Experience has shown there is a need to check for defects in the installation of filters which could lead to by-passing of aerosols and it is desirable to perform periodical re-tests to ensure that no subsequent deterioration occurs. It is important to use simple, portable apparatus for such tests; methods based on the use of sodium chloride aerosols, although suitable for the testing of filters prior to installation, involve apparatus which is too bulky for in-situ testing. At Winfrith a double automatic Pollak counter has been developed and used routinely since 1970. The aerosol involved has a particle size far smaller than the size most likely to penetrate intact filters, but this is irrelevant when one is primarily interested in particles which by-pass the filter. Comparisons with other methods of testing filters will be described. There is remarkably good agreement between the efficiency of the filter installation as measured by a Pollak counter compared with techniques involving aerosols of sodium chloride and Dioctyl Phthalate (DOP), presumably because the leakage around the filter is independent of particle size

  13. Prospects for development of powerful, highly efficient, relativistic gyrodevices

    International Nuclear Information System (INIS)

    Nusinovich, G.S.; Granatstein, V.L.

    1992-01-01

    For various applications the required parameters of sources of powerful microwave radiation lie far beyond the capabilities of existing tubes. This provokes an interest in reconsidering basic principles of relevant microwave sources in order to search for alternative concepts in their development. One of the most promising devices in the short-wavelength region of microwaves is the cyclotron resonance maser (CRM). During the last decade, two important varieties of CRMs have been distinguished, namely, gyrotrons, which operate at frequencies close to cut-off, and cyclotron autoresonance masers (CARMs), which operate at frequencies far from cut-off. When the axial phase velocity of the wave in properly adjusted to the beam voltage and electron pitch-ratio, the efficiency of relativistic CRMs may be high (≥50%). The method of optimizing efficiency based on a partial compensation of the shift in the relativistic electron cyclotron frequency by the change in the Doppler term can be, in principle, accompanied by a corresponding profiling of the external magnetic field and/or the wave phase velocity in a slightly irregular waveguide. These methods can be used in such relativistic CRMs as relativistic gyrotrons, gyroklystrons, gyro-traveling-wave-tubes and gyrotwistrons. The most important point is their sensitivity to a spread in electron parameters. As the beam voltage grows, the operation becomes more sensitive. However, at relatively low voltages such devices are quite tolerant to electron velocity spread

  14. Novel Intermode Prediction Algorithm for High Efficiency Video Coding Encoder

    Directory of Open Access Journals (Sweden)

    Chan-seob Park

    2014-01-01

    Full Text Available The joint collaborative team on video coding (JCT-VC is developing the next-generation video coding standard which is called high efficiency video coding (HEVC. In the HEVC, there are three units in block structure: coding unit (CU, prediction unit (PU, and transform unit (TU. The CU is the basic unit of region splitting like macroblock (MB. Each CU performs recursive splitting into four blocks with equal size, starting from the tree block. In this paper, we propose a fast CU depth decision algorithm for HEVC technology to reduce its computational complexity. In 2N×2N PU, the proposed method compares the rate-distortion (RD cost and determines the depth using the compared information. Moreover, in order to speed up the encoding time, the efficient merge SKIP detection method is developed additionally based on the contextual mode information of neighboring CUs. Experimental result shows that the proposed algorithm achieves the average time-saving factor of 44.84% in the random access (RA at Main profile configuration with the HEVC test model (HM 10.0 reference software. Compared to HM 10.0 encoder, a small BD-bitrate loss of 0.17% is also observed without significant loss of image quality.

  15. High Efficiency Driving Electronics for General Illumination LED Luminaires

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Anand

    2012-10-31

    New generation of standalone LED driver platforms developed, which are more efficient These LED Drivers are more efficient (≥90%), smaller in size ( 0.15 in3/watt), lower in cost ( 12 cents/watt in high volumes in millions of units). And these products are very reliable having an operating life of over 50,000 hours. This technology will enable growth of LED light sources in the use. This will also help in energy saving and reducing total life cycle cost of LED units. Two topologies selected for next generation of LED drivers: 1) Value engineered single stage Flyback topology. This is suitable for low powered LED drivers up to 50W power. 2) Two stage boost power factor correction (PFC) plus LLC half bridge platform for higher powers. This topology is suitable for 40W to 300W LED drivers. Three new product platforms were developed to cover a wide range of LED drivers: 1) 120V 40W LED driver, 2) Intellivolt 75W LED driver, & 3) Intellivolt 150W LED driver. These are standalone LED drivers for rugged outdoor lighting applications. Based on these platforms number of products are developed and successfully introduced in the market place meeting key performance, size and cost goals.

  16. Characterization of three high efficiency and blue sensitive silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Otte, Adam Nepomuk, E-mail: otte@gatech.edu; Garcia, Distefano; Nguyen, Thanh; Purushotham, Dhruv

    2017-02-21

    We report about the optical and electrical characterization of three high efficiency and blue sensitive Silicon photomultipliers from FBK, Hamamatsu, and SensL. Key features of the tested devices when operated at 90% breakdown probability are peak photon detection efficiencies between 40% and 55%, temperature dependencies of gain and PDE that are less than 1%/°C, dark rates of ∼50 kHz/mm{sup 2} at room temperature, afterpulsing of about 2%, and direct optical crosstalk between 6% and 20%. The characteristics of all three devices impressively demonstrate how the Silicon-photomultiplier technology has improved over the past ten years. It is further demonstrated how the voltage and temperature characteristics of a number of quantities can be parameterized on the basis of physical models. The models provide a deeper understanding of the device characteristics over a wide bias and temperature range. They also serve as examples how producers could provide the characteristics of their SiPMs to users. A standardized parameterization of SiPMs would enable users to find the optimal SiPM for their application and the operating point of SiPMs without having to perform measurements thus significantly reducing design and development cycles.

  17. Fabrication and characterization of free-standing, high-line-density transmission gratings for the vacuum UV to soft X-ray range

    NARCIS (Netherlands)

    Goh, S.J.; Bastiaens, Hubertus M.J.; Vratzov, B.; Huang, Qiushi; Bijkerk, Frederik; Boller, Klaus J.

    2015-01-01

    We present state-of-the-art high resolution transmission gratings, applicable for spectroscopy in the vacuum ultraviolet (VUV) and the soft X-ray (SRX) wavelength range, fabricated with a novel process using ultraviolet based nano imprint lithography (UV-NIL). Free-standing, high-line-density

  18. A new soft-switched high step-up DC-DC converter with dual coupled inductors

    DEFF Research Database (Denmark)

    Forouzesh, Mojtaba; Shen, Yanfeng; Yari, Keyvan

    2017-01-01

    This paper introduces a new efficient high step-up dc-dc converter with a shared input path and dual series coupled inductors at the output. This converter is suitable for high power applications due to its shared input current that puts low current stresses on the low voltage side switches...

  19. Gamma-ray spectrometer system with high efficiency and high resolution

    International Nuclear Information System (INIS)

    Moss, C.E.; Bernard, W.; Dowdy, E.J.; Garcia, C.; Lucas, M.C.; Pratt, J.C.

    1983-01-01

    Our gamma-ray spectrometer system, designed for field use, offers high efficiency and high resolution for safeguards applications. The system consists of three 40% high-purity germanium detectors and a LeCroy 3500 data acquisition system that calculates a composite spectrum for the three detectors. The LeCroy 3500 mainframe can be operated remotely from the detector array with control exercised through modems and the telephone system. System performance with a mixed source of 125 Sb, 154 Eu, and 155 Eu confirms the expected efficiency of 120% with the overall resolution showing little degradation over that of the worst detector

  20. Thin Film Packaging Solutions for High Efficiency OLED Lighting Products

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-06-30

    The objective of the 'Thin Film Packaging Solutions for High Efficiency OLED Lighting Products' project is to demonstrate thin film packaging solutions based on SiC hermetic coatings that, when applied to glass and plastic substrates, support OLED lighting devices by providing longer life with greater efficiency at lower cost than is currently available. Phase I Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on optical glass with lifetime of 1,000 hour life, CRI greater than 75, and 15 lm/W. Phase II Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on plastic or glass composite with 25 lm/W, 5,000 hours life, and CRI greater than 80. Phase III Objective: Demonstrate 2 x 2 ft{sup 2} thin film encapsulated working phosphorescent OLED with 40 lm/W, 10,000 hour life, and CRI greater than 85. This report details the efforts of Phase III (Budget Period Three), a fourteen month collaborative effort that focused on optimization of high-efficiency phosphorescent OLED devices and thin-film encapsulation of said devices. The report further details the conclusions and recommendations of the project team that have foundation in all three budget periods for the program. During the conduct of the Thin Film Packaging Solutions for High Efficiency OLED Lighting Products program, including budget period three, the project team completed and delivered the following achievements: (1) a three-year marketing effort that characterized the near-term and longer-term OLED market, identified customer and consumer lighting needs, and suggested prototype product concepts and niche OLED applications lighting that will give rise to broader market acceptance as a source for wide area illumination and energy conservation; (2) a thin film encapsulation technology with a lifetime of nearly 15,000 hours, tested by calcium coupons, while stored at 16 C and 40% relative humidity ('RH'). This encapsulation technology

  1. High efficiency solid-state sensitized heterojunction photovoltaic device

    KAUST Repository

    Wang, Mingkui

    2010-06-01

    The high molar extinction coefficient heteroleptic ruthenium dye, NaRu(4,4′-bis(5-(hexylthio)thiophen-2-yl)-2,2′-bipyridine) (4-carboxylic acid-4′-carboxylate-2,2′-bipyridine) (NCS) 2, exhibits certified 5% electric power conversion efficiency at AM 1.5 solar irradiation (100 mW cm-2) in a solid-state dye-sensitized solar cell using 2,2′,7,7′-tetrakis-(N,N-di-pmethoxyphenylamine)-9, 9′-spirobifluorene (spiro-MeOTAD) as the organic hole-transporting material. This demonstration elucidates a class of photovoltaic devices with potential for low-cost power generation. © 2010 Elsevier Ltd. All rights reserved.

  2. Dimensioning storage and computing clusters for efficient High Throughput Computing

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Scientific experiments are producing huge amounts of data, and they continue increasing the size of their datasets and the total volume of data. These data are then processed by researchers belonging to large scientific collaborations, with the Large Hadron Collider being a good example. The focal point of Scientific Data Centres has shifted from coping efficiently with PetaByte scale storage to deliver quality data processing throughput. The dimensioning of the internal components in High Throughput Computing (HTC) data centers is of crucial importance to cope with all the activities demanded by the experiments, both the online (data acceptance) and the offline (data processing, simulation and user analysis). This requires a precise setup involving disk and tape storage services, a computing cluster and the internal networking to prevent bottlenecks, overloads and undesired slowness that lead to losses cpu cycles and batch jobs failures. In this paper we point out relevant features for running a successful s...

  3. Additive Manufacturing for Highly Efficient Window Inserts CRADA Report

    Energy Technology Data Exchange (ETDEWEB)

    Roschli, Alex C. [ORNL; Chesser, Phillip C. [ORNL; Love, Lonnie J. [ORNL

    2018-04-01

    ORNL partnered with the Mackinac Technology Company to demonstrate how additive manufacturing can be used to create highly energy efficient window inserts for retrofit in pre-existing buildings. Many early iterations of the window inserts were fabricated using carbon fiber reinforced thermoplastics and polycarbonate films as a stand in for the low-e coated films produced by the Mackinac Technology Company. After demonstration of the proof of concept, i.e. custom window inserts with tensioned film, the materials used for the manufacture of the frames was more closely examined. Hollow particle-filled syntactic foam and low-density polymer composites formed by expandable microspheres were explored as the materials used to additively manufacture the frames of the inserts. It was concluded that low-cost retrofit window inserts in custom sizes could be easily fabricated using large scale additive manufacturing. Furthermore, the syntactic and expanded foams developed and tested satisfy the mechanical performance requirements for the application.

  4. High Efficiency EBCOT with Parallel Coding Architecture for JPEG2000

    Directory of Open Access Journals (Sweden)

    Chiang Jen-Shiun

    2006-01-01

    Full Text Available This work presents a parallel context-modeling coding architecture and a matching arithmetic coder (MQ-coder for the embedded block coding (EBCOT unit of the JPEG2000 encoder. Tier-1 of the EBCOT consumes most of the computation time in a JPEG2000 encoding system. The proposed parallel architecture can increase the throughput rate of the context modeling. To match the high throughput rate of the parallel context-modeling architecture, an efficient pipelined architecture for context-based adaptive arithmetic encoder is proposed. This encoder of JPEG2000 can work at 180 MHz to encode one symbol each cycle. Compared with the previous context-modeling architectures, our parallel architectures can improve the throughput rate up to 25%.

  5. Disposal of aqueous condensate from high efficiency gas boilers

    Energy Technology Data Exchange (ETDEWEB)

    Hardwick, G J; Pattison, J R

    1984-01-01

    If highly efficient gas-fired condensing heating appliances are installed in Britain, the aqueous condensate produced can be conveniently run into existing sewage drains. The part of the drainage system that is most vulnerable to corrosion from the mildly acid condensate is that portion adjacent to the domestic premises. The tests described indicate that this is not at risk and the only precaution that might be considered necessary is to avoid running the condensate over galvanized drain covers in order to prevent unsightly staining. Water authorities in Britain and detailed studies in the US and Holland confirm that the condensate - after dilution by domestic waste, sewage, and rainwater - would be harmless to municipal sewage systems and would not, either in volume or chemical composition, affect the working of existing sewage treatment plants.

  6. High efficiency solid-state sensitized heterojunction photovoltaic device

    KAUST Repository

    Wang, Mingkui; Liu, Jingyuan; Cevey-Ha, Ngoc-Le; Moon, Soo-Jin; Liska, Paul; Humphry-Baker, Robin; Moser, Jacques-E.; Grä tzel, Carole; Wang, Peng; Zakeeruddin, Shaik M.

    2010-01-01

    The high molar extinction coefficient heteroleptic ruthenium dye, NaRu(4,4′-bis(5-(hexylthio)thiophen-2-yl)-2,2′-bipyridine) (4-carboxylic acid-4′-carboxylate-2,2′-bipyridine) (NCS) 2, exhibits certified 5% electric power conversion efficiency at AM 1.5 solar irradiation (100 mW cm-2) in a solid-state dye-sensitized solar cell using 2,2′,7,7′-tetrakis-(N,N-di-pmethoxyphenylamine)-9, 9′-spirobifluorene (spiro-MeOTAD) as the organic hole-transporting material. This demonstration elucidates a class of photovoltaic devices with potential for low-cost power generation. © 2010 Elsevier Ltd. All rights reserved.

  7. Highly Efficient Catalytic Cyclic Carbonate Formation by Pyridyl Salicylimines.

    Science.gov (United States)

    Subramanian, Saravanan; Park, Joonho; Byun, Jeehye; Jung, Yousung; Yavuz, Cafer T

    2018-03-21

    Cyclic carbonates as industrial commodities offer a viable nonredox carbon dioxide fixation, and suitable heterogeneous catalysts are vital for their widespread implementation. Here, we report a highly efficient heterogeneous catalyst for CO 2 addition to epoxides based on a newly identified active catalytic pocket consisting of pyridine, imine, and phenol moieties. The polymeric, metal-free catalyst derived from this active site converts less-reactive styrene oxide under atmospheric pressure in quantitative yield and selectivity to the corresponding carbonate. The catalyst does not need additives, solvents, metals, or co-catalysts, can be reused at least 10 cycles without the loss of activity, and scaled up easily to a kilogram scale. Density functional theory calculations reveal that the nucleophilicity of pyridine base gets stronger due to the conjugated imines and H-bonding from phenol accelerates the reaction forward by stabilizing the intermediate.

  8. Non-equilibrium Microwave Plasma for Efficient High Temperature Chemistry.

    Science.gov (United States)

    van den Bekerom, Dirk; den Harder, Niek; Minea, Teofil; Gatti, Nicola; Linares, Jose Palomares; Bongers, Waldo; van de Sanden, Richard; van Rooij, Gerard

    2017-08-01

    A flowing microwave plasma based methodology for converting electric energy into internal and/or translational modes of stable molecules with the purpose of efficiently driving non-equilibrium chemistry is discussed. The advantage of a flowing plasma reactor is that continuous chemical processes can be driven with the flexibility of startup times in the seconds timescale. The plasma approach is generically suitable for conversion/activation of stable molecules such as CO2, N2 and CH4. Here the reduction of CO2 to CO is used as a model system: the complementary diagnostics illustrate how a baseline thermodynamic equilibrium conversion can be exceeded by the intrinsic non-equilibrium from high vibrational excitation. Laser (Rayleigh) scattering is used to measure the reactor temperature and Fourier Transform Infrared Spectroscopy (FTIR) to characterize in situ internal (vibrational) excitation as well as the effluent composition to monitor conversion and selectivity.

  9. Soft lubrication

    Science.gov (United States)

    Skotheim, Jan; Mahadevan, Laksminarayanan

    2004-11-01

    We study the lubrication of fluid-immersed soft interfaces and show that elastic deformation couples tangential and normal forces and thus generates lift. We consider materials that deform easily, due to either geometry (e.g a shell) or constitutive properties (e.g. a gel or a rubber), so that the effects of pressure and temperature on the fluid properties may be neglected. Four different system geometries are considered: a rigid cylinder moving tangentially to a soft layer coating a rigid substrate; a soft cylinder moving tangentially to a rigid substrate; a cylindrical shell moving tangentially to a rigid substrate; and finally a journal bearing coated with a thin soft layer, which being a conforming contact allows us to gauge the influence of contact geometry. In addition, for the particular case of a soft layer coating a rigid substrate we consider both elastic and poroelastic material responses. Finally, we consider the role of contact geometry in the context of the journal bearing, a conforming contact. For all these cases we find the same generic behavior: there is an optimal combination of geometric and material parameters that maximizes the dimensionless normal force as a function of the softness.

  10. Comparison of high efficiency particulate filter testing methods

    International Nuclear Information System (INIS)

    1985-01-01

    High Efficiency Particulate Air (HEPA) filters are used for the removal of submicron size particulates from air streams. In nuclear industry they are used as an important engineering safeguard to prevent the release of air borne radioactive particulates to the environment. HEPA filters used in the nuclear industry should therefore be manufactured and operated under strict quality control. There are three levels of testing HEPA filters: i) testing of the filter media; ii) testing of the assembled filter including filter media and filter housing; and iii) on site testing of the complete filter installation before putting into operation and later for the purpose of periodic control. A co-ordinated research programme on particulate filter testing methods was taken up by the Agency and contracts were awarded to the Member Countries, Belgium, German Democratic Republic, India and Hungary. The investigations carried out by the participants of the present co-ordinated research programme include the results of the nowadays most frequently used HEPA filter testing methods both for filter medium test, rig test and in-situ test purposes. Most of the experiments were carried out at ambient temperature and humidity, but indications were given to extend the investigations to elevated temperature and humidity in the future for the purpose of testing the performance of HEPA filter under severe conditions. A major conclusion of the co-ordinated research programme was that it was not possible to recommend one method as a reference method for in situ testing of high efficiency particulate air filters. Most of the present conventional methods are adequate for current requirements. The reasons why no method is to be recommended were multiple, ranging from economical aspects, through incompatibility of materials to national regulations

  11. Efficient high-performance ultrasound beamforming using oversampling

    Science.gov (United States)

    Freeman, Steven R.; Quick, Marshall K.; Morin, Marc A.; Anderson, R. C.; Desilets, Charles S.; Linnenbrink, Thomas E.; O'Donnell, Matthew

    1998-05-01

    High-performance and efficient beamforming circuitry is very important in large channel count clinical ultrasound systems. Current state-of-the-art digital systems using multi-bit analog to digital converters (A/Ds) have matured to provide exquisite image quality with moderate levels of integration. A simplified oversampling beamforming architecture has been proposed that may a low integration of delta-sigma A/Ds onto the same chip as digital delay and processing circuitry to form a monolithic ultrasound beamformer. Such a beamformer may enable low-power handheld scanners for high-end systems with very large channel count arrays. This paper presents an oversampling beamformer architecture that generates high-quality images using very simple; digitization, delay, and summing circuits. Additional performance may be obtained with this oversampled system for narrow bandwidth excitations by mixing the RF signal down in frequency to a range where the electronic signal to nose ratio of the delta-sigma A/D is optimized. An oversampled transmit beamformer uses the same delay circuits as receive and eliminates the need for separate transmit function generators.

  12. Efficient binning for bitmap indices on high-cardinality attributes

    Energy Technology Data Exchange (ETDEWEB)

    Rotem, Doron; Stockinger, Kurt; Wu, Kesheng

    2004-11-17

    Bitmap indexing is a common technique for indexing high-dimensional data in data warehouses and scientific applications. Though efficient for low-cardinality attributes, query processing can be rather costly for high-cardinality attributes due to the large storage requirements for the bitmap indices. Binning is a common technique for reducing storage costs of bitmap indices. This technique partitions the attribute values into a number of ranges, called bins, and uses bitmap vectors to represent bins (attribute ranges) rather than distinct values. Although binning may reduce storage costs, it may increase the access costs of queries that do not fall on exact bin boundaries (edge bins). For this kind of queries the original data values associated with edge bins must be accessed, in order to check them against the query constraints.In this paper we study the problem of finding optimal locations for the bin boundaries in order to minimize these access costs subject to storage constraints. We propose a dynamic programming algorithm for optimal partitioning of attribute values into bins that takes into account query access patterns as well as data distribution statistics. Mathematical analysis and experiments on real life data sets show that the optimal partitioning achieved by this algorithm can lead to a significant improvement in the access costs of bitmap indexing systems for high-cardinality attributes.

  13. Enhancement of diffraction efficiency of laminar-type diffraction gratings overcoated with diamond-like carbon (DLC) in soft x-ray region

    Energy Technology Data Exchange (ETDEWEB)

    Koike, Masato, E-mail: koike.masato@jaea.go.jp; Imazono, Takashi [Quantum Beam Science Center, Japan Atomic Energy Agency, 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215 Japan (Japan); Nagano, Tetsuya; Sasai, Hiroyuki; Oue, Yuki; Yonezawa, Zeno; Kuramoto, Satoshi [Device Dept., Shimadzu Corp., 1Nishinokyo-Kuwabara-cho, Nakagyo-ku, Kyoto 604-8511 Japan (Japan); Terauchi, Masami [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 Japan (Japan); Takahashi, Hideyuki [Science Equipment Sales Dept., JEOL Ltd., 2-1-1 Ohtemachi, Chiyoda-ku, Tokyo 100-0004 Japan (Japan); Notoya, Satoshi; Murano, Takanori [SA Business Unit, JEOL Ltd., 3-1-2 Musashino, Akishima, Tokyo 196-8558 Japan (Japan)

    2016-07-27

    Boron is the critical trace element in the production of high quality steel, creating a great demand for an efficient detection method of the B-K emission band at around 6.76 nm. To meet this demand we made a simulation study and obtained a practical method to improve the diffraction efficiency of metal-coated laminar-type gratings for a grazing incidence flat-field spectrograph by overcoating a sufficiently transparent high-density material. In the simulation the diffraction efficiency in a spectral region of 3.5-8.5 nm was computed for several combinations of overcoating materials and coating metals, with various thicknesses of the overcoating layer. The result obtained are: (1) the best overcoating material is high-density diamond-like carbon (DLC) having a density of 3.1 g/cm{sup 3}, (2) its optimum thickness is 24 nm at an angle of incidence of 87.0°, and (3) with this thickness the first-order diffraction efficiency is expected to reach 29.7 %, which well exceeds 15.6 % for Ni-coated (or 14.1 % for Au-coated) grating.

  14. Synthesis of Highly Uniform and Compact Lithium Zinc Ferrite Ceramics via an Efficient Low Temperature Approach.

    Science.gov (United States)

    Xu, Fang; Liao, Yulong; Zhang, Dainan; Zhou, Tingchuan; Li, Jie; Gan, Gongwen; Zhang, Huaiwu

    2017-04-17

    LiZn ferrite ceramics with high saturation magnetization (4πM s ) and low ferromagnetic resonance line widths (ΔH) represent a very critical class of material for microwave ferrite devices. Many existing approaches emphasize promotion of the grain growth (average size is 10-50 μm) of ferrite ceramics to improve the gyromagnetic properties at relatively low sintering temperatures. This paper describes a new strategy for obtaining uniform and compact LiZn ferrite ceramics (average grains size is ∼2 μm) with enhanced magnetic performance by suppressing grain growth in great detail. The LiZn ferrites with a formula of Li 0.415 Zn 0.27 Mn 0.06 Ti 0.1 Fe 2.155 O 4 were prepared by solid reaction routes with two new sintering strategies. Interestingly, results show that uniform, compact, and pure spinel ferrite ceramics were synthesized at a low temperature (∼850 °C) without obvious grain growth. We also find that a fast second sintering treatment (FSST) can further improve their gyromagnetic properties, such as higher 4πM s and lower ΔH. The two new strategies are facile and efficient for densification of LiZn ferrite ceramics via suppressing grain growth at low temperatures. The sintering strategy reported in this study also provides a referential experience for other ceramics, such as soft magnetism ferrite ceramics or dielectric ceramics.

  15. Highly Efficient Fiber Lasers for Wireless Power Transmission, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop ytterbium (Yb) fiber lasers with an electrical-to-optical efficiency of nominally 64% by directly coupling 80%-efficient diode lasers with Yb...

  16. Determination of Chlorophenoxy Acid Methyl Esters and Other Chlorinated Herbicides by GC High-resolution QTOFMS and Soft lonization

    Directory of Open Access Journals (Sweden)

    Viorica Lopez-Avila

    2015-01-01

    Full Text Available Gas chromatography with quadrupole time-of-flight mass spectrometry (GC-QTOFMS and soft ionization generated by a rare-gas plasma is described here for the determination of various chlorophenoxy acid methyl esters and a few chlorinated herbicides. This plasma-based, wavelength-selectable ionization source, which can use Xe, Kr, Ar, Ne, or He as the plasma gas, enables ionization of GC-amenable compounds with ionization energies below 8.4, 10, 11.6, 16.5, or 22.4 eV, respectively. The advantages of soft ionization include enhanced molecular ions, reduced fragmentation, and reduced background noise as compared to electron ionization. In the study presented here for two plasma gases, we demonstrate that Kr plasma, which is softer than Ar plasma, yields molecular ions with a relative intensity >60% for 11 of the 16 test compounds. When using this “tunable” plasma to ionize the analytes, there is the possibility for selective ionization and less fragmentation, which may lead to increased sensitivity and may help structure elucidation, especially when using high-resolution mass spectrometry that generates accurate masses within a few parts per million (ppm mass errors. Data generated with the Ar plasma and real matrices such as a peppermint extract, a plum extract, and an orange peel extract, spiked with 16 test compounds, indicate that the test compounds can be detected at 1-10 pg/µL of extract, and compounds such as menthone, limonene, eucalyptol, pinene, caryophylene, and other C 15 H 24 isomers, which are present in the peppermint and the orange peel extracts at ppm to percent levels, do not appear to interfere with the determination of the chlorophenoxy acid methyl esters or the chlorinated herbicides, although there were matrix effects when the test compounds were spiked at 1-10 pg/µL of extract.

  17. Soft Skills in Health Careers Programs: A Case Study of A Regional Vocational Technical High School

    Science.gov (United States)

    Park, Chong Myung

    2017-01-01

    The purpose of this study is to develop an understanding of the ways in which educational experiences might differ between a regional vocational technical high school (RVTH) and short-term career-training programs. A particular regional vocational technical high school was selected for its outstanding academic records and placement rates, and a…

  18. High quality ceramic coatings sprayed by high efficiency hypersonic plasma spraying gun

    International Nuclear Information System (INIS)

    Zhu Sheng; Xu Binshi; Yao JiuKun

    2005-01-01

    This paper introduced the structure of the high efficiency hypersonic plasma spraying gun and the effects of hypersonic plasma jet on the sprayed particles. The optimised spraying process parameters for several ceramic powders such as Al 2 O 3 , Cr 2 O 3 , ZrO 2 , Cr 3 C 2 and Co-WC were listed. The properties and microstructure of the sprayed ceramic coatings were investigated. Nano Al 2 O 3 -TiO 2 ceramic coating sprayed by using the high efficiency hypersonic plasma spraying was also studied. Compared with the conventional air plasma spraying, high efficiency hypersonic plasma spraying improves greatly the ceramic coatings quality but at low cost. (orig.)

  19. High efficiency, monolithic fiber chirped pulse amplification system for high energy femtosecond pulse generation.

    Science.gov (United States)

    Peng, Xiang; Kim, Kyungbum; Mielke, Michael; Jennings, Stephen; Masor, Gordon; Stohl, Dave; Chavez-Pirson, Arturo; Nguyen, Dan T; Rhonehouse, Dan; Zong, Jie; Churin, Dmitriy; Peyghambarian, N

    2013-10-21

    A novel monolithic fiber-optic chirped pulse amplification (CPA) system for high energy, femtosecond pulse generation is proposed and experimentally demonstrated. By employing a high gain amplifier comprising merely 20 cm of high efficiency media (HEM) gain fiber, an optimal balance of output pulse energy, optical efficiency, and B-integral is achieved. The HEM amplifier is fabricated from erbium-doped phosphate glass fiber and yields gain of 1.443 dB/cm with slope efficiency >45%. We experimentally demonstrate near diffraction-limited beam quality and near transform-limited femtosecond pulse quality at 1.55 µm wavelength. With pulse energy >100 µJ and pulse duration of 636 fs (FWHM), the peak power is estimated to be ~160 MW. NAVAIR Public Release Distribution Statement A-"Approved for Public release; distribution is unlimited".

  20. High-efficiency cavity-dumped micro-chip Yb:YAG laser

    Science.gov (United States)

    Nishio, M.; Maruko, A.; Inoue, M.; Takama, M.; Matsubara, S.; Okunishi, H.; Kato, K.; Kyomoto, K.; Yoshida, T.; Shimabayashi, K.; Morioka, M.; Inayoshi, S.; Yamagata, S.; Kawato, S.

    2014-09-01

    High-efficiency cavity-dumped ytterbium-doped yttrium aluminum garnet (Yb:YAG) laser was developed. Although the high quantum efficiency of ytterbium-doped laser materials is appropriate for high-efficiency laser oscillation, the efficiency is decreased by their quasi-three/four laser natures. High gain operation by high intensity pumping is suitable for high efficiency oscillation on the quasi-three/four lasers without extremely low temperature cooling. In our group, highest efficiency oscillations for continuous wave, nanosecond to picosecond pulse lasers were achieved at room temperature by the high gain operation in which pump intensities were beyond 100 kW/cm2.

  1. Perovskite Solar Cells for High-Efficiency Tandems

    Energy Technology Data Exchange (ETDEWEB)

    McGehee, Michael [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Buonassisi, Tonio [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2017-09-30

    The first monolithic perovskite/silicon tandem was made with a diffused silicon p-n junction, a tunnel junction made of n++ hydrogenated amorphous silicon, a titania electron transport layer, a methylammonium lead iodide absorber, and a Spiro-OMeTAD hole transport layer (HTL). The power conversion efficiency (PCE) was only 13.7% due to excessive parasitic absorption of light in the HTL, limiting the matched current density to 11.5 mA/cm2. Werner et al.15 raised the PCE to a record 21.2% by switching to a silicon heterojunction bottom cell and carefully tuning layer thicknesses to achieve lower optical loss and a higher current density of 15.9 mA/cm2. It is clear from these reports that minimizing parasitic absorption in the window layers is crucial to achieving higher current densities and efficiencies in monolithic tandems. To this end, the window layers through which light first passes before entering the perovskite and silicon absorber materials must be highly transparent. The front electrode must also be conductive to carry current laterally across the top of the device. Indium tin oxide (ITO) is widely utilized as a transparent electrode in optoelectronic devices such as flat-panel displays, smart windows, organic light-emitting diodes, and solar cells due to its high conductivity and broadband transparency. ITO is typically deposited through magnetron sputtering; however, the high kinetic energy of sputtered particles can damage underlying layers. In perovskite solar cells, a sputter buffer layer is required to protect the perovskite and organic carrier extraction layers from damage during sputter deposition. The ideal buffer layer should also be energetically well aligned so as to act as a carrier-selective contact, have a wide bandgap to enable high optical transmission, and have no reaction with the halides in the perovskite. Additionally, this buffer layer should act as a diffusion barrier layer to prevent both

  2. Efficiency of High Order Spectral Element Methods on Petascale Architectures

    KAUST Repository

    Hutchinson, Maxwell; Heinecke, Alexander; Pabst, Hans; Henry, Greg; Parsani, Matteo; Keyes, David E.

    2016-01-01

    High order methods for the solution of PDEs expose a tradeoff between computational cost and accuracy on a per degree of freedom basis. In many cases, the cost increases due to higher arithmetic intensity while affecting data movement minimally. As architectures tend towards wider vector instructions and expect higher arithmetic intensities, the best order for a particular simulation may change. This study highlights preferred orders by identifying the high order efficiency frontier of the spectral element method implemented in Nek5000 and NekBox: the set of orders and meshes that minimize computational cost at fixed accuracy. First, we extract Nek’s order-dependent computational kernels and demonstrate exceptional hardware utilization by hardware-aware implementations. Then, we perform productionscale calculations of the nonlinear single mode Rayleigh-Taylor instability on BlueGene/Q and Cray XC40-based supercomputers to highlight the influence of the architecture. Accuracy is defined with respect to physical observables, and computational costs are measured by the corehour charge of the entire application. The total number of grid points needed to achieve a given accuracy is reduced by increasing the polynomial order. On the XC40 and BlueGene/Q, polynomial orders as high as 31 and 15 come at no marginal cost per timestep, respectively. Taken together, these observations lead to a strong preference for high order discretizations that use fewer degrees of freedom. From a performance point of view, we demonstrate up to 60% full application bandwidth utilization at scale and achieve ≈1PFlop/s of compute performance in Nek’s most flop-intense methods.

  3. Efficiency of High Order Spectral Element Methods on Petascale Architectures

    KAUST Repository

    Hutchinson, Maxwell

    2016-06-14

    High order methods for the solution of PDEs expose a tradeoff between computational cost and accuracy on a per degree of freedom basis. In many cases, the cost increases due to higher arithmetic intensity while affecting data movement minimally. As architectures tend towards wider vector instructions and expect higher arithmetic intensities, the best order for a particular simulation may change. This study highlights preferred orders by identifying the high order efficiency frontier of the spectral element method implemented in Nek5000 and NekBox: the set of orders and meshes that minimize computational cost at fixed accuracy. First, we extract Nek’s order-dependent computational kernels and demonstrate exceptional hardware utilization by hardware-aware implementations. Then, we perform productionscale calculations of the nonlinear single mode Rayleigh-Taylor instability on BlueGene/Q and Cray XC40-based supercomputers to highlight the influence of the architecture. Accuracy is defined with respect to physical observables, and computational costs are measured by the corehour charge of the entire application. The total number of grid points needed to achieve a given accuracy is reduced by increasing the polynomial order. On the XC40 and BlueGene/Q, polynomial orders as high as 31 and 15 come at no marginal cost per timestep, respectively. Taken together, these observations lead to a strong preference for high order discretizations that use fewer degrees of freedom. From a performance point of view, we demonstrate up to 60% full application bandwidth utilization at scale and achieve ≈1PFlop/s of compute performance in Nek’s most flop-intense methods.

  4. [Tobacco--a highly efficient producer of vaccines].

    Science.gov (United States)

    Budzianowski, Jaromir

    2010-01-01

    Along with the depreciation of tobacco as a source of nicotine-containing commercial products, the increase of its appreciation as a potential producer of recombinant therapeutical proteins can be observed. Two species of tobacco--Nicotiana tabacum L. and N. benthamiana are easily grown by well established methods of field or green-house cultivation or cell culture, yield high biomass and soluble protein content, can be easily transformed by several methods and are not food for humans or feed for animals. Expression of foreign proteins, including vaccines, can be achieved in those plants either through stable transformation of nuclear or plastid (chloroplast) genomes or by transient transformation using infection with plant virus or bacteria--Agrobacterium tumefaciens (agroinfiltration). The most advanced mode of agrofiltration termed magnifection, which combines benefits of virus and Agrobacterium and depends on using Agrobacterium with viral pro-vectors, enables high-yield and rapid expression of therapeutical proteins, even in a few days, and can be employed on an industrial scale. Expression of many antigenic proteins, which may serve as antiviral, antibacterial, antiprotozoan and anticancer vaccines, and additionally a few autoantigens designed for the treatment of autoimunogenic diseases, like diabetes, have been achieved in tobacco. To date, a vaccine against Newcastle virus disease in poultry produced by tobacco cell culture has been approved for commercial application and several other vaccines are in advanced stage of development. The possibility of a high-level production of vaccines in tobacco against pandemic influenza or anthrax and plague due to a bioterroristic attack, as well as of individualised anticancer vaccines against non-Hodgkin's lymphoma (NHL) in a much shorter period of time than by traditional methods became realistic and hence caused increased interest in tobacco as a high-efficient producer of vaccines not only of specialistic

  5. Using high-throughput barcode sequencing to efficiently map connectomes.

    Science.gov (United States)

    Peikon, Ian D; Kebschull, Justus M; Vagin, Vasily V; Ravens, Diana I; Sun, Yu-Chi; Brouzes, Eric; Corrêa, Ivan R; Bressan, Dario; Zador, Anthony M

    2017-07-07

    The function of a neural circuit is determined by the details of its synaptic connections. At present, the only available method for determining a neural wiring diagram with single synapse precision-a 'connectome'-is based on imaging methods that are slow, labor-intensive and expensive. Here, we present SYNseq, a method for converting the connectome into a form that can exploit the speed and low cost of modern high-throughput DNA sequencing. In SYNseq, each neuron is labeled with a unique random nucleotide sequence-an RNA 'barcode'-which is targeted to the synapse using engineered proteins. Barcodes in pre- and postsynaptic neurons are then associated through protein-protein crosslinking across the synapse, extracted from the tissue, and joined into a form suitable for sequencing. Although our failure to develop an efficient barcode joining scheme precludes the widespread application of this approach, we expect that with further development SYNseq will enable tracing of complex circuits at high speed and low cost. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. High efficiency video coding (HEVC) algorithms and architectures

    CERN Document Server

    Budagavi, Madhukar; Sullivan, Gary

    2014-01-01

    This book provides developers, engineers, researchers and students with detailed knowledge about the High Efficiency Video Coding (HEVC) standard. HEVC is the successor to the widely successful H.264/AVC video compression standard, and it provides around twice as much compression as H.264/AVC for the same level of quality. The applications for HEVC will not only cover the space of the well-known current uses and capabilities of digital video – they will also include the deployment of new services and the delivery of enhanced video quality, such as ultra-high-definition television (UHDTV) and video with higher dynamic range, wider range of representable color, and greater representation precision than what is typically found today. HEVC is the next major generation of video coding design – a flexible, reliable and robust solution that will support the next decade of video applications and ease the burden of video on world-wide network traffic. This book provides a detailed explanation of the various parts ...

  7. High-resolution high-speed dynamic mechanical spectroscopy of cells and other soft materials with the help of atomic force microscopy.

    Science.gov (United States)

    Dokukin, M; Sokolov, I

    2015-07-28

    Dynamic mechanical spectroscopy (DMS), which allows measuring frequency-dependent viscoelastic properties, is important to study soft materials, tissues, biomaterials, polymers. However, the existing DMS techniques (nanoindentation) have limited resolution when used on soft materials, preventing them from being used to study mechanics at the nanoscale. The nanoindenters are not capable of measuring cells, nanointerfaces of composite materials. Here we present a highly accurate DMS modality, which is a combination of three different methods: quantitative nanoindentation (nanoDMA), gentle force and fast response of atomic force microscopy (AFM), and Fourier transform (FT) spectroscopy. This new spectroscopy (which we suggest to call FT-nanoDMA) is fast and sensitive enough to allow DMS imaging of nanointerfaces, single cells, while attaining about 100x improvements on polymers in both spatial (to 10-70 nm) and temporal resolution (to 0.7 s/pixel) compared to the current art. Multiple frequencies are measured simultaneously. The use of 10 frequencies are demonstrated here (up to 300 Hz which is a rather relevant range for biological materials and polymers, in both ambient conditions and liquid). The method is quantitatively verified on known polymers and demonstrated on cells and polymers blends. Analysis shows that FT-nanoDMA is highly quantitative. The FT-nanoDMA spectroscopy can easily be implemented in the existing AFMs.

  8. A CZT high efficiency detector with 3D spatial resolution for Laue lens applications

    DEFF Research Database (Denmark)

    Auricchio, N.; Basili, A.; Caroli, E.

    2010-01-01

    For X- and γ-ray astronomy in the coming decades, both ESA and NASA have indicated in their guidelines the importance of developing innovative instrumentation operating in the hard X- and soft γ-ray range where important scientific issues are still open, exploiting high sensitivity (50–100 times ...

  9. Hot nuclei studied with high efficiency neutron detectors

    International Nuclear Information System (INIS)

    Galin, J.

    1990-01-01

    We have shown the invaluable benefit that a high efficiency 4π neutron detector can bring to the study of reaction mechanisms following collisions of heavy nuclei at intermediate energy. Analysis requires Monte-Carlo simulations for comparison between experimental data and any emission model. In systematic measurements with projectiles of velocity corresponding to energies between 27 and 77 MeV/u, where both the influence of beam velocity and mass have been investigated separately, it has been shown that the projectile-target mass asymmetry, much more than velocity, has a decisive influence on energy dissipation. The closer the projectile mass to the target mass, the more energy is dissipated per unit mass of the considered projectile plus target system. The latter presents all the characteristics of a thermalized system, evaporating a copious number of light particles: up to about 40 neutrons (after efficiency correction) and 11 light charged particles in the most dissipative collisions between Kr+Au, and 90 neutrons for Pb+U with a yet unknown number of l.c.p. In the Kr experiment, these particles are isotropically emitted in the frame of a fused system, excited with 1.2 GeV. Moreover, l.c.p. exhibit Maxwellian energy distributions as in any standard evaporation process. We are now eager to better characterize the properties of the Pb+Au (U) systems for which about 1/3 of the neutrons are freed in a rather large fraction of all collisions. The thermalized energy should then approach very closely the total binding energy of the two interacting nuclei

  10. Progress of High Efficiency Centrifugal Compressor Simulations Using TURBO

    Science.gov (United States)

    Kulkarni, Sameer; Beach, Timothy A.

    2017-01-01

    Three-dimensional, time-accurate, and phase-lagged computational fluid dynamics (CFD) simulations of the High Efficiency Centrifugal Compressor (HECC) stage were generated using the TURBO solver. Changes to the TURBO Parallel Version 4 source code were made in order to properly model the no-slip boundary condition along the spinning hub region for centrifugal impellers. A startup procedure was developed to generate a converged flow field in TURBO. This procedure initialized computations on a coarsened mesh generated by the Turbomachinery Gridding System (TGS) and relied on a method of systematically increasing wheel speed and backpressure. Baseline design-speed TURBO results generally overpredicted total pressure ratio, adiabatic efficiency, and the choking flow rate of the HECC stage as compared with the design-intent CFD results of Code Leo. Including diffuser fillet geometry in the TURBO computation resulted in a 0.6 percent reduction in the choking flow rate and led to a better match with design-intent CFD. Diffuser fillets reduced annulus cross-sectional area but also reduced corner separation, and thus blockage, in the diffuser passage. It was found that the TURBO computations are somewhat insensitive to inlet total pressure changing from the TURBO default inlet pressure of 14.7 pounds per square inch (101.35 kilopascals) down to 11.0 pounds per square inch (75.83 kilopascals), the inlet pressure of the component test. Off-design tip clearance was modeled in TURBO in two computations: one in which the blade tip geometry was trimmed by 12 mils (0.3048 millimeters), and another in which the hub flow path was moved to reflect a 12-mil axial shift in the impeller hub, creating a step at the hub. The one-dimensional results of these two computations indicate non-negligible differences between the two modeling approaches.

  11. High-precision efficiency calibration of a high-purity co-axial germanium detector

    Energy Technology Data Exchange (ETDEWEB)

    Blank, B., E-mail: blank@cenbg.in2p3.fr [Centre d' Etudes Nucléaires de Bordeaux Gradignan, UMR 5797, CNRS/IN2P3, Université de Bordeaux, Chemin du Solarium, BP 120, 33175 Gradignan Cedex (France); Souin, J.; Ascher, P.; Audirac, L.; Canchel, G.; Gerbaux, M.; Grévy, S.; Giovinazzo, J.; Guérin, H.; Nieto, T. Kurtukian; Matea, I. [Centre d' Etudes Nucléaires de Bordeaux Gradignan, UMR 5797, CNRS/IN2P3, Université de Bordeaux, Chemin du Solarium, BP 120, 33175 Gradignan Cedex (France); Bouzomita, H.; Delahaye, P.; Grinyer, G.F.; Thomas, J.C. [Grand Accélérateur National d' Ions Lourds, CEA/DSM, CNRS/IN2P3, Bvd Henri Becquerel, BP 55027, F-14076 CAEN Cedex 5 (France)

    2015-03-11

    A high-purity co-axial germanium detector has been calibrated in efficiency to a precision of about 0.15% over a wide energy range. High-precision scans of the detector crystal and γ-ray source measurements have been compared to Monte-Carlo simulations to adjust the dimensions of a detector model. For this purpose, standard calibration sources and short-lived online sources have been used. The resulting efficiency calibration reaches the precision needed e.g. for branching ratio measurements of super-allowed β decays for tests of the weak-interaction standard model.

  12. Crystalline mesoporous tungsten oxide nanoplate monoliths synthesized by directed soft template method for highly sensitive NO2 gas sensor applications

    International Nuclear Information System (INIS)

    Hoa, Nguyen Duc; Duy, Nguyen Van; Hieu, Nguyen Van

    2013-01-01

    Graphical abstract: Display Omitted Highlights: ► Mesoporous WO 3 nanoplate monoliths were obtained by direct templating synthesis. ► Enable effective accession of the analytic molecules for the sensor applications. ► The WO 3 sensor exhibited a high performance to NO 2 gas at low temperature. -- Abstract: Controllable synthesis of nanostructured metal oxide semiconductors with nanocrystalline size, porous structure, and large specific surface area is one of the key issues for effective gas sensor applications. In this study, crystalline mesoporous tungsten oxide nanoplate-like monoliths with high specific surface areas were obtained through instant direct-templating synthesis for highly sensitive nitrogen dioxide (NO 2 ) sensor applications. The copolymer soft template was converted into a solid carbon framework by heat treatment in an inert gas prior to calcinations in air to sustain the mesoporous structure of tungsten oxide. The multidirectional mesoporous structures of tungsten oxide with small crystalline size, large specific surface area, and superior physical characteristics enabled the rapid and effective accession of analytic gas molecules. As a result, the sensor response was enhanced and the response and recovery times were reduced, in which the mesoporous tungsten oxide based gas sensor exhibited a superior response of 21,155% to 5 ppm NO 2 . In addition, the developed sensor exhibited selective detection of low NO 2 concentration in ammonia and ethanol at a low temperature of approximately 150 °C.

  13. Minor-Cu doped soft magnetic Fe-based FeCoBCSiCu amorphous alloys with high saturation magnetization

    Science.gov (United States)

    Li, Yanhui; Wang, Zhenmin; Zhang, Wei

    2018-05-01

    The effects of Cu alloying on the amorphous-forming ability (AFA) and magnetic properties of the P-free Fe81Co5B11C2Si1 amorphous alloy were investigated. Addition of ≤ 1.0 at.% Cu enhances the AFA of the base alloy without significant deterioration of the soft magnetic properties. The Fe80.5Co5B11C2Si1Cu0.5 alloy with the largest critical thickness for amorphous formation of ˜35 μm possesses a high saturation magnetization (Bs) of ˜1.78 T, low coercivity of ˜14.6 A/m, and good bending ductility upon annealing in a wide temperature range of 513-553 K with maintaining the amorphous state. The fabrication of the new high-Fe-content Fe-Co-B-C-Si-Cu amorphous alloys by minor doping of Cu gives a guideline to developing high Bs amorphous alloys with excellent AFA.

  14. Soft phonon modes leading to ultralow thermal conductivity and high thermoelectric performance in AgCuTe

    Energy Technology Data Exchange (ETDEWEB)

    Roychowdhury, Subhajit; Jana, Manoj K.; Pan, Jaysree; Guin, Satya N.; Waghmare, Umesh V.; Biswas, Kanishka [New Chemistry Unit and Theoretical Science Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore (India); Sanyal, Dirtha [Variable Energy Cyclotron Centre, 1/AF Bidhannagar, Kolkata (India)

    2018-04-03

    Crystalline solids with intrinsically low lattice thermal conductivity (κ{sub L}) are crucial to realizing high-performance thermoelectric (TE) materials. Herein, we show an ultralow κ{sub L} of 0.35 Wm{sup -1} K{sup -1} in AgCuTe, which has a remarkable TE figure-of-merit, zT of 1.6 at 670 K when alloyed with 10 mol % Se. First-principles DFT calculation reveals several soft phonon modes in its room-temperature hexagonal phase, which are also evident from low-temperature heat-capacity measurement. These phonon modes, dominated by Ag vibrations, soften further with temperature giving a dynamic cation disorder and driving the superionic transition. Intrinsic factors cause an ultralow κ{sub L} in the room-temperature hexagonal phase, while the dynamic disorder of Ag/Cu cations leads to reduced phonon frequencies and mean free paths in the high-temperature rocksalt phase. Despite the cation disorder at elevated temperatures, the crystalline conduits of the rigid anion sublattice give a high power factor. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Development of high magnetic field soft X-ray spectroscopy and its application to the study of surface and interface

    International Nuclear Information System (INIS)

    Nakamura, Tetsuya; Narumi, Yasuo

    2014-01-01

    Magnetic materials are generally synthesized and used as alloys and compounds. They are also stacked as a multilayer film for spintronics device such as a reading-head sensor of a hard disk drive. The evaluation of magnetization is the most fundamental characterization in studies of magnetic materials. Especially, in alloys and compounds involving more than two magnetic elements, a partial magnetization with respect to each element, we call as an element specific magnetization, promises to provide the deeper understanding of their magnetic property. X-ray magnetic circular dichroism (XMCD) in absorption spectroscopy provides an element specific magnetization. As XMCD became increasingly popular, high-magnetic-field environment for XMCD measurements also became very important in order to investigate paramagnetic, antiferromagnetic, and meta-magnetic materials. Under the circumstance, a high-magnetic-field XMCD measurement technique of the soft-X-ray regime has been developed using a non-destructive pulse magnet having capability of generating 40 T at the twin helical undulators beamline, BL25SU, of SPring-8. In this review, we first introduce the concept and the technical features of high magnetic field XMCD and then show recent examples of the experiments. (author)

  16. Optical signal processing for enabling high-speed, highly spectrally efficient and high capacity optical systems

    Science.gov (United States)

    Fazal, Muhammad Irfan

    The unabated demand for more capacity due to the ever-increasing internet traffic dictates that the boundaries of the state of the art maybe pushed to send more data through the network. Traditionally, this need has been satisfied by multiple wavelengths (wavelength division multiplexing), higher order modulation formats and coherent communication (either individually or combined together). WDM has the ability to reduce cost by using multiple channels within the same physical fiber, and with EDFA amplifiers, the need for O-E-O regenerators is eliminated. Moreover the availability of multiple colors allows for wavelength-based routing and network planning. Higher order modulation formats increases the capacity of the link by their ability to encode data in both the phase and amplitude of light, thereby increasing the bits/sec/Hz as compared to simple on-off keyed format. Coherent communications has also emerged as a primary means of transmitting and receiving optical data due to its support of formats that utilize both phase and amplitude to further increase the spectral efficiency of the optical channel, including quadrature amplitude modulation (QAM) and quadrature phase shift keying (QPSK). Polarization multiplexing of channels can double capacity by allowing two channels to share the same wavelength by propagating on orthogonal polarization axis and is easily supported in coherent systems where the polarization tracking can be performed in the digital domain. Furthermore, the forthcoming IEEE 100 Gbit/s Ethernet Standard, 802.3ba, provides greater bandwidth, higher data rates, and supports a mixture of modulation formats. In particular, Pol-MUX QPSK is increasingly becoming the industry's format of choice as the high spectral efficiency allows for 100 Gbit/s transmission while still occupying the current 50 GHz/channel allocation of current 10 Gbit/s OOK fiber systems. In this manner, 100 Gbit/s transfer speeds using current fiber links, amplifiers, and filters

  17. High-Efficiency Nitride-Based Solid-State Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Paul T. Fini; Shuji Nakamura

    2005-07-30

    In this final technical progress report we summarize research accomplished during Department of Energy contract DE-FC26-01NT41203, entitled ''High-Efficiency Nitride-Based Solid-State Lighting''. Two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and the Lighting Research Center at Rensselaer Polytechnic Institute (led by Dr. N. Narendran), pursued the goals of this contract from thin film growth, characterization, and packaging/luminaire design standpoints. The UCSB team initially pursued the development of blue gallium nitride (GaN)-based vertical-cavity surface-emitting lasers, as well as ultraviolet GaN-based light emitting diodes (LEDs). In Year 2, the emphasis shifted to resonant-cavity light emitting diodes, also known as micro-cavity LEDs when extremely thin device cavities are fabricated. These devices have very directional emission and higher light extraction efficiency than conventional LEDs. Via the optimization of thin-film growth and refinement of device processing, we decreased the total cavity thickness to less than 1 {micro}m, such that micro-cavity effects were clearly observed and a light extraction efficiency of over 10% was reached. We also began the development of photonic crystals for increased light extraction, in particular for so-called ''guided modes'' which would otherwise propagate laterally in the device and be re-absorbed. Finally, we pursued the growth of smooth, high-quality nonpolar a-plane and m-plane GaN films, as well as blue light emitting diodes on these novel films. Initial nonpolar LEDs showed the expected behavior of negligible peak wavelength shift with increasing drive current. M-plane LEDs in particular show promise, as unpackaged devices had unsaturated optical output power of {approx} 3 mW at 200 mA drive current. The LRC's tasks were aimed at developing the subcomponents necessary for packaging UCSB's light

  18. Development of a high gradient rf system using a nanocrystalline soft magnetic alloy

    Directory of Open Access Journals (Sweden)

    Chihiro Ohmori

    2013-11-01

    Full Text Available The future high intensity upgrade project of the J-PARC (Japan Proton Accelerator Research Complex MR (Main Ring includes developments of high gradient rf cavities and magnet power supplies for high repetition rate. The scenario describing the cavity replacements is reported. By the replacement plan, the total acceleration voltage will be almost doubled, while the number of rf stations remains the same. The key issue is the development of a high gradient rf system using high impedance magnetic alloy, FT3L. The FT3L is produced by the transverse magnetic field annealing although the present cavity for the J-PARC adopts the magnetic alloy, FT3M, which is annealed without magnetic field. After the test production using a large spectrometer magnet in 2011, a dedicated production system for the FT3L cores was assembled in 2012. This setup demonstrated that we can produce material with 2 times higher μ_{p}^{′}Qf product compared to the cores used for present cavities. In this summer, the production system was moved to the company from J-PARC and is used for mass production of 280 FT3L cores for the J-PARC MR. The cores produced in the first test production are already used for standard machine operation. The operation experience shows that the power loss in the cores was reduced significantly as expected.

  19. Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ojeda, William de

    2010-07-31

    The project which extended from November 2005 to May of 2010 demonstrated the application of Low Temperature Combustion (LTC) with engine out NOx levels of 0.2 g/bhp-hr throughout the program target load of 12.6bar BMEP. The project showed that the range of loads could be extended to 16.5bar BMEP, therefore matching the reference lug line of the base 2007 MY Navistar 6.4L V8 engine. Results showed that the application of LTC provided a dramatic improvement over engine out emissions when compared to the base engine. Furthermore LTC improved thermal efficiency by over 5% from the base production engine when using the steady state 13 mode composite test as a benchmark. The key enablers included improvements in the air, fuel injection, and cooling systems made in Phases I and II. The outcome was the product of a careful integration of each component under an intelligent control system. The engine hardware provided the conditions to support LTC and the controller provided the necessary robustness for a stable combustion. Phase III provided a detailed account on the injection strategy used to meet the high load requirements. During this phase, the control strategy was implemented in a production automotive grade ECU to perform cycle-by-cycle combustion feedback on each of the engine cylinders. The control interacted on a cycle base with the injection system and with the Turbo-EGR systems according to their respective time constants. The result was a unique system that could, first, help optimize the combustion system and maintain high efficiency, and secondly, extend the steady state results to the transient mode of operation. The engine was upgraded in Phase IV with a Variable Valve Actuation system and a hybrid EGR loop. The impact of the more versatile EGR loop did not provide significant advantages, however the application of VVA proved to be an enabler to further extend the operation of LTC and gain considerable benefits in fuel economy and soot reduction. Finally

  20. Second Generation Advanced Reburning for High Efficiency NOx Control

    International Nuclear Information System (INIS)

    Zamansky, Vladimir M.; Maly, Peter M.; Sheldon, Mark; Seeker, W. Randall; Folsom, Blair A.

    1997-01-01

    Energy and Environmental Research Corporation is developing a family of high efficiency and low cost NO x control technologies for coal fired utility boilers based on Advanced Reburning (AR), a synergistic integration of basic reburning with injection of an N-agent. In conventional AR, injection of the reburn fuel is followed by simultaneous N-agent and overfire air injection. The second generation AR systems incorporate several components which can be used in different combinations. These components include: (1) Reburning Injection of the reburn fuel and overfire air. (2) N-agent Injection The N-agent (ammonia or urea) can be injected at different locations: into the reburning zone, along with the overfire air, and downstream of the overfire air injection. (3) N-agent Promotion Several sodium compounds can considerably enhance the NO x control from N-agent injection. These ''promoters'' can be added to aqueous N-agents. (4) Two Stages of N-agent Injection and Promotion Two N-agents with or without promoters can be injected at different locations for deeper NO x control. AR systems are intended for post-RACT applications in ozone non-attainment areas where NO x control in excess of 80% is required. AR will provide flexible installations that allow NO x levels to be lowered when regulations become more stringent. The total cost of NO x control for AR systems is approximately half of that for SCR. Experimental and kinetic modeling results for development of these novel AR systems are presented. Tests have been conducted in a 1.0 MMBtu/hr Boiler Simulator Facility with coal as the main fuel and natural gas as the reburning fuel. The results show that high efficiency NO x control, in the range 84-95%, can be achieved with various elements of AR. A comparative byproduct emission study was performed to compare the emissions from different variants of AR with commercial technologies (reburning and SNCR). For each technology sampling included: CO, SO 2 , N 2 O, total