WorldWideScience

Sample records for high efficiency nebulizer

  1. High efficiency nebulization for helium inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Jorabchi, Kaveh; McCormick, Ryan; Levine, Jonathan A.; Liu Huiying; Nam, S.-H.; Montaser, Akbar

    2006-01-01

    A pneumatically-driven, high efficiency nebulizer is explored for helium inductively coupled plasma mass spectrometry. The aerosol characteristics and analyte transport efficiencies of the high efficiency nebulizer for nebulization with helium are measured and compared to the results obtained with argon. Analytical performance indices of the helium inductively coupled plasma mass spectrometry are evaluated in terms of detection limits and precision. The helium inductively coupled plasma mass spectrometry detection limits obtained with the high efficiency nebulizer at 200 μL/min are higher than those achieved with the ultrasonic nebulizer consuming 2 mL/min solution, however, precision is generally better with high efficiency nebulizer (1-4% vs. 3-8% with ultrasonic nebulizer). Detection limits with the high efficiency nebulizer at 200 μL/min solution uptake rate approach those using ultrasonic nebulizer upon efficient desolvation with a heated spray chamber followed by a Peltier-cooled multipass condenser

  2. Surfactant nebulization versus instillation during high frequency ventilation in surfactant-deficient rabbits

    NARCIS (Netherlands)

    Dijk, Peter H.; Heikamp, A; Bambang Oetomo, Sidarto

    Surfactant nebulization improves lung function at low alveolar doses of surfactant. However, efficiency of nebulization is low, and lung deposition seems to depend on lung aeration. High frequency ventilation (HFV) has been shown to improve lung aeration. We hypothesize that the combination of HFV

  3. Multielement detection limits and sample nebulization efficiencies of an improved ultrasonic nebulizer and a conventional pneumatic nebulizer in inductively coupled plasma-atomic emission spectrometry

    International Nuclear Information System (INIS)

    Olson, K.W.; Haas, W.J. Jr.; Fassel, V.A.

    1977-01-01

    Two important aspects of the analytical performance of a newly developed ultrasonic nebulizer and a specially designed pneumatic nebulizer have been compared for use in inductively coupled plasma--atomic emission spectroscopy (ICP-AES). The ultrasonic nebulizer, when combined with a conventional aerosol desolvation apparatus, provided an order of magnitude or more improvement in simultaneous multielement detection limits as compared to those obtained when the pneumatic nebulizer was used either with or without desolvation. Application of a novel method for direct measurement of the overall efficiency of nebulization to the two systems showed that an approximately tenfold greater rate of sample delivery to the plasma torch was primarily responsible for the superior detection limits afforded by the ultrasonic nebulizer. A unique feature of the ultrasonic nebulizer described is the protection against chemical attack which is achieved by completely enclosing the transducer in an acoustically coupled borosilicate glass cylinder. Direct sample introduction, convenient sample change, and rapid cleanout are other important characteristics of the system which make it an attractive alternate to pneumatic nebulizer systems

  4. ICP-MS nebulizer performance for analysis of SRS high salt simulated radioactive waste tank solutions (number-sign 3053)

    International Nuclear Information System (INIS)

    Jones, V.D.

    1997-01-01

    High Level Radioactive Waste Tanks at the Savannah River Site are high in salt content. The cross-flow nebulizer provided the most stable signal for all salt matrices with the smallest signal loss/suppression due to this matrix. The DIN exhibited a serious lack of tolerance for TDS; possibly due to physical de-tuning of the nebulizer efficiency

  5. Microcolumn high pressure liquid chromatography with a glass-frit nebulizer interface for plasma emission detection

    International Nuclear Information System (INIS)

    Ibrahim, M.; Nisamaneepong, W.; Caruso, J.

    1985-01-01

    Microcolumn high pressure liquid chromatography (micro-HPLC) is rapidly gaining recognition as a practical separation tool for organometallic compounds. The use of the inductively coupled plasma (ICP) as a detector for micro-HPLC is studied. Several miniaturized glass-frit nebulizers are investigated as interfaces between the output of the microbore column and the ICP torch. Their performance with aqueous and methanolic solutions is evaluated by direct nebulization and flow injection analysis. The most efficient of these nebulizers is used in the micro-HPLC/ICP study of some Cd, Pb, and Zn organometallic compounds. Detection limits of 1.92 ng of Pb for tetramethyllead and 5.01 ng of Pb for tetraethyllead are obtained and compared with regular HPLC/ICP of these same compounds. Approximately equivalent detection limits were obtained when using a microwave induced plasma as an alternate plasma source

  6. Effect of Dead Volume on the Efficiency and the Cost to Deliver Medications in Cystic Fibrosis with Four Disposable Nebulizers

    Directory of Open Access Journals (Sweden)

    Sharon L Ho

    1999-01-01

    Full Text Available OBJECTIVES: To evaluate the factors that affect nebulizer efficiency and to compare the relative cost effectiveness of nebulized medications used in the treatment of cystic fibrosis (CF, delivered by four types of disposable jet nebulizers that are widely used in hospitals.

  7. Multielement determination of trace metals in river water (certified reference material, JSAC 0301-1) by high efficiency nebulization ICP-MS after 100-fold preconcentration with a chelating resin-packed minicolumn

    International Nuclear Information System (INIS)

    Zhu, Yanbei; Hattori, Ryota; Fujimori, Eiji; Umemura, Tomonari; Haraguchi, Hiroki

    2005-01-01

    The determination of 34 trace metals in a river water certified reference material (CRM), i.e. JSAC 0301-1, which was issued by the Japan Society for Analytical Chemistry in January 2004, was performed by ICP-MS with a high efficiency nebulizer after preconcentration with a laboratory-made chelating resin-packed minicolumn, with which trace metals were concentrated 100-fold from 50 mL of a river water sample to 0.5 mL of the final analysis solution. Trace metals in JSAC 0301-1 were observed in the concentration range from 19 μg L -1 of Al to 0.000053 μg L -1 of Bi. It was found that most of the concentrations of trace metals, including rare earth elements (REEs), in JSAC 0301-1 were lower than those in JAC 0031, which was also a previously issued CRM prepared with water from the same river as that of JSAC 0301-1. The low concentrations of trace metals in JSAC 0301-1 might be attributed to the fact that there was heavy rain before collecting the original water sample to prepare the present CRM. Furthermore, the REE distribution patterns of JSAC 0301-1, JAC 0031 and the average values of river water samples in Japan were parallel to each other. These results indicate that the distributions of REEs in JSAC 0301-1 and JAC 0031 were the typical ones of river water samples in Japan. (author)

  8. Direct solution introduction using conventional nebulizers with a short torch for plasma mass spectrometry

    International Nuclear Information System (INIS)

    Westphal, Craig S.; Montaser, Akbar

    2006-01-01

    A new torch, a shortened version of a standard demountable torch, is proposed for facilitating direct injection of liquid samples into an inductively coupled plasma mass spectrometer using conventional and micro-pneumatic nebulizers. The proposed arrangement reduces the cost of the direct injector nebulizer by a factor of 5, typically from $2000 to $400, although a different torch is required. The analytical performance of the high efficiency nebulizer-short torch arrangement is compared to that obtained with the direct injection high efficiency nebulizer interfaced to the conventional torch. Optimum operating conditions for the high efficiency nebulizer-short torch arrangement are generally similar to those of the direct injection high efficiency nebulizer: high RF power (1500 W), low nebulizer gas flow rates (0.09 L/min) and low solution uptake rates (5-85 μL/min). Sensitivity with the high efficiency nebulizer-short torch system at 85 μL/min is improved by a factor of 2.4 on average compared to the direct injection high efficiency nebulizer, while precision values (%RSD) and detection limits are generally comparable or slightly degraded (on average by a factor of 1.7), respectively. Sensitivity is also better at lower solution uptake rates (5 μL/min) by factors ranging from 2 ( 82 Se) to 7 ( 59 Co) compared to the direct injection high efficiency nebulizer. Additionally, the %RSD values are better at 5 μL/min, ranging from 3.5% to 6.0% for the high efficiency nebulizer-short torch combination compared to 4.7 to 9.1% for the direct injection high efficiency nebulizer. The utility of the high efficiency nebulizer-short torch arrangement is demonstrated through the microscale flow injection analysis of Cr-DNA adducts and the analysis of four certified reference materials (Lyphochek urine metals control, SRM 1515: Apple Leaves, SRM 1570a: Spinach Leaves, SRM 1577b: Bovine Liver). Peak to peak precision values (N = 3) for the microscale flow injection analysis-high

  9. Interfacing capillary electrophoresis with inductively coupled plasma mass spectrometry by direct injection nebulization for selenium speciation

    DEFF Research Database (Denmark)

    Bendahl, Lars; Gammelgaard, Bente; Jons, O.

    2001-01-01

    A demountable direct injection high efficiency nebulizer operating at low sample uptake rates was developed and used for coupling of capillary electrophoresis (CE) with inductively coupled plasma mass spectrometry (ICP-MS). When the nebulizer was used for continuous sample introduction, detection...

  10. Nebulized hypertonic saline via positive expiratory pressure versus via jet nebulizer in patients with severe cystic fibrosis.

    LENUS (Irish Health Repository)

    O'Connell, Oisin J

    2011-06-01

    Nebulized hypertonic saline is a highly effective therapy for patients with cystic fibrosis (CF), yet 10% of patients are intolerant of hypertonic saline administered via jet nebulizer. Positive expiratory pressure (PEP) nebulizers splint open the airways and offers a more controlled rate of nebulization.

  11. Nebulized therapy. SEPAR year.

    Science.gov (United States)

    Olveira, Casilda; Muñoz, Ana; Domenech, Adolfo

    2014-12-01

    Inhaled drugs are deposited directly in the respiratory tract. They therefore achieve higher concentrations with faster onset of action and fewer side effects than when used systemically. Nebulized drugs are mainly recommended for patients that require high doses of bronchodilators, when they need to inhale drugs that only exist in this form (antibiotics or dornase alfa) or when they are unable to use other inhalation devices. Technological development in recent years has led to new devices that optimize pulmonary deposits and reduce the time needed for treatment. In this review we focus solely on drugs currently used, or under investigation, for nebulization in adult patients; basically bronchodilators, inhaled steroids, antibiotics, antifungals, mucolytics and others such as anticoagulants, prostanoids and lidocaine. Copyright © 2014 SEPAR. Published by Elsevier Espana. All rights reserved.

  12. Electrostatic charge characteristics of jet nebulized aerosols.

    Science.gov (United States)

    Kwok, Philip Chi Lip; Trietsch, Sebastiaan J; Kumon, Michiko; Chan, Hak-Kim

    2010-06-01

    Liquid droplets can be spontaneously charged in the absence of applied electric fields by spraying. It has been shown by computational simulation that charges may influence particle deposition in the airways. The electrostatic properties of jet nebulized aerosols and their potential effects on lung deposition have hardly been studied. A modified electrical low pressure impactor (ELPI) was employed to characterize the aerosol charges generated from jet nebulized commercial products. The charge and size measurements were conducted at 50% RH and 22 degrees C with a modified ELPI. Ventolin, Bricanyl, and Atrovent were nebulized using PARI LC Plus jet nebulizers coupled to a DeVilbiss Pulmo-Aide compressor. The aerosols were sampled in 30-sec durations. The drug deposits on the impactor stages were assayed chemically using high-performance liquid chromatography (HPLC). The charges of nebulized deionized water, isotonic saline, and the three commercial products diluted with saline were also measured to analyze the contributions of the major nebule ingredients on charging. No mass assays were performed on these runs. All three commercial nebules generated net negative charges. The magnitude of the charges reduced over the period of nebulization. Ventolin and Bricanyl yielded similar charge profiles. Highly variable charges were produced from deionized water. On the other hand, nebulized saline reproducibly generated net positive charges. Diluted commercial nebules showed charge polarity inversion. The charge profiles of diluted salbutamol and terbutaline solutions resembled those of saline, while the charges from diluted ipratropium solutions fluctuated near neutrality. The charge profiles were shown to be influenced by the concentration and physicochemical properties of the drugs, as well as the history of nebulization. The drugs may have unique isoelectric concentrations in saline at which the nebulized droplets would carry near-zero charges. According to results from

  13. Chemical breakdown of radioaerosols during nebulization

    International Nuclear Information System (INIS)

    Waldman, D.L.; Weber, D.A.; Oberdrster, G.; Drago, S.R.; Utell, M.S.; Hyde, R.W.; Morrow, P.E.

    1985-01-01

    The diagnostic utility of radioaerosols for lung ventilation and lung permeability procedures requires a strong, stable coordinate covalent bond between a radionuclide and a ligand. The stability of the radiopharmaceutical before and after nebulization and hence its molecular size, are an absolute prerequisite for the method to be reproducible. To examine the possible effects of aerosolization on radiopharmaceuticals used for pulmonary imaging, the authors examined the radiochemical purity of Tc-99m DTPA following ultrasonic nebulization, jet nebulization (Dautrebande D-31), and inhalation with subsequent appearance in plasma and urine of dogs. Paper and liquid chromatographic methods were applied to determine radiochemical purity. Chromatographic assays showed a binding efficiency of less than 50% for ultrasonicly aerosolized Tc-99m DTPA. Cooling of the ultrasonic coupling fluid increased the binding efficiency to greater than 95% following nebulization and inhalation. Jet nebulization did not affect the radiochemical purity of the radiopharmaceutical. Ultrasonic nebulization will partially destroy the Tc-99m DTPA complex; cooling the ultrasonic connecting fluid and constant aerosol monitoring are required for consistent, reproducible results

  14. Apparatus for ultrasonic nebulization

    International Nuclear Information System (INIS)

    Olson, K.W.; Haas, W.J. Jr.; Fassel, V.A.

    1978-01-01

    An improved apparatus is described for ultrasonic nebulization of liquid samples or suspensions in which the piezoelectric transducer is protected from chemical attack and erosion. The transducer is protected by being bonded to the inner surface of a glass plate which forms one end wall of a first hollow body provided with apparatus for circulating a fluid for cooling and stabilizing the transducer. The glass plate, which is one-half wavelength in thickness to provide an acoustically coupled outer nebulizing surface, seals an opening in a second hollow body which encloses an aerosol mixing chamber. The second body includes apparatus for delivering the sample solution to the nebulizing surface, a gas inlet for providing a flow of carrier gas for transporting the aerosol of the nebulized sample and an aerosol outlet

  15. Graphene-mediated microfluidic transport and nebulization via high frequency Rayleigh wave substrate excitation.

    Science.gov (United States)

    Ang, Kar M; Yeo, Leslie Y; Hung, Yew M; Tan, Ming K

    2016-09-21

    The deposition of a thin graphene film atop a chip scale piezoelectric substrate on which surface acoustic waves are excited is observed to enhance its performance for fluid transport and manipulation considerably, which can be exploited to achieve further efficiency gains in these devices. Such gains can then enable complete integration and miniaturization for true portability for a variety of microfluidic applications across drug delivery, biosensing and point-of-care diagnostics, among others, where field-use, point-of-collection or point-of-care functionality is desired. In addition to a first demonstration of vibration-induced molecular transport in graphene films, we show that the coupling of the surface acoustic wave gives rise to antisymmetric Lamb waves in the film which enhance molecular diffusion and hence the flow through the interstitial layers that make up the film. Above a critical input power, the strong substrate vibration displacement can also force the molecules out of the graphene film to form a thin fluid layer, which subsequently destabilizes and breaks up to form a mist of micron dimension aerosol droplets. We provide physical insight into this coupling through a simple numerical model, verified through experiments, and show several-fold improvement in the rate of fluid transport through the film, and up to 55% enhancement in the rate of fluid atomization from the film using this simple method.

  16. Development of iodine based impinger solutions for the efficient capture of Hg{sup 0} using direct injection nebulization-inductively coupled plasma mass spectrometry analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hedrick, E.; Lee, T.G.; Biswas, P.; Zhuang, Y. [US Environmental Protection Agency, Cincinnati, OH (USA). National Exposure Research Laboratory

    2001-09-15

    Inductively coupled plasma mass spectrometry (ICP/MS) with direct injection nebulization (DIN) was used to evaluate novel impinger solution compositions capable of capturing elemental mercury (Hg{sup 0}) in EPA Method 5 type sampling. An iodine based impinger solution proved to be very efficient for Hg{sup 0} capture and was amenable to direct analysis by DIN-ICP/MS. Hg{sup 0} capture efficiency using aqueous iodine (I{sub 3}{sup -}) was comparable to Hg{sup 0} capture using acidified potassium permanganate impinger solutions which were analyzed by cold vapor atomic absorption spectrometry (CVAAS) with greater than 98% capture of Hg{sup 0} in the oxidizing impinger. Using DIN-ICP/MS, it was demonstrated for the first time that iodine can be generated just prior to impinger sampling for efficiently oxidizing Hg{sup 0} and retailing it in solution as HgI{sub 4}{sup 2-}. Due to the increased interest in Hg speciation from combustion sources and the potential for using DIN-ICP/MS for multiple metals analyses, an impinger sampling train for gaseous Hg speciation and multiple metals analyses using DIN-ICP/MS analyses is presented. The unique feature of such a sampling train is that each impinger solution in the series is amenable to direct analysis by DIN-ICP/MS. A bituminous coal was combusted in a bench scale coal system, and gaseous Hg species (oxidized and elemental) were determined using the proposed impinger train. The DIN-ICP/Ms instrumental detection limit was 0.003 ppb, and MDLs ranged from 0.007 to 0.116 {mu}g/L (ppb) in a variety of impinger solutions used for Hg capture. 33 refs., 5 figs., 7 tabs.

  17. Pharmacokinetics of nebulized terbinafine in Hispaniolan Amazon parrots (Amazona ventralis).

    Science.gov (United States)

    Emery, Lee C; Cox, Sherry K; Souza, Marcy J

    2012-09-01

    Aspergillosis is one of the most difficult diseases to treat successfully in avian species. Terbinafine hydrochloride offers numerous potential benefits over traditionally used antifungals for treatment of this disease. Adding nebulized antifungals to treatment strategies is thought to improve clinical outcomes in lung diseases. To determine plasma concentrations of terbinafine after nebulization, 6 adult Hispaniolan Amazon parrots were randomly divided into 2 groups of 3. Each bird was nebulized for 15 minutes with 1 of 2 terbinafine solutions, one made with a crushed tablet and the second with raw drug powder. Blood samples were collected at baseline and at multiple time points up to 720 minutes after completing nebulization. Plasma and nebulization solutions were analyzed by high-performance liquid chromatography. The terbinafine concentration of the solution made with a crushed tablet (0.87 +/- 0.05 mg/mL) was significantly lower than was that made with raw powder (1.02 +/- 0.09 mg/mL). Plasma concentrations of terbinafine did not differ significantly between birds in the 2 groups. Plasma terbinafine concentrations in birds were maintained above in vitro minimum inhibitory concentrations for approximately 1 hour in birds nebulized with the crushed tablet solution and 4 hours in birds nebulized with the raw powder solution. Higher concentrations of solution, longer nebulization periods, or more frequent administration are likely needed to reach therapeutic plasma concentrations of terbinafine for clinically relevant periods in Hispaniolan Amazon parrots.

  18. THE DEVELOPMENT OF IODINE BASED IMPINGER SOLUTIONS FOR THE EFFICIENT CAPTURE OF HG USING DIRECT INJECTION NEBULIZATION - INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY ANALYSIS

    Science.gov (United States)

    Inductively coupled plasma mass spectrometry (ICP/MS) with direct injection nebulization (DIN) was used to evaluate novel impinger solution compositions capable of capturing elemental mercury (Hgo) in EPA Method 5 type sampling. An iodine based impinger solutoin proved to be ver...

  19. Impact of humidification and nebulization during expiratory limb protection: an experimental bench study.

    Science.gov (United States)

    Tonnelier, Alexandre; Lellouche, François; Bouchard, Pierre Alexandre; L'Her, Erwan

    2013-08-01

    Different filtering devices are used during mechanical ventilation to avoid dysfunction of flow and pressure transducers or for airborne microorganisms containment. Water condensates, resulting from the use of humidifiers, but also residual nebulization particles may have a major influence on expiratory limb resistance. To evaluate the influence of nebulization and active humidification on the resistance of expiratory filters. A respiratory system analog was constructed using a test lung, an ICU ventilator, heated humidifiers, and a piezoelectric nebulizer. Humidifiers were connected to different types of circuits (unheated, mono-heated, new-generation and old-generation bi-heated). Five filter types were evaluated: electrostatic, heat-and-moisture exchanger, standard, specific, and internal heated high-efficiency particulate air [HEPA] filter. Baseline characteristics were obtained from each dry filter. Differential pressure measurements were carried out after 24 hours of continuous in vitro use for each condition, and after 24 hours of use with an old-generation bi-heated circuit without nebulization. While using unheated circuits, measurements had to be interrupted before 24 hours for all the filtering devices except the internal heated HEPA filter. The heat-and-moisture exchangers occluded before 24 hours with the unheated and mono-heated circuits. The circuit type, nebulization practice, and duration of use did not influence the internal heated HEPA filter resistance. Expiratory limb filtration is likely to induce several major adverse events. Expiratory filter resistance increase is due mainly to the humidification circuit type, rather than to nebulization. If filtration is mandatory while using an unheated circuit, a dedicated filter should be used for ≤ 24 hours, or a heated HEPA for a longer duration.

  20. An environmentally-friendly, highly efficient, gas pressure-assisted sample introduction system for ICP-MS and its application to detection of cadmium and lead in human plasma.

    Science.gov (United States)

    Cao, Yupin; Deng, Biyang; Yan, Lizhen; Huang, Hongli

    2017-05-15

    An environmentally friendly and highly efficient gas pressure-assisted sample introduction system (GPASIS) was developed for inductively-coupled plasma mass spectrometry. A GPASIS consisting of a gas-pressure control device, a customized nebulizer, and a custom-made spray chamber was fabricated. The advantages of this GPASIS derive from its high nebulization efficiencies, small sample volume requirements, low memory effects, good precision, and zero waste emission. A GPASIS can continuously, and stably, nebulize 10% NaCl solution for more than an hour without clogging. Sensitivity, detection limits, precision, long-term stability, double charge and oxide ion levels, nebulization efficiencies, and matrix effects of the sample introduction system were evaluated. Experimental results indicated that the performance of this GPASIS, was equivalent to, or better than, those obtained by conventional sample introduction systems. This GPASIS was successfully used to determine Cd and Pb by ICP-MS in human plasma. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Residual gravimetric method to measure nebulizer output.

    Science.gov (United States)

    Vecellio None, Laurent; Grimbert, Daniel; Bordenave, Joelle; Benoit, Guy; Furet, Yves; Fauroux, Brigitte; Boissinot, Eric; De Monte, Michele; Lemarié, Etienne; Diot, Patrice

    2004-01-01

    The aim of this study was to assess a residual gravimetric method based on weighing dry filters to measure the aerosol output of nebulizers. This residual gravimetric method was compared to assay methods based on spectrophotometric measurement of terbutaline (Bricanyl, Astra Zeneca, France), high-performance liquid chromatography (HPLC) measurement of tobramycin (Tobi, Chiron, U.S.A.), and electrochemical measurements of NaF (as defined by the European standard). Two breath-enhanced jet nebulizers, one standard jet nebulizer, and one ultrasonic nebulizer were tested. Output produced by the residual gravimetric method was calculated by weighing the filters both before and after aerosol collection and by filter drying corrected by the proportion of drug contained in total solute mass. Output produced by the electrochemical, spectrophotometric, and HPLC methods was determined after assaying the drug extraction filter. The results demonstrated a strong correlation between the residual gravimetric method (x axis) and assay methods (y axis) in terms of drug mass output (y = 1.00 x -0.02, r(2) = 0.99, n = 27). We conclude that a residual gravimetric method based on dry filters, when validated for a particular agent, is an accurate way of measuring aerosol output.

  2. Pneumatically Modulated Liquid Delivery System for Nebulizers

    Science.gov (United States)

    2011-12-02

    passing a high-velocity sheath gas over the orifice of a liquid filled capillary. Due to the Venturi effect , liquid is pulled from the capillary orifice... pump , or through self-aspiration. Each nebulizer is calibrated to a specific gas flow for self-aspiration, eliminating the need for an external pump ...the components in a single box. Flow rates with less than 0.5% relative standard deviation are possible, and results are compared with a syringe pump

  3. Elemental speciation via high-performance liquid chromatography combined with inductively coupled plasma atomic emission spectroscopic detection: application of a direct injection nebulizer

    International Nuclear Information System (INIS)

    LaFreniere, K.E; Fassel, V.A.; Eckels, D.E.

    1987-01-01

    An evaluation is presented of a direct injection nebulizer (DIN) interfaced to a high-performance liquid chromatograph (HPLC) with inductively coupled plasma atomic emission spectroscopic (ICP-AES) detection for simultaneous multielement speciation. The limits of detection (LODs) obtained with the DIN interface in the HPLC mode were found to be comparable to those obtained by continuous-flow sample introduction into the ICP, or inferior by up to only a factor of 4. In addition, the DIN allowed for the direct injection into the ICP of a variety of common HPLC solvents (up to 100% methanol, acetonitrile, methyl isobutyl ketone, pyridine, and water). The HPLC-DIN-ICP-AES system was compared to other HPLC-atomic spectroscopic detection techniques and was found to offer substantial improvement over the alternative on-line, detection methods in terms of LODs. Representative applications of the HPLC-DIN-ICP-AES system to the elemental speciation of coal process streams, shale oil, solvent refined coal, and crude oil are presented

  4. COPD -- how to use a nebulizer

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000699.htm COPD - how to use a nebulizer To use the ... page, please enable JavaScript. A nebulizer turns your COPD medicine into a mist. It is easier to ...

  5. Effect of nebulizer/spray chamber interfaces on simultaneous, axial view inductively coupled plasma optical emission spectrometry for the direct determination of As and Se species separated by ion exchange high-performance liquid chromatography

    International Nuclear Information System (INIS)

    Gettar, Raquel T.; Smichowski, Patricia; Garavaglia, Ricardo N.; Farias, Silvia; Batistoni, Daniel A.

    2005-01-01

    Different nebulizer/expansion chamber combinations were evaluated to assess their performance for sample introduction in the direct coupling with an axial view inductively coupled plasma multielement spectrometer for on-line determination of As and Se species previously separated by ion exchange-high performance liquid chromatography. The column effluents were injected into the plasma without prior derivatization. The instrument operation software was adapted for data acquisition and processing to allow multi-wavelength recording of the transient chromatographic peaks. After optimization of the chromatographic operating conditions, separation of mixtures of inorganic As and Se species, and of inorganic and two organic As species (monomethylarsonic and dimethylarsinic acids), was achieved with excellent resolution. Species discrimination from mixtures of As and Se oxyanions was further improved by the simultaneous element detection at specific analytical wavelengths. Three nebulizers and three spray chambers, employed in seven combinations, were tested as interfaces. Concentric nebulizers associated to a glass cyclonic chamber appear most suitable regarding sensitivity and signal to noise ratio. Measured element detection limits (3 σ) were around 10 ng ml -1 for all the species considered, making the method a viable alternative to similar procedures that employ volatile hydride generation previous to sample injection into the plasma. Analytical recoveries both for inorganic and organic species ranged between 92 and 107%. The method was demonstrated to be apt for the analysis of surface waters potentially subjected to natural contamination with arsenic

  6. The role of osmolality in saline fluid nebulization after tracheostomy: time for changing?

    Science.gov (United States)

    Wen, Zunjia; Wu, Chao; Cui, Feifei; Zhang, Haiying; Mei, Binbin; Shen, Meifen

    2016-12-09

    Saline fluid nebulization is highly recommend to combat the complications following tracheostomy, yet the understandings on the role of osmolality in saline solution for nebulization remain unclear. To investigate the biological changes in the early stage after tracheostomy, to verify the efficacy of saline fluid nebulization and explore the potential role of osmolality of saline nebulization after tracheostomy. Sprague-Dawley rats undergone tracheostomy were taken for study model, the sputum viscosity was detected by rotational viscometer, the expressions of TNF-α, AQP4 in bronchoalveolar lavage fluid were assessed by western blot analysis, and the histological changes in endothelium were evaluated by HE staining and scanning electron microscopy (SEM). Study results revealed that tracheostomy gave rise to the increase of sputum viscosity, TNF-α and AQP4 expression, mucosa and cilia damage, yet the saline fluid nebulization could significantly decrease the changes of those indicators, besides, the hypertonic, isotonic and hypertonic saline nebulization produced different efficacy. Osmolality plays an important role in the saline fluid nebulization after tracheostomy, and 3% saline fluid nebulization seems to be more beneficial, further studies on the role of osmolality in saline fluid nebulization are warranted.

  7. A comparison of sputum induction methods: ultrasonic vs compressed-air nebulizer and hypertonic vs isotonic saline inhalation.

    Science.gov (United States)

    Loh, L C; Eg, K P; Puspanathan, P; Tang, S P; Yip, K S; Vijayasingham, P; Thayaparan, T; Kumar, S

    2004-03-01

    Airway inflammation can be demonstrated by the modem method of sputum induction using ultrasonic nebulizer and hypertonic saline. We studied whether compressed-air nebulizer and isotonic saline which are commonly available and cost less, are as effective in inducing sputum in normal adult subjects as the above mentioned tools. Sixteen subjects underwent weekly sputum induction in the following manner: ultrasonic nebulizer (Medix Sonix 2000, Clement Clarke, UK) using hypertonic saline, ultrasonic nebulizer using isotonic saline, compressed-air nebulizer (BestNeb, Taiwan) using hypertonic saline, and compressed-air nebulizer using isotonic saline. Overall, the use of an ultrasonic nebulizer and hypertonic saline yielded significantly higher total sputum cell counts and a higher percentage of cell viability than compressed-air nebulizers and isotonic saline. With the latter, there was a trend towards squamous cell contaminations. The proportion of various sputum cell types was not significantly different between the groups, and the reproducibility in sputum macrophages and neutrophils was high (Intraclass correlation coefficient, r [95%CI]: 0.65 [0.30-0.91] and 0.58 [0.22-0.89], p compressed-air nebulizers and isotonic saline. We conclude that in normal subjects, although both nebulizers and saline types can induce sputum with reproducible cellular profile, ultrasonic nebulizers and hypertonic saline are more effective but less well tolerated.

  8. In vitro evaluation of aerosol delivery by different nebulization modes in pediatric and adult mechanical ventilators.

    Science.gov (United States)

    Wan, Gwo-Hwa; Lin, Hui-Ling; Fink, James B; Chen, Yen-Hey; Wang, Wei-Jhen; Chiu, Yu-Chun; Kao, Yu-Yao; Liu, Chia-Jung

    2014-10-01

    Aerosol delivery through mechanical ventilation is influenced by the type of aerosol generator, pattern of nebulization, and a patient's breathing pattern. This study compares the efficiency of pneumatic nebulization modes provided by a ventilator with adult and pediatric in vitro lung models. Three pneumatic nebulization modes (inspiratory intermittent [IIM], continuous [CM], and expiratory intermittent [EIM]) provided by the Galileo Gold ventilator delivered medical aerosol to collection filters distal to an endotracheal tube with adult and pediatric test lungs. A unit dose of 5 mg/2.5 mL albuterol was diluted into 4 mL with distilled water and added to a jet nebulizer. The nebulizer was placed proximal to the ventilator, 15 cm from the inlet of the heated humidifier chamber with a T-piece and corrugated aerosol tubing and powered by gas from the ventilator in each of the 3 modes. Time for nebulization was recorded in minutes. Albuterol samples collected in the inhalation filter, nebulizer, T-piece, and corrugated tubing were eluted with distilled water and analyzed with a spectrophotometer. The inhaled drug, as a percentage of total dose in both lung models, was 5.1-7.5%, without statistical significance among the 3 modes. Median nebulization times for IIM, CM, and EIM were 38.9, 14.3, and 17.7 min, respectively, and nebulization time for the 3 modes significantly differed (P ventilator was not dependent on nebulization mode during simulated pediatric and adult conventional mechanical ventilation. Use of expiratory intermittent mode and continuous nebulization should be considered to reduce treatment time. Copyright © 2014 by Daedalus Enterprises.

  9. Highly efficient high temperature electrolysis

    DEFF Research Database (Denmark)

    Hauch, Anne; Ebbesen, Sune; Jensen, Søren Højgaard

    2008-01-01

    High temperature electrolysis of water and steam may provide an efficient, cost effective and environmentally friendly production of H-2 Using electricity produced from sustainable, non-fossil energy sources. To achieve cost competitive electrolysis cells that are both high performing i.e. minimum...... internal resistance of the cell, and long-term stable, it is critical to develop electrode materials that are optimal for steam electrolysis. In this article electrolysis cells for electrolysis of water or steam at temperatures above 200 degrees C for production of H-2 are reviewed. High temperature...... electrolysis is favourable from a thermodynamic point of view, because a part of the required energy can be supplied as thermal heat, and the activation barrier is lowered increasing the H-2 production rate. Only two types of cells operating at high temperature (above 200 degrees C) have been described...

  10. Nebulized magnesium sulphate versus nebulized salbutamol in acute bronchial asthma

    Directory of Open Access Journals (Sweden)

    E.A. Abdelnabi

    2012-07-01

    Conclusion: The use of MgSO4 by nebulization in patients with acute asthma attacks results in improvement of clinical condition, increase in peak expiratory flow rate (PEFR, reduction in heart rate (HR, reduction in respiratory rate (RR and improvement in oxygen saturation (SO2. The increase in PEFR (bronchodilatory effect was significantly less than that achieved in patients receiving the usual treatment with Short acting β2 agonists, e.g. salbutamol, when either agents were used alone.

  11. HIGH EFFICIENCY TURBINE

    OpenAIRE

    VARMA, VIJAYA KRUSHNA

    2012-01-01

    Varma designed ultra modern and high efficiency turbines which can use gas, steam or fuels as feed to produce electricity or mechanical work for wide range of usages and applications in industries or at work sites. Varma turbine engines can be used in all types of vehicles. These turbines can also be used in aircraft, ships, battle tanks, dredgers, mining equipment, earth moving machines etc, Salient features of Varma Turbines. 1. Varma turbines are simple in design, easy to manufac...

  12. High-efficiency CARM

    Energy Technology Data Exchange (ETDEWEB)

    Bratman, V.L.; Kol`chugin, B.D.; Samsonov, S.V.; Volkov, A.B. [Institute of Applied Physics, Nizhny Novgorod (Russian Federation)

    1995-12-31

    The Cyclotron Autoresonance Maser (CARM) is a well-known variety of FEMs. Unlike the ubitron in which electrons move in a periodical undulator field, in the CARM the particles move along helical trajectories in a uniform magnetic field. Since it is much simpler to generate strong homogeneous magnetic fields than periodical ones for a relatively low electron energy ({Brit_pounds}{le}1-3 MeV) the period of particles` trajectories in the CARM can be sufficiently smaller than in the undulator in which, moreover, the field decreases rapidly in the transverse direction. In spite of this evident advantage, the number of papers on CARM is an order less than on ubitron, which is apparently caused by the low (not more than 10 %) CARM efficiency in experiments. At the same time, ubitrons operating in two rather complicated regimes-trapping and adiabatic deceleration of particles and combined undulator and reversed guiding fields - yielded efficiencies of 34 % and 27 %, respectively. The aim of this work is to demonstrate that high efficiency can be reached even for a simplest version of the CARM. In order to reduce sensitivity to an axial velocity spread of particles, a short interaction length where electrons underwent only 4-5 cyclotron oscillations was used in this work. Like experiments, a narrow anode outlet of a field-emission electron gun cut out the {open_quotes}most rectilinear{close_quotes} near-axis part of the electron beam. Additionally, magnetic field of a small correcting coil compensated spurious electron oscillations pumped by the anode aperture. A kicker in the form of a sloping to the axis frame with current provided a control value of rotary velocity at a small additional velocity spread. A simple cavity consisting of a cylindrical waveguide section restricted by a cut-off waveguide on the cathode side and by a Bragg reflector on the collector side was used as the CARM-oscillator microwave system.

  13. Optimization of nebulized delivery of linezolid, daptomycin, and vancomycin aerosol

    Directory of Open Access Journals (Sweden)

    Zarogoulidis P

    2014-08-01

    Full Text Available Paul Zarogoulidis,1 Ioannis Kioumis,1 Sofia Lampaki,1 John Organtzis,1 Konstantinos Porpodis,1 Dionysios Spyratos,1 Georgia Pitsiou,1 Dimitris Petridis,2 Athanasia Pataka,1 Haidong Huang,3 Qiang Li,3 Lonny Yarmus,4 Wolfgang Hohenforst-Schmidt,5 Nikolaos Pezirkianidis,6 Konstantinos Zarogoulidis1 1Pulmonary Department-Oncology Unit, “G Papanikolaou” General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece; 2Department of Food Technology, School of Food Technology and Nutrition, Alexander Technological Educational Institute, Thessaloniki, Greece; 3Department of Respiratory Diseases, Shanghai Hospital, II Military University Hospital, Shanghai, People’s Republic of China; 4Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA; 5II Medical Department, “Coburg” Regional Hospital, Coburg, Germany; 6Surgery Department, Private Cabinet, Serres, Greece Background: At this time, several antibiotics have been investigated as possibilities for aerosol administration, but local therapy has been found to be more efficient in several diseases. Materials and methods: The drugs linezolid (Zyvox, vancomycin (Voncon, and daptomycin (Cubicin were tested with three jet nebulizers with seven different residual cups and different loadings. Moreover, three ultrasound nebulizers were again tested with these drugs, with different loadings and mouthpiece attachments. Results: When drugs are combined with particular cup designs, they significantly lower the droplet size to 1.60 and 1.80 µm, which represents the best combination of Zyvox and cup G and Cubicin and cup D, respectively. Cup design D is suggested as the most effective cup for lowering the droplet size (2.30 µm when considering a higher loading level (8 mL. Conclusion: Modification of current drugs from dry powder to solution is possible, and the residual cup design plays the most important role in droplet size production when the

  14. High efficiency positron moderation

    International Nuclear Information System (INIS)

    Taqqu, D.

    1990-01-01

    A new positron moderation scheme is proposed. It makes use of electric and magnetic fields to confine the β + emitted by a radioactive source forcing them to slow down within a thin foil. A specific arrangement is described where an intermediary slowed-down beam of energy below 10 keV is produced. By directing it towards a standard moderator optimal conversion into slow positrons is achieved. This scheme is best applied to short lived β + emitters for which a 25% moderation efficiency can be reached. Within the state of the art technology a slow positron source intensity exceeding 2 x 10 10 e + /sec is achievable. (orig.)

  15. Toward modern inhalational bacteriophage therapy: nebulization of bacteriophages of Burkholderia cepacia complex.

    Science.gov (United States)

    Golshahi, Laleh; Seed, Kimberley D; Dennis, Jonathan J; Finlay, Warren H

    2008-12-01

    Antibiotic-resistant bacterial infections have renewed interest in finding substitute methods of treatment. The purpose of the present in vitro study was to investigate the possibility of respiratory delivery of a Burkholderia cepacia complex (BCC) bacteriophage by nebulized aerosol administration. Bacteriophages in isotonic saline were aerosolized with Pari LC star and eFlow nebulizers, at titers with mean value (standard deviation) of 2.15 x 10(8) (1.63 x 10(8)) plaque-forming unit (PFU)/mL in 2.5-mL nebulizer fills. The breathing pattern of an adult was simulated using a pulmonary waveform generator. During breath simulation, the size distributions of the nebulized aerosol were measured using phase doppler anemometry (PDA). Efficiency of nebulizer delivery was subsequently determined by collection of aerosol on low resistance filters and measurement of bacteriophage titers. These filter titers were used as input data to a mathematical lung deposition model to predict regional deposition of bacteriophages in the lung and initial bacteriophage titers in the liquid surface layer of each conducting airway generation. The results suggest that BCC bacteriophages can be nebulized successfully within a reasonable delivery time and predicted titers in the lung indicate that this method may hold potential for treatment of bacterial lung infections common among cystic fibrosis patients.

  16. Formulation, Characterization and Pulmonary Deposition of Nebulized Celecoxib Encapsulated Nanostructured Lipid Carriers

    Science.gov (United States)

    Patlolla, Ram R.; Chougule, Mahavir; Patel, Apurva R.; Jackson, Tanise; Tata, Prasad NV; Singh, Mandip

    2010-01-01

    The aim of the current study was to encapsulate celecoxib (Cxb) in the Nanostructured Lipid Carrier (Cxb-NLC) nanoparticles and evaluate the lung disposition of nanoparticles following nebulization in Balb/c mice. Cxb-NLC nanoparticles were prepared with Cxb, Compritol, Miglyol and sodium taurocholate using high-pressure homogenization. Cxb-NLC nanoparticles were characterized for physical and aerosol properties. In-vitro cytotoxicity studies were performed with A549 cells. The lung deposition and pharmacokinetic parameters of Cxb-NLC and Cxb solution (Cxb-Soln) formulations were determined using Inexpose™ system and Pari LC star jet nebulizer. The particle size and entrapment efficiency of Cxb-NLC formulation were 217 ± 20 nm and > 90%, respectively. The Cxb-NLC released the drug in controlled fashion, and in vitro aersolization of Cxb-NLC formulation showed FPF of 75.6 ± 4.6 %, MMAD of 1.6 ±0.13 μm and GSD of 1.2 ± 0.21. Cxb-NLC showed dose and time dependent cytotoxicity against A549 cells. Nebulization of Cxb-NLC demonstrated 4 fold higher AUCt/D in lung tissues compared to Cxb-Soln. The systemic clearance of Cxb-NLC was slower (0.93 L/h) compared to Cxb-Soln (20.03 L/h). Cxb encapsulated NLC were found to be stable and aerodynamic properties were within the respirable limits. Aerosolization of Cxb-NLC improved the Cxb pulmonary bioavailability compared to solution formulation which will potentially lead to better patient compliance with minimal dosing intervals. PMID:20153385

  17. Peritoneal Nebulization of Ropivacaine during Laparoscopic Cholecystectomy: Dose Finding and Pharmacokinetic Study

    Directory of Open Access Journals (Sweden)

    Massimo Allegri

    2017-01-01

    Full Text Available Background. Intraperitoneal nebulization of ropivacaine reduces postoperative pain and morphine consumption after laparoscopic surgery. The aim of this multicenter double-blind randomized controlled trial was to assess the efficacy of different doses and dose-related absorption of ropivacaine when nebulized in the peritoneal cavity during laparoscopic cholecystectomy. Methods. Patients were randomized to receive 50, 100, or 150 mg of ropivacaine 1% by peritoneal nebulization through a nebulizer. Morphine consumption, pain intensity in the abdomen, wound and shoulder, time to unassisted ambulation, discharge time, and adverse effects were collected during the first 48 hours after surgery. The pharmacokinetics of ropivacaine was evaluated using high performance liquid chromatography. Results. Nebulization of 50 mg of ropivacaine had the same effect of 100 or 150 mg in terms of postoperative morphine consumption, shoulder pain, postoperative nausea and vomiting, activity resumption, and hospital discharge timing (>0.05. Plasma concentrations did not reach toxic levels in any patient, and no significant differences were observed between groups (P>0.05. Conclusions. There is no enhancement in analgesic efficacy with higher doses of nebulized ropivacaine during laparoscopic cholecystectomy. When administered with a microvibration-based aerosol humidification system, the pharmacokinetics of ropivacaine is constant and maintains an adequate safety profile for each dosage tested.

  18. New highly efficient piezoceramic materials

    International Nuclear Information System (INIS)

    Dantsiger, A.Ya.; Razumovskaya, O.N.; Reznichenko, L.A.; Grineva, L.D.; Devlikanova, R.U.; Dudkina, S.I.; Gavrilyachenko, S.V.; Dergunova, N.V.

    1993-01-01

    New high efficient piezoceramic materials with various combination of parameters inclusing high Curie point for high-temperature transducers using in atomic power engineering are worked. They can be used in systems for heated matters nondestructive testing, controllers for varied industrial power plants and other high-temperature equipment

  19. Nebulized hypertonic saline decreases IL-8 in sputum of patients with cystic fibrosis.

    LENUS (Irish Health Repository)

    Reeves, Emer P

    2012-02-01

    RATIONALE: Inflammation within the cystic fibrosis (CF) lung is mediated by inflammatory chemokines, such as IL-8. IL-8 is protected from proteolytic degradation in the airways by binding to glycosaminoglycans, while remaining active. Evidence that increased hypertonicity of airway secretions induced by hypertonic saline treatment alters levels of IL-8 is lacking. OBJECTIVES: To investigate the antiinflammatory effect of hypertonic saline (HTS) treatment within the CF lung by focusing on IL-8. METHODS: Degradation of IL-8 in CF lung secretions after treatment with glycosaminoglycan lyases and HTS was analyzed by Western blot analysis and ELISA. The ex vivo chemotactic activity of purified neutrophils in response to CF airway secretions was evaluated post nebulization of HTS (7% saline). MEASUREMENTS AND MAIN RESULTS: In vivo CF bronchoalveolar lavage fluid (BALF) IL-8 levels were significantly higher than the control group (P < 0.05). Digesting glycosaminoglycans in CF BALF displaced IL-8 from glycosaminoglycan matrices, rendering the chemokine susceptible to proteolytic cleavage. High sodium concentrations also liberate IL-8 in CF BALF in vitro, and in vivo in CF sputum from patients receiving aerosolized HTS, resulting in degradation of IL-8 and decreased neutrophil chemotactic efficiency. CONCLUSIONS: Glycosaminoglycans possess the ability to influence the chemokine profile of the CF lung by binding and stabilizing IL-8, which promotes neutrophil chemotaxis and activation. Nebulized hypertonic saline treatment disrupts the interaction between glycosaminoglycans and IL-8, rendering IL-8 susceptible to proteolytic degradation with subsequent decrease in neutrophil chemotaxis, thereby facilitating resolution of inflammation.

  20. Protein stability in pulmonary drug delivery via nebulization.

    Science.gov (United States)

    Hertel, Sebastian P; Winter, Gerhard; Friess, Wolfgang

    2015-10-01

    Protein inhalation is a delivery route which offers high potential for direct local lung application of proteins. Liquid formulations are usually available in early stages of biopharmaceutical development and nebulizers are the device of choice for atomization avoiding additional process steps like drying and enabling fast progression to clinical trials. While some proteins were proven to remain stable throughout aerosolization e.g. DNase, many biopharmaceuticals are more susceptible towards the stresses encountered during nebulization. The main reason for protein instability is unfolding and aggregation at the air-liquid interface, a problem which is of particular challenge in the case of ultrasound and jet nebulizers due to recirculation of much of the generated droplets. Surfactants are an important formulation component to protect the sensitive biomolecules. A second important challenge is warming of ultrasound and vibrating mesh devices, which can be overcome by overfilling, precooled solutions or cooling of the reservoir. Ultimately, formulation development has to go hand in hand with device evaluation. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. 21 CFR 868.5640 - Medicinal nonventilatory nebulizer (atomizer).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medicinal nonventilatory nebulizer (atomizer). 868... SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5640 Medicinal nonventilatory nebulizer (atomizer). (a) Identification. A medicinal nonventilatory nebulizer (atomizer) is a...

  2. Key considerations on nebulization of antimicrobial agents to mechanically ventilated patients.

    Science.gov (United States)

    Rello, J; Rouby, J J; Sole-Lleonart, C; Chastre, J; Blot, S; Luyt, C E; Riera, J; Vos, M C; Monsel, A; Dhanani, J; Roberts, J A

    2017-09-01

    Nebulized antibiotics have an established role in patients with cystic fibrosis or bronchiectasis. Their potential benefit to treat respiratory infections in mechanically ventilated patients is receiving increasing interest. In this consensus statement of the European Society of Clinical Microbiology and Infectious Diseases, the body of evidence of the therapeutic utility of aerosolized antibiotics in mechanically ventilated patients was reviewed and resulted in the following recommendations: Vibrating-mesh nebulizers should be preferred to jet or ultrasonic nebulizers. To decrease turbulence and limit circuit and tracheobronchial deposition, we recommend: (a) the use of specifically designed respiratory circuits avoiding sharp angles and characterized by smooth inner surfaces, (b) the use of specific ventilator settings during nebulization including use of a volume controlled mode using constant inspiratory flow, tidal volume 8 mL/kg, respiratory frequency 12 to 15 bpm, inspiratory:expiratory ratio 50%, inspiratory pause 20% and positive end-expiratory pressure 5 to 10 cm H 2 O and (c) the administration of a short-acting sedative agent if coordination between the patient and the ventilator is not obtained, to avoid patient's flow triggering and episodes of peak decelerating inspiratory flow. A filter should be inserted on the expiratory limb to protect the ventilator flow device and changed between each nebulization to avoid expiratory flow obstruction. A heat and moisture exchanger and/or conventional heated humidifier should be stopped during the nebulization period to avoid a massive loss of aerosolized particles through trapping and condensation. If these technical requirements are not followed, there is a high risk of treatment failure and adverse events in mechanically ventilated patients receiving nebulized antibiotics for pneumonia. Copyright © 2017 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights

  3. Impact of constant and breath-synchronized nebulization on inhaled mass of nebulized budesonide in infants and children

    DEFF Research Database (Denmark)

    Nikander, K; Bisgaard, H

    1999-01-01

    The aim of the present study was to compare the output of a breath-synchronized jet nebulizer to a conventional constant output nebulizer over a fixed period of time in terms of inhaled mass of budesonide, i.e., the amount of budesonide deposited on a filter interposed between the nebulizer and t...... resulted in reduced waste of drug during expiration....

  4. The function profile of compressed-air and ultrasonic nebulizers.

    Science.gov (United States)

    Wu, Hsin-Lin; Lin, Yung-Zen; Wu, Wei-Fong; Huang, Fu-Yuan

    2003-01-01

    In order to study the detailed function of two kinds of nebulizers commonly used in clinical asthma treatment, compressed-air and ultrasonic, this study was conducted. At the beginning, various flow rates were adjusted, paired with different volumes of solutions in the container. The changes of temperature, pH, and osmolality during the course of nebulization were examined. Normal saline, terbutaline, and fenoterol solutions were used as the nebulized solutions. The study was performed in an environment in ambient temperature around 20 degrees C and relative humidity around 70%. The results showed a minimal 6 L/min flow rate was required to nebulize the solution when using the compressed-air nebulizer. The dead volume was about 0.8 ml for compressed-air and 8.5 ml for the ultrasonic nebulizer. When using the compressed-air nebulizer, the temperature, both in the solution and at the mouthpiece site, dropped gradually. On the contrary, the temperatures at both sites increased a little bit when using the ultrasonic nebulizer. The pH values of pure terbutaline and fenoterol nebulized solutions were acidic (3.58 and 3.00 respectively). The osmolality of terbutaline and fenoterol nebulized solutions were isotonic. The osmolality increased gradually during the course of nebulization, to a greater extent in the compressed-air nebulizer. In conclusion, both types of nebulizers have their special features. The ultrasonic nebulizer displays less extent in change of temperature and osmolality during nebulization and is expected to be a better device in treating asthmatic patients in terms of lesser effect on cooling and changing the osmolality of airway mucosa.

  5. Unconventional, High-Efficiency Propulsors

    DEFF Research Database (Denmark)

    Andersen, Poul

    1996-01-01

    The development of ship propellers has generally been characterized by search for propellers with as high efficiency as possible and at the same time low noise and vibration levels and little or no cavitation. This search has lead to unconventional propulsors, like vane-wheel propulsors, contra-r...

  6. Pharmacokinetics of nebulized and subcutaneously implanted terbinafine in cottonmouths (Agkistrodon piscivorus).

    Science.gov (United States)

    Kane, L P; Allender, M C; Archer, G; Leister, K; Rzadkowska, M; Boers, K; Souza, M; Cox, S

    2017-10-01

    Ophidiomyces ophiodiicola, the causative agent of snake fungal disease, is proposed as a serious threat to the conservation of several snake populations. The objective of this study was to determine the pharmacokinetic parameters of terbinafine administered through nebulization and a sustained subcutaneous implant as potential treatments of Ophidiomyces in reptiles. Seven adult cottonmouths (Agkistrodon piscivorus) were used in single-dose trials. Each snake was nebulized with terbinafine (2 mg/ml) for 30 min and had blood collected before nebulization and up to 12 hr after nebulization. Following a 5-month washout, the same snakes were administered a subcutaneous implant containing 24.5 mg terbinafine; blood was collected at baseline, 1 day postimplant placement, and then once weekly for 9 weeks. Plasma for both studies was analyzed by high-performance liquid chromatography. The mean plasma concentrations of nebulized terbinafine peaked between 0.5 and 4 hr. The subcutaneously implanted terbinafine reached therapeutic concentrations on day 1 and maintained therapeutic for over 6 weeks. These methods and doses are recommended as potential treatment options for snake fungal disease in reptiles. © 2017 John Wiley & Sons Ltd.

  7. Overview of Ecological Agriculture with High Efficiency

    OpenAIRE

    Huang, Guo-qin; Zhao, Qi-guo; Gong, Shao-lin; Shi, Qing-hua

    2012-01-01

    From the presentation, connotation, characteristics, principles, pattern, and technologies of ecological agriculture with high efficiency, we conduct comprehensive and systematic analysis and discussion of the theoretical and practical progress of ecological agriculture with high efficiency. (i) Ecological agriculture with high efficiency was first advanced in China in 1991. (ii) Ecological agriculture with high efficiency highlights "high efficiency", "ecology", and "combination". (iii) Ecol...

  8. The efficacy of nebulized magnesium sulfate alone and in combination with salbutamol in acute asthma

    Directory of Open Access Journals (Sweden)

    Sarhan HA

    2016-06-01

    Full Text Available Hatem A Sarhan,1 Omar H EL-Garhy,1 Mohamed A Ali,2 Nouran A Youssef1 1Department of Pharmaceutics, Faculty of Pharmacy, 2Department of Chest Diseases, Faculty of Medicine, Minia University, Minia, Egypt Objective: Evaluation of the efficacy of nebulized magnesium sulfate (MgSO4 alone and in combination with salbutamol in acute asthma.Methods: A double-blind randomized controlled study was conducted in Chest and Emergency Departments. Thirty patients of acute attack of bronchial asthma were randomized into three groups: MgSO4 nebulization (group A, salbutamol nebulization (group B, and their combination (group C. All patients were monitored before and after nebulization (each 20 minutes for peak expiratory flow rate (PEFR, respiratory rate (RR, heart rate (HR, blood pressure, pulsus paradoxus, oxygen saturation, clinical examination, and Fischl index.Results: A highly significant improvement in PEFR, PEFR percentage, and Fischl index and significant decrease in RR and HR was observed in all groups. A similar improvement in PEFR was observed in group A and group B (P=0.389. The difference in peak expiratory flow (PEF improvement was insignificant between group B and group C (P=0.101, while there was a significant differ­ence between group A and group C (P=0.014 in favor of group C.Conclusion: Nebulized MgSO4 alone or combined with salbutamol has a clinically significant bronchodilator effect in acute asthma and leads to clinical improvement, increase in PEFR, reduction in HR, and reduction in RR. The response to nebulized MgSO4 alone (PEFR improvement 54±35.6 L/min, P=0.001 is comparable (P=0.389 to that of nebulized salbutamol (PEFR improvement 67.0±41.9 L/min, P=0.001 and is significantly less than (P=0.014 that of nebulized combination (PEFR improvement 92.0±26.9 L/min, P=0.000. Keywords: nebulized magnesium sulfate, salbutamol, acute asthma, peak expiratory flow rate, Fischl index

  9. High-power, high-efficiency FELs

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1989-04-01

    High power, high efficiency FELs require tapering, as the particles loose energy, so as to maintain resonance between the electromagnetic wave and the particles. They also require focusing of the particles (usually done with curved pole faces) and focusing of the electromagnetic wave (i.e. optical guiding). In addition, one must avoid transverse beam instabilities (primarily resistive wall) and longitudinal instabilities (i.e sidebands). 18 refs., 7 figs., 3 tabs

  10. High Efficiency Room Air Conditioner

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, Pradeep [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    This project was undertaken as a CRADA project between UT-Battelle and Geberal Electric Company and was funded by Department of Energy to design and develop of a high efficiency room air conditioner. A number of novel elements were investigated to improve the energy efficiency of a state-of-the-art WAC with base capacity of 10,000 BTU/h. One of the major modifications was made by downgrading its capacity from 10,000 BTU/hr to 8,000 BTU/hr by replacing the original compressor with a lower capacity (8,000 BTU/hr) but high efficiency compressor having an EER of 9.7 as compared with 9.3 of the original compressor. However, all heat exchangers from the original unit were retained to provide higher EER. The other subsequent major modifications included- (i) the AC fan motor was replaced by a brushless high efficiency ECM motor along with its fan housing, (ii) the capillary tube was replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and (iii) the unit was tested with a drop-in environmentally friendly binary mixture of R32 (90% molar concentration)/R125 (10% molar concentration). The WAC was tested in the environmental chambers at ORNL as per the design rating conditions of AHAM/ASHRAE (Outdoor- 95F and 40%RH, Indoor- 80F, 51.5%RH). All these modifications resulted in enhancing the EER of the WAC by up to 25%.

  11. Feedback mechanism for smart nozzles and nebulizers

    Science.gov (United States)

    Montaser, Akbar [Potomac, MD; Jorabchi, Kaveh [Arlington, VA; Kahen, Kaveh [Kleinburg, CA

    2009-01-27

    Nozzles and nebulizers able to produce aerosol with optimum and reproducible quality based on feedback information obtained using laser imaging techniques. Two laser-based imaging techniques based on particle image velocimetry (PTV) and optical patternation map and contrast size and velocity distributions for indirect and direct pneumatic nebulizations in plasma spectrometry. Two pulses from thin laser sheet with known time difference illuminate droplets flow field. Charge coupled device (CCL)) captures scattering of laser light from droplets, providing two instantaneous particle images. Pointwise cross-correlation of corresponding images yields two-dimensional velocity map of aerosol velocity field. For droplet size distribution studies, solution is doped with fluorescent dye and both laser induced florescence (LIF) and Mie scattering images are captured simultaneously by two CCDs with the same field of view. Ratio of LIF/Mie images provides relative droplet size information, then scaled by point calibration method via phase Doppler particle analyzer.

  12. High-efficient electron linacs

    International Nuclear Information System (INIS)

    Glavatskikh, K.V.; Zverev, B.V.; Kalyuzhnyj, V.E.; Morozov, V.L.; Nikolaev, S.V.; Plotnikov, S.N.; Sobenin, N.P.; Vovna, V.A.; Gryzlov, A.V.

    1993-01-01

    Comparison analysis of ELA on running and still waves designed for 10 MeV energy and with high efficiency is carried out. It is shown, that from the point of view of dimensions ELA with a still wave or that of a combined type is more preferable. From the point of view of impedance characteristics in any variant with application of magnetron as HF-generator it is necessary to implement special requirements to the accelerating structure if no ferrite isolation is provided in HF-channel. 3 refs., 4 figs., 1 tab

  13. Role of nebulized glycopyrrolate in the treatment of chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Santus P

    2017-11-01

    Full Text Available Pierachille Santus,1 Dejan Radovanovic,1 Andrea Cristiano,1 Vincenzo Valenti,2 Maurizio Rizzi1 1Department of Biomedical and Clinical Sciences (DIBIC, University of Milan, Division of Respiratory Diseases, “L. Sacco” Hospital, ASST Fatebenefratelli Sacco, Milan, Italy; 2Department of Health Bioscience, University of Milan – Respiratory Unit, Policlinico di San Donato, IRCCS – San Donato Milanese, Milan, Italy Abstract: In the upcoming years, the proportion of elderly patients with chronic obstructive pulmonary disease (COPD will increase, according to the progressively aging population and the increased efficacy of the pharmacological treatments, especially considering the management of chronic comorbidities. The issue to prescribe an appropriate inhalation therapy to COPD patients with significant handling or coordination difficulties represents a common clinical experience; in the latter case, the choice of an inadequate inhalation device may jeopardize the adherence to the treatment and eventually lead to its ineffectiveness. Treatment options that do not require particular timing for coordination between activation and/or inhalation or require high flow thresholds to be activated should represent the best treatment option for these patients. Nebulized bronchodilators, usually used only in acute conditions such as COPD exacerbations, could fulfill this gap, enabling an adequate drug administration during tidal breathing and without the need for patients’ cooperation. However, so far, only short-acting muscarinic antagonists have been available for nebulization. Recently, a nebulized formulation of the inhaled long-acting muscarinic antagonist glycopyrrolate, delivered by means of a novel proprietary vibrating mesh nebulizer closed system (SUN-101/eFlow®, has progressed to Phase III trials and is currently in late-stage development as an option for maintenance treatment in COPD. The present critical review describes the current

  14. High-efficiency photovoltaic cells

    Science.gov (United States)

    Yang, H.T.; Zehr, S.W.

    1982-06-21

    High efficiency solar converters comprised of a two cell, non-lattice matched, monolithic stacked semiconductor configuration using optimum pairs of cells having bandgaps in the range 1.6 to 1.7 eV and 0.95 to 1.1 eV, and a method of fabrication thereof, are disclosed. The high band gap subcells are fabricated using metal organic chemical vapor deposition (MOCVD), liquid phase epitaxy (LPE) or molecular beam epitaxy (MBE) to produce the required AlGaAs layers of optimized composition, thickness and doping to produce high performance, heteroface homojunction devices. The low bandgap subcells are similarly fabricated from AlGa(As)Sb compositions by LPE, MBE or MOCVD. These subcells are then coupled to form a monolithic structure by an appropriate bonding technique which also forms the required transparent intercell ohmic contact (IOC) between the two subcells. Improved ohmic contacts to the high bandgap semiconductor structure can be formed by vacuum evaporating to suitable metal or semiconductor materials which react during laser annealing to form a low bandgap semiconductor which provides a low contact resistance structure.

  15. FI/SI on-line solvent extraction/back extraction preconcentration coupled to direct injection nebulization inductively coupled plasma mass spectrometry for determination of copper and lead

    DEFF Research Database (Denmark)

    Wang, Jianhua; Hansen, Elo Harald

    2002-01-01

    An automated sequential injection on-line preconcentration procedure for determination of trace levels of copper and lead via solvent extraction/back extraction coupled to ICP-MS is described. In citrate buffer of pH 3, neutral complexes between the analytes and the chelating reagent, ammonium...... loop, the content of which is subsequently introduced into the ICP-MS, via a direct injection high efficiency nebulizer (DIHEN), for quantification. Enrichment factors of 29.6 (Cu) and 23.3 (Pb), detection limits of 17 ng/l (Cu) and 11 ng/l (Pb), along with a sampling frequency of 13 s/h were obtained...

  16. Towards highly efficient water photoelectrolysis

    Science.gov (United States)

    Elavambedu Prakasam, Haripriya

    ethylene glycol resulted in remarkable growth characteristics of titania nanotube arrays, hexagonal closed packed up to 1 mm in length, with tube aspect ratios of approximately 10,000. For the first time, complete anodization of the starting titanium foil has been demonstrated resulting in back to back nanotube array membranes ranging from 360 mum--1 mm in length. The nanotubes exhibited growth rates of up to 15 mum/hr. A detailed study on the factors affecting the growth rate and nanotube dimensions is presented. It is suggested that faster high field ionic conduction through a thinner barrier layer is responsible for the higher growth rates observed in electrolytes containing ethylene glycol. Methods to fabricate free standing, titania nanotube array membranes ranging in thickness from 50 microm--1000 mum has also been an outcome of this dissertation. In an effort to combine the charge transport properties of titania with the light absorption properties of iron (III) oxide, films comprised of vertically oriented Ti-Fe-O nanotube arrays on FTO coated glass substrates have been successfully synthesized in ethylene glycol electrolytes. Depending upon the Fe content the bandgap of the resulting films varied from about 3.26 to 2.17 eV. The Ti-Fe oxide nanotube array films demonstrated a photocurrent of 2 mA/cm2 under global AM 1.5 illumination with a 1.2% (two-electrode) photoconversion efficiency, demonstrating a sustained, time-energy normalized hydrogen evolution rate by water splitting of 7.1 mL/W·hr in a 1 M KOH solution with a platinum counter electrode under an applied bias of 0.7 V. The Ti-Fe-O material architecture demonstrates properties useful for hydrogen generation by water photoelectrolysis and, more importantly, this dissertation demonstrates that the general nanotube-array synthesis technique can be extended to other ternary oxide compositions of interest for water photoelectrolysis.

  17. Droplet size prediction in ultrasonic nebulization for non-oxide ceramic powder synthesis.

    Science.gov (United States)

    Muñoz, Mariana; Goutier, Simon; Foucaud, Sylvie; Mariaux, Gilles; Poirier, Thierry

    2018-03-01

    Spray pyrolysis process has been used for the synthesis of non-oxide ceramic powders from liquid precursors in the Si/C/N system. Particles with a high thermal stability and with variable composition and size distribution have been obtained. In this process, the mechanisms involved in precursor decomposition and gas phase recombination of species are still unknown. The final aim of this work consists in improving the whole process comprehension by an experimental/modelling approach that helps to connect the synthesized particles characteristics to the precursor properties and process operating parameters. It includes the following steps: aerosol formation by a piezoelectric nebulizer, its transport and the chemical-physical phenomena involved in the reaction processes. This paper focuses on the aerosol characterization to understand the relationship between the liquid precursor properties and the liquid droplet diameter distribution. Liquids with properties close to the precursor of interest (hexamethyldisilazane) have been used. Experiments have been performed using a shadowgraphy technique to determine the drop size distribution of the aerosol. For all operating parameters of the nebulizer device and liquids used, bimodal droplet size distributions have been obtained. Correlations proposed in the literature for the droplet size prediction by ultrasonic nebulization were used and adapted to the specific nebulizer device used in this study, showing rather good agreement with experimental values. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Effects of Nebulizer Position, Gas Flow, and CPAP on Aerosol Bronchodilator Delivery: An In Vitro Study.

    Science.gov (United States)

    Ball, Lorenzo; Sutherasan, Yuda; Caratto, Valentina; Sanguineti, Elisa; Marsili, Maria; Raimondo, Pasquale; Ferretti, Maurizio; Kacmarek, Robert M; Pelosi, Paolo

    2016-03-01

    The aim of this study was to investigate the effects of different delivery circuit configurations, nebulizer positions, CPAP levels, and gas flow on the amount of aerosol bronchodilator delivered during simulated spontaneous breathing in an in vitro model. A pneumatic lung simulator was connected to 5 different circuits for aerosol delivery, 2 delivering CPAP through a high-flow generator tested at 30, 60, and 90 L/min supplementary flow and 5, 10, and 15 cm H2O CPAP and 3 with no CPAP: a T-piece configuration with one extremity closed with a cap, a T-piece configuration without cap and nebulizer positioned proximally, and a T-piece configuration without cap and nebulizer positioned distally. Albuterol was collected with a filter, and the percentage amount delivered was measured by infrared spectrophotometry. Configurations with continuous high-flow CPAP delivered higher percentage amounts of albuterol compared with the configurations without CPAP (9.1 ± 6.0% vs 6.2 ± 2.8%, P = .03). Among configurations without CPAP, the best performance was obtained with a T-piece with one extremity closed with a cap. In CPAP configurations, the highest delivery (13.8 ± 4.4%) was obtained with the nebulizer placed proximal to the lung simulator, independent of flow. CPAP at 15 cm H2O resulted in the highest albuterol delivery (P = .02). Based on our in vitro study, without CPAP, a T-piece with a cap at one extremity maximizes albuterol delivery. During high-flow CPAP, the nebulizer should always be placed proximal to the patient, after the T-piece, using the highest CPAP clinically indicated. Copyright © 2016 by Daedalus Enterprises.

  19. HIGH-EFFICIENCY INFRARED RECEIVER

    Directory of Open Access Journals (Sweden)

    A. K. Esman

    2016-01-01

    Full Text Available Recent research and development show promising use of high-performance solid-state receivers of the electromagnetic radiation. These receivers are based on the low-barrier Schottky diodes. The approach to the design of the receivers on the basis of delta-doped low-barrier Schottky diodes with beam leads without bias is especially actively developing because for uncooled receivers of the microwave radiation these diodes have virtually no competition. The purpose of this work is to improve the main parameters and characteristics that determine the practical relevance of the receivers of mid-infrared electromagnetic radiation at the operating room temperature by modifying the electrodes configuration of the diode and optimizing the distance between them. Proposed original design solution of the integrated receiver of mid-infrared radiation on the basis of the low-barrier Schottky diodes with beam leads allows to effectively adjust its main parameters and characteristics. Simulation of the electromagnetic characteristics of the proposed receiver by using the software package HFSS with the basic algorithm of a finite element method which implemented to calculate the behavior of electromagnetic fields on an arbitrary geometry with a predetermined material properties have shown that when the inner parts of the electrodes of the low-barrier Schottky diode is performed in the concentric elliptical convex-concave shape, it can be reduce the reflection losses to -57.75 dB and the standing wave ratio to 1.003 while increasing the directivity up to 23 at a wavelength of 6.09 μm. At this time, the rounded radii of the inner parts of the anode and cathode electrodes are equal 212 nm and 318 nm respectively and the gap setting between them is 106 nm. These parameters will improve the efficiency of the developed infrared optical-promising and electronic equipment for various purposes intended for work in the mid-infrared wavelength range. 

  20. High-efficiency wind turbine

    Science.gov (United States)

    Hein, L. A.; Myers, W. N.

    1980-01-01

    Vertical axis wind turbine incorporates several unique features to extract more energy from wind increasing efficiency 20% over conventional propeller driven units. System also features devices that utilize solar energy or chimney effluents during periods of no wind.

  1. High efficiency, long life terrestrial solar panel

    Science.gov (United States)

    Chao, T.; Khemthong, S.; Ling, R.; Olah, S.

    1977-01-01

    The design of a high efficiency, long life terrestrial module was completed. It utilized 256 rectangular, high efficiency solar cells to achieve high packing density and electrical output. Tooling for the fabrication of solar cells was in house and evaluation of the cell performance was begun. Based on the power output analysis, the goal of a 13% efficiency module was achievable.

  2. High efficiency turbine blade coatings

    Energy Technology Data Exchange (ETDEWEB)

    Youchison, Dennis L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gallis, Michail A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-06-01

    The development of advanced thermal barrier coatings (TBCs) of yttria stabilized zirconia (YSZ) that exhibit lower thermal conductivity through better control of electron beam - physical vapor deposition (EB-PVD) processing is of prime interest to both the aerospace and power industries. This report summarizes the work performed under a two-year Lab-Directed Research and Development (LDRD) project (38664) to produce lower thermal conductivity, graded-layer thermal barrier coatings for turbine blades in an effort to increase the efficiency of high temperature gas turbines. This project was sponsored by the Nuclear Fuel Cycle Investment Area. Therefore, particular importance was given to the processing of the large blades required for industrial gas turbines proposed for use in the Brayton cycle of nuclear plants powered by high temperature gas-cooled reactors (HTGRs). During this modest (~1 full-time equivalent (FTE)) project, the processing technology was developed to create graded TBCs by coupling ion beam-assisted deposition (IBAD) with substrate pivoting in the alumina-YSZ system. The Electron Beam - 1200 kW (EB-1200) PVD system was used to deposit a variety of TBC coatings with micron layered microstructures and reduced thermal conductivity below 1.5 W/m.K. The use of IBAD produced fully stoichiometric coatings at a reduced substrate temperature of 600°C and a reduced oxygen background pressure of 0.1 Pa. IBAD was also used to successfully demonstrate the transitioning of amorphous PVD-deposited alumina to the -phase alumina required as an oxygen diffusion barrier and for good adhesion to the substrate Ni2Al3 bondcoat. This process replaces the time consuming thermally grown oxide formation required before the YSZ deposition. In addition to the process technology, Direct Simulation Monte Carlo plume modeling and spectroscopic characterization of the PVD plumes were performed. The project consisted of five tasks. These included the

  3. Nebulized corticosteroids in the management of acute exacerbation of COPD

    Directory of Open Access Journals (Sweden)

    Gaude G

    2010-01-01

    Full Text Available Acute exacerbations in chronic onstructive pulmonary disease (COPD are common and systemic steroids play an important role in the management of these cases along with the bronchodilators. Nebulized budesonide is being used in the acute attacks of bronchial asthma either in children or in adults. But the role of nebulized steroids in acute exacerbation of COPD is not much studied in the literature. In this clinical review we have evaluated the role of nebulized corticosteroids in the management of acute exacerbation of COPD (AECOPD. Through Medline, Pubmed and Embase we analyzed the various studies that has been done to study the role of nebulized corticosteroids in the management of acute exacerbation of COPD. The key words used for the search criteria were: acute exacerbation, COPD, nebulized corticosteroids, budesonide, fluticasone. Only eight studies were found which had evaluated the role of nebulized corticosteroids in acute exacerbations of COPD. All these studies had used nebulized budesonide in AECOPD in different dosages, and had been compared with both either parental or oral steroids, and standard bronchodilator therapy. All the studies had found the clinical efficacy of nebulized budesonide to be of similar extent to that of either parental or oral steroids in AECOPD. Side effects profile of nebulized budesonide was minimal and acceptable as compared to systemic steroids. Nebulized budesonide may be an alternative to parental/oral prednisolone in the treatment of acute exacerbations of COPD but further studies should be done to evaluate its long-term impact on clinical outcomes after an initial episode of COPD exacerbation.

  4. Accurate assessment of adherence: self-report and clinician report vs electronic monitoring of nebulizers.

    Science.gov (United States)

    Daniels, Tracey; Goodacre, Lynne; Sutton, Chris; Pollard, Kim; Conway, Steven; Peckham, Daniel

    2011-08-01

    People with cystic fibrosis have a high treatment burden. While uncertainty remains about individual patient level of adherence to medication, treatment regimens are difficult to tailor, and interventions are difficult to evaluate. Self- and clinician-reported measures are routinely used despite criticism that they overestimate adherence. This study assessed agreement between rates of adherence to prescribed nebulizer treatments when measured by self-report, clinician report, and electronic monitoring suitable for long-term use. Seventy-eight adults with cystic fibrosis were questioned about their adherence to prescribed nebulizer treatments over the previous 3 months. Self-report was compared with clinician report and stored adherence data downloaded from the I-Neb nebulizer system. Adherence measures were expressed as a percentage of the prescribed regimen, bias was estimated by the paired difference in mean (95% CI) patient and clinician reported and actual adherence. Agreement between adherence measures was calculated using intraclass correlation coefficients (95% CI), and disagreements for individuals were displayed using Bland-Altman plots. Patient-identified prescriptions matched the medical record prescription. Median self-reported adherence was 80% (interquartile range, 60%-95%), whereas median adherence measured by nebulizer download was 36% (interquartile range, 5%-84.5%). Nine participants overmedicated and underreported adherence. Median clinician report ranged from 50% to 60%, depending on profession. Extensive discrepancies between self-report and clinician report compared with nebulizer download were identified for individuals. Self- and clinician-reporting of adherence does not provide accurate measurement of adherence when compared with electronic monitoring. Using inaccurate measures has implications for treatment burden, clinician prescribing practices, cost, and accuracy of trial data.

  5. High efficiency motor selection handbook

    Science.gov (United States)

    McCoy, Gilbert A.; Litman, Todd; Douglass, John G.

    1990-10-01

    Substantial reductions in energy and operational costs can be achieved through the use of energy-efficient electric motors. A handbook was compiled to help industry identify opportunities for cost-effective application of these motors. It covers the economic and operational factors to be considered when motor purchase decisions are being made. Its audience includes plant managers, plant engineers, and others interested in energy management or preventative maintenance programs.

  6. Immunological and physical properties of allergen solutions. Effects of nebulization

    DEFF Research Database (Denmark)

    Frølund, L; Poulsen, L K; Heinig, J H

    1991-01-01

    activity was measured by IgG4 RAST inhibition technique and allergen quality was analysed by crossed immunoelectrophoresis (CIE). The distribution of particle sizes of aerosols of different allergen solutions was determined by a TSI Aerodynamic Particle Sizer. A significant difference (P less than 0.......05) in allergen activity was found between the AD and H2O diluents before and after using a Sandoz nebulizer and a Wright nebulizer equipped with a small chamber. This suggested greater allergen activity in AD-diluted solutions, and the pattern was repeated with the other two nebulizers, but was not statistically...

  7. Parallel path nebulizer: Critical parameters for use with microseparation techniques combined with inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Yanes, Enrique G.; Miller-Ihli, Nancy J.

    2005-01-01

    Four different, low flow parallel path Mira Mist CE nebulizers were evaluated and compared in support of an ongoing project related to the use of microseparation techniques interfaced to inductively coupled plasma mass spectrometry for the quantification of cobalamin species (Vitamin B12). For the characterization of the different Mira Mist CE nebulizers, the nebulizer orientation as well as the effect of methanol on analytical response was the focus of the study. The position of the gas outlet on the nebulizer which consistently provided the maximum signal was when it was rotated to the 11 o'clock position when the nebulizer is viewed end-on. With this orientation the increased signal may be explained by the fact that the cone angle of the aerosol is such that the largest percentage of the aerosol is directed to the center of the spray chamber and consequently into the plasma. To characterize the nebulizer's performance, the signal response of a multielement solution containing elements with a variety of ionization potentials was used. The selection of elements with varying ionization energies and degrees of ionization was essential for a better understanding of observed increases in signal enhancement when methanol was used. Two different phenomena contribute to signal enhancement when using methanol: the first is improved transport efficiency and the second is the 'carbon enhancement effect'. The net result was that as much as a 30-fold increase in signal was observed for As and Mg when using a make-up solution of 20% methanol at a 15 μL/min flow rate which is equivalent to a net volume of 3 μL/min of pure methanol

  8. High efficiency focus neutron generator

    Science.gov (United States)

    Sadeghi, H.; Amrollahi, R.; Zare, M.; Fazelpour, S.

    2017-12-01

    In the present paper, the new idea to increase the neutron yield of plasma focus devices is investigated and the results are presented. Based on many studies, more than 90% of neutrons in plasma focus devices were produced by beam target interactions and only 10% of them were due to thermonuclear reactions. While propounding the new idea, the number of collisions between deuteron ions and deuterium gas atoms were increased remarkably well. The COMSOL Multiphysics 5.2 was used to study the given idea in the known 28 plasma focus devices. In this circumstance, the neutron yield of this system was also obtained and reported. Finally, it was found that in the ENEA device with 1 Hz working frequency, 1.1 × 109 and 1.1 × 1011 neutrons per second were produced by D-D and D-T reactions, respectively. In addition, in the NX2 device with 16 Hz working frequency, 1.34 × 1010 and 1.34 × 1012 neutrons per second were produced by D-D and D-T reactions, respectively. The results show that with regards to the sizes and energy of these devices, they can be used as the efficient neutron generators.

  9. Nebulized antibiotics in mechanically ventilated patients: roadmap and challenges.

    Science.gov (United States)

    Poulakou, G; Siakallis, G; Tsiodras, S; Arfaras-Melainis, A; Dimopoulos, G

    2017-03-01

    Nebulized antibiotics use has become common practice in the therapeutics of pneumonia in cystic fibrosis patients. There is an increasing interest in their use for respiratory infections in mechanically ventilated (MV) patients in order to a) overcome pharmacokinetic issues in the lung compartment with traditional systemic antibiotic use and b) prevent the emergence of multi-drug-resistant (MDR) pathogens. Areas covered: The beneficial effects of antibiotic nebulization in MV patients e.g. increasing efficacy, reduced toxicity and prevention of resistance are described. Physicochemical parameters of optimal lung deposition, characteristics of currently available nebulizers, practical aspects of the procedure, including drug preparation and adjustments of ventilator and circuit parameter are presented. Antibiotics used in nebulized route, along with efficacy in various clinical indications and safety issues are reviewed. Expert commentary: The safety of nebulization of antibiotics has been proven in numerous studies; efficacy as adjunctive treatment to intravenous regimens or as monotherapy has been demonstrated in ventilator-associated pneumonia or ventilator-associated tracheobronchitis due to MDR or susceptible pathogens. However, due to the heterogeneity of studies, multiple meta-analyses fail to demonstrate a clear effect. Clarification of indications, standardization of technique and implementation of clinical practice guidelines, based on new large-scale trials will lead to the optimal use of nebulized antibiotics.

  10. A new method for measuring aerosol nebulizers output using radioactive tracers

    International Nuclear Information System (INIS)

    Gatnash, A.A.; Connolly, C.K.; Chandler, S.T.

    1998-01-01

    Reproducibility and comparability of bronchial challenge tests depends critically on accurate assessment of nebulizers output. Evaporation during nebulization means that simple weighing is inaccurate, overestimating the delivered dose of active ingredient. We wanted to quantify this effect in the context of intermittent nebulization, using a dosimeter as used in bronchial provocation tests. Output of three types of nebulizers, from the MEFAR dosimeter, was measured by radioactive tracer, using a standard solution of technetium-99m-pertechnetate (1.5 kBq x mL -1 ) in 4 mL of normal saline. The aerosol was impacted by suction onto a micro filter, and the radioactivity measured. Nebulizers were weighed before and after nebulization. Ratio of nebulized volume calculated from the radioactivity on the filter, to the total volume loss by weight, was expressed as nebulized ratio. The effect on output of two concentrations of methacholine, two tracers of different weights, and change in temperature, were assessed. Nebulized ratio varied between 44.1-71.6%. Results were more consistent within the same type of nebulizer than between different makes. Neither changes in molar concentration nor molecular weight affected nebulizer output or nebulized ratio. Mean nebulized ratio was 58.5%, showing that calibration by weighing, overestimates the delivered dose by a factor of approximately two. Measuring radioactivity eluted from a micro filter, onto which nebulized output had been impacted proved to be a satisfactory method of calibration. (au)

  11. Production of amorphous nanoparticles by supersonic spray-drying with a microfluidic nebulator

    Science.gov (United States)

    Amstad, Esther; Gopinadhan, Manesh; Holtze, Christian; Osuji, Chinedum O.; Brenner, Michael P.; Spaepen, Frans; Weitz, David A.

    2015-08-01

    Amorphous nanoparticles (a-NPs) have physicochemical properties distinctly different from those of the corresponding bulk crystals; for example, their solubility is much higher. However, many materials have a high propensity to crystallize and are difficult to formulate in an amorphous structure without stabilizers. We fabricated a microfluidic nebulator that can produce amorphous NPs from a wide range of materials, even including pure table salt (NaCl). By using supersonic air flow, the nebulator produces drops that are so small that they dry before crystal nuclei can form. The small size of the resulting spray-dried a-NPs limits the probability of crystal nucleation in any given particle during storage. The kinetic stability of the a-NPs—on the order of months—is advantageous for hydrophobic drug molecules.

  12. Critical study of high efficiency deep grinding

    OpenAIRE

    Johnstone, lain

    2002-01-01

    The recent years, the aerospace industry in particular has embraced and actively pursued the development of stronger high performance materials, namely nickel based superalloys and hardwearing steels. This has resulted in a need for a more efficient method of machining, and this need was answered with the advent of High Efficiency Deep Grinding (HEDG). This relatively new process using Cubic Boron Nitride (CBN) electroplated grinding wheels has been investigated through experim...

  13. Compatibility and osmolality of inhaled N-acetylcysteine nebulizing solution with fenoterol and ipratropium.

    Science.gov (United States)

    Lee, Tzung-Yi; Chen, Chi-Ming; Lee, Chun-Nin; Chiang, Yi-Chun; Chen, Hsiang-Yin

    2005-04-15

    The compatibility, pH, and osmolality of N-acetylcysteine (NAC) nebulizing solution in the presence of ipratropium bromide or fenoterol hydrobromide were studied. Portions (400 microL) of each mixture were sampled immediately upon mixing and one, two, three, four, five, six, and seven hours after mixing and assayed by high-performance liquid chromatography. Osmolality was measured by sampling 100 microL from the filling cup at a five-minute interval during nebulization and by the freezing-point-depression method. Adding NAC solution to fenoterol solution raised the pH from 3.20 to 7.90 and the osmolality to a mean +/- S.D. of 1400.67 +/- 4.51 mOsm/kg. Fenoterol concentrations decreased to 93.71% and NAC concentrations to 92.54% of initial concentrations after seven hours. Mixing ipratropium with NAC solution raised the pH from 3.74 to 7.95 and the osmolality to a mean +/- S.D. of 1413 +/- 11.79 mOsm/kg. The initial ipratropium concentration declined 7.39% and 10.91% one and two hours after mixing with NAC solution, respectively. NAC and ipratropium were stable in nebulizing solution within one hour of mixing. NAC and fenoterol were compatible for at least seven hours.

  14. Heated air humidification versus cold air nebulization in newly tracheostomized patients.

    Science.gov (United States)

    Birk, Richard; Händel, Alexander; Wenzel, Angela; Kramer, Benedikt; Aderhold, Christoph; Hörmann, Karl; Stuck, Boris A; Sommer, J Ulrich

    2017-12-01

    After tracheostomy, the airway lacks an essential mechanism for warming and humidifying the inspired air with the consequent functional impairment and discomfort. The purpose of this study was to compare airway hydration with cold-air nebulization versus heated high-flow humidification on medical interventions and tracheal ciliary beat frequency (CBF). Newly tracheostomized patients (n = 20) were treated either with cold-air nebulization or heated humidification. The number of required tracheal suctioning procedures to clean the trachea and tracheal CBF were assessed. The number of required suctions per day was significantly lower in the heated humidification group with medians 3 versus 5 times per day. Mean CBF was significantly higher in the heated humidification group (6.36 ± 1.49 Hz) compared to the cold-air nebulization group (3.99 ± 1.39 Hz). The data suggest that heated humidification enhanced mucociliary transport leading to a reduced number of required suctioning procedures in the trachea, which may improve postoperative patient care. © 2017 The Authors Head & Neck Published by Wiley Periodicals, Inc.

  15. Anti-Tuberculosis Bacteriophage D29 Delivery with a Vibrating Mesh Nebulizer, Jet Nebulizer, and Soft Mist Inhaler.

    Science.gov (United States)

    Carrigy, Nicholas B; Chang, Rachel Y; Leung, Sharon S Y; Harrison, Melissa; Petrova, Zaritza; Pope, Welkin H; Hatfull, Graham F; Britton, Warwick J; Chan, Hak-Kim; Sauvageau, Dominic; Finlay, Warren H; Vehring, Reinhard

    2017-10-01

    To compare titer reduction and delivery rate of active anti-tuberculosis bacteriophage (phage) D29 with three inhalation devices. Phage D29 lysate was amplified to a titer of 11.8 ± 0.3 log 10 (pfu/mL) and diluted 1:100 in isotonic saline. Filters captured the aerosolized saline D29 preparation emitted from three types of inhalation devices: 1) vibrating mesh nebulizer; 2) jet nebulizer; 3) soft mist inhaler. Full-plate plaque assays, performed in triplicate at multiple dilution levels with the surrogate host Mycobacterium smegmatis, were used to quantify phage titer. Respective titer reductions for the vibrating mesh nebulizer, jet nebulizer, and soft mist inhaler were 0.4 ± 0.1, 3.7 ± 0.1, and 0.6 ± 0.3 log 10 (pfu/mL). Active phage delivery rate was significantly greater (p pfu/min) than for the jet nebulizer (5.4x10 4  ± 1.3x10 4 pfu/min). The soft mist inhaler delivered 4.6x10 6  ± 2.0x10 6 pfu per 11.6 ± 1.6 μL ex-actuator dose. Delivering active phage requires a prudent choice of inhalation device. The jet nebulizer was not a good choice for aerosolizing phage D29 under the tested conditions, due to substantial titer reduction likely occurring during droplet production. The vibrating mesh nebulizer is recommended for animal inhalation studies requiring large amounts of D29 aerosol, whereas the soft mist inhaler may be useful for self-administration of D29 aerosol.

  16. Microbiological evaluation of ultrasonic nebulization for disinfecting dental impressions.

    Science.gov (United States)

    Mendonca, Marcio Jose; Rafael, Renata Santos; Camilotti, Veridiana; Menolli, Rafael Andrade; Sicoli, Eliseu Augusto; Teixeira, Nancielli; Sinhoreti, Mario Alexandre Coelho

    2013-07-01

    Disinfecting dental impressions is necessary to decrease the risk of cross-contamination in dental offices. Ultrasonic nebulization has been mentioned as a microbicidal technique that can be used to disinfect contaminated dental impressions. This study compared the microbicidal effect of 2% glutaraldehyde and 0.2% peracetic acid for the disinfection of dental impressions made with vinyl polysiloxane, using 2 disinfection methods: immersion and ultrasonic nebulization. Bactericial efficacy was examined using Staphylococcus aureus and Bacillus atrophaeus as indicators. Thirty impressions were obtained and distributed randomly in 5 groups (n = 6). Group 1 was immersed in 2% glutaraldehyde immersion for 10 minutes, Group 2 was immersed in 0.2% peracetic acid for 10 minutes, Group 3 underwent ultrasonic nebulization for 10 minutes in 2% glutaraldehyde solution, Group 4 underwent ultrasonic nebulization for 10 minutes in 0.2% peracetic acid solution, and Group 5 was a control group that received no disinfectant. Both solutions experienced a 100% reduction in microorganisms following ultrasonic nebulization, as did peracetic acid following immersion; however, immersion in glutaraldehyde demonstrated lower values of reduction in B atrophaeus group, with a statistically significant difference compared with the other experimental groups.

  17. Surface acoustic wave nebulization facilitating lipid mass spectrometric analysis.

    Science.gov (United States)

    Yoon, Sung Hwan; Huang, Yue; Edgar, J Scott; Ting, Ying S; Heron, Scott R; Kao, Yuchieh; Li, Yanyan; Masselon, Christophe D; Ernst, Robert K; Goodlett, David R

    2012-08-07

    Surface acoustic wave nebulization (SAWN) is a novel method to transfer nonvolatile analytes directly from the aqueous phase to the gas phase for mass spectrometric analysis. The lower ion energetics of SAWN and its planar nature make it appealing for analytically challenging lipid samples. This challenge is a result of their amphipathic nature, labile nature, and tendency to form aggregates, which readily precipitate clogging capillaries used for electrospray ionization (ESI). Here, we report the use of SAWN to characterize the complex glycolipid, lipid A, which serves as the membrane anchor component of lipopolysaccharide (LPS) and has a pronounced tendency to clog nano-ESI capillaries. We also show that unlike ESI SAWN is capable of ionizing labile phospholipids without fragmentation. Lastly, we compare the ease of use of SAWN to the more conventional infusion-based ESI methods and demonstrate the ability to generate higher order tandem mass spectral data of lipid A for automated structure assignment using our previously reported hierarchical tandem mass spectrometry (HiTMS) algorithm. The ease of generating SAWN-MS(n) data combined with HiTMS interpretation offers the potential for high throughput lipid A structure analysis.

  18. Progress of OLED devices with high efficiency at high luminance

    Science.gov (United States)

    Nguyen, Carmen; Ingram, Grayson; Lu, Zhenghong

    2014-03-01

    Organic light emitting diodes (OLEDs) have progressed significantly over the last two decades. For years, OLEDs have been promoted as the next generation technology for flat panel displays and solid-state lighting due to their potential for high energy efficiency and dynamic range of colors. Although high efficiency can readily be obtained at low brightness levels, a significant decline at high brightness is commonly observed. In this report, we will review various strategies for achieving highly efficient phosphorescent OLED devices at high luminance. Specifically, we will provide details regarding the performance and general working principles behind each strategy. We will conclude by looking at how some of these strategies can be combined to produce high efficiency white OLEDs at high brightness.

  19. Jet and ultrasonic nebulization of single chain urokinase plasminogen activator (scu-PA)

    DEFF Research Database (Denmark)

    Münster, Anna-Marie; Bendstrup, E; Jensen, J.I.

    2000-01-01

    locally by nebulization in a recombinant zymogen form as single chain urokinase plasminogen activator (scu-PA). We aimed to characterize the particle size distribution, drug output, and enzymatic activity of scu-PA after nebulization with a Ventstream jet nebulizer (Medic-Aid, Bognor Regis, UK) and a Syst...

  20. Nebulized naloxone gently and effectively reverses methadone intoxication.

    Science.gov (United States)

    Mycyk, Mark B; Szyszko, Amy L; Aks, Steven E

    2003-02-01

    A 46-year-old woman presented to the Emergency Department with lethargy and respiratory depression after ingesting methadone. Initial oxygen saturation of 61% on room air did not improve with supplemental oxygenation. As venous access was initially unobtainable, naloxone was administered by nebulizer. Within 5 min oxygen saturation was 100% and mental status was normal. The patient did not develop severe withdrawal symptoms. Naloxone hydrochloride has been administered by various routes to treat opioid toxicity. Our report describes the successful use of nebulized naloxone for methadone toxicity.

  1. CFD simulation of aerosol delivery to a human lung via surface acoustic wave nebulization.

    Science.gov (United States)

    Yousefi, Morteza; Pourmehran, Oveis; Gorji-Bandpy, Mofid; Inthavong, Kiao; Yeo, Leslie; Tu, Jiyuan

    2017-12-01

    Administration of drug in the form of particles through inhalation is generally preferable in the treatment of respiratory disorders. Conventional inhalation therapy devices such as inhalers and nebulizers, nevertheless, suffer from low delivery efficiencies, wherein only a small fraction of the inhaled drug reaches the lower respiratory tract. This is primarily because these devices are not able to produce a sufficiently fine drug mist that has aerodynamic diameters on the order of a few microns. This study employs computational fluid dynamics to investigate the transport and deposition of the drug particles produced by a new aerosolization technique driven by surface acoustic waves (SAWs) into an in silico lung model geometrically reconstructed using computed tomography scanning. The particles generated by the SAW are released in different locations in a spacer chamber attached to a lung model extending from the mouth to the 6th generation of the lung bronchial tree. An Eulerian approach is used to solve the Navier-Stokes equations that govern the airflow within the respiratory tract, and a Lagrangian approach is adopted to track the particles, which are assumed to be spherical and inert. Due to the complexity of the lung geometry, the airflow patterns vary as it penetrates deeper into the lung. High inertia particles tend to deposit at locations where the geometry experiences a significant reduction in cross section. Our findings, nevertheless, show that the injection location can influence the delivery efficiency: Injection points close to the spacer centerline result in deeper penetration into the lung. Additionally, we found that the ratio of drug particles entering the right lung is significantly higher than the left lung, independent of the injection location. This is in good agreement with this fact that the most of airflow enters to the right lobes.

  2. Measure Guideline. High Efficiency Natural Gas Furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Brand, L. [Partnership for Advanced Residential Retrofit (PARR), Des Plaines, IL (United States); Rose, W. [Partnership for Advanced Residential Retrofit (PARR), Des Plaines, IL (United States)

    2012-10-01

    This measure guideline covers installation of high-efficiency gas furnaces, including: when to install a high-efficiency gas furnace as a retrofit measure; how to identify and address risks; and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  3. Measure Guideline: High Efficiency Natural Gas Furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Brand, L.; Rose, W.

    2012-10-01

    This Measure Guideline covers installation of high-efficiency gas furnaces. Topics covered include when to install a high-efficiency gas furnace as a retrofit measure, how to identify and address risks, and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  4. Experiments on high efficiency aerosol filtration

    International Nuclear Information System (INIS)

    Mazzini, M.; Cuccuru, A.; Kunz, P.

    1977-01-01

    Research on high efficiency aerosol filtration by the Nuclear Engineering Institute of Pisa University and by CAMEN in collaboration with CNEN is outlined. HEPA filter efficiency was studied as a function of the type and size of the test aerosol, and as a function of flowrate (+-50% of the nominal value), air temperature (up to 70 0 C), relative humidity (up to 100%), and durability in a corrosive atmosphere (up to 140 hours in NaCl mist). In the selected experimental conditions these influences were appreciable but are not sufficient to be significant in industrial HEPA filter applications. Planned future research is outlined: measurement of the efficiency of two HEPA filters in series using a fixed particle size; dependence of the efficiency on air, temperatures up to 300-500 0 C; performance when subject to smoke from burning organic materials (natural rubber, neoprene, miscellaneous plastics). Such studies are relevant to possible accidental fires in a plutonium laboratory

  5. High-efficiency generation and delivery of aerosols through nasal cannula during noninvasive ventilation.

    Science.gov (United States)

    Longest, P Worth; Walenga, Ross L; Son, Yoen-Ju; Hindle, Michael

    2013-10-01

    Previous studies have demonstrated the delivery of pharmaceutical aerosols through nasal cannula and the feasibility of enhanced condensational growth (ECG) with a nasal interface. The objectives of this study were to develop a device for generating submicrometer aerosols with minimal depositional loss in the formation process and to improve aerosol delivery efficiencies through nasal cannulas. A combination of in vitro experiments and computational fluid dynamics (CFD) simulations that used the strengths of each method was applied. Aerosols were formed using a conventional mesh nebulizer, mixed with ventilation gas, and heated to produce submicrometer sizes. An improved version of the mixer and heater unit was developed based on CFD simulations, and performance was verified with experiments. Aerosol delivery was considered through a commercial large-bore adult cannula, a divided (D) design for use with ECG, and a divided and streamlined (DS) design. The improved mixer design reduced the total deposition fraction (DF) of drug within the mixer by a factor of 3 compared with an initial version, had a total DF of approximately 10%, and produced submicrometer aerosols at flow rates of 10 and 15 L/min. Compared with the commercial and D designs for submicrometer aerosols, the DS cannula reduced depositional losses by a factor of 2-3 and retained only approximately 5% or less of the nebulized dose at all flow rates considered. For conventional-sized aerosols (3.9 and 4.7 μm), the DS device provided delivery efficiencies of approximately 80% and above at flow rates of 2-15 L/min. Submicrometer aerosols can be formed using a conventional mesh nebulizer and delivered through a nasal cannula with total delivery efficiencies of 80-90%. Streamlining the nasal cannula significantly improved the delivery efficiency of both submicrometer and micrometer aerosols; however, use of submicrometer particles with ECG delivery resulted in overall lower depositional losses.

  6. High efficiency, variable geometry, centrifugal cryogenic pump

    International Nuclear Information System (INIS)

    Forsha, M.D.; Nichols, K.E.; Beale, C.A.

    1994-01-01

    A centrifugal cryogenic pump has been developed which has a basic design that is rugged and reliable with variable speed and variable geometry features that achieve high pump efficiency over a wide range of head-flow conditions. The pump uses a sealless design and rolling element bearings to achieve high reliability and the ruggedness to withstand liquid-vapor slugging. The pump can meet a wide range of variable head, off-design flow requirements and maintain design point efficiency by adjusting the pump speed. The pump also has features that allow the impeller and diffuser blade heights to be adjusted. The adjustable height blades were intended to enhance the pump efficiency when it is operating at constant head, off-design flow rates. For small pumps, the adjustable height blades are not recommended. For larger pumps, they could provide off-design efficiency improvements. This pump was developed for supercritical helium service, but the design is well suited to any cryogenic application where high efficiency is required over a wide range of head-flow conditions

  7. Saving energy via high-efficiency fans.

    Science.gov (United States)

    Heine, Thomas

    2016-08-01

    Thomas Heine, sales and market manager for EC Upgrades, the retrofit arm of global provider of air movement solutions, ebm-papst A&NZ, discusses the retrofitting of high-efficiency fans to existing HVAC equipment to 'drastically reduce energy consumption'.

  8. High Efficiency Reversible Fuel Cell Power Converter

    DEFF Research Database (Denmark)

    Pittini, Riccardo

    as well as different dc-ac and dc-dc converter topologies are presented and analyzed. A new ac-dc topology for high efficiency data center applications is proposed and an efficiency characterization based on the fuel cell stack I-V characteristic curve is presented. The second part discusses the main...... converter components. Wide bandgap power semiconductors are introduced due to their superior performance in comparison to traditional silicon power devices. The analysis presents a study based on switching loss measurements performed on Si IGBTs, SiC JFETs, SiC MOSFETs and their respective gate drivers...

  9. High Efficiency Power Converter for Low Voltage High Power Applications

    DEFF Research Database (Denmark)

    Nymand, Morten

    The topic of this thesis is the design of high efficiency power electronic dc-to-dc converters for high-power, low-input-voltage to high-output-voltage applications. These converters are increasingly required for emerging sustainable energy systems such as fuel cell, battery or photo voltaic based......, and remote power generation for light towers, camper vans, boats, beacons, and buoys etc. A review of current state-of-the-art is presented. The best performing converters achieve moderately high peak efficiencies at high input voltage and medium power level. However, system dimensioning and cost are often...

  10. High Efficiency Centrifugal Compressor for Rotorcraft Applications

    Science.gov (United States)

    Medic, Gorazd; Sharma, Om P.; Jongwook, Joo; Hardin, Larry W.; McCormick, Duane C.; Cousins, William T.; Lurie, Elizabeth A.; Shabbir, Aamir; Holley, Brian M.; Van Slooten, Paul R.

    2017-01-01

    A centrifugal compressor research effort conducted by United Technologies Research Center under NASA Research Announcement NNC08CB03C is documented. The objectives were to identify key technical barriers to advancing the aerodynamic performance of high-efficiency, high work factor, compact centrifugal compressor aft-stages for turboshaft engines; to acquire measurements needed to overcome the technical barriers and inform future designs; to design, fabricate, and test a new research compressor in which to acquire the requisite flow field data. A new High-Efficiency Centrifugal Compressor stage -- splittered impeller, splittered diffuser, 90 degree bend, and exit guide vanes -- with aerodynamically aggressive performance and configuration (compactness) goals were designed, fabricated, and subquently tested at the NASA Glenn Research Center.

  11. High-Temperature High-Efficiency Solar Thermoelectric Generators

    Energy Technology Data Exchange (ETDEWEB)

    Baranowski, LL; Warren, EL; Toberer, ES

    2014-03-01

    Inspired by recent high-efficiency thermoelectric modules, we consider thermoelectrics for terrestrial applications in concentrated solar thermoelectric generators (STEGs). The STEG is modeled as two subsystems: a TEG, and a solar absorber that efficiently captures the concentrated sunlight and limits radiative losses from the system. The TEG subsystem is modeled using thermoelectric compatibility theory; this model does not constrain the material properties to be constant with temperature. Considering a three-stage TEG based on current record modules, this model suggests that 18% efficiency could be experimentally expected with a temperature gradient of 1000A degrees C to 100A degrees C. Achieving 15% overall STEG efficiency thus requires an absorber efficiency above 85%, and we consider two methods to achieve this: solar-selective absorbers and thermally insulating cavities. When the TEG and absorber subsystem models are combined, we expect that the STEG modeled here could achieve 15% efficiency with optical concentration between 250 and 300 suns.

  12. Simulation-based design of a microfabricated pneumatic electrospray nebulizer

    Czech Academy of Sciences Publication Activity Database

    Járvás, G.; Grym, Jakub; Foret, František; Guttman, A.

    2015-01-01

    Roč. 36, č. 3 (2015), s. 386-392 ISSN 0173-0835 R&D Projects: GA ČR(CZ) GBP206/12/G014 Institutional support: RVO:68081715 Keywords : CFD * microfabrication * modeling * electrospray * nebulizer Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.482, year: 2015

  13. Simulation-based design of a microfabricated pneumatic electrospray nebulizer

    Czech Academy of Sciences Publication Activity Database

    Járvás, G.; Grym, Jakub; Foret, František; Guttman, A.

    2015-01-01

    Roč. 36, č. 3 (2015), s. 386-392 ISSN 0173-0835 R&D Projects: GA ČR(CZ) GBP206/12/G014 Institutional support: RVO:68081715 Keywords : CFD * microfabrication * modeling * electrospray * nebulizer Subject RIV: CB - Analytical Chemistry , Separation Impact factor: 2.482, year: 2015

  14. Efficacy of nebulized furosemide in children with moderate attack of ...

    African Journals Online (AJOL)

    Efficacy of nebulized furosemide in children with moderate attack of asthma. M Alshehri, T Almegamesi, A Alfrayh. Abstract. No Abstract. West African Journal of Medicine Vol. 24(3) 2005: 246-251. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  15. High efficiency and broadband acoustic diodes

    Science.gov (United States)

    Fu, Congyi; Wang, Bohan; Zhao, Tianfei; Chen, C. Q.

    2018-01-01

    Energy transmission efficiency and working bandwidth are the two major factors limiting the application of current acoustic diodes (ADs). This letter presents a design of high efficiency and broadband acoustic diodes composed of a nonlinear frequency converter and a linear wave filter. The converter consists of two masses connected by a bilinear spring with asymmetric tension and compression stiffness. The wave filter is a linear mass-spring lattice (sonic crystal). Both numerical simulation and experiment show that the energy transmission efficiency of the acoustic diode can be improved by as much as two orders of magnitude, reaching about 61%. Moreover, the primary working band width of the AD is about two times of the cut-off frequency of the sonic crystal filter. The cut-off frequency dependent working band of the AD implies that the developed AD can be scaled up or down from macro-scale to micro- and nano-scale.

  16. Complexity-aware high efficiency video coding

    CERN Document Server

    Correa, Guilherme; Agostini, Luciano; Cruz, Luis A da Silva

    2016-01-01

    This book discusses computational complexity of High Efficiency Video Coding (HEVC) encoders with coverage extending from the analysis of HEVC compression efficiency and computational complexity to the reduction and scaling of its encoding complexity. After an introduction to the topic and a review of the state-of-the-art research in the field, the authors provide a detailed analysis of the HEVC encoding tools compression efficiency and computational complexity.  Readers will benefit from a set of algorithms for scaling the computational complexity of HEVC encoders, all of which take advantage from the flexibility of the frame partitioning structures allowed by the standard.  The authors also provide a set of early termination methods based on data mining and machine learning techniques, which are able to reduce the computational complexity required to find the best frame partitioning structures. The applicability of the proposed methods is finally exemplified with an encoding time control system that emplo...

  17. High Efficiency, Low Emission Refrigeration System

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, Brian A [ORNL; Sharma, Vishaldeep [ORNL

    2016-08-01

    Supermarket refrigeration systems account for approximately 50% of supermarket energy use, placing this class of equipment among the highest energy consumers in the commercial building domain. In addition, the commonly used refrigeration system in supermarket applications is the multiplex direct expansion (DX) system, which is prone to refrigerant leaks due to its long lengths of refrigerant piping. This leakage reduces the efficiency of the system and increases the impact of the system on the environment. The high Global Warming Potential (GWP) of the hydrofluorocarbon (HFC) refrigerants commonly used in these systems, coupled with the large refrigerant charge and the high refrigerant leakage rates leads to significant direct emissions of greenhouse gases into the atmosphere. Methods for reducing refrigerant leakage and energy consumption are available, but underutilized. Further work needs to be done to reduce costs of advanced system designs to improve market utilization. In addition, refrigeration system retrofits that result in reduced energy consumption are needed since the majority of applications address retrofits rather than new stores. The retrofit market is also of most concern since it involves large-volume refrigerant systems with high leak rates. Finally, alternative refrigerants for new and retrofit applications are needed to reduce emissions and reduce the impact on the environment. The objective of this Collaborative Research and Development Agreement (CRADA) between the Oak Ridge National Laboratory and Hill Phoenix is to develop a supermarket refrigeration system that reduces greenhouse gas emissions and has 25 to 30 percent lower energy consumption than existing systems. The outcomes of this project will include the design of a low emission, high efficiency commercial refrigeration system suitable for use in current U.S. supermarkets. In addition, a prototype low emission, high efficiency supermarket refrigeration system will be produced for

  18. High efficiency novel window air conditioner

    International Nuclear Information System (INIS)

    Bansal, Pradeep

    2015-01-01

    Highlights: • Use of novel refrigerant mixture of R32/R125 (85/15% molar conc.) to reduce global warming and improve energy efficiency. • Use of novel features such as electronically commuted motor (ECM) fan motor, slinger and sub-merged sub-cooler. • Energy savings of up to 0.1 Quads per year in USA and much more in Asia/Middle East where WACs are used in large numbers. • Payback period of only 1.4 years of the novel efficient WAC. - Abstract: This paper presents the results of an experimental and analytical evaluation of measures to raise the efficiency of window air conditioners (WAC). In order to achieve a higher energy efficiency ratio (EER), the original capacity of a baseline R410A unit was reduced by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. Subsequent major modifications included – replacing the alternating current fan motor with a brushless high efficiency electronically commutated motor (ECM) motor, replacing the capillary tube with a needle valve to better control the refrigerant flow and refrigerant set points, and replacing R410A with a ‘drop-in’ lower global warming potential (GWP) binary mixture of R32/R125 (85/15% molar concentration). All these modifications resulted in significant enhancement in the EER of the baseline WAC. Further, an economic analysis of the new WAC revealed an encouraging payback period

  19. High efficiency carbon nanotube thread antennas

    Science.gov (United States)

    Amram Bengio, E.; Senic, Damir; Taylor, Lauren W.; Tsentalovich, Dmitri E.; Chen, Peiyu; Holloway, Christopher L.; Babakhani, Aydin; Long, Christian J.; Novotny, David R.; Booth, James C.; Orloff, Nathan D.; Pasquali, Matteo

    2017-10-01

    Although previous research has explored the underlying theory of high-frequency behavior of carbon nanotubes (CNTs) and CNT bundles for antennas, there is a gap in the literature for direct experimental measurements of radiation efficiency. These measurements are crucial for any practical application of CNT materials in wireless communication. In this letter, we report a measurement technique to accurately characterize the radiation efficiency of λ/4 monopole antennas made from the CNT thread. We measure the highest absolute values of radiation efficiency for CNT antennas of any type, matching that of copper wire. To capture the weight savings, we propose a specific radiation efficiency metric and show that these CNT antennas exceed copper's performance by over an order of magnitude at 1 GHz and 2.4 GHz. We also report direct experimental observation that, contrary to metals, the radiation efficiency of the CNT thread improves significantly at higher frequencies. These results pave the way for practical applications of CNT thread antennas, particularly in the aerospace and wearable electronics industries where weight saving is a priority.

  20. High Efficiency Power Converter for Low Voltage High Power Applications

    DEFF Research Database (Denmark)

    Nymand, Morten

    The topic of this thesis is the design of high efficiency power electronic dc-to-dc converters for high-power, low-input-voltage to high-output-voltage applications. These converters are increasingly required for emerging sustainable energy systems such as fuel cell, battery or photo voltaic based...

  1. High efficiency lithium-thionyl chloride cell

    Science.gov (United States)

    Doddapaneni, N.

    1982-08-01

    The polarization characteristics and the specific cathode capacity of Teflon bonded carbon electrodes in the Li/SOCl2 system have been evaluated. Doping of electrocatalysts such as cobalt and iron phthalocyanine complexes improved both cell voltage and cell rate capability. High efficiency Li/SOCl2 cells were thus achieved with catalyzed cathodes. The electrochemical reduction of SOCl2 seems to undergo modification at catalyzed cathode. For example, the reduction of SOCl2 at FePc catalyzed cathode involves 2-1/2 e-/mole of SOCl2. Furthermore, the reduction mechanism is simplified and unwanted chemical species are eliminated by the catalyst. Thus a potentially safer high efficiency Li/SOCl2 can be anticipated.

  2. Bioblendstocks that Enable High Efficiency Engine Designs

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, Robert L.; Fioroni, Gina M.; Ratcliff, Matthew A.; Zigler, Bradley T.; Farrell, John

    2016-11-03

    The past decade has seen a high level of innovation in production of biofuels from sugar, lipid, and lignocellulose feedstocks. As discussed in several talks at this workshop, ethanol blends in the E25 to E50 range could enable more highly efficient spark-ignited (SI) engines. This is because of their knock resistance properties that include not only high research octane number (RON), but also charge cooling from high heat of vaporization, and high flame speed. Emerging alcohol fuels such as isobutanol or mixed alcohols have desirable properties such as reduced gasoline blend vapor pressure, but also have lower RON than ethanol. These fuels may be able to achieve the same knock resistance benefits, but likely will require higher blend levels or higher RON hydrocarbon blendstocks. A group of very high RON (>150) oxygenates such as dimethyl furan, methyl anisole, and related compounds are also produced from biomass. While providing no increase in charge cooling, their very high octane numbers may provide adequate knock resistance for future highly efficient SI engines. Given this range of options for highly knock resistant fuels there appears to be a critical need for a fuel knock resistance metric that includes effects of octane number, heat of vaporization, and potentially flame speed. Emerging diesel fuels include highly branched long-chain alkanes from hydroprocessing of fats and oils, as well as sugar-derived terpenoids. These have relatively high cetane number (CN), which may have some benefits in designing more efficient CI engines. Fast pyrolysis of biomass can produce diesel boiling range streams that are high in aromatic, oxygen and acid contents. Hydroprocessing can be applied to remove oxygen and consequently reduce acidity, however there are strong economic incentives to leave up to 2 wt% oxygen in the product. This oxygen will primarily be present as low CN alkyl phenols and aryl ethers. While these have high heating value, their presence in diesel fuel

  3. Evaluating performance of high efficiency mist eliminators

    Energy Technology Data Exchange (ETDEWEB)

    Waggoner, Charles A.; Parsons, Michael S.; Giffin, Paxton K. [Mississippi State University, Institute for Clean Energy Technology, 205 Research Blvd, Starkville, MS (United States)

    2013-07-01

    Processing liquid wastes frequently generates off gas streams with high humidity and liquid aerosols. Droplet laden air streams can be produced from tank mixing or sparging and processes such as reforming or evaporative volume reduction. Unfortunately these wet air streams represent a genuine threat to HEPA filters. High efficiency mist eliminators (HEME) are one option for removal of liquid aerosols with high dissolved or suspended solids content. HEMEs have been used extensively in industrial applications, however they have not seen widespread use in the nuclear industry. Filtering efficiency data along with loading curves are not readily available for these units and data that exist are not easily translated to operational parameters in liquid waste treatment plants. A specialized test stand has been developed to evaluate the performance of HEME elements under use conditions of a US DOE facility. HEME elements were tested at three volumetric flow rates using aerosols produced from an iron-rich waste surrogate. The challenge aerosol included submicron particles produced from Laskin nozzles and super micron particles produced from a hollow cone spray nozzle. Test conditions included ambient temperature and relative humidities greater than 95%. Data collected during testing HEME elements from three different manufacturers included volumetric flow rate, differential temperature across the filter housing, downstream relative humidity, and differential pressure (dP) across the filter element. Filter challenge was discontinued at three intermediate dPs and the filter to allow determining filter efficiency using dioctyl phthalate and then with dry surrogate aerosols. Filtering efficiencies of the clean HEME, the clean HEME loaded with water, and the HEME at maximum dP were also collected using the two test aerosols. Results of the testing included differential pressure vs. time loading curves for the nine elements tested along with the mass of moisture and solid

  4. High efficiency inverter and ballast circuits

    International Nuclear Information System (INIS)

    Nilssen, O.K.

    1984-01-01

    A high efficiency push-pull inverter circuit employing a pair of relatively high power switching transistors is described. The switching on and off of the transistors is precisely controlled to minimize power losses due to common-mode conduction or due to transient conditions that occur in the process of turning a transistor on or off. Two current feed-back transformers are employed in the transistor base drives; one being saturable for providing a positive feedback, and the other being non-saturable for providing a subtractive feedback

  5. Optimization of a high efficiency FEL amplifier

    International Nuclear Information System (INIS)

    Schneidmiller, E.A.; Yurkov, M.V.

    2014-10-01

    The problem of an efficiency increase of an FEL amplifier is now of great practical importance. Technique of undulator tapering in the post-saturation regime is used at the existing X-ray FELs LCLS and SACLA, and is planned for use at the European XFEL, Swiss FEL, and PAL XFEL. There are also discussions on the future of high peak and average power FELs for scientific and industrial applications. In this paper we perform detailed analysis of the tapering strategies for high power seeded FEL amplifiers. Application of similarity techniques allows us to derive universal law of the undulator tapering.

  6. Highly efficient fully transparent inverted OLEDs

    Science.gov (United States)

    Meyer, J.; Winkler, T.; Hamwi, S.; Schmale, S.; Kröger, M.; Görrn, P.; Johannes, H.-H.; Riedl, T.; Lang, E.; Becker, D.; Dobbertin, T.; Kowalsky, W.

    2007-09-01

    One of the unique selling propositions of OLEDs is their potential to realize highly transparent devices over the visible spectrum. This is because organic semiconductors provide a large Stokes-Shift and low intrinsic absorption losses. Hence, new areas of applications for displays and ambient lighting become accessible, for instance, the integration of OLEDs into the windshield or the ceiling of automobiles. The main challenge in the realization of fully transparent devices is the deposition of the top electrode. ITO is commonly used as transparent bottom anode in a conventional OLED. To obtain uniform light emission over the entire viewing angle and a low series resistance, a TCO such as ITO is desirable as top contact as well. However, sputter deposition of ITO on top of organic layers causes damage induced by high energetic particles and UV radiation. We have found an efficient process to protect the organic layers against the ITO rf magnetron deposition process of ITO for an inverted OLED (IOLED). The inverted structure allows the integration of OLEDs in more powerful n-channel transistors used in active matrix backplanes. Employing the green electrophosphorescent material Ir(ppy) 3 lead to IOLED with a current efficiency of 50 cd/A and power efficiency of 24 lm/W at 100 cd/m2. The average transmittance exceeds 80 % in the visible region. The on-set voltage for light emission is lower than 3 V. In addition, by vertical stacking we achieved a very high current efficiency of more than 70 cd/A for transparent IOLED.

  7. High Efficiency Colloidal Quantum Dot Phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Kahen, Keith

    2013-12-31

    The project showed that non-Cd containing, InP-based nanocrystals (semiconductor materials with dimensions of ~6 nm) have high potential for enabling next-generation, nanocrystal-based, on chip phosphors for solid state lighting. Typical nanocrystals fall short of the requirements for on chip phosphors due to their loss of quantum efficiency under the operating conditions of LEDs, such as, high temperature (up to 150 °C) and high optical flux (up to 200 W/cm2). The InP-based nanocrystals invented during this project maintain high quantum efficiency (>80%) in polymer-based films under these operating conditions for emission wavelengths ranging from ~530 to 620 nm. These nanocrystals also show other desirable attributes, such as, lack of blinking (a common problem with nanocrystals which limits their performance) and no increase in the emission spectral width from room to 150 °C (emitters with narrower spectral widths enable higher efficiency LEDs). Prior to these nanocrystals, no nanocrystal system (regardless of nanocrystal type) showed this collection of properties; in fact, other nanocrystal systems are typically limited to showing only one desirable trait (such as high temperature stability) but being deficient in other properties (such as high flux stability). The project showed that one can reproducibly obtain these properties by generating a novel compositional structure inside of the nanomaterials; in addition, the project formulated an initial theoretical framework linking the compositional structure to the list of high performance optical properties. Over the course of the project, the synthetic methodology for producing the novel composition was evolved to enable the synthesis of these nanomaterials at a cost approximately equal to that required for forming typical conventional nanocrystals. Given the above results, the last major remaining step prior to scale up of the nanomaterials is to limit the oxidation of these materials during the tens of

  8. Highly Efficient Estimators of Multivariate Location with High Breakdown Point

    NARCIS (Netherlands)

    Lopuhaa, H.P.

    1991-01-01

    We propose an affine equivariant estimator of multivariate location that combines a high breakdown point and a bounded influence function with high asymptotic efficiency. This proposal is basically a location $M$-estimator based on the observations obtained after scaling with an affine equivariant

  9. High efficiency motors; Motores de alta eficiencia

    Energy Technology Data Exchange (ETDEWEB)

    Uranga Favela, Ivan Jaime [Energia Controlada de Mexico, S. A. de C. V., Mexico, D. F. (Mexico)

    1993-12-31

    This paper is a technical-financial study of the high efficiency and super-premium motors. As it is widely known, more than 60% of the electrical energy generated in the country is used for the operation of motors, in industry as well as in commerce. Therefore the importance that the motors have in the efficient energy use. [Espanol] El presente trabajo es un estudio tecnico-financiero de los motores de alta eficiencia y los motores super premium. Como es ampliamente conocido, mas del 60% de la energia electrica generada en el pais, es utilizada para accionar motores, dentro de la industria y el comercio. De alli la importancia que los motores tienen en el uso eficiente de la energia.

  10. High-efficiency organic glass scintillators

    Science.gov (United States)

    Feng, Patrick L.; Carlson, Joseph S.

    2017-12-19

    A new family of neutron/gamma discriminating scintillators is disclosed that comprises stable organic glasses that may be melt-cast into transparent monoliths. These materials have been shown to provide light yields greater than solution-grown trans-stilbene crystals and efficient PSD capabilities when combined with 0.01 to 0.05% by weight of the total composition of a wavelength-shifting fluorophore. Photoluminescence measurements reveal fluorescence quantum yields that are 2 to 5 times greater than conventional plastic or liquid scintillator matrices, which accounts for the superior light yield of these glasses. The unique combination of high scintillation light-yields, efficient neutron/gamma PSD, and straightforward scale-up via melt-casting distinguishes the developed organic glasses from existing scintillators.

  11. High efficiency motors; Motores de alta eficiencia

    Energy Technology Data Exchange (ETDEWEB)

    Uranga Favela, Ivan Jaime [Energia Controlada de Mexico, S. A. de C. V., Mexico, D. F. (Mexico)

    1992-12-31

    This paper is a technical-financial study of the high efficiency and super-premium motors. As it is widely known, more than 60% of the electrical energy generated in the country is used for the operation of motors, in industry as well as in commerce. Therefore the importance that the motors have in the efficient energy use. [Espanol] El presente trabajo es un estudio tecnico-financiero de los motores de alta eficiencia y los motores super premium. Como es ampliamente conocido, mas del 60% de la energia electrica generada en el pais, es utilizada para accionar motores, dentro de la industria y el comercio. De alli la importancia que los motores tienen en el uso eficiente de la energia.

  12. Ultrasonic Nebulizer Assisted LIBS: a Promising Metal Elements Detection Method for Aqueous Sample Analysis

    International Nuclear Information System (INIS)

    Zhong Shilei; Zheng Ronger; Lu Yuan; Cheng Kai; Xiu Junshan

    2015-01-01

    A newly developed approach for trace metal elements detection for aqueous samples analysis is presented in this paper. The idea of this approach is to improve ablation efficiency by transforming the liquid sample into a dense cloud of droplets using an ultrasonic nebulizer. The resulting droplets are then subjected to analysis by laser induced breakdown spectroscopy (LIBS). A purpose-built ultrasonic nebulizer assisted LIBS (UN-LIBS) system has been applied to the analysis of aqueous samples at trace levels of concentration. Experimental investigations of solution samples were carried out with various dissolved trace metal elements (Mn, Zn, Cu, Pb, Fe, Mg and Na) using this approach. The characteristics of UN-LIBS signal of the elements were investigated regarding the lifetime and S/B ratio and the calibration curves for trace metal elements analyses. The obtained LODs are comparable or much better than the LODS of the reported signal enhancement approaches when the laser pulse energy was as low as 30 mJ. The good linearity of calibration curves and the low LODs shows the potential ability of this method for metal elements analysis application. The density of the electrons was calculated by measuring the Stark width of the line of H α . The possible mechanism of the LIBS signal enhancement of this approach was briefly discussed. (paper)

  13. High efficiency beam splitting for H- accelerators

    International Nuclear Information System (INIS)

    Kramer, S.L.; Stipp, V.; Krieger, C.; Madsen, J.

    1985-01-01

    Beam splitting for high energy accelerators has typically involved a significant loss of beam and radiation. This paper reports on a new method of splitting beams for H - accelerators. This technique uses a high intensity flash of light to strip a fraction of the H - beam to H 0 which are then easily separated by a small bending magnet. A system using a 900-watt (average electrical power) flashlamp and a highly efficient collector will provide 10 -3 to 10 -2 splitting of a 50 MeV H - beam. Results on the operation and comparisons with stripping cross sections are presented. Also discussed is the possibility for developing this system to yield a higher stripping fraction

  14. High Quantum Efficiency OLED Lighting Systems

    Energy Technology Data Exchange (ETDEWEB)

    Shiang, Joseph [General Electric (GE) Global Research, Fairfield, CT (United States)

    2011-09-30

    The overall goal of the program was to apply improvements in light outcoupling technology to a practical large area plastic luminaire, and thus enable the product vision of an extremely thin form factor high efficiency large area light source. The target substrate was plastic and the baseline device was operating at 35 LPW at the start of the program. The target LPW of the program was a >2x improvement in the LPW efficacy and the overall amount of light to be delivered was relatively high 900 lumens. Despite the extremely difficult challenges associated with scaling up a wet solution process on plastic substrates, the program was able to make substantial progress. A small molecule wet solution process was successfully implemented on plastic substrates with almost no loss in efficiency in transitioning from the laboratory scale glass to large area plastic substrates. By transitioning to a small molecule based process, the LPW entitlement increased from 35 LPW to 60 LPW. A further 10% improvement in outcoupling efficiency was demonstrated via the use of a highly reflecting cathode, which reduced absorptive loss in the OLED device. The calculated potential improvement in some cases is even larger, ~30%, and thus there is considerable room for optimism in improving the net light coupling efficacy, provided absorptive loss mechanisms are eliminated. Further improvements are possible if scattering schemes such as the silver nanowire based hard coat structure are fully developed. The wet coating processes were successfully scaled to large area plastic substrate and resulted in the construction of a 900 lumens luminaire device.

  15. High-efficiency concentrator silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sinton, R.A.; Cuevas, A.; King, R.R.; Swanson, R.M. (Stanford Univ., CA (USA). Solid-State Electronics Lab.)

    1990-11-01

    This report presents results from extensive process development in high-efficiency Si solar cells. An advanced design for a 1.56-cm{sup 2} cell with front grids achieved 26% efficiency at 90 suns. This is especially significant since this cell does not require a prismatic cover glass. New designs for simplified backside-contact solar cells were advanced from a status of near-nonfunctionality to demonstrated 21--22% for one-sun cells in sizes up to 37.5 cm{sup 2}. An efficiency of 26% was achieved for similar 0.64-cm{sup 2} concentrator cells at 150 suns. More fundamental work on dopant-diffused regions is also presented here. The recombination vs. various process and physical parameters was studied in detail for boron and phosphorous diffusions. Emitter-design studies based solidly upon these new data indicate the performance vs design parameters for a variety of the cases of most interest to solar cell designers. Extractions of p-type bandgap narrowing and the surface recombination for p- and n-type regions from these studies have a generality that extends beyond solar cells into basic device modeling. 68 refs., 50 figs.

  16. Nanooptics for high efficient photon managment

    Science.gov (United States)

    Wyrowski, Frank; Schimmel, Hagen

    2005-09-01

    Optical systems for photon management, that is the generation of tailored electromagnetic fields, constitute one of the keys for innovation through photonics. An important subfield of photon management deals with the transformation of an incident light field into a field of specified intensity distribution. In this paper we consider some basic aspects of the nature of systems for those light transformations. It turns out, that the transversal redistribution of energy (TRE) is of central concern to achieve systems with high transformation efficiency. Besides established techniques nanostructured optical elements (NOE) are demanded to implement transversal energy redistribution. That builds a bridge between the needs of photon management, optical engineering, and nanooptics.

  17. Highly Efficient Compression Algorithms for Multichannel EEG.

    Science.gov (United States)

    Shaw, Laxmi; Rahman, Daleef; Routray, Aurobinda

    2018-05-01

    The difficulty associated with processing and understanding the high dimensionality of electroencephalogram (EEG) data requires developing efficient and robust compression algorithms. In this paper, different lossless compression techniques of single and multichannel EEG data, including Huffman coding, arithmetic coding, Markov predictor, linear predictor, context-based error modeling, multivariate autoregression (MVAR), and a low complexity bivariate model have been examined and their performances have been compared. Furthermore, a high compression algorithm named general MVAR and a modified context-based error modeling for multichannel EEG have been proposed. The resulting compression algorithm produces a higher relative compression ratio of 70.64% on average compared with the existing methods, and in some cases, it goes up to 83.06%. The proposed methods are designed to compress a large amount of multichannel EEG data efficiently so that the data storage and transmission bandwidth can be effectively used. These methods have been validated using several experimental multichannel EEG recordings of different subjects and publicly available standard databases. The satisfactory parametric measures of these methods, namely percent-root-mean square distortion, peak signal-to-noise ratio, root-mean-square error, and cross correlation, show their superiority over the state-of-the-art compression methods.

  18. High efficiency double sided solar cells

    International Nuclear Information System (INIS)

    Seddik, M.M.

    1990-06-01

    Silicon technology state of the art for single crystalline was given to be limited to less than 20% efficiency. A proposed new form of photovoltaic solar cell of high current high efficiency with double sided structures has been given. The new forms could be n ++ pn ++ or p ++ np ++ double side junctions. The idea of double sided devices could be understood as two solar cells connected back-to-back in parallel electrical connection, in which the current is doubled if the cell is illuminated from both sides by a V-shaped reflector. The cell is mounted to the reflector such that each face is inclined at an angle of 45 deg. C to each side of the reflector. The advantages of the new structure are: a) High power devices. b) Easy to fabricate. c) The cells are used vertically instead of horizontal use of regular solar cell which require large area to install. This is very important in power stations and especially for satellite installation. If the proposal is made real and proved to be experimentally feasible, it would be a new era for photovoltaic solar cells since the proposal has already been extended to even higher currents. The suggested structures could be stated as: n ++ pn ++ Vp ++ np ++ ;n ++ pn ++ Vn ++ pn ++ ORp ++ np ++ Vp ++ np ++ . These types of structures are formed in wedged shape to employ indirect illumination by either parabolic; conic or V-shaped reflectors. The advantages of these new forms are low cost; high power; less in size and space; self concentrating; ... etc. These proposals if it happens to find their ways to be achieved experimentally, I think they will offer a short path to commercial market and would have an incredible impact on solar cell technology and applications. (author). 12 refs, 5 figs

  19. Simple Motor Control Concept Results High Efficiency at High Velocities

    Science.gov (United States)

    Starin, Scott; Engel, Chris

    2013-09-01

    The need for high velocity motors in space applications for reaction wheels and detectors has stressed the limits of Brushless Permanent Magnet Motors (BPMM). Due to inherent hysteresis core losses, conventional BPMMs try to balance the need for torque verses hysteresis losses. Cong-less motors have significantly less hysteresis losses but suffer from lower efficiencies. Additionally, the inherent low inductance in cog-less motors result in high ripple currents or high switching frequencies, which lowers overall efficiency and increases performance demands on the control electronics.However, using a somewhat forgotten but fully qualified technology of Isotropic Magnet Motors (IMM), extremely high velocities may be achieved at low power input using conventional drive electronics. This paper will discuss the trade study efforts and empirical test data on a 34,000 RPM IMM.

  20. High Efficiency, Illumination Quality OLEDs for Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Shiang; James Cella; Kelly Chichak; Anil Duggal; Kevin Janora; Chris Heller; Gautam Parthasarathy; Jeffery Youmans; Joseph Shiang

    2008-03-31

    The goal of the program was to demonstrate a 45 lumen per watt white light device based upon the use of multiple emission colors through the use of solution processing. This performance level is a dramatic extension of the team's previous 15 LPW large area illumination device. The fundamental material system was based upon commercial polymer materials. The team was largely able to achieve these goals, and was able to deliver to DOE a 90 lumen illumination source that had an average performance of 34 LPW a 1000 cd/m{sup 2} with peak performances near 40LPW. The average color temperature is 3200K and the calculated CRI 85. The device operated at a brightness of approximately 1000cd/m{sup 2}. The use of multiple emission colors particularly red and blue, provided additional degrees of design flexibility in achieving white light, but also required the use of a multilayered structure to separate the different recombination zones and prevent interconversion of blue emission to red emission. The use of commercial materials had the advantage that improvements by the chemical manufacturers in charge transport efficiency, operating life and material purity could be rapidly incorporated without the expenditure of additional effort. The program was designed to take maximum advantage of the known characteristics of these material and proceeded in seven steps. (1) Identify the most promising materials, (2) assemble them into multi-layer structures to control excitation and transport within the OLED, (3) identify materials development needs that would optimize performance within multilayer structures, (4) build a prototype that demonstrates the potential entitlement of the novel multilayer OLED architecture (5) integrate all of the developments to find the single best materials set to implement the novel multilayer architecture, (6) further optimize the best materials set, (7) make a large area high illumination quality white OLED. A photo of the final deliverable is shown

  1. Multiscale approaches to high efficiency photovoltaics

    Directory of Open Access Journals (Sweden)

    Connolly James Patrick

    2016-01-01

    Full Text Available While renewable energies are achieving parity around the globe, efforts to reach higher solar cell efficiencies becomes ever more difficult as they approach the limiting efficiency. The so-called third generation concepts attempt to break this limit through a combination of novel physical processes and new materials and concepts in organic and inorganic systems. Some examples of semi-empirical modelling in the field are reviewed, in particular for multispectral solar cells on silicon (French ANR project MultiSolSi. Their achievements are outlined, and the limits of these approaches shown. This introduces the main topic of this contribution, which is the use of multiscale experimental and theoretical techniques to go beyond the semi-empirical understanding of these systems. This approach has already led to great advances at modelling which have led to modelling software, which is widely known. Yet, a survey of the topic reveals a fragmentation of efforts across disciplines, firstly, such as organic and inorganic fields, but also between the high efficiency concepts such as hot carrier cells and intermediate band concepts. We show how this obstacle to the resolution of practical research obstacles may be lifted by inter-disciplinary cooperation across length scales, and across experimental and theoretical fields, and finally across materials systems. We present a European COST Action “MultiscaleSolar” kicking off in early 2015, which brings together experimental and theoretical partners in order to develop multiscale research in organic and inorganic materials. The goal of this defragmentation and interdisciplinary collaboration is to develop understanding across length scales, which will enable the full potential of third generation concepts to be evaluated in practise, for societal and industrial applications.

  2. High efficiency thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Hans-Werner [Helmholtz Zentrum Berlin (Germany). Solar Energy

    2012-11-01

    Production of photovoltaics is growing worldwide on a gigawatt scale. Among the thin film technologies, Cu(In,Ga)S,Se{sub 2} (CIS or CIGS) based solar cells have been the focus of more and more attention. This paper aims to analyze the success of CIGS based solar cells and the potential of this technology for future photovoltaics large-scale production. Specific material properties make CIS unique and allow the preparation of the material with a wide range of processing options. The huge potential lies in the possibility to take advantage of modern thin film processing equipment and combine it with very high efficiencies beyond 20% already achieved on the laboratory scale. A sustainable development of this technology could be realized by modifying the materials and replacing indium by abundant elements. (orig.)

  3. Design of High Efficient MPPT Solar Inverter

    Directory of Open Access Journals (Sweden)

    Sunitha K. A.

    2017-01-01

    Full Text Available This work aims to design a High Efficient Maximum Power Point Tracking (MPPT Solar Inverter. A boost converter is designed in the system to boost the power from the photovoltaic panel. By this experimental setup a room consisting of 500 Watts load (eight fluorescent tubes is completely controlled. It is aimed to decrease the maintenance cost. A microcontroller is introduced for tracking the P&O (Perturb and Observe algorithm used for tracking the maximum power point. The duty cycle for the operation of the boost convertor is optimally adjusted by using MPPT controller. There is a MPPT charge controller to charge the battery as well as fed to inverter which runs the load. Both the P&O scheme with the fixed variation for the reference current and the intelligent MPPT algorithm were able to identify the global Maximum power point, however the performance of the MPPT algorithm was better.

  4. High Efficiency Ka-Band Spatial Combiner

    Directory of Open Access Journals (Sweden)

    D. Passi

    2014-12-01

    Full Text Available A Ka-Band, High Efficiency, Small Size Spatial Combiner (SPC is proposed in this paper, which uses an innovatively matched quadruple Fin Lines to microstrip (FLuS transitions. At the date of this paper and at the Author's best knowledge no such FLuS innovative transitions have been reported in literature before. These transitions are inserted into a WR28 waveguide T-junction, in order to allow the integration of 16 Monolithic Microwave Integrated Circuit (MMIC Solid State Power Amplifiers (SSPA's. A computational electromagnetic model using the finite elements method has been implemented. A mean insertion loss of 2 dB is achieved with a return loss better the 10 dB in the 31-37 GHz bandwidth.

  5. Multi-petascale highly efficient parallel supercomputer

    Science.gov (United States)

    Asaad, Sameh; Bellofatto, Ralph E.; Blocksome, Michael A.; Blumrich, Matthias A.; Boyle, Peter; Brunheroto, Jose R.; Chen, Dong; Cher, Chen-Yong; Chiu, George L.; Christ, Norman; Coteus, Paul W.; Davis, Kristan D.; Dozsa, Gabor J.; Eichenberger, Alexandre E.; Eisley, Noel A.; Ellavsky, Matthew R.; Evans, Kahn C.; Fleischer, Bruce M.; Fox, Thomas W.; Gara, Alan; Giampapa, Mark E.; Gooding, Thomas M.; Gschwind, Michael K.; Gunnels, John A.; Hall, Shawn A.; Haring, Rudolf A.; Heidelberger, Philip; Inglett, Todd A.; Knudson, Brant L.; Kopcsay, Gerard V.; Kumar, Sameer; Mamidala, Amith R.; Marcella, James A.; Megerian, Mark G.; Miller, Douglas R.; Miller, Samuel J.; Muff, Adam J.; Mundy, Michael B.; O'Brien, John K.; O'Brien, Kathryn M.; Ohmacht, Martin; Parker, Jeffrey J.; Poole, Ruth J.; Ratterman, Joseph D.; Salapura, Valentina; Satterfield, David L.; Senger, Robert M.; Steinmacher-Burow, Burkhard; Stockdell, William M.; Stunkel, Craig B.; Sugavanam, Krishnan; Sugawara, Yutaka; Takken, Todd E.; Trager, Barry M.; Van Oosten, James L.; Wait, Charles D.; Walkup, Robert E.; Watson, Alfred T.; Wisniewski, Robert W.; Wu, Peng

    2018-05-15

    A Multi-Petascale Highly Efficient Parallel Supercomputer of 100 petaflop-scale includes node architectures based upon System-On-a-Chip technology, where each processing node comprises a single Application Specific Integrated Circuit (ASIC). The ASIC nodes are interconnected by a five dimensional torus network that optimally maximize the throughput of packet communications between nodes and minimize latency. The network implements collective network and a global asynchronous network that provides global barrier and notification functions. Integrated in the node design include a list-based prefetcher. The memory system implements transaction memory, thread level speculation, and multiversioning cache that improves soft error rate at the same time and supports DMA functionality allowing for parallel processing message-passing.

  6. The CRRES high efficiency solar panel

    International Nuclear Information System (INIS)

    Trumble, T.M.

    1991-01-01

    This paper reports on the High Efficiency Solar Panel (HESP) experiments which is to provide both engineering and scientific information concerning the effects of space radiation on advanced gallium arsenide (GaAs) solar cells. The HESP experiment consists of an ambient panel, and annealing panel and a programmable load. This experiment, in conjunction with the radiation measurement experiments abroad the CREES, provides the first opportunity to simultaneously measure the trapped radiation belts and the results of radiation damage to solar cells. The engineering information will result in a design guide for selecting the optimum solar array characteristics for different orbits and different lifetimes. The scientific information will provide both correlation of laboratory damage effects to space damage effects and a better model for predicting effective solar cell panel lifetimes

  7. Comparison of aerosol inhalation lung images using BARC and other nebulizers

    International Nuclear Information System (INIS)

    Isawa, Toyoharu; Teshima, Takeo; Anazawa, Yoshiki; Miki, Makoto

    1994-01-01

    Various factors determine the site of inhaled aerosol deposition in the lungs. They are the size of aerosol the composition of carrier gas of the aerosol, the airflow rate, physico-chemical properties of the carrier gas or the aerosol, the shape and structure of the airways, and the body position during inhalation. Aerosol inhalation lung images were obtained in the same subjects using 99m Tc-human serum albumin aerosol generated by 3 different aerosol generators each producing different-sized aerosol and 2 or 3 days apart from each study. The size of aerosol produced by an ultrasonic nebulizer (Mistogen) was 1.93 Micron in activity median aerodynamic diameter (AMAD) with its geometric standard deviation (σg) of 1.73, that by a jet nebulizer (Ultra Vent) was 1.04 micron in AMAD with its σg of 1.71, and that by our BARC nebulizer, a type of a jet nebulizer, was 0.84 micron in AMAD with its σg of 1.73. In addition Technegas was also applied to selected patients. The latter produced aerosol of less than 0.2 micron in size at the largest and the majority, say, 95% or more of the generated aerosol was less than 0.1 micron in size by electron Microscopy. Each subject inhaled aerosol in resting tidal breathing through a mouth-piece with a one way double J valve with the nose clipped in the sitting position. After inhaling approximately 2-3 mCi (74 to 111 MBq) in the thorax, four view lung images were taken: anterior, posterior, and right and left laterals. 300 K counts per view were collected. They were not only pictured on polaroid films as analogue data but also recorded and stored in a computer as digital data. In case of Technegas breathing it for the RV (residual volume) to the TLC (total lung capacity) level followed by breath-holding for 5 to 10 sec in duration was repeated 2 to 3 times as a breathing maneuver instead of tidal breathing. Otherwise deposition efficiency of Technegas is very little because of the small size of the Technegas. Representative 10

  8. Zerodur polishing process for high surface quality and high efficiency

    International Nuclear Information System (INIS)

    Tesar, A.; Fuchs, B.

    1992-08-01

    Zerodur is a glass-ceramic composite importance in applications where temperature instabilities influence optical and mechanical performance, such as in earthbound and spaceborne telescope mirror substrates. Polished Zerodur surfaces of high quality have been required for laser gyro mirrors. Polished surface quality of substrates affects performance of high reflection coatings. Thus, the interest in improving Zerodur polished surface quality has become more general. Beyond eliminating subsurface damage, high quality surfaces are produced by reducing the amount of hydrated material redeposited on the surface during polishing. With the proper control of polishing parameters, such surfaces exhibit roughnesses of < l Angstrom rms. Zerodur polishing was studied to recommend a high surface quality polishing process which could be easily adapted to standard planetary continuous polishing machines and spindles. This summary contains information on a polishing process developed at LLNL which reproducibly provides high quality polished Zerodur surfaces at very high polishing efficiencies

  9. Highly efficient red electrophosphorescent devices at high current densities

    International Nuclear Information System (INIS)

    Wu Youzhi; Zhu Wenqing; Zheng Xinyou; Sun, Runguang; Jiang Xueyin; Zhang Zhilin; Xu Shaohong

    2007-01-01

    Efficiency decrease at high current densities in red electrophosphorescent devices is drastically restrained compared with that from conventional electrophosphorescent devices by using bis(2-methyl-8-quinolinato)4-phenylphenolate aluminum (BAlq) as a hole and exciton blocker. Ir complex, bis(2-(2'-benzo[4,5-α]thienyl) pyridinato-N,C 3' ) iridium (acetyl-acetonate) is used as an emitter, maximum external quantum efficiency (QE) of 7.0% and luminance of 10000cd/m 2 are obtained. The QE is still as high as 4.1% at higher current density J=100mA/cm 2 . CIE-1931 co-ordinates are 0.672, 0.321. A carrier trapping mechanism is revealed to dominate in the process of electroluminescence

  10. White LED with High Package Extraction Efficiency

    International Nuclear Information System (INIS)

    Yi Zheng; Stough, Matthew

    2008-01-01

    The goal of this project is to develop a high efficiency phosphor converting (white) Light Emitting Diode (pcLED) 1-Watt package through an increase in package extraction efficiency. A transparent/translucent monolithic phosphor is proposed to replace the powdered phosphor to reduce the scattering caused by phosphor particles. Additionally, a multi-layer thin film selectively reflecting filter is proposed between blue LED die and phosphor layer to recover inward yellow emission. At the end of the project we expect to recycle approximately 50% of the unrecovered backward light in current package construction, and develop a pcLED device with 80 lm/W e using our technology improvements and commercially available chip/package source. The success of the project will benefit luminous efficacy of white LEDs by increasing package extraction efficiency. In most phosphor-converting white LEDs, the white color is obtained by combining a blue LED die (or chip) with a powdered phosphor layer. The phosphor partially absorbs the blue light from the LED die and converts it into a broad green-yellow emission. The mixture of the transmitted blue light and green-yellow light emerging gives white light. There are two major drawbacks for current pcLEDs in terms of package extraction efficiency. The first is light scattering caused by phosphor particles. When the blue photons from the chip strike the phosphor particles, some blue light will be scattered by phosphor particles. Converted yellow emission photons are also scattered. A portion of scattered light is in the backward direction toward the die. The amount of this backward light varies and depends in part on the particle size of phosphors. The other drawback is that yellow emission from phosphor powders is isotropic. Although some backward light can be recovered by the reflector in current LED packages, there is still a portion of backward light that will be absorbed inside the package and further converted to heat. Heat generated

  11. Tailored Materials for High Efficiency CIDI Engines

    Energy Technology Data Exchange (ETDEWEB)

    Grant, G.J.; Jana, S.

    2012-03-30

    The overall goal of the project, Tailored Materials for High Efficiency Compression Ignition Direct Injection (CIDI) Engines, is to enable the implementation of new combustion strategies, such as homogeneous charge compression ignition (HCCI), that have the potential to significantly increase the energy efficiency of current diesel engines and decrease fuel consumption and environmental emissions. These strategies, however, are increasing the demands on conventional engine materials, either from increases in peak cylinder pressure (PCP) or from increases in the temperature of operation. The specific objective of this project is to investigate the application of a new material processing technology, friction stir processing (FSP), to improve the thermal and mechanical properties of engine components. The concept is to modify the surfaces of conventional, low-cost engine materials. The project focused primarily on FSP in aluminum materials that are compositional analogs to the typical piston and head alloys seen in small- to mid-sized CIDI engines. Investigations have been primarily of two types over the duration of this project: (1) FSP of a cast hypoeutectic Al-Si-Mg (A356/357) alloy with no introduction of any new components, and (2) FSP of Al-Cu-Ni alloys (Alloy 339) by physically stirring-in various quantities of carbon nanotubes/nanofibers or carbon fibers. Experimental work to date on aluminum systems has shown significant increases in fatigue lifetime and stress-level performance in aluminum-silicon alloys using friction processing alone, but work to demonstrate the addition of carbon nanotubes and fibers into aluminum substrates has shown mixed results due primarily to the difficulty in achieving porosity-free, homogeneous distributions of the particulate. A limited effort to understand the effects of FSP on steel materials was also undertaken during the course of this project. Processed regions were created in high-strength, low-alloyed steels up to 0.5 in

  12. High efficiency diffusion molecular retention tumor targeting.

    Directory of Open Access Journals (Sweden)

    Yanyan Guo

    Full Text Available Here we introduce diffusion molecular retention (DMR tumor targeting, a technique that employs PEG-fluorochrome shielded probes that, after a peritumoral (PT injection, undergo slow vascular uptake and extensive interstitial diffusion, with tumor retention only through integrin molecular recognition. To demonstrate DMR, RGD (integrin binding and RAD (control probes were synthesized bearing DOTA (for (111 In(3+, a NIR fluorochrome, and 5 kDa PEG that endows probes with a protein-like volume of 25 kDa and decreases non-specific interactions. With a GFP-BT-20 breast carcinoma model, tumor targeting by the DMR or i.v. methods was assessed by surface fluorescence, biodistribution of [(111In] RGD and [(111In] RAD probes, and whole animal SPECT. After a PT injection, both probes rapidly diffused through the normal and tumor interstitium, with retention of the RGD probe due to integrin interactions. With PT injection and the [(111In] RGD probe, SPECT indicated a highly tumor specific uptake at 24 h post injection, with 352%ID/g tumor obtained by DMR (vs 4.14%ID/g by i.v.. The high efficiency molecular targeting of DMR employed low probe doses (e.g. 25 ng as RGD peptide, which minimizes toxicity risks and facilitates clinical translation. DMR applications include the delivery of fluorochromes for intraoperative tumor margin delineation, the delivery of radioisotopes (e.g. toxic, short range alpha emitters for radiotherapy, or the delivery of photosensitizers to tumors accessible to light.

  13. High collection efficiency CVD diamond alpha detectors

    International Nuclear Information System (INIS)

    Bergonzo, P.; Foulon, F.; Marshall, R.D.; Jany, C.; Brambilla, A.; McKeag, R.D.; Jackman, R.B.

    1998-01-01

    Advances in Chemical Vapor Deposited (CVD) diamond have enabled the routine use of this material for sensor device fabrication, allowing exploitation of its unique combination of physical properties (low temperature susceptibility (> 500 C), high resistance to radiation damage (> 100 Mrad) and to corrosive media). A consequence of CVD diamond growth on silicon is the formation of polycrystalline films which has a profound influence on the physical and electronic properties with respect to those measured on monocrystalline diamond. The authors report the optimization of physical and geometrical device parameters for radiation detection in the counting mode. Sandwich and co-planar electrode geometries are tested and their performances evaluated with regard to the nature of the field profile and drift distances inherent in such devices. The carrier drift length before trapping was measured under alpha particles and values as high as 40% of the overall film thickness are reported. Further, by optimizing the device geometry, they show that a gain in collection efficiency, defined as the induced charge divided by the deposited charge within the material, can be achieved even though lower bias values are used

  14. High bandgap III-V alloys for high efficiency optoelectronics

    Energy Technology Data Exchange (ETDEWEB)

    Alberi, Kirstin; Mascarenhas, Angelo; Wanlass, Mark

    2017-01-10

    High bandgap alloys for high efficiency optoelectronics are disclosed. An exemplary optoelectronic device may include a substrate, at least one Al.sub.1-xIn.sub.xP layer, and a step-grade buffer between the substrate and at least one Al.sub.1-xIn.sub.xP layer. The buffer may begin with a layer that is substantially lattice matched to GaAs, and may then incrementally increase the lattice constant in each sequential layer until a predetermined lattice constant of Al.sub.1-xIn.sub.xP is reached.

  15. Performance of a high efficiency high power UHF klystron

    International Nuclear Information System (INIS)

    Konrad, G.T.

    1977-03-01

    A 500 kW c-w klystron was designed for the PEP storage ring at SLAC. The tube operates at 353.2 MHz, 62 kV, a microperveance of 0.75, and a gain of approximately 50 dB. Stable operation is required for a VSWR as high as 2 : 1 at any phase angle. The design efficiency is 70%. To obtain this value of efficiency, a second harmonic cavity is used in order to produce a very tightly bunched beam in the output gap. At the present time it is planned to install 12 such klystrons in PEP. A tube with a reduced size collector was operated at 4% duty at 500 kW. An efficiency of 63% was observed. The same tube was operated up to 200 kW c-w for PEP accelerator cavity tests. A full-scale c-w tube reached 500 kW at 65 kV with an efficiency of 55%. In addition to power and phase measurements into a matched load, some data at various load mismatches are presented

  16. Series-Tuned High Efficiency RF-Power Amplifiers

    DEFF Research Database (Denmark)

    Vidkjær, Jens

    2008-01-01

    An approach to high efficiency RF-power amplifier design is presented. It addresses simultaneously efficiency optimization and peak voltage limitations when transistors are pushed towards their power limits.......An approach to high efficiency RF-power amplifier design is presented. It addresses simultaneously efficiency optimization and peak voltage limitations when transistors are pushed towards their power limits....

  17. Multi-petascale highly efficient parallel supercomputer

    Science.gov (United States)

    Asaad, Sameh; Bellofatto, Ralph E.; Blocksome, Michael A.; Blumrich, Matthias A.; Boyle, Peter; Brunheroto, Jose R.; Chen, Dong; Cher, Chen -Yong; Chiu, George L.; Christ, Norman; Coteus, Paul W.; Davis, Kristan D.; Dozsa, Gabor J.; Eichenberger, Alexandre E.; Eisley, Noel A.; Ellavsky, Matthew R.; Evans, Kahn C.; Fleischer, Bruce M.; Fox, Thomas W.; Gara, Alan; Giampapa, Mark E.; Gooding, Thomas M.; Gschwind, Michael K.; Gunnels, John A.; Hall, Shawn A.; Haring, Rudolf A.; Heidelberger, Philip; Inglett, Todd A.; Knudson, Brant L.; Kopcsay, Gerard V.; Kumar, Sameer; Mamidala, Amith R.; Marcella, James A.; Megerian, Mark G.; Miller, Douglas R.; Miller, Samuel J.; Muff, Adam J.; Mundy, Michael B.; O'Brien, John K.; O'Brien, Kathryn M.; Ohmacht, Martin; Parker, Jeffrey J.; Poole, Ruth J.; Ratterman, Joseph D.; Salapura, Valentina; Satterfield, David L.; Senger, Robert M.; Smith, Brian; Steinmacher-Burow, Burkhard; Stockdell, William M.; Stunkel, Craig B.; Sugavanam, Krishnan; Sugawara, Yutaka; Takken, Todd E.; Trager, Barry M.; Van Oosten, James L.; Wait, Charles D.; Walkup, Robert E.; Watson, Alfred T.; Wisniewski, Robert W.; Wu, Peng

    2015-07-14

    A Multi-Petascale Highly Efficient Parallel Supercomputer of 100 petaOPS-scale computing, at decreased cost, power and footprint, and that allows for a maximum packaging density of processing nodes from an interconnect point of view. The Supercomputer exploits technological advances in VLSI that enables a computing model where many processors can be integrated into a single Application Specific Integrated Circuit (ASIC). Each ASIC computing node comprises a system-on-chip ASIC utilizing four or more processors integrated into one die, with each having full access to all system resources and enabling adaptive partitioning of the processors to functions such as compute or messaging I/O on an application by application basis, and preferably, enable adaptive partitioning of functions in accordance with various algorithmic phases within an application, or if I/O or other processors are underutilized, then can participate in computation or communication nodes are interconnected by a five dimensional torus network with DMA that optimally maximize the throughput of packet communications between nodes and minimize latency.

  18. Energy Efficient Graphene Based High Performance Capacitors.

    Science.gov (United States)

    Bae, Joonwon; Kwon, Oh Seok; Lee, Chang-Soo

    2017-07-10

    Graphene (GRP) is an interesting class of nano-structured electronic materials for various cutting-edge applications. To date, extensive research activities have been performed on the investigation of diverse properties of GRP. The incorporation of this elegant material can be very lucrative in terms of practical applications in energy storage/conversion systems. Among various those systems, high performance electrochemical capacitors (ECs) have become popular due to the recent need for energy efficient and portable devices. Therefore, in this article, the application of GRP for capacitors is described succinctly. In particular, a concise summary on the previous research activities regarding GRP based capacitors is also covered extensively. It was revealed that a lot of secondary materials such as polymers and metal oxides have been introduced to improve the performance. Also, diverse devices have been combined with capacitors for better use. More importantly, recent patents related to the preparation and application of GRP based capacitors are also introduced briefly. This article can provide essential information for future study. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Highly efficient silicon light emitting diode

    NARCIS (Netherlands)

    Le Minh, P.; Holleman, J.; Wallinga, Hans

    2002-01-01

    In this paper, we describe the fabrication, using standard silicon processing techniques, of silicon light-emitting diodes (LED) that efficiently emit photons with energy around the silicon bandgap. The improved efficiency had been explained by the spatial confinement of charge carriers due to a

  20. A novel high efficiency solar photovoltalic pump

    NARCIS (Netherlands)

    Diepens, J.F.L.; Smulders, P.T.; Vries, de D.A.

    1993-01-01

    The daily average overall efficiency of a solar pump system is not only influenced by the maximum efficiency of the components of the system, but just as much by the correct matching of the components to the local irradiation pattern. Normally centrifugal pumps are used in solar pump systems. The

  1. High efficiency targets for high gain inertial confinement fusion

    International Nuclear Information System (INIS)

    Gardner, J.H.; Bodner, S.E.

    1986-01-01

    Rocket efficiencies as high as 15% are possible using short wavelength lasers and moderately high aspect ratio pellet designs. These designs are made possible by two recent breakthroughs in physics constraints. First is the development of the Induced Spatial Incoherence (ISI) technique which allows uniform illumination of the pellet and relaxes the constraint of thermal smoothing, permitting the use of short wavelength laser light. Second is the discovery that the Rayleigh-Taylor growth rate is considerably reduced at the short laser wavelengths. By taking advantage of the reduced constraints imposed by nonuniform laser illumination and Rayleigh-Taylor instability, pellets using 1/4 micron laser light and initial aspect ratios of about 10 (with in flight aspect ratios of about 150 to 200) may produce energy gains as high as 200 to 250

  2. High power klystrons for efficient reliable high power amplifiers

    Science.gov (United States)

    Levin, M.

    1980-11-01

    This report covers the design of reliable high efficiency, high power klystrons which may be used in both existing and proposed troposcatter radio systems. High Power (10 kW) klystron designs were generated in C-band (4.4 GHz to 5.0 GHz), S-band (2.5 GHz to 2.7 GHz), and L-band or UHF frequencies (755 MHz to 985 MHz). The tubes were designed for power supply compatibility and use with a vapor/liquid phase heat exchanger. Four (4) S-band tubes were developed in the course of this program along with two (2) matching focusing solenoids and two (2) heat exchangers. These tubes use five (5) tuners with counters which are attached to the focusing solenoids. A reliability mathematical model of the tube and heat exchanger system was also generated.

  3. History of aerosol therapy: liquid nebulization to MDIs to DPIs.

    Science.gov (United States)

    Anderson, Paula J

    2005-09-01

    Inhaled therapies have been used since ancient times and may have had their origins with the smoking of datura preparations in India 4,000 years ago. In the late 18th and in the 19th century, earthenware inhalers were popular for the inhalation of air drawn through infusions of plants and other ingredients. Atomizers and nebulizers were developed in the mid-1800s in France and were thought to be an outgrowth of the perfume industry as well as a response to the fashion of inhaling thermal waters at spas. Around the turn of the 20th century, combustible powders and cigarettes containing stramonium were popular for asthma and other lung complaints. Following the discovery of the utility of epinephrine for treating asthma, hand-bulb nebulizers were developed, as well as early compressor nebulizers. The marketing of the first pressurized metered-dose inhaler for epinephrine and isoproterenol, by Riker Laboratories in 1956, was a milestone in the development of inhaled drugs. There have been remarkable advances in the technology of devices and formulations for inhaled drugs in the past 50 years. These have been influenced greatly by scientific developments in several areas: theoretical modeling and indirect measures of lung deposition, particle sizing techniques and in vitro deposition studies, scintigraphic deposition studies, pharmacokinetics and pharmacodynamics, and the 1987 Montreal Protocol, which banned chlorofluorocarbon propellants. We are now in an era of rapid technologic progress in inhaled drug delivery and applications of aerosol science, with the use of the aerosolized route for drugs for systemic therapy and for gene replacement therapy, use of aerosolized antimicrobials and immunosuppressants, and interest in specific targeting of inhaled drugs.

  4. High efficiency quasi-monochromatic infrared emitter

    Energy Technology Data Exchange (ETDEWEB)

    Brucoli, Giovanni; Besbes, Mondher; Benisty, Henri, E-mail: henri.benisty@institutoptique.fr; Greffet, Jean-Jacques [Laboratoire Charles Fabry, UMR 8501, Institut d’Optique, CNRS, Université Paris-Sud 11, 2, Avenue Augustin Fresnel, 91127 Palaiseau Cedex (France); Bouchon, Patrick; Haïdar, Riad [Office National d’Études et de Recherches Aérospatiales, Chemin de la Hunière, 91761 Palaiseau (France)

    2014-02-24

    Incandescent radiation sources are widely used as mid-infrared emitters owing to the lack of alternative for compact and low cost sources. A drawback of miniature hot systems such as membranes is their low efficiency, e.g., for battery powered systems. For targeted narrow-band applications such as gas spectroscopy, the efficiency is even lower. In this paper, we introduce design rules valid for very generic membranes demonstrating that their energy efficiency for use as incandescent infrared sources can be increased by two orders of magnitude.

  5. Nebulized hyaluronan ameliorates lung inflammation in cystic fibrosis mice.

    Science.gov (United States)

    Gavina, Manuela; Luciani, Alessandro; Villella, Valeria R; Esposito, Speranza; Ferrari, Eleonora; Bressani, Ilaria; Casale, Alida; Bruscia, Emanuela M; Maiuri, Luigi; Raia, Valeria

    2013-08-01

    Chronic lung inflammation with increased susceptibility to bacterial infections cause much of the morbidity and mortality in patients with cystic fibrosis (CF), the most common severe, autosomal recessively inherited disease in the Caucasian population. Exogenous inhaled hyaluronan (HA) can exert a protective effect against injury and beneficial effects of HA have been shown in experimental models of chronic respiratory diseases. Our objective was to examine whether exogenous administration of nebulized HA might interfere with lung inflammation in CF. F508del homozygous mice (Cftr(F508del) ) and transgenic mice overexpressing the ENaC channel β-subunit (Scnn1b-Tg) were treated with nebulized HA (0.5 mg/mouse/day for 7 days). Tumor necrosis factor-alpha (TNFα), macrophage inflammatory protein-2 (MIP-2), myeloperoxidase (MPO) levels, and macrophage infiltration were assessed on lung tissues. IB3-1 and CFBE41o-epithelial cell lines were cultured with HA (24 hr, 100 µg/ml) and Reactive Oxygen Species (ROS), Tissue Transglutaminase (TG2) SUMOylation and Peroxisome Proliferator Activated Receptor gamma (PPARγ) and phospho-p42/p44 levels were measured by dichlorodihydrofluorescein assay, or fluorescence resonance energy transfer (FRET) microscopy or immunoblots. Nebulized HA reduced TNFα expression (P < 0.005); TNFα, MIP-2, and MPO protein levels (P < 0.05); MPO activity (P < 0.05); and CD68+ cells counts (P < 0.005) in lung tissues of Cftr(F508del) and Scnn1b-Tg mice, compared with saline-treated mice. HA reduced ROS, TG2 SUMOylation, TG2 activity, phospho-p42-44, and increased PPARγ protein in both IB3-1 and CFBE41o cells (P < 0.05). Nebulized HA is effective in controlling inflammation in vivo in mice CF airways and in vitro in human airway epithelial cells. We provide the proof of concept for the use of inhaled HA as a potential anti-inflammatory drug in CF therapy. Copyright © 2012 Wiley Periodicals, Inc.

  6. Magnetic core-shell nanoparticles for drug delivery by nebulization

    LENUS (Irish Health Repository)

    Verma, Navin Kumar

    2013-01-23

    AbstractBackgroundAerosolized therapeutics hold great potential for effective treatment of various diseases including lung cancer. In this context, there is an urgent need to develop novel nanocarriers suitable for drug delivery by nebulization. To address this need, we synthesized and characterized a biocompatible drug delivery vehicle following surface coating of Fe3O4 magnetic nanoparticles (MNPs) with a polymer poly(lactic-co-glycolic acid) (PLGA). The polymeric shell of these engineered nanoparticles was loaded with a potential anti-cancer drug quercetin and their suitability for targeting lung cancer cells via nebulization was evaluated.ResultsAverage particle size of the developed MNPs and PLGA-MNPs as measured by electron microscopy was 9.6 and 53.2 nm, whereas their hydrodynamic swelling as determined using dynamic light scattering was 54.3 nm and 293.4 nm respectively. Utilizing a series of standardized biological tests incorporating a cell-based automated image acquisition and analysis procedure in combination with real-time impedance sensing, we confirmed that the developed MNP-based nanocarrier system was biocompatible, as no cytotoxicity was observed when up to 100 mug\\/ml PLGA-MNP was applied to the cultured human lung epithelial cells. Moreover, the PLGA-MNP preparation was well-tolerated in vivo in mice when applied intranasally as measured by glutathione and IL-6 secretion assays after 1, 4, or 7 days post-treatment. To imitate aerosol formation for drug delivery to the lungs, we applied quercitin loaded PLGA-MNPs to the human lung carcinoma cell line A549 following a single round of nebulization. The drug-loaded PLGA-MNPs significantly reduced the number of viable A549 cells, which was comparable when applied either by nebulization or by direct pipetting.ConclusionWe have developed a magnetic core-shell nanoparticle-based nanocarrier system and evaluated the feasibility of its drug delivery capability via aerosol administration. This study has

  7. New Form of Hypertonic Solution for Nebulization Therapy

    Directory of Open Access Journals (Sweden)

    Olga I. Simonova

    2016-01-01

    Full Text Available Mucolytic, expectorative and antitussive drugs are traditionally used in acute or chronic respiratory episodes affected by acute respiratory infections. Today, preference is given to drugs in a form of solutions for nebulization therapy. The article presents data on the new dosage form of 7% inhalation hypertonic solution in combination with hyaluronic acid used in mucostasis therapy for chronic respiratory diseases. The information on the properties and the favorable effect of hyaluronic acid is provided. We discuss the evidence base of inhalation of the hypertonic solution in combination with hyaluronic acid in cystic fibrosis.

  8. Energy efficiency of high-rise buildings

    Science.gov (United States)

    Zhigulina, Anna Yu.; Ponomarenko, Alla M.

    2018-03-01

    The article is devoted to analysis of tendencies and advanced technologies in the field of energy supply and energy efficiency of tall buildings, to the history of the emergence of the concept of "efficiency" and its current interpretation. Also the article show the difference of evaluation criteria of the leading rating systems LEED and BREEAM. Authors reviewed the latest technologies applied in the construction of energy efficient buildings. Methodological approach to the design of tall buildings taking into account energy efficiency needs to include the primary energy saving; to seek the possibility of production and accumulation of alternative electric energy by converting energy from the sun and wind with the help of special technical devices; the application of regenerative technologies.

  9. High Efficiency Refrigeration Process, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — It has been proposed by NASA JSC studies, that the most mass efficient (non-nuclear) method of Lunar habitat cooling is via photovoltaic (PV) direct vapor...

  10. Disposition of nebulized pentamidine measured using the direct radiolabel 123I-iodopentamidine

    International Nuclear Information System (INIS)

    O'Doherty, M.J.; Nunan, T.O.; Bateman, N.T.; Thomas, S.H.L.; Page, C.J.; Blower, P.J.

    1993-01-01

    The pulmonary deposition of nebulized pentamidine (300 mg, Respirgard II nebulizer) was measured in seven human immunodeficiency virus (HIV)-positive men using a new radiopharmaceutical, 123 I-iodopentamidine. Mean total pulmonary deposition was 15.3 mg or 5.1% of the initial nebulizer dose. Further studies in two of the patients showed that at 24h, 87% of deposited 123 I was retained in the lungs. Small amounts of activity (expressed as a percentage of the initial nebulizer activity) were also detected over the thyroid (0.4%), bladder (1%) and gut (0.7%). The ratio of 123 I activity to pentamidine concentration was similar in the nebulizer solution and urine. These results suggest that 123 I-pentamidine may be sufficiently stable in vivo to be used to study the biodistribution of inhaled and parenteral pentamidine in humans. (author)

  11. Baby bottle steam sterilizers for disinfecting home nebulizers inoculated with non-tuberculous mycobacteria.

    Science.gov (United States)

    Towle, D; Callan, D A; Lamprea, C; Murray, T S

    2016-03-01

    Non-tuberculous mycobacteria (NTMb), present in environmental water sources, can contribute to respiratory infection in patients with chronic pulmonary disease. Contaminated nebulizers are a potential source of respiratory infection. Treatment with baby bottle steam sterilizers disinfects home nebulizers inoculated with bacterial pathogens but whether this method works for disinfection of NTMb is unclear. Baby bottle steam sterilization was compared with vigorous water washing for disinfecting home nebulizers inoculated with NTMb mixed with cystic fibrosis sputum. No NTMb was recovered from any nebulizers after steam treatment whereas viable NTMb grew after water washing, demonstrating that steam sterilization effectively disinfects NTMb-inoculated nebulizers. Copyright © 2015 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  12. Baby bottle steam sterilizers disinfect home nebulizers inoculated with bacterial respiratory pathogens.

    Science.gov (United States)

    Towle, Dana; Callan, Deborah A; Farrel, Patricia A; Egan, Marie E; Murray, Thomas S

    2013-09-01

    Contaminated nebulizers are a potential source of bacterial infection but no single method is universally accepted for disinfection. We hypothesized that baby-bottle steam sterilizers effectively disinfect home nebulizers. Home nebulizers were inoculated with the common CF respiratory pathogens methicillin resistant Staphylococcus aureus, Burkholderia cepacia, Haemophilus influenzae, mucoid and non mucoid Pseudomonas aeruginosa, and Stenotrophomonas maltophilia. The nebulizers were swabbed for bacterial growth, treated with either the AVENT (Philips), the NUK Quick & Ready (Gerber) or DRY-POD (Camera Baby) baby bottle steam sterilizer and reswabbed for bacterial growth. All steam sterilizers were effective at disinfecting all home nebulizers. Viable bacteria were not recovered from any inoculated site after steam treatment, under any conditions tested. Steam treatment is an effective disinfection method. Additional studies are needed to confirm whether these results are applicable to the clinical setting. Copyright © 2012 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  13. High Power High Efficiency Diode Laser Stack for Processing

    Science.gov (United States)

    Gu, Yuanyuan; Lu, Hui; Fu, Yueming; Cui, Yan

    2018-03-01

    High-power diode lasers based on GaAs semiconductor bars are well established as reliable and highly efficient laser sources. As diode laser is simple in structure, small size, longer life expectancy with the advantages of low prices, it is widely used in the industry processing, such as heat treating, welding, hardening, cladding and so on. Respectively, diode laser could make it possible to establish the practical application because of rectangular beam patterns which are suitable to make fine bead with less power. At this power level, it can have many important applications, such as surgery, welding of polymers, soldering, coatings and surface treatment of metals. But there are some applications, which require much higher power and brightness, e.g. hardening, key hole welding, cutting and metal welding. In addition, High power diode lasers in the military field also have important applications. So all developed countries have attached great importance to high-power diode laser system and its applications. This is mainly due their low performance. In this paper we will introduce the structure and the principle of the high power diode stack.

  14. A retrospective analysis of nebulized versus intravenous fentanyl for renal colic.

    Science.gov (United States)

    Imamoglu, Melih; Aygun, Ali; Bekar, Omer; Erdem, Erkan; Cicek, Mustafa; Tatli, Ozgur; Karaca, Yunus; Sahin, Aynur; Turkmen, Suha; Turedi, Suleyman

    2017-05-01

    To assess the effectiveness of nebulized fentanyl used for analgesia in renal colic. This research was planned as a randomized, blinded study in which prospectively collected data were analyzed retrospectively to compare nebulized and intravenous (iv) fentanyl therapies. Patients with renal colic with 'moderate' or worse pain on a four-point verbal pain score (VPS) or with pain of 20mm or above on a 100-mm visual analogue score (VAS) at time of presentation were randomized into iv fentanyl (n=62) or nebulized fentanyl (n=53) study groups. Decreases in VAS and VPS scores at 15 and 30min compared to baseline, rescue analgesia requirements and side-effects between the groups were compared. Both iv fentanyl and nebulized fentanyl provided effective analgesia in renal colic patients at the end of 30min. However, iv fentanyl provided more rapid and more effective analgesia than nebulized fentanyl. Patients receiving iv fentanyl had lower rescue analgesia requirements than those receiving nebulized fentanyl (37.1% vs 54.7%), although the difference was not statistically significant (p=0.058). In addition, side-effects were more common in the iv fentanyl group compared to the nebulized fentanyl group (22.1% vs 9.4%), although the difference was also not significant (p=0.058). Nebulized fentanyl provides effective analgesia in patients with renal colic. However, iv fentanyl exhibits more rapid and more powerful analgesic effects than nebulized fentanyl. Nonetheless, due to its ease of use and few potential risks and side-effects the nebulized form can be used as an alternative in renal colic. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Designing high efficient solar powered lighting systems

    DEFF Research Database (Denmark)

    Poulsen, Peter Behrensdorff; Thorsteinsson, Sune; Lindén, Johannes

    2016-01-01

    Some major challenges in the development of L2L products is the lack of efficient converter electronics, modelling tools for dimensioning and furthermore, characterization facilities to support the successful development of the products. We report the development of 2 Three-Port-Converters respec...

  16. Humidity control of an incubator using the microcontroller-based active humidifier system employing an ultrasonic nebulizer.

    Science.gov (United States)

    Güler, I; Burunkaya, M

    2002-01-01

    Relative humidity levels of an incubator were measured and controlled. An ultrasonic nebulizer system as an active humidifier was used to humidify the incubator environment. An integrated circuit-type humidity sensor was used to measure the humidity level of the incubator environment. Measurement and control processes were achieved by a PIC microcontroller. The high-performance and high-speed PIC provided the flexibility of the system. The developed system can be used effectively for the intensive care of newborns and/or premature babies. Since the humidifier generates an aerosol in ambient conditions, it is possible to provide the high relative humidity level for therapeutic and diagnostic purposes in medicine.

  17. Impact of airborne particle size, acoustic airflow and breathing pattern on delivery of nebulized antibiotic into the maxillary sinuses using a realistic human nasal replica.

    Science.gov (United States)

    Leclerc, Lara; Pourchez, Jérémie; Aubert, Gérald; Leguellec, Sandrine; Vecellio, Laurent; Cottier, Michèle; Durand, Marc

    2014-09-01

    Improvement of clinical outcome in patients with sinuses disorders involves targeting delivery of nebulized drug into the maxillary sinuses. We investigated the impact of nebulization conditions (with and without 100 Hz acoustic airflow), particle size (9.9 μm, 2.8 μm, 550 nm and 230 nm) and breathing pattern (nasal vs. no nasal breathing) on enhancement of aerosol delivery into the sinuses using a realistic nasal replica developed by our team. After segmentation of the airways by means of high-resolution computed tomography scans, a well-characterized nasal replica was created using a rapid prototyping technology. A total of 168 intrasinus aerosol depositions were performed with changes of aerosol particle size and breathing patterns under different nebulization conditions using gentamicin as a marker. The results demonstrate that the fraction of aerosol deposited in the maxillary sinuses is enhanced by use of submicrometric aerosols, e.g. 8.155 ± 1.476 mg/L of gentamicin in the left maxillary sinus for the 2.8 μm particles vs. 2.056 ± 0.0474 for the 550 nm particles. Utilization of 100-Hz acoustic airflow nebulization also produced a 2- to 3-fold increase in drug deposition in the maxillary sinuses (e.g. 8.155 ± 1.476 vs. 3.990 ± 1.690 for the 2.8 μm particles). Our study clearly shows that optimum deposition was achieved using submicrometric particles and 100-Hz acoustic airflow nebulization with no nasal breathing. It is hoped that our new respiratory nasal replica will greatly facilitate the development of more effective delivery systems in the future.

  18. Energy efficiency indicators for high electric-load buildings

    Energy Technology Data Exchange (ETDEWEB)

    Aebischer, Bernard; Balmer, Markus A.; Kinney, Satkartar; Le Strat, Pascale; Shibata, Yoshiaki; Varone, Frederic

    2003-06-01

    Energy per unit of floor area is not an adequate indicator for energy efficiency in high electric-load buildings. For two activities, restaurants and computer centres, alternative indicators for energy efficiency are discussed.

  19. Efficient and Highly Aldehyde Selective Wacker Oxidation

    KAUST Repository

    Teo, Peili; Wickens, Zachary K.; Dong, Guangbin; Grubbs, Robert H.

    2012-01-01

    A method for efficient and aldehyde-selective Wacker oxidation of aryl-substituted olefins using PdCl 2(MeCN) 2, 1,4-benzoquinone, and t-BuOH in air is described. Up to a 96% yield of aldehyde can be obtained, and up to 99% selectivity can be achieved with styrene-related substrates. © 2012 American Chemical Society.

  20. Efficient and Highly Aldehyde Selective Wacker Oxidation

    KAUST Repository

    Teo, Peili

    2012-07-06

    A method for efficient and aldehyde-selective Wacker oxidation of aryl-substituted olefins using PdCl 2(MeCN) 2, 1,4-benzoquinone, and t-BuOH in air is described. Up to a 96% yield of aldehyde can be obtained, and up to 99% selectivity can be achieved with styrene-related substrates. © 2012 American Chemical Society.

  1. Recent Advances in High Efficiency Solar Cells

    Institute of Scientific and Technical Information of China (English)

    Yoshio; Ohshita; Hidetoshi; Suzuki; Kenichi; Nishimura; Masafumi; Yamaguchi

    2007-01-01

    1 Results The conversion efficiency of sunlight to electricity is limited around 25%,when we use single junction solar cells. In the single junction cells,the major energy losses arise from the spectrum mismatching. When the photons excite carriers with energy well in excess of the bandgap,these excess energies were converted to heat by the rapid thermalization. On the other hand,the light with lower energy than that of the bandgap cannot be absorbed by the semiconductor,resulting in the losses. One way...

  2. High efficiency cyclotron trap assisted positron moderator

    OpenAIRE

    Gerchow, L.; Cooke, D. A.; Braccini, S.; Döbeli, M.; Kirch, K.; Köster, U.; Müller, A.; Van Der Meulen, N. P.; Vermeulen, C.; Rubbia, A.; Crivelli, P.

    2017-01-01

    We report the realisation of a cyclotron trap assisted positron tungsten moderator for the conversion of positrons with a broad keV- few MeV energy spectrum to a mono-energetic eV beam with an efficiency of 1.8(2)% defined as the ratio of the slow positrons divided by the $\\beta^+$ activity of the radioactive source. This is an improvement of almost two orders of magnitude compared to the state of the art of tungsten moderators. The simulation validated with this measurement suggests that usi...

  3. A high-efficiency electromechanical battery

    Science.gov (United States)

    Post, Richard F.; Fowler, T. K.; Post, Stephen F.

    1993-03-01

    In our society there is a growing need for efficient cost-effective means for storing electrical energy. The electric auto is a prime example. Storage systems for the electric utilities, and for wind or solar power, are other examples. While electrochemical cells could in principle supply these needs, the existing E-C batteries have well-known limitations. This article addresses an alternative, the electromechanical battery (EMB). An EMB is a modular unit consisting of an evacuated housing containing a fiber-composite rotor. The rotor is supported by magnetic bearings and contains an integrally mounted permanent magnet array. This article addresses design issues for EMBs with rotors made up of nested cylinders. Issues addressed include rotational stability, stress distributions, generator/motor power and efficiency, power conversion, and cost. It is concluded that the use of EMBs in electric autos could result in a fivefold reduction (relative to the IC engine) in the primary energy input required for urban driving, with a concomitant major positive impact on our economy and on air pollution.

  4. Effect that an educational program for cystic fibrosis patients and caregivers has on the contamination of home nebulizers

    Directory of Open Access Journals (Sweden)

    Adriana Della Zuana

    2014-04-01

    Full Text Available OBJECTIVE: To describe the pathogens found in home nebulizers and in respiratory samples of cystic fibrosis (CF patients, and to evaluate the effect that a standardized instruction regarding cleaning and disinfection of nebulizers has on the frequency of nebulizer contamination. METHODS: We included 40 CF patients (22 males, all of whom used the same model of nebulizer. The median patient age was 11.2 ± 3.74 years. We collected samples from the nebulizer mouthpiece and cup, using a sterile swab moistened with sterile saline. Respiratory samples were collected by asking patients to expectorate into a sterile container or with oropharyngeal swabs after cough stimulation. Cultures were performed on selective media, and bacteria were identified by classical biochemical tests. Patients received oral and written instructions regarding the cleaning and disinfection of nebulizers. All determinations were repeated an average of two months later. RESULTS: Contamination of the nebulizer (any part was detected in 23 cases (57.5%. The nebulizer mouthpiece and cup were found to be contaminated in 16 (40.0% and 19 (47.5%, respectively. After the standardized instruction had been given, there was a significant decrease in the proportion of contaminated nebulizers (43.5%. CONCLUSIONS: In our sample of CF patients, nebulizer contamination was common, indicating the need for improvement in patient practices regarding the cleaning and disinfection of their nebulizers. A one-time educational intervention could have a significant positive impact.

  5. Development of high efficiency neutron detectors

    International Nuclear Information System (INIS)

    Pickrell, M.M.; Menlove, H.O.

    1993-01-01

    The authors have designed a novel neutron detector system using conventional 3 He detector tubes and composites of polyethylene and graphite. At this time the design consists entirely of MCNP simulations of different detector configurations and materials. These detectors are applicable to low-level passive and active neutron assay systems such as the passive add-a-source and the 252 Cf shuffler. Monte Carlo simulations of these neutron detector designs achieved efficiencies of over 35% for assay chambers that can accommodate 55-gal. drums. Only slight increases in the number of detector tubes and helium pressure are required. The detectors also have reduced die-away times. Potential applications are coincident and multiplicity neutron counting for waste disposal and safeguards. The authors will present the general design philosophy, underlying physics, calculation mechanics, and results

  6. High efficient white organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, Stefan; Krause, Ralf [Department of Materials Science VI, University of Erlangen-Nuremberg (Germany); Siemens AG, CT MM 1, Erlangen (Germany); Kozlowski, Fryderyk; Schmid, Guenter; Hunze, Arvid [Siemens AG, CT MM 1, Erlangen (Germany); Winnacker, Albrecht [Department of Materials Science VI, University of Erlangen-Nuremberg (Germany)

    2007-07-01

    Due to the rapid progress in the last years the performance of organic light emitting diodes (OLEDs) has reached a level where general lighting presents a most interesting application target. We demonstrate, how the color coordinates of the emission spectrum can be adjusted using a combinatorial evaporation tool to lie on the desired black body curve representing cold and warm white, respectively. The evaluation includes phosphorescent and fluorescent dye approaches to optimize lifetime and efficiency, simultaneously. Detailed results are presented with respect to variation of layer thicknesses and dopant concentrations of each layer within the OLED stack. The most promising approach contains phosphorescent red and green dyes combined with a fluorescent blue one as blue phosphorescent dopants are not yet stable enough to achieve long lifetimes.

  7. High-Efficient Circuits for Ternary Addition

    Directory of Open Access Journals (Sweden)

    Reza Faghih Mirzaee

    2014-01-01

    Full Text Available New ternary adders, which are fundamental components of ternary addition, are presented in this paper. They are on the basis of a logic style which mostly generates binary signals. Therefore, static power dissipation reaches its minimum extent. Extensive different analyses are carried out to examine how efficient the new designs are. For instance, the ternary ripple adder constructed by the proposed ternary half and full adders consumes 2.33 μW less power than the one implemented by the previous adder cells. It is almost twice faster as well. Due to their unique superior characteristics for ternary circuitry, carbon nanotube field-effect transistors are used to form the novel circuits, which are entirely suitable for practical applications.

  8. A high-efficiency superconductor distributed amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Herr, Q P, E-mail: quentin.herr@ngc.co [Northrop Grumman Corporation, 7323 Aviation Boulevard, Baltimore, MD 21240 (United States)

    2010-02-15

    A superconductor output amplifier that converts single-flux-quantum signals to a non-return-to-zero pattern is reported using a twelve-stage distributed amplifier configuration. The output amplitude is measured to be 1.75 mV over a wide bias current range of {+-} 12%. The bit error rate is measured using a Delta-Sigma data pattern to be less than 1 x 10{sup -9} at 10 Gb s{sup -1} per channel. Analysis of the eye diagram suggests that the actual bit error rate may be much lower. The amplifier has power efficiency of 12% neglecting the termination resistor, which may be eliminated from the circuit with a small modification. (rapid communication)

  9. Influence of the matrix composition in the Emission spectroscopic analysis of solutions with continuous nebulization of the sample and excitation of the spectrum in a high-frequency inductively coupled plasma discharge

    International Nuclear Information System (INIS)

    Zil'bershtein, K.I.; Kartasheva, M.A.; Mushkovich, G.N.

    1986-01-01

    Numerous investigations have shown that the emission spectroscopic analysis of solutions with the use of a high-frequency inductively coupled plasma discharge is characterized by the absence of an influence or the presence of a small influence of the matrix elements on the amplitudes of the analytical signals of the elements being determined and, consequently, on the results of an analysis. The influences of the first type include the influences of easily ionized elements, which, as we know, are very significant in spectroscopic analysis with the use of traditional sources for the excitation of the spectra (arcs, sparks, and flames). The influences of the second type include, in particular, the influences associated with changes in the viscosity and surface tension of the solutions as the concentration of the matrix elements in the solutions is increased. In order to obtain correct results from an analysis in the case of spectral interference, special methods for treating the spectra are used for the purpose of taking into account the background and the instances of superposition and establishing the true (''pure'') intensity of the analytical lines. Results are shown of the Determination of impurities in aqueous solutions of sodium Molybate Single Crystals (the concentration of Na 2 Mo 2 O 7 in the solution was 1 mg/ml). When the solutions being analyzed are diluted to a concentration of Na 2 Mo 2 O 7 equal to 1 mg/ml, good agreement between the results of the determination of vanadium (and other impurities) obtained with the use of reference solutions not containing the matrix elements and the results obtained with the use of reference solutions containing the matrix elements in the same concentrations as in the solutions being analyzed (1mg/ml) was guaranteed

  10. High Efficiency Regenerative Helium Compressor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Helium plays several critical rolls in spacecraft propulsion. High pressure helium is commonly used to pressurize propellant fuel tanks. Helium cryocoolers can be...

  11. Highly Efficient, Durable Regenerative Solid Oxide Stack, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Precision Combustion, Inc. (PCI) proposes to develop a highly efficient regenerative solid oxide stack design. Novel structural elements allow direct internal...

  12. High-efficiency airfoil rudders applied to submarines

    Directory of Open Access Journals (Sweden)

    ZHOU Yimei

    2017-03-01

    Full Text Available Modern submarine design puts forward higher and higher requirements for control surfaces, and this creates a requirement for designers to constantly innovate new types of rudder so as to improve the efficiency of control surfaces. Adopting the high-efficiency airfoil rudder is one of the most effective measures for improving the efficiency of control surfaces. In this paper, we put forward an optimization method for a high-efficiency airfoil rudder on the basis of a comparative analysis of the various strengths and weaknesses of the airfoil, and the numerical calculation method is adopted to analyze the influence rule of the hydrodynamic characteristics and wake field by using the high-efficiency airfoil rudder and the conventional NACA rudder comparatively; at the same time, a model load test in a towing tank was carried out, and the test results and simulation calculation obtained good consistency:the error between them was less than 10%. The experimental results show that the steerage of a high-efficiency airfoil rudder is increased by more than 40% when compared with the conventional rudder, but the total resistance is close:the error is no more than 4%. Adopting a high-efficiency airfoil rudder brings much greater lifting efficiency than the total resistance of the boat. The results show that high-efficiency airfoil rudder has obvious advantages for improving the efficiency of control, giving it good application prospects.

  13. High Efficiency, High Density Terrestrial Panel. [for solar cell modules

    Science.gov (United States)

    Wohlgemuth, J.; Wihl, M.; Rosenfield, T.

    1979-01-01

    Terrestrial panels were fabricated using rectangular cells. Packing densities in excess of 90% with panel conversion efficiencies greater than 13% were obtained. Higher density panels can be produced on a cost competitive basis with the standard salami panels.

  14. 40 CFR 761.71 - High efficiency boilers.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false High efficiency boilers. 761.71... PROHIBITIONS Storage and Disposal § 761.71 High efficiency boilers. (a) To burn mineral oil dielectric fluid containing a PCB concentration of ≥50 ppm, but boiler shall comply with the following...

  15. HIGH EFFICIENCY DESULFURIZATION OF SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Anirban Mukherjee; Kwang-Bok Yi; Elizabeth J. Podlaha; Douglas P. Harrison

    2001-11-01

    Mixed metal oxides containing CeO{sub 2} and ZrO{sub 2} are being studied as high temperature desulfurization sorbents capable of achieving the DOE Vision 21 target of 1 ppmv of less H{sub 2}S. The research is justified by recent results in this laboratory that showed that reduced CeO{sub 2}, designated CeO{sub n} (1.5 < n < 2.0), is capable of achieving the 1 ppmv target in highly reducing gas atmospheres. The addition of ZrO{sub 2} has improved the performance of oxidation catalysts and three-way automotive catalysts containing CeO{sub 2}, and should have similar beneficial effects on CeO{sub 2} desulfurization sorbents. An electrochemical method for synthesizing CeO{sub 2}-ZrO{sub 2} has been developed and the products have been characterized by XRD and TEM during year 01. Nanocrystalline particles having a diameter of about 5 nm and containing from approximately 10 mol% to 80 mol% ZrO{sub 2} have been prepared. XRD showed the product to be a solid solution at low ZrO{sub 2} contents with a separate ZrO{sub 2} phase emerging at higher ZrO{sub 2} levels. Phase separation did not occur when the solid solutions were heat treated at 700 C. A flow reactor system constructed of quartz and teflon has been constructed, and a gas chromatograph equipped with a pulsed flame photometric detector (PFPD) suitable for measuring sub-ppmv levels of H{sub 2}S has been purchased with LSU matching funds. Preliminary desulfurization tests using commercial CeO{sub 2} and CeO{sub 2}-ZrO{sub 2} in highly reducing gas compositions has confirmed that CeO{sub 2}-ZrO{sub 2} is more effective than CeO{sub 2} in removing H{sub 2}S. At 700 C the product H{sub 2}S concentration using CeO{sub 2}-ZrO{sub 2} sorbent was near the 0.1 ppmv PFPD detection limit during the prebreakthrough period.

  16. Highly efficient induction of chirality in intramolecular

    Science.gov (United States)

    Cossio; Arrieta; Lecea; Alajarin; Vidal; Tovar

    2000-06-16

    Highly stereocontrolled, intramolecular [2 + 2] cycloadditions between ketenimines and imines leading to 1,2-dihydroazeto[2, 1-b]quinazolines have been achieved. The source of stereocontrol is a chiral carbon atom adjacent either to the iminic carbon or nitrogen atom. In the first case, the stereocontrol stems from the preference for the axial conformer in the first transition structure. In the second case, the origin of the stereocontrol lies on the two-electron stabilizing interaction between the C-C bond being formed and the sigma orbital corresponding to the polar C-X bond, X being an electronegative atom. These models can be extended to other related systems for predicting the stereochemical outcome in this intramolecular reaction.

  17. High Efficiency, Low Cost Scintillators for PET

    International Nuclear Information System (INIS)

    Kanai Shah

    2007-01-01

    Inorganic scintillation detectors coupled to PMTs are an important element of medical imaging applications such as positron emission tomography (PET). Performance as well as cost of these systems is limited by the properties of the scintillation detectors available at present. The Phase I project was aimed at demonstrating the feasibility of producing high performance scintillators using a low cost fabrication approach. Samples of these scintillators were produced and their performance was evaluated. Overall, the Phase I effort was very successful. The Phase II project will be aimed at advancing the new scintillation technology for PET. Large samples of the new scintillators will be produced and their performance will be evaluated. PET modules based on the new scintillators will also be built and characterized

  18. Compact and highly efficient laser pump cavity

    Science.gov (United States)

    Chang, Jim J.; Bass, Isaac L.; Zapata, Luis E.

    1999-01-01

    A new, compact, side-pumped laser pump cavity design which uses non-conventional optics for injection of laser-diode light into a laser pump chamber includes a plurality of elongated light concentration channels. In one embodiment, the light concentration channels are compound parabolic concentrators (CPC) which have very small exit apertures so that light will not escape from the pumping chamber and will be multiply reflected through the laser rod. This new design effectively traps the pump radiation inside the pump chamber that encloses the laser rod. It enables more uniform laser pumping and highly effective recycle of pump radiation, leading to significantly improved laser performance. This new design also effectively widens the acceptable radiation wavelength of the diodes, resulting in a more reliable laser performance with lower cost.

  19. Analytical evaluation of nebulizers for the introduction of acetic acid extracts aiming at the determination of trace elements by inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Gois, Jefferson S. de; Maranhao, Tatiane de A. [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-970, Florianopolis, SC (Brazil); Oliveira, Fernando J.S. [Petroleo Brasileiro S.A., Gerencia de Meio Ambiente, Rio de Janeiro, RJ (Brazil); Frescura, Vera L.A.; Curtius, Adilson J. [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-970, Florianopolis, SC (Brazil); Borges, Daniel L.G., E-mail: daniel.borges@ufsc.br [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-970, Florianopolis, SC (Brazil)

    2012-11-15

    Most of the official procedures aiming at classification of solid waste toxicity take into account metal solubility and bioavailability by means of extraction experiments using acetic acid solutions. Hence, the aim of this work was to investigate and optimize conditions to suppress the effect of acetic acid on the determination of trace elements using inductively coupled plasma mass spectrometry. The performance of four nebulizers (cross-flow (CFN), ultrasonic (USN), Meinhard (MN) and MicroMist (MMN)) were compared as to their efficiency in minimizing spectral and non-spectral effects on the determination of Ag, As, Ba, Cd, Cr, Hg, Pb and Se, with the ultimate goal to analyze acetic acid extracts obtained from solid waste residues. Operating conditions (desolvation temperatures for USN, RF power and nebulizer gas flow rates) were optimized individually for each nebulizer and for all analytes maintained in 0.14 mol L{sup -1} HNO{sub 3} solutions and in solutions prepared with acetic acid and acetic acid + NaOH, adjusted to pH 2.88 and 4.93, respectively. Pronounced non-spectral interferences for {sup 75}As and {sup 82}Se were observed in the presence of acetic acid for CF and MN, although to a less extent also for MMN and USN. Signal increase for blank solutions measured at m/z 208 ({sup 208}Pb) for CFN and MN, 107 ({sup 107}Ag) for USN and MN coupled to a cyclonic chamber and, m/z 82 ({sup 82}Se) for USN was observed, indicating an increased risk of spectral interference upon an increase in the concentration of acetic acid. Signal increase at specific m/z ratios, however, was not significant when the MMN was used, with the exception of m/z 52 ({sup 52}Cr) in acetic acid solutions, arising from the formation of {sup 40}Ar{sup 12}C{sup +}. This same effect was noticed for all nebulizers, although at noticeably different intensities. A signal stability study was performed, demonstrating that variations in the analytical signal were within a 20% range for all analytes

  20. Comparison of direct injection nebulizer and desolvating microconcentric nebulizer for analysis of chlorine-, bromine- and iodine-containing compounds by reversed phase HPLC with ICP-MS detection

    DEFF Research Database (Denmark)

    Jensen, B.P.; Gammelgaard, Bente; Hansen, S.H.

    2003-01-01

    the direct injection nebulizer at flow rates of 25 and 50 mul min(-1), the influence of 0-50% methanol and 0-25% acetonitrile on the sensitivity was studied. For chlorine and bromine, the relative sensitivity decreased with increasing amounts of organic solvent. For iodine, the relative sensitivity reached...... structure. Many chlorine-, bromine-, and iodine-containing compounds were partially lost in the desolvating unit. For those chlorine- and iodine-containing compounds that were not lost, the sensitivity was independent of methanol concentration in the solvent when a 0-100% methanol gradient was applied......With the purpose of finding ways to combine micro-bore reversed phase HPLC with ICP-MS detection for analysis of drug substances containing chlorine, bromine and iodine, the suitability of a direct injection nebulizer and an Aridus desolvating microconcentric nebulizer was compared. Using...

  1. HIGH EFFICIENCY DESULFURIZATION OF SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Kwang-Bok Yi; Anirban Mukherjee; Elizabeth J. Podlaha; Douglas P. Harrison

    2004-03-01

    Mixed metal oxides containing ceria and zirconia have been studied as high temperature desulfurization sorbents with the objective of achieving the DOE Vision 21 target of 1 ppmv or less H{sub 2}S in the product gas. The research was justified by recent results in this laboratory that showed that reduced CeO{sub 2}, designated CeOn (1.5 < n < 2.0), is capable of achieving the 1 ppmv target in highly reducing gas atmospheres. The addition of ZrO{sub 2} has improved the performance of oxidation catalysts and three-way automotive catalysts containing CeO{sub 2}, and was postulated to have similar beneficial effects on CeO{sub 2} desulfurization sorbents. An electrochemical method for synthesizing CeO{sub 2}-ZrO{sub 2} mixtures was developed and the products were characterized by XRD and TEM during year 01. Nanocrystalline particles having a diameter of about 5 nm and containing from approximately 10 mol% to 80 mol% ZrO{sub 2} were prepared. XRD analysis showed the product to be a solid solution at low ZrO{sub 2} contents with a separate ZrO{sub 2} phase emerging at higher ZrO{sub 2} levels. Unfortunately, the quantity of CeO{sub 2}-ZrO{sub 2} that could be prepared electrochemically was too small to permit desulfurization testing. Also during year 01 a laboratory-scale fixed-bed reactor was constructed for desulfurization testing. All components of the reactor and analytical systems that were exposed to low concentrations of H{sub 2}S were constructed of quartz, Teflon, or silcosteel. Reactor product gas composition as a function of time was determined using a Varian 3800 gas chromatograph equipped with a pulsed flame photometric detector (PFPD) for measuring low H{sub 2}S concentrations from approximately 0.1 to 10 ppmv, and a thermal conductivity detector (TCD) for higher concentrations of H{sub 2}S. Larger quantities of CeO{sub 2}-ZrO{sub 2} mixtures from other sources, including mixtures prepared in this laboratory using a coprecipitation procedure, were obtained

  2. All passive architecture for high efficiency cascaded Raman conversion

    Science.gov (United States)

    Balaswamy, V.; Arun, S.; Chayran, G.; Supradeepa, V. R.

    2018-02-01

    Cascaded Raman fiber lasers have offered a convenient method to obtain scalable, high-power sources at various wavelength regions inaccessible with rare-earth doped fiber lasers. A limitation previously was the reduced efficiency of these lasers. Recently, new architectures have been proposed to enhance efficiency, but this came at the cost of enhanced complexity, requiring an additional low-power, cascaded Raman laser. In this work, we overcome this with a new, all-passive architecture for high-efficiency cascaded Raman conversion. We demonstrate our architecture with a fifth-order cascaded Raman converter from 1117nm to 1480nm with output power of ~64W and efficiency of 60%.

  3. Lactic acidosis and diastolic hypotension after intermittent albuterol nebulization in a pediatric patient

    Directory of Open Access Journals (Sweden)

    Tehila A. Saadia

    2015-01-01

    Full Text Available We describe a case of 13-year-old female with intermittent asthma who developed lactic acidosis and diastolic hypotension after receiving intermittent albuterol nebulizer treatment. She presented to the emergency department (ED with sudden onset of shortness of breath and chest pain. She received two albuterol nebulizer treatments at home without symptomatic relief. She was treated in the ED with intermittent albuterol nebulization for a total of 22.5 mg over the next 5 hours. A decrease in diastolic blood pressure from 60 mmHg to 40 mmHg was noted after the treatment. Blood lactate level was 5.9 mmol/L. She recovered from it and was discharged to home but she had recurrence of shortness of breath and presented to the ED two days later. She was treated with albuterol nebulization for a total of 17.5 mg over the next two and half hours and developed diastolic hypotension again, as low as 30 mm Hg. After discontinuation of albuterol nebulization, her BP normalized. Cardiopulmonary and metabolic side effects of continuous albuterol therapy have been reported in the recent medical literature. Our patient, however, developed these adverse effects on intermittent albuterol nebulizer treatment. It is important for the pediatrician to recognize the adverse effects of β2-agonist therapy to avoid carrying out extensive workup for hypotension and hyperlactatemia prolonging hospital stay.

  4. Stabilization void-fill encapsulation high-efficiency particulate filters

    International Nuclear Information System (INIS)

    Alexander, R.G.; Stewart, W.E.; Phillips, S.J.; Serkowski, M.M.; England, J.L.; Boynton, H.C.

    1994-05-01

    This report discusses high-efficiency particulate air (HEPA) filter systems that which are contaminated with radionuclides are part of the nuclear fuel processing systems conducted by the US Department of Energy (DOE) and require replacement and safe and efficient disposal for plant safety. Two K-3 HEPA filters were removed from service, placed burial boxes, buried, and safely and efficiently stabilized remotely which reduced radiation exposure to personnel and the environment

  5. Design of High Efficiency Illumination for LED Lighting

    OpenAIRE

    Chang, Yong-Nong; Cheng, Hung-Liang; Kuo, Chih-Ming

    2013-01-01

    A high efficiency illumination for LED street lighting is proposed. For energy saving, this paper uses Class-E resonant inverter as main electric circuit to improve efficiency. In addition, single dimming control has the best efficiency, simplest control scheme and lowest circuit cost among other types of dimming techniques. Multiple serial-connected transformers used to drive the LED strings as they can provide galvanic isolation and have the advantage of good current distribution against de...

  6. The Energy Efficiency of High Intensity Proton Driver Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Yakovlev, Vyacheslav [Fermilab; Grillenberger, Joachim [PSI, Villigen; Kim, Sang-Ho [ORNL, Oak Ridge (main); Seidel, Mike [PSI, Villigen; Yoshii, Masahito [JAEA, Ibaraki

    2017-05-01

    For MW class proton driver accelerators the energy efficiency is an important aspect; the talk reviews the efficiency of different accelerator concepts including s.c./n.c. linac, rapid cycling synchrotron, cyclotron; the potential of these concepts for very high beam power is discussed.

  7. Bipolar Mass Spectrometry of Labile Coordination Complexes, Redox Active Inorganic Compounds, and Proteins Using a Glass Nebulizer for Sonic-Spray Ionization

    Science.gov (United States)

    Antonakis, Manolis M.; Tsirigotaki, Alexandra; Kanaki, Katerina; Milios, Constantinos J.; Pergantis, Spiros A.

    2013-08-01

    In this study, we report on the development of a novel nebulizer configuration for sonic-spray ionization (SSI) mass spectrometry (MS), more specifically for a version of SSI that is referred to as Venturi easy ambient sonic-spray ionization (V-EASI) MS. The developed nebulizer configuration is based on a commercially available pneumatic glass nebulizer that has been used extensively for aerosol formation in atomic spectrometry. In the present study, the nebulizer was modified in order to achieve efficient V-EASI-MS operation. Upon evaluating this system, it has been demonstrated that V-EASI-MS offers some distinct advantages for the analysis of coordination compounds and redox active inorganic compounds over the predominantly used electrospray ionization (ESI) technique. Such advantages, for this type of compounds, are demonstrated here for the first time. More specifically, a series of labile heptanuclear heterometallic [CuII 6LnIII] clusters held together with artificial amino acid ligands, in addition to easily oxidized inorganic oxyanions of selenium and arsenic, were analyzed. The observed advantages pertain to V-EASI appearing to be a "milder" ionization source than ESI, not requiring electrical potentials for gas phase ion formation, thus eliminating the possibility of unwanted redox transformations, allowing for the "simultaneous" detection of negative and positive ions (bipolar analysis) without the need to change source ionization conditions, and also not requiring the use of syringes and delivery pumps. Because of such features, especially because of the absence of ionization potentials, EASI can be operated with minimal requirements for source parameter optimization. We observed that source temperature and accelerating voltage do not seem to affect labile compounds to the extent they do in ESI-MS. In addition, bipolar analysis of proteins was demonstrated here by acquiring both positive and negative ion mass spectra from the same protein solutions

  8. Particle transport in a He-microchip plasma atomic emission system with an ultrasonic nebulizer for aqueous sample introduction

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Joosuck [Department of Chemistry, Dankook University, 126 Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi-do, 448-701 (Korea, Republic of); Lim, H.B. [Department of Chemistry, Dankook University, 126 Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi-do, 448-701 (Korea, Republic of)], E-mail: plasma@dankook.ac.kr

    2008-11-15

    The transport efficiency of dried particles generated from an ultrasonic nebulizer (USN) was studied to improve the analytical performance of a lab-made, He-microchip plasma system, in which a quartz tube ({approx} 1 mm i.d.) was positioned inside the central channel of a poly(dimethylsiloxane) (PDMS) polymer chip. The polymer microchip plasma has the advantages of low cost, small size, easy handling and design, and self-ignition with long stabilization (> 24 h). However, direct introduction of aqueous solution into the microplasma for the detection of metals remains problematic due to plasma instability. In addition, the much smaller size of the system can cause signal suppression due to low transport efficiency. Therefore, knowledge of particle transport efficiency in this microplasma system is required to enhance the sensitivity and stability. The weight of transported particles in the range of 0.02 to 10 mg m{sup -3} was measured using a piezobalance with a precision of 0.4-17.8%, depending on the operating conditions. The significant effects of the USN operating conditions and the physical properties of the tubing, namely, length, inner diameter and surface characteristics, on the number of particles transported from the nebulizer to the microplasma were studied. When selected metals, such as Na, Mg and Pb, at a concentration of 5 mg L{sup -1} were nebulized, transported particles were obtained with a mass range of 0.5-5 mg m{sup -3}, depending on atomic weights. For application of the He-rf-microplasma, the atomic emission system was optimized by changing both the radio frequency (rf) power (60-200 W) and cooling temperature of the USN (- 12-9 deg. C). The limits of detection obtained for K, Na and Cu were 0.26, 0.22, and 0.28 mg L{sup -1}, respectively. These results confirmed the suitable stability and sensitivity of the He-rf-PDMS microchip plasma for application as an atomization source.

  9. Short torch design for direct liquid sample introduction using conventional and micro-nebulizers for plasma spectrometry

    Science.gov (United States)

    Montaser, Akbar [Potomac, MD; Westphal, Craig S [Landenberg, PA; Kahen, Kaveh [Montgomery Village, MD; Rutkowski, William F [Arlington, VA

    2008-01-08

    An apparatus and method for providing direct liquid sample introduction using a nebulizer are provided. The apparatus and method include a short torch having an inner tube and an outer tube, and an elongated adapter having a cavity for receiving the nebulizer and positioning a nozzle tip of the nebulizer a predetermined distance from a tip of the outer tube of the short torch. The predetermined distance is preferably about 2-5 mm.

  10. High Efficiency Lighting with Integrated Adaptive Control (HELIAC), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed project is the continued development of the High Efficiency Lighting with Integrated Adaptive Control (HELIAC) system. Solar radiation is not a viable...

  11. High Efficiency Lighting with Integrated Adaptive Control (HELIAC), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation of the proposed project is the development of High Efficiency Lighting with Integrated Adaptive Control (HELIAC) systems to drive plant growth. Solar...

  12. Efficiency of poly-generating high temperature fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Margalef, Pere; Brown, Tim; Brouwer, Jacob; Samuelsen, Scott [National Fuel Cell Research Center (NFCRC), University of California, Irvine, CA 92697-3550 (United States)

    2011-02-15

    High temperature fuel cells can be designed and operated to poly-generate electricity, heat, and useful chemicals (e.g., hydrogen) in a variety of configurations. The highly integrated and synergistic nature of poly-generating high temperature fuel cells, however, precludes a simple definition of efficiency for analysis and comparison of performance to traditional methods. There is a need to develop and define a methodology to calculate each of the co-product efficiencies that is useful for comparative analyses. Methodologies for calculating poly-generation efficiencies are defined and discussed. The methodologies are applied to analysis of a Hydrogen Energy Station (H{sub 2}ES) showing that high conversion efficiency can be achieved for poly-generation of electricity and hydrogen. (author)

  13. An Improved, Highly Efficient Method for the Synthesis of Bisphenols

    Directory of Open Access Journals (Sweden)

    L. S. Patil

    2011-01-01

    Full Text Available An efficient synthesis of bisphenols is described by condensation of substituted phenols with corresponding cyclic ketones in presence of cetyltrimethylammonium chloride and 3-mercaptopropionic acid as a catalyst in extremely high purity and yields.

  14. High Efficiency S-Band 20 Watt Amplifier

    Data.gov (United States)

    National Aeronautics and Space Administration — This project includes the design and build of a prototype 20 W, high efficiency, S-Band amplifier.   The design will incorporate the latest semiconductor technology,...

  15. Minimizing variability of cascade impaction measurements in inhalers and nebulizers.

    Science.gov (United States)

    Bonam, Matthew; Christopher, David; Cipolla, David; Donovan, Brent; Goodwin, David; Holmes, Susan; Lyapustina, Svetlana; Mitchell, Jolyon; Nichols, Steve; Pettersson, Gunilla; Quale, Chris; Rao, Nagaraja; Singh, Dilraj; Tougas, Terrence; Van Oort, Mike; Walther, Bernd; Wyka, Bruce

    2008-01-01

    The purpose of this article is to catalogue in a systematic way the available information about factors that may influence the outcome and variability of cascade impactor (CI) measurements of pharmaceutical aerosols for inhalation, such as those obtained from metered dose inhalers (MDIs), dry powder inhalers (DPIs) or products for nebulization; and to suggest ways to minimize the influence of such factors. To accomplish this task, the authors constructed a cause-and-effect Ishikawa diagram for a CI measurement and considered the influence of each root cause based on industry experience and thorough literature review. The results illustrate the intricate network of underlying causes of CI variability, with the potential for several multi-way statistical interactions. It was also found that significantly more quantitative information exists about impactor-related causes than about operator-derived influences, the contribution of drug assay methodology and product-related causes, suggesting a need for further research in those areas. The understanding and awareness of all these factors should aid in the development of optimized CI methods and appropriate quality control measures for aerodynamic particle size distribution (APSD) of pharmaceutical aerosols, in line with the current regulatory initiatives involving quality-by-design (QbD).

  16. Process development for high-efficiency silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Gee, J.M.; Basore, P.A.; Buck, M.E.; Ruby, D.S.; Schubert, W.K.; Silva, B.L.; Tingley, J.W.

    1991-12-31

    Fabrication of high-efficiency silicon solar cells in an industrial environment requires a different optimization than in a laboratory environment. Strategies are presented for process development of high-efficiency silicon solar cells, with a goal of simplifying technology transfer into an industrial setting. The strategies emphasize the use of statistical experimental design for process optimization, and the use of baseline processes and cells for process monitoring and quality control. 8 refs.

  17. Highly efficient procedure for the transesterification of vegetable oil

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Xuezheng; Gao, Shan; He, Mingyuan [Shanghai Key Laboratory of Green Chemistry and Chemical Process, Department of Chemistry, East China Normal University, Shanghai 200062 (China); Yang, Jianguo [Shanghai Key Laboratory of Green Chemistry and Chemical Process, Department of Chemistry, East China Normal University, Shanghai 200062 (China); Energy Institute, Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States)

    2009-10-15

    The highly efficient procedure has been developed for the synthesis of biodiesel from vegetable oil and methanol. The KF/MgO has been selected as the most efficient catalyst for the reactions with the yield of 99.3%. Operational simplicity, without need of the purification of raw vegetable oil, low cost of the catalyst used, high activities, no saponification and reusability are the key features of this methodology. (author)

  18. The photonic nanowire: A highly efficient single-photon source

    DEFF Research Database (Denmark)

    Gregersen, Niels

    2014-01-01

    The photonic nanowire represents an attractive platform for a quantum light emitter. However, careful optical engineering using the modal method, which elegantly allows access to all relevant physical parameters, is crucial to ensure high efficiency.......The photonic nanowire represents an attractive platform for a quantum light emitter. However, careful optical engineering using the modal method, which elegantly allows access to all relevant physical parameters, is crucial to ensure high efficiency....

  19. Highly Efficient Spontaneous Emission from Self-Assembled Quantum Dots

    DEFF Research Database (Denmark)

    Johansen, Jeppe; Lund-Hansen, Toke; Hvam, Jørn Märcher

    2006-01-01

    We present time resolved measurements of spontaneous emission (SE) from InAs/GaAs quantum dots (QDs). The measurements are interpreted using Fermi's Golden Rule and from this analysis we establish the parameters for high quantum efficiency.......We present time resolved measurements of spontaneous emission (SE) from InAs/GaAs quantum dots (QDs). The measurements are interpreted using Fermi's Golden Rule and from this analysis we establish the parameters for high quantum efficiency....

  20. Global climate change: Mitigation opportunities high efficiency large chiller technology

    Energy Technology Data Exchange (ETDEWEB)

    Stanga, M.V.

    1997-12-31

    This paper, comprised of presentation viewgraphs, examines the impact of high efficiency large chiller technology on world electricity consumption and carbon dioxide emissions. Background data are summarized, and sample calculations are presented. Calculations show that presently available high energy efficiency chiller technology has the ability to substantially reduce energy consumption from large chillers. If this technology is widely implemented on a global basis, it could reduce carbon dioxide emissions by 65 million tons by 2010.

  1. High efficiency USC power plant - present status and future potential

    Energy Technology Data Exchange (ETDEWEB)

    Blum, R. [Faelleskemikerne I/S Fynsvaerket (Denmark); Hald, J. [Elsam/Elkraft/TU Denmark (Denmark)

    1998-12-31

    Increasing demand for energy production with low impact on the environment and minimised fuel consumption can be met with high efficient coal fired power plants with advanced steam parameters. An important key to this improvement is the development of high temperature materials with optimised mechanical strength. Based on the results of more than ten years of development a coal fired power plant with an efficiency above 50 % can now be realised. Future developments focus on materials which enable an efficiency of 52-55 %. (orig.) 25 refs.

  2. High efficiency USC power plant - present status and future potential

    Energy Technology Data Exchange (ETDEWEB)

    Blum, R [Faelleskemikerne I/S Fynsvaerket (Denmark); Hald, J [Elsam/Elkraft/TU Denmark (Denmark)

    1999-12-31

    Increasing demand for energy production with low impact on the environment and minimised fuel consumption can be met with high efficient coal fired power plants with advanced steam parameters. An important key to this improvement is the development of high temperature materials with optimised mechanical strength. Based on the results of more than ten years of development a coal fired power plant with an efficiency above 50 % can now be realised. Future developments focus on materials which enable an efficiency of 52-55 %. (orig.) 25 refs.

  3. Application of slurry nebulization to trace elemental analysis of some biological samples by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Mochizuki, T.; Sakashita, A.; Iwata, H.; Ishibashi, Y.; Gunji, N.

    1991-01-01

    The application of slurry nebulization/inductively coupled plasma mass spectrometry (ICP-MS) to trace elemental analysis of biological samples has been investigated. Three standard samples of the National Institute of Standards and Technology (NIST) were dispersed in 1% aqueous Triton X-100 solution by grinding with a planetary micronizing mill. The resulting slurries were nebulized into an ICP without any additional treatments. The 1% (m/v) slurry of the NIST bovine liver showed no significant influence on cone blockage and signal suppression/enhancement. Detection limit, precision and accuracy were discussed for the determination of 24 elements of interest in bovine liver, rice flour and pine needles. Detection limits ranged from 0.0001 μg g -1 for U to 0.52 μg g -1 for Zn at the effective integrating time of 10 s. For high mass elements, low blank values were obtained, yielding excellent limits ( -1 ). Acceptable accuracy and precision were obtained for most of the elements in the NIST bovine liver and rice flour, even for the volatile elements, such as As, Se and Br. However, relatively poor accuracy was obtained for the analysis of pine needles. (orig.)

  4. Charge transport in highly efficient iridium cored electrophosphorescent dendrimers

    Science.gov (United States)

    Markham, Jonathan P. J.; Samuel, Ifor D. W.; Lo, Shih-Chun; Burn, Paul L.; Weiter, Martin; Bässler, Heinz

    2004-01-01

    Electrophosphorescent dendrimers are promising materials for highly efficient light-emitting diodes. They consist of a phosphorescent core onto which dendritic groups are attached. Here, we present an investigation into the optical and electronic properties of highly efficient phosphorescent dendrimers. The effect of dendrimer structure on charge transport and optical properties is studied using temperature-dependent charge-generation-layer time-of-flight measurements and current voltage (I-V) analysis. A model is used to explain trends seen in the I-V characteristics. We demonstrate that fine tuning the mobility by chemical structure is possible in these dendrimers and show that this can lead to highly efficient bilayer dendrimer light-emitting diodes with neat emissive layers. Power efficiencies of 20 lm/W were measured for devices containing a second-generation (G2) Ir(ppy)3 dendrimer with a 1,3,5-tris(2-N-phenylbenzimidazolyl)benzene electron transport layer.

  5. Very-High Efficiency, High Power Laser Diodes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — AdTech Photonics, in collaboration with the Center for Advanced Studies in Photonics Research (CASPR) at UMBC, is pleased to submit this proposal entitled ?Very-High...

  6. Comparison of efficacy combination of inhaled phormoterol / budesonide turbuhaler vs. combination of nebulized salbutamol / ipratropium bromide on moderate asthma acute exacerbation in Persahabatan Hospital

    Directory of Open Access Journals (Sweden)

    Zulkarnain Barasila

    2006-03-01

    Full Text Available The aim of this study was to compare efficacy combination of phormoterol/budesonide turbuhaler vs. salbutamol/ipratropium bromide nebulization. Main therapy for acute asthma is inhaled short acting β2-agonist. Asthma patients are using two drugs, controller and reliever. Recently there is device-containing combination of long-acting β2-agonist with rapid onset and corticosteroid. This combination can act as reliever and controller. An opened randomized clinical trial of 76 patients between the ages of 12 and 60 years presenting to Persahabatan Hospital with asthma score between 8-12 participated in this study. After initial evaluation, patients were divided into two groups. Thirty-eight patients were administered combination of formoterol/budesonide 4.5/160 µg via turbuhaler (T-group every 20 minutes, total of three doses, and another 38 of salbutamol/ipratropium bromide 2.5/0.25 mg via nebulizer (N-group also with the same manner. There were no statistical difference in sex, mean age, high, weight, initial PEFR, and asthma score between two groups. The significant increased of PEFR and decreased of asthma score were observed in both groups. However, there were no significant difference of PEFR and asthma score between the two groups within every time-interval. Adverse events were mild including hoarseness, tremor and palpitation. Of T-group, 1 subject was suffered from 3 adverse events simultaneously (hoarseness, tremor and palpitation, 5 subjects were only tremor. Of N-group, all 6 subjects were only suffered from tremor. A combination of formoterol/budesonide turbuhaler and a combination of nebulized salbutamol/ipratropium bromide are clinically equivalent for treatment moderate acute asthma. However, nebulized salbutamol/ipratropium bromide had less adverse effects. (Med J Indones 2006; 15:34-42Keywords: phormoterol, budesonide, salbutamol, ipratropium bromide, acute asthma

  7. [Characteristics of phosphorus uptake and use efficiency of rice with high yield and high phosphorus use efficiency].

    Science.gov (United States)

    Li, Li; Zhang, Xi-Zhou; Li, Tinx-Xuan; Yu, Hai-Ying; Ji, Lin; Chen, Guang-Deng

    2014-07-01

    A total of twenty seven middle maturing rice varieties as parent materials were divided into four types based on P use efficiency for grain yield in 2011 by field experiment with normal phosphorus (P) application. The rice variety with high yield and high P efficiency was identified by pot experiment with normal and low P applications, and the contribution rates of various P efficiencies to yield were investigated in 2012. There were significant genotype differences in yield and P efficiency of the test materials. GRLu17/AiTTP//Lu17_2 (QR20) was identified as a variety with high yield and high P efficiency, and its yields at the low and normal rates of P application were 1.96 and 1.92 times of that of Yuxiang B, respectively. The contribution rate of P accumulation to yield was greater than that of P grain production efficiency and P harvest index across field and pot experiments. The contribution rates of P accumulation and P grain production efficiency to yield were not significantly different under the normal P condition, whereas obvious differences were observed under the low P condition (66.5% and 26.6%). The minimal contribution to yield was P harvest index (11.8%). Under the normal P condition, the contribution rates of P accumulation to yield and P harvest index were the highest at the jointing-heading stage, which were 93.4% and 85.7%, respectively. In addition, the contribution rate of P accumulation to grain production efficiency was 41.8%. Under the low P condition, the maximal contribution rates of P accumulation to yield and grain production efficiency were observed at the tillering-jointing stage, which were 56.9% and 20.1% respectively. Furthermore, the contribution rate of P accumulation to P harvest index was 16.0%. The yield, P accumulation, and P harvest index of QR20 significantly increased under the normal P condition by 20.6%, 18.1% and 18.2% respectively compared with that in the low P condition. The rank of the contribution rates of P

  8. High Efficiency of Two Efficient QSDC with Authentication Is at the Cost of Their Security

    International Nuclear Information System (INIS)

    Su-Juan, Qin; Qiao-Yan, Wen; Luo-Ming, Meng; Fu-Chen, Zhu

    2009-01-01

    Two efficient protocols of quantum secure direct communication with authentication [Chin. Phys. Lett. 25 (2008) 2354] were recently proposed by Liu et al. to improve the efficiency of two protocols presented in [Phys. Rev. A 75 (2007) 026301] by four Pauli operations. We show that the high efficiency of the two protocols is at the expense of their security. The authenticator Trent can reach half the secret by a particular attack strategy in the first protocol. In the second protocol, not only Trent but also an eavesdropper outside can elicit half-information about the secret from the public declaration

  9. The emerging High Efficiency Video Coding standard (HEVC)

    International Nuclear Information System (INIS)

    Raja, Gulistan; Khan, Awais

    2013-01-01

    High definition video (HDV) is becoming popular day by day. This paper describes the performance analysis of latest upcoming video standard known as High Efficiency Video Coding (HEVC). HEVC is designed to fulfil all the requirements for future high definition videos. In this paper, three configurations (intra only, low delay and random access) of HEVC are analyzed using various 480p, 720p and 1080p high definition test video sequences. Simulation results show the superior objective and subjective quality of HEVC

  10. High quality, high efficiency welding technology for nuclear power plants

    International Nuclear Information System (INIS)

    Aoki, Shigeyuki; Nagura, Yasumi

    1996-01-01

    For nuclear power plants, it is required to ensure the safety under the high reliability and to attain the high rate of operation. In the manufacture and installation of the machinery and equipment, the welding techniques which become the basis exert large influence to them. For the purpose of improving joint performance and excluding human errors, welding heat input and the number of passes have been reduced, the automation of welding has been advanced, and at present, narrow gap arc welding and high energy density welding such as electron beam welding and laser welding have been put to practical use. Also in the welding of pipings, automatic gas metal arc welding is employed. As for the welding of main machinery and equipment, there are the welding of the joints that constitute pressure boundaries, the build-up welding on the internal surfaces of pressure vessels for separating primary water from them, and the sealing welding of heating tubes and tube plates in steam generators. These weldings are explained. The welding of pipings and the state of development and application of new welding methods are reported. (K.I.)

  11. High-concentration planar microtracking photovoltaic system exceeding 30% efficiency

    Science.gov (United States)

    Price, Jared S.; Grede, Alex J.; Wang, Baomin; Lipski, Michael V.; Fisher, Brent; Lee, Kyu-Tae; He, Junwen; Brulo, Gregory S.; Ma, Xiaokun; Burroughs, Scott; Rahn, Christopher D.; Nuzzo, Ralph G.; Rogers, John A.; Giebink, Noel C.

    2017-08-01

    Prospects for concentrating photovoltaic (CPV) power are growing as the market increasingly values high power conversion efficiency to leverage now-dominant balance of system and soft costs. This trend is particularly acute for rooftop photovoltaic power, where delivering the high efficiency of traditional CPV in the form factor of a standard rooftop photovoltaic panel could be transformative. Here, we demonstrate a fully automated planar microtracking CPV system 660× concentration ratio over a 140∘ full field of view. In outdoor testing over the course of two sunny days, the system operates automatically from sunrise to sunset, outperforming a 17%-efficient commercial silicon solar cell by generating >50% more energy per unit area per day in a direct head-to-head competition. These results support the technical feasibility of planar microtracking CPV to deliver a step change in the efficiency of rooftop solar panels at a commercially relevant concentration ratio.

  12. Development of high-efficiency solar cells on silicon web

    Science.gov (United States)

    Meier, D. L.; Greggi, J.; Okeeffe, T. W.; Rai-Choudhury, P.

    1986-01-01

    Work was performed to improve web base material with a goal of obtaining solar cell efficiencies in excess of 18% (AM1). Efforts in this program are directed toward identifying carrier loss mechanisms in web silicon, eliminating or reducing these mechanisms, designing a high efficiency cell structure with the aid of numerical models, and fabricating high efficiency web solar cells. Fabrication techniques must preserve or enhance carrier lifetime in the bulk of the cell and minimize recombination of carriers at the external surfaces. Three completed cells were viewed by cross-sectional transmission electron microscopy (TEM) in order to investigate further the relation between structural defects and electrical performance of web cells. Consistent with past TEM examinations, the cell with the highest efficiency (15.0%) had no dislocations but did have 11 twin planes.

  13. Efficient Unsteady Flow Visualization with High-Order Access Dependencies

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiang; Guo, Hanqi; Yuan, Xiaoru

    2016-04-19

    We present a novel high-order access dependencies based model for efficient pathline computation in unsteady flow visualization. By taking longer access sequences into account to model more sophisticated data access patterns in particle tracing, our method greatly improves the accuracy and reliability in data access prediction. In our work, high-order access dependencies are calculated by tracing uniformly-seeded pathlines in both forward and backward directions in a preprocessing stage. The effectiveness of our proposed approach is demonstrated through a parallel particle tracing framework with high-order data prefetching. Results show that our method achieves higher data locality and hence improves the efficiency of pathline computation.

  14. Efficient estimation for ergodic diffusions sampled at high frequency

    DEFF Research Database (Denmark)

    Sørensen, Michael

    A general theory of efficient estimation for ergodic diffusions sampled at high fre- quency is presented. High frequency sampling is now possible in many applications, in particular in finance. The theory is formulated in term of approximate martingale estimating functions and covers a large class...

  15. High-Efficiency Klystron Design for the CLIC Project

    CERN Document Server

    Mollard, Antoine; Peauger, Franck; Plouin, Juliette; Beunas, Armel; Marchesin, Rodolphe

    2017-01-01

    The CLIC project requests new type of RF sources for the high power conditioning of the accelerating cavities. We are working on the development of a new kind of high-efficiency klystron to fulfill this need. This work is performed under the EuCARD-2 European program and involves theoretical and experimental study of a brand new klystron concept.

  16. Efficient estimation for high similarities using odd sketches

    DEFF Research Database (Denmark)

    Mitzenmacher, Michael; Pagh, Rasmus; Pham, Ninh Dang

    2014-01-01

    . This means that Odd Sketches provide a highly space-efficient estimator for sets of high similarity, which is relevant in applications such as web duplicate detection, collaborative filtering, and association rule learning. The method extends to weighted Jaccard similarity, relevant e.g. for TF-IDF vector...... and web duplicate detection tasks....

  17. Design of High Efficiency Illumination for LED Lighting

    Directory of Open Access Journals (Sweden)

    Yong-Nong Chang

    2013-01-01

    Full Text Available A high efficiency illumination for LED street lighting is proposed. For energy saving, this paper uses Class-E resonant inverter as main electric circuit to improve efficiency. In addition, single dimming control has the best efficiency, simplest control scheme and lowest circuit cost among other types of dimming techniques. Multiple serial-connected transformers used to drive the LED strings as they can provide galvanic isolation and have the advantage of good current distribution against device difference. Finally, a prototype circuit for driving 112 W LEDs in total was built and tested to verify the theoretical analysis.

  18. High-Efficient Low-Cost Photovoltaics Recent Developments

    CERN Document Server

    Petrova-Koch, Vesselinka; Goetzberger, Adolf

    2009-01-01

    A bird's-eye view of the development and problems of recent photovoltaic cells and systems and prospects for Si feedstock is presented. High-efficient low-cost PV modules, making use of novel efficient solar cells (based on c-Si or III-V materials), and low cost solar concentrators are in the focus of this book. Recent developments of organic photovoltaics, which is expected to overcome its difficulties and to enter the market soon, are also included.

  19. High efficiency heat transport and power conversion system for cascade

    International Nuclear Information System (INIS)

    Maya, I.; Bourque, R.F.; Creedon, R.L.; Schultz, K.R.

    1985-02-01

    The Cascade ICF reactor features a flowing blanket of solid BeO and LiAlO 2 granules with very high temperature capability (up to approx. 2300 K). The authors present here the design of a high temperature granule transport and heat exchange system, and two options for high efficiency power conversion. The centrifugal-throw transport system uses the peripheral speed imparted to the granules by the rotating chamber to effect granule transport and requires no additional equipment. The heat exchanger design is a vacuum heat transfer concept utilizing gravity-induced flow of the granules over ceramic heat exchange surfaces. A reference Brayton power cycle is presented which achieves 55% net efficiency with 1300 K peak helium temperature. A modified Field steam cycle (a hybrid Rankine/Brayton cycle) is presented as an alternate which achieves 56% net efficiency

  20. Highly Efficient Coherent Optical Memory Based on Electromagnetically Induced Transparency

    Science.gov (United States)

    Hsiao, Ya-Fen; Tsai, Pin-Ju; Chen, Hung-Shiue; Lin, Sheng-Xiang; Hung, Chih-Chiao; Lee, Chih-Hsi; Chen, Yi-Hsin; Chen, Yong-Fan; Yu, Ite A.; Chen, Ying-Cheng

    2018-05-01

    Quantum memory is an important component in the long-distance quantum communication based on the quantum repeater protocol. To outperform the direct transmission of photons with quantum repeaters, it is crucial to develop quantum memories with high fidelity, high efficiency and a long storage time. Here, we achieve a storage efficiency of 92.0 (1.5)% for a coherent optical memory based on the electromagnetically induced transparency scheme in optically dense cold atomic media. We also obtain a useful time-bandwidth product of 1200, considering only storage where the retrieval efficiency remains above 50%. Both are the best record to date in all kinds of schemes for the realization of optical memory. Our work significantly advances the pursuit of a high-performance optical memory and should have important applications in quantum information science.

  1. High-efficiency white OLEDs based on small molecules

    Science.gov (United States)

    Hatwar, Tukaram K.; Spindler, Jeffrey P.; Ricks, M. L.; Young, Ralph H.; Hamada, Yuuhiko; Saito, N.; Mameno, Kazunobu; Nishikawa, Ryuji; Takahashi, Hisakazu; Rajeswaran, G.

    2004-02-01

    Eastman Kodak Company and SANYO Electric Co., Ltd. recently demonstrated a 15" full-color, organic light-emitting diode display (OLED) using a high-efficiency white emitter combined with a color-filter array. Although useful for display applications, white emission from organic structures is also under consideration for other applications, such as solid-state lighting, where high efficiency and good color rendition are important. By incorporating adjacent blue and orange emitting layers in a multi-layer structure, highly efficient, stable white emission has been attained. With suitable host and dopant combinations, a luminance yield of 20 cd/A and efficiency of 8 lm/W have been achieved at a drive voltage of less than 8 volts and luminance level of 1000 cd/m2. The estimated external efficiency of this device is 6.3% and a high level of operational stability is observed. To our knowledge, this is the highest performance reported so far for white organic electroluminescent devices. We will review white OLED technology and discuss the fabrication and operating characteristics of these devices.

  2. Low Cost, High Efficiency, High Pressure Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Mark Leavitt

    2010-03-31

    A technical and design evaluation was carried out to meet DOE hydrogen fuel targets for 2010. These targets consisted of a system gravimetric capacity of 2.0 kWh/kg, a system volumetric capacity of 1.5 kWh/L and a system cost of $4/kWh. In compressed hydrogen storage systems, the vast majority of the weight and volume is associated with the hydrogen storage tank. In order to meet gravimetric targets for compressed hydrogen tanks, 10,000 psi carbon resin composites were used to provide the high strength required as well as low weight. For the 10,000 psi tanks, carbon fiber is the largest portion of their cost. Quantum Technologies is a tier one hydrogen system supplier for automotive companies around the world. Over the course of the program Quantum focused on development of technology to allow the compressed hydrogen storage tank to meet DOE goals. At the start of the program in 2004 Quantum was supplying systems with a specific energy of 1.1-1.6 kWh/kg, a volumetric capacity of 1.3 kWh/L and a cost of $73/kWh. Based on the inequities between DOE targets and Quantum’s then current capabilities, focus was placed first on cost reduction and second on weight reduction. Both of these were to be accomplished without reduction of the fuel system’s performance or reliability. Three distinct areas were investigated; optimization of composite structures, development of “smart tanks” that could monitor health of tank thus allowing for lower design safety factor, and the development of “Cool Fuel” technology to allow higher density gas to be stored, thus allowing smaller/lower pressure tanks that would hold the required fuel supply. The second phase of the project deals with three additional distinct tasks focusing on composite structure optimization, liner optimization, and metal.

  3. High Efficient Bidirectional Battery Converter for residential PV Systems

    DEFF Research Database (Denmark)

    Pham, Cam; Kerekes, Tamas; Teodorescu, Remus

    2012-01-01

    Photovoltaic (PV) installation is suited for the residential environment and the generation pattern follows the distribution of residential power consumption in daylight hours. In the cases of unbalance between generation and demand, the Smart PV with its battery storage can absorb or inject...... the power to balance it. High efficient bidirectional converter for the battery storage is required due high system cost and because the power is processed twice. A 1.5kW prototype is designed and built with CoolMOS and SiC diodes, >;95% efficiency has been obtained with 200 kHz hard switching....

  4. Quantitative analysis of lead in aqueous solutions by ultrasonic nebulizer assisted laser induced breakdown spectroscopy

    Science.gov (United States)

    Zhong, Shi-Lei; Lu, Yuan; Kong, Wei-Jin; Cheng, Kai; Zheng, Ronger

    2016-08-01

    In this study, an ultrasonic nebulizer unit was established to improve the quantitative analysis ability of laser-induced breakdown spectroscopy (LIBS) for liquid samples detection, using solutions of the heavy metal element Pb as an example. An analytical procedure was designed to guarantee the stability and repeatability of the LIBS signal. A series of experiments were carried out strictly according to the procedure. The experimental parameters were optimized based on studies of the pulse energy influence and temporal evolution of the emission features. The plasma temperature and electron density were calculated to confirm the LTE state of the plasma. Normalizing the intensities by background was demonstrated to be an appropriate method in this work. The linear range of this system for Pb analysis was confirmed over a concentration range of 0-4,150ppm by measuring 12 samples with different concentrations. The correlation coefficient of the fitted calibration curve was as high as 99.94% in the linear range, and the LOD of Pb was confirmed as 2.93ppm. Concentration prediction experiments were performed on a further six samples. The excellent quantitative ability of the system was demonstrated by comparison of the real and predicted concentrations of the samples. The lowest relative error was 0.043% and the highest was no more than 7.1%.

  5. Innovative-Simplified Nuclear Power Plant Efficiency Evaluation with High-Efficiency Steam Injector System

    International Nuclear Information System (INIS)

    Shoji, Goto; Shuichi, Ohmori; Michitsugu, Mori

    2006-01-01

    It is possible to establish simplified system with reduced space and total equipment weight using high-efficiency Steam Injectors (SI) instead of low-pressure feedwater heaters in Nuclear Power Plant (NPP). The SI works as a heat exchanger through direct contact between feedwater from condensers and extracted steam from turbines. It can get higher pressure than supplied steam pressure. The maintenance and reliability are still higher than the feedwater ones because SI has no movable parts. This paper describes the analysis of the heat balance, plant efficiency and the operation of this Innovative-Simplified NPP with high-efficiency SI. The plant efficiency and operation are compared with the electric power of 1100 MWe-class BWR system and the Innovative-Simplified BWR system with SI. The SI model is adapted into the heat balance simulator with a simplified model. The results show that plant efficiencies of the Innovated-Simplified BWR system are almost equal to original BWR ones. The present research is one of the projects that are carried out by Tokyo Electric Power Company, Toshiba Corporation, and six Universities in Japan, funded from the Institute of Applied Energy (IAE) of Japan as the national public research-funded program. (authors)

  6. A metamaterial electromagnetic energy rectifying surface with high harvesting efficiency

    Directory of Open Access Journals (Sweden)

    Xin Duan

    2016-12-01

    Full Text Available A novel metamaterial rectifying surface (MRS for electromagnetic energy capture and rectification with high harvesting efficiency is presented. It is fabricated on a three-layer printed circuit board, which comprises an array of periodic metamaterial particles in the shape of mirrored split rings, a metal ground, and integrated rectifiers employing Schottky diodes. Perfect impedance matching is engineered at two interfaces, i.e. one between free space and the surface, and the other between the metamaterial particles and the rectifiers, which are connected through optimally positioned vias. Therefore, the incident electromagnetic power is captured with almost no reflection by the metamaterial particles, then channeled maximally to the rectifiers, and finally converted to direct current efficiently. Moreover, the rectifiers are behind the metal ground, avoiding the disturbance of high power incident electromagnetic waves. Such a MRS working at 2.45 GHz is designed, manufactured and measured, achieving a harvesting efficiency up to 66.9% under an incident power density of 5 mW/cm2, compared with a simulated efficiency of 72.9%. This high harvesting efficiency makes the proposed MRS an effective receiving device in practical microwave power transmission applications.

  7. A metamaterial electromagnetic energy rectifying surface with high harvesting efficiency

    Science.gov (United States)

    Duan, Xin; Chen, Xing; Zhou, Lin

    2016-12-01

    A novel metamaterial rectifying surface (MRS) for electromagnetic energy capture and rectification with high harvesting efficiency is presented. It is fabricated on a three-layer printed circuit board, which comprises an array of periodic metamaterial particles in the shape of mirrored split rings, a metal ground, and integrated rectifiers employing Schottky diodes. Perfect impedance matching is engineered at two interfaces, i.e. one between free space and the surface, and the other between the metamaterial particles and the rectifiers, which are connected through optimally positioned vias. Therefore, the incident electromagnetic power is captured with almost no reflection by the metamaterial particles, then channeled maximally to the rectifiers, and finally converted to direct current efficiently. Moreover, the rectifiers are behind the metal ground, avoiding the disturbance of high power incident electromagnetic waves. Such a MRS working at 2.45 GHz is designed, manufactured and measured, achieving a harvesting efficiency up to 66.9% under an incident power density of 5 mW/cm2, compared with a simulated efficiency of 72.9%. This high harvesting efficiency makes the proposed MRS an effective receiving device in practical microwave power transmission applications.

  8. Effects of peritoneal ropivacaine nebulization for pain control after laparoscopic gynecologic surgery.

    Science.gov (United States)

    Somaini, Marta; Brambillasca, Pietro; Ingelmo, Pablo Mauricio; Lovisari, Federica; Catenacci, Stefano Scalia; Rossini, Valeria; Bucciero, Mario; Sahillioglu, Emre; Buda, Alessandro; Signorelli, Mauro; Gili, Mauro; Joshi, Girish; Fumagalli, Roberto; Ferland, Catherine E; Diemunsch, Pierre

    2014-01-01

    To evaluate the effects of peritoneal cold nebulization of ropivacaine on pain control after gynecologic laparoscopy. Evidence obtained from a properly designed, randomized, double-blind, placebo-controlled trial (Canadian Task Force classification I). Tertiary care center. One hundred thirty-five women with American Society of Anesthesiologists disease classified as ASA I-III who were scheduled to undergo operative laparoscopy. Patients were randomized to receive either nebulization of 30 mg ropivacaine before surgery (preoperative group), nebulization of 30 mg ropivacaine after surgery (postoperative group), instillation of 100 mg ropivacaine before surgery (instillation group), or instillation of saline solution (control group). Nebulization was performed using the Aeroneb Pro device. Pain scores, morphine consumption, and ambulation time were collected in the post-anesthesia care unit and at 4, 6, and 24 hours postoperatively. One hundred eighteen patients completed the study. Patients in the preoperative group reported lower pain Numeric Ranking Scale values compared with those in the control group (net difference 2 points; 95% confidence interval [CI], 0.3-3.1 at 4 hours, 1-3 at 6 hours, and 0.7-3 at 24 hours; p = .01) Patients in the preoperative group consumed significantly less morphine than did those in the control group (net difference 7 mg; 95% CI, 0.7-13; p = .02). More patients who received nebulization walked without assistance within 12 hours after awakening than did those in the instillation and control groups (net difference 15%; 95% CI, 6%-24%; p = .001). Cold nebulization of ropivacaine before surgery reduced postoperative pain and morphine consumption and was associated with earlier walking without assistance. Copyright © 2014 AAGL. Published by Elsevier Inc. All rights reserved.

  9. Comparison of numerical simulations to experiments for atomization in a jet nebulizer.

    Science.gov (United States)

    Lelong, Nicolas; Vecellio, Laurent; Sommer de Gélicourt, Yann; Tanguy, Christian; Diot, Patrice; Junqua-Moullet, Alexandra

    2013-01-01

    The development of jet nebulizers for medical purposes is an important challenge of aerosol therapy. The performance of a nebulizer is characterized by its output rate of droplets with a diameter under 5 µm. However the optimization of this parameter through experiments has reached a plateau. The purpose of this study is to design a numerical model simulating the nebulization process and to compare it with experimental data. Such a model could provide a better understanding of the atomization process and the parameters influencing the nebulizer output. A model based on the Updraft nebulizer (Hudson) was designed with ANSYS Workbench. Boundary conditions were set with experimental data then transient 3D calculations were run on a 4 µm mesh with ANSYS Fluent. Two air flow rate (2 L/min and 8 L/min, limits of the operating range) were considered to account for different turbulence regimes. Numerical and experimental results were compared according to phenomenology and droplet size. The behavior of the liquid was compared to images acquired through shadowgraphy with a CCD Camera. Three experimental methods, laser diffractometry, phase Doppler anemometry (PDA) and shadowgraphy were used to characterize the droplet size distributions. Camera images showed similar patterns as numerical results. Droplet sizes obtained numerically are overestimated in relation to PDA and diffractometry, which only consider spherical droplets. However, at both flow rates, size distributions extracted from numerical image processing were similar to distributions obtained from shadowgraphy image processing. The simulation then provides a good understanding and prediction of the phenomena involved in the fragmentation of droplets over 10 µm. The laws of dynamics apply to droplets down to 1 µm, so we can assume the continuity of the distribution and extrapolate the results for droplets between 1 and 10 µm. So, this model could help predicting nebulizer output with defined geometrical and

  10. Comparison of numerical simulations to experiments for atomization in a jet nebulizer.

    Directory of Open Access Journals (Sweden)

    Nicolas Lelong

    Full Text Available The development of jet nebulizers for medical purposes is an important challenge of aerosol therapy. The performance of a nebulizer is characterized by its output rate of droplets with a diameter under 5 µm. However the optimization of this parameter through experiments has reached a plateau. The purpose of this study is to design a numerical model simulating the nebulization process and to compare it with experimental data. Such a model could provide a better understanding of the atomization process and the parameters influencing the nebulizer output. A model based on the Updraft nebulizer (Hudson was designed with ANSYS Workbench. Boundary conditions were set with experimental data then transient 3D calculations were run on a 4 µm mesh with ANSYS Fluent. Two air flow rate (2 L/min and 8 L/min, limits of the operating range were considered to account for different turbulence regimes. Numerical and experimental results were compared according to phenomenology and droplet size. The behavior of the liquid was compared to images acquired through shadowgraphy with a CCD Camera. Three experimental methods, laser diffractometry, phase Doppler anemometry (PDA and shadowgraphy were used to characterize the droplet size distributions. Camera images showed similar patterns as numerical results. Droplet sizes obtained numerically are overestimated in relation to PDA and diffractometry, which only consider spherical droplets. However, at both flow rates, size distributions extracted from numerical image processing were similar to distributions obtained from shadowgraphy image processing. The simulation then provides a good understanding and prediction of the phenomena involved in the fragmentation of droplets over 10 µm. The laws of dynamics apply to droplets down to 1 µm, so we can assume the continuity of the distribution and extrapolate the results for droplets between 1 and 10 µm. So, this model could help predicting nebulizer output with defined

  11. Highly efficient light management for perovskite solar cells.

    Science.gov (United States)

    Wang, Dong-Lin; Cui, Hui-Juan; Hou, Guo-Jiao; Zhu, Zhen-Gang; Yan, Qing-Bo; Su, Gang

    2016-01-06

    Organic-inorganic halide perovskite solar cells have enormous potential to impact the existing photovoltaic industry. As realizing a higher conversion efficiency of the solar cell is still the most crucial task, a great number of schemes were proposed to minimize the carrier loss by optimizing the electrical properties of the perovskite solar cells. Here, we focus on another significant aspect that is to minimize the light loss by optimizing the light management to gain a high efficiency for perovskite solar cells. In our scheme, the slotted and inverted prism structured SiO2 layers are adopted to trap more light into the solar cells, and a better transparent conducting oxide layer is employed to reduce the parasitic absorption. For such an implementation, the efficiency and the serviceable angle of the perovskite solar cell can be promoted impressively. This proposal would shed new light on developing the high-performance perovskite solar cells.

  12. A Low VSWR and High Efficiency Waveguide Feed Antenna Array

    Directory of Open Access Journals (Sweden)

    Zhao Xiao-Fang

    2018-01-01

    Full Text Available A low VSWR and high efficiency antenna array operating in the Ku band for satellite communications is presented in this paper. To achieve high radiation efficiency and broad enough bandwidth, all-metal radiation elements and full-corporate waveguide feeding network are employed. As the general milling method is used in the multilayer antenna array fabrication, the E-plane waveguide feeding network is adopted here to suppress the wave leakage caused by the imperfect connectivity between adjacent layers. A 4 × 8 elements array prototype was fabricated and tested for verification. The measured results of proposed antenna array show bandwidth of 6.9% (13.9–14.8 GHz for VSWR < 1.5. Furthermore, antenna gain and efficiency of higher than 22.2 dBi and 80% are also exhibited, respectively.

  13. Potential high efficiency solar cells: Applications from space photovoltaic research

    Science.gov (United States)

    Flood, D. J.

    1986-01-01

    NASA involvement in photovoltaic energy conversion research development and applications spans over two decades of continuous progress. Solar cell research and development programs conducted by the Lewis Research Center's Photovoltaic Branch have produced a sound technology base not only for the space program, but for terrestrial applications as well. The fundamental goals which have guided the NASA photovoltaic program are to improve the efficiency and lifetime, and to reduce the mass and cost of photovoltaic energy conversion devices and arrays for use in space. The major efforts in the current Lewis program are on high efficiency, single crystal GaAs planar and concentrator cells, radiation hard InP cells, and superlattice solar cells. A brief historical perspective of accomplishments in high efficiency space solar cells will be given, and current work in all of the above categories will be described. The applicability of space cell research and technology to terrestrial photovoltaics will be discussed.

  14. The thermodynamic characteristics of high efficiency, internal-combustion engines

    International Nuclear Information System (INIS)

    Caton, Jerald A.

    2012-01-01

    Highlights: ► The thermodynamics of an automotive engine are determined using a cycle simulation. ► The net indicated thermal efficiency increased from 37.0% to 53.9%. ► High compression ratio, lean mixtures and high EGR were the important features. ► Efficiency increased due to lower heat losses, and increased work conversion. ► The nitric oxides were essentially zero due to the low combustion temperatures. - Abstract: Recent advancements have demonstrated new combustion modes for internal combustion engines that exhibit low nitric oxide emissions and high thermal efficiencies. These new combustion modes involve various combinations of stratification, lean mixtures, high levels of EGR, multiple injections, variable valve timings, two fuels, and other such features. Although the exact combination of these features that provides the best design is not yet clear, the results (low emissions with high efficiencies) are of major interest. The current work is directed at determining some of the fundamental thermodynamic reasons for the relatively high efficiencies and to quantify these factors. Both the first and second laws are used in this assessment. An automotive engine (5.7 l) which included some of the features mentioned above (e.g., high compression ratios, lean mixtures, and high EGR) was evaluated using a thermodynamic cycle simulation. These features were examined for a moderate load (bmep = 900 kPa), moderate speed (2000 rpm) condition. By the use of lean operation, high EGR levels, high compression ratio and other features, the net indicated thermal efficiency increased from 37.0% to 53.9%. These increases are explained in a step-by-step fashion. The major reasons for these improvements include the higher compression ratio and the dilute charge (lean mixture, high EGR). The dilute charge resulted in lower temperatures which in turn resulted in lower heat loss. In addition, the lower temperatures resulted in higher ratios of the specific heats which

  15. Measurement of elemental speciation by liquid chromatography -- inductively coupled plasma mass spectrometry (LC-ICP-MS) with the direct injection nebulizer (DIN)

    Energy Technology Data Exchange (ETDEWEB)

    Shum, Sam [Iowa State Univ., Ames, IA (United States)

    1993-05-01

    This thesis is divided into 4 parts: elemental speciation, speciation of mercury and lead compounds by microbore column LC-ICP-MS with direct injection nebulization, spatially resolved measurements of size and velocity distributions of aerosol droplets from a direct injection nebulizer, and elemental speciation by anion exchange and size exclusion chromatography with detection by ICP-MS with direct injection nebulization.

  16. A nuclear standard high-efficiency adsorber for iodine

    International Nuclear Information System (INIS)

    Wang Jianmin; Qian Yinge

    1988-08-01

    The structure of a nuclear standard high-efficiency adsorber, adsorbent and its performance are introduced. The performance and structure were compared with the same kind product of other firms. The results show that the leakage rate is less than 0.005%

  17. Efficiency criteria for high reliability measured system structures

    International Nuclear Information System (INIS)

    Sal'nikov, N.L.

    2012-01-01

    The procedures of structural redundancy are usually used to develop high reliability measured systems. To estimate efficiency of such structures the criteria to compare different systems has been developed. So it is possible to develop more exact system by inspection of redundant system data unit stochastic characteristics in accordance with the developed criteria [ru

  18. Optimization of high-efficiency components; Optimieren auf hohem Niveau

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Eva

    2009-07-01

    High efficiency is a common feature of modern current inverters and is not a unique selling proposition. Other factors that influence the buyer's decision are cost reduction, reliability and service, optimum grid integration, and the challenges of the competitive thin film technology. (orig.)

  19. Orion, a high efficiency 4π neutron detector

    International Nuclear Information System (INIS)

    Crema, E.; Piasecki, E.; Wang, X.M.; Doubre, H.; Galin, J.; Guerreau, D.; Pouthas, J.; Saint-Laurent, F.

    1990-01-01

    In intermediate energy heavy ion collisions the multiplicity of emitted neutrons is strongly connected to energy dissipation and to impact parameter. We present the 4π detector ORION, a high efficiency liquid scintillator detector which permits to get information on the multiplicity of neutrons measured event-wise and on the spatial distribution of these neutrons [fr

  20. High efficiency hydrodynamic DNA fragmentation in a bubbling system

    NARCIS (Netherlands)

    Li, Lanhui; Jin, Mingliang; Sun, Chenglong; Wang, Xiaoxue; Xie, Shuting; Zhou, Guofu; Van Den Berg, Albert; Eijkel, Jan C.T.; Shui, Lingling

    2017-01-01

    DNA fragmentation down to a precise fragment size is important for biomedical applications, disease determination, gene therapy and shotgun sequencing. In this work, a cheap, easy to operate and high efficiency DNA fragmentation method is demonstrated based on hydrodynamic shearing in a bubbling

  1. High efficiency confinement mode by electron cyclotron heating

    International Nuclear Information System (INIS)

    Funahashi, Akimasa

    1987-01-01

    In the medium size nuclear fusion experiment facility JFT-2M in the Japan Atomic Energy Research Institute, the research on the high efficiency plasma confinement mode has been advanced, and in the experiment in June, 1987, the formation of a high efficiency confinement mode was successfully controlled by electron cyclotron heating, for the first time in the world. This result further advanced the control of the formation of a high efficiency plasma confinement mode and the elucidation of the physical mechanism of that mode, and promoted the research and development of the plasma heating by electron cyclotron heating. In this paper, the recent results of the research on a high efficiency confinement mode at the JFT-2M are reported, and the role of the JFT-2M and the experiment on the improvement of core plasma performance are outlined. Now the plasma temperature exceeding 100 million deg C has been attained in large tokamaks, and in medium size facilities, the various measures for improving confinement performance are to be brought forth and their scientific basis is elucidated to assist large facilities. The JFT-2M started the operation in April, 1983, and has accumulated the results smoothly since then. (Kako, I.)

  2. Super Boiler: First Generation, Ultra-High Efficiency Firetube Boiler

    Energy Technology Data Exchange (ETDEWEB)

    None

    2006-06-01

    This factsheet describes a research project whose goal is to develop and demonstrate a first-generation ultra-high-efficiency, ultra-low emissions, compact gas-fired package boiler (Super Boiler), and formulate a long-range RD&D plan for advanced boiler technology out to the year 2020.

  3. High-efficient solar cells with porous silicon

    International Nuclear Information System (INIS)

    Migunova, A.A.

    2002-01-01

    It has been shown that the porous silicon is multifunctional high-efficient coating on silicon solar cells, modifies its surface and combines in it self antireflection and passivation properties., The different optoelectronic effects in solar cells with porous silicon were considered. The comparative parameters of uncovered photodetectors also solar cells with porous silicon and other coatings were resulted. (author)

  4. Benefits of high aerodynamic efficiency to orbital transfer vehicles

    Science.gov (United States)

    Andrews, D. G.; Norris, R. B.; Paris, S. W.

    1984-01-01

    The benefits and costs of high aerodynamic efficiency on aeroassisted orbital transfer vehicles (AOTV) are analyzed. Results show that a high lift to drag (L/D) AOTV can achieve significant velocity savings relative to low L/D aerobraked OTV's when traveling round trip between low Earth orbits (LEO) and alternate orbits as high as geosynchronous Earth orbit (GEO). Trajectory analysis is used to show the impact of thermal protection system technology and the importance of lift loading coefficient on vehicle performance. The possible improvements in AOTV subsystem technologies are assessed and their impact on vehicle inert weight and performance noted. Finally, the performance of high L/D AOTV concepts is compared with the performances of low L/D aeroassisted and all propulsive OTV concepts to assess the benefits of aerodynamic efficiency on this class of vehicle.

  5. High efficiency inductive output tubes with intense annular electron beams

    Science.gov (United States)

    Appanam Karakkad, J.; Matthew, D.; Ray, R.; Beaudoin, B. L.; Narayan, A.; Nusinovich, G. S.; Ting, A.; Antonsen, T. M.

    2017-10-01

    For mobile ionospheric heaters, it is necessary to develop highly efficient RF sources capable of delivering radiation in the frequency range from 3 to 10 MHz with an average power at a megawatt level. A promising source, which is capable of offering these parameters, is a grid-less version of the inductive output tube (IOT), also known as a klystrode. In this paper, studies analyzing the efficiency of grid-less IOTs are described. The basic trade-offs needed to reach high efficiency are investigated. In particular, the trade-off between the peak current and the duration of the current micro-pulse is analyzed. A particle in the cell code is used to self-consistently calculate the distribution in axial and transverse momentum and in total electron energy from the cathode to the collector. The efficiency of IOTs with collectors of various configurations is examined. It is shown that the efficiency of IOTs can be in the 90% range even without using depressed collectors.

  6. How high are option values in energy-efficiency investments?

    International Nuclear Information System (INIS)

    Sanstad, A.H.; Blumstein, C.; Stoft, S.E.; California Univ., Berkeley, CA,

    1995-01-01

    High implicit discount rates in consumers' energy-efficiency investments have long been a source of controversy. In several recent papers, Hassett and Metcalf argue that the uncertainty and irreversibility attendant to such investments, and the resulting option value, account for this anomalously high implicit discounting. Using their model and data, we show that, to the contrary, their analysis falls well short of providing an explanation of this pattern. (author)

  7. Efficiency and Loading Evaluation of High Efficiency Mist Eliminators (HEME) - 12003

    Energy Technology Data Exchange (ETDEWEB)

    Giffin, Paxton K.; Parsons, Michael S.; Waggoner, Charles A. [Institute for Clean Energy Technology, Mississippi State University, 205 Research Blvd Starkville, MS 39759 (United States)

    2012-07-01

    High efficiency mist eliminators (HEME) are filters primarily used to remove moisture and/or liquid aerosols from an air stream. HEME elements are designed to reduce aerosol and particulate load on primary High Efficiency Particulate Air (HEPA) filters and to have a liquid particle removal efficiency of approximately 99.5% for aerosols down to sub-micron size particulates. The investigation presented here evaluates the loading capacity of the element in the absence of a water spray cleaning system. The theory is that without the cleaning system, the HEME element will suffer rapid buildup of solid aerosols, greatly reducing the particle loading capacity. Evaluation consists of challenging the element with a waste surrogate dry aerosol and di-octyl phthalate (DOP) at varying intervals of differential pressure to examine the filtering efficiency of three different element designs at three different media velocities. Also, the elements are challenged with a liquid waste surrogate using Laskin nozzles and large dispersion nozzles. These tests allow the loading capacity of the unit to be determined and the effectiveness of washing down the interior of the elements to be evaluated. (authors)

  8. Heat pumps; Synergy of high efficiency and low carbon electricity

    Energy Technology Data Exchange (ETDEWEB)

    Koike, Akio

    2010-09-15

    Heat pump is attracting wide attention for its high efficiency to utilize inexhaustible and renewable ambient heat in the environment. With its rapid innovation and efficiency improvement, this technology has a huge potential to reduce CO2 emissions by replacing currently widespread fossil fuel combustion systems to meet various heat demands from the residential, commercial and industrial sectors. Barriers to deployment such as low public awareness and a relatively long pay-back period do exist, so it is strongly recommended that each country implement policies to promote heat pumps as a renewable energy option and an effective method to combat global warming.

  9. Development of large area, high efficiency amorphous silicon solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, K.S.; Kim, S.; Kim, D.W. [Yu Kong Taedok Institute of Technology (Korea, Republic of)

    1996-02-01

    The objective of the research is to develop the mass-production technologies of high efficiency amorphous silicon solar cells in order to reduce the costs of solar cells and dissemination of solar cells. Amorphous silicon solar cell is the most promising option of thin film solar cells which are relatively easy to reduce the costs. The final goal of the research is to develop amorphous silicon solar cells having the efficiency of 10%, the ratio of light-induced degradation 15% in the area of 1200 cm{sup 2} and test the cells in the form of 2 Kw grid-connected photovoltaic system. (author) 35 refs., 8 tabs., 67 figs.

  10. Iodine laser of high efficiency and fast repetition rate

    Energy Technology Data Exchange (ETDEWEB)

    Hohla, K; Witte, K J

    1976-07-01

    The scaling laws of an iodine laser of high efficiency and fast repetition rate are reported. The laser is pumped with a new kind of low pressure Hg-UV-lamps which convert 32% of the electrical input in UV-light in the absorption band of the iodine laser and which can be fired up to 100 Hz. Details of a 10 kJ/1 nsec system as dimensions, energy density, repetition rate, flow velocity, gas composition and gas pressure and the overall efficiency are given which is expected to be about 2%.

  11. The problems of high efficient extraction from the isochronous cyclotron

    International Nuclear Information System (INIS)

    Schwabe, J.

    1994-06-01

    The problem of high efficient extraction (η ≥ 50%) from isochronous cyclotrons (with the exception of the stripping method) is not completely solved up to this day. This problem is specifically important, because these cyclotrons are being also applied in the production of medical radioisotopes, labeled pharmaceuticals as well as in neutron therapy (oncology), machine industry, agriculture (plant mutagenesis), etc. The aim of the proposed topic is to solve this problem on the AIC-144 isochronous cyclotron in the INP (Institute of Nuclear Physics). Lately, a beam of 20 MeV deuterons with an efficiency of ca. 15% was extracted from this cyclotron. (author). 25 refs, 14 figs

  12. Highly Flexible and Efficient Solar Steam Generation Device.

    Science.gov (United States)

    Chen, Chaoji; Li, Yiju; Song, Jianwei; Yang, Zhi; Kuang, Yudi; Hitz, Emily; Jia, Chao; Gong, Amy; Jiang, Feng; Zhu, J Y; Yang, Bao; Xie, Jia; Hu, Liangbing

    2017-08-01

    Solar steam generation with subsequent steam recondensation has been regarded as one of the most promising techniques to utilize the abundant solar energy and sea water or other unpurified water through water purification, desalination, and distillation. Although tremendous efforts have been dedicated to developing high-efficiency solar steam generation devices, challenges remain in terms of the relatively low efficiency, complicated fabrications, high cost, and inability to scale up. Here, inspired by the water transpiration behavior of trees, the use of carbon nanotube (CNT)-modified flexible wood membrane (F-Wood/CNTs) is demonstrated as a flexible, portable, recyclable, and efficient solar steam generation device for low-cost and scalable solar steam generation applications. Benefitting from the unique structural merits of the F-Wood/CNTs membrane-a black CNT-coated hair-like surface with excellent light absorbability, wood matrix with low thermal conductivity, hierarchical micro- and nanochannels for water pumping and escaping, solar steam generation device based on the F-Wood/CNTs membrane demonstrates a high efficiency of 81% at 10 kW cm -2 , representing one of the highest values ever-reported. The nature-inspired design concept in this study is straightforward and easily scalable, representing one of the most promising solutions for renewable and portable solar energy generation and other related phase-change applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A comparison of continuous pneumatic nebulization and flow injection-direct injection nebulization for sample introduction in inductively coupled plasma-mass spectrometry

    International Nuclear Information System (INIS)

    Crain, J.S.; Kiely, J.T.

    1995-08-01

    Dilute nitric acid blanks and solutions containing Ni, Cd, Pb, and U (including two laboratory waste samples) were analyzed eighteen times over a two-month period using inductively coupled plasma-mass spectrometry (ICP-MS). Two different sample introduction techniques were employed: flow injection-direct injection nebulization (FI-DIN) and continuous pneumatic nebulization (CPN). Using comparable instrumental measurement procedures, FI-DIN analyses were 33% faster and generated 52% less waste than CPN analyses. Instrumental limits of detection obtained with FI-DIN and CPN were comparable but not equivalent (except in the case of Pb) because of nebulizer-related differences in sensitivity (i.e., signal per unit analyte concentration) and background. Substantial and statistically significant differences were found between FI-DIN and CPN Ni determinations, and in the case of the laboratory waste samples, there were also small but statistically significant differences between Cd determinations. These small (2 to 3%) differences were not related to polyatomic ion interference (e.g., 95 Mo 16 O + ), but in light of the time savings and waste reduction to be realized, they should not preclude the use of FI-DIN in place of CPN for determination of Cd, Pb, U and chemically

  14. Simple processing of high efficiency silicon solar cells

    International Nuclear Information System (INIS)

    Hamammu, I.M.; Ibrahim, K.

    2006-01-01

    Cost effective photovoltaic devices have been an area research since the development of the first solar cells, as cost is the major factor in their usage. Silicon solar cells have the biggest share in the photovoltaic market, though silicon os not the optimal material for solar cells. This work introduces a simplified approach for high efficiency silicon solar cell processing, by minimizing the processing steps and thereby reducing cost. The suggested procedure might also allow for the usage of lower quality materials compared to the one used today. The main features of the present work fall into: simplifying the diffusion process, edge shunt isolation and using acidic texturing instead of the standard alkaline processing. Solar cells of 17% efficiency have been produced using this procedure. Investigations on the possibility of improving the efficiency and using less quality material are still underway

  15. High efficiency graphene coated copper based thermocells connected in series

    Science.gov (United States)

    Sindhuja, Mani; Indubala, Emayavaramban; Sudha, Venkatachalam; Harinipriya, Seshadri

    2018-04-01

    Conversion of low-grade waste heat into electricity had been studied employing single thermocell or flowcells so far. Graphene coated copper electrodes based thermocells connected in series displayed relatively high efficiency of thermal energy harvesting. The maximum power output of 49.2W/m2 for normalized cross sectional electrode area is obtained at 60ºC of inter electrode temperature difference. The relative carnot efficiency of 20.2% is obtained from the device. The importance of reducing the mass transfer and ion transfer resistance to improve the efficiency of the device is demonstrated. Degradation studies confirmed mild oxidation of copper foil due to corrosion caused by the electrolyte.

  16. High Efficiency Graphene Coated Copper Based Thermocells Connected in Series

    Directory of Open Access Journals (Sweden)

    Mani Sindhuja

    2018-04-01

    Full Text Available Conversion of low-grade waste heat into electricity had been studied employing single thermocell or flowcells so far. Graphene coated copper electrodes based thermocells connected in series displayed relatively high efficiency of thermal energy harvesting. The maximum power output of 49.2 W/m2 for normalized cross sectional electrode area is obtained at 60°C of inter electrode temperature difference. The relative carnot efficiency of 20.2% is obtained from the device. The importance of reducing the mass transfer and ion transfer resistance to improve the efficiency of the device is demonstrated. Degradation studies confirmed mild oxidation of copper foil due to corrosion caused by the electrolyte.

  17. Rigid-beam model of a high-efficiency magnicon

    International Nuclear Information System (INIS)

    Rees, D.E.; Tallerico, P.J.; Humphries, S.J. Jr.

    1993-01-01

    The magnicon is a new type of high-efficiency deflection-modulated amplifier developed at the Institute of Nuclear Physics in Novosibirsk, Russia. The prototype pulsed magnicon achieved an output power of 2.4 MW and an efficiency of 73% at 915 MHz. This paper presents the results of a rigid-beam model for a 700-MHz, 2.5-MW 82%-efficient magnicon. The rigid-beam model allows for characterization of the beam dynamics by tracking only a single electron. The magnicon design presented consists of a drive cavity; passive cavities; a pi-mode, coupled-deflection cavity; and an output cavity. It represents an optimized design. The model is fully self-consistent, and this paper presents the details of the model and calculated performance of a 2.5-MW magnicon

  18. HIGH JET EFFICIENCY AND SIMULATIONS OF BLACK HOLE MAGNETOSPHERES

    International Nuclear Information System (INIS)

    Punsly, Brian

    2011-01-01

    This Letter reports on a growing body of observational evidence that many powerful lobe-dominated (FR II) radio sources likely have jets with high efficiency. This study extends the maximum efficiency line (jet power ∼25 times the thermal luminosity) defined in Fernandes et al. so as to span four decades of jet power. The fact that this line extends over the full span of FR II radio power is a strong indication that this is a fundamental property of jet production that is independent of accretion power. This is a valuable constraint for theorists. For example, the currently popular 'no-net-flux' numerical models of black hole accretion produce jets that are two to three orders of magnitude too weak to be consistent with sources near maximum efficiency.

  19. High efficiency particulate removal with sintered metal filters

    International Nuclear Information System (INIS)

    Kirstein, B.E.; Paplawsky, W.J.; Pence, D.T.; Hedahl, T.G.

    1981-01-01

    Because of their particle removal efficiencies and durability, sintered metal filters have been chosen for high efficiency particulate air (HEPA) filter protection in the off-gas treatment system for the proposed Idaho National Engineering Laboratory Transuranic Waste Treatment Facility. Process evaluation of sintered metal filters indicated a lack of sufficient process design data to ensure trouble-free operation. Subsequence pilot scale testing was performed with flyash as the test particulate. The test results showed that the sintered metal filters can have an efficiency greater than 0.9999999 for the specific test conditions used. Stable pressure drop characteristics were observed in pulsed and reversed flow blowback modes of operation. Over 4900 hours of operation were obtained with operating conditions ranging up to approximately 90 0 C and 24 vol % water vapor in the gas stream

  20. 3rd symposium on high-efficiency boiler technology: potential, performance, shortcomings of natural gas fuelled high-efficiency boilers

    International Nuclear Information System (INIS)

    1993-01-01

    The brochure contains abstracts of the papers presented at the symposium. The potential, performance and marketing problems of natural gas high-efficiency boiler systems are outlined, and new ideas are presented for gas utilities, producers of appliances, fitters, and chimneysweeps. 13 papers are available as separate regards in this database. (HW) [de

  1. Lightweight High Efficiency Electric Motors for Space Applications

    Science.gov (United States)

    Robertson, Glen A.; Tyler, Tony R.; Piper, P. J.

    2011-01-01

    Lightweight high efficiency electric motors are needed across a wide range of space applications from - thrust vector actuator control for launch and flight applications to - general vehicle, base camp habitat and experiment control for various mechanisms to - robotics for various stationary and mobile space exploration missions. QM Power?s Parallel Path Magnetic Technology Motors have slowly proven themselves to be a leading motor technology in this area; winning a NASA Phase II for "Lightweight High Efficiency Electric Motors and Actuators for Low Temperature Mobility and Robotics Applications" a US Army Phase II SBIR for "Improved Robot Actuator Motors for Medical Applications", an NSF Phase II SBIR for "Novel Low-Cost Electric Motors for Variable Speed Applications" and a DOE SBIR Phase I for "High Efficiency Commercial Refrigeration Motors" Parallel Path Magnetic Technology obtains the benefits of using permanent magnets while minimizing the historical trade-offs/limitations found in conventional permanent magnet designs. The resulting devices are smaller, lower weight, lower cost and have higher efficiency than competitive permanent magnet and non-permanent magnet designs. QM Power?s motors have been extensively tested and successfully validated by multiple commercial and aerospace customers and partners as Boeing Research and Technology. Prototypes have been made between 0.1 and 10 HP. They are also in the process of scaling motors to over 100kW with their development partners. In this paper, Parallel Path Magnetic Technology Motors will be discussed; specifically addressing their higher efficiency, higher power density, lighter weight, smaller physical size, higher low end torque, wider power zone, cooler temperatures, and greater reliability with lower cost and significant environment benefit for the same peak output power compared to typically motors. A further discussion on the inherent redundancy of these motors for space applications will be provided.

  2. Test Program for High Efficiency Gas Turbine Exhaust Diffuser

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Thomas R.

    2009-12-31

    This research relates to improving the efficiency of flow in a turbine exhaust, and thus, that of the turbine and power plant. The Phase I SBIR project demonstrated the technical viability of “strutlets” to control stalls on a model diffuser strut. Strutlets are a novel flow-improving vane concept intended to improve the efficiency of flow in turbine exhausts. Strutlets can help reduce turbine back pressure, and incrementally improve turbine efficiency, increase power, and reduce greenhouse gas emmission. The long-term goal is a 0.5 percent improvement of each item, averaged over the US gas turbine fleet. The strutlets were tested in a physical scale model of a gas turbine exhaust diffuser. The test flow passage is a straight, annular diffuser with three sets of struts. At the end of Phase 1, the ability of strutlets to keep flow attached to struts was demonstrated, but the strutlet drag was too high for a net efficiency advantage. An independently sponsored followup project did develop a highly-modified low-drag strutlet. In combination with other flow improving vanes, complicance to the stated goals was demonstrated for for simple cycle power plants, and to most of the goals for combined cycle power plants using this particular exhaust geometry. Importantly, low frequency diffuser noise was reduced by 5 dB or more, compared to the baseline. Appolicability to other diffuser geometries is yet to be demonstrated.

  3. Efficient Smoothed Concomitant Lasso Estimation for High Dimensional Regression

    Science.gov (United States)

    Ndiaye, Eugene; Fercoq, Olivier; Gramfort, Alexandre; Leclère, Vincent; Salmon, Joseph

    2017-10-01

    In high dimensional settings, sparse structures are crucial for efficiency, both in term of memory, computation and performance. It is customary to consider ℓ 1 penalty to enforce sparsity in such scenarios. Sparsity enforcing methods, the Lasso being a canonical example, are popular candidates to address high dimension. For efficiency, they rely on tuning a parameter trading data fitting versus sparsity. For the Lasso theory to hold this tuning parameter should be proportional to the noise level, yet the latter is often unknown in practice. A possible remedy is to jointly optimize over the regression parameter as well as over the noise level. This has been considered under several names in the literature: Scaled-Lasso, Square-root Lasso, Concomitant Lasso estimation for instance, and could be of interest for uncertainty quantification. In this work, after illustrating numerical difficulties for the Concomitant Lasso formulation, we propose a modification we coined Smoothed Concomitant Lasso, aimed at increasing numerical stability. We propose an efficient and accurate solver leading to a computational cost no more expensive than the one for the Lasso. We leverage on standard ingredients behind the success of fast Lasso solvers: a coordinate descent algorithm, combined with safe screening rules to achieve speed efficiency, by eliminating early irrelevant features.

  4. High Efficiency, High Temperature Foam Core Heat Exchanger for Fission Surface Power Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Fission-based power systems with power levels of 30 to ≥100 kWe will be needed for planetary surface bases. Development of high temperature, high efficiency heat...

  5. ULTRASONIC NEBULIZATION AND ARSENIC VALENCE STATE CONSIDERATIONS PRIOR TO DETERMINATION VIA INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY

    Science.gov (United States)

    An ultrasonic nebulizer (USN) was utilized as a sample introduction device for an inductively coupled plasma mass spectrometer in an attempt to increase the sensitivity for As. The USN produced a valence state response difference for As. The As response was suppressed approximate...

  6. Promoting adherence to nebulized therapy in cystic fibrosis: poster development and a qualitative exploration of adherence.

    Science.gov (United States)

    Jones, Stephen; Babiker, Nathan; Gardner, Emma; Royle, Jane; Curley, Rachael; Hoo, Zhe Hui; Wildman, Martin J

    2015-01-01

    Cystic fibrosis (CF) health care professionals recognize the need to motivate people with CF to adhere to nebulizer treatments, yet little is known about how best to achieve this. We aimed to produce motivational posters to support nebulizer adherence by using social marketing involving people with CF in the development of those posters. The Sheffield CF multidisciplinary team produced preliminary ideas that were elaborated upon with semi-structured interviews among people with CF to explore barriers and facilitators to the use of nebulized therapy. Initial themes and poster designs were refined using an online focus group to finalize the poster designs. People with CF preferred aspirational posters describing what could be achieved through adherence in contrast to posters that highlighted the adverse consequences of nonadherence. A total of 14 posters were produced through this process. People with CF can be engaged to develop promotional material to support adherence, providing a unique perspective differing from that of the CF multidisciplinary team. Further research is needed to evaluate the effectiveness of these posters to support nebulizer adherence.

  7. Sinuclean Nebules treatment in children suffering from otitis media with effusion.

    Science.gov (United States)

    Varricchio, A; De Lucia, A; Varricchio, A M; Della Volpe, A; Mansi, N; Pastore, V; Ciprandi, G

    2017-03-01

    Otitis media with effusion (OME) is an ear disorder defined by the presence of fluid in the middle ear without signs or symptoms of acute infection. The current randomized, double-blind, controlled study aimed to evaluate whether Sinuclean Nebules treatment, administered by nasal douche (Rinowash), could induce ear healing better than isotonic saline in children with OME. The study was randomized, double-blind, and controlled. Group A (30 children) was treated with Sinuclean Nebules 45 and Group B (31 children) was treated with isotonic saline; both compounds were administered by nasal nebulization with Rinowash nasal douche twice/day in the morning and in the evening for 10 days, followed by a one-week suspension, and after by a second course as the first. Tympanogram and audiometry were performed at baseline and after treatment. Considering the global evaluation of the treatment: in Group A, 28 (93.3%) patients had complete resolution and 2 (6.7%) had partial resolution; in Group B, all patients had failure of treatment. There was a significant difference between groups (p < 0.0001). The current randomized-controlled study demonstrated that Sinuclean Nebules was effective and in the treatment of children with OME. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Characterization of the radioaerosol sup(99m)Tc-DTPA produced by different nebulizers

    International Nuclear Information System (INIS)

    Medeiros, R.B.; Nery, L.E.; Tabacniks, M.H.

    1991-01-01

    Our aim was to characterize the aerosol produced by different nebulizers through the use of sup(99m)Tc-DTPA normally applied in pulmonar ventilation studies in nuclear medicine. We have found the mass distribution's MMD and the geometric standard deviation for this type of radioaerosol. (author)

  9. Combustion phasing for maximum efficiency for conventional and high efficiency engines

    International Nuclear Information System (INIS)

    Caton, Jerald A.

    2014-01-01

    Highlights: • Combustion phasing for max efficiency is a function of engine parameters. • Combustion phasing is most affected by heat transfer, compression ratio, burn duration. • Combustion phasing is less affected by speed, load, equivalence ratio and EGR. • Combustion phasing for a high efficiency engine was more advanced. • Exergy destruction during combustion as functions of combustion phasing is reported. - Abstract: The importance of the phasing of the combustion event for internal-combustion engines is well appreciated, but quantitative details are sparse. The objective of the current work was to examine the optimum combustion phasing (based on maximum bmep) as functions of engine design and operating variables. A thermodynamic, engine cycle simulation was used to complete this assessment. As metrics for the combustion phasing, both the crank angle for 50% fuel mass burned (CA 50 ) and the crank angle for peak pressure (CA pp ) are reported as functions of the engine variables. In contrast to common statements in the literature, the optimum CA 50 and CA pp vary depending on the design and operating variables. Optimum, as used in this paper, refers to the combustion timing that provides the maximum bmep and brake thermal efficiency (MBT timing). For this work, the variables with the greatest influence on the optimum CA 50 and CA pp were the heat transfer level, the burn duration and the compression ratio. Other variables such as equivalence ratio, EGR level, engine speed and engine load had a much smaller impact on the optimum CA 50 and CA pp . For the conventional engine, for the conditions examined, the optimum CA 50 varied between about 5 and 11°aTDC, and the optimum CA pp varied between about 9 and 16°aTDC. For a high efficiency engine (high dilution, high compression ratio), the optimum CA 50 was 2.5°aTDC, and the optimum CA pp was 7.8°aTDC. These more advanced values for the optimum CA 50 and CA pp for the high efficiency engine were

  10. High resolution PET breast imager with improved detection efficiency

    Science.gov (United States)

    Majewski, Stanislaw

    2010-06-08

    A highly efficient PET breast imager for detecting lesions in the entire breast including those located close to the patient's chest wall. The breast imager includes a ring of imaging modules surrounding the imaged breast. Each imaging module includes a slant imaging light guide inserted between a gamma radiation sensor and a photodetector. The slant light guide permits the gamma radiation sensors to be placed in close proximity to the skin of the chest wall thereby extending the sensitive region of the imager to the base of the breast. Several types of photodetectors are proposed for use in the detector modules, with compact silicon photomultipliers as the preferred choice, due to its high compactness. The geometry of the detector heads and the arrangement of the detector ring significantly reduce dead regions thereby improving detection efficiency for lesions located close to the chest wall.

  11. The high efficiency steel filters for nuclear air cleaning

    International Nuclear Information System (INIS)

    Bergman, W.; Larsen, G.; Lopez, R.; Williams, K.; Violet, C.

    1990-08-01

    We have, in cooperation with industry, developed high-efficiency filters made from sintered stainless-steel fibers for use in several air-cleaning applications in the nuclear industry. These filters were developed to overcome the failure modes in present high-efficiency particulate air (HEPA) filters. HEPA filters are made from glass paper and glue, and they may fail when they get hot or wet and when they are overpressured. In developing our steel filters, we first evaluated the commercially available stainless-steel filter media made from sintered powder and sintered fiber. The sintered-fiber media performed much better than sintered-powder media, and the best media had the smallest fiber diameter. Using the best media, we then built prototype filters for venting compressed gases and evaluated them in our automated filter tester. 12 refs., 20 figs

  12. High efficiency steel filters for nuclear air cleaning

    International Nuclear Information System (INIS)

    Bergman, W.; Conner, J.; Larsen, G.; Lopez, R.; Turner, C.; Vahla, G.; Violet, C.; Williams, K.

    1991-01-01

    The authors have, in cooperation with industry, developed high-efficiency filters made from sintered stainless-steel fibers for use in several air-cleaning applications in the nuclear industry. These filters were developed to overcome the failure modes in present high-efficiently particulate air (HEPA) filters. HEPA filters are made from glass paper and glue, and they may fail when they get hot or wet and when they are overpressured. In developing steel filters, they first evaluated the commercially available stainless-steel filter media made from sintered powder and sintered fiber. The sintered-fiber media performed much better than sintered-powder media, and the best media had the smallest fiber diameter. Using the best media, prototype filters were then built for venting compressed gases and evaluated in their automated filter tester

  13. Blanket options for high-efficiency fusion power

    International Nuclear Information System (INIS)

    Usher, J.L.; Lazareth, O.W.; Fillo, J.A.; Horn, F.L.; Powell, J.R.

    1980-01-01

    The efficiencies of blankets for fusion reactors are usually in the range of 30 to 40%, limited by the operating temperatures (500 0 C) of conventional structural materials such as stainless steels. In this project two-zone blankets are proposed; these blankets consist of a low-temperature shell surrounding a high-temperature interior zone. A survey of nucleonics and thermal hydraulic parameters has led to a reference blanket design consisting of a water-cooled stainless steel shell around a BeO, ZrO 2 interior (cooled by argon) utilizing Li 2 O for tritium breeding. In this design, approximately 60% of the fusion energy is deposited in the high-temperature interior. The maximum argon temperature is 2230 0 C leading to an overall efficiency estimate of 55 to 60% for this reference case

  14. Fusion blankets for high-efficiency power cycles

    International Nuclear Information System (INIS)

    Usher, J.L.; Lazareth, O.W.; Fillo, J.A.; Horn, F.L.; Powell, J.R.

    1980-01-01

    The efficiencies of blankets for fusion reactors are usually in the range of 30 to 40%, limited by the operating temperatures (500 0 C) of conventional structural materials such as stainless steels. In this project two-zone blankets are proposed; these blankets consist of a low-temperature shell surrounding a high-temperature interior zone. A survey of nucleonics and thermal hydraulic parameters has led to a reference blanket design consisting of a water-cooled stainless steel shell around a BeO, ZrO 2 interior (cooled by argon) utilizing Li 2 O for tritium breeding. In this design, approximately 60% of the fusion energy is deposited in the high-temperature interior. The maximum argon temperature is 2230 0 C leading to an overall efficiency estimate of 55 to 60% for this reference case

  15. Fusion blanket for high-efficiency power cycles

    International Nuclear Information System (INIS)

    Usher, J.L.; Powell, J.R.; Fillo, J.A.; Horn, F.L.; Lazareth, O.W.; Taussig, R.

    1980-01-01

    The efficiencies of blankets for fusion reactors are usually in the range of 30 to 40%, limited by the operating temperature (500 0 C) of conventional structural materials such as stainless steels. In this project two-zone blankets are proposed; these blankets consist of a low-temperature shell surrounding a high-temperature interior zone. A survey of nucleonics and thermal hydraulic parameters has led to a reference blanket design consisting of a water-cooled stainless steel shell around a BeO, ZrO 2 interior (cooled by Ar) utilizing Li 2 O for tritium breeding. In this design, approx. 60% of the fusion energy is deposited in the high-temperature interior. The maximum Ar temperature is 2230 0 C leading to an overall efficiency estimate of 55 to 60% for this reference case

  16. Fusion blankets for high-efficiency power cycles

    International Nuclear Information System (INIS)

    Usher, J.L.; Lazareth, O.W.; Fillo, J.A.; Horn, F.L.; Powell, J.R.

    1981-01-01

    The efficiencies of blankets for fusion reactors are usually in the range of 30 to 40%, limited by the operating temperatures (500 deg C) of conventional structural materials such as stainless steels. In this project 'two-zone' blankets are proposed; these blankets consist of a low-temperature shell surrounding a high-temperature interior zone. A survey of nucleonics and thermal hydraulic parameters has led to a reference blanket design consisting of a water-cooled stainless steel shell around a BeO, ZrO 2 interior (cooled by argon) utilizing Li 2 O for tritium breeding. In this design, approximately 60% of the fusion energy is deposited in the high-temperature interior. The maximum argon temperature is 2230 deg C leading to an overall efficiency estimate of 55 to 60% for this reference case. (author)

  17. Irradiation effects on high efficiency Si solar cells

    International Nuclear Information System (INIS)

    Nguyen Duy, T.; Amingual, D.; Colardelle, P.; Bernard, J.

    1974-01-01

    By optimizing the diffusion parameters, high efficiency cells are obtained with 2ohmsxcm (13.5% AMO) and 10ohmsxcm (12.5% AMO) silicon material. These new cells have been submitted to radiation tests under 1MeV, 2MeV electrons and 2.5MeV protons. Their behavior under irradiation is found to be dependent only on the bulk material. By using the same resistivity silicon, the rate of degradation is exactly the same than those of conventional cells. The power increase, due to a better superficial response of the cell, is maintained after irradiation. These results show that new high efficiency cells offer an E.O.L. power higher than conventional cells [fr

  18. Highly efficient electron vortex beams generated by nanofabricated phase holograms

    Energy Technology Data Exchange (ETDEWEB)

    Grillo, Vincenzo, E-mail: vincenzo.grillo@nano.cnr.it [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); CNR-IMEM Parco Area delle Scienze 37/A, I-43124 Parma (Italy); Carlo Gazzadi, Gian [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Karimi, Ebrahim [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 (Canada); Mafakheri, Erfan [Dipartimento di Fisica Informatica e Matematica, Università di Modena e Reggio Emilia, via G Campi 213/a, I-41125 Modena (Italy); Boyd, Robert W. [Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 (Canada); Frabboni, Stefano [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Dipartimento di Fisica Informatica e Matematica, Università di Modena e Reggio Emilia, via G Campi 213/a, I-41125 Modena (Italy)

    2014-01-27

    We propose an improved type of holographic-plate suitable for the shaping of electron beams. The plate is fabricated by a focused ion beam on a silicon nitride membrane and introduces a controllable phase shift to the electron wavefunction. We adopted the optimal blazed-profile design for the phase hologram, which results in the generation of highly efficient (25%) electron vortex beams. This approach paves the route towards applications in nano-scale imaging and materials science.

  19. Holography as a highly efficient RG flow I: Rephrasing gravity

    OpenAIRE

    Behr, Nicolas; Kuperstein, Stanislav; Mukhopadhyay, Ayan

    2015-01-01

    We investigate how the holographic correspondence can be reformulated as a generalisation of Wilsonian RG flow in a strongly interacting large $N$ quantum field theory. We firstly define a \\textit{highly efficient RG flow} as one in which the Ward identities related to local conservation of energy, momentum and charges preserve the same form at each scale -- to achieve this it is necessary to redefine the background metric and external sources at each scale as functionals of the effective sin...

  20. Sm , Bi phosphors with high efficiency white-light-emittin

    Indian Academy of Sciences (India)

    2017-08-29

    Aug 29, 2017 ... Therefore, researches on high efficiency red phos- phors are very important. So far ..... ing concentration and reached a maximum at y = 8 mol%. A .... [10] Xue L P, Wang Y J, Lv P W, Chen D G, Lin Z, Liang J K et al. 2009 Crystal ... [28] Liu J, Xu B, Song C, Luo H, Zou X, Han L et al 2012 Cryst-. EngComm.

  1. High-efficiency pumps drastically reduce energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2002-05-01

    Wilo's Stratos pumps for air conditioning and other domestic heating applications combine the advantages of wet runner technology with an innovative electronic commutator motor. The energy consumption of these high-efficiency pumps is halved compared with similar wet runner designs. With vast numbers of pumps used in buildings across Europe alone, the adoption of this technology potentially offers significant energy sayings. (Author)

  2. Wavy channel transistor for area efficient high performance operation

    KAUST Repository

    Fahad, Hossain M.

    2013-04-05

    We report a wavy channel FinFET like transistor where the channel is wavy to increase its width without any area penalty and thereby increasing its drive current. Through simulation and experiments, we show the effectiveness of such device architecture is capable of high performance operation compared to conventional FinFETs with comparatively higher area efficiency and lower chip latency as well as lower power consumption.

  3. Highly efficient electron vortex beams generated by nanofabricated phase holograms

    International Nuclear Information System (INIS)

    Grillo, Vincenzo; Carlo Gazzadi, Gian; Karimi, Ebrahim; Mafakheri, Erfan; Boyd, Robert W.; Frabboni, Stefano

    2014-01-01

    We propose an improved type of holographic-plate suitable for the shaping of electron beams. The plate is fabricated by a focused ion beam on a silicon nitride membrane and introduces a controllable phase shift to the electron wavefunction. We adopted the optimal blazed-profile design for the phase hologram, which results in the generation of highly efficient (25%) electron vortex beams. This approach paves the route towards applications in nano-scale imaging and materials science

  4. High voltage generator circuit with low power and high efficiency applied in EEPROM

    International Nuclear Information System (INIS)

    Liu Yan; Zhang Shilin; Zhao Yiqiang

    2012-01-01

    This paper presents a low power and high efficiency high voltage generator circuit embedded in electrically erasable programmable read-only memory (EEPROM). The low power is minimized by a capacitance divider circuit and a regulator circuit using the controlling clock switch technique. The high efficiency is dependent on the zero threshold voltage (V th ) MOSFET and the charge transfer switch (CTS) charge pump. The proposed high voltage generator circuit has been implemented in a 0.35 μm EEPROM CMOS process. Measured results show that the proposed high voltage generator circuit has a low power consumption of about 150.48 μW and a higher pumping efficiency (83.3%) than previously reported circuits. This high voltage generator circuit can also be widely used in low-power flash devices due to its high efficiency and low power dissipation. (semiconductor integrated circuits)

  5. Delivery of albuterol and ipratropium bromide from two nebulizer systems in chronic stable asthma. Efficacy and pulmonary deposition

    International Nuclear Information System (INIS)

    Johnson, M.A.; Newman, S.P.; Bloom, R.; Talaee, N.; Clarke, S.W.

    1989-01-01

    Bronchodilator responses to both nebulized albuterol (salbutamol) and ipratropium bromide and aerosol delivery to the tracheobronchial tree have been assessed in eight patients with chronic stable asthma (mean baseline FEV1, 50 percent; reversibility greater than 20 percent). Two commercially available nebulizer systems were used, namely, a Turret nebulizer operated at a compressed gas flow rate of 12 L/min (droplet MMD, 3.3 mu) and an Inspiron nebulizer driven at 6 L/min (MMD, 7.7 mu). Albuterol was given as doses of 250 micrograms, 250 micrograms, 500 micrograms, and 1,000 micrograms (cumulative dose, 2 mg) and ipratropium bromide as doses of 50 micrograms, 50 micrograms, 100 micrograms, and 200 micrograms (cumulative dose, 400 micrograms) at intervals of 35 minutes. For albuterol, bronchodilatation was significantly (p less than 0.05) greater at all dosage levels with the Turret. For ipratropium, bronchodilatation was similar for both nebulizers. Measurements of aerosol deposition using 99m Tc-labelled pentetic acid (diethylenetriamine pentaacetic acid; DTPA) showed that 9.1 +/- 1.1 percent and 2.7 +/- 0.2 percent of the dose reached the lungs during nebulization to dryness for Turret and Inspiron, respectively (p less than 0.01); distribution within the lungs was similar for the two aerosols. Selection of nebulizer apparatus can influence delivery of aerosol and subsequent bronchodilator response to albuterol in patients with chronic stable asthma but is less important for aerosol delivery of ipratropium bromide in these patients

  6. Development and evaluation of a cleanable high efficiency steel filter

    International Nuclear Information System (INIS)

    Bergman, W.; Larsen, G.; Weber, F.; Wilson, P.; Lopez, R.; Valha, G.; Conner, J.; Garr, J.; Williams, K.; Biermann, A.; Wilson, K.; Moore, P.; Gellner, C.; Rapchun, D.; Simon, K.; Turley, J.; Frye, L.; Monroe, D.

    1993-01-01

    We have developed a high efficiency steel filter that can be cleaned in-situ by reverse air pulses. The filter consists of 64 pleated cylindrical filter elements packaged into a 6l0 x 6l0 x 292 mm aluminum frame and has 13.5 m 2 of filter area. The filter media consists of a sintered steel fiber mat using 2 μm diameter fibers. We conducted an optimization study for filter efficiency and pressure drop to determine the filter design parameters of pleat width, pleat depth, outside diameter of the cylinder, and the total number of cylinders. Several prototype cylinders were then built and evaluated in terms of filter cleaning by reverse air pulses. The results of these studies were used to build the high efficiency steel filter. We evaluated the prototype filter for efficiency and cleanability. The DOP filter certification test showed the filter has a passing efficiency of 99.99% but a failing pressure drop of 0.80 kPa at 1,700 m 3 /hr. Since we were not able to achieve a pressure drop less than 0.25 kPa, the steel filter does not meet all the criteria for a HEPA filter. Filter loading and cleaning tests using AC Fine dust showed the filter could be repeatedly cleaned by reverse air pulses. The next phase of the prototype evaluation consisted of installing the unit and support housing in the exhaust duct work of a uranium grit blaster for a field evaluation at the Y-12 Plant in Oak Ridge, TN. The grit blaster is used to clean the surface of uranium parts and generates a cloud of UO 2 aerosols. We used a 1,700 m 3 /hr slip stream from the 10,200 m 3 /hr exhaust system

  7. Telescoping Solar Array Concept for Achieving High Packaging Efficiency

    Science.gov (United States)

    Mikulas, Martin; Pappa, Richard; Warren, Jay; Rose, Geoff

    2015-01-01

    Lightweight, high-efficiency solar arrays are required for future deep space missions using high-power Solar Electric Propulsion (SEP). Structural performance metrics for state-of-the art 30-50 kW flexible blanket arrays recently demonstrated in ground tests are approximately 40 kW/cu m packaging efficiency, 150 W/kg specific power, 0.1 Hz deployed stiffness, and 0.2 g deployed strength. Much larger arrays with up to a megawatt or more of power and improved packaging and specific power are of interest to mission planners for minimizing launch and life cycle costs of Mars exploration. A new concept referred to as the Compact Telescoping Array (CTA) with 60 kW/cu m packaging efficiency at 1 MW of power is described herein. Performance metrics as a function of array size and corresponding power level are derived analytically and validated by finite element analysis. Feasible CTA packaging and deployment approaches are also described. The CTA was developed, in part, to serve as a NASA reference solar array concept against which other proposed designs of 50-1000 kW arrays for future high-power SEP missions could be compared.

  8. Simultaneous electrothermal vaporization and nebulizer sample introduction system for inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Arnquist, Isaac J.; Kreschollek, Thomas E.; Holcombe, James A.

    2011-01-01

    The novel analytical application of the combination of an inline electrothermal vaporization (ETV) and nebulization source for inductively coupled plasma mass spectrometry (ICP-MS) has been studied. Wet plasma conditions are sustained during ETV introduction by 200 mL/min gas flow through the nebulizer, which is merged with the ETV transport line at the torch. The use of a wet plasma with ETV introduction avoided the need to change power settings and torch positions that normally accompany a change from wet to dry plasma operating conditions. This inline-ETV source is shown to have good detection limits for a variety of elements in both HNO 3 and HCl matrices. Using the inline-ETV source, improved limits of detection (LOD) were obtained for elements typically suppressed by polyatomic interferences using a nebulizer. Specifically, improved LODs for 51 V and 53 Cr suffering from Cl interferences ( 51 ClO + and 53 ClO + respectively) in a 1% HCl matrix were obtained using the inline-ETV source. LODs were improved by factors of 65 and 22 for 51 V and 53 Cr, respectively, using the inline-ETV source compared to a conventional concentric glass nebulizer. For elements without polyatomic interferences, LODs from the inline-ETV were comparable to conventional dry plasma ETV-ICP time-of-flight mass spectrometry results. Lastly, the inline-ETV source offers a simple means of changing from nebulizer introduction to inline-ETV introduction without extinguishing the plasma. This permits, for example, the use of the time-resolved ETV-ICP-MS signals to distinguish between an analyte ion and polyatomic isobar.

  9. High precision efficiency calibration of a HPGe detector

    International Nuclear Information System (INIS)

    Nica, N.; Hardy, J.C.; Iacob, V.E.; Helmer, R.G.

    2003-01-01

    Many experiments involving measurements of γ rays require a very precise efficiency calibration. Since γ-ray detection and identification also requires good energy resolution, the most commonly used detectors are of the coaxial HPGe type. We have calibrated our 70% HPGe to ∼ 0.2% precision, motivated by the measurement of precise branching ratios (BR) in superallowed 0 + → 0 + β decays. These BRs are essential ingredients in extracting ft-values needed to test the Standard Model via the unitarity of the Cabibbo-Kobayashi-Maskawa matrix, a test that it currently fails by more than two standard deviations. To achieve the required high precision in our efficiency calibration, we measured 17 radioactive sources at a source-detector distance of 15 cm. Some of these were commercial 'standard' sources but we achieved the highest relative precision with 'home-made' sources selected because they have simple decay schemes with negligible side feeding, thus providing exactly matched γ-ray intensities. These latter sources were produced by us at Texas A and M by n-activation or by nuclear reactions. Another critical source among the 17 was a 60 Co source produced by Physikalisch-Technische Bundesanstalt, Braunschweig, Germany: its absolute activity was quoted to better than 0.06%. We used it to establish our absolute efficiency, while all the other sources were used to determine relative efficiencies, extending our calibration over a large energy range (40-3500 keV). Efficiencies were also determined with Monte Carlo calculations performed with the CYLTRAN code. The physical parameters of the Ge crystal were independently determined and only two (unmeasurable) dead-layers were adjusted, within physically reasonable limits, to achieve precise absolute agreement with our measured efficiencies. The combination of measured efficiencies at more than 60 individual energies and Monte Carlo calculations to interpolate between them allows us to quote the efficiency of our

  10. CFD application to advanced design for high efficiency spacer grid

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Kazuo, E-mail: kazuo3_ikeda@ndc.mhi.co.jp

    2014-11-15

    Highlights: • A new LDV was developed to investigate the local velocity in a rod bundle and inside a spacer grid. • The design information that utilizes for high efficiency spacer grid has been obtained. • CFD methodology that predicts flow field in a PWR fuel has been developed. • The high efficiency spacer grid was designed using the CFD methodology. - Abstract: Pressurized water reactor (PWR) fuels have been developed to meet the needs of the market. A spacer grid is a key component to improve thermal hydraulic performance of a PWR fuel assembly. Mixing structures (vanes) of a spacer grid promote coolant mixing and enhance heat removal from fuel rods. A larger mixing vane would improve mixing effect, which would increase the departure from nucleate boiling (DNB) benefit for fuel. However, the increased pressure loss at large mixing vanes would reduce the coolant flow at the mixed fuel core, which would reduce the DNB margin. The solution is to develop a spacer grid whose pressure loss is equal to or less than the current spacer grid and that has higher critical heat flux (CHF) performance. For this reason, a requirement of design tool for predicting the pressure loss and CHF performance of spacer grids has been increased. The author and co-workers have been worked for development of high efficiency spacer grid using Computational Fluid Dynamics (CFD) for nearly 20 years. A new laser Doppler velocimetry (LDV), which is miniaturized with fiber optics embedded in a fuel cladding, was developed to investigate the local velocity profile in a rod bundle and inside a spacer grid. The rod-embedded fiber LDV (rod LDV) can be inserted in an arbitrary grid cell instead of a fuel rod, and has the advantage of not disturbing the flow field since it is the same shape as a fuel rod. The probe volume of the rod LDV is small enough to measure spatial velocity profile in a rod gap and inside a spacer grid. According to benchmark experiments such as flow velocity

  11. CFD application to advanced design for high efficiency spacer grid

    International Nuclear Information System (INIS)

    Ikeda, Kazuo

    2014-01-01

    Highlights: • A new LDV was developed to investigate the local velocity in a rod bundle and inside a spacer grid. • The design information that utilizes for high efficiency spacer grid has been obtained. • CFD methodology that predicts flow field in a PWR fuel has been developed. • The high efficiency spacer grid was designed using the CFD methodology. - Abstract: Pressurized water reactor (PWR) fuels have been developed to meet the needs of the market. A spacer grid is a key component to improve thermal hydraulic performance of a PWR fuel assembly. Mixing structures (vanes) of a spacer grid promote coolant mixing and enhance heat removal from fuel rods. A larger mixing vane would improve mixing effect, which would increase the departure from nucleate boiling (DNB) benefit for fuel. However, the increased pressure loss at large mixing vanes would reduce the coolant flow at the mixed fuel core, which would reduce the DNB margin. The solution is to develop a spacer grid whose pressure loss is equal to or less than the current spacer grid and that has higher critical heat flux (CHF) performance. For this reason, a requirement of design tool for predicting the pressure loss and CHF performance of spacer grids has been increased. The author and co-workers have been worked for development of high efficiency spacer grid using Computational Fluid Dynamics (CFD) for nearly 20 years. A new laser Doppler velocimetry (LDV), which is miniaturized with fiber optics embedded in a fuel cladding, was developed to investigate the local velocity profile in a rod bundle and inside a spacer grid. The rod-embedded fiber LDV (rod LDV) can be inserted in an arbitrary grid cell instead of a fuel rod, and has the advantage of not disturbing the flow field since it is the same shape as a fuel rod. The probe volume of the rod LDV is small enough to measure spatial velocity profile in a rod gap and inside a spacer grid. According to benchmark experiments such as flow velocity

  12. Metamaterial Receivers for High Efficiency Concentrated Solar Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Yellowhair, Julius E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Technologies Dept.; Kwon, Hoyeong [Univ. of Texas, Austin, TX (United States). Dept. of Electrical and Computer Engineering; Alu, Andrea [Univ. of Texas, Austin, TX (United States). Dept. of Electrical and Computer Engineering; Jarecki, Robert L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Technologies Dept.; Shinde, Subhash L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Technologies Dept.

    2016-09-01

    Operation of concentrated solar power receivers at higher temperatures (>700°C) would enable supercritical carbon dioxide (sCO2) power cycles for improved power cycle efficiencies (>50%) and cost-effective solar thermal power. Unfortunately, radiative losses at higher temperatures in conventional receivers can negatively impact the system efficiency gains. One approach to improve receiver thermal efficiency is to utilize selective coatings that enhance absorption across the visible solar spectrum while minimizing emission in the infrared to reduce radiative losses. Existing coatings, however, tend to degrade rapidly at elevated temperatures. In this report, we report on the initial designs and fabrication of spectrally selective metamaterial-based absorbers for high-temperature, high-thermal flux environments important for solarized sCO2 power cycles. Metamaterials are structured media whose optical properties are determined by sub-wavelength structural features instead of bulk material properties, providing unique solutions by decoupling the optical absorption spectrum from thermal stability requirements. The key enabling innovative concept proposed is the use of structured surfaces with spectral responses that can be tailored to optimize the absorption and retention of solar energy for a given temperature range. In this initial study through the Academic Alliance partnership with University of Texas at Austin, we use Tungsten for its stability in expected harsh environments, compatibility with microfabrication techniques, and required optical performance. Our goal is to tailor the optical properties for high (near unity) absorptivity across the majority of the solar spectrum and over a broad range of incidence angles, and at the same time achieve negligible absorptivity in the near infrared to optimize the energy absorbed and retained. To this goal, we apply the recently developed concept of plasmonic Brewster angle to suitably designed

  13. Highly Efficient Thermoresponsive Nanocomposite for Controlled Release Applications

    KAUST Repository

    Yassine, Omar

    2016-06-23

    Highly efficient magnetic release from nanocomposite microparticles is shown, which are made of Poly (N-isopropylacrylamide) hydrogel with embedded iron nanowires. A simple microfluidic technique was adopted to fabricate the microparticles with a high control of the nanowire concentration and in a relatively short time compared to chemical synthesis methods. The thermoresponsive microparticles were used for the remotely triggered release of Rhodamine (B). With a magnetic field of only 1 mT and 20 kHz a drug release of 6.5% and 70% was achieved in the continuous and pulsatile modes, respectively. Those release values are similar to the ones commonly obtained using superparamagnetic beads but accomplished with a magnetic field of five orders of magnitude lower power. The high efficiency is a result of the high remanent magnetization of the nanowires, which produce a large torque when exposed to a magnetic field. This causes the nanowires to vibrate, resulting in friction losses and heating. For comparison, microparticles with superparamagnetic beads were also fabricated and tested; while those worked at 73 mT and 600 kHz, no release was observed at the low field conditions. Cytotoxicity assays showed similar and high cell viability for microparticles with nanowires and beads.

  14. Highly Efficient Thermoresponsive Nanocomposite for Controlled Release Applications

    KAUST Repository

    Yassine, Omar; Zaher, Amir; Li, Erqiang; Alfadhel, Ahmed; Perez, Jose E.; Kavaldzhiev, Mincho; Contreras, Maria F.; Thoroddsen, Sigurdur T; Khashab, Niveen M.; Kosel, Jü rgen

    2016-01-01

    Highly efficient magnetic release from nanocomposite microparticles is shown, which are made of Poly (N-isopropylacrylamide) hydrogel with embedded iron nanowires. A simple microfluidic technique was adopted to fabricate the microparticles with a high control of the nanowire concentration and in a relatively short time compared to chemical synthesis methods. The thermoresponsive microparticles were used for the remotely triggered release of Rhodamine (B). With a magnetic field of only 1 mT and 20 kHz a drug release of 6.5% and 70% was achieved in the continuous and pulsatile modes, respectively. Those release values are similar to the ones commonly obtained using superparamagnetic beads but accomplished with a magnetic field of five orders of magnitude lower power. The high efficiency is a result of the high remanent magnetization of the nanowires, which produce a large torque when exposed to a magnetic field. This causes the nanowires to vibrate, resulting in friction losses and heating. For comparison, microparticles with superparamagnetic beads were also fabricated and tested; while those worked at 73 mT and 600 kHz, no release was observed at the low field conditions. Cytotoxicity assays showed similar and high cell viability for microparticles with nanowires and beads.

  15. High Efficiency Heat Exchanger for High Temperature and High Pressure Applications

    Energy Technology Data Exchange (ETDEWEB)

    Sienicki, James J. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Lv, Qiuping [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Moisseytsev, Anton [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2017-09-29

    CompRex, LLC (CompRex) specializes in the design and manufacture of compact heat exchangers and heat exchange reactors for high temperature and high pressure applications. CompRex’s proprietary compact technology not only increases heat exchange efficiency by at least 25 % but also reduces footprint by at least a factor of ten compared to traditional shell-and-tube solutions of the same capacity and by 15 to 20 % compared to other currently available Printed Circuit Heat Exchanger (PCHE) solutions. As a result, CompRex’s solution is especially suitable for Brayton cycle supercritical carbon dioxide (sCO2) systems given its high efficiency and significantly lower capital and operating expenses. CompRex has already successfully demonstrated its technology and ability to deliver with a pilot-scale compact heat exchanger that was under contract by the Naval Nuclear Laboratory for sCO2 power cycle development. The performance tested unit met or exceeded the thermal and hydraulic specifications with measured heat transfer between 95 to 98 % of maximum heat transfer and temperature and pressure drop values all consistent with the modeled values. CompRex’s vision is to commercialize its compact technology and become the leading provider for compact heat exchangers and heat exchange reactors for various applications including Brayton cycle sCO2 systems. One of the limitations of the sCO2 Brayton power cycle is the design and manufacturing of efficient heat exchangers at extreme operating conditions. Current diffusion-bonded heat exchangers have limitations on the channel size through which the fluid travels, resulting in excessive solid material per heat exchanger volume. CompRex’s design allows for more open area and shorter fluid proximity for increased heat transfer efficiency while sustaining the structural integrity needed for the application. CompRex is developing a novel improvement to its current heat exchanger design where fluids are directed to alternating

  16. A high efficiency hybrid stirling-pulse tube cryocooler

    Directory of Open Access Journals (Sweden)

    Xiaotao Wang

    2015-03-01

    Full Text Available This article presented a hybrid cryocooler which combines the room temperature displacers and the pulse tube in one system. Compared with a traditional pulse tube cryocooler, the system uses the rod-less ambient displacer to recover the expansion work from the pulse tube cold end to improve the efficiency while still keeps the advantage of the pulse tube cryocooler with no moving parts at the cold region. In the meantime, dual-opposed configurations for both the compression pistons and displacers reduce the cooler vibration to a very low level. In the experiments, a lowest no-load temperature of 38.5 K has been obtained and the cooling power at 80K was 26.4 W with an input electric power of 290 W. This leads to an efficiency of 24.2% of Carnot, marginally higher than that of an ordinary pulse tube cryocooler. The hybrid configuration herein provides a very competitive option when a high efficiency, high-reliability and robust cryocooler is desired.

  17. High-efficiency ballistic electrostatic generator using microdroplets

    Science.gov (United States)

    Xie, Yanbo; Bos, Diederik; de Vreede, Lennart J.; de Boer, Hans L.; van der Meulen, Mark-Jan; Versluis, Michel; Sprenkels, Ad J.; van den Berg, Albert; Eijkel, Jan C. T.

    2014-04-01

    The strong demand for renewable energy promotes research on novel methods and technologies for energy conversion. Microfluidic systems for energy conversion by streaming current are less known to the public, and the relatively low efficiencies previously obtained seemed to limit the further applications of such systems. Here we report a microdroplet-based electrostatic generator operating by an acceleration-deceleration cycle (‘ballistic’ conversion), and show that this principle enables both high efficiency and compact simple design. Water is accelerated by pumping it through a micropore to form a microjet breaking up into fast-moving charged droplets. Droplet kinetic energy is converted to electrical energy when the charged droplets decelerate in the electrical field that forms between membrane and target. We demonstrate conversion efficiencies of up to 48%, a power density of 160 kW m-2 and both high- (20 kV) and low- (500 V) voltage operation. Besides offering striking new insights, the device potentially opens up new perspectives for low-cost and robust renewable energy conversion.

  18. Radiation hardened high efficiency silicon space solar cell

    International Nuclear Information System (INIS)

    Garboushian, V.; Yoon, S.; Turner, J.

    1993-01-01

    A silicon solar cell with AMO 19% Beginning of Life (BOL) efficiency is reported. The cell has demonstrated equal or better radiation resistance when compared to conventional silicon space solar cells. Conventional silicon space solar cell performance is generally ∼ 14% at BOL. The Radiation Hardened High Efficiency Silicon (RHHES) cell is thinned for high specific power (watts/kilogram). The RHHES space cell provides compatibility with automatic surface mounting technology. The cells can be easily combined to provide desired power levels and voltages. The RHHES space cell is more resistant to mechanical damage due to micrometeorites. Micro-meteorites which impinge upon conventional cells can crack the cell which, in turn, may cause string failure. The RHHES, operating in the same environment, can continue to function with a similar crack. The RHHES cell allows for very efficient thermal management which is essential for space cells generating higher specific power levels. The cell eliminates the need for electrical insulation layers which would otherwise increase the thermal resistance for conventional space panels. The RHHES cell can be applied to a space concentrator panel system without abandoning any of the attributes discussed. The power handling capability of the RHHES cell is approximately five times more than conventional space concentrator solar cells

  19. Highly Efficient Spectrally Stable Red Perovskite Light-Emitting Diodes.

    Science.gov (United States)

    Tian, Yu; Zhou, Chenkun; Worku, Michael; Wang, Xi; Ling, Yichuan; Gao, Hanwei; Zhou, Yan; Miao, Yu; Guan, Jingjiao; Ma, Biwu

    2018-05-01

    Perovskite light-emitting diodes (LEDs) have recently attracted great research interest for their narrow emissions and solution processability. Remarkable progress has been achieved in green perovskite LEDs in recent years, but not blue or red ones. Here, highly efficient and spectrally stable red perovskite LEDs with quasi-2D perovskite/poly(ethylene oxide) (PEO) composite thin films as the light-emitting layer are reported. By controlling the molar ratios of organic salt (benzylammonium iodide) to inorganic salts (cesium iodide and lead iodide), luminescent quasi-2D perovskite thin films are obtained with tunable emission colors from red to deep red. The perovskite/polymer composite approach enables quasi-2D perovskite/PEO composite thin films to possess much higher photoluminescence quantum efficiencies and smoothness than their neat quasi-2D perovskite counterparts. Electrically driven LEDs with emissions peaked at 638, 664, 680, and 690 nm have been fabricated to exhibit high brightness and external quantum efficiencies (EQEs). For instance, the perovskite LED with an emission peaked at 680 nm exhibits a brightness of 1392 cd m -2 and an EQE of 6.23%. Moreover, exceptional electroluminescence spectral stability under continuous device operation has been achieved for these red perovskite LEDs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Design Strategies for Ultra-high Efficiency Photovoltaics

    Science.gov (United States)

    Warmann, Emily Cathryn

    While concentrator photovoltaic cells have shown significant improvements in efficiency in the past ten years, once these cells are integrated into concentrating optics, connected to a power conditioning system and deployed in the field, the overall module efficiency drops to only 34 to 36%. This efficiency is impressive compared to conventional flat plate modules, but it is far short of the theoretical limits for solar energy conversion. Designing a system capable of achieving ultra high efficiency of 50% or greater cannot be achieved by refinement and iteration of current design approaches. This thesis takes a systems approach to designing a photovoltaic system capable of 50% efficient performance using conventional diode-based solar cells. The effort began with an exploration of the limiting efficiency of spectrum splitting ensembles with 2 to 20 sub cells in different electrical configurations. Incorporating realistic non-ideal performance with the computationally simple detailed balance approach resulted in practical limits that are useful to identify specific cell performance requirements. This effort quantified the relative benefit of additional cells and concentration for system efficiency, which will help in designing practical optical systems. Efforts to improve the quality of the solar cells themselves focused on the development of tunable lattice constant epitaxial templates. Initially intended to enable lattice matched multijunction solar cells, these templates would enable increased flexibility in band gap selection for spectrum splitting ensembles and enhanced radiative quality relative to metamorphic growth. The III-V material family is commonly used for multijunction solar cells both for its high radiative quality and for the ease of integrating multiple band gaps into one monolithic growth. The band gap flexibility is limited by the lattice constant of available growth templates. The virtual substrate consists of a thin III-V film with the desired

  1. Efficient Four-Parametric with-and-without-Memory Iterative Methods Possessing High Efficiency Indices

    Directory of Open Access Journals (Sweden)

    Alicia Cordero

    2018-01-01

    Full Text Available We construct a family of derivative-free optimal iterative methods without memory to approximate a simple zero of a nonlinear function. Error analysis demonstrates that the without-memory class has eighth-order convergence and is extendable to with-memory class. The extension of new family to the with-memory one is also presented which attains the convergence order 15.5156 and a very high efficiency index 15.51561/4≈1.9847. Some particular schemes of the with-memory family are also described. Numerical examples and some dynamical aspects of the new schemes are given to support theoretical results.

  2. Microbial electrolytic disinfection process for highly efficient Escherichia coli inactivation

    DEFF Research Database (Denmark)

    Zhou, Shaofeng; Huang, Shaobin; Li, Xiaohu

    2018-01-01

    extensively studied for recalcitrant organics removal, its application potential towards water disinfection (e.g., inactivation of pathogens) is still unknown. This study investigated the inactivation of Escherichia coli in a microbial electrolysis cell based bio-electro-Fenton system (renamed as microbial......Water quality deterioration caused by a wide variety of recalcitrant organics and pathogenic microorganisms has become a serious concern worldwide. Bio-electro-Fenton systems have been considered as cost-effective and highly efficient water treatment platform technology. While it has been......]OH was identified as one potential mechanism for disinfection. This study successfully demonstrated the feasibility of bio-electro-Fenton process for pathogens inactivation, which offers insight for the future development of sustainable, efficient, and cost-effective biological water treatment technology....

  3. Improved entropy encoding for high efficient video coding standard

    Directory of Open Access Journals (Sweden)

    B.S. Sunil Kumar

    2018-03-01

    Full Text Available The High Efficiency Video Coding (HEVC has better coding efficiency, but the encoding performance has to be improved to meet the growing multimedia applications. This paper improves the standard entropy encoding by introducing the optimized weighing parameters, so that higher rate of compression can be accomplished over the standard entropy encoding. The optimization is performed using the recently introduced firefly algorithm. The experimentation is carried out using eight benchmark video sequences and the PSNR for varying rate of data transmission is investigated. Comparative analysis based on the performance statistics is made with the standard entropy encoding. From the obtained results, it is clear that the originality of the decoded video sequence is preserved far better than the proposed method, though the compression rate is increased. Keywords: Entropy, Encoding, HEVC, PSNR, Compression

  4. Study on a Novel High-Efficiency Bridgeless PFC Converter

    Directory of Open Access Journals (Sweden)

    Cao Taiqiang

    2014-01-01

    Full Text Available In order to implement a high-efficiency bridgeless power factor correction converter, a new topology and operation principles of continuous conduction mode (CCM and DC steady-state character of the converter are analyzed, which show that the converter not only has bipolar-gain characteristic but also has the same characteristic as the traditional Boost converter, while the voltage transfer ratio is not related with the resonant branch parameters and switching frequency. Based on the above topology, a novel bridgeless Bipolar-Gain Pseudo-Boost PFC converter is proposed. With this converter, the diode rectifier bridge of traditional AC-DC converter is eliminated, and zero-current switching of fast recovery diode is achieved. Thus, the efficiency is improved. Next, we also propose the one-cycle control policy of this converter. Finally, experiments are provided to verify the accuracy and feasibility of the proposed converter.

  5. Highly Efficient and Reliable Transparent Electromagnetic Interference Shielding Film.

    Science.gov (United States)

    Jia, Li-Chuan; Yan, Ding-Xiang; Liu, Xiaofeng; Ma, Rujun; Wu, Hong-Yuan; Li, Zhong-Ming

    2018-04-11

    Electromagnetic protection in optoelectronic instruments such as optical windows and electronic displays is challenging because of the essential requirements of a high optical transmittance and an electromagnetic interference (EMI) shielding effectiveness (SE). Herein, we demonstrate the creation of an efficient transparent EMI shielding film that is composed of calcium alginate (CA), silver nanowires (AgNWs), and polyurethane (PU), via a facile and low-cost Mayer-rod coating method. The CA/AgNW/PU film with a high optical transmittance of 92% achieves an EMI SE of 20.7 dB, which meets the requirements for commercial shielding applications. A superior EMI SE of 31.3 dB could be achieved, whereas the transparent film still maintains a transmittance of 81%. The integrated efficient EMI SE and high transmittance are superior to those of most previously reported transparent EMI shielding materials. Moreover, our transparent films exhibit a highly reliable shielding ability in a complex service environment, with 98 and 96% EMI SE retentions even after 30 min of ultrasound treatment and 5000 bending cycles (1.5 mm radius), respectively. The comprehensive performance that is associated with the facile fabrication strategy imparts the CA/AgNW/PU film with great potential as an optimized EMI shielding material in emerging optoelectronic devices, such as flexible solar cells, displays, and touch panels.

  6. Research & Implementation of AC - DC Converter with High Power Factor & High Efficiency

    Directory of Open Access Journals (Sweden)

    Hsiou-Hsian Nien

    2014-05-01

    Full Text Available In this paper, we design and develop a high power factor, high efficiency two-stage AC - DC power converter. This paper proposes a two-stage AC - DC power converter. The first stage is boost active power factor correction circuit. The latter stage is near constant frequency LLC resonant converter. In addition to traditional LLC high efficiency advantages, light-load conversion efficiency of this power converter can be improved. And it possesses high power factor and near constant frequency operating characteristics, can significantly reduce the electromagnetic interference. This paper first discusses the main structure and control manner of power factor correction circuit. And then by the LLC resonant converter equivalent model proceed to circuit analysis to determine the important parameters of the converter circuit elements. Then design a variable frequency resonant tank. The resonant frequency can change automatically on the basis of the load to reach near constant frequency operation and a purpose of high efficiency. Finally, actually design and produce an AC – DC power converter with output of 190W to verify the characteristics and feasibility of this converter. The experimental results show that in a very light load (9.5 W the efficiency is as high as 81%, the highest efficiency of 88% (90 W. Full load efficiency is 87%. At 19 W ~ 190 W power changes, the operating frequency change is only 0.4 kHz (AC 110 V and 0.3 kHz (AC 220 V.

  7. Approaches to achieve high grain yield and high resource use efficiency in rice

    Directory of Open Access Journals (Sweden)

    Jianchang YANG

    2015-06-01

    Full Text Available This article discusses approaches to simultaneously increase grain yield and resource use efficiency in rice. Breeding nitrogen efficient cultivars without sacrificing rice yield potential, improving grain fill in later-flowering inferior spikelets and enhancing harvest index are three important approaches to achieving the dual goal of high grain yield and high resource use efficiency. Deeper root distribution and higher leaf photosynthetic N use efficiency at lower N rates could be used as selection criteria to develop N-efficient cultivars. Enhancing sink activity through increasing sugar-spikelet ratio at the heading time and enhancing the conversion efficiency from sucrose to starch though increasing the ratio of abscisic acid to ethylene in grains during grain fill could effectively improve grain fill in inferior spikelets. Several practices, such as post-anthesis controlled soil drying, an alternate wetting and moderate soil drying regime during the whole growing season, and non-flooded straw mulching cultivation, could substantially increase grain yield and water use efficiency, mainly via enhanced remobilization of stored carbon from vegetative tissues to grains and improved harvest index. Further research is needed to understand synergistic interaction between water and N on crop and soil and the mechanism underlying high resource use efficiency in high-yielding rice.

  8. High efficiency electrophosphorescence from bilayer organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Li Minghang; Lin, Ming-Te; Shepherd, Nigel D [Department of Material Science and Engineering, University of North Texas, Denton, TX (United States); Chen, Wei-Hsuan; Oswald, Iain; Omary, Mohammad [Department of Chemeistry, University of North Texas, Denton, TX (United States)

    2011-09-14

    An electron mobility of 2.7 x 10{sup -5} cm{sup 2} V{sup -1} s{sup -1} was measured for the phosphorescent emitter bis[3,5-bis(2-pyridyl)-1,2,4-triazolato]platinum(II)(Pt(ptp)2), which prompted its evaluation as both the emissive layer and electron transport layer in organic light emitting diodes with a simple bilayer structure. Power and external quantum efficiencies of 54.0 {+-} 0.2 lm W{sup -1} and 15.9% were obtained, which as far as we could ascertain are amongst the highest reported values for bilayer devices. We ascribe the high device efficiency to the combination of the high electron mobility, short excited-state lifetime (117 ns) and high luminescence quantum yield (60%) of the bis[3,5-bis(2-pyridyl)-1,2,4-triazolato]platinum(II). The colour temperature of the devices was 2855 K at 5 V, which places the emission in the 'warm' light spectral region.

  9. Detecting Android Malwares with High-Efficient Hybrid Analyzing Methods

    Directory of Open Access Journals (Sweden)

    Yu Liu

    2018-01-01

    Full Text Available In order to tackle the security issues caused by malwares of Android OS, we proposed a high-efficient hybrid-detecting scheme for Android malwares. Our scheme employed different analyzing methods (static and dynamic methods to construct a flexible detecting scheme. In this paper, we proposed some detecting techniques such as Com+ feature based on traditional Permission and API call features to improve the performance of static detection. The collapsing issue of traditional function call graph-based malware detection was also avoided, as we adopted feature selection and clustering method to unify function call graph features of various dimensions into same dimension. In order to verify the performance of our scheme, we built an open-access malware dataset in our experiments. The experimental results showed that the suggested scheme achieved high malware-detecting accuracy, and the scheme could be used to establish Android malware-detecting cloud services, which can automatically adopt high-efficiency analyzing methods according to the properties of the Android applications.

  10. High efficiency thermal energy storage system for utility applications

    International Nuclear Information System (INIS)

    Vrable, D.L.; Quade, R.N.

    1979-01-01

    A concept of coupling a high efficiency base loaded coal or nuclear power plant with a thermal energy storage scheme for efficient and low-cost intermediate and peaking power is presented. A portion of the power plant's thermal output is used directly to generate superheated steam for continuous operation of a conventional turbine-generator to product base-load power. The remaining thermal output is used on a continuous basis to heat a conventional heat transfer salt (such as the eutectic composition of KaNO 3 /NaNO 3 /NaNO 2 ), which is stored in a high-temperature reservoir [538 0 C (1000 0 F)]. During peak demand periods, the salt is circulated from the high-temperature reservoir to a low-temperature reservoir through steam generators in order to provide peaking power from a conventional steam cycle plant. The period of operation can vary, but may typically be the equivalent of about 4 to 8 full-power hours each day. The system can be tailored to meet the utilities' load demand by varying the base-load level and the period of operation of the peak-load system

  11. High-efficiency target-ion sources for RIB generation

    International Nuclear Information System (INIS)

    Alton, G.D.

    1993-01-01

    A brief review is given of high-efficiency ion sources which have been developed or are under development at ISOL facilities which show particular promise for use at existing, future, or radioactive ion beam (RIB) facilities now under construction. Emphasis will be placed on those sources which have demonstrated high ionization efficiency, species versatility, and operational reliability and which have been carefully designed for safe handling in the high level radioactivity radiation fields incumbent at such facilities. Brief discussions will also be made of the fundamental processes which affect the realizable beam intensities in target-ion sources. Among the sources which will be reviewed will be selected examples of state-of-the-art electron-beam plasma-type ion sources, thermal-ionization, surface-ionization, ECR, and selectively chosen ion source concepts which show promise for radioactive ion beam generation. A few advanced, chemically selective target-ion sources will be described, such as sources based on the use of laser-resonance ionization, which, in principle, offer a more satisfactory solution to isobaric contamination problems than conventional electromagnetic techniques. Particular attention will be given to the sources which have been selected for initial or future use at the Holifield Radioactive Ion Beam Facility now under construction at the Oak Ridge National Laboratory

  12. Highly Efficient and Reproducible Nonfullerene Solar Cells from Hydrocarbon Solvents

    KAUST Repository

    Wadsworth, Andrew; Ashraf, Raja; Abdelsamie, Maged; Pont, Sebastian; Little, Mark; Moser, Maximilian; Hamid, Zeinab; Neophytou, Marios; Zhang, Weimin; Amassian, Aram; Durrant, James R.; Baran, Derya; McCulloch, Iain

    2017-01-01

    With chlorinated solvents unlikely to be permitted for use in solution-processed organic solar cells in industry, there must be a focus on developing nonchlorinated solvent systems. Here we report high-efficiency devices utilizing a low-bandgap donor polymer (PffBT4T-2DT) and a nonfullerene acceptor (EH-IDTBR) from hydrocarbon solvents and without using additives. When mesitylene was used as the solvent, rather than chlorobenzene, an improved power conversion efficiency (11.1%) was achieved without the need for pre- or post-treatments. Despite altering the processing conditions to environmentally friendly solvents and room-temperature coating, grazing incident X-ray measurements confirmed that active layers processed from hydrocarbon solvents retained the robust nanomorphology obtained with hot-processed chlorinated solvents. The main advantages of hydrocarbon solvent-processed devices, besides the improved efficiencies, were the reproducibility and storage lifetime of devices. Mesitylene devices showed better reproducibility and shelf life up to 4000 h with PCE dropping by only 8% of its initial value.

  13. Highly efficient solar-pumped Nd:YAG laser.

    Science.gov (United States)

    Liang, Dawei; Almeida, Joana

    2011-12-19

    The recent progress in solar-pumped laser with Fresnel lens and Cr:Nd:YAG ceramic medium has revitalized solar laser researches, revealing a promising future for renewable reduction of magnesium from magnesium oxide. Here we show a big advance in solar laser collection efficiency by utilizing an economical Fresnel lens and a most widely used Nd:YAG single-crystal rod. The incoming solar radiation from the sun is focused by a 0.9 m diameter Fresnel lens. A dielectric totally internally reflecting secondary concentrator is employed to couple the concentrated solar radiation from the focal zone to a 4 mm diameter Nd:YAG rod within a conical pumping cavity. 12.3 W cw laser power is produced, corresponding to 19.3 W/m(2) collection efficiency, which is 2.9 times larger than the previous results with Nd:YAG single-crystal medium. Record-high slope efficiency of 3.9% is also registered. Laser beam quality is considerably improved by pumping a 3 mm diameter Nd:YAG rod.

  14. EUROGAM: A high efficiency escape suppressed spectrometer array

    Energy Technology Data Exchange (ETDEWEB)

    Nolan, P J [Liverpool Univ. (United Kingdom). Oliver Lodge Lab.

    1992-08-01

    EUROGAM is a UK-France collaboration to develop and build a high efficiency escape suppressed spectrometer array. The project has involved the development of both germanium (Ge) and bismuth germanate (BGO) detectors to produce crystals which are both bigger and have a more complex geometry. As a major investment for the future, the collaboration has developed a new electronics and data acquisition system based on the VXI and VME standards. The array will start its experimental programme in mid 1992 at the Nuclear Structure Facility at Daresbury, U.K. At this stage it will have a total photopeak efficiency (for 1.33 MeV gamma-rays) of {approx} 4.5%. This will give an improvement in sensitivity (relative to presently operating arrays) of a factor of about 10. When EUROGAM moves to France in mid 1993 its photopeak efficiency will have increased to about 8.5% which will result in an increase in sensitivity of a further factor of about 10. In this article I will concentrate on the array which will operate at Daresbury in 1992 and only briefly cover the developments which will take place for the full array before it is used in France in 1993. (author). 13 refs., 2 tabs., 10 figs.

  15. High-efficiency integrated piezoelectric energy harvesting systems

    Science.gov (United States)

    Hande, Abhiman; Shah, Pradeep

    2010-04-01

    This paper describes hierarchically architectured development of an energy harvesting (EH) system that consists of micro and/or macro-scale harvesters matched to multiple components of remote wireless sensor and communication nodes. The micro-scale harvesters consist of thin-film MEMS piezoelectric cantilever arrays and power generation modules in IC-like form to allow efficient EH from vibrations. The design uses new high conversion efficiency thin-film processes combined with novel cantilever structures tuned to multiple resonant frequencies as broadband arrays. The macro-scale harvesters are used to power the collector nodes that have higher power specifications. These bulk harvesters can be integrated with efficient adaptive power management circuits that match transducer impedance and maximize power harvested from multiple scavenging sources with very low intrinsic power consumption. Texas MicroPower, Inc. is developing process based on a composition that has the highest reported energy density as compared to other commercially available bulk PZT-based sensor/actuator ceramic materials and extending it to thin-film materials and miniature conversion transducer structures. The multiform factor harvesters can be deployed for several military and commercial applications such as underground unattended sensors, sensors in oil rigs, structural health monitoring, supply chain management, and battlefield applications such as sensors on soldier apparel, equipment, and wearable electronics.

  16. Highly Efficient and Reproducible Nonfullerene Solar Cells from Hydrocarbon Solvents

    KAUST Repository

    Wadsworth, Andrew

    2017-06-01

    With chlorinated solvents unlikely to be permitted for use in solution-processed organic solar cells in industry, there must be a focus on developing nonchlorinated solvent systems. Here we report high-efficiency devices utilizing a low-bandgap donor polymer (PffBT4T-2DT) and a nonfullerene acceptor (EH-IDTBR) from hydrocarbon solvents and without using additives. When mesitylene was used as the solvent, rather than chlorobenzene, an improved power conversion efficiency (11.1%) was achieved without the need for pre- or post-treatments. Despite altering the processing conditions to environmentally friendly solvents and room-temperature coating, grazing incident X-ray measurements confirmed that active layers processed from hydrocarbon solvents retained the robust nanomorphology obtained with hot-processed chlorinated solvents. The main advantages of hydrocarbon solvent-processed devices, besides the improved efficiencies, were the reproducibility and storage lifetime of devices. Mesitylene devices showed better reproducibility and shelf life up to 4000 h with PCE dropping by only 8% of its initial value.

  17. A High Efficiency PSOFC/ATS-Gas Turbine Power System

    Energy Technology Data Exchange (ETDEWEB)

    W.L. Lundberg; G.A. Israelson; M.D. Moeckel; S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann

    2001-02-01

    A study is described in which the conceptual design of a hybrid power system integrating a pressurized Siemens Westinghouse solid oxide fuel cell generator and the Mercury{trademark} 50 gas turbine was developed. The Mercury{trademark} 50 was designed by Solar Turbines as part of the US. Department of Energy Advanced Turbine Systems program. The focus of the study was to develop the hybrid power system concept that principally would exhibit an attractively-low cost of electricity (COE). The inherently-high efficiency of the hybrid cycle contributes directly to achieving this objective, and by employing the efficient, power-intensive Mercury{trademark} 50, with its relatively-low installed cost, the higher-cost SOFC generator can be optimally sized such that the minimum-COE objective is achieved. The system cycle is described, major system components are specified, the system installed cost and COE are estimated, and the physical arrangement of the major system components is discussed. Estimates of system power output, efficiency, and emissions at the system design point are also presented. In addition, two bottoming cycle options are described, and estimates of their effects on overall-system performance, cost, and COE are provided.

  18. EUROGAM: A high efficiency escape suppressed spectrometer array

    International Nuclear Information System (INIS)

    Nolan, P.J.

    1992-01-01

    EUROGAM is a UK-France collaboration to develop and build a high efficiency escape suppressed spectrometer array. The project has involved the development of both germanium (Ge) and bismuth germanate (BGO) detectors to produce crystals which are both bigger and have a more complex geometry. As a major investment for the future, the collaboration has developed a new electronics and data acquisition system based on the VXI and VME standards. The array will start its experimental programme in mid 1992 at the Nuclear Structure Facility at Daresbury, U.K. At this stage it will have a total photopeak efficiency (for 1.33 MeV gamma-rays) of ∼ 4.5%. This will give an improvement in sensitivity (relative to presently operating arrays) of a factor of about 10. When EUROGAM moves to France in mid 1993 its photopeak efficiency will have increased to about 8.5% which will result in an increase in sensitivity of a further factor of about 10. In this article I will concentrate on the array which will operate at Daresbury in 1992 and only briefly cover the developments which will take place for the full array before it is used in France in 1993. (author). 13 refs., 2 tabs., 10 figs

  19. Cascade: a high-efficiency ICF power reactor

    International Nuclear Information System (INIS)

    Pitts, J.H.

    1985-01-01

    Cascade attains a net power-plant efficiency of 49% and its cost is competitive with high-temperature gas-cooled reactor, pressurized-water reactor, and coal-fired power plants. The Cascade reactor and blanket are made of ceramic materials and activation is 6 times less than that of the MARS Tandem Mirror Reactor operating at comparable power. Hands-on maintenance of the heat exchangers is possible one day after shutdown. Essentially all tritium is recovered in the vacuum system, with the remainder recovered from the helium power conversion loop. Tritium leakage external to the vacuum system and power conversion loop is only 0.03 Ci/d

  20. High-efficiency ventilated metamaterial absorber at low frequency

    Science.gov (United States)

    Wu, Xiaoxiao; Au-Yeung, Ka Yan; Li, Xin; Roberts, Robert Christopher; Tian, Jingxuan; Hu, Chuandeng; Huang, Yingzhou; Wang, Shuxia; Yang, Zhiyu; Wen, Weijia

    2018-03-01

    We demonstrate a ventilated metamaterial absorber operating at low frequency (90%) has been achieved in both simulations and experiments. This high-efficiency absorption under the ventilation condition originates from the weak coupling of two identical split tube resonators constituting the absorber, which leads to the hybridization of the degenerate eigenmodes and breaks the absorption upper limit of 50% for conventional transmissive symmetric acoustic absorbers. The absorber can also be extended to an array and work in free space. The absorber should have potential applications in acoustic engineering where both noise reduction and ventilation are required.

  1. Polarization holograms allow highly efficient generation of complex light beams.

    Science.gov (United States)

    Ruiz, U; Pagliusi, P; Provenzano, C; Volke-Sepúlveda, K; Cipparrone, Gabriella

    2013-03-25

    We report a viable method to generate complex beams, such as the non-diffracting Bessel and Weber beams, which relies on the encoding of amplitude information, in addition to phase and polarization, using polarization holography. The holograms are recorded in polarization sensitive films by the interference of a reference plane wave with a tailored complex beam, having orthogonal circular polarizations. The high efficiency, the intrinsic achromaticity and the simplicity of use of the polarization holograms make them competitive with respect to existing methods and attractive for several applications. Theoretical analysis, based on the Jones formalism, and experimental results are shown.

  2. High efficiency power production from biomass and waste

    Energy Technology Data Exchange (ETDEWEB)

    Rabou, L.P.L.M.; Van Leijenhorst, R.J.C.; Hazewinkel, J.H.O. [ECN Biomass, Coal and Environment, Petten (Netherlands)

    2008-11-15

    Two-stage gasification allows power production from biomass and waste with high efficiency. The process involves pyrolysis at about 550C followed by heating of the pyrolysis gas to about 1300C in order to crack hydrocarbons and obtain syngas, a mixture of H2, CO, H2O and CO2. The second stage produces soot as unwanted by-product. Experimental results are reported on the suppression of soot formation in the second stage for two different fuels: beech wood pellets and Rofire pellets, made from rejects of paper recycling. Syngas obtained from these two fuels and from an industrial waste fuel has been cleaned and fed to a commercial SOFC stack for 250 hours in total. The SOFC stack showed comparable performance on real and synthetic syngas and no signs of accelerated degradation in performance over these tests. The experimental results have been used for the design and analysis of a future 25 MWth demonstration plant. As an alternative, a 2.6 MWth system was considered which uses the Green MoDem approach to convert waste fuel into bio-oil and syngas. The 25 MWth system can reach high efficiency only if char produced in the pyrolysis step is converted into additional syngas by steam gasification, and if SOFC off-gas and system waste heat are used in a steam bottoming cycle for additional power production. A net electrical efficiency of 38% is predicted. In addition, heat can be delivered with 37% efficiency. The 2.6 MWth system with only a dual fuel engine to burn bio-oil and syngas promises nearly 40% electrical efficiency plus 41% efficiency for heat production. If syngas is fed to an SOFC system and off-gas and bio-oil to a dual fuel engine, the electrical efficiency can rise to 45%. However, the efficiency for heat production drops to 15%, as waste heat from the SOFC system cannot be used effectively. The economic analysis makes clear that at -20 euro/tonne fuel, 70 euro/MWh for electricity and 7 euro/GJ for heat the 25 MWth system is not economically viable at the

  3. Next generation of high-efficient waste incinerators. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jappe Frandsen, F.

    2010-11-15

    Modern society produces increasing amounts of combustible waste which may be utilized for heat and power production, at a lower emission of CO{sub 2}, e.g. by substituting a certain fraction of energy from fossil fuel-fired power stations. In 2007, 20.4 % of the district heating and 4.5 % of the power produced in Denmark came from thermal conversion of waste, and waste is a very important part of a future sustainable, and independent, Danish energy supply [Frandsen et al., 2009; Groen Energi, 2010]. In Denmark, approx 3.3 Mtons of waste was produced in 2005, an amount predicted to increase to 4.4 Mtons by the year 2030. According to Affald Danmark, 25 % of the current WtE plant capacity in Denmark is older than 20 years, which is usually considered as the technical and economical lifetime of WtE plants. Thus, there is a need for installation of a significant fraction of new waste incineration capacity, preferentially with an increased electrical efficiency, within the next few years. Compared to fossil fuels, waste is difficult to handle in terms of pre-treatment, combustion, and generation of reusable solid residues. In particular, the content of inorganic species (S, Cl, K, Na, etc.) is problematic, due to enhanced deposition and corrosion - especially at higher temperatures. This puts severe constraints on the electrical efficiency of grate-fired units utilizing waste, which seldom exceeds 26-27%, campared to 46-48 % for coal combustion in suspension. The key parameters when targeting higher electrical efficiency are the pressure and temperature in the steam cycle, which are limited by high-temperature corrosion, boiler- and combustion-technology. This report reviews some of the means that can be applied in order to increase the electrical efficiency in plants firing waste on a grate. (Author)

  4. Advances in a high efficiency commercial pulse tube cooler

    Science.gov (United States)

    Zhang, Yibing; Li, Haibing; Wang, Xiaotao; Dai, Wei; Yang, Zhaohui; Luo, Ercang

    2017-12-01

    The pulse tube cryocooler has the advantage of no moving part at the cold end and offers a high reliability. To further extend its use in commercial applications, efforts are still needed to improve efficiency, reliability and cost effectiveness. This paper generalizes several key innovations in our newest cooler. The cooler consists of a moving magnet compressor with dual-opposed pistons, and a co-axial cold finger. Ambient displacers are employed to recover the expansion work to increase cooling efficiency. Inside the cold finger, the conventional flow straightener screens are replaced by a tapered throat between the cold heat exchanger and the pulse tube to strengthen its immunity to the working gas contamination as well as to simplify the manufacturing processes. The cold heat exchanger is made by copper forging process which further reduces the cost. Inside the compressor, a new gas bearing design has brought in assembling simplicity and running reliability. Besides the cooler itself, electronic controller is also important for actual application. A dual channel and dual driving mode control mechanism has been selected, which reduces the vibration to a minimum, meanwhile the cool-down speed becomes faster and run-time efficiency is higher. With these innovations, the cooler TC4189 reached a no-load temperature of 44 K and provided 15 W cooling power at 80K, with an input electric power of 244 W and a cooling water temperature of 23 ℃. The efficiency reached 16.9% of Carnot at 80 K. The whole system has a total mass of 4.3 kg.

  5. Hexagonal boron nitride neutron detectors with high detection efficiencies

    Science.gov (United States)

    Maity, A.; Grenadier, S. J.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2018-01-01

    Neutron detectors fabricated from 10B enriched hexagonal boron nitride (h-10BN or h-BN) epilayers have demonstrated the highest thermal neutron detection efficiency among solid-state neutron detectors to date at about 53%. In this work, photoconductive-like vertical detectors with a detection area of 1 × 1 mm2 were fabricated from 50 μm thick free-standing h-BN epilayers using Ni/Au and Ti/Al bilayers as ohmic contacts. Leakage currents, mobility-lifetime (μτ) products under UV photoexcitation, and neutron detection efficiencies have been measured for a total of 16 different device configurations. The results have unambiguously identified that detectors incorporating the Ni/Au bilayer on both surfaces as ohmic contacts and using the negatively biased top surface for neutron irradiation are the most desired device configurations. It was noted that high growth temperatures of h-10BN epilayers on sapphire substrates tend to yield a higher concentration of oxygen impurities near the bottom surface, leading to a better device performance by the chosen top surface for irradiation than by the bottom. Preferential scattering of oxygen donors tends to reduce the mobility of holes more than that of electrons, making the biasing scheme with the ability of rapidly extracting holes at the irradiated surface while leaving the electrons to travel a large average distance inside the detector at a preferred choice. When measured against a calibrated 6LiF filled micro-structured semiconductor neutron detector, it was shown that the optimized configuration has pushed the detection efficiency of h-BN neutron detectors to 58%. These detailed studies also provided a better understanding of growth-mediated impurities in h-BN epilayers and their effects on the charge collection and neutron detection efficiencies.

  6. High efficiency, multiterawatt x-ray free electron lasers

    Directory of Open Access Journals (Sweden)

    C. Emma

    2016-02-01

    Full Text Available In this paper we present undulator magnet tapering methods for obtaining high efficiency and multiterawatt peak powers in x-ray free electron lasers (XFELs, a key requirement for enabling 3D atomic resolution single molecule imaging and nonlinear x-ray science. The peak power and efficiency of tapered XFELs is sensitive to time dependent effects, like synchrotron sideband growth. To analyze this dependence in detail we perform a comparative numerical optimization for the undulator magnetic field tapering profile including and intentionally disabling these effects. We show that the solution for the magnetic field taper profile obtained from time independent optimization does not yield the highest extraction efficiency when time dependent effects are included. Our comparative optimization is performed for a novel undulator designed specifically to obtain TW power x-ray pulses in the shortest distance: superconducting, helical, with short period and built-in strong focusing. This design reduces the length of the breaks between modules, decreasing diffraction effects, and allows using a stronger transverse electron focusing. Both effects reduce the gain length and the overall undulator length. We determine that after a fully time dependent optimization of a 100 m long Linac coherent light source-like XFEL we can obtain a maximum efficiency of 7%, corresponding to 3.7 TW peak radiation power. Possible methods to suppress the synchrotron sidebands, and further enhance the FEL peak power, up to about 6 TW by increasing the seed power and reducing the electron beam energy spread, are also discussed.

  7. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER

    Energy Technology Data Exchange (ETDEWEB)

    BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-06-01

    OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from

  8. Comparison of the samples injection systems with ultrasonic nebulizer and with pneumatic nebulizer for the metal determination in water by inductively coupled plasma optical emission spectrometry

    International Nuclear Information System (INIS)

    Marin, Sergio R; Pismante, Paola A

    2005-01-01

    The natural waters, depending on their use, must fulfill the exigencies and requirements that fix national and international norms. These establish conditions with respect to the concentration levels that must be some metals. In this work the development of inductively coupled plasma emission optical spectrometry with ultrasonic injection system is presented. The determination of aluminum, arsenic, barium, cadmium, zinc, cobalt, chromium, copper, iron, manganese, molybdenum, nickel, lead, strontium and vanadium, at levels of ultra-trace in water samples is studied by this technique. The wavelengths that represented better sensitivity and minors spectral interferences, were selected from the Literature specialized in the analysis of this type of material. Also the conditions of work for the ultrasonic nebulization: temperature, pressure, flow speed of argon, and flow speed of sample was determined. The greater sensitivity of the injection system by ultrasonic nebulization forehead to the injection system by pneumatic nebulization, is verified when comparing the spectral intensity of the selected wavelengths. Also the limits of detection and quantification was obtained by both systems. The validity of the results obtained in this method is verified applying the test of Fisher, who determines the degree of homogeneity of the variances, and the test of Student, to determine the trazability obtained with these values. For these studies, the certified material of reference TM-24.2 of National Water Research Institute Environment Canada (NWRI), was used. The positive answer to the criteria of evaluation E and Z-Score, obtained by this technique, allows to verify that it fulfills the exigencies to be used in the determination of metals at the required levels (au)

  9. Effect of extended infusion of meropenem and nebulized amikacin on Gram-negative multidrug-resistant ventilator-associated pneumonia

    Directory of Open Access Journals (Sweden)

    Mona Ahmed Ammar

    2018-01-01

    Conclusions: Adding nebulized amikacin to systemic antibiotics in patients with VAP caused by Gram-negative MDRO may offer efficacy benefits, and the use of extended infusions of meropenem could improve the clinical outcomes in critically ill populations.

  10. Comparison of the Bronchodilative Effects of Salbutamol Delivered via Three Mesh Nebulizers in Children with Bronchial Asthma

    Directory of Open Access Journals (Sweden)

    Fumitake Kurosaka

    2009-01-01

    Conclusions: Overall, all 3 mesh nebulizers were useful devices in treating bronchial asthma, although some differences in lung function improvement were evident. The limitation of this study is that subjects did not include patients with severe asthma attacks.

  11. The analysis of energy efficiency in water electrolysis under high temperature and high pressure

    Science.gov (United States)

    Hourng, L. W.; Tsai, T. T.; Lin, M. Y.

    2017-11-01

    This paper aims to analyze the energy efficiency of water electrolysis under high pressure and high temperature conditions. The effects of temperature and pressure on four different kinds of reaction mechanisms, namely, reversible voltage, activation polarization, ohmic polarization, and concentration polarization, are investigated in details. Results show that the ohmic and concentration over-potentials are increased as temperature is increased, however, the reversible and activation over-potentials are decreased as temperature is increased. Therefore, the net efficiency is enhanced as temperature is increased. The efficiency of water electrolysis at 350°C/100 bars is increased about 17%, compared with that at 80°C/1bar.

  12. Determination of trace elements in biological samples treated with formic acid by inductively coupled plasma mass spectrometry using a microconcentric nebulizer

    International Nuclear Information System (INIS)

    Tormen, Luciano; Gil, Raul A.; Frescura, Vera L.A.; Dante Martinez, Luis; Curtius, Adilson J.

    2010-01-01

    A simple and fast method for the determination of As, Ba, Cd, Co, Cu, Fe, Ga, Mn, Mo, Ni, Pb, Rb, Se, Sr, Tl, U, V and Zn in biological samples by inductively coupled plasma mass spectrometry (ICP-MS), after sample solubilization with formic acid and introduction by a microconcentric nebulizer, is proposed. The sample is mixed with formic acid, kept at 90 o C for one hour and then diluted with nitric acid aqueous solution to a 50% v/v formic acid and 1% v/v nitric acid final concentrations. The final sample solution flow rate for introduction into the plasma was 30 μL min -1 . The optimized and adopted nebulizer gas flow rate was 0.7 L min -1 and RF power was 800 W. These conditions are very different than those normally used when a conventional nebulizer is employed. Rodhium was used as internal standard. External calibration against aqueous standard solutions, without formic acid, could be used for quantification, except for As, Se and Zn. However, external calibration with 50% formic acid allows the determination of all analytes with high accuracy and it is recommended. The detection limits were between 0.0005 (Tl) and 0.22 mg kg -1 (Fe) and the precision expressed by the relative standard deviations (RSD) were between 0.2% (Sr) and 3.5% (Ga). Accuracy was validated by the analysis of four certified reference biological materials of animal tissues, comparing the results by linear regressions and by the t-test at a 95% confidence level. The recommended procedure avoids plasma instability and carbon deposit on the cones.

  13. High-Order Dielectric Metasurfaces for High-Efficiency Polarization Beam Splitters and Optical Vortex Generators

    Science.gov (United States)

    Guo, Zhongyi; Zhu, Lie; Guo, Kai; Shen, Fei; Yin, Zhiping

    2017-08-01

    In this paper, a high-order dielectric metasurface based on silicon nanobrick array is proposed and investigated. By controlling the length and width of the nanobricks, the metasurfaces could supply two different incremental transmission phases for the X-linear-polarized (XLP) and Y-linear-polarized (YLP) light with extremely high efficiency over 88%. Based on the designed metasurface, two polarization beam splitters working in high-order diffraction modes have been designed successfully, which demonstrated a high transmitted efficiency. In addition, we have also designed two vortex-beam generators working in high-order diffraction modes to create vortex beams with the topological charges of 2 and 3. The employment of dielectric metasurfaces operating in high-order diffraction modes could pave the way for a variety of new ultra-efficient optical devices.

  14. A critical study of high efficiency deep grinding

    International Nuclear Information System (INIS)

    Johnstone, Iain

    2002-01-01

    The recent years, the aerospace industry in particular has embraced and actively pursued the development of stronger high performance materials, namely nickel based superalloys and hardwearing steels. This has resulted in a need for a more efficient method of machining, and this need was answered with the advent of High Efficiency Deep Grinding (HEDG). This relatively new process using Cubic Boron Nitride (CBN) electroplated grinding wheels has been investigated through experimental and theoretical means applied to two widely used materials, M50 bearing steel and IN718 nickel based superalloy. It has been shown that this grinding method using a stiff grinding centre such as the Edgetek 5-axis machine is a viable process. Using a number of experimental designs, produced results which were analysed using a variety of methods including visual assessment, sub-surface microscopy and surface analysis using a Scanning Electron Microscope (SEM), residual stress measurement using X-Ray Diffraction (XRD) techniques, Barkhausen Noise Amplitude (BNA) measurements, surface roughness and Vickers micro-hardness appraisal. It has been shown that the fundamentals of the HEDG process have been understood through experimental as well as theoretical means and that through the various thermal models used, grinding temperatures can be predicted to give more control over this dynamic process. The main contributions to knowledge are made up of a number of elements within the grinding environment, the most important being the demonstration of the HEDG effect, explanation of the phenomenon and the ability to model the process. It has also been shown that grinding is a dynamic process and factors such as wheel wear will result in a continuous change in the optimum grinding conditions for a given material and wheel combination. With the significance of these factors recognised, they can be accounted for within an industrial adaptive control scenario with the process engineer confident of a

  15. MXene molecular sieving membranes for highly efficient gas separation.

    Science.gov (United States)

    Ding, Li; Wei, Yanying; Li, Libo; Zhang, Tao; Wang, Haihui; Xue, Jian; Ding, Liang-Xin; Wang, Suqing; Caro, Jürgen; Gogotsi, Yury

    2018-01-11

    Molecular sieving membranes with sufficient and uniform nanochannels that break the permeability-selectivity trade-off are desirable for energy-efficient gas separation, and the arising two-dimensional (2D) materials provide new routes for membrane development. However, for 2D lamellar membranes, disordered interlayer nanochannels for mass transport are usually formed between randomly stacked neighboring nanosheets, which is obstructive for highly efficient separation. Therefore, manufacturing lamellar membranes with highly ordered nanochannel structures for fast and precise molecular sieving is still challenging. Here, we report on lamellar stacked MXene membranes with aligned and regular subnanometer channels, taking advantage of the abundant surface-terminating groups on the MXene nanosheets, which exhibit excellent gas separation performance with H 2 permeability >2200 Barrer and H 2 /CO 2 selectivity >160, superior to the state-of-the-art membranes. The results of molecular dynamics simulations quantitatively support the experiments, confirming the subnanometer interlayer spacing between the neighboring MXene nanosheets as molecular sieving channels for gas separation.

  16. High efficiency video coding coding tools and specification

    CERN Document Server

    Wien, Mathias

    2015-01-01

    The video coding standard High Efficiency Video Coding (HEVC) targets at improved compression performance for video resolutions of HD and beyond, providing Ultra HD video at similar compressed bit rates as for HD video encoded with the well-established video coding standard H.264 | AVC. Based on known concepts, new coding structures and improved coding tools have been developed and specified in HEVC. The standard is expected to be taken up easily by established industry as well as new endeavors, answering the needs of todays connected and ever-evolving online world. This book presents the High Efficiency Video Coding standard and explains it in a clear and coherent language. It provides a comprehensive and consistently written description, all of a piece. The book targets at both, newbies to video coding as well as experts in the field. While providing sections with introductory text for the beginner, it suits as a well-arranged reference book for the expert. The book provides a comprehensive reference for th...

  17. Large-area high-efficiency flexible PHOLED lighting panels

    Science.gov (United States)

    Pang, Huiqing; Mandlik, Prashant; Levermore, Peter A.; Silvernail, Jeff; Ma, Ruiqing; Brown, Julie J.

    2012-09-01

    Organic Light Emitting Diodes (OLEDs) provide various attractive features for next generation illumination systems, including high efficiency, low power, thin and flexible form factor. In this work, we incorporated phosphorescent emitters and demonstrated highly efficient white phosphorescent OLED (PHOLED) devices on flexible plastic substrates. The 0.94 cm2 small-area device has total thickness of approximately 0.25 mm and achieved 63 lm/W at 1,000 cd/m2 with CRI = 85 and CCT = 2920 K. We further designed and fabricated a 15 cm x 15 cm large-area flexible white OLED lighting panels, finished with a hybrid single-layer ultra-low permeability single layer barrier (SLB) encapsulation film. The flexible panel has an active area of 116.4 cm2, and achieved a power efficacy of 47 lm/W at 1,000 cd/m2 with CRI = 83 and CCT = 3470 K. The efficacy of the panel at 3,000 cd/m2 is 43 lm/W. The large-area flexible PHOLED lighting panel is to bring out enormous possibilities to the future general lighting applications.

  18. Nanocoatings for High-Efficiency Industrial Hydraulic and Tooling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Clifton B. Higdon III

    2011-01-07

    Industrial manufacturing in the U.S. accounts for roughly one third of the 98 quadrillion Btu total energy consumption. Motor system losses amount to 1.3 quadrillion Btu, which represents the largest proportional loss of any end-use category, while pumps alone represent over 574 trillion BTU (TBTU) of energy loss each year. The efficiency of machines with moving components is a function of the amount of energy lost to heat because of friction between contacting surfaces. The friction between these interfaces also contributes to downtime and the loss of productivity through component wear and subsequent repair. The production of new replacement parts requires additional energy. Among efforts to reduce energy losses, wear-resistant, low-friction coatings on rotating and sliding components offer a promising approach that is fully compatible with existing equipment and processes. In addition to lubrication, one of the most desirable solutions is to apply a protective coating or surface treatment to rotating or sliding components to reduce their friction coefficients, thereby leading to reduced wear. Historically, a number of materials such as diamond-like carbon (DLC), titanium nitride (TiN), titanium aluminum nitride (TiAlN), and tungsten carbide (WC) have been examined as tribological coatings. The primary objective of this project was the development of a variety of thin film nanocoatings, derived from the AlMgB14 system, with a focus on reducing wear and friction in both industrial hydraulics and cutting tool applications. Proof-of-concept studies leading up to this project had shown that the constituent phases, AlMgB14 and TiB2, were capable of producing low-friction coatings by pulsed laser deposition. These coatings combine high hardness with a low friction coefficient, and were shown to substantially reduce wear in laboratory tribology tests. Selection of the two applications was based largely on the concept of improved mechanical interface efficiencies for

  19. Development and characterization of high-efficiency, high-specific impulse xenon Hall thrusters

    Science.gov (United States)

    Hofer, Richard Robert

    This dissertation presents research aimed at extending the efficient operation of 1600 s specific impulse Hall thruster technology to the 2000--3000 s range. While recent studies of commercially developed Hall thrusters demonstrated greater than 4000 s specific impulse, maximum efficiency occurred at less than 3000 s. It was hypothesized that the efficiency maximum resulted as a consequence of modern magnetic field designs, optimized for 1600 s, which were unsuitable at high-specific impulse. Motivated by the industry efforts and mission studies, the aim of this research was to develop and characterize xenon Hall thrusters capable of both high-specific impulse and high-efficiency operation. The research divided into development and characterization phases. During the development phase, the laboratory-model NASA-173M Hall thrusters were designed with plasma lens magnetic field topographies and their performance and plasma characteristics were evaluated. Experiments with the NASA-173M version 1 (v1) validated the plasma lens design by showing how changing the magnetic field topography at high-specific impulse improved efficiency. Experiments with the NASA-173M version 2 (v2) showed there was a minimum current density and optimum magnetic field topography at which efficiency monotonically increased with voltage. Between 300--1000 V, total specific impulse and total efficiency of the NASA-173Mv2 operating at 10 mg/s ranged from 1600--3400 s and 51--61%, respectively. Comparison of the thrusters showed that efficiency can be optimized for specific impulse by varying the plasma lens design. During the characterization phase, additional plasma properties of the NASA-173Mv2 were measured and a performance model was derived accounting for a multiply-charged, partially-ionized plasma. Results from the model based on experimental data showed how efficient operation at high-specific impulse was enabled through regulation of the electron current with the magnetic field. The

  20. Highly Efficient TADF Polymer Electroluminescence with Reduced Efficiency Roll-off via Interfacial Exciplex Host Strategy.

    Science.gov (United States)

    Lin, Xingdong; Zhu, Yunhui; Zhang, Baohua; Zhao, Xiaofei; Yao, Bing; Cheng, Yanxiang; Li, Zhanguo; Qu, Yi; Xie, Zhiyuan

    2018-01-10

    Solution-processed organic light-emitting diodes (s-OLED) consisting of TAPC/TmPyPB interfacial exciplex host and polymer PAPTC TADF emitter are prepared, simultaneously displaying ultralow voltages (2.50/2.91/3.51/4.91 V at luminance of 1/100/1000/1000 cd m -2 ), high efficiencies (14.9%, 50.1 lm W -1 ), and extremely low roll-off rates (J 50 of 63.16 mA cm -2 , L 50 of ca. 15000 cd m -2 ). Such performance is distinctly higher than that of pure-PAPTC s-OLED. Compared to pure-PAPTC, the advanced emissive layer structure of TAPC:PAPTC/TmPyPB is unique in much higher PL quantum yield (79.5 vs 36.3%) and nearly 4-fold enhancement in k RISC of the PAPTC emitter to 1.48 × 10 7 s -1 .

  1. Magnetic Refrigeration Technology for High Efficiency Air Conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Boeder, A; Zimm, C

    2006-09-30

    Magnetic refrigeration was investigated as an efficient, environmentally friendly, flexible alternative to conventional residential vapor compression central air conditioning systems. Finite element analysis (FEA) models of advanced geometry active magnetic regenerator (AMR) beds were developed to minimize bed size and thus magnet mass by optimizing geometry for fluid flow and heat transfer and other losses. Conventional and magnetocaloric material (MCM) regenerator fabrication and assembly techniques were developed and advanced geometry passive regenerators were built and tested. A subscale engineering prototype (SEP) magnetic air conditioner was designed, constructed and tested. A model of the AMR cycle, combined with knowledge from passive regenerator experiments and FEA results, was used to design the regenerator beds. A 1.5 Tesla permanent magnet assembly was designed using FEA and the bed structure and plenum design was extensively optimized using FEA. The SEP is a flexible magnetic refrigeration platform, with individually instrumented beds and high flow rate and high frequency capability, although the current advanced regenerator geometry beds do not meet performance expectations, probably due to manufacturing and assembly tolerances. A model of the AMR cycle was used to optimize the design of a 3 ton capacity magnetic air conditioner, and the system design was iterated to minimize external parasitic losses such as heat exchanger pressure drop and fan power. The manufacturing cost for the entire air conditioning system was estimated, and while the estimated SEER efficiency is high, the magnetic air conditioning system is not cost competitive as currently configured. The 3 ton study results indicate that there are other applications where magnetic refrigeration is anticipated to have cost advantages over conventional systems, especially applications where magnetic refrigeration, through the use of its aqueous heat transfer fluid, could eliminate intermediate

  2. High Efficiency and Low Cost Thermal Energy Storage System

    Energy Technology Data Exchange (ETDEWEB)

    Sienicki, James J. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Lv, Qiuping [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Moisseytsev, Anton [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Bucknor, Matthew [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2017-09-29

    BgtL, LLC (BgtL) is focused on developing and commercializing its proprietary compact technology for processes in the energy sector. One such application is a compact high efficiency Thermal Energy Storage (TES) system that utilizes the heat of fusion through phase change between solid and liquid to store and release energy at high temperatures and incorporate state-of-the-art insulation to minimize heat dissipation. BgtL’s TES system would greatly improve the economics of existing nuclear and coal-fired power plants by allowing the power plant to store energy when power prices are low and sell power into the grid when prices are high. Compared to existing battery storage technology, BgtL’s novel thermal energy storage solution can be significantly less costly to acquire and maintain, does not have any waste or environmental emissions, and does not deteriorate over time; it can keep constant efficiency and operates cleanly and safely. BgtL’s engineers are experienced in this field and are able to design and engineer such a system to a specific power plant’s requirements. BgtL also has a strong manufacturing partner to fabricate the system such that it qualifies for an ASME code stamp. BgtL’s vision is to be the leading provider of compact systems for various applications including energy storage. BgtL requests that all technical information about the TES designs be protected as proprietary information. To honor that request, only non-proprietay summaries are included in this report.

  3. Preliminary field evaluation of high efficiency steel filters

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, W.; Larsen, G.; Lopez, R. [Lawrence Livermore National Laboratory, CA (United States)] [and others

    1995-02-01

    We have conducted an evaluation of two high efficiency steel filters in the exhaust of an uranium oxide grit blaster at the Y-12 Plant in Oak Ridge Tennessee. The filters were installed in a specially designed filter housing with a reverse air-pulse cleaning system for automatically cleaning the filters in-place. Previous tests conducted on the same filters and housing at LLNL under controlled conditions using Arizona road dust showed good cleanability with reverse air pulses. Two high efficiency steel filters, containing 64 pleated cartridge elements housed in the standard 2` x 2` x 1` HEPA frame, were evaluated in the filter test housing using a 1,000 cfm slip stream containing a high concentration of depleted uranium oxide dust. One filter had the pleated cartridges manufactured to our specifications by the Pall Corporation and the other by Memtec Corporation. Test results showed both filters had a rapid increase in pressure drop with time, and reverse air pulses could not decrease the pressure drop. We suspected moisture accumulation in the filters was the problem since there were heavy rains during the evaluations, and the pressure drop of the Memtec filter decreased dramatically after passing clean, dry air through the filter and after the filter sat idle for one week. Subsequent laboratory tests on a single filter cartridge confirmed that water accumulation in the filter was responsible for the increase in filter pressure drop and the inability to lower the pressure drop by reverse air pulses. No effort was made to identify the source of the water accumulation and correct the problem because the available funds were exhausted.

  4. A new approach to a high efficiency inductive store

    International Nuclear Information System (INIS)

    Zowarka, R.C. Jr.; Kajs, J.P.; Price, J.H.; Weldon, W.F.

    1991-01-01

    In the Spring of 1989, Parker Kinetic Design, Inc. (PKD) and the Center for Electromechanics at The University of Texas at Austin (CEM-UT) conducted a study to examine the basic technologies to be used in the construction and operation of a feasible and reliable electromagnetic (EM) gun system. This work was performed for Brown and Root Vickers, Ltd. (BRV) in response to a feasibility analysis requirement of the Royal Armament and Development Establishment (RARDE), Ministry of Defence (MD) of the United Kingdom. This paper summarizes that this study focused on the analysis and evaluation of the suitability and applicability of various pulsed power supply options for the performance goals of the RARDE EM gun program. The existing technologies considered included batteries, compulsators, capacitors, and homopolar generators (HPGs). Primary performance specifications for the electrical energy radius system were that it be capable of providing 12 MJ of muzzle energy; velocities between 2.0 and 3.5 km/s; and a repetitive shot rate of up to 10 shots per day, with no more than a 30-min interval between shots. In addition, the recommended system needed to be reliable, easily maintainable, and capable of routinely firing large numbers of shots. Strict adherence to the goal of designing a system based only on demonstrated technology results in power supplies that are prohibitively expensive and large. As a consequence, candidate system designs represent a modest extrapolation from demonstrated technology well within an acceptable design envelope. A new topology has been developed for a highly efficient inductive store suitable for pulsed-power applications. The new design features high L/R ratios without having to cryogenically cool the conductors. This allows for high efficiency charging of the inductor from low impedance dc sources such as batteries of HPGs

  5. Energy-Efficient Office Buildings at High Latitudes

    Energy Technology Data Exchange (ETDEWEB)

    Lerum, V.

    1996-12-31

    This doctoral thesis describes a method for energy efficient office building design at high latitudes and cold climates. The method combines daylighting, passive solar heating, solar protection, and ventilative cooling. The thesis focuses on optimal design of an equatorial-facing fenestration system. A spreadsheet framework linking existing simplified methods is used. The daylight analysis uses location specific data on frequency distribution of diffuse daylight on vertical surfaces to estimate energy savings from optimal window and room configurations in combination with a daylight-responsive electric lighting system. The passive solar heating analysis is a generalization of a solar load ratio method adapted to cold climates by combining it with the Norwegian standard NS3031 for winter months when the solar savings fraction is negative. The emphasis is on very high computational efficiency to permit rapid and comprehensive examination of a large number of options early in design. The procedure is illustrated for a location in Trondheim, Norway, testing the relative significance of various design improvement options relative to a base case. The method is also tested for two other locations in Norway, at latitudes 58 and 70 degrees North. The band of latitudes between these limits covers cities in Alaska, Canada, Greenland, Iceland, Scandinavia, Finland, Russia, and Northern Japan. A comprehensive study of the ``whole building approach`` shows the impact of integrated daylighting and low-energy design strategies. In general, consumption of lighting electricity may be reduced by 50-80%, even at extremely high latitudes. The reduced internal heat from electric lights is replaced by passive solar heating. 113 refs., 85 figs., 25 tabs.

  6. Combined discrete nebulization and microextraction process for molybdenum determination by flame atomic absorption spectrometry (FAAS)

    International Nuclear Information System (INIS)

    Oviedo, Jenny A.; Jesus, Amanda M.D. de; Fialho, Lucimar L.; Pereira-Filho, Edenir R.

    2014-01-01

    Simple and sensitive procedures for the extraction/preconcentration of molybdenum based on vortex-assisted solidified floating organic drop microextraction (VA-SFODME) and cloud point combined with flame absorption atomic spectrometry (FAAS) and discrete nebulization were developed. The influence of the discrete nebulization on the sensitivity of the molybdenum preconcentration processes was studied. An injection volume of 200 μ resulted in a lower relative standard deviation with both preconcentration procedures. Enrichment factors of 31 and 67 and limits of detection of 25 and 5 μ L -1 were obtained for cloud point and VA-SFODME, respectively. The developed procedures were applied to the determination of Mo in mineral water and multivitamin samples. (author)

  7. Quality and efficiency in high dimensional Nearest neighbor search

    KAUST Repository

    Tao, Yufei; Yi, Ke; Sheng, Cheng; Kalnis, Panos

    2009-01-01

    Nearest neighbor (NN) search in high dimensional space is an important problem in many applications. Ideally, a practical solution (i) should be implementable in a relational database, and (ii) its query cost should grow sub-linearly with the dataset size, regardless of the data and query distributions. Despite the bulk of NN literature, no solution fulfills both requirements, except locality sensitive hashing (LSH). The existing LSH implementations are either rigorous or adhoc. Rigorous-LSH ensures good quality of query results, but requires expensive space and query cost. Although adhoc-LSH is more efficient, it abandons quality control, i.e., the neighbor it outputs can be arbitrarily bad. As a result, currently no method is able to ensure both quality and efficiency simultaneously in practice. Motivated by this, we propose a new access method called the locality sensitive B-tree (LSB-tree) that enables fast highdimensional NN search with excellent quality. The combination of several LSB-trees leads to a structure called the LSB-forest that ensures the same result quality as rigorous-LSH, but reduces its space and query cost dramatically. The LSB-forest also outperforms adhoc-LSH, even though the latter has no quality guarantee. Besides its appealing theoretical properties, the LSB-tree itself also serves as an effective index that consumes linear space, and supports efficient updates. Our extensive experiments confirm that the LSB-tree is faster than (i) the state of the art of exact NN search by two orders of magnitude, and (ii) the best (linear-space) method of approximate retrieval by an order of magnitude, and at the same time, returns neighbors with much better quality. © 2009 ACM.

  8. High Current Planar Transformer for Very High Efficiency Isolated Boost DC-DC Converters

    DEFF Research Database (Denmark)

    Pittini, Riccardo; Zhang, Zhe; Andersen, Michael A. E.

    2014-01-01

    This paper presents a design and optimization of a high current planar transformer for very high efficiency dc-dc isolated boost converters. The analysis considers different winding arrangements, including very high copper thickness windings. The analysis is focused on the winding ac-resistance a......This paper presents a design and optimization of a high current planar transformer for very high efficiency dc-dc isolated boost converters. The analysis considers different winding arrangements, including very high copper thickness windings. The analysis is focused on the winding ac......-resistance and transformer leakage inductance. Design and optimization procedures are validated based on an experimental prototype of a 6 kW dcdc isolated full bridge boost converter developed on fully planar magnetics. The prototype is rated at 30-80 V 0-80 A on the low voltage side and 700-800 V on the high voltage side...... with a peak efficiency of 97.8% at 80 V 3.5 kW. Results highlights that thick copper windings can provide good performance at low switching frequencies due to the high transformer filling factor. PCB windings can also provide very high efficiency if stacked in parallel utilizing the transformer winding window...

  9. Nebulization of the acidified sodium nitrite formulation attenuates acute hypoxic pulmonary vasoconstriction

    Directory of Open Access Journals (Sweden)

    Surber Mark W

    2010-06-01

    Full Text Available Abstract Background Generalized hypoxic pulmonary vasoconstriction (HPV occurring during exposure to hypoxia is a detrimental process resulting in an increase in lung vascular resistance. Nebulization of sodium nitrite has been shown to inhibit HPV. The aim of this project was to investigate and compare the effects of nebulization of nitrite and different formulations of acidified sodium nitrite on acute HPV. Methods Ex vivo isolated rabbit lungs perfused with erythrocytes in Krebs-Henseleit buffer (adjusted to 10% hematocrit and in vivo anesthetized catheterized rabbits were challenged with periods of hypoxic ventilation alternating with periods of normoxic ventilation. After baseline hypoxic challenges, vehicle, sodium nitrite or acidified sodium nitrite was delivered via nebulization. In the ex vivo model, pulmonary arterial pressure and nitric oxide concentrations in exhaled gas were monitored. Nitrite and nitrite/nitrate were measured in samples of perfusion buffer. Pulmonary arterial pressure, systemic arterial pressure, cardiac output and blood gases were monitored in the in vivo model. Results In the ex vivo model, nitrite nebulization attenuated HPV and increased nitric oxide concentrations in exhaled gas and nitrite concentrations in the perfusate. The acidified forms of sodium nitrite induced higher levels of nitric oxide in exhaled gas and had longer vasodilating effects compared to nitrite alone. All nitrite formulations increased concentrations of circulating nitrite to the same degree. In the in vivo model, inhaled nitrite inhibited HPV, while pulmonary arterial pressure, cardiac output and blood gases were not affected. All nitrite formulations had similar potency to inhibit HPV. The tested concentration of appeared tolerable. Conclusion Nitrite alone and in acidified forms effectively and similarly attenuates HPV. However, acidified nitrite formulations induce a more pronounced increase in nitric oxide exhalation.

  10. Nebulizer calibration using lithium chloride: an accurate, reproducible and user-friendly method.

    Science.gov (United States)

    Ward, R J; Reid, D W; Leonard, R F; Johns, D P; Walters, E H

    1998-04-01

    Conventional gravimetric (weight loss) calibration of jet nebulizers overestimates their aerosol output by up to 80% due to unaccounted evaporative loss. We examined two methods of measuring true aerosol output from jet nebulizers. A new adaptation of a widely available clinical assay for lithium (determined by flame photometry, LiCl method) was compared to an existing electrochemical method based on fluoride detection (NaF method). The agreement between the two methods and the repeatability of each method were examined. Ten Mefar jet nebulizers were studied using a Mefar MK3 inhalation dosimeter. There was no significant difference between the two methods (p=0.76) with mean aerosol output of the 10 nebulizers being 7.40 mg x s(-1) (SD 1.06; range 5.86-9.36 mg x s(-1)) for the NaF method and 7.27 mg x s(-1) (SD 0.82; range 5.52-8.26 mg x s(-1)) for the LiCl method. The LiCl method had a coefficient of repeatability of 13 mg x s(-1) compared with 3.7 mg x s(-1) for the NaF method. The LiCl method accurately measured true aerosol output and was considerably easier to use. It was also more repeatable, and hence more precise, than the NaF method. Because the LiCl method uses an assay that is routinely available from hospital biochemistry laboratories, it is easy to use and, thus, can readily be adopted by busy respiratory function departments.

  11. Ultrasonic nebulization extraction/low pressure photoionization mass spectrometry for direct analysis of chemicals in matrices.

    Science.gov (United States)

    Liu, Chengyuan; Zhu, Yanan; Zhou, Zhongyue; Yang, Jiuzhong; Qi, Fei; Pan, Yang

    2015-09-03

    A novel ultrasonic nebulization extraction/low-pressure photoionization (UNE-LPPI) system has been designed and employed for the rapid mass spectrometric analysis of chemicals in matrices. An ultrasonic nebulizer was used to extract the chemicals in solid sample and nebulize the solvent in the nebulization cell. Aerosols formed by ultrasonic were evaporated by passing through a transferring tube, and desolvated chemicals were ionized by the emitted light (10.6 eV) from a Krypton discharge lamp at low pressure (∼68 Pa). First, a series of semi/non-volatile compounds with different polarities, such as polycyclic aromatic hydrocarbons (PAHs), amino acids, dipeptides, drugs, nucleic acids, alkaloids, and steroids were used to test the system. Then, the quantification capability of UNE-LPPI was checked with: 1) pure chemicals, such as 9,10-phenanthrenequinone and 1,4-naphthoquinone dissolved in solvent; 2) soil powder spiked with different amounts of phenanthrene and pyrene. For pure chemicals, the correlation coefficient (R(2)) for the standard curve of 9,10-phenanthrenequinone in the range of 3 ng-20 μg mL(-1) was 0.9922, and the measured limits of detection (LOD) was 1 ng ml(-1). In the case of soil powder, linear relationships for phenanthrene and pyrene from 10 to 400 ng mg(-1) were obtained with correlation coefficients of 0.9889 and 0.9893, respectively. At last, the feasibility of UNE-LPPI for the detection of chemicals in real matrices such as tablets and biological tissues (tea, Citrus aurantium peel and sage (Salvia officinalis) leaf) were successfully demonstrated. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. In-situ high efficiency filter testing at AEE Winfrith

    International Nuclear Information System (INIS)

    Fraser, D.C.

    1977-01-01

    This paper discusses experience in the testing of high efficiency filters in a variety of reactor and plant installations at AEE Winfrith. There is rarely any concern about the effectiveness of the filter as supplied by any reputable manufacturer. Experience has shown there is a need to check for defects in the installation of filters which could lead to by-passing of aerosols and it is desirable to perform periodical re-tests to ensure that no subsequent deterioration occurs. It is important to use simple, portable apparatus for such tests; methods based on the use of sodium chloride aerosols, although suitable for the testing of filters prior to installation, involve apparatus which is too bulky for in-situ testing. At Winfrith a double automatic Pollak counter has been developed and used routinely since 1970. The aerosol involved has a particle size far smaller than the size most likely to penetrate intact filters, but this is irrelevant when one is primarily interested in particles which by-pass the filter. Comparisons with other methods of testing filters will be described. There is remarkably good agreement between the efficiency of the filter installation as measured by a Pollak counter compared with techniques involving aerosols of sodium chloride and Dioctyl Phthalate (DOP), presumably because the leakage around the filter is independent of particle size

  13. Prospects for development of powerful, highly efficient, relativistic gyrodevices

    International Nuclear Information System (INIS)

    Nusinovich, G.S.; Granatstein, V.L.

    1992-01-01

    For various applications the required parameters of sources of powerful microwave radiation lie far beyond the capabilities of existing tubes. This provokes an interest in reconsidering basic principles of relevant microwave sources in order to search for alternative concepts in their development. One of the most promising devices in the short-wavelength region of microwaves is the cyclotron resonance maser (CRM). During the last decade, two important varieties of CRMs have been distinguished, namely, gyrotrons, which operate at frequencies close to cut-off, and cyclotron autoresonance masers (CARMs), which operate at frequencies far from cut-off. When the axial phase velocity of the wave in properly adjusted to the beam voltage and electron pitch-ratio, the efficiency of relativistic CRMs may be high (≥50%). The method of optimizing efficiency based on a partial compensation of the shift in the relativistic electron cyclotron frequency by the change in the Doppler term can be, in principle, accompanied by a corresponding profiling of the external magnetic field and/or the wave phase velocity in a slightly irregular waveguide. These methods can be used in such relativistic CRMs as relativistic gyrotrons, gyroklystrons, gyro-traveling-wave-tubes and gyrotwistrons. The most important point is their sensitivity to a spread in electron parameters. As the beam voltage grows, the operation becomes more sensitive. However, at relatively low voltages such devices are quite tolerant to electron velocity spread

  14. Novel Intermode Prediction Algorithm for High Efficiency Video Coding Encoder

    Directory of Open Access Journals (Sweden)

    Chan-seob Park

    2014-01-01

    Full Text Available The joint collaborative team on video coding (JCT-VC is developing the next-generation video coding standard which is called high efficiency video coding (HEVC. In the HEVC, there are three units in block structure: coding unit (CU, prediction unit (PU, and transform unit (TU. The CU is the basic unit of region splitting like macroblock (MB. Each CU performs recursive splitting into four blocks with equal size, starting from the tree block. In this paper, we propose a fast CU depth decision algorithm for HEVC technology to reduce its computational complexity. In 2N×2N PU, the proposed method compares the rate-distortion (RD cost and determines the depth using the compared information. Moreover, in order to speed up the encoding time, the efficient merge SKIP detection method is developed additionally based on the contextual mode information of neighboring CUs. Experimental result shows that the proposed algorithm achieves the average time-saving factor of 44.84% in the random access (RA at Main profile configuration with the HEVC test model (HM 10.0 reference software. Compared to HM 10.0 encoder, a small BD-bitrate loss of 0.17% is also observed without significant loss of image quality.

  15. High Efficiency Driving Electronics for General Illumination LED Luminaires

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Anand

    2012-10-31

    New generation of standalone LED driver platforms developed, which are more efficient These LED Drivers are more efficient (≥90%), smaller in size ( 0.15 in3/watt), lower in cost ( 12 cents/watt in high volumes in millions of units). And these products are very reliable having an operating life of over 50,000 hours. This technology will enable growth of LED light sources in the use. This will also help in energy saving and reducing total life cycle cost of LED units. Two topologies selected for next generation of LED drivers: 1) Value engineered single stage Flyback topology. This is suitable for low powered LED drivers up to 50W power. 2) Two stage boost power factor correction (PFC) plus LLC half bridge platform for higher powers. This topology is suitable for 40W to 300W LED drivers. Three new product platforms were developed to cover a wide range of LED drivers: 1) 120V 40W LED driver, 2) Intellivolt 75W LED driver, & 3) Intellivolt 150W LED driver. These are standalone LED drivers for rugged outdoor lighting applications. Based on these platforms number of products are developed and successfully introduced in the market place meeting key performance, size and cost goals.

  16. Characterization of three high efficiency and blue sensitive silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Otte, Adam Nepomuk, E-mail: otte@gatech.edu; Garcia, Distefano; Nguyen, Thanh; Purushotham, Dhruv

    2017-02-21

    We report about the optical and electrical characterization of three high efficiency and blue sensitive Silicon photomultipliers from FBK, Hamamatsu, and SensL. Key features of the tested devices when operated at 90% breakdown probability are peak photon detection efficiencies between 40% and 55%, temperature dependencies of gain and PDE that are less than 1%/°C, dark rates of ∼50 kHz/mm{sup 2} at room temperature, afterpulsing of about 2%, and direct optical crosstalk between 6% and 20%. The characteristics of all three devices impressively demonstrate how the Silicon-photomultiplier technology has improved over the past ten years. It is further demonstrated how the voltage and temperature characteristics of a number of quantities can be parameterized on the basis of physical models. The models provide a deeper understanding of the device characteristics over a wide bias and temperature range. They also serve as examples how producers could provide the characteristics of their SiPMs to users. A standardized parameterization of SiPMs would enable users to find the optimal SiPM for their application and the operating point of SiPMs without having to perform measurements thus significantly reducing design and development cycles.

  17. Gamma-ray spectrometer system with high efficiency and high resolution

    International Nuclear Information System (INIS)

    Moss, C.E.; Bernard, W.; Dowdy, E.J.; Garcia, C.; Lucas, M.C.; Pratt, J.C.

    1983-01-01

    Our gamma-ray spectrometer system, designed for field use, offers high efficiency and high resolution for safeguards applications. The system consists of three 40% high-purity germanium detectors and a LeCroy 3500 data acquisition system that calculates a composite spectrum for the three detectors. The LeCroy 3500 mainframe can be operated remotely from the detector array with control exercised through modems and the telephone system. System performance with a mixed source of 125 Sb, 154 Eu, and 155 Eu confirms the expected efficiency of 120% with the overall resolution showing little degradation over that of the worst detector

  18. Thin Film Packaging Solutions for High Efficiency OLED Lighting Products

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-06-30

    The objective of the 'Thin Film Packaging Solutions for High Efficiency OLED Lighting Products' project is to demonstrate thin film packaging solutions based on SiC hermetic coatings that, when applied to glass and plastic substrates, support OLED lighting devices by providing longer life with greater efficiency at lower cost than is currently available. Phase I Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on optical glass with lifetime of 1,000 hour life, CRI greater than 75, and 15 lm/W. Phase II Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on plastic or glass composite with 25 lm/W, 5,000 hours life, and CRI greater than 80. Phase III Objective: Demonstrate 2 x 2 ft{sup 2} thin film encapsulated working phosphorescent OLED with 40 lm/W, 10,000 hour life, and CRI greater than 85. This report details the efforts of Phase III (Budget Period Three), a fourteen month collaborative effort that focused on optimization of high-efficiency phosphorescent OLED devices and thin-film encapsulation of said devices. The report further details the conclusions and recommendations of the project team that have foundation in all three budget periods for the program. During the conduct of the Thin Film Packaging Solutions for High Efficiency OLED Lighting Products program, including budget period three, the project team completed and delivered the following achievements: (1) a three-year marketing effort that characterized the near-term and longer-term OLED market, identified customer and consumer lighting needs, and suggested prototype product concepts and niche OLED applications lighting that will give rise to broader market acceptance as a source for wide area illumination and energy conservation; (2) a thin film encapsulation technology with a lifetime of nearly 15,000 hours, tested by calcium coupons, while stored at 16 C and 40% relative humidity ('RH'). This encapsulation technology

  19. High efficiency solid-state sensitized heterojunction photovoltaic device

    KAUST Repository

    Wang, Mingkui

    2010-06-01

    The high molar extinction coefficient heteroleptic ruthenium dye, NaRu(4,4′-bis(5-(hexylthio)thiophen-2-yl)-2,2′-bipyridine) (4-carboxylic acid-4′-carboxylate-2,2′-bipyridine) (NCS) 2, exhibits certified 5% electric power conversion efficiency at AM 1.5 solar irradiation (100 mW cm-2) in a solid-state dye-sensitized solar cell using 2,2′,7,7′-tetrakis-(N,N-di-pmethoxyphenylamine)-9, 9′-spirobifluorene (spiro-MeOTAD) as the organic hole-transporting material. This demonstration elucidates a class of photovoltaic devices with potential for low-cost power generation. © 2010 Elsevier Ltd. All rights reserved.

  20. Dimensioning storage and computing clusters for efficient High Throughput Computing

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Scientific experiments are producing huge amounts of data, and they continue increasing the size of their datasets and the total volume of data. These data are then processed by researchers belonging to large scientific collaborations, with the Large Hadron Collider being a good example. The focal point of Scientific Data Centres has shifted from coping efficiently with PetaByte scale storage to deliver quality data processing throughput. The dimensioning of the internal components in High Throughput Computing (HTC) data centers is of crucial importance to cope with all the activities demanded by the experiments, both the online (data acceptance) and the offline (data processing, simulation and user analysis). This requires a precise setup involving disk and tape storage services, a computing cluster and the internal networking to prevent bottlenecks, overloads and undesired slowness that lead to losses cpu cycles and batch jobs failures. In this paper we point out relevant features for running a successful s...

  1. Additive Manufacturing for Highly Efficient Window Inserts CRADA Report

    Energy Technology Data Exchange (ETDEWEB)

    Roschli, Alex C. [ORNL; Chesser, Phillip C. [ORNL; Love, Lonnie J. [ORNL

    2018-04-01

    ORNL partnered with the Mackinac Technology Company to demonstrate how additive manufacturing can be used to create highly energy efficient window inserts for retrofit in pre-existing buildings. Many early iterations of the window inserts were fabricated using carbon fiber reinforced thermoplastics and polycarbonate films as a stand in for the low-e coated films produced by the Mackinac Technology Company. After demonstration of the proof of concept, i.e. custom window inserts with tensioned film, the materials used for the manufacture of the frames was more closely examined. Hollow particle-filled syntactic foam and low-density polymer composites formed by expandable microspheres were explored as the materials used to additively manufacture the frames of the inserts. It was concluded that low-cost retrofit window inserts in custom sizes could be easily fabricated using large scale additive manufacturing. Furthermore, the syntactic and expanded foams developed and tested satisfy the mechanical performance requirements for the application.

  2. High Efficiency EBCOT with Parallel Coding Architecture for JPEG2000

    Directory of Open Access Journals (Sweden)

    Chiang Jen-Shiun

    2006-01-01

    Full Text Available This work presents a parallel context-modeling coding architecture and a matching arithmetic coder (MQ-coder for the embedded block coding (EBCOT unit of the JPEG2000 encoder. Tier-1 of the EBCOT consumes most of the computation time in a JPEG2000 encoding system. The proposed parallel architecture can increase the throughput rate of the context modeling. To match the high throughput rate of the parallel context-modeling architecture, an efficient pipelined architecture for context-based adaptive arithmetic encoder is proposed. This encoder of JPEG2000 can work at 180 MHz to encode one symbol each cycle. Compared with the previous context-modeling architectures, our parallel architectures can improve the throughput rate up to 25%.

  3. Disposal of aqueous condensate from high efficiency gas boilers

    Energy Technology Data Exchange (ETDEWEB)

    Hardwick, G J; Pattison, J R

    1984-01-01

    If highly efficient gas-fired condensing heating appliances are installed in Britain, the aqueous condensate produced can be conveniently run into existing sewage drains. The part of the drainage system that is most vulnerable to corrosion from the mildly acid condensate is that portion adjacent to the domestic premises. The tests described indicate that this is not at risk and the only precaution that might be considered necessary is to avoid running the condensate over galvanized drain covers in order to prevent unsightly staining. Water authorities in Britain and detailed studies in the US and Holland confirm that the condensate - after dilution by domestic waste, sewage, and rainwater - would be harmless to municipal sewage systems and would not, either in volume or chemical composition, affect the working of existing sewage treatment plants.

  4. High efficiency solid-state sensitized heterojunction photovoltaic device

    KAUST Repository

    Wang, Mingkui; Liu, Jingyuan; Cevey-Ha, Ngoc-Le; Moon, Soo-Jin; Liska, Paul; Humphry-Baker, Robin; Moser, Jacques-E.; Grä tzel, Carole; Wang, Peng; Zakeeruddin, Shaik M.

    2010-01-01

    The high molar extinction coefficient heteroleptic ruthenium dye, NaRu(4,4′-bis(5-(hexylthio)thiophen-2-yl)-2,2′-bipyridine) (4-carboxylic acid-4′-carboxylate-2,2′-bipyridine) (NCS) 2, exhibits certified 5% electric power conversion efficiency at AM 1.5 solar irradiation (100 mW cm-2) in a solid-state dye-sensitized solar cell using 2,2′,7,7′-tetrakis-(N,N-di-pmethoxyphenylamine)-9, 9′-spirobifluorene (spiro-MeOTAD) as the organic hole-transporting material. This demonstration elucidates a class of photovoltaic devices with potential for low-cost power generation. © 2010 Elsevier Ltd. All rights reserved.

  5. Highly Efficient Catalytic Cyclic Carbonate Formation by Pyridyl Salicylimines.

    Science.gov (United States)

    Subramanian, Saravanan; Park, Joonho; Byun, Jeehye; Jung, Yousung; Yavuz, Cafer T

    2018-03-21

    Cyclic carbonates as industrial commodities offer a viable nonredox carbon dioxide fixation, and suitable heterogeneous catalysts are vital for their widespread implementation. Here, we report a highly efficient heterogeneous catalyst for CO 2 addition to epoxides based on a newly identified active catalytic pocket consisting of pyridine, imine, and phenol moieties. The polymeric, metal-free catalyst derived from this active site converts less-reactive styrene oxide under atmospheric pressure in quantitative yield and selectivity to the corresponding carbonate. The catalyst does not need additives, solvents, metals, or co-catalysts, can be reused at least 10 cycles without the loss of activity, and scaled up easily to a kilogram scale. Density functional theory calculations reveal that the nucleophilicity of pyridine base gets stronger due to the conjugated imines and H-bonding from phenol accelerates the reaction forward by stabilizing the intermediate.

  6. Non-equilibrium Microwave Plasma for Efficient High Temperature Chemistry.

    Science.gov (United States)

    van den Bekerom, Dirk; den Harder, Niek; Minea, Teofil; Gatti, Nicola; Linares, Jose Palomares; Bongers, Waldo; van de Sanden, Richard; van Rooij, Gerard

    2017-08-01

    A flowing microwave plasma based methodology for converting electric energy into internal and/or translational modes of stable molecules with the purpose of efficiently driving non-equilibrium chemistry is discussed. The advantage of a flowing plasma reactor is that continuous chemical processes can be driven with the flexibility of startup times in the seconds timescale. The plasma approach is generically suitable for conversion/activation of stable molecules such as CO2, N2 and CH4. Here the reduction of CO2 to CO is used as a model system: the complementary diagnostics illustrate how a baseline thermodynamic equilibrium conversion can be exceeded by the intrinsic non-equilibrium from high vibrational excitation. Laser (Rayleigh) scattering is used to measure the reactor temperature and Fourier Transform Infrared Spectroscopy (FTIR) to characterize in situ internal (vibrational) excitation as well as the effluent composition to monitor conversion and selectivity.

  7. Orange Houses and Tape Babies Temporary and Nebulous Art in Urban Spaces

    Directory of Open Access Journals (Sweden)

    Carmen L. McClish

    2010-12-01

    Full Text Available This essay argues that the disruption of the routine ways we engage with our cities is necessary for democratic activity and public participation. Building on research that examines the relationship between public spaces and democratic action, I explore temporary forms of creative street installation as interrupting the market-ing pleas that have become the only authorized forms of visual art in our cities. I argue that tactics in urban spaces that are temporary and provide nebulous mean-ings are necessary to grab our attention and make us linger. I propose that these forms of engagement act in the same way as people performing or playing in pub-lic spaces. I specifically employ Yi-Fu Tuan’s theoretical notions of space and movement and Margaret Kohn’s discussion of the significance of presence in pub-lic spaces to examine the creative ways we engage with and experience our cities. I examine two activist/artist projects: Mark Jenkins’ tape installations and Detroit Demolition. My analysis of these two sites demonstrates the importance of citi-zens engaging in their urban spaces. By creating temporary artwork that is nebul-ous in meaning, activists/artists are interrupting the routine ways we experience our cities.

  8. Induced tolerance to nebulized colistin after severe reaction to the drug.

    Science.gov (United States)

    Domínguez-Ortega, J; Manteiga, E; Abad-Schilling, C; Juretzcke, M A; Sánchez-Rubio, J; Kindelan, C

    2007-01-01

    Daily nebulized colistin therapy has been used as maintenance therapy for patients with chronic Pseudomonas aeruginosa infection and in treatment protocols aimed at eradicating early P aeruginosa infection. Colistin-induced nephrotoxicity and mild neurotoxic effects have been described but hypersensitivity reactions are rare. However, bronchial constriction has been reported associated with the inhalation of the antibiotic. We report the case of a 63-year-old man who had been diagnosed with bronchiectasis and bronchopleural fistula and who developed severe bronchospasm when using nebulized colistin. A skin prick test (80 mg/mL) with colistin was performed and was negative. An intradermal test was not performed due to its possible irritant effect. As our patient suffered from a tobramycin-resistant P aeruginosa infection, we started a procedure to induce tolerance to 80 mg colistin (8 mg, 16 mg, 24 mg, 32 mg, 40 mg, 80 mg) nebulized in 30-minutes-intervals. No changes in forced expiratory volume in 1 second values were observed and the patient continues on treatment twice daily after the tolerance induction with no new episodes of bronchospasm. We report the first successful procedure to induce tolerance to colistin after escalating doses of inhaled colistin.

  9. Epinephrine Improves the Efficacy of Nebulized Hypertonic Saline in Moderate Bronchiolitis: A Randomised Clinical Trial.

    Directory of Open Access Journals (Sweden)

    J Carlos Flores-González

    Full Text Available There is no evidence that the epinephrine-3% hypertonic saline combination is more effective than 3% hypertonic saline alone for treating infants hospitalized with acute bronchiolitis. We evaluated the efficacy of nebulized epinephrine in 3% hypertonic saline.We performed a randomized, double-blind, placebo-controlled clinical trial in 208 infants hospitalized with acute moderate bronchiolitis. Infants were randomly assigned to receive nebulized 3% hypertonic saline with either 3 mL of epinephrine or 3 mL of placebo, administered every four hours. The primary outcome measure was the length of hospital stay.A total of 185 infants were analyzed: 94 in the epinephrine plus 3% hypertonic saline group and 91 in the placebo plus 3% hypertonic saline group. Baseline demographic and clinical characteristics were similar in both groups. Length of hospital stay was significantly reduced in the epinephrine group as compared with the placebo group (3.94 ±1.88 days vs. 4.82 ±2.30 days, P = 0.011. Disease severity also decreased significantly earlier in the epinephrine group (P = 0.029 and P = 0.036 on days 3 and 5, respectively.In our setting, nebulized epinephrine in 3% hypertonic saline significantly shortens hospital stay in hospitalized infants with acute moderate bronchiolitis compared to 3% hypertonic saline alone, and improves the clinical scores of severity from the third day of treatment, but not before.EudraCT 2009-016042-57.

  10. Comparison of high efficiency particulate filter testing methods

    International Nuclear Information System (INIS)

    1985-01-01

    High Efficiency Particulate Air (HEPA) filters are used for the removal of submicron size particulates from air streams. In nuclear industry they are used as an important engineering safeguard to prevent the release of air borne radioactive particulates to the environment. HEPA filters used in the nuclear industry should therefore be manufactured and operated under strict quality control. There are three levels of testing HEPA filters: i) testing of the filter media; ii) testing of the assembled filter including filter media and filter housing; and iii) on site testing of the complete filter installation before putting into operation and later for the purpose of periodic control. A co-ordinated research programme on particulate filter testing methods was taken up by the Agency and contracts were awarded to the Member Countries, Belgium, German Democratic Republic, India and Hungary. The investigations carried out by the participants of the present co-ordinated research programme include the results of the nowadays most frequently used HEPA filter testing methods both for filter medium test, rig test and in-situ test purposes. Most of the experiments were carried out at ambient temperature and humidity, but indications were given to extend the investigations to elevated temperature and humidity in the future for the purpose of testing the performance of HEPA filter under severe conditions. A major conclusion of the co-ordinated research programme was that it was not possible to recommend one method as a reference method for in situ testing of high efficiency particulate air filters. Most of the present conventional methods are adequate for current requirements. The reasons why no method is to be recommended were multiple, ranging from economical aspects, through incompatibility of materials to national regulations

  11. Efficient high-performance ultrasound beamforming using oversampling

    Science.gov (United States)

    Freeman, Steven R.; Quick, Marshall K.; Morin, Marc A.; Anderson, R. C.; Desilets, Charles S.; Linnenbrink, Thomas E.; O'Donnell, Matthew

    1998-05-01

    High-performance and efficient beamforming circuitry is very important in large channel count clinical ultrasound systems. Current state-of-the-art digital systems using multi-bit analog to digital converters (A/Ds) have matured to provide exquisite image quality with moderate levels of integration. A simplified oversampling beamforming architecture has been proposed that may a low integration of delta-sigma A/Ds onto the same chip as digital delay and processing circuitry to form a monolithic ultrasound beamformer. Such a beamformer may enable low-power handheld scanners for high-end systems with very large channel count arrays. This paper presents an oversampling beamformer architecture that generates high-quality images using very simple; digitization, delay, and summing circuits. Additional performance may be obtained with this oversampled system for narrow bandwidth excitations by mixing the RF signal down in frequency to a range where the electronic signal to nose ratio of the delta-sigma A/D is optimized. An oversampled transmit beamformer uses the same delay circuits as receive and eliminates the need for separate transmit function generators.

  12. Efficient binning for bitmap indices on high-cardinality attributes

    Energy Technology Data Exchange (ETDEWEB)

    Rotem, Doron; Stockinger, Kurt; Wu, Kesheng

    2004-11-17

    Bitmap indexing is a common technique for indexing high-dimensional data in data warehouses and scientific applications. Though efficient for low-cardinality attributes, query processing can be rather costly for high-cardinality attributes due to the large storage requirements for the bitmap indices. Binning is a common technique for reducing storage costs of bitmap indices. This technique partitions the attribute values into a number of ranges, called bins, and uses bitmap vectors to represent bins (attribute ranges) rather than distinct values. Although binning may reduce storage costs, it may increase the access costs of queries that do not fall on exact bin boundaries (edge bins). For this kind of queries the original data values associated with edge bins must be accessed, in order to check them against the query constraints.In this paper we study the problem of finding optimal locations for the bin boundaries in order to minimize these access costs subject to storage constraints. We propose a dynamic programming algorithm for optimal partitioning of attribute values into bins that takes into account query access patterns as well as data distribution statistics. Mathematical analysis and experiments on real life data sets show that the optimal partitioning achieved by this algorithm can lead to a significant improvement in the access costs of bitmap indexing systems for high-cardinality attributes.

  13. Highly Efficient Fiber Lasers for Wireless Power Transmission, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop ytterbium (Yb) fiber lasers with an electrical-to-optical efficiency of nominally 64% by directly coupling 80%-efficient diode lasers with Yb...

  14. Rehydrated sterically stabilized phospholipid nanomicelles of budesonide for nebulization: physicochemical characterization and in vitro, in vivo evaluations

    Directory of Open Access Journals (Sweden)

    Sahib MN

    2011-10-01

    Full Text Available Mohanad Naji Sahib, Yusrida Darwis, Kok Khiang Peh, Shaymaa Abdalwahed Abdulameer, Yvonne Tze Fung TanSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, MalaysiaBackground: Inhaled corticosteroids provide unique systems for local treatment of asthma or chronic obstructive pulmonary disease. However, the use of poorly soluble drugs for nebulization has been inadequate, and many patients rely on large doses to achieve optimal control of their disease. Theoretically, nanotechnology with a sustained-release formulation may provide a favorable therapeutic index. The aim of this study was to determine the feasibility of using sterically stabilized phospholipid nanomicelles of budesonide for pulmonary delivery via nebulization.Methods: PEG5000-DSPE polymeric micelles containing budesonide (BUD-SSMs were prepared by the coprecipitation and reconstitution method, and the physicochemical and pharmacodynamic characteristics of BUD-SSMs were investigated.Results: The optimal concentration of solubilized budesonide at 5 mM PEG5000-DSPE was 605.71 ± 6.38 µg/mL, with a single-sized peak population determined by photon correlation spectroscopy and a particle size distribution of 21.51 ± 1.5 nm. The zeta potential of BUD-SSMs was -28.43 ± 1.98 mV. The percent entrapment efficiency, percent yield, and percent drug loading of the lyophilized formulations were 100.13% ± 1.09%, 97.98% ± 1.95%, and 2.01% ± 0.02%, respectively. Budesonide was found to be amorphous by differential scanning calorimetry, and had no chemical interaction with PEGylated polymer according to Fourier transform infrared spectroscopy. Transmission electron microscopic images of BUD-SSMs revealed spherical nanoparticles. BUD-SSMs exhibited prolonged dissolution behavior compared with Pulmicort Respules® (P , 0.05. Aerodynamic characteristics indicated significantly higher deposition in the lungs compared with Pulmicort Respules®. The mass median aerodynamic, geometric

  15. High quality ceramic coatings sprayed by high efficiency hypersonic plasma spraying gun

    International Nuclear Information System (INIS)

    Zhu Sheng; Xu Binshi; Yao JiuKun

    2005-01-01

    This paper introduced the structure of the high efficiency hypersonic plasma spraying gun and the effects of hypersonic plasma jet on the sprayed particles. The optimised spraying process parameters for several ceramic powders such as Al 2 O 3 , Cr 2 O 3 , ZrO 2 , Cr 3 C 2 and Co-WC were listed. The properties and microstructure of the sprayed ceramic coatings were investigated. Nano Al 2 O 3 -TiO 2 ceramic coating sprayed by using the high efficiency hypersonic plasma spraying was also studied. Compared with the conventional air plasma spraying, high efficiency hypersonic plasma spraying improves greatly the ceramic coatings quality but at low cost. (orig.)

  16. High efficiency, monolithic fiber chirped pulse amplification system for high energy femtosecond pulse generation.

    Science.gov (United States)

    Peng, Xiang; Kim, Kyungbum; Mielke, Michael; Jennings, Stephen; Masor, Gordon; Stohl, Dave; Chavez-Pirson, Arturo; Nguyen, Dan T; Rhonehouse, Dan; Zong, Jie; Churin, Dmitriy; Peyghambarian, N

    2013-10-21

    A novel monolithic fiber-optic chirped pulse amplification (CPA) system for high energy, femtosecond pulse generation is proposed and experimentally demonstrated. By employing a high gain amplifier comprising merely 20 cm of high efficiency media (HEM) gain fiber, an optimal balance of output pulse energy, optical efficiency, and B-integral is achieved. The HEM amplifier is fabricated from erbium-doped phosphate glass fiber and yields gain of 1.443 dB/cm with slope efficiency >45%. We experimentally demonstrate near diffraction-limited beam quality and near transform-limited femtosecond pulse quality at 1.55 µm wavelength. With pulse energy >100 µJ and pulse duration of 636 fs (FWHM), the peak power is estimated to be ~160 MW. NAVAIR Public Release Distribution Statement A-"Approved for Public release; distribution is unlimited".

  17. High-efficiency cavity-dumped micro-chip Yb:YAG laser

    Science.gov (United States)

    Nishio, M.; Maruko, A.; Inoue, M.; Takama, M.; Matsubara, S.; Okunishi, H.; Kato, K.; Kyomoto, K.; Yoshida, T.; Shimabayashi, K.; Morioka, M.; Inayoshi, S.; Yamagata, S.; Kawato, S.

    2014-09-01

    High-efficiency cavity-dumped ytterbium-doped yttrium aluminum garnet (Yb:YAG) laser was developed. Although the high quantum efficiency of ytterbium-doped laser materials is appropriate for high-efficiency laser oscillation, the efficiency is decreased by their quasi-three/four laser natures. High gain operation by high intensity pumping is suitable for high efficiency oscillation on the quasi-three/four lasers without extremely low temperature cooling. In our group, highest efficiency oscillations for continuous wave, nanosecond to picosecond pulse lasers were achieved at room temperature by the high gain operation in which pump intensities were beyond 100 kW/cm2.

  18. Perovskite Solar Cells for High-Efficiency Tandems

    Energy Technology Data Exchange (ETDEWEB)

    McGehee, Michael [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Buonassisi, Tonio [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2017-09-30

    The first monolithic perovskite/silicon tandem was made with a diffused silicon p-n junction, a tunnel junction made of n++ hydrogenated amorphous silicon, a titania electron transport layer, a methylammonium lead iodide absorber, and a Spiro-OMeTAD hole transport layer (HTL). The power conversion efficiency (PCE) was only 13.7% due to excessive parasitic absorption of light in the HTL, limiting the matched current density to 11.5 mA/cm2. Werner et al.15 raised the PCE to a record 21.2% by switching to a silicon heterojunction bottom cell and carefully tuning layer thicknesses to achieve lower optical loss and a higher current density of 15.9 mA/cm2. It is clear from these reports that minimizing parasitic absorption in the window layers is crucial to achieving higher current densities and efficiencies in monolithic tandems. To this end, the window layers through which light first passes before entering the perovskite and silicon absorber materials must be highly transparent. The front electrode must also be conductive to carry current laterally across the top of the device. Indium tin oxide (ITO) is widely utilized as a transparent electrode in optoelectronic devices such as flat-panel displays, smart windows, organic light-emitting diodes, and solar cells due to its high conductivity and broadband transparency. ITO is typically deposited through magnetron sputtering; however, the high kinetic energy of sputtered particles can damage underlying layers. In perovskite solar cells, a sputter buffer layer is required to protect the perovskite and organic carrier extraction layers from damage during sputter deposition. The ideal buffer layer should also be energetically well aligned so as to act as a carrier-selective contact, have a wide bandgap to enable high optical transmission, and have no reaction with the halides in the perovskite. Additionally, this buffer layer should act as a diffusion barrier layer to prevent both

  19. Efficiency of High Order Spectral Element Methods on Petascale Architectures

    KAUST Repository

    Hutchinson, Maxwell; Heinecke, Alexander; Pabst, Hans; Henry, Greg; Parsani, Matteo; Keyes, David E.

    2016-01-01

    High order methods for the solution of PDEs expose a tradeoff between computational cost and accuracy on a per degree of freedom basis. In many cases, the cost increases due to higher arithmetic intensity while affecting data movement minimally. As architectures tend towards wider vector instructions and expect higher arithmetic intensities, the best order for a particular simulation may change. This study highlights preferred orders by identifying the high order efficiency frontier of the spectral element method implemented in Nek5000 and NekBox: the set of orders and meshes that minimize computational cost at fixed accuracy. First, we extract Nek’s order-dependent computational kernels and demonstrate exceptional hardware utilization by hardware-aware implementations. Then, we perform productionscale calculations of the nonlinear single mode Rayleigh-Taylor instability on BlueGene/Q and Cray XC40-based supercomputers to highlight the influence of the architecture. Accuracy is defined with respect to physical observables, and computational costs are measured by the corehour charge of the entire application. The total number of grid points needed to achieve a given accuracy is reduced by increasing the polynomial order. On the XC40 and BlueGene/Q, polynomial orders as high as 31 and 15 come at no marginal cost per timestep, respectively. Taken together, these observations lead to a strong preference for high order discretizations that use fewer degrees of freedom. From a performance point of view, we demonstrate up to 60% full application bandwidth utilization at scale and achieve ≈1PFlop/s of compute performance in Nek’s most flop-intense methods.

  20. Efficiency of High Order Spectral Element Methods on Petascale Architectures

    KAUST Repository

    Hutchinson, Maxwell

    2016-06-14

    High order methods for the solution of PDEs expose a tradeoff between computational cost and accuracy on a per degree of freedom basis. In many cases, the cost increases due to higher arithmetic intensity while affecting data movement minimally. As architectures tend towards wider vector instructions and expect higher arithmetic intensities, the best order for a particular simulation may change. This study highlights preferred orders by identifying the high order efficiency frontier of the spectral element method implemented in Nek5000 and NekBox: the set of orders and meshes that minimize computational cost at fixed accuracy. First, we extract Nek’s order-dependent computational kernels and demonstrate exceptional hardware utilization by hardware-aware implementations. Then, we perform productionscale calculations of the nonlinear single mode Rayleigh-Taylor instability on BlueGene/Q and Cray XC40-based supercomputers to highlight the influence of the architecture. Accuracy is defined with respect to physical observables, and computational costs are measured by the corehour charge of the entire application. The total number of grid points needed to achieve a given accuracy is reduced by increasing the polynomial order. On the XC40 and BlueGene/Q, polynomial orders as high as 31 and 15 come at no marginal cost per timestep, respectively. Taken together, these observations lead to a strong preference for high order discretizations that use fewer degrees of freedom. From a performance point of view, we demonstrate up to 60% full application bandwidth utilization at scale and achieve ≈1PFlop/s of compute performance in Nek’s most flop-intense methods.

  1. [Tobacco--a highly efficient producer of vaccines].

    Science.gov (United States)

    Budzianowski, Jaromir

    2010-01-01

    Along with the depreciation of tobacco as a source of nicotine-containing commercial products, the increase of its appreciation as a potential producer of recombinant therapeutical proteins can be observed. Two species of tobacco--Nicotiana tabacum L. and N. benthamiana are easily grown by well established methods of field or green-house cultivation or cell culture, yield high biomass and soluble protein content, can be easily transformed by several methods and are not food for humans or feed for animals. Expression of foreign proteins, including vaccines, can be achieved in those plants either through stable transformation of nuclear or plastid (chloroplast) genomes or by transient transformation using infection with plant virus or bacteria--Agrobacterium tumefaciens (agroinfiltration). The most advanced mode of agrofiltration termed magnifection, which combines benefits of virus and Agrobacterium and depends on using Agrobacterium with viral pro-vectors, enables high-yield and rapid expression of therapeutical proteins, even in a few days, and can be employed on an industrial scale. Expression of many antigenic proteins, which may serve as antiviral, antibacterial, antiprotozoan and anticancer vaccines, and additionally a few autoantigens designed for the treatment of autoimunogenic diseases, like diabetes, have been achieved in tobacco. To date, a vaccine against Newcastle virus disease in poultry produced by tobacco cell culture has been approved for commercial application and several other vaccines are in advanced stage of development. The possibility of a high-level production of vaccines in tobacco against pandemic influenza or anthrax and plague due to a bioterroristic attack, as well as of individualised anticancer vaccines against non-Hodgkin's lymphoma (NHL) in a much shorter period of time than by traditional methods became realistic and hence caused increased interest in tobacco as a high-efficient producer of vaccines not only of specialistic

  2. Effect of mask dead space and occlusion of mask holes on delivery of nebulized albuterol.

    Science.gov (United States)

    Berlinski, Ariel

    2014-08-01

    Infants and children with respiratory conditions are often prescribed bronchodilators. Face masks are used to facilitate the administration of nebulized therapy in patients unable to use a mouthpiece. Masks incorporate holes into their design, and their occlusion during aerosol delivery has been a common practice. Masks are available in different sizes and different dead volumes. The aim of this study was to compare the effect of different degrees of occlusion of the mask holes and different mask dead space on the amount of nebulized albuterol available at the mouth opening in a model of a spontaneously breathing child. A breathing simulator mimicking infant (tidal volume [VT] = 50 mL, breathing frequency = 30 breaths/min, inspiratory-expiratory ratio [I:E] = 1:3), child (VT = 155 mL, breathing frequency = 25 breaths/min, I:E = 1:2), and adult (VT = 500 mL, breathing frequency = 15 breaths/min, I:E = 1:2) breathing patterns was connected to a collection filter hidden behind a face plate. A pediatric size mask and an adult size mask connected to a continuous output jet nebulizer were sealed to the face plate. Three nebulizers were loaded with albuterol sulfate (2.5 mg/3 mL) and operated with 6 L/min compressed air for 5 min. Experiments were repeated with different degrees of occlusion (0%, 50%, and 90%). Albuterol was extracted from the filter and measured with a spectrophotometer at 276 nm. Occlusion of the holes in the large mask did not increase the amount of albuterol in any of the breathing patterns. The amount of albuterol captured at the mouth opening did not change when the small mask was switched to the large mask, except with the breathing pattern of a child, and when the holes in the mask were 50% occluded (P = .02). Neither decreasing the dead space of the mask nor occluding the mask holes increased the amount of nebulized albuterol captured at the mouth opening.

  3. Monitoring the Inhalation Flow Rate of Nebulized Aerosols Using an Ultrasonic Flow Meter: In Vitro Assessment.

    Science.gov (United States)

    Yang, Michael Y; Chan, Hak-Kim

    2017-06-01

    The measurement of aerosol flow rates without obscuration of the flow is of particular concern with in vivo lung deposition studies, where precise knowledge of aerosol particle size distributions is a necessary requirement for the development of predictive correlations. This study examines the utility of an ultrasonic flow meter for such measurements and determines if a valved system can be attached to the flow meter for sampling exhaled aerosols. The flow rate across a D-30 flow meter was compared with and without nebulization of 0.9% saline aerosols from a PARI LC Sprint nebulizer. Particle size distributions of the nebulized aerosol before and after adding the D-30 flow meter and duckbill valve were measured using a Spraytec laser diffraction system. Finally, the ability of the Thor D-30 to capture a realistic breathing profile was assessed. The mean ± standard error flow rates measured by the D-30 flow meter with and without nebulization were 10.4 ± 0.1 versus 10.4 ± 0.1 L/min, 66.4 ± 0.1 versus 67.2 ± 0.1 L/min, and 89.9 ± 0.1 versus 91.4 ± 0.1 L/min. The D-30 flow meter did not considerably affect the volumetric median diameter (VMD) of the aerosols, while the VMD reduced slightly by 0.65 μm at 10 L/min and 0.69 μm at 72 L/min upon the inclusion of a duckbill valve. Time-weighted average inhalation flow rates measured by D-30 flow meters placed upstream and downstream of the one-way valve agreed well, 31.9 versus 32.6 L/min, respectively. The D-30 flow meter can be used to accurately measure inhalation flow rates of nebulized aerosols without significantly impacting particle size distributions, and one-way duckbill valves can be used to isolate the inhalation portion of a breathing pattern to facilitate collection of exhaled doses.

  4. Using high-throughput barcode sequencing to efficiently map connectomes.

    Science.gov (United States)

    Peikon, Ian D; Kebschull, Justus M; Vagin, Vasily V; Ravens, Diana I; Sun, Yu-Chi; Brouzes, Eric; Corrêa, Ivan R; Bressan, Dario; Zador, Anthony M

    2017-07-07

    The function of a neural circuit is determined by the details of its synaptic connections. At present, the only available method for determining a neural wiring diagram with single synapse precision-a 'connectome'-is based on imaging methods that are slow, labor-intensive and expensive. Here, we present SYNseq, a method for converting the connectome into a form that can exploit the speed and low cost of modern high-throughput DNA sequencing. In SYNseq, each neuron is labeled with a unique random nucleotide sequence-an RNA 'barcode'-which is targeted to the synapse using engineered proteins. Barcodes in pre- and postsynaptic neurons are then associated through protein-protein crosslinking across the synapse, extracted from the tissue, and joined into a form suitable for sequencing. Although our failure to develop an efficient barcode joining scheme precludes the widespread application of this approach, we expect that with further development SYNseq will enable tracing of complex circuits at high speed and low cost. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. High efficiency video coding (HEVC) algorithms and architectures

    CERN Document Server

    Budagavi, Madhukar; Sullivan, Gary

    2014-01-01

    This book provides developers, engineers, researchers and students with detailed knowledge about the High Efficiency Video Coding (HEVC) standard. HEVC is the successor to the widely successful H.264/AVC video compression standard, and it provides around twice as much compression as H.264/AVC for the same level of quality. The applications for HEVC will not only cover the space of the well-known current uses and capabilities of digital video – they will also include the deployment of new services and the delivery of enhanced video quality, such as ultra-high-definition television (UHDTV) and video with higher dynamic range, wider range of representable color, and greater representation precision than what is typically found today. HEVC is the next major generation of video coding design – a flexible, reliable and robust solution that will support the next decade of video applications and ease the burden of video on world-wide network traffic. This book provides a detailed explanation of the various parts ...

  6. Hot nuclei studied with high efficiency neutron detectors

    International Nuclear Information System (INIS)

    Galin, J.

    1990-01-01

    We have shown the invaluable benefit that a high efficiency 4π neutron detector can bring to the study of reaction mechanisms following collisions of heavy nuclei at intermediate energy. Analysis requires Monte-Carlo simulations for comparison between experimental data and any emission model. In systematic measurements with projectiles of velocity corresponding to energies between 27 and 77 MeV/u, where both the influence of beam velocity and mass have been investigated separately, it has been shown that the projectile-target mass asymmetry, much more than velocity, has a decisive influence on energy dissipation. The closer the projectile mass to the target mass, the more energy is dissipated per unit mass of the considered projectile plus target system. The latter presents all the characteristics of a thermalized system, evaporating a copious number of light particles: up to about 40 neutrons (after efficiency correction) and 11 light charged particles in the most dissipative collisions between Kr+Au, and 90 neutrons for Pb+U with a yet unknown number of l.c.p. In the Kr experiment, these particles are isotropically emitted in the frame of a fused system, excited with 1.2 GeV. Moreover, l.c.p. exhibit Maxwellian energy distributions as in any standard evaporation process. We are now eager to better characterize the properties of the Pb+Au (U) systems for which about 1/3 of the neutrons are freed in a rather large fraction of all collisions. The thermalized energy should then approach very closely the total binding energy of the two interacting nuclei

  7. Progress of High Efficiency Centrifugal Compressor Simulations Using TURBO

    Science.gov (United States)

    Kulkarni, Sameer; Beach, Timothy A.

    2017-01-01

    Three-dimensional, time-accurate, and phase-lagged computational fluid dynamics (CFD) simulations of the High Efficiency Centrifugal Compressor (HECC) stage were generated using the TURBO solver. Changes to the TURBO Parallel Version 4 source code were made in order to properly model the no-slip boundary condition along the spinning hub region for centrifugal impellers. A startup procedure was developed to generate a converged flow field in TURBO. This procedure initialized computations on a coarsened mesh generated by the Turbomachinery Gridding System (TGS) and relied on a method of systematically increasing wheel speed and backpressure. Baseline design-speed TURBO results generally overpredicted total pressure ratio, adiabatic efficiency, and the choking flow rate of the HECC stage as compared with the design-intent CFD results of Code Leo. Including diffuser fillet geometry in the TURBO computation resulted in a 0.6 percent reduction in the choking flow rate and led to a better match with design-intent CFD. Diffuser fillets reduced annulus cross-sectional area but also reduced corner separation, and thus blockage, in the diffuser passage. It was found that the TURBO computations are somewhat insensitive to inlet total pressure changing from the TURBO default inlet pressure of 14.7 pounds per square inch (101.35 kilopascals) down to 11.0 pounds per square inch (75.83 kilopascals), the inlet pressure of the component test. Off-design tip clearance was modeled in TURBO in two computations: one in which the blade tip geometry was trimmed by 12 mils (0.3048 millimeters), and another in which the hub flow path was moved to reflect a 12-mil axial shift in the impeller hub, creating a step at the hub. The one-dimensional results of these two computations indicate non-negligible differences between the two modeling approaches.

  8. High-precision efficiency calibration of a high-purity co-axial germanium detector

    Energy Technology Data Exchange (ETDEWEB)

    Blank, B., E-mail: blank@cenbg.in2p3.fr [Centre d' Etudes Nucléaires de Bordeaux Gradignan, UMR 5797, CNRS/IN2P3, Université de Bordeaux, Chemin du Solarium, BP 120, 33175 Gradignan Cedex (France); Souin, J.; Ascher, P.; Audirac, L.; Canchel, G.; Gerbaux, M.; Grévy, S.; Giovinazzo, J.; Guérin, H.; Nieto, T. Kurtukian; Matea, I. [Centre d' Etudes Nucléaires de Bordeaux Gradignan, UMR 5797, CNRS/IN2P3, Université de Bordeaux, Chemin du Solarium, BP 120, 33175 Gradignan Cedex (France); Bouzomita, H.; Delahaye, P.; Grinyer, G.F.; Thomas, J.C. [Grand Accélérateur National d' Ions Lourds, CEA/DSM, CNRS/IN2P3, Bvd Henri Becquerel, BP 55027, F-14076 CAEN Cedex 5 (France)

    2015-03-11

    A high-purity co-axial germanium detector has been calibrated in efficiency to a precision of about 0.15% over a wide energy range. High-precision scans of the detector crystal and γ-ray source measurements have been compared to Monte-Carlo simulations to adjust the dimensions of a detector model. For this purpose, standard calibration sources and short-lived online sources have been used. The resulting efficiency calibration reaches the precision needed e.g. for branching ratio measurements of super-allowed β decays for tests of the weak-interaction standard model.

  9. Optical signal processing for enabling high-speed, highly spectrally efficient and high capacity optical systems

    Science.gov (United States)

    Fazal, Muhammad Irfan

    The unabated demand for more capacity due to the ever-increasing internet traffic dictates that the boundaries of the state of the art maybe pushed to send more data through the network. Traditionally, this need has been satisfied by multiple wavelengths (wavelength division multiplexing), higher order modulation formats and coherent communication (either individually or combined together). WDM has the ability to reduce cost by using multiple channels within the same physical fiber, and with EDFA amplifiers, the need for O-E-O regenerators is eliminated. Moreover the availability of multiple colors allows for wavelength-based routing and network planning. Higher order modulation formats increases the capacity of the link by their ability to encode data in both the phase and amplitude of light, thereby increasing the bits/sec/Hz as compared to simple on-off keyed format. Coherent communications has also emerged as a primary means of transmitting and receiving optical data due to its support of formats that utilize both phase and amplitude to further increase the spectral efficiency of the optical channel, including quadrature amplitude modulation (QAM) and quadrature phase shift keying (QPSK). Polarization multiplexing of channels can double capacity by allowing two channels to share the same wavelength by propagating on orthogonal polarization axis and is easily supported in coherent systems where the polarization tracking can be performed in the digital domain. Furthermore, the forthcoming IEEE 100 Gbit/s Ethernet Standard, 802.3ba, provides greater bandwidth, higher data rates, and supports a mixture of modulation formats. In particular, Pol-MUX QPSK is increasingly becoming the industry's format of choice as the high spectral efficiency allows for 100 Gbit/s transmission while still occupying the current 50 GHz/channel allocation of current 10 Gbit/s OOK fiber systems. In this manner, 100 Gbit/s transfer speeds using current fiber links, amplifiers, and filters

  10. High-Efficiency Nitride-Based Solid-State Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Paul T. Fini; Shuji Nakamura

    2005-07-30

    In this final technical progress report we summarize research accomplished during Department of Energy contract DE-FC26-01NT41203, entitled ''High-Efficiency Nitride-Based Solid-State Lighting''. Two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and the Lighting Research Center at Rensselaer Polytechnic Institute (led by Dr. N. Narendran), pursued the goals of this contract from thin film growth, characterization, and packaging/luminaire design standpoints. The UCSB team initially pursued the development of blue gallium nitride (GaN)-based vertical-cavity surface-emitting lasers, as well as ultraviolet GaN-based light emitting diodes (LEDs). In Year 2, the emphasis shifted to resonant-cavity light emitting diodes, also known as micro-cavity LEDs when extremely thin device cavities are fabricated. These devices have very directional emission and higher light extraction efficiency than conventional LEDs. Via the optimization of thin-film growth and refinement of device processing, we decreased the total cavity thickness to less than 1 {micro}m, such that micro-cavity effects were clearly observed and a light extraction efficiency of over 10% was reached. We also began the development of photonic crystals for increased light extraction, in particular for so-called ''guided modes'' which would otherwise propagate laterally in the device and be re-absorbed. Finally, we pursued the growth of smooth, high-quality nonpolar a-plane and m-plane GaN films, as well as blue light emitting diodes on these novel films. Initial nonpolar LEDs showed the expected behavior of negligible peak wavelength shift with increasing drive current. M-plane LEDs in particular show promise, as unpackaged devices had unsaturated optical output power of {approx} 3 mW at 200 mA drive current. The LRC's tasks were aimed at developing the subcomponents necessary for packaging UCSB's light

  11. Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ojeda, William de

    2010-07-31

    The project which extended from November 2005 to May of 2010 demonstrated the application of Low Temperature Combustion (LTC) with engine out NOx levels of 0.2 g/bhp-hr throughout the program target load of 12.6bar BMEP. The project showed that the range of loads could be extended to 16.5bar BMEP, therefore matching the reference lug line of the base 2007 MY Navistar 6.4L V8 engine. Results showed that the application of LTC provided a dramatic improvement over engine out emissions when compared to the base engine. Furthermore LTC improved thermal efficiency by over 5% from the base production engine when using the steady state 13 mode composite test as a benchmark. The key enablers included improvements in the air, fuel injection, and cooling systems made in Phases I and II. The outcome was the product of a careful integration of each component under an intelligent control system. The engine hardware provided the conditions to support LTC and the controller provided the necessary robustness for a stable combustion. Phase III provided a detailed account on the injection strategy used to meet the high load requirements. During this phase, the control strategy was implemented in a production automotive grade ECU to perform cycle-by-cycle combustion feedback on each of the engine cylinders. The control interacted on a cycle base with the injection system and with the Turbo-EGR systems according to their respective time constants. The result was a unique system that could, first, help optimize the combustion system and maintain high efficiency, and secondly, extend the steady state results to the transient mode of operation. The engine was upgraded in Phase IV with a Variable Valve Actuation system and a hybrid EGR loop. The impact of the more versatile EGR loop did not provide significant advantages, however the application of VVA proved to be an enabler to further extend the operation of LTC and gain considerable benefits in fuel economy and soot reduction. Finally

  12. Second Generation Advanced Reburning for High Efficiency NOx Control

    International Nuclear Information System (INIS)

    Zamansky, Vladimir M.; Maly, Peter M.; Sheldon, Mark; Seeker, W. Randall; Folsom, Blair A.

    1997-01-01

    Energy and Environmental Research Corporation is developing a family of high efficiency and low cost NO x control technologies for coal fired utility boilers based on Advanced Reburning (AR), a synergistic integration of basic reburning with injection of an N-agent. In conventional AR, injection of the reburn fuel is followed by simultaneous N-agent and overfire air injection. The second generation AR systems incorporate several components which can be used in different combinations. These components include: (1) Reburning Injection of the reburn fuel and overfire air. (2) N-agent Injection The N-agent (ammonia or urea) can be injected at different locations: into the reburning zone, along with the overfire air, and downstream of the overfire air injection. (3) N-agent Promotion Several sodium compounds can considerably enhance the NO x control from N-agent injection. These ''promoters'' can be added to aqueous N-agents. (4) Two Stages of N-agent Injection and Promotion Two N-agents with or without promoters can be injected at different locations for deeper NO x control. AR systems are intended for post-RACT applications in ozone non-attainment areas where NO x control in excess of 80% is required. AR will provide flexible installations that allow NO x levels to be lowered when regulations become more stringent. The total cost of NO x control for AR systems is approximately half of that for SCR. Experimental and kinetic modeling results for development of these novel AR systems are presented. Tests have been conducted in a 1.0 MMBtu/hr Boiler Simulator Facility with coal as the main fuel and natural gas as the reburning fuel. The results show that high efficiency NO x control, in the range 84-95%, can be achieved with various elements of AR. A comparative byproduct emission study was performed to compare the emissions from different variants of AR with commercial technologies (reburning and SNCR). For each technology sampling included: CO, SO 2 , N 2 O, total

  13. Low-Cost, High Efficiency, Silicon Based Photovoltaic Devices

    Science.gov (United States)

    2015-08-27

    for photovoltaic applications. Figure 14: (a) Absorption and scattering efficiencies versus sizes of Au nanoparticle at 550 nm, (b) scattering...efficiency as a function of wavelength for different Au nanoparticles sizes . 32 Review of plasmonics light trapping for photovoltaic application...ensure that the irradiation variation was within 3%. The external quantum efficiency (EQE) system used a 300W Xenon light source with a spot size of 1mm

  14. Compact high efficiency, light weight 200-800 MHz high power RF source

    International Nuclear Information System (INIS)

    Shrader, M.B.; Preist, D.H.

    1985-01-01

    There has long been a need for a new more efficient less bulky high power RF power source to drive accelerators in the 200 to 800 MHz region. Results on a recent 5-year EIMAC sponsored R and D program which have lead to the introduction of the Klystrode for UHF television and troposcatter applications indicate that at power levels of 1MW or more efficiencies in excess of 75% can be obtained at 450 MHz. Efficiencies of this order coupled with potential size and weight parameters which are a fraction of those of existing high power UHF generators open up new applications which heretofore would have been impractical if not impossible. Measurements at 470 MHz on existing Klystrodes are given. Projected operating conditions for a 1MW 450 MHz Klystrode having an overall length of 60 inches and a total tube, circuit, and magnet weight of 250 pounds is presented

  15. Glutathione is a highly efficient thermostabilizer of poliovirus Sabin strains.

    Science.gov (United States)

    Abdelnabi, Rana; Delang, Leen; Neyts, Johan

    2017-03-07

    Glutathione (GSH) is the most abundant thiol peptide in animal cells and has a critical role in antioxidation. GSH was reported to be essential for stabilization of some enteroviruses, including poliovirus (PV), during viral morphogenesis. Here, we explored the potential use of GSH as a thermostabilizer of oral poliomyelitis vaccine (OPV) formulations. GSH significantly protected the three types of PV from heat-inactivation in a concentration-dependent manner. At a GSH concentration of 20mM, nearly complete protection was observed against heating temperatures up to 53°C for 2min.GSH also markedly protected PV1 from heat-inactivation and this up to 6 h at temperatures of 44°C and 46°C and 3 h at 48°C. The fact that GSH is naturally present at high concentration in the human body makes it an efficient candidate stabilizer for OPV formulations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Multiplexing a high-throughput liability assay to leverage efficiencies.

    Science.gov (United States)

    Herbst, John; Anthony, Monique; Stewart, Jeremy; Connors, David; Chen, Taosheng; Banks, Martyn; Petrillo, Edward W; Agler, Michele

    2009-06-01

    In order to identify potential cytochrome P-450 3A4 (drug-metabolizing enzyme) inducers at an early stage of the drug discovery process, a cell-based transactivation high-throughput luciferase reporter assay for the human pregnane X receptor (PXR) in HepG2 cells has been implemented and multiplexed with a viability end point for data interpretation, as part of a Lead Profiling portfolio of assays. As a routine part of Lead Profiling operations, assays are periodically evaluated for utility as well as for potential improvements in technology or process. We used a recent evaluation of our PXR-transactivation assay as a model for the application of Lean Thinking-based process analysis to lab-bench assay optimization and automation. This resulted in the development of a 384-well multiplexed homogeneous assay simultaneously detecting PXR transactivation and HepG2 cell cytotoxicity. In order to multiplex fluorescent and luminescent read-outs, modifications to each assay were necessary, which included optimization of multiple assay parameters such as cell density, plate type, and reagent concentrations. Subsequently, a set of compounds including known cytotoxic compounds and PXR inducers were used to validate the multiplexed assay. Results from the multiplexed assay correlate well with those from the singleplexed assay formats measuring PXR transactivation and viability separately. Implementation of the multiplexed assay for routine compound profiling provides improved data quality, sample conservation, cost savings, and resource efficiencies.

  17. High-Efficient Parallel CAVLC Encoders on Heterogeneous Multicore Architectures

    Directory of Open Access Journals (Sweden)

    H. Y. Su

    2012-04-01

    Full Text Available This article presents two high-efficient parallel realizations of the context-based adaptive variable length coding (CAVLC based on heterogeneous multicore processors. By optimizing the architecture of the CAVLC encoder, three kinds of dependences are eliminated or weaken, including the context-based data dependence, the memory accessing dependence and the control dependence. The CAVLC pipeline is divided into three stages: two scans, coding, and lag packing, and be implemented on two typical heterogeneous multicore architectures. One is a block-based SIMD parallel CAVLC encoder on multicore stream processor STORM. The other is a component-oriented SIMT parallel encoder on massively parallel architecture GPU. Both of them exploited rich data-level parallelism. Experiments results show that compared with the CPU version, more than 70 times of speedup can be obtained for STORM and over 50 times for GPU. The implementation of encoder on STORM can make a real-time processing for 1080p @30fps and GPU-based version can satisfy the requirements for 720p real-time encoding. The throughput of the presented CAVLC encoders is more than 10 times higher than that of published software encoders on DSP and multicore platforms.

  18. Improper ferroelectrics as high-efficiency energy conversion materials

    Energy Technology Data Exchange (ETDEWEB)

    Wakamatsu, Toru; Tanabe, Kenji; Terasaki, Ichiro; Taniguchi, Hiroki [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan)

    2017-05-15

    An improper ferroelectric is a certain type of ferroelectrics whose primary order parameter is not polarization but another physical quantity such as magnetization. In contrast to a conventional proper ferroelectrics as represented by Pb(Zr,Ti)O{sub 3} and BaTiO{sub 3}, the improper ferroelectrics has been inconceivable for practical applications thus far. Herein, we illustrate the great potential of improper ferroelectrics for efficient conversion of temperature fluctuation to electric energy, as demonstrated with (Ca{sub 0.84}Sr{sub 0.16}){sub 8}[AlO{sub 2}]{sub 12}(MoO{sub 4}){sub 2} (CSAM-16). The present study has experimentally proven that CSAM-16 achieves an excellent electrothermal coupling factor and high electric field sensitivity for pyroelectric energy conversion that approach a practical level for application to self-powered autonomous electronic devices for rapidly spreading wireless sensor networks. The present results provide a novel approach to developing innovative pyroelectric energy harvesting devices using improper ferroelectrics. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. High efficient ZnO nanowalnuts photocatalyst: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Feng [College of Chemistry and Chemical Engineering, Mudanjiang Normal University, Mudanjiang 157011 (China); College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025 (China); Zhang, Siwen; Liu, Yang [College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025 (China); Liu, Hongfeng [School of Basic Medical Sciences, Mudanjiang Medical University, Mudanjiang 157011 (China); Qu, Fengyu [College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025 (China); Cai, Xue, E-mail: xuecai@mail.sdu.edu.cn [College of Chemistry and Chemical Engineering, Mudanjiang Normal University, Mudanjiang 157011 (China); Wu, Xiang, E-mail: wuxiang@hrbnu.edu.cn [College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025 (China)

    2014-11-15

    Highlights: • Walnut-like ZnO nanostructures are synthesized through a facile hydrothermal method. • Morphologies and microstructures of the as-obtained ZnO products were investigated. • The photocatalytic results demonstrate that methyl orange (MO) aqueous solution can be degraded over 97% after 45 min under UV light irradiation. - Abstract: Walnut-like ZnO nanostructures are successfully synthesized through a facile hydrothermal method. The structure and morphology of the as-synthesized products were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The photocatalytic properties of ZnO nanowalnuts are investigated by photodegradating several organic dyes, such as Congo red (CR), methyl orange (MO) and eosin red aqueous solutions under UV irradiation, respectively. The results demonstrate that methyl orange (MO) aqueous solution can be degraded over 97% after 45 min under UV light irradiation. In addition, eosin red and Congo red (CR) aqueous solution degradation experiments are also conducted in the same condition, respectively. It showed that ZnO nanowalnuts represent high photocatalytic activities with a degradation efficiency of 87% for CR with 115 min of irradiation and 97% for eosin red with 55 min of irradiation. The reported ZnO products may be promising candidates as the photocatalysts in waste water treatment.

  20. High efficient ZnO nanowalnuts photocatalyst: A case study

    International Nuclear Information System (INIS)

    Yan, Feng; Zhang, Siwen; Liu, Yang; Liu, Hongfeng; Qu, Fengyu; Cai, Xue; Wu, Xiang

    2014-01-01

    Highlights: • Walnut-like ZnO nanostructures are synthesized through a facile hydrothermal method. • Morphologies and microstructures of the as-obtained ZnO products were investigated. • The photocatalytic results demonstrate that methyl orange (MO) aqueous solution can be degraded over 97% after 45 min under UV light irradiation. - Abstract: Walnut-like ZnO nanostructures are successfully synthesized through a facile hydrothermal method. The structure and morphology of the as-synthesized products were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The photocatalytic properties of ZnO nanowalnuts are investigated by photodegradating several organic dyes, such as Congo red (CR), methyl orange (MO) and eosin red aqueous solutions under UV irradiation, respectively. The results demonstrate that methyl orange (MO) aqueous solution can be degraded over 97% after 45 min under UV light irradiation. In addition, eosin red and Congo red (CR) aqueous solution degradation experiments are also conducted in the same condition, respectively. It showed that ZnO nanowalnuts represent high photocatalytic activities with a degradation efficiency of 87% for CR with 115 min of irradiation and 97% for eosin red with 55 min of irradiation. The reported ZnO products may be promising candidates as the photocatalysts in waste water treatment

  1. Dimensioning storage and computing clusters for efficient high throughput computing

    International Nuclear Information System (INIS)

    Accion, E; Bria, A; Bernabeu, G; Caubet, M; Delfino, M; Espinal, X; Merino, G; Lopez, F; Martinez, F; Planas, E

    2012-01-01

    Scientific experiments are producing huge amounts of data, and the size of their datasets and total volume of data continues increasing. These data are then processed by researchers belonging to large scientific collaborations, with the Large Hadron Collider being a good example. The focal point of scientific data centers has shifted from efficiently coping with PetaByte scale storage to deliver quality data processing throughput. The dimensioning of the internal components in High Throughput Computing (HTC) data centers is of crucial importance to cope with all the activities demanded by the experiments, both the online (data acceptance) and the offline (data processing, simulation and user analysis). This requires a precise setup involving disk and tape storage services, a computing cluster and the internal networking to prevent bottlenecks, overloads and undesired slowness that lead to losses cpu cycles and batch jobs failures. In this paper we point out relevant features for running a successful data storage and processing service in an intensive HTC environment.

  2. Development of high efficiency ventilation bag actuated dry powder inhalers.

    Science.gov (United States)

    Behara, Srinivas R B; Longest, P Worth; Farkas, Dale R; Hindle, Michael

    2014-04-25

    New active dry powder inhaler systems were developed and tested to efficiently aerosolize a carrier-free formulation. To assess inhaler performance, a challenging case study of aerosol lung delivery during high-flow nasal cannula (HFNC) therapy was selected. The active delivery system consisted of a ventilation bag for actuating the device, the DPI containing a flow control orifice and 3D rod array, and streamlined nasal cannula with separate inlets for the aerosol and HFNC therapy gas. In vitro experiments were conducted to assess deposition in the device, emitted dose (ED) from the nasal cannula, and powder deaggregation. The best performing systems achieved EDs of 70-80% with fine particle fractions <5 μm of 65-85% and mass median aerodynamic diameters of 1.5 μm, which were target conditions for controlled condensational growth aerosol delivery. Decreasing the size of the flow control orifice from 3.6 to 2.3mm reduced the flow rate through the system with manual bag actuations from an average of 35 to 15LPM, while improving ED and aerosolization performance. The new devices can be applied to improve aerosol delivery during mechanical ventilation, nose-to-lung aerosol administration, and to assist patients that cannot reproducibly use passive DPIs. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Improper ferroelectrics as high-efficiency energy conversion materials

    International Nuclear Information System (INIS)

    Wakamatsu, Toru; Tanabe, Kenji; Terasaki, Ichiro; Taniguchi, Hiroki

    2017-01-01

    An improper ferroelectric is a certain type of ferroelectrics whose primary order parameter is not polarization but another physical quantity such as magnetization. In contrast to a conventional proper ferroelectrics as represented by Pb(Zr,Ti)O_3 and BaTiO_3, the improper ferroelectrics has been inconceivable for practical applications thus far. Herein, we illustrate the great potential of improper ferroelectrics for efficient conversion of temperature fluctuation to electric energy, as demonstrated with (Ca_0_._8_4Sr_0_._1_6)_8[AlO_2]_1_2(MoO_4)_2 (CSAM-16). The present study has experimentally proven that CSAM-16 achieves an excellent electrothermal coupling factor and high electric field sensitivity for pyroelectric energy conversion that approach a practical level for application to self-powered autonomous electronic devices for rapidly spreading wireless sensor networks. The present results provide a novel approach to developing innovative pyroelectric energy harvesting devices using improper ferroelectrics. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. High Efficiency Hydrodynamic DNA Fragmentation in a Bubbling System.

    Science.gov (United States)

    Li, Lanhui; Jin, Mingliang; Sun, Chenglong; Wang, Xiaoxue; Xie, Shuting; Zhou, Guofu; van den Berg, Albert; Eijkel, Jan C T; Shui, Lingling

    2017-01-18

    DNA fragmentation down to a precise fragment size is important for biomedical applications, disease determination, gene therapy and shotgun sequencing. In this work, a cheap, easy to operate and high efficiency DNA fragmentation method is demonstrated based on hydrodynamic shearing in a bubbling system. We expect that hydrodynamic forces generated during the bubbling process shear the DNA molecules, extending and breaking them at the points where shearing forces are larger than the strength of the phosphate backbone. Factors of applied pressure, bubbling time and temperature have been investigated. Genomic DNA could be fragmented down to controllable 1-10 Kbp fragment lengths with a yield of 75.30-91.60%. We demonstrate that the ends of the genomic DNAs generated from hydrodynamic shearing can be ligated by T4 ligase and the fragmented DNAs can be used as templates for polymerase chain reaction. Therefore, in the bubbling system, DNAs could be hydrodynamically sheared to achieve smaller pieces in dsDNAs available for further processes. It could potentially serve as a DNA sample pretreatment technique in the future.

  5. High-order harmonic conversion efficiency in helium

    International Nuclear Information System (INIS)

    Crane, J.K.

    1992-01-01

    Calculated results are presented for the energy, number of photons, and conversion efficiency for high-order harmonic generation in helium. The results show the maximum values that we should expect to achieve experimentally with our current apparatus and the important parameters for scaling this source to higher output. In the desired operating regime where the coherence length, given by L coh =πb/(q-1), is greater than the gas column length, l, the harmonic output can be summarized by a single equation: N q =[(π z n z b 3 τ q |d q | z )/4h]{(p/q)(2l/b) z }. N q - numbers of photons of q-th harmonic; n - atom density; b - laser confocal parameter; τ q - pulse width of harmonic radiation; q - harmonic order; p - effective order of nonlinearity. (Note the term in brackets, the phase-matching function, has been separated from the rest of the expression in order to be consistent with the relevant literature)

  6. Efficient visualization of high-throughput targeted proteomics experiments: TAPIR.

    Science.gov (United States)

    Röst, Hannes L; Rosenberger, George; Aebersold, Ruedi; Malmström, Lars

    2015-07-15

    Targeted mass spectrometry comprises a set of powerful methods to obtain accurate and consistent protein quantification in complex samples. To fully exploit these techniques, a cross-platform and open-source software stack based on standardized data exchange formats is required. We present TAPIR, a fast and efficient Python visualization software for chromatograms and peaks identified in targeted proteomics experiments. The input formats are open, community-driven standardized data formats (mzML for raw data storage and TraML encoding the hierarchical relationships between transitions, peptides and proteins). TAPIR is scalable to proteome-wide targeted proteomics studies (as enabled by SWATH-MS), allowing researchers to visualize high-throughput datasets. The framework integrates well with existing automated analysis pipelines and can be extended beyond targeted proteomics to other types of analyses. TAPIR is available for all computing platforms under the 3-clause BSD license at https://github.com/msproteomicstools/msproteomicstools. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. A Novel High Efficiency Fractal Multiview Video Codec

    Directory of Open Access Journals (Sweden)

    Shiping Zhu

    2015-01-01

    Full Text Available Multiview video which is one of the main types of three-dimensional (3D video signals, captured by a set of video cameras from various viewpoints, has attracted much interest recently. Data compression for multiview video has become a major issue. In this paper, a novel high efficiency fractal multiview video codec is proposed. Firstly, intraframe algorithm based on the H.264/AVC intraprediction modes and combining fractal and motion compensation (CFMC algorithm in which range blocks are predicted by domain blocks in the previously decoded frame using translational motion with gray value transformation is proposed for compressing the anchor viewpoint video. Then temporal-spatial prediction structure and fast disparity estimation algorithm exploiting parallax distribution constraints are designed to compress the multiview video data. The proposed fractal multiview video codec can exploit temporal and spatial correlations adequately. Experimental results show that it can obtain about 0.36 dB increase in the decoding quality and 36.21% decrease in encoding bitrate compared with JMVC8.5, and the encoding time is saved by 95.71%. The rate-distortion comparisons with other multiview video coding methods also demonstrate the superiority of the proposed scheme.

  8. Dissolution-recrystallization method for high efficiency perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Han, Fei; Luo, Junsheng; Wan, Zhongquan; Liu, Xingzhao; Jia, Chunyang, E-mail: cyjia@uestc.edu.cn

    2017-06-30

    Highlights: • Dissolution-recrystallization method can improve perovskite crystallization. • Dissolution-recrystallization method can improve TiO{sub 2}/perovskite interface. • The optimal perovskite solar cell obtains the champion PCE of 16.76%. • The optimal devices are of high reproducibility. - Abstract: In this work, a dissolution-recrystallization method (DRM) with chlorobenzene and dimethylsulfoxide treating the perovskite films during the spin-coating process is reported. This is the first time that DRM is used to control perovskite crystallization and improve the device performance. Furthermore, the DRM is good for reducing defects and grain boundaries, improving perovskite crystallization and even improving TiO{sub 2}/perovskite interface. By optimizing, the DRM2-treated perovskite solar cell (PSC) obtains the best photoelectric conversion efficiency (PCE) of 16.76% under AM 1.5 G illumination (100 mW cm{sup −2}) with enhanced J{sub sc} and V{sub oc} compared to CB-treated PSC.

  9. Production of a high-efficiency TILLING population through polyploidization.

    Science.gov (United States)

    Tsai, Helen; Missirian, Victor; Ngo, Kathie J; Tran, Robert K; Chan, Simon R; Sundaresan, Venkatesan; Comai, Luca

    2013-04-01

    Targeting Induced Local Lesions in Genomes (TILLING) provides a nontransgenic method for reverse genetics that is widely applicable, even in species where other functional resources are missing or expensive to build. The efficiency of TILLING, however, is greatly facilitated by high mutation density. Species vary in the number of mutations induced by comparable mutagenic treatments, suggesting that genetic background may affect the response. Allopolyploid species have often yielded higher mutation density than diploids. To examine the effect of ploidy, we autotetraploidized the Arabidopsis (Arabidopsis thaliana) ecotype Columbia, whose diploid has been used for TILLING extensively, and mutagenized it with 50 mm ethylmethane sulfonate. While the same treatment sterilized diploid Columbia, the tetraploid M1 plants produced good seed. To determine the mutation density, we searched 528 individuals for induced mutations in 15 genes for which few or no knockout alleles were previously available. We constructed tridimensional pools from the genomic DNA of M2 plants, amplified target DNA, and subjected them to Illumina sequencing. The results were analyzed with an improved version of the mutation detection software CAMBa that accepts any pooling scheme. This small population provided a rich resource with approximately 25 mutations per queried 1.5-kb fragment, including on average four severe missense and 1.3 truncation mutations. The overall mutation density of 19.4 mutations Mb(-1) is 4 times that achieved in the corresponding diploid accession, indicating that genomic redundancy engenders tolerance to high mutation density. Polyploidization of diploids will allow the production of small populations, such as less than 2,000, that provide allelic series from knockout to mild loss of function for virtually all genes.

  10. High efficiency Dual-Cycle Conversion System using Kr-85.

    Science.gov (United States)

    Prelas, Mark A; Tchouaso, Modeste Tchakoua

    2018-04-26

    This paper discusses the use of one of the safest isotopes known isotopes, Kr-85, as a candidate fuel source for deep space missions. This isotope comes from 0.286% of fission events. There is a vast quantity of Kr-85 stored in spent fuel and it is continually being produced by nuclear reactors. In using Kr-85 with a novel Dual Cycle Conversion System (DCCS) it is feasible to boost the system efficiency from 26% to 45% over a single cycle device while only increasing the system mass by less than 1%. The Kr-85 isotope is the ideal fuel for a Photon Intermediate Direct Energy Conversion (PIDEC) system. PIDEC is an excellent choice for the top cycle in a DCCS. In the top cycle, ionization and excitation of the Kr-85:Cl gas mixture (99% Kr and 1% Cl) from beta particles creates KrCl* excimer photons which are efficiently absorbed by diamond photovoltaic cells on the walls of the pressure vessels. The benefit of using the DCCS is that Kr-85 is capable of operating at high temperatures in the primary cycle and the residual heat can then be converted into electrical power in the bottom cycle which uses a Stirling Engine. The design of the DCCS begins with a spherical pressure vessel of radius 13.7 cm with 3.7 cm thick walls and is filled with a Kr-85:Cl gas mixture. The inner wall has diamond photovoltaic cells attached to it and there is a sapphire window between the diamond photovoltaic cells and the Kr-85:Cl gas mixture which shields the photovoltaic cells from beta particles. The DCCS without a gamma ray shield has specific power of 6.49 W/kg. A removable 6 cm thick tungsten shield is used to safely limit the radiation exposure levels of personnel. A shadow shield remains in the payload to protect the radiation sensitive components in the flight package. The estimated specific power of the unoptimized system design in this paper is about 2.33 W/kg. The specific power of an optimized system should be higher. The Kr-85 isotope is relatively safe because it

  11. Advanced Nanomaterials for High-Efficiency Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Junhong [University of Wisconsin-Milwaukee

    2013-11-29

    Energy supply has arguably become one of the most important problems facing humankind. The exponential demand for energy is evidenced by dwindling fossil fuel supplies and record-high oil and gas prices due to global population growth and economic development. This energy shortage has significant implications to the future of our society, in addition to the greenhouse gas emission burden due to consumption of fossil fuels. Solar energy seems to be the most viable choice to meet our clean energy demand given its large scale and clean/renewable nature. However, existing methods to convert sun light into electricity are not efficient enough to become a practical alternative to fossil fuels. This DOE project aims to develop advanced hybrid nanomaterials consisting of semiconductor nanoparticles (quantum dots or QDs) supported on graphene for cost-effective solar cells with improved conversion efficiency for harvesting abundant, renewable, clean solar energy to relieve our global energy challenge. Expected outcomes of the project include new methods for low-cost manufacturing of hybrid nanostructures, systematic understanding of their properties that can be tailored for desired applications, and novel photovoltaic cells. Through this project, we have successfully synthesized a number of novel nanomaterials, including vertically-oriented graphene (VG) sheets, three-dimensional (3D) carbon nanostructures comprising few-layer graphene (FLG) sheets inherently connected with CNTs through sp{sup 2} carbons, crumpled graphene (CG)-nanocrystal hybrids, CdSe nanoparticles (NPs), CdS NPs, nanohybrids of metal nitride decorated on nitrogen-doped graphene (NG), QD-carbon nanotube (CNT) and QD-VG-CNT structures, TiO{sub 2}-CdS NPs, and reduced graphene oxide (RGO)-SnO{sub 2} NPs. We further assembled CdSe NPs onto graphene sheets and investigated physical and electronic interactions between CdSe NPs and the graphene. Finally we have demonstrated various applications of these

  12. Low-cost and eco-friendly nebulizer spray coated CuInAlS2 counter electrode for dye-sensitized solar cells

    Science.gov (United States)

    Dhas, C. Ravi; Christy, A. Jennifer; Venkatesh, R.; Esther Santhoshi Monica, S.; Panda, Subhendu K.; Subramanian, B.; Ravichandran, K.; Sudhagar, P.; Raj, A. Moses Ezhil

    2018-05-01

    CuInAlS2 thin films for different substrate temperatures were deposited by a novel nebulizer spray technique. The polycrystalline CIAS thin film exhibited tetragonal structure with the preferential orientation of (1 1 2) plane. Nanoflakes were observed from the surface morphology of CIAS film. The peak position of core level spectra confirms the presence of CuInAlS2 from XPS analysis. The absorbance spectra and optical band gap were observed from the optical property. The activation energy, carrier concentration, hole mobility and resistivity were determined by linear four probe and Hall effect measurements. The CIAS film was used as a counter electrode (CE) in dye-sensitized solar cells (DSSCs) and is characterized by cyclic voltammetry, electrochemical impedance spectroscopy and Tafel measurements. DSSC fabricated with the CIAS CE achieved the photo conversion efficiency of about 2.55%.

  13. EVALUATION OF A LOW FRICTION - HIGH EFFICIENCY ROLLER BEARING ENGINE

    Energy Technology Data Exchange (ETDEWEB)

    Kolarik, Robert V. II; Shattuck, Charles W.; Copper, Anthony P.

    2009-06-30

    This Low Friction (High Efficiency Roller Bearing) Engine (LFE) report presents the work done by The Timken Company to conduct a technology demonstration of the benefits of replacing hydrodynamic bearings with roller bearings in the crankshaft and camshaft assemblies of an internal combustion engine for the purpose of collecting data sufficient to prove merit. The engines in the present study have been more extensively converted to roller bearings than any previous studies (40 needle roller bearings per engine) to gain understanding of the full potential of application of bearing technology. The project plan called for comparative testing of a production vehicle which was already respected for having demonstrated low engine friction levels with a rollerized version of that engine. Testing was to include industry standard tests for friction, emissions and fuel efficiency conducted on instrumented dynamometers. Additional tests for fuel efficiency, cold start resistance and other measures of performance were to be made in the actual vehicle. Comparative measurements of noise, vibration and harshness (NVH), were planned, although any work to mitigate the suspected higher NVH level in the rollerized engine was beyond the scope of this project. Timken selected the Toyota Avalon with a 3.5L V-6 engine as the test vehicle. In an attempt to minimize cost and fabrication time, a ‘made-from’ approach was proposed in which as many parts as possible would be used or modified from production parts to create the rollerized engine. Timken commissioned its test partner, FEV Engine Technology, to do a feasibility study in which they confirmed that using such an approach was possible to meet the required dimensional restrictions and tolerances. In designing the roller bearing systems for the crank and cam trains, Timken utilized as many production engine parts as possible. The crankshafts were produced from production line forgings, which use Timken steel, modified with special

  14. A New Very-High-Efficiency R4 Converter for High-Power Fuel Cell Applications

    DEFF Research Database (Denmark)

    Nymand, Morten; Andersen, Michael Andreas E.

    2009-01-01

    of fullbridge switching stages and power transformers, operate in parallel on primary side and in series on secondary side. Current sharing is guaranteed by series connection of transformer secondary windings and three small cascaded current balancing transformers on primary side. The detailed design of a 10 k......W prototype converter is presented. Input voltage range is 30-60 V and output voltage is 800 V. Test results, including voltage- and current waveforms and efficiency measurements, are presented. A record high converter efficiency of 98.2 % is achieved. The proposed R4 boost converter thus constitutes a low...

  15. Highly efficient DNA extraction method from skeletal remains

    Directory of Open Access Journals (Sweden)

    Irena Zupanič Pajnič

    2011-03-01

    Full Text Available Background: This paper precisely describes the method of DNA extraction developed to acquire high quality DNA from the Second World War skeletal remains. The same method is also used for molecular genetic identification of unknown decomposed bodies in routine forensic casework where only bones and teeth are suitable for DNA typing. We analysed 109 bones and two teeth from WWII mass graves in Slovenia. Methods: We cleaned the bones and teeth, removed surface contaminants and ground the bones into powder, using liquid nitrogen . Prior to isolating the DNA in parallel using the BioRobot EZ1 (Qiagen, the powder was decalcified for three days. The nuclear DNA of the samples were quantified by real-time PCR method. We acquired autosomal genetic profiles and Y-chromosome haplotypes of the bones and teeth with PCR amplification of microsatellites, and mtDNA haplotypes 99. For the purpose of traceability in the event of contamination, we prepared elimination data bases including genetic profiles of the nuclear and mtDNA of all persons who have been in touch with the skeletal remains in any way. Results: We extracted up to 55 ng DNA/g of the teeth, up to 100 ng DNA/g of the femurs, up to 30 ng DNA/g of the tibias and up to 0.5 ng DNA/g of the humerus. The typing of autosomal and YSTR loci was successful in all of the teeth, in 98 % dekalof the femurs, and in 75 % to 81 % of the tibias and humerus. The typing of mtDNA was successful in all of the teeth, and in 96 % to 98 % of the bones. Conclusions: We managed to obtain nuclear DNA for successful STR typing from skeletal remains that were over 60 years old . The method of DNA extraction described here has proved to be highly efficient. We obtained 0.8 to 100 ng DNA/g of teeth or bones and complete genetic profiles of autosomal DNA, Y-STR haplotypes, and mtDNA haplotypes from only 0.5g bone and teeth samples.

  16. Exciplex-Forming Cohost for High Efficiency and High Stability Phosphorescent Organic Light-Emitting Diodes.

    Science.gov (United States)

    Shih, Chun-Jen; Lee, Chih-Chien; Chen, Ying-Hao; Biring, Sajal; Kumar, Gautham; Yeh, Tzu-Hung; Sen, Somaditya; Liu, Shun-Wei; Wong, Ken-Tsung

    2018-01-17

    An exciplex forming cohost system is employed to achieve a highly efficient organic light-emitting diode (OLED) with good electroluminescent lifetime. The exciplex is formed at the interfacial contact of a conventional star-shaped carbazole hole-transporting material, 4,4',4″-tris(N-carbazolyl)-triphenylamine (TCTA), and a triazine electron-transporting material, 2,4,6-tris[3-(1H-pyrazol-1-yl)phenyl]-1,3,5-triazine (3P-T2T). The excellent combination of TCTA and 3P-T2T is applied as the cohost of a common green phosphorescent emitter with almost zero energy loss. When Ir(ppy) 2 (acac) is dispersed in such exciplex cohost system, OLED device with maximum external quantum efficiency of 29.6%, the ultrahigh power efficiency of 147.3 lm/W, and current efficiency of 107 cd/A were successfully achieved. More importantly, the OLED device showed a low-efficiency roll-off and an operational lifetime (τ 80 ) of ∼1020 min with the initial brightness of 2000 cd/m 2 , which is 56 times longer than the reference device. The significant difference of device stability was attributed to the degradation of exciplex system for energy transfer process, which was investigated by the photoluminescence aging measurement at room temperature and 100 K, respectively.

  17. Nebulized formoterol: a review of clinical efficacy and safety in COPD

    Directory of Open Access Journals (Sweden)

    Nicholas J Gross

    2010-06-01

    Full Text Available Nicholas J Gross1, James F Donohue21Hines VA Hospital, Stritch Loyola School of Medicine, Hines, IL, USA; 2University of North Carolina School of Medicine, Chapel Hill, NC, USAAbstract: A nebulized formulation of formoterol, Perforomist®, 20 μg/2 ml, has been available since 2007 for the maintenance treatment of chronic obstructive pulmonary disease (COPD. We review the safety and efficacy data obtained during its development. In a dose-finding study, formoterol inhalation solution (FFIS was similar to the formoterol originator, Foradil® 12 μg DPI (FA in patients with COPD. In a 12-week efficacy study, FFIS manifested a rapid onset of action and FEV1 peak, AUC0–12, and trough levels similar to FA. No loss of efficacy, tachyphylaxis, was observed over 12 weeks of regular administration. In placebo-controlled studies in COPD patients receiving maintenance tiotropium, the addition of FFIS significantly augmented bronchodilation over the 6-week treatment duration, signifying that nebulized formoterol can further improve lung function in patients who are receiving tiotropium without an observed increase in adverse reactions. The safety profile of FFIS during 12-week and 1-year studies revealed adverse events that were similar to those of placebo and FA. Cardiac rhythm studies, including frequent ECGs and Holter monitoring, did not indicate any increase in rate or rhythm disturbances greater than placebo or FA. We conclude that maintenance use of Perforomist® is appropriate for patients with COPD who require or prefer a nebulizer for management of their disease.Keywords: long-acting bronchodilator, β-agonist, chronic bronchitis, pulmonary emphysema, Perforomist®, chronic obstructive pulmonary disease

  18. Characterization of heparin aerosols generated in jet and ultrasonic nebulizers

    DEFF Research Database (Denmark)

    Bendstrup, K.E.; Newhouse, M.T.; Pedersen, Ole Finn

    1999-01-01

    Inhaled heparin has been used for asthma treatment, but results have been inconsistent, probably due to highly varying lung doses. We determined the output per unit time and the particle size distributions of sodium heparin, calcium heparin, and low molecular weight (LMW) heparin formulations in ...... on the exhalation filter, and 15,000 IU was captured on the inhalation filter (inhaled mass). This corresponds to a respirable mass of 10,000 IU of heparin with a high probability of reaching the lower respiratory tract in normal healthy adults....

  19. Comparative study of budesonide as a nebulized suspension vs pressurized metered-dose inhaler in adult asthmatics

    DEFF Research Database (Denmark)

    Bisgaard, H; Nikander, K; Munch, E

    1998-01-01

    The study objective was to compare the effect of budesonide administered as a nebulized suspension as compared to a spray with a spacer in adult asthmatics. In a double-blind, double-dummy crossover study, 26 adult patients with moderately severe unstable asthma were randomized to three 4-week...... treatment periods with budesonide 0.8 mg b.i.d. administered by a pressurized metered-dose inhaler (pMDI) with spacer (Nebuhaler) and budesonide 1 mg and 4 mg b.i.d. administered by a Pari Inhalier Boy jet nebulizer. The nebulizer was activated only during inspiration. The total mass output was similar from...... the two devices but their fraction of small particles differed by a factor of 2 in favour of pMDI. Effect was evaluated from daily home measurements of peak expiratory flow (PEF), need of beta 2-agonist and symptom scores. Plasma cortisol and budesonide levels were measured in a subgroup of 10 patients...

  20. Functionalized Graphene Enables Highly Efficient Solar Thermal Steam Generation.

    Science.gov (United States)

    Yang, Junlong; Pang, Yunsong; Huang, Weixin; Shaw, Scott K; Schiffbauer, Jarrod; Pillers, Michelle Anne; Mu, Xin; Luo, Shirui; Zhang, Teng; Huang, Yajiang; Li, Guangxian; Ptasinska, Sylwia; Lieberman, Marya; Luo, Tengfei

    2017-06-27

    The ability to efficiently utilize solar thermal energy to enable liquid-to-vapor phase transition has great technological implications for a wide variety of applications, such as water treatment and chemical fractionation. Here, we demonstrate that functionalizing graphene using hydrophilic groups can greatly enhance the solar thermal steam generation efficiency. Our results show that specially functionalized graphene can improve the overall solar-to-vapor efficiency from 38% to 48% at one sun conditions compared to chemically reduced graphene oxide. Our experiments show that such an improvement is a surface effect mainly attributed to the more hydrophilic feature of functionalized graphene, which influences the water meniscus profile at the vapor-liquid interface due to capillary effect. This will lead to thinner water films close to the three-phase contact line, where the water surface temperature is higher since the resistance of thinner water film is smaller, leading to more efficient evaporation. This strategy of functionalizing graphene to make it more hydrophilic can be potentially integrated with the existing macroscopic heat isolation strategies to further improve the overall solar-to-vapor conversion efficiency.

  1. Volume Bragg grating narrowed high-power and highly efficient cladding-pumped Raman fiber laser.

    Science.gov (United States)

    Liu, Jun; Yao, Weichao; Zhao, Chujun; Shen, Deyuan; Fan, Dianyuan

    2014-12-10

    High-power and highly efficient operation of a single-mode cladding-pumped Raman fiber laser with narrow lasing bandwidth is demonstrated. The spectral narrowing was realized by an external cavity containing a volume Bragg grating with a center wavelength of 1658 nm. A maximum output power of 10.4 W at 1658.3 nm with a spectral linewidth (FWHM) of ∼0.1  nm was obtained for the launched pump power of 18.4 W, corresponding to a slope efficiency of 109% with respect to the launched pump power. Lasing characteristics of free-running operation are also evaluated and discussed.

  2. Trial of accelerator cells machining with high precision and high efficiency at Okayama region

    International Nuclear Information System (INIS)

    Yoshikawa, Mitsuo; Yoden, Hiroyuki; Yokomizo, Seiichi; Sumida, Tsuneto; Kunishida, Jun; Oshita, Isao

    2005-01-01

    In the framework of the project 'Promotion of Science and Technology in Regional Areas' by the Ministry of Education, Culture, Sports, Science and Technology, we have prepared a special apparatus for machining accelerator cells with a high precision and a high efficiency for the future linear collider. A machining with as small an error as 2 micrometers has been realized. Necessary time to finish one accelerator cell is reduced from 128 minutes to 34 minutes due to the suppression of the heating of the object at the machining. If newly developed one chuck method was employed, the precision and efficiency would be further improved. By cutting at both sides of the spindle, the necessary time for machining would be reduced by half. (author)

  3. Structure, optical and electrical properties of indium tin oxide ultra thin films prepared by jet nebulizer spray pyrolysis technique

    Directory of Open Access Journals (Sweden)

    M. Thirumoorthi

    2016-03-01

    Full Text Available Indium tin oxide (ITO thin films have been prepared by jet nebulizer spray pyrolysis technique for different Sn concentrations on glass substrates. X-ray diffraction patterns reveal that all the films are polycrystalline of cubic structure with preferentially oriented along (222 plane. SEM images show that films exhibit uniform surface morphology with well-defined spherical particles. The EDX spectrum confirms the presence of In, Sn and O elements in prepared films. AFM result indicates that the surface roughness of the films is reduced as Sn doping. The optical transmittance of ITO thin films is improved from 77% to 87% in visible region and optical band gap is increased from 3.59 to 4.07 eV. Photoluminescence spectra show mainly three emissions peaks (UV, blue and green and a shift observed in UV emission peak. The presence of functional groups and chemical bonding was analyzed by FTIR. Hall effect measurements show prepared films having n-type conductivity with low resistivity (3.9 × 10−4 Ω-cm and high carrier concentrations (6.1 × 1020 cm−3.

  4. High efficiency and stable white OLED using a single emitter

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jian [Arizona State Univ., Tempe, AZ (United States). School of Mechanical, Aerospace, Chemical and Materials Engineering

    2016-01-18

    The ultimate objective of this project was to demonstrate an efficient and stable white OLED using a single emitter on a planar glass substrate. The focus of the project is on the development of efficient and stable square planar phosphorescent emitters and evaluation of such class of materials in the device settings. Key challenges included improving the emission efficiency of molecular dopants and excimers, controlling emission color of emitters and their excimers, and improving optical and electrical stability of emissive dopants. At the end of this research program, the PI has made enough progress to demonstrate the potential of excimer-based white OLED as a cost-effective solution for WOLED panel in the solid state lighting applications.

  5. Impurity effects in silicon for high efficiency solar cells

    Science.gov (United States)

    Hopkins, R. H.; Rohatgi, A.

    1986-01-01

    Model analyses indicate that sophisticated solar cell designs including, e.g., back surface fields, optical reflectors, surface passivation, and double layer antireflective coatings can produce devices with conversion efficiencies above 20 percent (AM1). To realize this potential, the quality of the silicon from which the cells are made must be improved; and these excellent electrical properties must be maintained during device processing. As the cell efficiency rises, the sensitivity to trace contaminants also increases. For example, the threshold Ti impurity concentration at which cell performance degrades is more than an order of magnitude lower for an 18-percent cell. Similar behavior occurs for numerous other metal species which introduce deep level traps that stimulate the recombination of photogenerated carriers in silicon. Purification via crystal growth in conjunction with gettering steps to preserve the large diffusion length of the as-grown material can lead to the production of devices with efficiencies aboved 18 percent, as has been verified experimentally.

  6. High-efficiency photovoltaic technology including thermoelectric generation

    Science.gov (United States)

    Fisac, Miguel; Villasevil, Francesc X.; López, Antonio M.

    2014-04-01

    Nowadays, photovoltaic solar energy is a clean and reliable source for producing electric power. Most photovoltaic systems have been designed and built up for use in applications with low power requirements. The efficiency of solar cells is quite low, obtaining best results in monocrystalline silicon structures, with an efficiency of about 18%. When temperature rises, photovoltaic cell efficiency decreases, given that the short-circuit current is slightly increased, and the open-circuit voltage, fill factor and power output are reduced. To ensure that this does not affect performance, this paper describes how to interconnect photovoltaic and thermoelectric technology into a single structure. The temperature gradient in the solar panel is used to supply thermoelectric cells, which generate electricity, achieving a positive contribution to the total balance of the complete system.

  7. High-efficiency transmision neutron polarizer for high-resolution double crystal diffractometer

    International Nuclear Information System (INIS)

    Ioffe, A.; Krist, T.; Mezei, F.; Gordeev, G.; Ibrayev, B.

    1997-01-01

    An efficient transmission geometry neutron polarizer for the high-resolution double crystal diffractometer at HMI (λ=4.8 A) is described. A polarization of about 94% was achieved and the polarized neutron beam intensity amounts to 40% of the nonpolarized beam intensity. This opens up wide possibilities for the study of magnetic small-angle scattering for extremely small momentum transfer (Q∝10 -5 A -1 ). (orig.)

  8. A versatile, highly-efficient, high-resolution von Hamos Bragg crystal x-ray spectrometer

    International Nuclear Information System (INIS)

    Vane, C.R.; Smith, M.S.; Raman, S.

    1988-01-01

    An efficient, high-resolution, vertical-focusing, Bragg crystal x-ray spectrometer has been specifically designed and constructed for use in measurements of x rays produced in collisions of energetic heavy ions. In this report the design and resulting operational characteristics of the final instrument are fully described. A wide variety of sample data is also included to illustrate the utility of this device in several areas of research. 14 refs., 38 figs

  9. High-Efficiency, Commercial Ready CdTe Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Sites, James R. [Colorado State Univ., Fort Collins, CO (United States)

    2015-11-19

    Colorado State’s F-PACE project explored several ways to increase the efficiency of CdTe solar cells and to better understand the device physics of those cells under study. Increases in voltage, current, and fill factor resulted in efficiencies above 17%. The three project tasks and additional studies are described in detail in the final report. Most cells studied were fabricated at Colorado State using an industry-compatible single-vacuum closed-space-sublimation (CSS) chamber for deposition of the key semiconductor layers. Additionally, some cells were supplied by First Solar for comparison purposes, and a small number of modules were supplied by Abound Solar.

  10. Development of a direct hydride generation nebulizer for the determination of selenium by inductively coupled plasma optical emission spectrometry

    International Nuclear Information System (INIS)

    Carrion, Nereida; Murillo, Miguel; Montiel, Edie; Diaz, Dorfe

    2003-01-01

    A study was conducted to evaluate the performance of a new direct hydride generation nebulizer system for determination of hydride forming elements by inductively coupled plasma optical emission spectroscopy. This system was designed and optimized to obtain the highest sensitivity. Several experimental designs were used for these purposes. To optimize the individual parameters of the system, and to study the interaction between these parameters for both direct hydride generation nebulizers, a central composite orthogonal design with eight factors was set up. Significant behavioral differences were observed in the two direct hydride generation nebulizers studied. Finally, a 70 μm gas orifice nebulizer exhibits a better detection limit than the 120 μm nebulizer. Generally, for determination of selenium, this new direct hydride generation nebulizer system exhibits a linear dynamic range and detection limit (3σb) of 3 orders of magnitude and 0.2 μg l -1 for selenium, respectively. This new hydride generator is much simpler system that conventional hydride generation systems, which does not need to be changed to work in normal mode with the inductively coupled plasma, since this system may be used for hydride forming elements and those that do not form them. It produces a rapid response with low memory effect. It reduces the interference level of Ni, Co and Cu to 600, 500 and 5 mg l -1 , respectively. The accuracy of the system was verified by the determination of selenium in several standard reference materials of ambient, food and clinical sample matrices. No statistically significant differences (95 confidence level) were obtained between our method and the reference values

  11. High-efficiency water-loaded microwave antenna in ultra-high-frequency band

    Science.gov (United States)

    Gong, Zilun; Bartone, Chris; Yang, Fuyi; Yao, Jie

    2018-03-01

    High-index dielectrics are widely used in microwave antennas to control the radiation characteristics. Liquid water, with a high dielectric index at microwave frequency, is an interesting material to achieving tunable functionalities. Here, we demonstrate a water-loaded microwave antenna system that has high loss-tolerance and wideband tunability enabled by fluidity. Our simulation and experimental results show that the resonance frequency can be effectively tuned by the size of loading water. Furthermore, the antenna systems with water loading can achieve high radiation efficiency (>90%) in the ultra-high-frequency (0.3-3 GHz) band. This work brings about opportunities in realistic tunable microwave antenna designs enabled by liquid.

  12. Deep-blue efficient OLED based on NPB with little efficiency roll-off under high current density

    Science.gov (United States)

    Liu, Jian

    2017-03-01

    NPB usually is used as a hole-transport layer in OLED. In fact, it is a standard pure blue-emission material. However, its light-emitting efficiency in OLED is low due to emissive nature of organic material. Herein, a deep-blue OLDE based on NPB was fabricated. The light-emitting efficiency of the device demonstrates a moderate value, and efficiency roll-off is little under high current density. The device demonstrates that the electroplex's emission decreases with increasing electric field intensity.

  13. Non-equilibrium microwave plasma for efficient high temperature chemistry

    NARCIS (Netherlands)

    van den Bekerom, D.C.M.; den Harder, N.; Minea, T.; Palomares Linares, J.M.; Bongers, W.; van de Sanden, M.C.M.; van Rooij, G.J.

    2017-01-01

    This article describes a flowing microwave reactor that is used to drive efficient non-equilibrium chemistry for the application of conversion/activation of stable molecules such as CO2, N2 and CH4. The goal of the procedure described here is to measure the in situ gas temperature and gas

  14. Very High Efficiency Wood and Dung Mogogo in Eritrea

    Science.gov (United States)

    Ghebrehiwet, Debesai

    In Eritrea, the cooking of traditionally yeast-leavened flat bread (injera or taita) is responsible for over 50%percnt; of the household's energy consumption. However, no literature exists in international journals, which reviews or analyse the efficiency or energy intensity of injera production.

  15. Highly efficient and stable catalyst for peroxynitrite decomposition

    Science.gov (United States)

    Yurii V. Geletii; Alan J. Bailey; Jennifer J. Cowan; Ira A. Weinstock; Craig L. Hill

    2001-01-01

    The new cobalt substituted-polyoxometalate K7[CoAlW11O39]•15H2O and the simple CoCl2•6H2O salt are efficient catalysts for peroxynitrite decomposition. These compounds also catalyze the oxidation of ascorbic acid and the nitration of phenol by peroxynitrite.

  16. High Efficient LGp0 End Pumped Nd:YAG Laser

    CSIR Research Space (South Africa)

    Ngcobo, S

    2012-07-01

    Full Text Available the slope efficiency of the laser due to the increased in the fundamental mode volume of the laser. The beam shaping is achieved by using an annular binary Diffractive Optical Element whose geometry is in connection with the location of the Laguerre...

  17. Gate controlled high efficiency ballistic energy conversion system

    NARCIS (Netherlands)

    Xie, Yanbo; Bos, Diederik; de Boer, Hans L.; van den Berg, Albert; Eijkel, Jan C.T.; Zengerle, R.

    2013-01-01

    Last year we demonstrated the microjet ballistic energy conversion system[1]. Here we show that the efficiency of such a system can be further improved by gate control. With gate control the electrical current generation is enhanced a hundred times with respect to the current generated from the zeta

  18. High-efficiency ballistic electrostatic generator using microdroplets

    NARCIS (Netherlands)

    Xie, Yanbo; Bos, Diederik; de Vreede, Lennart; de Boer, Hans L.; van der Meulen, Mark-Jan; van der Meulen, Mark-Jan; Versluis, Michel; Sprenkels, A.J.; van den Berg, Albert; Eijkel, Jan C.T.

    2014-01-01

    The strong demand for renewable energy promotes research on novel methods and technologies for energy conversion. Microfluidic systems for energy conversion by streaming current are less known to the public, and the relatively low efficiencies previously obtained seemed to limit the further

  19. Development of high efficiency solar cells on silicon web

    Science.gov (United States)

    Rohatgi, A.; Meier, D. L.; Campbell, R. B.; Schmidt, D. N.; Rai-Choudhury, P.

    1984-01-01

    Web base material is being improved with a goal toward obtaining solar cell efficiencies in excess of 18% (AM1). Carrier loss mechanisms in web silicon was investigated, techniques were developed to reduce carrier recombination in the web, and web cells were fabricated using effective surface passivation. The effect of stress on web cell performance was also investigated.

  20. An Automatic High Efficient Method for Dish Concentrator Alignment

    Directory of Open Access Journals (Sweden)

    Yong Wang

    2014-01-01

    for the alignment of faceted solar dish concentrator. The isosceles triangle configuration of facet’s footholds determines a fixed relation between light spot displacements and foothold movements, which allows an automatic determination of the amount of adjustments. Tests on a 25 kW Stirling Energy System dish concentrator verify the feasibility, accuracy, and efficiency of our method.

  1. High-efficiency passive full wave rectification for electromagnetic harvesters

    Science.gov (United States)

    Yilmaz, Mehmet; Tunkar, Bassam A.; Park, Sangtak; Elrayes, Karim; Mahmoud, Mohamed A. E.; Abdel-Rahman, Eihab; Yavuz, Mustafa

    2014-10-01

    We compare the performance of four types of full-wave bridge rectifiers designed for electromagnetic energy harvesters based on silicon diodes, Schottky diodes, passive MOSFETs, and active MOSFETs. Simulation and experimental results show that MOSFET-type rectifiers are more efficient than diode-type rectifiers, reaching voltage and power efficiency of 99% for ideal voltage source with input amplitudes larger than 800 mV. Since active MOSFETs require extra components and an external DC power supply, we conclude that passive MOSFETs are superior for micro-power energy harvesting systems. We demonstrate passive MOSFET rectifiers implemented using discrete, off-shelf components and show that they outperform all electromagnetic harvester rectifiers hitherto reported obtaining a power efficiency of 95%. Furthermore, we show that passive MOSFET rectifiers do not affect the center frequency, harvesting bandwidth, or optimal resistance of electromagnetic harvesters. We demonstrate a complete power management module by adding a capacitor to the rectifier output terminal. We found that this configuration changed the optimal resistive load from 40 Ω to 55 Ω and decreased output power efficiency to 86%.

  2. Highly efficient 6-stroke engine cycle with water injection

    Science.gov (United States)

    Szybist, James P; Conklin, James C

    2012-10-23

    A six-stroke engine cycle having improved efficiency. Heat is recovered from the engine combustion gases by using a 6-stroke engine cycle in which combustion gases are partially vented proximate the bottom-dead-center position of the fourth stroke cycle, and water is injected proximate the top-dead-center position of the fourth stroke cycle.

  3. Development of a high-count-rate neutron detector with position sensitivity and high efficiency

    International Nuclear Information System (INIS)

    Nelson, R.; Sandoval, J.

    1996-01-01

    While the neutron scattering community is bombarded with hints of new technologies that may deliver detectors with high-count-rate capability, high efficiency, gamma-ray insensitivity, and high resolution across large areas, only the time-tested, gas-filled 3 He and scintillation detectors are in widespread use. Future spallation sources with higher fluxes simply must exploit some of the advanced detector schemes that are as yet unproved as production systems. Technologies indicating promise as neutron detectors include pixel arrays of amorphous silicon, silicon microstrips, microstrips with gas, and new scintillation materials. This project sought to study the competing neutron detector technologies and determine which or what combination will lead to a production detector system well suited for use at a high-intensity neutron scattering source

  4. Placebo-controlled trial of nebulization with adrenaline in acute bronchiolitis: a quasi-experimental study

    International Nuclear Information System (INIS)

    Afzal, M.F.; Iqbal, S.M.; Sultan, M.A.

    2012-01-01

    Background: Bronchiolitis is an acute inflammatory obstruction. of small In children that occurs In first two years of life and is by fever, rhinitis, cough, tachypnoea, expiratory wheeze and increased respiratory effort To study efficacy of nebulized adrenaline compared with placebo in acute bronchiolitis. Quasi-experimental study carried out at Department of aediatrics, King Edward Medical University/ Mayo Hospital, Lahore from October 2006 through March 2007. After consent from parents, sixty children of age between 2 months to 2 years with the first episode consistent with clinical case definition of bronchiolitis were included by using convenient sampling. clinical scoring system was used to grade the severity of disease as well as to monitor the efficacy of intervention. Those having score = 8 were randomly allocated to the two study groups. The information was recorded at 0 minute and effect of each method of treatment was followed for 90 minutes. Results: Our study population was 60 children. The mean age was 11:1:6 Months. Male to female ratio was 1.2: 1. Mean weight of the Children was 9:1:3 kg. Improvement in clinical score, oxygen saturation, and length of hospital at 0 and 90 minutes was noted in both groups but when compared with placebo, there was no Statistically significant difference. Conclusion: There is no difference in the efficacy of nebulization with adrenaline compared with placebo in the management of acute bronchiolitis. (author)

  5. Highly efficient catalytic systems based on Pd-coated microbeads

    Science.gov (United States)

    Lim, Jin Hyun; Cho, Ahyoung; Lee, Seung Hwan; Park, Bumkyo; Kang, Dong Woo; Koo, Chong Min; Yu, Taekyung; Park, Bum Jun

    2018-01-01

    The efficiency of two prototype catalysis systems using palladium (Pd)-coated microparticles was investigated with regard to the recovery and recyclability of the catalytic particles. One such system was the interface-adsorption method, in which polymer particles coated with Pd nanoparticles strongly and irreversibly attach to the oil-water interface. Due to the irreversible adsorption of the catalytic particles to the interface, particle loss was completely prevented while mixing the aqueous solution and while collecting the products. The other system was based on the magnetic field-associated particle recovery method. The use of polymeric microparticles containing Pd nanoparticles and magnetite nanoparticles accelerated the sedimentation of the particles in the aqueous phase by applying a strong magnetic field, consequently suppressing drainage of the particles from the reactor along the product stream. Upon multiple runs of the catalytic reactions, it was found that conversion does not change significantly, demonstrating the excellent recyclability and performance efficiency in the catalytic processes.

  6. High efficiency particulate removal with sintered metal filters

    International Nuclear Information System (INIS)

    Kirstein, B.E.; Paplawsky, W.J.; Pence, D.T.; Hedahl, T.G.

    1981-01-01

    Because of their particle removal efficiencies and durability, sintered metal filters have been chosen for HEPA filter protection in the off-gas treatment system for the proposed Idaho National Engineering Laboratory Transuranic Waste Treatment Facility. Process evaluation of sintered metal filters indicated a lack of sufficient process design data to assume trouble-free operation. Subsequent pilot-scale testing was performed with fly ash as the test particulate. The test results showed that the sintered metal filters can have an efficiency greater than 0.9999999 for the specific test conditions used. Stable pressure drop characteristics were observed in pulsed and reversed flow blowback modes of operation. Over 4900 hours of operation were obtained with operating conditions ranging up to approximately 90 0 C and 24 volume percent water vapor in the gas stream

  7. Double Compression Expansion Engine: A Parametric Study on a High-Efficiency Engine Concept

    KAUST Repository

    Bhavani Shankar, Vijai Shankar; Johansson, Bengt; Andersson, Arne

    2018-01-01

    The Double compression expansion engine (DCEE) concept has exhibited a potential for achieving high brake thermal efficiencies (BTE). The effect of different engine components on system efficiency was evaluated in this work using GT Power

  8. Highly efficient perovskite solar cells with crosslinked PCBM interlayers

    KAUST Repository

    Qiu, W.

    2017-01-09

    Commercially available phenyl-C-butyric acid methyl ester (PCBM) is crosslinked with 1,6-diazidohexane (DAZH), resulting in films resistant to common solvents used in perovskite solar cell processing. By using crosslinked PCBM as an interlayer and (HC(NH))(CHNH)PbIBr as the active layer, we achieve small area devices and modules with a maximum steady-state power conversion efficiency of 18.1% and 14.9%, respectively.

  9. Initial Test Bed for Very High Efficiency Solar Cells

    Science.gov (United States)

    2008-05-01

    efficiency, both at the solar cell and module levels. The optical system consists of a tiled nonimaging concentrating system, coupled with a spectral...To achieve the benefits of the new photovoltaic system architecture, a new optical element is designed that combines a nonimaging optical...of the power from each solar cell. Optics Design The most advanced optical design is based on non- symmetric, nonimaging optics, tiled into an

  10. High-efficiency free-electron laser results

    International Nuclear Information System (INIS)

    Boyer, K.; Baru, C.A.; Newnam, B.E.; Stein, W.E.; Warren, R.W.; Winston, J.G.; Young, L.M.

    1983-01-01

    Results obtained with a tapered-wiggler free-electron laser demonstrate the concepts proposed by Morton for enhanced efficiency and show deceleration of electrons by as much as 7%, and extraction of more than 3% of the total electron-beam energy as laser energy when the laser is operated as an amplifier. The experiment is presently being reconfigured to examine its performance as a laser oscillator

  11. Comparison and Design of High Efficiency Microinverters for Photovoltaic Applications

    OpenAIRE

    Dominic, Jason

    2014-01-01

    With the decrease in availability of non-renewable energy sources coupled with the increase in the amount of energy required for the operation of personal electronic devices there has been an increased focus on developing systems that take advantage of renewable energy sources. Renewal energy sources such as photovoltaic (PV) panels have become more popular due to recent developments in PV panel manufacturing that decreases material costs and improves energy harvesting efficiency. Since PV so...

  12. Very high efficiency wood and dung mogogo in Eritrea

    Energy Technology Data Exchange (ETDEWEB)

    Ghebrehiwet, Debesai [Ministry of Energy and Mines, Asmara (Eritrea). Energy Research and Training Centre

    2002-04-01

    In Eritrea, the cooking of traditionally yeast-leavened flat bread (injera or taita) is responsible for over 50% of the household's energy consumption. However, no literature exists in international journals, which reviews or analyse the efficiency or energy intensity of injera production. Injera is the product of baking a fermented mixture of water and flour for about three days. The mogogo, a clay cooking plate, is the traditional stove for baking injera. Utton (intra diameter of around 60 cm) is a local name given to the three stoves for mogogo, tsahli and moklo, and are built adjacent to each other. The product of cooking is, respectively, injera, tsebhi (sauce) and kicha (hard bread). Adhanet is the name given to the improved mogogo. Recent research and developing efforts by the Energy and Training Center of the Department of Energy, has shown that an improved stove efficiency of 23% has been achieved, in contrast to the efficiency of the traditional stove of 6 to 8%.

  13. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Brett C.; Tschudi, William F.

    2009-09-08

    This document presents a road map for improving the energy efficiency of hospitals and other healthcare facilities. The report compiles input from a broad array of experts in healthcare facility design and operations. The initial section lists challenges and barriers to efficiency improvements in healthcare. Opportunities are organized around the following ten themes: understanding and benchmarking energy use; best practices and training; codes and standards; improved utilization of existing HVAC designs and technology; innovation in HVAC design and technology; electrical system design; lighting; medical equipment and process loads; economic and organizational issues; and the design of next generation sustainable hospitals. Achieving energy efficiency will require a broad set of activities including research, development, deployment, demonstration, training, etc., organized around 48 specific objectives. Specific activities are prioritized in consideration of potential impact, likelihood of near- or mid-term feasibility and anticipated cost-effectiveness. This document is intended to be broad in consideration though not exhaustive. Opportunities and needs are identified and described with the goal of focusing efforts and resources.

  14. Self-assembled magnetic filter for highly efficient immunomagnetic separation.

    Science.gov (United States)

    Issadore, David; Shao, Huilin; Chung, Jaehoon; Newton, Andita; Pittet, Mikael; Weissleder, Ralph; Lee, Hakho

    2011-01-07

    We have developed a compact and inexpensive microfluidic chip, the self-assembled magnetic filter, to efficiently remove magnetically tagged cells from suspension. The self-assembled magnetic filter consists of a microfluidic channel built directly above a self-assembled NdFeB magnet. Micrometre-sized grains of NdFeB assemble to form alternating magnetic dipoles, creating a magnetic field with a very strong magnitude B (from the material) and field gradient ▽B (from the configuration) in the microfluidic channel. The magnetic force imparted on magnetic beads is measured to be comparable to state-of-the-art microfabricated magnets, allowing for efficient separations to be performed in a compact, simple device. The efficiency of the magnetic filter is characterized by sorting non-magnetic (polystyrene) beads from magnetic beads (iron oxide). The filter enriches the population of non-magnetic beads to magnetic beads by a factor of >10(5) with a recovery rate of 90% at 1 mL h(-1). The utility of the magnetic filter is demonstrated with a microfluidic device that sorts tumor cells from leukocytes using negative immunomagnetic selection, and concentrates the tumor cells on an integrated membrane filter for optical detection.

  15. High-efficiency design optimization of a centrifugal pump

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Man Woong; Ma, Sang Bum; Shim, Hyeon Seok; Kim, Kwang Yong [Dept. of Mechanical Engineering, Inha University, Incheon (Korea, Republic of)

    2016-09-15

    Design optimization of a backward-curved blades centrifugal pump with specific speed of 150 has been performed to improve hydraulic performance of the pump using surrogate modeling and three-dimensional steady Reynolds-averaged Navier-Stokes analysis. The shear stress transport model was used for the analysis of turbulence. Four geometric variables defining the blade hub inlet angle, hub contours, blade outlet angle, and blade angle profile of impeller were selected as design variables, and total efficiency of the pump at design flow rate was set as the objective function for the optimization. Thirty-six design points were chosen using the Latin hypercube sampling, and three different surrogate models were constructed using the objective function values calculated at these design points. The optimal point was searched from the constructed surrogate model by using sequential quadratic programming. The optimum designs of the centrifugal pump predicted by the surrogate models show considerable increases in efficiency compared to a reference design. Performance of the best optimum design was validated compared to experimental data for total efficiency and head.

  16. Efficient Wide Range Converters (EWiRaC): A new family of high efficient AC-DC Converters

    DEFF Research Database (Denmark)

    Petersen, Lars; Andersen, Michael Andreas E.

    2006-01-01

    The performance in terms of efficiency of the existing power supplies used for PFC is very dependent on the input voltage range. The boost converter is the most commonly used PFC converter because of its simplicity and high efficiency. But, the boost converter as well as other known converters...... suffers a major penalty in efficiency when used at the low end of the voltage range (90VAC) in a universal voltage range application (90-270VAC). This paper addresses this problem by suggesting a new family of converters that effectively reduces the apparent voltage range with a factor of 2 by changing...... the converter topology according to the input voltage. This new converter type has been named: efficient wide range converter (EWiRaC). The performance of the EWiRaC is experimental verified in a universal input range (90-270VAC) application with an output voltage of 185VDC capable of 500W output power. The EWi...

  17. Carbon isotope discrimination as a selection tool for high water use efficiency and high crop yields

    International Nuclear Information System (INIS)

    Kumarasinghe, K.S.; Kirda, C.; Bowen, G.D.; Zapata, F.; Awonaike, K.O.; Holmgren, E.; Arslan, A.; De Bisbal, E.C.; Mohamed, A.R.A.G.; Montenegro, A.

    1996-01-01

    Results of back-up research conducted at the FAO/IAEA Agriculture and Biotechnology Laboratory in support of the FAO/IAEA Co-ordinated Research Programme on the Use of Isotope Studies on Increasing and Stabilizing Plant Productivity in Low Phosphate and Semi-arid and Sub-humid Soils of the Tropics and Sub-tropics, are presented here. Neutron probe measurements confirmed the earlier reports of a strong correlation of Δ with grain yield and water use efficiency of wheat. High soil gypsum content and soil salinity, a wide spread problem in soils of arid and semi-arid climatic zones, do not interfere with the association of Δ with crop yields, provided plants are grown in similar soil water status and soil fertility level. Results of a glasshouse experiment using selected cowpea genotypes showed that Δ values measured at flowering stage positively correlated with total dry matter production and percent N 2 derived from atmosphere (%Ndfa), contributing to an earlier report from the laboratory that it may be possible to use Δ values for screening of leguminous crops for high N 2 fixation potential. 13 C isotope discrimination in the leaves of Gliricidia sepium was measured to examine if the technique could be extended to studies with trees. Results of a glasshouse experiment with 18 provenances of Gliricidia sepium showed highly significant correlations of Δ with total dry matter production, water use efficiency and total N accumulated through biological nitrogen fixation. Although the correlation of Δ with water use efficiency and dry matter yield are relatively clear and better understood, the correlation with nitrogen fixation still needs a closer examination under different environmental conditions and with different species. While 13 C isotope discrimination may be a valuable tool for identifying annual crops with high water use efficiency and high yield potential, it may be more attractive for tree species considering the long growth periods taken for trees

  18. High-efficiency targets for high-gain inertial confinement fusion

    International Nuclear Information System (INIS)

    Gardner, J.H.; Bodner, S.E.

    1986-01-01

    Rocket efficiencies as high as 15% are possible using short wavelength lasers and moderately high aspect ratio pellet designs. These designs are made possible by two recent breakthroughs in physics constraints. First is the development of the induced spatial incoherence (ISI) technique, which allows uniform illumination of the pellet and relaxes the constraint of thermal smoothing, permitting the use of short wavelength laser light. Second is the discovery that the Rayleigh--Taylor growth rate is considerably reduced at short laser wavelengths. By taking advantage of the reduced constraints imposed by nonuniform laser illumination and Rayleigh--Taylor instability, pellets using (1)/(4) μm laser light and initial aspect ratios of about 10 (with in flight aspect ratios of about 150--200) may produce energy gains as high as 200--250

  19. NEW LENSLET BASED IFS WITH HIGH DETECTOR PIXEL EFFICIENCY

    Science.gov (United States)

    Gong, Qian

    2018-01-01

    Three IFS types currently used for optical design are: lenslet array, imager slicer, and lenslet array and fiber combined. Lenslet array based Integral Field Spectroscopy (IFS) is very popular for many astrophysics applications due to its compactness, simplicity, as well as cost and mass savings. The disadvantage of lenslet based IFS is its low detector pixel efficiency. Enough spacing is needed between adjacent spectral traces in cross dispersion direction to avoid wavelength cross-talk, because the same wavelength is not aligned to the same column on detector. Such as on a recent exoplanet coronagraph instrument study to support the coming astrophysics decadal survey (LUVOIR), to cover a 45 λ/D Field of View (FOV) with a spectral resolving power of 200 at shortest wavelength, a 4k x 4k detector array is needed. This large format EMCCD pushes the detector into technology development area with a low TRL. Besides the future mission, it will help WFIRST coronagraph IFS by packing all spectra into a smaller area on detector, which will reduce the chance for electrons to be trapped in pixels, and slow the detector degradation during the mission.The innovation we propose here is to increase the detector packing efficiency by grouping a number of lenslets together to form many mini slits. In other words, a number of spots (Point Spread Function at lenslet focus) are aligned into a line to resemble a mini slit. Therefore, wavelength cross-talk is no longer a concern anymore. This combines the advantage of lenslet array and imager slicer together. The isolation rows between spectral traces in cross dispersion direction can be reduced or removed. So the packing efficiency is greatly increased. Furthermore, the today’s microlithography and etching technique is capable of making such a lenslet array, which will relax the detector demand significantly. It will finally contribute to the habitable exoplanets study to analyzing their spectra from direct images. Detailed theory

  20. The Molten Salt Fast Reactor as Highly Efficient Transmutation System

    International Nuclear Information System (INIS)

    Merk, B.; Rohde, U.; Scholl, S.

    2013-01-01

    Conclusion and future steps: • MSFR offers very attractive features for efficient transmutation; • significant advantages due to liquid fuel and online refuelling and reprocessing; • significant developments are required on the way to application; • system is very promising for transmutation; • development of a safety approach for liquid fuel reactors (RSWG); • investigation of possibilities to solve the “last transmuter” problem (ICAPP2013) – as future for countries envisaging nuclear phase out or no transition to fast reactor fleet for energy production; • establishing of a strong group “MSFR for transmutation”; • development of a transmutation optimized design

  1. Designing High Efficient Solar Powered OLED Lighting Systems

    DEFF Research Database (Denmark)

    Ploug, Rasmus Overgaard; Poulsen, Peter Behrensdorff; Thorsteinsson, Sune

    2016-01-01

    for the 10 Wp version. Furthermore, we present measurements of state-of-the-art commercial available OLED with regards to the luminous flux, luminous efficacy, luminance homogeneity, temperature dependency and IV characteristic of the OLED panels. In addition, solar powered OLED product concepts are proposed.......OLEDs used in solar powered lighting applications is a market of the future. This paper reports the development of electronic Three-Port-Converters for PV OLED product integration in the low-power area respectively for 1-10 Wp and 10-50 Wp with a peak efficiency of 97% at 1.8 W of PV power...

  2. High efficiency motors - performance, economy and reliability, by optimisation

    Energy Technology Data Exchange (ETDEWEB)

    Caselotti, P.; Conchetto, A.; Tavner, P.J.

    2000-07-01

    The challenge of the efficiency initiatives in North America and the European Union is to improve performance without reducing power-weight by adding materials and increasing cost. This has been the subject of other papers, Haataja et al Ref2, where the key area has been identified as reducing loss. This paper suggests that addressing the fundamental problem of heat transfer in the TEFC machine, in addition to reducing loss will make it possible to improve performance and still provide competitive products. (orig.)

  3. Development of the ultra high efficiency thermal power generation facility

    Energy Technology Data Exchange (ETDEWEB)

    Sano, Toshihiro

    2010-09-15

    In order to prevent global warming, attention is focused on nuclear power generation and renewable energy such as wind and solar power generation. The electric power suppliers of Japan are aiming to increase the amount of nuclear and non-fossil fuel power generation over 50% of the total power generation by 2020. But this means that the remaining half will still be of thermal power generation using fossil fuel and will still play an important role. Under such circumstances, further efficiency improvement of the thermal power generation and its aggressive implementation is ongoing in Japan.

  4. Carbon isotope discrimination as a selection tool for high water use efficiency and high crop yields

    Energy Technology Data Exchange (ETDEWEB)

    Kumarasinghe, K S; Kirda, C; Bowen, G D [Joint FAO/IAEA Div. of Nuclear Techniques in Food and Agriculture, Vienna (Austria). Soil Fertility, Irrigation and Crop Production Section; Zapata, F; Awonaike, K O; Holmgren, E; Arslan, A; De Bisbal, E C; Mohamed, A R.A.G.; Montenegro, A [FAO/IAEA Agriculture and Biotechnology Lab., Seibersdorf (Austria). Soils Science Unit

    1996-07-01

    Results of back-up research conducted at the FAO/IAEA Agriculture and Biotechnology Laboratory in support of the FAO/IAEA Co-ordinated Research Programme on the Use of Isotope Studies on Increasing and Stabilizing Plant Productivity in Low Phosphate and Semi-arid and Sub-humid Soils of the Tropics and Sub-tropics, are presented here. Neutron probe measurements confirmed the earlier reports of a strong correlation of {Delta} with grain yield and water use efficiency of wheat. High soil gypsum content and soil salinity, a wide spread problem in soils of arid and semi-arid climatic zones, do not interfere with the association of {Delta} with crop yields, provided plants are grown in similar soil water status and soil fertility level. Results of a glasshouse experiment using selected cowpea genotypes showed that {Delta} values measured at flowering stage positively correlated with total dry matter production and percent N{sub 2} derived from atmosphere (%Ndfa), contributing to an earlier report from the laboratory that it may be possible to use {Delta} values for screening of leguminous crops for high N{sub 2} fixation potential. {sup 13}C isotope discrimination in the leaves of Gliricidia sepium was measured to examine if the technique could be extended to studies with trees. Results of a glasshouse experiment with 18 provenances of Gliricidia sepium showed highly significant correlations of {Delta} with total dry matter production, water use efficiency and total N accumulated through biological nitrogen fixation. Although the correlation of {Delta} with water use efficiency and dry matter yield are relatively clear and better understood, the correlation with nitrogen fixation still needs a closer examination under different environmental conditions and with different species. (Abstract Truncated)

  5. High efficiency and high-energy intra-cavity beam shaping laser

    International Nuclear Information System (INIS)

    Yang, Hailong; Meng, Junqing; Chen, Weibiao

    2015-01-01

    We present a technology of intra-cavity laser beam shaping with theory and experiment to obtain a flat-top-like beam with high-pulse energy. A radial birefringent element (RBE) was used in a crossed Porro prism polarization output coupling resonator to modulate the phase delay radially. The reflectively of a polarizer used as an output mirror was variable radially. A flat-top-like beam with 72.5 mJ, 11 ns at 20 Hz was achieved by a side-pumped Nd:YAG zigzag slab laser, and the optical-to-optical conversion efficiency was 17.3%. (paper)

  6. High efficiency and high-energy intra-cavity beam shaping laser

    Science.gov (United States)

    Yang, Hailong; Meng, Junqing; Chen, Weibiao

    2015-09-01

    We present a technology of intra-cavity laser beam shaping with theory and experiment to obtain a flat-top-like beam with high-pulse energy. A radial birefringent element (RBE) was used in a crossed Porro prism polarization output coupling resonator to modulate the phase delay radially. The reflectively of a polarizer used as an output mirror was variable radially. A flat-top-like beam with 72.5 mJ, 11 ns at 20 Hz was achieved by a side-pumped Nd:YAG zigzag slab laser, and the optical-to-optical conversion efficiency was 17.3%.

  7. Solion ion source for high-efficiency, high-throughput solar cell manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Koo, John, E-mail: john-koo@amat.com; Binns, Brant; Miller, Timothy; Krause, Stephen; Skinner, Wesley; Mullin, James [Applied Materials, Inc., Varian Semiconductor Equipment Business Unit, 35 Dory Road, Gloucester, Massachusetts 01930 (United States)

    2014-02-15

    In this paper, we introduce the Solion ion source for high-throughput solar cell doping. As the source power is increased to enable higher throughput, negative effects degrade the lifetime of the plasma chamber and the extraction electrodes. In order to improve efficiency, we have explored a wide range of electron energies and determined the conditions which best suit production. To extend the lifetime of the source we have developed an in situ cleaning method using only existing hardware. With these combinations, source life-times of >200 h for phosphorous and >100 h for boron ion beams have been achieved while maintaining 1100 cell-per-hour production.

  8. Highly efficient removal of pathogenic bacteria with magnetic graphene composite.

    Science.gov (United States)

    Zhan, Sihui; Zhu, Dandan; Ma, Shuanglong; Yu, Wenchao; Jia, Yanan; Li, Yi; Yu, Hongbing; Shen, Zhiqiang

    2015-02-25

    Magnetic Fe3O4/graphene composite (abbreviated as G-Fe3O4) was synthesized successfully by solvothermal method to effectively remove both bacteriophage and bacteria in water, which was tested by HRTEM, XRD, BET, XPS, FTIR, CV, magnetic property and zeta-potential measurements. Based on the result of HRTEM, the single-sheet structure of graphene oxide and the monodisperse Fe3O4 nanoparticles on the surface of graphene can be observed obviously. The G-Fe3O4 composite were attractive for removing a wide range of pathogens including not only bacteriophage ms2, but also various bacteria such as S. aureus, E. coli, Salmonella, E. Faecium, E. faecalis, and Shigella. The removal efficiency of E. coli for G-Fe3O4 composite can achieve 93.09%, whereas it is only 54.97% with pure Fe3O4 nanoparticles. Moreover, a detailed verification test of real water samples was conducted and the removal efficiency of bacteria in real water samples with G-Fe3O4 composite can also reach 94.8%.

  9. High efficiency fluorescent white OLEDs based on DOPPP

    Science.gov (United States)

    Zhang, Gang; Chen, Chen; Lang, Jihui; Zhao, Lina; Jiang, Wenlong

    2017-08-01

    The white organic light-emitting devices (WOLED) with the structures of ITO/m-MTDATA (10 nm)/NPB (30 nm)/Rubrene (0.2 nm)/DOPPP (x nm)/TAz (10 nm)/Alq3 (30 nm)/LiF (0.5 nm)/Al and ITO/NPB (30 nm)/DPAVBi:Rubrene (2 wt.%, 20 nm)/ DOPPP (x nm)/TAZ (10 nm)/Alq3 (30 nm)/LiF (0.5 nm)/Al (100 nm) have been fabricated by the vacuum thermal evaporation method. The results show that the chroma of the non-doped device is the best and the color coordinates are in the range of white light. The maximum luminance is 12,750 cd/m2 and the maximum current efficiency is 8.55 cd/A. The doped device A has the maximum luminance (16,570 cd/m2), when the thickness of blue layer DOPPP is 25 nm, and the doped device B achieves the highest efficiency (10.47 cd/A), when the thickness of DOPPP is 15 nm. All the performances of the doped devices are better than the non-doped one. The results demonstrate that the doped structures can realize the energy transfer and then improve the performance of the device effectively.

  10. Environmentally Printing Efficient Organic Tandem Solar Cells with High Fill Factors: A Guideline Towards 20% Power Conversion Efficiency

    DEFF Research Database (Denmark)

    Li, Ning; Baran, Derya; Spyropoulos, George D.

    2014-01-01

    presents a major challenge. The reported high PCE values from lab-scale spin-coated devices are, of course, representative, but not helpful for commercialization. Here, organic tandem solar cells with exceptionally high fill factors and PCE values of 7.66% (on glass) and 5.56% (on flexible substrate...... to enhance the power conversion efficiency (PCE). However, due to the undeveloped deposition techniques, the challenges in ink formulation as well as the lack of commercially available high performance active materials, roll-to-roll fabrication of highly efficient organic tandem solar cells currently......), which are the highest values for the solution-processed tandem solar cells fabricated by a mass-production compatible coating technique under ambient conditions, are demonstrated. To predict the highest possible performance of tandem solar cells, optical simulation based on experimentally feasible...

  11. Comprehensive Assessment of the Potential for Efficient District Heating and Cooling and for High-Efficient Cogeneration in Austria

    Directory of Open Access Journals (Sweden)

    Richard Büchele

    2016-12-01

    Full Text Available In accordance with the EU Energy Efficiency Directive all Member States have to develop a comprehensive assessment of the potential for high-efficient CHP and efficient district heating and cooling by the end of 2015. This paper describes the approach and methodology used to determine the district heating potentials for Austria. In a first step actual and future heating and cooling demand in the building sector is evaluated using the techno-economic bottom-up model Invert/EE-Lab. Relevant infrastructure probably existing in 2025 is investigated and included into the analysis. Technical potentials for efficient technologies are calculated. After a classification of relevant regions into main and secondary regions a country-level cost-benefit-analysis is performed. The results indicate that there is a reasonable additional potential for district heating by the year 2025 under our central scenario assumptions and within sensitivity scenarios. Only in scenarios with high CO2-price or low gas price, CHP is an economically efficient solution to supply district heat.

  12. A novel power source for high-precision, highly efficient micro w-EDM

    International Nuclear Information System (INIS)

    Chen, Shun-Tong; Chen, Chi-Hung

    2015-01-01

    The study presents the development of a novel power source for high-precision, highly efficient machining of micropart microstructures using micro wire electrical discharge machining (w-EDM). A novel power source based on a pluri resistance–capacitance (pRC) circuit that can generate a high-frequency, high-peak current with a short pulse train is proposed and designed to enhance the performance of micro w-EDM processes. Switching between transistors is precisely controlled in the designed power source to create a high-frequency short-pulse train current. Various microslot cutting tests in both aluminum and copper alloys are conducted. Experimental results demonstrate that the pRC power source creates instant spark erosion resulting in markedly less material for removal, diminishing discharge crater size, and consequently an improved surface finish. A new evaluation approach for spark erosion ability (SEA) to assess the merits of micro EDM power sources is also proposed. In addition to increasing the speed of micro w-EDM by increasing wire feed rates by 1.6 times the original feed rate, the power source is more appropriate for machining micropart microstructures since there is less thermal breaking. Satisfactory cutting of an elaborate miniature hook-shaped structure and a high-aspect ratio microstructure with a squared-pillar array also reveal that the developed pRC power source is effective, and should be very useful in the manufacture of intricate microparts. (paper)

  13. Energy Efficient Beam Transfer Channels for High Energy Particle Accelerators

    CERN Document Server

    Gardlowski, Philipp; Ondreka, David

    2016-01-01

    conducting (NC) magnets or high current pulsed (HCP) magnets are an economic solution. For high repetition rates above 1.0 Hz, superconducting Cos(N) (SC) magnets or superferric (SF) magnets are more attractive; at least if they are operated in DC mode and if no dynamic losses occur in the cryogenic system. Unfortunately, a range between these values exist, in which no...

  14. Highly efficient catalytic reductive degradation of various organic ...

    Indian Academy of Sciences (India)

    aDepartment of Applied Sciences (Chemical Science Division), GUIST, Gauhati University, ... Highly improved catalytic reductive degradation of different organic dyes, in the ... was prepared by a facile co-precipitation method using ultra-high dilute aqueous solutions. ...... face chemical-modification for engineering the intrin-.

  15. Progress in ultrasonic spray pyrolysis for condensed matter sciences developed from ultrasonic nebulization theories since Michael Faraday

    CSIR Research Space (South Africa)

    Mwakikunga, BW

    2014-01-01

    Full Text Available This review outlines, in great detail, the history of the phenomenon of ultrasonic nebulization of liquids since the discovery of such an effect by Michael Faraday and the explanation of the phenomenon by capillary wave mechanism and “cavitation...

  16. Efficient High Power Ho,Tm:GdVO4 Laser

    International Nuclear Information System (INIS)

    Wang Yue-Zhu; Zhu Guo-Li; Ju You-Lun; Yao Bao-Quan

    2011-01-01

    We report a 22.3 W cw diode-pumped cryogenic Ho(0.5at.%),Tm(at.5%):GdVO 4 laser at a wavelength of 2.05 μm. It is pumped by two fiber-coupled laser diodes with a fiber core diameter of 0.4 mm, both of which provide 42 W pump power near 802 nm. A cw output power of 22.3 W was obtained at the pump power of 51.0 W, corresponding to an optical-to-optical conversion efficiency of 43.7% when the ratio of the pump beam to oscillating laser beam in the crystal was ∼1.33:1. The M 2 factor was found to be 2.0 under an output power of 16.5 W. (fundamental areas of phenomenology(including applications))

  17. A high-efficiency neutron coincidence counter for small samples

    International Nuclear Information System (INIS)

    Miller, M.C.; Menlove, H.O.; Russo, P.A.

    1991-01-01

    The inventory sample coincidence counter (INVS) has been modified to enhance its performance. The new design is suitable for use with a glove box sample-well (in-line application) as well as for use in the standard at-line mode. The counter has been redesigned to count more efficiently and be less sensitive to variations in sample position. These factors lead to a higher degree of precision and accuracy in a given counting period and allow for the practical use of the INVS counter with gamma-ray isotopics to obtain a plutonium assay independent of operator declarations and time-consuming chemicals analysis. A calculation study was performed using the Los Alamos transport code MCNP to optimize the design parameters. 5 refs., 7 figs., 8 tabs

  18. High efficiency polymer solar cells with vertically modulated nanoscale morphology

    International Nuclear Information System (INIS)

    Kumar, Ankit; Hong Ziruo; Yang Yang; Li Gang

    2009-01-01

    Nanoscale morphology has been shown to be a critical parameter governing charge transport properties of polymer bulk heterojunction (BHJ) solar cells. Recent results on vertical phase separation have intensified the research on 3D morphology control. In this paper, we intend to modify the distribution of donors and acceptors in a classical BHJ polymer solar cell by making the active layer richer in donors and acceptors near the anode and cathode respectively. Here, we chose [6,6]-phenyl- C 61 -butyric acid methyl ester (PCBM) to be the acceptor material to be thermally deposited on top of [poly(3-hexylthiophene)] P3HT: the PCBM active layer to achieve a vertical composition gradient in the BHJ structure. Here we report on a solar cell with enhanced power conversion efficiency of 4.5% which can be directly correlated with the decrease in series resistance of the device.

  19. High efficiency Lifter based on the Biefeld-Brown effect

    Directory of Open Access Journals (Sweden)

    Moshe Einat

    2014-07-01

    Full Text Available The Biefeld-Brown is a fascinating effect with which levitation can be reached without moving or rotating elements. Static voltage is applied between asymmetric electrodes and a force towards the small electrode is generated. This effect is studied experimentally in this paper. Using this effect a set of experiments is conducted trying to clarify the relation of the model geometry to the induced force. The results show clear relations of the generated force to the model structure and dimensions. As the asymmetry is stronger, the force is stronger. According to the experimental results, a set of preferred parameters is given to strength the effect. Choosing the geometrical properties properly led to improvement of factor ∼9 in the generated force and efficiency. Nevertheless, some results provides contradictions to earlier models of electrohydrodynamicmic (EHD describing the effect and reveal unresolved questions regarding this effect.

  20. Environmental friendly high efficient light source plasma lamp - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Courret, G.; Calame, L. [Haute Ecole d' ingenierie et de gestion du canton de Vaud, Institut de micro et nano techniques, Yverdon-les-Bains (Switzerland); Meyer, A. [Solaronix SA, Aubonne (Switzerland)

    2007-07-01

    This illustrated final report for the Swiss Federal Office of Energy (SFOE) takes a look at work done on the development of a sulphur-based plasma lamp. In 2007, the capability of a new modulator has been explored. The most important results are discussed. With the production of a 1.2 cm{sup 3} bulb, the way towards the production of a 100 W lamp has been opened. The authors comment that modulation by impulses increases the luminous efficiency in comparison to modulation using a continuous sinusoidal wave. The report deals with the history of the project, the development of the new modulator, the use of rotational effects and the optimisation of the amount of active substances - tellurium and selenium - in the bulb. The electromagnetic coupling system used is described and discussed.

  1. High efficiency pool filtering systems utilising variable frequency drives

    Energy Technology Data Exchange (ETDEWEB)

    Hameiri, Z.; Sproul, A.B. [School of Photovoltaic and Renewable Energy Engineering, UNSW, Sydney, NSW 2052 (Australia); Spooner, T. [School of Electrical Engineering and Telecommunications, UNSW, Sydney, NSW 2052 (Australia)

    2009-02-15

    Over 1 year, private swimming pools in Australia will typically consume 1680 GWh of electricity, producing 2130 kt of CO{sub 2}. Redesigning a pool's filtration system and using it more efficiently can reduce the energy use, and hence the CO{sub 2} production, by a significant amount. This paper describes experimental measurements carried out on a new design of pool pump system. Initial experiments using a variable frequency drive (VFD) with a standard, single phase pump/motor system have achieved energy savings of 40%. Utilising a VFD and a three phase pump/motor energy savings of 61% have been achieved, without degrading the system performance. (author)

  2. High-efficiency silicon solar cells for low-illumination applications

    OpenAIRE

    Glunz, S.W.; Dicker, J.; Esterle, M.; Hermle, M.; Isenberg, J.; Kamerewerd, F.; Knobloch, J.; Kray, D.; Leimenstoll, A.; Lutz, F.; Oßwald, D.; Preu, R.; Rein, S.; Schäffer, E.; Schetter, C.

    2002-01-01

    At Fraunhofer ISE the fabrication of high-efficiency solar cells was extended from a laboratory scale to a small pilot-line production. Primarily, the fabricated cells are used in small high-efficiency modules integrated in prototypes of solar-powered portable electronic devices such as cellular phones, handheld computers etc. Compared to other applications of high-efficiency cells such as solar cars and planes, the illumination densities found in these mainly indoor applications are signific...

  3. Highly efficient multifunctional metasurface for high-gain lens antenna application

    Science.gov (United States)

    Hou, Haisheng; Wang, Guangming; Li, Haipeng; Guo, Wenlong; Li, Tangjing

    2017-07-01

    In this paper, a novel multifunctional metasurface combining linear-to-circular polarization conversion and electromagnetic waves focusing has been proposed and applied to design a high-gain lens antenna working at Ku band. The multifunctional metasurface consists of 15 × 15 unit cells. Each unit cell is composed of four identical metallic layers and three intermediate dielectric layers. Due to well optimization, the multifunctional metasurface can convert the linearly polarized waves generated by the source to circularly polarized waves and focus the waves. By placing a patch antenna operating at 15 GHz at the focal point of the metasurface and setting the focal distance to diameter ratio ( F/ D) to 0.34, we obtain a multifunctional lens antenna. Simulated and measured results coincide well, indicating that the metasurface can convert linearly polarized waves to right-handed circularly polarized waves at 15 GHz with excellent performances in terms of the 3 dB axial ratio bandwidth of 5.3%, realized gain of 16.9 dB and aperture efficiency of 41.2%. Because of the advantages of high gain, competitive efficiency and easy fabrication, the proposed lens antenna has a great potential application in wireless and satellite communication.

  4. High Efficiency Quantum Well Waveguide Solar Cells, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The long-term objective of this program is to develop flexible, lightweight, single-junction solar cells using quantum structured designs that can achieve ultra-high...

  5. Highly Efficient Formylation of Alcohols, Thiols and Aniline ...

    African Journals Online (AJOL)

    NJD

    2008-11-05

    formyl compounds in quantitative yields. In a similar manner, various substituted aromatic and aliphatic hydroxyl groups were smoothly formylated under mild reaction conditions and gave the desired O-formylated alcohols in high.

  6. The development and chemistry of high efficiency combined cycle plants

    International Nuclear Information System (INIS)

    Svoboda, Robert

    1999-01-01

    This paper presents a boiler concept based on the combination of a low-pressure drum-type boiler with high-pressure once-through boiler and the appropriate water/steam cycle. An all volatile treatment is used in the low-pressure boiler and oxygenated treatment for the once-through high pressure system. Impurity control is achieved by adapted system design and materials, high quality make-up, an appropriate cleanliness concept and clean-up procedures for a cold start. Cycle refreshing is realized by blowdown from the high-pressure water-separator. This concept utilizes simper and less equipment than traditional solutions, resulting in increased power plant reliability and less requirement on maintenance and on capital cost [it

  7. Preventive nebulization of mucolytic agents and bronchodilating drugs in invasively ventilated intensive care unit patients (NEBULAE): study protocol for a randomized controlled trial.

    Science.gov (United States)

    van der Hoeven, Sophia M; Binnekade, Jan M; de Borgie, Corianne A J M; Bosch, Frank H; Endeman, Henrik; Horn, Janneke; Juffermans, Nicole P; van der Meer, Nardo J M; Merkus, Maruschka P; Moeniralam, Hazra S; van Silfhout, Bart; Slabbekoorn, Mathilde; Stilma, Willemke; Wijnhoven, Jan Willem; Schultz, Marcus J; Paulus, Frederique

    2015-09-02

    Preventive nebulization of mucolytic agents and bronchodilating drugs is a strategy aimed at the prevention of sputum plugging, and therefore atelectasis and pneumonia, in intubated and ventilated intensive care unit (ICU) patients. The present trial aims to compare a strategy using the preventive nebulization of acetylcysteine and salbutamol with nebulization on indication in intubated and ventilated ICU patients. The preventive nebulization of mucolytic agents and bronchodilating drugs in invasively ventilated intensive care unit patients (NEBULAE) trial is a national multicenter open-label, two-armed, randomized controlled non-inferiority trial in the Netherlands. Nine hundred and fifty intubated and ventilated ICU patients with an anticipated duration of invasive ventilation of more than 24 hours will be randomly assigned to receive either a strategy consisting of preventive nebulization of acetylcysteine and salbutamol or a strategy consisting of nebulization of acetylcysteine and/or salbutamol on indication. The primary endpoint is the number of ventilator-free days and surviving on day 28. Secondary endpoints include ICU and hospital length of stay, ICU and hospital mortality, the occurrence of predefined pulmonary complications (acute respiratory distress syndrome, pneumonia, large atelectasis and pneumothorax), and the occurrence of predefined side effects of the intervention. Related healthcare costs will be estimated in a cost-benefit and budget-impact analysis. The NEBULAE trial is the first randomized controlled trial powered to investigate whether preventive nebulization of acetylcysteine and salbutamol shortens the duration of ventilation in critically ill patients. NCT02159196, registered on 6 June 2014.

  8. Highly efficient photochemical HCOOH production from CO2 and water using an inorganic system

    Directory of Open Access Journals (Sweden)

    Satoshi Yotsuhashi

    2012-12-01

    Full Text Available We have constructed a system that uses solar energy to react CO2 with water to generate formic acid (HCOOH at an energy conversion efficiency of 0.15%. It consists of an AlGaN/GaN anode photoelectrode and indium (In cathode that are electrically connected outside of the reactor cell. High energy conversion efficiency is realized due to a high quantum efficiency of 28% at 300 nm, attributable to efficient electron-hole separation in the semiconductor's heterostructure. The efficiency is close to that of natural photosynthesis in plants, and what is more, the reaction product (HCOOH can be used as a renewable energy source.

  9. Promoting adherence to nebulized therapy in cystic fibrosis: poster development and a qualitative exploration of adherence

    Directory of Open Access Journals (Sweden)

    Jones S

    2015-08-01

    Full Text Available Stephen Jones,1 Nathan Babiker,2 Emma Gardner,2,3 Jane Royle,2 Rachael Curley,3,4 Zhe Hui Hoo,3,4 Martin J Wildman3,4 1Psychology Department, University of Sheffield, 2Psychological Services, Sheffield Teaching Hospitals NHS Foundation Trust, 3Adult Cystic Fibrosis Unit, Northern General Hospital, 4School of Health and Related Research (ScHARR, University of Sheffield, Sheffield, UK Background: Cystic fibrosis (CF health care professionals recognize the need to motivate people with CF to adhere to nebulizer treatments, yet little is known about how best to achieve this. We aimed to produce motivational posters to support nebulizer adherence by using social marketing involving people with CF in the development of those posters. Methods: The Sheffield CF multidisciplinary team produced preliminary ideas that were elaborated upon with semi-structured interviews among people with CF to explore barriers and facilitators to the use of nebulized therapy. Initial themes and poster designs were refined using an online focus group to finalize the poster designs. Results: People with CF preferred aspirational posters describing what could be achieved through adherence in contrast to posters that highlighted the adverse consequences of nonadherence. A total of 14 posters were produced through this process. Conclusion: People with CF can be engaged to develop promotional material to support adherence, providing a unique perspective differing from that of the CF multidisciplinary team. Further research is needed to evaluate the effectiveness of these posters to support nebulizer adherence. Keywords: behavior change, social marketing, patient participation, nebulizers, medication adherence

  10. High-Efficiency BODIPY-Based Organic Photovoltaics

    KAUST Repository

    Chen, John J.; Conron, Sarah M.; Erwin, Patrick; Dimitriou, Michael; McAlahney, Kyle; Thompson, Mark E.

    2015-01-01

    © 2014 American Chemical Society. A benzannulated boron dipyrromethene (BODIPY, bDIP) molecule exhibiting strong absorption at 640 nm was synthesized. The organic dye was used in an organic solar cell as the electron donor with C60 as the acceptor. The BODIPY dye demonstrated the best performance in lamellar architecture (indium tin oxide (ITO)/bDIP/C60/bathocuproine/Al), giving power conversion efficiency up to 4.5% with short-circuit current (JSC) of 8.7 mA/cm2 and an open-circuit voltage (VOC) of 0.81 V. Neutron reflectivity experiments were performed on the bilayer film to investigate the thickness dependence of JSC. A 13 nm mixed layer was found to be present at the donor/acceptor interface in the bilayer device, formed when the C60 was deposited onto a room temperature bDIP film. Planar-mixed heterojunction devices were fabricated to understand the extent of spontaneous mixing between the donor and acceptor materials. The native mixed region in the bilayer device was shown to most resemble 1:3 bDIP:C60 layer in the structure: (ITO/bDIP/bDIP:C60 blend/C60/bathocuproine/Al).

  11. Molecular and Nanoscale Engineering of High Efficiency Excitonic Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Jenekhe, Samson A. [Univ. of Washington, Seattle, WA (United States); Ginger, David S. [Univ. of Washington, Seattle, WA (United States); Cao, Guozhong [Univ. of Washington, Seattle, WA (United States)

    2016-01-15

    We combined the synthesis of new polymers and organic-inorganic hybrid materials with new experimental characterization tools to investigate bulk heterojunction (BHJ) polymer solar cells and hybrid organic-inorganic solar cells during the 2007-2010 period (phase I) of this project. We showed that the bulk morphology of polymer/fullerene blend solar cells could be controlled by using either self-assembled polymer semiconductor nanowires or diblock poly(3-alkylthiophenes) as the light-absorbing and hole transport component. We developed new characterization tools in-house, including photoinduced absorption (PIA) spectroscopy, time-resolved electrostatic force microscopy (TR-EFM) and conductive and photoconductive atomic force microscopy (c-AFM and pc-AFM), and used them to investigate charge transfer and recombination dynamics in polymer/fullerene BHJ solar cells, hybrid polymer-nanocrystal (PbSe) devices, and dye-sensitized solar cells (DSSCs); we thus showed in detail how the bulk photovoltaic properties are connected to the nanoscale structure of the BHJ polymer solar cells. We created various oxide semiconductor (ZnO, TiO2) nanostructures by solution processing routes, including hierarchical aggregates and nanorods/nanotubes, and showed that the nanostructured photoanodes resulted in substantially enhanced light-harvesting and charge transport, leading to enhanced power conversion efficiency of dye-sensitized solar cells.

  12. Enhanced high energy efficient steam drying of algae

    International Nuclear Information System (INIS)

    Aziz, Muhammad; Oda, Takuya; Kashiwagi, Takao

    2013-01-01

    Highlights: • Brown algae drying processes based on heat circulation technology (HC) were proposed. • HC was developed on exergy recovery through exergy elevation and heat pairing. • The energy efficiency of the proposed drying processes was evaluated. • Significant reduction of energy input and CO 2 emission in drying is readily achieved. - Abstract: State-of-the-art brown algae drying processes based on heat circulation technology were proposed, and their performance with respect to energy consumption was evaluated. Heat circulation technology was developed using the principle of exergy recovery performed through exergy elevation and effective heat pairing for both sensible and latent heat. Two steam drying processes based on heat circulation technology for algae drying were proposed, involving heat circulation with or without steam recirculation. The proposed processes were compared with the conventional heat recovery system employing heat cascade technology. Brown algae Laminaria japonica was selected as the test sample. From the results, it is very clear that both proposed drying processes can reduce the required drying energy significantly by up to 90% of that required in conventional heat recovery drying. Furthermore, the temperature–enthalpy diagram for each process shows that in heat circulation technology based drying, the curves of both hot and cold streams are almost parallel, resulting in the minimization of exergy losses

  13. Highly efficient vitrification method for cryopreservation of human oocytes.

    Science.gov (United States)

    Kuwayama, Masashige; Vajta, Gábor; Kato, Osamu; Leibo, Stanley P

    2005-09-01

    Two experiments were performed to develop a method to cryopreserve MII human oocytes. In the first experiment, three vitrification methods were compared using bovine MII oocytes with regard to their developmental competence after cryopreservation: (i) vitrification within 0.25-ml plastic straws followed by in-straw dilution after warming (ISD method); (ii) vitrification in open-pulled straws (OPS method); and (iii) vitrification in plastic handle (Cryotop method). In the second experiment, the Cryotop method, which had yielded the best results, was used to vitrify human oocytes. Out of 64 vitrified oocytes, 58 (91%) exhibited normal morphology after warming. After intracytoplasmic sperm injection, 52 became fertilized, and 32 (50%) developed to the blastocyst stage in vitro. Analysis by fluorescence in-situ hybridization of five blastocysts showed that all were normal diploid embryos. Twenty-nine embryo transfers with a mean number of 2.2 embryos per transfer on days 2 and 5 resulted in 12 initial pregnancies, seven healthy babies and three ongoing pregnancies. The results suggest that vitrification using the Cryotop is the most efficient method for human oocyte cryopreservation.

  14. High-Efficiency BODIPY-Based Organic Photovoltaics

    KAUST Repository

    Chen, John J.

    2015-01-14

    © 2014 American Chemical Society. A benzannulated boron dipyrromethene (BODIPY, bDIP) molecule exhibiting strong absorption at 640 nm was synthesized. The organic dye was used in an organic solar cell as the electron donor with C60 as the acceptor. The BODIPY dye demonstrated the best performance in lamellar architecture (indium tin oxide (ITO)/bDIP/C60/bathocuproine/Al), giving power conversion efficiency up to 4.5% with short-circuit current (JSC) of 8.7 mA/cm2 and an open-circuit voltage (VOC) of 0.81 V. Neutron reflectivity experiments were performed on the bilayer film to investigate the thickness dependence of JSC. A 13 nm mixed layer was found to be present at the donor/acceptor interface in the bilayer device, formed when the C60 was deposited onto a room temperature bDIP film. Planar-mixed heterojunction devices were fabricated to understand the extent of spontaneous mixing between the donor and acceptor materials. The native mixed region in the bilayer device was shown to most resemble 1:3 bDIP:C60 layer in the structure: (ITO/bDIP/bDIP:C60 blend/C60/bathocuproine/Al).

  15. Thermoelectric materials - Compromising between high efficiency and materials abundance

    Energy Technology Data Exchange (ETDEWEB)

    Homm, G.; Klar, P.J. [I. Physikalisches Institut, Justus-Liebig-Universitaet, Heinrich-Buff-Ring 16, 35392 Giessen (Germany)

    2011-09-15

    In the context of CO{sub 2} neutral and regenerative energy production, the field of thermoelectrics has shifted more and more into the focus of scientific research in the last few years. Particularly a lot of research projects were started in the field of energy autarkic sensor technology and the so called energy harvesting, i.e. the recycling of otherwise lost energy. A potentially huge industrial branch for thermoelectric applications is the automotive industry with a main emphasis on generating electricity out of the waste heat of combustion engines with the help of thermoelectric generators or using Peltier cooling to replace conventional air conditioning in the passenger compartment. In addition, many niche applications are possible, e.g. as sensors for measuring the air pressure of tires etc. The applications of thermoelectric devices are very versatile. We analyse the potential of the state-of-the-art thermoelectric materials SiGe, PbTe, Bi{sub 2}Te{sub 3}, FeSi{sub 2} and potentially ZnO with respect to employment in four types of applications, classified by mobile vs stationary and specialized vs. mass application. The selection criteria comprise efficiency, materials availability, costs, environmental friendliness and toxicity. Based on these criteria, a decision matrix for choosing the appropriate material system for a specific application is defined. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. High Efficiency PFC Frontend for Class-D Amplifiers

    DEFF Research Database (Denmark)

    Li, Qingnan; Frium, Mads P.

    2012-01-01

    This thesis investigates the design of high eciency Power Factor Correction (PFC) converter for Class-D amplier at universal line and 3.5kW power range. The work starts with an overview on dierent high eciency Bridgeless PFC topologies and investigates their applicability with respect to the given...... speci- cations in Chapter 1. Based on the conclusions of Chapter 2, the single-phase Two-Boost-Circuit Bridgeless PFC converter topology is considered the most promising to start with regarding the achievable converter eciency and the EMI performances.The subsequent Chapters discuss the method...

  17. Power efficient and high performance VLSI architecture for AES algorithm

    Directory of Open Access Journals (Sweden)

    K. Kalaiselvi

    2015-09-01

    Full Text Available Advanced encryption standard (AES algorithm has been widely deployed in cryptographic applications. This work proposes a low power and high throughput implementation of AES algorithm using key expansion approach. We minimize the power consumption and critical path delay using the proposed high performance architecture. It supports both encryption and decryption using 256-bit keys with a throughput of 0.06 Gbps. The VHDL language is utilized for simulating the design and an FPGA chip has been used for the hardware implementations. Experimental results reveal that the proposed AES architectures offer superior performance than the existing VLSI architectures in terms of power, throughput and critical path delay.

  18. Influence of precursor concentration on physical properties of CdO thin films prepared by spray pyrolysis technique using nebulizer

    Energy Technology Data Exchange (ETDEWEB)

    Anitha, M.; Amalraj, L.; Anitha, N. [Virudhunagar Hindu Nadar' s Senthikumara Nadar College (Autonomous), Department of Physics, Virudhunagar, Tamilnadu (India)

    2017-12-15

    Cadmium oxide (CdO) thin films were prepared with different concentrations of precursor solution (0.05, 0.1, 0.15, 0.2 and 0.25 M, respectively) at the optimized temperature (200 C) using the nebulized spray pyrolysis technique to obtain better crystallinity in polycrystalline thin films on amorphous glass substrates. The XRD characterization of those samples revealed a preferential orientation along the (111) plane having a cubic structure. The scanning electron microscopy (SEM) analysis displayed that all the as-deposited thin films have spherical shaped grains. The transmittance of the as-deposited CdO thin films had decreased from 88 to 71% for longer wavelength regions (600-900 nm) as the precursor concentration had increased and then increased for higher precursor concentration. The optical band gap was found to lie between 2.45 and 2.40 eV belonging to direct transition for those thin films. The presence of Cd-O bond (540 cm{sup -1}) was confirmed by FTIR spectrum. The emission properties of CdO thin films were studied by luminescence spectrum recorded at room temperature. A maximum carrier concentration and minimum resistivity values of 4.743 x 10{sup 19} cm{sup -3} and 1.06 x 10{sup -3} Ω-cm, respectively, were obtained for 0.2 M precursor concentration. These CdO thin films have high optical transmittance and high room temperature conductivity, which can be used as the TCO and Solar cell (window layer) material. (orig.)

  19. HASE: Framework for efficient high-dimensional association analyses

    NARCIS (Netherlands)

    G.V. Roshchupkin (Gennady); H.H.H. Adams (Hieab); M.W. Vernooij (Meike); A. Hofman (Albert); C.M. van Duijn (Cornelia); M.K. Ikram (Kamran); W.J. Niessen (Wiro)

    2016-01-01

    textabstractHigh-throughput technology can now provide rich information on a person's biological makeup and environmental surroundings. Important discoveries have been made by relating these data to various health outcomes in fields such as genomics, proteomics, and medical imaging. However,

  20. HASE : Framework for efficient high-dimensional association analyses

    NARCIS (Netherlands)

    Roshchupkin, G. V.; Adams, H; Vernooij, Meike W.; Hofman, A; Van Duijn, C. M.; Ikram, M. Arfan; Niessen, W.J.

    2016-01-01

    High-throughput technology can now provide rich information on a person's biological makeup and environmental surroundings. Important discoveries have been made by relating these data to various health outcomes in fields such as genomics, proteomics, and medical imaging. However,