WorldWideScience

Sample records for high drying rate

  1. Drying Rate of Carbonate of Nickel

    Directory of Open Access Journals (Sweden)

    Ing. Aymara Ricardo-Riverón

    2015-11-01

    Full Text Available In the present work, the drying rate of carbonate of nickel was studied experimentally at the laboratory scale. The values of critical moisture are shown and the graphics: characteristic curve of drying rate and the moisture dependence of the time. Models ware obtained to estimate the slope of the constant - rate period and to the falling - rate period until the equilibrium humidity, in dependence of external factors: drying temperature, initial moisture and the pH of the slurry. The chemical composition of the carbonate didn't exercise effect statistically significant over the drying rate.

  2. PADDY DRYING IN MIXED ADSORPTION DRYER WITH ZEOLITE: DRYING RATE AND TIME ESTIMATION

    Directory of Open Access Journals (Sweden)

    Mochammad Djaeni

    2013-11-01

    Full Text Available Recently, the main problem of the rice stock and distribution in Indonesia is the quality degradation as indicated in unpleasant odor (smelly, stained, yellowness, and high percentage of broken rice. This is due to the low of paddy quality dried by from either direct sunlight or conventional fluidized bed dryer. As a result, the paddy cracks and breaks easily during milling in which causes the storage life being shorter as the enzymatic degradation by germ or fungi occurs. Air dehumidified with zeolite at drying medium temperature is potential to improve the quality of paddy. Zeolite is a material having high affinity to water vapor. In this case, the paddy and zeolite was mixed and fluidized with the air. The air will evaporate water from paddy, and at same time, the zeolite will adsorb water from air. Hence, the humidity of dryer can be kept low in which improves the driving force for drying. This work discusses the effect of presence of zeolite in the dryer, operational drying temperature, air velocity and relative humidity on drying rate of paddy. The results showed that increasing of zeolite as well as operational temperature increased the drying rate. In addition, using the model, the air dehumidification with zeolite and increase of air velocity can speed up drying time significantly at operational temperature below 80oC. This condition is very suitable for paddy drying since the quality degradation can be avoided.

  3. Are High-Severity Fires Burning at Much Higher Rates Recently than Historically in Dry-Forest Landscapes of the Western USA?

    Science.gov (United States)

    Baker, William L

    2015-01-01

    Dry forests at low elevations in temperate-zone mountains are commonly hypothesized to be at risk of exceptional rates of severe fire from climatic change and land-use effects. Their setting is fire-prone, they have been altered by land-uses, and fire severity may be increasing. However, where fires were excluded, increased fire could also be hypothesized as restorative of historical fire. These competing hypotheses are not well tested, as reference data prior to widespread land-use expansion were insufficient. Moreover, fire-climate projections were lacking for these forests. Here, I used new reference data and records of high-severity fire from 1984-2012 across all dry forests (25.5 million ha) of the western USA to test these hypotheses. I also approximated projected effects of climatic change on high-severity fire in dry forests by applying existing projections. This analysis showed the rate of recent high-severity fire in dry forests is within the range of historical rates, or is too low, overall across dry forests and individually in 42 of 43 analysis regions. Significant upward trends were lacking overall from 1984-2012 for area burned and fraction burned at high severity. Upward trends in area burned at high severity were found in only 4 of 43 analysis regions. Projections for A.D. 2046-2065 showed high-severity fire would generally be still operating at, or have been restored to historical rates, although high projections suggest high-severity fire rotations that are too short could ensue in 6 of 43 regions. Programs to generally reduce fire severity in dry forests are not supported and have significant adverse ecological impacts, including reducing habitat for native species dependent on early-successional burned patches and decreasing landscape heterogeneity that confers resilience to climatic change. Some adverse ecological effects of high-severity fires are concerns. Managers and communities can improve our ability to live with high-severity fire in

  4. Application of high voltage electric field (HVEF) drying technology in potato chips

    International Nuclear Information System (INIS)

    Bai, Yaxiang; Shi, Hua; Yang, Yaxin

    2013-01-01

    In order to improve the drying efficiency and qualities of vegetable by high voltage electric field (HVEF), potato chips as a representative of vegetable was dried using a high voltage electric drying systems at 20°C. The shrinkage rate, water absorption and rehydration ratio of dried potato chips were measured. The results indicated that the drying rate of potato chips was significantly improved in the high voltage electric drying systems. The shrinkage rate of potato chips dried by high voltage electric field was 1.1% lower than that by oven drying method. And the rehydration rate of high voltage electric field was 24.6% higher than that by oven drying method. High voltage electric field drying is very advantageous and can be used as a substitute for traditional drying method.

  5. Studies on Microwave Heated Drying-rate Equations of Foods

    OpenAIRE

    呂, 聯通; 久保田, 清; 鈴木, 寛一; 岡崎, 尚; 山下, 洋右

    1990-01-01

    In order to design various microwave heated drying apparatuses, we must take drying-rate equations which are based on simple drying-rate models. In a previous paper (KUBOTA, et al., 1990), we have studied a convenient microwave heated drying instrument, and studied the simple drying-rate equations of potato and so on by using the simple empirical rate equations that have been reported in previous papers (KUBOTA, 1979-1, 1979-2). In this paper, we studied the microwave drying rate of the const...

  6. Assessment of Osmotic Pre-Drying Treatment on Drying Rates of Fresh Tomato Fruits

    Directory of Open Access Journals (Sweden)

    P. A. Idah

    2014-06-01

    Full Text Available The aim of this work is to investigate the influence of osmotic pre-drying treatments on drying rates of tomato (Lycopersiconesculentum at various drying temperatures. Fresh Roma tomato fruit samples were sliced to a thickness of 5 mm and the seeds were removed. Weight of 300 g was measured for each of the three replicates and immersed in a hypertonic solution of sucrose of different concentrations 40 and 60 oBrix each held for osmotic duration of 1 and 2 hours, drained for 10 min and then dried at 50, 60, and 70 oC in a mechanical dryer. Control samples were also weighed 300 g per replicate and dried at 50, 60, and 70 oC without pre-drying treatment. The initial moisture content of fresh tomato used was 94.5% (wb. Moisture loss of each sample was monitored and recorded hourly until the product has reached the desired final moisture content (≤ 7%.The data collected were subjected to statistical analysis of variance (ANOVA and Duncan New Multiple range tests (DNMRT to ascertain the level of significance differences between the individual treatments and their interaction at p ≤ 0.05.The results show that at all the drying temperatures used, the control tomato samples exhibited the fastest drying rate with an average of 35.2 g/hr, samples pre-treated at 40 oBrix has an average drying rate of 26.6 g/hr, while samples pre-treated at 60 oBrix has the slowest drying rate of 25.2 g/hr. It was also revealed that samples subjected to 1 hour osmotic time have faster drying rates than those treated for 2 hours osmotic time.

  7. a comparative study of the drying rate constant, drying efficiency

    African Journals Online (AJOL)

    The drying rate constants for the solar dryer and open- air sun dried bitter leaf were 0.8 and ... of cost benefit but the poorest when other considerations ... J. I. Eze, National Centre for Energy Research and Development (NCERD), University of ...

  8. High rate dry etching of InGaZnO by BCl3/O2 plasma

    Science.gov (United States)

    Park, Wanjae; Whang, Ki-Woong; Gwang Yoon, Young; Hwan Kim, Jeong; Rha, Sang-Ho; Seong Hwang, Cheol

    2011-08-01

    This paper reports the results of the high-rate dry etching of indium gallium zinc oxide (IGZO) at room temperature using BCl3/O2 plasma. We achieved an etch rate of 250 nm/min. We inferred from the x-ray photoelectron spectroscopy analysis that BOx or BOClx radicals generated from BCl3/O2 plasma cause the etching of the IGZO material. O2 initiates the etching of IGZO, and Ar removes nonvolatile byproducts from the surface during the etching process. Consequently, a smooth etched surface results when these gases are added to the etch gas.

  9. A sampling study on rock properties affecting drilling rate index (DRI)

    Science.gov (United States)

    Yenice, Hayati; Özdoğan, Mehmet V.; Özfırat, M. Kemal

    2018-05-01

    Drilling rate index (DRI) developed in Norway is a very useful index in determining the drillability of rocks and even in performance prediction of hard rock TBMs and it requires special laboratory test equipment. Drillability is one of the most important subjects in rock excavation. However, determining drillability index from physical and mechanical properties of rocks is very important for practicing engineers such as underground excavation, drilling operations in open pit mining, underground mining and natural stone production. That is why many researchers have studied concerned with drillability to find the correlations between drilling rate index (DRI) and penetration rate, influence of geological properties on drillability prediction in tunneling, correlations between rock properties and drillability. In this study, the relationships between drilling rate index (DRI) and some physico-mechanical properties (Density, Shore hardness, uniaxial compressive strength (UCS, σc), Indirect tensile strength (ITS, σt)) of three different rock groups including magmatic, sedimentary and metamorphic were evaluated using both simple and multiple regression analysis. This study reveals the effects of rock properties on DRI according to different types of rocks. In simple regression, quite high correlations were found between DRI and uniaxial compressive strength (UCS) and also between DRI and indirect tensile strength (ITS) values. Multiple regression analyses revealed even higher correlations when compared to simple regression. Especially, UCS, ITS, Shore hardness (SH) and the interactions between them were found to be very effective on DRI values.

  10. Drying Rate and Product Quality Evaluation of Roselle (Hibiscus sabdariffa L.) Calyces Extract Dried with Foaming Agent under Different Temperatures.

    Science.gov (United States)

    Djaeni, Mohamad; Kumoro, Andri Cahyo; Sasongko, Setia Budi; Utari, Febiani Dwi

    2018-01-01

    The utilisation of roselle ( Hibiscus sabdariffa L.) calyx as a source of anthocyanins has been explored through intensive investigations. Due to its perishable property, the transformation of roselle calyces into dried extract without reducing their quality is highly challenging. The aim of this work was to study the effect of air temperatures and relative humidity on the kinetics and product quality during drying of roselle extract foamed with ovalbumin and glycerol monostearate (GMS). The results showed that foam mat drying increased the drying rate significantly and retained the antioxidant activity and colour of roselle calyces extract. Shorter drying time was achieved when higher air temperature and/or lower relative humidity was used. Foam mat drying produced dried brilliant red roselle calyces extract with better antioxidant activity and colour qualities when compared with nonfoam mat drying. The results showed the potential for retaining the roselle calyces extract quality under suggested drying conditions.

  11. Drying Rate and Product Quality Evaluation of Roselle (Hibiscus sabdariffa L. Calyces Extract Dried with Foaming Agent under Different Temperatures

    Directory of Open Access Journals (Sweden)

    Mohamad Djaeni

    2018-01-01

    Full Text Available The utilisation of roselle (Hibiscus sabdariffa L. calyx as a source of anthocyanins has been explored through intensive investigations. Due to its perishable property, the transformation of roselle calyces into dried extract without reducing their quality is highly challenging. The aim of this work was to study the effect of air temperatures and relative humidity on the kinetics and product quality during drying of roselle extract foamed with ovalbumin and glycerol monostearate (GMS. The results showed that foam mat drying increased the drying rate significantly and retained the antioxidant activity and colour of roselle calyces extract. Shorter drying time was achieved when higher air temperature and/or lower relative humidity was used. Foam mat drying produced dried brilliant red roselle calyces extract with better antioxidant activity and colour qualities when compared with nonfoam mat drying. The results showed the potential for retaining the roselle calyces extract quality under suggested drying conditions.

  12. Degradation rate of vitamin B6 on red chili pepper drying by blanching-brine-calcium pretreatment

    Directory of Open Access Journals (Sweden)

    Uma Fadzilia Arifin

    2017-12-01

    Full Text Available Drying is one of the alternatives to prevent spoilage in red chili pepper by removing moisture content. Red chili pepper (Capsicum frutescens has complex nutrition components such as vitamins and bioactive compound. However, vitamin B6 content in chili can degrade significantly in drying process by heat. This research studied degradation rate of vitamin B6 in chili drying process under various pretreatments and temperatures. In this study, post-harvest chili before dried was pretreated by blanching, osmotic dehydration with brine, immersing in calcium chloride solution and the combination of all them. They were dried in tray dyer at various temperatures 40°C, 50°C, 60°C and 70°C. Degradation of vitamin B6 content was analyzed every 2 hours by High-Performance Liquid Chromatography for 8 hours. Results showed that blanching-brine-calcium pretreatment was expected to reduce drying time and retain high content of vitamin B6 in red chili pepper. The degradation rate of vitamin B6 in chili followed second-order reaction. The degradation rate was influenced by temperature change referring to Arrhenius equation with activation energy was about 31.97 kJ/ mol K and constant rate (k0 was 3.769. Therefore, the vitamin B6 retention can be estimated at various pretreatments, times and temperatures. Furthermore, the favorable drying conditions can be evaluated.

  13. Controls on surface soil drying rates observed by SMAP and simulated by the Noah land surface model

    Science.gov (United States)

    Shellito, Peter J.; Small, Eric E.; Livneh, Ben

    2018-03-01

    Drydown periods that follow precipitation events provide an opportunity to assess controls on soil evaporation on a continental scale. We use SMAP (Soil Moisture Active Passive) observations and Noah simulations from drydown periods to quantify the role of soil moisture, potential evaporation, vegetation cover, and soil texture on soil drying rates. Rates are determined using finite differences over intervals of 1 to 3 days. In the Noah model, the drying rates are a good approximation of direct soil evaporation rates, and our work suggests that SMAP-observed drying is also predominantly affected by direct soil evaporation. Data cover the domain of the North American Land Data Assimilation System Phase 2 and span the first 1.8 years of SMAP's operation. Drying of surface soil moisture observed by SMAP is faster than that simulated by Noah. SMAP drying is fastest when surface soil moisture levels are high, potential evaporation is high, and when vegetation cover is low. Soil texture plays a minor role in SMAP drying rates. Noah simulations show similar responses to soil moisture and potential evaporation, but vegetation has a minimal effect and soil texture has a much larger effect compared to SMAP. When drying rates are normalized by potential evaporation, SMAP observations and Noah simulations both show that increases in vegetation cover lead to decreases in evaporative efficiency from the surface soil. However, the magnitude of this effect simulated by Noah is much weaker than that determined from SMAP observations.

  14. An empirical model to predict infield thin layer drying rate of cut switchgrass

    International Nuclear Information System (INIS)

    Khanchi, A.; Jones, C.L.; Sharma, B.; Huhnke, R.L.; Weckler, P.; Maness, N.O.

    2013-01-01

    A series of 62 thin layer drying experiments were conducted to evaluate the effect of solar radiation, vapor pressure deficit and wind speed on drying rate of switchgrass. An environmental chamber was fabricated that can simulate field drying conditions. An empirical drying model based on maturity stage of switchgrass was also developed during the study. It was observed that solar radiation was the most significant factor in improving the drying rate of switchgrass at seed shattering and seed shattered maturity stage. Therefore, drying switchgrass in wide swath to intercept the maximum amount of radiation at these stages of maturity is recommended. Moreover, it was observed that under low radiation intensity conditions, wind speed helps to improve the drying rate of switchgrass. Field operations such as raking or turning of the windrows are recommended to improve air circulation within a swath on cloudy days. Additionally, it was found that the effect of individual weather parameters on the drying rate of switchgrass was dependent on maturity stage. Vapor pressure deficit was strongly correlated with the drying rate during seed development stage whereas, vapor pressure deficit was weakly correlated during seed shattering and seed shattered stage. These findings suggest the importance of using separate drying rate models for each maturity stage of switchgrass. The empirical models developed in this study can predict the drying time of switchgrass based on the forecasted weather conditions so that the appropriate decisions can be made. -- Highlights: • An environmental chamber was developed in the present study to simulate field drying conditions. • An empirical model was developed that can estimate drying rate of switchgrass based on forecasted weather conditions. • Separate equations were developed based on maturity stage of switchgrass. • Designed environmental chamber can be used to evaluate the effect of other parameters that affect drying of crops

  15. Measurements of dry-deposition rates on various earth surfaces by 212Pb

    International Nuclear Information System (INIS)

    Osaki, S.; Sugihara, S.; Maeda, Y.

    2004-01-01

    Dry deposition rates of 212 Pb on a coniferous forest (Japanese cedar) and a broad-leaf forest (Pasania edulis) have been measured. Those on various kinds of grass fields, various states on artificial surface such as water, paper, and standing paper have been also measured. The dry deposition rates depend on the characteristics of depositing particles and the conditions of deposited surfaces. Dry deposition rates on the forest of Japanese cedar are highest because of the complex and adhesive surface of the leaves. Those on various grass fields are roughly depend on the logarithm of the height of their grasses. The total deposition rates of 7 Be do not depend on the densities or heights of the grasses. 7 Be may be not kept on their leaves or surface soil for a long time. The dry deposition rates of on artificial surface, e.g. paper and water surfaces make clear the mechanism on dry deposition, and suggest that more chances of collision and more adhesive of the surface are important for the dry deposition. About 90% of all deposition on the artificial paper grass was attached on the standing paper. On water surface, 60% of the rate of paper grass was attached, but only about 20% were attached on a dry paper plate. The aerosol particles are deposited by collision with the surface, therefore the deposition velocity depends on the chance of collision and the characteristics of the surface. Therefore the dry deposition rates on forests are larger and those of coniferous forest are largest. (author)

  16. Effect of deposition temperature and thermal annealing on the dry etch rate of a-C: H films for the dry etch hard process of semiconductor devices

    International Nuclear Information System (INIS)

    Lee, Seung Moo; Won, Jaihyung; Yim, Soyoung; Park, Se Jun; Choi, Jongsik; Kim, Jeongtae; Lee, Hyeondeok; Byun, Dongjin

    2012-01-01

    thermal annealing of the high density, as-deposited a-C:H films. Furthermore, not only the density itself but also the variation of density with thermal annealing need to be elucidated in order to understand the dry etch properties of annealed a-C:H films. - Highlights: ► A-C:H(amorphous carbon) films are grown for using hard mask in dry etch process by plasma-enhanced chemical vapor deposition and annealed. ► Physical, chemical and mechanical properties of grown amorphous carbon films are changed by hydrogen and hydrocarbon contents, be determined by deposition and annealing temperature. ► Dry etch rate of a-C:H films is decreased and the film density increased through thermal annealing with high density, low hydrogen content, as-deposited film.

  17. Hibiscus sabdariffa L extract drying with different carrier agent: Drying rate evaluation and color analysis

    Science.gov (United States)

    Djaeni, M.; Utari, F. D.; Kumoro, A. C.

    2017-03-01

    The aim of this study was to investigate the effect of different carrier agents on roselle or Hibiscus sabdariffa L.extract drying. Carrier agent was used for reducing stickiness of material and avoiding agglomeration as well as improving stability. The method consisted of two steps involving roselle extraction and drying process. The liquid roselle extract was mixed with carrier agent (maltodextrin-arabic gum) in various composition. The mixture was then dried at different air temperature ranging 40 - 80°C. As a response, moisture content in the extract was observed by gravimetry every 10 minutes during90 minutes. The procedurewas repeated for the drying without carrieragent. The result showed that constant rate of drying with carrier agent was higher up to l.7 times than that of without carrier agent. Based on the color analysis,roselle extract drying with carrier agent also showed reasonable quality.

  18. Monitoring of corrosion rates of Fe-Cu alloys under wet/dry condition in weakly alkaline environments

    International Nuclear Information System (INIS)

    Kim, Je Kyoung; Nishikata, Atsushi; Tsuru, Tooru

    2002-01-01

    When the steel, containing scrap elements like copper, is used as reinforcing steel bars for concrete, the steel is exposed to alkaline environments. in this study, AC impedance technique has been applied to the monitoring of corrosion rates of iron and several Fe-Cu (0.4, 10wt%) alloys in a wet-dry cycle condition. The wet-dry cycle was conducted by exposure to alternate conditions of 1 hour-immersion in a simulated pH10 concrete solution (Ca(OH) 2 ) containing 0.01M NaCl and 3 hour-drying at 298K and 50%RH. The corrosion rate of the iron is greatly accelerated by the wet-dry cycles. Because the active FeOOH species, which are produced by the oxidation of Fe(II, III)oxide in air during drying, act as very strong oxidants to the corrosion in the wet condition. As the drying progresses, iron shows a large increase in the corrosion rate and a small shift of the corrosion potential to the positive values. This can be explained by acceleration of oxygen transport through the thin electrolyte layer In contrast to iron, the Fe-Cu alloys show low corrosion rates and the high corrosion potentials in whole cycles

  19. Drying and decontamination of pistachios with sequential infrared drying, tempering and hot air drying

    Science.gov (United States)

    The pistachio industry is in need of improved drying technology as the current hot air drying has low energy efficiency and drying rate and high labor cost and also does not produce safe products against microbial contamination. In the current study, dehulled and water- sorted pistachios with a mois...

  20. Effect Carrier Agent Formulation in Drying Rate and Antioxidant Activity of Roselle Extract

    Directory of Open Access Journals (Sweden)

    Utari Febiani Dwi

    2018-01-01

    Full Text Available Roselle (Hibiscus sabdarifa L contains anthocyanins as the natural colorant and antioxidant. Drying the roselle extract was aims to produce the dry product that easy consumption as antioxidant. The carrier agent was added in roselle extract to improve the drying rate and maintain the nutritional value. This research studied the effect of carrier agent in drying rate and antioxidant activity. The method consists of two step involving roselle extraction using ultrasonic and the drying process. The roselle extraction by ultrasonic use the water as the solvent. The carrier agent (0%,5%,10% of maltodextrin was added in roselle extract. The mixture was then dried in tray dryer dehumidification using zeolite in drying temperature 50,60, and 70⁰C. As the response, the moisture content was observed by gravimetry every 15 minutes for 150 minutes. The result showed that Page model was fitted to determine the constant of drying rate. Higher concentration of carrier agent enhanced the moisture evaporation process. Based on the DPPH analysis, the degradation of antioxidant activity in temperature 70⁰C was 2.14 times higher than in temperature 50⁰C. As the conclusion, addition of maltodextrin can speed up the drying process and retain the antioxidant activity of.

  1. High strength air-dried aerogels

    Science.gov (United States)

    Coronado, Paul R.; Satcher, Jr., Joe H.

    2012-11-06

    A method for the preparation of high strength air-dried organic aerogels. The method involves the sol-gel polymerization of organic gel precursors, such as resorcinol with formaldehyde (RF) in aqueous solvents with R/C ratios greater than about 1000 and R/F ratios less than about 1:2.1. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be air dried at ambient temperatures and pressures. The method significantly reduces the time and/or energy required to produce a dried aerogel compared to conventional methods using either supercritical solvent extraction. The air dried gel exhibits typically less than 5% shrinkage.

  2. Mathematical modelling for the drying method and smoothing drying rate using cubic spline for seaweed Kappaphycus Striatum variety Durian in a solar dryer

    Energy Technology Data Exchange (ETDEWEB)

    M Ali, M. K., E-mail: majidkhankhan@ymail.com, E-mail: eutoco@gmail.com; Ruslan, M. H., E-mail: majidkhankhan@ymail.com, E-mail: eutoco@gmail.com [Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Muthuvalu, M. S., E-mail: sudaram-@yahoo.com, E-mail: jumat@ums.edu.my; Wong, J., E-mail: sudaram-@yahoo.com, E-mail: jumat@ums.edu.my [Unit Penyelidikan Rumpai Laut (UPRL), Sekolah Sains dan Teknologi, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah (Malaysia); Sulaiman, J., E-mail: ysuhaimi@ums.edu.my, E-mail: hafidzruslan@eng.ukm.my; Yasir, S. Md., E-mail: ysuhaimi@ums.edu.my, E-mail: hafidzruslan@eng.ukm.my [Program Matematik dengan Ekonomi, Sekolah Sains dan Teknologi, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah (Malaysia)

    2014-06-19

    The solar drying experiment of seaweed using Green V-Roof Hybrid Solar Drier (GVRHSD) was conducted in Semporna, Sabah under the metrological condition in Malaysia. Drying of sample seaweed in GVRHSD reduced the moisture content from about 93.4% to 8.2% in 4 days at average solar radiation of about 600W/m{sup 2} and mass flow rate about 0.5 kg/s. Generally the plots of drying rate need more smoothing compared moisture content data. Special cares is needed at low drying rates and moisture contents. It is shown the cubic spline (CS) have been found to be effective for moisture-time curves. The idea of this method consists of an approximation of data by a CS regression having first and second derivatives. The analytical differentiation of the spline regression permits the determination of instantaneous rate. The method of minimization of the functional of average risk was used successfully to solve the problem. This method permits to obtain the instantaneous rate to be obtained directly from the experimental data. The drying kinetics was fitted with six published exponential thin layer drying models. The models were fitted using the coefficient of determination (R{sup 2}), and root mean square error (RMSE). The modeling of models using raw data tested with the possible of exponential drying method. The result showed that the model from Two Term was found to be the best models describe the drying behavior. Besides that, the drying rate smoothed using CS shows to be effective method for moisture-time curves good estimators as well as for the missing moisture content data of seaweed Kappaphycus Striatum Variety Durian in Solar Dryer under the condition tested.

  3. Mathematical modelling for the drying method and smoothing drying rate using cubic spline for seaweed Kappaphycus Striatum variety Durian in a solar dryer

    International Nuclear Information System (INIS)

    M Ali, M. K.; Ruslan, M. H.; Muthuvalu, M. S.; Wong, J.; Sulaiman, J.; Yasir, S. Md.

    2014-01-01

    The solar drying experiment of seaweed using Green V-Roof Hybrid Solar Drier (GVRHSD) was conducted in Semporna, Sabah under the metrological condition in Malaysia. Drying of sample seaweed in GVRHSD reduced the moisture content from about 93.4% to 8.2% in 4 days at average solar radiation of about 600W/m 2 and mass flow rate about 0.5 kg/s. Generally the plots of drying rate need more smoothing compared moisture content data. Special cares is needed at low drying rates and moisture contents. It is shown the cubic spline (CS) have been found to be effective for moisture-time curves. The idea of this method consists of an approximation of data by a CS regression having first and second derivatives. The analytical differentiation of the spline regression permits the determination of instantaneous rate. The method of minimization of the functional of average risk was used successfully to solve the problem. This method permits to obtain the instantaneous rate to be obtained directly from the experimental data. The drying kinetics was fitted with six published exponential thin layer drying models. The models were fitted using the coefficient of determination (R 2 ), and root mean square error (RMSE). The modeling of models using raw data tested with the possible of exponential drying method. The result showed that the model from Two Term was found to be the best models describe the drying behavior. Besides that, the drying rate smoothed using CS shows to be effective method for moisture-time curves good estimators as well as for the missing moisture content data of seaweed Kappaphycus Striatum Variety Durian in Solar Dryer under the condition tested

  4. Mathematical modelling for the drying method and smoothing drying rate using cubic spline for seaweed Kappaphycus Striatum variety Durian in a solar dryer

    Science.gov (United States)

    M Ali, M. K.; Ruslan, M. H.; Muthuvalu, M. S.; Wong, J.; Sulaiman, J.; Yasir, S. Md.

    2014-06-01

    The solar drying experiment of seaweed using Green V-Roof Hybrid Solar Drier (GVRHSD) was conducted in Semporna, Sabah under the metrological condition in Malaysia. Drying of sample seaweed in GVRHSD reduced the moisture content from about 93.4% to 8.2% in 4 days at average solar radiation of about 600W/m2 and mass flow rate about 0.5 kg/s. Generally the plots of drying rate need more smoothing compared moisture content data. Special cares is needed at low drying rates and moisture contents. It is shown the cubic spline (CS) have been found to be effective for moisture-time curves. The idea of this method consists of an approximation of data by a CS regression having first and second derivatives. The analytical differentiation of the spline regression permits the determination of instantaneous rate. The method of minimization of the functional of average risk was used successfully to solve the problem. This method permits to obtain the instantaneous rate to be obtained directly from the experimental data. The drying kinetics was fitted with six published exponential thin layer drying models. The models were fitted using the coefficient of determination (R2), and root mean square error (RMSE). The modeling of models using raw data tested with the possible of exponential drying method. The result showed that the model from Two Term was found to be the best models describe the drying behavior. Besides that, the drying rate smoothed using CS shows to be effective method for moisture-time curves good estimators as well as for the missing moisture content data of seaweed Kappaphycus Striatum Variety Durian in Solar Dryer under the condition tested.

  5. Studies on the radiation drying method for grain, 2: A good drying method of paddy rice from the viewpoint of the drying rate and the crack generation of rice

    International Nuclear Information System (INIS)

    Horibe, K.; Nakagawa, K.; Tohjo, T.

    1990-01-01

    A drying rate of paddy rice in a solar heat drying plant was studied. Solar-heated air at the upper part of a plastic house was blasted to the surface of the layer of paddy rice which was piled on the floor of the house. The drying rate increased with higher wind velocity, but it was found that the velocity was limited to 6m/s by the crack generation of the paddy rice. The effects of the layer thickness, the number of layer agitations and the heat supplied on the drying rate at a given wind velocity (6m/s) were expressed with a multiple regression equation. Then, the equation positively proposed appropriate conditions for effective operation of the plant in fine days

  6. Drying of α-amylase by spray drying and freeze-drying - a comparative study

    Directory of Open Access Journals (Sweden)

    S. S. de Jesus

    2014-09-01

    Full Text Available This study is aimed at comparing two traditional methods of drying of enzymes and at verifying the efficiency of each one and their advantages and disadvantages. The experiments were performed with a laboratory spray dryer and freeze-dryer using α-amylase as the model enzyme. An experimental design in star revealed that spray drying is mainly influenced by the inlet air temperature and feed flow rate, which were considered to be the main factors influencing the enzymatic activity and water activity; the long period of material exposure to high temperatures causes a partial activity loss. In the experiments of freeze drying, three methods of freezing were used (freezer, acetone and dry ice, and liquid nitrogen and samples subsequently freeze-dried for times ranging between 0-24 hours. The product obtained from the two techniques showed high enzymatic activity and low water activity. For the drying of heat-resistant enzymes, in which the product to be obtained does not have high added value, spray drying may be more economically viable because, in the freeze drying process, the process time can be considered as a limiting factor when choosing a technique.

  7. Drying of Agricultural Products Using Long Wave Infrared Radiation(Part 2). Drying of Welsh Onion

    International Nuclear Information System (INIS)

    Itoh, K.; Han, C.S.

    1995-01-01

    The investigation was carried out to clarify the intermittent drying characteristics for welsh onion use of long-wave infrared radiation. When compared with two other methods: use of air and vacuum freezing, this method showed significantly high rate of drying. The experiments were carried out analyzing the influence of different lengths of the welsh onion, different rate of radiation and different temperature of the airflow. The obtained results were as follows: 1. The rate of drying increases as the length of welsh onion decrease and the rate of radiation increase. 2. The airflow, temperature does not influence to the rate of drying. 3. The increasing of the drying time considerably aggravate the quality the dried welsh onion

  8. Recent developments in high efficient freeze-drying of fruits and vegetables assisted by microwave: A review.

    Science.gov (United States)

    Fan, Kai; Zhang, Min; Mujumdar, Arun S

    2018-01-10

    Microwave heating has been applied in the drying of high-value solids as it affords a number of advantages, including shorter drying time and better product quality. Freeze-drying at cryogenic temperature and extremely low pressure provides the advantage of high product quality, but at very high capital and operating costs due partly to very long drying time. Freeze-drying coupled with a microwave heat source speeds up the drying rate and yields good quality products provided the operating unit is designed and operated to achieve the potential for an absence of hot spot developments. This review is a survey of recent developments in the modeling and experimental results on microwave-assisted freeze-drying (MFD) over the past decade. Owing to the high costs involved, so far all applications are limited to small-scale operations for the drying of high-value foods such as fruits and vegetables. In order to promote industrial-scale applications for a broader range of products further research and development efforts are needed to offset the current limitations of the process. The needs and opportunities for future research and developments are outlined.

  9. Convective drying of chilies using a concentrating solar collector

    International Nuclear Information System (INIS)

    Hanif, M.; Khattak, M.K.; Aamir, M.

    2015-01-01

    A concentrating solar collector was developed for convective drying of green chilies by providing optimum drying environment. A temperature in the range of 45-65 degree C and relative humidity of less than 10% was observed during the drying period provided by the solar collector from 9.00 am to 5.00 pm. Different levels of drying temperature and air mass flow rates were tested to find their effect on drying time of the chilies. The experiment was laid out as a randomized complete block design with a factorial arrangement of the treatments consisting of 3 levels of temperature and 3 levels of air mass flow rate, replicated 3 times. Drying temperature and air mass flow rates effected the drying time significantly. The means comparison showed that minimum drying time of 17.96 h was recorded at high temperature of 65 degree C followed by a drying time of 20.27 and 21.43 h at temperatures of 55 and 45 degree C. The means of air mass flow rates showed that minimum drying time of 18.49 h was noted at high air mass flow rate of 3.50 kg min-1 followed by 20.32 and 20.86 h at air mass flow rates of 1.5 and 2.30 kg min-l. Chilies dried at temperature of 65 degree C and air mass flow rate of 3.5 kg min-1 showed an average drying rate of 0.02 g(H20)hrl cm-2as compared to the slow drying rates at 55 and 45 degree C. It was concluded that chilies must be dried at high temperature and high air mass flow rates to get on time quality dried chilies. (author)

  10. Improved drying rate diagnostics for saturated fuel debris at the INEEL

    International Nuclear Information System (INIS)

    Childs, K.; Christensen, A.

    1999-01-01

    A fuel canning station (FCS) has been operated for ∼2 yr to prepare for the dry storage of a variety of spent reactor fuels stored in pools at the Idaho National Engineering and Environmental Laboratory (INEEL). The FCS dewaters the fuel and then passivates possibly pyrophoric components in the fuel. Fuel-loaded canisters are placed into a heated insert, the canister is connected to a vacuum system, and the fuel is heated under a vacuum to remove the water. The dewatering system must also verify that the water was removed. The dryness criteria state that the canister pressure shall not exceed a defined pressure for a specified isolation time. Dewatering did not work well for defected TRIGA elements that had corroded in pool storage, leaving the intact fuel meat mixed with a bed of fines from metal oxides and from sludge that continuously accumulated within the pool. Dewatering these cans proved to be very time consuming. Fueled canisters were heated to 60 C and evacuated between 5 and 10 torr. At these conditions, intact fuels were rapidly dried (<10 h). TRIGA drying periods extended to 9 days. Dryness was qualitatively monitored using the canister pressure-control valve position. The valve closes as the gas flow rate declines, providing an indication that drying is complete. However, the valve remained open when drying TRIGA fuel, leaving no indication of dryness. In addition, dryness could not be verified because the canister pressure exceeded the defined pressure during isolation. Air leakage into the evacuated canister prevented the dryness from being verified. Air in-leakage and water vapor cannot easily be discriminated by the aforementioned procedures. Because the canister design does not seal above atmospheric pressure, a drying temperature that yielded a vapor pressure less than atmospheric pressure was chosen. A sufficiently long isolation test could then determine if air was accumulating in the canister; however, the low temperature reduced the drying

  11. High speed drying of saturated steam

    International Nuclear Information System (INIS)

    Marty, C.; Peyrelongue, J.P.

    1993-01-01

    This paper describes the development of the drying process for the saturated steam used in the PWR nuclear plant turbines in order to prevent negative effects of water on turbine efficiency, maintenance costs and equipment lifetime. The high speed drying concept is based on rotating the incoming saturated steam in order to separate water which is more denser than the steam; the water film is then extracted through an annular slot. A multicellular modular equipment has been tested. Applications on high and low pressure extraction of various PWR plants are described (Bugey, Loviisa)

  12. Optimisation of single-phase dry-thermophilic anaerobic digestion under high organic loading rates of industrial municipal solid waste: population dynamics.

    Science.gov (United States)

    Zahedi, S; Sales, D; Romero, L I; Solera, R

    2013-10-01

    Different high feed organic loading rates (OLRs) (from 5.7 g to 46.0 g TVS/l/d) or hydraulic retention times (HRTs) (from 15 d to 2 d) in single-phase dry-thermophilic anaerobic digestion (AD) of organic fraction municipal solid waste (OFMSW) were investigated. The specific gas production (SGP) values (0.25-0.53 m(3)/kg TVS) and the percentages of Eubacteria, Archaea, H2-utilising methanogens (HUMs) and acetate-utilising methanogens (AUMs) were stable within the ranges 80.2-91.1%, 12.4-18.5%, 4.4-9.8% and 5.5-10.9%, respectively. A HUM/AUM ratio greater than 0.7 seems to be necessary to maintain very low partial pressures of H2 required for dry AD process. Increasing OLR resulted in an increase in all the populations, except for propionate-utilising acetogens (PUAs). Optimal conditions were obtained at 3d HRT (OLR=30.7 g TVS/l/d), which is lower than the doubling time of acetogens and methanogens. The methane production (MP) was clearly higher than those reported in AD of OFMSW. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Freeze-dried microarterial allografts

    International Nuclear Information System (INIS)

    Raman, J.; Hargrave, J.C.

    1990-01-01

    Rehydrated freeze-dried microarterial allografts were implanted to bridge arterial defects using New Zealand White rabbits as the experimental model. Segments of artery from the rabbit ear and thigh were harvested and preserved for a minimum of 2 weeks after freeze-drying. These allografts, approximately 1 mm in diameter and ranging from 1.5 to 2.5 cm in length, were rehydrated and then implanted in low-pressure and high-pressure arterial systems. Poor patency was noted in low-pressure systems in both allografts and autografts, tested in 12 rabbits. In the high-pressure arterial systems, allografts that were freeze-dried and reconstituted failed in a group of 10 rabbits with an 8-week patency rate of 30 percent. Gamma irradiation in an effort to reduce infection and antigenicity of grafts after freeze-drying was associated with a patency rate of 10 percent at 8 weeks in this system in another group of 10 rabbits. Postoperative cyclosporin A therapy was associated with a patency rate of 22.2 percent in the high-pressure arterial system in a 9-rabbit group. Control autografts in this system in a group of 10 rabbits showed a 100 percent patency at 8 weeks. Microarterial grafts depend on perfusion pressure of the vascular bed for long-term patency. Rehydrated freeze-dried microarterial allografts do not seem to function well in lengths of 1 to 2.5 cm when implanted in a high-pressure arterial system. Freeze-dried arterial allografts are probably not antigenic

  14. Bioindicator demonstrates high persistence of sulfentrazone in dry soil

    Directory of Open Access Journals (Sweden)

    Renato Coradello Lourenço

    2015-09-01

    Full Text Available In sugarcane crop areas, the application of preemergence herbicides with long residual effect in the soil has been frequently necessary. The herbicide persistence in the soil must be high especially because of applications during the dry season of the year, after sugarcane harvest. This study aimed at estimating the sulfentrazone persistence and dissipation in dry soil using bioindicator. Five experiments were carried out, divided into two phases. In the first phase, three dose-response curves were adjusted to select the best bioindicator to be adopted in the second phase. Niger was adopted due to its lower sensibility to sulfentrazone. In the second phase, a new dose-response curve was carried out, with six doses of sulfentrazone, in order to standardize the bioindicator sensibility to sulfentrazone. At the end, another experiment with six periods of sulfentrazone persistence in dry clay soil was developed. Persistence periods were: 182, 154, 125, 98 and 30 days. The bioindicator was seeded at the application day in treated plots and control. In this experiment, the sulfentrazone dose applied was 800 g ha-1. Niger was considered a good species to estimate the sulfentrazone persistence in dry soil. The sulfentrazone phytotoxic activity was identified up to 182 days after application, and its average dissipation rate was 2.15 g ha-1 day-1, with half-life higher than 182 days.

  15. Effects of Drying Temperature on Flavonoids Extraction Rate from Young Stems and Leaves of Two Cassava Varieties

    Directory of Open Access Journals (Sweden)

    WANG Ding-mei

    2017-01-01

    Full Text Available To improve flavonoids resources utilization level of young cassava stems and leaves, using cassava varieties SC09 and SC205 as ob jects, investigated the effect of different drying temperatures(40~120℃on the flavonoids extraction rate(FERand their stability in 120 d storage period after drying, explored a right drying storage method for postharvest young cassava stems and leaves. The research showed that total FER rised first, and then fell and rised again with the increase of drying temperature. During 40~80℃, the total FER was obviously in fluenced by variety and temperature, but only temperature was main factor affecting total FER during 90~120℃. Extract degree of flavonoids include rutin, amentoflavone or catechin, kaempferol, hesperidin, quercetin minished in order; the effect of cassava variety on the extraction rate of catechin and hesperidin was greater than that of drying temperature, but that contrary to other 4 flavonoids. Variety and temperature had a maximum impact respectively on catechin and rutin extraction rates. Whereas both of variety and temperature had a minimum impact on kaempferol extraction rate. FER reached higher levels of 1.42%and 1.53% respectively in SC09 after 120℃drying and SC205 after 110℃drying, and had best stability during 120 d storage period. The extraction rate of hesperidin increased after drying storage, and that of other 5 ingredients were changing with different varieties and temperatures; the coefficient variation(CV=1.03%~6.86%of kaempferol was minimum and its stability was best; extraction rates of rutin and kaempferol in SC205 after 110℃drying were maximum, whose increasing rates were 44.89%and 7.27%respectively with a small separate degree(CV were 6.94%, 4.59%and good extraction stability. Maximum in creasing rates of catechin, amentoflavone, quercetin and hesperidin were 211.60%,17.60%,186.39% and 538.08% respectively. However,their stabilities of extraction efficiency were poor

  16. Ultrasound-Assisted Hot Air Drying of Foods

    Science.gov (United States)

    Mulet, Antonio; Cárcel, Juan Andrés; García-Pérez, José Vicente; Riera, Enrique

    This chapter deals with the application of power ultrasound, also named high-intensity ultrasound, in the hot air drying of foods. The aim of ultrasound-assisted drying is to overcome some of the limitations of traditional convective drying systems, especially by increasing drying rate without reducing quality attributes. The effects of ultrasound on drying rate are responsible for some of the phenomena produced in the internal and/or external resistance to mass transfer.

  17. Influence of product thickness, chamber pressure and heating conditions on production rate of freeze-dried yoghurt

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, N.K. [G.B. Pant Univ., of Agriculture and Technology (India). Dept. of Mechanical Engineering; Arora, C.P. [Indian Inst. of Tech., New Delhi (India)

    1995-06-01

    The effects of product thickness, chamber pressure and heating conditions on product temperature profiles and production rate of freeze-dried yoghurt were investigated experimentally. Three sample thicknesses - 3.8 mm, 6.2 mm and 9.4 mm - were tested at chamber pressures of 0.01 and 0.5 mmHg. The production rate increased by decreasing product thickness in contact heating through the bottom of the frozen layer, whereas no significant change was observed in radiant heating. A reduction in chamber pressure from 0.50 to 0.01 mmHg increased the drying time in radiant heating. Maximum production rate was obtained when the thickness of dried product was 6.2 mm, when heat was transferred simultaneously through the frozen and dried layers, and the chamber pressure was at 0.01 mmHg. Use of the product tray developed in this study prevents the growth of dry layers at the contact surfaces. (Author)

  18. Peroxidation of the dried thin film of lipid by high-energy alpha particles from a cyclotron

    International Nuclear Information System (INIS)

    Agarwal, S.; Chatterjee, S.N.

    1984-01-01

    High-energy α particles produced a dose-dependent linear increase in different lipid peroxidation products (e.g., malondialdehyde (MDA), conjugated dienes, and hydroperoxides) in the dried thin film state. An inverse dose-rate effect was observed when the dose rate was varied by changing either the α-particle fluence rate or the α-particle energy. The antioxidants α-tocopherol and butylated hydroxytoluene (BHT) suppressed the α-particle-induced lipid peroxidation in the dried thin film state, and in this respect α-tocopherol was found superior to BHT. It was found that α-tocopherol was equally efficient in inhibiting lipid peroxidations by α particles and ultraviolet light

  19. Cow, farm, and management factors during the dry period that determine the rate of clinical mastitis after calving.

    Science.gov (United States)

    Green, M J; Bradley, A J; Medley, G F; Browne, W J

    2007-08-01

    The purpose of the research was to investigate cow characteristics, farm facilities, and herd management strategies during the dry period to examine their joint influence on the rate of clinical mastitis after calving. Data were collected over a 2-yr period from 52 commercial dairy farms throughout England and Wales. Cows were separated for analysis into those housed for the dry period (8,710 cow-dry periods) and those at pasture (9,964 cow-dry periods). Multilevel models were used within a Bayesian framework with 2 response variables, the occurrence of a first case of clinical mastitis within the first 30 d of lactation and time to the first case of clinical mastitis during lactation. A variety of cow and herd management factors were identified as being associated with an increased rate of clinical mastitis and these were found to occur throughout the dry period. Significant cow factors were increased parity and at least one somatic cell count > or = 200,000 cells/mL in the 90 d before drying off. A number of management factors related to hygiene were significantly associated with an increased rate of clinical mastitis. These included measures linked to the administration of dry-cow treatments and management of the early and late dry-period accommodation and calving areas. Other farm factors associated with a reduced rate of clinical mastitis were vaccination with a leptospirosis vaccine, selection of dry-cow treatments for individual cows within a herd rather than for the herd as a whole, routine body condition scoring of cows at drying off, and a pasture rotation policy of grazing dry cows for a maximum of 2 wk before allowing the pasture to remain nongrazed for a period of 4 wk. Models demonstrated a good ability to predict the farm incidence rate of clinical mastitis in a given year, with model predictions explaining over 85% of the variability in the observed data. The research indicates that specific dry-period management strategies have an important

  20. Drying watery wheat grains by far infrared

    International Nuclear Information System (INIS)

    Suda, K.; Murata, K.; Hara, M.

    2004-01-01

    Summary A far infrared dryer was experimented to dry wheat grains for high performance and cost reduction. It is more efficient than a circulating dryer reducing drying time by 20% and fuel consumption by 20 - 30%. Whereas it takes more time and more fuel, when the drying rate is set at 1%/h. Moreover, on condition that the average drying rate is lower, it could decrease the rate of green wheat grains up to 3%. But green wheat grains did not disappear at all on the condition

  1. [Characteristics of dry matter production and nitrogen accumulation in barley genotypes with high nitrogen utilization efficiency].

    Science.gov (United States)

    Huang, Yi; Li, Ting-Xuan; Zhang, Xi-Zhou; Ji, Lin

    2014-07-01

    A pot experiment was conducted under low (125 mg x kg-1) and normal (250 mg x kg(-1)) nitrogen treatments. The nitrogen uptake and utilization efficiency of 22 barley cultivars were investigated, and the characteristics of dry matter production and nitrogen accumulation in barley were analyzed. The results showed that nitrogen uptake and utilization efficiency were different for barley under two nitrogen levels. The maximal values of grain yield, nitrogen utilization efficiency for grain and nitrogen harvest index were 2.87, 2.91 and 2.47 times as those of the lowest under the low nitrogen treatment. Grain yield and nitrogen utilization efficiency for grain and nitrogen harvest index of barley genotype with high nitrogen utilization efficiency were significantly greater than low nitrogen utilization efficiency, and the parameters of high nitrogen utilization efficiency genotype were 82.1%, 61.5% and 50.5% higher than low nitrogen utilization efficiency genotype under the low nitrogen treatment. Dry matter mass and nitrogen utilization of high nitrogen utilization efficiency was significantly higher than those of low nitrogen utilization efficiency. A peak of dry matter mass of high nitrogen utilization efficiency occurred during jointing to heading stage, while that of nitrogen accumulation appeared before jointing. Under the low nitrogen treatment, dry matter mass of DH61 and DH121+ was 34.4% and 38.3%, and nitrogen accumulation was 54. 8% and 58.0% higher than DH80, respectively. Dry matter mass and nitrogen accumulation seriously affected yield before jointing stage, and the contribution rates were 47.9% and 54.7% respectively under the low nitrogen treatment. The effect of dry matter and nitrogen accumulation on nitrogen utilization efficiency for grain was the largest during heading to mature stages, followed by sowing to jointing stages, with the contribution rate being 29.5% and 48.7%, 29.0% and 15.8%, respectively. In conclusion, barley genotype with high

  2. Signs of oral dryness in relation to salivary flow rate, pH, buffering capacity and dry mouth complaints

    Directory of Open Access Journals (Sweden)

    Farsi Najat MA

    2007-11-01

    Full Text Available Abstract Background This study aimed to investigate the signs of oral dryness in relation to different salivary variables and to correlate subjective complaints of oral dryness with salivary flow rate. Methods 312 unmedicated healthy individuals belonging to three age groups, (6–11, 12–17, and 18–40 years were examined clinically for signs of oral dryness. Resting and stimulated saliva were collected to determine flow rate, pH and buffering capacity. A questionnaire was used to obtain information on subjective sensation of dry mouth. Results Dry lip and dry mucosa were present in 37.5% and 3.2% of the sample respectively. The proportion of subjects who complained of oral dryness (19% showed a stimulated salivary flow rate significantly lower than non complainers. Dry lip was significantly related to low resting flow rate but pH and buffering capacity did not show any significant relation to dry lip. Dry mucosa was not related to any of the above mentioned parameters. Conclusion The finding that the stimulated salivary flow rate was reduced in subjects complaining of dry mouth is of great clinical relevance, since the reduction is expected to be reflected in compromising various salivary functions.

  3. Recent developments in high-quality drying of vegetables, fruits, and aquatic products.

    Science.gov (United States)

    Zhang, Min; Chen, Huizhi; Mujumdar, Arun S; Tang, Juming; Miao, Song; Wang, Yuchuan

    2017-04-13

    Fresh foods like vegetables, fruits, and aquatic products have high water activity and they are highly heat-sensitive and easily degradable. Dehydration is one of the most common methods used to improve food shelf-life. However, drying methods used for food dehydration must not only be efficient and economic but also yield high-quality products based on flavor, nutrients, color, rehydration, uniformity, appearance, and texture. This paper reviews some new drying technologies developed for dehydration of vegetables, fruits, and aquatic products. These include: infrared drying, microwave drying, radio frequency drying, electrohydrodynamic drying, etc., as well as hybrid drying methods combining two or more different drying techniques. A comprehensive review of recent developments in high-quality drying of vegetables, fruits and aquatic products is presented and recommendations are made for future research.

  4. Microwave wood strand drying: energy consumption, VOC emission and drying quality

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.; Du, G.; Zhang, Y. [Tennessee Univ., Knoxville, TN (United States). Dept. of Forestry, Wildlife and Fisheries

    2005-07-01

    The objective of this research was to develop microwave drying technology for wood strand drying for oriented strand board (OSB) manufacturing. The advantages of microwave drying included a reduction in the drying time of wood strands and a reduction in the release of volatile organic compounds (VOC) through a decrease in the thermal degradation of the wood material. Temperature and moisture content changes under different microwave drying conditions were investigated. The effects of microwave drying on VOC emissions were evaluated and analyzed using gas chromatography and mass spectrometry. Microwave power input and the mass of drying materials in the microwave oven were found to have a dominant effect on drying quality. Results indicated that an increase in microwave power input and a decrease in sample weights resulted in high drying temperatures, short drying times and a high drying rate. The effect of microwave drying on the strand surfaces was also investigated. Different strand geometries and initial moisture content resulted in varying warm-up curves, but did not influence final moisture content. VOC emissions were quantified by comparing alpha-pinene concentrations. The microwave drying resulted in lower VOC emissions compared with conventional drying methods. It was concluded that the microwave drying technique provided faster strand drying and reduced energy consumption by up to 50 per cent. In addition, the surface wettability of wood strands dried with microwaves was better than with an industrial rotary drum drier. 12 refs., 3 tabs., 5 figs.

  5. 75 FR 67607 - Dried Prunes Produced in California; Increased Assessment Rate

    Science.gov (United States)

    2010-11-03

    ... Order 12988, Civil Justice Reform. Under the marketing order now in effect, California dried prune... DEPARTMENT OF AGRICULTURE Agricultural Marketing Service 7 CFR Part 993 [Doc. No. AMS-FV-10-0057... Marketing Service, USDA. ACTION: Final rule. SUMMARY: This rule increases the assessment rate established...

  6. Antibacterial effect of citrus press-cakes dried by high speed and far-infrared radiation drying methods

    Science.gov (United States)

    Samarakoon, Kalpa; Senevirathne, Mahinda; Lee, Won-Woo; Kim, Young-Tae; Kim, Jae-Il; Oh, Myung-Cheol

    2012-01-01

    In this study, the antibacterial effect was evaluated to determine the benefits of high speed drying (HSD) and far-infrared radiation drying (FIR) compared to the freeze drying (FD) method. Citrus press-cakes (CPCs) are released as a by-product in the citrus processing industry. Previous studies have shown that the HSD and FIR drying methods are much more economical for drying time and mass drying than those of FD, even though FD is the most qualified drying method. The disk diffusion assay was conducted, and the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined with methanol extracts of the dried CPCs against 11 fish and five food-related pathogenic bacteria. The disk diffusion results indicated that the CPCs dried by HSD, FIR, and FD prevented growth of all tested bacteria almost identically. The MIC and MBC results showed a range from 0.5-8.0 mg/mL and 1.0-16.0 mg/mL respectively. Scanning electron microscopy indicated that the extracts changed the morphology of the bacteria cell wall, leading to destruction. These results suggest that CPCs dried by HSD and FIR showed strong antibacterial activity against pathogenic bacteria and are more useful drying methods than that of the classic FD method in CPCs utilization. PMID:22808341

  7. A cointegration approach to forecasting freight rates in the dry bulk shipping sector

    NARCIS (Netherlands)

    Ph.H.B.F. Franses (Philip Hans); A.W. Veenstra (Albert)

    1997-01-01

    textabstractIn this paper, a vector autoregressive model is developed for a sample of ocean dry bulk freight rates. Although the series of freight rates are themselves found to be non-stationary, thus precluding the use of many modelling methodologies, evidence provided by cointegration tests points

  8. Dry coating of micronized API powders for improved dissolution of directly compacted tablets with high drug loading.

    Science.gov (United States)

    Han, Xi; Ghoroi, Chinmay; Davé, Rajesh

    2013-02-14

    Motivated by our recent study showing improved flow and dissolution rate of the active pharmaceutical ingredient (API) powders (20 μm) produced via simultaneous micronization and surface modification through continuous fluid energy milling (FEM) process, the performance of blends and direct compacted tablets with high drug loading is examined. Performance of 50 μm API powders dry coated without micronization is also considered for comparison. Blends of micronized, non-micronized, dry coated or uncoated API powders at 30, 60 and 70% drug loading, are examined. The results show that the blends containing dry coated API powders, even micronized ones, have excellent flowability and high bulk density compared to the blends containing uncoated API, which are required for direct compaction. As the drug loading increases, the difference between dry coated and uncoated blends is more pronounced, as seen in the proposed bulk density-FFC phase map. Dry coating led to improved tablet compactibility profiles, corresponding with the improvements in blend compressibility. The most significant advantage is in tablet dissolution where for all drug loadings, the t(80) for the tablets with dry coated APIs was well under 5 min, indicating that this approach can produce nearly instant release direct compacted tablets at high drug loadings. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Investigation of near dry EDM compared with wet and dry EDM processes

    International Nuclear Information System (INIS)

    Gholipoor, Ahad; Baseri, Hamid; Shabgard, Mohammad Reza

    2015-01-01

    Material removal rate (MRR), tool wear ratio (TWR) and surface roughness (SR) obtained by near-dry EDM process were compared with wet and dry EDM at three levels of discharge energy in drilling of SPK steel. Surface integrity machined by this process was studied and compared with wet and dry EDM processes, by scanning electron microscopy (SEM). The results showed that at high level of discharge energy, wet EDM has the most MRR, TWR and SR, and dry EDM has the least MRR, TWR and SR, while at low discharge energy levels, near-dry EDM process has the most MRR and the least SR. SEM micrographs showed that the quality of surface obtained by near-dry EDM process is better than others and the machined surfaces by near-dry EDM process have lower micro-cracks and craters, relatively.

  10. Investigation of near dry EDM compared with wet and dry EDM processes

    Energy Technology Data Exchange (ETDEWEB)

    Gholipoor, Ahad [Islamic Azad University of Tabriz, Tabriz (Iran, Islamic Republic of); Baseri, Hamid [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Shabgard, Mohammad Reza [University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2015-05-15

    Material removal rate (MRR), tool wear ratio (TWR) and surface roughness (SR) obtained by near-dry EDM process were compared with wet and dry EDM at three levels of discharge energy in drilling of SPK steel. Surface integrity machined by this process was studied and compared with wet and dry EDM processes, by scanning electron microscopy (SEM). The results showed that at high level of discharge energy, wet EDM has the most MRR, TWR and SR, and dry EDM has the least MRR, TWR and SR, while at low discharge energy levels, near-dry EDM process has the most MRR and the least SR. SEM micrographs showed that the quality of surface obtained by near-dry EDM process is better than others and the machined surfaces by near-dry EDM process have lower micro-cracks and craters, relatively.

  11. The influence of freezing rates on bovine pericardium tissue Freeze-drying

    Directory of Open Access Journals (Sweden)

    Camila Figueiredo Borgognoni

    2009-12-01

    Full Text Available The bovine pericardium has been used as biomaterial in developing bioprostheses. Freeze-drying is a drying process that could be used for heart valve's preservation. The maintenance of the characteristics of the biomaterial is important for a good heart valve performance. This paper describes the initial step in the development of a bovine pericardium tissue freeze-drying to be used in heart valves. Freeze-drying involves three steps: freezing, primary drying and secondary drying. The freezing step influences the ice crystal size and, consequently, the primary and secondary drying stages. The aim of this work was to investigate the influence of freezing rates on the bovine pericardium tissue freeze-drying parameters. The glass transition temperature and the structural behaviour of the lyophilized tissues were determined as also primary and secondary drying time. The slow freezing with thermal treatment presented better results than the other freeze-drying protocols.O pericárdio bovino é um material utilizado na fabricação de biopróteses. A liofilização é um método de secagem que vem sendo estudado para a conservação de válvulas cardíacas. A preservação das características do biomaterial é de fundamental importância no bom funcionamento das válvulas. Este artigo é a primeira etapa do desenvolvimento do ciclo de liofilização do pericárdio bovino. Liofilização é o processo de secagem no qual a água é removida do material congelado por sublimação e desorção da água incongelável, sob pressão reduzida. O congelamento influencia o tamanho do cristal de gelo e, consequentemente, a secagem primária e secundária. O objetivo deste estudo foi verificar a influência das taxas de congelamento nos parâmetros de liofilização do pericárdio bovino. Determinou-se a temperatura de transição vítrea e o comportamento estrutural do pericárdio bovino liofilizado. Determinou-se o tempo da secagem primária e secundária. O

  12. THE PRODUCTION OF BREADFRUIT FLOUR: EFFECT OF HEATER TEMPERATURE TO THE DRYING RATE AND TIME OF THE BREADFRUIT

    Directory of Open Access Journals (Sweden)

    Denni Kartika Sari

    2017-06-01

    Full Text Available The composition of mineral and vitamin from breadfruit is particularly known of having benefits compared to rice which is a main source of carbohydrate consumed by societies. The process of drying is one of the factors that affects foodstuffs quality. The aim of this research was to provide an understanding of drying phenomena from data experiment and discover the influence of drying air temperature to breadfruit drying time and rates. This research was conducted in several stages which are material preparation (breadfruit by through downsizing process, then weigh the material (breadfruit once every 5 minutes on each drying air temperature variations (50 ºC, 60 oC, 70 oC, and 80 oC. The research were conducted using breadfruit with the best drying time which is obtained at 60 0C for 100 minutes. The lowest water content obtained was 0.4%, while the highest drying rate was 0.00144 Kg2/m2.s at 80 ºC of temperature.

  13. Photosynthetic rate, dry matter accumulation and yield inter-relationships jn genotypes of rice

    International Nuclear Information System (INIS)

    Devendra, R.; Udaya Kumar, M.; Krishna Sastry, K.S.

    1980-01-01

    The relationship between photosynthetic efficiency, dry matter accumulation and yield in five genotypes of paddy derived from a single cross between Jaya X Halubbalu was studied. Photosynthetic efficiency of younger leaves, on the main tiller was higher than in the older leaves. A significant positive correlation between RuDPcase activity and photosynthetic efficiency was observed in these genotypes. Also a similar positive correlation between dry matter production and photosynthetic efficiency during vegetative period but not during post-anthesis period was observed. Genotypes with high photosynthetic efficiency and also the genotypes with high LAD produced higher dry matter. A reduction in LAD or in photosynthetic efficiency during the post-anthesis period and thus a reduction in source capacity which occurred specially in late types resulted in a lesser ratio between productive and total tillers and also higher percent sterility. Differences in yield amongst the genotypes were not significant, since in the late types MR. 333 and MR. 335, the post-anthesis dry matter production was low due to lesser source capacity. But in the early types, though the total dry matter was less, the post-anthesis source capacity was high. The importance of post-anthesis leaf area of photo-synthetic efficiency in productivity in genotypes of rice is highlighted. (author)

  14. The effect of wet-dry weathering on the rate of bedrock river channel erosion by saltating gravel

    Science.gov (United States)

    Inoue, Takuya; Yamaguchi, Satomi; Nelson, Jonathan M.

    2017-01-01

    Previous work has shown that the bedrock erosion rate E because of collisions of saltating bedload can be expressed by E = βqb(1-Pc), where qb is the sediment transport rate, Pc is the extent of alluvial cover, and β is the abrasion coefficient. However, the dependence of the abrasion coefficient on the physical characteristics of the bedrock material is poorly known, and in particular, the effects of wet-dry weathering on the saltation-abrasion bedrock incision has not been specifically characterized. Observation suggests that the typical wet-dry cycling of exposed bedrock in river beds gives rise to cracks and voids that are likely to alter the incision rate of the material when subjected to impacts of moving sediment. In this study, flume experiments are performed to develop an understanding of how wet-dry cycling affects the rock tensile strength and the bedrock erosion rate. To represent the physical effects of weathering, boring cores taken from natural bedrock channel are exposed to artificial wet-dry cycles. The experimental results suggest the following: (1) the abrasion coefficient for fresh bedrock is estimated by β = 1.0 × 10− 4σT− 2(d/ksb)0.5, where σT is the tensile strength, d is the diameter of colliding gravel, and ksb is the hydraulic roughness height of bedrock; (2) the tensile strength of the bedrock decreases exponentially as a result of repeated wet-dry cycles, σT/σT0 = exp (-CTNWa0/σT0), where σT0 is the initial tensile strength, Wa0 is the initial normalized rate of water absorption., N is the number of wet-dry cycles, and CT is a constant; (3) the erosion rate of fresh bedrock depends on the inverse of the square of tensile strength, but the erosion rate of weathered bedrock depends on the − 1.5 power of tensile strength.

  15. The effect of slicing type on drying kinetics and quality of dried carrot

    Directory of Open Access Journals (Sweden)

    M Naghipour zadeh mahani

    2016-04-01

    Full Text Available Introduction: Carrot is one of the most common vegetables used for human nutrition because of its high vitamin and fiber contents. Drying improves the product shelf life without addition of any chemical preservative and reduces both the size of package and the transport cost. Drying also aidsto reduce postharvest losses of fruits and vegetables especially, which can be as high as 70%. Dried carrots are used in dehydrated soups and in the form of powder in pastries and sauces. The main aim of drying agricultural products is decrease the moisture content to a level which allows safe storage over an extended period. Many fruits and vegetables can be sliced before drying.because of different tissue of a fruit or vegetable, cutting them in different direction and shape created different tissue slices. Due to drying is the exiting process of the moisture from internal tissue so different tissue slices caused different drying kinetics. Therefore, the study on effect of cutting parameters on drying is necessary. Materials and Methods: Carrots (Daucus carota L. were purchased from the local market (Kerman, Iran and stored in a refrigerator at 5°C. The initial moisture contents of the Carrot samples were determined by the oven drying method. The sample was dried in an oven at 105±2°C about 24 hours. The carrots cut by 3 models blade at 3 directions. The samples were dried in an oven at 70°C. Moisture content of the carrot slices were determined by weighting of samples during drying. Volume changes because of sample shrinkage were measured by a water displacement method. Rehydration experiment was performed by immersing a weighted amount of dried samples into hot water 50 °C for 30 min. In this study the effect of some cutting parameters was considered on carrot drying and the quality of final drying product. The tests were performed as a completely random design. The effects of carrot thickness at two levels (3 and 6 mm, blade in 3 models (flat blade

  16. 75 FR 52321 - Dry Lake Wind Power II LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2010-08-25

    ... proceeding, of Dry Lake Wind Power II LLC application for market-based rate authority, with an accompanying... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER10-1720-000] Dry Lake Wind Power II LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket...

  17. Textural properties of infra red dried apple slices as affected by high ...

    African Journals Online (AJOL)

    treatment on drying rate and textural properties of the infra red dried apple slices. Ultrasound device working at a frequency of 24 kHz with a power capacity of 200 W was used for ultrasound pre-treatment. The amplitudes used for ultrasonic ...

  18. Measurements of dry deposition rates of 212Pb from aerosols on various natural and artificial surfaces

    International Nuclear Information System (INIS)

    Osaki, S.; Sugihara, S.; Maeda, Y.; Osaki, T.

    2007-01-01

    The dry deposition rates on various grass fields and two forests have been measured by the use of 212 Pb (T 1/2 = 10.6 hours). The deposition rate on grass fields (average: 7 mm x s -1 ) roughly depends on the logarithms of the heights or densities of the grasses. The dry deposition rates on a broadleaved forest (Lithocarpus edulis) and a coniferous forest (Cryptomeria Japonica) were also measured. The highest (ave. 26 mm x s -1 ) was on the forest of C. Japonica because of the dense and adhesive surfaces of the leaves. (author)

  19. Assessment of Osmotic Pre-Drying Treatment on Drying Rates of ...

    African Journals Online (AJOL)

    Akorede

    of heat, chemical method, physical method and drying (Morris et al., 2004). ... 3Department of Agricultural and Bioresources Engineering, Federal University Oye-Ekiti, Oye-Ekiti, Nigeria. ..... Unpublished Master's Degree Thesis submitted to the.

  20. High speed dry machining of MMCs with diamond tools

    International Nuclear Information System (INIS)

    Collins, J.L.

    2001-01-01

    The increasing use of metal matrix composites (MMCs) has raised new issues in their machining. Industrial demands for higher speed and dry machining of MMCs with improved component production to closer tolerances have driven the development of new tool materials. In particular, the wear characteristics of synthetic diamond tooling satisfy many of the requirements imposed in cutting these highly abrasive workpieces. The use of diamond tool materials, such as polycrystalline diamond (PCD), has resulted in tool life improvements which, allied with environmental considerations, show great potential for the development of dry cutting. This paper explores the wear characteristics of PCD, which is highly suited to the dry machining of particulate silicon carbide MMCs. Also, two further diamond tool materials are evaluated - chemical vapor deposition (CVD) thick layer diamond and synthetic single crystal diamond. Their suitability for the efficient machining of high volume fraction MMC materials is shown and their potential impact an the subsequent acceptance and integration of MMCs into engineering components is discussed. (author)

  1. Dry deposition of gaseous oxidized mercury in Western Maryland.

    Science.gov (United States)

    Castro, Mark S; Moore, Chris; Sherwell, John; Brooks, Steve B

    2012-02-15

    The purpose of this study was to directly measure the dry deposition of gaseous oxidized mercury (GOM) in western Maryland. Annual estimates were made using passive ion-exchange surrogate surfaces and a resistance model. Surrogate surfaces were deployed for seventeen weekly sampling periods between September 2009 and October 2010. Dry deposition rates from surrogate surfaces ranged from 80 to 1512 pgm(-2)h(-1). GOM dry deposition rates were strongly correlated (r(2)=0.75) with the weekly average atmospheric GOM concentrations, which ranged from 2.3 to 34.1 pgm(-3). Dry deposition of GOM could be predicted from the ambient air concentrations of GOM using this equation: GOM dry deposition (pgm(-2)h(-1))=43.2 × GOM concentration-80.3. Dry deposition velocities computed using GOM concentrations and surrogate surface GOM dry deposition rates, ranged from 0.2 to 1.7 cms(-1). Modeled dry deposition rates were highly correlated (r(2)=0.80) with surrogate surface dry deposition rates. Using the overall weekly average surrogate surface dry deposition rate (369 ± 340 pg m(-2)h(-1)), we estimated an annual GOM dry deposition rate of 3.2 μg m(-2)year(-1). Using the resistance model, we estimated an annual GOM dry deposition rate of 3.5 μg m(-2)year(-1). Our annual GOM dry deposition rates were similar to the dry deposition (3.3 μg m(-2)h(-1)) of gaseous elemental mercury (GEM) at our site. In addition, annual GOM dry deposition was approximately 1/2 of the average annual wet deposition of total mercury (7.7 ± 1.9 μg m(-2)year(-1)) at our site. Total annual mercury deposition from dry deposition of GOM and GEM and wet deposition was approximately 14.4 μg m(-2)year(-1), which was similar to the average annual litterfall deposition (15 ± 2.1 μg m(-2)year(-1)) of mercury, which was also measured at our site. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Dry friction damping couple at high frequencies

    Czech Academy of Sciences Publication Activity Database

    Půst, Ladislav; Pešek, Luděk; Košina, Jan; Radolfová, Alena

    2014-01-01

    Roč. 8, č. 1 (2014), s. 91-100 ISSN 1802-680X Institutional support: RVO:61388998 Keywords : dry friction * damping * high frequencies Subject RIV: BI - Acoustics http://www.kme.zcu.cz/acm/acm/article/view/239/265

  3. Lessons learned: the effect of increased production rate on operation and maintenance of OPG's Western Used Fuel Dry Storage Facility

    Energy Technology Data Exchange (ETDEWEB)

    Morton, L.; Smith, N. [Ontario Power Generation, Tiverton, ON (Canada)

    2011-07-01

    In 2010, the Western Used Fuel Dry Storage Facility (WUFDSF) located at Ontario Power Generation's (OPG's) Western Waste Management Facility in Tiverton, ON, transferred, processed and stored a record-high number of Dry Storage Containers (DSC's) from Bruce Power's nuclear generating stations. The WUFDSF has been in operation since 2002. The facility transfers, processes, and stores the used fuel from the Bruce Power generating stations located in Tiverton, Ontario. As per a contractual agreement between OPG and Bruce Power, an annual DSC production and transfer schedule is agreed to between the two parties. In 2010, an increased annual production rate of 130 DSC's was agreed to between OPG and Bruce Power. Throughout 2007, 2008 and 2009, several facility modifications had been completed in anticipation of the increased production rate. These modifications included: Installation and commissioning of a second set of welding consoles; Addition of a second vacuum drying system; Procurement of a second transfer vehicle; and, Installation of a bulk gas system for welding cover gas. In 2010, the increased production rate of 130 DSC's/year came into effect. Throughout 2010, significant lessons learned were gained related to the impact of such a high production rate on the operation and maintenance of the facility. This paper presents the challenges and successes of that operation. The facility successfully achieved its production target with no safety incidents. This high rate of production is planned to continue for several years at the facility. Some challenges continue and these are being assessed and incorporated into the facility's business plan. In order to continue being successful, the facility must look to the future for opportunities for improvement and efficiencies to be gained. (author)

  4. Lessons learned: the effect of increased production rate on operation and maintenance of OPG's Western Used Fuel Dry Storage Facility

    International Nuclear Information System (INIS)

    Morton, L.; Smith, N.

    2011-01-01

    In 2010, the Western Used Fuel Dry Storage Facility (WUFDSF) located at Ontario Power Generation's (OPG's) Western Waste Management Facility in Tiverton, ON, transferred, processed and stored a record-high number of Dry Storage Containers (DSC's) from Bruce Power's nuclear generating stations. The WUFDSF has been in operation since 2002. The facility transfers, processes, and stores the used fuel from the Bruce Power generating stations located in Tiverton, Ontario. As per a contractual agreement between OPG and Bruce Power, an annual DSC production and transfer schedule is agreed to between the two parties. In 2010, an increased annual production rate of 130 DSC's was agreed to between OPG and Bruce Power. Throughout 2007, 2008 and 2009, several facility modifications had been completed in anticipation of the increased production rate. These modifications included: Installation and commissioning of a second set of welding consoles; Addition of a second vacuum drying system; Procurement of a second transfer vehicle; and, Installation of a bulk gas system for welding cover gas. In 2010, the increased production rate of 130 DSC's/year came into effect. Throughout 2010, significant lessons learned were gained related to the impact of such a high production rate on the operation and maintenance of the facility. This paper presents the challenges and successes of that operation. The facility successfully achieved its production target with no safety incidents. This high rate of production is planned to continue for several years at the facility. Some challenges continue and these are being assessed and incorporated into the facility's business plan. In order to continue being successful, the facility must look to the future for opportunities for improvement and efficiencies to be gained. (author)

  5. Effect of process parameters on energy performance of spray drying with exhaust air heat recovery for production of high value particles

    International Nuclear Information System (INIS)

    Julklang, Wittaya; Golman, Boris

    2015-01-01

    Highlights: • We study heat recovery from spray dryer using air-to-air heat exchanger. • We examine dryer energy performance using advanced mathematical model. • We use the response surface methodology to study the effect of process parameters. • Energy efficiency up to 43.3% is obtained at high flow rate of dilute slurry. • Energy saving up to 52.4% is obtained at high drying air temperature. - Abstract: Spray drying process has been widely used in various industries for many decades for production of numerous materials. This paper explores the energy performance of an industrial scale spray dryer equipped with an exhaust air heat recovery system for production of high value particles. Energy efficiency and energy saving were calculated using a comprehensive mathematical model of spray drying. The response surface methodology (RSM) was utilized to study the effect of process parameters on energy performance using a space-filling design. The meta model equations were formulated employing the well-fitted response surface equations with adjusted R 2 larger than 0.995. The energy efficiency as high as 43.3% was obtained at high flow rate of dilute slurry, while the highest energy saving of 52.4% was found by combination of positive effect of drying air temperature and negative effect of slurry mass flow rate. The utilization of efficient air-to-air heat exchanger leads to an increase in energy efficiency and energy savings. The detailed temperature and vapor concentration profiles obtained with the model are also valuable in determining final product quality when spray dryer is operated at energy efficient conditions

  6. Monitoring of multiple solvent induced form changes during high shear wet granulation and drying processes using online Raman spectroscopy.

    Science.gov (United States)

    Reddy, Jay Poorna; Jones, John W; Wray, Patrick S; Dennis, Andrew B; Brown, Jonathan; Timmins, Peter

    2018-04-25

    Form changes during drug product processing can be a risk to the final product quality in terms of chemical stability and bioavailability. In this study, online Raman spectroscopy was used to monitor the form changes in real time during high shear wet granulation of Compound A, a highly soluble drug present at a high drug load in an extended release formulation. The effect of water content, temperature, wet massing time and drying technique on the degree of drug transformation were examined. A designed set of calibration standards were employed to develop quantitative partial least square regression models to predict the concentration of each drug form during both wet granulation and the drying process. Throughout all our experiments we observed complex changes of the drug form during granulation, manifest as conversions between the initial non-solvated form of Compound A, the hemi-hydrate form and the "apparent" amorphous form (dissolved drug). The online Raman data demonstrate that the non-solvated form converts to an "apparent" amorphous form (dissolved drug) due to drug dissolution with no appearance of the hemi-hydrate form during water addition stage. The extent of conversion of the non-solvated form was governed by the amount of water added and the rate of conversion was accelerated at higher temperatures. Interestingly, in the wet massing zone, the formation of the hemi-hydrate form was observed at a rate equivalent to the rate of depletion of the non-solvated form with no change in the level of the "apparent amorphous" form generated. The level of hemi-hydrate increased with an increase in wet massing time. The drying process had a significant effect on the proportion of each form. During tray drying, changes in drug form continued for hours. In contrast fluid bed drying appeared to lock the final proportions of drug form product attained during granulation, with comparatively small changes observed during drying. In conclusion, it was possible to

  7. Comparison of drying characteristic and uniformity of banana cubes dried by pulse-spouted microwave vacuum drying, freeze drying and microwave freeze drying.

    Science.gov (United States)

    Jiang, Hao; Zhang, Min; Mujumdar, Arun S; Lim, Rui-Xin

    2014-07-01

    To overcome the flaws of high energy consumption of freeze drying (FD) and the non-uniform drying of microwave freeze drying (MFD), pulse-spouted microwave vacuum drying (PSMVD) was developed. The results showed that the drying time can be dramatically shortened if microwave was used as the heating source. In this experiment, both MFD and PSMVD could shorten drying time by 50% as compared to the FD process. Depending on the heating method, MFD and PSMVD dried banana cubes showed trends of expansion while FD dried samples demonstrated trends of shrinkage. Shrinkage also brought intensive structure and highest fracturability of all three samples dried by different methods. The residual ascorbic acid content of PSMVD dried samples can be as high as in FD dried samples, which were superior to MFD dried samples. The tests confirmed that PSMVD could bring about better drying uniformity than MFD. Besides, compared with traditional MFD, PSMVD can provide better extrinsic feature, and can bring about improved nutritional features because of the higher residual ascorbic acid content. © 2013 Society of Chemical Industry.

  8. Absence of dry season Plasmodium parasitaemia, but high rates of reported acute respiratory infection and diarrhoea in preschool-aged children in Kaédi, southern Mauritania

    Directory of Open Access Journals (Sweden)

    Touray Sunkaru

    2012-09-01

    Full Text Available Abstract Background The epidemiology of malaria in the Senegal River Gorgol valley, southern Mauritania, requires particular attention in the face of ongoing and predicted environmental and climate changes. While “malaria cases” are reported in health facilities throughout the year, past and current climatic and ecological conditions do not favour transmission in the dry season (lack of rainfall and very high temperatures. Moreover, entomological investigations in neighbouring regions point to an absence of malaria transmission in mosquito vectors in the dry season. Because the clinical signs of malaria are non-specific and overlap with those of other diseases (e.g. acute respiratory infections and diarrhoea, new research is needed to better understand malaria transmission patterns in this region to improve adaptive, preventive and curative measures. Methods We conducted a multipurpose cross-sectional survey in the city of Kaédi in April 2011 (dry season, assessing three major disease patterns, including malaria. Plasmodium spp. parasite rates were tested among children aged 6–59 months who were recruited from a random selection of households using a rapid diagnostic test and microscopic examination of Giemsa-stained thick and thin blood films. Acute respiratory infection and diarrhoea were the two other diseases investigated, administering a parental questionnaire to determine the reported prevalence among participating children. Findings No Plasmodium infection was found in any of the 371 surveyed preschool-aged children using two different diagnostic methods. Acute respiratory infections and diarrhoea were reported in 43.4% and 35.0% of the participants, respectively. About two thirds of the children with acute respiratory infections and diarrhoea required medical follow-up by a health worker. Conclusions Malaria was absent in the present dry season survey in the capital of the Gorgol valley of Mauritania, while acute respiratory

  9. Absence of dry season Plasmodium parasitaemia, but high rates of reported acute respiratory infection and diarrhoea in preschool-aged children in Kaédi, southern Mauritania.

    Science.gov (United States)

    Touray, Sunkaru; Bâ, Hampâté; Bâ, Ousmane; Koïta, Mohamedou; Salem, Cheikh B Ould Ahmed; Keïta, Moussa; Traoré, Doulo; Sy, Ibrahima; Winkler, Mirko S; Utzinger, Jürg; Cissé, Guéladio

    2012-09-07

    The epidemiology of malaria in the Senegal River Gorgol valley, southern Mauritania, requires particular attention in the face of ongoing and predicted environmental and climate changes. While "malaria cases" are reported in health facilities throughout the year, past and current climatic and ecological conditions do not favour transmission in the dry season (lack of rainfall and very high temperatures). Moreover, entomological investigations in neighbouring regions point to an absence of malaria transmission in mosquito vectors in the dry season. Because the clinical signs of malaria are non-specific and overlap with those of other diseases (e.g. acute respiratory infections and diarrhoea), new research is needed to better understand malaria transmission patterns in this region to improve adaptive, preventive and curative measures. We conducted a multipurpose cross-sectional survey in the city of Kaédi in April 2011 (dry season), assessing three major disease patterns, including malaria. Plasmodium spp. parasite rates were tested among children aged 6-59 months who were recruited from a random selection of households using a rapid diagnostic test and microscopic examination of Giemsa-stained thick and thin blood films. Acute respiratory infection and diarrhoea were the two other diseases investigated, administering a parental questionnaire to determine the reported prevalence among participating children. No Plasmodium infection was found in any of the 371 surveyed preschool-aged children using two different diagnostic methods. Acute respiratory infections and diarrhoea were reported in 43.4% and 35.0% of the participants, respectively. About two thirds of the children with acute respiratory infections and diarrhoea required medical follow-up by a health worker. Malaria was absent in the present dry season survey in the capital of the Gorgol valley of Mauritania, while acute respiratory infections and diarrhea were highly prevalent. Surveys should be repeated

  10. Metallic Muscles at Work : High Rate Actuation in Nanoporous Gold/Polyaniline Composites

    NARCIS (Netherlands)

    Detsi, Eric; Onck, Patrick; De Hosson, Jeff Th. M.

    Metallic muscles made of nanoporous metals suffer from serious drawbacks caused by the usage of an aqueous electrolyte for actuation. An aqueous electrolyte prohibits metallic muscles from operating in dry environments and hampers a high actuation rate due to the low ionic conductivity of

  11. ELABORATION OF A DRYING SCHEDULE FOR Eucalyptus spp HYBRIDS CLONES WOODS

    Directory of Open Access Journals (Sweden)

    Celso Gonçalves Barbosa

    2005-03-01

    Full Text Available The elaboration of adequate drying schedules is essential to produce high quality conventional kiln dried lumber.Eucalyptus woods are particularly difficult to dry, and, for this reason, it is desirable that the drying schedule be carefullydeveloped. The objectives of this work were to elaborate a drying schedule for woods of ten Eucalyptus hybrids clones and toverify the propensity of these woods to post drying defects. For this purpose, it was applied the methodology of drastic drying at100°C, which associates intensity of defects, time and rate of drying, presented by small wood samples, with the behaviourto be presented by lumber after the conventional drying. The results allowed developing a drying schedule common to the tenclone lumbers. This program is based on an initial temperature of 40°C, final temperature of 66°C and drying potential equal to2.2. The drying time can be reduced, if the clones were grouped in accordance to their drying rate. The clones presented lowpropensity to split and high propensity to collapse.

  12. Effects of steam-microwave blanching and different drying processes on drying characteristics and quality attributes of Thunbergia laurifolia Linn. leaves.

    Science.gov (United States)

    Phahom, Traiphop; Phoungchandang, Singhanat; Kerr, William L

    2017-08-01

    Dried Thunbergia laurifolia leaves are usually prepared using tray drying, resulting in products that have lost substantial amounts of bioactive compounds and antioxidant activity. The maturity of the raw material, blanching techniques and drying methods were investigated in order to select the best condition to produce high qualities of dried T. laurifolia leaves. The 1st stage of maturity was selected and steam-microwave blanching (SMB) for 4 min was adequate for blanching leading to the maximum recovery of bioactive compounds. The modified Halsey model was the best desorption isotherm model. A new drying model proposed in this study was the best to fit the drying curves as compared to five common drying models. Moisture diffusivities were increased with the increase of drying temperature when combining SMB and heat pump-dehumidified drying. Microwave heat pump-dehumidified drying (MHPD) provided the shortest drying time, high specific moisture extraction rate (SMER) and could reduce drying time by 67.5% and increase caffeic acid and quercetin by 51.24% and 60.89%, respectively. MHPD was found to be the best drying method and provided the highest antioxidant activity and bioactive compounds content, high SMER and short drying time. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  13. TG-DSC method applied to drying characteristics of areca inflorescence during drying

    Science.gov (United States)

    Song, Fei; Wang, Hui; Huang, Yulin; Zhang, Yufeng; Chen, Weijun; Zhao, Songlin; Zhang, Ming

    2017-10-01

    In this study, suitability of eight drying models available in literature on defining drying characteristics of areca inflorescence has been examined by non-linear regression analysis using the Statistic Computer Program. The coefficient of determination ( R 2 ) and the reduced chi-square (χ2) are used as indicators to evaluate the best suitable model. According to the results, the Verma et al. model gave the best results for explaining the drying characteristics of areca inflorescence. The drying process could be divided into three periods: rising rate, constant rate and the falling rate period. Fick's second law can describe the moisture transport during the food drying process that takes place in the falling rate period. The values of effective diffusivity during the drying of areca inflorescence ranged from 2.756 × 10-7 to 6.257 × 10-7 m2/s and the activation energy was tested for 35.535 kJ/mol. The heat requirement of areca inflorescence at 40-60 °C was calculated from 50.57 to 60.50 kJ/kg during the drying process.

  14. Development of high-level radioactive waste treatment and conversion technologies 'Dry decontamination technology development for highly radioactive contaminants'

    International Nuclear Information System (INIS)

    Oh, Won Zin; Lee, K. W.; Won, H. J.; Jung, C. J.; Choi, W. K.; Kim, G. N.; Moon, J. K.

    2001-04-01

    The followings were studied through the project entitled 'Dry Decontamination Technology Development for Highly Radioactive Contaminants'. 1.Contaminant Characteristics Analysis of Domestic Nuclear Fuel Cycle Projects(NFCP) and Applicability Study of the Unit Dry-Decontamination Techniques A. Classification of contaminated equipments and characteristics analysis of contaminants B. Applicability study of the unit dry-decontamination techniques 2.Performance Evaluation of Unit Dry Decontamination Technique A. PFC decontamination technique B. CO2 decontamination technique C. Plasma decontamination technique 3.Development of Residual Radiation Assessment Methodology for High Radioactive Facility Decontamination A. Development of radioactive nuclide diffusion model on highly radioactive facility structure B. Obtainment of the procedure for assessment of residual radiation dose 4.Establishment of the Design Concept of Dry Decontamination Process Equipment Applicable to Highly Radioactive Contaminants 5.TRIGA soil unit decontamination technology development A. Development of soil washing and flushing technologies B. Development of electrokinetic soil decontamination technology

  15. Diagnosing dry eye with dynamic-area high-speed videokeratoscopy

    Science.gov (United States)

    Alonso-Caneiro, David; Turuwhenua, Jason; Iskander, D. Robert; Collins, Michael J.

    2011-07-01

    Dry eye syndrome is one of the most commonly reported eye health conditions. Dynamic-area high-speed videokeratoscopy (DA-HSV) represents a promising alternative to the most invasive clinical methods for the assessment of the tear film surface quality (TFSQ), particularly as Placido-disk videokeratoscopy is both relatively inexpensive and widely used for corneal topography assessment. Hence, improving this technique to diagnose dry eye is of clinical significance and the aim of this work. First, a novel ray-tracing model is proposed that simulates the formation of a Placido image. This model shows the relationship between tear film topography changes and the obtained Placido image and serves as a benchmark for the assessment of indicators of the ring's regularity. Further, a novel block-feature TFSQ indicator is proposed for detecting dry eye from a series of DA-HSV measurements. The results of the new indicator evaluated on data from a retrospective clinical study, which contains 22 normal and 12 dry eyes, have shown a substantial improvement of the proposed technique to discriminate dry eye from normal tear film subjects. The best discrimination was obtained under suppressed blinking conditions. In conclusion, this work highlights the potential of the DA-HSV as a clinical tool to diagnose dry eye syndrome.

  16. Oesophageal fistula/tritium-labelled water technique for determining dry matter intake and saliva secretion rates of grazing herbivores

    International Nuclear Information System (INIS)

    Luick, J.R.

    1982-01-01

    Seven assumptions on which the use of tritium-labelled water and oesophageal fistula depend, for determining the dry matter intake and saliva secretion rates of grazing herbivores, were tested experimentally. It is concluded that many of the possible sources of error can be ignored, but that a correction is necessary for the saliva dry matter content when calculating the dry matter of ingested food from fistula samples. (author)

  17. Design and simulation of heat exchangers using Aspen HYSYS, and Aspen exchanger design and rating for paddy drying application

    Science.gov (United States)

    Janaun, J.; Kamin, N. H.; Wong, K. H.; Tham, H. J.; Kong, V. V.; Farajpourlar, M.

    2016-06-01

    Air heating unit is one of the most important parts in paddy drying to ensure the efficiency of a drying process. In addition, an optimized air heating unit does not only promise a good paddy quality, but also save more for the operating cost. This study determined the suitable and best specifications heating unit to heat air for paddy drying in the LAMB dryer. In this study, Aspen HYSYS v7.3 was used to obtain the minimum flow rate of hot water needed. The resulting data obtained from Aspen HYSYS v7.3 were used in Aspen Exchanger Design and Rating (EDR) to generate heat exchanger design and costs. The designs include shell and tubes and plate heat exchanger. The heat exchanger was designed in order to produce various drying temperatures of 40, 50, 60 and 70°C of air with different flow rate, 300, 2500 and 5000 LPM. The optimum condition for the heat exchanger were found to be plate heat exchanger with 0.6 mm plate thickness, 198.75 mm plate width, 554.8 mm plate length and 11 numbers of plates operating at 5000 LPM air flow rate.

  18. Dry and Semi-Dry Tropical Cyclones

    Science.gov (United States)

    Cronin, T.; Chavas, D. R.

    2017-12-01

    Our understanding of dynamics in our real moist atmosphere is strongly informed by idealized dry models. It is widely believed that tropical cyclones (TCs) are an intrinsically moist phenomenon - relying fundamentally on evaporation and latent heat release - yet recent numerical modeling work has found formation of dry axisymmetric tropical cyclones from a state of dry radiative-convective equilibrium. What can such "dry hurricanes" teach us about intensity, structure, and size of real moist tropical cyclones in nature? Are dry TCs even stable in 3D? What about surfaces that are nearly dry but have some latent heat flux - can they also support TCs? To address these questions, we use the SAM cloud-system resolving model to simulate radiative-convective equilibrium on a rapidly rotating f-plane, subject to constant tropospheric radiative cooling. We use a homogeneous surface with fixed temperature and with surface saturation vapor pressure scaled by a factor 0-1 relative to that over pure water - allowing for continuous variation between moist and dry limits. We also explore cases with surface enthalpy fluxes that are uniform in space and time, where partitioning between latent and sensible heat fluxes is specified directly. We find that a completely moist surface yields a TC-world where multiple vortices form spontaneously and persist for tens of days. A completely dry surface can also yield a parallel dry TC-world with many vortices that are even more stable and persistent. Spontaneous cyclogenesis, however, is impeded for a range of low to intermediate surface wetness values, and by the combination of large rotation rates and a dry surface. We discuss whether these constraints on spontaneous cyclogenesis might arise from: 1) rain evaporation in the subcloud layer limiting the range of viable surface wetness values, and 2) a natural convective Rossby number limiting the range of viable rotation rates. Finally, we discuss simulations with uniform surface enthalpy

  19. DRY MERGER RATE AND POST-MERGER FRACTION IN THE COMA CLUSTER CORE

    Energy Technology Data Exchange (ETDEWEB)

    Cordero, Juan P.; Campusano, Luis E.; Haines, Christopher P. [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); De Propris, Roberto [Finnish Centre for Astronomy with ESO, University of Turku, Vaisalantie 20, Piikkio, FI-21500 (Finland); Weinzirl, Tim [School of Physics and Astronomy, The University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Jogee, Shardha, E-mail: jcordero@das.uchile.cl [Department of Astronomy, The University of Texas at Austin, Austin, TX 78712-1205 (United States)

    2016-01-20

    We evaluate the dry merger activity in the Coma cluster, using a spectroscopically complete sample of 70 red-sequence (RS) galaxies, most of which (∼75%) are located within 0.2R{sub 200} (∼0.5 Mpc) from the cluster center, with data from the Coma Treasury Survey obtained with the Hubble Space Telescope. The fraction of close galaxy pairs in the sample is the proxy employed for the estimation of the merger activity. We identify 5 pairs and 1 triplet, enclosing a total of 13 galaxies, based on limits on projected separation and line-of-sight velocity difference. Of these systems, none show signs of ongoing interaction, and therefore we do not find any true mergers in our sample. This negative result sets a 1σ upper limit of 1.5% per Gyr for the major dry merger rate, consistent with the low rates expected in present-day clusters. Detailed examination of the images of all the RS galaxies in the sample reveals only one with low surface brightness features identifiable as the remnant of a past merger or interaction, implying a post-merger fraction below 2%.

  20. DRY MERGER RATE AND POST-MERGER FRACTION IN THE COMA CLUSTER CORE

    International Nuclear Information System (INIS)

    Cordero, Juan P.; Campusano, Luis E.; Haines, Christopher P.; De Propris, Roberto; Weinzirl, Tim; Jogee, Shardha

    2016-01-01

    We evaluate the dry merger activity in the Coma cluster, using a spectroscopically complete sample of 70 red-sequence (RS) galaxies, most of which (∼75%) are located within 0.2R 200 (∼0.5 Mpc) from the cluster center, with data from the Coma Treasury Survey obtained with the Hubble Space Telescope. The fraction of close galaxy pairs in the sample is the proxy employed for the estimation of the merger activity. We identify 5 pairs and 1 triplet, enclosing a total of 13 galaxies, based on limits on projected separation and line-of-sight velocity difference. Of these systems, none show signs of ongoing interaction, and therefore we do not find any true mergers in our sample. This negative result sets a 1σ upper limit of 1.5% per Gyr for the major dry merger rate, consistent with the low rates expected in present-day clusters. Detailed examination of the images of all the RS galaxies in the sample reveals only one with low surface brightness features identifiable as the remnant of a past merger or interaction, implying a post-merger fraction below 2%

  1. Accumulation of dry matter and nitrogen in the developing seeds of high protein mutant lines of Triticum Aestivum (L.) produced by the IAEA

    International Nuclear Information System (INIS)

    Mir Ali, N.; Nabulsi, I.

    1993-03-01

    Accumulation patterns of dry matter and nitrogen in the developing seeds of nine mutant lines produced by the IAEA and their mother Triticum Aestivum (L.) line were studied. The experiments lasted 2 years under rain fed conditions. Significant differences were found among the lines in dry matter and nitrogen rates, and periods of accumulation, whereas no significant differences were found in the final seed weight of the lines. The highest rates of accumulation for dry matter and nitrogen were accompanied with the shortest period of accumulation in two late flowering mutant lines. However, these two lines were the lowest in their yield per plot. The other mutant lines achieved the high nitrogen percentage in their seeds through the relative reduction in dry matter accumulation rate compared to their mother line rather than through higher rate of nitrogen accumulation. This study revealed some of the potential reasons behind the higher percentage of protein in the seeds of the mutant lines under investigation. (author). 17 refs., 3 figs., 2 tabs

  2. SOME FACTORS AFFECTING FERTILITY IN DRY COWS IN ...

    African Journals Online (AJOL)

    In an cxperiment under extcnsive conditions it was obsewed thart 729oof dry .... a b c Within the body of the table, means having the same superscript do not differ ... Fertilization and conception rate of dry Africander cows on high and low ...

  3. High Temperature Oxidation Behavior of T91 Steel in Dry and Humid Condition

    Directory of Open Access Journals (Sweden)

    Yonghao Leong

    2016-09-01

    Full Text Available High temperature oxidation behavior of T91 ferritic/martensitic steel was examined over the temperature range of 500 to 700°C in dry and humid environments.  The weight gain result revealed that oxidation occurs at all range of temperatures and its rate is accelerated by increasing the temperature. The weight gain of the oxidized steel at 700°C in steam condition was six times bigger than the dry oxidation.. SEM/EDX of the cross-sectional image showed that under dry condition, a protective and steady growth of the chromium oxide (Cr2O3 layer was formed on the steel with the thickness of 2.39±0.34 µm. Meanwhile for the humid environment, it is found that the iron oxide layer, which consists of the hematite (Fe2O3 and magnetite (Fe3O4 was formed as the outer scale, and spinnel as inner scale. This result indicated that the oxidation behavior of T91 steel was affected by its oxidation environment. The existence of water vapor in steam condition may prevent the formation of chromium oxide as protective layer.

  4. Metabolic rate and thermal conductance of lemmings from high-arctic Canada and Siberia

    NARCIS (Netherlands)

    Klaassen, M.R.J.; Agrell, J.; Lindström, A.

    2002-01-01

    The arctic climate places high demands on the energy metabolism of its inhabitants. We measured resting (RMR) and basal metabolic rates (BMR), body temperatures, and dry and wet thermal conductances in summer morphs of the lemmings Dicrostonyx groenlandicus and Lemmus trimucronatus in arctic Canada,

  5. High-quality uniform dry transfer of graphene to polymers.

    Science.gov (United States)

    Lock, Evgeniya H; Baraket, Mira; Laskoski, Matthew; Mulvaney, Shawn P; Lee, Woo K; Sheehan, Paul E; Hines, Daniel R; Robinson, Jeremy T; Tosado, Jacob; Fuhrer, Michael S; Hernández, Sandra C; Walton, Scott G

    2012-01-11

    In this paper we demonstrate high-quality, uniform dry transfer of graphene grown by chemical vapor deposition on copper foil to polystyrene. The dry transfer exploits an azide linker molecule to establish a covalent bond to graphene and to generate greater graphene-polymer adhesion compared to that of the graphene-metal foil. Thus, this transfer approach provides a novel alternative route for graphene transfer, which allows for the metal foils to be reused. © 2011 American Chemical Society

  6. Application of High Power Ultrasound in Drying of Fruits and Vegetables

    Directory of Open Access Journals (Sweden)

    Werner, Z.

    2010-04-01

    Full Text Available Ultrasound is a sound frequency in the range between 18 and 100 kHz that is above hearing of the human ear. High power ultrasound means application of intensities higher than 1 W cm–2 (usually in the range between I=10–1000Wcm–2. High power and low frequency ultrasound (f = 20 to 100 kHz is considered as “power ultrasound” because its application causes cavitation and is applied in the food industry. High power ultrasound is applied for degassing of liquid food, for induction of oxidation/reduction reactions, for extraction of enzymes and proteins, for inactivation of enzymes and induction of nucleation for crystallization. Ultrasound is anticipating heat transfer; it is used for emulsifying, sterilization, extraction, degassing, filtrating, drying and induction of oxidation. Conventional hot air drying is a very energy- and cost-intensive process. Drying is a simultaneous operation of heat and mass exchange that is followed by phase changes. Application of different pretreatments, like osmotic dehydration, ultrasound and ultrasound assisted osmotic dehydration has shown different effects on fruits and vegetables. When the high intensity acoustic energy is passing through solid material, it causes several fast and successive compressions and rarefactions with speeds that depend on the frequency applied. Thus, material is exposed to a series of exchangeable squeezing and relaxations, very like continuous squeezing and releasing of the sponge. This mechanism known as "rectified diffusion" is very important in acoustic drying and migration of water. Application of ultrasound as a pretreatment has shown great influence on reducing afterward hot air drying thereby reducing total drying time. It is also shown that pretreatment before drying facilitates better mass transfer and water diffusivity than osmotic dehydration. Quality of the product after drying is better because ultrasound pretreatment is applied at room temperature thus reducing

  7. Drying shrinkage problems in high PI subgrade soils.

    Science.gov (United States)

    2014-01-01

    The main objective of this study was to investigate the longitudinal cracking in pavements due to drying : shrinkage of high PI subgrade soils. The study involved laboartory soil testing and modeling. The : shrinkage cracks usually occur within the v...

  8. Dry-boxes for manipulation of high-energy β emitters

    International Nuclear Information System (INIS)

    Boclet, K.; Laurent, H.

    1958-01-01

    Because of the thinners of latex or neoprene gloves and the high intensity of Bremsstrahlung radiation, manipulation of pure high-energy β - emitters is impossible in ordinary dry-boxes. There are many types of box equipped with heavy lead or steel protection, but their use for radioelements such as 32 P, 90 Sr, 90 Y is not justified. We have devised units known as 'tong boxes' which, while retaining much of the flexibility of operation found in dry-boxes, provide adequate protection. 1 curie of 32 P placed in the centre of the enclosure gives about 15 mR/ 8 h. at the part of the wall closest to the source. (author) [fr

  9. Effect of N-fertilizer rates on Dry Matter Yield (DMY) and quality of ...

    African Journals Online (AJOL)

    Effect of N-fertilizer rates on Dry Matter Yield (DMY) and quality of pinapple propagules (Ananas comosus) in the acid sands of cross river. W Ubi, M W Ubi, VE Osedeke. Abstract. No Abstract. Global Journal of Pure and Applied Physics Vol. 14 (1) 2008 pp. 1-4. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD ...

  10. High-frequency and microwave heating as a pretreatment to kiln drying of hollowed-out timber

    International Nuclear Information System (INIS)

    Yamada, N.; Okumura, S.; Taniguchi, Y.

    2001-01-01

    To dry hollowed-out timber without V-shaped drying checks, its inner part should be dried faster than the outer part. The feasibility of high frequency heating and microwave heating as a pretreatment of kiln drying of hollow timber was examined. During high frequency heating, the top and bottom parts of the timber were dried faster than the right and left parts because the central hollow acts as an air-gap. The outer part dried faster than the inner part during microwave heating, probably because of insufficient penetration of microwave energy into the inner part. The uneven heating of hollowed timber was improved by turning the specimen around its axis during high frequency heating and by setting the specimen upright in the microwave oven

  11. A rating scale is a proper method to evaluate changes in quality of life due to dry eye symptoms.

    Science.gov (United States)

    Xue, Wenwen; Xu, Xian; Zou, Haidong

    2018-02-07

    To determine which utility value assessment method is more suitable to evaluate changes in the quality of life due to dry eye symptoms. Dry eye outpatients with a presenting visual acuity of 20/25 or better in the worse-seeing eye were recruited. Presenting distance visual acuity, tear film break-up time, Schirmer I test and fluorescein were assessed. The severity of dry eye symptoms was assessed using the Ocular Surface Disease Index (OSDI), and utility values were measured using the time trade-off (TTO), standard gamble (SG1 and SG2) and rating scale (RS) methods. Different utility values were compared with each other. The most appropriate utility value method to evaluate quality-of-life changes solely due to dry eye symptoms is determined by calculating the correlation between the OSDI score and different utility values. A total of 104 patients were enrolled. The three sections of OSDI in the order of high to low scores were as follows: "environmental trigger," "eye discomfort" and "visual function." The utility scores measured with TTO, SG1, SG2 and RS were 0.95 ± 0.11, 0.96 ± 0.10, 0.99 ± 0.07 and 0.89 ± 0.10, respectively. The utility scores evaluated by the TTO, SG1, SG2 and RS methods were significantly different from each other (p eye discomfort" section scores (p dry eye symptoms.

  12. High Burnup Dry Storage Cask Research and Development Project, Final Test Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-02-27

    EPRI is leading a project team to develop and implement the first five years of a Test Plan to collect data from a SNF dry storage system containing high burnup fuel.12 The Test Plan defined in this document outlines the data to be collected, and the storage system design, procedures, and licensing necessary to implement the Test Plan.13 The main goals of the proposed test are to provide confirmatory data14 for models, future SNF dry storage cask design, and to support license renewals and new licenses for ISFSIs. To provide data that is most relevant to high burnup fuel in dry storage, the design of the test storage system must mimic real conditions that high burnup SNF experiences during all stages of dry storage: loading, cask drying, inert gas backfilling, and transfer to the ISFSI for multi-year storage.15 Along with other optional modeling, SETs, and SSTs, the data collected in this Test Plan can be used to evaluate the integrity of dry storage systems and the high burnup fuel contained therein over many decades. It should be noted that the Test Plan described in this document discusses essential activities that go beyond the first five years of Test Plan implementation.16 The first five years of the Test Plan include activities up through loading the cask, initiating the data collection, and beginning the long-term storage period at the ISFSI. The Test Plan encompasses the overall project that includes activities that may not be completed until 15 or more years from now, including continued data collection, shipment of the Research Project Cask to a Fuel Examination Facility, opening the cask at the Fuel Examination Facility, and examining the high burnup fuel after the initial storage period.

  13. Highly durable and unidirectionally stooped polymeric nanohairs for gecko-like dry adhesive

    International Nuclear Information System (INIS)

    Im, Hyeon Seong; Kwon, Ki Yoon; Kim, Jong Uk; Kim, Tae-il; Kim, Kwang Su; Yi, Hoon; Jeong, Hoon Eui; Yoo, Pil J; Pang, Changhyun

    2015-01-01

    Gecko-like dry adhesive using high aspect ratio polymeric nanohairs has insuperable limitations, although it has huge potential in many applications. Repeated harsh contacts on a target substrate lead to physical collapse of nanohairs and significant degradation of the adhesion property, because the polymeric nanohairs are quite fragile due to poor mechanical robustness. Herein, we demonstrate a highly robust gecko-like dry adhesive with unidirectionally stooped polymeric nanohairs (diameter 100 nm) with a high aspect ratio (∼9) using an ultrathin metal coating. 100 cycles of repeated adhesion tests with 1 N preloading force did not significantly degrade adhesion or cause collapse of nanohairs. We believe that this approach allows gecko-like dry adhesive to be utilized in many related applications and diverse industry interests. (paper)

  14. Development of high-level radioactive waste treatment and conversion technologies 'Dry decontamination technology development for highly radioactive contaminants'

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Zin; Lee, K. W.; Won, H. J.; Jung, C. J.; Choi, W. K.; Kim, G. N.; Moon, J. K

    2001-04-01

    The followings were studied through the project entitled 'Dry Decontamination Technology Development for Highly Radioactive Contaminants'. 1.Contaminant Characteristics Analysis of Domestic Nuclear Fuel Cycle Projects(NFCP) and Applicability Study of the Unit Dry-Decontamination Techniques A. Classification of contaminated equipments and characteristics analysis of contaminants B. Applicability study of the unit dry-decontamination techniques 2.Performance Evaluation of Unit Dry Decontamination Technique A. PFC decontamination technique B. CO2 decontamination technique C. Plasma decontamination technique 3.Development of Residual Radiation Assessment Methodology for High Radioactive Facility Decontamination A. Development of radioactive nuclide diffusion model on highly radioactive facility structure B. Obtainment of the procedure for assessment of residual radiation dose 4.Establishment of the Design Concept of Dry Decontamination Process Equipment Applicable to Highly Radioactive Contaminants 5.TRIGA soil unit decontamination technology development A. Development of soil washing and flushing technologies B. Development of electrokinetic soil decontamination technology.

  15. Comparison of carrot (Daucus carota drying in microwave and in vacuum microwave

    Directory of Open Access Journals (Sweden)

    R. Béttega

    2014-06-01

    Full Text Available Drying is a single operation employed to prolong the life of a large quantity of vegetables. Carrot (Daucus carota drying has been the subject of many studies. This plant has been highlighted in the human diet for having high nutritional value, mainly due to the high content of β-carotene. In this work, carrot drying behavior was studied in a regular microwave dryer and a vacuum microwave dryer. A vacuum of 450 mmHg was applied for drying of carrot in different geometrical shapes (cubes, discs and sticks. The samples were dried at power ratings of 1.0 W/g, 1.5 W/g and 2.0 W/g for both methods of drying. The evolution of physical properties such as density, volume and porosity was monitored and related to the moisture content of the sample and to the method of drying and power rating used. The geometric shape of the sample influenced the drying kinetics and it was verified that the cubic form was responsible for a slower drying. The application of vacuum showed no major changes in the drying kinetics in microwave but influenced the physical properties of the material. The influence of power ratings on the content of β-carotene was also evaluated and discussed. The main difference observed was the lower shrinkage of the samples dried in the vacuum microwave compared to those dried only in microwave.

  16. Biological compost stability influences odor molecules production measured by electronic nose during food-waste high-rate composting

    International Nuclear Information System (INIS)

    D'Imporzano, Giuliana; Crivelli, Fernando; Adani, Fabrizio

    2008-01-01

    Composting is a technique that is used to convert organic waste into agriculturally useful products. Composting is an aerobic, solid-state biological process, which typically can be divided into two phases, a high-rate composting phase and a curing phase. High-rate composting plays an important role during the composting process, owing to the high microbial activity occurring during this phase. It requires an accurate plant design to prevent the formation of anaerobic conditions and odors. The formation of anaerobic conditions mainly depends on the rate of O 2 consumption needed to degrade the substrate, i.e., the biological stability of the substrate. In this study, we investigated the relationship between the biological activity, measured by the dynamic respiration index (DRI) and the odor molecules production, measured by an electronic nose (EN) during two food-waste high-rate composting processes. Although the O 2 concentration in the biomass free air space (FAS) was kept optimal (O 2 > 140 ml l -1 , v/v) during composting, strong anaerobic conditions developed. This was indicated by the high levels of sulfur compounds, methane, and hydrogen in the outlet air stream. Both the high level of O 2 consumption, needed to degrade the high-degradable water-soluble organic matter and the low water O 2 solubility, caused by high temperature reached in this stage (up to 60 deg. C), led to the anaerobic conditions observed in the biofilm-particle level. The application of the partial least square (PLS) analysis demonstrated a good regression between the DRI and the odor molecules produced that was detected by the EN (R 2 = 0.991; R 2 CV = 0.990), signifying the usefulness of the DRI as a parameter to estimate the potential production of odor molecules of the biomass

  17. Drying properties and quality parameters of dill dried with intermittent and continuous microwave

    OpenAIRE

    Eştürk, Okan

    2012-01-01

    In this study, influence of various microwave-convective air drying applications on drying kinetics, color and sensory quality of dill leaves (Anethum graveolens L.) were investigated. In general, increasing the drying air temperature decreased the drying time, and increased the drying rate. Increasing microwave pulse ratio increased the drying time. Page, Logarithmic, Midilli et al, Wang & Singh and Logistic models were fitted to drying data and the Page model was found to satisfactorily...

  18. Preparation of High-Grade Powders from Tomato Paste Using a Vacuum Foam Drying Method.

    Science.gov (United States)

    Sramek, Martin; Schweiggert, Ralf Martin; van Kampen, Andreas; Carle, Reinhold; Kohlus, Reinhard

    2015-08-01

    We present a rapid and gentle drying method for the production of high-grade tomato powders from double concentrated tomato paste, comparing results with powders obtained by foam mat air drying and freeze dried powders. The principle of this method consists of drying tomato paste in foamed state at low temperatures in vacuum. The formulations were dried at temperatures of 50, 60, and 70 °C and vacuum of 200 mbar. Foam stability was affected by low serum viscosity and the presence of solid particles in tomato paste. Consequently, serum viscosity was increased by maltodextrin addition, yielding optimum stability at tomato paste:maltodextrin ratio of 2.4:1 (w/w) in dry matter. Material foamability was improved by addition of 0.5% (w/w, fresh weight) egg white. Because of solid particles in tomato paste, foam air filling had to be limited to critical air volume fraction of Φ = 0.7. The paste was first pre-foamed to Φ = 0.2 and subsequently expanded in vacuo. After drying to a moisture content of 5.6% to 7.5% wet base (w.b.), the materials obtained were in glassy state. Qualities of the resulting powders were compared with those produced by freeze and air drying. Total color changes were the least after vacuum drying, whereas air drying resulted in noticeable color changes. Vacuum foam drying at 50 °C led to insignificant carotenoid losses, being equivalent to the time-consuming freeze drying method. In contrast, air drying caused lycopene and β-carotene losses of 18% to 33% and 14% to 19% respectively. Thus, vacuum foam drying enables production of high-grade tomato powders being qualitatively similar to powders obtained by freeze drying. © 2015 Institute of Food Technologists®

  19. High-temperature drying of 7/4 yellow-poplar flitches for S-D-R studs

    Science.gov (United States)

    R. Sidney Boone; Robert R. Maeglin

    1980-01-01

    Yellow-poplar was dried as 7/4 flitches at high temperatures and subsequently ripped into studs to meet National Grading Rule Standards for STUD grade. The effects of growth stresses in these flitches from smaller logs appear to be minimized by this process. Dry bulb temperatures from 235° to 295° F were explored in five drying trials. Best results were by drying for...

  20. Enhanced high energy efficient steam drying of algae

    International Nuclear Information System (INIS)

    Aziz, Muhammad; Oda, Takuya; Kashiwagi, Takao

    2013-01-01

    Highlights: • Brown algae drying processes based on heat circulation technology (HC) were proposed. • HC was developed on exergy recovery through exergy elevation and heat pairing. • The energy efficiency of the proposed drying processes was evaluated. • Significant reduction of energy input and CO 2 emission in drying is readily achieved. - Abstract: State-of-the-art brown algae drying processes based on heat circulation technology were proposed, and their performance with respect to energy consumption was evaluated. Heat circulation technology was developed using the principle of exergy recovery performed through exergy elevation and effective heat pairing for both sensible and latent heat. Two steam drying processes based on heat circulation technology for algae drying were proposed, involving heat circulation with or without steam recirculation. The proposed processes were compared with the conventional heat recovery system employing heat cascade technology. Brown algae Laminaria japonica was selected as the test sample. From the results, it is very clear that both proposed drying processes can reduce the required drying energy significantly by up to 90% of that required in conventional heat recovery drying. Furthermore, the temperature–enthalpy diagram for each process shows that in heat circulation technology based drying, the curves of both hot and cold streams are almost parallel, resulting in the minimization of exergy losses

  1. Herbs drying using a heat pump dryer

    Energy Technology Data Exchange (ETDEWEB)

    Fatouh, M.; Metwally, M.N.; Helali, A.B.; Shedid, M.H. [Department of Mechanical Power Engineering, Faculty of Engineering at El Mattaria, Helwan University, P.O. Box 11718, Masaken El-Helmia, Cairo (Egypt)

    2006-09-15

    In the present work, a heat pump assisted dryer is designed and constructed to investigate the drying characteristics of various herbs experimentally. R134a is used as a working fluid in the heat pump circuit during the experimental work. Experiments have been conducted on Jew's mallow, spearmint and parsley. The effects of herb size, stem presence, surface load, drying air temperature and air velocity on the drying characteristics of Jew's mallow have been predicted. Experimental results show that a high surface load of 28kg/m{sup 2} yields the smallest drying rate, while the drying air with temperature of 55{sup o}C and velocity of 2.7m/s achieves the largest drying rate. A maximum dryer productivity of about 5.4kg/m{sup 2}h is obtained at the air temperature of 55{sup o}C, air velocity of 2.7m/s and dryer surface load of 28kg/m{sup 2}. It was found that small size herbs without stem need low specific energy consumption and low drying time. Comparison of the drying characteristics of different herbs revealed that parsley requires the lowest specific energy consumption (3684kJ/kg{sub H{sub 2}O}) followed by spearmint (3982kJ/kg{sub H{sub 2}O}) and Jew's mallow (4029kJ/kg{sub H{sub 2}O}). Finally, dryer productivity has been correlated in terms of surface load, drying air velocity and drying air temperature. (author)

  2. Effect of air flow rate on the polyphenols content and antioxidant capacity of convective dried cactus pear cladodes (Opuntia ficus indica).

    Science.gov (United States)

    Gallegos-Infante, José-Alberto; Rocha-Guzman, Nuria-Elizabeth; González-Laredo, Ruben-Francisco; Reynoso-Camacho, Rosalia; Medina-Torres, Luis; Cervantes-Cardozo, Veronica

    2009-01-01

    The interest in nopal has encouraged the use of dehydration; there are few studies about the effect of process parameters on the nopal polyphenol content and antioxidant activity. The objective of the present work was to evaluate the effect of air-drying flow rates on the amount and antioxidant capacity of extracts of Opuntia ficus indica cladodes. Nopal was dried at 45 degrees C and air flow rates of 3 and 5 m/sec. Samples were analyzed for moisture, total polyphenol, flavonoid, and flavonol contents, chain-breaking activity, inhibition of low-density lipoprotein and deoxyribose oxidation. Nopal drying at an air flow rate of 3 m/sec showed higher values of phenols, flavonoids and flavonols. The best value of low-density lipoprotein inhibition and deoxyribose was found at 1,000 microg/ml. The air flow rate affected the amount of polyphenols and the OH( . ) radical scavenging, but did not modify the chain-breaking activity and the low-density lipoprotein inhibition activity.

  3. Effect of paddy drying depth using open-sun drying on drying time ...

    African Journals Online (AJOL)

    The smallholder rice farmers in the Uganda dry their paddy using open-sun drying method. In most cases the paddy is badly dried and has very high fissure levels. Such paddy on milling contributes to low levels of mill recovery and whole grain in the milled rice. This study was therefore done to find a recommendable ...

  4. Effects of drying temperature on drying kinetics and eurycomanone content of Eurycoma longifolia roots

    Directory of Open Access Journals (Sweden)

    Hada Masayu, I.,

    2017-08-01

    Full Text Available In this study, the effects of temperature on drying kinetics and eurycomanone content of Eurycoma longifolia roots were investigated to determine the optimum temperature for drying of this herb. The roots were subjected to drying temperatures of 40, 50, 60 and 70°C. The drying kinetics data indicated that the drying rate increased with increase in temperature but decreased with time. The drying process took place in the falling rate period. Three established thin layer drying models include Page, Midili and Logarithmic were employed to describe the drying process. The Midili model was found as the best fitting model in representing the process. The quality of the products was evaluated by comparing the content of its active compound, eurycomanone, quantified using an ultra performance liquid chromatography (UPLC. The fastest drying process was achieved at 70°C, but UPLC results showed that the product suffered at 18% reduction in eurycomanone content as compared to the control. Based on the findings of this work, the optimum drying temperature for E. longifolia roots is 60°C.

  5. Ambient Dried Aerogels

    Science.gov (United States)

    Jones, Steven M.; Paik, Jong-Ah

    2013-01-01

    A method has been developed for creating aerogel using normal pressure and ambient temperatures. All spacecraft, satellites, and landers require the use of thermal insulation due to the extreme environments encountered in space and on extraterrestrial bodies. Ambient dried aerogels introduce the possibility of using aerogel as thermal insulation in a wide variety of instances where supercritically dried aerogels cannot be used. More specifically, thermoelectric devices can use ambient dried aerogel, where the advantages are in situ production using the cast-in ability of an aerogel. Previously, aerogels required supercritical conditions (high temperature and high pressure) to be dried. Ambient dried aerogels can be dried at room temperature and pressure. This allows many materials, such as plastics and certain metal alloys that cannot survive supercritical conditions, to be directly immersed in liquid aerogel precursor and then encapsulated in the final, dried aerogel. Additionally, the metalized Mylar films that could not survive the previous methods of making aerogels can survive the ambient drying technique, thus making multilayer insulation (MLI) materials possible. This results in lighter insulation material as well. Because this innovation does not require high-temperature or high-pressure drying, ambient dried aerogels are much less expensive to produce. The equipment needed to conduct supercritical drying costs many tens of thousands of dollars, and has associated running expenses for power, pressurized gasses, and maintenance. The ambient drying process also expands the size of the pieces of aerogel that can be made because a high-temperature, high-pressure system typically has internal dimensions of up to 30 cm in diameter and 60 cm in height. In the case of this innovation, the only limitation on the size of the aerogels produced would be in the ability of the solvent in the wet gel to escape from the gel network.

  6. Analysing the Progression Rates of Macular Lesions with Autofluorescence Imaging Modes in Dry Age-Related Macular Degeneration

    Directory of Open Access Journals (Sweden)

    Kenan Olcay

    2015-12-01

    Full Text Available Objectives: In this study we aimed to compare the sensitivity of blue-light fundus autofluorescence (FAF and near-infrared autofluorescence (NI-AF imaging for determining the progression rates of macular lesions in dry age-related macular degeneration (AMD. Materials and Methods: The study was designed retrospectively and included patients diagnosed with intermediate and advanced stage dry AMD. Best corrected visual acuities and FAF and NI-AF images were recorded in 46 eyes of 33 patients. Lesion borders were drawn manually on the images using Heidelberg Eye Explorer software and lesion areas were calculated by using Microsoft Excel software. BCVA and lesion areas were compared with each other. Results: Patients’ mean follow-up time was 30.98±13.30 months. The lesion area progression rates were 0.85±0.93 mm2/y in FAF and 0.93±1.01 mm2/y in NI-AF, showing statistically significant correlation with each other (r=0.883; p<0.01. Both imaging methods are moderately correlated with visual acuity impairment (r=0.362; p<0.05 and r=0.311; p<0.05, respectively. In addition, larger lesions showed higher progression rates than smaller ones in both imaging methods. Conclusion: NI-AF imaging is as important and effective as FAF imaging for follow-up of dry AMD patients.

  7. Drying of macaw palm fruits and its influence on oil quality

    OpenAIRE

    Gutierres Nelson Silva; Anderson Barbosa Evaristo; José Antonio Saraiva Grossi; Larissa Sousa Campos; Marcela Silva Carvalho; Leonardo Duarte Pimentel

    2017-01-01

    After harvest, macaw palm fruits show high deterioration rates when improperly preserved. A possible cause is the high fruit water content favoring enzymatic and microbiological degradation. Therefore, this study aimed to evaluate the effect of drying on the mesocarp oil quality during storage and to set the drying curve of macaw palm fruits. For that, two experiments were carried out. In the first, the drying curve of macaw palm fruits was determined at 60 °C, and mathematical models were de...

  8. Drying kinetics and quality aspects during heat pump drying of onion (Allium cepa L.

    Directory of Open Access Journals (Sweden)

    Nihar Ranjan Sahoo

    2012-10-01

    Full Text Available Normal 0 false false false MicrosoftInternetExplorer4 A prototype heat pump dryer has been developed for drying of fruits and vegetables at low temperature and relative humidity to maintain the quality of dried product. Onions, of Nasik red variety were peeled, trimmed and sliced to 2 mm thickness. The onion slices were dried in the heat pump dryer at 35ºC (32 % R.H., 40ºC (26 % R.H., 45ºC (19 % R.H. and 50ºC (15 % R.H.. Samples were also dried in a hot air dryer at 50ºC (52 % R.H. for comparison. The drying rate increased with increase in drying air temperature, associated with reduced R.H., in the heat pump dryer. Drying took place mainly under the falling rate period. The Page equation, resulting in a higher coefficient of determination and lower root mean square error, better described the thin-layer drying of onion slices than the Henderson and Pabis equation. Heat pump drying took less drying time of 360 min and yielded better quality dried product, with higher retention of ascorbic acid and pyruvic acid and lower colour change, as compared to a hot air dryer at the same drying air temperature of 50ºC.

  9. Effect of brining on the drying rate of tilapia in a solar tunnel dryer

    Energy Technology Data Exchange (ETDEWEB)

    Kituu, G.M.; Shitanda, D.; Kanali, C.L.; Mailutha, J.T. [Jomo Kenyatta Univ. of Agriculture and Technology, Nairobi (Kenya). BEED

    2008-07-01

    In addition to being a source of protein, fish is an important source of local and foreign currency earnings in Kenya. A substantial amount of fish production is exported. Approximately 30 per cent is exported to the European Union, the United States, and countries in the Middle East, but nearly half of the total annual fish harvest in Kenya goes to waste due to poor processing and preservation. Measures must be taken to ensure the fish industry is protected and waste is minimized, since the livelihood of over 500,000 people depends on fish as a source of proteins and employment. Therefore, it is necessary to implement appropriate and affordable processing and preservation techniques for fish at the artisanal landing sites in order to reduce the wastage and spoilage of fish during oversupply, and to enhance long storage. This paper presented studies that were conducted to determine the effect of brining on the drying rate of tilapia in a solar tunnel dryer. The paper discussed the materials and methods, including a description of the solar tunnel dryer system; the brining process of fish; the fish drying process; and data analysis. It was concluded that limiting the amount of salt used in brining, and subsequently dehydrating fish with a solar tunnel dryer achieves a more stable and suitable dried fish product than osmotic dehydration or solar drying process separately. 19 refs., 5 figs., 2 appendices.

  10. Scalable organic solvent free supercritical fluid spray drying process for producing dry protein formulations.

    Science.gov (United States)

    Nuchuchua, O; Every, H A; Hofland, G W; Jiskoot, W

    2014-11-01

    In this study, we evaluated the influence of supercritical carbon dioxide (scCO2) spray drying conditions, in the absence of organic solvent, on the ability to produce dry protein/trehalose formulations at 1:10 and 1:4 (w/w) ratios. When using a 4L drying vessel, we found that decreasing the solution flow rate and solution volume, or increasing the scCO2 flow rate resulted in a significant reduction in the residual water content in dried products (Karl Fischer titration). The best conditions were then used to evaluate the ability to scale the scCO2 spray drying process from 4L to 10L chamber. The ratio of scCO2 and solution flow rate was kept constant. The products on both scales exhibited similar residual moisture contents, particle morphologies (SEM), and glass transition temperatures (DSC). After reconstitution, the lysozyme activity (enzymatic assay) and structure (circular dichroism, HP-SEC) were fully preserved, but the sub-visible particle content was slightly increased (flow imaging microscopy, nanoparticle tracking analysis). Furthermore, the drying condition was applicable to other proteins resulting in products of similar quality as the lysozyme formulations. In conclusion, we established scCO2 spray drying processing conditions for protein formulations without an organic solvent that holds promise for the industrial production of dry protein formulations. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Determination of Sliced Pineapple Drying Characteristics in A Closed Loop Heat Pump Assisted Drying System

    Directory of Open Access Journals (Sweden)

    Cüneyt Tunçkal

    2018-02-01

    Full Text Available Pineapple (Ananascomosus slices were dried with the aid of a heat pump assisted dryer (HPD. During this process, air velocity was kept constant at 1m/s, while air temperatures were changed as 37°C, 40°C and 43°C. The drying air was also circulated by using an axial fan in a closed cycle and fresh air was not allowed into the system. The drying rate and drying time were significantly influenced by drying temperature. It was observed that drying temperatures had significant effects on the drying rate and drying time. During the conduct of the study, pineapple slices were dried at 37, 40 and 43°C for 465, 360 and 290 min, respectively. The specific moisture extraction ratio (SMER values were observed to change as drying temperatures were changed. The drying rate curves indicated that the whole drying process occurred in the falling rate period. Seven well-known thin-layer models (Lewis, Henderson &Pabis, Logarithmic, Page, Midilli & Kucuk, Weibull and Aghbashlo et al. were employed to make a prediction about drying kinetics through nonlinear regression analysis. The Midilli & Kucuk and Aghbashlo et al. models were consistent with the experimental data. Fick’s second law of diffusion was used to determine the moisture diffusivity coefficient ranging from 3.78×10–9 to 6.57×10-9  m2/s the each of the above mentioned temperatures. The dependence of effective diffusivity coefficient on temperature was defined by means a fan Arrhenius type equation. The activation energy of moisture diffusion was found to be 75.24kJ/mol.   Article History: Received: July 18th 2017; Received: October 27th 2017; Accepted: January 16th 2018; Available online How to Cite This Article: Tunçkal, C., Coşkun, S., Doymaz, I. and Ergun, E. (2018 Determination of Sliced Pineapple Drying Characteristics in A Closed Loop Heat Pump Assisted Drying System. International Journal of Renewable Energy Development, 7(1, 35-41. https://doi.org/10.14710/ijred.7.1.35-41

  12. Morphological adaptation of rumen papillae during the dry period and early lactation as affected by rate of increase of concentrate allowance

    NARCIS (Netherlands)

    Dieho, K.|info:eu-repo/dai/nl/314000550; Bannink, A.; Geurts, I. A L; Schonewille, J. T.|info:eu-repo/dai/nl/185364306; Gort, G.; Dijkstra, J.

    2016-01-01

    Knowledge of the morphological adaptation of rumen papilla, which plays an important role in volatile fatty acid absorption, in dry and early lactation dairy cattle is limited. Therefore, macro- and microscopic changes in papilla morphology during the dry period and lactation and the effect of rate

  13. The Effect of Operating Conditions on Drying Characteristics and Quality of Ginger (Zingiber Officinale Roscoe) Using Combination of Solar Energy-Molecular Sieve Drying System

    Science.gov (United States)

    Hasibuan, R.; Zamzami, M. A.

    2017-03-01

    Ginger (Zingiber officinale Roscoe) is an agricultural product that can be used as beverages and snacks, and especially for traditional medicines. One of the important stages in the processing of ginger is drying. The drying process intended to reduce the water content of 85-90% to 8-10%, making it safe from the influence of fungi or insecticide. During the drying takes place, the main ingredient contained in ginger is homologous ketone phenolic known as gingerol are chemically unstable at high temperatures, for the drying technology is an important factor in maintaining the active ingredient (gingerol) which is in ginger. The combination of solar energy and molecular sieve dryer that are used in the research is capable of operating 24 hours. The purpose of this research is to study the effect of operating conditions (in this case the air velocity) toward the drying characteristics and the quality of dried ginger using the combination of solar energy and molecular sieve dryer. Drying system consist of three main parts which is: desiccator, solar collector, and the drying chamber. To record data changes in the mass of the sample, a load cell mounted in the drying chamber, and then connected to the automated data recording system using a USB data cable. All data of temperature and RH inside the dryer box and the change of samples mass recorded during the drying process takes place and the result is stored in the form of Microsoft Excel. The results obtained, shows that the air velocity is influencing the moisture content and ginger drying rate, where the moisture content equilibrium of ginger for the air velocity of 1.3 m/s was obtained on drying time of 360 minutes and moisture content of 2.8%, at 1.0 m/s was obtained on drying time of 300 minutes and moisture content of 1.4%, at 0, 8 m/s was obtained at 420 minutes drying time and the moisture content is 2.0%. The drying characteristics shows that there are two drying periods, which is: the increasing drying rate

  14. Spray Drying of High Sugar Content Foods: Improving of Product Yield and Powder Properties

    Directory of Open Access Journals (Sweden)

    Mehmet Koç

    2016-05-01

    Full Text Available Spray drying is the most preferred drying method to produce powdered food in the food industry and it is also widely used to convert sugar-rich liquid foods to a powder form. During and/or after spray drying process of sugar-rich products, undesirable situation was appeared such as stickiness, high moisture affinity (hygroscopicity and low solubility due to low molecular weight monosaccharides that found naturally in the structure. The basis of these problems was formed by low glass transition temperature of sugar-rich products. This review gives information about the difficulties in drying of sugar-rich products via spray dryer, actions need to be taken against these difficulties and drying of sugar-rich honey and fruit juices with spray drying method.

  15. Precise muon drift tube detectors for high background rate conditions

    CERN Document Server

    Engl, Albert; Dünnweber, Wolfgang

    The muon spectrometer of the ATLAS-experiment at the Large H adron Collider consists of drift tube chambers, which provide the precise m easurement of trajec- tories of traversing muons. In order to determine the moment um of the muons with high precision, the measurement of the position of the m uon in a single tube has to be more accurate than σ ≤ 100 m. The large cross section of proton-proton-collisions and th e high luminosity of the accelerator cause relevant background of neutrons and γ s in the muon spectrome- ter. During the next decade a luminosity upgrade [1] to 5 10 34 cm − 2 s − 1 is planned, which will increase the background counting rates consider ably. In this context this work deals with the further development of the existing drift chamber tech- nology to provide the required accuracy of the position meas urement under high background conditions. Two approaches of improving the dri ft tube chambers are described: • In regions of moderate background rates a faster and more lin ear ...

  16. Drying Kinetics Analysis of Seaweed Gracilaria changii using Solar Drying System

    International Nuclear Information System (INIS)

    Mohd Yusof Othman; Ahmad Fudholi; Kamaruzzaman Sopian; Mohd Hafidz Ruslan; Muhammad Yahya

    2012-01-01

    A solar drying system suitable for agricultural and marine products have been designed, constructed and evaluated under Malaysia climatic conditions. The solar drying system has been constructed and evaluated for the drying of seaweed Gracilaria changii. The initial and final moisture content of seaweed are 95 % (wet basis) and 10 % (product basis), respectively. The drying time was about 7 hours at average solar radiation of 593 W/ m 2 and air flow rate of 0.0613 kg/ s. Three different thin-layer drying models were compared with experimental data, during the drying of seaweed using the solar drying system at average temperature and humidity of about 50 degree Celsius and 20 %, respectively. The one with highest R2 and lowest MBE and RMSE was selected to better estimate the drying curves. The study showed that the Page model was better fit to drying seaweed compared to the other models (Newton model, and Henderson and Pabis model). (author)

  17. Computer optimization of dry and wet/dry cooling tower systems for large fossil and nuclear power plants

    International Nuclear Information System (INIS)

    Choi, M.; Glicksman, L.R.

    1979-02-01

    This study determined the cost of dry cooling compared to the conventional cooling methods. Also, the savings by using wet/dry instead of all-dry cooling were determined. A total optimization was performed for power plants with dry cooling tower systems using metal-finned-tube heat exchangers and surface condensers. The optimization minimizes the power production cost. The program optimizes the design of the heat exchanger and its air and water flow rates. In the base case study, the method of replacing lost capacity assumes the use of gas turbines. As a result of using dry cooling towers in an 800 MWe fossil plant, the incremental costs with the use of high back pressure turbine and conventional turbine over all-wet cooling are 11 and 15%, respectively. For a 1200 MWe nuclear plant, these are 22 and 25%, respectively. Since the method of making up lost capacity depends on the situation of a utility, considerable effort has been placed on testing the effects of using different methods of replacing lost capacity at high ambient temperatures by purchased energy. The results indicate that the optimization is very sensitive to the method of making up lost capacity. It is, therefore, important to do an accurate representation of all possible methods of making up capacity loss when optimizating power plants with dry cooling towers. A solution for the problem of losing generation capability by a power plant due to the use of a dry cooling tower is to supplement the dry tower during the hours of peak ambient temperatures by a wet tower. A separate wet/dry cooling tower system with series tower arrangement was considered in this study, and proved to be an economic choice over all-dry cooling where some water is available but supplies are insufficient for a totally evaporative cooling tower

  18. Drying shrinkage problems in high-plastic clay soils in Oklahoma.

    Science.gov (United States)

    2013-08-01

    Longitudinal cracking in pavements due to drying shrinkage of high-plastic subgrade soils has been a major : problem in Oklahoma. Annual maintenance to seal and repair these distress problems costs significant amount of : money to the state. The long...

  19. Drying hardwood lumber

    Energy Technology Data Exchange (ETDEWEB)

    Chow, A T

    1988-11-14

    Dried lumber is a high-value-added product, especially when it is of high quality. Lumber damaged during the drying operation can represent substantial lost revenue. It has been demonstrated that dehumidification kilns can improve lumber quality, and reduce energy consumption over conventional drying methods. A summary of the literature on drying hardwood lumber, particularly using heat pump dehumidification, has been prepared to allow the information to be readily accessible to Ontario Hydro personnel who work with customers in the lumber industry. For that purpose, this summary has been prepared from the perspective of the customer, a dry kiln operator. Included are brief descriptions of drying schedules, precautions needed to minimize drying defects in the lumber, and rules-of-thumb for selecting and estimating the capital cost of the drying equipment. A selection of drying schedules and moisture contents of green lumber, a glossary of lumber defects and brief descriptions of the possible preventive measures are also included. 10 refs., 8 figs., 4 tabs.

  20. Effects of protectant and rehydration conditions on the survival rate and malolactic fermentation efficiency of freeze-dried Lactobacillus plantarum JH287.

    Science.gov (United States)

    Lee, Sae-Byuk; Kim, Dong-Hwan; Park, Heui-Dong

    2016-09-01

    In this study, Lactobacillus plantarum JH287 was used as a malolactic fermentation starter in Campbell Early wine production. L. plantarum JH287 was first lyophilized, and the malolactic fermentation potential of freeze-dried L. plantarum JH287 was investigated. Different protective media and rehydration conditions were tested to improve the survival rate of freeze-dried L. plantarum JH287. Optimal protective medium contained 10 % sorbitol and 10 % skim milk. The optimal rehydration condition was a 1-h rehydration time conducted in the same protective media, and the combination of these two methods produced a survival rate of 86.37 %. In addition, a 77.71 % survival rate was achieved using freeze-dried samples that were stored at 4 °C for 2 months. Freeze-dried L. plantarum JH287 and Saccharomyces cerevisiae Fermivin were used to inoculate the Campbell Early grape must to decrease its malic acid content. Using this mixed-fermentation method, wine showed a decrease in malic acid content after 9 days of fermentation. GC-MS analysis detected 15 volatile ester compounds in the wine. A sensory evaluation showed that the taste and aroma of mix-fermented wine were better than those of the control that had not been inoculated with L. plantarum JH287.

  1. Self-dispersible nanocrystals of albendazole produced by high pressure homogenization and spray-drying.

    Science.gov (United States)

    Paredes, Alejandro Javier; Llabot, Juan Manuel; Sánchez Bruni, Sergio; Allemandi, Daniel; Palma, Santiago Daniel

    2016-10-01

    Albendazole (ABZ) is a broad-spectrum antiparasitic drug used in the treatment of human or animal infections. Although ABZ has shown a high efficacy for repeated doses in monogastric mammals, its low aqueous solubility leads to erratic bioavailability. The aim of this work was to optimize a procedure in order to obtain ABZ self-dispersible nanocrystals (SDNC) by combining high pressure homogenization (HPH) and spray-drying (SD). The material thus obtained was characterized and the variables affecting both the HPH and SD processes were studied. As expected, the homogenizing pressure and number of cycles influenced the final particle size, while the stabilizer concentration had a strong impact on SD output and redispersion of powders upon contact with water. ABZ SDNC were successfully obtained with high process yield and redispersibility. The characteristic peaks of ABZ were clearly identified in the X-ray patterns of the processed samples. A noticeable increase in the dissolution rate was observed in the aqueous environment.

  2. Drying characteristics of zucchini and empirical modeling of its drying process

    Directory of Open Access Journals (Sweden)

    Naciye Kutlu

    2017-10-01

    Full Text Available The aim of the study was to dry zucchini (Cucurbita pepo by two different methods (convective hot-air (CHD and microwave-assisted drying (MWD. The effect of air temperature (60, 70 and 80°C, microwave (MW power (180, 360, 540 W and sample thickness (5 and 10 mm on some drying characteristics of zucchini were investigated. Thirteen mathematical models available in the literature were fitted to the experimental moisture ratio data. The coefficients of the models were determined by non-linear regression analysis. It was determined that the model that fits the moisture ratio data the best varies at different drying conditions. Increasing drying temperature and MW power and reducing sample thickness improved the drying rate and drying time. Drying in microwave has reduced the drying time by 52-64% for zucchini. It was found that the effective moisture diffusivities increased with increasing temperature and MW power. MWD samples had better rehydration ratios compared to ones dried only in tray drier for 5 mm thickness.  

  3. Dry-cleaning with high-pressure carbon dioxide

    NARCIS (Netherlands)

    Van Roosmalen, M.J.E.

    2003-01-01

    Dry-cleaning is a process for removing soils and stains from fabrics and garments which uses a non-aqueous solvent with detergent added. The currently most used dry-cleaning solvent is perchloroethylene (PER), which is toxic, environmentally harmful and suspected to be carcinogenic. Carbon dioxide

  4. Electrohydrodynamic (EHD) drying of the Chinese wolfberry fruits.

    Science.gov (United States)

    Yang, Maosheng; Ding, Changjiang

    2016-01-01

    The conventional methods of drying Chinese wolfberry fruits cause loss of active ingredients and the drying time is very long. In order to explore and investigate the new method of drying Chinese wolfberry fruits, electrohydrodynamic (EHD) drying system was used to drying for Chinese wolfberry fruits with a multiple needle-to-plate electrode on five levels alternating voltage at 0, 20, 24, 28 and 32 kV and a multiple needle-to-plate electrode on a level direct voltage at 28 kV. The drying rate, the moisture rate, shrinkage rate, rehydration ratio, and Vitamin C contents of Chinese wolfberry were measured. Ten different mathematical drying models were also determined and compared to simulate drying curves based on the root mean square error, reduced mean square of the deviation and the coefficient of correlation. Each drying treatment was carried out at (25 ± 2) °C, the drying relative humidity was (30 ± 5) % and all samples were dehydrated until they reached the final moisture content (17 ± 1)/100 g. The results showed that the drying rate of Chinese wolfberry was notably greater in the EHD system when compared to control, and improved by 1.8777, 2.0017, 2.3676 and 2.6608 times, respectively, at 20, 24, 28 and 32 kV, compared to that of the control in the 5 h. The drying rate with multiple needles-to-plate electrode under AC electric field is faster than that with a multiple needle-to-plate electrode under DC electric field and the mass transfer enhancement factor heightened with the increase of voltage. The EHD drying treatments have a significant effect on rehydration ratio, and Vitamin C contents of Chinese wolfberry, but no significant differences was observed in shrinkage rate of Chinese wolfberry. The specific energy consumption of EHD drying (kJ·kg(-1) water) were significantly influenced by the alternating voltage, it heightened with the increase of voltage. The Parabolic model was best suited for describing the drying rate curve of

  5. Influence of drying conditions on the effective moisture diffusivity and energy requirements during the drying of pretreated and untreated pumpkin

    International Nuclear Information System (INIS)

    Tunde-Akintunde, Toyosi Y.; Ogunlakin, Grace O.

    2011-01-01

    Pumpkin as a fruit is consumed by both animals and humans. Its high moisture content makes it perishable and thus there is a need for drying as a means of preservation. Thin-layer drying characteristics for the samples dried using a hot-air dryer were obtained from the experiment data. The drying was observed to take place in the falling rate drying period. Ficks law was used to determine the moisture diffusivity which varied from a minimum of 1.19 x 10 -9 m 2 /s for untreated pumpkin samples dried at 40 o C to a maximum value of 4.27 x 10 -9 m 2 /s for steam blanched samples dried at 80 o C. The value of the energy of activation varied from 21.44 to 28.67 kJ/mol. The input energy values and specific energy requirement for thin-drying of pumpkin samples were found to be in the range of 317.8-458.1 kW h and 1588.8-2290.3 kW h/kg from 40 o C to 80 o C with a drying air velocity of 1.5 m/s respectively.

  6. Influence of drying conditions on the effective moisture diffusivity and energy requirements during the drying of pretreated and untreated pumpkin

    Energy Technology Data Exchange (ETDEWEB)

    Tunde-Akintunde, Toyosi Y.; Ogunlakin, Grace O. [Ladoke Akintola University of Technology, PMB 4000, Ogbomoso, Oyo State (Nigeria)

    2011-02-15

    Pumpkin as a fruit is consumed by both animals and humans. Its high moisture content makes it perishable and thus there is a need for drying as a means of preservation. Thin-layer drying characteristics for the samples dried using a hot-air dryer were obtained from the experiment data. The drying was observed to take place in the falling rate drying period. Ficks law was used to determine the moisture diffusivity which varied from a minimum of 1.19 x 10{sup -9} m{sup 2}/s for untreated pumpkin samples dried at 40 C to a maximum value of 4.27 x 10{sup -9} m{sup 2}/s for steam blanched samples dried at 80 C. The value of the energy of activation varied from 21.44 to 28.67 kJ/mol. The input energy values and specific energy requirement for thin-drying of pumpkin samples were found to be in the range of 317.8-458.1 kW h and 1588.8-2290.3 kW h/kg from 40 C to 80 C with a drying air velocity of 1.5 m/s respectively. (author)

  7. Semi-Dried Fruits and Vegetables

    Directory of Open Access Journals (Sweden)

    Gamze Uysal Seçkin

    2015-12-01

    Full Text Available Since ancient times, the preservation of fruit and vegetables is an ancient method of drying. Sun drying method has been used more widely. In general, consumer-ready products are dried fruits, while the dried vegetables are the foods subjected to the rehydration processes such as boiling, heating and baking before consumption. In recent years, new products with high eating quality have been attempted to achieve without losing characteristic of raw material. With the improving of food technology, using developed methods (pH reduction with reducing aw, slight heating, preservatives use etc. as protective agent, and using a combination of a low rate as an alternative to traditional food preservation process, products have been obtained without changing original characteristics of food. ‘Semi-dried 'or 'medium moist 'products with little difference between the taste and texture of the product with a damp have gained importance in recent years in terms of consumer preferences. Vegetables or fruits, which have water activity levels between 0.50 and 0.95 and the moisture content of between 26% and 60%, are called 'medium moist fruit or vegetables'. Two different manufacturing process to obtain a semi-dried or intermediate moisture products are applied. First, fully dried fruits and vegetables to be rehydrated with water are brought to the desired level of their moisture content. Second, in the first drying process, when the product moisture content is reduced to the desired level, the drying process is finished. The semi-dried products are preferred by consumers because they have a softer texture in terms of eating quality and like fresh products texture.

  8. Combined electrohydrodynamic (EHD) and vacuum freeze drying of shrimp

    International Nuclear Information System (INIS)

    Hu, Yucai; Huang, Qiang; Bai, Yaxiang

    2013-01-01

    To improve the drying qualities of shrimp, a combination of electrohydrodynamic (EHD) and vacuum freeze drying (FD) is examined. The drying rate, the shrinkage, the rehydration ratio, and the sensory properties including the color and trimness of the dried products under different drying methods (including combination drying of EHD and FD, EHD drying and FD drying) are measured. Compared with FD and EHD drying alone, the combined process consumes less drying time, and the product processed by combined drying displays lower shrinkage, higher rehydration rate and better sensory qualities.

  9. Characteristics of a Dry Fog Ionizer

    International Nuclear Information System (INIS)

    Murata, Y; Kudo, Y; Yonezawa, M

    2008-01-01

    The newly developed 'Dry Fog Ionizer' generates charged dry fog. The dry fog consists of very fine water droplets 8μm in mean diameter. This system consists of a dry fog nozzle (H.Ikeuchi and Co., LTD.), a ring electrode for induction charging (50mm outside diameter, and 10mm thick) in front of the nozzle, and a fan for dissipating charged dry fog. The ring electrode is DC or AC-biased and fine droplets ejected from the nozzle are electrified by induction charging. The particle size of the charged water droplets are reduced through evaporation during the transporting process by air flow, and completely evaporate approximately 2m from the nozzle under normal atmospheric conditions (25 deg. C, 60%R.H.) leaving high density ions. Using this system, high density ionic space charge can be realized in a remote spot from the ionizer. By this principle, the Dry Fog Ionizer shows strong charge-eliminating ability in the region away from the ionizer. When a dc bias of 5kV was applied to a ring electrode with the rate of water flow from the nozzle being 21/h, an ionic space-charge density of 1200nC /m 3 was able to be obtained at a distance 2m away from the ionizer, which was 10 2 times the value produced by an ordinary corona-type ionizer with an air blower.

  10. Quality of dried cauliflower according to the methods and drying parameters

    Directory of Open Access Journals (Sweden)

    Łapczyńska-Kordon Bogusława

    2018-01-01

    Full Text Available The quality of food products is a complex concept. It can be defined in many ways. The common element of most of these definitions is the condition of meeting the requirements of consumers. Quality determines product compliance with the requirements set by the normalized regulations. The paper attempts to determine the optimal method and parameters of cauliflower drying. In addition, a qualitative assessment of the obtained product was made. The results show that the method and parameters of drying significantly affect the quality of the dried cauliflower. Convection drying guarantees higher drought quality with respect to the color of the sample (higher brightness, taste and odor. Of the drying parameters accepted in the experiment, the most positive effect on the tested parameters was recorded using convection drying at a flow rate of 0.2 ms-1 and the least favorable for microwave drying 170 or 210 W.

  11. Electron-beam mediated dry distillation of lignin

    International Nuclear Information System (INIS)

    Chulkov, V.N.; Bludenko, A.V.; Ponomarev, A.V.

    2007-01-01

    Radiation heating was studied for its application in dry distillation of lignin under high absorbed-dose irradiation with no supplementary heating device used. Commercial preparation Polyphepan containing lignin (90 wt.%) and cellulose (10 wt.%), dried at 102 deg C, was used. The test samples were exposed to 8 MeV electron beams on U-003 linear accelerator under atmospheric pressure, with dose rates of 3.6 and 4.8 kGy/s. It is demonstrated that an increased yield of liquid products of dry lignin distillation is observed under conditions studied with a two-fold decrease in energy consumption due to more favorable heating conditions and intensification of free-radical reactions [ru

  12. Mushroom drying with solar assisted heat pump system

    International Nuclear Information System (INIS)

    Şevik, Seyfi; Aktaş, Mustafa; Doğan, Hikmet; Koçak, Saim

    2013-01-01

    Highlights: • Experimental investigation of a simple and cost effective solar assisted heat pump system. • Developing of a computer program for a drying system with different scenarios by using PLC. • Obtained less energy input with high coefficients of performance of system and more quality products. • Determination of mushroom drying properties such as moisture content, moisture ratio and drying ratio. - Abstract: In this study, a simple and cost effective solar assisted heat pump system (SAHP) with flat plate collectors and a water source heat pump has been proposed. Mushroom drying was examined experimentally in the drying system. Solar energy (SE) system and heat pump (HP) system can be used separately or together. A computer program has been developed for the system. Drying air temperature, relative humidity, weight of product values, etc. were monitored and controlled with different scenarios by using PLC. This system is cheap, good quality and sustainable and it is modeled for good quality product and increased efficiency. Thus, products could be dried with less energy input and more controlled conditions. Mushrooms were dried at 45 °C and 55 °C drying air temperature and 310 kg/h mass flow rate. Mushrooms were dried from initial moisture content 13.24 g water/g dry matter (dry basis) to final moisture content 0.07 g water/g dry matter (dry basis). Mushrooms were dried by using HP system, SE system and SAHP system respectively at 250–220 min, at 270–165 min and at 230–190 min. The coefficients of performance of system (COP) are calculated in a range from 2.1 to 3.1 with respect to the results of experiments. The energy utilization ratios (EURs) were found to vary between 0.42 and 0.66. Specific moisture extraction rate (SMER) values were found to vary between 0.26 and 0.92 kg/kW h

  13. [Research about effect of spray drying conditions on hygroscopicity of spray dry powder of gubi compound's water extract and its mechanism].

    Science.gov (United States)

    Zong, Jie; Shao, Qi; Zhang, Hong-Qing; Pan, Yong-Lan; Zhu, Hua-Xu; Guo, Li-Wei

    2014-02-01

    To investigate moisture content and hygroscopicity of spray dry powder of Gubi compound's water extract obtained at different spray drying conditions and laying a foundation for spray drying process of Chinese herbal compound preparation. In the paper, on the basis of single-factor experiments, the author choose inlet temperature, liquid density, feed rate, air flow rate as investigated factors. The experimental absorption rate-time curve and scanning electron microscopy results showed that under different spray drying conditions the spray-dried powders have different morphology and different adsorption process. At different spray-dried conditions, the morphology and water content of the powder is different, these differences lead to differences in the adsorption process, at the appropriate inlet temperature and feed rate with a higher sample density and lower air flow rate, in the experimental system the optimum conditions is inlet temperature of 150 degrees C, feed density of 1.05 g x mL(-1), feed rate of 20 mL x min(-1) air flow rate of 30 m3 x h(-1).

  14. Effect of weed management and seed rate on crop growth under direct dry seeded rice systems in Bangladesh.

    Directory of Open Access Journals (Sweden)

    Sharif Ahmed

    Full Text Available Weeds are a major constraint to the success of dry-seeded rice (DSR. The main means of managing these in a DSR system is through chemical weed control using herbicides. However, the use of herbicides alone may not be sustainable in the long term. Approaches that aim for high crop competitiveness therefore need to be exploited. One such approach is the use of high rice seeding rates. Experiments were conducted in the aman (wet seasons of 2012 and 2013 in Bangladesh to evaluate the effect of weed infestation level (partially-weedy and weed-free and rice seeding rate (20, 40, 60, 80, and 100 kg ha(-1 on weed and crop growth in DSR. Under weed-free conditions, higher crop yields (5.1 and 5.2 t ha(-1 in the 2012 and 2013 seasons, respectively were obtained at the seeding rate of 40 kg ha(-1 and thereafter, yield decreased slightly beyond 40 kg seed ha(-1. Under partially-weedy conditions, yield increased by 30 to 33% (2.0-2.2 and 2.9-3.2 t ha(-1 in the 2012 and 2013 seasons, respectively with increase in seeding rate from 20 to 100 kg ha(-1. In the partially-weedy plots, weed biomass decreased by 41-60% and 54-56% at 35 days after sowing and at crop anthesis, respectively, when seeding rate increased from 20 to 100 kg ha(-1. Results from our study suggest that increasing seeding rates in DSR can suppress weed growth and reduce grain yield losses from weed competition.

  15. Effect of Weed Management and Seed Rate on Crop Growth under Direct Dry Seeded Rice Systems in Bangladesh

    Science.gov (United States)

    Ahmed, Sharif; Salim, Muhammad; Chauhan, Bhagirath S.

    2014-01-01

    Weeds are a major constraint to the success of dry-seeded rice (DSR). The main means of managing these in a DSR system is through chemical weed control using herbicides. However, the use of herbicides alone may not be sustainable in the long term. Approaches that aim for high crop competitiveness therefore need to be exploited. One such approach is the use of high rice seeding rates. Experiments were conducted in the aman (wet) seasons of 2012 and 2013 in Bangladesh to evaluate the effect of weed infestation level (partially-weedy and weed-free) and rice seeding rate (20, 40, 60, 80, and 100 kg ha−1) on weed and crop growth in DSR. Under weed-free conditions, higher crop yields (5.1 and 5.2 t ha−1 in the 2012 and 2013 seasons, respectively) were obtained at the seeding rate of 40 kg ha−1 and thereafter, yield decreased slightly beyond 40 kg seed ha−1. Under partially-weedy conditions, yield increased by 30 to 33% (2.0–2.2 and 2.9–3.2 t ha−1 in the 2012 and 2013 seasons, respectively) with increase in seeding rate from 20 to 100 kg ha−1. In the partially-weedy plots, weed biomass decreased by 41–60% and 54–56% at 35 days after sowing and at crop anthesis, respectively, when seeding rate increased from 20 to 100 kg ha−1. Results from our study suggest that increasing seeding rates in DSR can suppress weed growth and reduce grain yield losses from weed competition. PMID:25000520

  16. Effect of weed management and seed rate on crop growth under direct dry seeded rice systems in Bangladesh.

    Science.gov (United States)

    Ahmed, Sharif; Salim, Muhammad; Chauhan, Bhagirath S

    2014-01-01

    Weeds are a major constraint to the success of dry-seeded rice (DSR). The main means of managing these in a DSR system is through chemical weed control using herbicides. However, the use of herbicides alone may not be sustainable in the long term. Approaches that aim for high crop competitiveness therefore need to be exploited. One such approach is the use of high rice seeding rates. Experiments were conducted in the aman (wet) seasons of 2012 and 2013 in Bangladesh to evaluate the effect of weed infestation level (partially-weedy and weed-free) and rice seeding rate (20, 40, 60, 80, and 100 kg ha(-1)) on weed and crop growth in DSR. Under weed-free conditions, higher crop yields (5.1 and 5.2 t ha(-1) in the 2012 and 2013 seasons, respectively) were obtained at the seeding rate of 40 kg ha(-1) and thereafter, yield decreased slightly beyond 40 kg seed ha(-1). Under partially-weedy conditions, yield increased by 30 to 33% (2.0-2.2 and 2.9-3.2 t ha(-1) in the 2012 and 2013 seasons, respectively) with increase in seeding rate from 20 to 100 kg ha(-1). In the partially-weedy plots, weed biomass decreased by 41-60% and 54-56% at 35 days after sowing and at crop anthesis, respectively, when seeding rate increased from 20 to 100 kg ha(-1). Results from our study suggest that increasing seeding rates in DSR can suppress weed growth and reduce grain yield losses from weed competition.

  17. Designing CAF-adjuvanted dry powder vaccines: spray drying preserves the adjuvant activity of CAF01.

    Science.gov (United States)

    Ingvarsson, Pall Thor; Schmidt, Signe Tandrup; Christensen, Dennis; Larsen, Niels Bent; Hinrichs, Wouter Leonardus Joseph; Andersen, Peter; Rantanen, Jukka; Nielsen, Hanne Mørck; Yang, Mingshi; Foged, Camilla

    2013-05-10

    Dry powder vaccine formulations are highly attractive due to improved storage stability and the possibility for particle engineering, as compared to liquid formulations. However, a prerequisite for formulating vaccines into dry formulations is that their physicochemical and adjuvant properties remain unchanged upon rehydration. Thus, we have identified and optimized the parameters of importance for the design of a spray dried powder formulation of the cationic liposomal adjuvant formulation 01 (CAF01) composed of dimethyldioctadecylammonium (DDA) bromide and trehalose 6,6'-dibehenate (TDB) via spray drying. The optimal excipient to stabilize CAF01 during spray drying and for the design of nanocomposite microparticles was identified among mannitol, lactose and trehalose. Trehalose and lactose were promising stabilizers with respect to preserving liposome size, as compared to mannitol. Trehalose and lactose were in the glassy state upon co-spray drying with the liposomes, whereas mannitol appeared crystalline, suggesting that the ability of the stabilizer to form a glassy matrix around the liposomes is one of the prerequisites for stabilization. Systematic studies on the effect of process parameters suggested that a fast drying rate is essential to avoid phase separation and lipid accumulation at the surface of the microparticles during spray drying. Finally, immunization studies in mice with CAF01 in combination with the tuberculosis antigen Ag85B-ESAT6-Rv2660c (H56) demonstrated that spray drying of CAF01 with trehalose under optimal processing conditions resulted in the preservation of the adjuvant activity in vivo. These data demonstrate the importance of liposome stabilization via optimization of formulation and processing conditions in the engineering of dry powder liposome formulations. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Thin layer modelling of Gelidium sesquipedale solar drying process

    International Nuclear Information System (INIS)

    Ait Mohamed, L.; Ethmane Kane, C.S.; Kouhila, M.; Jamali, A.; Mahrouz, M.; Kechaou, N.

    2008-01-01

    The effect of air temperature and air flow rate on the drying kinetics of Gelidium sesquipedale was investigated in convective solar drying. Drying was conducted at 40, 50 and 60 deg. C. The relative humidity was varied from 50% to 57%, and the drying air flow rate was varied from 0.0277 to 0.0833 m 3 /s. The expression for the drying rate equation is determined empirically from the characteristic drying curve. Thirteen mathematical models of thin layer drying are selected in order to estimate the suitable model for describing the drying curves. The two term model gives the best prediction of the drying curves and satisfactorily describes the drying characteristics of G. sesquipedale with a correlation coefficient R of 0.9999 and chi-square (χ 2 ) of 3.381 x 10 -6

  19. Application of microwave to drying and blanching of tomatoes

    International Nuclear Information System (INIS)

    Ando, Y.; Orikasa, T.; Shiina, T.; Sotome, I.; Isobe, S.; Muramatsu, Y.; Tagawa, A.

    2010-01-01

    The applicability of microwave to the drying and blanching of tomatoes was examined. The changes of the drying rate and surface color were first measured and compared between drying by hot air (50degC) or microwave at three radiation powers. The drying rates using a microwave were higher than that using hot air. Both a constant-rate drying period and a falling-rate drying period were observed for each microwave radiation power. Compared to hot air drying, microwave drying resulted in an increase in lightness which is a preferable quality of tomatoes. Next, the changes in temperature, nutrients and surface color were measured and compared between blanching by microwave or boiling water. Microwave blanching required less time, resulted in higher retention of nutrients (ascorbic acid and lycopene) and caused less change in color in comparison with boiling water blanching. These results suggest that a microwave could be applied to drying and blanching tomatoes

  20. Corn Drying with Zeolite in The Fluidized Bed Dryer under Medium Temperature

    Directory of Open Access Journals (Sweden)

    Mohamad Djaeni

    2013-08-01

    Full Text Available Drying is an important step to find high quality of corn. Based on Standard of National Industry, populer as SNI, number 01-3920-1995, the corn was well stored at moisture content 14% or below (wet basis. However, conventional corn drying dealed with in-efficient energy process and corn quality degradation. This research evaluated the performance of corn drying assisted by zeolite as moisture adsorbent. In this process, the zeolite and corn were placed in the dryer fluidized by warm air as drying medium under 40 - 50oC. The air evaporated water product from corn, and at same time the zeolite adsorbed moisture in air. So, the relative humidity of air in dryer can be kept low in which enhanced the driving force for drying. Beside that, the moisture adsoprtion by zeolite was exothermic process that can supply the energy for drying or keep the dryer temperature. Thus, the drying rate can be faster. This work foccussed to observe the effect of drying temperature, air velocity, and corn to zeolite ratio on drying time as well as corn quality. As indicators, the drying rate was estimated and the proxymates content such as protein, fat, and carbohydrate content were analyzed. The results showed that compared with conventional fluidised bed dryer, corn drying with zeolite, can speed up drying time as well as improving the constant of drying rate. In addition, the corn proximate nutrition content can be well retained. At operating temperature 40oC, air velocity 9 m.s-1, and zeolite to corn ratio 1:2, the drying time can be 60 minutes shorter compared to that without zeolite.

  1. Thin layer modelling of Gelidium sesquipedale solar drying process

    Energy Technology Data Exchange (ETDEWEB)

    Ait Mohamed, L. [Laboratoire d' Energie Solaire et des Plantes Aromatiques et Medicinales, Ecole Normale Superieure, BP 2400, Marrakech (Morocco); Faculte des Sciences Semlalia, BP 2390, Marrakech (Morocco); Ethmane Kane, C.S. [Faculte des Sciences de Tetouan, BP 2121, Tetouan (Morocco); Kouhila, M.; Jamali, A. [Laboratoire d' Energie Solaire et des Plantes Aromatiques et Medicinales, Ecole Normale Superieure, BP 2400, Marrakech (Morocco); Mahrouz, M. [Faculte des Sciences Semlalia, BP 2390, Marrakech (Morocco); Kechaou, N. [Ecole Nationale d' Ingenieurs de Sfax, BPW 3038 (Tunisia)

    2008-05-15

    The effect of air temperature and air flow rate on the drying kinetics of Gelidium sesquipedale was investigated in convective solar drying. Drying was conducted at 40, 50 and 60 C. The relative humidity was varied from 50% to 57%, and the drying air flow rate was varied from 0.0277 to 0.0833 m{sup 3}/s. The expression for the drying rate equation is determined empirically from the characteristic drying curve. Thirteen mathematical models of thin layer drying are selected in order to estimate the suitable model for describing the drying curves. The two term model gives the best prediction of the drying curves and satisfactorily describes the drying characteristics of G. sesquipedale with a correlation coefficient R of 0.9999 and chi-square ({chi}{sup 2}) of 3.381 x 10{sup -6}. (author)

  2. Crispy banana obtained by the combination of a high temperature and short time drying stage and a drying process

    Directory of Open Access Journals (Sweden)

    K. Hofsetz

    2005-06-01

    Full Text Available The effect of the high temperature and short time (HTST drying stage was combined with an air drying process to produce crispness in bananas. The fruit was dehydrated in an air drier for five minutes at 70°C and then immediately set at a HTST stage (130, 140, 150°C and 9, 12, 15 minutes and then at 70°C until water activity (a w was around 0.300. Crispness was evaluated as a function of water activity, using sensory and texture analyses. Drying kinetics was evaluated using the empirical Lewis model. Crispy banana was obtained at 140°C-12min and 150°C-15min in the HTST stage, with a w = 0.345 and a w = 0.363, respectively. Analysis of the k parameter (Lewis model suggests that the initial moisture content of the samples effects this parameter, overcoming the HTST effect. Results showed a relationship between sensory crispness, instrumental texture and the HTST stage.

  3. Infrared Drying as a Quick Preparation Method for Dried Tangerine Peel

    Directory of Open Access Journals (Sweden)

    Mingyue Xu

    2017-01-01

    Full Text Available To establish the most convenient and effective method to dry tangerine peels, different methods (sun drying, hot-air drying, freeze drying, vacuum drying, and medium- and short-wave infrared drying were exploited. Our results indicated that medium- and short-wave infrared drying was the best method to preserve nutraceutical components; for example, vitamin C was raised to 6.77 mg/g (D.W. from 3.39 mg/g (sun drying. Moreover, the drying time can be shortened above 96% compared with sun drying. Importantly, the efficiency of DPPH radical scavenging was enhanced from 26.66% to 55.92%. These findings would provide a reliable and time-saving methodology to produce high-quality dried tangerine peels.

  4. Performance of Sandy Dry Beds for sludge dewatering

    International Nuclear Information System (INIS)

    Al-Muzaini, S.

    2003-01-01

    Sludge produced by the Jahra treatment plant was assessed. The assessment was directed at determining the performance of sand drying beds. The assessment of quality of the sludge produced was based on the standards for land application of sewage sludge. Analyses were carried out for trace heavy metals and bacteria. The results of analyses showed that the sludge produced was high in organic matter and sand content but low in heavy metals. The collected data indicated that the sand drying beds at the Jahra treatment plant are at present inadequate to handle the projected sludge production. The investigation showed that the sand drying beds are fully used and the plant will require 3-4 times the capacity of the existing drying beds when the plant becomes fully operational. In addition, these sand drying beds are subjected to uncontrollable conditions such as temperature, rainfall and sludge drainage rate. Thus, sand drying beds have become less popular as a dewatering system. This paper evaluates the performance of the existing sand drying beds and suggests the most appropriate technology to alleviate the above mentioned problems. (author)

  5. Microstructure, composition and performance of PVD coatings designed for successful dry high speed milling

    International Nuclear Information System (INIS)

    Muenz, W.-D.; Lembke, M.I.; Lewis, D.B.; Smith, I.J.

    2001-01-01

    Dry high speed machining (HSM), particularly dry high speed milling, demands hard coatings, which exhibit high toughness, high oxidation resistance, a limited amount of residual stress and excellent adhesion to the cemented carbide (CC) substrate. These requirements are met by TiAICrYN coatings grown by the combined cathodic arc/unbalanced magnetron deposition method. Fully sufficient adhesion is achieved by ion implantation of Cr into the CC prior deposition. Residual stress is controlled by an Y - free base layer; high oxidation resistance is provided by an Y - containing 3 μm thick hard coating with 29 GPa hardness and a residual stress well below -7 GPa. Under the influence of temperatures above 800 o C, Y segregates along the columns of TiAIN and plugs the in/out diffusion of elements. A top layer of Y - containing oxynitride reduces the friction against the work piece material (0.9 to 0.65). Cutting tools coated as such may be used for dry milling up to 25 k rpm in steels HRC > 60. (author)

  6. Spray Drying of High Sugar Content Foods: Improving of Product Yield and Powder Properties

    OpenAIRE

    Mehmet Koç; Figen Kaymak-Ertekin

    2016-01-01

    Spray drying is the most preferred drying method to produce powdered food in the food industry and it is also widely used to convert sugar-rich liquid foods to a powder form. During and/or after spray drying process of sugar-rich products, undesirable situation was appeared such as stickiness, high moisture affinity (hygroscopicity) and low solubility due to low molecular weight monosaccharides that found naturally in the structure. The basis of these problems was formed by low glass transiti...

  7. Design of solar drying-plant for bulk material drying

    Directory of Open Access Journals (Sweden)

    Peter Horbaj

    2008-11-01

    Full Text Available A generally well-known high energy requirement for technological processes of drying and the fact that the world’s supplyof the conventional energy sources has considerably decreased are the decisive factors forcing us to look for some new, if possible,renewable energy sources for this process by emphasising their environmental reliability. One of the possibilities how to replace, atleast partly, the conventional energy sources – heat in a drying process is solar energy.Air-drying of bulk materials usually has a series of disadvantages such as time expenditure, drying defects in the bulk materialand inadequate final moisture content. A method that obviates or reduces the disadvantages of air-drying and, at the same time, reducesthe costs of kiln drying, is drying with solar heat. Solar energy can replace a large part of this depletable energy since solar energy cansupply heat at the temperatures most often used to dry bulk material. Solar drying-plant offer an attractive solution.

  8. The drying of sewage sludge by immersion frying

    Directory of Open Access Journals (Sweden)

    D. P. Silva

    2005-06-01

    Full Text Available The objective of this work was to dry sewage sludge using a fry-drying process. The frying experiments were carried out in commercial fryers modified by adding thermocouples to the setup. During frying, typical drying curves were obtained and it was verified that, in relation to the parameters: oil temperature, oil type and shape of the sample, the shape factor the most effect on the drying rate, at least within the range chosen for the variables studied. Oil uptake and calorific value were also analyzed. The calorific value of the samples increased with frying time, reaching values around 24MJ/kg after 600s of frying (comparable to biocombustibles such as wood and sugarcane bagasse. The process of immersion frying showed great potential for drying materials, especially sewage sludge, obtaining a product with a high energy content, thereby increasing its value as a combustible.

  9. Determination of pesticide residue transfer rates (percent) from dried tea leaves to brewed tea.

    Science.gov (United States)

    Wang, Jian; Cheung, Wendy; Leung, Daniel

    2014-01-29

    This paper presents a study on pesticide residue transfer rates (%) from dried tea leaves to brewed tea. In the study, a brewing procedure simulated the preparation of a hot tea drink as in routine. After brewing, pesticide residues were extracted from brewed tea using a method known as QuEChERS (quick, easy, cheap, effective, rugged, and safe). An UHPLC/ESI-MS/MS method was developed and validated to identify and quantify up to 172 pesticides in both tea leaves and brewed tea samples. Quantification was achieved using matrix-matched standard calibration curves with isotopically labeled standards or a chemical analogue as internal standards, and the calibration curves consisted of six points (0.4, 2.0, 8.0, 16.0, 24.0, and 40.0 μg/L equivalent in sample). The method was validated at four concentration levels (4.0, 12, 20.0, and 32.0 μg/L equivalent in sample) using five different brewed tea matrices on two separate days per matrix. Method performance parameters included overall recovery, intermediate precision, and measurement uncertainty, which were evaluated according to a nested experimental design. Approximately, 95% of the pesticides studied had recoveries between 81 and 110%, intermediate precision ≤20%, and measurement uncertainty ≤40%. From a pilot study of 44 incurred tea samples, pesticide residues were examined for their ability to transfer from dried tea leaves to brewed tea. Each sample, both tea leaves and brewed tea, was analyzed in duplicate. Pesticides were found to have different transfer rates (%). For example, imidacloprid, methomyl, and carbendazim had transfer rates of 84.9, 83.4, and 92.4%, respectively.

  10. Random-walk diffusion and drying of porous materials

    Science.gov (United States)

    Mehrafarin, M.; Faghihi, M.

    2001-12-01

    Based on random-walk diffusion, a microscopic model for drying is proposed to explain the characteristic features of the drying-rate curve of porous materials. The constant drying-rate period is considered as a normal diffusion process. The transition to the falling-rate regime is attributed to the fractal nature of porous materials which results in crossover to anomalous diffusion.

  11. Photovoltaic assisted solar drying system

    International Nuclear Information System (INIS)

    Ruslan, M.H.; Othman, M.Y.; Baharuddin Yatim; Kamaruzzaman Sopian; Ali, M.I.; Ibarahim, Z.

    2006-01-01

    A photovoltaic assisted solar drying system has been constructed at the Solar Energy Research Park, Universiti Kebangsaan Malaysia. This drying system uses a custom designed parallel flow V-groove type collector. A fan powered by photovoltaic source assists the air flow through the drying system. A funnel with increasing diameter towards the top with ventilator turbine is incorporated into the system to facilitate the air flow during the absence of photovoltaic energy source. This drying system is designed with high efficiency and portability in mind so that it can readily be used at plantation sites where the crops are harvested or produced. A daily mean efficiency about 44% with mean air flow rate 0.16 kgs -1 has been achieved at mean daily radiation intensity of 800 Wm -2 . daily mean temperature of air drying chamber under the above conditions is 46 o C. Study has shown that the air flow and air temperature increase with the increase of solar radiation intensity. On a bright sunny day with instantaneous solar intensity about 600 Wm -2 , the temperature of air entering the drying chamber of 45 o C has been measured. In the absence of photovoltaic or in natural convection flow, the instantaneous efficiency decreased when solar radiation increased. The instantaneous efficiency recorded are 35% and 27% respectively at 570 Wm -2 and 745 Wm -2 of solar radiation. The temperature of drying chamber for the same amount of solar radiation are 42 o C and 48 o C respectively. Thus, the solar dryer shows a great potential for application in drying process of agricultural produce

  12. Hydrogen iodide-based dry etching of GaAs, InP, and related compounds

    International Nuclear Information System (INIS)

    Pearton, S.J.; Chakrabarti, U.K.; Hobson, W.S.; Abernathy, C.R.; Katz, A.; Ren, F.; Fullowan, T.R.; Perley, A.P.

    1992-01-01

    In this paper HI/H 2 /Ar discharges are shown to be universal etchants for III-V semiconductors, giving rise to highly anisotropic features with smooth surface morphologies. At low dc Self bias (-V) and low pressure (1 mTorr), etch rates for all III-V materials of >2000 Angstrom · min -1 are possible for high HI percentages in the discharges, whereas rates greater than 1 μm · min -1 are obtained at higher pressures and dc biases. These etch rates are approximately an order of magnitude faster than for CH 4 /H 2 Ar mixtures under the same conditions and there is no polymer deposition on the mask or within the reactor chamber with HI/H 2 /Ar. Auger electron spectroscopy reveals residue-free, stoichiometric surfaces after dry etching in this mixture. As a result, photoluminescent intensities from dry etched samples remain high with little apparent damage introduction. Changes in the near-surface carrier concentration due to hydrogen passivation effects are also negligible with HI-based mixtures in comparison to CH 4 -based dry etching

  13. Gap-filling of dry weather flow rate and water quality measurements in urban catchments by a time series modelling approach

    DEFF Research Database (Denmark)

    Sandoval, Santiago; Vezzaro, Luca; Bertrand-Krajewski, Jean-Luc

    2016-01-01

    seeks to evaluate the potential of the Singular Spectrum Analysis (SSA), a time-series modelling/gap-filling method, to complete dry weather time series. The SSA method is tested by reconstructing 1000 artificial discontinuous time series, randomly generated from real flow rate and total suspended......Flow rate and water quality dry weather time series in combined sewer systems might contain an important amount of missing data due to several reasons, such as failures related to the operation of the sensor or additional contributions during rainfall events. Therefore, the approach hereby proposed...... solids (TSS) online measurements (year 2007, 2 minutes time-step, combined system, Ecully, Lyon, France). Results show up the potential of the method to fill gaps longer than 0.5 days, especially between 0.5 days and 1 day (mean NSE > 0.6) in the flow rate time series. TSS results still perform very...

  14. Improvement of water transport mechanisms during potato drying by applying ultrasound.

    Science.gov (United States)

    Ozuna, César; Cárcel, Juan A; García-Pérez, José V; Mulet, Antonio

    2011-11-01

    The drying rate of vegetables is limited by internal moisture diffusion and convective transport mechanisms. The increase of drying air temperature leads to faster water mobility; however, it provokes quality loss in the product and presents a higher energy demand. Therefore, the search for new strategies to improve water mobility during convective drying constitutes a topic of relevant research. The aim of this work was to evaluate the use of power ultrasound to improve convective drying of potato and quantify the influence of the applied power in the water transport mechanisms. Drying kinetics of potato cubes were increased by the ultrasonic application. The influence of power ultrasound was dependent on the ultrasonic power (from 0 to 37 kW m(-3) ), the higher the applied power, the faster the drying kinetic. The diffusion model considering external resistance to mass transfer provided a good fit of drying kinetics. From modelling, it was observed a proportional and significant (P mass transfer coefficient. The ultrasonic application during drying represents an interesting alternative to traditional convective drying by shortening drying time, which may involve an energy saving concerning industrial applications. In addition, the ultrasonic effect in the water transport is based on mechanical phenomena with a low heating capacity, which is highly relevant for drying heat sensitive materials and also for obtaining high-quality dry products. Copyright © 2011 Society of Chemical Industry.

  15. Herbal dryer: drying of ginger (zingiber officinale) using tray dryer

    Science.gov (United States)

    Haryanto, B.; Hasibuan, R.; Alexander; Ashari, M.; Ridha, M.

    2018-02-01

    Drying is widely used as a method to preserve food because of its convenience and affordability. Drying of ginger using tray dryer were carried out at various drying conditions, such as air-drying flow, air-drying temperature, and sample dimensions, to achieve the highest drying rate. Samples with various dimensions were placed in the tray dryer and dried using various air-drying flow and temperatures. The weights of samples were observed every 3 minutes interval. Drying was stopped after three times of constant weighing. Data of drying was collected to make the drying curves. Drying curves show that the highest drying rate is achieved using highest air flow and temperature.

  16. Changes in ruminal volatile fatty acid production and absorption rate during the dry period and early lactation as affected by rate of increase of concentrate allowance

    NARCIS (Netherlands)

    Dieho, K.; Dijkstra, J.; Schonewille, J. T.; Bannink, A.

    The aim of the present experiment was to study changes in volatile fatty acid (VFA) production using an isotope dilution technique, and changes in VFA fractional absorption rate (k aVFA) using a buffer incubation technique (BIT) during the dry period and early lactation, as affected by the

  17. Seasonal Patterns of Dry Deposition at a High-Elevation Site in the Colorado Rocky Mountains

    Science.gov (United States)

    Oldani, Kaley M.; Mladenov, Natalie; Williams, Mark W.; Campbell, Cari M.; Lipson, David A.

    2017-10-01

    In the Colorado Rocky Mountains, high-elevation barren soils are deficient in carbon (C) and phosphorus (P) and enriched in nitrogen (N). The seasonal variability of dry deposition and its contributions to alpine elemental budgets is critical to understanding how dry deposition influences biogeochemical cycling in high-elevation environments. In this 2 year study, we evaluated dry and wet deposition inputs to the Niwot Ridge Long Term Ecological Research (NWT LTER) site in the Colorado Rocky Mountains. The total organic C flux in wet + dry (including soluble and particulate C) deposition was >30 kg C ha-1 yr-1 and represents a substantial input for this C-limited environment. Our side-by-side comparison of dry deposition collectors with and without marble insert indicated that the insert improved retention of dry deposition by 28%. Annual average dry deposition fluxes of water-soluble organic carbon (4.25 kg C ha-1 yr-1) and other water-soluble constituents, including ammonium (0.16 kg NH4+ha-1 yr-1), nitrate (1.99 kg NO3- ha-1 yr-1), phosphate (0.08 kg PO43- ha-1 yr-1), and sulfate (1.20 kg SO42- ha-1 yr-1), were comparable to those in wet deposition, with highest values measured in the summer. Backward trajectory analyses implicate air masses passing through the arid west and Four Corners, USA, as dominant source areas for dry deposition, especially in spring months. Synchronous temporal patterns of deposition observed at the NWT LTER site and a distant Rocky Mountain National Park Clean Air Status and Trends Network site indicate that seasonal dry deposition patterns are regional phenomena with important implications for the larger Rocky Mountain region.

  18. Microwave blanching and drying characteristics of Centella asiatica (L.) urban leaves using tray and heat pump-assisted dehumidified drying.

    Science.gov (United States)

    Trirattanapikul, W; Phoungchandang, S

    2014-12-01

    The appropriate stage of maturity of Centella asiatica (L.) Urban leaves was investigated. Mature leaves with large diameter contained high total phenolics and % inhibition. Microwave blanching for 30 s retained the highest total phenolics and the microwave blanching for 30 s and 45 s retained the highest % inhibition. Modified Henderson and Modified Chung-Pfost models showed the best fit to both fresh and blanched leaves for equilibrium moisture content, Xe = f(RHe, T) and equilibrium relative humidity, RHe = f(Xe, T), respectively. The Modified Page model was the most effective model in describing the leaf drying. All drying was in the falling rate period. The drying constant was related to drying air temperature using the Arrhenius model. Effective moisture diffusivities increased with increasing temperature and blanching treatments as well as dehumidification by heat pump-assisted dehumidified dryer. The heat pump-assited dehumidified drying incorporated by the microwave blanching could reduce the drying time at 40 °C by 31.2 % and increase % inhibition by 6.1 %. Quality evaluation by total phenolics, % inhibition and rehydration ratio showed the best quality for C. asiatica leaves pretreated by microwave blanching and dried at 40 °C in heat pump-assisted dehumidified dryer.

  19. Accelerating oak air drying by presurfacing

    Science.gov (United States)

    W. T. Simpson; R. C. Baltes

    1972-01-01

    A comparison was made between the air-drying rates of rough and presurfaced northern red oak and white oak. In both species, the presurfaced material was about 1/8 inch thinner than the rough material and dried faster than the rough material. The reduction in drying time depends on the method of analyzing the drying curves, but is slightly less than 10 percent.

  20. Computational fluid dynamics (CFD) assisted performance evaluation of the Twincer™ disposable high-dose dry powder inhaler.

    Science.gov (United States)

    de Boer, Anne H; Hagedoorn, Paul; Woolhouse, Robert; Wynn, Ed

    2012-09-01

    To use computational fluid dynamics (CFD) for evaluating and understanding the performance of the high-dose disposable Twincer™ dry powder inhaler, as well as to learn the effect of design modifications on dose entrainment, powder dispersion and retention behaviour. Comparison of predicted flow and particle behaviour from CFD computations with experimental data obtained with cascade impactor and laser diffraction analysis. Inhaler resistance, flow split, particle trajectories and particle residence times can well be predicted with CFD for a multiple classifier based inhaler like the Twincer™. CFD computations showed that the flow split of the Twincer™ is independent of the pressure drop across the inhaler and that the total flow rate can be decreased without affecting the dispersion efficacy or retention behaviour. They also showed that classifier symmetry can be improved by reducing the resistance of one of the classifier bypass channels, which for the current concept does not contribute to the swirl in the classifier chamber. CFD is a highly valuable tool for development and optimisation of dry powder inhalers. CFD can assist adapting the inhaler design to specific physico-chemical properties of the drug formulation with respect to dispersion and retention behaviour. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.

  1. Analysis and modeling of dry matter production rate by soybean [Glycine max] community: Curvilinear response to radiation intensity

    International Nuclear Information System (INIS)

    Sameshima, R.

    1996-01-01

    The linear relationship between the amount of absorbed radiation and dry matter production by crop communities has long been known, and the proportionality constant between them is known as the radiation use efficiency (RUE). To analyze and predict crop production using RUE, the assumption is often made that RUE is not sensitive to radiation intensity and that dry matter production rate (DMPR) is a linear function of radiation intensity.However, there is evidence in opposition to this assumption, including reports of increasing RUE in shade tests, and hyperbolic response of photosynthetic rate to radiation intensity. The following model was developed and used to analyze the response of DMPR and RUE to daily radiation R S : DMPR = DMPR max (R S ) * g(α) where DMPR max (R S ) is the DMPR of a hypothetical soybean community absorbing all radiation, and g(α) represents the effect of radiation absorptivity (α). A hyperbolic curve and a straight line were employed for DMPR max (R S ) and g(α), respectively. Field experimental data including shade tests were used to determine the parameters for the model. Two sets of parameters were required to cover the entire experimental period. DMPR max (R S ) had an apparent curvilinear relationship with R S . The model successfully described dry matter production under successive low radiation conditions, which could not be estimated by a model with RUE insensitive to radiation. (author)

  2. Microstructure Evolution and Mechanical Properties of Underwater Dry and Local Dry Cavity Welded Joints of 690 MPa Grade High Strength Steel.

    Science.gov (United States)

    Shi, Yonghua; Sun, Kun; Cui, Shuwan; Zeng, Min; Yi, Jianglong; Shen, Xiaoqin; Yi, Yaoyong

    2018-01-22

    Q690E high strength low alloy (HSLA) steel plays an important role in offshore structures. In addition, underwater local cavity welding (ULCW) technique was widely used to repair important offshore constructions. However, the high cooling rate of ULCW joints results in bad welding quality compared with underwater dry welding (UDW) joints. Q690E high strength low alloy steels were welded by multi-pass UDW and ULCW techniques, to study the microstructural evolution and mechanical properties of underwater welded joints. The microstructure and fracture morphology of welded joints were observed by scanning electron microscope and optical microscope. The elemental distribution in the microstructure was determined with an Electron Probe Microanalyzer. The results indicated that the microstructure of both two welded joints was similar. However, martensite and martensite-austenite components were significantly different with different underwater welding methods such that the micro-hardness of the HAZ and FZ in the ULCW specimen was higher than that of the corresponding regions in UDW joint. The yield strength and ultimate tensile strength of the ULCW specimen are 109 MPa lower and 77 MPa lower, respectively, than those of the UDW joint. The impact toughness of the UDW joint was superior to those of the ULCW joint.

  3. Microstructure Evolution and Mechanical Properties of Underwater Dry and Local Dry Cavity Welded Joints of 690 MPa Grade High Strength Steel

    Science.gov (United States)

    Sun, Kun; Cui, Shuwan; Zeng, Min; Yi, Jianglong; Shen, Xiaoqin; Yi, Yaoyong

    2018-01-01

    Q690E high strength low alloy (HSLA) steel plays an important role in offshore structures. In addition, underwater local cavity welding (ULCW) technique was widely used to repair important offshore constructions. However, the high cooling rate of ULCW joints results in bad welding quality compared with underwater dry welding (UDW) joints. Q690E high strength low alloy steels were welded by multi-pass UDW and ULCW techniques, to study the microstructural evolution and mechanical properties of underwater welded joints. The microstructure and fracture morphology of welded joints were observed by scanning electron microscope and optical microscope. The elemental distribution in the microstructure was determined with an Electron Probe Microanalyzer. The results indicated that the microstructure of both two welded joints was similar. However, martensite and martensite-austenite components were significantly different with different underwater welding methods such that the micro-hardness of the HAZ and FZ in the ULCW specimen was higher than that of the corresponding regions in UDW joint. The yield strength and ultimate tensile strength of the ULCW specimen are 109 MPa lower and 77 MPa lower, respectively, than those of the UDW joint. The impact toughness of the UDW joint was superior to those of the ULCW joint. PMID:29361743

  4. Technical aspects of the production of dried extract of Maytenus ilicifolia leaves by jet spouted bed drying.

    Science.gov (United States)

    Cordeiro, Daniel S; Oliveira, Wanderley P

    2005-08-11

    This work presents an evaluation of the performance of jet spouted bed with inert particles for production of dried extracts of Maytenus ilicifolia leaves. The development of the extraction procedure was carried-out with the aid of three factors and three levels Box-Behnken design. The effects of the extraction variables, temperature (Text); stirring time (theta); and the ratio of the plant to solvent mass (m(p)/m(s)) on the extraction yield were investigated. The drying performance and product properties were evaluated through the measurement of the product size distribution, loss on drying (Up), flavonoid degradation (D) and, process thermal efficiency (eta). These parameters were measured as a function of the inlet temperature of the spouting gas (Tgi), the feed mass flow rate of the concentrated extract relative to mass flow rate of the spouting gas (Ws/Wg), the ratio between the feed flow rate of spouting gas relative to feed flow rate at a minimum spouting condition (Q/Qms) and the static bed height (H0). A powder product with a low degradation of active substances and good physical properties were obtained for selected operating conditions. These results indicate the feasibility of this drying equipment for the production of dried extracts of M. ilicifolia Martius ex Reiss leaves.

  5. Experimental Investigations during Dry EDM of Inconel - 718

    International Nuclear Information System (INIS)

    BHANDARE, A S; DABADE, U A

    2016-01-01

    Dry EDM is a modification of the conventional EDM process in which the liquid dielectric is replaced by a gaseous medium. Tubular tool electrodes are used and as the tool rotates, high velocity gas is supplied through it into the discharge gap. The flow of high velocity gas into the gap facilitates removal of debris and prevents excessive heating of the tool and work piece at the discharge spots. It is now known that apart from being an environment- friendly process, other advantages of the dry EDM process are low tool wear, lower discharge gap, lower residual stresses, smaller white layer and smaller heat affected zone. Keeping literature review into consideration, in this paper, an attempt has been made by selecting compressed air as a dielectric medium, with Inconel - 718 as a work piece material and copper as a tool electrode. Experiments are performed using Taguchi DoE orthogonal array to observe and analyze the effects of different process parameters to optimize the response variables such as material removal rate (MRR), surface roughness (Ra) and tool wear rate (TWR). In the current work, a unit has been developed to implement dry EDM process on existing oil based EDM machine. (paper)

  6. The determination of optimum condition in water hyacinth drying process by mixed adsorption drying method and modified fly ash as an adsorbent

    Science.gov (United States)

    Saputra, Asep Handaya; Putri, Rizky Anggreini

    2017-05-01

    Water hyacinth is an aquatic weed that has a very fast growth which makes it becomes a problem to the ecosystem. On the other hand, water hyacinth has a high fiber content (up to 20% by weight) which makes it potential to become raw material for composites and textile industries. As an aquatic plant, water hyacinth has a high initial moisture content that reaches more than 90%. Meanwhile the moisture content of fiber as a raw material for composite and textile industry should not be more than 10% to maintain the good quality of the products. Mixed adsorption drying method is one of the innovative method that can replace conventional drying process. Fluidization method which has been commonly used in agricultural and pharmaceutical products drying, can be enhanced by combining it with the adsorption method as performed in this study. In mixed fluidization-adsorption drying method, fly ash as adsorbent and water hyacinth fiber were put together into the fluidization column where the drying air evaporate the moisture content in water hyacinth fiber. In addition, the adsorbent adsorb the moisture content in the drying air to make the moisture content of the drying air remain low. The drying process is performed in various temperature and composition of water hyacinth and adsorbent in order to obtain the optimum drying condition. In addition, the effect of fly ash pellet and fly ash powder to the drying process was also performed. The result shows that the higher temperature and the more amount of adsorbent results in the faster drying rate. Fly ash pellet shows a better adsorption since it has a smaller pore diameter and wider surface area. The optimum temperature obtained from this study is 60°C and the optimum ratio of water hyacinth and fly ash is 50:50.

  7. Effect of gamma irradiation on pre-treatment on the drying characteristics and qualities of wheat

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yong; Wang, Jun [Zhejiang University (China). Dept. of Biosystems Engineering

    2008-07-01

    Wheat, pretreated by {sup 60}Co gamma irradiation, was dried by hot-air with irradiation dosage 0-3 kGy, drying temperature 40-60 deg C, and initial moisture contents 19-25% (drying basis). The drying characteristics and dried qualities of wheat were evaluated based on drying time, average dehydration rate, wet gluten content (WGC), moisture content of wet gluten (MCWG)and titratable acidity (TA). A quadratic rotation-orthogonal composite experimental design, with three variables (at five levels) and five response functions, and analysis method were employed to study the effect of three variables on the individual response functions. The five response functions (drying time, average dehydration rate, WGC, MCWG, TA) correlated with these variables by second order polynomials consisting of linear, quadratic and interaction terms. A high correlation coefficient indicated the suitability of the second order polynomial to predict these response functions. The linear, interaction and quadratic effects of three variables on the five response functions were all studied. (author)

  8. Effect of gamma irradiation on pre-treatment on the drying characteristics and qualities of wheat

    International Nuclear Information System (INIS)

    Yu, Yong; Wang, Jun

    2008-01-01

    Wheat, pretreated by 60 Co gamma irradiation, was dried by hot-air with irradiation dosage 0-3 kGy, drying temperature 40-60 deg C, and initial moisture contents 19-25% (drying basis). The drying characteristics and dried qualities of wheat were evaluated based on drying time, average dehydration rate, wet gluten content (WGC), moisture content of wet gluten (MCWG)and titratable acidity (TA). A quadratic rotation-orthogonal composite experimental design, with three variables (at five levels) and five response functions, and analysis method were employed to study the effect of three variables on the individual response functions. The five response functions (drying time, average dehydration rate, WGC, MCWG, TA) correlated with these variables by second order polynomials consisting of linear, quadratic and interaction terms. A high correlation coefficient indicated the suitability of the second order polynomial to predict these response functions. The linear, interaction and quadratic effects of three variables on the five response functions were all studied. (author)

  9. Ambient pressure dried tetrapropoxysilane-based silica aerogels with high specific surface area

    Science.gov (United States)

    Parale, Vinayak G.; Han, Wooje; Jung, Hae-Noo-Ree; Lee, Kyu-Yeon; Park, Hyung-Ho

    2018-01-01

    In the present paper, we report the synthesis of tetrapropoxysilane (TPOS)-based silica aerogels with high surface area and large pore volume. The silica aerogels were prepared by a two-step sol-gel process followed by surface modification via a simple ambient pressure drying approach. In order to minimize drying shrinkage and obtain hydrophobic aerogels, the surface of the alcogels was modified using trichloromethylsilane as a silylating agent. The effect of the sol-gel compositional parameters on the polymerization of aerogels prepared by TPOS, one of the precursors belonging to the Si(OR)4 family, was reported for the first time. The oxalic acid and NH4OH concentrations were adjusted to achieve good-quality aerogels with high surface area, low density, and high transparency. Controlling the hydrolysis and condensation reactions of the TPOS precursor turned out to be the most important factor to determine the pore characteristics of the aerogel. Highly transparent aerogels with high specific surface area (938 m2/g) and low density (0.047 g/cm3) could be obtained using an optimized TPOS/MeOH molar ratio with appropriate concentrations of oxalic acid and NH4OH.

  10. Effect of drying process assisted by high-pressure impregnation on protein quality and digestibility in red abalone (Haliotis rufescens).

    Science.gov (United States)

    Cepero-Betancourt, Yamira; Oliva-Moresco, Patricio; Pasten-Contreras, Alexis; Tabilo-Munizaga, Gipsy; Pérez-Won, Mario; Moreno-Osorio, Luis; Lemus-Mondaca, Roberto

    2017-10-01

    Abalone (Haliotis spp.) is an exotic seafood product recognized as a protein source of high biological value. Traditional methods used to preserve foods such as drying technology can affect their nutritional quality (protein quality and digestibility). A 28-day rat feeding study was conducted to evaluate the effects of the drying process assisted by high-pressure impregnation (HPI) (350, 450, and 500 MPa × 5 min) on chemical proximate and amino acid compositions and nutritional parameters, such as protein efficiency ratio (PER), true digestibility (TD), net protein ratio, and protein digestibility corrected amino acid score (PDCAAS) of dried abalone. The HPI-assisted drying process ensured excellent protein quality based on PER values, regardless of the pressure level. At 350 and 500 MPa, the HPI-assisted drying process had no negative effect on TD and PDCAAS then, based on nutritional parameters analysed, we recommend HPI-assisted drying process at 350 MPa × 5 min as the best process condition to dry abalone. Variations in nutritional parameters compared to casein protein were observed; nevertheless, the high protein quality and digestibility of HPI-assisted dried abalones were maintained to satisfy the metabolic demands of human beings.

  11. Modelling the Drying Characteristics and Kinetics of Hot Air-Drying of Unblanched Whole Red Pepper and Blanched Bitter Leaf Slices

    OpenAIRE

    Samuel Enahoro Agarry

    2017-01-01

    The objective of this study was to investigate the drying characteristics and kinetics of red pepper and bitter leaf under the influence of different drying temperatures. The drying experiments were carried out at dry bulb temperature of 35, 45, 55 and 75oC, respectively in an oven dryer. The results showed that as drying temperature increased, drying rate also increased and the drying time decreased. It was observed that un-sliced red pepper and sliced bitter leaf would dry within 2.5-12 h a...

  12. Changes in the evaporation rate of tear film after digital expression of meibomian glands in patients with and without dry eye.

    Science.gov (United States)

    Arciniega, Juan Carlos; Wojtowicz, Jadwiga Cristina; Mohamed, Engy Mostafa; McCulley, James Parker

    2011-08-01

    To evaluate the effect of excess meibum on tear evaporation rate in patients with and without dry eye. Eleven healthy subjects and 16 patients with dry eye were tested. The dry eye group was divided into 2 subgroups: classic keratoconjunctivitis sicca (KCS) with clear and easily expressed meibum and KCS with meibomian gland dysfunction (MGD) with turbid secretions and difficult-to-express meibum. Evaporative measurements were performed at baseline and after digital expression of meibomian glands at 12, 24, 36, and 48 minutes. Two ranges of relative humidity were used, 25% to 35% and 35% to 45%. The data were expressed as microliters per square centimeter per minute. An increase in the evaporation rate of the tear film was noted for all measurements at both relative humidities in the classic KCS and KCS with MGD groups compared with healthy subjects (P evaporation rates at relative humidities of 25% to 35% and 35% to 45% were 0.056 ± 0.016 and 0.040 ± 0.008 for the classic KCS group; 0.055 ± 0.026 and 0.037 ± 0.019 for the KCS with MGD group and 0.033 ± 0.012 and 0.023 ± 0.008 for the healthy group. Also, a decrease in the evaporation rate was observed in the healthy and KCS with MGD groups between baseline and the first measurement after digital expression for both relative humidities (P evaporation rates compared with the healthy group. Aqueous tear evaporation diminished in the healthy and KCS with MGD groups after expression of meibomian glands. However, this effect was transient and negligible after the second measurement.

  13. Comments to "Analysis of constant rate period of spray drying of slurry" by Liang et al., 2001

    DEFF Research Database (Denmark)

    Jørgensen, Kåre; Jensen, Anker Degn; Sloth, Jakob

    2006-01-01

    In the study by Liang et al. [2001. Analysis of constant rate period of spray drying of slurry. Chemical Engineering Science 56, 2205-2213] the Darcy flow of liquid through a pore system of primary particles to the surface of a slurry droplet was applied for the constant rate period. Steep primary...... particle concentration gradients inside -25 mu m droplets with a primary particle size of 0.2 mu m were observed. Unfortunately, the boundary condition at the droplet surface for the parabolic second-order PDE did not conserve the solid mass in the droplet, and the plots for the primary particle...

  14. Indices of heart rate variability as potential early markers of metabolic stress and compromised regulatory capacity in dried-off high-yielding dairy cows.

    Science.gov (United States)

    Erdmann, S; Mohr, E; Derno, M; Tuchscherer, A; Schäff, C; Börner, S; Kautzsch, U; Kuhla, B; Hammon, H M; Röntgen, M

    2017-10-25

    High performing dairy cows experience distinct metabolic stress during periods of negative energy balance. Subclinical disorders of the cow's energy metabolism facilitate failure of adaptational responses resulting in health problems and reduced performance. The autonomic nervous system (ANS) with its sympathetic and parasympathetic branches plays a predominant role in adaption to inadequate energy and/or fuel availability and mediation of the stress response. Therefore, we hypothesize that indices of heart rate variability (HRV) that reflect ANS activity and sympatho-vagal balance could be early markers of metabolic stress, and possibly useful to predict cows with compromised regulatory capacity. In this study we analysed the autonomic regulation and stress level of 10 pregnant dried-off German Holstein cows before, during and after a 10-h fasting period by using a wide range of HRV parameters. In addition heat production (HP), energy balance, feed intake, rumen fermentative activity, physical activity, non-esterified fatty acids, β-hydroxybutyric acid, cortisol and total ghrelin plasma concentrations, and body temperature (BT) were measured. In all cows fasting induced immediate regulatory adjustments including increased lipolysis (84%) and total ghrelin levels (179%), reduction of HP (-16%), standing time (-38%) and heart rate (-15%). However, by analysing frequency domain parameters of HRV (high-frequency (HF) and low-frequency (LF) components, ratio LF/HF) cows could be retrospectively assigned to groups reacting to food removal with increased or decreased activity of the parasympathetic branch of the ANS. Regression analysis reveals that under control conditions (feeding ad libitum) group differences were best predicted by the nonlinear domain HRV component Maxline (L MAX, R 2=0.76, threshold; TS=258). Compared with cows having L MAX values above TS (>L MAX: 348±17), those with L MAX values below TS (fasting with a shift of their sympatho-vagal balance

  15. Radiation processing as a post-harvest quarantine control for raisins, dried figs and dried apricots

    International Nuclear Information System (INIS)

    Cetinkaya, N.; Ozyardimci, B.; Denli, E.; Ic, E.

    2006-01-01

    The commercially packed samples of raisins, dried figs and dried apricots were irradiated using doses in the range of 0.5-1.0 kGy for disinfestation and 0.5-5.0 kGy for sensory analysis with the dose rate ranging from 1.44 to 1.92 kGy/h. Pests on dried fruits were evaluated after 0, 1, 2 and 3 months of storage for irradiated dried figs and 1, 3, 6 and 12 months of storage for raisins and dried apricots. Sensory analysis of dried figs, dried apricots and raisins were carried out after 0, 1, 3, 6 and 12 months of storage. The results indicated that radiation processing at low doses (∼1.0 kGy) is an effective post-harvest treatment and quarantine control for these products with no adverse effects on sensory (marketing) attributes

  16. Radiation processing as a post-harvest quarantine control for raisins, dried figs and dried apricots

    Energy Technology Data Exchange (ETDEWEB)

    Cetinkaya, N. [TAEA, Ankara Nuclear Research Center in Agriculture and Animal Sciences, 06983 Ankara (Turkey)]. E-mail: nurcet@taek.gov.tr; Ozyardimci, B. [TAEA, Ankara Nuclear Research Center in Agriculture and Animal Sciences, 06983 Ankara (Turkey); Denli, E. [TAEA, Ankara Nuclear Research Center in Agriculture and Animal Sciences, 06983 Ankara (Turkey); Ic, E. [TAEA, Ankara Nuclear Research Center in Agriculture and Animal Sciences, 06983 Ankara (Turkey)

    2006-03-15

    The commercially packed samples of raisins, dried figs and dried apricots were irradiated using doses in the range of 0.5-1.0 kGy for disinfestation and 0.5-5.0 kGy for sensory analysis with the dose rate ranging from 1.44 to 1.92 kGy/h. Pests on dried fruits were evaluated after 0, 1, 2 and 3 months of storage for irradiated dried figs and 1, 3, 6 and 12 months of storage for raisins and dried apricots. Sensory analysis of dried figs, dried apricots and raisins were carried out after 0, 1, 3, 6 and 12 months of storage. The results indicated that radiation processing at low doses ({approx}1.0 kGy) is an effective post-harvest treatment and quarantine control for these products with no adverse effects on sensory (marketing) attributes.

  17. Partial debarking of energy wood stems in production of high quality fuel chips and fuel logs (DryMe); Runkopuun osittainen kuorinta metsaehakkeen ja pilkkeidentuotantoketjussa (DryMe) - PUUT58

    Energy Technology Data Exchange (ETDEWEB)

    Sikanen, L.; Roeser, D.; Tahvanainen, T.; Prinz, R. [Finnish Forest Research Institute, Joensuu (Finland); Erkkilae, A.; Heikkinen, A.; Hillebrand, K. [VTT Technical Research Centre of Finland, Jyvaeskylae (Finland)

    2007-07-01

    Small wood chip fueled heating plants require high quality chips in order to achieve low service need and problem free running. Low moisture content is considered to be the most important quality factor in wood based fuels. On the other hand, drying should be efficient and handy as a part of supply chain. Rapidly growing small-scale wood energy business needs new methods to ensure availability of high quality fuel. Partial debarking of both boreal broadleaved and coniferous species is known as effective method to dry timber during storing. Anyhow, proper place for storing and convenient weather conditions are needed. Partly debarked stems could be also the raw material for wood pellets. In Finnish studies, for example, storing over one summer took moisture content down from 40% to 27% with partly debarked birch logs. Some preliminary tests have been made also in Scotland and England with baled residues and small diameter logs without debarking. Even British climate seems to be suitable for natural drying of logs. In Central Europe, natural drying is crucial in order to achieve high quality of forest chips for heating. The aims of the DryMe-project are: (1) Remodify and study harvester head which is capable to debark energy wood stems. The aim is to create modified feeding rolls and delimbing knives or extra debarking device, which remove effectively 30-50% of bark during normal harvesting work. The success of debarking will be tested by field experiments and drying trials. Method should work with Silver Birch, Scots Pine and Lodgepole Pine. (2) Test different kinds of bark scarifying patterns and methods according to their capability to evaporate water out from the logs in natural drying. (orig.)

  18. Well-plate freeze-drying

    DEFF Research Database (Denmark)

    Trnka, Hjalte; Rantanen, Jukka; Grohganz, Holger

    2015-01-01

    Abstract Context: Freeze-drying in presence of excipients is a common practice to stabilize biomacromolecular formulations. The composition of this formulation is known to affect the quality of the final product. Objective: The aim of this study was to evaluate freeze-drying in well-plates as a h......Abstract Context: Freeze-drying in presence of excipients is a common practice to stabilize biomacromolecular formulations. The composition of this formulation is known to affect the quality of the final product. Objective: The aim of this study was to evaluate freeze-drying in well......-plates as a high throughput platform for formulation screening of freeze-dried products. Methods: Model formulations consisting of mannitol, sucrose and bovine serum albumin were freeze-dried in brass well plates, plastic well plates and vials. Physical properties investigated were solid form, residual moisture......, cake collapse and reconstitution time. Results: Samples freeze-dried in well-plates had an acceptable visual cake appearance. Solid form analysis by high throughput X-ray powder diffraction indicated comparable polymorphic outcome independent of the container. The expected increase in moisture level...

  19. Experimental study of drying kinetics by forced convection of aromatic plants

    Energy Technology Data Exchange (ETDEWEB)

    Belghit, A; Boutaleb, B C [Laboratoire de Mecanique des Fluides et Energetique, Marrakech (Morocco). Faculte des Sciences Semlalia; Kouhila, M [Laboratoire d' Energie Solaire, Marrakech (Morocco). Ecole Normale Superieure

    2000-08-01

    This paper has the objectives to determine the isotherms of sorption and the drying kinetics of verbena, which is the most consumed aromatic plant in Morocco. The experiments undertaken consist of examining the effects of drying air velocity, temperature of drying air and air moisture content on the drying kinetics of verbena in a laboratory drying tunnel working by forced convection. The results verified, with good reproducibility, that temperature is the main factor in controlling the rate of drying. The expression of the drying rate is determined empirically from the characteristic curve of drying. (author)

  20. Balancing forest-regeneration probabilities and maintenance costs in dry grasslands of high conservation priority

    Science.gov (United States)

    Bolliger, Janine; Edwards, Thomas C.; Eggenberg, Stefan; Ismail, Sascha; Seidl, Irmi; Kienast, Felix

    2011-01-01

    Abandonment of agricultural land has resulted in forest regeneration in species-rich dry grasslands across European mountain regions and threatens conservation efforts in this vegetation type. To support national conservation strategies, we used a site-selection algorithm (MARXAN) to find optimum sets of floristic regions (reporting units) that contain grasslands of high conservation priority. We sought optimum sets that would accommodate 136 important dry-grassland species and that would minimize forest regeneration and costs of management needed to forestall predicted forest regeneration. We did not consider other conservation elements of dry grasslands, such as animal species richness, cultural heritage, and changes due to climate change. Optimal sets that included 95–100% of the dry grassland species encompassed an average of 56–59 floristic regions (standard deviation, SD 5). This is about 15% of approximately 400 floristic regions that contain dry-grassland sites and translates to 4800–5300 ha of dry grassland out of a total of approximately 23,000 ha for the entire study area. Projected costs to manage the grasslands in these optimum sets ranged from CHF (Swiss francs) 5.2 to 6.0 million/year. This is only 15–20% of the current total estimated cost of approximately CHF30–45 million/year required if all dry grasslands were to be protected. The grasslands of the optimal sets may be viewed as core sites in a national conservation strategy.

  1. Through-vial impedance spectroscopy of the mechanisms of annealing in the freeze-drying of maltodextrin: the impact of annealing hold time and temperature on the primary drying rate.

    Science.gov (United States)

    Smith, Geoff; Arshad, Muhammad Sohail; Polygalov, Eugene; Ermolina, Irina

    2014-06-01

    The study aims to investigate the impact of annealing hold time and temperature on the primary drying rate/duration of a 10% (w/v) solution of maltodextrin with an emphasis on how the mechanisms of annealing might be understood from the in-vial measurements of the ice crystal growth and the glass transition. The electrical impedance of the solution within a modified glass vial was recorded between 10 and 10(6) Hz during freeze-drying cycles with varying annealing hold times (1-5 h) and temperatures. Primary drying times decreased by 7%, 27% and 34% (1.1, 4.3 and 5.5 h) with the inclusion of an annealing step at temperatures of -15°C, -10°C and -5°C, respectively. The glass transition was recorded at approximately -16°C during the re-heating and re-cooling steps, which is close to the glass transition (Tg ') reported for 10% (w/v) maltodextrin and therefore indicates that a maximum freeze concentration (∼86%, w/w, from the Gordon-Taylor equation) was achieved during first freezing, with no further ice being formed on annealing. This observation, coupled to the decrease in electrical resistance that was observed during the annealing hold time, suggests that the reduction in the drying time was because of improved connectivity of ice crystals because of Ostwald ripening rather than devitrification. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  2. Effects of air temperature and velocity on the drying kinetics and product particle size of starch from arrowroot (Maranta arundinacae)

    Science.gov (United States)

    Caparanga, Alvin R.; Reyes, Rachael Anne L.; Rivas, Reiner L.; De Vera, Flordeliza C.; Retnasamy, Vithyacharan; Aris, Hasnizah

    2017-11-01

    This study utilized the 3k factorial design with k as the two varying factors namely, temperature and air velocity. The effects of temperature and air velocity on the drying rate curves and on the average particle diameter of the arrowroot starch were investigated. Extracted arrowroot starch samples were dried based on the designed parameters until constant weight was obtained. The resulting initial moisture content of the arrowroot starch was 49.4%. Higher temperatures correspond to higher drying rates and faster drying time while air velocity effects were approximately negligible or had little effect. Drying rate is a function of temperature and time. The constant rate period was not observed for the drying rate of arrowroot starch. The drying curves were fitted against five mathematical models: Lewis, Page, Henderson and Pabis, Logarithmic and Midili. The Midili Model was the best fit for the experimental data since it yielded the highest R2 and the lowest RSME values for all runs. Scanning electron microscopy (SEM) was used for qualitative analysis and for determination of average particle diameter of the starch granules. The starch granules average particle diameter had a range of 12.06 - 24.60 μm. The use of ANOVA proved that particle diameters for each run varied significantly with each other. And, the Taguchi Design proved that high temperatures yield lower average particle diameter, while high air velocities yield higher average particle diameter.

  3. Recent developments in drying of food products

    Science.gov (United States)

    Valarmathi, T. N.; Sekar, S.; Purushothaman, M.; Sekar, S. D.; Rama Sharath Reddy, Maddela; Reddy, Kancham Reddy Naveen Kumar

    2017-05-01

    Drying is a dehydration process to preserve agricultural products for long period usage. The most common and cheapest method is open sun drying in which the products are simply laid on ground, road, mats, roof, etc. But the open sun drying has some disadvantages like dependent on good weather, contamination by dust, birds and animals consume a considerable quantity, slow drying rate and damages due to strong winds and rain. To overcome these difficulties solar dryers are developed with closed environment for drying agricultural products effectively. To obtain good quality food with reduced energy consumption, selection of appropriate drying process and proper input parameters is essential. In recent years several researchers across the world have developed new drying systems for improving the product quality, increasing the drying rate, decreasing the energy consumption, etc. Some of the new systems are fluidized bed, vibrated fluidized bed, desiccant, microwave, vacuum, freeze, infrared, intermittent, electro hydrodynamic and hybrid dryers. In this review the most recent progress in the field of drying of agricultural food products such as new methods, new products and modeling and optimization techniques has been presented. Challenges and future directions are also highlighted. The review will be useful for new researchers entering into this ever needed and ever growing field of engineering.

  4. High population increase rates.

    Science.gov (United States)

    1991-09-01

    In addition to its economic and ethnic difficulties, the USSR faces several pressing demographic problems, including high population increase rates in several of its constituent republics. It has now become clear that although the country's rigid centralized planning succeeded in covering the basic needs of people, it did not lead to welfare growth. Since the 1970s, the Soviet economy has remained sluggish, which as led to increase in the death and birth rates. Furthermore, the ideology that held that demography could be entirely controlled by the country's political and economic system is contradicted by current Soviet reality, which shows that religion and ethnicity also play a significant role in demographic dynamics. Currently, Soviet republics fall under 2 categories--areas with high or low natural population increase rates. Republics with low rates consist of Christian populations (Armenia, Moldavia, Georgia, Byelorussia, Russia, Lithuania, Estonia, Latvia, Ukraine), while republics with high rates are Muslim (Tadzhikistan, Uzbekistan, Turkmenistan, Kirgizia, Azerbaijan Kazakhstan). The later group has natural increase rates as high as 3.3%. Although the USSR as a whole is not considered a developing country, the later group of republics fit the description of the UNFPA's priority list. Another serious demographic issue facing the USSR is its extremely high rate of abortion. This is especially true in the republics of low birth rates, where up to 60% of all pregnancies are terminated by induced abortions. Up to 1/5 of the USSR's annual health care budget is spent on clinical abortions -- money which could be better spent on the production of contraceptives. Along with the recent political and economic changes, the USSR is now eager to deal with its demographic problems.

  5. Drying of latex films and coatings: Reconsidering the fundamental mechanisms

    DEFF Research Database (Denmark)

    Kiil, Søren

    2006-01-01

    The two existing theories describing drying of latex films or coatings are reconsidered. Subsequently, a novel mathematical drying model is presented, the simulations of which can match and explain experimental drying rate data of two previous investigations with latex films. In contrast to previ......The two existing theories describing drying of latex films or coatings are reconsidered. Subsequently, a novel mathematical drying model is presented, the simulations of which can match and explain experimental drying rate data of two previous investigations with latex films. In contrast...... to previous model studies, but in agreement with observations, simulations suggest that during the falling rate period of the drying process of a latex film, a porous skin of partly coalesced latex particles is indeed formed, which limits transport of water vapour from the receding air-liquid interphase...... to the surface of the film. The value of the effective diffusion coefficient of water vapour in the dry and partly coalesced layer (7 x 10(-7) m(2)/s at 19-24 degrees C), the adjustable parameter of the model for the falling rate period, was found to be independent of initial wet film thickness (89-1322 mu m...

  6. Spray-dried adjunct cultures of autochthonous non-starter lactic acid bacteria.

    Science.gov (United States)

    Peralta, Guillermo H; Bergamini, Carina V; Audero, Gabriela; Páez, Roxana; Wolf, I Verónica; Perotti, M Cristina; Hynes, Erica R

    2017-08-16

    Spray-drying of lactic cultures provides direct-to-vat starters, which facilitate their commercialization and use. However, this process may alter the metabolic activity and deteriorate technological features. In this work, we assessed the influence of spray-drying on the survival and aroma production of two strains of mesophilic lactobacilli: Lactobacillus paracasei 90 and Lactobacillus plantarum 91, which have already been characterized as good adjunct cultures. The spray-drying was carried out using a laboratory scale spray and the dried cultures were monitored during the storage for the survival rate. The dried cultures were applied to two cheese models: sterile cheese extract and miniature soft cheese. The influence on the carbohydrate metabolism and the production of organic acids and volatile compounds was determined. Both strains retained high levels of viable counts in the powder after drying and during the storage at 5°C for twelve months. In addition, they also remained at high level in both cheese models during incubation or ripening. Similar profiles of carbohydrate fermentation and bioformation of volatile compounds were observed in the cheese extracts for each of the strains when tested as both fresh and dried cultures. In addition, the ability of Lb. paracasei 90 to increase the production of acetoin and diacetyl remarkably in cheese models was also confirmed for the spray-dried culture. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Development and comparison of new high-efficiency dry powder inhalers for carrier-free formulations.

    Science.gov (United States)

    Behara, Srinivas R B; Longest, P Worth; Farkas, Dale R; Hindle, Michael

    2014-02-01

    High-efficiency dry powder inhalers (DPIs) were developed and tested for use with carrier-free formulations across a range of different inhalation flow rates. Performance of a previously reported DPI was compared with two new designs in terms of emitted dose (ED) and aerosolization characteristics using in vitro experiments. The two new designs oriented the capsule chamber (CC) at different angles to the main flow passage, which contained a three-dimensional (3D) rod array for aerosol deaggregation. Computational fluid dynamics simulations of a previously developed deaggregation parameter, the nondimensional specific dissipation (NDSD), were used to explain device performance. Orienting the CC at 90° to the mouthpiece, the CC90 -3D inhaler provided the best performance with an ED = 73.4%, fine particle fractions (FPFs) less than 5 and 1 μm of 95.1% and 31.4%, respectively, and a mass median aerodynamic diameter (MMAD) = 1.5 μm. For the carrier-free formulation, deaggregation was primarily influenced by capsule aperture position and the NDSD parameter. The new CC-3D inhalers reduced the percent difference in FPF and MMAD between low and high flows by 1-2 orders of magnitude compared with current commercial devices. In conclusion, the new CC-3D inhalers produced extremely high-quality aerosols with little sensitivity to flow rate and are expected to deliver approximately 95% of the ED to the lungs. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  8. Numerical study on hygroscopic material drying in packed bed

    Directory of Open Access Journals (Sweden)

    M. Stakić

    2011-06-01

    Full Text Available The paper addresses numerical simulation for the case of convective drying of hygroscopic material in a packed bed, analyzing agreement between the simulated and the corresponding experimental results. In the simulation model of unsteady simultaneous one-dimensional heat and mass transfer between gas phase and dried material, it is assumed that the gas-solid interface is at thermodynamic equilibrium, while the drying rate of the specific product is calculated by applying the concept of a "drying coefficient". Model validation was done on the basis of the experimental data obtained with potato cubes. The obtained drying kinetics, both experimental and numerical, show that higher gas (drying agent velocities (flow-rates, as well as lower equivalent grain diameters, induce faster drying. This effect is more pronounced for deeper beds, because of the larger amount of wet material to be dried using the same drying agent capacity.

  9. Fourier transform infrared spectra of drying oils treated by irradiation.

    Science.gov (United States)

    Wang, Yi; Wang, Qin; Artz, William E; Padua, Graciela W

    2008-05-14

    Drying oils, such as linseed oil and tung oil, have the potential as coating materials to improve barrier properties of biobased packaging films. Oil drying is a chemical reaction in which polyunsaturated fatty acids undergo autoxidation. During drying, oils polymerize and form water-resistant films. However, drying rates tend to be too slow for practical applications. Metal driers are used in the paint industry to accelerate drying, but often driers are not safe for food contact. The objective of this work was to investigate the effect of ionizing radiation on the oxidation or drying rate of drying oils. The effect of irradiation dose on the drying rate of linseed and tung oils was monitored by FTIR spectroscopy. The peak at 3010 cm (-1) was found to be a useful index of oxidation rate. The decrease in peak intensity with time was fitted with exponential functions of the form Abs = Abs 0 exp (- t/ k), where Abs 0 is the initial absorbance and 1/ k is the rate constant for the oxidation process. Values for k were 9.91 ( R (2) = 0.98), 6.59 ( R (2) = 0.95)n and 6.44 ( R (2) = 0.97) for radiation levels of 0, 50, and 100 kGy, respectively. The k values suggested that the oxidation rate increased as the radiation dose increased from 0 to 50 kGy. A further increase to 100 kGy had only a limited effect.

  10. Thermal aspects of open sun drying of various crops

    Energy Technology Data Exchange (ETDEWEB)

    Jain, D.; Tiwari, G.N. [Indian Inst. of Technology, Center for Energy Studies, New Delhi (India)

    2003-01-01

    Open sun drying (OSD) is the most common method of crop drying in developing countries. Despite several disadvantages, it is widely practiced because it is a simple way of drying. Crop temperature, temperature around the crop, solar temperature, and rate of moisture evaporation are the important parameters in OSD. The thermal behavior of OSD of green chillies, green pea, white gram (kabuli chana), onions, potatoes, and cauliflower was studied. The heat transfer analysis which is mainly dependent on the rate of moisture transfer has also been extended during drying process. A mathematical model has been developed to predict the crop temperature, rate of moisture removal, and solar temperature for a steady state condition. The rate of moisture transfer for potato slices and cauliflower was significantly higher than that in other crops. A fair agreement was observed between predicted and experimental results with coefficient of correlations ranging from 0.8936 to 0.7520, 0.9792-0.4172, and 0.9986-0.9942 for crop temperature, temperature above the crop surface, and rate of the moisture removal during drying, respectively except potato slices. (Author)

  11. Development of high efficiency ventilation bag actuated dry powder inhalers.

    Science.gov (United States)

    Behara, Srinivas R B; Longest, P Worth; Farkas, Dale R; Hindle, Michael

    2014-04-25

    New active dry powder inhaler systems were developed and tested to efficiently aerosolize a carrier-free formulation. To assess inhaler performance, a challenging case study of aerosol lung delivery during high-flow nasal cannula (HFNC) therapy was selected. The active delivery system consisted of a ventilation bag for actuating the device, the DPI containing a flow control orifice and 3D rod array, and streamlined nasal cannula with separate inlets for the aerosol and HFNC therapy gas. In vitro experiments were conducted to assess deposition in the device, emitted dose (ED) from the nasal cannula, and powder deaggregation. The best performing systems achieved EDs of 70-80% with fine particle fractions <5 μm of 65-85% and mass median aerodynamic diameters of 1.5 μm, which were target conditions for controlled condensational growth aerosol delivery. Decreasing the size of the flow control orifice from 3.6 to 2.3mm reduced the flow rate through the system with manual bag actuations from an average of 35 to 15LPM, while improving ED and aerosolization performance. The new devices can be applied to improve aerosol delivery during mechanical ventilation, nose-to-lung aerosol administration, and to assist patients that cannot reproducibly use passive DPIs. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. EFFECT OF THE STEAMING ON THE DRYING OF Eucalyptus grandis BOARDS

    Directory of Open Access Journals (Sweden)

    Raphael Nogueira Rezende

    2015-03-01

    Full Text Available The objective of this work was to evaluate the effect of the steaming on the drying rate and drying quality of Eucalyptus grandis boards. For this purpose, wood from an experimental plantation of the Federal University of Lavras, Minas Gerais State, Brazil, with 24 years of age was used. Trees were felled and sectioned in logs and the logs were sawn by a tangential system. Half of the boards volume were steamed during 3 hours at 90ºC of temperature and 100% of relative humidity after the heating of the drying process. The other half was not steamed (control. The boards were dried in the dry-kiln and the resulting defects from the drying process and drying rate were determined. The results indicated that the steaming was effective in increase of the drying rate in 15% and decrease of the drying defects of 20 to 52%.

  13. Partial drying accelerates bacterial growth recovery to rewetting

    DEFF Research Database (Denmark)

    Meisner, Annelein; Leizeaga, Ainara; Rousk, Johannes

    2017-01-01

    , bacterial growth rates increase immediately in a linear fashion. In the Type 2 pattern, bacterial growth rates increase exponentially after a lag period. However, soils are often only partially dried. Partial drying (higher remaining moisture content before rewetting) may be considered a less harsh...

  14. Effect of drying conditions on drying kinetics and quality of aromatic Pandanus amaryllifolius leaves.

    Science.gov (United States)

    Rayaguru, Kalpana; Routray, Winny

    2010-12-01

    Pandanus amaryllifolius is a plant with aromatic leaves, which impart the characteristic flavour of aromatic rice. The quality of aromatic Pandanus leaves dried at low temperature (35 °C) and low RH (27%) in a heat pump dryer was evaluated and compared with those obtained from hot air drying at 45 °C. Thin-layer drying kinetics has been studied for both the conditions. To determine the kinetic parameters, the drying data were fitted to various semi-theoretical models. The goodness of fit was determined using the coefficient of determination, reduced chi square, and root mean square error. Aroma, colour, and overall acceptability determination of fresh and dried leaves were made using sensory evaluation. Drying of leaves took place mainly under the falling-rate period. The Page equation was found to be best among the proposed models to describe the thin-layer drying of Pandanus leaves with higher coefficient of determination. The effective moisture diffusivity values were also determined. The effect of low RH was prominent during the initial drying when the product was moist. The effect of temperature was prominent in the later part of drying, which acted as a driving force for moisture diffusion and hence the total drying time was reduced. Retention of aromatic compound 2-acetyl-1-pyrroline content was more in low temperature dried samples with higher sensory scores.

  15. Radioactive cesium elution speed in dried wild Mushrooms collected in 2015

    International Nuclear Information System (INIS)

    Yamaguchi, Toshiro; Arai, Hirotsugu; Ohnuma, Tohru; Arai, Hiromu; Takyu, Sodai; Matsuyama, Tetsuo; Ishii, Keizo

    2016-01-01

    Dried wild mushrooms (12 species, 13 samples) collected in Nagano, Fukushima, and Miyagi Prefectures, Japan, in 2015 were immersed in water for 1,440 min. The elution rate of radioactive cesium (Cs) was calculated based on its radioactivity, which was measured with a high-purity germanium semiconductor detector (GX2018; CANBERRA Industries, Meriden, CT, USA) before and after immersion for each mushroom. Immersion fluid was sampled after 10, 30, 60, 180, 360, and 1,440 min of immersion and dried on aluminum foil. Then, imaging plates (BAS-III, Fujifilm, Tokyo, Japan) exposed to the dried immersion fluid were measured with a Bio-imaging Analyzer System-1800 II (Fujifilm). The 50% elution time of each wild mushroom was calculated based on the photo stimulated luminescence density of the autoradiographs. The radioactive Cs elution rate was > 80% for 11 samples (84% of total) comprising 11 mushroom species. Moreover, the 50% elution time was < 30 min for 9 samples (69% of total) comprising 9 species. This shows that the radioactive Cs elution rate and elution speed were not constant among mushroom species. Based on these results, immersing the mushrooms, which were dried, in water for at least 120 min is an effective method for removing radioactive Cs from wild mushrooms. (author)

  16. Designing CAF-adjuvanted dry powder vaccines: Spray drying preserves the adjuvant activity of CAF01

    DEFF Research Database (Denmark)

    Ingvarsson, Pall Thor; Schmidt, Signe Tandrup; Christensen, Dennis

    2013-01-01

    spray drying. The optimal excipient to stabilize CAF01 during spray drying and for the design of nanocomposite microparticles was identified among mannitol, lactose and trehalose. Trehalose and lactose were promising stabilizers with respect to preserving liposome size, as compared to mannitol...... parameters suggested that a fast drying rate is essential to avoid phase separation and lipid accumulation at the surface of the microparticles during spray drying. Finally, immunization studies in mice with CAF01 in combination with the tuberculosis antigen Ag85B-ESAT6-Rv2660c (H56) demonstrated that spray...... drying of CAF01 with trehalose under optimal processing conditions resulted in the preservation of the adjuvant activity in vivo. These data demonstrate the importance of liposome stabilization via optimization of formulation and processing conditions in the engineering of dry powder liposome...

  17. High drug load, stable, manufacturable and bioavailable fenofibrate formulations in mesoporous silica: a comparison of spray drying versus solvent impregnation methods.

    Science.gov (United States)

    Hong, Shiqi; Shen, Shoucang; Tan, David Cheng Thiam; Ng, Wai Kiong; Liu, Xueming; Chia, Leonard S O; Irwan, Anastasia W; Tan, Reginald; Nowak, Steven A; Marsh, Kennan; Gokhale, Rajeev

    2016-01-01

    Encapsulation of drugs in mesoporous silica using co-spray drying process has been recently explored as potential industrial method. However, the impact of spray drying on manufacturability, physiochemical stability and bioavailability in relation to conventional drug load processes are yet to be fully investigated. Using a 2(3) factorial design, this study aims to investigate the effect of drug-loading process (co-spray drying and solvent impregnation), mesoporous silica pore size (SBA-15, 6.5 nm and MCM-41, 2.5 nm) and percentage drug load (30% w/w and 50% w/w) on material properties, crystallinity, physicochemical stability, release profiles and bioavailability of fenofibrate (FEN) loaded into mesoporous silica. From the scanning electronic microscopy (SEM) images, powder X-ray diffraction and Differential scanning calorimetry measurements, it is indicated that the co-spray drying process was able to load up to 50% (w/w) FEN in amorphous form onto the mesoporous silica as compared to the 30% (w/w) for solvent impregnation. The in vitro dissolution rate of the co-spray dried formulations was also significantly (p = 0.044) better than solvent impregnated formulations at the same drug loading. Six-month accelerated stability test at 40 °C/75 RH in open dish indicated excellent physical and chemical stability of formulations prepared by both methods. The amorphous state of FEN and the enhanced dissolution profiles were well preserved, and very low levels of degradation were detected after storage. The dog data for the three selected co-spray-dried formulations revealed multiple fold increment in FEN bioavailability compared to the reference crystalline FEN. These results validate the viability of co-spray-dried mesoporous silica formulations with high amorphous drug load as potential drug delivery systems for poorly water soluble drugs.

  18. Experimental program to determine maximum temperatures for dry storage of spent fuel

    International Nuclear Information System (INIS)

    Knox, C.A.; Gilbert, E.R.; White, G.D.

    1985-02-01

    Although air is used as a cover gas in some dry storage facilities, other facilities use inert cover gases which must be monitored to assure inertness of the atmosphere. Thus qualifying air as a cover gas is attractive for the dry storage of spent fuels. At sufficiently high temperatures, air can react with spent fuel (UO 2 ) at the site of cladding breaches that formed during reactor irradiation or during dry storage. The reaction rate is temperature dependent; hence the rates can be maintained at acceptable levels if temperatures are low. Tests with spent fuel are being conducted at Pacific Northwest Laboratory (PNL) to determine the allowable temperatures for storage of spent fuel in air. Tests performed with nonirradiated UO 2 pellets indicated that moisture, surface condition, gamma radiation, gadolinia content of the fuel pellet, and temperature are important variables. Tests were then initiated on spent fuel to develop design data under simulated dry storage conditions. Tests have been conducted at 200 and 230 0 C on spent fuel in air and 275 0 C in moist nitrogen. The results for nonirradiated UO 2 and published data for irradiated fuel indicate that above 230 0 C, oxidation rates are unacceptably high for extended storage in air. The tests with spent fuel will be continued for approximately three years to enable reliable extrapolations to be made for extended storage in air and inert gases with oxidizing constituents. 6 refs., 6 figs., 3 tabs

  19. Pecan drying with silica gel

    Energy Technology Data Exchange (ETDEWEB)

    Ghate, S.R.; Chhinnan, M.S.

    1983-07-01

    High moisture in-shell pecans were dried by keeping them in direct and indirect contact with silica gel to investigate their drying characteristics. In-shell pecans were also dried with ambient air from a controlled environment chamber and with air dehumidified by silica gel. Direct contact and dehumidified air drying seemed feasible approaches.

  20. High Rate Digital Demodulator ASIC

    Science.gov (United States)

    Ghuman, Parminder; Sheikh, Salman; Koubek, Steve; Hoy, Scott; Gray, Andrew

    1998-01-01

    The architecture of High Rate (600 Mega-bits per second) Digital Demodulator (HRDD) ASIC capable of demodulating BPSK and QPSK modulated data is presented in this paper. The advantages of all-digital processing include increased flexibility and reliability with reduced reproduction costs. Conventional serial digital processing would require high processing rates necessitating a hardware implementation in other than CMOS technology such as Gallium Arsenide (GaAs) which has high cost and power requirements. It is more desirable to use CMOS technology with its lower power requirements and higher gate density. However, digital demodulation of high data rates in CMOS requires parallel algorithms to process the sampled data at a rate lower than the data rate. The parallel processing algorithms described here were developed jointly by NASA's Goddard Space Flight Center (GSFC) and the Jet Propulsion Laboratory (JPL). The resulting all-digital receiver has the capability to demodulate BPSK, QPSK, OQPSK, and DQPSK at data rates in excess of 300 Mega-bits per second (Mbps) per channel. This paper will provide an overview of the parallel architecture and features of the HRDR ASIC. In addition, this paper will provide an over-view of the implementation of the hardware architectures used to create flexibility over conventional high rate analog or hybrid receivers. This flexibility includes a wide range of data rates, modulation schemes, and operating environments. In conclusion it will be shown how this high rate digital demodulator can be used with an off-the-shelf A/D and a flexible analog front end, both of which are numerically computer controlled, to produce a very flexible, low cost high rate digital receiver.

  1. Noninvasive Dry Eye Assessment Using High-Technology Ophthalmic Examination Devices.

    Science.gov (United States)

    Yamaguchi, Masahiko; Sakane, Yuri; Kamao, Tomoyuki; Zheng, Xiaodong; Goto, Tomoko; Shiraishi, Atsushi; Ohashi, Yuichi

    2016-11-01

    Recently, the number of dry eye cases has dramatically increased. Thus, it is important that easy screening, exact diagnoses, and suitable treatments be available. We developed 3 original and noninvasive assessments for this disorder. First, a DR-1 dry eye monitor was used to determine the tear meniscus height quantitatively by capturing a tear meniscus digital image that was analyzed by Meniscus Processor software. The DR-1 meniscus height value significantly correlated with the fluorescein meniscus height (r = 0.06, Bland-Altman analysis). At a cutoff value of 0.22 mm, sensitivity of the dry eye diagnosis was 84.1% with 90.9% specificity. Second, the Tear Stability Analysis System was used to quantitatively measure tear film stability using a topographic modeling system corneal shape analysis device. Tear film stability was objectively and quantitatively evaluated every second during sustained eye openings. The Tear Stability Analysis System is currently installed in an RT-7000 autorefractometer and topographer to automate the diagnosis of dry eye. Third, the Ocular Surface Thermographer uses ophthalmic thermography for diagnosis. The decrease in ocular surface temperature in dry eyes was significantly greater than that in normal eyes (P eye opening. Decreased corneal temperature correlated significantly with the tear film breakup time (r = 0.572; P dry eye, sensitivity was 0.83 and specificity was 0.80 after 10 seconds. This article describes the details and potential of these 3 noninvasive dry eye assessment systems.

  2. Fabrication of highly porous keratin sponges by freeze-drying in the presence of calcium alginate beads

    International Nuclear Information System (INIS)

    Hamasaki, Shinichi; Tachibana, Akira; Tada, Daisuke; Yamauchi, Kiyoshi; Tanabe, Toshizumi

    2008-01-01

    Novel fabrication method of highly porous and flexible keratin sponges was developed by combining a particulate-leaching method and a freeze-drying method. Reduced keratin aqueous solution was mixed with dried calcium alginate beads and was lyophilized to give keratin/calcium alginate complex, which was subsequently treated with EDTA solution to leach out calcium alginate beads. The resultant keratin sponge was flexible enough to handle even in dried state because of its quite high porosity (98.9 ± 0.1%), which was brought about by the large and small pores formed by the elimination of calcium alginate beads and water. The sponge supported the attachment and the proliferation of mouse fibroblast cells. Thus, the keratin sponge given by the present fabrication method afforded one alternative as a cell scaffold for tissue engineering

  3. Carbon accumulation in a permafrost polygon peatland: steady long-term rates in spite of shifts between dry and wet conditions.

    Science.gov (United States)

    Gao, Yang; Couwenberg, John

    2015-02-01

    Ice-wedge polygon peatlands contain a substantial part of the carbon stored in permafrost soils. However, little is known about their long-term carbon accumulation rates (CAR) in relation to shifts in vegetation and climate. We collected four peat profiles from one single polygon in NE Yakutia and cut them into contiguous 0.5 cm slices. Pollen density interpolation between AMS (14)C dated levels provided the time span contained in each of the sample slices, which--in combination with the volumetric carbon content--allowed for the reconstruction of CAR over decadal and centennial timescales. Vegetation representing dry palaeo-ridges and wet depressions was reconstructed with detailed micro- and macrofossil analysis. We found repeated shifts between wet and dry conditions during the past millennium. Dry ridges with associated permafrost growth originated during phases of (relatively) warm summer temperature and collapsed during relatively cold phases, illustrating the important role of vegetation and peat as intermediaries between ambient air temperature and the permafrost. The average long-term CAR across the four profiles was 10.6 ± 5.5 g C m(-2) yr(-1). Time-weighted mean CAR did not differ significantly between wet depression and dry ridge/hummock phases (10.6 ± 5.2 g C m(-2) yr(-1) and 10.3 ± 5.7 g C m(-2) yr(-1), respectively). Although we observed increased CAR in relation to warm shifts, we also found changes in the opposite direction and the highest CAR actually occurred during the Little Ice Age. In fact, CAR rather seems to be governed by strong internal feedback mechanisms and has roughly remained stable on centennial time scales. The absence of significant differences in CAR between dry ridge and wet depression phases suggests that recent warming and associated expansion of shrubs will not affect long-term rates of carbon burial in ice-wedge polygon peatlands. © 2014 John Wiley & Sons Ltd.

  4. Effects of intermittent CO2 convection under far-infrared radiation on vacuum drying of pre-osmodehydrated watermelon.

    Science.gov (United States)

    Chakraborty, Rajat; Mondal, Pijus

    2017-08-01

    Watermelon, a tropical seasonal fruit with high nutrient content, requires preservation through drying due to its perishable nature. Nevertheless, drying of watermelon through conventional processes has a negative impact either on the drying time or on the final product quality. In this work, osmotic dehydration of watermelon followed by far-infrared radiation-assisted vacuum drying (FIRRAVD) was optimized to develop dehydrated watermelon with minimum moisture content. Significantly, during FIRRAVD, an attempt was made to further intensify the drying rate by forced convection through intermittent CO 2 injection. Drying kinetics of each operation and physicochemical qualities of dried products were evaluated. FIRRAVD was a viable method of watermelon drying with appreciably high moisture diffusivity (D eff,m ) of 4.97 × 10 -10 to 1.49 × 10 -9 m 2 s -1 compared to conventional tray drying. Moreover, intermittent CO 2 convection during FIRRAVD (ICFIRRAVD) resulted in appreciable intensification of drying rate, with enhanced D eff,m (9.93 × 10 -10 to 1.99 × 10 -9 m 2 s -1 ). Significantly, ICFIRRAVD required less energy and approximately 16% less time compared to FIRRAVD. The quality of the final dehydrated watermelon was superior compared to conventional drying protocols. The novel CO 2 convective drying of watermelon in the presence of far-infrared radiation demonstrated an energy-efficient and time-saving operation rendering a dehydrated watermelon with acceptable quality parameters. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. Cost Optimal Design of a Single-Phase Dry Power Transformer

    Directory of Open Access Journals (Sweden)

    Raju Basak

    2015-08-01

    Full Text Available The Dry type transformers are preferred to their oil-immersed counterparts for various reasons, particularly because their operation is hazardless. The application of dry transformers was limited to small ratings in the earlier days. But now these are being used for considerably higher ratings.  Therefore, their cost-optimal design has gained importance. This paper deals with the design procedure for achieving cost optimal design of a dry type single-phase power transformer of small rating, subject to usual design constraints on efficiency and voltage regulation. The selling cost for the transformer has been taken as the objective function. Only two key variables have been chosen, the turns/volt and the height: width ratio of window, which affects the cost function to high degrees. Other variables have been chosen on the basis of designers’ experience. Copper has been used as conductor material and CRGOS as core material to achieve higher efficiency, lower running cost and compact design. The electrical and magnetic loadings have been kept at their maximum values without violating the design constraints. The optimal solution has been obtained by the method of exhaustive search using nested loops.

  6. Spray Drying of Honey: The Effect of Drying Agents on Powder Properties

    Directory of Open Access Journals (Sweden)

    Samborska Katarzyna

    2015-06-01

    Full Text Available The aim of this study was to investigate the possibility of honey spray drying with addition of maltodextrin and gum Arabic as drying agents. The influence of the concentration of the solution subjected to drying, the type and content of the drying agents upon the physical properties of obtained powders was examined. An attempt was undertaken to obtain powder with a honey content of more than 50% d.b. Spray drying of multifloral honey with the addition of maltodextrin and gum Arabic was carried out at inlet air temperature of 180°C, feed rate of 1 mL/s and rotational speed of a disc atomizer of 39,000 rpm. The properties of obtained powders were quantified in terms of moisture content, bulk density, Hausner ratio, apparent density, hygroscopicity and wettability. Using gum Arabic it was possible to obtain a product with a higher content of honey (67% solids than in the case of maltodextrin (50% d.b.. However, the powders obtained with gum Arabic were characterised by worse physical properties: higher hygroscopicity and cohesion, and longer wetting time.

  7. Dry shrinkage characteristics of buffer materials

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, H. [ITC, Tokai, Ibaraki (Japan); Fujita, A.

    1999-03-01

    Generation of cracks due to drying of compressed bentonite was observed by changing the initial water content to obtain shrinkage constants such as shrinkage limit and shrinking rate. As a result, generation of practically no cracks was observed when the initial water content of samples was below 13%. The volume change due to drying increased with the water content in the sample, and the shrinkage constants were found to depend on the initial water content. Further, the one-dimensional compression strength after drying was compared with that before drying in order to clarify the effect of cracks generated by drying on the mechanical strength. As a result, the dry sample with cracks proved to have large one-dimensional compression strength or E{sub 50} compared to wet samples, so that the mechanical strength was kept even after drying. (H. Baba)

  8. Key composition optimization of meat processed protein source by vacuum freeze-drying technology.

    Science.gov (United States)

    Ma, Yan; Wu, Xingzhuang; Zhang, Qi; Giovanni, Vigna; Meng, Xianjun

    2018-05-01

    Vacuum freeze-drying technology is a high technology content, a wide range of knowledge of technology in the field of drying technology is involved, it is also a method of the most complex drying equipment, the largest energy consumption, the highest cost of drying method, but due to the particularity of its dry goods: the freeze-drying food has the advantages of complex water performance is good, cooler and luster of freezing and drying food to maintain good products, less nutrient loss, light weight, easy to carry transportation, easy to long-term preservation, and on the quality is far superior to the obvious advantages of other dried food, making it become the forefront of drying technology research and development. The freeze-drying process of Chinese style ham and western Germany fruit tree tenderloin is studied in this paper, their eutectic point, melting point and collapse temperature, freeze-drying curve and its heat and mass transfer characteristics are got, then the precool temperature and the highest limiting temperature of sublimation interface are determined. The effect of system pressure on freeze-dried rate in freeze-drying process is discussed, and the method of regulating pressure circularly is determined.

  9. Sol–gel synthesis of highly TiO2 aerogel photocatalyst via high temperature supercritical drying

    Directory of Open Access Journals (Sweden)

    Rebah Moussaoui

    2017-09-01

    Full Text Available Nanocrystalline powders of TiO2 xerogel and aerogel were prepared by using acid-modified sol–gel approach. For TiO2 aerogel material (TA, the solvent was high temperature supercritically extracted at 300 °C and 100 bars. However, the TiO2 xerogel material (TX was dried at 200 °C and ambient pressure. The effects of the drying processes on the crystalline structure, phase transformation and grain growth were determined by Raman spectroscopy, SAED and X-ray diffraction (XRD analyses using Rietveld refinement method. The TiO2 aerogel was composed of anatase crystalline structure. The TiO2 xerogel material was composed of anatase, brookite and small amount of amorphous phase with anatase as dominant phase. The TX sample still contains a relatively high concentration of carbon than that of TA, indicating the amorphous character of TiO2 xerogel. These materials were applied as catalyst for the degradation of indigo carmine in aqueous medium. Photo-degradation ability of TA and TX was compared to the TiO2 commercial Degussa P25. The photo-catalytic results showed that the degradation efficiency was in the order TA > P25 > TX. The photo-degradation of indigo carmine followed pseudo first order reaction kinetics.

  10. Drying kinetics of atemoya pulp

    Directory of Open Access Journals (Sweden)

    Plúvia O. Galdino

    Full Text Available ABSTRACT This study was conducted in order to obtain drying curves of whole atemoya pulp through the foam-mat drying method. The suspension was prepared with whole atemoya pulp mixed with 2% of Emustab® and 2% of Super Liga Neutra® with mixing time of 20 min, and dried in a forced-air oven at different temperatures (60; 70 and 80 °C and thicknesses of the foam layer (0.5, 1.0 and 1.5 cm. The drying rate curves were plotted against the water content ratio and the semi-theoretical models of Henderson & Pabis, Page and Midilli were used. All tested models showed coefficient of determination (R2 above 0.993, and the Midilli model showed the best fit for all conditions. Drying curves were affected by temperature and layer thickness.

  11. Effects of Lower Drying-Storage Temperature on the Ductility of High-Burnup PWR Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Billone, M. C. [Argonne National Lab. (ANL), Argonne, IL (United States); Burtseva, T. A. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-08-30

    The purpose of this research effort is to determine the effects of canister and/or cask drying and storage on radial hydride precipitation in, and potential embrittlement of, high-burnup (HBU) pressurized water reactor (PWR) cladding alloys during cooling for a range of peak drying-storage temperatures (PCT) and hoop stresses. Extensive precipitation of radial hydrides could lower the failure hoop stresses and strains, relative to limits established for as-irradiated cladding from discharged fuel rods stored in pools, at temperatures below the ductile-to-brittle transition temperature (DBTT).

  12. Tear dynamics in healthy and dry eyes.

    Science.gov (United States)

    Cerretani, Colin F; Radke, C J

    2014-06-01

    Dry-eye disease, an increasingly prevalent ocular-surface disorder, significantly alters tear physiology. Understanding the basic physics of tear dynamics in healthy and dry eyes benefits both diagnosis and treatment of dry eye. We present a physiological-based model to describe tear dynamics during blinking. Tears are compartmentalized over the ocular surface; the blink cycle is divided into three repeating phases. Conservation laws quantify the tear volume and tear osmolarity of each compartment during each blink phase. Lacrimal-supply and tear-evaporation rates are varied to reveal the dependence of tear dynamics on dry-eye conditions, specifically tear osmolarity, tear volume, tear-turnover rate (TTR), and osmotic water flow. Predicted periodic-steady tear-meniscus osmolarity is 309 and 321 mOsM in normal and dry eyes, respectively. Tear osmolarity, volume, and TTR all match available clinical measurements. Osmotic water flow through the cornea and conjunctiva contribute 10 and 50% to the total tear supply in healthy and dry-eye conditions, respectively. TTR in aqueous-deficient dry eye (ADDE) is only half that in evaporative dry eye (EDE). The compartmental periodic-steady tear-dynamics model accurately predicts tear behavior in normal and dry eyes. Inclusion of osmotic water flow is crucial to match measured tear osmolarity. Tear-dynamics predictions corroborate the use of TTR as a clinical discriminator between ADDE and EDE. The proposed model is readily extended to predict the dynamics of aqueous solutes such as drugs or fluorescent tags.

  13. Diurnal thermoregulatory responses in pregnant Yankasa ewes to the dry season in a tropical Savannah.

    Science.gov (United States)

    Yaqub, Lukuman Surakat; Ayo, Joseph Olusegun; Kawu, Muhammad Umar; Rekwot, Peter Ibrahim

    2017-08-01

    The study investigated concomitant effect of gestation and high ambient temperature under a tropical environment on rectal temperature (RT), respiratory rate (RR) and heart rate (HR) responses in Yankasa ewes. Twenty Yankasa ewes, consisting of ten pregnant and ten non-pregnant ewes, were used for the study. Ewes were synchronised and bred, such that each gestation phase coincided with different periods of the dry-seasons, early-gestation (cold/harmattan), mid-gestation (peak hot-dry) and late-gestation (late hot-dry). The RT, RR and HR were recorded thrice, 2 days apart at middle of each gestation period at 06:00, 14:00 and 18:00 h, concurrently with dry- (DBT) and wet-bulb temperatures of the experimental pen. The DBT was positively correlated with RT, RR during the different gestation stages. The RT significantly (P ewes, with peak at 14:00 h. Values of RT and RR were higher (P ewes at mid- and late-gestation, respectively. Mean RT was lower (P ewes at early-gestation (cold-dry). The HR was (P ewes during the different gestation phases. In conclusion, ambient temperature and gestation concomitantly modulate diurnal thermoregulatory responses of the ewes to hot-dry season. Adequate measures should be adopted to mitigate adverse impact of prolonged high RR on the dam and the foetus during the peak of ambient temperature prevailing in the tropical Savannah environment.

  14. Exposure to organic solvents used in dry cleaning reduces low and high level visual function.

    Directory of Open Access Journals (Sweden)

    Ingrid Astrid Jiménez Barbosa

    significantly higher and almost double than that obtained from non dry-cleaners. However, reaction time performance on both parallel and serial visual search was not different between dry cleaners and non dry-cleaners.Exposure to occupational levels of organic solvents is associated with neurotoxicity which is in turn associated with both low level deficits (such as the perception of contrast and discrimination of colour and high level visual deficits such as the perception of global form and motion, but not visual search performance. The latter finding indicates that the deficits in visual function are unlikely to be due to changes in general cognitive performance.

  15. Desorption isotherms, drying characteristics and qualities of glace tropical fruits undergoing forced convection solar drying

    Energy Technology Data Exchange (ETDEWEB)

    Jamradloedluk, Jindaporn; Wiriyaumpaiwong, Songchai [Mahasarakham Univ. Khamriang, Kantarawichai, Mahasarakham (Thailand)

    2008-07-01

    Solar energy, a form of sustainable energy, has a great potential for a wide variety of applications because it is abundant and accessible, especially for countries located in the tropical region. Drying process is one of the prominent techniques for utilization of solar energy. This research work proposes a forced convection solar drying of osmotically pretreated fruits viz. mango, guava, and pineapple. The fruit cubes with a dimension of 1cm x 1cm x 1cm were immersed in 35% w./w. sucrose solution prior to the drying process. Drying kinetics, color and hardness of the final products obtained from solar drying were investigated and compared with those obtained from open air-sun drying. Desorption isotherms of the osmosed fruits were also examined and five mathematical models were used to fit the desorption curves. Experimental results revealed that solar drying provided higher drying rate than natural sun drying. Color of glace fruit processed by solar drying was more intense, indicated by lower value of lightness and higher value of yellowness, than that processed by sun drying. Hardness of the products dehydrated by both drying methods, however, was not significantly different (p>0.05). Validation of the mathematical models developed showed that the GAB model was most effective for describing desorption isotherms of osmotically pretreated mango and pineapple whereas Peleg's model was most effective for describing desorption isotherms of osmotically pretreated guava. (orig.)

  16. An empirical analysis of freight rate and vessel price volatility transmission in global dry bulk shipping market

    Directory of Open Access Journals (Sweden)

    Lei Dai

    2015-10-01

    Full Text Available Global dry bulk shipping market is an important element of global economy and trade. Since newbuilding and secondhand vessels are often traded as assets and the freight rate is the key determinant of vessel price, it is important for shipping market participants to understand the market dynamics and price transmission mechanism over time to make suitable strategic decisions. To address this issue, a multi-variate GARCH model was applied in this paper to explore the volatility spillover effects across the vessel markets (including newbuilding and secondhand vessel markets and freight market. Specifically, the BEKK parameterization of the multi-variate GARCH model (BEKK GARCH was proposed to capture the volatility transmission effect from the freight market, newbuilding and secondhand vessel markets in the global dry bulk shipping industry. Empirical results reveal that significant volatility transmission effects exist in each market sector, i.e. capesize, panamax, handymax and handysize. Besides, the market volatility transmission mechanism varies among different vessel types. Moreover, some bilateral effects are found in the dry bulk shipping market, showing that lagged variances could affect the current variance in a counterpart market, regardless of the volatility transmission. A simple ratio is proposed to guide investors optimizing their portfolio allocations. The findings in this paper could provide unique insights for investors to understand the market and hedge their portfolios well.

  17. Comparison of blueberry powder produced via foam-mat freeze-drying versus spray-drying: evaluation of foam and powder properties.

    Science.gov (United States)

    Darniadi, Sandi; Ho, Peter; Murray, Brent S

    2018-03-01

    Blueberry juice powder was developed via foam-mat freeze-drying (FMFD) and spray-drying (SD) via addition of maltodextrin (MD) and whey protein isolate (WPI) at weight ratios of MD/WPI = 0.4 to 3.2 (with a fixed solids content of 5 wt% for FMFD and 10 wt% for SD). Feed rates of 180 and 360 mL h -1 were tested in SD. The objective was to evaluate the effect of the drying methods and carrier agents on the physical properties of the corresponding blueberry powders and reconstituted products. Ratios of MD/WPI = 0.4, 1.0 and 1.6 produced highly stable foams most suitable for FMFD. FMFD gave high yields and low bulk density powders with flake-like particles of large size that were also dark purple with high red values. SD gave low powder recoveries. The powders had higher bulk density and faster rehydration times, consisting of smooth, spherical and smaller particles than in FMFD powders. The SD powders were bright purple but less red than FMFD powders. Solubility was greater than 95% for both FMFD and SD powders. The FMFD method is a feasible method of producing blueberry juice powder and gives products retaining more characteristics of the original juice than SD. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Drying process in the formation of sol-gel derived TiO2 ceramic membrane

    NARCIS (Netherlands)

    Kumar, K.N.P.; Kumar, K.N.P.; Zaspalis, V.T.; Zaspalis, V.T.; Keizer, Klaas; Burggraaf, Anthonie; Burggraaf, A.J.

    1993-01-01

    Accurate drying data for thin titania gel layers dried at 40°C and 20% relative humidity (RH) are given. The drying rate versus free moisture content diagram should show three regions as predicted by the classical drying theory. They are the constant rate period, the first falling rate period and

  19. Total phenolics, antioxidant capacity, colour and drying characteristics of date fruit dried with different methods

    Directory of Open Access Journals (Sweden)

    Gökçen İZLİ

    2016-01-01

    Full Text Available Abstract Date slices were dried with the three drying methods convective (60, 70 and 80 °C, microwave (120 W and freeze drying to determine drying characteristics and to compare the dried fruit quality. All colour parameters changed depending on the drying method and colours closest to the fresh sample were obtained with freeze drying. It is interesting to note that the total phenolic content and antioxidant capacity in each sample rose when looked at in relation to the fresh sample. In particular, microwave-dried samples were recorded as having the highest total phenolic content and the highest antioxidant capacity. To explain the drying kinetics of the date slices, nine thin-layer drying models were also attempted. Based on statistical tests, the model developed by Midilli et al. model was found to be the best model for convective and microwave drying, but the Two Term model was the best for freeze drying. This study shows that microwave drying can produce high quality date slices with the additional advantage of reduced drying times compared to convective and freeze drying.

  20. Formation of monodisperse mesoporous silica microparticles via spray-drying.

    Science.gov (United States)

    Waldron, Kathryn; Wu, Winston Duo; Wu, Zhangxiong; Liu, Wenjie; Selomulya, Cordelia; Zhao, Dongyuan; Chen, Xiao Dong

    2014-03-15

    In this work, a protocol to synthesize monodisperse mesoporous silica microparticles via a unique microfluidic jet spray-drying route is reported for the first time. The microparticles demonstrated highly ordered hexagonal mesostructures with surface areas ranging from ~900 up to 1500 m(2)/g and pore volumes from ~0.6 to 0.8 cm(3)/g. The particle size could be easily controlled from ~50 to 100 μm from the same diameter nozzle via changing the initial solute content, or changing the drying temperature. The ratio of the surfactant (CTAB) and silica (TEOS), and the amount of water in the precursor were found to affect the degree of ordering of mesopores by promoting either the self-assembly of the surfactant-silica micelles or the condensation of the silica as two competing processes in evaporation induced self-assembly. The drying rate and the curvature of particles also affected the self-assembly of the mesostructure. The particle mesostructure is not influenced by the inlet drying temperature in the range of 92-160 °C, with even a relatively low temperature of 92 °C producing highly ordered mesoporous microparticles. The spray-drying derived mesoporous silica microparticles, while of larger sizes and more rapidly synthesized, showed a comparable performance with the conventional mesoporous silica MCM-41 in controlled release of a dye, Rhodamine B, indicating that these spray dried microparticles could be used for the immobilisation and controlled release of small molecules. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. High Speed Finish Turning of Inconel 718 Using PCBN Tools under Dry Conditions

    Directory of Open Access Journals (Sweden)

    José Luis Cantero

    2018-03-01

    Full Text Available Inconel 718 is a superalloy, considered one of the least machinable materials. Tools must withstand a high level of temperatures and pressures in a very localized area, the abrasiveness of the hard carbides contained in the Inconel 718 microstructure and the adhesion tendency during its machining. Mechanical properties along with the low thermal conductivity become an important issue for the tool wear. The finishing operations for Inconel 718 are usually performed after solution heat treatment and age hardening of the material to give the superalloy a higher level of hardness. Carbide tools, cutting fluid (at normal or high pressures and low cutting speed are the main recommendations for finish turning of Inconel 718. However, dry machining is preferable to the use of cutting fluids, because of its lower environmental impact and cost. Previous research has concluded that the elimination of cutting fluid in these processes is feasible when using hard carbide tools. Recent development of new PCBN (Polycrystalline Cubic Boron Nitride grades for cutting tools with higher tenacity has allowed the application of these tool grades in the finishing operations of Inconel 718. This work studies the performance of commercial PCBN tools from four different tool manufacturers as well as an additional grade with equivalent performance during finish turning of Inconel 718 under dry conditions. Wear tests were carried out with different cutting conditions, determining the evolution of machining forces, surface roughness and tool wear. It is concluded that it is not industrially viable the high-speed finishing of Inconel 718 in a dry environment.

  2. Key composition optimization of meat processed protein source by vacuum freeze-drying technology

    Directory of Open Access Journals (Sweden)

    Yan Ma

    2018-05-01

    Full Text Available Vacuum freeze-drying technology is a high technology content, a wide range of knowledge of technology in the field of drying technology is involved, it is also a method of the most complex drying equipment, the largest energy consumption, the highest cost of drying method, but due to the particularity of its dry goods: the freeze-drying food has the advantages of complex water performance is good, cooler and luster of freezing and drying food to maintain good products, less nutrient loss, light weight, easy to carry transportation, easy to long-term preservation, and on the quality is far superior to the obvious advantages of other dried food, making it become the forefront of drying technology research and development. The freeze-drying process of Chinese style ham and western Germany fruit tree tenderloin is studied in this paper, their eutectic point, melting point and collapse temperature, freeze-drying curve and its heat and mass transfer characteristics are got, then the precool temperature and the highest limiting temperature of sublimation interface are determined. The effect of system pressure on freeze-dried rate in freeze-drying process is discussed, and the method of regulating pressure circularly is determined. Keywords: Ham, Tenderloin, Vacuum freeze-dry, Processing, Optimization

  3. Usage of Heat Pump Dryer in Food Drying Process and Apple Drying Application

    Directory of Open Access Journals (Sweden)

    Gökhan Gürlek

    2015-12-01

    Full Text Available In Turkey, drying is achieved natural method by spreading out the material on the ground. In this way, there are many disadvantages like low quality and hygienic problems. The resulting loss of food quality in the dried products may have effect negatively trade potential and economical worth. For preventing the deterioration of the materials different types of drying methods have been developed. Low energy consumption applications are important for drying industry besides high product quality. For this purpose, heat pump dryer is gaining importance day by day in drying applications. In this study, the working principle of the heat pump dryer, heat pump types in the drying process and the heat pump dryer performance criteria will be considered. An example of application will be described using obtained results from apple drying operation that is conducted in the heat pump dryer.

  4. Modelling the Drying Characteristics and Kinetics of Hot Air-Drying of Unblanched Whole Red Pepper and Blanched Bitter Leaf Slices

    Directory of Open Access Journals (Sweden)

    Samuel Enahoro Agarry

    2017-01-01

    Full Text Available The objective of this study was to investigate the drying characteristics and kinetics of red pepper and bitter leaf under the influence of different drying temperatures. The drying experiments were carried out at dry bulb temperature of 35, 45, 55 and 75oC, respectively in an oven dryer. The results showed that as drying temperature increased, drying rate also increased and the drying time decreased. It was observed that un-sliced red pepper and sliced bitter leaf would dry within 2.5-12 h and 1.67-7 h, respectively at temperature ranging from 75 to 35oC. The drying of red pepper and bitter leaf was both in the constant and falling rate period. Four semi-empirical mathematical drying models (Newton, Page, Henderson and Pabis, and Logarithmic models were fitted to the experimental drying curves. The models were compared using the coefficient of determination (R^2 and the root mean square error (RMSE. The Page model has shown a better fit to the experimental drying data of red pepper and bitter leaf, respectively as relatively compared to other tested models. Moisture transport during drying was described by the application of Fick’s diffusion model and the effective moisture diffusivity was estimated. The value ranges from 15.69 to 84.79 × 10-9 m2/s and 0.294 to 1.263 × 10-9 m2/s for red pepper and bitter leaf, respectively. The Arrhenius-type relationship describes the temperature dependence of effective moisture diffusivity and was determined to be 37.11 kJ/mol and 32.86 kJ/mol for red pepper and bitter leaf, respectively. A correlation between the drying time and the heat transfer area was also developed.

  5. Evolutionary trade-offs between drought resistance mechanisms across a precipitation gradient in a seasonally dry tropical oak (Quercus oleoides).

    Science.gov (United States)

    Ramírez-Valiente, Jose A; Cavender-Bares, Jeannine

    2017-07-01

    In seasonally dry tropical forest regions, drought avoidance during the dry season coupled with high assimilation rates in the wet season is hypothesized to be an advantageous strategy for forest trees in regions with severe and long dry seasons. In contrast, where dry seasons are milder, drought tolerance coupled with a conservative resource-use strategy is expected to maximize carbon assimilation throughout the year. Tests of this hypothesis, particularly at the intraspecific level, have been seldom conducted. In this study, we tested the extent to which drought resistance mechanisms and rates of carbon assimilation have evolved under climates with varying dry season length and severity within Quercus oleoidesCham. and Schlect., a tropical dry forest species that is widely distributed in Central America. For this purpose, we conducted a greenhouse experiment where seedlings originating from five populations that vary in rainfall patterns were grown under different watering treatments. Our results revealed that populations from xeric climates with more severe dry seasons exhibited large mesophyllous leaves (with high specific leaf area, SLA), and leaf abscission in response to drought, consistent with a drought-avoidance strategy. In contrast, populations from more mesic climates with less severe dry seasons had small and thick sclerophyllous leaves with low SLA and reduced water potential at the turgor loss point (πtlp), consistent with a drought-tolerance strategy. Mesic populations also showed high plasticity in πtlp in response to water availability, indicating that osmotic adjustment to drought is an important component of this strategy. However, populations with mesophyllous leaves did not have higher maximum carbon assimilation rates under well-watered conditions. Furthermore, SLA was negatively associated with mass-based photosynthetic rates, contrary to expectations of the leaf economics spectrum, indicating that drought-resistance strategies are not

  6. Forming of High-strength Steels Using a Hot-melt Dry Lubricant

    DEFF Research Database (Denmark)

    Hörnström, Sven-Erik; Karlsson, Erik; Olsson, Mikael

    2008-01-01

    during forming resulting in seizure of the tool/steel sheet contact and extensive scratching of the steel sheet surface. As a result, a number of concepts have been developed in order to reduce the tendency to galling in metal forming, including the development of new dry lubricants, new forming tool...... steel grades and improved surface engineering treatments such as the deposition of low friction CVD and PVD coatings. In the present study the performance of a hot-melt dry lubricant in the forming of hot and cold rolled and hot-dip galvanized high strength steel has been evaluated and compared...... with a conventional rust protection oil using four different tests methods, i.e. a strip reduction test, a bending under tension test, a stretch-forming test and a pin-on disc test. In the tests, two different cold work tool steels, a conventional steel grade and a nitrogen alloyed PM steel grade were evaluated...

  7. Ultrasonic Spray Drying vs High Vacuum and Microwaves Technology for Blueberries

    Science.gov (United States)

    Candia-Muñoz, N.; Ramirez-Bunster, M.; Vargas-Hernández, Y.; Gaete-Garretón, L.

    Interest in high quality foods: good taste and a high content of nutrients with healthy beneficial effects are increasing. Fruits have good properties but, they are lost because the oxidation process, additionally, for different reasons a 40% of harvested fruit are lost. To conserve the fruit properties an ultrasonic assisted spray dryer was developed and tested, comparing its results with microwave-vacuum drying technology. Results did shown taste, color, smell, particle shape and size distribution better than the conventional one. The antioxidants conservation were quite good except in the anthocyanins, in which the microwave and vacuum technology shown best results.

  8. High Coke-Resistance Pt/Mg1-xNixO Catalyst for Dry Reforming of Methane.

    Directory of Open Access Journals (Sweden)

    Faris A J Al-Doghachi

    Full Text Available A highly active and stable nano structured Pt/Mg1-xNixO catalysts was developed by a simple co-precipitation method. The obtained Pt/Mg1-xNixO catalyst exhibited cubic structure nanocatalyst with a size of 50-80 nm and realized CH4 and CO2 conversions as high as 98% at 900°C with excellent stability in the dry reforming of methane. The characterization of catalyst was performed using various kinds of analytical techniques including XRD, BET, XRF, TPR-H2, TGA, TEM, FESEM, FT-IR, and XPS analyses. Characterization of spent catalyst further confirms that Pt/Mg1-xNixO catalyst has high coke-resistance for dry reforming. Thus, the catalyst demonstrated in this study, offers a promising catalyst for resolving the dilemma between dispersion and reducibility of supported metal, as well as activity and stability during high temperature reactions.

  9. Response of Physiological Growth Indices and Bulb Dry Yield of Onion (Allium cepa L. Genotypes to Priming and Seed Size

    Directory of Open Access Journals (Sweden)

    M. Izadkhah

    2016-02-01

    Full Text Available Introduction Priming is one of the most common methods of improving seed quality, which significantly affects their storability. Seed priming is a seed treatment that allows imbibition and activation of the initial metabolic events associated with seed germination, but prevents radicle emergence and growth. In other words, phase one and two of seed water imbibition curve are passed, but seeds do not enter the third phase of water uptake. Then seeds are dried back to their original water content. Seed priming is a pre-sowing strategy for influencing seed germination and seedling development by modulating pre-germination metabolic activity prior to emergence of the radicle and generally enhances germination rate and plant performance. Naturally, when speed and percentage emergence of germinating seeds are being high, growing sources like light, water and nutrient will be more used. Another factor that can affect the seed germination and seedling establishment is the seed size. As generally known, among producing factors, seed as the first consumer store, plays an important role in the transfer of genetic characters and improvement of qualitative and quantitative traits of production. One of the most important factors in maximizing crop yield is planting high quality seed. Seed size is an important physical indicator of seed quality that affects vegetative growth and is frequently related to yield, market grade factors and harvest efficiency. In the present paper, effects of different pre-sowing treatments and seed size on physiological growth indices and bulb dry yield of onion cultivars were investigated. Materials and Methods In order to determine the response of physiological growth indices and bulb dry yield of onion to priming and seed size, a field experiment was conducted in 2012-2013 cropping season at Agriculture and Natural Resources Research Center of East, Azarbayjan, Iran. This experiment was a factorial experiment based on a

  10. Drying firewood in a temporary solar kiln: a case study.

    Science.gov (United States)

    George R. Sampson; Anthony F. Gasbarro

    1986-01-01

    A pilot study was undertaken to determine drying rates for small diameter, unsplit paper birch firewood that was dried: (1) in a conventional top-covered pile; (2) in a simple, temporary solar kiln; and (3) in tree length. Drying rates were the same for firewood piles whether they were in the temporary solar kilns or only covered on top to keep rain or snow from...

  11. Development and Evaluation of Solar Tunnel Dryer for Commercial Fish Drying

    Science.gov (United States)

    Mohod, A. G.; Khandetod, Y. P.; Shrirame, H. Y.

    2014-01-01

    The local practice of drying fish in open sun drying poses problems such as high moisture content, uncontrolled drying and contamination. These problems can be avoided by proper use of improved methods such as the solar tunnel dryer, which results in faster drying of fish. The semi cylindrical walk-in type natural convection solar tunnel dryer, having drying area of 37.5 m2 was developed and evaluated for the drying of fish products in comparison with the conventional method of open sun drying. The experiments were conducted without fish and with fish to evaluate the performance of solar tunnel dryer. The average rise in temperature inside the solar tunnel dryer was found to be 11.24 °C and 18.29 °C over the ambient temperature during no load test in winter and summer respectively. The average 28 % saving in time was observed for selected fish drying using solar tunnel dryer over open sun drying method with average drying efficiency of 19 %. The economics was calculated for drying of prawns ( Parapaeneopsis stylifera) by solar tunnel dryer and open sun drying system on the basis of business as a whole. The economics of the solar tunnel dryer is presented in term of Net present worth, Benefit-Cost Ratio, Payback period, Profitability index and Internal rate of return. The pay back period for solar tunnel dryer was found to be 2.84 years.

  12. Dry flue gas desulfurization byproducts as amendments for reclamation of acid mine spoil

    International Nuclear Information System (INIS)

    Dick, W.A.; Stehouwer, R.C.; Beeghly, J.H.; Bigham, J.M.; Lal, R.

    1994-01-01

    Development of beneficial reuses of highly alkaline, dry flue gas desulfurization (FGD) byproducts can impact the economics of adopting these FGD technologies for retrofit on existing powerplants. Greenhouse studies were conducted to evaluate the use of two dry FGD byproducts for reclamation of acid mine spoil (pH, 3.1 to 5.8). Treatment rates of FGD ranges from 0% to 32% by dry weight and most treatments also included 6% by dry weight of sewage sludge. Fescue (Festuca arundinacea Schreb.) was harvested monthly for a total of six harvests. Plant tissue composition and root growth were determined after the sixth harvest. Leachate analyses and pH determination of mixes were done at the beginning and end of the experiments. Both FGD byproducts were effective in raising the spoil pH and in improving fescue growth. At the highest FGD application rate, fescue growth decreased from the optimum due to high pH and reduced rooting volume caused by cementation reactions between the FGD and spoil. Trace elements, with the exception of B, were decreased in the fescue tissue when FGD was applied. Leachate pH, electrical conductivity, dissolved organic carbon, Ca, Mg, and S tended to increase with increased FGD application rate; Al, Fe, Mn, and Zn decreased. pH was the most important variable controlling the concentrations of these elements in the leachate. Concentrations of elements of environmental concern were near or below drinking water standard levels. These results indicate that FGD applied at rates equivalent to spoil neutralization needs can aid in the revegetation of acid spoil revegetation with little potential for introduction of toxic elements into the leachate water or into the food chain

  13. High pressure effect on the color of minced cured restructured ham at different levels of drying, pH, and NaCl.

    Science.gov (United States)

    Bak, Kathrine Holmgaard; Lindahl, Gunilla; Karlsson, Anders H; Lloret, Elsa; Ferrini, Gabriele; Arnau, Jacint; Orlien, Vibeke

    2012-03-01

    Color changes of minced cured restructured ham was studied considering the effects of high pressure (HP) treatment (600MPa, 13°C, 5min), raw meat pH(24) (low, normal, high), salt content (15, 30g/kg), and drying (20%, 50% weight loss). Raw hams were selected based on pH(24) in Semimembranosus, mixed with additives, frozen, sliced, and dried using the Quick-Dry-Slice® process. Meat color (CIE 1976 L*a*b*) and reflectance spectra were measured before and after HP treatment. HP significantly increased L*, decreased a*, and decreased b* for restructured ham dried to 20% weight loss, regardless of salt content and pH(24). L* and a* were best preserved in high pH/high salt restructured ham. HP had no effect on the color of restructured ham dried to 50% weight loss. HP had no effect on the shape of reflectance curves, indicating that the pigment responsible for minced cured restructured ham color did not change due to HP. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. High-temperature treatment for efficient drying of bread rye and reduction of fungal contaminants

    DEFF Research Database (Denmark)

    Kristensen, E.F.; Elmholt, S.; Thrane, Ulf

    2005-01-01

    on the grain. The aim of this study was to establish a drying regime that kills fungal propagules on rye without reducing its quality for baking. Special attention was paid to some important mycotoxin-producing species. As drying temperatures and retention time in the drum are essential, the drum drier must...... the grain was properly stored afterwards. At the same time a high quality for baking was maintained. The highest baking quality in rye was obtained at grain temperatures of about 62 degrees C and only at grain temperatures above 70 degrees C visual quality changes were detected. (c) 2005 Silsoe Research...

  15. Optimization Of Freeze-Dried Starter For Yogurt By Full Factorial Experimental Design

    Directory of Open Access Journals (Sweden)

    Chen He

    2015-12-01

    Full Text Available With the rapidly development of fermented milk product, it is significant for enhancing the performance of starter culture. This paper not only investigated the influence of anti-freeze factors and freeze-drying protective agents on viable count, freeze-drying survival rate and yield of Lactobacillus bulgaricus (LB and Streptococcus thermophilus (ST, but also optimized the bacteria proportion of freeze-dried starter culture for yogurt by full factorial experimental design. The results showed as following: the freeze-drying protective agents or anti-freeze factors could enhanced survival rate of LB and ST; the freeze-dried LB and ST powders containing both of anti-freeze factors and freeze-drying protective agents had higher viable count and freeze-drying survival rate that were 84.7% and 79.7% respectively; In terms of fermentation performance, the best group of freeze-dried starter for yogurt was the compound of LB3 and ST2.

  16. SACCHARIFICATION OF NATIVE CASSAVA STARCH AT HIGH DRY SOLIDS IN AN ENZYMATIC MEMBRANE REACTOR

    Directory of Open Access Journals (Sweden)

    I Nyoman Widiasa

    2012-02-01

    Full Text Available This study is aimed to develop a novel process scheme for hydrolysis of native cassava starch at high dry solids using an enzymatic membrane reactor (EMR. Firstly, liquefied cassava starch having solids content up to 50% by weight was prepared by three stage liquefactions in a conventional equipment using a commercially available heat stable a-amylase (Termamyl 120L. The liquefied cassava starch was further saccharified in an EMR using glucoamylase (AMG E. By using the developed process scheme, a highly clear hydrolysate with dextrose equivalent (DE approximately 97 could be produced, provided the increase of solution viscosity during the liquefaction was precisely controlled. The excessive space time could result in reduction in conversion degree of starch. Moreover, a residence time distribution study confirmed that the EMR could be modelled as a simple continuous stirred tank reactor (CSTR. Using Lineweaver-Burk analysis, the apparent Michaelis-Menten constant (Km and glucose production rate constant (k2 were 552 (g/l and 4.04 (min-1, respectively. Application of simple CSTR model with those kinetic parameters was quietly appropriate to predict the reactor’s performance at low space time.

  17. FINAL REPORT: Transformational electrode drying process

    Energy Technology Data Exchange (ETDEWEB)

    Claus Daniel, C.; Wixom, M.(A123 Systems, Inc.)

    2013-12-19

    This report includes major findings and outlook from the transformational electrode drying project performance period from January 6, 2012 to August 1, 2012. Electrode drying before cell assembly is an operational bottleneck in battery manufacturing due to long drying times and batch processing. Water taken up during shipment and other manufacturing steps needs to be removed before final battery assembly. Conventional vacuum ovens are limited in drying speed due to a temperature threshold needed to avoid damaging polymer components in the composite electrode. Roll to roll operation and alternative treatments can increase the water desorption and removal rate without overheating and damaging other components in the composite electrode, thus considerably reducing drying time and energy use. The objective of this project was the development of an electrode drying procedure, and the demonstration of processes with no decrease in battery performance. The benchmark for all drying data was an 80°C vacuum furnace treatment with a residence time of 18 – 22 hours. This report demonstrates an alternative roll to roll drying process with a 500-fold improvement in drying time down to 2 minutes and consumption of only 30% of the energy compared to vacuum furnace treatment.

  18. Characteristics of Timbers Dried Using Kiln Drying and Radio Frequency-Vacuum Drying Systems

    Directory of Open Access Journals (Sweden)

    Rabidin Zairul Amin

    2017-01-01

    Full Text Available Heavy hardwoods are difficult-to-dry timbers as they are prone to checking and internal stresses when dried using a conventional kiln drying system. These timbers are usually dried naturally to reach 15% to 19% moisture content with an acceptable defects. Besides long drying time, timbers at these moisture contents are not suitable for indoor applications since they will further dry and causing, for example, jointing and lamination failures. Drying to a lower moisture content could only be achieved in artificial drying kilns such as conventional kiln, dehumidification kiln, solar kiln, radio frequency-vacuum, etc. The objective of this study was to evaluate the characteristics of 30 mm and 50 mm thick kekatong (Cynometra spp. timber dried using kiln drying (KD and radio frequency-vacuum drying (RFV system. The investigation involved drying time, moisture content (MC variations between and within boards, drying defects, shrinkage, and drying stress. Drying defects include checks (surface, end, and internal checks and warping (bowing, cuping, spring, and twisting. The results showed that RFV drying time was reduced to 50% compared to the KD. RFV dried boards demonstrated a more uniform MC between and within boards. Shrinkage in width and thickness, as well as tangential/radial and volumetric shrinkages were substantially less in RFV boards. The amount of cupping, bowing and spring were very low and negligible in all drying runs. There was no twisting observed in all drying methods. The number of stress-free RFV board was higher than KD. With proper procedure, the RFV technology could be used for drying heavy hardwoods which are difficult to dry in conventional kilns due to excessive drying times and degradation.

  19. High pressure liquid chromatographic analysis of the main pungent principles of solar dried West Indian ginger (Zingiber officinale Roscoe)

    Energy Technology Data Exchange (ETDEWEB)

    Balladin, D.A.; Headley, O. [University of the West Indies, Cave Hill Campus, St. Michael, Barbados (West Indies). Centre for Resource Management and Environmental Studies; Chang-Yen, I. [University of the West Indies, St. Augustine Campus, Trinidad (West Indies). Faculty of Agriculture and Natural Sciences; McGaw, D.R. [University of the West Indies, St. Augustine Campus, Trinidad (West Indies). Dept. of Chemical Engineering

    1998-12-31

    The main pungent principles of West Indian ginger (Zingiber officinale Roscoe) were quantified and qualified using High Pressure Liquid Chromatography. This procedure was used to evaluate the pungency profile of fresh, solar dried and solar dried/steam distilled ginger rhizomes. In this investigation, the total oleoresin extracted was in the ratio [20: 1: 2] for [fresh ginger: solar dried: solar dried/steam distilled ginger rhizomes] with respect to the [6]-gingerol content. This simple isocratic HPLC method can be used to investigate the pungency profile of the extracted oleoresin from the ginger rhizomes. (author)

  20. Thin layer convective solar drying and mathematical modeling of prickly pear peel (Opuntia ficus indica)

    International Nuclear Information System (INIS)

    Lahsasni, Siham; Kouhila, Mohammed; Mahrouz, Mostafa; Idlimam, Ali; Jamali, Abdelkrim

    2004-01-01

    This paper presents the thin layer convective solar drying and mathematical modeling of prickly pear peel. For these purposes, an indirect forced convection solar dryer consisting of a solar air collector, an auxiliary heater, a circulation fan and a drying cabinet is used for drying experiments. Moreover, the prickly pear peel is sufficiently dried in the ranges of 32 to 36 deg. C of ambient air temperature, 50 to 60 deg. C of drying air temperature, 23 to 34% of relative humidity, 0.0277 to 0.0833 m 3 /s of drying air flow rate and 200 to 950 W/m 2 of daily solar radiation. The experimental drying curves show only a falling drying rate period. The main factor in controlling the drying rate was found to be the drying air temperature. The drying rate equation is determined empirically from the characteristic drying curve. Also, the experimental drying curves obtained were fitted to a number of mathematical models. The Midilli-Kucuk drying model was found to satisfactorily describe the solar drying curves of prickly pear peel with a correlation coefficient (r) of 0.9998 and chi-square (χ 2 ) of 4.6572 10 -5

  1. The effect of residual water on antacid properties of sucralfate gel dried by microwaves.

    Science.gov (United States)

    Gainotti, Alessandro; Losi, Elena; Colombo, Paolo; Santi, Patrizia; Sonvico, Fabio; Baroni, Daniela; Massimo, Gina; Colombo, Gaia; Del Gaudio, Pasquale

    2006-03-01

    The aim of this work was to study the acid neutralization characteristics of microwave-dried sucralfate gel in relation to the water content and physical structure of the substance. Several dried sucralfate gels were compared with humid sucralfate gel and sucralfate nongel powder in terms of neutralization rate and buffering capacity. Humid sucralfate gel and microwave-dried gel exhibited antacid effectiveness. In particular, the neutralization rate of dried gel powders was inversely related to the water content: as the water content of dried powders decreased, the acid reaction rate linearly increased. The relationship was due to the different morphology of dried sucralfate gels. In fact, the porosity of the dried samples increased with the water reduction. However, the acid neutralization equivalent revealed that the dried sucralfate gel became more resistant to acid attack in the case of water content below 42%. Then, the microwave drying procedure had the opposite effect on the reactivity of the aluminum hydroxide component of dried sucralfate gel powders, since the rate of the reaction increased whereas the buffering capacity decreased as the amount of water was reduced.

  2. Dynamics of soil water evaporation during soil drying: laboratory experiment and numerical analysis.

    Science.gov (United States)

    Han, Jiangbo; Zhou, Zhifang

    2013-01-01

    Laboratory and numerical experiments were conducted to investigate the evolution of soil water evaporation during a continuous drying event. Simulated soil water contents and temperatures by the calibrated model well reproduced measured values at different depths. Results show that the evaporative drying process could be divided into three stages, beginning with a relatively high evaporation rate during stage 1, followed by a lower rate during transient stage and stage 2, and finally maintaining a very low and constant rate during stage 3. The condensation zone was located immediately below the evaporation zone in the profile. Both peaks of evaporation and condensation rate increased rapidly during stage 1 and transition stage, decreased during stage 2, and maintained constant during stage 3. The width of evaporation zone kept a continuous increase during stages 1 and 2 and maintained a nearly constant value of 0.68 cm during stage 3. When the evaporation zone totally moved into the subsurface, a dry surface layer (DSL) formed above the evaporation zone at the end of stage 2. The width of DSL also presented a continuous increase during stage 2 and kept a constant value of 0.71 cm during stage 3.

  3. Drying Characteristics and Water-soluble Polysaccharides Evaluation of Kidney Shape Ganoderma lucidum Drying in Air Circulation System

    Science.gov (United States)

    Prasetyo, D. J.; Jatmiko, T. H.; Poeloengasih, C. D.; Kismurtono, M.

    2017-12-01

    In this project, drying kinetic of kidney shape Ganoderma lucidum fruiting body in air circulation system was studied. The drying experiments were conducted at 40, 50 and 60°C with air flow rate of 1.3 ms-1. Samples were weighted periodically until no change in sample weight was recorded, and then the samples were analyzed for its moisture content. Four different thin-layer mathematical models (Newton, Page, Two-term, Midilli) were used and compare to evaluate the drying curves of kidney shape G. lucidum. The water-soluble polysaccharides were evaluated in order to find the best drying temperature condition. The results indicates that Midilli model was the fittest model to describe the characteristic of kidney shape G. lucidum in the air circulation drying system and temperature of 50°C was the best drying condition to get highest value of water-soluble polysaccharides.

  4. Clay as a matrix former for spray drying of drug nanosuspensions.

    Science.gov (United States)

    Dong, Yuancai; Ng, Wai Kiong; Hu, Jun; Shen, Shoucang; Tan, Reginald B H

    2014-04-25

    Utilization of sugars (e.g. lactose, sucrose) as matrix formers for spray drying of drug nanosuspensions is associated with two drawbacks: (1) sugars are incapable of preventing agglomeration of drug nanoparticles (NPs) in the suspension state; and (2) the spray-dried sugars are usually amorphous and hygroscopic. This work aimed to apply a clay, montmorillonite (MMT) as an alternative matrix former for spray drying of drug nanosuspensions with fenofibrate (feno) as a model compound. Drug nanosuspensions were synthesized by liquid antisolvent precipitation with different amount of MMT followed by spray drying. It is found that MMT is able to reduce the agglomeration of drug nanoparticles in the suspension state, as observed from the gradual alleviation of the clogging with the increased clay during the spray drying. The spray-dried feno NPs/MMT powders exhibited a much lower moisture sorption than spray-dried feno NPs/lactose powders as evidenced by the dynamic vapor sorption (DVS) analysis. The dissolution within 5 min for the spray-dried feno NPs/MMT powders at drug:MMT weight ratio of 1:3 was 81.4 ± 1.8% and the total dissolution within 60 min was 93.4 ± 0.9%. Our results demonstrate that MMT is a useful matrix former for preservation of the high dissolution rate of nanosized drug particles after drying. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Gaps in Current Knowledge and Priorities for Future Research in Dry Eye.

    Science.gov (United States)

    Saldanha, Ian J; Dickersin, Kay; Hutfless, Susan T; Akpek, Esen K

    2017-12-01

    Dry eye, a common yet underrecognized and evolving field, has few recommended treatment algorithms, mostly based on expert consensus rather than robust research evidence. There are high costs associated with managing dry eye and conducting research to identify effective and safe long-term treatments. To support evidence-based management of dry eye, our purpose was to identify and prioritize important clinical research questions for future clinical research. We translated recommendations from the American Academy of Ophthalmology's 2013 Preferred Practice Patterns for dry eye into answerable clinical research questions about treatment effectiveness. Clinicians around the world who manage patients with dry eye rated each question's importance from 0 (not important) to 10 (very important) using a 2-round online Delphi survey. We considered questions as "important" if ≥75% of respondents assigned a rating of 6 or more in round 2. We mapped the identified important clinical research questions to reliable systematic reviews published up to March 2016. Seventy-five clinicians from at least 21 countries completed both Delphi rounds. Among the 58 questions, 24 met our definition of "important": 9/24 and 7/24 addressed topical and systemic treatments, respectively. All 4 questions with the highest 25th percentiles addressed topical treatments. Although 6/24 "important" questions were associated with 4 existing reliable systematic reviews, none of these reviews came to a definitive conclusion about treatment effectiveness. We identified gaps pertaining to treatment options for dry eye. Future clinical research on the management of dry eye should strongly consider these prioritized questions.

  6. Prediction of some physical and drying properties of terebinth fruit (Pistacia atlantica L.) using Artificial Neural Networks.

    Science.gov (United States)

    Kaveh, Mohammad; Chayjan, Reza Amiri

    2014-01-01

    Drying of terebinth fruit was conducted to provide microbiological stability, reduce product deterioration due to chemical reactions, facilitate storage and lower transportation costs. Because terebinth fruit is susceptible to heat, the selection of a suitable drying technology is a challenging task. Artificial neural networks (ANNs) are used as a nonlinear mapping structures for modelling and prediction of some physical and drying properties of terebinth fruit. Drying characteristics of terebinth fruit with an initial moisture content of 1.16 (d.b.) was studied in an infrared fluidized bed dryer. Different levels of air temperatures (40, 55 and 70°C), air velocities (0.93, 1.76 and 2.6 m/s) and infrared (IR) radiation powers (500, 1000 and 1500 W) were applied. In the present study, the application of Artificial Neural Network (ANN) for predicting the drying moisture diffusivity, energy consumption, shrinkage, drying rate and moisture ratio (output parameter for ANN modelling) was investigated. Air temperature, air velocity, IR radiation and drying time were considered as input parameters. The results revealed that to predict drying rate and moisture ratio a network with the TANSIG-LOGSIG-TANSIG transfer function and Levenberg-Marquardt (LM) training algorithm made the most accurate predictions for the terebinth fruit drying. The best results for ANN at predications were R2 = 0.9678 for drying rate, R2 = 0.9945 for moisture ratio, R2 = 0.9857 for moisture diffusivity and R2 = 0.9893 for energy consumption. Results indicated that artificial neural network can be used as an alternative approach for modelling and predicting of terebinth fruit drying parameters with high correlation. Also ANN can be used in optimization of the process.

  7. OSCILLATING MODE OF TOPINAMBUR TUBERS DRYING

    Directory of Open Access Journals (Sweden)

    A. V. Golubkivich

    2015-01-01

    Full Text Available Specifics of a chemical composition of tubers and green material of a topinambur (Helianthus tuberosus, high efficiency and ecological plasticity, profitability of growing, biotechnological potential of use enable to identify a topinambur as a of high-energy cultures of the future. High moisture of various topinambur parts, features of the mechanism of a heat and mass transfer set a problem of search of the new drying methods promoting to increase dehydration efficiency and produce a quality product. A method of calculation of duration of the oscillating mode of topinambur tubers drying in a dense layer is worked out. The topinambur tubers cut on cubes with the side of 6 mm were taken as object of researches. Researches were conducted in the setting of various drying modes: two experiences at the oscillating mode with height of a material layer of 0.07 m and 0.17 m; and also as a check experiment was material drying at a constant temperature of the drying agent. Duration of the oscillating mode of topinambur tubers drying was calculated on their basis of received curves of changes of moisture content at various modes of drying. Estimate indicators were confirmed with experimental data. Results of determination of duration of the oscillating modes of topinambur tubers drying proved that efficiency of the oscillating modes is 18 percent higher, than at control experiment.

  8. Solubility enhancement of BCS Class II drug by solid phospholipid dispersions: Spray drying versus freeze-drying.

    Science.gov (United States)

    Fong, Sophia Yui Kau; Ibisogly, Asiye; Bauer-Brandl, Annette

    2015-12-30

    The poor aqueous solubility of BCS Class II drugs represents a major challenge for oral dosage form development. Using celecoxib (CXB) as model drug, the current study adopted a novel solid phospholipid nanoparticle (SPLN) approach and compared the effect of two commonly used industrial manufacturing methods, spray- and freeze-drying, on the solubility and dissolution enhancement of CXB. CXB was formulated with Phospholipoid E80 (PL) and trehalose at different CXB:PL:trehalose ratios, of which 1:10:16 was the optimal formulation. Spherical amorphous SPLNs with average diameters <1μm were produced by spray-drying; while amorphous 'matrix'-like structures of solid PL dispersion with larger particle sizes were prepared by freeze-drying. Formulations from both methods significantly enhanced the dissolution rates, apparent solubility, and molecularly dissolved concentration of CXB in phosphate buffer (PBS, pH 6.5) and in biorelevant fasted state simulated intestinal fluid (FaSSIF, pH 6.5) (p<0.05). While similar dissolution rates were found, the spray-dried SPLNs had a larger enhancement in apparent solubility (29- to 132-fold) as well as molecular solubility (18-fold) of CXB at equilibrium (p<0.05). The strong capability of the spray-dried SPLNs to attain 'true' supersaturation state makes them a promising approach for bioavailability enhancement of poorly soluble drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Generalization of drying curves in conductive/convective drying of cellulose

    Directory of Open Access Journals (Sweden)

    M. Stenzel

    2003-03-01

    Full Text Available The objective of this work is to analyze the possibility of applying the drying curves generalization methodology to the conductive/convective hot plate drying of cellulose. The experiments were carried out at different heated plate temperatures and air velocities over the surface of the samples. This kind of approach is very interesting because it permits comparison of the results of different experiments by reducing them to only one set, which can be divided into two groups: the generalized drying curves and the generalized drying rate curves. The experimental apparatus is an attempt to reproduce the operational conditions of conventional paper dryers (ratio of paper/air movement and consists of a metallic box heated by a thermostatic bath containing an upper surface on which the cellulose samples are placed. Sample material is short- and long-fiber cellulose sheets, about 1 mm thick, and ambient air was introduced into the system by a adjustable blower under different conditions. Long-fiber cellulose generalized curves were obtained and analyzed first individually and then together with the short-fiber cellulose results from Motta Lima et al. (2000 a,b. Finally, a set of equations to fit the generalized curves obtained was proposed and discussed.

  10. Effect of wetting properties on the kinetics of drying of porous media

    International Nuclear Information System (INIS)

    Shahidzadeh-Bonn, N; Azouni, A; Coussot, P

    2007-01-01

    The influence of the wetting properties of a model porous medium on the evaporation rate of water contained in the sample is studied experimentally. For a hydrophilic porous medium, drying is mainly controlled by the liquid film covering the solid grains and capillary rise inside the pores, leading to a constant drying rate and a homogeneous desaturation of the whole sample in time. For a hydrophobic porous medium, a drying front penetrates into the sample in the early stages of evaporation and the drying rate is found to strongly depend on the boundary conditions and wetting heterogeneities. In the presence of an air flow along the free surface of the sample, the drying rate varies as the square root of time, indicating a diffusive transport mechanism. Without air flow, a power law behaviour for the drying rate as a function of time is observed with an exponent of 0.75 ± 0.03. This is likely to be due to competition between diffusion through the vapour phase and local capillary rise of the liquid due to wetting heterogeneities. A surprising consequence is that for the late stages of drying, the total evaporated mass may become larger without air flow than with air flow. (fast track communication)

  11. Understanding High Rate Behavior Through Low Rate Analog

    Science.gov (United States)

    2014-04-28

    challenges in high rate character- isation of polymers. The most important is that, owing to their low stress wavespeed, the structural response of...box’ tool, to provide supporting date for the rate dependent mechanical character- isation . Experiments were performed on a TA instruments Q800

  12. Punctal Plug Retention Rates for the Treatment of Moderate to Severe Dry Eye: A Randomized, Double-Masked, Controlled Clinical Trial.

    Science.gov (United States)

    Brissette, Ashley R; Mednick, Zale D; Schweitzer, Kelly D; Bona, Mark D; Baxter, Stephanie A

    2015-08-01

    To compare retention rates of Super Flex (Eagle Vision, Memphis, Tennessee, USA; Softplug-Oasis Medical Inc, Glendora, California, USA) vs Parasol (Odyssey Medical, Memphis, Tennessee, USA; Beaver Visitec International, Waltham, Massachusetts, USA) punctal plugs. Randomized, double-masked, interventional controlled clinical trial. Institutional study at Hotel Dieu Hospital (Queen's University) of 50 eyes, from patients with moderate to severe dry eye. Each eye from eligible patients was separately randomized to receive Super Flex or Parasol punctal plugs. The main outcome measure was plug retention at 6 months. Secondary outcome measures included objective tests of Schirmer I (mm), tear meniscus height (mm), tear break-up time (s), inferior fluorescein corneal staining (National Eye Institute [NEI] scale), and average lissamine green conjunctival staining (NEI scale). Punctal plug retention was significantly different at 6 months (P = .011). Sixty-eight percent of Parasol plugs were retained compared to 32% of Super Flex plugs. Parasol plugs required less frequent artificial tear use at 6 months (P = .024). There was a statistically significant improvement in all secondary outcome measures (Schirmer, tear meniscus height, tear break-up time, fluorescein corneal staining) at 6 months within plug groups except conjunctival staining. There were no additional significant differences between groups and no plug complications reported. Punctal plugs improve symptoms of moderate to severe dry eye; however, retention rates differ significantly. These data will allow us to guide patient decision making for the safe and effective treatment of punctal plugs for moderate to severe dry eye. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. A mathematical model for DRY-OUT

    International Nuclear Information System (INIS)

    Mariy, A.; Khattab, M.; Olama, H.

    1989-01-01

    In this study a model has been developed for describing the thermal surface conditions at dry out in a vertical channel with uniform heat flux. The use of droplet generation rate and vapor-droplet-wall heat transfer relations together with the dry and wet side energy equations lead to evaluation of the wall surface temperature and heat transfer distributions before and after dry out. Comparison with the previous theoretical and experimental results are presented. The steady state approach developed showed to be in good agreement with the experimental results

  14. Simulation of Anterior Cruciate Ligament Reconstruction in a Dry Model.

    Science.gov (United States)

    Dwyer, Tim; Slade Shantz, Jesse; Chahal, Jaskarndip; Wasserstein, David; Schachar, Rachel; Kulasegaram, K Mahan; Theodoropoulos, John; Greben, Rachel; Ogilvie-Harris, Darrell

    2015-12-01

    As the demand increases for demonstration of competence in surgical skill, the need for validated assessment tools also increases. The purpose of this study was to validate a dry knee model for the assessment of performance of anterior cruciate ligament reconstruction (ACLR). The hypothesis was that the combination of a checklist and a previously validated global rating scale would be a valid and reliable means of assessing ACLR when performed by residents in a dry model. Controlled laboratory study. All residents, sports medicine staff, and fellows were invited to perform a hamstring ACLR using anteromedial drilling and Endobutton fixation on a dry model of an anterior cruciate ligament. Previous exposure to knee arthroscopy and ACLR was recorded. A detailed surgical manuscript and technique video were sent to all participants before the study. Residents were evaluated by staff surgeons with task-specific checklists created by use of a modified Delphi procedure and the Arthroscopic Surgical Skill Evaluation Tool (ASSET). Each procedure (hand movements and arthroscopic video) was recorded and scored by a fellow blinded to the year of training of each participant. A total of 29 residents, 5 fellows, and 6 staff surgeons (40 participants total) performed an ACLR on the dry model. The internal reliability (Cronbach alpha) of the test when using the total ASSET score was very high (>0.9). One-way analysis of variance for the total ASSET score and the total checklist score demonstrated a difference between participants based on year of training (P .05). A good correlation was seen between the total ASSET score and prior exposure to knee arthroscopy (0.73) and ACLR (0.65). The interrater reliability (intraclass correlation coefficient) between the examiner ratings and the blinded assessor ratings for the total ASSET score was very high (>0.8). The results of this study provide evidence that the performance of an ACLR in a dry model is a reliable method of assessing a

  15. How to use hand-held computers to evaluate wood drying.

    Science.gov (United States)

    Howard N. Rosen; Darrell S. Martin

    1985-01-01

    Techniques have been developed to evaluate end generate wood drying curves with hand-held computers (3-5K memory). Predictions of time to dry to a specific moisture content, drying rates, and other characteristics of wood drying curves can be made. The paper describes the development of programs and illustrates their use.

  16. Synthesis and electrochemical characteristics of spinel LiMn2O4 via a precipitation spray-drying process

    International Nuclear Information System (INIS)

    Wu, H.M.; Tu, J.P.; Yuan, Y.F.; Li, Y.; Zhao, X.B.; Cao, G.S.

    2005-01-01

    Spinel LiMn 2 O 4 has been successfully synthesized using a precipitation spray-drying process. After the precursor was annealed at 750 deg. C for 10 h, the synthesized material was well-crystallized spinel particle, and exhibited uniform particle size distribution. From cyclic voltammetry results, there is an anomalous redox peaks (3.75/3.26 V). In the charge/discharge potential (versus Li) ranging from 3.2 to 4.5 V, it delivered a high initial discharge capacity of 123 mAh/g at a discharge rate of 60 μA/cm 2 (1/4 C rate). At a high discharge rate of 2.4 mA/cm 2 (10 C rate), the obtainable reversible capacity was 79 mAh/g. The simple procedure of precipitation spray-drying process is time and energy saving, and thus is promising for commercial application

  17. Nitramine Drying & Fine Grinding Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Nitramine Drying and Fine Grinding Facility provides TACOM-ARDEC with a state-of-the-art facility capable of drying and grinding high explosives (e.g., RDX and...

  18. Thin layer convective solar drying and mathematical modeling of prickly pear peel (Opuntia ficus indica)

    Energy Technology Data Exchange (ETDEWEB)

    Lahsasni, S.; Mahrouz, M. [Unite de Chimie Agroalimentaire (LCOA), Faculte des Sciences Semlalia, Marrakech (Morocco); Kouhila, M.; Idlimam, A.; Jamali, A. [Ecole Normale Superieure, Marrakech (Morocco). Lab. d' Energie Solaire et Plantes Aromatiques et Medicinales

    2004-02-01

    This paper presents the thin layer convective solar drying and mathematical modeling of prickly pear peel. For these purposes, an indirect forced convection solar dryer consisting of a solar air collector, an auxiliary heater, a circulation fan and a drying cabinet is used for drying experiments. Moreover, the prickly pear peel is sufficiently dried in the ranges of 32 to 36 {sup o} C of ambient air temperature, 50 to 60 {sup o}C of drying air temperature, 23 to 34% of relative humidity, 0.0277 to 0.0833 m{sup 3}/s of drying air flow rate and 200 to 950 W/m{sup 2} of daily solar radiation. The experimental drying curves show only a falling drying rate period. The main factor in controlling the drying rate was found to be the drying air temperature. The drying rate equation is determined empirically from the characteristic drying curve. Also, the experimental drying curves obtained were fitted to a number of mathematical models. The Midilli-Kucuk drying model was found to satisfactorily describe the solar drying curves of prickly pear peel with a correlation coefficient (r) of 0.9998 and chi-square ({chi}{sup 2}) of 4.6572 10{sup -5}. (Author)

  19. High burn rate solid composite propellants

    Science.gov (United States)

    Manship, Timothy D.

    High burn rate propellants help maintain high levels of thrust without requiring complex, high surface area grain geometries. Utilizing high burn rate propellants allows for simplified grain geometries that not only make production of the grains easier, but the simplified grains tend to have better mechanical strength, which is important in missiles undergoing high-g accelerations. Additionally, high burn rate propellants allow for a higher volumetric loading which reduces the overall missile's size and weight. The purpose of this study is to present methods of achieving a high burn rate propellant and to develop a composite propellant formulation that burns at 1.5 inches per second at 1000 psia. In this study, several means of achieving a high burn rate propellant were presented. In addition, several candidate approaches were evaluated using the Kepner-Tregoe method with hydroxyl terminated polybutadiene (HTPB)-based propellants using burn rate modifiers and dicyclopentadiene (DCPD)-based propellants being selected for further evaluation. Propellants with varying levels of nano-aluminum, nano-iron oxide, FeBTA, and overall solids loading were produced using the HTPB binder and evaluated in order to determine the effect the various ingredients have on the burn rate and to find a formulation that provides the burn rate desired. Experiments were conducted to compare the burn rates of propellants using the binders HTPB and DCPD. The DCPD formulation matched that of the baseline HTPB mix. Finally, GAP-plasticized DCPD gumstock dogbones were attempted to be made for mechanical evaluation. Results from the study show that nano-additives have a substantial effect on propellant burn rate with nano-iron oxide having the largest influence. Of the formulations tested, the highest burn rate was a 84% solids loading mix using nano-aluminum nano-iron oxide, and ammonium perchlorate in a 3:1(20 micron: 200 micron) ratio which achieved a burn rate of 1.2 inches per second at 1000

  20. Feed rate affecting surface roughness and tool wear in dry hard turning of AISI 4140 steel automotive parts using TiN+AlCrN coated inserts

    Science.gov (United States)

    Paengchit, Phacharadit; Saikaew, Charnnarong

    2018-02-01

    This work aims to investigate the effects of feed rate on surface roughness (Ra) and tool wear (VB) and to obtain the optimal operating condition of the feed rate in dry hard turning of AISI 4140 chromium molybdenum steel for automotive industry applications using TiN+AlCrN coated inserts. AISI 4140 steel bars were employed in order to carry out the dry hard turning experiments by varying the feed rates of 0.06, 0.08 and 0.1 mm/rev based on experimental design technique that can be analyzed by analysis of variance (ANOVA). In addition, the cutting tool inserts were examined after machining experiments by SEM to evaluate the effect of turning operations on tool wear. The results showed that averages Ra and VB were significantly affected by the feed rate at the level of significance of 0.05. Averages Ra and VB values at the feed rate of 0.06 mm/rev were lowest compared to average values at the feed rates of 0.08 and 0.1 mm/rev, based on the main effect plot.

  1. Effect of ambient humidity on the rate at which blood spots dry and the size of the spot produced.

    Science.gov (United States)

    Denniff, Philip; Woodford, Lynsey; Spooner, Neil

    2013-08-01

    For shipping and storage, dried blood spot (DBS) samples must be sufficiently dry to protect the integrity of the sample. When the blood is spotted the humidity has the potential to affect the size of the spot created and the speed at which it dries. The area of DBS produced on three types of substrates were not affected by the humidity under which they were generated. DBS samples reached a steady moisture content 150 min after spotting and 90 min for humidities less than 60% relative humidity. All packaging materials examined provided some degree of protection from external extreme conditions. However, none of the packaging examined provided a total moisture barrier to extreme environmental conditions. Humidity was shown not to affect the spot area and DBS samples were ready for shipping and storage 2 h after spotting. The packing solutions examined all provided good protection from external high humidity conditions.

  2. Solar drying of West Indian ginger (Zingiber officinale Roscoe) rhizome using a wire basket dryer

    Energy Technology Data Exchange (ETDEWEB)

    Balladin, D.A.; Headley, O. [University of the West Indies (Barbados). Dept. of Chemistry; Chang Yen, I. [University of the West Indies, St. Augustine (Trinidad and Tobago). Dept. of Chemistry; McGaw, D.R. [University of the West Indies, St. Augustine (Trinidad and Tobago). Dept. of Chemical Engineering

    1996-09-01

    A wire basket dryer (1.8 m x 0.9 m x 0.2 m) was used to dry sliced (0.15 cm) West Indian ginger (Zingiber officinale Roscoe) rhizome to an acceptable moisture content of 10.2% (dry weight basis) over a 3 day period. The optimum charge size was 14.97 kg, with a packing density of 462.04 kg m{sup -3} and a specific drying rate of 0.446 h{sup -1}. The quantities (determined by high-pressure liquid chromatography) of the main pungent principles (ginerol and shogaol) extracted from fresh, non-steam-distilled solar-dried and steam-distilled solar-dried ginger rhizomes showed increases of 0.068, 0.46 and 0.67 g [per 100 g (dry weight basis)], respectively, with a decrease in the oleoresin quality (reflected in pungency profile) of the same order. (author)

  3. Composition and color stability of carbon monoxide treated dried porcine blood.

    Science.gov (United States)

    Fontes, P R; Gomide, L A M; Fontes, E A F; Ramos, E M; Ramos, A L S

    2010-07-01

    Color stability of swine blood was studied over 12 weeks of storage in plastic bags, after pH (7.40, 6.70, or 6.00) adjustment, saturation with carbon monoxide (CO) and spray-drying. CO-treated dried blood presented a redder color and higher reflectance between 610 and 700 nm, compared to a brownish-red color and lower reflectance of untreated samples. As indicated by reflectance spectra, blood pH adjustment did not influence (P>0.05) the initial color of dried blood but influenced (Pvalues, which was more pronounced in polyethylene (OTR=4130 cm(3)/m(2)/day/atm) packaged samples. After 12 weeks of storage, CO-treated samples packaged in high OTR bags presented color indexes similar to those of the untreated dried samples. CO-treated samples packaged in nylon-polyethylene (OTR=30-60 cm(3)/m(2)/day/atm) bags showed a smaller rate of discoloration and color difference (DeltaE(*)) between the CO-treated and untreated samples. Even with some darkening, packaging CO-treated dry blood in low OTR bags still gives an acceptable reddish color after 12 weeks of storage while untreated dry blood has a brownish color just after drying. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. Comparison of Thermal Stability of Dry High-strength Concrete and Wet High-strength Concrete

    Science.gov (United States)

    Musorina, Tatiana; Katcay, Aleksandr; Selezneva, Anna; Kamskov, Victor

    2018-03-01

    High-strength concrete is a modern material, which occupies it`s own niche on the construction material market. It is applicable in a large-scale high-rise construction, particularly an underground construction is a frequently used solution for a space saving. Usually underground structure is related to a wet usage environment. Though not all properties of the high-strength concrete are investigated to the full extent. Under adverse climatic conditions of the Russian Federation one of the most important properties for constructional materials is a thermal capacity. Therefore, the main purpose of the paper is to compare a thermal capacity of the high-strength concrete in humid conditions and a thermal capacity of the high-strength concrete in dry operational condition. During the study dependency between thermal capacity and design wall thickness and ambient humidity has to be proven with two experiments. As a result the theoretical relation between thermal capacity characteristic - thermal inertia and wall thickness and ambient humidity was confirmed by the experimental data. The thermal capacity of a building is in direct ratio to the construction thickness. It follows from the experiments and calculations that wet high-strength concrete has less thermal stability.

  5. Litterfall mercury dry deposition in the eastern USA

    International Nuclear Information System (INIS)

    Risch, Martin R.; DeWild, John F.; Krabbenhoft, David P.; Kolka, Randall K.; Zhang, Leiming

    2012-01-01

    Mercury (Hg) in autumn litterfall from predominately deciduous forests was measured in 3 years of samples from 23 Mercury Deposition Network sites in 15 states across the eastern USA. Annual litterfall Hg dry deposition was significantly higher (median 12.3 micrograms per square meter (μg/m 2 ), range 3.5–23.4 μg/m 2 ) than annual Hg wet deposition (median 9.6 μg/m 2 , range 4.4–19.7 μg/m 2 ). The mean ratio of dry to wet Hg deposition was 1.3–1. The sum of dry and wet Hg deposition averaged 21 μg/m 2 per year and 55% was litterfall dry deposition. Methylmercury was a median 0.8% of Hg in litterfall and ranged from 0.6 to 1.5%. Annual litterfall Hg and wet Hg deposition rates differed significantly and were weakly correlated. Litterfall Hg dry deposition differed among forest-cover types. This study demonstrated how annual litterfall Hg dry deposition rates approximate the lower bound of annual Hg dry fluxes. - Highlights: ► Annual litterfall mercury dry deposition was significantly higher than wet deposition. ► The mean ratio of dry to wet mercury deposition was 1.3–1. ► The sum of dry and wet mercury deposition averaged 55% litterfall dry deposition. ► Litterfall mercury deposition was highest in the oak-hickory forest-cover type. ► Methylmercury was a median 0.8% of mercury in litterfall and ranged to 1.5%. - A multi-year study of Mercury Deposition Network sites found that annual mercury dry deposition from litterfall in predominately deciduous forests exceeded annual mercury wet deposition in the eastern USA.

  6. Mathematical Modeling of Thin Layer Microwave Drying of Taro Slices

    Science.gov (United States)

    Kumar, Vivek; Sharma, H. K.; Singh, K.

    2016-03-01

    The present study investigated the drying kinetics of taro slices precooked in different medium viz water (WC), steam (SC) and Lemon Solution (LC) and dried at different microwave power 360, 540 and 720 W. Drying curves of all precooked slices at all microwave powers showed falling rate period along with a very short accelerating period at the beginning of the drying. At all microwave powers, higher drying rate was observed for LC slices as compared to WC and SC slices. To select a suitable drying curve, seven thin-layer drying models were fitted to the experimental data. The data revealed that the Page model was most adequate in describing the microwave drying behavior of taro slices precooked in different medium. The highest effective moisture diffusivity value of 2.11 × 10-8 m2/s was obtained for LC samples while the lowest 0.83 × 10-8 m2/s was obtained for WC taro slices. The activation energy (E a ) of LC taro slices was lower than the E a of WC and SC taro slices.

  7. Spray drying for preservation of erythrocytes: effect of atomization on hemolysis.

    Science.gov (United States)

    McLean, Mary; Han, Xiao-Yue; Higgins, Adam Z

    2013-04-01

    Spray drying has the potential to enable storage of erythrocytes at room temperature in the dry state. The spray drying process involves atomization of a liquid into small droplets and drying of the droplets in a gas stream. In this short report, we focus on the atomization process. To decouple atomization from drying, erythrocyte suspensions were sprayed with a two-fluid atomizer nozzle using humid nitrogen as the atomizing gas. The median droplet size was less than 100 μm for all of the spray conditions investigated, indicating that the suspensions were successfully atomized. Hemolysis was significantly affected by the hematocrit of the erythrocyte suspension, the suspension flow rate, and the atomizing gas flow rate (pspray drying may be a feasible option for erythrocyte biopreservation.

  8. Tribological Behavior of Babbitt Alloy Rubbing Against Si3N4 and Steel Under Dry Friction Condition

    Science.gov (United States)

    Ji, Xianbing; Chen, Yinxia

    2016-03-01

    The tribological behavior of Babbitt alloy rubbing with Si3N4 ball and steel ball with various sliding speeds at dry friction condition was investigated. It was found that B88 alloy rubbing with Si3N4 ball and steel ball possesses a low sliding wear resistance at dry friction. The wear rate is above 10-4 mm3/Nm, and the friction coefficient is from 0.2 to 0.4. At low sliding speed of 0.05-0.1 m/s, the mainly wear mechanisms are microgroove and fatigue wear, while at high sliding speed of 0.5 m/s, the wear mechanisms depend on plastic deformation and delamination. The high wear rate indicates that it is needed to prevent Babbitt alloy from working at dry friction conditions, while the low friction coefficient suggests that it is not easy to the occurrence of cold weld.

  9. Determination of the most economical drying schedule and air velocity in softwood drying

    Energy Technology Data Exchange (ETDEWEB)

    Salin, J.G.

    2001-12-01

    Simulation models for conventional softwood drying have been available and have also been used by kiln operators for many years. For instance models for Scots pine and Norway spruce, dried at temperatures below about 80 deg C, are in use in Sweden, Finland and Norway. These models predict drying rates as a function of climate (schedule) and air velocity. The models thus give a direct basis for calculation of instantaneous energy demand for moisture evaporation and ventilation. There is further a direct relationship between the air velocity in the space between the board layers in the kiln stack and the electrical power demand by the circulation fans. Finally, the smaller energy consumption associated with heat losses through kiln walls and the accumulated heat in timber etc. can be estimated with sufficient accuracy. Instantaneous energy costs can thus be calculated for each part of a drying schedule. Capital costs associated with kiln investment and maintenance, personnel, insurance etc can be accounted for as an hourly cost, which is basically independent of whether timber is dried fast or slowly. A slow drying process thus accumulates more capital costs per m 3 timber. In this way it is possible to calculate the total instantaneous drying cost (Euro/m{sup 3}/h or Euro/m3/MC%) and the overall total cost (Euro or Euro/m{sup 3}). Some results obtained with a simulation model equipped with such a cost calculation are presented in the paper. A rapidly increasing drying cost is seen when the final MC is lowered. By minimising the instantaneous cost, an optimal drying schedule can be determined for a given fixed air velocity. Finally an optimal air velocity - constant or varying - can be found in the same way.

  10. Effects of weather and tailings properties on tailings drying times

    Energy Technology Data Exchange (ETDEWEB)

    Gantzer, C.; Fasking, T.; Costello, M.; Greenwood, J. [Barr Engineering, Calgary, AB (Canada)

    2010-07-01

    This PowerPoint presentation presented the results of a study conducted to determine the effects of weather and tailings properties on tailings drying times. Weather conditions have a significant impact the potential evaporation (PE) and actual evaporation (AE) of oil sands tailings. A 2-stage drying of slurry at a constant PE was conducted to determine the shrinkage limit of untreated mature fine tailings (MFT). An evaporation and seepage model was used to determine maximum first-stage drying rates. Measurements were also taken in a wind tunnel. Potential evaporation rates were calculated and evaporative water losses from the MFT were determined. Estimated drying times were presented. Results of the approach were compared with field measurements conducted in a previous study. Results of the study showed that evaporative water loss rates for May through August were limited by the properties of the tailings. Water loss rates were limited by weather for other months in the year-long study. tabs., figs.

  11. Prediction of dry ice mass for firefighting robot actuation

    Science.gov (United States)

    Ajala, M. T.; Khan, Md R.; Shafie, A. A.; Salami, MJE; Mohamad Nor, M. I.

    2017-11-01

    The limitation in the performance of electric actuated firefighting robots in high-temperature fire environment has led to research on the alternative propulsion system for the mobility of firefighting robots in such environment. Capitalizing on the limitations of these electric actuators we suggested a gas-actuated propulsion system in our earlier study. The propulsion system is made up of a pneumatic motor as the actuator (for the robot) and carbon dioxide gas (self-generated from dry ice) as the power source. To satisfy the consumption requirement (9cfm) of the motor for efficient actuation of the robot in the fire environment, the volume of carbon dioxide gas, as well as the corresponding mass of the dry ice that will produce the required volume for powering and actuation of the robot, must be determined. This article, therefore, presents the computational analysis to predict the volumetric requirement and the dry ice mass sufficient to power a carbon dioxide gas propelled autonomous firefighting robot in a high-temperature environment. The governing equation of the sublimation of dry ice to carbon dioxide is established. An operating time of 2105.53s and operating pressure ranges from 137.9kPa to 482.65kPa were achieved following the consumption rate of the motor. Thus, 8.85m3 is computed as the volume requirement of the CAFFR while the corresponding dry ice mass for the CAFFR actuation ranges from 21.67kg to 75.83kg depending on the operating pressure.

  12. Effect of steam thermal treatment on the drying process of Eucalyptus dunnii variables

    Directory of Open Access Journals (Sweden)

    Elias Taylor Durgante Severo

    2013-12-01

    Full Text Available The aim of this study was to evaluate the effect of steam treatment prior to drying on the initial moisture content, moisture gradient, and drying rate in Eucalyptus dunnii Maiden wood. Boards were steamed at 100ºC for 3 h after 1 h of heating-up. Part of these boards was dried in a drying electric oven at 50ºC, and part was dried at kiln. The results showed that the steaming prior to drying of wood: (1 significantly reduced by 9.2% the initial moisture content; (2 significantly increased by 6.2% the drying rate; (3 significantly decreased by 15.6 and 14.8% the moisture gradient between the outer layer and the center of boards and between the outer and intermediate layers of boards, respectively. Steamed boards when dried in an oven showed drying rate of 0.007065 whereas in kiln were 0.008200 and 0.034300 from green to 17 and 17 to 12% moisture content, respectively. It was demonstrated that the steaming prior to drying can be suitable for reduces the drying times of this kind of wood.

  13. Starch degradability of dry and ensiled high-moisture grains of corn hybrids with different textures at different grinding degrees

    Directory of Open Access Journals (Sweden)

    Wagner dos Reis

    2011-02-01

    Full Text Available This research evaluated corn grains with flint and dent texture (ensiled high-moisture or dried, submitted to grinding degrees, using the in situ ruminal degradation technique. Three rumen canulated adult sheeps were used in a complete randomized design, using a factorial outline 2 x 2 x 3, with two corn hybrids (flint and dent texture, two conservation methods (ensiled high-moisture and dry and three grinding degress (whole, coarsely and finely ground, corresponding to the sieve of 12; 10 and 8 mm. Starch soluble fraction (A of the dent hybrid ensiled corn grains was greater comparing to the dry materials and in both conservation forms this fraction was reduced in the flint texture hybrid, while the insoluble fraction potentially degradable (B the opposite occurred. The degradation potential was higher in grains ensiled in two textures. The ensiled allowed more starch effective degradation in relation to dry grain in two textures and the grains dent texture hybrid also increased such degradation in both conservation methods. The dent texture and the ensiled high-moisture grains proved the best option considering the starch degradability. Regardless of the conservation forms, the grains of corn hybrid flint texture should be finely ground, for providing higher ruminal degradation, while for the dent texture hybrid, the coarsely and whole grinding are the most suitable for ensiled and dry grain, respectively.

  14. [Conversion methods of freshwater snail tissue dry mass and ash free dry mass].

    Science.gov (United States)

    Zhao, Wei-Hua; Wang, Hai-Jun; Wang, Hong-Zhu; Liu, Xue-Qin

    2009-06-01

    Mollusk biomass is usually expressed as wet mass with shell, but this expression fails to represent real biomass due to the high calcium carbonate content in shells. Tissue dry mass and ash free dry mass are relatively close to real biomass. However, the determination process of these two parameters is very complicated, and thus, it is necessary to establish simple and practical conversion methods for these two parameters. A total of six taxa of freshwater snails (Bellamya sp., Alocinma longicornis, Parafossarulus striatulus, Parafossarulus eximius, Semisulcospira cancellata, and Radix sp.) common in the Yangtze Basin were selected to explore the relations of their five shell dimension parameters, dry and wet mass with shells with their tissue dry mass and ash free dry mass. The regressions of the tissue dry mass and ash free dry mass with the five shell dimension parameters were all exponential (y = ax(b)). Among them, shell width and shell length were more precise (the average percentage error between observed and predicted value being 22.0% and 22.5%, respectively) than the other three parameters in the conversion of dry mass. Wet mass with shell could be directly converted to tissue dry mass and ash free dry mass, with an average percentage error of 21.7%. According to the essence of definition and the errors of conversion, ash free dry mass would be the optimum parameter to express snail biomass.

  15. Characteristics of Timbers Dried Using Kiln Drying and Radio Frequency-Vacuum Drying Systems

    OpenAIRE

    Rabidin Zairul Amin; Seng Gan Kee; Wahab Mohd Jamil Abdul

    2017-01-01

    Heavy hardwoods are difficult-to-dry timbers as they are prone to checking and internal stresses when dried using a conventional kiln drying system. These timbers are usually dried naturally to reach 15% to 19% moisture content with an acceptable defects. Besides long drying time, timbers at these moisture contents are not suitable for indoor applications since they will further dry and causing, for example, jointing and lamination failures. Drying to a lower moisture content could only be ac...

  16. Freeze-drying of filamentous fungi and yeasts

    NARCIS (Netherlands)

    Tan, C.S.

    2011-01-01

    The aim of this thesis was to optimize the freeze-drying protocol for fungi in general and for those genera that do not survive this preservation method, in particular. To this end, the influence of the cooling rate, the lyoprotectant and the drying process itself was examined. Since most fungi

  17. Preparation of interconnected highly porous polymeric structures by a replication and freeze-drying process

    NARCIS (Netherlands)

    Hou, Q.; Grijpma, Dirk W.; Feijen, Jan

    2003-01-01

    Three-dimensional degradable porous polymeric structures with high porosities (93-98%) and well-interconnected pore networks have been prepared by freeze-drying polymer solutions in the presence of a leachable template followed by leaching of the template. Templates of the pore network were prepared

  18. Factors affecting viability of Bifidobacterium bifidum during spray drying.

    Science.gov (United States)

    Shokri, Zahra; Fazeli, Mohammad Reza; Ardjmand, Mehdi; Mousavi, Seyyed Mohammad; Gilani, Kambiz

    2015-01-25

    There is substantial clinical data supporting the role of Bifidobacterium bifidum in human health particularly in benefiting the immune system and suppressing intestinal infections. Compared to the traditional lyophilization, spray-drying is an economical process for preparing large quantities of viable microorganisms. The technique offers high production rates and low operating costs but is not usually used for drying of substances prone to high temperature. The aim of this study was to establish the optimized environmental factors in spray drying of cultured bifidobacteria to obtain a viable and stable powder. The experiments were designed to test variables such as inlet air temperature, air pressure and also maltodextrin content. The combined effect of these variables on survival rateand moisture content of bacterial powder was studied using a central composite design (CCD). Sub-lethal heat-adaptation of a B. bifidum strain which was previously adapted to acid-bile-NaCl led to much more resistance to high outlet temperature during spray drying. The resistant B. bifidum was supplemented with cost friendly permeate, sucrose, yeast extract and different amount of maltodextrin before it was fed into a Buchi B-191 mini spray-dryer. Second-order polynomials were established to identify the relationship between the responses andthe three variables. Results of verification experiments and predicted values from fitted correlations were in close agreement at 95% confidence interval. The optimal values of the variables for maximum survival and minimum moisture content of B. bifidum powder were as follows: inlet air temperature of 111.15°C, air pressure of 4.5 bar and maltodextrin concentration of 6%. Under optimum conditions, the maximum survival of 28.38% was achieved while moisture was maintained at 4.05%. Viable and cost effective spray drying of Bifidobacterium bifidum could be achieved by cultivating heat and acid adapted strain into the culture media containing

  19. COMPARISON BETWEEN WOOD DRYING DEFECT SCORES: SPECIMEN TESTING X ANALYSIS OF KILN-DRIED BOARDS

    Directory of Open Access Journals (Sweden)

    Djeison Cesar Batista

    2015-04-01

    Full Text Available It is important to develop drying technologies for Eucalyptus grandis lumber, which is one of the most planted species of this genus in Brazil and plays an important role as raw material for the wood industry. The general aim of this work was to assess the conventional kiln drying of juvenile wood of three clones of Eucalyptus grandis. The specific aims were to compare the behavior between: i drying defects indicated by tests with wood specimens and conventional kiln-dried boards; and ii physical properties and the drying quality. Five 11-year-old trees of each clone were felled, and only flatsawn boards of the first log were used. Basic density and total shrinkage were determined, and the drying test with wood specimens at 100 °C was carried out. Kiln drying of boards was performed, and initial and final moisture content, moisture gradient in thickness, drying stresses and drying defects were assessed. The defect scoring method was used to verify the behavior between the defects detected by specimen testing and the defects detected in kiln-dried boards. As main results, the drying schedule was too severe for the wood, resulting in a high level of boards with defects. The behavior between the defects in the drying test with specimens and the defects of kiln-dried boards was different, there was no correspondence, according to the defect scoring method.

  20. Evaluation of the effects of strain rate on material properties of the high strength concrete used in nuclear facilities

    International Nuclear Information System (INIS)

    Kawaguchi, Shohei; Shirai, Koji; Takayanagi, Hideaki

    2011-01-01

    Concrete physical properties (compressive strength, tensile strength, initial elastic modulus and maximum strain) affected by strain rate weren't fully utilize for material model in dynamic response analysis for seismic and impact load because of few reports and various difficulties of impact tests. Split Hopkinson Pressure Bar (SHPB) methods are the most popular high-speed material testing and were also applied for composite material. We applied SHPB for concrete specimen and reported the strain rate effect to the concrete physical property. We used hydraulic testing device for 10 -5 /s to 10 0 /s strain rate and SHPB methods for over 10 1 /s. Four cases of concrete tests (high (50MPa at 28days)/low (35MPa at 28days) compressive strength (based on the test of exiting nuclear power facilities) and dry/wet condition) were done. And we formulated strain rate effect about compressive strength and initial elastic modulus from comparing with previous studies. (author)

  1. High-T/sub c/ oxide superconductors prepared by spray-drying method

    International Nuclear Information System (INIS)

    Nakamura, N.; Nakano, T.; Goth, S.; Shimotomai, M.

    1988-01-01

    A spray-drying method has been worked out to prepare the superconducting oxide YBa/sub 2/Cu/sub 3/O/sub x/ by using aqueous solution of acetates of the component metals. Spray-dried powders have shown to be very reactive and full calcination has been easily attained at 900 0 C for 12 hrs. The density of the ceramics sintered at 950 0 C for 12 hrs has reached a value of 98% of the theoretical density. The resistivity of the spray-dry processed sample is 150μΩ-cm at the onset temperature and the residual resistivity extrapolated to O K is almost zero. It is also found that degradation of the superconducting state by application of magnetic field is much improved for the spray-dry processed samples

  2. Dry deposition of sulfate to Quercus rubra and Liriodendron tulipifera foliage

    International Nuclear Information System (INIS)

    Vandenberg, J.J.

    1987-01-01

    Estimates were made of the rate of dry deposition to red oak (Quercus rubra) and tulip poplar (Liriodendron tulipifera) foliage. In the laboratory, radioactive ammonium sulfate aerosols were generated in an exposure chamber. These aerosols were dry deposited onto leaves that were sequentially washed to examine the efficacy of washing procedures in removal of surface deposits. Over 90% of dry deposited sulfate was removed after a 30 second wash duration. Laboratory procedures also estimated the magnitude of foliar sulfur that leached into leaf wash solutions. The majority of laboratory leaves demonstrated no leaching of sulfur from the internal pool. However, some leaves showed significant sulfur leaching. It was concluded that leaching of internal sulfur was highly leaf specific. This indicated that each leaf used in field experiments needed to be individually examined for leaching

  3. Response of broiler chickens to diets containing artificially dried high-moisture maize supplemented with microbial enzymes

    OpenAIRE

    Bhuiyan, M.M; Islam, A.F; Iji, P.A

    2010-01-01

    The effect of feeding high-moisture maize grains dried in the sun or artificially in a forced draught oven at 80, 90 or 100 ºC for 24 hours and supplemented with microbial enzymes (Avizyme 1502 and Phyzyme XP) on growth performance, visceral organs, tissue protein, enzyme activity and gut development was investigated in a broiler growth trial. Feed intake (FI) up to 21 days decreased as a results of oven drying of grains whereas supplementation with microbial enzymes increased FI compared to ...

  4. Utilization of heat from High Temperature Reactors (HTR) for dry reforming of methane

    Science.gov (United States)

    Jastrząb, Krzysztof

    2018-01-01

    One of the methods for utilization of waste carbon dioxide consists in reaction of methane with carbon dioxide, referred to as dry reforming of methane. It is an intensely endothermic catalytic process that takes place at the temperature above 700°C. Reaction of methane with carbon dioxide leads to formation of synthesis gas (syngas) that is a valuable chemical raw material. The energy that is necessary for the process to take place can be sourced from High Temperature Nuclear Reactors (HTR). The completed studies comprises a series of thermodynamic calculations and made it possible to establish optimum conditions for the process and demand for energy from HTR units. The dry reforming of methane needs also a catalytic agent with appropriate activity, therefore the hydrotalcite catalyser with admixture of cerium and nickel, developed at AGH University of Technology seems to be a promising solution. Thus, the researchers from the Institute for Chemical Processing of Coal (IChPW) in Zabrze have developed a methodology for production of the powdery hydrotalcite catalyser and investigated catalytic properties of the granulate obtained. The completed experiments confirmed that the new catalyser demonstrated high activity and is suitable for the process of methane dry reforming. In addition, optimum parameters of the were process (800°C, CO2:CH4 = 3:1) were established as well. Implementation of the technology in question into industrial practice, combined with utilization of HTR heat can be a promising method for management of waste carbon dioxide and may eventually lead to mitigation of the greenhouse effect.

  5. Diversity and Phenology of Wild Bees in a Highly Disturbed Tropical Dry Forest "Desierto de la Tatacoa", Huila-Colombia.

    Science.gov (United States)

    Poveda-Coronel, C A; Riaño-Jiménez, D; Cure, J R

    2018-01-12

    Colombian tropical dry forest is considered the most endangered tropical biome due to anthropic activities. Desierto de la Tatacoa (DsT) is an example of high disturbed tropical dry forest which still maintains a high biodiversity. The objective of the study was to record the diversity and phenology of wild bees in this place by monthly sampling between December 2014 and December 2016 in a 9-km 2 area. During the study, there was a prolonged El Niño-Southern Oscillation period. Bees were collected by entomological nets, malaise traps, eugenol scent trapping, and nest traps. Shannon index was calculated to estimate diversity and Simpson index to determine dominance of a species. The effect of environmental conditions (wet and dry season) in richness and abundance was analyzed by paired T tests. A total of 3004 bee specimens were collected, belonging to 80 species from Apidae, Megachilidae, Halictidae, and Colletidae. Apidae was the most diverse. Shannon index value was 2.973 (discarding Apis mellifera Linnaeus 1758 data); thus, DsT can be considered as a zone of high wild bee diversity. Dry and rainy season showed differences in diversity (p < 0.05). Rainy season showed larger blooming periods and higher bee diversity than dry season. In both seasons, social species were dominant (e.g., A. mellifera or Trigona fulviventris Guérin 1844). Although DsT is a highly disturbed ecosystem, this study found it has the second highest number of genera and the fourth highest number of species reported in Colombia.

  6. Chemical composition, antioxidant capacity, and sensory quality of dried jujube fruits as affected by cultivar and drying method.

    Science.gov (United States)

    Wojdyło, Aneta; Figiel, Adam; Legua, Pilar; Lech, Krzysztof; Carbonell-Barrachina, Ángel A; Hernández, Francisca

    2016-09-15

    The aim of this study was to determine the effect of different dying methods, such as convective drying (CD: 50, 60, 70 °C), vacuum-microwave drying (VMD: 120, 480, 480-120 W), a combination of convective pre-drying and vacuum-microwave finish drying [(CPD (60 °C)-VMFD (480-120 W)], and freeze-drying (FD) on key quality parameters of dried jujube fruits (cv. "GAL", "MSI", and "PSI"). The parameters studied included bioactive compounds (flavan-3-ols and flavonols, identified by LC-PDA-MS, and vitamin C), antioxidant capacity (ABTS and FRAP), and sensory attributes (e.g. hardness, jujube-ID, and sweetness). The best quality of the dried product (high contents of bioactive compounds and high intensity of key sensory attributes) was found in fruits treated by FD and VMD 480-120 W. The best cultivars were "PSI" and "GAL" from the point of view of bioactive content and sensory quality, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. The effects of drying conditions on moisture transfer and quality of pomegranate fruit leather (pestil

    Directory of Open Access Journals (Sweden)

    Fatih Mehmet Yılmaz

    2017-01-01

    Full Text Available Vacuum, cabinet and open air drying of pomegranate fruit leather were carried out at various drying conditions to monitor the drying kinetics together with bionutrient degradation of the product. Drying curves exhibited first order drying kinetics and effective moisture diffusivity values varied between 3.1 × 10−9 and 52.6 × 10−9 m2/s. The temperature dependence of the effective moisture diffusivity was satisfactorily described by an Arrhenius-type relationship. Drying conditions, product thickness and operation temperature had various effects on drying rate and final quality of the product. In terms of drying kinetics and final quality of product, vacuum drying had higher drying rate with higher conservation of phenolic, anthocyanin and ascorbic acid that is connected to faster drying condition and oxygen deficient medium. Anthocyanin content was significantly affected by drying method, drying temperature and product thickness. Scatter plot using principle component analysis enabled better understanding of moisture transfer rate and anthocyanin change under various drying conditions.

  8. Maize dry matter production and macronutrient extraction model as a new approach for fertilizer rate estimation

    Directory of Open Access Journals (Sweden)

    KARLA V. MARTINS

    Full Text Available ABSTRACT Decision support for nutrient application remains an enigma if based on soil nutrient analysis. If the crop could be used as an auxiliary indicator, the plant nutrient status during different growth stages could complement the soil test, improving the fertilizer recommendation. Nutrient absorption and partitioning in the plant are here studied and described with mathematical models. The objective of this study considers the temporal variation of the nutrient uptake rate, which should define crop needs as compared to the critical content in soil solution. A uniform maize crop was grown to observe dry matter accumulation and nutrient content in the plant. The dry matter accumulation followed a sigmoidal model and the macronutrient content a power model. The maximum nutrient absorption occurred at the R4 growth stage, for which the sap concentration was successfully calculated. It is hoped that this new approach of evaluating nutrient sap concentration will help to develop more rational ways to estimate crop fertilizer needs. This new approach has great potential for on-the-go crop sensor-based nutrient application methods and its sensitivity to soil tillage and management systems need to be examined in following studies. If mathematical model reflects management impact adequately, resources for experiments can be saved.

  9. Impact of blanching, sweating and drying operations on pungency, aroma and color of Piper borbonense.

    Science.gov (United States)

    Weil, M; Shum Cheong Sing, A; Méot, J M; Boulanger, R; Bohuon, P

    2017-03-15

    Low pungency, high aromatic potential and red color, give to Piper borbonense its originality when compared to Piper nigrum. Effects of blanching, sweating and drying on these characteristics were assessed. The three operations had no impact on the concentration of piperine and essential oil but affected the composition of essential oil slightly and considerably affected the color of the pepper. The "wet process", including blanching, sweating and drying, had the largest impact on the composition of aroma, increasing para-cymene content by 89% and reducing safrole content by 33% in dried pepper compared to fresh. Blanching increased the drying rate thus reducing drying time. Drying had a major impact on color, which changed from red to brown. The biggest differences observed led to reductions of 2.2, 7.9 and 8.4units in L ∗ , a ∗ and b ∗ values, when chromatic values measured in fresh pepper were compared to those of dried pepper. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Estimating Nitrogen Availability of Heat-Dried Bio solids

    International Nuclear Information System (INIS)

    Cogger, C.G.; Bary, A.I.; Myhre, E.A.

    2011-01-01

    As heat-dried bio solids become more widely produced and marketed, it is important to improve estimates of N availability from these materials. Objectives were to compare plant-available N among three different heat-dried bio solids and determine if current guidelines were adequate for estimating application rates. Heat-dried bio solids were surface applied to tall fescue (Festuca arundinacea Schreb.) in Washington State, USA, and forage yield and N uptake measured for two growing seasons following application. Three rates of urea and a zero-N control were used to calculate N fertilizer efficiency regressions. Application year plant-available N (estimated as urea N equivalent) for two bio solids exceeded 60% of total N applied, while urea N equivalent for the third bio solids was 45%. Residual (second-year) urea N equivalent ranged from 5 to 10%. Guidelines for the Pacific Northwest USA recommend mineralization estimates of 35 to 40% for heat-dried bio solids, but this research shows that some heat-dried materials fall well above that range.

  11. Development of novel high power-short time (HPST) microwave assisted commercial decontamination process for dried turmeric powder (Curcuma Longa L.).

    Science.gov (United States)

    Behera, G; Sutar, P P; Aditya, S

    2017-11-01

    The commercially available dry turmeric powder at 10.34% d.b. moisture content was decontaminated using microwaves at high power density for short time. To avoid the loss of moisture from turmeric due to high microwave power, the drying kinetics were modelled and considered during optimization of microwave decontamination process. The effect of microwave power density (10, 33.5 and 57 W g -1 ), exposure time (10, 20 and 30 s) and thickness of turmeric layer (1, 2 and 3 mm) on total plate, total yeast and mold (YMC) counts, color change (∆E), average final temperature of the product (T af ), water activity (a w ), Page model rate constant (k) and total moisture loss (ML) was studied. The perturbation analysis was carried out for all variables. It was found that to achieve more than one log reduction in yeast and mold count, a substantial reduction in moisture content takes place leading to the reduced output. The microwave power density significantly affected the YMC, T af and a w of turmeric powder. But the thickness of sample and microwave exposure time showed effect only on T af , a w and ML. The colour of turmeric and Page model rate constant were not significantly changed during the process as anticipated. The numerical optimization was done at 57.00 W g -1 power density, 1.64 mm thickness of sample layer and 30 s exposure time. It resulted into 1.6 × 10 7 CFU g -1 YMC, 82.71 °C T af , 0.383 a w and 8.41% (d.b.) final moisture content.

  12. Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy.

    Science.gov (United States)

    Rappaz, Benjamin; Cano, Elena; Colomb, Tristan; Kühn, Jonas; Depeursinge, Christian; Simanis, Viesturs; Magistretti, Pierre J; Marquet, Pierre

    2009-01-01

    Digital holography microscopy (DHM) is an optical technique which provides phase images yielding quantitative information about cell structure and cellular dynamics. Furthermore, the quantitative phase images allow the derivation of other parameters, including dry mass production, density, and spatial distribution. We have applied DHM to study the dry mass production rate and the dry mass surface density in wild-type and mutant fission yeast cells. Our study demonstrates the applicability of DHM as a tool for label-free quantitative analysis of the cell cycle and opens the possibility for its use in high-throughput screening.

  13. Simultaneous application of microwave energy and hot air to whole drying process of apple slices: drying kinetics, modeling, temperature profile and energy aspect

    Science.gov (United States)

    Horuz, Erhan; Bozkurt, Hüseyin; Karataş, Haluk; Maskan, Medeni

    2018-02-01

    Drying kinetics, modeling, temperature profile and energy indices were investigated in apple slices during drying by a specially designed microwave-hot air domestic hybrid oven at the following conditions: 120, 150 and 180 W microwave powers coupled with 50, 60 and 70 °C air temperatures. Both sources of energy were applied simultaneously during the whole drying processes. The drying process continued until the moisture content of apple slices reached to 20% from 86.3% (wet basis, w.b). Drying times ranged from 330 to 800 min and decreased with increasing microwave power and air temperatures. The constant rate period was only observed at low microwave powers and air temperatures. Two falling rate periods were observed. Temperature of apple slices sharply increased within the first 60 min, then reached equilibrium with drying medium and finally increased at the end of the drying process. In order to describe drying behavior of apple slices nine empirical models were applied. The Modified Logistic Model fitted the best our experimental data ( R 2 = 0.9955-0.9998; χ 2 = 3.46 × 10-5-7.85 × 10-4 and RMSE = 0.0052-0.0221). The effective moisture and thermal diffusivities were calculated by Fick's second law and ranged from 1.42 × 10-9 to 3.31 × 10-9 m2/s and 7.70 × 10-9 to 12.54 × 10-9 m2/s, respectively. The activation energy ( Ea) values were calculated from effective moisture diffusivity ( Deff), thermal diffusivity ( α) and the rate constant of the best model ( k). The Ea values found from these three terms were similar and varied from 13.04 to 33.52 kJ/mol. Energy consumption and specific energy requirement of the hybrid drying of apple slices decreased and energy efficiency of the drying system increased with increasing microwave power and air temperature. Apples can be dried rapidly and effectively by use of the hybrid technique.

  14. Evaluation of beetroot changes during drying with hot air by digital ...

    African Journals Online (AJOL)

    Foods drying are an important operation in processing and increasing foodstuffs shelf life and many factors effected on products efficiency and quality during drying. Deterioration of texture structure and products color changes depends on drying method and air temperature and air rate. Drying or removing maximum water ...

  15. Gamma dose rate calculations for conceptual design of a shield system for spent fuel interim dry storage in CNA 1

    International Nuclear Information System (INIS)

    Blanco, A; Gomez S

    2012-01-01

    After completing the rearrangement of the Spent Fuel Elements (SFE) into a compact arrangement in the two storage water pools, Atucha Nuclear Reactor 1 (ANR 1) will leave free position for the wet storage of the SFE discharged until December 2014. Even, in two possible scenarios, such as extending operation from 2015 or the cessation of operation after that date, it will be necessary to empty the interim storage water pools transferring the SFE to a temporary dry storage system. Because the law 25.018 'Management of Radioactive Wastes' implies for the first scenario - operation beyond 2015 - that Nucleoelectrica Argentina S.A. will still be in charge of the dry storage system and for the second - the cessation of operation after 2015 - the National Commission of Atomic Energy (CNEA) will be in charge by the National Management Program of Radioactive Wastes, the interim dry storage system of SNF is an issue of common interest which justifies go forward together. For that purpose and in accordance with the criticality and shielding calculations relevant to the project, in this paper we present the dose rate calculations for shielding conceptual design of a system for dry interim storage of the SFE of ANR 1. The specifications includes that the designed system must be suitable without modification for the SFE of the ANR 2. The results for the calculation of the photon dose rate, in touch and at one meter far, for the Transport Module and the Container of the SFE, are presented, which are required and controlled by the National Regulatory Authority (NRA) and the International Atomic Energy Agency (IAEA). It was used the SAS4 module of SCALE5.1 system and MCNP5. As a design tool for the photon shielding in order to meet current standards for allowable dose rates, a radial and axial parametric analysis were developed based on the thickness of lead of the Transport Module. The results were compared and verified between the two computing systems. Before this

  16. Solar drying of uruguayan red gum

    Directory of Open Access Journals (Sweden)

    Andrés Ono

    2011-04-01

    Full Text Available he use of solar energy as an alternative to non-renewable energy sources has been widely researched in the last decades. Compared to air drying, solar drying kilns can better control the drying process, resulting in a higher quality of the dry wood and lower final wood moisture content values. Investment and running costs for a solar drying kiln are lower than those of a conventional kiln. Moreover, the solar drying process can be advantageous for drying hardwoods which are traditionally considered difficult to dry such as eucalyptus wood of medium and high density (Red gums, known in Spanish as “Eucaliptos colorados”. The solar drying kiln naturally incorporates a daily high relative humidity period that can be similar to a conditioning or steaming step, although at a lower temperature.This results in fewer defects due to the drying process.A pilot scale 2.5 m3 semi-greenhouse type solar wood drying kiln was constructed at LATU (Uruguay Technological Laboratory in Montevideo, Uruguay. The operating conditions and the results from two drying runs are presented. Two species of red gum (Eucalyptus tereticornis Sm., ADD 870 kg/m3, and Eucalyptus camaldulensis Dehnh., ADD 800 kg/m3 were dried from initial average moisture contents (WMC of around 60% down to 10.0% and 12.7% in 108 days and 76 days, respectively. Boards were provided by the Grupo Forestal San Gregorio from trees harvested at Tacuarembo and Paysandu Departments from cattle shelter forests 60 and 70 years old.Mean volume shrinkage was 18% for E. tereticornis, and 16% for E. camaldulensis, and the level of defects was moderate. Residual stresses and moisture content gradients were observed for both species. Final moisture content values were similar compared to those obtained in conventional drying kilns but with longer drying periods and lower operating costs. This would make the solar drying process attractive to small and medium sized forest products industries in a small country

  17. Spray-drying nanocapsules in presence of colloidal silica as drying auxiliary agent: formulation and process variables optimization using experimental designs.

    Science.gov (United States)

    Tewa-Tagne, Patrice; Degobert, Ghania; Briançon, Stéphanie; Bordes, Claire; Gauvrit, Jean-Yves; Lanteri, Pierre; Fessi, Hatem

    2007-04-01

    Spray-drying process was used for the development of dried polymeric nanocapsules. The purpose of this research was to investigate the effects of formulation and process variables on the resulting powder characteristics in order to optimize them. Experimental designs were used in order to estimate the influence of formulation parameters (nanocapsules and silica concentrations) and process variables (inlet temperature, spray-flow air, feed flow rate and drying air flow rate) on spray-dried nanocapsules when using silica as drying auxiliary agent. The interactions among the formulation parameters and process variables were also studied. Responses analyzed for computing these effects and interactions were outlet temperature, moisture content, operation yield, particles size, and particulate density. Additional qualitative responses (particles morphology, powder behavior) were also considered. Nanocapsules and silica concentrations were the main factors influencing the yield, particulate density and particle size. In addition, they were concerned for the only significant interactions occurring among two different variables. None of the studied variables had major effect on the moisture content while the interaction between nanocapsules and silica in the feed was of first interest and determinant for both the qualitative and quantitative responses. The particles morphology depended on the feed formulation but was unaffected by the process conditions. This study demonstrated that drying nanocapsules using silica as auxiliary agent by spray drying process enables the obtaining of dried micronic particle size. The optimization of the process and the formulation variables resulted in a considerable improvement of product yield while minimizing the moisture content.

  18. Rapid, all dry microfabrication of three-dimensional Co3O4/Pt nanonetworks for high-performance microsupercapacitors.

    Science.gov (United States)

    Ma, Xinyu; Feng, Shuxuan; He, Liang; Yan, Mengyu; Tian, Xiaocong; Li, Yanxi; Tang, Chunjuan; Hong, Xufeng; Mai, Liqiang

    2017-08-17

    On-chip electrochemical energy storage devices have attracted growing attention due to the decreasing size of electronic devices. Various approaches have been applied for constructing the microsupercapacitors. However, the microfabrication of high-performance microsupercapacitors by conventional and fully compatible semiconductor microfabrication technologies is still a critical challenge. Herein, unique three-dimensional (3D) Co 3 O 4 nanonetwork microelectrodes formed by the interconnection of Co 3 O 4 nanosheets are constructed by controllable physical vapor deposition combined with rapid thermal annealing. This construction process is an all dry and rapid (≤5 minutes) procedure. Afterward, by sputtering highly electrically conductive Pt nanoparticles on the microelectrodes, the 3D Co 3 O 4 /Pt nanonetworks based microsupercapacitor is fabricated, showing a high volume capacitance (35.7 F cm -3 ) at a scan rate of 20 mV s -1 due to the unique interconnected structures, high electrical conductivity and high surface area of the microelectrodes. This microfabrication process is also used to construct high-performance flexible microsupercapacitors, and it can be applied in the construction of wearable devices. The proposed strategy is completely compatible with the current semiconductor microfabrication and shows great potential in the applications of the large-scale integration of micro/nano and wearable devices.

  19. Design of Temperature Measurement System on the Drying Process of Madura Tobacco Leaves

    OpenAIRE

    Wardana, Humadillah Kurniadi; Endarko, Endarko

    2015-01-01

    The quality of dried chopped leaves of tobacco is an important factor. The present work developed an oven for drying process to measure and evalute on drying shrinkage characteristic of choped leaves Madura tobacco. The oven has three racks for analyzing and monitoring the rate of drying shrinkage of Madura tobacco. Every rack has a different amount of chopped leaves as follows: 120 g on top rack, 100 g for middle rack and 80 g for bottom rack. Rate of drying shrinkage was analyzed for 20 min...

  20. Dynamics of Soil Water Evaporation during Soil Drying: Laboratory Experiment and Numerical Analysis

    Science.gov (United States)

    Han, Jiangbo; Zhou, Zhifang

    2013-01-01

    Laboratory and numerical experiments were conducted to investigate the evolution of soil water evaporation during a continuous drying event. Simulated soil water contents and temperatures by the calibrated model well reproduced measured values at different depths. Results show that the evaporative drying process could be divided into three stages, beginning with a relatively high evaporation rate during stage 1, followed by a lower rate during transient stage and stage 2, and finally maintaining a very low and constant rate during stage 3. The condensation zone was located immediately below the evaporation zone in the profile. Both peaks of evaporation and condensation rate increased rapidly during stage 1 and transition stage, decreased during stage 2, and maintained constant during stage 3. The width of evaporation zone kept a continuous increase during stages 1 and 2 and maintained a nearly constant value of 0.68 cm during stage 3. When the evaporation zone totally moved into the subsurface, a dry surface layer (DSL) formed above the evaporation zone at the end of stage 2. The width of DSL also presented a continuous increase during stage 2 and kept a constant value of 0.71 cm during stage 3. PMID:24489492

  1. High-Rate Strong-Signal Quantum Cryptography

    Science.gov (United States)

    Yuen, Horace P.

    1996-01-01

    Several quantum cryptosystems utilizing different kinds of nonclassical lights, which can accommodate high intensity fields and high data rate, are described. However, they are all sensitive to loss and both the high rate and the strong-signal character rapidly disappear. A squeezed light homodyne detection scheme is proposed which, with present-day technology, leads to more than two orders of magnitude data rate improvement over other current experimental systems for moderate loss.

  2. Selective laser-induced photochemical dry etching of semiconductors controlled by ion-bombardment-induced damage

    International Nuclear Information System (INIS)

    Ashby, C.I.H.; Myers, D.R.; Vook, F.L.

    1987-01-01

    When a photochemical dry etching process requires direct participation of photogenerated carriers in the chemical reaction, it is sensitive to the electronic properties of the semiconductor. For such solid-excitation-based dry etching processes, the balance between reaction and carrier recombination rates determines the practical utility of a particular reaction for device fabrication. The distance from the surface at which the photocarriers are generated by light adsorption is determined by the absorption coefficient. In the absence of an external bias potential, only those carriers formed within a diffusion length of the surface space-charge region will have an opportunity to drive the dry etching reaction. When the absorption coefficient is high, most of the photons generate carriers within a diffusion length from the surface space-charge region, and the etching rate is largely determined by the balance between the rate of the carrier-driven reaction and the surface recombination velocity. When the recombination rate of free carriers in the bulk of the semiconductor is high, the effective diffusion length is reduced and fewer of the carriers generated in the subsurface region ever reach the surface. An important effect of ion bombardment is the creation of many lattice defects that increase the rate of recombination of electrons and holes. When a sufficient number of defects, which act as recombination sites, are formed during ion implantation, the recombination of photogenerated carriers at these defects in the subsurface region can greatly reduce the number of carriers which can reach the surface and drive a photochemical etching reaction

  3. Starch degradability of dry and ensiled high-moisture grains of corn hybrids with different textures at different grinding degrees

    OpenAIRE

    Wagner dos Reis; Ciniro Costa; Paulo Roberto de Lima Meirelles; Marina Gabriela Berchiol da Silva; Marco Aurélio Factori; Cristiano Magalhães Pariz; Simony Alves Mendonça; Erikelly Aline Ribeiro de Santana

    2011-01-01

    This research evaluated corn grains with flint and dent texture (ensiled high-moisture or dried), submitted to grinding degrees, using the in situ ruminal degradation technique. Three rumen canulated adult sheeps were used in a complete randomized design, using a factorial outline 2 x 2 x 3, with two corn hybrids (flint and dent texture), two conservation methods (ensiled high-moisture and dry) and three grinding degress (whole, coarsely and finely ground, corresponding to the sieve of 12; 10...

  4. Foam-mat drying technology: A review.

    Science.gov (United States)

    Hardy, Z; Jideani, V A

    2017-08-13

    This article reviews various aspects of foam-mat drying such as foam-mat drying processing technique, main additives used for foam-mat drying, foam-mat drying of liquid and solid foods, quality characteristics of foam-mat dried foods, and economic and technical benefits for employing foam-mat drying. Foam-mat drying process is an alternative method that allows the removal of water from liquid materials and pureed materials. In this drying process, a liquid material is converted into foam that is stable by being whipped after adding an edible foaming agent. The stable foam is then spread out in sheet or mat and dried by using hot air (40-90°C) at atmospheric pressure. Methyl cellulose (0.25-2%), egg white (3-20%), maltodextrin (0.5-05%), and gum Arabic (2-9%) are the commonly utilized additives for the foam-mat drying process at the given range, either combined together for their effectiveness or individual effect. The foam-mat drying process is suitable for heat sensitive, viscous, and sticky products that cannot be dried using other forms of drying methods such as spray drying because of the state of product. More interest has developed for foam-mat drying because of the simplicity, cost effectiveness, high speed drying, and improved product quality it provides.

  5. Dry matter production and chemical composition of Massai grass submitted to nitrogen rates and cutting heights

    Directory of Open Access Journals (Sweden)

    Giselle Abadia Campos Pereira

    2016-09-01

    Full Text Available The study was carried out in a greenhouse with a 4X4 factorial arrangement randomized block design in order to evaluate the effects of nitrogen rates (0, 50, 100 and 150 mg dm-3 associated with cutting heights (10, 15, 20 and 25 cm on dry matter production and the chemical composition of Massai grass. The seeding was done in pots with 11 kg of soil. 10 plants were kept per pot, and there were two cuts every 35 days. Nitrogen fertilization was split between the two cuts, where the first N application occurred after the uniformity cut and the second after the first cut. In each cut the plants were separated and weighed for botanical component evaluation: leaf blade and stem + sheath. After this, the samples were homogenized and analysed for dry matter (DM, crude protein (CP and neutral detergent fibre (NDF content. In the first cut, the N fertilization caused a linear increase in DM production of 0.058 g pot-1 per each 1 mg dm-3 of N applied, as well as causing an increase of 0.549% in CP percentage, a 0.0124 pot-1 g increase in CP production and a reduction of 0.055% in NDF. In the second cut, N rates promoted a quadratic effect on DM production. A maximum DM production of 16.48 g pot-1 with 107.27 mg dm-3 of N was observed while CP production content was increased by 0.0092 g pot-1 for each 1 mg dm-3 N applied. In terms of linear responses to DM and PB, as well as the use efficiency calculated for Massai grass, recommended N doses range between 50 and 100 g dm-3.

  6. Dry mouth and older people.

    Science.gov (United States)

    Thomson, W M

    2015-03-01

    Dry mouth is more common among older people than in any other age group. Appropriate definition and accurate measurement of dry mouth is critical for better understanding, monitoring and treatment of the condition. Xerostomia is the symptom(s) of dry mouth; it can be measured using methods ranging from single questions to multi-item summated rating scales. Low salivary flow (known as salivary gland hypofunction, or SGH) must be determined by measuring that flow. The relationship between SGH and xerostomia is not straightforward, but both conditions are common among older people, and they affect sufferers' day-to-day lives in important ways. The major risk factor for dry mouth is the taking of particular medications, and older people take more of those than any other age group, not only for symptomatic relief of various age-associated chronic diseases, but also in order to reduce the likelihood of complications which may arise from those conditions. The greater the number taken, the greater the associated anticholinergic burden, and the more likely it is that the individual will suffer from dry mouth. Since treating dry mouth is such a challenge for clinicians, there is a need for dentists, doctors and pharmacists to work together to prevent it occurring. © 2015 Australian Dental Association.

  7. 76 FR 53813 - Dried Prunes Produced in California; Decreased Assessment Rate

    Science.gov (United States)

    2011-08-30

    ... Reform. Under the marketing order now in effect, California dried prune handlers are subject to... DEPARTMENT OF AGRICULTURE Agricultural Marketing Service 7 CFR Part 993 [Doc. No. AMS-FV-11-0068... Marketing Service, USDA. ACTION: Interim rule with request for comments. SUMMARY: This rule decreases the...

  8. Bio-drying and size sorting of municipal solid waste with high water content for improving energy recovery.

    Science.gov (United States)

    Shao, Li-Ming; Ma, Zhong-He; Zhang, Hua; Zhang, Dong-Qing; He, Pin-Jing

    2010-07-01

    Bio-drying can enhance the sortability and heating value of municipal solid waste (MSW), consequently improving energy recovery. Bio-drying followed by size sorting was adopted for MSW with high water content to improve its combustibility and reduce potential environmental pollution during the follow-up incineration. The effects of bio-drying and waste particle size on heating values, acid gas and heavy metal emission potential were investigated. The results show that, the water content of MSW decreased from 73.0% to 48.3% after bio-drying, whereas its lower heating value (LHV) increased by 157%. The heavy metal concentrations increased by around 60% due to the loss of dry materials mainly resulting from biodegradation of food residues. The bio-dried waste fractions with particle size higher than 45 mm were mainly composed of plastics and papers, and were preferable for the production of refuse derived fuel (RDF) in view of higher LHV as well as lower heavy metal concentration and emission. However, due to the higher chlorine content and HCl emission potential, attention should be paid to acid gas and dioxin pollution control. Although LHVs of the waste fractions with size bio-drying, they were still below the quality standards for RDF and much higher heavy metal pollution potential was observed. Different incineration strategies could be adopted for different particle size fractions of MSW, regarding to their combustibility and pollution property. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  9. Drying of plasterboard - some quality aspects

    Energy Technology Data Exchange (ETDEWEB)

    Naesman, L. (University of Lund (Sweden)); Wimmerstedt, R. (University of Lund (Sweden))

    1993-06-01

    The manufacture process, especially the drying operation, of plasterboard was studied. The purpose was to measure physical properties, which can be used for the optimization of the process with respect to energy and quality. The cardboard was found to be hygroscopic whereas the gypsum was not. It was determined that the chloride content in the gypsum raw material should not exceed 75 ppm. The starch was found to migrate towards the surface of the gypsum core during the drying process (air temperture 140 C, dew-point of air 30 C and air velocity 10 m/s). The drying of different qualitites of plasterboard was also investigated. It was found that the cardboard is a very important parameter whereas the gypsum core has little effect on the drying rate and core temperature. (orig.)

  10. Improvement of cassava for high dry matter, starch and low cyanogenic glucoside content by mutation induction

    Energy Technology Data Exchange (ETDEWEB)

    Nwachukwu, E C; Mbanaso, E N.A.; Ene, L S.O. [Plant Breeding Div., National Root Crops Research Inst., Umudike, Umuahia (Nigeria)

    1997-07-01

    Cassava (Manihot esculenta Crantz) is an important food in Nigeria. One drawback in its use as a staple food is the presence of cyanogenic glucosides which on hydrolysis produce the very toxic hydrogen cyanide (HCN). To reduce the cyanogenic levels by mutation induction, three locally adopted and high yielding varieties of cassava, TMS 30572, NR 8817 and NR 84111 were irradiated with 20, 25 and 30 Gy gamma rays. There were a wide variation in HCN, dry matter and starch content of irradiated cassava plants, screened in the MV{sub 2} propagation. Fourteen cassavavariant lines were selected for low HCN content, and 22 lines for high dry matter content. These will be further tested for yield in replicated field trials. (author). 7 refs, 3 tabs.

  11. Improvement of cassava for high dry matter, starch and low cyanogenic glucoside content by mutation induction

    International Nuclear Information System (INIS)

    Nwachukwu, E.C.; Mbanaso, E.N.A.; Ene, L.S.O.

    1997-01-01

    Cassava (Manihot esculenta Crantz) is an important food in Nigeria. One drawback in its use as a staple food is the presence of cyanogenic glucosides which on hydrolysis produce the very toxic hydrogen cyanide (HCN). To reduce the cyanogenic levels by mutation induction, three locally adopted and high yielding varieties of cassava, TMS 30572, NR 8817 and NR 84111 were irradiated with 20, 25 and 30 Gy gamma rays. There were a wide variation in HCN, dry matter and starch content of irradiated cassava plants, screened in the MV 2 propagation. Fourteen cassavavariant lines were selected for low HCN content, and 22 lines for high dry matter content. These will be further tested for yield in replicated field trials. (author). 7 refs, 3 tabs

  12. Ahşap Kurutmada Çevre Dostu bir Teknoloji : Yüksek Frekans / High-Frequency-Vacuum Wood Drying Technology

    Directory of Open Access Journals (Sweden)

    Cengiz Güler

    2012-12-01

    Full Text Available Katma değerli olmasına karşın kurutulması güç ağaç türlerine ait kalın kerestelerin, klasik kurutma metoduyla çok uzun sürelerde kurutulabilmesi ve istenen kalite düzeylerinin tam olarak elde edilememesi nedeniyle günümüzde Yüksek Frekans-Vakum kombinasyonlu kurutma metodu (YFV kendini göstermiş durumdadır. Geçmişte özellikle yatırım maliyetleri ve teknolojik altyapı zorlukları nedeniyle yaygınlaşamayan bu yöntem tekrar güncel hale gelmiştir. Bu kurutma metodunda prensip; ısı kaynağının, elektrik enerjisi olmasıdır. Dolayısı ile katı ve sıvı yakıta göre çevre dostu olduğu kabul edilebilir. Bu metot ile ağaç malzemeye gönderilen elektromanyetik dalgaların meydana getirdiği ısıdan yararlanmak suretiyle, kalın ve güç kuruyan, başlangıç nemi yüksek olan ağaç türlerinin %10 un altındaki sonuç nemlerine kadar çok kısa sürelerde kurutulması amaçlanmaktadır. Bu çalışmada öncelikle kurutma teknoloji hakkında genel bilgi verilmiştir. Daha sonra ise, günümüze kadar yapılan orijinal çalışmalar özetlenerek klasik yöntemle kurutulmasında önemli zorluklar olan, kurutma süresi çok uzun olan veya hiç kurutulamayan Meşe, Ceviz, Kayın, İroko, Kestane gibi ağaç türlerinin kalın kerestelerinin kurutulması denemelerinden elde edilen sonuçlar ortaya konulmuştur. Son bölümde ise elde edilen bu sonuçlar özellikle metodun donanım ve işletme giderleri, ortaya çıkan kurutma süreleri ve kalite düzeyleri, çevreye uyumlu teknoloji ekseninde ele alınmıştır. Ayrıca, bu metodun kereste kurutma dışında diğer tarımsal ürün ve atıkların kurutulmasında kullanılabilir olması nedeniyle çevreye uyumlu üretim ve geri dönüşüme sağladığı katkı da bu kapsamda irdelenmiştir. High-Frequency-Vacuum Wood Drying Technology High density wood species dried very long period’s and very low quality levels with method in conventional drying. So High

  13. Application of Natural Air Drying on Shelled Corn in Timor

    Science.gov (United States)

    Nino, J.; Nelwan, L. O.; Purwanto, Y. A.

    2018-05-01

    A study of the application of natural air drying on shelled corn in Timor using a bed- type dryer has been performed. The study aspects were limited to obtain the suitable air flow rate requirement and duration of the drying operation per day. For each aspect, the treatments were carried out simultaneously. The results showed that at the average ambient air temperature of 30.6°C and relative humidity (RH) of 73.0% the air flow rate of 0.83 L/s-kg provided the highest drying rate. Subsequently, by using the same air flow rate, three scheme of drying operations duration were used, i.e., 8 hours per day (08.00-16.00), 6 hours per day (09.00-15.00) and 4 hours per day (10.00-14.00). The average temperature and RH of ambient air condition at the second experiment were 30.3°C and 73.3% respectively. After 4 days of drying, the 8 hours per day (first scheme) treatment was able to dry the shelled corn from the initial moisture content of 27.24% w.b. to the final moisture content of 14.05% w.b. The specific energy consumption (SEC) of the first scheme was 1.75 MJ/kg. The final moisture content of the second and third schemes were 15.08 % w.b. and 18.45 % w.b. respectively with SEC of 1.41 MJ/kg and 1.21 MJ/kg respectively.

  14. Perceptions of dry eye disease management in current clinical practice.

    Science.gov (United States)

    Williamson, Jennifer F; Huynh, Kyle; Weaver, Mark A; Davis, Richard M

    2014-03-01

    To assess the perceptions of eye care providers regarding the clinical management of dry eye. Invitations to complete a 17-question online survey were mailed to 400 members of the North Carolina Ophthalmology and Optometry Associations including community optometrists, comprehensive ophthalmologists, and cornea specialists. The survey was completed by 100 eye care providers (25% response rate). Providers reported burning (46.5%) as the most frequent symptom described by patients, followed by foreign body sensation (30.3%) and tearing (17.2%). Most respondents (80.8%) listed artificial tears as the recommended first-line treatment, even though providers reported high failure rates for both artificial tears and cyclosporine A (Restasis). Rheumatoid arthritis, Sjögren syndrome, affective disorders such as anxiety and depression, history of photorefractive surgery, smoking, and thyroid disease were acknowledged as common comorbid conditions. The survey provided an informative snapshot into the preferences of eye care providers concerning the diagnosis and management of dry eye disease. Overall, burning was the most common symptom reported by patients. Providers relied more on patient history in guiding their clinical decisions than objective signs. The survey underscores the incongruence when comparing subjective symptoms with objective signs, thereby highlighting the urgent need for the development of reliable metrics to better quantify dry eye symptoms and also the development of a more sensitive and specific test that can be used as the gold standard to diagnose dry eye.

  15. Novel dry forests in southwestern Puerto Rico

    Science.gov (United States)

    Sandra Molina Colón; Ariel E. Lugo; Olga Ramos

    2011-01-01

    We report results of new research on (1) community composition of novel subtropical dry forests developing on abandoned pastures and agricultural fields in both private and protected public lands and (2) seed germination and growth rates of plantings of native tree species on degraded soils. We found that novel dry forests were dominated by introduced species, which...

  16. Quality properties of fruits as affected by drying operation.

    Science.gov (United States)

    Omolola, Adewale O; Jideani, Afam I O; Kapila, Patrick F

    2017-01-02

    The increasing consumption of dried fruits requires further attention on the quality parameters. Drying has become necessary because most fruits are highly perishable owing to their high moisture content and the need to make them available all year round and at locations where they are not produced. In addition to preservation, the reduced weight and bulk of dehydrated products decreases packaging, handling and transportation costs. Quality changes associated with drying of fruit products include physical, sensory, nutritional, and microbiological. Drying gives rise to low or moderate glycemic index (GI) products with high calorie, vitamin and mineral contents. This review examines the nutritional benefits of dried fruits, protective compounds present in dried fruits, GI, overview of some fruit drying methods and effects of drying operations on the quality properties such as shrinkage, porosity, texture, color, rehydration, effective moisture diffusivity, nutritional, sensory, microbiological and shelf stability of fruits.

  17. Stabilization of Live Attenuated Influenza Vaccines by Freeze Drying, Spray Drying, and Foam Drying.

    Science.gov (United States)

    Lovalenti, Phillip M; Anderl, Jeff; Yee, Luisa; Nguyen, Van; Ghavami, Behnaz; Ohtake, Satoshi; Saxena, Atul; Voss, Thomas; Truong-Le, Vu

    2016-05-01

    The goal of this research is to develop stable formulations for live attenuated influenza vaccines (LAIV) by employing the drying methods freeze drying, spray drying, and foam drying. Formulated live attenuated Type-A H1N1 and B-strain influenza vaccines with a variety of excipient combinations were dried using one of the three drying methods. Process and storage stability at 4, 25 and 37°C of the LAIV in these formulations was monitored using a TCID50 potency assay. Their immunogenicity was also evaluated in a ferret model. The thermal stability of H1N1 vaccine was significantly enhanced through application of unique formulation combinations and drying processes. Foam dried formulations were as much as an order of magnitude more stable than either spray dried or freeze dried formulations, while exhibiting low process loss and full retention of immunogenicity. Based on long-term stability data, foam dried formulations exhibited a shelf life at 4, 25 and 37°C of >2, 1.5 years and 4.5 months, respectively. Foam dried LAIV Type-B manufactured using the same formulation and process parameters as H1N1 were imparted with a similar level of stability. Foam drying processing methods with appropriate selection of formulation components can produce an order of magnitude improvement in LAIV stability over other drying methods.

  18. High-pressure treatment of wood - combination of mechanical and thermal drying in the ''I/D process''

    Energy Technology Data Exchange (ETDEWEB)

    Stahl, M. [Bundesforschungsanstalt fuer Ernaehrung, Institut fuer Verfahrenstechnik, Haid-und-Neu-Str. 9, D-76131 Karlsruhe (Germany); Bentz, M. [Institut fuer Mechanische Verfahrenstechnik und Mechanik, Universitaet Karlsruhe (T.H.), D-76128 Karlsruhe (Germany)

    2004-11-01

    Thermal drying of materials with internal pores is always a time-consuming and energy-intensive step within a production process. For chemical and pharmaceutical mass products and, in particular, for wood as an important raw material it is desirable to reduce the water content before thermal treatment by mechanical operations. The wood-processing industry, facing a rising stress of competition, is forced more than ever to offer high-quality products at lowest prices. Today, drying of timber is mostly done by air drying or by technical drying in kiln dryers. In any case, drying is necessary to prevent deterioration in quality by shrinkage, formation of cracks, discoloration or infestation. A new process of dewatering wood by combining mechanical and thermal means has been developed at the University of Karlsruhe. Compared to conventional drying processes, short drying times and a low residual moisture content can be achieved and, thus, energy consumption and costs can be reduced. In industrial wood drying only thermal processes (e.g., convective kiln drying, vacuum drying, etc.) have been established because so far no method has been known for removing liquid by mechanical force without significant change in wood structure. With the new I/D process chances for alternatives to conventional thermal drying or for mechanothermal applications are offered. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  19. Kinetic Monte Carlo simulation of nanoparticle film formation via nanocolloid drying

    Science.gov (United States)

    Kameya, Yuki

    2017-06-01

    A kinetic Monte Carlo simulation of nanoparticle film formation via nanocolloid drying is presented. The proposed two-dimensional model addresses the dynamics of nanoparticles in the vertical plane of a drying nanocolloid film. The gas-liquid interface movement due to solvent evaporation was controlled by a time-dependent chemical potential, and the resultant particle dynamics including Brownian diffusion and aggregate growth were calculated. Simulations were performed at various Peclet numbers defined based on the rate ratio of solvent evaporation and nanoparticle diffusion. At high Peclet numbers, nanoparticles accumulated at the top layer of the liquid film and eventually formed a skin layer, causing the formation of a particulate film with a densely packed structure. At low Peclet numbers, enhanced particle diffusion led to significant particle aggregation in the bulk colloid, and the resulting film structure became highly porous. The simulated results showed some typical characteristics of a drying nanocolloid that had been reported experimentally. Finally, the potential of the model as well as the remaining challenges are discussed.

  20. Atmospheric freeze drying assisted by power ultrasound

    International Nuclear Information System (INIS)

    Santacatalina, J V; Cárcel, J A; Garcia-Perez, J V; Mulet, A; Simal, S

    2012-01-01

    Atmospheric freeze drying (AFD) is considered an alternative to vacuum freeze drying to keep the quality of fresh product. AFD allows continuous drying reducing fix and operating costs, but presents, as main disadvantage, a long drying time required. The application of power ultrasound (US) can accelerate AFD process. The main objective of the present study was to evaluate the application of power ultrasound to improve atmospheric freeze drying of carrot. For that purpose, AFD experiments were carried out with carrot cubes (10 mm side) at constant air velocity (2 ms −1 ), temperature (−10°C) and relative humidity (10%) with (20.5 kWm −3 ,USAFD) and without (AFD) ultrasonic application. A diffusion model was used in order to quantify the influence of US in drying kinetics. To evaluate the quality of dry products, rehydration capacity and textural properties were determined. The US application during AFD of carrot involved the increase of drying rate. The effective moisture diffusivity identified in USAFD was 73% higher than in AFD experiments. On the other hand, the rehydration capacity was higher in USAFD than in AFD and the hardness of dried samples did not show significant (p<0.05) differences. Therefore, US application during AFD significantly (p<0.05) sped-up the drying process preserving the quality properties of the dry product.

  1. Drying kinetics of fermented grape pomace: Determination of moisture effective diffusivity

    Directory of Open Access Journals (Sweden)

    Kricelle M. Deamici

    Full Text Available ABSTRACT The aim of this study was to obtain the equilibrium moisture content of grape (variety ‘Tannat’ pomace through desorption isotherms, to evaluate the drying kinetics, determine the coefficient of effective diffusivity and physico-chemically characterize the grape pomace and the product obtained after drying. The desorption isotherms were determined at 50, 60 and 70 ºC and the experimental data were fitted using the GAB model (Gugghenheim, Anderson and de Boer. Drying was evaluated using a 22 factorial experimental design with three center points and effective diffusivity was obtained through the diffusion model of Fick’s second law. The grape pomace was characterized regarding the contents of moisture, protein, carbohydrates, lipids, ash and dietary crude fiber. The obtained isotherms showed sigmoid shape and the experimental data fitted well to the GAB model. The drying curves showed only a decreasing rate period. The effective diffusivity values were within the range for organic materials. Dry grape pomace showed high contents of protein and fiber and can be used in the development of new products, in order to increase the nutritional content and add value to this byproduct.

  2. Modeling of microwave-convective drying of pistachios

    International Nuclear Information System (INIS)

    Kouchakzadeh, Ahmad; Shafeei, Sahameh

    2010-01-01

    The microwave-convective drying of two varieties of Iranian pistachios (Khany and Abasaliy) was performed in a laboratory scale microwave dryer, which was developed for this purpose. The drying rate curves show that first rapidly decreased and then very little reduction in moisture ratio observed with increase of drying time. A non-linear regression page model represents good agreement with experimental data with coefficient of determination and mean square of deviation as 0.9612 and 2.25 x 10 -5 for Khany and 0.9997 and 4.28 x 10 -5 for Abasaliy pistachios respectively.

  3. Characterisation of spray dried soy sauce powders made by adding crystalline carbohydrates to drying carrier.

    Science.gov (United States)

    Wang, Wei; Zhou, Weibiao

    2015-02-01

    This study aimed to reduce stickiness and caking of spray dried soy sauce powders by introducing a new crystalline structure into powder particles. To perform this task, soy sauce powders were formulated by using mixtures of cellulose and maltodextrin or mixtures of waxy starch and maltodextrin as drying carriers, with a fixed carrier addition rate of 30% (w/v) in the feed solution. The microstructure, crystallinity, solubility as well as stickiness and caking strength of all the different powders were analysed and compared. Incorporating crystalline carbohydrates in the drying carrier could significantly reduce the stickiness and caking strength of the powders when the ratio of crystalline carbohydrates to maltodextrin was above 1:5 and 1:2, respectively. X-ray Diffraction (XRD) results showed that adding cellulose or waxy starch could induce the crystallinity of powders. Differential Scanning Calorimetry (DSC) results demonstrated that the native starch added to the soy sauce powders did not fully gelatinize during spray drying. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Determination of Efavirenz in Human Dried Blood Spots by Reversed-Phase High Performance Liquid Chromatography with UV Detection

    Science.gov (United States)

    Hoffman, Justin T; Rossi, Steven S; Espina-Quinto, Rowena; Letendre, Scott; Capparelli, Edmund V

    2013-01-01

    Background Previously published methods for determination of efavirenz (EFV) in human dried blood spots (DBS) employ costly and complex liquid chromatography/mass spectrometry. We describe the validation and evaluation of a simple and inexpensive high-performance liquid chromatography (HPLC) method for EFV quantification in human DBS and dried plasma spots (DPS), using ultraviolet (UV) detection appropriate for resource-limited settings. Methods 100μl of heparinized whole blood or plasma were spotted onto blood collection cards, dried, punched, and eluted. Eluates are injected onto a C-18 reversed phase HPLC column. EFV is separated isocratically using a potassium phosphate and ACN mobile phase. UV detection is at 245nm. Quantitation is by use of external calibration standards. Following validation, the method was evaluated using whole blood and plasma from HIV-positive patients undergoing EFV therapy. Results Mean recovery of drug from dried blood spots is 91.5%. The method is linear over the validated concentration range of 0.3125 – 20.0μg/mL. A good correlation (Spearman r=0.96) between paired plasma and DBS EFV concentrations from the clinical samples was observed, and hematocrit level was not found to be a significant determinant of the EFV DBS level. The mean observed CDBS/Cplasma ratio was 0.68. A good correlation (Spearman r=0.96) between paired plasma and DPS EFV concentrations from the clinical samples was observed. The mean percent deviation of DPS samples from plasma samples is 1.68%. Conclusions Dried whole blood spot or dried plasma spot sampling is well suited for monitoring EFV therapy in resource limited settings, particularly when high sensitivity is not essential. PMID:23503446

  5. Production of ethanol from wheat straw by pretreatment and fermentation at high dry matter concentrations

    NARCIS (Netherlands)

    Groenestijn, J.W. van; Slomp, R.S.

    2011-01-01

    High concentrations of substrate and product are important for the economy of second-generation bioethanol production. By a dilute acid thermal pretreatment of large pieces of relatively dry wheat straw using a novel rapid heating method, followed by fed-batch preliquefaction with hydrolytic

  6. Dried Blood Spot Collection of Health Biomarkers to Maximize Participation in Population Studies

    Science.gov (United States)

    Ostler, Michael W.; Porter, James H.; Buxton, Orfeu M.

    2014-01-01

    Biomarkers are directly-measured biological indicators of disease, health, exposures, or other biological information. In population and social sciences, biomarkers need to be easy to obtain, transport, and analyze. Dried Blood Spots meet this need, and can be collected in the field with high response rates. These elements are particularly important in longitudinal study designs including interventions where attrition is critical to avoid, and high response rates improve the interpretation of results. Dried Blood Spot sample collection is simple, quick, relatively painless, less invasive then venipuncture, and requires minimal field storage requirements (i.e. samples do not need to be immediately frozen and can be stored for a long period of time in a stable freezer environment before assay). The samples can be analyzed for a variety of different analytes, including cholesterol, C-reactive protein, glycosylated hemoglobin, numerous cytokines, and other analytes, as well as provide genetic material. DBS collection is depicted as employed in several recent studies. PMID:24513728

  7. CT colonography in a Korean population with a high residue diet: Comparison between wet and dry preparations

    International Nuclear Information System (INIS)

    Kim, S.H.; Choi, B.I.; Han, J.K.; Lee, J.M.; Eun, H.W.; Lee, J.Y.; Lee, K.H.; Han, C.J.; Choi, Y.H.; Shin, K.-S.

    2006-01-01

    AIM: To compare wet and dry preparation methods for computed tomography colonography (CTC) in terms of preparation quality, interpretation time, and diagnostic performance for polyp detection in a population with a high residue diet. MATERIALS AND METHODS: Eighty-six patients were divided into two groups. Group 1 (n=24) received a wet preparation of 4 l polyethylene glycol (PEG) solution, and group 2 (n=62) received a dry preparation of phosphor-soda. Abnormal findings, including polyps, and the time required to interpret the CTC images in both groups were documented by a radiologist. CTC findings were compared to those of colonoscopy as a reference standard. Two radiologists evaluated the quality of CTC with regard to residual fluid, faeces, and colonic distension using a four-point scale in consensus. Statistical differences for residual fluid, faeces, distensibility on CTC, and interpretation time between the two groups were analysed. The diagnostic performance of CTC in both groups was also compared. RESULTS: One-hundred and ninety polyps in 70 patients were identified using colonoscopy. Regarding the quality of images produced the wet preparation was significantly better than the dry preparation (p 0.05). CONCLUSION: In a population with a high-residue diet, CTC with wet preparation can be interpreted in a time-efficient manner and is comparable with CTC with dry preparation

  8. Dry fermentation of manure with straw in continuous plug flow reactor: Reactor development and process stability at different loading rates.

    Science.gov (United States)

    Patinvoh, Regina J; Kalantar Mehrjerdi, Adib; Sárvári Horváth, Ilona; Taherzadeh, Mohammad J

    2017-01-01

    In this work, a plug flow reactor was developed for continuous dry digestion processes and its efficiency was investigated using untreated manure bedded with straw at 22% total solids content. This newly developed reactor worked successfully for 230days at increasing organic loading rates of 2.8, 4.2 and 6gVS/L/d and retention times of 60, 40 and 28days, respectively. Organic loading rates up to 4.2gVS/L/d gave a better process stability, with methane yields up to 0.163LCH 4 /gVS added /d which is 56% of the theoretical yield. Further increase of organic loading rate to 6gVS/L/d caused process instability with lower volatile solid removal efficiency and cellulose degradation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Effects of ascorbic acid, salt, lemon juice, and honey on drying kinetics and sensory characteristic of dried mango

    Directory of Open Access Journals (Sweden)

    E. E. Abano

    2013-01-01

    Full Text Available The effects of ascorbic acid, salt solution, lemon juice, and honey pretreatment on the drying kinetics and sensory characteristics were studied. Pretreatments used affected the effective moisture diffusivity and rehydration properties of the dried mangoes. The effective moisture diffusivity values were 2.22 × 10-10 m2/s for ascorbic acid, 1.80 × 10-10 m2/s for salt solution, 2.01 × 10-10 m2/s for lemon juice, 1.93 × 10-10 m2/s for honey pretreated mangoes, and 2.31 × 10-10 m2/s for the control slices. Pretreatments enhanced the drying rate potential of mangoes. Among the thin-layer drying models fitted to the experimental data, the Middil model gave the best fit. The ascorbic acid pretreated samples were the best while the salt solution ones were the poorest with respect to reconstitution capacity. Consumer studies for overall preference for taste, colour, texture, flavour and chewiness of the dried products revealed that there was a higher preference for honey pretreated dried samples followed by the ascorbic acid, control, lemon juice, and salt solution pretreated samples. The results demonstrate that these pretreatments can be applied to enhance the moisture transport during drying and the quality of the dried products.

  10. Dry storage of spent nuclear fuel in UAE – Economic aspect

    International Nuclear Information System (INIS)

    Al Saadi, Sara; Yi, Yongsun

    2015-01-01

    Highlights: • Cost analysis of interim storage of spent nuclear fuel in the UAE was performed. • Two scenarios were considered: accelerated transfer of SNF and max. use of fuel pool. • Additional cost by accelerated transfer of SNF to dry storage was not significant. • Multiple regression analysis was applied to the resulting dry storage costs. • Dry storage costs for different cases could be expressed by single equations. - Abstract: Cost analysis of dry storage of spent nuclear fuel (SNF) discharged from Barakah nuclear power plants in the UAE was performed using three variables: average fuel discharge rate (FD), discount rate (d), and cooling time in a spent fuel pool (T cool ). The costs of dry storage as an interim spent fuel storage option in the UAE were estimated and compared between the following two scenarios: Scenario 1 is ‘accelerated transfer of spent fuel to dry storage’ that SNF will be transferred to dry storage facilities as soon as spent fuel has been sufficiently cooled down in a pool for the dry storage; Scenario 2 is defined as ‘maximum use of spent fuel pool’ that SNF will be stored in a pool as long as possible till the amount of stored SNF in the pool reaches the capacity of the pools and, then, to be moved to dry storage. A sensitivity analysis on the costs was performed and multiple regression analysis was applied to the resulting net present values (NPVs) for Scenarios 1 and 2 and ΔNPV that is difference in the net present values between the two scenarios. The results showed that NPVs and ΔNPV could be approximately expressed by single equations with the three variables. Among the three variables, the discount rate had the largest effect on the NPVs of the dry storage costs. However, ΔNPV was turned out to be equally sensitive to the discount rate and cooling period. Over the ranges of the variables, the additional cost for accelerated fuel transfer (Scenario 1) ranged from 86.4 to 212.9 million $. Calculated using

  11. Fabrication of Ni stamp with high aspect ratio, two-leveled, cylindrical microstructures using dry etching and electroplating

    DEFF Research Database (Denmark)

    Petersen, Ritika Singh; Keller, Stephan Sylvest; Hansen, Ole

    2015-01-01

    obtained by defining a reservoir and a separating trench with different depths of 85 and 125 μm, respectively, in a single embossing step. The fabrication of the required two leveled stamp is done using a modified DEEMO (dry etching, electroplating and molding) process. Dry etching using the Bosch process...... and electroplating are optimized to obtain a stamp with smooth stamp surfaces and a positive sidewall profile. Using this stamp, hot embossing is performed successfully with excellent yield and high replication fidelity....

  12. Volatile emission in dry seeds as a way to probe chemical reactions during initial asymptomatic deterioration.

    Science.gov (United States)

    Mira, Sara; Hill, Lisa M; González-Benito, M Elena; Ibáñez, Miguel Angel; Walters, Christina

    2016-03-01

    The nature and kinetics of reactions in dry seeds determines how long the seeds survive. We used gas chromatography to assay volatile organic compounds (VOCs) emitted from seeds of three unrelated species as a means to non-invasively probe chemical changes during very dry, dry, and humid storage (seeds were dried to 5.5, 33, and 75% relative humidity at room temperature). VOCs emitted from seeds stored in humid conditions reflected fermentation-type reactions, with methanol and ethanol being predominant in Lactuca sativa and Carum carvi, and acetaldehyde and acetone being predominant in Eruca vesicaria. Dried C. carvi seeds continued to emit fermentation-type products, although at slower rates than the seeds stored in humid conditions. In contrast, drying caused a switch in VOC emission in L. sativa and E. vesicaria seeds towards higher emission of pentane and hexanal, molecules considered to be byproducts from the peroxidation of polyunsaturated fatty acids. Longevity correlated best with the rate of fermentation-type reactions and appeared unrelated to the rate of lipid peroxidation. Emission of VOCs decreased when seed species were mixed together, indicating that seeds adsorbed VOCs. Adsorption of VOCs did not appear to damage seeds, as longevity was not affected in seed mixtures. Collectively, the study shows similarity among species in the types of reactions that occur in dry seeds, but high diversity in the substrates, and hence the byproducts, of the reactions. Moreover, the study suggests that the most abundant VOCs arise from degradation of storage reserves within seed cells, and that these reactions and their byproducts are not, in themselves, damaging. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  13. Salivary flow and its relationship to oral signs and symptoms in patients with dry eyes.

    Science.gov (United States)

    Koseki, M; Maki, Y; Matsukubo, T; Ohashi, Y; Tsubota, K

    2004-03-01

    The aim of this study was to investigate oral symptoms and clinical parameters in dry eye patients. Subjective reports of the sensation of a dry mouth, salivary flow rates, and clinical parameters of oral disease related to three different types of dry eye patients were examined. There were 224 individuals, including dry eye patients and control subjects. The dry eye patients were classified into three types: patients with Sjögren's syndrome (SS-DE), patients without SS-DE (non-SS-DE), and patients with Stevens-Johnson syndrome (SJS-DE). Salivary flow rates were measured using two kinds of sialometry. Subjective and objective oral symptoms and signs were also examined. Over half of the dry eye patients complained of a dry mouth. The flow rates of their stimulated whole saliva and parotid saliva were significantly lower than those of the control groups (P Candida frequently occurred in dry eye patients.

  14. Optimization of machining parameters in dry EDM of EN31 steel

    Science.gov (United States)

    Brar, G. S.

    2018-03-01

    Dry electric discharge machining (Dry EDM) is one of the novel EDM technology in which gases namely helium, argon, oxygen, nitrogen etc. are used as a dielectric medium at high pressure instead of oil based liquid dielectric. The present study investigates dry electric discharge machining (with rotary tool) of EN-31 steel to achieve lower tool wear rate (TWR) and better surface roughness (Ra) by performing a set of exploratory experiments with oxygen gas as dielectric. The effect of polarity, discharge current, gas flow pressure, pulse-on time, R.P.M. and gap voltage on the MRR, TWR and surface roughness (Ra) in dry EDM was studied with copper as rotary tool. The significant factors affecting MRR are discharge current and pulse on time. The significant factors affecting TWR are gas flow pressure, pulse on time and R.P.M. TWR was found close to zero in most of the experiments. The significant factors affecting Ra are pulse on time, gas flow pressure and R.P.M. It was found that polarity has nearly zero effect on all the three output variables.

  15. Drying of restructured chips made from the old stalks of Asparagus officinalis: impact of different drying methods.

    Science.gov (United States)

    Liu, Zhenbin; Zhang, Min; Wang, Yuchuan

    2016-06-01

    Old stalks of Asparagus officinalis, which account for one third of the total length of each spear, are always discarded as waste. To make full use of the resource, a kind of restructured Asparagus officinalis chip was made. The effects of pulse-spouted microwave-assisted vacuum drying (PSMVD), microwave-assisted vacuum drying (MVD) and vacuum drying (VD) on texture, color and other quality parameters of restructured chips were then studied to obtain high-quality dried chips. Results indicated that the drying time was significantly affected by drying methods, and PSMVD had much better drying uniformity than MVD. The expansion ratio and crispness of chips increased with increasing microwave power and vacuum degree. The browning reaction of samples in VD was more serious, which was confirmed by the results of color test and electronic nose. The PSMVD drying method showed much better drying uniformity than MVD. The dried chips obtained by PSMVD showed optimal quality and were more readily accepted by consumers. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  16. Shear dilatancy and acoustic emission in dry and saturated granular materials

    Science.gov (United States)

    Brodsky, E. E.; Siman-Tov, S.

    2017-12-01

    Shearing of granular materials plays a strong role in naturally sheared systems as landslides and faults. Many works on granular flows have concentrated on dry materials, but relatively little work has been done on water saturated sands. Here we experimentally investigate dry versus saturated quartz-rich sand to understand the effect of the fluid medium on the rheology and acoustic waves emission of the sheared sand. The sand was sheared in a rotary shear rheometer under applied constant normal stress boundary at low (100 µm/s) to high (1 m/s) velocities. Mechanical, acoustic data and deformation were continuously recorded and imaged. For dry and water saturated experiments the granular volume remains constant for low shear velocities ( 10-3 m/s) and increases during shearing at higher velocities ( 1 m/s). Continuous imaging of the sheared sand show that the steady state shear band thickness is thicker during the high velocity steps. No significant change observed in the shear band thickness between dry and water saturated experiments. In contrast, the amount of dilation during water saturated experiments is about half the value measured for dry material. The measured decrease cannot be explained by shear band thickness change as such is not exist. However, the reduced dilation is supported by our acoustic measurements. In general, the event rate and acoustic event amplitudes increase with shear velocity. While isolated events are clearly detected during low velocities at higher the events overlap, resulting in a noisy signal. Although detection is better for saturated experiments, during the high velocity steps the acoustic energy measured from the signal is lower compared to that recorded for dry experiments. We suggest that the presence of fluid suppresses grain motion and particles impacts leading to mild increase in the internal pressure and therefore for the reduced dilation. In addition, the viscosity of fluids may influence the internal pressure via

  17. Spent fuel drying system test results (first dry-run)

    International Nuclear Information System (INIS)

    Klinger, G.S.; Oliver, B.M.; Abrefah, J.; Marschman, S.C.; MacFarlan, P.J.; Ritter, G.A.

    1998-07-01

    The water-filled K-Basins in the Hanford 100 Area have been used to store N-Reactor spent nuclear fuel (SNF) since the 1970s. Because some leaks in the basin have been detected and some of the fuel is breached due to handling damage and corrosion, efforts are underway to remove the fuel elements from wet storage. An Integrated Process Strategy (IPS) has been developed to package, dry, transport, and store these metallic uranium fuel elements in an interim storage facility on the Hanford Site. Information required to support the development of the drying processes, and the required safety analyses, is being obtained from characterization tests conducted on fuel elements removed from the K-Basins. A series of whole element drying tests (reported in separate documents, see Section 7.0) have been conducted by Pacific Northwest National Laboratory (PNNL) on several intact and damaged fuel elements recovered from both the K-East and K-West Basins. This report documents the results of the first dry-run test, which was conducted without a fuel element. The empty test apparatus was subjected to a combination of low- and high-temperature vacuum drying treatments that were intended to mimic, wherever possible, the fuel treatment strategies of the IPS. The data from this dry-run test can serve as a baseline for the first two fuel element tests, 1990 (Run 1) and 3128W (Run 2). The purpose of this dry-run was to establish the background levels of hydrogen in the system, and the hydrogen generation and release characteristics attributable to the test system without a fuel element present. This test also serves to establish the background levels of water in the system and the water release characteristics. The system used for the drying test series was the Whole Element Furnace Testing System, described in Section 2.0, which is located in the Postirradiation Testing Laboratory (PTL, 327 Building). The test conditions and methodology are given in section 3.0, and the experimental

  18. Modelling and experimental validation of thin layer indirect solar drying of mango slices

    Energy Technology Data Exchange (ETDEWEB)

    Dissa, A.O.; Bathiebo, J.; Kam, S.; Koulidiati, J. [Laboratoire de Physique et de Chimie de l' Environnement (LPCE), Unite de Formation et de Recherche en Sciences Exactes et Appliquee (UFR/SEA), Universite de Ouagadougou, Avenue Charles de Gaulle, BP 7021 Kadiogo (Burkina Faso); Savadogo, P.W. [Laboratoire Sol Eau Plante, Institut de l' Environnement et de Recherches Agricoles, 01 BP 476, Ouagadougou (Burkina Faso); Desmorieux, H. [Laboratoire d' Automatisme et de Genie des Procedes (LAGEP), UCBL1-CNRS UMR 5007-CPE Lyon, Bat.308G, 43 bd du 11 Nov. 1918 Villeurbanne, Universite Claude Bernard Lyon1, Lyon (France)

    2009-04-15

    The thin layer solar drying of mango slices of 8 mm thick was simulated and experimented using a solar dryer designed and constructed in laboratory. Under meteorological conditions of harvest period of mangoes, the results showed that 3 'typical days' of drying were necessary to reach the range of preservation water contents. During these 3 days of solar drying, 50%, 40% and 5% of unbound water were eliminated, respectively, at the first, second and the third day. The final water content obtained was about 16 {+-} 1.33% d.b. (13.79% w.b.). This final water content and the corresponding water activity (0.6 {+-} 0.02) were in accordance with previous work. The drying rates with correction for shrinkage and the critical water content were experimentally determined. The critical water content was close to 70% of the initial water content and the drying rates were reduced almost at 6% of their maximum value at night. The thin layer drying model made it possible to simulate suitably the solar drying kinetics of mango slices with a correlation coefficient of r{sup 2} = 0.990. This study thus contributed to the setting of solar drying time of mango and to the establishment of solar drying rates' curves of this fruit. (author)

  19. Study of the antioxidant properties of extracts obtained from nopal cactus (Opuntia ficus-indica) cladodes after convective drying.

    Science.gov (United States)

    Medina-Torres, Luis; Vernon-Carter, E Jaime; Gallegos-Infante, J Alberto; Rocha-Guzman, Nuria E; Herrera-Valencia, E E; Calderas, Fausto; Jiménez-Alvarado, Rubén

    2011-04-01

    The process of convective drying was evaluated in terms of the bioactive compounds contained in nopal samples before and after dehydration. Total polyphenol, flavonoid, flavonol, carotene and ascorbic acid contents were determined in undehydrated and dehydrated samples. Two drying temperatures (45 and 65 °C) and two air flow rates (3 and 5 m s(-1) ) were evaluated. The rheology of samples under the best drying conditions was also studied, since it provides important information regarding processing (mixing, flow processing) as well as the sensory attributes (texture) of rehydrated samples. Non-Newtonian shear-thinning behaviour was observed for samples dried at 45 °C, while samples dried at 65 °C showed shear-thickening behaviour, possibly caused by thermal chain scission of high-molecular-weight components. The best conditions for bioactive compound preservation were a drying temperature of 45 °C and an air flow rate of 3 m s(-1) , resulting in 40.97 g phenols, 23.41 g flavonoids, 0.543 g β-carotene and 0.2815 g ascorbic acid kg(-1) sample as shown in table 3. Copyright © 2011 Society of Chemical Industry.

  20. Utilization of household food waste for the production of ethanol at high dry material content.

    Science.gov (United States)

    Matsakas, Leonidas; Kekos, Dimitris; Loizidou, Maria; Christakopoulos, Paul

    2014-01-08

    Environmental issues and shortage of fossil fuels have turned the public interest to the utilization of renewable, environmentally friendly fuels, such as ethanol. In order to minimize the competition between fuels and food production, researchers are focusing their efforts to the utilization of wastes and by-products as raw materials for the production of ethanol. household food wastes are being produced in great quantities in European Union and their handling can be a challenge. Moreover, their disposal can cause severe environmental issues (for example emission of greenhouse gasses). On the other hand, they contain significant amounts of sugars (both soluble and insoluble) and they can be used as raw material for the production of ethanol. Household food wastes were utilized as raw material for the production of ethanol at high dry material consistencies. A distinct liquefaction/saccharification step has been included to the process, which rapidly reduced the viscosity of the high solid content substrate, resulting in better mixing of the fermenting microorganism. This step had a positive effect in both ethanol production and productivity, leading to a significant increase in both values, which was up to 40.81% and 4.46 fold, respectively. Remaining solids (residue) after fermentation at 45% w/v dry material (which contained also the unhydrolyzed fraction of cellulose), were subjected to a hydrothermal pretreatment in order to be utilized as raw material for a subsequent ethanol fermentation. This led to an increase of 13.16% in the ethanol production levels achieving a final ethanol yield of 107.58 g/kg dry material. In conclusion, the ability of utilizing household food waste for the production of ethanol at elevated dry material content has been demonstrated. A separate liquefaction/saccharification process can increase both ethanol production and productivity. Finally, subsequent fermentation of the remaining solids could lead to an increase of the overall

  1. Drying kinetics and mathematical modeling of hot air drying of coconut coir pith.

    Science.gov (United States)

    Fernando, J A K M; Amarasinghe, A D U S

    2016-01-01

    Drying kinetics of coir pith was studied and the properties of compressed coir pith discs were analyzed. Coir pith particles were oven dried in the range of temperatures from 100 to 240 °C and the rehydration ability of compressed coir pith was evaluated by finding the volume expansion. The optimum drying temperature was found to be 140 °C. Hot air drying was carried out to examine the drying kinetics by allowing the coir pith particles to fluidize and circulate inside the drying chamber. Particle motion within the drying chamber closely resembled the particle motion in a flash dryer. The effective moisture diffusivity was found to increase from 1.18 × 10(-8) to 1.37 × 10(-8) m(2)/s with the increase of air velocity from 1.4 to 2.5 m/s respectively. Correlation analysis and residual plots were used to determine the adequacy of existing mathematical models for describing the drying behavior of coir pith. The empirical models, Wang and Singh model and Linear model, were found to be adequate for accurate prediction of drying behavior of coir pith. A new model was proposed by modifying the Wang and Singh model and considering the effect of air velocity. It gave the best correlation between observed and predicted moisture ratio with high value of coefficient of determination (R(2)) and lower values of root mean square error, reduced Chi square (χ(2)) and mean relative deviation (E%).

  2. Effect of dry salting on flavonoid profile and antioxidant capacity of Algerian olive cultivars

    International Nuclear Information System (INIS)

    Soufi, O.; Romero, C.; Motilva, M.J.; Borras Gaya, X.; Louaileche, H.

    2016-01-01

    This study investigated the changes in the flavonoid profile and antioxidant capacity of five olive cultivars after dry salting. The antioxidant activity was determined using ferric reducing ability power (FRAP), oxygen radical absorbance capacity (ORAC), and β-carotene bleaching assays. The results showed that the effects of dry salting on the analyzed parameters were significant (P<0.05). It caused a decrease in total flavonoids with a loss rate of 55%. The HPLC analysis of extracts revealed the presence of four flavonoids: rutin, luteolin-7-glucoside, cyanidin-3-glucoside and cyanidin-3-rutinoside. Among the studied cultivars, Azeradj was characterized by high levels of flavonoids. Concerning the antioxidant activity, diverging results were obtained using different antioxidant assays. Overall, the dry salting induced a reduction in the antioxidant activity with variable values depending on the cultivar. Among the used methods, high correlations were found between flavonoid contents and the FRAP assay. (Author)

  3. Effect of dry salting on flavonoid profile and antioxidant capacity of Algerian olive cultivars

    Energy Technology Data Exchange (ETDEWEB)

    Soufi, O.; Romero, C.; Motilva, M.J.; Borras Gaya, X.; Louaileche, H.

    2016-07-01

    This study investigated the changes in the flavonoid profile and antioxidant capacity of five olive cultivars after dry salting. The antioxidant activity was determined using ferric reducing ability power (FRAP), oxygen radical absorbance capacity (ORAC), and β-carotene bleaching assays. The results showed that the effects of dry salting on the analyzed parameters were significant (P<0.05). It caused a decrease in total flavonoids with a loss rate of 55%. The HPLC analysis of extracts revealed the presence of four flavonoids: rutin, luteolin-7-glucoside, cyanidin-3-glucoside and cyanidin-3-rutinoside. Among the studied cultivars, Azeradj was characterized by high levels of flavonoids. Concerning the antioxidant activity, diverging results were obtained using different antioxidant assays. Overall, the dry salting induced a reduction in the antioxidant activity with variable values depending on the cultivar. Among the used methods, high correlations were found between flavonoid contents and the FRAP assay. (Author)

  4. Mathematical modeling of drying of pretreated and untreated pumpkin

    OpenAIRE

    Tunde-Akintunde, T. Y.; Ogunlakin, G. O.

    2011-01-01

    In this study, drying characteristics of pretreated and untreated pumpkin were examined in a hot-air dryer at air temperatures within a range of 40–80 °C and a constant air velocity of 1.5 m/s. The drying was observed to be in the falling-rate drying period and thus liquid diffusion is the main mechanism of moisture movement from the internal regions to the product surface. The experimental drying data for the pumpkin fruits were used to fit Exponential, General exponential, Logarithmic, Page...

  5. EFFECT OF CHEMICAL MODIFICATION AND HOT-PRESS DRYING ON POPLAR WOOD

    Directory of Open Access Journals (Sweden)

    Guo-Feng Wu

    2010-11-01

    Full Text Available Urea-formaldehyde prepolymer and hot-press drying were used to improve the properties of poplar wood. The wood was impregnated with the prepolymer using a pulse-dipping machine. The impregnated timbers were compressed and dried by a multilayer hot-press drying kiln. The drying rate was more rapid during the chemical modification and hot-press drying than conventional kiln-drying. In addition, the properties of timber were also enhanced obviously. When the compression rate was 28.6%, the basic density, oven dry density and air-dried density of modified wood improved 22%, 71%, and 70%, respectively. The bending strength and compressive strength parallel to grain increased 60% and 40%. The water uptake of treated wood was significantly decreased compared with the untreated wood. The FTIR analysis successfully showed that the intensity of hydroxyl and carbonyl absorption peaks decreased significantly, which was attributed to a reaction of the NHCH2OH of urea-formaldehyde prepolymer with the wood carboxyl (C=O and hydroxyl (-OH groups. The XRD results indicated that the degree of crystallinity increased from 35.09% to 36.91%. The morphologic models of chemical within wood were discovered by SEM.

  6. Quality by Design approach to spray drying processing of crystalline nanosuspensions.

    Science.gov (United States)

    Kumar, Sumit; Gokhale, Rajeev; Burgess, Diane J

    2014-04-10

    Quality by Design (QbD) principles were explored to understand spray drying process for the conversion of liquid nanosuspensions into solid nano-crystalline dry powders using indomethacin as a model drug. The effects of critical process variables: inlet temperature, flow and aspiration rates on critical quality attributes (CQAs): particle size, moisture content, percent yield and crystallinity were investigated employing a full factorial design. A central cubic design was employed to generate the response surface for particle size and percent yield. Multiple linear regression analysis and ANOVA were employed to identify and estimate the effect of critical parameters, establish their relationship with CQAs, create design space and model the spray drying process. Inlet temperature was identified as the only significant factor (p value dried nano-crystalline powders. Aspiration and flow rates were identified as significant factors affecting yield (p value dried at higher inlet temperatures had lower moisture compared to those dried at lower inlet temperatures. Published by Elsevier B.V.

  7. Aging: A Predisposition to Dry Eyes

    Directory of Open Access Journals (Sweden)

    Anushree Sharma

    2014-01-01

    Full Text Available Dry eye syndrome is a disease of the ocular surface and tear film that is prevalent in older adults. Even though the degree of visual acuity loss in dry eye patients is commonly mild-to-moderate, in the aging population, this minimal change in visual status can lead to a significant decrease in visual function and quality of life. A healthy ocular surface is maintained by appropriate tear production and tear drainage, and deficiencies in this delicate balance can lead to dryness. In the aging eye, risk factors such as polypharmacy, androgen deficiency, decreased blink rates, and oxidative stress can predispose the patient to developing dry eye that is frequently more severe, has higher economic costs, and leads to worse consequences to the well-being of the patient. Understanding why elderly patients are at higher risk for developing dry eyes can provide insights into the diagnosis and management of the growing number of older adults struggling with dry eye and minimize the burden of disease on our aging population.

  8. Combined control of morphology and polymorph in spray drying of mannitol for dry powder inhalation

    Science.gov (United States)

    Lyu, Feng; Liu, Jing J.; Zhang, Yang; Wang, Xue Z.

    2017-06-01

    The morphology and polymorphism of mannitol particles were controlled during spray drying with the aim of improving the aerosolization properties of inhalable dry powders. The obtained microparticles were characterized using scanning electron microscopy, infrared spectroscopy, differential scanning calorimetry, powder X-ray diffraction and inhaler testing with a next generation impactor. Mannitol particles of varied α-mannitol content and surface roughness were prepared via spray drying by manipulating the concentration of NH4HCO3 in the feed solution. The bubbles produced by NH4HCO3 led to the formation of spheroid particles with a rough surface. Further, the fine particle fraction was increased by the rough surface of carriers and the high α-mannitol content. Inhalable dry powders with a 29.1 ± 2.4% fine particle fraction were obtained by spray-drying using 5% mannitol (w/v)/2% NH4HCO3 (w/v) as the feed solution, proving that this technique is an effective method to engineer particles for dry powder inhalation.

  9. Bacterial and Fungal Counts of Dried and Semi-Dried Foods Collected from Dhaka, Bangladesh, and Their Reduction Methods.

    Science.gov (United States)

    Feroz, Farahnaaz; Shimizu, Hiromi; Nishioka, Terumi; Mori, Miho; Sakagami, Yoshikazu

    2016-01-01

     Food is a basic necessity for human survival, but it is still the vehicle for the transmission of food borne disease. Various studies have examined the roles of spices, herbs, nuts, and semi-dried fruits, making the need for safe and convenient methods of decontamination a necessity. The current study determined the bacterial and fungal loads of 26 spices and herbs, 5 nuts, 10 semi-dried fruits and 5 other foods. Spices, herbs and semi-dried foods demonstrated the highest bacterial and fungal loads with the majority showing over 10 4 CFU/mL. Nuts and other foods showed growths ranging from 10 2 to 10 6 CFU/mL. The current study also attempted to determine the effects of heat and plasma treatment. The log reduction of bacterial growth after heat treatment (maximum: 120 min for 60℃) was between 0.08 to 4.47, and the log reduction after plasma treatment (maximum: 40 min) ranged from 2.37 to 5.75. Spices showed the lowest rates of reduction, whereas the semi-dried and other foods showed moderate to high levels of decrease after heat treatment. The log reduction of fungal growth after heat treatment ranged from 0.27 to 4.40, and log reduction after plasma treatment ranged from 2.15 to 5.91.Furthermore, we validated the sterilization effect of plasma treatment against Bacillus spp. and Staphylococcus spp. by using scanning electron microscopy. Both treatment methods could prove to be advantageous in the agriculture related fields, enhancing the quality of the foods.

  10. Exergetic performance analyses of drying of broccoli florets in a tray drier

    International Nuclear Information System (INIS)

    Zafer Erbay

    2009-01-01

    At present, the drying process is one of the major procedures of food preservation and an important unit operation in a wide variety of food industries. Recently, drying of vegetables is of a particular interest because it is added to various ready-to-eat meals in order to improve their nutritional quality due to health benefit compounds present in vegetables (vitamins, phytochemicals, dietary fibers). Broccoli has been described as a vegetable with a high nutritional value due to its important content of vitamins, antioxidants and anti-carcinogenic compounds. Broccoli dehydration has not been investigated to a great extent and a few data are available in the open literature. In this study, broccoli florets were dried in a tray drier at a temperature range of 50-70 deg C with an air velocity range of 0.5-1.5 m/s. The performance of the process and system was evaluated using the exergy analysis method. Based on the experimental data, effects of the drying air temperature and the velocity on the performance of the drying process were discussed. It was obtained that the exergy evaporation rate and the exergetic efficiency of the process were obtained to vary between 0.0006-0.0029 kW and 0.27-1.16%, respectively. They increased as the drying air temperature increased, while the exergetic efficiency decreased with the rise in the drying air velocity. (author)

  11. Dry needling in lateral epicondylitis: a prospective controlled study.

    Science.gov (United States)

    Uygur, Esat; Aktaş, Birol; Özkut, Afşar; Erinç, Samet; Yilmazoglu, Emime Gül

    2017-11-01

    Lateral epicondylitis (LE), a common disease, especially in middle age, causes decreased productivity and economic losses. The first-line treatment for LE is conservative and consists of topical and oral anti-inflammatory drugs, ice application, and brace use. If the first-line treatment fails, second-line treatment modalities, which are generally invasive, are offered. Second-line therapeutic regimens include saline, corticosteroid, or platelet-rich plasma injections. Dry needling is relatively new. We hypothesized that dry needling would be at least as effective as first-line treatment for LE. We compared the outcomes of first-line treatment and dry needling. The study allocated 110 patients into groups using online randomization software. After completing the Patient-rated Tennis Elbow Evaluation (PRTEE), patients in group I received dry needling, whereas those in group II received first-line treatment, consisting of ibuprofen 100 mg twice a day and a proximal forearm brace. The patients were evaluated after three weeks and six months. The study ultimately analyzed 92 patients. Although both treatment methods were effective at three weeks, dry needling was significantly more effective than the first-line treatment at six months. Because of the low complication rate, dry needling is a safe method, and it might be an effective treatment option for LE.

  12. Optical crop sensor for variable-rate nitrogen fertilization in corn: i - plant nutrition and dry matter production

    Directory of Open Access Journals (Sweden)

    Jardes Bragagnolo

    2013-10-01

    Full Text Available Variable-rate nitrogen fertilization (VRF based on optical spectrometry sensors of crops is a technological innovation capable of improving the nutrient use efficiency (NUE and mitigate environmental impacts. However, studies addressing fertilization based on crop sensors are still scarce in Brazilian agriculture. This study aims to evaluate the efficiency of an optical crop sensor to assess the nutritional status of corn and compare VRF with the standard strategy of traditional single-rate N fertilization (TSF used by farmers. With this purpose, three experiments were conducted at different locations in Southern Brazil, in the growing seasons 2008/09 and 2010/11. The following crop properties were evaluated: above-ground dry matter production, nitrogen (N content, N uptake, relative chlorophyll content (SPAD reading, and a vegetation index measured by the optical sensor N-Sensor® ALS. The plants were evaluated in the stages V4, V6, V8, V10, V12 and at corn flowering. The experiments had a completely randomized design at three different sites that were analyzed separately. The vegetation index was directly related to above-ground dry matter production (R² = 0.91; p<0.0001, total N uptake (R² = 0.87; p<0.0001 and SPAD reading (R² = 0.63; p<0.0001 and inversely related to plant N content (R² = 0.53; p<0.0001. The efficiency of VRF for plant nutrition was influenced by the specific climatic conditions of each site. Therefore, the efficiency of the VRF strategy was similar to that of the standard farmer fertilizer strategy at sites 1 and 2. However, at site 3 where the climatic conditions were favorable for corn growth, the use of optical sensors to determine VRF resulted in a 12 % increase in N plant uptake in relation to the standard fertilization, indicating the potential of this technology to improve NUE.

  13. Experimental study on the drying of natural latex medical gloves

    Science.gov (United States)

    Chankrachang, Mano; Yongyingsakthavorn, Pisit; Tohsan, Atitaya; Nontakaew, Udomkiat

    2018-01-01

    The purpose of this research was to study latex film drying at 70 °C using a laboratory drying oven. Two different total solid content (TSC) latex compounds, which 45% TSC and 35% TSC were used. The undried latex films were prepared according to the common procedures used in latex gloves manufacturers, that is, by dry coagulant dipping process. The experimental results such as initial moisture content, the amount of moisture and drying time of latex films in each latex compound formula were determined. After that, the results were projected to calculate on the production capacity expand by 1 million piece/day of natural latex medical gloves. Finally, the rate of moisture entering the latex drying oven and the energy consumption of the drying oven were estimated. The results indicated that when the 35% TSC of latex compound was used. The initial moisture content of latex film was higher than 45% TSC of latex compound about 7%. The drying time of 35% TSC was longer than 45% TSC for 2.5 min and consume more energy about 10%. As a result, the 45% TSC latex compound was the better way to saving energy and managing humidity in the production line. Therefore, it was found to very useful to an approximate design length and size of actual of latex drying oven and the rate of moisture entering the oven as well.

  14. The release of organic compounds during biomass drying depends upon the feedstock and/or altering drying heating medium

    International Nuclear Information System (INIS)

    Rupar, K.; Sanati, M.

    2003-01-01

    The release of organic compounds during the drying of biomass is a potential environmental problem, it may contribute to air pollution or eutrophication. In many countries there are legal restrictions on the amounts of terpenes that may be released into the atmosphere. When considering bioenergy in future energy systems, it is important that information on the environmental effects is available. The emissions of organic compounds from different green and dried biofuels that have been dried in hot air and steam medium, were analyzed by using different techniques. Gas chromatography and gas chromatography mass spectrometry have been used to identify the organic matter. The terpene content was significantly affected by the following factors: changing of the drying medium and the way the same biomass was handled from different localities in Sweden. Comparison between spectra from dried and green fuels reveal that the main compounds emitted during drying are monoterpene and sesquiterpene hydrocarbons, while the emissions of diterpene hydrocarbons seem to be negligible. The relative proportionality between emitted monoterpene, diterpene and sesquiterpene change when the drying medium shifts from steam to hot air. The obtained result of this work implies a parameter optimization study of the dryer with regard to environmental impact. With assistance of this result it might be foreseen that choice of special drying medium, diversity of biomass and low temperature reduce the emissions. A thermo-gravimetric analyzer was used for investigating the biomass drying rate. (author)

  15. Heat and mass transfer models to understand the drying mechanisms of a porous substrate.

    Science.gov (United States)

    Songok, Joel; Bousfield, Douglas W; Gane, Patrick A C; Toivakka, Martti

    2016-02-01

    While drying of paper and paper coatings is expensive, with significant energy requirements, the rate controlling mechanisms are not currently fully understood. Two two-dimensional models are used as a first approximation to predict the heat transfer during hot air drying and to evaluate the role of various parameters on the drying rates of porous coatings. The models help determine the structural limiting factors during the drying process, while applying for the first time the recently known values of coating thermal diffusivity. The results indicate that the thermal conductivity of the coating structure is not the controlling factor, but the drying rate is rather determined by the thermal transfer process at the structure surface. This underlines the need for ensuring an efficient thermal transfer from hot air to coating surface during drying, before considering further measures to increase the thermal conductivity of porous coatings.

  16. Enhancement of bioavailability of ketoprofen using dry elixir as a novel dosage form.

    Science.gov (United States)

    Ahn, H J; Kim, K M; Kim, C K

    1998-07-01

    To enhance the dissolution rate and bioavailability of poorly water-soluble ketoprofen, a novel oral dosage form of ketoprofen, termed ketoprofen dry elixir, was developed by the spray-drying technique. Ketoprofen, dextrin, and sodium lauryl sulfate were dissolved in an ethanol-water mixture (20:25 w/w) and thereafter spray-dried to form the ketoprofen dry elixir. Comparative studies on the in vitro dissolution and in vivo adsorption of ketoprofen in the form of dry elixir and powder were carried out. Ketoprofen in the dry elixir completely dissolved within 5 min. On the other hand, only about 50.1% of ketoprofen powder alone dissolved during 60 min. The initial dissolution rate of ketoprofen in the dry elixir markedly increased in distilled water at 37 degrees C, becoming fourfold higher than that of ketoprofen powder alone. The maximal plasma concentration of ketoprofen (Cmax) and the area under the concentration-time curve from zero to 8 hr (AUC0-8 hr) after the oral administration of dry elixir increased about 3.2- (24.6 versus 7.6 micrograms/ml) and 2.2-(38.4 versus 17.3 micrograms hr/ml) fold compared with powder alone. It was obvious that ketoprofen dry elixir might be a useful solid dosage form to improve the dissolution rate and bioavailability of poorly water-soluble ketoprofen.

  17. Spray-dried HPMC microparticles of Indomethacin: Impact of drug-polymer ratio and viscosity of the polymeric solution on dissolution

    International Nuclear Information System (INIS)

    Alanazi, Fars K.; El-Badry, M.; Alsarra, Ibrahim A.

    2006-01-01

    Polymeric microparticles prepared by spray-drying techniques were investigated to enhance the dissolution rate of indomethacin (IM) in comparison with conventional microparticles prepared by co-precipitation solid dispersion method. Drug-polymer ratios and viscosity of polymeric solutions as potential factors were used in order to enhance the dissolution rate of IM. Spray-drying technique was used for preparing of microparticles using aqueous suspension of IM in hydroxypropyl methylcellulose (HPMC) polymer solution. The effect of drug-polymer ratios on dissolution rates of IM was studied in simulating intestinal medium. IM was analyzed spectrophotometrically at λ =320nm. For each drug-polymer ratios, low and high viscosity polymeric solutions were prepared and their impacts on the dissolution of IM were observed. Microparticles were morphologically characterized by optical microscopy. The interaction between IM and HPMC was studied by differential scanning caloremetry (DSC) and x-ray diffractometry (XRD). Spherical fluffy microparticles of IM were obtained using HPMC. It was observed that the prepared spray-dried microparticles significantly increase the dissolution rate of IM. The increase in dissolution rates was achieved with drug: polymer ratios 1: 1 as well as 1:2 and interestingly, the decrease in drug content in ratio exceeding 1:2 resulted in reduction in dissolution rates. Also, with all drug-polymer ratios, the low viscosity polymeric solutions gave the higher dissolution rates. In conclusion, HPMC microparticles loaded with IM were prepared by spray drying-technique and the potential of this technique to enhance the dissolution was studied. The findings indicate that the dissolution profile of IM microparticles prepared by spray -drying technique relied on drug-polymer ratios and viscosity of polymeric solutions. (author)

  18. Drying Shrinkage of Mortar Incorporating High Volume Oil Palm Biomass Waste

    Science.gov (United States)

    Shukor Lim, Nor Hasanah Abdul; Samadi, Mostafa; Rahman Mohd. Sam, Abdul; Khalid, Nur Hafizah Abd; Nabilah Sarbini, Noor; Farhayu Ariffin, Nur; Warid Hussin, Mohd; Ismail, Mohammed A.

    2018-03-01

    This paper studies the drying shrinkage of mortar incorporating oil palm biomass waste including Palm Oil Fuel Ash, Oil Palm Kernel Shell and Oil Palm Fibre. Nano size of palm oil fuel ash was used up to 80 % as cement replacement by weight. The ash has been treated to improve the physical and chemical properties of mortar. The mass ratio of sand to blended ashes was 3:1. The test was carried out using 25 × 25 × 160 mm prism for drying shrinkage tests and 70 × 70 ×70 mm for compressive strength test. The results show that the shrinkage value of biomass mortar is reduced by 31% compared with OPC mortar thus, showing better performance in restraining deformation of the mortar while the compressive strength increased by 24% compared with OPC mortar at later age. The study gives a better understanding of how the biomass waste affect on mortar compressive strength and drying shrinkage behaviour. Overall, the oil palm biomass waste can be used to produce a better performance mortar at later age in terms of compressive strength and drying shrinkage.

  19. Effects of Cooling Rates on Hydride Reorientation and Mechanical Properties of Zirconium Alloy Claddings under Interim Dry Storage Conditions

    International Nuclear Information System (INIS)

    Min, Su-Jeong; Kim, Myeong-Su; Won, Chu-chin; Kim, Kyu-Tae

    2013-01-01

    As-received Zr-Nb cladding tubes and 600 ppm hydrogen-charged tubes were employed to evaluate the effects of cladding cooling rates on the extent of hydride reorientation from circumferential hydrides to radial ones and mechanical property degradations with the use of cooling rates of 2, 4 and 15 °C/min from 400 °C to room temperature simulating cladding cooling under interim dry storage conditions. The as-received cladding tubes generated nearly the same ultimate tensile strengths and plastic elongations, regardless of the cooling rates, because of a negligible hydrogen content in the cladding. The 600 ppm-H cladding tubes indicate that the slower cooling rate generated the larger radial hydride fraction and the longer radial hydrides, which resulted in greater mechanical performance degradations. The cooling rate of 2 °C/min generates an ultimate tensile strength of 758 MPa and a plastic elongation of 1.0%, whereas the cooling rate of 15 °C/min generates an ultimate tensile strength of 825 MPa and a plastic elongation of 15.0%. These remarkable mechanical property degradations of the 600 ppm-H cladding tubes with the slowest cooling rate may be characterized by cleavage fracture surface appearance enhanced by longer radial hydrides and their higher fraction that have been precipitated through a relatively larger nucleation and growth rate.

  20. The impact of freeze-drying on microstructure and rehydration properties of carrot

    NARCIS (Netherlands)

    Voda, A.; Homan, N.; Witek, M.; Duijster, A.; Dalen, van G.; Sman, van der R.G.M.; Nijsse, J.; Vliet, van L.J.; As, van H.; Duynhoven, van J.P.M.

    2012-01-01

    The impact of freeze-drying, blanching and freezing rate pre-treatments on the microstructure and on the rehydration properties of winter carrots were studied by µCT, SEM, MRI and NMR techniques. The freezing rate determines the size of ice crystals being formed that leave pores upon drying. Their

  1. Daily efficiency of flat-plate solar air collectors for grain drying

    Energy Technology Data Exchange (ETDEWEB)

    Ting, K.C.; Shove, G.C.

    1983-01-01

    Single cover flat-plate solar collectors incorporated into walls and roofs of farm buildings have been used to heat ambient air for low temperature grain drying systems. Large surface area and high airflow rate are common features of these collectors. The drying period may range from several days to several weeks. Therefore, a knowledge of the variations of the collectors' daily efficiencies with respect to their design parameters would be helpful in applying solar collectors to grain drying. The objective of this study was to develop a simpler means of direct calculation of a collector's daily efficiency based on its design parameters. Many factors, such as configuration of the collector, airflow rate, weather conditions, etc. will affect the performance of solar collectors. A large number of varied conditions need to be tested in order to investigate the effect of different parameters on the collector performance. To facilitate this investigation, a computer simulation model developed by Ting was used to calculate the daily efficiencies of collectors under different operating conditions. The computer model was verified by Morrison's experimental data. Based on the simulation results, a functional relationship was developed between the daily efficiencies of collectors and their design parameters.

  2. Radiation data input for the design of dry or semi-dry U tailings disposal

    International Nuclear Information System (INIS)

    Kvasnicka, J.

    1986-01-01

    Before discussion of design criteria for the handling of dry or semi-dry tailings, it is necessary to obtain an insight into the radiation levels associated with the tailings particles and to study the basic physical properties of dry tailings. This article presents the experimental results of assessing Ra and specific alpha-activity distribution with respect to particle size of the Ranger (RUM) and Nabarlek (QML) uranium mines dry tailings samples. The variation of Rn emanation coefficient versus particle size of dry tailings has also been measured. The nuclear-track detection technique, gamma spectrometry and alpha counting were used for the above measurements. Surface Rn flux from the hypothetical Nabarlek semi-infinite dry tailings pile is 32 Bq m -2 s -1 and the Rn flux for Ranger is 10 Bq m -2 s -1 . The theoretical exposure rates for 1 m above these hypothetical tailings piles are 0.95 microC kg -1 h -1 and 0.28 microC kg -1 h -1 , respectively. The derived air alpha-contamination limits (DAAC) for the tailings dust were calculated to be 1.2 Bq m -3 for workers and 0.034 Bq m -3 for a member of the public. The limit for workers corresponds to the air tailings dust concentration of 0.79 mg m -3 for QML tailings and 2.2 mg m -3 for RUM tailings. The DAAC limit for the public corresponds to the air tailings dust concentration of 0.022 mg m -3 for QML tailings and 0.064 mg m -3 for RUM tailings

  3. Urban evaporation rates for water-permeable pavements.

    Science.gov (United States)

    Starke, P; Göbel, P; Coldewey, W G

    2010-01-01

    In urban areas the natural water balance is disturbed. Infiltration and evaporation are reduced, resulting in a high surface runoff and a typical city climate, which can lead to floods and damages. Water-permeable pavements have a high infiltration rate that reduces surface runoff by increasing the groundwater recharge. The high water retention capacity of the street body of up to 51 l/m(2) and its connection via pores to the surface lead to higher evaporation rates than impermeable surfaces. A comparison of these two kinds of pavements shows a 16% increase in evaporation levels of water-permeable pavements. Furthermore, the evaporation from impermeable pavements is linked directly to rain events due to fast-drying surfaces. Water-permeable pavements show a more evenly distributed evaporation after a rain event. Cooling effects by evaporative heat loss can improve the city climate even several days after rain events. On a large scale use, uncomfortable weather like sultriness or dry heat can be prevented and the urban water balance can be attenuated towards the natural.

  4. Wheat cultivars selected for high Fv /Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter.

    Science.gov (United States)

    Sharma, Dew Kumari; Andersen, Sven Bode; Ottosen, Carl-Otto; Rosenqvist, Eva

    2015-02-01

    The chlorophyll fluorescence parameter Fv /Fm reflects the maximum quantum efficiency of photosystem II (PSII) photochemistry and has been widely used for early stress detection in plants. Previously, we have used a three-tiered approach of phenotyping by Fv /Fm to identify naturally existing genetic variation for tolerance to severe heat stress (3 days at 40°C in controlled conditions) in wheat (Triticum aestivum L.). Here we investigated the performance of the previously selected cultivars (high and low group based on Fv /Fm value) in terms of growth and photosynthetic traits under moderate heat stress (1 week at 36/30°C day/night temperature in greenhouse) closer to natural heat waves in North-Western Europe. Dry matter accumulation after 7 days of heat stress was positively correlated to Fv /Fm . The high Fv /Fm group maintained significantly higher total chlorophyll and net photosynthetic rate (PN ) than the low group, accompanied by higher stomatal conductance (gs ), transpiration rate (E) and evaporative cooling of the leaf (ΔT). The difference in PN between the groups was not caused by differences in PSII capacity or gs as the variation in Fv /Fm and intracellular CO2 (Ci ) was non-significant under the given heat stress. This study validated that our three-tiered approach of phenotyping by Fv /Fm performed under increasing severity of heat was successful in identifying wheat cultivars differing in photosynthesis under moderate and agronomically more relevant heat stress. The identified cultivars may serve as a valuable resource for further studies to understand the physiological mechanisms underlying the genetic variability in heat sensitivity of photosynthesis. © 2014 Scandinavian Plant Physiology Society.

  5. Polymer degradation in reactive ion etching and its possible application to all dry processes

    International Nuclear Information System (INIS)

    Hiraoka, H.; Welsh, L.W. Jr.

    1981-01-01

    Dry etching processes involving CF 4 -plasma and reactive ion etching become increasingly important for microcircuit fabrication techniques. In these techniques polymer degradation and etch resistance against reactive species like F atoms and CF 3 + ions are the key factors in the processes. It is well-known that classical electron beam resists like poly(methyl methacrylate) and poly(1-butene sulfone) are not suitable for dry etching processes because they degrade rapidly under these etching conditions. In order to find a correlation of etching rate and polymer structures the thickness loss of polymer films have been measured for a variety of polymer films in reactive ion etching conditions, where CF 3 + ions are the major reactive species with an accelerating potential of 500 volts. Because of its high CF 4 -plasma and reactive ion etch resistance, and because of its high electron beam sensitivity, poly(methacrylonitrile) provides a positive working electron beam resist uniquely suited for all dry processes. (author)

  6. Convective drying of hawthorn fruit (Crataegus spp.): Effect of experimental parameters on drying kinetics, color, shrinkage, and rehydration capacity.

    Science.gov (United States)

    Aral, Serdar; Beşe, Ayşe Vildan

    2016-11-01

    Thin layer drying characteristics and physicochemical properties of hawthorn fruit (Crataegus spp.) were investigated using a convective dryer at air temperatures 50, 60 and 70°C and air velocities of 0.5, 0.9 and 1.3m/s. The drying process of hawthorn took place in the falling rate period, and the drying time decreased with increasing air temperature and velocity. The experimental data obtained during the drying process were fitted to eleven different mathematical models. The Midilli et al.'s model was found to be the best appropriate model for explaining the drying behavior of hawthorn fruit. Effective moisture diffusion coefficients (Deff) were calculated by Fick's diffusion model and their values varied from 2.34×10(-10)m(2)/s to 2.09×10(-9)m(2)/s. An Arrhenius-type equation was applied to determine the activation energies. While the shrinkage decreased, the rehydration ratio increased with increasing air temperature and air velocity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Specialized moisture retention eyewear for evaporative dry eye.

    Science.gov (United States)

    Waduthantri, Samanthila; Tan, Chien Hua; Fong, Yee Wei; Tong, Louis

    2015-05-01

    To evaluate the suitablity of commercially available moisture retention eyewear for treating evaporative dry eye. Eleven patients with evaporative dry eyes were prescibed moisture retention eyewear for 3 months in addition to regular lubricant eye drops. Frequency and severity of dry eye symptoms, corneal fluorescein staining and tear break up time (TBUT) were evaluated at baseline and 3-month post-treatment. Main outcome measure was global symptom score (based on severity and frequency of dry eye symptoms on a visual analog scale) and secondary outcomes were changes in sectoral corneal fluorescein staining and tear break up time (TBUT) from pre-treatment level. There was a significant improvement in dry eye symptoms after using moisture retention eyewear for 3 months (p eyes improved significantly (p dry eye symptoms in windy, air-conditioned environments or when doing vision-related daily tasks. This study shows that moisture retention eyewear might be a valuable adjunct in management of evaporative dry eye and this new design of commercially available eyewear could have a good acceptability rate.

  8. Impingement drying for preparing dried apple pomace flour and its fortification in bakery and meat products.

    Science.gov (United States)

    Jung, Jooyeoun; Cavender, George; Zhao, Yanyun

    2015-09-01

    This study aimed to evaluate impingement drying (ID) as a rapid drying method to dry wet apple pomace (WAP) and to investigate the fortification of dried apple pomace flour (APF) or WAP in bakery and meat products. ID at ~110 °C reduced the moisture content of apple pomace from 80 % (wet basis) to 4.5 % within 3 h, compared with 24 h to 2.2 % using 40 °C forced-air drying and ~60 h to 2.3 % using freeze drying. Furthermore, ID enhanced the extractable phenolic compounds, allowing for a 58 % increase in total phenolic content (TPC) compared with wet pomace, a 110 % and 83 % higher than TPC in forced-air dried and freeze dried samples, respectively. The 15-20 % APF-fortified cookies were found to be ~44-59 % softer, ~30 % more chewy, and ~14 % moister than those of the control. WAP-fortified meat products had significantly higher dietary fiber content (0.7-1.8 % vs. 0.1-0.2 % in control) and radical scavenging activity than that of the control. These results suggest that impingement drying is a fast and effective method for preparing dried APF with highly retained bioactive compounds, and apple pomace fortified products maintained or even had improved quality.

  9. Engineering spray-dried rosemary extracts with improved physicomechanical properties: a design of experiments issue

    Directory of Open Access Journals (Sweden)

    Luiza T. Chaul

    Full Text Available ABSTRACT A 33 Box–Behnken design and Response Surface Methodology were performed to evaluate the influence of extract feed rate, drying air inlet temperature and spray nozzle airflow rate on the process yield, stability parameters (moisture content and water activity and on several physicomechanical properties of spray-dried rosemary extracts. Powder yield ranged from 17.1 to 74.96%. The spray-dried rosemary extracts showed moisture content and water activity below 5% and 0.5%, respectively, which indicate their chemical and microbiological stabilities. Even without using drying aids, some sets of experimental conditions rendered dried products with suitable flowability and compressibility characteristics for direct preparation of solid dosage forms. Analysis of variance and Response Surface Methodology proved that studied factors significantly affected most of the spray-dried rosemary extract quality indicators at different levels. The main processing parameter affecting the spray-dried rosemary extract characteristics was inlet temperature. The best combination of parameters used to obtain a reasonable yield of stable dry rosemary extracts with adequate technological properties for pharmaceutical purpose involves an extract feed rate of 2 ml/min, 80 °C inlet temperature and 40 l/min SA. The design of experiments approach is an interesting strategy for engineering spray-dried rosemary extracts with improved characteristics for pharmaceutical industrial purpose.

  10. Effect of fermentation and drying on cocoa polyphenols.

    Science.gov (United States)

    Albertini, Barbara; Schoubben, Aurélie; Guarnaccia, Davide; Pinelli, Filippo; Della Vecchia, Mirco; Ricci, Maurizio; Di Renzo, Gian Carlo; Blasi, Paolo

    2015-11-18

    Cocoa seed polyphenols have demonstrated interesting beneficial effects in humans. Most polyphenols contained in fresh seeds are chemically modified during fermentation, drying, and cocoa powder or chocolate production. The improvement of these procedures to obtain a high-polyphenol-content cocoa is highly desirable. To this aim, a field investigation on the effect of fermentation and natural drying on fine flavor National cocoa (cacao Nacional) was performed. Cocoa seeds were fermented for 6 days and, every day, samples were sun-dried and analyzed for polyphenol content and antioxidant power. During the first 2 days of fermentation, Folin-Ciocalteu and FRAP tests evidenced a significant reduction of polyphenol content and antioxidant capacity, respectively. Changes during the following days of fermentation were less significant. Epicatechin, the most studied member of the catechin family, followed a similar pathway of degradation. Data confirmed the high impact of fermentation and drying on cocoa seed polyphenols. Fermentation and drying are, on the one hand, necessary to obtain cocoa flavor and palatability but, on the other hand, are responsible for greatly compromising polyphenol content. To obtain high-polyphenol-content cocoa, the existing fermentation, drying, and manufacturing protocols should be scientifically reviewed to understand and modify the critical steps.

  11. Pickering dry storage - commissioning and initial operation

    International Nuclear Information System (INIS)

    Jonjev, S.

    1996-01-01

    Having commissioned all individual conventional and nuclear systems, the first Dry Storage Container (DSC) was loaded with four modules of 17 year cooled irradiated fuel (366 bundles) in the Auxiliary Irradiated Fuel Bay (AIFB) on November 29, 1995. After decontamination of the outer surface, and draining of water, the DSC was transported to the Used Fuel Dry Storage Facility (UFDSF) workshop, where it was vacuum dried, and then the lid was welded on. Following successful radiography test of the lid weld, the DSC was vacuum dried again and backfilled with Helium to a pressure of 930 mbar(a). The Helium leak test showed zero leakage (allowable leak rate is 1x10 -5 cc/sec). Finally, after loose contamination checks were performed and permanent safeguards seals were applied, the DSC was placed in the UFDSF storage area on January 23, 1996. Radiation fields at contact with the DSC surface were < 0.6 mrem/hr, and at the exterior surface of the storage building wall only 33 micro-rem/hr (far below the target of 250 micro-rem/hr). Therefore, the actual dose rates to general public (at the exclusion zone boundary) will be well below the design target of 1 % of the regulatory limit. (author). 3 refs., 2 tabs., 5 figs

  12. Pickering dry storage - commissioning and initial operation

    Energy Technology Data Exchange (ETDEWEB)

    Jonjev, S [Ontario Hydro, Pickering, ON (Canada). Pickering Generating Station

    1997-12-31

    Having commissioned all individual conventional and nuclear systems, the first Dry Storage Container (DSC) was loaded with four modules of 17 year cooled irradiated fuel (366 bundles) in the Auxiliary Irradiated Fuel Bay (AIFB) on November 29, 1995. After decontamination of the outer surface, and draining of water, the DSC was transported to the Used Fuel Dry Storage Facility (UFDSF) workshop, where it was vacuum dried, and then the lid was welded on. Following successful radiography test of the lid weld, the DSC was vacuum dried again and backfilled with Helium to a pressure of 930 mbar(a). The Helium leak test showed zero leakage (allowable leak rate is 1x10{sup -5} cc/sec). Finally, after loose contamination checks were performed and permanent safeguards seals were applied, the DSC was placed in the UFDSF storage area on January 23, 1996. Radiation fields at contact with the DSC surface were < 0.6 mrem/hr, and at the exterior surface of the storage building wall only 33 micro-rem/hr (far below the target of 250 micro-rem/hr). Therefore, the actual dose rates to general public (at the exclusion zone boundary) will be well below the design target of 1 % of the regulatory limit. (author). 3 refs., 2 tabs., 5 figs.

  13. Clinical efficacy of pranoprofen and sodium hyaluronate for dry eye

    Directory of Open Access Journals (Sweden)

    Hong-Chao Hou

    2016-01-01

    Full Text Available AIM:To observe the clinical efficacy of pranoprofen and sodium hyaluronate for dry eye, and to provide the reference for clinical treatment of dry eye. METHODS: From January 2012 to January 2015 inour hospital, 106 patients with dry eye were tested and observed. In accordance with the number table, patients were divided into observation group and control group, 53 patients in the control group using conventional treatment plus single sodium hyaluronate eye drops, observation group using pranoprofen combined sodium hyaluronate eye drops, besides conventional treatment. Clinical outcomes between the two groups before and after treatments, dry eye score, fluorescein staining score, Schirmer I test and tear film break up time(BUTwere observed and analyzed. RESULTS:The effective rates of the two groups were 94.3%(50/53and 84.9%(45/53. Dry eye score of observation group before and after treatment were 3.24±0.52 and 0.32±0.06points, those of the control group were 3.26±0.48 and 0.75±0.24points. BUT of the experimental group before and after treatments were 5.67±3.052 and 12.95±2.865s, those of the control group were 6.23±2.985 and 9.85±2.714s.The differences between the two groups on the indicators above were statistically significant(PCONCLUSION: The combination of pranoprofen and sodium hyaluronate for the treatment of dry eye is effective, with high security and water holding capacity, which can improve the symptoms of dry eye and the patients' life quality.

  14. Thermally Dried Ink-Jet Process for 6,13-Bis(triisopropylsilylethynyl)-Pentacene for High Mobility and High Uniformity on a Large Area Substrate

    Science.gov (United States)

    Ryu, Gi Seong; Lee, Myung Won; Jeong, Seung Hyeon; Song, Chung Kun

    2012-05-01

    In this study we developed a simple ink-jet process for 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-pentacene), which is known as a high-mobility soluble organic semiconductor, to achieve relatively high-mobility and high-uniformity performance for large-area applications. We analyzed the behavior of fluorescent particles in droplets and applied the results to determining a method of controlling the behavior of TIPS-pentacene molecules. The grain morphology of TIPS-pentacene varied depending on the temperature applied to the droplets during drying. We were able to obtain large and uniform grains at 46 °C without any “coffee stain”. The process was applied to a large-size organic thin-film transistor (OTFT) backplane for an electrophoretic display panel containing 192×150 pixels on a 6-in.-sized substrate. The average of mobilities of 36 OTFTs, which were taken from different locations of the backplane, was 0.44±0.08 cm2·V-1·s-1, with a small deviation of 20%, over a 6-in.-size area comprising 28,800 OTFTs. This process providing high mobility and high uniformity can be achieved by simply maintaining the whole area of the substrate at a specific temperature (46 °C in this case) during drying of the droplets.

  15. Thermally dried ink-jet process for 6,13-bis(triisopropylsilylethynyl)-pentacene for high mobility and high uniformity on a large area substrate

    Science.gov (United States)

    Ryu, Gi Seong; Lee, Myung Won; Jeong, Seung Hyeon; Song, Chung Kun

    2012-01-01

    In this study we developed a simple ink-jet process for 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-pentacene), which is known as a high-mobility soluble organic semiconductor, to achieve relatively high-mobility and high-uniformity performance for large-area applications. We analyzed the behavior of fluorescent particles in droplets and applied the results to determining a method of controlling the behavior of TIPS-pentacene molecules. The grain morphology of TIPS-pentacene varied depending on the temperature applied to the droplets during drying. We were able to obtain large and uniform grains at 46 degrees C without any "coffee stain". The process was applied to a large-size organic thin-film transistor (OTFT) backplane for an electrophoretic display panel containing 192 x 150 pixels on a 6-in.-sized substrate. The average of mobilities of 36 OTFTs, which were taken from different locations of the backplane, was 0.44 +/- 0.08 cm2.V-1.s-1, with a small deviation of 20%, over a 6-in.-size area comprising 28,800 OTFTs. This process providing high mobility and high uniformity can be achieved by simply maintaining the whole area of the substrate at a specific temperature (46 degrees C in this case) during drying of the droplets.

  16. Review of the Drying Kinetics of Olive Oil Mill Wastes: Biomass Recovery

    Directory of Open Access Journals (Sweden)

    Francisco J. Gómez-de la Cruz

    2015-06-01

    Full Text Available The drying kinetics of olive oil mill wastes was analyzed based on experiments carried out by various researchers utilizing different drying systems. A critical review of the literature was done, and mathematical models of drying curves proposed by investigators were evaluated. A comparison between the best mathematical models of fit in the drying curves used in past experiments and a two-term Gaussian model was performed. This model improved all the results of fit in each experiment. Drying rates and drying stages were obtained and discussed. An average drying rate for each experiment from the two-term Gaussian model was calculated. This value allowed for visualizing and comparing the average speed of evaporated water in each experiment for the different dryers. Finally, and after having verified that almost all drying occurs mainly by a diffusion phenomenon, an analysis on the effective moisture diffusivity and activation energy values was performed. The results indicated that there was no dependency of these quantities on independent variables such as the drying air temperature, the drying air velocity, and the sample thickness. It follows that drying of olive oil mill wastes is a very complex physical process that depends heavily on aspects such as pieces of pit, pulp, skin, vegetation water, olive oil content, sugars and organics compounds of different nature.

  17. Silk cocoon drying in forced convection type solar dryer

    International Nuclear Information System (INIS)

    Singh, Panna Lal

    2011-01-01

    The thin layer silk cocoon drying was studied in a forced convection type solar dryer. The drying chamber was provided with several trays on which the cocoons loaded in thin layer. The hot air generated in the solar air heater was forced into drying chamber to avoid the direct exposure of sunlight and UV radiation on cocoons. The drying air temperature varied from 50 to 75 o C. The cocoon was dried from the initial moisture content of about 60-12% (wb). The drying data was fitted to thin layer drying models. Drying behaviour of the silk cocoon was best fitted with the Wang and Singh drying model. Good agreement was obtained between predicted and experimental values. Quality of the cocoons dried in the solar dryer was at par with the cocoons dried in the conventional electrical oven dryer in term of the silk yield and strength of the silk. Saving of electrical energy was about 0.75 kWh/kg cocoons dried. Economic analysis indicated that the NPV of the solar dryer was higher and more stable (against escalation rate of electricity) as compare to the same for electrical oven dryer. Due to simplicity in design and construction and significant saving of operational electrical energy, solar cocoon dryer seems to be a viable option.

  18. Evaluation of drying methods with respect to drying parameters, some nutritional and colour characteristics of peppermint (Mentha x piperita L.)

    International Nuclear Information System (INIS)

    Arslan, Derya; Ozcan, M. Musa; Menges, Hakan Okyay

    2010-01-01

    Peppermint leaves (Mentha x piperita L.) were dried by using sun, oven (50 deg. C) and microwave oven (700 W) drying methods. Page, Modified page, Midilli and Kuecuek models adequately described the oven, sun and microwave oven drying behaviours of peppermint leaves. The drying process was explicated through the diffusional model in order to obtain effective diffusivity values, which were determined as 3.10 x 10 -12 , 2.68 x 10 -12 and 4.09 x 10 -10 for the sun, oven and microwave oven drying process, respectively. Fresh and dried herbs had high amounts of K, Ca, P, Mg, Fe and Al minerals. Microwave oven drying method leaded to the lowest increase in Ag, Al, B, Na, Mn, Mg and Zn values than the other drying methods. Microwave oven drying shortened the drying time, revealed the highest phenolic content and optimum colour values.

  19. Bacterial Killing by Dry Metallic Copper Surfaces▿

    OpenAIRE

    Santo, Christophe Espírito; Lam, Ee Wen; Elowsky, Christian G.; Quaranta, Davide; Domaille, Dylan W.; Chang, Christopher J.; Grass, Gregor

    2010-01-01

    Metallic copper surfaces rapidly and efficiently kill bacteria. Cells exposed to copper surfaces accumulated large amounts of copper ions, and this copper uptake was faster from dry copper than from moist copper. Cells suffered extensive membrane damage within minutes of exposure to dry copper. Further, cells removed from copper showed loss of cell integrity. Acute contact with metallic copper surfaces did not result in increased mutation rates or DNA lesions. These findings are important fir...

  20. Development of the dry decontamination technique using plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Soo; Seo, Yong Dae; Lee, Dong Uk; Jeon, Sang Hwan; Jung, Young Suk [Hanyang University, Seoul (Korea)

    2001-04-01

    In order to develop an advanced dry decontamination method, dry decontamination technique using gaseous plasma is studied. Scopes of the research are 1) literature survey and case studies of the international R and D activities and industrial application, 2) contaminant characteristics analysis, 3) feasibility and applicability study of the unit techniques, 4) process development study on the plasma decontamination, 5) plasma diagnostics and quantitative analysis by QMS and OES, and 6) design of (microwave) plasma torch system. The major research results are as belows. The maximum etching rate of UO{sub 2} is achieved to be 0.8 {mu}m/min. under 300 deg C, 150 W CF{sub 4}/O{sub 2}/N{sub 2} r.f. plasma maintaining the optimum ratio of CF{sub 4}/O{sub 2} of four, and that of Co and Mo is 0.06 {mu}m/min. and 1.9 {mu}m/min., respectively, under 380 deg C, 220 W CF{sub 4}/O{sub 2} r.f. plasma. The optimum process for the dry decontamination of TRU, CP, and or FP nuclides, therefore, requires the optimum gas composition above 350 deg C and 220W power. It is also demonstrated that this optimum process can be extrapolated to atmospheric high power torch system. In conclusion, if plasma power and temperature increases with maintaining the optimum gas composition, this dry decontamination techniques must be definitely effective and efficient. 17 refs., 62 figs., 4 tabs. (Author)

  1. Method of extracting heat from dry geothermal reservoirs

    Science.gov (United States)

    Potter, R.M.; Robinson, E.S.; Smith, M.C.

    1974-01-22

    Hydraulic fracturing is used to interconnect two or more holes that penetrate a previously dry geothermal reservoir, and to produce within the reservoir a sufficiently large heat-transfer surface so that heat can be extracted from the reservoir at a usefully high rate by a fluid entering it through one hole and leaving it through another. Introduction of a fluid into the reservoir to remove heat from it and establishment of natural (unpumped) convective circulation through the reservoir to accomplish continuous heat removal are important and novel features of the method. (auth)

  2. Enabling high-rate electrochemical flow capacitors based on mesoporous carbon microspheres suspension electrodes

    Science.gov (United States)

    Tian, Meng; Sun, Yueqing; Zhang, Chuanfang (John); Wang, Jitong; Qiao, Wenming; Ling, Licheng; Long, Donghui

    2017-10-01

    Electrochemical flow capacitor (EFC) is a promising technology for grid energy storage, which combines the fast charging/discharging capability of supercapacitors with the scalable energy capacity of flow batteries. In this study, we report a high-power-density EFC using mesoporous carbon microspheres (MCMs) as suspension electrodes. By using a simple yet effective spray-drying technique, monodispersed MCMs with average particle size of 5 μm, high BET surface area of 1150-1267 m2 g-1, large pore volume of 2-4 cm3 g-1 and controllable mesopore size of 7-30 nm have been successfully prepared. The resultant MCMs suspension electrode shows excellent stability and considerable high capacitance of 100 F g-1 and good cycling ability (86% of initial capacitance after 10000 cycles). Specially, the suspension electrode exhibits excellent rate performance with 75% capacitance retention from 2 to 100 mV s-1, significantly higher than that of microporous carbon electrodes (20∼30%), due to the developed mesoporous channels facilitating for rapid ion diffusion. In addition, the electrochemical responses on both negative and positive suspension electrodes are studied, based on which an optimal capacitance matching between them is suggested for large-scale EFC unit.

  3. Freeze-drying behaviour of pasteurized whole egg

    International Nuclear Information System (INIS)

    Melike Sakin; Merve Samli; Gizem Kor, A.; Figen Kaymak-Ertekin

    2009-01-01

    Because it provides full nutritional and certain desirable functional attributes, egg products are widely used as ingredients in many food products. Dried egg is especially valuable for being stable, easily mixable and having a long shelf life. It is necessary to know the effects of drying conditions onto the moisture removal behaviour and the functional properties of the powder product, to serve the egg powder as an alternative. An experimental study was conducted to achieve an understanding of the freeze-drying behaviour of pasteurized whole egg having 24% dry solids. In order to determine the moisture removal behaviour; the percent moisture loss (w/w), the average moisture content and the drying rates were obtained, the drying curves were developed and total drying times were determined, also the movement of the dry-wet boundary between the frozen layer and the dry porous layer formed by sublimation of ice crystals were investigated during a complete process. The physical properties of pasteurized whole egg such as; colour, water activity (a w ), the morphological structure (through SEM analysis) and functional properties (foam stability and dissolubility) were determined. The net colour change (ΔE) was about 22, independent of layer thickness. The water activity decreased to 0.22 at the end of drying. The SEM images of freeze-dried and slightly milled egg powder samples at magnification levels of 500 and 1000 showed the porous structure caused by sublimation of ice crystals generated within the egg structure during air blast freezing. The dissolubility and foaming capacity of powder egg were observed to be lower compared to those of pasteurized liquid egg. (author)

  4. Effects of superheated steam on the drying of rubberwood

    Directory of Open Access Journals (Sweden)

    Kanokwan Buaphud

    2006-07-01

    Full Text Available Rubberwood drying is the most time and energy consuming step in the processing of wood product. This research studied the effect of superheated steam drying on the drying time required and the physical and mechanical properties of rubberwood after drying. In this study, a cylindrical drying chamber with a length of 1.2 m and a diameter of 0.5 m was constructed and injected with superheated steam. The dimensions of the wood lumber were 1 m × 7.62 cm × 2.54 cm. The wood samples were impinged with alternating cycles of superheated steam and hot air at ratios of 6:1, 4:1 and 1:6 hours until the moisture content was less than 15% dry basis. The conditions inside the chamber were 110ºC and ambient pressure. Continuous superheated steam and continuous hot air were also used for comparisons. The drying rate and the temperature profile for each process were determined.Initial acceptability of the dried wood was conducted using the prong test and visual inspection. Results showed that if the drying rate was too fast, the dried wood did not pass the prong test due to stress buildup. Therefore, an optimum drying condition was developed based on minimizing defects and reducing the drying time. For the optimum condition, the following schedule was carried out: (1 saturated steam at 100ºC was used during the first 4 hours of drying to prevent the wood surface from drying too quickly which would minimize the moisture gradient between the center and wood surface, (2 superheated steam at 105ºC and 110ºC was used in alternating cycle with hot air (80ºC during the main drying stages to rapidly remove the free water and majority of the bound water inside the wood, and (3 hot air was used continuously during the final stages of drying to reduce the relative humidity inside the chamber making it possible for the removal of the residual bound water. This process successfully reduced the drying time to less than 2 days without causing any defects which compared

  5. Solar thermal drum drying performance of prune and tomato pomaces

    Science.gov (United States)

    Fruit and vegetable pomaces are co-products of the food processing industry; they are underutilized in part because their high water activity (aw) renders them unstable. Drum drying is one method that can dry/stabilize pomaces, but current drum drying methods utilize conventional, high-environmental...

  6. AISI/DOE Technology Roadmap Program: A Technology of Low Coal Rate and High Productivity of RHF Ironmaking

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Kao Lu

    2002-09-15

    An economical and environment-friendly ironmaking process based on heating the chemiexecy self-sufficient green balls of iron ore and coal in a hearth furnace is being developed with financial support from AISI members and DOE. DRI, which is hot (1400 C), dense (3.2 g/cm) and of high degree of metallization (95%), has been produced in laboratory and in a pilot plant in Genoa, Italy. Products of such quality have been made from American and Brazilian ores, BOF sludge, EAF dust/BOF sludge mixtures and millscale. The removal of zinc and lead from green balls by this process is essentially complete. In comparison with typical blast furnace operation, the new technology with a melter would have a lower total coal rate by 200kg.THM. The elimination of cokemaking and high temperature agglomeration steps, and a simpler gas handling system would lead to lower capital and operating costs. In comparison with commercial RHF practice it is different in atmosphere (fully oxidized at 1600 to 1650 C), in bed height (120 mm instead of 20-25 mm) and in pellet composition (much less coal but of higher VM). The combined effect leads to three times higher furnace productivity, lower coal consumption and superior DRI quality. The risk of re-oxidation (slag formation) and dusty operation are practiexecy eliminated. The process is stable, tolerant and independent of the size, shape and movement of the hearth. However, materials handling (e.g., discharge of hot DRI) and the exact energy savings have to be established in a larger furnace, straight or rotary, and in a continuous mode of operation.

  7. Carbon storage and long-term rate of accumulation in high-altitude Andean peatlands of Bolivia

    Directory of Open Access Journals (Sweden)

    J.A. Hribljan

    2015-11-01

    Full Text Available (1 The high-altitude (4,500+ m Andean mountain range of north-western Bolivia contains many peatlands. Despite heavy grazing pressure and potential damage from climate change, little is known about these peatlands. Our objective was to quantify carbon pools, basal ages and long-term peat accumulation rates in peatlands in two areas of the arid puna ecoregion of Bolivia: near the village of Manasaya in the Sajama National Park (Cordillera Occidentale, and in the Tuni Condoriri National Park (Cordillera Real. (2 We cored to 5 m depth in the Manasaya peatland, whose age at 5 m was ca. 3,675 yr. BP with a LARCA of 47 g m-2 yr-1. However, probing indicated that the maximum depth was 7–10 m with a total estimated (by extrapolation carbon stock of 1,040 Mg ha-1. The Tuni peat body was 5.5 m thick and initiated ca. 2,560 cal. yr. BP. The peatland carbon stock was 572 Mg ha-1 with a long-term rate of carbon accumulation (LARCA of 37 g m-2 yr-1. (3 Despite the dry environment of the Bolivian puna, the region contains numerous peatlands with high carbon stocks and rapid carbon accumulation rates. These peatlands are heavily used for llama and alpaca grazing.

  8. Hot Dry Rock Geothermal Energy Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.C.; Hendron, R.H.; Murphy, H.D.; Wilson, M.G.

    1989-12-01

    During Fiscal Year 1987, emphasis in the Hot Dry Rock Geothermal Energy Development Program was on preparations for a Long-Term Flow Test'' of the Phase II'' or Engineering'' hot dry rock energy system at Fenton Hill, New Mexico. A successful 30-day flow test of the system during FY86 indicated that such a system would produce heat at a temperature and rate that could support operation of a commercial electrical power plant. However, it did not answer certain questions basic to the economics of long-term operation, including the rate of depletion of the thermal reservoir, the rate of water loss from the system, and the possibility of operating problems during extended continuous operation. Preparations for a one-year flow test of the system to answer these and more fundamental questions concerning hot dry rock systems were made in FY87: design of the required surface facilities; procurement and installation of some of their components; development and testing of slimline logging tools for use through small-diameter production tubing; research on temperature-sensitive reactive chemical tracers to monitor thermal depletion of the reservoir; and computer simulations of the 30-day test, extended to modeling the planned Long-Term Flow Test. 45 refs., 34 figs., 5 tabs.

  9. No Heat Spray Drying Technology

    Energy Technology Data Exchange (ETDEWEB)

    Beetz, Charles [ZoomEssence, Inc., Hebron, KY (United States)

    2016-06-15

    No Heat Spray Drying Technology. ZoomEssence has developed our Zooming™ spray drying technology that atomizes liquids to powders at ambient temperature. The process of drying a liquid into a powder form has been traditionally achieved by mixing a heated gas with an atomized (sprayed) fluid within a vessel (drying chamber) causing the solvent to evaporate. The predominant spray drying process in use today employs air heated up to 400° Fahrenheit to dry an atomized liquid into a powder. Exposing sensitive, volatile liquid ingredients to high temperature causes molecular degradation that negatively impacts solubility, stability and profile of the powder. In short, heat is detrimental to many liquid ingredients. The completed award focused on several areas in order to advance the prototype dryer to a commercial scale integrated pilot system. Prior to the award, ZoomEssence had developed a prototype ‘no-heat’ dryer that firmly established the feasibility of the Zooming™ process. The award focused on three primary areas to improve the technology: (1) improved ability to formulate emulsions for specific flavor groups and improved understanding of the relationship of emulsion properties to final dry particle properties, (2) a new production atomizer, and (3) a dryer controls system.

  10. THE DIRT ON DRY MERGERS

    International Nuclear Information System (INIS)

    Desai, Vandana; Soifer, B. T.; Dey, Arjun; Cohen, Emma; Le Floc'h, Emeric

    2011-01-01

    Using data from the Spitzer Space Telescope, we analyze the mid-infrared (3-70 μm) spectral energy distributions of dry merger candidates in the Booetes field of the NOAO Deep Wide-Field Survey. These candidates were selected by previous authors to be luminous, red, early-type galaxies with morphological evidence of recent tidal interactions. We find that a significant fraction of these candidates exhibit 8 and 24 μm excesses compared to expectations for old stellar populations. We estimate that a quarter of dry merger candidates have mid-infrared-derived star formation rates greater than ∼1 M sun yr -1 . This represents a 'frosting' on top of a large old stellar population, and has been seen in previous studies of elliptical galaxies. Further, the dry merger candidates include a higher fraction of star-forming galaxies relative to a control sample without tidal features. We therefore conclude that the star formation in these massive ellipticals is likely triggered by merger activity. Our data suggest that the mergers responsible for the observed tidal features were not completely dry, and may be minor mergers involving a gas-rich dwarf galaxy.

  11. Mesoporous high surface area Ce0.9Gd0.1O1.95 synthesized by spray drying

    DEFF Research Database (Denmark)

    Lundberg, Mats; Wang, Hsiang-Jen; Blennow Tullmar, Peter

    2011-01-01

    Mesoporous gadolinium doped cerium dioxide with high surface area was produced by spray drying using Pluronic 123 as surfactant. The powder, when calcined at 400 °C, had a BET surface area of 136 m2 g−1 and was polycrystalline as confirmed by XRD and TEM. XEDS confirmed Ce, Gd and O, as the only......, corresponding to the crystallite size calculated from XRD data. The similar size range of the mesopores and the observed crystallite size indicates that the porosity is partly formed from intergranular mesoporosity. Using the spray drying method of a surfactant assisted liquid precursor solution it can...

  12. Distribution of Vapor Pressure in the Vacuum Freeze-Drying Equipment

    Directory of Open Access Journals (Sweden)

    Shiwei Zhang

    2012-01-01

    Full Text Available In the big vacuum freeze-drying equipment, the drying rate of materials is uneven at different positions. This phenomenon can be explained by the uneven distribution of vapor pressure in chamber during the freeze-drying process. In this paper, a mathematical model is developed to describe the vapor flow in the passageways either between material plates and in the channel between plate groups. The distribution of vapor pressure along flow passageway is given. Two characteristic factors of passageways are defined to express the effects of structural and process parameters on vapor pressure distribution. The affecting factors and their actions are quantitatively discussed in detail. Two examples are calculated and analyzed. The analysis method and the conclusions are useful to estimate the difference of material drying rate at different parts in equipment and to direct the choice of structural and process parameters.

  13. Effects of hot-air and hybrid hot air-microwave drying on drying kinetics and textural quality of nectarine slices

    Science.gov (United States)

    Miraei Ashtiani, Seyed-Hassan; Sturm, Barbara; Nasirahmadi, Abozar

    2018-04-01

    Drying and physicochemical characteristics of nectarine slices were investigated using hot-air and hybrid hot air-microwave drying methods under fixed air temperature and air speed (50 °C and 0.5 m/s, respectively). Microwave power levels for the combined hot air-microwave method were 80, 160, 240, and 320 W. Drying kinetics were analyzed and compared using six mathematical models. For both drying methods the model with the best fitness in explaining the drying behavior was the Midilli-Kucuk model. The coefficient of determination ( R 2), root mean square error (RMSE) and reduced chi square ( χ 2) for this model have been obtained greater than 0.999 and less than 0.006 and 0.0001 for hybrid hot air-microwave drying while those values for hot-air drying were more than 0.999 and less than 0.003 and 0.0001, respectively. Results showed that the hybrid method reduced the drying time considerably and produced products with higher quality. The range of effective moisture diffusivity ( D eff ) of hybrid and hot-air drying was between 8.15 × 10-8 and 2.83 × 10-7 m2/s and 1.27 × 10-8 m2/s, respectively. The total color difference (ΔE) has also been obtained from 36.68 to 44.27 for hybrid method; however this value for hot-air drying was found 49.64. Although reduced microwave power output led to a lower drying rate, it reduced changes in product parameters i.e. total color change, surface roughness, shrinkage and microstructural change and increased hardness and water uptake.

  14. The Effect of Inclusion Rate of Cooked and Sun-dried Fish Offal ...

    African Journals Online (AJOL)

    The effects of feeding cooked and sun-dried fish offal meal (fishmeal) on feed intake, weight gain and feed conversion efficiency of RIR chicks were assessed at Wolayta Soddo, southern Ethiopia. Unsexed day-old RIR chicks (300) were brooded uniformly for 14 days and then vaccinated against Gumboro and Newcastle ...

  15. Method of drying long-distance pipelines in sections

    Energy Technology Data Exchange (ETDEWEB)

    Steinhaus, H.; Meiners, D.

    1989-04-11

    This invention provides a method of drying long distance pipelines using a vacuum, and provides high-quality drying over the whole length of the pipeline in a manageable and easily followed process. Evacuation of the pipeline is effected by means of a vacuum pump located at least at one point of the section of pipeline. The section is subsequently scavenged or flooded with scavenging gas. After a predetermined reduced pressure is reached, and while the vacuum pump continues to draw off, a scavenging is effected from the end or ends remote from the evacuation point with a molar flow rate of the stream of scavenging gas that is equal to or less than the evacuation stream in throughput, at least initially. The scavenging is effected not from the evacuation point, but from a remote point, and is also effected with a feed speed or feed amount that is throttled at least initially. This ensures that no condensation occurs even in the inner walls of the pipeline.

  16. Recent advances in fluidized bed drying

    Science.gov (United States)

    Haron, N. S.; Zakaria, J. H.; Mohideen Batcha, M. F.

    2017-09-01

    Fluidized bed drying are very well known to yield high heat and mass transfer and hence adopted to many industrial drying processes particularly agricultural products. In this paper, recent advances in fluidized bed drying were reviewed and focus is given to the drying related to the usage of Computational Fluid Dynamics (CFD). It can be seen that usage of modern computational tools such as CFD helps to optimize the fluidized bed dryer design and operation for lower energy consumption and thus better thermal efficiency. Among agricultural products that were reviewed in this paper were oil palm frond, wheat grains, olive pomace, coconut, pepper corn and millet.

  17. Formic acid as additive for the preparation of high-performance FePO4 materials by spray drying method

    CSIR Research Space (South Africa)

    Yanga, F

    2017-12-01

    Full Text Available International, vol. 43(18): 16652-16658 Formic acid as additive for the preparation of high-performance FePO4 materials by spray drying method Yanga F Zhang H Shao Y Song H Liao S Ren J ABSTRACT: High-performance ferric phosphate (FePO4...

  18. Air drying modelling of Mastocarpus stellatus seaweed a source of hybrid carrageenan

    Science.gov (United States)

    Arufe, Santiago; Torres, Maria D.; Chenlo, Francisco; Moreira, Ramon

    2018-01-01

    Water sorption isotherms from 5 up to 65 °C and air drying kinetics at 35, 45 and 55 °C of Mastocarpus stellatus seaweed were determined. Experimental sorption data were modelled using BET and Oswin models. A four-parameter model, based on Oswin model, was proposed to estimate equilibrium moisture content as function of water activity and temperature simultaneously. Drying experiments showed that water removal rate increased significantly with temperature from 35 to 45 °C, but at higher temperatures drying rate remained constant. Some chemical modifications of the hybrid carrageenans present in the seaweed can be responsible of this unexpected thermal trend. Experimental drying data were modelled using two-parameter Page model (n, k). Page parameter n was constant (1.31 ± 0.10) at tested temperatures, but k varied significantly with drying temperature (from 18.5 ± 0.2 10-3 min-n at 35 °C up to 28.4 ± 0.8 10-3 min-n at 45 and 55 °C). Drying experiments allowed the determination of the critical moisture content of seaweed (0.87 ± 0.06 kg water (kg d.b.)-1). A diffusional model considering slab geometry was employed to determine the effective diffusion coefficient of water during the falling rate period at different temperatures.

  19. Development of automated control system for wood drying

    Science.gov (United States)

    Sereda, T. G.; Kostarev, S. N.

    2018-05-01

    The article considers the parameters of convective wood drying which allows changing the characteristics of the air that performs drying at different stages: humidity, temperature, speed and direction of air movement. Despite the prevalence of this type of drying equipment, the main drawbacks of it are: the high temperature and humidity, negatively affecting the working conditions of maintenance personnel when they enter the drying chambers. It makes the automation of wood drying process necessary. The synthesis of a finite state of a machine control of wood drying process is implemented on a programmable logic device Omron.

  20. The Challenges of Malaysian Dry Ports Development

    Directory of Open Access Journals (Sweden)

    Jagan Jeevan

    2015-03-01

    Full Text Available This paper examines the functions and challenges of dry ports development in Malaysia through 11 face-to-face interviews with dry port stakeholders. The findings reveal that Malaysian dry ports are developed to accelerate national and international business, to activate intermodalism in the nation, to promote regional economic development and to enhance seaport competitiveness. Malaysian dry ports perform the function of transport and logistics, information processing, seaports and value-added services. Challenges facing Malaysian dry ports include insufficient railway tracks, unorganized container planning on the rail deck, highly dependent on single mode of transportation, poor recognition from the seaport community, and competition from localized seaports. This paper further indicates strategies for coping with these challenges and identifies future opportunities for Malaysian dry ports development.

  1. Crust formation in drying colloidal suspensions

    KAUST Repository

    Style, R. W.

    2010-06-30

    During the drying of colloidal suspensions, the desiccation process causes the suspension near the air interface to consolidate into a connected porous matrix or crust. Fluid transport in the porous medium is governed by Darcy\\'s law and the equations of poroelasticity, while the equations of colloid physics govern processes in the suspension. We derive new equations describing this process, including unique boundary conditions coupling the two regions, yielding a moving-boundary model of the concentration and stress profiles during drying. A solution is found for the steady-state growth of a nedimensional crust during constant evaporation rate from the surface. The solution is used to demonstrate the importance of the system boundary conditions on stress profiles and diffusivity in a drying crust. © 2011 The Royal Society.

  2. Accelerated storage testing of freeze-dried Pseudomonas ...

    African Journals Online (AJOL)

    Erika-Chris

    Full Length Research Paper ... was possible to compare rate constants of survival for the freeze-dried P. fluorescens ... studying and predicting the survival loss rate of the ... Erlenmeyer flask containing 3000 ml King B medium. ... The strain was grown in 20 L bioreactor (Biolafite) containing 15 L .... fermented banana media.

  3. Freeze-drying synthesis of three-dimensional porous LiFePO4 modified with well-dispersed nitrogen-doped carbon nanotubes for high-performance lithium-ion batteries

    International Nuclear Information System (INIS)

    Tu, Xiaofeng; Zhou, Yingke; Song, Yijie

    2017-01-01

    Highlights: • Three-dimensional porous LiFePO 4 /N-CNTs is synthesized by a freeze-drying method. • The N-CNTs conductive network enhances the electron transport within the LiFePO 4 electrode. • The continuous pores accelerate the diffusion of lithium ions. • LiFePO 4 /N-CNTs demonstrates an excellent electrochemical Li-insertion performance. - Abstract: The three-dimensional porous LiFePO 4 modified with uniformly dispersed nitrogen-doped carbon nanotubes has been successfully prepared by a freeze-drying method. The morphology and structure of the porous composites are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and the electrochemical performances are evaluated using the constant current charge/discharge tests, cyclic voltammetry and electrochemical impedance spectroscopy. The nitrogen-doped carbon nanotubes are uniformly dispersed inside the porous LiFePO 4 to construct a superior three-dimensional conductive network, which remarkably increases the electronic conductivity and accelerates the diffusion of lithium ion. The porous composite displays high specific capacity, good rate capability and excellent cycling stability, rendering it a promising positive electrode material for high-performance lithium-ion batteries.

  4. A drying coefficient for building materials

    DEFF Research Database (Denmark)

    Scheffler, Gregor Albrecht; Plagge, Rudolf

    2009-01-01

    coefficient is defined which can be determined based on measured drying data. The correlation of this coefficient with the water absorption and the vapour diffusion coefficient is analyzed and its additional information content is critically challenged. As result, a drying coefficient has been derived......The drying experiment is an important element of the hygrothermal characterisation of building materials. Contrary to other moisture transport experiments as the vapour diffusion and the water absorption test, it is until now not possible to derive a simple coefficient for the drying. However......, in many cases such a coefficient would be highly appreciated, e.g. in interaction of industry and research or for the distinction and selection of suitable building materials throughout design and practise. This article first highlights the importance of drying experiments for hygrothermal...

  5. High School Graduation Rates:Alternative Methods and Implications

    Directory of Open Access Journals (Sweden)

    Jing Miao

    2004-10-01

    Full Text Available The No Child Left Behind Act has brought great attention to the high school graduation rate as one of the mandatory accountability measures for public school systems. However, there is no consensus on how to calculate the high school graduation rate given the lack of longitudinal databases that track individual students. This study reviews literature on and practices in reporting high school graduation rates, compares graduation rate estimates yielded from alternative methods, and estimates discrepancies between alternative results at national, state, and state ethnic group levels. Despite the graduation rate method used, results indicate that high school graduation rates in the U.S. have been declining in recent years and that graduation rates for black and Hispanic students lag substantially behind those of white students. As to graduation rate method preferred, this study found no evidence that the conceptually more complex methods yield more accurate or valid graduation rate estimates than the simpler methods.

  6. Effect of gamma irradiation on quality of dried potato

    International Nuclear Information System (INIS)

    Wang, J.; Chao, Y.

    2003-01-01

    The objectives of this study were to obtain the effect of gamma irradiation on the quality of dried potato. Experiments were conducted to study the influence of different doses, air temperatures, slice thickness of potatoes on the dehydration rate, appearance quality (L-values), vitamin C content, and the rehydration ratio of dried potatoes. The greater the dose, the higher the dehydration rate, the lesser the vitamin C content, and the lower the rehydration ratio. The L-values for low-dose irradiation was greater than that for non-irradiated potatoes

  7. Effect of gamma irradiation on quality of dried potato

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J. E-mail: jwang@zju.edu.cn; Chao, Y

    2003-03-01

    The objectives of this study were to obtain the effect of gamma irradiation on the quality of dried potato. Experiments were conducted to study the influence of different doses, air temperatures, slice thickness of potatoes on the dehydration rate, appearance quality (L-values), vitamin C content, and the rehydration ratio of dried potatoes. The greater the dose, the higher the dehydration rate, the lesser the vitamin C content, and the lower the rehydration ratio. The L-values for low-dose irradiation was greater than that for non-irradiated potatoes.

  8. MODEL OF A PROCESS FOR DRYING Eucalyptus spp AT HIGH TEMPERATURES

    Directory of Open Access Journals (Sweden)

    P. C. C. PINHEIRO

    1998-12-01

    Full Text Available A mathematical model of a process for drying of Eucalyptus spp is presented. This model was based on fundamental heat and mass transfer equations and it was numerically solved using a segregated finite volume method. Software in the FORTRAN language was developed to solve the mathematical model. The kinetic parameters of drying for Eucalyptus spp were experimentally obtained by isothermal thermogravimetry (TG. The theoretical results generated using the mathematical model were validated by experimental data.

  9. Drying characteristics of osmotically pretreated cranberries : Energy and quality aspects

    Energy Technology Data Exchange (ETDEWEB)

    Grabowski, S.; Marcotte, M. [Agriculture and Agri-Food Canada, St. Hyacinthe, PQ (Canada). Food Research and Development Centre; Poirier, M.; Kudra, T. [Natural Resources Canada, Varennes, PQ (Canada). CANMET Energy Technology Centre

    2002-06-01

    This paper presents the results of a study in which osmotically pretreated cranberries were dried. The osmotic treatment included dehydration and sugar infusion. The process involved pretreating halved cranberries in a standard osmotic solution followed by freeze-drying, vacuum-drying and air-drying in various dryers, such as cabinet-air-through, fluid bed, pulsed fluid bed, and vibrated fluid bed dryers. The intent was to identify the best drying technology. The comparison criteria selected were energy consumption and product quality. Product quality for freeze-dried berries was quantified based on anthocyanins content, rehydration ratio, color, and taste. Unit heat consumption could be used for selecting the drying method, as all other drying methods yielded similar but slightly lower quality products. The highest energy efficiency was obtained with the vibrated fluid bed and the pulsed fluid bed. It was noted that drying rates were reduced during the second drying period when sugar was infused into the cranberries during osmotic pretreatment, but the total energy consumption was reduced by osmotic dehydration. 22 refs., 1 tab., 5 figs.

  10. Far-infrared irradiation drying behavior of typical biomass briquettes

    International Nuclear Information System (INIS)

    Chen, N.N.; Chen, M.Q.; Fu, B.A.; Song, J.J.

    2017-01-01

    Infrared radiation drying behaviors of four typical biomass briquettes (populus tomentosa leaves, cotton stalk, spent coffee grounds and eucalyptus bark) were investigated based on a lab-scale setup. The effect of radiation source temperatures (100–200 °C) on the far-infrared drying kinetics and heat transfer of the samples was addressed. As the temperature went up from 100 °C to 200 °C, the time required for the four biomass briquettes drying decreased by about 59–66%, and the average values of temperature for the four biomass briquettes increased by about 33–39 °C, while the average radiation heat transfer fluxes increased by about 3.3 times (3.7 times only for the leaves). The specific energy consumptions were 0.622–0.849 kW h kg"−"1. The Modified Midilli model had the better representing for the moisture ratio change of the briquettes. The values of the activation energy for the briquettes in the first falling rate stage were between 20.35 and 24.83 kJ mol"−"1, while those in the second falling rate stage were between 17.89 and 21.93 kJ mol"−"1. The activation energy for the eucalyptus bark briquette in two falling rate stages was the least one, and that for the cotton stalk briquette was less than that for the rest two briquettes. - Highlights: • Far infrared drying behaviors of four typical biomass briquettes were addressed. • The effect of radiation source temperatures on IR drying kinetics was stated. • Radiation heat transfer flux between the sample and heater was evaluated. • Midilli model had the better representing for the drying process of the samples.

  11. Infrared Drying Parameter Optimization

    Science.gov (United States)

    Jackson, Matthew R.

    In recent years, much research has been done to explore direct printing methods, such as screen and inkjet printing, as alternatives to the traditional lithographic process. The primary motivation is reduction of the material costs associated with producing common electronic devices. Much of this research has focused on developing inkjet or screen paste formulations that can be printed on a variety of substrates, and which have similar conductivity performance to the materials currently used in the manufacturing of circuit boards and other electronic devices. Very little research has been done to develop a process that would use direct printing methods to manufacture electronic devices in high volumes. This study focuses on developing and optimizing a drying process for conductive copper ink in a high volume manufacturing setting. Using an infrared (IR) dryer, it was determined that conductive copper prints could be dried in seconds or minutes as opposed to tens of minutes or hours that it would take with other drying devices, such as a vacuum oven. In addition, this study also identifies significant parameters that can affect the conductivity of IR dried prints. Using designed experiments and statistical analysis; the dryer parameters were optimized to produce the best conductivity performance for a specific ink formulation and substrate combination. It was determined that for an ethylene glycol, butanol, 1-methoxy 2- propanol ink formulation printed on Kapton, the optimal drying parameters consisted of a dryer height of 4 inches, a temperature setting between 190 - 200°C, and a dry time of 50-65 seconds depending on the printed film thickness as determined by the number of print passes. It is important to note that these parameters are optimized specifically for the ink formulation and substrate used in this study. There is still much research that needs to be done into optimizing the IR dryer for different ink substrate combinations, as well as developing a

  12. Colonization of overlaying water by bacteria from dry river sediments.

    Science.gov (United States)

    Fazi, Stefano; Amalfitano, Stefano; Piccini, Claudia; Zoppini, Annamaria; Puddu, Alberto; Pernthaler, Jakob

    2008-10-01

    We studied the diversity, community composition and activity of the primary microbial colonizers of the water above freshly re-wetted sediments from a temporary river. Dried sediments, collected from Mulargia River (Sardinia, Italy), were covered with sterile freshwater in triplicate microcosms, and changes of the planktonic microbial assemblage were monitored over a 48 h period. During the first 9 h bacterial abundance was low (1.5 x 10(4) cells ml(-1)); it increased to 3.4 x 10(6) cells ml(-1) after 28 h and did not change thereafter. Approximately 20% of bacteria exhibited DNA de novo synthesis already after 9 h of incubation. Changes of the ratios of (3)H-leucine to (3)H-thymidine incorporation rates indicated a shift of growth patterns during the experiment. Extracellular enzyme activity showed a maximum at 48 h with aminopeptidase activity (430.8 +/- 22.6 nmol MCA l(-1) h(-1)) significantly higher than alkaline phosphatase (98.6 +/- 4.3 nmol MUF l(-1) h(-1)). The primary microbial colonizers of the overlaying water - as determined by 16S rRNA gene sequence analysis - were related to at least six different phylogenetic lineages of Bacilli and to Alphaproteobacteria (Brevundimonas spp. and Caulobacter spp.). Large bacterial cells affiliated to one clade of Bacillus sp. were rare in the dried sediments, but constituted the majority of the planktonic microbial assemblage and of cells with detectable DNA-synthesis until 28 h after re-wetting. Their community contribution decreased in parallel with a rise of flagellated and ciliated protists. Estimates based on cell production rates suggested that the rapidly enriched Bacillus sp. suffered disproportionally high loss rates from selective predation, thus favouring the establishment of a more heterogenic assemblage of microbes (consisting of Proteobacteria, Actinobacteria and Cytophaga-Flavobacteria). Our results suggest that the primary microbial colonizers of the water above dried sediments are passively released

  13. INVESTIGATION ON THE EFFECT OF SHAPES ON THE DRYING KINETICS AND SENSORY EVALUATION STUDY OF DRIED JACKFRUIT

    Directory of Open Access Journals (Sweden)

    Pek Li Gan

    2014-10-01

    Full Text Available Jackfruits are seasonal and highly nutritional fruits indigenous to the Southwestern rainforests of India. However much of the produce are spoilt annually due to poor preservation techniques. Minimal studies have been conducted on the drying kinetics of jackfruit and the effect of shapes on the drying kinetics. In this research, drying curves of three different shaped jackfruit slices were obtained using a convective oven at 40oC, 50oC, 60oC and 70oC. Modified Midilli-Kucuk Model was found to be the best kinetic model for drying of jackfruits. At all temperatures, effective moisture diffusivity values and activation energy varied from 2.66 x 10-10 - 4.85 x 10-10 m2/s and 16.08 - 20.07 kJ/mol respectively. Drying was found to be most efficient at 50oC using the square shaped slices with a R2, RMSE and SSE value of 0.9984, 0.01127 and 0.002668 respectively.  Sensory evaluation of untreated and additive-added dried jackfruit slices was conducted by 40 untrained sensory panelists. Jackfruit with ascorbic acid and sugar coating had highest aesthetics value due to better retention of colour by ascorbic acid. However sugar coated jackfruit had the most favorable taste and smell. Further optimization must be done to satisfy consumers collectively to enable a highly marketable product.

  14. Stability of buffer-free freeze-dried formulations: A feasibility study of a monoclonal antibody at high protein concentrations.

    Science.gov (United States)

    Garidel, Patrick; Pevestorf, Benjamin; Bahrenburg, Sven

    2015-11-01

    We studied the stability of freeze-dried therapeutic protein formulations over a range of initial concentrations (from 40 to 160 mg/mL) and employed a variety of formulation strategies (including buffer-free freeze dried formulations, or BF-FDF). Highly concentrated, buffer-free liquid formulations of therapeutic monoclonal antibodies (mAbs) have been shown to be a viable alternative to conventionally buffered preparations. We considered whether it is feasible to use the buffer-free strategy in freeze-dried formulations, as an answer to some of the known drawbacks of conventional buffers. We therefore conducted an accelerated stability study (24 weeks at 40 °C) to assess the feasibility of stabilizing freeze-dried formulations without "classical" buffer components. Factors monitored included pH stability, protein integrity, and protein aggregation. Because the protein solutions are inherently self-buffering, and the system's buffer capacity scales with protein concentration, we included highly concentrated buffer-free freeze-dried formulations in the study. The tested formulations ranged from "fully formulated" (containing both conventional buffer and disaccharide stabilizers) to "buffer-free" (including formulations with only disaccharide lyoprotectant stabilizers) to "excipient-free" (with neither added buffers nor stabilizers). We evaluated the impacts of varying concentrations, buffering schemes, pHs, and lyoprotectant additives. At the end of 24 weeks, no change in pH was observed in any of the buffer-free formulations. Unbuffered formulations were found to have shorter reconstitution times and lower opalescence than buffered formulations. Protein stability was assessed by visual inspection, sub-visible particle analysis, protein monomer content, charge variants analysis, and hydrophobic interaction chromatography. All of these measures found the stability of buffer-free formulations that included a disaccharide stabilizer comparable to buffer

  15. Predicting the drying shrinkage behavior of high strength portland cement mortar under the combined influence of fine aggregate and steel micro fiber

    International Nuclear Information System (INIS)

    Li, Zhengqi

    2017-01-01

    The workability, 28-day compressive strength and free drying shrinkage of a very high strength (121-142 MPa) steel micro fiber reinforced portland cement mortar were studied under a combined influence of fine aggregate content and fiber content. The test results showed that an increase in the fine aggregate content resulted in decreases in the workability, 28-day compressive strength and drying shrinkage of mortar at a fixed fiber content. An increase in the fiber content resulted in decreases in the workability and drying shrinkage of mortar, but an increase in the 28-day compressive strength of mortar at a fixed fine aggregate content. The modified Gardner model most accurately predicted the drying shrinkage development of the high strength mortars, followed by the Ross model and the ACI 209R-92 model. The Gardner model gave the least accurate prediction for it was developed based on a database of normal strength concrete. [es

  16. Predicting the drying shrinkage behavior of high strength portland cement mortar under the combined influence of fine aggregate and steel micro fiber

    Directory of Open Access Journals (Sweden)

    Zhengqi Li

    2017-03-01

    Full Text Available The workability, 28-day compressive strength and free drying shrinkage of a very high strength (121-142 MPa steel micro fiber reinforced portland cement mortar were studied under a combined influence of fine aggregate content and fiber content. The test results showed that an increase in the fine aggregate content resulted in decreases in the workability, 28-day compressive strength and drying shrinkage of mortar at a fixed fiber content. An increase in the fiber content resulted in decreases in the workability and drying shrinkage of mortar, but an increase in the 28-day compressive strength of mortar at a fixed fine aggregate content. The modified Gardner model most accurately predicted the drying shrinkage development of the high strength mortars, followed by the Ross model and the ACI 209R-92 model. The Gardner model gave the least accurate prediction for it was developed based on a database of normal strength concrete.

  17. Evaluating energy efficient strategies and product quality for distillers' dried grains with solubles (DDGS) in dry-grind ethanol plants

    Science.gov (United States)

    Lan, Tian

    tested and the response variables were measured which included energy performance (specific power consumption, energy efficiency, drying efficiency, drying rate), physical properties [particle size distribution (PSD), geometric mean particle size (dwg), bulk density, tapped bulk density, true density, color, compressibility index (CI), Hausner ratio (HR)], and chemical properties [acid detergent fiber (ADF), neutral detergent fiber (NDF), oil, crude protein, starch, ash, etc]. The results of the bench-scale study were also compared with data from a previous plant-scale DDGS production process investigation that used similar drying strategies. Results from the experiments indicated that among all 16 drying strategies, the 10% CDS content and 60% DDGS add-back strategy achieved the least specific power consumption (SPC) while the 40% CDS content and 20% DDGS add-back strategy had the highest SPC. The energy efficiency and drying efficiency of the bench-scale data in both drying stage I and drying stage II presented similar trends as process parameters changed. The highest energy and drying efficiencies were achieved in strategies with 10% CDS content while the lowest were in strategies with 40% CDS content. A comparison of the energy and drying efficiencies for the bench-scale strategies conducted in this study with those of similar plant-scale strategies from a previous study showed a similar trend in the data for drying stage 1, even though the actual numbers were quite different for the two experimental scales. On average, the energy and drying efficiencies for the bench-scale study was 40% less than the corresponding plant-scale strategy. CDS content had the most influence on the energy performance during DDGS drying, while percent DDGS add-back had more impact on the SPC given a constant CDS content level. By comparing both the physical properties, bulk density in particular which relates to logistics, and energy performance data, the drying strategy with 20% CDS and

  18. Relationship between incident radiation, leaf area and dry-matter yield in wheat

    International Nuclear Information System (INIS)

    Saini, A.D.; Nanda, R.

    1986-01-01

    Light-utilization efficiency was evaluated between 20 and 50 days of crop growth period in 'Kalyansona', 'Sonalika' (semi-dwarf), 'Hindi 62' (tall) varieties of bread-wheat (Triticum aestivum Linn. emend., Fiori and Paol.) and semi-dwarf 'HD 4502' variety of macaroni wheat (T. durum Desf.). In the first model, the relationship between absorbed photosynthetic radiation and crop growth rates showed above-ground dry matter of 2.9 g in 'Sonalika', 2.5 g each in 'Kalyansona' and 'HD 4502' and 1.8 g in 'Hindi 62' were produced for each megajoule of absorbed photosynthetic radiation corresponding to the growth efficiency of 5.1, 4.4 and 3.1% respectively. In the second model of partial regression analysis, the rate of change in dry matter due to mean green area index as well as photosynthetic radiation was low in 'Hindi 62'. However, the dry matter changes due to mean green area index were similar in 'Kalyansona', 'HD4502' and 'Sonalika', but was high due to photosynthetic radiation in 'Sonalika' only. Both models gave similar conclusion

  19. An industrial batch dryer simulation tool based on the concept of the characteristic drying curve

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Elmegaard, Brian; Schneider, P.

    2013-01-01

    content in the material to be invariant in the airflow direction. In the falling-rate period, the concept of the Characteristic Drying Curve (CDC) is used as proposed by Langrish et al. (1991), but modified to account for a possible end-drying rate. Using the CDC both hygroscopic and non....... However, the tool may be used to analyze overall effects of inlet temperature, volume flow rate, geometry, infiltration etc. on the performance in terms of drying time, heat consumption and blower power....

  20. Effects of gamma radiation on freeze-dried wheat seeds

    International Nuclear Information System (INIS)

    Ajayi, N.O.; Larsson, B.

    1975-07-01

    The effect of radiation on freeze-dried wheat seeds are reported. The response of the various parts of the seedling to radiation was found to differ from one another. There was no significant modification of the effect of radiation on the shoot and root growth, while the growth of the coleoptile was slightly reduced in the frezze-dried seeds. The change in the shoot growth-absorbed dose relationship reported by others to occur at high doses for oven-dried as compared to air-dried barley seeds was not seen for the control and freeze-dried wheat seeds. The freeze-dried seeds are believed to show only the effect of radiation without any modification due to drying as such. The dose-effect relationships may be splited into functions characterised by different radiosensitivity. The high sensitivty effect is mainly taking place within the first 40 krad of energy absorption, and the low sensitivity is dominating at higher doses. (author)

  1. PYROLYSIS OF ALGAL BIOMASS OBTAINED FROM HIGH RATE ALGAE PONDS APPLIED TO WASTEWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    Fernanda eVargas E Silva

    2015-06-01

    Full Text Available This work presents the results of the pyrolysis of algal biomass obtained from high rate algae ponds treating sewage. The two high-rate algae ponds (HRAP were built and operated at the São João Navegantes Wastewater Treatment Plant. The HRAP A was fed with raw sewage while the HRAP B was fed with effluent from an Upflow Anaerobic Sludge Blanket (UASB reactor. The HRAP B provided higher productivity, presenting total solids concentration of 487.3mg/l and chlorophyll a of 7735mg/l. The algal productivity in the average depth was measured at 41,8 gm-2day-1 in pond A and at 47.1 gm-2day-1 in pond B. Algae obtained from the HRAP B were separated by the process of coagulation/flocculation and sedimentation. In the presence of alum, a separation efficiency in the range of 97% solids removal was obtained. After centrifugation the biomass was dried and comminuted. The biofuel production experiments were conducted via pyrolysis in a tubular quartz glass reactor which was inserted in a furnace for external heating. The tests were carried out in an inert nitrogen atmosphere at a flow rate of 60ml/min. The system was operated at 400°C, 500°C and 600°C in order to determine the influence of temperature on the obtained fractional yields. The studies showed that the pyrolysis product yield was influenced by temperature, with a maximum liquid phase (bio-oil and water production rate of 44% at 500°C, 45% for char and around 11% for gas.

  2. Pyrolysis of Algal Biomass Obtained from High-Rate Algae Ponds Applied to Wastewater Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Vargas e Silva, Fernanda, E-mail: fervs@globo.com; Monteggia, Luiz Olinto [Institute of Hydraulic Research, Federal University of Rio Grande do Sul, Porto Alegre (Brazil)

    2015-06-30

    This work presents the results of the pyrolysis of algal biomass obtained from high-rate algae ponds treating sewage. The two high-rate algae ponds (HRAP) were built and operated at the São João Navegantes Wastewater Treatment Plant. The HRAP A was fed with raw sewage while the HRAP B was fed with effluent from an upflow anaerobic sludge blanket (UASB) reactor. The HRAP B provided higher productivity, presenting total solids concentration of 487.3 mg/l and chlorophyll a of 7735 mg/l. The algal productivity in the average depth was measured at 41.8 g·m{sup −2} day{sup −1} in pond A and at 47.1 g·m{sup −2} day{sup −1} in pond B. Algae obtained from the HRAP B were separated by the process of coagulation/flocculation and sedimentation. In the presence of alum, a separation efficiency in the range of 97% solid removal was obtained. After centrifugation the biomass was dried and comminuted. The biofuel production experiments were conducted via pyrolysis in a tubular quartz glass reactor which was inserted in a furnace for external heating. The tests were carried out in an inert nitrogen atmosphere at a flow rate of 60 ml/min. The system was operated at 400, 500, and 600°C in order to determine the influence of temperature on the obtained fractional yields. The studies showed that the pyrolysis product yield was influenced by temperature, with a maximum liquid phase (bio-oil and water) production rate of 44% at 500°C, 45% for char and around 11% for gas.

  3. Pyrolysis of Algal Biomass Obtained from High-Rate Algae Ponds Applied to Wastewater Treatment

    International Nuclear Information System (INIS)

    Vargas e Silva, Fernanda; Monteggia, Luiz Olinto

    2015-01-01

    This work presents the results of the pyrolysis of algal biomass obtained from high-rate algae ponds treating sewage. The two high-rate algae ponds (HRAP) were built and operated at the São João Navegantes Wastewater Treatment Plant. The HRAP A was fed with raw sewage while the HRAP B was fed with effluent from an upflow anaerobic sludge blanket (UASB) reactor. The HRAP B provided higher productivity, presenting total solids concentration of 487.3 mg/l and chlorophyll a of 7735 mg/l. The algal productivity in the average depth was measured at 41.8 g·m −2 day −1 in pond A and at 47.1 g·m −2 day −1 in pond B. Algae obtained from the HRAP B were separated by the process of coagulation/flocculation and sedimentation. In the presence of alum, a separation efficiency in the range of 97% solid removal was obtained. After centrifugation the biomass was dried and comminuted. The biofuel production experiments were conducted via pyrolysis in a tubular quartz glass reactor which was inserted in a furnace for external heating. The tests were carried out in an inert nitrogen atmosphere at a flow rate of 60 ml/min. The system was operated at 400, 500, and 600°C in order to determine the influence of temperature on the obtained fractional yields. The studies showed that the pyrolysis product yield was influenced by temperature, with a maximum liquid phase (bio-oil and water) production rate of 44% at 500°C, 45% for char and around 11% for gas.

  4. Are freeze drying and oven drying methods for trace metal determination in zoological specimens analytically sound

    International Nuclear Information System (INIS)

    Fourie, H.O.; Peisach, M.

    1976-01-01

    High specific activity radio-isotopes of chromium, zinc and selenium were used to label these elements accumulated by the oyster Crassostrea gigas. The retention of the metabolised forms of these elements during freeze-drying or oven drying at 50, 90, 105 and 120 deg C was studied. Observed losses question the accuracy of these analytical procedures. (author)

  5. Enrichment of pasta with faba bean does not impact glycemic or insulin response but can enhance satiety feeling and digestive comfort when dried at very high temperature.

    Science.gov (United States)

    Greffeuille, Valérie; Marsset-Baglieri, Agnès; Molinari, Nicolas; Cassan, Denis; Sutra, Thibault; Avignon, Antoine; Micard, Valérie

    2015-09-01

    Enrichment of durum wheat pasta with legume flour enhances their protein and essential amino acid content, especially lysine content. However, despite its nutritional potential, the addition of a legume alters the rheological properties of pasta. High temperature drying of pasta reduces this negative effect by strengthening its protein network. The aim of our study was to determine if these changes in the pasta structure alter its in vitro carbohydrate digestibility, in vivo glycemic, insulin and satiety responses. We also investigated if high temperature drying of pasta can reduce the well-known digestive discomfort associated with the consumption of legume grains. Fifteen healthy volunteers consumed three test meals: durum wheat pasta dried at a low temperature (control), and pasta enriched with 35% faba bean dried at a low and at a very high temperature. When enriched with 35% legume flour, pasta maintained its nutritionally valuable low glycemic and insulin index, despite its weaker protein network. Drying 35% faba bean pasta at a high temperature strengthened its protein network, and decreased its in vitro carbohydrate digestion with no further decrease in its in vivo glycemic or insulin index. Drying pasta at a very high temperature reduced digestive discomfort and enhanced self-reported satiety, and was not associated with a modification of energy intake in the following meal.

  6. High School Graduation Rates:Alternative Methods and Implications

    OpenAIRE

    Jing Miao; Walt Haney

    2004-01-01

    The No Child Left Behind Act has brought great attention to the high school graduation rate as one of the mandatory accountability measures for public school systems. However, there is no consensus on how to calculate the high school graduation rate given the lack of longitudinal databases that track individual students. This study reviews literature on and practices in reporting high school graduation rates, compares graduation rate estimates yielded from alternative methods, and estimates d...

  7. Effect of drying conditions on the physical properties of impregnated orange peel

    Directory of Open Access Journals (Sweden)

    K. Manjarres-Pinzon

    2013-09-01

    Full Text Available Orange peel represents approximately 30-40 g/100g of the fresh fruit weight and could be used to develop value-added products. Hence, this study aims to evaluate the effects of drying conditions on the physical properties of orange peel impregnated with sucrose solution. The response surface method (RSM was used to optimize two parameters: drying temperature (35-55 ºC and air flow rate (2-3 m/s. The measured responses used to determine the effect of dying process conditions were: moisture content. drying time. total soluble solids. color and hardness. The dried orange peels from the optimal process were subjected to a sensory test by 60 consumers. The optimum conditions for the drying of orange peels were determined to obtain minimum hardness, moisture content and drying time for a w values below 0.6. The optimum conditions were found to be a dying temperature of 52.3 ºC and air flow rate of 2.0 m/s. At this point, drying time, hardness and moisture content were found to be 20 h, 78.4 N and 7.6%, respectively. The sensory results showed that consumers aged over 30 years old accepted well the dried orange peel.

  8. Effect of Microencapsulation by Spray-Drying and Freeze-Drying Technique on the Antioxidant Properties of Blueberry (Vaccinium myrtillus Juice Polyphenolic Compounds

    Directory of Open Access Journals (Sweden)

    Wilkowska Agnieszka

    2016-03-01

    Full Text Available Blueberry juice with high polyphenol concentration was spray- or freeze-dried using different coating materials: HP-β-cyclodextrin and β-cyclodextrin. The quality of the obtained powders was characterised by their anthocyanin content, total polyphenols and antioxidant capacity. SEM was used for monitoring structures and size (2–20 μm of the microparticles. The losses of total phenolic compounds during spray-drying reached 76–78% on average, while these of anthocyanins about 57%. Freeze-dried powders showed better retention values of anthocyanins, which was about 1.5-fold higher than for the spray-dried counterparts. All blueberry preparations studied were characterised by very high radical scavenging activity.

  9. Micro-Spherical Sulfur/Graphene Oxide Composite via Spray Drying for High Performance Lithium Sulfur Batteries

    Science.gov (United States)

    Tian, Yuan; Sun, Zhenghao; Zhang, Yongguang; Yin, Fuxing

    2018-01-01

    An efficient, industry-accepted spray drying method was used to synthesize micro-spherical sulfur/graphene oxide (S/GO) composites as cathode materials within lithium sulfur batteries. The as-designed wrapping of the sulfur-nanoparticles, with wrinkled GO composites, was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The unique morphological design of this material enabled superior discharge capacity and cycling performance, demonstrating a high initial discharge capacity of 1400 mAh g−1 at 0.1 C. The discharge capacity remained at 828 mAh g−1 after 150 cycles. The superior electrochemical performance indicates that the S/GO composite improves electrical conductivity and alleviates the shuttle effect. This study represents the first time such a facile spray drying method has been adopted for lithium sulfur batteries and used in the fabrication of S/GO composites. PMID:29346303

  10. Hydrogen permeation and corrosion behavior of high strength steel MCM 430 in cyclic wet-dry SO2 environment

    International Nuclear Information System (INIS)

    Nishimura, Rokuro; Shiraishi, Daisuke; Maeda, Yasuaki

    2004-01-01

    Hydrogen permeation caused by corrosion under a cyclic wet (2 h)-dry (10 h) SO 2 condition was investigated for a high strength steel of MCM 430 by using an electrochemical technique in addition to the corrosion behavior obtained from weight loss measurement and the determination of corrosion products by using X-ray diffraction method. The hydrogen content converted from hydrogen permeation current density was observed in both wet and dry periods. The origin of proton was estimated to be from (1) the hydrolysis of ferrous ions, (2) the oxidation of ferrous ions and ferrous hydroxide, and (3) hydrolysis of SO 2 and formation of FeSO 4 , but not from the dissociation of H 2 O. With respect to the determination of the corrosion products consisting of inner (adherent) and outer (not adherent) layers, the outer layer is composed of α-FeOOH, amorphous phase and γ-FeOOH, where α-FeOOH increases with the increase in the wet-dry cycle, and amorphous phase shows the reverse trend. The corrosion product in the inner layer is mainly Fe 3 O 4 with them. On the basis of the results obtained, the role of the dry or wet period, the effect of SO 2 and the corrosion process during the cyclic wet-dry periods were discussed

  11. Water loss at normal enamel histological points during air drying at room temperature.

    Science.gov (United States)

    De Medeiros, R C G; De Lima, T A S; Gouveia, C R; De Sousa, F B

    2013-06-01

    This in vitro study aimed to quantify water loss at histological points in ground sections of normal enamel during air drying at room temperature (25°C) and relative humidity of 50%. From each of 10 ground sections of erupted permanent human normal enamel, three histological points (n = 30) located at 100, 300 and 500 μm from enamel surface and along a transversal following prisms paths were characterized regarding the mineral, organic and water volumes. Water loss during air drying was from 0 to 48 h. Drying occurred with both falling and constant-drying rates, and drying stabilization times (Teq ) ranged from 0.5 to 11 h with a mean 0.26 (±0.12)% weight loss. In some samples (n = 5; 15 points), Teq increased as a function of the distance from the enamel surface, and drying occurred at an apparent diffusion rate of 3.47 × 10⁻⁸ cm² s⁻¹. Our data provide evidence of air drying resulting in air replacing enamel's loosely bound water in prisms sheaths following a unidirectional water diffusion rate of 3.47 × 10⁻⁸ cm² s⁻¹ (from the original enamel surface inward), not necessarily resulting in water evaporating directly into air, with important implications for transport processes and optical and mechanical properties. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  12. Screening freeze-drying cryoprotectants for Saccharomyces boulardii by Plackett-Burman design

    Directory of Open Access Journals (Sweden)

    He CHEN

    2016-12-01

    Full Text Available As a lyophilized product, Saccharomyces boulardii has been commonly used to treat diarrhea in adults. However, there are few studies focusing on the preparation of its freeze-drying powder. This paper investigated the effect of lyoprotectants on the freeze-drying survival rate and the number of viable cells for vacuum freezedried powder of S. boulardii. Single factor experiment and Plackett-Burman design were conducted to obtain the optimal compound lyoprotectant formulations. The result showed that lactose, trehalose and sodium glutamate could significantly enhance the freeze-drying survival rate of S. boulardii. Meanwhile, all these three lyoprotectants showed positive effect on the freezedrying survival rate of the yeast, and the optimal lyoprotectant composition for S. boulardii was as follows: 18g/100mL lactose, 18g/100mL trehalose and 3g/100mL sodium glutamate.

  13. Spatial patterns of goose grubbing suggest elevated grubbing in dry habitats linked to early snowmelt

    Directory of Open Access Journals (Sweden)

    Åshild Ø. Pedersen

    2013-05-01

    Full Text Available The western Palaearctic tundra is a breeding habitat for large populations of European geese. After their arrival in spring, pink-footed geese (Anser brachyrhynchus forage extensively on below-ground plant parts, using a feeding technique called grubbing that has substantial impact on the tundra vegetation. Previous studies have shown a high frequency of grubbing in lowland fen vegetation. In the present study, we examined the occurrence of grubbing in other habitat types on Spitsbergen, in the Arctic archipelago of Svalbard. Goose grubbing was surveyed along 19 altitudinal transects, going from the valley bottom to altitudes dominated by scree. Grubbing was more frequent in the wet habitat type at low altitudes compared to the drier habitat type at higher altitudes. For the dry habitat type, a higher frequency of grubbing was found in study plots with a south-east facing exposure where snowmelt is expected to be early. This suggests that pink-footed geese primarily use dry vegetation types for grubbing when they are snow-free in early spring and the availability of snow-free patches of the preferred wet vegetation types in the lowlands is limited. Dry vegetation types have poorer recovery rates from disturbance than wet ones. Sites with early snowmelt and dry vegetation types may therefore be at greater risk of long-term habitat degradation. We conclude that the high growth rate of the Svalbard-breeding pink-footed goose population suggests that increasing impacts of grubbing can be expected and argue that a responsible monitoring of the effects on the tundra ecosystem is crucial.

  14. Computational fluid dynamics (CFD) assisted performance evaluation of the Twincer (TM) disposable high-dose dry powder inhaler

    NARCIS (Netherlands)

    de Boer, Anne H.; Hagedoorn, Paul; Woolhouse, Robert; Wynn, Ed

    Objectives To use computational fluid dynamics (CFD) for evaluating and understanding the performance of the high-dose disposable Twincer (TM) dry powder inhaler, as well as to learn the effect of design modifications on dose entrainment, powder dispersion and retention behaviour. Methods Comparison

  15. High rate response of ultra-high-performance fiber-reinforced concretes under direct tension

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Ngoc Thanh [Department of Civil and Environmental Engineering, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747 (Korea, Republic of); Tran, Tuan Kiet [Department of Civil and Environmental Engineering, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747 (Korea, Republic of); Department of Civil Engineering and Applied Mechanics, Ho Chi Minh City University of Technology and Education, 01 Vo Van Ngan, Thu Duc District, Ho Chi Minh City (Viet Nam); Kim, Dong Joo, E-mail: djkim75@sejong.ac.kr [Department of Civil and Environmental Engineering, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747 (Korea, Republic of)

    2015-03-15

    The tensile response of ultra-high-performance fiber-reinforced concretes (UHPFRCs) at high strain rates (5–24 s{sup −} {sup 1}) was investigated. Three types of steel fibers, including twisted, long and short smooth steel fibers, were added by 1.5% volume content in an ultra high performance concrete (UHPC) with a compressive strength of 180 MPa. Two different cross sections, 25 × 25 and 25 × 50 mm{sup 2}, of tensile specimens were used to investigate the effect of the cross section area on the measured tensile response of UHPFRCs. Although all the three fibers generated strain hardening behavior even at high strain rates, long smooth fibers produced the highest tensile resistance at high rates whereas twisted fiber did at static rate. The breakages of twisted fibers were observed from the specimens tested at high strain rates unlike smooth steel fibers. The tensile behavior of UHPFRCs at high strain rates was clearly influenced by the specimen size, especially in post-cracking strength.

  16. Pharmaceutical spray drying: solid-dose process technology platform for the 21st century.

    Science.gov (United States)

    Snyder, Herman E

    2012-07-01

    Requirement for precise control of solid-dosage particle properties created with a scalable process technology are continuing to expand in the pharmaceutical industry. Alternate methods of drug delivery, limited active drug substance solubility and the need to improve drug product stability under room-temperature conditions are some of the pharmaceutical applications that can benefit from spray-drying technology. Used widely for decades in other industries with production rates up to several tons per hour, pharmaceutical uses for spray drying are expanding beyond excipient production and solvent removal from crystalline material. Creation of active pharmaceutical-ingredient particles with combinations of unique target properties are now more common. This review of spray-drying technology fundamentals provides a brief perspective on the internal process 'mechanics', which combine with both the liquid and solid properties of a formulation to enable high-throughput, continuous manufacturing of precision powder properties.

  17. Modelling the Thin-Layer Drying Kinetics of Untreated and Blanch-Osmotic Pre-treated Tomato Slices

    Directory of Open Access Journals (Sweden)

    Samuel Enahoro Agarry

    2016-10-01

    Full Text Available The objective of this study was to investigate the effect of pre-treatment and drying temperature on the drying kinetics and nutritional quality of tomato (Lycopersicon esculantum L. under hot air drying. Tomato samples were blanched at 80oC and osmotically dehydrated using 20% w/w sodium chloride solutions at 30oC for 20 min. The blanch-osmotic pre-treated and untreated tomato slices were dried at temperature of 40, 50, 60, 70 and 80oC, respectively in a hot air-dryer. The results showed that blanch-osmotic pre-treatment offered a higher drying rate and lower or faster drying time than untreated condition. The tomato drying regime was characteristically in the constant and falling rate period. The tomato drying rate curve showed characteristics of porous hygroscopic solids. The optimum drying temperature for tomato was found to be 60oC. Four semi-empirical drying models of Newton, Page, Henderson and Pabis, and Logarithmic were fitted to the drying data using non-linear regression analysis. The most appropriate model was selected using the coefficient of determination (R2 and root mean square error (RMSE. The Page model has shown a better fit to the drying kinetics data of tomato in comparison with other tested models. Transport of moisture during drying was described by Fick’s diffusion model application and the effective moisture diffusivity (Deff thus estimated. The Deff at 60oC was 4.43 × 10-11m2/s and 6.33 × 10-11m2/s for blanch-osmotic pre-treated and untreated tomato slices, respectively.

  18. [Effects of ultrasonic pretreatment on drying characteristics of sewage sludge].

    Science.gov (United States)

    Li, Run-Dong; Yang, Yu-Ting; Li, Yan-Long; Niu, Hui-Chang; Wei, Li-Hong; Sun, Yang; Ke, Xin

    2009-11-01

    The high water content of sewage sludge has engendered many inconveniences to its treatment and disposal. While ultrasonic takes on unique advantages on the sludge drying because of its high ultrasonic power, mighty penetrating capability and the ability of causing cavitations. Thus this research studies the characteristics influences of ultrasonic bring to the sludge drying and effects of the exposure time, ultrasonic generator power, temperatures of ultrasonic and drying temperature on the drying characteristics of dewatered sludge. Results indicate that ultrasonic pretreatment could speed up evaporation of the free water in sludge surface and help to end the drying stage with constant speed. In addition, ultrasonic treatment can effectively improve the sludge drying efficiency which could be more evident with the rise of the ultrasonic power (100-250 W), ultrasonic temperature and drying temperature. If dried under low temperature such as 105 degrees C, sludge will have premium drying characteristics when radiated under ultrasound for a shorter time such as 3 min. In the end, the ultrasonic treatment is expected to be an effective way to the low-cost sludge drying and also be an important reference to the optimization of the sludge drying process because of its effects on the increase of sludge drying efficiency.

  19. Wax solidification of drying agents containing tritiated water

    International Nuclear Information System (INIS)

    Mishikawa, M.; Kido, H.

    1984-01-01

    It is necessary to immobilize the tritium not to give any impact on the environmental biosphere because tritium may give profound effects in the metabolic pathway. One of the most probable methods of immobilizing tritium would be incorporation of tritiated water in solid forms. Any drying or dehydration technique would be effective in a tritium cleanup system for off-gas streams containing tritium or tritiated water. Commonly used drying agents such as activated alumina, silica gel, molecular sieves and calcium sulfate are of value for removal of water vapour from air or other gases. For long term tritium storage, however, these adsorptive materials should be enveloped to prevent contact with water or water vapour because the rate of leaching, evaporation or diffusion of tritium from these porous materials is so large. The beeswax solidification method of the packed bed of drying agents adsorbing tritiated water is developed in this study, where the wax solidification procedure is performed by pouring the melt of wax into the void space of the packed bed of the drying agents and successive gradual cooling. The observed values of diffusivity or permeability of tritium in the wax solidified materials are about one-thousandth of those obtained for the cement block. Effect of coating on the rate of leaching is also discussed

  20. Analysis of Drying Process Quality in Conventional Dry-Kilns

    OpenAIRE

    Sedlar Tomislav; Pervan Stjepan

    2010-01-01

    This paper presents testing results of drying quality in a conventional dry kiln. Testing is based on a new methodology that will show the level of success of the drying process management by analyzing the quality of drying process in a conventional dry kiln, using a scientifi cally improved version of the check list in everyday practical applications. A company that specializes in lamel and classic parquet production was chosen so as to verify the new testing methodology. A total of 56 m3 of...

  1. Facile Synthesis of Bowl-Like LiFePO4/C Composite with High Rate-Performance

    Science.gov (United States)

    Jing, Peng; Yao, Lei; Xiang, Mingwu; Wang, Yan; Wu, Jinhua; Wang, Boya; Zhang, Yun; Wu, Hao; Liu, Heng

    2018-03-01

    Olivine-structured LiFePO4/C composites with high rate-performance were synthesized via an industrial spray-drying technique using a low cost Fe3O4 as iron source. The as-obtained LiFePO4/C exhibits a unique bowl-like morphology with a particle size of 2-5 μm in diameter. A continuous uniform carbon coating layer on the surface of LiFePO4/C cathodes promotes fast electron transport, whilst it guarantees the favorable electrochemical reaction. Especially the formation of porous structure leads to an average pore volume of 0.127 cm3 g-1 and a high specific surface area of 34.46 m2 g-1, which is conducive to facilitating the penetration of electrolyte and providing the more contact area of electrolyte with LiFePO4/C. As a result, the as-prepared LiFePO4/C cathode material delivers an outstanding discharge capacity of 102.1 mAh g-1, 94.2% of the initial capacity (108.3 mAh g-1), after 1000 cycles at 10 C. Even at an ultrahigh current rate of 50 C, it still shows an initial discharge capacity of 58 mAh g-1.

  2. Facile Synthesis of Bowl-Like LiFePO4/C Composite with High Rate-Performance

    Science.gov (United States)

    Jing, Peng; Yao, Lei; Xiang, Mingwu; Wang, Yan; Wu, Jinhua; Wang, Boya; Zhang, Yun; Wu, Hao; Liu, Heng

    2018-07-01

    Olivine-structured LiFePO4/C composites with high rate-performance were synthesized via an industrial spray-drying technique using a low cost Fe3O4 as iron source. The as-obtained LiFePO4/C exhibits a unique bowl-like morphology with a particle size of 2-5 μm in diameter. A continuous uniform carbon coating layer on the surface of LiFePO4/C cathodes promotes fast electron transport, whilst it guarantees the favorable electrochemical reaction. Especially the formation of porous structure leads to an average pore volume of 0.127 cm3 g-1 and a high specific surface area of 34.46 m2 g-1, which is conducive to facilitating the penetration of electrolyte and providing the more contact area of electrolyte with LiFePO4/C. As a result, the as-prepared LiFePO4/C cathode material delivers an outstanding discharge capacity of 102.1 mAh g-1, 94.2% of the initial capacity (108.3 mAh g-1), after 1000 cycles at 10 C. Even at an ultrahigh current rate of 50 C, it still shows an initial discharge capacity of 58 mAh g-1.

  3. Sun drying of residual annatto seed powder

    Directory of Open Access Journals (Sweden)

    Dyego da Costa Santos

    2015-01-01

    Full Text Available Residual annatto seeds are waste from bixin extraction in the food, pharmaceutical and cosmetic industries. Most of this by-product is currently discarded; however, the use of these seeds in human foods through the elaboration of powder added to other commercial powders is seen as a viable option. This study aimed at drying of residual annatto powder, with and without the oil layer derived from the industrial extraction of bixin, fitting different mathematical models to experimental data and calculating the effective moisture diffusivity of the samples. Powder containing oil exhibited the shortest drying time, highest drying rate (≈ 5.0 kg kg-1 min-1 and highest effective diffusivity (6.49 × 10-12 m2 s-1. All mathematical models assessed were a suitable representation of the drying kinetics of powders with and without oil, with R2 above 0.99 and root mean square error values lower than 1.0.

  4. Chemical and physical pretreatments of fruits and vegetables: Effects on drying characteristics and quality attributes - a comprehensive review.

    Science.gov (United States)

    Deng, Li-Zhen; Mujumdar, Arun S; Zhang, Qian; Yang, Xu-Hai; Wang, Jun; Zheng, Zhi-An; Gao, Zhen-Jiang; Xiao, Hong-Wei

    2017-12-20

    Pretreatment is widely used before drying of agro-products to inactivate enzymes, enhance drying process and improve quality of dried products. In current work, the influence of various pretreatments on drying characteristics and quality attributes of fruits and vegetables is summarized. They include chemical solution (hyperosmotic, alkali, sulfite and acid, etc.) and gas (sulfur dioxide, carbon dioxide and ozone) treatments, thermal blanching (hot water, steam, super heated steam impingement, ohmic and microwave heating, etc), and non-thermal process (ultrasound, freezing, pulsed electric field, and high hydrostatic pressure, etc). Chemical pretreatments effectively enhance drying kinetics, meanwhile, it causes soluble nutrients losing, trigger food safety issues by chemical residual. Conventional hot water blanching has significant effect on inactivating various undesirable enzymatic reactions, destroying microorganisms, and softening the texture, as well as facilitating drying rate. However, it induces undesirable quality of products, e.g., loss of texture, soluble nutrients, pigment and aroma. Novel blanching treatments, such as high-humidity hot air impingement blanching, microwave and ohmic heat blanching can reduce the nutrition loss and are more efficient. Non-thermal technologies can be a better alternative to thermal blanching to overcome these drawbacks, and more fundamental researches are needed for better design and scale up.

  5. Can lowland dry forests represent a refuge from avian malaria for native Hawaiian birds?

    Science.gov (United States)

    Tucker-Mohl, Katherine; Hart, Patrick; Atkinson, Carter T.

    2010-01-01

    Hawaii's native birds have become increasingly threatened over the past century. Introduced mosquito borne diseases such as avian malaria may be responsible for the near absence of endemic Hawaiian forest birds in low-elevation habitats. The recent recognition that some native Hawaiian forest birds may be repopulating moist lowland habitats as a result of evolved resistance to this disease has increased the conservation value of these areas. Here, we investigate whether remnant low elevation dry forests on Hawaii Island provide natural 'refuges' from mosquito-transmitted malaria by nature of their low rainfall and absence of suitable natural sources of water for mosquito breeding. Unlike lowland wet forests where high rates of disease transmission may be selecting for disease resistance, lowland dry forests may provide some refuge for native forest birds without natural resistance to malaria. We mistnetted forest birds in two lowland dry forests and tested all native birds by microscopy and serology for avian malaria caused by the Plasmodium relictum parasite. We also conducted surveys for standing water and mosquito larvae. Overall prevalence of infections with Plasmodium relictum in the Hawaii Amakihi Hemignathus virens virens was 15%. Most infected birds had lowlevel parasitemias, suggesting chronic infections. Although avian malaria is present in these lowland dry forest Amakihi populations, infection rates are significantly lower than in wet forest populations at similar elevations. Sources of breeding mosquitoes in these forests appeared to be largely anthropogenic; thus, there is potential to manage dry forests as mosquito-free habitat for Hawaii Amakihi and other Hawaiian forest birds.

  6. Force convective solar drying system

    International Nuclear Information System (INIS)

    Ruslan, M.H.; Othman, M.Y.; Baharuddin Yatim; Kamaruzzaman Sopian; Ibarahim, Z.

    2006-01-01

    This paper presents design and performance of V-groove back-pass solar collector for solar drying system. In this study three V-groove back-pass solar collector each with dimension of 4.6 m x 1.0 m x 0.15 m have been fabricated for solar drying system. An outdoor test at mean solar intensity for 600-800 Wm -2 by using 0.15m 3 s -1 of air flow rate which also been suggested by (Zeroul et al. 1994) was carried out at Solar Research Energy Park. Universiti Kebangsaan Malaysia. Analysis on the collector performance based on daily data was reported that the value of FR ) e and FRUL was 0.709 ± 0.001 and 5.89 ± 0.31 Wm -2o C -1 respectively with 60-70 o C of output temperature (Ruslan et al. 2001). The three V-groove collectors each with dimension 4.6 m x 0.15 m were connected in series array mounted on the roof of a solar assisted drying system. By using two electric fans of 85W and 2700 rpm each, the speed of air was regulated at 0.11 kgs -1 to 0.31 kgs -1 using a voltage regulator. Performance of the collector based on the thermal analysis showed that at mean daily solar radiation 700 Wm -2 , the output temperature of 52 o C to 73 o C could be achieved using 0.11-0.31 kgs -1 of flow rate. Thermal analysis also showed that the efficiencies of 45% to 61% could be obtains using the same flow rate and solar radiation. Analysis of daily data showed that for radiation from 300 Wm -2 to 1000 Wm -2 the power generated from the collector was within 1.5 kW to 8.9 kW. The study concluded that the levels of the levels of the solar radiation and flow rate used influenced the performance of the collector

  7. Convective Drying of Osmo-Treated Abalone (Haliotis rufescens Slices: Diffusion, Modeling, and Quality Features

    Directory of Open Access Journals (Sweden)

    Roberto Lemus-Mondaca

    2018-01-01

    Full Text Available The focus of this research was based on the application of an osmotic pretreatment (15% NaCl for drying abalone slices, and it evaluates the influence of hot-air drying temperature (40–80°C on the product quality. In addition, the mass transfer kinetics of salt and water was also studied. The optimal time of the osmotic treatment was established until reaching a pseudo equilibrium state of the water and salt content (290 min. The water effective diffusivity values during drying ranged from 3.76 to 4.75 × 10−9 m2/s for three selected temperatures (40, 60, and 80°C. In addition, experimental data were fitted by Weibull distribution model. The modified Weibull model provided good fitting of experimental data according to applied statistical tests. Regarding the evaluated quality parameters, the color of the surface showed a change more significant at high temperature (80°C, whereas the nonenzymatic browning and texture showed a decrease during drying process mainly due to changes in protein matrix and rehydration rates, respectively. In particular, working at 60°C resulted in dried samples with the highest quality parameters.

  8. Solar drying and organoleptic characteristics of two tropical African fish species using improved low-cost solar driers.

    Science.gov (United States)

    Mustapha, Moshood K; Ajibola, Taiye B; Salako, Abdulbashir F; Ademola, Sunmola K

    2014-05-01

    This study was done to evaluate the drying performance, efficiency, and effectiveness of five different types of improved low-cost solar driers in terms of moisture loss from two tropical African fish species Clarias gariepinus (African sharp tooth catfish) and Oreochromis niloticus (Nile tilapia) and testing the organoleptic characteristics of the dried samples. The driers used were made from plastic, aluminum, glass, glass with black igneous stone, and mosquito net, with traditional direct open-sun drying as a control. A significant (P < 0.05) decrease in weight resulting from moisture loss in the two fish species was observed in all the driers, with the highest reduction occurring in the glass drier containing black stone. The rate of weight loss was faster in the first 4 days of drying with black stone-inserted glass drier showing the fastest drying rate with a constant weight in C. gariepinus attained on the 11th day and in O. niloticus on the eighth day. The slowest drier was plastic where a constant weight of the species were recorded on and 13th day and 11th day, respectively. Volunteers were used to assess the organoleptic characteristics of the dried samples and they showed lowest acceptability for the open-sun drying, while samples from the glass drier containing black stone had the highest acceptability in terms of the taste, flavor, appearance, texture, odor, palatability, and shelf-life. The low-cost solar driers were effective found in removing water from the fish resulting in significant loss of weight and moisture. The highest drying time, efficient performance, drying effectiveness, and high acceptability of the organoleptic parameters of the dried products from the black stone-inserted glass drier were due to the ability of the glass and the black stone to retain, transmit, and radiate heat to the fish sample all the time (day and night). These low-cost driers are simple to construct, materials for its construction readily available, easy to

  9. Critical solvent properties affecting the particle formation process and characteristics of celecoxib-loaded plga microparticles via spray-drying.

    Science.gov (United States)

    Wan, Feng; Bohr, Adam; Maltesen, Morten Jonas; Bjerregaard, Simon; Foged, Camilla; Rantanen, Jukka; Yang, Mingshi

    2013-04-01

    It is imperative to understand the particle formation mechanisms when designing advanced nano/microparticulate drug delivery systems. We investigated how the solvent power and volatility influence the texture and surface chemistry of celecoxib-loaded poly (lactic-co-glycolic acid) (PLGA) microparticles prepared by spray-drying. Binary mixtures of acetone and methanol at different molar ratios were applied to dissolve celecoxib and PLGA prior to spray-drying. The resulting microparticles were characterized with respect to morphology, texture, surface chemistry, solid state properties and drug release profile. The evaporation profiles of the feed solutions were investigated using thermogravimetric analysis (TGA). Spherical PLGA microparticles were obtained, irrespectively of the solvent composition. The particle size and surface chemistry were highly dependent on the solvent power of the feed solution. An obvious burst release was observed for the microparticles prepared by the feed solutions with the highest amount of poor solvent for PLGA. TGA analysis revealed distinct drying kinetics for the binary mixtures. The particle formation process is mainly governed by the PLGA precipitation rate, which is solvent-dependent, and the migration rate of celecoxib molecules during drying. The texture and surface chemistry of the spray-dried PLGA microparticles can therefore be tailored by adjusting the solvent composition.

  10. Modelling the drying kinetics of green peas in a solar dryer and under open sun

    Energy Technology Data Exchange (ETDEWEB)

    Sunil [Department of Mechanical Engineering, BRCM CET Bahal, Haryana–127028 (India); Varun [Department of Mechanical Engineering, NIT Hamirpur, (H.P.)–177005 (India); Sharma, Naveen [Department of Mechanical and Industrial Engineering, IITR, (U.K.)–247667 (India)

    2013-07-01

    The drying kinetics of green peas was investigated in an indirect solar dryer and under open sun. The entire drying process took place exclusively in falling rate period. The constant rate period was absent from the drying curves. The rehydration capacity was also determined for peas dried in solar dryer and under open sun. The rehydration capacity of solar dried peas was found higher than open sun dried peas. The drying data obtained from experiments were fitted to eight different mathematical models. The performance of these models was examined by comparing the coefficient of correlation (R2), sum of squares error (SSE), mean squared error (MSE) and root mean square error (RMSE) between observed and predicted values of moisture ratios. Among these models, the thin layer drying model developed by Page showed good agreement with the data obtained from experiments for bottom tray. The Midilli et al. model has shown better fit to the experimental data for top tray and open sun than other models.

  11. Spray drying of beryllium oxide powder

    International Nuclear Information System (INIS)

    Sepulveda, J.L.; Kahler, D.A.

    1991-01-01

    Forming of beryllia ceramics through dry pressing requires the agglomeration of the powder through spray drying. To produce high quality fired ceramics it is necessary to disperse/grind the primary powder prior to binder addition. Size reduction of the powder is accomplished using an aqueous system in Vibro-Energy mills (VEM) charged with beryllia media to minimize contamination. Two VEM mills of different size were used to characterize the grinding operation. Details of the grinding kinetics are described within the context of the Macroscopic Population Balance Model approach. Spray drying of the ceramic slurry was accomplished with both a centrifugal atomizer and a two fluid nozzle atomizer. Two different spray dryers were used. Important operating parameters affecting the size distribution of the spray dried powder are discussed

  12. Application of ozonated dry ice (ALIGAL™ Blue Ice) for packaging and transport in the food industry.

    Science.gov (United States)

    Fratamico, Pina M; Juneja, Vijay; Annous, Bassam A; Rasanayagam, Vasuhi; Sundar, M; Braithwaite, David; Fisher, Steven

    2012-05-01

    Dry ice is used by meat and poultry processors for temperature reduction during processing and for temperature maintenance during transportation. ALIGAL™ Blue Ice (ABI), which combines the antimicrobial effect of ozone (O(3)) along with the high cooling capacity of dry ice, was investigated for its effect on bacterial reduction in air, in liquid, and on food and glass surfaces. Through proprietary means, O(3) was introduced to produce dry ice pellets to a concentration of 20 parts per million (ppm) by total weight. The ABI sublimation rate was similar to that of dry ice pellets under identical conditions, and ABI was able to hold the O(3) concentration throughout the normal shelf life of the product. Challenge studies were performed using different microorganisms, including E. coli, Campylobacter jejuni, Salmonella, and Listeria, that are critical to food safety. ABI showed significant (P Food Technologists®

  13. Study of Energy Consumption of Potato Slices During Drying Process

    Directory of Open Access Journals (Sweden)

    Hafezi Negar

    2015-06-01

    Full Text Available One of the new methods of food drying using infrared heating under vacuum is to increase the drying rate and maintain the quality of dried product. In this study, potato slices were dried using vacuum-infrared drying. Experiments were performed with the infrared lamp power levels 100, 150 and 200 W, absolute pressure levels 20, 80, 140 and 760 mmHg, and with three thicknesses of slices 1, 2 and 3 mm, in three repetitions. The results showed that the infrared lamp power, absolute pressure and slice thickness have important effects on the drying of potato. With increasing the radiation power, reducing the absolute pressure (acts of vacuum in the dryer chamber and also reducing the thickness of potato slices, drying time and the amount of energy consumed is reduced. In relation to thermal utilization efficiency, results indicated that with increasing the infrared radiation power and decreasing the absolute pressure, thermal efficiency increased.

  14. Effects of sugar alcohol and proteins on the survival of Lactobacillus bulgaricus LB6 during freeze drying.

    Science.gov (United States)

    Chen, He; Chen, Shiwei; Chen, Hongli; Wu, Yanyan; Shu, Guowei

    2015-01-01

    Lactobacillus bulgaricus LB6 is a bacterium which was selected in the commercial yoghurt with high angiotensin converting enzyme (ACE) inhibitory activity. Preparation of concentrated starter cultures via freeze drying is of practical importance to dairy and food industries. We optimized the optimal sugar alcohol and proteins for Lactobacillus bulgaricus LB6 during the process of freeze drying using a Plackett-Burman design. In our initial tests survival rate and the number of viable cells were associated with the type of lyoprotectant used and so our optimization protocol focused on increasing survival rate. Substances that had previously had a protective effect during freeze drying were investigated, for example: mannitol, sorbitol, xylitol, meso-erythritol, lactitol, whey protein isolate 90, bovine serum albumin, and whey protein concentrate 80 and soy protein isolate 70. We found that the optimum sugar alcohol and proteins for survival of Lactobacillus bulgaricus LB6 were whey protein concentrate (p = 0.0040 for survival rate), xylitol (p = 0.0067 for survival rate) and sorbitol (p = 0.0073 for survival rate), they showed positive effect (whey protein concentrate and sorbitol) or negative effect (xylitol). The effectiveness of three chosen sugar alcohols and protein implied that they could be used as lyoprotectant for Lactobacillus bulgaricus LB6 in the further research, the optimal composition of sugar alcohol and protein for the lyoprotectant use must be established.

  15. Characterization of a New High-Dose Dry Powder Inhaler (DPI) Based on a Fluidized Bed Design.

    Science.gov (United States)

    Farkas, Dale R; Hindle, Michael; Longest, P Worth

    2015-11-01

    The objective of this study was to develop a new high-efficiency dry powder inhaler (DPI) that can effectively aerosolize large masses (25-100 mg) of spray dried powder formulations. The DPI was designed to implement a concept similar to a fluidized bed for aerosolization using small mixing balls made of polytetrafluoroethylene along with a larger, hollow dosing sphere filled with the powder. The performance of the fluidized bed DPI was compared, based on emitted dose (ED) and aerosolization efficiency, to other recently developed capsule-based DPIs that were designed to accommodate smaller powder masses (~2-20 mg). The inhalers were tested with spray dried excipient enhanced growth (EEG) formulations that contained an antibiotic (ciprofloxacin) and hygroscopic excipient (mannitol). The new fluidized bed design produced an ED of 71% along with a mass median aerodynamic diameter of 1.53 μm and fine particle fractions <5 and 1 μm of 93 and 36%, respectively, when used to deliver a 100 mg loaded mass of EEG powder with the advantage of not requiring multiple capsules. Surprisingly, performance of the device was further improved by removing the mixing balls from the inhaler and only retaining the dose containment sphere.

  16. Advanced Drying Process for Lower Manufacturing Cost of Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Iftikhar [Lambda Technologies, Inc., Morrisville, NC (United States); Zhang, Pu [Lambda Technologies, Inc., Morrisville, NC (United States)

    2016-11-30

    the electrode materials. For the existing electrode materials, the material analysis and cell characterization data from ADP dried electrodes showed equivalent (or slightly better) performance. However, for high loading and thicker electrode materials (for high energy densities) the ADP advantages are more prominent. There was less binder migration, the resistance was lower hence the current capacities and retention of the battery cells were higher. The success of the project has enabled credible communications with commercial end users as well as battery coating line integrators. Goal is to scale ADP up for high volume manufacturing of Li-ion battery electrodes. The implementation of ADP in high volume manufacturing will reduce a high cost production step to bring the overall price of Li-ion batteries down. This will ultimately have a positive impact on the public by making electric and hybrid vehicles more affordable.

  17. Design, physicochemical characterization, and optimization of organic solution advanced spray-dried inhalable dipalmitoylphosphatidylcholine (DPPC and dipalmitoylphosphatidylethanolamine poly(ethylene glycol (DPPE-PEG microparticles and nanoparticles for targeted respiratory nanomedicine delivery as dry powder inhalation aerosols

    Directory of Open Access Journals (Sweden)

    Meenach SA

    2013-01-01

    total-reflectance Fourier-transform infrared (ATR-FTIR spectroscopy and confocal Raman microscopy (CRM, and chemical imaging confirmed the chemical homogeneity of the particles. The dry powder aerosol dispersion properties were evaluated using the Next Generation Impactor™ (NGI™ coupled with the HandiHaler® dry powder inhaler device, where the mass median aerodynamic diameter from 2.6 to 4.3 μm with excellent aerosol dispersion performance, as exemplified by high values of emitted dose, fine particle fraction, and respirable fraction. Overall, it was determined that the pump rates defined in the spray-drying process had a significant effect on the solid-state particle properties and that a higher pump rate produced the most optimal system. Advanced dry powder inhalers of inhalable lipopolymers for targeted dry powder inhalation delivery were successfully achieved.Keywords: biocompatible biodegradable lipopolymers, lung surfactant, pulmonary delivery, self-assemblies, solid-state, lipospheres

  18. Response Surface Optimization of Lyoprotectant from Amino Acids and Salts for Bifidobacterium Bifidum During Vacuum Freeze-Drying

    Directory of Open Access Journals (Sweden)

    Qi Kangru

    2017-12-01

    Full Text Available High quality probiotic powder can lay the foundation for the commercial production of functional dairy products. The freeze-drying method was used for the preservation of microorganisms, having a deleterious effect on the microorganisms viability. In order to reduce the damage to probiotics and to improve the survival rate of probiotics during freeze-drying, the Response Surface Methodology (RSM was adopted in this research to optimize lyoprotectant composed of amino acids (glycine, arginine and salts (NaHCO3 and ascorbic acid. Probiotic used was Bifidobacterium bifidum BB01. The regression model (p<0.05 was obtained by Box–Behnken experiment design, indicating this model can evaluate the freeze-drying survival rate of B. bifidum BB01 under different lyoprotectants. The results indicated these concentrations as optimal (in W/V: glycine 4.5%, arginine 5.5%, NaHCO3 0.8% and ascorbic acid 2.3%, respectively. Under these optimal conditions, the survival rate of lyophilized powder of B. bifidum BB01 was significantly increased by 80.9% compared to the control group (6.9±0.62%, the results were agreement with the model prediction value (88.7%.

  19. Drying of fruits and vegetables using a flat plate solar collector with convective air flow

    International Nuclear Information System (INIS)

    Mansoor, K.K.; Hanif, M.

    2011-01-01

    This paper presents the analysis of drying of different fruits and vegetables dried by a flat plate solar collector developed at the Department of Agricultural Mechanization, Khyber PukhtunKhwa Agricultural University Peshawar, Pakistan. A small flat plate solar collector is designed and tested for its maximum performance in terms of efficiency with different convective flow rates. The collector assembly is divided into two parts. The flat plate solar collector and the drying chamber. The materials used for flat plate solar collector are wood, steel sheet, Insulation materials, and glass sheet as covering material. The insulation box (0.9 x 1.8 x 0.3 meter) is made up of wood of popular and deodar, to be fully isolated with the help of polystyrene. The absorber is black painted v-corrugated steel sheet. Collector has a tilt angle of 34 deg. (Equivalent to the latitude of Peshawar). The covering material is (0.9 x 1.8 meter) and 5 mm thick glass sheet placed at the top of the wooden box. The collector is supported and tilted with the help of a frame made up of iron angled arms. While the drying chamber is a (1 X 0.5 x 0.3 meter) wooden box connected to the outlet duct of the collector with the help of polyvinylchloride pipe. Experiments were conducted different fruits and vegetables and different parameters like moisture lost by the products in each hour, drying rate at each hour of drying, humidity and temperature of the drying chamber. It was observed that the products such as bitter guard and onion were dried in 10 to 2 hours up to moisture content less then 8%. These two product lost 8% to 10% moisture during each hour of drying. While grapes and Green chili are dried in 24 to 25 hours up to moisture content less then 8%. These two products lost 4% to 5% moisture in each hour of drying. The drying rate of all the products dried was very much consistent. It was observed that onion and bitter guard showed a good drying rate of 0.03[g(H/sub 2/O)/g(d.m).cm/ 2 hr] to

  20. The health benefits of chocolate enrichment with dried fruits

    OpenAIRE

    Özlem Ça&#&#nd&#; Semih Ötleş

    2009-01-01

    One of the most popular food all over the world is chocolate and it has highly nutritious energy, fast metabolism and good digestibility. Nowadays, most important trend is healthy foods. Develop a chocolate product that will be be nutritional for many more people. It is well known that dried fruits has high nutritious values and health benefits. Dried fruits are good sources to developed chocolates. This paper aims to review health importance and usage of dried fruits in chocolate.

  1. Drying Spirulina with Foam Mat Drying at Medium Temperature

    Directory of Open Access Journals (Sweden)

    Aji Prasetyaningrum

    2012-10-01

    Full Text Available Spirulina is a single cell blue green microalgae (Cyanobacteria containing many Phytonutrients (Beta-carotene, Chlorophyl, Xanthophyl, Phyocianin using as anti-carcinogen in food. Producing dry spirulina by quick drying process at medium temperature is very important to retain the Phytonutrient quality. Currently, the work is still challenging due to the gel formation that block the water diffusion from inside to the surface.  This research studies the performance of foam-mat drying on production of dry spirulina. In this method the spirulina was mixed with foaming agent (glair/egg albumen, popular as white egg at 2.5% by weight at air velocity 2.2 m/sec. Here, the effect of spirulina thickness and operational temperature on drying time and quality (Beta-carotene and color were observed. The drying time was estimated based on the measurement of water content in spirulina versus time. Result showed that the thicker spirulina, the longer drying time. Conversely, the higher operational temperature, faster drying time. At thickness ranging 1-3 mm and operational temperature below 70oC, the quality of spirulina can fit the market requirement

  2. Corrosion of aluminum alloys in simulated dry storage environments

    International Nuclear Information System (INIS)

    Peacock, H.B. Jr.; Sindelar, R.L.; Lam, P.S.

    1996-01-01

    The effect of temperature and relative humidity on the high temperature (up to 150 degrees C) corrosion of aluminum alloys was investigated for dry storage of spent nuclear fuels in a closed or sealed system. A dependency on alloy type, temperature and initial humidity was determined for 1100, 5052 and 6061 aluminum alloys. Results after 4500 hours of environmental testing show that for a closed system, corrosion tends to follow a power law with the rate decreasing with increasing exposure. As corrosion takes place, two phenomena occur: (1) a hydrated layer builds up to resist corrosion, and (2) moisture is depleted from the system and the humidity slowly decreases with time. At a critical level of relative humidity, corrosion reactions stop, and no additional corrosion occurs if the system remains closed. The results form the basis for the development of an acceptance criteria for the dry storage of aluminum clad spent nuclear fuels

  3. Comparison of energy expenditure when moving on wet and dry clothes.

    OpenAIRE

    Hrubý, Pavel

    2013-01-01

    Title: Comparison of energy expenditure when moving on wet and dry clothes. Objectives: The aim of this study is to compare energy expenditure based on heart rate when moving in dryand wet clothes in different speeds. Methods: Quantitative research and subsequent intra-individual comparison of pulse frequency and energy expenditure when moving in dry and wet clothes. Movements were conducted on a treadmill and heart rate was measured by using sporttesters. Results: From the results we can ded...

  4. Dry Eye

    Science.gov (United States)

    ... Eye » Facts About Dry Eye Listen Facts About Dry Eye Fact Sheet Blurb The National Eye Institute (NEI) ... and their families search for general information about dry eye. An eye care professional who has examined the ...

  5. Development and Validation of a Simulation Model for the Temperature Field during High-Frequency Heating of Wood

    Directory of Open Access Journals (Sweden)

    Haojie Chai

    2018-06-01

    Full Text Available In the process of applying high-frequency heating technology to wood drying, controlling the material temperature affects both drying speed and drying quality. Therefore, research on the heat transfer mechanism of high-frequency heating of wood is of great significance. To study the heat transfer mechanism of high-frequency heating, the finite element method was used to establish and solve the wood high-frequency heating model, and experimental verification was carried out. With a decrease in moisture content, the heating rate decreased, then increased, and then decreased again. There was no obvious linear relationship between the moisture content and heating rate; the simulation accuracy of the heating rate was higher in the early and later drying stages and slightly lower near the fiber saturation point. For the central section temperature distribution, the simulation and actual measurement results matched poorly in the early drying stage because the model did not fully consider the differences in the moisture content distribution of the actual test materials. In the later drying stage, the moisture content distribution of the test materials became uniform, which was consistent with the model assumptions. Considering the changes in heating rate and temperature distribution, the accuracy of the model is good under the fiber saturation point, and it can be used to predict the high-frequency heating process of wood.

  6. New approach for dry formulation techniques for rhizobacteria

    Science.gov (United States)

    Elchin, A. A.; Mashinistova, A. V.; Gorbunova, N. V.; Muratov, V. S.; Kydralieva, K. A.; Jorobekova, Sh. J.

    2009-04-01

    Two beneficial Pseudomonas isolates selected from rhizosphere of abundant weed - couch-grass Elytrigia repens L. Nevski have been found to have biocontrol activity. An adequate biocontrol effect requires high yield and long stability of the bacterial preparation [1], which could be achieved by an effective and stable formulation. This study was aimed to test various approaches to dry formulation techniques for Pseudomonas- based preparations. To reach this goal, two drying formulation techniques have been tested: the first one, spray drying and the second, low-temperature contact-convective drying in fluidized bed. The optimal temperature parameters for each technique were estimated. Main merits of the selected approach to dry technique are high yield, moderate specific energy expenditures per 1 kg of evaporated moisture, minimal time of contact of the drying product with drying agent. The technological process for dry formulation included the following stages: the obtaining of cell liquids, the low-temperature concentrating and the subsequent drying of a concentrate. The preliminary technological stages consist in cultivation of the rhizobacteria cultures and concentrating the cell liquids. The following requirements for cultivation regime in laboratory conditions were proposed: optimal temperatures are 26-28°С in 3 days, concentration of viable cells in cell liquid makes 1010-1011 cell/g of absolutely dry substance (ADS). For concentrating the cell liquids the method of a vacuum evaporation, which preserves both rhizobacteria cells and the secondary metabolites of cell liquid, has been used. The process of concentrating was conducted at the minimum possible temperature, i.e. not above 30-33°С. In this case the concentration of viable cells has decreased up to 109-1010 cell/g of ADS. For spray drying the laboratory up-dated drier BUCHI 190, intended for the drying of thermolabile products, was used. The temperatures of an in- and outcoming air did not exceed

  7. Effect of Drying Conditions on the Catalytic Performance, Structure, and Reaction Rates over the Fe-Co-Mn/MgO Catalyst for Production of Light Olefins

    Directory of Open Access Journals (Sweden)

    Majid Abdouss

    2018-01-01

    How to Cite: Abdouss, M., Arsalanfar, M., Mirzaei, N., Zamani, Y. (2018. Effect of Drying Conditions on the Catalytic Performance, Structure, and Reaction Rates over the Fe-Co-Mn/MgO Catalyst for Production of Light Olefins. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (1: 97-112 (doi:10.9767/bcrec.13.1.1222.97-112

  8. Trehalose and sorbitol alter the kinetic pattern of inactivation of glutamate dehydrogenase during drying in levitated microdroplets.

    Science.gov (United States)

    Lorenzen, Elke; Lee, Geoffrey

    2013-12-01

    A single-droplet acoustic levitator was used to determine the drying rate and the kinetics of inactivation of glutamate dehydrogenase in the presence of added trehalose or sorbitol. The solution was also spray dried under the same process condition of drying gas temperature on a bench-top machine. Both trehalose and sorbitol delay the point of onset of enzyme inactivation which lies after the critical point of drying. Both carbohydrates also reduce the apparent rate constant of inactivation calculated during the subsequent inactivation phase. The carbohydrates stabilise, therefore, the enzyme during droplet drying and particle formation mainly during the falling rate drying period. There is no difference between the stabilising effects of the two carbohydrates when examined as levitated single droplets. This suggests the importance of water replacement as a stabilising mechanism in the levitated droplets/particles. On spray drying, the trehalose stabilises the enzyme better than does the sorbitol at a drying gas (outlet) temperature of 60°C. This suggests glass formation with the trehalose but not the sorbitol during the very rapid drying process of small-atomised droplets in the spray dryer. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  9. Pulsed Streamer Discharge Characteristics of Ozone Production in Dry Air

    OpenAIRE

    Samaranayake, W.J.M.; Miyahara, Y.; Namihira, T.; Katsuki, S.; Sakugawa, T.; Hackam, R.; Akiyama, H.; ナミヒラ, タカオ; カツキ, スナオ; アキヤマ, ヒデノリ; 波平, 隆男; 勝木, 淳; 秋山, 秀典

    2000-01-01

    Experimental investigation of HV short pulsed streamer discharges in dry air-fed ozonizers under various operating conditions are reported. Ozone concentration, energy input and ozone production yield (efficiency) were measured at various voltages (14 to 37 kV), pulse repetition rates (25 to 400 pulses per second, pps), flow rates (1.5 to 3.0 1/min) and different gap spacings (10 to 20 mm) at a pressure of 1.01×105 Pa in dry air. A spiral copper wire (1 mm in diameter) made to a cylindrical c...

  10. Relationships of solar radiation and vapour pressure deficit with photosynthesis and water relations in dry-land pigeon pea

    International Nuclear Information System (INIS)

    Subramanian, V.B.; Venkateswarlu, S.; Maheswari, M.; Sankar, G.R.M.

    1994-01-01

    A study was undertaken to compare the relationships of photosynthetically active radiation (PAR) and vapour pressure deficit (VPD) with carbon assimilation and water relations of dry-land pigeon pea at the vegetative and reproductive phases. Photosynthetic rate (Pn), transpiration rate (T), leaf water potential (wL), and stomatal conductance (gs) were measured at 7- to 10-day intervals from 1 month after seedling until a fortnight before harvest during two seasons. Generally, Pn, T, and gs were higher and wL was lower during the reproductive than during the vegetative phase. At high PAR and VPD, Pn, T, wL, and gs decreased. The decrease in the T at high PAR was smaller during the reproductive phase. Growth of dry-land pigeon pea was affected not only during periods of water stress which was associated with high PAR and high VPD but also under conditions of favourable plant water status which were associated with less than optimal levels of PAR. It also showed transpiration efficiency (TE) was lower during the pod-filling than during the vegetative phase, when PAR was optimum

  11. Technological Development of Brewing in Domestic Refrigerator Using Freeze-Dried Raw Materials

    Directory of Open Access Journals (Sweden)

    Angelika-Ioanna Gialleli

    2017-01-01

    Full Text Available Development of a novel directly marketable beer brewed at low temperature in a domestic refrigerator combined with yeast immobilization technology is presented in this study. Separately, freeze-dried wort and immobilized cells of the cryotolerant yeast strain Saccharomyces cerevisiae AXAZ-1 on tubular cellulose were used in low-temperature fermentation (2, 5 and 7 °C. The positive eff ect of tubular cellulose during low-temperature brewing was examined, revealing that freeze-dried immobilized yeast cells on tubular cellulose signifi cantly reduced the fermentation rates in contrast to freeze-dried free cells, although they are recommended for home-made beer production. Immobilization also enhanced the yeast resistance at low-temperature fermentation, reducing the minimum brewing temperature value from 5 to 2 °C. In the case of high-quality beer production, the eff ect of temperature and initial sugar concentration on the fermentation kinetics were assessed. Sensory enrichment of the produced beer was confi rmed by the analysis of the fi nal products, revealing a low diacetyl concentration, together with improved polyphenol content, aroma profi le and clarity. The proposed process for beer production in a domestic refrigerator can easily be commercialized and applied by dissolving the content of two separate packages in tap water; one package containing dried wort and the other dried immobilized cells on tubular cellulose suspended in tap water.

  12. Technological Development of Brewing in Domestic Refrigerator Using Freeze-Dried Raw Materials.

    Science.gov (United States)

    Gialleli, Angelika-Ioanna; Ganatsios, Vassilios; Terpou, Antonia; Kanellaki, Maria; Bekatorou, Argyro; Koutinas, Athanasios A; Dimitrellou, Dimitra

    2017-09-01

    Development of a novel directly marketable beer brewed at low temperature in a domestic refrigerator combined with yeast immobilization technology is presented in this study. Separately, freeze-dried wort and immobilized cells of the cryotolerant yeast strain Saccharomyces cerevisiae AXAZ-1 on tubular cellulose were used in low-temperature fermentation (2, 5 and 7 °C). The positive effect of tubular cellulose during low-temperature brewing was examined, revealing that freeze-dried immobilized yeast cells on tubular cellulose significantly reduced the fermentation rates in contrast to freeze-dried free cells, although they are recommended for home-made beer production. Immobilization also enhanced the yeast resistance at low-temperature fermentation, reducing the minimum brewing temperature value from 5 to 2 °C. In the case of high-quality beer production, the effect of temperature and initial sugar concentration on the fermentation kinetics were assessed. Sensory enrichment of the produced beer was confirmed by the analysis of the final products, revealing a low diacetyl concentration, together with improved polyphenol content, aroma profile and clarity. The proposed process for beer production in a domestic refrigerator can easily be commercialized and applied by dissolving the content of two separate packages in tap water; one package containing dried wort and the other dried immobilized cells on tubular cellulose suspended in tap water.

  13. Effect of microwave freeze drying on quality and energy supply in drying of barley grass.

    Science.gov (United States)

    Cao, Xiaohuang; Zhang, Min; Mujumdar, Arun S; Zhong, Qifeng; Wang, Zhushang

    2018-03-01

    Young barley grass leaves are well-known for containing the antioxidant substances flavonoid and chlorophyll. However, low product quality and energy efficiency exist with respect to the dehydration of barley grass leaves. To improve energy supply and the quality of barley grass, microwave heating instead of contact heat was applied for the freeze drying of barley grass at a pilot scale at 1, 1.5 and 2 W g -1 , respectively; After drying, energy supply and quality parameters of color, moisture content, chlorophyll, flavonoids, odors of dried barley grass were determined to evaluate the feasibility of the study. Microwave freeze drying (MFD) allowed a low energy supply and high contents of chlorophyll and flavonoids. A lightness value of 60.0, a green value of -11.5 and an energy supply of 0.61 kW h -1  g -1 were observed in 1.5 W g -1 MFD; whereas drying time (7 h) decreased by 42% compared to contact heating. Maximum content of flavonoid and chlorophyll was 11.7 and 12.8 g kg -1 barley grass. Microwave heating leads to an odor change larger than that for contact heating observed for the freeze drying of barley grass. MFD retains chlorophyll and flavonoids, as well as colors and odors of samples, and also decreases energy consumption in the freeze drying of barley grass. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Development of a rapid screening protocol for selection of strains resistant to spray drying and storage in dry powder.

    Science.gov (United States)

    Reimann, S; Grattepanche, F; Baggenstos, C; Rezzonico, E; Berger, B; Arigoni, F; Lacroix, C

    2010-06-01

    An efficient screening method for selection of Bifidobacterium longum strains resistant to spray drying and storage was developed based on randomly amplified polymorphic DNA (RAPD) for identification of the best survivors in mixed strains bacterial preparations. Three different primers were used to generate RAPD profiles of 22 B. longum strains. All strains were distinguished according to their RAPD profiles except for the strain NCC2705 and its H(2)O(2) resistant derivative variant. The 22 strains were grouped in 3 batches of 7, 7 and 8 strains and subjected to spray drying and storage at 30 and 37 °C under anaerobic conditions. Batch survival rates after spray drying reached 17.1±4.4%. Strains showing the highest prevalence and/or resistance to storage at 37 °C were selected from individual batches for subsequent spray drying and storage testing. After 67 days of storage, NCC572 was identified as the dominant strain in powder. The stability of strain NCC572 was confirmed by performing single spray drying and storage tests. Out of 22 B. longum strains, a robust strain was identified by combining RAPD with a simultaneous screening test for survival under spray drying and storage. The method allowed a fast screening of B. longum strains in mixture for resistance to spray drying and storage compared to traditional screening procedures carried out with individual strains, in the same conditions. This approach could be applied to other stress conditions.

  15. Accelerated dry curing of hams.

    Science.gov (United States)

    Marriott, N G; Kelly, R F; Shaffer, C K; Graham, P P; Boling, J W

    1985-01-01

    Uncured pork legs from the right side of 18 carcasses were treated with a Ross Tenderizer and the left side were controls. All 36 samples were dry-cured for 40, 56 or 70 days and evaluated for appearance traits, cure penetration characteristics, microbial load, Kramer Shear force and taste attributes. The tenderization treatment had no effect (P > 0·05) on visual color or cure penetration rate, weight loss before curing, percentage moisture, nitrate level, nitrite level, total plate count, anaerobic counts, psychrotrophic counts, objective and subjective tenderness measurements or juiciness. However, the higher values of salt suggested a possible acceleration of the dry cure penetration process among the tenderized samples. Cure time had no effect (P > 0·05) on percentage moisture, percentage salt, nitrate content, nitrite content, shear force and juiciness. Results suggest a limited effect of the mechanical tenderization process on certain traits related to dry curing and that total process time should be at least 70 days if color stability during cooking is desired. Copyright © 1985. Published by Elsevier Ltd.

  16. Productive performance of dairy heifers supplemented in the dry season differed pasture, under two stoking rates

    Directory of Open Access Journals (Sweden)

    Ricardo Dias Signoretti

    2013-01-01

    Full Text Available The objective was to evaluate the characteristics of productive performance of crossbred Holstein x Gir heifers grazing on Brachiaria brizantha differed (Hochst. A. Rich. Stapf. cv. Marandu managed in a rotational stocking, during the dry season of the year. The treatments evaluated were stocking rate of 1.0 UA / ha and 6.0 g / kg body weight (BW / day and stocking rate of 2.0 UA / ha and 12.0 g / kg BW / day-energy protein supplement. The heifers had a average age of 17.46 ± 3.74 months and BW averaging 304.83 ± 33.7 kg and were distributed to a randomized block. The animals were weighed and measured for height at the withers (HW, heart girth (HG, rump length (RL and body condition score (BCS. The BW average batch was used for the calculations to adjust the amount of supplement offered. It was found that the performance of heifers that were subjected to stocking with 2 UA/ha and 12.0 g / kg BW had higher average daily gain (0.579 kg / animal in comparison to those undergoing stocking with 1 UA/ha and 6.0 g / kg BW (0.361 kg / animal. With respect to the development of animal body, it was found that the initial HG, initial and final HW, the initial RL and BCS did not differ between combinations of stocking rates and levels of supplementation. The heifers showed better productive performance in situations differed pastures, with 2 UA/ha and 12.0g/kg BW/day the protein-energetic supplement.

  17. Low hygroscopic spray-dried powders with trans-glycosylated food additives enhance the solubility and oral bioavailability of ipriflavone.

    Science.gov (United States)

    Fujimori, Miki; Kadota, Kazunori; Kato, Kouki; Seto, Yoshiki; Onoue, Satomi; Sato, Hideyuki; Ueda, Hiroshi; Tozuka, Yuichi

    2016-01-01

    The improvement in the solubility and dissolution rate may promote a superior absorption property towards the human body. The spray-dried powders (SDPs) of ipriflavone, which was used as a model hydrophobic flavone, with trans-glycosylated rutin (Rutin-G) showed the highest solubilizing effect of ipriflavone among three types of trans-glycosylated food additives. The SDPs of ipriflavone with Rutin-G have both a significant higher dissolution rate and solubility enhancement of ipriflavone. This spray-dried formulation of ipriflavone with Rutin-G exhibited a low hygroscopicity as a critical factor in product preservation. In addition, an improvement in the oral absorption of ipriflavone was achieved by means of preparing composite particles of ipriflavone/Rutin-G via spray drying, indicating a 4.3-fold increase in the area under the plasma concentration-time curve compared with that of untreated ipriflavone. These phenomena could be applicable to food ingredients involving hydrophobic flavones for producing healthy food with a high quality. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. A new framework to assess risk for a spent fuel dry storage facility

    International Nuclear Information System (INIS)

    Ryu, J. H.; Jae, M. S.; Jung, C. W.

    2004-01-01

    A spent fuel dry storage facility is a dry cooling storage facility for storing irradiated nuclear fuel and associated radioactive materials. It has very small possibilities to release radiation materials. It means a safety analysis for a spent fuel dry storage facility is required before construction. In this study, a new framework for assessing risk associated with a spent fuel dry storage facility is represented. A safety assessment framework includes 3 modules such as assessment of basket/cylinder failure rates, that of overall storage system, and site modeling. A reliability physics model for failure rates, event tree analysis(ETA)/fault tree analysis for system analysis, Bayesian analysis for initial events data, and MACCS code for consequence analysis have been used in this study

  19. Mass transfer characteristics of bisporus mushroom ( Agaricus bisporus) slices during convective hot air drying

    Science.gov (United States)

    Ghanbarian, Davoud; Baraani Dastjerdi, Mojtaba; Torki-Harchegani, Mehdi

    2016-05-01

    An accurate understanding of moisture transfer parameters, including moisture diffusivity and moisture transfer coefficient, is essential for efficient mass transfer analysis and to design new dryers or improve existing drying equipments. The main objective of the present study was to carry out an experimental and theoretical investigation of mushroom slices drying and determine the mass transfer characteristics of the samples dried under different conditions. The mushroom slices with two thicknesses of 3 and 5 mm were dried at air temperatures of 40, 50 and 60 °C and air flow rates of 1 and 1.5 m s-1. The Dincer and Dost model was used to determine the moisture transfer parameters and predict the drying curves. It was observed that the entire drying process took place in the falling drying rate period. The obtained lag factor and Biot number indicated that the moisture transfer in the samples was controlled by both internal and external resistance. The effective moisture diffusivity and the moisture transfer coefficient increased with increasing air temperature, air flow rate and samples thickness and varied in the ranges of 6.5175 × 10-10 to 1.6726 × 10-9 m2 s-1 and 2.7715 × 10-7 to 3.5512 × 10-7 m s-1, respectively. The validation of the Dincer and Dost model indicated a good capability of the model to describe the drying curves of the mushroom slices.

  20. Spray Drying Processing: granules production and drying kinetics of droplets

    International Nuclear Information System (INIS)

    Mondragon, R.; Julia, J. E.; Barba, A.; Jarque, J. C.

    2013-01-01

    Spray drying is a unit operation very common in many industrial processes. For each particular application, the resulting granulated material must possess determined properties that depend on the conditions in which the spray drying processing has been carried out, and whose dependence must be known in order to optimize the quality of the material obtained. The large number of variables that influence on the processes of matter and energy transfer and on the formation of granular material has required a detailed analysis of the drying process. Over the years there have been many studies on the spray drying processing of all kind of materials and the influence of process variables on the drying kinetics of the granulated material properties obtained. This article lists the most important works published for both the spray drying processing and the drying of individual droplets, as well as studies aimed at modeling the drying kinetics of drops. (Author)

  1. The application of dual-electrode through vial impedance spectroscopy for the determination of ice interface temperatures, primary drying rate and vial heat transfer coefficient in lyophilization process development.

    Science.gov (United States)

    Smith, Geoff; Jeeraruangrattana, Yowwares; Ermolina, Irina

    2018-06-22

    Through vial impedance spectroscopy (TVIS) is a product non-invasive process analytical technology which exploits the frequency dependence of the complex impedance spectrum of a composite object (i.e. the freeze-drying vial and its contents) in order to track the progression of the freeze-drying cycle. This work demonstrates the use of a dual electrode system, attached to the external surface of a type I glass tubing vial (nominal capacity 10 mL) in the prediction of (i) the ice interface temperatures at the sublimation front and at the base of the vial, and (ii) the primary drying rate. A value for the heat transfer coefficient (for a chamber pressure of 270 µbar) was then calculated from these parameters and shown to be comparable to that published by Tchessalov[1]. Copyright © 2018. Published by Elsevier B.V.

  2. Overlay of semi-dried functional layers in offset printing for rapid and high-precision fabrication of flexible TFTs

    Science.gov (United States)

    Kusaka, Yasuyuki; Sugihara, Kazuyoshi; Koutake, Masayoshi; Ushijima, Hirobumi

    2014-03-01

    We achieved a reduction in the misregistration of overlying patterns printed on a flexible plastic film and a drastically shorter processing time with fully printed thin-film transistor (TFT) fabrication. This was achieved using a newly developed wet-on-wet (WoW) printing process wherein a subsequent layer can be printed on a previous semi-dried (not-sintered) layer. In the WoW process, as examined by rheological measurements, a semi-dried (highly solidified) state of ink was attained before transferring by utilizing the solvent uptake of a PDMS blanket in offset printing to ensure the structural integrity of the ink layer, and to reduce the inter-contamination of adjoining layers. Loss-on-drying tests and resistivity measurements indicated that molecular penetration at the boundary of adjoining layers with a length of c.a. 70 nm occurred in the WoW process; however, with thicker electrodes, we successfully fabricated a WoW-processed TFT whose performance was comparable with a TFT formed by a conventional printing process.

  3. Mapping the depth to ice-cemented ground in the high elevation Dry Valleys, Antarctica

    Science.gov (United States)

    Marinova, M.; McKay, C. P.; Heldmann, J. L.; Davila, A. F.; Andersen, D. T.; Jackson, A.; Lacelle, D.; Paulsen, G.; Pollard, W. H.; Zacny, K.

    2011-12-01

    The high elevation Dry Valleys of Antarctica provide a unique location for the study of permafrost distribution and stability. In particular, the extremely arid and cold conditions preclude the presence of liquid water, and the exchange of water between the ice-cemented ground and the atmosphere is through vapour transport (diffusion). In addition, the low atmospheric humidity results in the desiccation of the subsurface, forming a dry permafrost layer (i.e., cryotic soils which are dry and not ice-cemented). Weather data suggests that subsurface ice is unstable under current climatic conditions. Yet we do find ice-cemented ground in these valleys. This contradiction provides insight into energy balance modeling, vapour transport, and additional climate effects which stabilize subsurface ice. To study the driving factors in the stability and distribution of ice-cemented ground, we have extensively mapped the depth to ice-cemented ground in University Valley (1730 m; 77°S 51.8', 160°E 43'), and three neighbouring valleys in the Beacon Valley area. We measured the depth to ice-cemented ground at 15-40 locations per valley by digging soil pits and drilling until ice was reached; for each location 3-5 measurements within a ~1 m2 area were averaged (see figure). This high-resolution mapping of the depth to ice-cemented ground provides new insight on the distribution and stability of subsurface ice, and shows significant variability in the depth to ground ice within each valley. We are combining data from mapping the depth to ice-cemented ground with year-round, in situ measurements of the atmospheric and subsurface conditions, such as temperature, humidity, wind, and light, to model the local stability of ice-cemented ground. We are using this dataset to examine the effects of slopes, shading, and soil properties, as well as the suggested importance of snow recurrence, to better understand diffusion-controlled subsurface ice stability.

  4. Generalized drying curves in conductive/convective paper drying

    Directory of Open Access Journals (Sweden)

    O.C. Motta Lima

    2000-12-01

    Full Text Available This work presents a study related to conductive/convective drying of paper (cellulose sheets over heated surfaces, under natural and forced air conditions. The experimental apparatus consists in a metallic box heated by a thermostatic bath containing an upper surface on which the paper samples (about 1 mm thick are placed. The system is submitted to ambient air under two different conditions: natural convection and forced convection provide by an adjustable blower. The influence of initial paper moisture content, drying (heated surface temperature and air velocity on drying curves behavior is observed under different drying conditions. Hence, these influence is studied through the proposal of generalized drying curves. Those curves are analyzed individually for each air condition exposed above and for both together. A set of equations to fit them is proposed and discussed.

  5. Radiation preservation of dried fish indigenous to Asia

    International Nuclear Information System (INIS)

    Hussain, A.M.; Haz, I.; Chaudry, M.A.

    1989-01-01

    Commercially dried marine fish such as mackerel, shark, tuna and saram (Scomboromorus commersoni) contain 36-50% moisture and 10-12% salt. During preliminary studies, there was visible mould growth on sun or over dried freshwater rahu (Labeo sp.) fish containing moisture levels above 15.5%. Fusarium was present in samples containing a moisture level of 46% and above, while below this level Aspergillus sp. and Penicillium sp. were present. Dipping of fish fillets in 2% potassium sorbate checked the visible mould growth on irradiated (0.25-1 kGy) and non-irradiated rahu fish containing moisture levels of 20-40%. Radiation doses of 0.5-0.75 kGy were found suitable for keeping sun or oven dried samples in good and acceptable conditions for six months at room temperature. Polyethylene film about 0.1 mm thick was suitable for packing dried fish as far as insect penetration, bacterial permeability, water permeability, water vapour transfer rate and weight loss of dried fish during storage were concerned. An oxygen absorber was effective for six months in maintaining colour, odour and texture of irradiated dried fish packaged in an oxygen impermeable film. Dried fish was acceptable to consumers except to some extent for its texture. Bulk storage of dried fish fillets at an ambient temperature for 3 months produced no adverse changes in the fillets. About 5% of the fillets were badly shredded during transportation of irradiated dried fish over a distance of about 2,400 km. (author). 27 refs, 6 figs, 13 tabs

  6. High-rate lithium thionyl chloride cells

    Science.gov (United States)

    Goebel, F.

    1982-03-01

    A high-rate C cell with disc electrodes was developed to demonstrate current rates which are comparable to other primary systems. The tests performed established the limits of abuse beyond which the cell becomes hazardous. Tests include: impact, shock, and vibration tests; temperature cycling; and salt water immersion of fresh cells.

  7. Drying characteristic, enzyme inactivation and browning pigmentation kinetics of controlled humidity-convective drying of banana slices

    Science.gov (United States)

    Sarpong, Frederick; Yu, Xiaojie; Zhou, Cunshan; Oteng-Darko, Patricia; Amenorfe, Leticia Peace; Wu, Bengang; Bai, Junwen; Ma, Haile

    2018-04-01

    Investigating the kinetics of enzyme activities and browning indexes in food are very essential in understanding the enzyme inactivation and browning pigmentation reaction during drying processing. In order to understand and predict accurately the enzyme inactivation and browning pigmentation of banana slices using Relative Humidity (RH)-convective hot air dryer aided by ultrasound (US) pretreatment, this study was conducted. Drying was carried out with 20 kHz frequency of US-pretreatment using three durations (10 20 and 30 min) and RH (10 20 and 30%) conditions at 70 °C and 2.0 m/s air velocity. The kinetic study of both enzyme inactivation and browning pigmentation results were compared to their relevance of fit in terms of coefficient of correlation (R2), the root mean square error (RMSE) and the reduced chi-square (χ 2). First order and second-order polynomial kinetic model fitted well for enzyme inactivation and browning indexes respectively. Both enzymes inactivation kinetics and enzymatic browning index (EBI) declined significantly (p drying time in all drying conditions and rate of decrease intensified in longer US-pretreatment duration and lower RH conditions. However, shorter US-pretreatment duration and higher RH conditions reduced the non- enzymatic browning index (NBI) significantly. Again, longer US-pretreatment duration and lower RH shortened the drying time but adversely created more microspores from the micrograph study. Longer US pretreatment and lower RH decrease significantly (p < 0.05) the L* and b* values whereas the a* values was increased.

  8. Design of Tomato Drying System by Utilizing Brine Geothermal

    Science.gov (United States)

    Afuar, W.; Sibarani, B.; Abdurrahman, G.; Hendrarsakti, J.

    2016-09-01

    Cultivation of tomato plants in Indonesia has been started since 1961.Tomatoes generally will rot in three days if left on storage. Moreover, low quality tomatoes have cheaper price. After harvested, tomatoes need to be treated by drying process so it can last longer. Energy for drying tomatoes can be obtained by utilizing heat from geothermal brine. Purpose of this research is to design a tomato drying system by extracting heat of geothermal brine from separator with certain flow rate to heat up water by using a heat exchanger. Furthermore, this water will be used to heat up the surrounding air which is circulated by blower system to heat up the tomatoes chamber. Tomatoes drying process needs temperature range of 50-70°C to evaporate water content from 95.7% to 26%. After that treatment, the tomatoes are expected to have better durability. The objective of this study is to determine the quantity of hot brine which is needed for drying tomatoes and to design a drying system so that tomatoes can last longer.

  9. Characterisation of Aronia powders obtained by different drying processes.

    Science.gov (United States)

    Horszwald, Anna; Julien, Heritier; Andlauer, Wilfried

    2013-12-01

    Nowadays, food industry is facing challenges connected with the preservation of the highest possible quality of fruit products obtained after processing. Attention has been drawn to Aronia fruits due to numerous health promoting properties of their products. However, processing of Aronia, like other berries, leads to difficulties that stem from the preparation process, as well as changes in the composition of bioactive compounds. Consequently, in this study, Aronia commercial juice was subjected to different drying techniques: spray drying, freeze drying and vacuum drying with the temperature range of 40-80 °C. All powders obtained had a high content of total polyphenols. Powders gained by spray drying had the highest values which corresponded to a high content of total flavonoids, total monomeric anthocyanins, cyaniding-3-glucoside and total proanthocyanidins. Analysis of the results exhibited a correlation between selected bioactive compounds and their antioxidant capacity. In conclusion, drying techniques have an impact on selected quality parameters, and different drying techniques cause changes in the content of bioactives analysed. Spray drying can be recommended for preservation of bioactives in Aronia products. Powder quality depends mainly on the process applied and parameters chosen. Therefore, Aronia powders production should be adapted to the requirements and design of the final product. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Tropical Drosophila ananassae of wet-dry seasons show cross resistance to heat, drought and starvation

    Directory of Open Access Journals (Sweden)

    Chanderkala Lambhod

    2017-11-01

    Full Text Available Plastic responses to multiple environmental stressors in wet or dry seasonal populations of tropical Drosophila species have received less attention. We tested plastic effects of heat hardening, acclimation to drought or starvation, and changes in trehalose, proline and body lipids in Drosophila ananassae flies reared under wet or dry season-specific conditions. Wet season flies revealed significant increase in heat knockdown, starvation resistance and body lipids after heat hardening. However, accumulation of proline was observed only after desiccation acclimation of dry season flies while wet season flies elicited no proline but trehalose only. Therefore, drought-induced proline can be a marker metabolite for dry-season flies. Further, partial utilization of proline and trehalose under heat hardening reflects their possible thermoprotective effects. Heat hardening elicited cross-protection to starvation stress. Stressor-specific accumulation or utilization as well as rates of metabolic change for each energy metabolite were significantly higher in wet-season flies than dry-season flies. Energy metabolite changes due to inter-related stressors (heat versus desiccation or starvation resulted in possible maintenance of energetic homeostasis in wet- or dry-season flies. Thus, low or high humidity-induced plastic changes in energy metabolites can provide cross-protection to seasonally varying climatic stressors.

  11. Quantum data locking for high-rate private communication

    OpenAIRE

    Lupo, Cosmo; Lloyd, Seth

    2015-01-01

    We show that, if the accessible information is used as a security quantifier, quantum channels with a certain symmetry can convey private messages at a tremendously high rate, as high as less than one bit below the rate of non-private classical communication. This result is obtained by exploiting the quantum data locking effect. The price to pay to achieve such a high private communication rate is that accessible information security is in general not composable. However, composable security ...

  12. Drying a tuberculosis vaccine without freezing.

    Science.gov (United States)

    Wong, Yun-Ling; Sampson, Samantha; Germishuizen, Willem Andreas; Goonesekera, Sunali; Caponetti, Giovanni; Sadoff, Jerry; Bloom, Barry R; Edwards, David

    2007-02-20

    With the increasing incidence of tuberculosis and drug resistant disease in developing countries due to HIV/AIDS, there is a need for vaccines that are more effective than the present bacillus Calmette-Guérin (BCG) vaccine. We demonstrate that BCG vaccine can be dried without traditional freezing and maintained with remarkable refrigerated and room-temperature stability for months through spray drying. Studies with a model Mycobacterium (Mycobacterium smegmatis) revealed that by removing salts and cryoprotectant (e.g., glycerol) from bacterial suspensions, the significant osmotic pressures that are normally produced on bacterial membranes through droplet drying can be reduced sufficiently to minimize loss of viability on drying by up to 2 orders of magnitude. By placing the bacteria in a matrix of leucine, high-yield, free-flowing, "vial-fillable" powders of bacteria (including M. smegmatis and M. bovis BCG) can be produced. These powders show relatively minor losses of activity after maintenance at 4 degrees C and 25 degrees C up to and beyond 4 months. Comparisons with lyophilized material prepared both with the same formulation and with a commercial formulation reveal that the spray-dried BCG has better overall viability on drying.

  13. Development of Solar Biomass Drying System

    Directory of Open Access Journals (Sweden)

    Atnaw Samson Mekbib

    2017-01-01

    Full Text Available The purpose of this paper focuses on the experimental pre-treatment of biomass in agricultural site using solar energy as power source and contribution of common use and efficiency solar dryer system for consumer. The main purpose of this design for solar cabinet dryer is to dry biomass via direct and indirect heating. Direct heating is the simplest method to dry biomass by exposing the biomass under direct sunlight. The solar cabinet dryer traps solar heat to increase the temperature of the drying chamber. The biomass absorbs the heat and transforms the moisture content within the biomass into water vapour and then leaves the chamber via the exhaust air outlet. This problem however can be solved by adopting indirect solar drying system. High and controllable temperatures can be achieved as a fan is used to move the air through the solar collector. This project has successfully created a solar cabinet dryer that combines both direct and indirect solar drying systems and functions to dry biomass as well as crops effectively and efficiently with minimal maintenance. Hence, it is indeed a substitution for conventional dryers which are affordable to local farmers.

  14. Thrombus Formation at High Shear Rates.

    Science.gov (United States)

    Casa, Lauren D C; Ku, David N

    2017-06-21

    The final common pathway in myocardial infarction and ischemic stroke is occlusion of blood flow from a thrombus forming under high shear rates in arteries. A high-shear thrombus forms rapidly and is distinct from the slow formation of coagulation that occurs in stagnant blood. Thrombosis at high shear rates depends primarily on the long protein von Willebrand factor (vWF) and platelets, with hemodynamics playing an important role in each stage of thrombus formation, including vWF binding, platelet adhesion, platelet activation, and rapid thrombus growth. The prediction of high-shear thrombosis is a major area of biofluid mechanics in which point-of-care testing and computational modeling are promising future directions for clinically relevant research. Further research in this area will enable identification of patients at high risk for arterial thrombosis, improve prevention and treatment based on shear-dependent biological mechanisms, and improve blood-contacting device design to reduce thrombosis risk.

  15. Influence of Airflow on Laboratory Storage of High Moisture Corn Stover

    Energy Technology Data Exchange (ETDEWEB)

    Lynn M. Wendt; Ian J. Bonner; Amber N. Hoover; Rachel M. Emerson; William A. Smith

    2014-04-01

    Storing high moisture biomass for bioenergy use is a reality in many areas of the country where wet harvest conditions and environmental factors prevent dry storage from being feasible. Aerobic storage of high moisture biomass leads to microbial degradation and self-heating, but oxygen limitation can aid in material preservation. To understand the influence of oxygen presence on high moisture biomass (50 %, wet basis), three airflow rates were tested on corn stover stored in laboratory reactors. Temperature, carbon dioxide production, dry matter loss, chemical composition, fungal abundance, pH, and organic acids were used to monitor the effects of airflow on storage conditions. The results of this work indicate that oxygen availability impacts both the duration of self-heating and the severity of dry matter loss. High airflow systems experienced the greatest initial rates of loss but a shortened microbially active period that limited total dry matter loss (19 %). Intermediate airflow had improved preservation in short-term storage compared to high airflow systems but accumulated the greatest dry matter loss over time (up to 27 %) as a result of an extended microbially active period. Low airflow systems displayed the best performance with the lowest rates of loss and total loss (10 %) in storage at 50 days. Total structural sugar levels of the stored material were preserved, although glucan enrichment and xylan loss were documented in the high and intermediate flow conditions. By understanding the role of oxygen availability on biomass storage performance, the requirements for high moisture storage solutions may begin to be experimentally defined.

  16. EFFECT OF MECHANICAL CONDITIONING ON THIN-LAYER DRYING OF ENERGY SORGHUM (Sorghum bicolor (L.) Moench)

    Energy Technology Data Exchange (ETDEWEB)

    Ian J. Bonner; Kevin L. Kenney

    2012-10-01

    Cellulosic energy varieties of Sorghum bicolor (L.) Moench show promise as a bioenergy feedstock, however, high moisture content at the time of harvest results in unacceptable levels of degradation when stored in aerobic conditions. To safely store sorghum biomass for extended periods in baled format, the material must be dried to inhibit microbial growth. One possible solution is allowing the material to dry under natural in-field conditions. This study examines the differences in thin-layer drying rates of intact and conditioned sorghum under laboratory-controlled temperatures and relative humidity levels (20 degrees C and 30 degrees C from 40% to 85% relative humidity), and models experimental data using the Page’s Modified equation. The results demonstrate that conditioning drastically accelerates drying times. Relative humidity had a large impact on the time required to reach a safe storage moisture content for intact material (approximately 200 hours at 30 degrees C and 40% relative humidity and 400 hours at 30 degrees C and 70% relative humidity), but little to no impact on the thin-layer drying times of conditioned material (approximately 50 hours for all humidity levels < 70% at 30 degrees C). The drying equation parameters were influenced by temperature, relative humidity, initial moisture content, and material damage, allowing drying curves to be empirically predicted. The results of this study provide valuable information applicable to the agricultural community and to future research on drying simulation and management of energy sorghum.

  17. Temperate heath plant response to dry conditions depends on growth strategy and less on physiology

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Kongstad, J.; Schmidt, I. K.

    2012-01-01

    of these differences in response in dry versus rewetting conditions can be used to highlight the limitations coherent in different strategies adopted by, for example, evergreen shrubs and grasses. We investigated the leaf-level photosynthetic performance, leaf C, N and d13C along with vegetation cover and biomass...... in the evergreen dwarf shrub Calluna vulgaris and the grass species Deschampsia flexuosa in a temperate heath during seasonal changes in soil moisture. Higher photosynthetic capacity compensated for lower stomatal conductance and sustained higher rates of photosynthesis in the grass compared to the dwarf shrub....... In combination with dieback of aboveground biomass and reduction of stomatal conductance reduction during dry conditions, the grass continued to have high carbon uptake in the remaining leaves. The dwarf shrub endured the dry conditions by preserving shoot biomass and reducing stomatal conductance. Soil...

  18. High Heating Rates Affect Greatly the Inactivation Rate of Escherichia coli

    Science.gov (United States)

    Huertas, Juan-Pablo; Aznar, Arantxa; Esnoz, Arturo; Fernández, Pablo S.; Iguaz, Asunción; Periago, Paula M.; Palop, Alfredo

    2016-01-01

    Heat resistance of microorganisms can be affected by different influencing factors. Although, the effect of heating rates has been scarcely explored by the scientific community, recent researches have unraveled its important effect on the thermal resistance of different species of vegetative bacteria. Typically heating rates described in the literature ranged from 1 to 20°C/min but the impact of much higher heating rates is unclear. The aim of this research was to explore the effect of different heating rates, such as those currently achieved in the heat exchangers used in the food industry, on the heat resistance of Escherichia coli. A pilot plant tubular heat exchanger and a thermoresistometer Mastia were used for this purpose. Results showed that fast heating rates had a deep impact on the thermal resistance of E. coli. Heating rates between 20 and 50°C/min were achieved in the heat exchanger, which were much slower than those around 20°C/s achieved in the thermoresistometer. In all cases, these high heating rates led to higher inactivation than expected: in the heat exchanger, for all the experiments performed, when the observed inactivation had reached about seven log cycles, the predictions estimated about 1 log cycle of inactivation; in the thermoresistometer these differences between observed and predicted values were even more than 10 times higher, from 4.07 log cycles observed to 0.34 predicted at a flow rate of 70 mL/min and a maximum heating rate of 14.7°C/s. A quantification of the impact of the heating rates on the level of inactivation achieved was established. These results point out the important effect that the heating rate has on the thermal resistance of E. coli, with high heating rates resulting in an additional sensitization to heat and therefore an effective food safety strategy in terms of food processing. PMID:27563300

  19. Solubility and dissolution performances of spray-dried solid dispersion of Efavirenz in Soluplus.

    Science.gov (United States)

    Lavra, Zênia Maria Maciel; Pereira de Santana, Davi; Ré, Maria Inês

    2017-01-01

    Efavirenz (EFV), a first-line anti-HIV drug largely used as part of antiretroviral therapies, is practically insoluble in water and belongs to BCS class II (low solubility/high permeability). The aim of this study was to improve the solubility and dissolution performances of EFV by formulating an amorphous solid dispersion of the drug in polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer (Soluplus ® ) using spray-drying technique. To this purpose, spray-dried dispersions of EFV in Soluplus ® at different mass ratios (1:1.25, 1:7, 1:10) were prepared and characterized using particle size measurements, SEM, XRD, DSC, FTIR and Raman microscopy mapping. Solubility and dissolution were determined in different media. Stability was studied at accelerated conditions (40 °C/75% RH) and ambient conditions for 12 months. DSC and XRD analyses confirmed the EFV amorphous state. FTIR spectroscopy analyses revealed possible drug-polymer molecular interaction. Solubility and dissolution rate of EFV was enhanced remarkably in the developed spray-dried solid dispersions, as a function of the polymer concentration. Spray-drying was concluded to be a proper technique to formulate a physically stable dispersion of amorphous EFV in Soluplus ® , when protected from moisture.

  20. Semi-solid electrodes having high rate capability

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Yet-Ming; Duduta, Mihai; Holman, Richard; Limthongkul, Pimpa; Tan, Taison

    2017-11-28

    Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode, a semi-solid cathode that includes a suspension of an active material and a conductive material in a liquid electrolyte, and an ion permeable membrane disposed between the anode and the cathode. The semi-solid cathode has a thickness in the range of about 250 .mu.m-2,500 .mu.m, and the electrochemical cell has an area specific capacity of at least 5 mAh/cm.sup.2 at a C-rate of C/2.