WorldWideScience

Sample records for high dose irradiation

  1. High-dose irradiation of food

    International Nuclear Information System (INIS)

    Diehl, J.F.

    1999-01-01

    Studies performed on behalf of the International Project on Food Irradiation in the period from 1971 until 1980 resulted in the concluding statement that ''.the irradiation of any food commodity up to an overall average dose of 10 kGy presents no toxicological hazard; hence, toxicological testing of foods so treated is no longer required.'' Since then, licenses for food irradiation have been restricted to this maximum dose in any country applying this technology. Further testing programmes have been carried out investigating the wholesomeness or hazards of high-dose irradiation, but there has been little demand so far by the food industry for licensing of high-dose irradiation, as there is only a small range of products whose irradiation at higher doses offers advantages for given, intended use. These include eg. spices, dried herbs, meat products in flexible pouch packagings for astronauts, or patients with immune deficiencies. (orig./CB) [de

  2. Intracranial meningiomas after high-dose irradiation

    International Nuclear Information System (INIS)

    Soffer, D.; Gomori, J.M.; Siegal, T.; Shalit, M.N.

    1989-01-01

    Three patients who presented with intracranial meningiomas 12, 15, and 20 years, respectively, after therapeutic high-dose irradiation of a primary brain tumor are described. Analysis of these cases and similar documented cases suggests that meningiomas after high-dose irradiation constitute a recognizable entity. Patients with such tumors received radiation therapy at a young age (mean age, 9.4 years). After a latent period of 2 to 47 years (mean, 19.8 years) they developed meningiomas at the site of irradiation, at a much younger age than patients with ''spontaneous'' meningiomas. Similar to the situation with meningiomas after low-dose irradiation, a relatively high proportion of meningiomas induced by high-dose irradiation tend to be malignant and biologically aggressive. A very young age at the time of irradiation seems to predispose to the induction of malignant meningiomas, rather than benign tumors. These unusual features provide indirect evidence that high-dose radiation may play a role in the pathogenesis of meningiomas.41 references

  3. Immune reactivity after high-dose irradiation

    International Nuclear Information System (INIS)

    Gassmann, W.; Wottge, H.U.; von Kolzynski, M.; Mueller-Ruchholtz, W.

    1986-01-01

    Immune reactivity after total-body irradiation was investigated in rats using skin graft rejection as the indicator system. After sublethal irradiation with 10.5 Gy (approximately 50% lethality/6 weeks) the rejection of major histocompatibility complex allogeneic skin grafts was delayed significantly compared with nonirradiated control animals (28 versus 6.5 days). In contrast, skin grafts were rejected after 7.5 days in sublethally irradiated animals and 7 days in lethally irradiated animals if additional skin donor type alloantigens--namely, irradiated bone marrow cells--were given i.v. either simultaneously or with a delay of not more than 24 hr after the above conditioning regimen. These reactions were alloantigen-specific. They were observed in six different strain combinations with varying donors and recipients. Starting on day 2 after irradiation, i.v. injection of bone marrow gradually lost its effectivity and skin grafts were no longer rejected with uniform rapidity; skin donor marrow given on days 4 or 8 did not accelerate skin graft rejection at all. These data show that for approximately 1-2 days after high-dose total-body irradiation rats are still capable of starting a vigorous immune reaction against i.v.-injected alloantigens. The phenomenon of impaired rejection of skin grafted immediately after high-dose irradiation appears to result from the poor accessibility of skin graft alloantigens during the early postirradiation phase when vascularization of the grafted skin is insufficient

  4. The application of high dose food irradiation

    International Nuclear Information System (INIS)

    Bruyn, I. De

    1997-01-01

    During the 1950's to end 1970's the United States Army developed the basic methodology to produce shelf stable irradiated meat, seafood and poultry products. These products are normally packed without gravy, sauce or brine, as liquid is not required to sterilize the product as in the canning process. This leads to the distinctive 'dried cooked' taste normally associated with roasts opposed to the casserole taste usually associated with tinned meats. The meats are cooked, chilled, portioned, vacuum packed and irradiated to the required minimum dose of 25 to 45 kGy (depending on the product) at a temperature of between -20 and -40 Centigrade to ensure absolute sterility even under tropical conditions. The product is packaged in a high quality four layer laminate pouch and will therefore not rust or burst even under adverse weather conditions. The product can be guaranteed for more than two years as long as the integrity of the packaging is maintained. (Author)

  5. The application of high dose food irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Bruyn, I. De [Atomic Energy Corporation of South Africa LTD, Building 2000, P.O. Box 582, Pretoria 0001, (South Africa)

    1997-12-31

    During the 1950`s to end 1970`s the United States Army developed the basic methodology to produce shelf stable irradiated meat, seafood and poultry products. These products are normally packed without gravy, sauce or brine, as liquid is not required to sterilize the product as in the canning process. This leads to the distinctive `dried cooked` taste normally associated with roasts opposed to the casserole taste usually associated with tinned meats. The meats are cooked, chilled, portioned, vacuum packed and irradiated to the required minimum dose of 25 to 45 kGy (depending on the product) at a temperature of between -20 and -40 Centigrade to ensure absolute sterility even under tropical conditions. The product is packaged in a high quality four layer laminate pouch and will therefore not rust or burst even under adverse weather conditions. The product can be guaranteed for more than two years as long as the integrity of the packaging is maintained. (Author)

  6. High Fidelity Ion Beam Simulation of High Dose Neutron Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Was, Gary; Wirth, Brian; Motta, Athur; Morgan, Dane; Kaoumi, Djamel; Hosemann, Peter; Odette, Robert

    2018-04-30

    Project Objective: The objective of this proposal is to demonstrate the capability to predict the evolution of microstructure and properties of structural materials in-reactor and at high doses, using ion irradiation as a surrogate for reactor irradiations. “Properties” includes both physical properties (irradiated microstructure) and the mechanical properties of the material. Demonstration of the capability to predict properties has two components. One is ion irradiation of a set of alloys to yield an irradiated microstructure and corresponding mechanical behavior that are substantially the same as results from neutron exposure in the appropriate reactor environment. Second is the capability to predict the irradiated microstructure and corresponding mechanical behavior on the basis of improved models, validated against both ion and reactor irradiations and verified against ion irradiations. Taken together, achievement of these objectives will yield an enhanced capability for simulating the behavior of materials in reactor irradiations

  7. Radiobiological aspects of continuous low dose-rate irradiation and fractionated high dose-rate irradiation

    International Nuclear Information System (INIS)

    Turesson, I.

    1990-01-01

    The biological effects of continuous low dose-rate irradiation and fractionated high dose-rate irradiation in interstitial and intracavitary radiotherapy and total body irradiation are discussed in terms of dose-rate fractionation sensitivity for various tissues. A scaling between dose-rate and fraction size was established for acute and late normal-tissue effects which can serve as a guideline for local treatment in the range of dose rates between 0.02 and 0.005 Gy/min and fraction sizes between 8.5 and 2.5 Gy. This is valid provided cell-cycle progression and proliferation can be ignored. Assuming that the acute and late tissue responses are characterized by α/β values of about 10 and 3 Gy and a mono-exponential repair half-time of about 3 h, the same total doses given with either of the two methods are approximately equivalent. The equivalence for acute and late non-hemopoietic normal tissue damage is 0.02 Gy/min and 8.5 Gy per fraction; 0.01 Gy/min and 5.5 Gy per fraction; and 0.005 Gy/min and 2.5Gy per fraction. A very low dose rate, below 0.005 Gy/min, is thus necessary to simulate high dose-rate radiotherapy with fraction sizes of about 2Gy. The scaling factor is, however, dependent on the repair half-time of the tissue. A review of published data on dose-rate effects for normal tissue response showed a significantly stronger dose-rate dependence for late than for acute effects below 0.02 Gy/min. There was no significant difference in dose-rate dependence between various acute non-hemopoietic effects or between various late effects. The consistent dose-rate dependence, which justifies the use of a general scaling factor between fraction size and dose rate, contrasts with the wide range of values for repair half-time calculated for various normal-tissue effects. This indicates that the model currently used for repair kinetics is not satisfactory. There are also few experimental data in the clinical dose-rate range, below 0.02 Gy/min. It is therefore

  8. Accelerated Irradiations for High Dose Microstructures in Fast Reactor Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Zhijie [Univ. of Michigan, Ann Arbor, MI (United States)

    2017-03-31

    The objective of this project is to determine the extent to which high dose rate, self-ion irradiation can be used as an accelerated irradiation tool to understand microstructure evolution at high doses and temperatures relevant to advanced fast reactors. We will accomplish the goal by evaluating phase stability and swelling of F-M alloys relevant to SFR systems at very high dose by combining experiment and modeling in an effort to obtain a quantitative description of the processes at high and low damage rates.

  9. Calcium carbonate as a possible dosimeter for high irradiation doses

    International Nuclear Information System (INIS)

    Negron M, A.; Ramos B, S.; Camargo R, C.; Uribe, R. M.; Gomez V, V.; Kobayashi, K.

    2014-08-01

    The aim of this work is to analyze the interactions of 5 MeV electron beam radiation and a 290 MeV/u Carbon beam with calcium carbonate (powder) at 298 K and at different irradiation doses, for the potential use of calcium carbonate as a high-dose dosimeter. The irradiation doses with the electron beam were from 0.015 to 9 MGy, and with Carbon beam from 1.5 kGy to 8 kGy. High-energy radiation induces the formation of free radicals in solid calcium carbonate that can be detected and measured by electron paramagnetic resonance (EPR). An increase of the EPR response for some of the free radicals produced in the sample was observed as a function of the irradiation dose. The response of one of the radicals decreased with the dose. These measurements are reproducible; the preparation of the sample is simple and inexpensive; and the signal is stable for several months. The response curves show that the dosimeter tends to saturate at 10 MGy. Based on these properties, we propose this chemical compound as a high-dose dosimeter, mainly for electron irradiation. (author)

  10. Calcium carbonate as a possible dosimeter for high irradiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Negron M, A.; Ramos B, S.; Camargo R, C. [UNAM, Instituto de Ciencias Nucleares, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Uribe, R. M. [Kent State University, College of Technology, Kent OH (United States); Gomez V, V. [UNAM, Instituto de Quimica, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Kobayashi, K., E-mail: negron@nucleares.unam.mx [Yokohama National University (Japan)

    2014-08-15

    The aim of this work is to analyze the interactions of 5 MeV electron beam radiation and a 290 MeV/u Carbon beam with calcium carbonate (powder) at 298 K and at different irradiation doses, for the potential use of calcium carbonate as a high-dose dosimeter. The irradiation doses with the electron beam were from 0.015 to 9 MGy, and with Carbon beam from 1.5 kGy to 8 kGy. High-energy radiation induces the formation of free radicals in solid calcium carbonate that can be detected and measured by electron paramagnetic resonance (EPR). An increase of the EPR response for some of the free radicals produced in the sample was observed as a function of the irradiation dose. The response of one of the radicals decreased with the dose. These measurements are reproducible; the preparation of the sample is simple and inexpensive; and the signal is stable for several months. The response curves show that the dosimeter tends to saturate at 10 MGy. Based on these properties, we propose this chemical compound as a high-dose dosimeter, mainly for electron irradiation. (author)

  11. Colon mucosal cells after high-dose fractional irradiation

    International Nuclear Information System (INIS)

    Zorc-Pleskovic, R.; Vraspir-Porenta, O.; Petrovic, D.; Zorc, M.; Pleskovic, L.

    2000-01-01

    The aim of this study was to investigate histological and stereological changes in cryptal enterocytes, mucosal lymphocytes and mast cells 10 days after irradiation. For experimental model, 24 Beagle dogs 1-2 years old were used. Twelve dogs were irradiated 20 days with 32 Gy over the whole pelvis and tail. Another 12 dogs represented a control group. For the detection of apoptosis, the TUNEL technique was used. Histological and stereological analyses were performed using a Wild sampling microscope M 1000. In the irradiated group, volume density (P < 0.01), numerical density (P < 0.05) and average volume of lymphocytes (P < 0.001) were significantly lower than in the nonirradiated group. Numerical areal density of mast cells in the irradiated group was also significantly lower (P < 0.05). Volume density (P < 0.001) and average volume of mast cells (P < 0.001) were significantly higher in the irradiated group. The results of our experiments show that irradiation causes injury and loss of lymphocytes and mast cells in the colon mucosa. Apoptosis was detected in enterocytes and lymphocytes in the irradiated group and in nonirradiated group in equal numbers (2.5 ± 0.3 vs. 2.3 ± 0.3; ns.), suggesting that 10 days after high-dose irradiation, the cell loss is not due to apoptosis. (author)

  12. High-dose irradiated food: Current progress, applications, and prospects

    Science.gov (United States)

    Feliciano, Chitho P.

    2018-03-01

    Food irradiation as an established and mature technology has gained more attention in the food industry for ensuring food safety and quality. Primarily used for phytosanitary applications, its use has been expanded for developing various food products for varied purposes (e.g. ready-to-eat & ready-to-cook foods, hospital diets, etc.). This paper summarized and analyzed the recent progress and application of high-dose irradiation and discussed its prospects in the field of food product development, its safety and quality.

  13. Use of high irradiation doses for preservation of canned beef

    International Nuclear Information System (INIS)

    Hammad, A.A.I; Salem, F.A.; El-Sahy, K.M.; Rady, A.; Badr, H.H.

    1997-01-01

    The effect of high irradiation doses (11.25,22.5 and 45 KGy) on the bacteriology, organoleptic quality and shelf - life extension of beef meat that are hermetically sealed in metal cans was investigated in comparison with commercial heat sterilization. The unirradiated cans of pre cooked (enzyme inactivated) unirradiated beef were swollen after only one month of storage at ambient temperature (20-30 degree). Application of 11.25 and 22.5 kGy to vacuum packed and enzyme inactivated beef was not enough for sterilization and only delayed swelling of beef cans. Application of 45 KGy irradiation dose prevented swelling of beef vans up to 12 months at ambient temperature and provided meat product, similar to the commercial heat sterilized one, organoleptically acceptable and microbiologically safe. Running title: Radiation sterilization of meat

  14. Shelf-stable food through high dose irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Placek, V. E-mail: pla@ujv.cz; Svobodova, V.; Bartonicek, B.; Rosmus, J.; Camra, M

    2004-10-01

    Irradiation of food with high doses (radappertization) is a way, how to prepare shelf-stable ready-to-eat food. The radappertization process requires that the food be heated at first to an internal temperature of at least 75 deg. C to inactivate autolytic enzyme, which could cause the spoilage during storage without refrigeration. In order to prevent radiation induced changes in sensory properties (off flavors, odors, undesirable color change, etc.) the food was vacuum packed and irradiated in frozen state at -30 deg. C or less to a minimum dose of 35 kGy. Such products have characteristics of fresh food prepared for eating even if they are stored for long time under tropical conditions. The wholesomeness (safety for consumption) has been confirmed during 40 years of testing. Within the NRI Rez 10 kinds of shelf-stable meat products have been prepared. The meat was cooked, vacuum packed in SiO{sub x}-containing pouch, freezed in liquid nitrogen and irradiated with electron beam accelerator. The microbial, chemical, and organoleptic properties have been tested.

  15. Shelf-stable food through high dose irradiation

    International Nuclear Information System (INIS)

    Placek, V.; Svobodova, V.; Bartonicek, B.; Rosmus, J.; Camra, M.

    2004-01-01

    Irradiation of food with high doses (radappertization) is a way, how to prepare shelf-stable ready-to-eat food. The radappertization process requires that the food be heated at first to an internal temperature of at least 75 deg. C to inactivate autolytic enzyme, which could cause the spoilage during storage without refrigeration. In order to prevent radiation induced changes in sensory properties (off flavors, odors, undesirable color change, etc.) the food was vacuum packed and irradiated in frozen state at -30 deg. C or less to a minimum dose of 35 kGy. Such products have characteristics of fresh food prepared for eating even if they are stored for long time under tropical conditions. The wholesomeness (safety for consumption) has been confirmed during 40 years of testing. Within the NRI Rez 10 kinds of shelf-stable meat products have been prepared. The meat was cooked, vacuum packed in SiO x -containing pouch, freezed in liquid nitrogen and irradiated with electron beam accelerator. The microbial, chemical, and organoleptic properties have been tested

  16. The application of high dose food irradiation in South Africa

    Science.gov (United States)

    de Bruyn, Ingrid Nine

    2000-03-01

    During the 1950s to the end of the 1970s the United States Army developed the basic methodology to produce shelf-stable irradiated meat, seafood and poultry products. These products are normally packed without gravy, sauce or brine, as liquid is not required to sterilize the product as in the canning process. This leads to the distinctive "dried cooked" taste normally associated with roasts opposed to the casserole taste usually associated with tinned meats. The Biogam group at the Atomic Energy Corporation of South Africa is currently producing shelf-stable irradiated meats on a commercial basis. The meats are cooked, chilled, portioned, vacuum packed and irradiated to the required minimum dose of 45 kGy at a temperature of between -20 and -40°C to ensure absolute sterility even under tropical conditions. The product is packaged in a high quality four layer laminate pouch and will therefore not rust or burst even under adverse weather conditions and can be guaranteed for more than two years as long as the integrity of the packaging is maintained. Safari operators in remote parts of Africa, mountaineers, yachtsmen, canoeists and geological survey teams currently use shelf-stable irradiated meat products produced in South Africa.

  17. The application of high dose food irradiation in South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Bruyn, Ingrid Nine de E-mail: debruyni@mweb.co.za

    2000-03-01

    During the 1950s to the end of the 1970s the United States Army developed the basic methodology to produce shelf-stable irradiated meat, seafood and poultry products. These products are normally packed without gravy, sauce or brine, as liquid is not required to sterilize the product as in the canning process. This leads to the distinctive 'dried cooked' taste normally associated with roasts opposed to the casserole taste usually associated with tinned meats. The Biogam group at the Atomic Energy Corporation of South Africa is currently producing shelf-stable irradiated meats on a commercial basis. The meats are cooked, chilled, portioned, vacuum packed and irradiated to the required minimum dose of 45 kGy at a temperature of between -20 and -40 deg. C to ensure absolute sterility even under tropical conditions. The product is packaged in a high quality four layer laminate pouch and will therefore not rust or burst even under adverse weather conditions and can be guaranteed for more than two years as long as the integrity of the packaging is maintained. Safari operators in remote parts of Africa, mountaineers, yachtsmen, canoeists and geological survey teams currently use shelf-stable irradiated meat products produced in South Africa. (author)

  18. The application of high dose food irradiation in South Africa

    International Nuclear Information System (INIS)

    Bruyn, Ingrid Nine de

    2000-01-01

    During the 1950s to the end of the 1970s the United States Army developed the basic methodology to produce shelf-stable irradiated meat, seafood and poultry products. These products are normally packed without gravy, sauce or brine, as liquid is not required to sterilize the product as in the canning process. This leads to the distinctive 'dried cooked' taste normally associated with roasts opposed to the casserole taste usually associated with tinned meats. The Biogam group at the Atomic Energy Corporation of South Africa is currently producing shelf-stable irradiated meats on a commercial basis. The meats are cooked, chilled, portioned, vacuum packed and irradiated to the required minimum dose of 45 kGy at a temperature of between -20 and -40 deg. C to ensure absolute sterility even under tropical conditions. The product is packaged in a high quality four layer laminate pouch and will therefore not rust or burst even under adverse weather conditions and can be guaranteed for more than two years as long as the integrity of the packaging is maintained. Safari operators in remote parts of Africa, mountaineers, yachtsmen, canoeists and geological survey teams currently use shelf-stable irradiated meat products produced in South Africa. (author)

  19. High dose neutron irradiation damage in beryllium as blanket material

    Energy Technology Data Exchange (ETDEWEB)

    Chakin, V.P. E-mail: fae@niiar.ru; Kazakov, V.A.; Teykovtsev, A.A.; Pimenov, V.V.; Shimansky, G.A.; Ostrovsky, Z.E.; Suslov, D.N.; Latypov, R.N.; Belozerov, S.V.; Kupriyanov, I.B. E-mail: vniinm.400@g23.relkom.ru

    2001-11-01

    The paper presents the investigation results of beryllium products that operated in the SM and BOR-60 reactors up to neutron doses of 2.8x10{sup 22} and 8.0x10{sup 22} cm{sup -2} (E>1 MeV), respectively. The calculated and experimental data are given on helium and tritium accumulation, swelling, micro-hardness and thermal conductivity. The microstructural investigation results of irradiated beryllium are also presented. It is shown that the rate of helium and tritium accumulation in beryllium in the SM and BOR-60 reactors is high enough, which is of interest from the viewpoint of modeling the working conditions of the DEMO fusion reactor. Swelling of beryllium at irradiation temperature of 70-150 deg. C and neutron fluence of 2.8x10{sup 22} cm{sup -2} (E>1 MeV) makes up 0.8-1.5%, at 400 deg. C and fluence of 8x10{sup 22} cm{sup -2} (E>1 MeV)-3.2-5.0%. Irradiation hardening and decrease of thermal conductivity strongly depend on the irradiation temperature and are more significant at reduced temperatures. All results presented in the paper were analyzed with due account of the supposed working parameters of the DEMO fusion reactor blanket.

  20. High dose neutron irradiation damage in beryllium as blanket material

    International Nuclear Information System (INIS)

    Chakin, V.P.; Kazakov, V.A.; Teykovtsev, A.A.; Pimenov, V.V.; Shimansky, G.A.; Ostrovsky, Z.E.; Suslov, D.N.; Latypov, R.N.; Belozerov, S.V.; Kupriyanov, I.B.

    2001-01-01

    The paper presents the investigation results of beryllium products that operated in the SM and BOR-60 reactors up to neutron doses of 2.8x10 22 and 8.0x10 22 cm -2 (E>1 MeV), respectively. The calculated and experimental data are given on helium and tritium accumulation, swelling, micro-hardness and thermal conductivity. The microstructural investigation results of irradiated beryllium are also presented. It is shown that the rate of helium and tritium accumulation in beryllium in the SM and BOR-60 reactors is high enough, which is of interest from the viewpoint of modeling the working conditions of the DEMO fusion reactor. Swelling of beryllium at irradiation temperature of 70-150 deg. C and neutron fluence of 2.8x10 22 cm -2 (E>1 MeV) makes up 0.8-1.5%, at 400 deg. C and fluence of 8x10 22 cm -2 (E>1 MeV)-3.2-5.0%. Irradiation hardening and decrease of thermal conductivity strongly depend on the irradiation temperature and are more significant at reduced temperatures. All results presented in the paper were analyzed with due account of the supposed working parameters of the DEMO fusion reactor blanket

  1. Stock selection of high-dose-irradiation-resistant materials for filter press under high-dose irradiation operation

    International Nuclear Information System (INIS)

    Ishiyama, Shintaro; Minami, Mamoru; Hara, Kouji; Yamashita, Manabu

    2015-01-01

    In a volume reduction process for the decontamination of contained soil, the performance degradation of a filter press is expected owing to material deterioration under high-dose irradiation. Eleven-stock selection of candidate materials including polymers, fibers and rubbers for the filter press was conducted to achieve a high performance of volume reduction of contaminated soil and the following results were derived. Crude rubber and nylon were selected as prime candidates for packing, diaphragm and filter plate materials. Polyethylene was also selected as a prime candidate for the filter cloth material. (author)

  2. Electron beam irradiation facility for low to high dose irradiation applications

    International Nuclear Information System (INIS)

    Petwal, V.C.; Wanmode, Yashwant; Verma, Vijay Pal; Bhisikar, Abhay; Dwivedi, Jishnu; Shrivastava, P.; Gupta, P.D.

    2013-01-01

    Electron beam based irradiation facilities are becoming more and more popular over the conventional irradiator facilities due to many inherent advantages such as tunability of beam energy, availability of radiation both in electron mode and X-ray mode, wide range of the dose rate, control of radiation from a ON-OFF switch and other safety related merits. A prototype experimental facility based on electron accelerator has been set-up at RRCAT to meet the low-dose, medium dose and high-dose requirements for radiation processing of food, agricultural and medical products. The facility can be operated in the energy range from 7-10 MeV at variable power level from 0.05-3 kW to meet the dose rate requirement of 100 Gy to kGy. The facility is also equipped with a Bremsstrahlung converter optimized for X-ray irradiation at 7.5 MV. Availability of dose delivery in wide range with precision control and measurement has made the facility an excellent tool for researchers interested in electron/X-ray beam irradiation. A precision dosimetry lab based on alanine EPR and radiochromic film dosimetry system have been established to characterize the radiation field and precise dose measurements. Electron beam scattering technique has been developed to achieve low dose requirement for EB irradiation of various seeds such as groundnut, wheat, soybeans, moong beans, black gram etc. for mutation related studies. This paper describes various features of the facility together with the dosimetric measurements carried out for qualification of the facility and recent irradiation experiments carried out using this facility. (author)

  3. High doses dosimetry in irradiation process in Argentine

    International Nuclear Information System (INIS)

    Dorda de Cancio, E.M.

    1997-01-01

    These report describes the lung dose dosimetry procedures of the Semi-Industrial Irradiation Plant in Ezeisa Atomic (500,00 Ci of Co 60) and Industrial Picorrad Plant (400,00 Ci of Co 60) using the nitrate dosimeter

  4. Chromosomal Aberrations in Normal and AT Cells Exposed to High Dose of Low Dose Rate Irradiation

    Science.gov (United States)

    Kawata, T.; Shigematsu, N.; Kawaguchi, O.; Liu, C.; Furusawa, Y.; Hirayama, R.; George, K.; Cucinotta, F.

    2011-01-01

    Ataxia telangiectasia (A-T) is a human autosomally recessive syndrome characterized by cerebellar ataxia, telangiectases, immune dysfunction, and genomic instability, and high rate of cancer incidence. A-T cell lines are abnormally sensitive to agents that induce DNA double strand breaks, including ionizing radiation. The diverse clinical features in individuals affected by A-T and the complex cellular phenotypes are all linked to the functional inactivation of a single gene (AT mutated). It is well known that cells deficient in ATM show increased yields of both simple and complex chromosomal aberrations after high-dose-rate irradiation, but, less is known on how cells respond to low-dose-rate irradiation. It has been shown that AT cells contain a large number of unrejoined breaks after both low-dose-rate irradiation and high-dose-rate irradiation, however sensitivity for chromosomal aberrations at low-dose-rate are less often studied. To study how AT cells respond to low-dose-rate irradiation, we exposed confluent normal and AT fibroblast cells to up to 3 Gy of gamma-irradiation at a dose rate of 0.5 Gy/day and analyzed chromosomal aberrations in G0 using fusion PCC (Premature Chromosomal Condensation) technique. Giemsa staining showed that 1 Gy induces around 0.36 unrejoined fragments per cell in normal cells and around 1.35 fragments in AT cells, whereas 3Gy induces around 0.65 fragments in normal cells and around 3.3 fragments in AT cells. This result indicates that AT cells can rejoin breaks less effectively in G0 phase of the cell cycle? compared to normal cells. We also analyzed chromosomal exchanges in normal and AT cells after exposure to 3 Gy of low-dose-rate rays using a combination of G0 PCC and FISH techniques. Misrejoining was detected in the AT cells only? When cells irradiated with 3 Gy were subcultured and G2 chromosomal aberrations were analyzed using calyculin-A induced PCC technique, the yield of unrejoined breaks decreased in both normal and AT

  5. Cation disorder in high-dose, neutron-irradiated spinel

    International Nuclear Information System (INIS)

    Sickafus, K.E.; Larson, A.C.; Yu, N.; Nastasi, M.; Hollenberg, G.W.; Garner, F.A.; Bradt, R.C.

    1994-08-01

    The objective of this effort is to determine whether MgAl 2 O 4 spinel is a suitable ceramic for fusion applications. Here, the crystal structures of MgAl 2 O 4 spinel single crystals irradiated to high neutron fluences [>5·10 26 n/m 2 (E n > 0.1 MeV)] were examined by neutron diffraction. Crystal structure refinement of the highest dose sample indicated that the average scattering strength of the tetrahedral crystal sites decreased by ∼ 20% while increasing by ∼ 8% on octahedral sites. Since the neutron scattering length for Mg is considerably larger than for Al, this results is consistent with site exchange between Mg 2+ ions on tetrahedral sites and Al 3+ ions on octahedral sites. Least-squares refinements also indicated that, in all irradiated samples, at least 35% of Mg 2+ and Al 3+ ions in the crystal experienced disordering replacements. This retained dpa on the cation sublattices is the largest retained damage ever measured in an irradiated spinel material

  6. Effects of low priming dose irradiation on cell cycle arrest of HepG2 cells caused by high dose irradiation

    International Nuclear Information System (INIS)

    Xia Jingguang; Jin Xiaodong; Chinese Academy of Sciences, Beijing; Li Wenjian; Wang Jufang; Guo Chuanling; Gao Qingxiang

    2005-01-01

    Human hepatoma cells hepG2 were irradiated twice by 60 Co γ-rays with a priming dose of 5 cGy and a higher dose of 3 Gy performed 4h or 8h after the low dose irradiation. Effects of the priming dose irradiation on cell cycle arrest caused by high dose were examined with flow cytometry. Cells in G 2 /M phase accumulated temporarily after the 5 cGy irradiation, and proliferation of tumor cells was promoted significantly by the low dose irradiation. After the 3 Gy irradiation, G 2 phase arrest occurred, and S phase delayed temporally. In comparison with 3 kGy irradiation only, the priming dose delivered 4h prior to the high dose irradiation facilitated accumulation of hepG2 cells in G 2 /M phase, whereas the priming dose delivered 8h prior to the high dose irradiation helped the cells to overcome G 2 arrest. It was concluded that effects of the priming dose treatment on cell cycle arrest caused by high dose irradiation were dependent on time interval between the two irradiations. (authors)

  7. Irradiation of meningioma: a prototype circumscribed tumor for planning high-dose irradiation of the brain

    International Nuclear Information System (INIS)

    Friedman, M.

    1977-01-01

    The purpose of this report is to provide specific data concerning the radiation dose required to destroy meningioma, and to demonstrate that radiation doses much greater than the alleged tolerance dose, can be administered to the brain in some patients. Most meninglomas are not responsive to irradiation, but, some surgically incurable lesions benefit from irradiation with radically high doses to small volumes of tissue. The arrest of 7 of 12 consecutive meningiomas in adults for periods of 2 to 17 years following maximum tumor doses up to 8800 R in 40 days is reported in this paper. All patients, when irradiated, had active tumor in the form of inoperable primary tumor, recurrence, or known postoperative residual tumor. Three of the successful results were achieved with orthovoltage radiation. The incidence of brain damage may be acceptable to the patient when it is related to arrest of tumor growth but he must be forewarned of possible brain damage. The factors influencing the radioresponsiveness of meningioma are: the required tumor lethal dose, histology and vascularity of the tumor, anatomical site in the brain, treatment technique for each tumor site, small size of the treated volume, growth rate of the tumor, displacement of normal brain tissue by tumor, inherent individual variations of tumor and normal tissues, quality of the radiation, and tolerance of normal brain tissues. The role of these factors is discussed in the light of modern radiobiological concepts

  8. The development of radiocaries after high-dose irradiation

    International Nuclear Information System (INIS)

    Willich, N.; Gundacker, K.; Rohloff, R.

    1988-01-01

    39 patients, who were irradiated with doses of 50 to 70 Gy for ENT-tumors over a period of 3.5 months to three years prior to the examination, showed a rapidly progressing caries of the teeth inside the target volume. The teeth outside the target volume developed a caries of less extent. Radiation induced xerostomia, effects of the irradiation of the soft tissues, nutrition habits and hygienics are discussed as causes for the damage of the teeth. (orig.) [de

  9. Secondary radiation dose during high-energy total body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Janiszewska, M.; Raczkowski, M. [Lower Silesian Oncology Center, Medical Physics Department, Wroclaw (Poland); Polaczek-Grelik, K. [University of Silesia, Medical Physics Department, Katowice (Poland); Szafron, B.; Konefal, A.; Zipper, W. [University of Silesia, Department of Nuclear Physics and Its Applications, Katowice (Poland)

    2014-05-15

    The goal of this work was to assess the additional dose from secondary neutrons and γ-rays generated during total body irradiation (TBI) using a medical linac X-ray beam. Nuclear reactions that occur in the accelerator construction during emission of high-energy beams in teleradiotherapy are the source of secondary radiation. Induced activity is dependent on the half-lives of the generated radionuclides, whereas neutron flux accompanies the treatment process only. The TBI procedure using a 18 MV beam (Clinac 2100) was considered. Lateral and anterior-posterior/posterior-anterior fractions were investigated during delivery of 2 Gy of therapeutic dose. Neutron and photon flux densities were measured using neutron activation analysis (NAA) and semiconductor spectrometry. The secondary dose was estimated applying the fluence-to-dose conversion coefficients. The main contribution to the secondary dose is associated with fast neutrons. The main sources of γ-radiation are the following: {sup 56}Mn in the stainless steel and {sup 187}W of the collimation system as well as positron emitters, activated via (n,γ) and (γ,n) processes, respectively. In addition to 12 Gy of therapeutic dose, the patient could receive 57.43 mSv in the studied conditions, including 4.63 μSv from activated radionuclides. Neutron dose is mainly influenced by the time of beam emission. However, it is moderated by long source-surface distances (SSD) and application of plexiglass plates covering the patient body during treatment. Secondary radiation gives the whole body a dose, which should be taken into consideration especially when one fraction of irradiation does not cover the whole body at once. (orig.) [German] Die zusaetzliche Dosis durch sekundaere Neutronen- und γ-Strahlung waehrend der Ganzkoerperbestrahlung mit Roentgenstrahlung aus medizinischen Linearbeschleunigern wurde abgeschaetzt. Bei der Emission hochenergetischer Strahlen zur Teletherapie finden hauptsaechlich im Beschleuniger

  10. Development of computerized dose planning system and applicator for high dose rate remote afterloading irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, T. J. [Keimyung Univ., Taegu (Korea); Kim, S. W. [Fatima Hospital, Taegu (Korea); Kim, O. B.; Lee, H. J.; Won, C. H. [Keimyung Univ., Taegu (Korea); Yoon, S. M. [Dong-a Univ., Pusan (Korea)

    2000-04-01

    To design and fabricate of the high dose rate source and applicators which are tandem, ovoids and colpostat for OB/Gyn brachytherapy includes the computerized dose planning system. Designed the high dose rate Ir-192 source with nuclide atomic power irradiation and investigated the dose characteristics of fabricated brachysource. We performed the effect of self-absorption and determining the gamma constant and output factor and determined the apparent activity of designed source. he automated computer planning system provided the 2D distribution and 3D includes analysis programs. Created the high dose rate source Ir-192, 10 Ci(370GBq). The effective attenuation factor from the self-absorption and source wall was examined to 0.55 of the activity of bare source and this factor is useful for determination of the apparent activity and gamma constant 4.69 Rcm{sup 2}/mCi-hr. Fabricated the colpostat was investigated the dose distributions of frontal, axial and sagittal plane in intra-cavitary radiation therapy for cervical cancer. The reduce dose at bladder and rectum area was found about 20 % of original dose. The computerized brachytherapy planning system provides the 2-dimensional isodose and 3-D include the dose-volume histogram(DVH) with graphic-user-interface mode. emoted afterloading device was built for experiment of created Ir-192 source with film dosimetry within {+-}1 mm discrepancy. 34 refs., 25 figs., 11 tabs. (Author)

  11. High-dose MeV electron irradiation of Si-SiO2 structures implanted with high doses Si+

    Science.gov (United States)

    Kaschieva, S.; Angelov, Ch; Dmitriev, S. N.

    2018-03-01

    The influence was studied of 22-MeV electron irradiation on Si-SiO2 structures implanted with high-fluence Si+ ions. Our earlier works demonstrated that Si redistribution is observed in Si+-ion-implanted Si-SiO2 structures (after MeV electron irradiation) only in the case when ion implantation is carried out with a higher fluence (1016 cm-2). We focused our attention on the interaction of high-dose MeV electron irradiation (6.0×1016 cm-2) with n-Si-SiO2 structures implanted with Si+ ions (fluence 5.4×1016 cm-2 of the same order magnitude). The redistribution of both oxygen and silicon atoms in the implanted Si-SiO2 samples after MeV electron irradiation was studied by Rutherford back-scattering (RBS) spectroscopy in combination with a channeling technique (RBS/C). Our results demonstrated that the redistribution of oxygen and silicon atoms in the implanted samples reaches saturation after these high doses of MeV electron irradiation. The transformation of amorphous SiO2 surface into crystalline Si nanostructures (after MeV electron irradiation) was evidenced by atomic force microscopy (AFM). Silicon nanocrystals are formed on the SiO2 surface after MeV electron irradiation. The shape and number of the Si nanocrystals on the SiO2 surface depend on the MeV electron irradiation, while their size increases with the dose. The mean Si nanocrystals height is 16-20 nm after irradiation with MeV electrons at the dose of 6.0×1016 cm-2.

  12. Preservation of Minced Meats by Using Medium and High-doses Irradiation

    International Nuclear Information System (INIS)

    Hammad, A.A.I.; Swailam, H.M.H.; Taha, S.M.A.

    2003-01-01

    The effect of medium (2.5-10 kGy) dose irradiation and high(20-70 kGy) dose irradiation on the microbiological, chemical and organoleptic properties of minced meat samples was studied. It was found that irradiation dose of only 5 kGy greatly reduced all microbial counts and completely eliminated all non-spore forming pathogenic bacteria contaminated minced meat samples. Consequently this irradiation dose extended the refrigerated (3 degree ±1) storage life of these products for more than 8 weeks. This irradiation dose almost did not affect the chemical composition, particularly the main amino acids and main fatty acids of minced meat samples. Panelists could not differentiate between irradiated minced meat samples at this dose and unirradiated samples. High doses irradiation, i.e.40 and 70 kGy were sufficient and efficient in sterilization of minced meat samples and in obtaining long-stable minced meat products (Two years) at ambient temperature. These irradiation doses slightly reduced (not more than 7%) aspartic acid, glutamic acid, methionine and lysine of minced meat. It also decreased the relative percentage of total unsaturated fatty acids by not more than 17 % . These high irradiation doses caused loss of C 18:3 and C 20:1

  13. Analysis of volatile organic compounds and sensory characteristics of pork loin samples irradiated to high doses

    International Nuclear Information System (INIS)

    Hou Zhengchi; Sun Dakuan; Qin Zongying; Jin Jiang; Zhu Liandi; Yao Side; Sheng Kanglong

    2005-01-01

    Fresh pork loin samples, protein enzyme inactivated at (72 ± 3) degree C and vacuum packaged, were irradiated to up to 45 kGy at -20 degree C by 60 Co γ-rays. The irradiated samples were examined by various kinds of method to study high dose irradiation effects of sensory changes (meat color and off-odor), transverse shearing strength, weight loss in steam cooking, volatile organic compounds, and lipid oxidation. The results showed that the high dose irradiation produced no serious effects to the pork loin samples, and volunteer responses showed fine acceptability to the irradiated meat. (authors)

  14. Low- and high-dose laser irradiation effects on cell migration and destruction

    Science.gov (United States)

    Layton, Elivia; Gallagher, Kyra A.; Zukerman, Sara; Stevens, Brianna; Zhou, Feifan; Liu, Hong; Chen, Wei R.

    2018-02-01

    Metastases are the cause of more than 90 percent of cancer-related deaths. Current treatment methods, including chemotherapy, radiation, and surgery, fail to target the metastases effectively. One potential treatment for metastatic cancer is laser immunotherapy (LIT). LIT combines the use of a photothermal laser with an immunoadjuvant, Glycated Chitosan (GC). GC combined with single-walled carbon nanotubes (SWNTs) has proven to be a viable alternative to traditional cancer treatment methods, when under irradiation of laser with appropriate wavelength. In this study, the effects of low dose and high dose laser irradiation on metastatic pancreatic cancer cell migration were observed. It was found that low dose irradiation increased the migration rate, but the high dose irradiation significantly decreased the migration rate of the cancer cells. When using LIT, the goal is to kill tumor cells and to prompt the correct immune response. If the tumor were irradiated with a low dose, it would promote metastasis. If the dose of irradiation were too high, it would destroy the entire tumor and the immune response would not recognize the tumor. Therefore, the laser dose plays an important role in LIT, particularly when using SWNT as light absorbing agent. Our results from this study will delineate the optimal laser irradiation dose for destroying tumor cells and at the same time preserve and release tumor antigens as a precursor of antitumor immune response.

  15. The radiosensitizing effect of doranidazole on human colorectal cancer cells exposed to high doses of irradiation

    International Nuclear Information System (INIS)

    Zhang, Li; Gong, Aimin; Ji, Jun; Wu, Yuanyuan; Zhu, Xiaoyu; Lv, Suqing; Lv, Hongzhu; Sun, Xizhuo

    2007-01-01

    This paper investigates the effects of a new radiosensitizer, doranidazole, and enhancing irradiation on colorectal cancer cells. The radiosensitizing effect of doranidazole was determined using colony formation and propidium iodide (PI) assays to measure cell growth inhibition and the cell killing effect of human colorectal cancer cell lines exposed to high doses of γ-ray irradiation under hypoxic conditions in vitro. Fluorescence staining and cell migration assays were also used to assess the radiosensitizing effect. Cell proliferation evaluated by clonogenic survival curves was significantly inhibited by 5 mmol/L doranidazole, particularly at doses ranging from 10 to 30 Gy of irradiation. The radiosensitizing effect of doranidazole on colorectal cancer cells occurs in a time- and dose-dependent manner. Doranidazole also inhibited the mobility of cell invasion and migration. Doranidazole can enhance the killing effect and the cell growth inhibition of colorectal cancer after high-dose irradiation in a time and dose-dependent manner

  16. Development of radiation fusion technology with food technology by the application of high dose irradiation

    International Nuclear Information System (INIS)

    Lee, Juwoon; Kim, Jaehun; Choi, Jongil

    2012-04-01

    This study was performed to achieve stable food supply and food safety with radiation fusion technology as a preparation for food weaponization. Results at current stage are following: First, for the development of radiation and food engineering fusion technology using high dose irradiation, the effects of high dose irradiation on food components were evaluated. The combination treatment of irradiation with food engineering was developed. Irradiation condition to destroy radiation resistant foodborne bacteria were determined. Second, for the development of E-beam irradiation technology, the effects of radiation sources on food compounds, processing conditions, and food quality of final products were compared. Food processing conditions for agricultural/aquatic products with different radiation sources was developed and the domination of E-beam irradiation foods were determined. The physical marker for E-beam irradiated foods or not was developed. Third, for the fundamental researches to develop purposed foods to extreme environmental, ready-to-eat foods were developed using high dose irradiation. Food processing for export strategy foods such as process ginseng were developed. Food processing with irradiation to destroy mycotoxin and to inhibit production of mycotoxin was developed. Mathematical models to predict necessary irradiation doses and radiation sources were developed and validated. Through the fundamental researches, the legislation for irradiation approval on meat products, sea foods and dried sea foods, and use of E-beam was introduced. Results from this research project, the followings are expected. Improvement of customer acceptance and activation of irradiation technology by the use of various irradiation rays. Increase of indirect food productivity, and decrease of SOC and improvement of public health by prevention of foodborne outbreaks. Build of SPS/TBT system against imported products and acceleration of domestic product export. Systemized

  17. Development of Radiation Fusion Technology with Food Technology by the Application of High Dose Irradiation

    International Nuclear Information System (INIS)

    Kim, Ju Won; Kim, Jae Hun; Choi, Jong Il

    2010-04-01

    This study was studied to achieve stable food supply and food safety with radiation fusion technology as a preparation for food weaponization. Results at current stage are following: First, for the development of radiation and food engineering fusion technology using high dose irradiation, the effects of high dose irradiation on food components were evaluated. The combination treatment of irradiation with food engineering were developed. Irradiation condition to destroy radiation resistant food borne bacteria were determined. Second, for the development of E-beam irradiation technology, the effects of radiation sources on food compounds, processing conditions, and food quality of final products were compared. Food processing conditions for agricultural/aquatic products with different radiation sources were developed and the domination of E-beam irradiation foods were determined. The physical marker for E-beam irradiated foods or not were developed. Third, for the fundamental researches to develop purposed foods to extreme environmental, ready-to-eat foods were developed using high dose irradiation. Food processing for export strategy foods such as process ginseng were developed. Food processing with irradiation to destroy mycotoxin and to inhibit production of mycotoxin were developed. Mathematical models to predict necessary irradiation doses and radiation sources were developed and validated. Through the fundamental researches, the legislation for irradiation approval on meat products, sea foods and dried sea foods, and use of E-beam were introduced. Results from this research project, the followings are expected. (1) Improvement of customer acceptance and activation of irradiation technology by the use of various irradiation rays. (2) Increase of indirect food productivity, and decrease of SOC and improvement of public health by prevention of food borne outbreaks. (3) Build of SPS/TBT system against imported products and acceleration of domestic product export

  18. Development of Radiation Fusion Technology with Food Technology by the Application of High Dose Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ju Won; Kim, Jae Hun; Choi, Jong Il

    2010-04-15

    This study was studied to achieve stable food supply and food safety with radiation fusion technology as a preparation for food weaponization. Results at current stage are following: First, for the development of radiation and food engineering fusion technology using high dose irradiation, the effects of high dose irradiation on food components were evaluated. The combination treatment of irradiation with food engineering were developed. Irradiation condition to destroy radiation resistant food borne bacteria were determined. Second, for the development of E-beam irradiation technology, the effects of radiation sources on food compounds, processing conditions, and food quality of final products were compared. Food processing conditions for agricultural/aquatic products with different radiation sources were developed and the domination of E-beam irradiation foods were determined. The physical marker for E-beam irradiated foods or not were developed. Third, for the fundamental researches to develop purposed foods to extreme environmental, ready-to-eat foods were developed using high dose irradiation. Food processing for export strategy foods such as process ginseng were developed. Food processing with irradiation to destroy mycotoxin and to inhibit production of mycotoxin were developed. Mathematical models to predict necessary irradiation doses and radiation sources were developed and validated. Through the fundamental researches, the legislation for irradiation approval on meat products, sea foods and dried sea foods, and use of E-beam were introduced. Results from this research project, the followings are expected. (1) Improvement of customer acceptance and activation of irradiation technology by the use of various irradiation rays. (2) Increase of indirect food productivity, and decrease of SOC and improvement of public health by prevention of food borne outbreaks. (3) Build of SPS/TBT system against imported products and acceleration of domestic product export

  19. Development of radiation fusion technology with food technology by the application of high dose irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Juwoon; Kim, Jaehun; Choi, Jongil; and others

    2012-04-15

    This study was performed to achieve stable food supply and food safety with radiation fusion technology as a preparation for food weaponization. Results at current stage are following: First, for the development of radiation and food engineering fusion technology using high dose irradiation, the effects of high dose irradiation on food components were evaluated. The combination treatment of irradiation with food engineering was developed. Irradiation condition to destroy radiation resistant foodborne bacteria were determined. Second, for the development of E-beam irradiation technology, the effects of radiation sources on food compounds, processing conditions, and food quality of final products were compared. Food processing conditions for agricultural/aquatic products with different radiation sources was developed and the domination of E-beam irradiation foods were determined. The physical marker for E-beam irradiated foods or not was developed. Third, for the fundamental researches to develop purposed foods to extreme environmental, ready-to-eat foods were developed using high dose irradiation. Food processing for export strategy foods such as process ginseng were developed. Food processing with irradiation to destroy mycotoxin and to inhibit production of mycotoxin was developed. Mathematical models to predict necessary irradiation doses and radiation sources were developed and validated. Through the fundamental researches, the legislation for irradiation approval on meat products, sea foods and dried sea foods, and use of E-beam was introduced. Results from this research project, the followings are expected. Improvement of customer acceptance and activation of irradiation technology by the use of various irradiation rays. Increase of indirect food productivity, and decrease of SOC and improvement of public health by prevention of foodborne outbreaks. Build of SPS/TBT system against imported products and acceleration of domestic product export. Systemized

  20. High dose rate intracavitary afterloading irradiation in malignant inoperable obturation of bile ducts

    Energy Technology Data Exchange (ETDEWEB)

    Itami, J.; Saegusa, K.; Mamiya, T.; Miyoshi, T.; Arimizu, N.; Tsuchiya, Y.; Ohto, M.

    1986-02-01

    After decompression of the bile duct with PTCD, seven patients with carcinomas of the bile ducts were submitted to an intracavitary Ir-afterloading irradiation performed according to the high-dose-rate method with a Buchler device. Most of the patients were irradiated with 30 Gy in two fractions. Five patients were also exposed to percutaneous radiation with 40 to 50 Gy. Local control was achieved in six patients. One patient developed a locoregional recurrence which was possibly due to a so-called 'geographic miss'. In one patient a benign fibrotic stenosis of the bile duct was found at the site of most intensive irradiation. Intracavitary irradiation is very important in the treatment of malignant of bile ducts. However, there is an urgent need of research with regard to the combined method with percutaneous irradiation and to the optimum fractionation of intracavitary high dose rate irradiation.

  1. Effects of high dose gamma irradiation on ITO thin film properties

    Energy Technology Data Exchange (ETDEWEB)

    Alyamani, A. [National Nanotechnology Center, King Abdul-Aziz City for Science and Technology (KACST), Riyadh (Saudi Arabia); Mustapha, N., E-mail: nazirmustapha@hotmail.com [Dept. of Physics, College of Sciences, Al Imam Mohammad Ibn Saud Islamic University, P.O. Box 90950, Riyadh 11623 (Saudi Arabia)

    2016-07-29

    Transparent thin-film Indium Tin Oxides (ITO) were prepared on 0.7 mm thick glass substrates using a pulsed laser deposition (PLD) process with average thickness of 150 nm. The samples were then exposed to high gamma γ radiation doses by {sup 60}Co radioisotope. The films have been irradiated by performing exposure cycles up to 250 kGy total doses at room temperature. The surface structures before and after irradiation were analysed by x-ray diffraction. Atomic Force Microscopy (AFM) was performed on all samples before and after irradiation to investigate any change in the grain sizes, and also in the roughness of the ITO surface. We investigated the influence of γ irradiation on the spectra of transmittance T, in the ultraviolet-visible-near infrared spectrum using spectrophotometer measurements. Energy band gap E{sub g} was then calculated from the optical spectra for all ITO films. It was found that the optical band gap values decreased as the radiation dose was increased. To compare the effect of the irradiation on refractive index n and extinction coefficient k properties, additional measurements were done on the ITO samples before and after gamma irradiation using an ellipsometer. The optical constants n and k increased by increasing the irradiation doses. Electrical properties such as resistivity and sheet resistance were measured using the four-point probe method. The good optical, electrical and morphological properties maintained by the ITO films even after being exposed to high gamma irradiation doses, made them very favourable to be used as anodes for solar cells and as protective coatings in space windows. - Highlights: • Indium Tin Oxide (ITO) thin films were deposited by pulsed laser deposition. • Effects of Gamma irradiation were investigated. • Changes of optical transmission and electrical properties of ITO films were studied. • Intensity of the diffraction peaks and the film's structure changed with increasing irradiation doses.

  2. Non-linear failure analysis of HCPB blanket for DEMO taking into account high dose irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Aktaa, J., E-mail: jarir.aktaa@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Kecskés, S.; Pereslavtsev, P.; Fischer, U.; Boccaccini, L.V. [Karlsruhe Institute of Technology (KIT), Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2014-10-15

    Highlights: • First non-linear structural analysis for the European Helium Cooled Pebble Bed Blanket Module taking into account high dose irradiation. • Most critical areas were identified and analyzed with regard to the effect of irradiation on predicted damage at these areas. • Despite the extensive computing time 100 cycles were simulated by using the sub-modelling technique investigating damage at most critical area. • The results show a positive effect of irradiation on calculated damage which is mainly attributed to the irradiation induced hardening. - Abstract: For the European helium cooled pebble bed (HCPB) blanket of DEMO the reduced activation ferritic martensitic steel EUROFER has been selected as structural material. During operation the HCPB blanket will be subjected to complex thermo-mechanical loadings and high irradiation doses. Taking into account the material and structural behaviour under these conditions is a precondition for a reliable blanket design. For considering high dose irradiation in structural analysis of the DEMO blanket, the coupled deformation damage model, extended recently taking into account the influence of high dose irradiation on the material behaviour of EUROFER and implemented in the finite element code ABAQUS, has been used. Non-linear finite element (FE) simulations of the DEMO HCPB blanket have been performed considering the design of the HCPB Test Blanket Module (TBM) as reference and the thermal and mechanical boundary conditions of previous analyses. The irradiation dose rate required at each position in the structure as an additional loading parameter is estimated by extrapolating the results available for the TBM in ITER scaling the value calculated in neutronics and activation analysis for ITER boundary conditions to the DEMO boundary conditions. The results of the FE simulations are evaluated considering damage at most critical highly loaded areas of the structure and discussed with regard to the impact of

  3. Non-linear failure analysis of HCPB blanket for DEMO taking into account high dose irradiation

    International Nuclear Information System (INIS)

    Aktaa, J.; Kecskés, S.; Pereslavtsev, P.; Fischer, U.; Boccaccini, L.V.

    2014-01-01

    Highlights: • First non-linear structural analysis for the European Helium Cooled Pebble Bed Blanket Module taking into account high dose irradiation. • Most critical areas were identified and analyzed with regard to the effect of irradiation on predicted damage at these areas. • Despite the extensive computing time 100 cycles were simulated by using the sub-modelling technique investigating damage at most critical area. • The results show a positive effect of irradiation on calculated damage which is mainly attributed to the irradiation induced hardening. - Abstract: For the European helium cooled pebble bed (HCPB) blanket of DEMO the reduced activation ferritic martensitic steel EUROFER has been selected as structural material. During operation the HCPB blanket will be subjected to complex thermo-mechanical loadings and high irradiation doses. Taking into account the material and structural behaviour under these conditions is a precondition for a reliable blanket design. For considering high dose irradiation in structural analysis of the DEMO blanket, the coupled deformation damage model, extended recently taking into account the influence of high dose irradiation on the material behaviour of EUROFER and implemented in the finite element code ABAQUS, has been used. Non-linear finite element (FE) simulations of the DEMO HCPB blanket have been performed considering the design of the HCPB Test Blanket Module (TBM) as reference and the thermal and mechanical boundary conditions of previous analyses. The irradiation dose rate required at each position in the structure as an additional loading parameter is estimated by extrapolating the results available for the TBM in ITER scaling the value calculated in neutronics and activation analysis for ITER boundary conditions to the DEMO boundary conditions. The results of the FE simulations are evaluated considering damage at most critical highly loaded areas of the structure and discussed with regard to the impact of

  4. Epithelial regeneration of transposed intestine after high doses of X irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Both, N.J. de; Vermey, M [Erasmus Universiteit, Rotterdam (Netherlands)

    1976-01-01

    The regeneration capacities of normal and transposed small bowel epithelium were compared in rats after applying high doses of x irradiation. It has been shown that the potency of the mucosa to regenerate was much higher than assumed and that the mucosa could regenerate after single doses varying from 2000 to 5000 R. Even in the villus epithelium and in flat epithelium covering infiltrates of the lamina propria cells survived, which were still able to resume proliferative activity several days after irradiation.

  5. High dose radiation damage in nuclear energy structural materials investigated by heavy ion irradiation simulation

    International Nuclear Information System (INIS)

    Zheng Yongnan; Xu Yongjun; Yuan Daqing

    2014-01-01

    Structural materials in ITER, ADS and fast reactor suffer high dose irradiations of neutrons and/or protons, that leads to severe displacement damage up to lOO dpa per year. Investigation of radiation damage induced by such a high dose irradiation has attracted great attention along with the development of nuclear energy facilities of new generation. However, it is deeply hampered for the lacking of high dose neutron and proton sources. Irradiation simulation of heavy ions produced by accelerators opens up an effective way for laboratory investigation of high dose irradiation induced radiation damage encountered in the ITER, ADS, etc. Radiation damage is caused mainly by atomic displacement in materials. The displacement rate of heavy ions is about lO 3 ∼10 7 orders higher than those of neutrons and protons. High displacement rate of heavy ions significantly reduces the irradiation time. The heavy ion irradiation simulation technique (HIIS) technique has been developed at China Institute of Atomic Energy and a series of the HIIS experiments have been performed to investigate radiation damage in stainless steels, tungsten and tantalum at irradiation temperatures from room temperature to 800 ℃ and in the irradiation dose region up to 100 dpa. The experimental results show that he radiation swelling peak for the modified stainless steel appears in the temperature region around 580 ℃ and the radiation damage is more sensitive to the temperature, the size of the radiation induced vacancy cluster or void increase with the increasing of the irradiation dose, and among the three materials the home-made modified stainless steel has the best radiation resistant property. (authors)

  6. Experimental research on fresh mussel meat irradiated by high-dose electron beam

    International Nuclear Information System (INIS)

    Xiao Lin; Lu Ruifeng; Hu Huachao; Wang Chaoqi; Liu Yanna

    2011-01-01

    The sterilization storage of fresh mussel irradiated high-dose electron beam was studied. From the subjective assessment by the weighted average of the test and other determined parameters, it can be concluded that the flavor of fresh mussel meat sealed canned food irradiated by high-dose electron beam has not been significant affected, and various micro-organisms can be killed effectively, which means that the irradiated fresh mussel meat can be preserved for long-term at room temperature. Therefore the method might resolve the problems induced by traditional frozen preservation methods. (authors)

  7. The high dose and low dose food irradiation programmes in the United States of America

    International Nuclear Information System (INIS)

    Brynjolfsson, A.

    1978-01-01

    Many highly acceptable shelf-stable irradiated food items have been developed in the United States of America. The most extensive wholesomeness studies ever carried out on any food-processing method continue to indicate that irradiated foods are wholesome. (author)

  8. The biochemical changes of bone collagen after high-dose irradiation

    International Nuclear Information System (INIS)

    Tajiri, Ken

    1980-01-01

    In our clinic, patients with malignant bone tumors have been treated by high-dose irradiation therapy, 10,000-20,000 rads, for primary lesions. In order to study the biochemical changes of normal bone around tumor tissue, especially bone collagen, after high-dose irradiation, the author performed the following experiments. The right knee joint of rabbits was irradiated with either 6,000, 10,000, or 15,000 rads by 60 Co-γ ray. The cortical bone of the right tibial metaphysis was used for analyses and compared with the left tibia of the same rabbit. These studies were followed for one year after the final irradiation. The calcium, phosphorous and collagen contents of irradiated bone were remarkably changed. These data indicate that collagen biosynthesis of irradiated bone was decreased and the calcification was disturbed. An increase in the amount of total soluble collagen and a decrease in the amount of hydroxylysine bound sugar were observed. The ratio of β to α chains of the collagen molecule was also changed by the irradiation. The amount of reducible cross-links per hydroxyproline residue was strikingly increased three months after the final irradiation. These changes were remarkable especially in the 10,000 and 15,000 rads irradiated group and found to be recovered approximately six months to one year after the final irradiation. These findings indicate that high-dose irradiation reduces the stability of bone collagen both with the destruction of sugar bonds of hydroxylysine residues and the replacement of matured collagen matrix to immatured one which contain mostly labile reducible cross-links. (author)

  9. High-dose irradiation: Wholesomeness of food irradiated with doses above 10 kGy. Report of a joint FAO/IAEA/WHO study group

    International Nuclear Information System (INIS)

    1999-01-01

    This report presents the recommendations of an international group of experts convened by the World Health Organization, in association with the Food and Agriculture Organization of the United Nations and the International Atomic Energy Agency, to consider the implications of food irradiated to doses higher than those recommended in 1980 by the Joint Expert Committee on the Wholesomeness of Irradiated Food. Irradiation ensures the hygienic quality of food and extends shelf-life. The public perception of the safety of food irradiation has generally precluded its widespread use. However, current applications of food irradiation to doses over 10 kGy have been in the development of high-quality shelf-stable convenience foods for specific target groups such as immunosuppressed individuals and those under medical care, astronauts and outdoor enthusiasts. The Study Group reviewed data relating to the toxicological, nutritional, radiation chemical and physical aspects of food irradiated to doses above 10kGy from a wide range and number of studies carried out over the last forty years. This report presents a comprehensive summary, along with references, of the effectiveness and safety of the irradiation process. It concludes that foods treated with doses greater than 10kGy can be considered safe and nutritionally adequate when produced under established Good Manufacturing Practice

  10. Self-ion emulation of high dose neutron irradiated microstructure in stainless steels

    Science.gov (United States)

    Jiao, Z.; Michalicka, J.; Was, G. S.

    2018-04-01

    Solution-annealed 304L stainless steel (SS) was irradiated to 130 dpa at 380 °C, and to 15 dpa at 500 °C and 600 °C, and cold-worked 316 SS (CW 316 SS) was irradiated to 130 dpa at 380 °C using 5 MeV Fe++/Ni++ to produce microstructures and radiation-induced segregation (RIS) for comparison with that from neutron irradiation at 320 °C to 46 dpa in the BOR60 reactor. For the 304L SS alloy, self-ion irradiation at 380 °C produced a dislocation loop microstructure that was comparable to that by neutron irradiation. No voids were observed in either the 380 °C self-ion irradiation or the neutron irradiation conditions. Irradiation at 600 °C produced the best match to radiation-induced segregation of Cr and Ni with the neutron irradiation, consistent with the prediction of a large temperature shift by Mansur's invariant relations for RIS. For the CW 316 SS alloy irradiated to 130 dpa at 380 °C, both the irradiated microstructure (dislocation loops, precipitates and voids) and RIS reasonably matched the neutron-irradiated sample. The smaller temperature shift for RIS in CW 316 SS was likely due to the high sink (dislocation) density induced by the cold work. A single self-ion irradiation condition at a dose rate ∼1000× that in reactor does not match both dislocation loops and RIS in solution-annealed 304L SS. However, a single irradiation temperature produced a reasonable match with both the dislocation/precipitate microstructure and RIS in CW 316 SS, indicating that sink density is a critical factor in determining the temperature shift for self-ion irradiations.

  11. High-dose, half-body irradiation and its effects

    International Nuclear Information System (INIS)

    Oelssner, W.; Standke, E.; Brock, A.; Dalicho, R.; Friedrich, A.; Kunze, M.L.; Melzer, R.; Sauer, H.

    1991-01-01

    The major early reactions observable were vegetative disturbances such as nausea, vertigo, repeated vomiting, rise in temperature and pulse rate, variations in blood pressure, and diarrhea in some cases. All these symptoms disappeared quite rapidly. Seven women developed parotitis, which disappeared after a certain time, and all patients suffered from complete epilation, which was followed by enhanced piliation. There were only light mucosal changes in all patients, but many changes in the blood count. Observation of cellular immunity revealed a temporary suppression, which faded out after 3 weeks. Further side effects could be detected in the biochemical regime. The main radiation effects on the lungs and the only virtual complication encountered were three cases of pneumonitis. Apart from these, lung density measurement by CT revealed a temporary increase in density. Effects of the half-body irradiation on the heart consisted for one part of direct effects detectable in the cells of the cardiac muscle in the myocardial capillaries, and for the other by adaptive responses to changes in the hemodynamics of the lesser circulatory system. There were no signs of renal lesions or formation of cataracts. A causality can be suspected between the radiotherapy and the occurrance of two secondary carcinoma, contralateral breast cancer in one patient, and stomach cancer in another. The efficiency of the half-body irradiation is shown by the delayed occurrence of metastases, and a prolongation of survival time of incurable patients. (orig./MG) With 20 figs., 9 tabs [de

  12. Surface damage of 316 stainless steel irradiated with 4He+ to high doses

    International Nuclear Information System (INIS)

    Kaminsky, M.; Das, S.K.

    1978-01-01

    Surface blistering of niobium by implantation with helium ions in the 9 to 15 keV range was investigated. The apparent disappearance of blisters at sufficiently high doses was believed to be an equilibrium effect. To determine whether high temperature annealing causes the equilibrium condition, stainless steel-316 samples were irradiated at a constant 450 0 C. Results are presented

  13. Time-dose relationship of erythema in high energy photon irradiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Hidetoshi (Gifu Prefectural Tajimi Hospital (Japan)); Sakuma, Sadayuki

    1992-01-01

    Skin doses of 100 patients who were treated with high energy ionizing irradiation during conventional irradiation therapy were measured by thermoluminescence dosimeter (TLD). In 87 of the 100 patients, acute hyperemic change of the skin (erythema) of the irradiated region was observed. In the other 13 patients, alopetia of the scalp was observed. The following conclusions were reached. The time-dose relationship was linear when erythema tolerance was used as an index, but not when alopecia was used. The tolerance dose for erythema was lower than previously reported. The slope of the isoeffect curve on the log-log plot of total absorbed skin dose against total number of days after the first irradiation was 0.68 when erythema was used as an index. This number is larger than previously reported results. We considered that erythema is significantly influenced by fraction size and that hyperfractionation is a promising method of irradiation, especially in Japan. Combined use of chemotherapeutic agents, such as 5-FU, accelerated erythema. The slope of combined treatment was 0.86. Observing acute hyperemic change of skin is considered to be a useful method of investigating the combined effects of chemotherapeutic agents on irradiation. (author).

  14. Effect of high-dose irradiation on quality characteristics of ready-to-eat chicken breast

    International Nuclear Information System (INIS)

    Yun, Hyejeong; Haeng Lee, Kyung; Jung Lee, Hyun; Woon Lee, Ju; Uk Ahn, Dong; Jo, Cheorun

    2012-01-01

    High-dose (higher than 30 kGy) irradiation has been used to sterilize specific-purposed foods for safe and long-term storage. The objective of this study was to investigate the effect of high-dose irradiation on the quality characteristics of ready-to-eat chicken breast in comparison with those of the low-dose irradiation. Ready-to-eat chicken breast was manufactured, vacuum-packaged, and irradiated at 0, 5, and 40 kGy. The populations of total aerobic bacteria were 4.75 and 2.26 Log CFU/g in the samples irradiated at 0 and 5 kGy, respectively. However, no viable cells were detected in the samples irradiated at 40 kGy. On day 10, bacteria were not detected in the samples irradiated at 40 kGy but the number of bacteria in the samples irradiated at 5 kGy was increased. The pH at day 0 was higher in the samples irradiated at 40 kGy than those at 0 and 5 kGy. The 2-thiobarbituric acid reactive substance (TBARS) values of the samples were not significantly different on day 0. However, on day 10, the TBARS value was significantly higher in the samples irradiated at 40 kGy than those at 0 and 5 kGy. There was no difference in the sensory scores of the samples, except for off-flavor, which was stronger in samples irradiated at 5 and 40 kGy than control. However, no difference in off-flavor between the irradiated ones was observed. After 10 days of storage, only the samples irradiated at 40 kGy showed higher off-flavor score. SPME-GC–MS analysis revealed that 5 kGy of irradiation produced 2-methylbutanal and 3-methylbutanal, which were not present in the control, whereas 40 kGy of irradiation produced hexane, heptane, pentanal, dimethly disulfide, heptanal, and nonanal, which were not detected in the control or the samples irradiated at 5 kGy. However, the amount of compounds such as allyl sulfide and diallyl disulfide decreased significantly in the samples irradiated at 5 kGy and 40 kGy. - Highlights: ► Comparison of high (40 kGy) and low-dose irradiation (5 kGy) on

  15. Epithelial regeneration of transposed intestine after high doses of X-irradiation

    International Nuclear Information System (INIS)

    Both, N.J. de; Vermey, M.

    1976-01-01

    The regeneration capacities of normal and transposed small bowel epithelium were compared in rats after applying high doses of X-irradiation. It has been shown that the potency of the mucosa to regenerate was much higher than assumed and that the mucosa could regenerate after single doses varying from 2000 to 5000 R. Even in the villus epithelium and in flat epithelium covering infiltrates of the lamina propria cells survived, which were still able to resume proliferative activity several days after irradiation. (author)

  16. Mock-up experiments for the project of high dose irradiation on the RPV concrete

    International Nuclear Information System (INIS)

    Zdarek, J.; Brabec, P.; Frybort, O.; Lahodova, Z.; Vit, J.; Stemberk, P.

    2015-01-01

    Aging of NPP's concrete structures comes into growing interest in connection with solution of life extension programmes of operated units. Securing continued safe operation of NPPs calls for additional proofs of suitable long term behaviour of loaded reinforced concrete structures. An irradiation test of concrete samples was performed in the core of the LVR-15 reactor. The irradiation capsule was hung in the irradiation channel and the cooling of the capsule was ensured through direct contact of the capsule wall with the primary circuit water. Cylindrical, serpentine concrete samples (50 mm in diameter and 100 mm in length), representing composition of WWER RPV cavity, was chosen as a compromise of mechanical properties testing needs and dimension limitations of reactor irradiation channel. Heating during irradiation test was maintained under 93 Celsius degrees by cooling and was controlled by embedded thermocouple. Design of the cooling management was supported by computational analysis. The dependencies of heated concrete samples to the neutron fluence and the gamma heating were obtained by changing the thermal power of the reactor and by changing the vertical position of the sample in the irradiation channel. The irradiation capsule was filled with inert gas (helium) to allow the measurement of generated gas. The determination of concrete samples activity for long-term irradiation was performed on the principles of the Neutron Activation Analysis. Preliminary mock-up tests have proved the ability to fulfill technical needs for planned high dose irradiation experiment

  17. Clinical application of a OneDose(TM) MOSFET for skin dose measurements during internal mammary chain irradiation with high dose rate brachytherapy in carcinoma of the breast

    International Nuclear Information System (INIS)

    Kinhikar, Rajesh A; Sharma, Pramod K; Tambe, Chandrashekhar M; Mahantshetty, Umesh M; Sarin, Rajiv; Deshpande, Deepak D; Shrivastava, Shyam K

    2006-01-01

    In our earlier study, we experimentally evaluated the characteristics of a newly designed metal oxide semiconductor field effect transistor (MOSFET) OneDose(TM) in-vivo dosimetry system for Ir-192 (380 keV) energy and the results were compared with thermoluminescent dosimeters (TLDs). We have now extended the same study to the clinical application of this MOSFET as an in-vivo dosimetry system. The MOSFET was used during high dose rate brachytherapy (HDRBT) of internal mammary chain (IMC) irradiation for a carcinoma of the breast. The aim of this study was to measure the skin dose during IMC irradiation with a MOSFET and a TLD and compare it with the calculated dose with a treatment planning system (TPS). The skin dose was measured for ten patients. All the patients' treatment was planned on a PLATO treatment planning system. TLD measurements were performed to compare the accuracy of the measured results from the MOSFET. The mean doses measured with the MOSFET and the TLD were identical (0.5392 Gy, 15.85% of the prescribed dose). The mean dose was overestimated by the TPS and was 0.5923 Gy (17.42% of the prescribed dose). The TPS overestimated the skin dose by 9% as verified by the MOSFET and TLD. The MOSFET provides adequate in-vivo dosimetry for HDRBT. Immediate readout after irradiation, small size, permanent storage of dose and ease of use make the MOSFET a viable alternative for TLDs. (note)

  18. Clinical application of a OneDose MOSFET for skin dose measurements during internal mammary chain irradiation with high dose rate brachytherapy in carcinoma of the breast.

    Science.gov (United States)

    Kinhikar, Rajesh A; Sharma, Pramod K; Tambe, Chandrashekhar M; Mahantshetty, Umesh M; Sarin, Rajiv; Deshpande, Deepak D; Shrivastava, Shyam K

    2006-07-21

    In our earlier study, we experimentally evaluated the characteristics of a newly designed metal oxide semiconductor field effect transistor (MOSFET) OneDose in-vivo dosimetry system for Ir-192 (380 keV) energy and the results were compared with thermoluminescent dosimeters (TLDs). We have now extended the same study to the clinical application of this MOSFET as an in-vivo dosimetry system. The MOSFET was used during high dose rate brachytherapy (HDRBT) of internal mammary chain (IMC) irradiation for a carcinoma of the breast. The aim of this study was to measure the skin dose during IMC irradiation with a MOSFET and a TLD and compare it with the calculated dose with a treatment planning system (TPS). The skin dose was measured for ten patients. All the patients' treatment was planned on a PLATO treatment planning system. TLD measurements were performed to compare the accuracy of the measured results from the MOSFET. The mean doses measured with the MOSFET and the TLD were identical (0.5392 Gy, 15.85% of the prescribed dose). The mean dose was overestimated by the TPS and was 0.5923 Gy (17.42% of the prescribed dose). The TPS overestimated the skin dose by 9% as verified by the MOSFET and TLD. The MOSFET provides adequate in-vivo dosimetry for HDRBT. Immediate readout after irradiation, small size, permanent storage of dose and ease of use make the MOSFET a viable alternative for TLDs.

  19. High dose rate (HDR) and low dose rate (LDR) interstitial irradiation (IRT) of the rat spinal cord

    International Nuclear Information System (INIS)

    Pop, Lucas A.M.; Plas, Mirjam van der; Skwarchuk, Mark W.; Hanssen, Alex E.J.; Kogel, Albert J. van der

    1997-01-01

    Purpose: To describe a newly developed technique to study radiation tolerance of rat spinal cord to continuous interstitial irradiation (IRT) at different dose rates. Material and methods: Two parallel catheters are inserted just laterally on each side of the vertebral bodies from the level of Th 10 to L 4 . These catheters are afterloaded with two 192 Ir wires of 4 cm length each (activity 1-2.3 mCi/cm) for the low dose rate (LDR) IRT or connected to the HDR micro-Selectron for the high dose rate (HDR) IRT. Spinal cord target volume is located at the level of Th 12 -L 2 . Due to the rapid dose fall-off around the implanted sources, a dose inhomogeneity across the spinal cord thickness is obtained in the dorso-ventral direction. Using the 100% reference dose (rate) at the ventral side of the spinal cord to prescribe the dose, experiments have been carried out to obtain complete dose response curves at average dose rates of 0.49, 0.96 and 120 Gy/h. Paralysis of the hind-legs after 5-6 months and histopathological examination of the spinal cord of each irradiated rat are used as experimental endpoints. Results: The histopathological damage seen after irradiation is clearly reflected the inhomogeneous dose distribution around the implanted catheters, with the damage predominantly located in the dorsal tract of the cord or dorsal roots. With each reduction in average dose rate, spinal cord radiation tolerance is significantly increased. When the dose is prescribed at the 100% reference dose rate, the ED 50 (induction of paresis in 50% of the animals) for the HDR-IRT is 17.3 Gy. If the average dose rate is reduced from 120 Gy/h to 0.96 or 0.49 Gy/h, a 2.9- or 4.7-fold increase in the ED 50 values to 50.3 Gy and 80.9 Gy is observed; for the dose prescribed at the 150% reference dose rate (dorsal side of cord) ED 50 values are 26.0, 75.5 and 121.4 Gy, respectively. Using different types of analysis and in dependence of the dose prescription and reference dose rate, the

  20. High-dose radiation-induced meningioma following prophylactic cranial irradiation for acute lymphoblastic leukaemia

    International Nuclear Information System (INIS)

    Matsuda, Ryosuke; Nikaido, Yuji; Yamada, Tomonori; Mishima, Hideaki; Tamaki, Ryo

    2005-01-01

    A 12 year-old girl was treated with prophylactic cranial irradiation for acute lymphoblastic leukaemia (ALL). At the age of 39, she was admitted to our hospital for status epilepticus. Computed tomography demonstrated two, enhancing bilateral sided intracranial tumors. After surgery, this patient presented meningiomas which histologically, were of the meningothelial type. The high cure rate in childhood ALL, attributable to aggressive chemotherapy and prophylactic cranial irradiation, is capable of inducing secondary brain tumor. Twelve cases of high-dose radiation-induced meningioma following ALL are also reviewed. (author)

  1. High-dose radiation-induced meningioma following prophylactic cranial irradiation for acute lymphoblastic leukaemia

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Ryosuke; Nikaido, Yuji; Yamada, Tomonori; Mishima, Hideaki; Tamaki, Ryo [National Hospital Organization Osaka Minami Medical Center, Kawachinagano (Japan)

    2005-03-01

    A 12 year-old girl was treated with prophylactic cranial irradiation for acute lymphoblastic leukaemia (ALL). At the age of 39, she was admitted to our hospital for status epilepticus. Computed tomography demonstrated two, enhancing bilateral sided intracranial tumors. After surgery, this patient presented meningiomas which histologically, were of the meningothelial type. The high cure rate in childhood ALL, attributable to aggressive chemotherapy and prophylactic cranial irradiation, is capable of inducing secondary brain tumor. Twelve cases of high-dose radiation-induced meningioma following ALL are also reviewed. (author)

  2. Characterization of the Microstructure in Recrystallized Zircaloy-2 Cladding Irradiated to a High Neutron Dose

    International Nuclear Information System (INIS)

    Pettersson, Kjell

    2003-04-01

    The objectives of the present project were to determine if there is anything in the microstructure of highly irradiated Zircaloy-2 which may make the material fracture in a brittle manner. Samples were taken from three different locations on a fuel rod which had been irradiated for 12 years. The displacement doses were estimated to be 1.4, 9 and 28 dpa. Specimens for electron microscopy were prepared with two different orientation called axial and radial. In the axial orientation the electron beam goes parallel with the basal plane and diffraction conditions can be arranged so that dislocations with a Burgers' vectors become invisible. In the low dose specimen only a-component damage was present and all second phase particles were crystalline. In both the high and intermediate dose samples there was c-component damage present with a slightly higher amount in the high dose sample. The particles of the Zr(Cr,Fe) 2 type were generally amorphous in these samples and the Fe-content of the particles was highly reduced. The hydride structures were similar in all samples. The hydrides were often precipitated in parallel in the same grain and chains of hydrides were seen which ran from grain to grain. No population of small hydrides were observed except from surface hydrides formed during specimen preparation. It was concluded from the investigation that there is nothing in the microstructure which may make the material in the high dose state subject to a purely mechanically induced fast brittle cracking

  3. Irradiation dose of cosmonauts

    International Nuclear Information System (INIS)

    Makra, Zs.

    1978-01-01

    The results obtained by determining the irradiation dose during the spaceflights of Apollo as well as the Sojouz-3 and Sojouz-9 spacecrafts have been compared in the form of tables. In case of Apollo astronauts the irradiation dose was determined by two methods and its sources were also pointed out, in tables. During Sojouz spacetravels the cosmonauts were exposed to a negligible dose. In spite of this fact the radiation danger is considerable. The small irradiation doses noticed so far are due to the fact that during the spaceflights there was no big proturberance. However, during the future long-range spacetravels a better radiation shielding than the one used up to now will be necessary. (P.J.)

  4. Aging of magnesium stearate under high doses gamma irradiation and oxidative conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lebeau, D.; Beuvier, L.; Cornaton, M. [CEA, DEN, DPC, SECR, LRMO, F-91191 Gif-sur-Yvette (France); Miserque, F. [CEA, DEN, DPC, SCCME, LECA, F-91191 Gif-sur-Yvette (France); Tabarant, M. [CEA, DEN, DPC, SEARS, LISL, F-91191 Gif-sur-Yvette (France); Esnouf, S. [CEA, DEN, DPC, SECR, LRMO, F-91191 Gif-sur-Yvette (France); Ferry, M., E-mail: muriel.ferry@cea.fr [CEA, DEN, DPC, SECR, LRMO, F-91191 Gif-sur-Yvette (France)

    2015-05-15

    Highlights: • Magnesium stearate was radio-oxidized at very high doses using gamma-rays. • H{sub 2} emission was estimated as a function of the integrated dose. • Modifications in the organic solid were followed as a function of the integrated dose. • A non-exhaustive degradation mechanism of magnesium stearate was proposed. - Abstract: In nuclear waste packages conditioning processes, magnesium stearate is widely used because of its high lubricating properties. For safety purposes, the radiolytic degradation of these organic materials has to be better understood to be able to predict their aging in repository conditions. This study reports the radiolytic degradation of magnesium stearate, using gamma-rays at room temperature and under air. Modifications were followed using different analytical tools (XPS, ATR-FTIR, ICP-AES, ATG and mass spectrometry). It has been observed that molecules mainly formed up to 1000 kGy of gamma irradiation dose under radio-oxidation are alkanes, hydroperoxides, double bonds in the aliphatic chain, carboxylates with aliphatic chain shorter than the one of stearate and ketones. At a dose of 4000 kGy, dicarboxylic acids are observed: the formation of these molecules needs a dose of at least 1000 kGy to be created under radio-oxidation. These observations allow us to propose a non-exhaustive degradation mechanism of magnesium stearate under gamma-irradiation at room temperature and under air.

  5. Survival of tumor cells after proton irradiation with ultra-high dose rates

    International Nuclear Information System (INIS)

    Auer, Susanne; Hable, Volker; Greubel, Christoph; Drexler, Guido A; Schmid, Thomas E; Belka, Claus; Dollinger, Günther; Friedl, Anna A

    2011-01-01

    Laser acceleration of protons and heavy ions may in the future be used in radiation therapy. Laser-driven particle beams are pulsed and ultra high dose rates of >10 9 Gy s -1 may be achieved. Here we compare the radiobiological effects of pulsed and continuous proton beams. The ion microbeam SNAKE at the Munich tandem accelerator was used to directly compare a pulsed and a continuous 20 MeV proton beam, which delivered a dose of 3 Gy to a HeLa cell monolayer within < 1 ns or 100 ms, respectively. Investigated endpoints were G2 phase cell cycle arrest, apoptosis, and colony formation. At 10 h after pulsed irradiation, the fraction of G2 cells was significantly lower than after irradiation with the continuous beam, while all other endpoints including colony formation were not significantly different. We determined the relative biological effectiveness (RBE) for pulsed and continuous proton beams relative to x-irradiation as 0.91 ± 0.26 and 0.86 ± 0.33 (mean and SD), respectively. At the dose rates investigated here, which are expected to correspond to those in radiation therapy using laser-driven particles, the RBE of the pulsed and the (conventional) continuous irradiation mode do not differ significantly

  6. The carcinogenic risk of high dose total body irradiation in non-human primates

    International Nuclear Information System (INIS)

    Broerse, J.J.; Bartstra, R.W.; Bekkum, D.W. van; Hage, M.H. van der; Zurcher, C.; Zwieten, M.J. van; Hollander, C.F.

    2000-01-01

    High dose total body irradiation (TBI) in combination with chemotherapy, followed by rescue with bone marrow transplantation (BMT), is increasingly used for the treatment of haematological malignancies. With the increasing success of this treatment and its current introduction for treating refractory autoimmune diseases the risk of radiation carcinogenesis is of growing concern. Studies on turnout induction in non-human primates are of relevance in this context since the response of this species to radiation does not differ much from that in man. Since the early sixties, studies have been performed on acute effects in Rhesus monkeys and the protective action of bone marrow transplantation after irradiation with X-rays (average total body dose 6.8 Gy) and fission neutrons (average dose 3.4 Gy). Of those monkeys, which were irradiated and reconstituted with autologous bone marrow, 20 animals in the X-irradiated group and nine animals in the neutron group survived more than 3 years. A group of 21 non-irradiated Rhesus monkeys of a comparable age distribution served as controls. All animals were regularly screened for the occurrence of neoplasms. Complete necropsies were performed after natural death or euthanasia. At post-irradiation intervals of 4-21 years an appreciable number of tumours was observed. In the neutron irradiated group eight out of nine animals died with one or more malignant tumours. In the X-irradiated group this fraction was 10 out of 20. The tumours in the control group, in seven out of the 21 animals, appeared at much older a-e compared with those in the irradiated cohorts. The histogenesis of the tumours was diverse with a preponderance of renal carcinoma, sarcomas among which osteosarcormas, and malignant glomus tumours in the irradiated groups. When corrected for competing risks, the carcinogenic risk of TBI in the Rhesus monkeys is similar to that derived from the studies of the Japanese atomic bomb survivors. The increase of the risk by a

  7. On-Line High Dose-rate Gamma Irradiation Test of the Profibus/DP module

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Wan; Choi, Young Soo; Kim, Chang Hoi; Koo, In Soo; Hong, Seok Boong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-05-15

    The field bus data communication is considered for application in nuclear environments. The nuclear facilities, including nuclear power plants, high radioactivity waste disposals, reprocessing plants and thermonuclear fusion installations can benefit from the unique advantages of the field bus communication network for the smart field instruments and controls. A major problem which arises when dealing with one in these nuclear environments, in special circumstances such as the RCS (reactor coolant system) area, is the presence of high gamma-ray irradiation fields. Radioactive constraints for the DBA(design basis accident) qualification of the RTD transmitter installed in the inside of the RCS pump are typically on the order of 4kGy/h with total doses up to 10kGy. In order to use an industrial field bus communication network as an ad-hoc sensor data link in the vicinity of the RCS area of the nuclear power plant, the robust survivability of these system in such intense gamma-radiation fields therefore needs to be verified. We have conducted high dose-rate (up to 4kGy) gamma irradiation experiments on a profibus/DP communication module. In this paper we describe the evolution of its basic characteristics with high dose-rate gamma irradiation and shortly explain the observed phenomena.

  8. Influence of high dose irradiation on core structural and fuel materials in advanced reactors

    International Nuclear Information System (INIS)

    1998-08-01

    The IAEA International Working Group on Fast Reactors (IWGFR) periodically organizes meeting to discuss and review important aspects of fast reactor technology. The fifth meeting held in Obninsk, Russian Federation, 16-19 June 1997, was devoted to the influence of high dose irradiation on the mechanical properties of reactor core structural and fuel materials. The proceedings includes the papers submitted at this meeting each with a separate abstract

  9. Effect of high dose irradiation on the red cell span in rabbits

    International Nuclear Information System (INIS)

    Kang, T.W.; Koh, J.W.; Woo, K.S.; Lee, O.H.; Youn, C.S.

    1982-01-01

    As a part of studies on acute effects of high dose irradiation in vivo, the present report was carried out to evaluate the changes of the red cell life span in the white rabbits by a single whole body exposure to gamma rays from 60 Co teletherapy unit. The exposure was done in dose levels of 100, 600 and 900 rads to each experimental group of 10 rabbits. The life span apparent half survival time of red cells, and that the red cell volume in the circulting blood were measured by ICSH Reference method using 51 Cr. (Author)

  10. An investigation of methods for neutron dose measurement in high temperature irradiation fields

    Energy Technology Data Exchange (ETDEWEB)

    Kosako, Toshisou; Sugiura, Nobuyuki [Tokyo Univ. (Japan); Kudo, Kazuhiko [Kyushu Univ., Fukuoka (Japan)] [and others

    2000-10-01

    The Japan Atomic Energy Research Institute (JAERI) has been conducting the innovative basic research on high temperature since 1994, which is a series of high temperature irradiation studies using the High Temperature Engineering Test Reactor (HTTR). 'The Task Group for Evaluation of Irradiation Dose under High Temperature Radiation' was founded in the HTTR Utilization Research Committee, which is the promoting body of the innovative basic research. The present report is a summary of investigation which has been made by the Task Group on the present status and subjects of research and development of neutron detectors in high temperature irradiation fields, in view of contributing to high temperature irradiation research using the HTTR. Detectors investigated here in the domestic survey are the following five kinds of in-core detectors: 1) small fission counter, 2) small fission chamber, 3) self-powered detector, 4) activation detector, and 5) optical fiber. In addition, the research and development status in Russia has been investigated. The present report will also be useful as nuclear instrumentation of high temperature gas-cooled reactors. (author)

  11. Treatment of carcinoma of uterine cervix with high-dose-rate intracavitary irradiation using Ralstron

    International Nuclear Information System (INIS)

    Suh, C.O.; Kim, G.E.; Loh, J.J.K.

    1988-01-01

    From May 1979 through December 1981, a total of 530 patients with carcinoma of the uterine cervix were treated with radiation therapy with curative intent. Of the 530 patients, 365 were treated with a high-dose-rate remote-controlled afterloading system (RALS) using a cobalt source, and 165 patients received a low dose rate using a radium source. External pelvic irradiation with a total of 40-50 Gy to the whole pelvis followed by intracavitary radiation (ICR) with a total dose of 30-39 Gy in ten to 13 fractions to point A was the treatment protocol. ICR was given three times a week with a dose of 3 Gy per fraction. Five-year actuarial survival rate with high-dose-rate ICR by stage was as follows: stage I:82.7% (N = 19) stage II:69.6% (N = 184), and stage III:52.2% (N = 156). The above results were comparable with those with conventional low-dose-rate ICR treatment, and late complications were far less. The application of high-dose-rate ICR was technically simple and easily performed on an outpatient basis without anesthesia, and the patients tolerated it very well. Radiation exposure to personnel was virtually none as compared with that of low-dose-rate ICR. Within a given period of time, more patients can be treated with high-dose-rate ICR because of the short treatment time. The authors therefore conclude that high-dose-rate ICR is suitable for a cancer center where a large number of patients are to be treated

  12. Base of skull and cervical spine chordomas in children treated by high-dose irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Benk, Veronique; Liebsch, Norbert J; Munzenrider, John E; Efird, John; McManus, Patricia; Suit, Herman

    1995-02-01

    Purpose: To evaluate the outcome of children with base of skull or cervical spine chordomas treated by high dose irradiation. Methods and Materials: Eighteen children, 4 to 18 years of age, with base of skull or cervical spine chordomas, received fractionated high-dose postoperative radiation using mixed photon and 160 MeV proton beams. The median tumor dose was 69 Cobalt Gray-equivalent (CGE) with a 1.8 CGE daily fraction. Results: The median follow-up was 72 months. The 5-year actuarial survival was 68% and the 5-year disease-free survival (DFS) was 63%. The only significant prognostic factor was the location: patients with cervical spine chordomas had a worse survival than those with base of skull lesions (p = 0.008). The incidence of treatment-related morbidity was acceptable: two patients developed a growth hormone deficit corrected by hormone replacement, one temporal lobe necrosis, and one fibrosis of the temporalis muscle, improved by surgery. Conclusion: Chordomas in children behave similarly to those in adults: children can receive the same high-dose irradiation as adults with acceptable morbidity.

  13. Base of skull and cervical spine chordomas in children treated by high-dose irradiation

    International Nuclear Information System (INIS)

    Benk, Veronique; Liebsch, Norbert J.; Munzenrider, John E.; Efird, John; McManus, Patricia; Suit, Herman

    1995-01-01

    Purpose: To evaluate the outcome of children with base of skull or cervical spine chordomas treated by high dose irradiation. Methods and Materials: Eighteen children, 4 to 18 years of age, with base of skull or cervical spine chordomas, received fractionated high-dose postoperative radiation using mixed photon and 160 MeV proton beams. The median tumor dose was 69 Cobalt Gray-equivalent (CGE) with a 1.8 CGE daily fraction. Results: The median follow-up was 72 months. The 5-year actuarial survival was 68% and the 5-year disease-free survival (DFS) was 63%. The only significant prognostic factor was the location: patients with cervical spine chordomas had a worse survival than those with base of skull lesions (p = 0.008). The incidence of treatment-related morbidity was acceptable: two patients developed a growth hormone deficit corrected by hormone replacement, one temporal lobe necrosis, and one fibrosis of the temporalis muscle, improved by surgery. Conclusion: Chordomas in children behave similarly to those in adults: children can receive the same high-dose irradiation as adults with acceptable morbidity

  14. Microstructural evolution in low alloy steels under high dose ion irradiation

    International Nuclear Information System (INIS)

    Fujii, Katsuhiko; Fukuya, Koji; Ohkubo, Tadakatsu; Hono, Kazuhiro

    2006-01-01

    Radiation hardening and microstructural evolution in low Cu A533B steels (0.03 wt% Cu) irradiated by 3 MeV Ni 2+ ions at 290degC to 1 dpa were investigated by ultra-micro hardness measurement and leaser type three dimensional atom probe analysis. Mn-Ni-Si enriched precipitates were detected in the samples irradiated to 1 dpa by 3DAP analysis. The well-defined precipitates had a size of less than 4 nm, and the number density increased with dose. The formation of the precipitates under high dose rate irradiation suggested that Mn-Ni-Si enriched precipitates were formed by a process such as radiation induced precipitation rather than by thermal equilibrium process. The increase of yield stress calculated by size and number density of the precipitates in 1 dpa irradiated sample using the similar value of hardening efficiency to that of Cu rich precipitates was consistent with that estimated by data of increases of hardness measured by nano-indentation. The result indicates that effects of Mn-Ni-Si enriched precipitates on radiation embrittlement are similar to those of Cu rich precipitates. (author)

  15. Tensile stress corrosion cracking of type 304 stainless steel irradiated to very high dose

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H. M.; Ruther, W. E.; Strain, R. V.; Shack, W. J.

    2001-09-01

    Certain safety-related core internal structural components of light water reactors, usually fabricated from Type 304 or 316 austenitic stainless steels (SSs), accumulate very high levels of irradiation damage (20--100 displacement per atom or dpa) by the end of life. The data bases and mechanistic understanding of, the degradation of such highly irradiated components, however, are not well established. A key question is the nature of irradiation-assisted intergranular cracking at very high dose, i.e., is it purely mechanical failure or is it stress-commotion cracking? In this work, hot-cell tests and microstructural characterization were performed on Type 304 SS from the hexagonal fuel can of the decommissioned EBR-11 reactor after irradiation to {approximately}50 dpa at {approximately}370 C. Slow-strain-rate tensile tests were conducted at 289 C in air and in water at several levels of electrochemical potential (ECP), and microstructural characteristics were analyzed by scanning and transmission electron microcopies. The material deformed significantly by twinning and exhibited surprisingly high ductility in air, but was susceptible to severe intergranular stress corrosion cracking (IGSCC) at high ECP. Low levels of dissolved O and ECP were effective in suppressing the susceptibility of the heavily irradiated material to IGSCC, indicating that the stress corrosion process associated with irradiation-induced grain-boundary Cr depletion, rather than purely mechanical separation of grain boundaries, plays the dominant role. However, although IGSCC was suppressed, the material was susceptible to dislocation channeling at low ECP, and this susceptibility led to poor work-hardening capability and low ductility.

  16. Intracavitary irradiation of prostatic carcinoma by a high dose-rate afterloading technique

    Energy Technology Data Exchange (ETDEWEB)

    Odelberg-Johnson, O.; Underskog, I.; Johansson, J.E.; Bernshaw, D.; Sorbe, B.; Persson, J.E. (Oerebro Medical Center Hospital (Sweden). Dept. of Oncology Oerebro Medical Center Hospital (Sweden). Dept. of Urology Oerebro Medical Center Hospital (Sweden). Dept. of Gynecologic Oncology Oerebro Medical Center Hospital (Sweden). Dept. of Radiation Physics)

    1991-01-01

    A high dose-rate ({sup 60}Co) afterloading technique was evaluated in a series of 73 patients with prostatic carcinoma stages I-IV. The intraurethral irradiation was combined with external pelvic radiotherapy. A minimum total dose of 78 Gy was delivered to the target volume. In a subgroup of patients extramustine (Estracyt) was given as adjuvant chemohormonal therapy during irradiation. The median follow-up for the whole group was 63 months. The crude 5-year survival rate was 60% and the corrected survival rate 90%. Survival was related to the tumor grade. Local pelvic recurrences were recorded in 17.8%. 'Viable cells' in posttherapy aspiration biopsy were not associated with tumor recurrences or survival. Four patients (5%) had grade 3 late radiation reactions with urethral structure or bladder fibrosis. Urinary tract infections and prior transurethral resections were not associated with a higher frequency of reactions. Concurrent estramustine therapy seemed to increase the frequency of both acute and chronic radiation reactions. Local control, recurrence, and survival were not affected by chemohormonal therapy. The use of tomography, magnetic resonance, and ultrasound as aids to computerized dosimetry may improve local dose distribution and reduce the irradiated volume. (orig.).

  17. High-dose external beam irradiation inhibits neointima formation in stented pig coronary arteries

    International Nuclear Information System (INIS)

    Verheye, Stefan; Coussement, Patrick K.; Salame, Mahomed Y.; Fallahi, Payam; Cui Jianhua; Chronos, Nicolas A.F.; King, Spencer B.; Crocker, Ian R.; Robinson, Keith A.

    2001-01-01

    Purpose: To evaluate high-dose external beam irradiation (EBRT) in a pig coronary stent preparation because low and intermediate-dose EBRT failed to show inhibition of neointima formation in stented animal models. Methods and Materials: Thirty-five stents were implanted in the coronary arteries of 17 pigs. Seven pigs were exposed to a single dose of 21 Gy EBRT immediately after stenting. Ten stented, nonirradiated pigs served as controls. After 4 weeks, the study arteries and myocardium were examined by light and scanning electron microscopy. Results: Compared with controls, 21 Gy EBRT resulted in a larger lumen area (7.57±1.67 mm 2 vs. 4.00±1.63 mm 2 , p 2 vs. 3.36±2.26 mm 2 , p<0.001) and a smaller maximal intimal thickness (0.16±0.09 mm vs. 0.68±0.31 mm, p<0.001). Unresorbed intramural hemorrhages and adherent mural thrombi were present in the irradiated vessels, which also showed incomplete re-endothelialization. The irradiated hearts demonstrated diffuse interstitial and perivascular inflammation and fibrosis. Conclusions: EBRT at 21 Gy to the entire heart significantly inhibited neointima formation in stented pig coronary arteries but also resulted in incomplete re-endothelialization, myocardial inflammation, and fibrosis. Improvements in localization and delivery techniques are required to allow clinical implementation of this technique

  18. Post operative high dose rate intravaginal irradiation in endometrial cancer: a safe and effective outpatient treatment

    International Nuclear Information System (INIS)

    Chen, Peter; Gibbons, Susan; Vicini, Frank; Weiner, Sheldon; Dmuchowski, Carl; Mele, Beth; Brabbins, Donald; Jennings, John; Gustafson, Gary; Martinez, Alvaro

    1995-01-01

    Purpose: We reviewed our experience with out patient high dose rate (HDR) intravaginal irradiation given post-operatively in endometrial cancer to assess local control, survival, and toxicity when used alone or in combination with external beam irradiation. Methods and Materials: From (12(88)) to (12(92)), 78 patients underwent TAH/BSO and received post-operative HDR intravaginal irradiation for endometrial cancer. Pathologic stage distribution was IB/IC: 56%, II: 22%, III: 22%. Adjuvant therapy was given in one of three schemes: HDR vaginal radiation alone (6 weekly fractions of 500 cGy prescribed 5 mm from the applicator surface treating the upper 4 cm of the vagina), pelvic irradiation with vaginal HDR (500 cGy x 4 weekly fractions) or whole abdomen/pelvic irradiation (WAPI) with vaginal HDR treatment (500 cGy x 3 weekly fractions). Prior to the first HDR vaginal treatment, a simulation with placement of vaginal apex metallic markers was performed to assure proper positioning of the intravaginal cylinders. Pelvic midline blocking was designed from the HDR intravaginal simulation films. The 55 patients who underwent combined external beam irradiation/brachytherapy received a median dose to the pelvis of 5040 cGy (range 25.2-51.6 Gy), and a median total vaginal dose of 5060 cGy (range 30.0-57.6 Gy). Results: Median follow-up is 37 months (range 6-73 months). Local control (vaginally) is 98.7%. The one vaginal failure was in the distal vagina, outside the treatment volume. All other failures (4) were distant with the vagina controlled [3 intra-abdominal and one bone/intra-abdominal]. For stages I and II, the disease free survival is 92.8%. For stage III the disease free survival is 86.5%. Median overall time to failure is 14.3 months (range 8.5-18.6 months). In terms of acute toxicity, no grade 3-4 acute toxicity of the vagina or bladder was seen. However, 9% acute GI toxicity was encountered. Chronic grade 1-2 toxicities included: vaginal 21.8% (foreshortening and

  19. Radiation-damage studies, irradiations and high-dose dosimetry for LHC detectors

    CERN Document Server

    Coninckx, F; León-Florián, E; Leutz, H; Schönbacher, Helmut; Sonderegger, P; Tavlet, Marc; Sopko, B; Henschel, H; Schmidt, H U; Boden, A; Bräunig, D; Wulf, F; Cramariuc, R; Ilie, D; Fattibene, P; Onori, S; Miljanic, S; Paic, G; Razen, B; Razem, D; Rendic, D; CERN. Geneva. Detector Research and Development Committee

    1991-01-01

    The proposal is divided into a main project and special projects. The main project consists of a service similar to the one given in the past to accelerator construction projects at CERN (ISR,SPS,LEP) on high-dose dosimetry, material irradiations, irradiations tests, standardization of test procedures and data compilations. Large experience in this field and numerous radiation damage test data of insulating and structural materials are available. The special projects cover three topics which are of specific interest for LHC detector physicists and engineers at CERN and in other high energy physics institutes, namely: Radiation effects in scintillators; Selection of radiation hard optical fibres for data transmission; and Selection and testing of radiation hard electronic components.

  20. Synergies Between ' and Cavity Formation in HT-9 Following High Dose Neutron Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Parish, Chad M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Saleh, Tarik A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Eftink, Benjamin P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-06-01

    Candidate cladding materials for advanced nuclear power reactors including fast reactor designs require materials capable of withstanding high dose neutron irradiation at elevated temperatures. One candidate material, HT-9, through various research programs have demonstrated the ability to withstand significant swelling and other radiation-induced degradation mechanisms in the high dose regime (>50 displacements per atom, dpa) at elevated temperatures (>300 C). Here, high efficiency multi-dimensional scanning transmission electron microscopy (STEM) acquisition with the aid of a three-dimensional (3D) reconstruction and modeling technique is used to probe the microstructural features that contribute to the exceptional swelling resistance of HT-9. In particular, the synergies between ' and fine-scale and moderate-scale cavity formation is investigated.

  1. Short-term irradiation of the glioblastoma with high-dosed fractions

    International Nuclear Information System (INIS)

    Hinkelbein, W.; Bruggmoser, G.; Schmidt, M.; Wannenmacher, M.

    1984-01-01

    Compared to surgery alone, postoperative radiotherapy leads with glioblastomas (grade IV gliomas) to a significant improvement of the therapeutic results. The prolongation of survival time, however, is to a large extent compensated by the therapy itself (it normally implicates hospitalisation). Therefore, we tested the efficiency of rapid course irradiation with high fractions. 70 patients were treated daily with individual fractions of 3.5 Gy, 4 to 6 fractions per week. The entire dose amounted to 31.5 to 38.5 Gy. The average survival time was 33.5 weeks corresponding to the survival time known from the combined surgical and radiotherapeutical treatment of glioblastomas. An effective increase in therapy-free survival time seems possible, especially when the entire focal dose does not exceed 35 Gy. It is remarkable that the patients with the maximum exposure did not have the longest survival times and rates. Living conditions for the patients were similar to those with conventional fractioning, or even better. Rapid course irradiation with high fractions and a limited total dose (35 Gy) presently is - apart from the accelerated superfractioning - a successful measure to prolong the therapyfree survival time for patients with grade IV gliomas. (orig.) [de

  2. Single high-dose irradiation aggravates eosinophil-mediated fibrosis through IL-33 secreted from impaired vessels in the skin compared to fractionated irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun-Jung, E-mail: forejs2@yuhs.ac [Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Kim, Jun Won, E-mail: JUNWON@yuhs.ac [Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Yoo, Hyun, E-mail: gochunghee@yuhs.ac [Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Kwak, Woori, E-mail: asleo02@snu.ac.kr [Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 151-747 (Korea, Republic of); Choi, Won Hoon, E-mail: wonhoon@yuhs.ac [Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Cho, Seoae, E-mail: seoae@cnkgenomics.com [C& K Genomics, Seoul National University Mt.4-2, Main Bldg. #514, SNU Research Park, NakSeoungDae, Gwanakgu, Seoul 151-919 (Korea, Republic of); Choi, Yu Jeong, E-mail: yunk9275@daum.net [Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Lee, Yoon-Jin, E-mail: yjlee8@kirams.re.kr [Division of Radiation Effects, Research Center for Radiotherapy, Korea Institute of Radiological & Medical Sciences, Seoul 139-760 (Korea, Republic of); Cho, Jaeho, E-mail: jjhmd@yuhs.ac [Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of)

    2015-08-14

    We have revealed in a porcine skin injury model that eosinophil recruitment was dose-dependently enhanced by a single high-dose irradiation. In this study, we investigated the underlying mechanism of eosinophil-associated skin fibrosis and the effect of high-dose-per-fraction radiation. The dorsal skin of a mini-pig was divided into two sections containing 4-cm{sup 2} fields that were irradiated with 30 Gy in a single fraction or 5 fractions and biopsied regularly over 14 weeks. Eosinophil-related Th2 cytokines such as interleukin (IL)-4, IL-5, and C–C motif chemokine-11 (CCL11/eotaxin) were evaluated by quantitative real-time PCR. RNA-sequencing using 30 Gy-irradiated mouse skin and functional assays in a co-culture system of THP-1 and irradiated-human umbilical vein endothelial cells (HUVECs) were performed to investigate the mechanism of eosinophil-mediated radiation fibrosis. Single high-dose-per-fraction irradiation caused pronounced eosinophil accumulation, increased profibrotic factors collagen and transforming growth factor-β, enhanced production of eosinophil-related cytokines including IL-4, IL-5, CCL11, IL-13, and IL-33, and reduced vessels compared with 5-fraction irradiation. IL-33 notably increased in pig and mouse skin vessels after single high-dose irradiation of 30 Gy, as well as in irradiated HUVECs following 12 Gy. Blocking IL-33 suppressed the migration ability of THP-1 cells and cytokine secretion in a co-culture system of THP-1 cells and irradiated HUVECs. Hence, high-dose-per-fraction irradiation appears to enhance eosinophil-mediated fibrotic responses, and IL-33 may be a key molecule operating in eosinophil-mediated fibrosis in high-dose-per fraction irradiated skin. - Highlights: • Single high-dose irradiation aggravates eosinophil-mediated fibrosis through IL-33. • Vascular endothelial cells damaged by high-dose radiation secrete IL-33. • Blocking IL-33 suppressed migration of inflammatory cells and cytokine secretion. • IL

  3. Single high-dose irradiation aggravates eosinophil-mediated fibrosis through IL-33 secreted from impaired vessels in the skin compared to fractionated irradiation

    International Nuclear Information System (INIS)

    Lee, Eun-Jung; Kim, Jun Won; Yoo, Hyun; Kwak, Woori; Choi, Won Hoon; Cho, Seoae; Choi, Yu Jeong; Lee, Yoon-Jin; Cho, Jaeho

    2015-01-01

    We have revealed in a porcine skin injury model that eosinophil recruitment was dose-dependently enhanced by a single high-dose irradiation. In this study, we investigated the underlying mechanism of eosinophil-associated skin fibrosis and the effect of high-dose-per-fraction radiation. The dorsal skin of a mini-pig was divided into two sections containing 4-cm 2 fields that were irradiated with 30 Gy in a single fraction or 5 fractions and biopsied regularly over 14 weeks. Eosinophil-related Th2 cytokines such as interleukin (IL)-4, IL-5, and C–C motif chemokine-11 (CCL11/eotaxin) were evaluated by quantitative real-time PCR. RNA-sequencing using 30 Gy-irradiated mouse skin and functional assays in a co-culture system of THP-1 and irradiated-human umbilical vein endothelial cells (HUVECs) were performed to investigate the mechanism of eosinophil-mediated radiation fibrosis. Single high-dose-per-fraction irradiation caused pronounced eosinophil accumulation, increased profibrotic factors collagen and transforming growth factor-β, enhanced production of eosinophil-related cytokines including IL-4, IL-5, CCL11, IL-13, and IL-33, and reduced vessels compared with 5-fraction irradiation. IL-33 notably increased in pig and mouse skin vessels after single high-dose irradiation of 30 Gy, as well as in irradiated HUVECs following 12 Gy. Blocking IL-33 suppressed the migration ability of THP-1 cells and cytokine secretion in a co-culture system of THP-1 cells and irradiated HUVECs. Hence, high-dose-per-fraction irradiation appears to enhance eosinophil-mediated fibrotic responses, and IL-33 may be a key molecule operating in eosinophil-mediated fibrosis in high-dose-per fraction irradiated skin. - Highlights: • Single high-dose irradiation aggravates eosinophil-mediated fibrosis through IL-33. • Vascular endothelial cells damaged by high-dose radiation secrete IL-33. • Blocking IL-33 suppressed migration of inflammatory cells and cytokine secretion. • IL-33

  4. Contribution to the understanding of zirconium alloy deformation under irradiation at high doses

    International Nuclear Information System (INIS)

    Gharbi, Nesrine

    2015-01-01

    The growth of zirconium alloy tubes of PWR fuel assemblies is the result of two phenomena: axial irradiation creep and stress 'free' growth which is correlated to the formation of c-loops at high irradiation doses. This PhD work aims at investigating the coupling between these two phenomena through a fine Transmission Electron Microscopy analysis of the effect of a macroscopic applied stress on the c-loop microstructure. 600 keV Zr + ion irradiations were performed at 300 C on two recrystallized zirconium alloys: Zircaloy-4 and M5. Thanks to a device specifically designed, different tensile or compressive stress levels were applied under ion irradiation. The microstructural observations have shown that the c-loop density reduces in grains oriented with the c-axis close to the direction of the applied tensile stress or far from the direction of the applied compressive stress, which is in good agreement with the SIPA mechanism. Nevertheless, the examination of a large number of grains has revealed dispersion from grain to grain. This dispersion, which could be explained by the intergranular heterogeneities, reduces the magnitude of the stress effect on c-loop microstructure. In parallel to this experimental study, a cluster dynamics model has been able to describe the evolution under irradiation of zirconium and Zircaloy-4 microstructure and to assess the effect of stress on c-loop microstructure. On the macroscopic scale, a physical model was also developed to predict the irradiation growth and creep behaviour of zirconium alloy tubes. (author) [fr

  5. Safety and toxicology assessment of chicken breast for high-dose irradiation

    International Nuclear Information System (INIS)

    Zhu Jiating; Feng Min; Yan Jianmin; Yang Ping; Wang Dening; Gao Meixu; Ha Yiming; Liu Chunquan

    2011-01-01

    Feeding wholesomeness tests of irradiated chicken breast were studied by using acute oral toxicology, Ames, micronucleus of born marrow cell, sperm shape abnormality in mice and 30 d feeding test. The LD 50 of all the rats and mice were more than 10 g/kg · BW, which means that the pet foods belonged to actually non-toxic grade; ames test, and the tests of micronucleus of born marrow cell, sampan shape abnormality in mice were all negative results; 30 d feeding test in rats demonstrated that it had no distinctive effects on routine blood, body weight and biochemical index. It is concluded that pet foods irradiated up to 25 kGy high dose were no safety and toxicology problems. (authors)

  6. Combined low- and high-dose irradiation and its interpretation from the point of view of radiation protection

    International Nuclear Information System (INIS)

    Beno, M.

    1996-01-01

    During the last decade some 'stimulating' or 'hormetic' effects have been ascribed to low-levels of radiation. The adaptive response was a phenomenon recently used as an argument among others advertising such hormetic effects of low dose irradiation. Human peripheral blood lymphocytes may show a decrease of chromosomal aberrations (CA) after high doses of ionizing radiation if they have been previously irradiated by small doses of internally deposited tritium from labelled thymidine, or by small doses of X-rays. This response looks as if some adaptation would take place to the low-dose irradiation and was called 'adaptive response' (AR). It was attributed to repair mechanisms elicited by damaging the lymphocyte DNA by small doses of radiation so that after the high dose, delivered at times when higher levels of repair proteins and other molecules are still present in cells, a lower damaging effect may be expressed. Our work was aimed at gaining information about the frequency distribution of the responses to a combination of low-dose irradiation with tritium and high-dose irradiation with gamma rays and at comparing two endpoints: counts of CA with counts of micronuclei (M) in lymphocytes from the same donors in a human population sample

  7. Thermal expansivity of highly-stretched linear polyethylene with extended chains irradiated with different doses of γ-rays

    International Nuclear Information System (INIS)

    Turetskij, A.A.; Chvalun, S.N.; Zubov, Yu.A.; Bakeev, N.F.

    1993-01-01

    Temperature begavior of crystal lattice parameters of highly-stretched samples of linear polyethylene with extended chains irradiated with different doses of γ-rays was studied. It was found that transverse vibrations of macromolecular chains are excited at irradiation doses D≥500 Mrad and temperatures close to the melting temperature of the crystallites. These vibrations cause a sharp increase in the latiice parameter a. But no phase transition to the hexagonal packing occurs. It was shown that the thermal expansivity of the lattice parameter c changes its sign at high irradiation doses. These results are explained by the presence in the crystallites of samples irradiated with large doses of a considerable number of intermolecular chemical bonds

  8. High total dose proton irradiation effects on silicon NPN rf power transistors

    International Nuclear Information System (INIS)

    Bharathi, M. N.; Praveen, K. C.; Prakash, A. P. Gnana; Pushpa, N.

    2014-01-01

    The effects of 3 MeV proton irradiation on the I-V characteristics of NPN rf power transistors were studied in the dose range of 100 Krad to 100 Mrad. The different electrical characteristics like Gummel, current gain and output characteristics were systematically studied before and after irradiation. The recovery in the I-V characteristics of irradiated NPN BJTs were studied by isochronal and isothermal annealing methods

  9. High total dose proton irradiation effects on silicon NPN rf power transistors

    Energy Technology Data Exchange (ETDEWEB)

    Bharathi, M. N.; Praveen, K. C.; Prakash, A. P. Gnana, E-mail: gnanaprakash@physics.uni-mysore.ac.in [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore-570006, Karnataka (India); Pushpa, N. [Department of PG Studies in Physics, JSS College, Ooty Road, Mysore-570025, Karnataka (India)

    2014-04-24

    The effects of 3 MeV proton irradiation on the I-V characteristics of NPN rf power transistors were studied in the dose range of 100 Krad to 100 Mrad. The different electrical characteristics like Gummel, current gain and output characteristics were systematically studied before and after irradiation. The recovery in the I-V characteristics of irradiated NPN BJTs were studied by isochronal and isothermal annealing methods.

  10. Case of severe intestinal complications caused by high dose-rate intracavitary irradiation for cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Koga, Kenji; Nishikawa, Kiyoshi; Matsuki, Kazuhiko; Watanabe, Katsushi

    1987-02-01

    A 46-year-old woman with severe intestinal complication caused by high dose-rate intracavitary irradiation is reported. She received radiation treatment of stage IIb cervical cancer between July 24 and September 26, 1984: a dose of 2400 rad to a point A concurrently with 2000 rad to the parametrium following 4000 rad to the whole pelvis. Eight months later she developed diarrhea and bloody stool. Barium enema study revealed a stenosis at 20 to 25 cm from the anal ring and romanoscopy oozing coagula at the same site. On November 29, 1985 transverse colostomy was performed because of continuing bloody stool and abdominal pain. On January 30, 1986 resection of the ileum and ileostomy were done because of the ileum perforation located 26 cm apart from the ileum end. Some discussion on the causes of this complication are made, suggesting that short length of a tandem and deep location of ovoids influence its cause.

  11. Desorption of tritium and helium from high dose neutron irradiated beryllium

    Science.gov (United States)

    Kupriyanov, I. B.; Nikolaev, G. N.; Vlasov, V. V.; Kovalev, A. M.; Chakin, V. P.

    2007-08-01

    The effect of high dose neutron irradiation on tritium and helium desorption in beryllium is described. Beryllium samples were irradiated in the SM and BOR-60 reactors to a neutron fluences ( E > 0.1 MeV) of (5-16) × 10 22 cm -2 at 70-100 °C and 380-420 °C. A mass-spectrometry technique was used in out of pile tritium release experiments during stepped annealing in the 250-1300 °C temperature range. The total amount of helium accumulated in irradiated beryllium samples varied from 6000 to 7200 appm. The first signs of tritium and helium release were detected at temperature of 312-445 °C and 500-740 °C, respectively. It is shown that most tritium (˜82%) from sample irradiated at 70-100 °C releases in temperature range of 312-700 °C before the beginning of helium release (740 °C). In the case of beryllium sample irradiated at 380-420 °C, tritium release starts at a higher temperature ( Ts > Tann = 445 °C) and most of the tritium (˜99.8%) is released concurrently with helium which could be considered as evidence of co-existence of partial amounts of tritium and helium in common bubbles. Both the Be samples differ little in the upper temperatures of gas release: 745 and 775 °C for tritium; 1140 and 1160 °C for helium. Swelling of beryllium starts to play a key role in accelerating tritium release at Tann > 600 °C and in helium release - at Tann > 750 °C.

  12. High-dose irradiation induces cell cycle arrest, apoptosis, and developmental defects during Drosophila oogenesis.

    Directory of Open Access Journals (Sweden)

    Hee Jin Shim

    Full Text Available Ionizing radiation (IR treatment induces a DNA damage response, including cell cycle arrest, DNA repair, and apoptosis in metazoan somatic cells. Because little has been reported in germline cells, we performed a temporal analysis of the DNA damage response utilizing Drosophila oogenesis as a model system. Oogenesis in the adult Drosophila female begins with the generation of 16-cell cyst by four mitotic divisions of a cystoblast derived from the germline stem cells. We found that high-dose irradiation induced S and G2 arrests in these mitotically dividing germline cells in a grp/Chk1- and mnk/Chk2-dependent manner. However, the upstream kinase mei-41, Drosophila ATR ortholog, was required for the S-phase checkpoint but not for the G2 arrest. As in somatic cells, mnk/Chk2 and dp53 were required for the major cell death observed in early oogenesis when oocyte selection and meiotic recombination occurs. Similar to the unscheduled DNA double-strand breaks (DSBs generated from defective repair during meiotic recombination, IR-induced DSBs produced developmental defects affecting the spherical morphology of meiotic chromosomes and dorsal-ventral patterning. Moreover, various morphological abnormalities in the ovary were detected after irradiation. Most of the IR-induced defects observed in oogenesis were reversible and were restored between 24 and 96 h after irradiation. These defects in oogenesis severely reduced daily egg production and the hatch rate of the embryos of irradiated female. In summary, irradiated germline cells induced DSBs, cell cycle arrest, apoptosis, and developmental defects resulting in reduction of egg production and defective embryogenesis.

  13. Postoperative vaginal irradiation with high dose rate afterloading technique in endometrial carcinoma stage I

    International Nuclear Information System (INIS)

    Sorbe, B.G.; Smeds, A.C.

    1990-01-01

    A high dose rate ( 60 Co) afterloading technique was used for postoperative prophylactic vaginal irradiation in a series of 404 women with endometrial carcinoma Stage I. The total recurrence rate was 3.7% with 0.7% vaginal deposits. The crude 5-year survival rate for the complete series was 91.8% compared to 13.3% for those with recurrences. Depth of myometrial infiltration (greater than 1/3 of the uterine wall) and nuclear grade were the most important prognostic factors. Clinically significant late radiation reactions (bladder and/or rectum) were recorded in 6.9%. Dose per fraction and the size of the target volume were highly significantly related to the occurrence of both early and late radiation reactions. Vaginal shortening is closely related to the dose per fraction, length of the reference isodose, and the applicator diameter. The shape of the vaginal applicator versus the isodoses and the importance of the source train geometry and relative activity for dose gradient inhomogeneities within the target volume are discussed. Cumulative radiation effect (CRE) and linear-quadratic (LQ) calculations have been performed and related to tissue reactions within the target volume and in the risk organs. An alpha-beta quotient of 8.8 for vaginal shrinkage effect and 2.0 for late rectal complications are suggested on the basis of calculations using a maximum likelihood method for quantal radiation data

  14. Analysis of the radiolytic products on high-dose irradiated food and packing materials

    International Nuclear Information System (INIS)

    Kim, Kyong Su; Shim, Sung Lye; Chung, In Sun

    2010-04-01

    The aims of this study were to prepare the government approval for the extension of food irradiation item to food or its products, to promote the industrial application of radiation technology, and to apply basic data in policy for introduction of irradiation. The change of hydrocarbons by irradiation was evaluated for the detection of irradiated meat. The results showed that hydrocarbons were detected in all of irradiated samples, but these hydrocarbons were not detected in non-irradiated samples. There were no difference between vacuum and N 2 - packaging. According to fatty acid compounds and degradation pathway of beef and pork, it could be deliberated that a great amount of produced hydrocarbons such as 8-heptadenene and 1,7-hexadecadien were able to be used as identification factor of irradiated meat. Effects of γ-irradiation on the volatile organic compounds in agricultural products were determined by analyzing changes of volatile composition. The composition of volatile organic compounds were little changed, but few specific compounds induced by γ-irradiation were identified. The variations of concentration in irradiated samples identified in this study could be due to the radiation sensitivity of compounds with the dose used. Effects of γ-irradiation on the volatile compounds in packaging materials were determined by analyzing changes of volatile composition. In polyethylene and polypropylene, 1,3-DBB was identified only in irradiated samples. Levels of 1,3-DBB increased with increasing irradiation doses. These results suggest may be useful in evaluation of γ-irradiation effects on food packaging materials

  15. Analysis of the radiolytic products on high-dose irradiated food and packing materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyong Su; Shim, Sung Lye; Chung, In Sun [Chosun University, Gwangju (Korea, Republic of)

    2010-04-15

    The aims of this study were to prepare the government approval for the extension of food irradiation item to food or its products, to promote the industrial application of radiation technology, and to apply basic data in policy for introduction of irradiation. The change of hydrocarbons by irradiation was evaluated for the detection of irradiated meat. The results showed that hydrocarbons were detected in all of irradiated samples, but these hydrocarbons were not detected in non-irradiated samples. There were no difference between vacuum and N{sub 2}- packaging. According to fatty acid compounds and degradation pathway of beef and pork, it could be deliberated that a great amount of produced hydrocarbons such as 8-heptadenene and 1,7-hexadecadien were able to be used as identification factor of irradiated meat. Effects of {gamma}-irradiation on the volatile organic compounds in agricultural products were determined by analyzing changes of volatile composition. The composition of volatile organic compounds were little changed, but few specific compounds induced by {gamma}-irradiation were identified. The variations of concentration in irradiated samples identified in this study could be due to the radiation sensitivity of compounds with the dose used. Effects of {gamma}-irradiation on the volatile compounds in packaging materials were determined by analyzing changes of volatile composition. In polyethylene and polypropylene, 1,3-DBB was identified only in irradiated samples. Levels of 1,3-DBB increased with increasing irradiation doses. These results suggest may be useful in evaluation of {gamma}-irradiation effects on food packaging materials

  16. Phase stability and microstructures of high entropy alloys ion irradiated to high doses

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Songqin [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, 100083 (China); Gao, Michael C. [National Energy Technology Laboratory, 1450 Queen Ave SW, Albany, OR, 97321 (United States); AECOM, P.O. Box 1959, Albany, OR, 97321 (United States); Yang, Tengfei [State Key Laboratory of Nuclear Physics and Technology, Center for Applied Physics and Technology, Peking University, Beijing, 100871 (China); Liaw, Peter K. [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN, 37996 (United States); Zhang, Yong, E-mail: drzhangy@ustb.edu.cn [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, 100083 (China)

    2016-11-15

    The microstructures of Al{sub x}CoCrFeNi (x = 0.1, 0.75 and 1.5 in molar ratio) high entropy alloys (HEAs) irradiated at room temperature with 3 MeV Au ions at the highest fluence of 105, 91, and 81 displacement per atom, respectively, were studied. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) analyses show that the initial microstructures and phase composition of all three alloys are retained after ion irradiation and no phase decomposition is observed. Furthermore, it is demonstrated that the disordered face-centered cubic (FCC) and disordered body-centered cubic (BCC) phases show much less defect cluster formation and structural damage than the NiAl-type ordered B2 phase. This effect is explained by higher entropy of mixing, higher defect formation/migration energies, substantially lower thermal conductivity, and higher atomic level stress in the disordered phases.

  17. In vivo assessment of catheter positioning accuracy and prolonged irradiation time on liver tolerance dose after single-fraction 192Ir high-dose-rate brachytherapy

    Directory of Open Access Journals (Sweden)

    Kropf Siegfried

    2011-09-01

    Full Text Available Abstract Background To assess brachytherapy catheter positioning accuracy and to evaluate the effects of prolonged irradiation time on the tolerance dose of normal liver parenchyma following single-fraction irradiation with 192 Ir. Materials and methods Fifty patients with 76 malignant liver tumors treated by computed tomography (CT-guided high-dose-rate brachytherapy (HDR-BT were included in the study. The prescribed radiation dose was delivered by 1 - 11 catheters with exposure times in the range of 844 - 4432 seconds. Magnetic resonance imaging (MRI datasets for assessing irradiation effects on normal liver tissue, edema, and hepatocyte dysfunction, obtained 6 and 12 weeks after HDR-BT, were merged with 3D dosimetry data. The isodose of the treatment plan covering the same volume as the irradiation effect was taken as a surrogate for the liver tissue tolerance dose. Catheter positioning accuracy was assessed by calculating the shift between the 3D center coordinates of the irradiation effect volume and the tolerance dose volume for 38 irradiation effects in 30 patients induced by catheters implanted in nearly parallel arrangement. Effects of prolonged irradiation were assessed in areas where the irradiation effect volume and tolerance dose volume did not overlap (mismatch areas by using a catheter contribution index. This index was calculated for 48 irradiation effects induced by at least two catheters in 44 patients. Results Positioning accuracy of the brachytherapy catheters was 5-6 mm. The orthogonal and axial shifts between the center coordinates of the irradiation effect volume and the tolerance dose volume in relation to the direction vector of catheter implantation were highly correlated and in first approximation identically in the T1-w and T2-w MRI sequences (p = 0.003 and p p = 0.001 and p = 0.004, respectively. There was a significant shift of the irradiation effect towards the catheter entry site compared with the planned dose

  18. Postoperative vaginal irradiation by a high dose-rate afterloading technique in endometrial carcinoma stage I

    International Nuclear Information System (INIS)

    Sorbe, B.; Smeds, A.C.

    1989-01-01

    A high dose-rate (cobalt-60) afterloading technique was used for postoperative vaginal irradiation in a series of 404 women with endometrial carcinoma stage I. The total recurrence rate was 3.7% with 0.7% vaginal lesions. The crude 5-year survival rate for the complete series was 91.8% compared to 13.3% for those with recurrences. Depth of myometrical infiltration (>1/3 of the uterine wall) and nuclear grade were the most important prognostic factors. Clinically significant late radiation reactions (bladder and/or rectum) were recorded in 6.9%. The absorbed dose per fraction and the size of the treatment volume were significantly related to the occurrence of both early and late radiation reactions. Vaginal shortening was closely related to the dose per fraction, length of the referce isodose and the applicator diameter. The shape of the vaginal applicator versus the isodose contours and the importance of the source train geometry and relative activity for absorbed dose inhomogeneitis within the treatment volume are discussed. Cumulative radiation effect (CRE) and linear-quadratic (LQ) calculations have been performed and related to tissue reactions within the target volume and in the risk organs. An alpha-beta quotient of 8.8 Gy for vaginal shrinkage effect and 2.0 Gy for late rectal complications are suggested on the basis of calculations using a maximum likelihood method for quantal radiation data. (orig.)

  19. Hypofractionated High-Dose Irradiation with Positron Emission Tomography Data for the Treatment of Glioblastoma Multiforme

    Directory of Open Access Journals (Sweden)

    Kazuhiro Miwa

    2014-01-01

    Full Text Available This research paper presents clinical outcomes of hypofractionated high-dose irradiation by intensity-modulated radiation therapy (Hypo-IMRT with 11C-methionine positron emission tomography (MET-PET data for the treatment of glioblastoma multiforme (GBM. A total of 45 patients with GBM were treated with Hypo-IMRT after surgery. Gross tumor volume (GTV was defined as the area of enhanced lesion on MRI, including MET-PET avid region; clinical target volume (CTV was the area with 5 mm margin surrounding the GTV; planning target volume (PTV was the area with 15 mm margin surrounding the CTV, including MET-PET moderate region. Hypo-IMRT was performed in 8 fractions; planning the dose for GTV was escalated to 68 Gy and that for CTV was escalated to 56 Gy, while keeping the dose delivered to the PTV at 40 Gy. Concomitant and adjuvant TMZ chemotherapy was administered. At a median follow-up of 18.7 months, median overall survival (OS was 20.0 months, and median progression-free survival was 13.0 months. The 1- and 2-year OS rates were 71.2% and 26.3%, respectively. Adjuvant TMZ chemotherapy was significantly predictive of OS on multivariate analysis. Late toxicity included 7 cases of Grade 3-4 radiation necrosis. Hypo-IMRT with MET-PET data appeared to result in favorable survival outcomes for patients with GBM.

  20. Monte-Carlo calculation of irradiation dose content beyond shielding of high-energy accelerators

    International Nuclear Information System (INIS)

    Mokhov, N.V.; Frolov, V.V.

    1975-01-01

    The MARS programme, designed for calculating the three-dimensional internuclear cascade in defence of the accelerators by the Monte Carlo method, is described. The methods used to reduce the dispersion and the system of semi-empirical formulas made it possible to exceed the parameters of the existing programmes. By means of a synthesis of the results, registered by MARS and HAMLET programmes, the dosage fields for homogeneous and heterogeneous defence were evaluated. The results of the calculated absorbed and equivalent dose behind the barrier, irradiated by a proton beam, having the energy of Esub(o)=1/1000 GeV are exposed. The dependence of the high- and low-energy neutron, proton, pion, kaon, muonium and γ-quantum dosage on the initial energy and thickness, on the material and the composition of the defence is investigated

  1. Allogeneic bone marrow transplantation in adults after fractionated body irradiation and high dose cyclophosphamide

    International Nuclear Information System (INIS)

    Brinch, L.; Evensen, S.A.; Albrechtsen, D.; Egeland, T.; Solheim, B.G.; Rollag, H.; Naalsund, A.; Jacobsen, A.B.

    1991-01-01

    The authors present short and long-term results of allogeneic bone marrow transplantation after hyper-fractionated total body irradiation and high dose cyclophosphamide in ten patients treated for leukaemia during th period 1985-89. Three patients died from complications connected to the transplantation, while seven are living free from leukaemia 18 to 59 months after transplantation. Two patients need treatment for chronic graft versus host disease. Allogeneic bone marrow transplantation is expensive and risky. Close cooperation between clinicians and laboratory specialists is essential. The treatment increases long term survival and probably cures certain patients with leukaemia. Some of the patients will need treatment for chronic graft versus host disease and other late sequelae. 19 refs., 2 tabs

  2. Clastogenic effects in human lymphocytes exposed to low and high dose rate X-ray irradiation and vitamin C

    International Nuclear Information System (INIS)

    Konopacka, M; Rogolinski, J.

    2011-01-01

    In the present work we investigated the ability of vitamin C to modulate clastogenic effects induced in cultured human lymphocytes by X-irradiation delivered at either high (1 Gy/min) or low dose rate (0.24 Gy/min). Biological effects of the irradiation were estimated by cytokinesis-block micronucleus assay including the analysis of the frequency of micronuclei (MN) and apoptotic cells as well as calculation of nuclear division index (NDI). The numbers of micronucleated binucleate lymphocytes (MN-CBL) were 24.85 ± 2.67% and 32.56 ± 3.17% in cultures exposed to X-rays (2 Gy) delivered at low and high dose rates, respectively. Addition of vitamin C (1-20 μg/ml) to the medium of cultures irradiated with the low dose rate reduced the frequency of micronucleated lymphocytes with multiple MN in a concentration-dependent manner. Lymphocytes exposed to the high dose rate radiation showed a U-shape response: low concentration of vitamin C significantly reduced the number of MN, whereas high concentration influenced the radiation-induced total number of micronucleated cells insignificantly, although it increased the number of cells with multiple MN. Addition of vitamin C significantly reduced the fraction of apoptotic cells, irrespective of the X-ray dose rate. These results indicate that radiation dose rate is an important exposure factor, not only in terms of biological cell response to irradiation, but also with respect to the modulating effects of antioxidants. (authors)

  3. High versus low dose rate intracavitary irradiation for adenocarcinoma of the uterine cervix

    International Nuclear Information System (INIS)

    Kim, Woo-Chul; Loh, John J.K.; Kim, Gwi-Eon; Suh, Chang-Ok

    2001-01-01

    Traditionally, low dose rate (LDR) brachytherapy has been used as a standard modality in the treatment of patients with carcinoma of the uterine cervix. The purpose of this work was to evaluate the effects of high dose rate (HDR) brachytherapy on patients with adenocarcinoma of the uterine cervix and to compare them with the effects of LDR brachytherapy. From January 1971 to December 1992, 104 patients suffering from adenocarcinoma of the uterine cervix were treated with radiation therapy in the Department of Radiation Oncology, Yonsei University. LDR brachytherapy was carried out on 34 patients and HDR brachytherapy on 70 patients. In the LDR group, eight patients were in stage IB, six in IIA, 12 in IIB, three in IIIA and five in IIIB. External radiation therapy was delivered with 10 MV X-rays, 2 Gy fraction per day, total dose of whole pelvis 36-52 Gy (median 46 Gy). LDR radium intracavitary irradiation was performed with a Henschke applicator, 37-59 Gy targeted at point A (median 43 Gy). In the HDR group, there were 16 patients in stage IB, six in IIA, 32 in IIB and 16 in IIIB. The total whole pelvis dose of external radiation was 40-50 Gy (median 44 Gy), daily 1.8-2.0 Gy. HDR Co-60 intracavitary irradiation was performed with a remotely controlled after-loading system (RALS), 30-48 Gy (median 39 Gy) targeted at point A, three times per week, 3 Gy per fraction. The 5-year overall survival rate in the LDR group was 72.9, 61.9 and 35.7% in stage I, II and III, respectively and the corresponding figures for HDR were 87.1, 58.3 and 43.8% (p 0.05). No prognostic factors were evident in the comparison between the two groups. There was no difference in terms of 5-year survival rate in the patients with adenocarcinoma of the uterine cervix between those treated with HDR and those treated with LDR brachytherapy. Even though late complication rates were higher in the HDR group, most of them were classified as grade I. This retrospective study suggests that HDR

  4. Advanced prostate cancer: the results of a randomized comparative trial of high dose irradiation boosting with conformal protons compared with conventional dose irradiation using photons alone

    Energy Technology Data Exchange (ETDEWEB)

    Shipley, William U; Verhey, Lynn J; Munzenrider, John E; Suit, Herman D; Urie, Marcia M; McManus, Patricia L; Young, Robert H; Shipley, Jenot W; Zietman, Anthony L; Biggs, Peter J; Heney, Niall M; Goitein, Michael

    1995-04-30

    Purpose: Following a thorough Phase I/II study, we evaluated by a Phase III trial high versus conventional dose external beam irradiation as mono-therapy for patients with Stage T3-T4 prostate cancer. Patient outcome following standard dose radiotherapy or following a 12.5% increase in total dose to 75.6 Cobalt Gray Equivalent (CGE) using a conformal perineal proton boost was compared for local tumor control, disease-free survival, and overall survival. Methods and Materials: Stage T3-T4, Nx, N0-2, M0 patients received 50.4 Gy by four-field photons and were randomized to receive either an additional 25.2 CGE by conformal protons (arm 1--the high dose arm, 103 patients, total dose 75.6 CGE) or an additional 16.8 Gy by photons (arm 2--the conventional dose arm, 99 patients, total dose 67.2 Gy). Actuarial overall survival (OS), disease-specific survival (DSS), total recurrence-free survival (TRFS), (clinically free, prostate specific antigen (PSA) less than 4ng/ml and a negative prostate rebiopsy, done in 38 patients without evidence of disease) and local control (digital rectal exam and rebiopsy negative) were evaluated. Results: The protocol completion rate was 90% for arm 1 and 97% for arm 2. With a median follow-up of 61 months (range 3 to 139 months) 135 patients are alive and 67 have died, 20 from causes other than prostate cancer. We found no significant differences in OS, DSS, TRFS or local control between the two arms. Among those completing randomized treatment (93 in arm 1 and 96 in arm 2), the local control at 5 and 8 years for arm 1 is 92% and 77%, respectively and is 80% and 60%, respectively for arm 2 (p = .089) and there are no significant differences in OS, DSS, and TRFS. The local control for the 57 patients with poorly differentiated (Gleason 4 or 5 of 5) tumors at 5 and 8 years for arm 1 is 94% and 84% and is 64% and 19% on arm 2 (p 0.0014). In patients whose digital rectal exam had normalized following treatment and underwent prostate rebiopsy

  5. Advanced prostate cancer: the results of a randomized comparative trial of high dose irradiation boosting with conformal protons compared with conventional dose irradiation using photons alone

    International Nuclear Information System (INIS)

    Shipley, William U.; Verhey, Lynn J.; Munzenrider, John E.; Suit, Herman D.; Urie, Marcia M.; McManus, Patricia L.; Young, Robert H.; Shipley, Jenot W.; Zietman, Anthony L.; Biggs, Peter J.; Heney, Niall M.; Goitein, Michael

    1995-01-01

    Purpose: Following a thorough Phase I/II study, we evaluated by a Phase III trial high versus conventional dose external beam irradiation as mono-therapy for patients with Stage T3-T4 prostate cancer. Patient outcome following standard dose radiotherapy or following a 12.5% increase in total dose to 75.6 Cobalt Gray Equivalent (CGE) using a conformal perineal proton boost was compared for local tumor control, disease-free survival, and overall survival. Methods and Materials: Stage T3-T4, Nx, N0-2, M0 patients received 50.4 Gy by four-field photons and were randomized to receive either an additional 25.2 CGE by conformal protons (arm 1--the high dose arm, 103 patients, total dose 75.6 CGE) or an additional 16.8 Gy by photons (arm 2--the conventional dose arm, 99 patients, total dose 67.2 Gy). Actuarial overall survival (OS), disease-specific survival (DSS), total recurrence-free survival (TRFS), (clinically free, prostate specific antigen (PSA) less than 4ng/ml and a negative prostate rebiopsy, done in 38 patients without evidence of disease) and local control (digital rectal exam and rebiopsy negative) were evaluated. Results: The protocol completion rate was 90% for arm 1 and 97% for arm 2. With a median follow-up of 61 months (range 3 to 139 months) 135 patients are alive and 67 have died, 20 from causes other than prostate cancer. We found no significant differences in OS, DSS, TRFS or local control between the two arms. Among those completing randomized treatment (93 in arm 1 and 96 in arm 2), the local control at 5 and 8 years for arm 1 is 92% and 77%, respectively and is 80% and 60%, respectively for arm 2 (p = .089) and there are no significant differences in OS, DSS, and TRFS. The local control for the 57 patients with poorly differentiated (Gleason 4 or 5 of 5) tumors at 5 and 8 years for arm 1 is 94% and 84% and is 64% and 19% on arm 2 (p 0.0014). In patients whose digital rectal exam had normalized following treatment and underwent prostate rebiopsy

  6. Experimental Platform for Ultra-high Dose Rate FLASH Irradiation of Small Animals Using a Clinical Linear Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Schüler, Emil; Trovati, Stefania; King, Gregory; Lartey, Frederick; Rafat, Marjan; Villegas, Manuel; Praxel, A. Joe [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Loo, Billy W., E-mail: BWLoo@stanford.edu [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California (United States); Maxim, Peter G., E-mail: PMaxim@stanford.edu [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California (United States)

    2017-01-01

    Purpose: A key factor limiting the effectiveness of radiation therapy is normal tissue toxicity, and recent preclinical data have shown that ultra-high dose rate irradiation (>50 Gy/s, “FLASH”) potentially mitigates this effect. However, research in this field has been strongly limited by the availability of FLASH irradiators suitable for small animal experiments. We present a simple methodologic approach for FLASH electron small animal irradiation with a clinically available linear accelerator (LINAC). Methods and Materials: We investigated the FLASH irradiation potential of a Varian Clinac 21EX in both clinical mode and after tuning of the LINAC. We performed detailed FLUKA Monte Carlo and experimental dosimetric characterization at multiple experimental locations within the LINAC head. Results: Average dose rates of ≤74 Gy/s were achieved in clinical mode, and the dose rate after tuning exceeded 900 Gy/s. We obtained 220 Gy/s at 1-cm depth for a >4-cm field size with 90% homogeneity throughout a 2-cm-thick volume. Conclusions: We present an approach for using a clinical LINAC for FLASH irradiation. We obtained dose rates exceeding 200 Gy/s after simple tuning of the LINAC, with excellent dosimetric properties for small animal experiments. This will allow for increased availability of FLASH irradiation to the general research community.

  7. Experimental Platform for Ultra-high Dose Rate FLASH Irradiation of Small Animals Using a Clinical Linear Accelerator.

    Science.gov (United States)

    Schüler, Emil; Trovati, Stefania; King, Gregory; Lartey, Frederick; Rafat, Marjan; Villegas, Manuel; Praxel, A Joe; Loo, Billy W; Maxim, Peter G

    2017-01-01

    A key factor limiting the effectiveness of radiation therapy is normal tissue toxicity, and recent preclinical data have shown that ultra-high dose rate irradiation (>50 Gy/s, "FLASH") potentially mitigates this effect. However, research in this field has been strongly limited by the availability of FLASH irradiators suitable for small animal experiments. We present a simple methodologic approach for FLASH electron small animal irradiation with a clinically available linear accelerator (LINAC). We investigated the FLASH irradiation potential of a Varian Clinac 21EX in both clinical mode and after tuning of the LINAC. We performed detailed FLUKA Monte Carlo and experimental dosimetric characterization at multiple experimental locations within the LINAC head. Average dose rates of ≤74 Gy/s were achieved in clinical mode, and the dose rate after tuning exceeded 900 Gy/s. We obtained 220 Gy/s at 1-cm depth for a >4-cm field size with 90% homogeneity throughout a 2-cm-thick volume. We present an approach for using a clinical LINAC for FLASH irradiation. We obtained dose rates exceeding 200 Gy/s after simple tuning of the LINAC, with excellent dosimetric properties for small animal experiments. This will allow for increased availability of FLASH irradiation to the general research community. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. High dose rate interstitial brachytherapy with external beam irradiation for localized prostate cancer. Preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Hiratsuka, Junichi; Jo, Yoshimasa; Yoden, Eisaku; Tanaka, Hiroyoshi; Imajo, Yoshinari [Kawasaki Medical School, Kurashiki, Okayama (Japan); Nagase, Naomi; Narihiro, Naomasa; Kubota, Juichi

    2000-12-01

    This study was undertaken to assess the biochemical and pathological results of combined external beam radiotherapy and high dose rate Ir-192 brachytherapy (HDR-Ir192) for clinically localized prostate cancer. Between October 1997 and August 1999, 39 evaluable patients with adenocarcinoma of prostate diagnosed by biopsy were treated with interstitial and external beam irradiation. Patients ranged in age from 58-82 years, with a mean of 69.7 years. T1c, T2 and T3 tumors, according to the UICC classification system (1997), were found in 7, 21 and 11 cases respectively. The mean initial pre-treatment PSA was 35.9 ng/ml (median 13.2), with 77% of the patients having had a pre-treatment PSA greater than 10 ng/ml. Of all patients, 17 had received pre-treatment hormonal therapy. Hormonal pretreatment was stopped at the beginning of radiotherapy in all cases. External beam four-field box irradiation was given to the small pelvis to a dose of 45 Gy/25 fractions. Three HDR-Ir192 treatments were given over a 30-h period, with 5.5 Gy per fraction at the circumference of the prostate gland over the course of this study. Biochemical failure was defined as a PSA level >1.5 ng/ml and rising on three consecutive values. If serial post-treatment PSA levels showed a continuous downward trend, failure was not scored. The patient with clinical evidence of progression was classified as a clinical failure. The median follow-up at the time of evaluation was 19.6 months. A post-treatment PSA level {<=}1.0 ng/ml was seen in 26 (67%) patients, and values from >1.0 to {<=}2.0 ng/ml were seen in 10 (26%) patients. Biochemical failure was not seen in 38 patients except for one patient who developed a distant bone metastasis with negative prostatic biopsy 15 months after treatment. Biochemical control rate was 100% (38/38) except for the patient with bone metastasis classified as clinical failure. Negative biopsies 18 months after treatment were found in 93% (14/15) of patients. Only one patient

  9. In vivo transcriptome modulation after low dose of high energy neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Amendola, R; Fratini, E; Piscitelli, M; Sallustio, D E [ENEA, BAS BIOTEC MED, Roma (Italy); Angelone, M; Pillon, M [ENEA, FUS TEC, Frascati (Italy); Chiani, F; Licursi, V; Negri, R [Universita La Sapienza, Roma (Italy). Dip. Biologia Cellulare e dello Sviluppo

    2007-07-01

    Complete text of publication follows. Objective: This project aims to the identification of an hypothetical transcriptome modulation of mouse peripheral blood lymphocytes and skin after exposure to high energy neutron in vivo. Positive candidate genes isolated from mice in in vivo experiments will be selected and evaluated for both radioprotection issues dealing with cosmic ray exposure, and for biomedical issues mainly for low doses and non-cancer effects. Methods: High energy neutron irradiation is performed at the ENEA Frascati, neutron generator facilities (FNG), specifically dedicated to biological samples. FNG is a linear electrostatic accelerator that produces up to 1.0 x 10{sup 11} n/s 14 MeV neutrons via the D-T nuclear reaction. The dose-rate applied for this study is of 0.7 cGy/min. The functional genomic approach has been performed on six animals for each experimental points: un-irradiated; 20 cGy, 6 hours and 24 hours delayed time after exposure. Preliminarily, a pool of total RNA is evaluated on commercial micro-arrays containing large collections of mus musculus cDNAs. Statistical filtering and functional clustering of the data is carried out using dedicated software packages. Results: Candidate genes are selected on the basis of responsiveness to 20 cGy of exposure, with a defined temporal regulation. We plan to organize a systematic screen focused on genes responding to our selection criteria, in in vivo mouse experiments, and correlate their differential expression to the human counterparts. A specific cross species database will be created with all the functional information available in standardized format (MIAME: minimal information about micro-arrays experiments). Conclusions: A lack of information on in vivo experiments is still evident for low doses exposure, especially for neutron of cosmic interest. Individual susceptibility, extensive number of animals to be processed, lack of standardization methodologies are among problems to be solved

  10. Effect of low dose pre-irradiation on DNA damage and genetic material damage caused by high dosage of cyclophosphamide

    International Nuclear Information System (INIS)

    Yu Hongsheng; Zhu Jingjuan; Shang Qingjun; Wang Zhuomin; Cui Fuxian

    2007-01-01

    Objective: To study the effect of low dose γ-rays pre-irradiation on the induction of DNA damage and genetic material damage in peripheral lymphocytes by high dosage of cyclophosphamide (CTX). Methods: Male Kunming strain mice were randomly divided into five groups: control group, sham-irradiated group, low dose irradiated group(LDR group), cyclophosphamide chemotherapy group(CTX group) and low dose irradiation combined with chemotherapy group(LDR + CTX group). After being feeded for one week, all the mice were implanted subcutaneously with S180 cells in the left groin (control group excluded). On days 8 and 11, groups of LDR and LDR + CTX were administered with 75 mGy of whole-body irradiation, 30 h later groups CTX and LDR + CTX were injected intraperitoneally 3.0 mg cyclophosphamide. All the mice were sacrificed on day 13. DNA damage of the peripheral lymphocytes was analyzed using single cell gel electrophoresis (SCGE). Genetic material damage was analyzed using micronucleus frequency(MNF) of polychromatoerythrocytes(PCE) in bone marrow. Results: (1) Compared with control group and sham-irradiated group, the DNA damage of peripheral lymphocytes in CTX group were increased significantly (P 0.05). Conclusions: (1) High- dosage of CTX chemotherapy can cause DNA damage in peripheral lymphocytes. 75 mGy y-irradiation before chemotherapy may have certain protective effect on DNA damage. (2) CTX has potent mutagenic effect, giving remarkable rise to MNF of PCE. 75 mGy γ-ray pre-irradiation has not obvious protection against genetic toxicity of high-dose CTX chemotherapy. (authors)

  11. Structural and Optical Changes of Poly-Vinylidene Fluoride by Electron Irradiation at High Dose Rate

    International Nuclear Information System (INIS)

    Jaleh, B.; Fakhri, P.; Borhani, M.; Habibi, S.; Noroozi, M.

    2012-01-01

    Poly-vinylidene fluoride films were prepared and irradiated by 10MeV electrons at different doses ranging from 50 to 300kGy with a dose rate of 10kGy/s. The FTIR results indicated that no major phase content change was observed. The optical absorption spectra indicated that the electron irradiation results in shifting of the absorption peak, appearance of a new peak and increasing the band gap (Eg). These changes may be due to the breaking of polymer chains and creation of new defects. The X-ray diffraction analysis of samples indicated that the crystallinity did not show any major changes. Concerning the gel fraction measurements, it was observed that gel fraction increases with increasing the dose, where it is an indication of the formation of cross-linked films.

  12. Implementation of the technique of partial irradiation accelerated the breast with high doses (HDR) brachytherapy

    International Nuclear Information System (INIS)

    Molina Lopez, M. Y.; Pardo Perez, E.; Castro Novais, J.; Martinez Ortega, J.; Ruiz Maqueda, S.; Cerro Penalver, E. del

    2013-01-01

    The objective of this work is presents procedure carried out in our Centre for the implementation of the accelerated partial breast irradiation (APBI, accelerated partial-breast irradiation) with high-rate brachytherapy (HDR), using plastic tubes as applicators. Carried out measures, the evaluation of the dosimetric parameters analyzing and presenting the results. (Author)

  13. A magnetic resonance imaging study on changes in rat mandibular bone marrow and pulp tissue after high-dose irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wan; Lee, Byung Do [Dept. of Oral and Maxillofacial Radiology and Wonkwang Dental Research Institute, College of Dentistry, Wonkwang University, Iksan (Korea, Republic of); Lee, Kang Kyoo [Dept. of Radiation Oncology, School of Medicine, Wonkwang University, Iksan (Korea, Republic of); Koh, Kwang Joon [Dept. of Oral and Maxillofacial Radiology, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju (Korea, Republic of)

    2014-03-15

    This study was designed to evaluate whether magnetic resonance imaging (MRI) is appropriate for detecting early changes in the mandibular bone marrow and pulp tissue of rats after high-dose irradiation. The right mandibles of Sprague-Dawley rats were irradiated with 10 Gy (Group 1, n=5) and 20 Gy (Group 2, n=5). Five non-irradiated animals were used as controls. The MR images of rat mandibles were obtained before irradiation and once a week until week 4 after irradiation. From the MR images, the signal intensity (SI) of the mandibular bone marrow and pulp tissue of the incisor was interpreted. The MR images were compared with the histopathologic findings. The SI of the mandibular bone marrow had decreased on T2-weighted MR images. There was little difference between Groups 1 and 2. The SI of the irradiated groups appeared to be lower than that of the control group. The histopathologic findings showed that the trabecular bone in the irradiated group had increased. The SI of the irradiated pulp tissue had decreased on T2-weighted MR images. However, the SI of the MR images in Group 2 was high in the atrophic pulp of the incisor apex at week 2 after irradiation. These patterns seen on MRI in rat bone marrow and pulp tissue were consistent with histopathologic findings. They may be useful to assess radiogenic sclerotic changes in rat mandibular bone marrow.

  14. Dose rate effect in food irradiation

    International Nuclear Information System (INIS)

    Singh, H.

    1991-08-01

    It has been suggested that the minor losses of nutrients associated with radiation processing may be further reduced by irradiating foods at the high dose rates generally associated with electron beams from accelerators, rather than at the low dose rates typical of gamma irradiation (e.g. 60 Co). This review briefly examines available comparative data on gamma and electron irradiation of foods to evaluate these suggestions. (137 refs., 27 tabs., 11 figs.)

  15. Effects of neonatal thymic exposure to high doses of X-irradiation

    International Nuclear Information System (INIS)

    Bains, G.S.; Sundaram, K.

    1979-01-01

    The thymic region of neonatal Swiss mice was exposed to doses varying from 1000 R to 2000 R of X-irradiation. The animals did not show any signs of wasting syndrome up to 6 months after irradiation. At this time hyperplasia of the thymus with an associated lymphocytosis was evident in irradiated animals. Antibody production to sheep red blood cells (SRBC) was not affected. However, at 12 months post-irradiation the animals showed signs of wasting disease with a progressive increase in their numbers at 18 and 24 months of age. The percentage incidence of animals with wasting disease was dose dependent. At this stage in the majority of the animals with the disease the thymus showed varying degrees of atrophy along with splenomegaly. There were no significant differences in the number of lymphocytes but the number of granulocytes showed a substantial increase. This was more evident in animals exposed to 2000 R to the thymic region. Though one observed a lowered ability to form antibodies to bovine serum albumin (BSA) with advancing age, the thymic irradiation did not affect the immune response to BSA even in animals manifesting wasting disease. An interesting observation has been the development of a severe loss of muscle power and tone in the hind limbs in a large majority of animals. (author)

  16. The biological effects of high dose total body irradiation in beagle dogs

    International Nuclear Information System (INIS)

    Luo Qingliang; Liu Xiaolan; Hao Jing; Xiong Guolin; Dong Bo; Zhao Zhenhu; Xia Zhengbiao; Qiu Liling; Mao Bingzhi

    2002-01-01

    Objective: To evaluate the biological effects of Beagle dogs irradiated by γ-rays at different doses. Methods: All Beagle dogs were divided into six groups and were subjected respectively to total-body irradiation (TBI) with a single dose of 6.5, 5.5, 5.0, 4.5, 3, 5 and 2.5 Gy γ-rays delivered by 60 Co sources at 7.224 x 10 -2 C/kg per minute. The general condition, blood cell counts and bone marrow cell CFC assays were observed. Results: Vomiting occurred at 0.5 to 2 hours after TBI in all groups. In 6.5 Gy group 3/5 dogs had blood-watery stool and 1/5 in 5.5 Gy group had watery stool. Diarrhea occurred in all other animals. Only one dog in 2.5 Gy group survived, all of others died. in order of decreasing irradiation dosage, the average survival time was 5.0, 8.0, 9.3, 9.5, 10.5 and 14.1 days, respectively. Conclusions: According to the clinical symptoms, leukocyte count and survival time of the dogs, the irradiation dose which will induce very severe hematopoietic radiation syndrome in Beagle dogs is 4.5 to 5.0 Gy

  17. Dose Distribution of Gamma Irradiators

    International Nuclear Information System (INIS)

    Park, Seung Woo; Shin, Sang Hun; Son, Ki Hong; Lee, Chang Yeol; Kim, Kum Bae; Jung, Hai Jo; Ji, Young Hoon

    2010-01-01

    Gamma irradiator using Cs-137 have been widely utilized to the irradiation of cell, blood, and animal, and the dose measurement and education. The Gamma cell 3000 Elan (Nordion International, Kanata, Ontario, Canada) irradiator was installed in 2003 with Cs-137 and dose rate of 3.2 Gy/min. And the BioBeam 8000 (Gamma-Service Medical GmbH, Leipzig, Germany) irradiator was installed in 2008 with Cs-137 and dose rate of 3.5 Gy/min. Our purpose was to evaluate the practical dosimetric problems associated with inhomogeneous dose distribution within the irradiated volume in open air state using glass dosimeter and Gafchromic EBT film dosimeter for routine Gamma irradiator dosimetry applications at the KIRAMS and the measurements were compared with each other. In addition, an user guideline for useful utilization of the device based on practical dosimetry will be prepared. The measurement results of uniformity of delivered dose within the device showed variation more than 14% between middle point and the lowest position at central axis. Therefore, to maintain dose variation within 10%, the criteria of useful dose distribution, for research radiation effects, the irradiated specimen located at central axis of the container should be placed within 30 mm from top and bottom surface, respectively. In addition, for measurements using the film, the variations of dose distribution were more then 50% for the case of less than 10 second irradiation, mostly within 20% for the case of more than 20 second irradiation, respectively. Therefore, the irradiation experiments using the BioBeam 8000 irradiator are recommended to be used for specimen required at least more than 20 second irradiation time.

  18. Secondary intracranial meningiomas after high-dose cranial irradiation: report of five cases and review of the literature

    International Nuclear Information System (INIS)

    Strojan, Primoz; Popovic, Mara; Jereb, Berta

    2000-01-01

    Purpose: To review cases of secondary intracranial meningiomas following high-dose cranial irradiation (≥ 10 Gy) identified in Slovenia between 1968 and 1998, to determine their histological profile and to review the literature on this topic. Methods and Materials: Personal files of patients treated for secondary intracranial meningioma during a 31-year period were reviewed. In cases which met the criteria for radiation-induced tumors, steroid hormone receptor and Ki-67 status were analyzed. For the literature review, computerized database systems and reference lists from respective publications were used. Results: Five patients (2 females, 3 males), 3-11 years old at the time of cranial irradiation, developed secondary meningioma after a latency period of 9.5-31.5 years. Three patients had multiple tumors and 2 developed recurrent disease. Of 9 histologically examined tumors, 5 were graded as benign and 4 as atypical meningiomas, with Ki-67 proliferative index 3.2 ± 3.6 and 10 ± 6, respectively. The ratio between positive and negative meningiomas regarding immunostaining for progesterone and estrogen receptors was eight-to-one and six-to-three, respectively. Cumulative actuarial risk of secondary meningioma in a cohort of 445 children 16 years or younger treated with high-dose cranial irradiation between 1968 and 1990 in Slovenia at 10, 20, and 25 years was 0.53%, 1.2%, and 8.18%, respectively. Out of 126 cases of radiation-induced meningiomas reported, 57% were females and 43% were males, with mean age at presentation 33 ± 17.3 years. The majority (68%) of patients was irradiated during childhood. The latency period was significantly shorter in those who aged 5 years or less at the time of cranial irradiation (p = 0.04), and in those with atypical/anaplastic tumor (p = 0.01). Correlation between radiation dose and latency period could not be found. Conclusion: Secondary meningiomas following high-dose cranial irradiation are characterized by younger age at

  19. Postoperative vaginal cuff irradiation using high dose rate remote afterloading: a Phase II clinical protocol

    International Nuclear Information System (INIS)

    Noyes, William R.; Bastin, Kenneth; Edwards, Scott A.; Buchler, Dolores A.; Stitt, Judith A.; Thomadsen, Bruce R.; Fowler, Jack F.; Kinsella, Timothy J.

    1995-01-01

    Purpose: In September 1989, a postoperative Phase II high dose rate (HDR) brachytherapy protocol was started for International Federation of Gynecology and Obstetrics (FIGO) Stage I endometrial adenocarcinoma. This review reports the overall survival, local control, and complication rates for the initial 63 patients treated in this Phase II study. Methods and Materials: High dose rate brachytherapy was delivered using an Iridium-192 HDR remote afterloader. Sixty-three patients were entered into the Phase II protocol, each receiving two vaginal cuff treatments 1 week apart (range 4-12 days) with vaginal ovoids (diameter 2.0-3.0 cm). No patient received adjuvant external beam radiation. A dose of 32.4 Gy in two fractions was prescribed to the ovoid surface in 63 patients. The first three patients treated at our institution received 15, 16.2, and 29 Gy, respectively, to determine acute effects. Results: At a median follow-up of 1.6 years (range 0.75-4.3 years) no patient has developed a vaginal cuff recurrence. One regional recurrence (1.6%) occurred at 1.2 years at the pelvic side wall. This patient is alive and without evidence of disease 7 months after completion of salvage irradiation, which resulted in the only vaginal stenosis (1.6%). Fourteen patients (22%) experienced vaginal apex fibrosis by physical exam, which was clinically symptomatic in four patients. Two patients reported stress incontinence; however, these symptoms were noted prior to their HDR therapy. One patient died 2.4 years after HDR therapy due to cardiovascular disease without evidence of cancer at autopsy. Conclusion: Preliminary results of our phase II HDR vaginal cuff protocol for postoperative FIGO Stage IA, Grade 3 or Stage IB, Grade 1-2 patients demonstrate that 32.4 Gy in two fractions is well tolerated by the vaginal cuff mucosa. Local control appears comparable to our prior experience and others with low dose rate (LDR) brachytherapy. Additional patient accrual and further follow

  20. High versus low dose-rate intracavitary irradiation for adenocarcinoma of the uterine cervix

    International Nuclear Information System (INIS)

    Kim, Woo Chul; Kim, Gwi Eon; Chung, Eun Ji; Suh, Chang Ok; Hong, Soon Won; Cho, Young Kap; Loh, John Jk

    1999-01-01

    The incidence of adenocarcinoma of the uterine cervix is low. Traditionally, Low Dose Rate (LDR) brachytherapy has been used as a standard modality in the treatment for patients with carcinoma of the uterine cervix. The purpose of this report is to evaluate the effects of the High Dose Rate (HDR) brachytherapy in the patients with adenocarcinoma of the uterine cervix compared with the LDR. From January 1971 to December 1992, 106 patients of adenocarcinoma of uterine cervix were treated with radiation therapy in the Department of Radiation Oncology, Yonsei University with curative intent. LDR brachytherapy was carried out on 35 patients and 71 patients were treated with HDR brachytherapy. In LDR Group, 8 patients were in stage I, 18 in stage II and 9 in stage III. external radiation therapy was delivered with 10 MV X-ray, daily 2 Gy fractionation, total dose 40-46 Gy (median 48 Gy). And LDR Radium intracavitary irradiation was performed with Henschke applicator, 22-56 Gy to point A (median 43 Gy). In HDR Group, there were 16 patients in stage I, 38 in stage II and 17 in stage III. The total dose of external radiation was 40-61 Gy (median 45 Gy), daily 1.8-2.0 Gy. HDR Co-60 intracavitary irradiation was performed with RALS(Remote Afterloading System), 30-57 Gy (median 39 Gy) to point A, 3 times a week, 3 Gy per fraction. The 5-year overall survival rate in LDR Group was 72.9%, 61.9%, 45.0% in stage I, II, III, respectively and corresponding figures for HDR were 87.1%, 58.3%, 41.2%, respectively (p>0.05). There was no statistical difference in terms of the 5-year overall survival rate between HDR Group and LDR Group in adenocarcinoma of the uterine cervix. There was 11% of late complication rates in LDR Group and 27% in HDR Group. There were no prognostic factors compared HDR with LDR group. The incidence of the late complication rate in HDR Group stage II, III was higher than that in LDR Group (16.7% vs. 31.6% in stage II, 11.1% vs. 35.3% in stage III, p>0

  1. Effects of high-dose and low-dose preoperative irradiation on low anterior anastomoses in dogs

    International Nuclear Information System (INIS)

    Bubrick, M.P.; Rolfsmeyer, E.S.; Schauer, R.M.; Feeney, D.A.; Johnston, G.R.; Strom, R.L.; Hitchcock, C.R.

    1982-01-01

    Twenty mongrel dogs underwent preoperative irradiation to the colon and rectum, receiving 4000 rads according to the Nominal Standard Dose Equation. Each dog then underwent anterior resection of the rectosigmoid, and reconstructive technique was randomized into two groups consisting of either handsewn or EEA-stapled anastomoses. Anastomoses were examined digitally and radiographically at the time of surgery and on the seventh postoperative day. There were four radiographic leaks among the handsewn anastomoses, but only one was clinically significant and associated with peritonitis. There were no leaks among the ten EEA-stapled anastomoses. The data suggest that low anterior resection and anastomosis can be done safely after 4000 rad irradiation and that the EEA-stapled anastomosis may be preferable

  2. Effects of high-dose and low-dose preoperative irradiation on low anterior anastomoses in dogs

    Energy Technology Data Exchange (ETDEWEB)

    Bubrick, M.P.; Rolfsmeyer, E.S.; Schauer, R.M.; Feeney, D.A.; Johnston, G.R.; Strom, R.L.; Hitchcock, C.R.

    Twenty mongrel dogs underwent preoperative irradiation to the colon and rectum, receiving 4000 rads according to the Nominal Standard Dose Equation. Each dog then underwent anterior resection of the rectosigmoid, and reconstructive technique was randomized into two groups consisting of either handsewn or EEA-stapled anastomoses. Anastomoses were examined digitally and radiographically at the time of surgery and on the seventh postoperative day. There were four radiographic leaks among the handsewn anastomoses, but only one was clinically significant and associated with peritonitis. There were no leaks among the ten EEA-stapled anastomoses. The data suggest that low anterior resection and anastomosis can be done safely after 4000 rad irradiation and that the EEA-stapled anastomosis may be preferable.

  3. Effects of two different high doses of irradiation on antioxidant system in the liver of guinea pigs.

    Science.gov (United States)

    Guney, Yildiz; Bukan, Neslihan; Dizman, Aysen; Hicsonmez, Ayse; Bilgihan, Ayse

    2004-03-01

    To examine the state of the oxidant-antioxidant system in the liver of guinea pig caused by high doses of ionizing radiation in the early period. The research was carried out on guinea pigs irradiated with the doses of 8 Gy (group 2) or 15 Gy (group 3) (single dose/whole body) in comparison with control group (group 1). The levels of thiobarbituric acid reactive substances (TBARS) and glutathione (GSH), the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and the levels of selenium in the liver were measured. TBARS levels in the irradiated animals were markedly higher than those in controls. In group 3, GSH levels and GSH-Px activity were significantly increased while activity of SOD and CAT were significantly decreased compared to groups 1 and 2. Liver selenium levels were not influenced by irradiation. The data have shown that gamma-irradiation at the doses of 8 Gy or 15 Gy results in significant increase in free radical formation while antioxidant enzymes were affected only at a dose of 15 Gy.

  4. High-dose irradiation and misonidazole in the treatment of malignant gliomas

    International Nuclear Information System (INIS)

    Kogelnik, H.D.; Kaercher, K.H.; Szepesi, T.; Schratter-Sehn, A.V.

    1982-01-01

    Thirty-three patients with grade III and IV supratentorial astrocytomas who were entered into a radomized two-arm study to evaluate the effect of misonidazole in conjunction with postoperative irradiation are available for analysis. All patients received the same radiation dose: 6650 rads (43 MeV photons) in 31 fractions over 7 1/2 weeks. Misonidazole was given orally 4 to 5 hours before irradiation on those treatment days when fractional radiation doses of 400 rads were used. The cumulative dose of misonidazole was 27 g, corresponding to 12.6 to 16.4 g/m 2 . With a minimum follow-up time of one year, median survival for patients receiving postoperative irradiation had a median survival of 57.1 weeks. The difference in the distribution of survival times between both groups is statistically significant (p < 0.02). From an analysis of variance for age, it cannot be ruled out that the survival difference between the two groups is at least partly due to differences in ages. Side effects of misonidazole were minimal, with only 2 patients experiencing mild paresthesias and 4 noting a transient tinnitus

  5. Researches, development and characterization of dosimetric materials for monitoring in irradiation processes with high doses

    International Nuclear Information System (INIS)

    Galante, Ana Maria Sisti

    2003-01-01

    Dosimetric materials that can be produced in Brazil with material acquired in the national market to replace the imported dosimeters used in radiation processing were developed in this work. Mixtures of potassium nitrate and sensitizers compounds as manganese dioxide, barium nitrate and potassium bromide were prepared in the pellet form. Dosimetric characteristics such as dose-response useful range, sensitivity, environmental conditions and dose rate influences were evaluated in 60 Co gamma radiation fields. Dyed polymethylmethacrylate detectors were also produced and its dosimetric characteristics were evaluated. The main characteristics evaluated in this case were: dose response useful range sensitivity, environmental conditions, dose rate influences and radiation energy dependence in gamma radiation fields and accelerated electrons beam of 0.8 to 1.5 MeV. The applied analytic technique was spectrophotometry. The calibration was performed in the irradiation facilities belonging to IPEN and certified by the International Atomic Energy Agency by means of the program IDAS (International Dose Assurance Service ) using the Fricke dosimeter. The mixture of potassium nitrate and manganese dioxide presented the best results and a wide dose range between 200 and 600 kGy. The response of the developed polymethylmethacrylate detectors are similar to the imported detectors and the dose range is characteristic to each detector and depends on the dye added in its formulation. (author)

  6. Thermal conductivity of beryllium under low temperature high dose neutron irradiation

    International Nuclear Information System (INIS)

    Chakin, V.P.; Latypov, R.N.; Suslov, D.N.; Kupriyanov, I.B.

    2004-01-01

    Thermal conductivity of compact beryllium of several Russian grades such as TE-400, TE-56, TE-30, TIP and DIP differing in the production technology, grain size and impurity content has been investigated. The thermal diffusivity of beryllium was measured on the disks in the initial and irradiated conditions using the pulse method in the range from room temperature to 200degC. The thermal conductivity was calculated using the table values for the beryllium thermal capacity. The specimens and beryllium neutron source fragments were irradiation in the SM reactor at 70degC and 200degC to a neutron fluence of (0.5-11.4)·10 22 cm -2 (E>0.1 MeV) and in the BOR-60 reactor at 400degC to 16·10 22 cm -2 (E>0.1MeV), respectively. The low-temperature irradiation leads to the drop decrease of the beryllium thermal conductivity and the effect depends on the irradiation parameters. The paper analyses the effect of irradiation parameters (temperature, neutron fluence), measurement temperature and structural factors on beryllium conductivity. The experiments have revealed that the short time post-irradiation annealing at high temperature results in partial reduction of the thermal conductivity of irradiated beryllium. (author)

  7. Studies on the radiation sensitivity of food microorganism by high dose irradiation

    International Nuclear Information System (INIS)

    Hwang, Han Joon; Lee, Eun Jung; Yu, Hyun Hee; Lee, Jae Ho

    2010-04-01

    We investigated the radio resistance of pathogenic microorganisms (Bacillus cereus, Staphylococcus aureus, Methicillin resistant Staphylococcus aureus(MRSA) and Escherichia coli O157) in irradiating environments. Their radiation conditions of pathogenic microorganisms varied with pH(3-10), salt concentration(1-15%), temperature(-20, 4 and 25 .deg. C) and atmospheric condition. In addition, the effect of γ-irradiation on the inactivation of pathogenic microorganisms inoculated into food (saengsik, sliced ham, chopped beef) was investigated. The radiation dose ranged from 0 to 3 kGy. The γ--irradiated B.cereus(γ--BC) St.aureus(γ--SA), MRSA(γ--MRSA) and E.coli O157(γ--EC) were then cultured and the viable cell count on plate count agar and D10-values(dose required to inactivate 90% of a microbial population) were calculated. The number of pathogenic microorganisms at pH(3-10) and salt concentration(1-15%), temperature(-20, 4 and 25 .deg. C) and atmospheric condition decreased by 1 log CFU/ml after irradiation. The D 10 -value of γ--SA in the optimum condition was 0.152 kGy, and these of γ--MRSA and γ--EC were 0.346 and 0.240 kGy, respectively. The initial cell counts of pathogenic microorganisms in culture broth were slightly decreased as the decrease of pH and the increase of salt concentration. However, radiation resistance of pathogenic microorganisms was increased at frozen state. Moreover, D 10 -values of these is test strains in saengsik, sliced ham and chopped beef were 0.597, 0.226 , 0.398 and 0.416 kGy, respectively. These results provide the basic information for the in activation of pathogenic microorganisms in foods by irradiation

  8. Studies on the radiation sensitivity of food microorganism by high dose irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Han Joon; Lee, Eun Jung; Yu, Hyun Hee; Lee, Jae Ho [Korea University, Seoul (Korea, Republic of)

    2010-04-15

    We investigated the radio resistance of pathogenic microorganisms (Bacillus cereus, Staphylococcus aureus, Methicillin resistant Staphylococcus aureus(MRSA) and Escherichia coli O157) in irradiating environments. Their radiation conditions of pathogenic microorganisms varied with pH(3-10), salt concentration(1-15%), temperature(-20, 4 and 25 .deg. C) and atmospheric condition. In addition, the effect of {gamma}-irradiation on the inactivation of pathogenic microorganisms inoculated into food (saengsik, sliced ham, chopped beef) was investigated. The radiation dose ranged from 0 to 3 kGy. The {gamma}--irradiated B.cereus({gamma}--BC) St.aureus({gamma}--SA), MRSA({gamma}--MRSA) and E.coli O157({gamma}--EC) were then cultured and the viable cell count on plate count agar and D10-values(dose required to inactivate 90% of a microbial population) were calculated. The number of pathogenic microorganisms at pH(3-10) and salt concentration(1-15%), temperature(-20, 4 and 25 .deg. C) and atmospheric condition decreased by 1 log CFU/ml after irradiation. The D{sub 10}-value of {gamma}--SA in the optimum condition was 0.152 kGy, and these of {gamma}--MRSA and {gamma}--EC were 0.346 and 0.240 kGy, respectively. The initial cell counts of pathogenic microorganisms in culture broth were slightly decreased as the decrease of pH and the increase of salt concentration. However, radiation resistance of pathogenic microorganisms was increased at frozen state. Moreover, D{sub 10}-values of these is test strains in saengsik, sliced ham and chopped beef were 0.597, 0.226 , 0.398 and 0.416 kGy, respectively. These results provide the basic information for the in activation of pathogenic microorganisms in foods by irradiation

  9. Available evidence on re-irradiation with stereotactic ablative radiotherapy following high-dose previous thoracic radiotherapy for lung malignancies.

    Science.gov (United States)

    De Bari, Berardino; Filippi, Andrea Riccardo; Mazzola, Rosario; Bonomo, Pierluigi; Trovò, Marco; Livi, Lorenzo; Alongi, Filippo

    2015-06-01

    Patients affected with intra-thoracic recurrences of primary or secondary lung malignancies after a first course of definitive radiotherapy have limited therapeutic options, and they are often treated with a palliative intent. Re-irradiation with stereotactic ablative radiotherapy (SABR) represents an appealing approach, due to the optimized dose distribution that allows for high-dose delivery with better sparing of organs at risk. This strategy has the goal of long-term control and even cure. Aim of this review is to report and discuss published data on re-irradiation with SABR in terms of efficacy and toxicity. Results indicate that thoracic re-irradiation may offer satisfactory disease control, however the data on outcome and toxicity are derived from low quality retrospective studies, and results should be cautiously interpreted. As SABR may be associated with serious toxicity, attention should be paid for an accurate patients' selection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Enrichment increases hippocampal neurogenesis independent of blood monocyte-derived microglia presence following high-dose total body irradiation.

    Science.gov (United States)

    Ruitenberg, Marc J; Wells, Julia; Bartlett, Perry F; Harvey, Alan R; Vukovic, Jana

    2017-06-01

    Birth of new neurons in the hippocampus persists in the brain of adult mammals and critically underpins optimal learning and memory. The process of adult neurogenesis is significantly reduced following brain irradiation and this correlates with impaired cognitive function. In this study, we aimed to compare the long-term effects of two environmental paradigms (i.e. enriched environment and exercise) on adult neurogenesis following high-dose (10Gy) total body irradiation. When housed in standard (sedentary) conditions, irradiated mice revealed a long-lasting (up to 4 months) deficit in neurogenesis in the granule cell layer of the dentate gyrus, the region that harbors the neurogenic niche. This depressive effect of total body irradiation on adult neurogenesis was partially alleviated by exposure to enriched environment but not voluntary exercise, where mice were single-housed with unlimited access to a running wheel. Exposure to voluntary exercise, but not enriched environment, did lead to significant increases in microglia density in the granule cell layer of the hippocampus; our study shows that these changes result from local microglia proliferation rather than recruitment and infiltration of circulating Cx 3 cr1 +/gfp blood monocytes that subsequently differentiate into microglia-like cells. In summary, latent neural precursor cells remain present in the neurogenic niche of the adult hippocampus up to 8 weeks following high-dose total body irradiation. Environmental enrichment can partially restore the adult neurogenic process in this part of the brain following high-dose irradiation, and this was found to be independent of blood monocyte-derived microglia presence. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  11. Influence of Silicon on Swelling and Microstructure in Russian Austenitic Stainless Steels Irradiated to High Neutron Doses

    International Nuclear Information System (INIS)

    Porollo, S.I.; Shulepin, S.V.; Konobeev, Y.V.; Garner, F.

    2007-01-01

    Full text of publication follows: For some applications in fusion devices austenitic stainless steels are still considered to be candidates for use as structural components, but high neutron exposures must be endured by the steels. Operational experience of fast reactors in Western Europe, USA and Japan provides evidence of the possible use of austenitic steels up to ∼ 150 dpa. Studies aimed at improvement of existing Russian austenitic steels are being carried out in Russia. For improvement of irradiation resistance of Russian steels it is necessary to understand the basic mechanisms responsible for deterioration of steel properties. This understanding can be achieved by continuing detailed investigations of the microstructure of cladding steels after irradiation to high doses. By investigating the evolution of radiation-induced microstructure in neutron irradiated steels of different chemical composition one can study the effect of chemical variations on steel properties. Silicon is one of the most important chemical elements that strongly influence the behavior of austenitic steel properties under irradiation. In this paper results are presented of investigations of the effect of silicon additions on void swelling and microstructure of base austenitic stainless steel EI-847 (0.06C-16Cr-15Ni- 3Mo-Nb) irradiated as fuel pin cladding of both regular and experimental assemblies in the BOR-60, BN-350 and BN-600 fast reactors to neutron doses up to 49 dpa. The possible mechanisms of silicon's effect on void swelling in austenitic stainless steels are presented and analyzed. (authors)

  12. Long term evolution of the immune response in the rat irradiated at mean and high doses

    International Nuclear Information System (INIS)

    Malarbet, J.L.; Veyrat, M.; Le Go, R.; Prudhomme, J.; Genest, L.; Castelnau, L.

    1977-01-01

    In irradiated animals, the lymphocytes, immunity vectors, are quickly and quantitatively depressed. Their ability to respond to an antigenic stimulus was tested in rats during post-irradiation lymphopenia and after restoration of normal lymphocytosis. The antigenic stimulus, sheep erythrocytes, was applied first 2 and 3 weeks, then 1, 2 and 3 months after exposures to 60 Co gamma rays (doses 300 and 600 rads). This study covered the 3rd through the 10th day after immunisation. Blood lymphocytes were separated by the Ficoll-Contrix gradient method and spleen lymphocytes were obtained by crushing. A lymphocyte sub-population separation was obtained from centrifugation on 4 discontinuous Ficoll-Contrix gradients. Size distribution spectra show that the lighter sub-population is made up of large-sized cells and that the heavier the cells, the smaller they are. The determination of surface immunoglobulins with fluorescent antigens shows that cells bearing immunoglobulins are predominant in the low-density sub-population. The measurement of electrophoretic mobility shows a low-mobility, low-density population and a higher density, faster mobility population which could reflect a higher proportion of B-cells in the low density population and of T-cells in the higher density population. The immune response was tested on the sub-populations. The rosette-forming ability was depressed during 1 month after irradiation then became progressively normal. The cellular plaque-forming ability was markedly suppressed 15 days after irradiation, but was soon active again. These results show the qualitative aspect of the post-irradiation immune defect [fr

  13. Cancer-Associated Fibroblasts from lung tumors maintain their immuno-suppressive abilities after high-dose irradiation

    Directory of Open Access Journals (Sweden)

    Laia eGorchs

    2015-05-01

    Full Text Available Accumulating evidence supports the notion that high-dose (>5 Gy radiotherapy (RT regimens are triggering stronger pro-immunogenic effects than standard low-dose (2 Gy regimens. However, the effects of RT on certain immunoregulatory elements in tumors remain unexplored. In this study we have investigated the effects of high-dose irradiation (HD-RT on the immunomodulating functions of cancer-associated fibroblasts (CAFs. Primary CAF cultures were established from lung cancer specimens derived from patients diagnosed for non-small cell lung cancer. Irradiated and non-irradiated CAFs were examined for immunomodulation in experiments with peripheral blood mononuclear cells from random, healthy donors. Regulation of lymphocytes behavior was checked by lymphocyte proliferation assays, lymphocyte migration assays and T-cell cytokine production. Additionally, CAF-secreted immuno-regulatory factors were studied by multiplex protein arrays, ELISAs and by LC-MS/MS proteomics. In all functional assays we observed a powerful immuno-suppressive effect exerted by CAF-conditioned medium on activated T-cells (p>0,001, and this effect was sustained after a single radiation dose of 18 Gy. Relevant immuno-suppressive molecules such as prostaglandin E2, interleukin-6 and -10, or transforming growth factor-β were found in CAF conditioned medium, but their secretion was unchanged after irradiation. Finally, immunogenic cell death responses in CAFs were studied by exploring the release of high motility group box-1 and ATP. Both alarmins remained undetectable before and after irradiation. In conclusion, CAFs play a powerful immuno-suppressive effect over activated T-cells, and this effect remains unchanged after HD-RT. Importantly, CAFs do not switch on immunogenic cell death responses after exposure to HD-RT.

  14. Use of high dose irradiation for development of special purposed foods

    International Nuclear Information System (INIS)

    Yoon, Yohan; Lee, Ju-Woon

    2009-01-01

    group, and they have very strict quality requirements of their foods. Usually, these foods must meet the requirements of a sterilization, nutrients, and digestion. Irradiation has been recommended as a method for preparing foods for hospital patients requiring sterile diets as a result of intensive therapy or disease that has resulted in a suppression of the immune system. It has a number of advantages over other methods and in recognition of this, the use of irradiated foods for hospital patients could be specifically exempted from a regulatory control, and produce easily digestible meals with high calories and necessary nutrients because irradiation may decrease viscosity of foods. Furthermore, KAERI has researched to use of irradiation technology to develop military rations, which require long-term storage with ensured safety

  15. Outcomes of high-dose unilateral kidney irradiation in patients with gastric lymphoma

    International Nuclear Information System (INIS)

    Maor, Moshe H.; North, Luceil B.; Cabanillas, Fernando F.; Ames, Angie L.; Hess, Mark A.; Cox, James D.

    1998-01-01

    Purpose: To review the long-term clinical effects of unilateral kidney irradiation on overall renal function and blood pressure in patients with gastric lymphoma. Methods and Materials: In the study were 27 patients with Stage I or II gastric lymphoma who had undergone irradiation of at least 24 Gy to ≥1/3 of the left kidney. They include 16 women and 11 men, aged 31 to 77, with a mean age of 57.6 years (median 56). Fifteen patients had Stage I and 12 had Stage II disease. In 13 patients the whole kidney had been irradiated, and 14 had had partial kidney irradiation, at doses ranging between 24 and 40.5 Gy. All patients received combined chemotherapy with various drugs: all patients received corticosteroids, and five received cis-platinum. Their follow-up ranged between 0.7 and 7.8 years (mean 3.4 years). Data on possible effects of the treatment on blood pressure, renal function as assessed by blood urea and creatinine, and kidney shrinkage as seen by serial computed tomography scanning were collected on all patients. Results: Three patients had persistent, mild elevations of urea and creatinine levels, which did not require special treatment. All three also received cis-platinum. Ipsilateral kidney shrinkage was evident in most patients. In 19 patients the craniocaudal measurement of the kidney shrank by ≥1.6 cm. Shrinkage in other dimensions was also evident. The degree of atrophy was related to the volume of kidney irradiated. Only two patients developed hypertension, both at a low level of 150/90; one patient had had 40 Gy to the whole kidney, the other 40 Gy to half the kidney. Neither patient had elevated urea or creatinine. Conclusions: Notwithstanding the shrinkage to the irradiated part of the kidney, the treatment did not lead to clinically significant hypertension or renal dysfunction. The administration of cis-platinum to patients with gastric lymphoma that requires kidney irradiation should be further evaluated

  16. Carcinoma of Uterine Cervix Treated with High Dose Rate Intracavitary Irradiation : 1. Patterns of Failure

    International Nuclear Information System (INIS)

    Kim, Ok Bae; Choi, Tae Jin; Kim, Jin Hee

    1993-01-01

    226 patients with carcinoma of the uterine cervix treated with curative radiation therapy at the Department of Therapeutic Radiology, Dongsan hospital, Keimyung university, School of medicine, from July, 1988 to May, 1991 were evaluated. The patients with all stages of the disease were included in this study. The maximum and mean follow up durations were 60 and 43 months. The radiation therapy consisted of external irradiation to the whole pelvis (2700 - 4500 cGy) and boost parametrial doses(for a total of 4500 - 6300 cGy) with midline shill(4x10 cm), and combined with intracavitary irradiation irradiation(5700 - 7500 cGy to point A). The distribution of patients according to the stage was as follows: stage IB 37(16.4%), stage IIA 91 (40.3%), Stage IIB 58(25.7%), stage III 32(13.8%), stage IV 8 (3.5%). The overall failure rate was 23.9%(54 patients). The failure rate increased as a function of stage from 13.5% in stage 1B to 15.4% in stage IIA, 25.9% in stage IIB, 46.9% in stage III, and 62.5% in stage IV. The pelvic failure alone were 32 patients and 11 patients were as a components of other failure, and remaining 11 patients had distant metastasis only. Among the 43 patients of locoregional failure, 28 patients were not controlled initially and in other words nearly half of total failures were due to residual tumor. The mean medial paracervical(point A) doses were 6700 cGy in stage IIB, 7200 cGy in stage IIA, 7450 cGy in stage IIB, 7600 cGy in stage III and 8100 cGy in stage IV. The medial paracevical doses showed some correlation with tumor control rate in early stage of disease (stage Ib, IIA), but there were higher central failure rate in advanced stage in spite of higher paracervical doses. In advanced stage, failure were not reduced by simple Increment of paracervical doses. To improve a locoregional control rate in advanced stages, it is necessary to give additional treatment such as concomitant chemoradiation

  17. New generation of nuclear fuels: Stability of different stearates under high doses gamma irradiation in the manufacturing process

    Energy Technology Data Exchange (ETDEWEB)

    Lebeau, D.; Esnouf, S. [Den-Service d’Etude du Comportement des Radionucléides (SECR), CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Gracia, J. [Den-Service d' Etudes des Combustibles et Matériaux à base d' Actinides (SECA), CEA, F-30207 Bagnols-sur-Cèze Cedex (France); Audubert, F. [Den-Service d' Analyse et de Caractérisation du Comportement des Combustibles (SA3C), CEA, F- 13115 Saint-Paul-lez-Durance (France); Ferry, M., E-mail: muriel.ferry@cea.fr [Den-Service d’Etude du Comportement des Radionucléides (SECR), CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France)

    2017-07-15

    In the future reactors, the pellets radioactivity will increase due to the modification of the plutonium concentration. The stability of the organic additive used as lubricating/deagglomerating agent has thus to be evaluated. Up to now, zinc stearate is employed, but new additives are tested in this study and compared to zinc stearate. In a first part of this paper, the order of magnitude of the dose deposited in the stearates has been estimated. Afterward, three different stearates have been irradiated, using gamma-rays at doses as high as 2000 kGy. Two atmospheres of irradiation were tested, i.e. inert atmosphere and air. Samples were characterized using the following analytical tools: mass spectrometry, thermogravimetry and infrared spectroscopy. The objective is the evaluation of the ageing of these materials. In the nuclear fuel pellets manufacturing context, the candidate which could replace zinc stearate, if this one is too degraded to fulfill its role of lubricant in the pellets of the future manufacturing, has been determined. - Highlights: •Dose deposition estimation for different stearates. •Stearates radiolysis and radio-oxidization at high doses using gamma-rays. •H{sub 2} emission estimation as a function of atmosphere and dose. •Chemical modifications in stearates as a function of atmosphere and dose. •Comparison of three stearates.

  18. A comparison of anti-tumor effects of high dose rate fractionated and low dose rate continuous irradiation in multicellular spheroids

    International Nuclear Information System (INIS)

    Kubota, Nobuo; Omura, Motoko; Matsubara, Sho.

    1997-01-01

    In a clinical experience, high dose rate (HDR) fractionated interstitial radiotherapy can be an alternative to traditional low dose rate (LDR) continuous interstitial radiotherapy for head and neck cancers. To investigate biological effect of HDR, compared to LDR, comparisons have been made using spheroids of human squamous carcinoma cells. Both LDR and HDR were delivered by 137 Cs at 37degC. Dose rate of LDR was 8 Gy/day and HDR irradiations of fraction size of 4, 5 or 6 Gy were applied twice a day with an interval time of more than 6 hr. We estimated HDR fractionated dose of 31 Gy with 4 Gy/fr to give the same biological effects of 38 Gy by continuous LDR for spheroids. The ratio of HDR/LDR doses to control 50% spheroids was 0.82. (author)

  19. A Performance Evaluation of a Notebook PC under a High Dose-Rate Gamma Ray Irradiation Test

    Directory of Open Access Journals (Sweden)

    Jai Wan Cho

    2014-01-01

    Full Text Available We describe the performance of a notebook PC under a high dose-rate gamma ray irradiation test. A notebook PC, which is small and light weight, is generally used as the control unit of a robot system and loaded onto the robot body. Using TEPCO’s CAMS (containment atmospheric monitoring system data, the gamma ray dose rate before and after a hydrogen explosion in reactor units 1–3 of the Fukushima nuclear power plant was more than 150 Gy/h. To use a notebook PC as the control unit of a robot system entering a reactor building to mitigate the severe accident situation of a nuclear power plant, the performance of the notebook PC under such intense gamma-irradiation fields should be evaluated. Under a similar dose-rate (150 Gy/h gamma ray environment, the performances of different notebook PCs were evaluated. In addition, a simple method for a performance evaluation of a notebook PC under a high dose-rate gamma ray irradiation test is proposed. Three notebook PCs were tested to verify the method proposed in this paper.

  20. High dose effects in neutron irradiated face-centered cubic metals

    International Nuclear Information System (INIS)

    Garner, F.A.; Toloczko, M.B.

    1993-06-01

    During neutron irradiation, most face-centered cubic metals and alloys develop saturation or quasi-steady state microstructures. This, in turn, leads to saturation levels in mechanical properties and quasi-steady state rates of swelling and creep deformation. Swelling initially plays only a small role in determining these saturation states, but as swelling rises to higher levels, it exerts strong feedback on the microstructure and its response to environmental variables. The influence of swelling, either directly or indirectly via second order mechanisms, such as elemental segregation to void surfaces, eventually causes major changes, not only in irradiation creep and mechanical properties, but also on swelling itself. The feedback effects of swelling on irradiation creep are particularly complex and lead to problems in applying creep data derived from highly pressurized creep tubes to low stress situations, such as fuel pins in liquid metal reactors

  1. Transverse colon conduit urinary diversion in patients treated with very high dose pelvic irradiation

    International Nuclear Information System (INIS)

    Ravi, R.; Dewan, A.K.; Pandey, K.K.

    1994-01-01

    Urinary diversion may be required in patients receiving pelvic irradiation for gynaecological or genitourinary cancers either as part of a planned or salvage surgical procedure or for urological complications of irradiation. Records were reviewed for 30 such patients who underwent transverse colon conduit as a primary form of urinary diversion. Most of the conduits were constructed using refluxing ureterocolic anastomoses with stents. The results showed no operative mortality. Although the procedure was associated with a complication rate of 37% and a re-operation rate of 20%, there were no bowel or urinary anastomotic leaks. The operation could be safely performed on patients with renal failure, with 83% of such patients showing normal or improved serum creatinine levels post operatively. The advantages of transverse colon conduit urinary diversion are the use of non-irradiated bowel and ureters for diversion. It is recommended as a primary form of urinary diversion in these high risk cases. (Author)

  2. Prophylactic CNS therapy in childhood leukemia. Randomized controlled study of high-dose intravenous methotrexate and cranial irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Takashi; Hiyoshi, Yasuhiko [Kurume Univ., Fukuoka (Japan). School of Medicine; Fujimoto, Takeo

    1982-12-01

    This study was designed to evaluate the efficacy of CNS-prophylaxis with high-dose methotrexate (MTX). Seventy children with previously untreated acute lymphoblastic leukemia (ALL) entered to this study between July 1978 and December 1980. According to initial white blood count (WBC), they were stratified to induce remission with; vincristine and prednine in low initial WBC ( lt 25,000/mm/sup 3/) group and these two agents plus adriamycin in high initial WBC ( gt 25,000/mm/sup 3/) group. After inducing remission, 62 children who achieved CR, received different CNS-prophlaxis; using a regimen of three doses of weekly high-dose MTX (1,000 mg/m/sup 2/) 6-hour infusion, which was repeated every 12 weeks-Group A (n = 14); high-dose MTX followed by 2400 rad cranial irradiation plus three doses of i.t. MT X-Group B (n = 15), 2400 rad cranial irradiation plus three doses of i.t. MTX-Group C (n = 16), and in 17 patients with high initial WBC, same as in Group A-Group D (n = 17). During an intravenous 6-h infusion of MTX at a dose of 1,000 mg/m/sup 2/, the CSF concentration of MTX rose to 2.3 +- 2.4 x 10/sup -6/M after initiation of infusion and remained in 10/sup -7/ M level for 48 hours. CNS-leukemia terminated complete remission in one of 14 children in Group A, two of 15 in Group B, two of 16 in Group C and two of 17 in Group D. The cumulative incidence of CNS-leukemia at 20 months calculated by the technique of Kaplan and Meier was 0% in Group A, 18.1% in Group B, 7.1% in Group C and 50.8% in Group D. There was no statistical difference among Groups A, B and C. These data suggested that CNS-prophylaxis with high-dose intravenous MTX was effective as well as 2400 rad cranial irradiation plus three doses of i.t. MTX in childhood ALL with low initial WBC.

  3. The use of potassium dichromate for ultra high dose up to 120 kGy measurements in industrial irradiation process

    International Nuclear Information System (INIS)

    Conceicao, Cirilo C.S.

    2009-01-01

    The purpose of this work is the study of radiation-induced reduction of the Potassium Dichromate dosimeter in perchloric acid using modification in the composition of Dichromate dosimeter proposed by Sharpe (NPL, October 1982) to extend dose limit up to 120 kGy. This modification can allow measuring dose in process of irradiation of gem and cork directly, in these processes that the absorbed doses are very high. The dosimeter study reached linear response between 10 to 120 kGy. This dosimeter was traceable to the international metrology system, using Gammacell calibrated by Fricke reference dosimeter. The evaluation of the doses was done by spectrophotometric method. Compared to the costs using PMMA (perpex dosimeters), the use of dichromate dosimeters can reduce up to 70% of the dosimetry costs in Brazil. (author)

  4. Hall effect measurements of Frenkel defect clustering in aluminium during high-dose reactor irradiation at 4.6 K

    International Nuclear Information System (INIS)

    Boening, K.; Mauer, W.; Pfaendner, K.; Rosner, P.

    1976-01-01

    The low-field Hall coefficient R 0 of irradiated aluminium at 4.6 K is independent of the Frenkel defect (FD) concentration, however sensitively dependent of their configuration. Since measurement of R 0 is not too difficult, rather extensive investigations of FD clustering during irradiation can be performed, but only qualitative interpretations are possible. Several pure Al samples have been irradiated with reactor neutrons at 4.6 K up to very high doses phit resp. resistivity increments Δrho 0 (maximum 91% of extrapolated saturation value Δrho 0 sup(sat) approximately 980 nΩcm). The main results are 1.FD clustering within a single displacement cascade is not a very strong effect in Al, since the R 0 values are essentially the same after reactor and after electron irradiation. Rough cascade averages are: volume Vsub(c) approximately 2.1 x 10 5 at.vol. and FD concentration csub(c) approximately 1100 ppm. 2. There is practically no dose-dependent FD clustering up to Δrho 0 approximately 350 nΩcm, since R 0 remains essentially constant there. It follows that dose-dependent FD clustering can only occur for high-order overlap of cascade volumes. The differential dose curve dΔrho 0 /dphit is perfectly linear in Δrho 0 as long as R 0 = const. 3. For Δrho 0 > 350 nΩcm FD clustering becomes increasingly important and R 0 changes strongly. Surprisingly dR 0 /dphit approximately const whence there is a constant rate of cluster size increase in spite of the vanishing rate of FD production, evidence of the continuous regrouping of the lattice and its defects. (author)

  5. High-dose total-body irradiation and autologous marrow reconstitution in dogs: dose-rate-related acute toxicity and fractionation-dependent long-term survival

    International Nuclear Information System (INIS)

    Deeg, H.J.; Storb, R.; Weiden, P.L.; Schumacher, D.; Shulman, H.; Graham, T.; Thomas, E.D.

    1981-01-01

    Beagle dogs treated by total-body irradiation (TBI) were given autologous marrow grafts in order to avoid death from marrow toxicity. Acute and delayed non-marrow toxicities of high single-dose (27 dogs) and fractionated TBI (20 dogs) delivered at 0.05 or 0.1 Gy/min were compared. Fractionated TBI was given in increments of 2 Gy every 6 hr for three increments per day. Acute toxicity and early mortality (<1 month) at identical total irradiation doses were comparable for dogs given fractionated or single-dose TBI. With single-dose TBI, 14, 16, and 18 Gy, respectively, given at 0.05 Gy/min, 0/5, 5/5, and 2/2 dogs died from acute toxicity; with 10, 12, and 14 Gy, respectively, given at 0.1 Gy/min, 1/5, 4/5, and 5/5 dogs died acutely. With fractionated TBI, 14 and 16 Gy, respectively, given at 0.1 Gy/min, 1/5, 4/5, and 2/2 dogs died auctely. Early deaths were due to radiation enteritis with or without associated septicemia (29 dogs; less than or equal to Day 10). Three dogs given 10 Gy of TBI at 0.1 Gy/min died from bacterial pneumonia; one (Day 18) had been given fractionated and two (Days 14, 22) single-dose TBI. Fifteen dogs survived beyond 1 month; eight of these had single-dose TBI (10-14 Gy) and all died within 7 months of irradiation from a syndrome consisting of hepatic damage, pancreatic fibrosis, malnutrition, wasting, and anemia. Seven of the 15 had fractionated TBI, and only one (14 Gy) died on Day 33 from hepatic failure, whereas 6 (10-14 Gy) are alive and well 250 to 500 days after irradiation. In conclusion, fractionated TBI did not offer advantages over single-dose TBI with regard to acute toxicity and early mortality; rather, these were dependent upon the total dose of TBI. The total acutely tolerated dose was dependent upon the exposure rate; however, only dogs given fractionated TBI became healthy long-term survivors

  6. Tensile and stress corrosion cracking properties of type 304 stainless steel irradiated to a very high dose

    International Nuclear Information System (INIS)

    Chung, H.M.; Strain, R.V.; Shack, W.J.

    2001-01-01

    Certain safety-related core internal structural components of light water reactors, usually fabricated from Type 304 or 316 austenitic stainless steels (SSs), accumulate very high levels of irradiation damage (20-100 displacement per atom or dpa) by the end of life. Our databases and mechanistic understanding of the degradation of such highly irradiated components, however, are not well established. A key question is the nature of irradiation-assisted intergranular cracking at very high doses, i.e. is it purely mechanical failure or is it stress-corrosion cracking? In this work, hot-cell tests and microstructural characterization were performed on Type 304 SS from the hexagonal fuel can of the decommissioned EBR-II reactor after irradiation to ∼50 dpa at ∼370 deg. C. Slow-strain-rate tensile tests were conducted at 289 degree sign C in air and in water at several levels of electrochemical potential (ECP), and microstructural characteristics were analyzed by scanning and transmission electron microscopies. The material deformed significantly by twinning and exhibited surprisingly high ductility in air, but was susceptible to severe intergranular stress corrosion cracking (IGSCC) at high ECP. Low levels of dissolved O and ECP were effective in suppressing the susceptibility of the heavily irradiated material to IGSCC, indicating that the stress corrosion process associated with irradiation-induced grain-boundary Cr depletion, rather than purely mechanical separation of grain boundaries, plays the dominant role. However, although IGSCC was suppressed, the material was susceptible to dislocation channeling at a low ECP, and this susceptibility led to a poor work-hardening capability and low ductility

  7. Dose-Dependent Cortical Thinning After Partial Brain Irradiation in High-Grade Glioma

    Energy Technology Data Exchange (ETDEWEB)

    Karunamuni, Roshan [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California (United States); Bartsch, Hauke; White, Nathan S. [Department of Radiology, University of California San Diego, La Jolla, California (United States); Moiseenko, Vitali; Carmona, Ruben; Marshall, Deborah C.; Seibert, Tyler M. [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California (United States); McDonald, Carrie R. [Department of Psychiatry, University of California San Diego, La Jolla, California (United States); Farid, Nikdokht; Krishnan, Anithapriya; Kuperman, Joshua [Department of Radiology, University of California San Diego, La Jolla, California (United States); Mell, Loren [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California (United States); Brewer, James B.; Dale, Anders M. [Department of Radiology, University of California San Diego, La Jolla, California (United States); Hattangadi-Gluth, Jona A., E-mail: jhattangadi@ucsd.edu [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California (United States)

    2016-02-01

    Purpose: Radiation-induced cognitive deficits may be mediated by tissue damage to cortical regions. Volumetric changes in cortex can be reliably measured using high-resolution magnetic resonance imaging (MRI). We used these methods to study the association between radiation therapy (RT) dose and change in cortical thickness in high-grade glioma (HGG) patients. Methods and Materials: We performed a voxel-wise analysis of MRI from 15 HGG patients who underwent fractionated partial brain RT. Three-dimensional MRI was acquired pre- and 1 year post RT. Cortex was parceled with well-validated segmentation software. Surgical cavities were censored. Each cortical voxel was assigned a change in cortical thickness between time points, RT dose value, and neuroanatomic label by lobe. Effects of dose, neuroanatomic location, age, and chemotherapy on cortical thickness were tested using linear mixed effects (LME) modeling. Results: Cortical atrophy was seen after 1 year post RT with greater effects at higher doses. Estimates from LME modeling showed that cortical thickness decreased by −0.0033 mm (P<.001) for every 1-Gy increase in RT dose. Temporal and limbic cortex exhibited the largest changes in cortical thickness per Gy compared to that in other regions (P<.001). Age and chemotherapy were not significantly associated with change in cortical thickness. Conclusions: We found dose-dependent thinning of the cerebral cortex, with varying neuroanatomical regional sensitivity, 1 year after fractionated partial brain RT. The magnitude of thinning parallels 1-year atrophy rates seen in neurodegenerative diseases and may contribute to cognitive decline following high-dose RT.

  8. Physiological and immunological changes following exposure to low versus high-dose ionizing irradiation; comparative analysis with dose rate and cumulative dose

    International Nuclear Information System (INIS)

    Heesun, Kim; Heewon, Jang; Soungyeon, Song; Shinhye, Oh; Cukcheul, Shin; Meeseon, Jeong; Chasoon, Kim; Kwnaghee, Yang; Seonyoung, Nam; Jiyoung, Kim; Youngwoo, Jin; Changyoung, Cha

    2008-01-01

    Full text: While high-dose of ionizing radiation is generally harmful and causes damage to living organisms some reports suggest low-dose of radiation may not be as damaging as previously thought. Despite increasing evidence regarding the protective effect of low-dose radiation, no studies have directly compared the exact dose-response pattern by high- and low-dose of radiation exposed at high-and low-dose rate. This study aims to explore the cellular and molecular changes in mice exposed to low- and high-dose of radiation exposed at low- and high-dose rate. When C57BL/6 mice (Female, 6 weeks) were exposed at high-dose rate, 0.8 Gy/min, no significant change on the level of WBC, RBC, or platelets was observed up to total dose of 0.5 Gy. However, 2 Gy of radiation caused dramatic reduction in the level of white blood cells (WBC) and platelets. This reduction was accompanied by increased DNA damage in hematopoietic environments. The reduction of WBC was mainly due to the reduction in the number of CD4+ T cells and CD19+ B cells. CD8+ T cells and NK cells appeared to be relatively resistant to high-dose of radiation. This change was also accompanied by the reduction of T- and B- progenitor cells in the bone marrow. In contrast, no significant changes of the number of CD4+ T, CD8+ T, NK, and B cells were observed in the spleen of mice exposed at low-dose-rate (0.7 m Gy/h or 3.95 mGy/h) for up to 2 Gy, suggesting that low-dose radiation does not alter cellular distribution in the spleen. Nevertheless, mice exposed to low-dose radiation exhibited elevation of VEGF, MCP-1, IL-4, Leptin, IL-3, and Tpo in the peripheral blood and slight increases in MIP-2, RANTES, and IL-2 in the spleen. This suggests that chronic γ-radiation can stimulate immune function without causing damage to the immune components of the body. Taken together, these data indicate hormesis of low-dose radiation, which could be attributed to the stimulation of immune function. Dose rate rather than total

  9. Dose mapping role in gamma irradiation industry

    International Nuclear Information System (INIS)

    Noriah Mod Ali; John Konsoh Sangau; Mazni Abd Latif

    2002-01-01

    In this studies, the role of dosimetry activity in gamma irradiator was discussed. Dose distribution in the irradiator, which is a main needs in irradiator or chamber commissioning. This distribution data were used to confirm the dosimetry parameters i.e. exposure time, maximum and minimum dose map/points, and dose distribution - in which were used as guidelines for optimum product irradiation. (Author)

  10. On-Line High Dose-Rate Gamma Ray Irradiation Test of the CCD/CMOS Cameras

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Wan; Jeong, Kyung Min [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    In this paper, test results of gamma ray irradiation to CCD/CMOS cameras are described. From the CAMS (containment atmospheric monitoring system) data of Fukushima Dai-ichi nuclear power plant station, we found out that the gamma ray dose-rate when the hydrogen explosion occurred in nuclear reactors 1{approx}3 is about 160 Gy/h. If assumed that the emergency response robot for the management of severe accident of the nuclear power plant has been sent into the reactor area to grasp the inside situation of reactor building and to take precautionary measures against releasing radioactive materials, the CCD/CMOS cameras, which are loaded with the robot, serve as eye of the emergency response robot. In the case of the Japanese Quince robot system, which was sent to carry out investigating the unit 2 reactor building refueling floor situation, 7 CCD/CMOS cameras are used. 2 CCD cameras of Quince robot are used for the forward and backward monitoring of the surroundings during navigation. And 2 CCD (or CMOS) cameras are used for monitoring the status of front-end and back-end motion mechanics such as flippers and crawlers. A CCD camera with wide field of view optics is used for monitoring the status of the communication (VDSL) cable reel. And another 2 CCD cameras are assigned for reading the indication value of the radiation dosimeter and the instrument. In the preceding assumptions, a major problem which arises when dealing with CCD/CMOS cameras in the severe accident situations of the nuclear power plant is the presence of high dose-rate gamma irradiation fields. In the case of the DBA (design basis accident) situations of the nuclear power plant, in order to use a CCD/CMOS camera as an ad-hoc monitoring unit in the vicinity of high radioactivity structures and components of the nuclear reactor area, a robust survivability of this camera in such intense gamma-radiation fields therefore should be verified. The CCD/CMOS cameras of various types were gamma irradiated at a

  11. Modulation of toxicity following external beam irradiation preceded by high-dose rate brachytherapy in inoperable oesophageal cancer

    International Nuclear Information System (INIS)

    Taal, B.G.; Aleman, B.M.P.; Koning, C.C.E.; Boot, H.

    1996-01-01

    To induce fast relief of dysphagia in inoperable oesephageal cancer, we applied high-dose rate (HDR) intraluminal irradiation followed by external irradiation (EBRT) in a phase II study. 15 patients (group A: n = 15; 10 men, 5 women; median age 66 years) were treated with 10 Gy HDR brachytherapy plus 40 Gy EBRT (15 fractions of 2.67 Gy). Severe side-effects were encountered in 60% of patients: 3 late ulceration, 2 pending fistula and 2 patients with fatal haemorrhage after an interval of 6 months. Overall response was excellent: 9 complete remissions (60%) and 6 partial responses (40%). Because of the high toxicity rate, in a subsequent study (group B: n = 30; 23 mean, 7 women; median age 66 years) the EBRT scheme was changed using smaller fractions (2.0 Gy) to reach the same total dose of 40 Gy. The complication rate (17%) was significantly reduced, while the overall response remained excellent (83%): 17 complete and 8 partial responses. The impressive change in complication rate of HDR brachytherapy and EBRT stresses the impact of the fraction per dose and illustrates the small therapeutic margins. (author)

  12. Modulation of toxicity following external beam irradiation preceded by high-dose rate brachytherapy in inoperable oesophageal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Taal, B.G.; Aleman, B.M.P.; Koning, C.C.E.; Boot, H. [Nederlands Kanker Inst. `Antoni van Leeuwenhoekhuis`, Amsterdam (Netherlands)

    1996-09-01

    To induce fast relief of dysphagia in inoperable oesephageal cancer, we applied high-dose rate (HDR) intraluminal irradiation followed by external irradiation (EBRT) in a phase II study. 15 patients (group A: n = 15; 10 men, 5 women; median age 66 years) were treated with 10 Gy HDR brachytherapy plus 40 Gy EBRT (15 fractions of 2.67 Gy). Severe side-effects were encountered in 60% of patients: 3 late ulceration, 2 pending fistula and 2 patients with fatal haemorrhage after an interval of 6 months. Overall response was excellent: 9 complete remissions (60%) and 6 partial responses (40%). Because of the high toxicity rate, in a subsequent study (group B: n = 30; 23 mean, 7 women; median age 66 years) the EBRT scheme was changed using smaller fractions (2.0 Gy) to reach the same total dose of 40 Gy. The complication rate (17%) was significantly reduced, while the overall response remained excellent (83%): 17 complete and 8 partial responses. The impressive change in complication rate of HDR brachytherapy and EBRT stresses the impact of the fraction per dose and illustrates the small therapeutic margins. (author).

  13. Structural, optical and compositional stability of MoS2 multi-layer flakes under high dose electron beam irradiation

    Science.gov (United States)

    Rotunno, E.; Fabbri, F.; Cinquanta, E.; Kaplan, D.; Longo, M.; Lazzarini, L.; Molle, A.; Swaminathan, V.; Salviati, G.

    2016-06-01

    MoS2 multi-layer flakes, exfoliated from geological molybdenite, have been exposed to high dose electron irradiation showing clear evidence of crystal lattice and stoichiometry modifications. A massive surface sulfur depletion is induced together with the consequent formation of molybdenum nanoislands. It is found that a nanometric amorphous carbon layer, unwillingly deposited during the transmission electron microscope experiments, prevents the formation of the nanoislands. In the absence of the carbon layer, the formation of molybdenum grains proceeds both on the top and bottom surfaces of the flake. If carbon is present on both the surfaces then the formation of Mo grains is completely prevented.

  14. Cluster dynamics modeling of the effect of high dose irradiation and helium on the microstructure of austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Brimbal, Daniel, E-mail: Daniel.brimbal@areva.com [AREVA NP, Tour AREVA, 1 Place Jean Millier, 92084 Paris La Défense (France); Fournier, Lionel [AREVA NP, Tour AREVA, 1 Place Jean Millier, 92084 Paris La Défense (France); Barbu, Alain [Alain Barbu Consultant, 6 Avenue Pasteur Martin Luther King, 78230 Le Pecq (France)

    2016-01-15

    A mean field cluster dynamics model has been developed in order to study the effect of high dose irradiation and helium on the microstructural evolution of metals. In this model, self-interstitial clusters, stacking-fault tetrahedra and helium-vacancy clusters are taken into account, in a configuration well adapted to austenitic stainless steels. For small helium-vacancy cluster sizes, the densities of each small cluster are calculated. However, for large sizes, only the mean number of helium atoms per cluster size is calculated. This aspect allows us to calculate the evolution of the microstructural features up to high irradiation doses in a few minutes. It is shown that the presence of stacking-fault tetrahedra notably reduces cavity sizes below 400 °C, but they have little influence on the microstructure above this temperature. The binding energies of vacancies to cavities are calculated using a new method essentially based on ab initio data. It is shown that helium has little effect on the cavity microstructure at 300 °C. However, at higher temperatures, even small helium production rates such as those typical of sodium-fast-reactors induce a notable increase in cavity density compared to an irradiation without helium. - Highlights: • Irradiation of steels with helium is studied through a new cluster dynamics model. • There is only a small effect of helium on cavity distributions in PWR conditions. • An increase in helium production causes an increase in cavity density over 500 °C. • The role of helium is to stabilize cavities via reduced emission of vacancies.

  15. Panoramic irradiator dose mapping with pin photodiodes

    International Nuclear Information System (INIS)

    Ferreira, Danilo Cardenuto; Napolitano, Celia Marina; Bueno, Carmen Cecilia

    2011-01-01

    In this work we study the possibility of using commercial silicon PIN photodiodes (Siemens, SFH 00206) for dose mapping in the Panoramic Irradiator facility at IPEN-CNEN/SP. The chosen photodiode, that is encased in 1.2 mm thickness polymer layer, displays promising dosimetric characteristics such as small size (sensitive area of 7.00 mm 2 ), high sensitivity and low dark current (≅ 300 pA, at 0 V) together with low-cost and wide availability. The Panoramic facility is an irradiator Type II with absorbed dose certificated by International Dose Assurance Service (IDAS) offered by the International Agency Energy Atomic (IAEA). The charge registered by the diode as a function of the absorbed dose was in excellent agreement with that one calibrated by IDAS. Besides this, the easy handling and fast response of the SFH00206 diode compared to Fricke chemical dosimeters encouraged us to perform dose mapping around the source. (author)

  16. Evaluation of the efficacy of palliative irradiation with high fractionated doses and planned intervals of patients with advanced cancer of the oral cavity and pharynx

    International Nuclear Information System (INIS)

    Skolyszewski, J.; Reinfuss, M.

    1988-01-01

    200 patients, previously not treated, with advanced highly differentiated cancer of the oral cavity and pharynx have been palliatively irradiated in the Oncology Center in Cracow in the years 1976-1985. Megavoltage irradiation with fractionated doses 4-5 Gy up to the dose of 20 Gy to the tumor with 4-5 fractions during 4-7 days has been applied. 64 patients received 20 Gy as simple dose, in 65 cases such dose has been repeated after month. 71 patients have been irradiated for the third time with similar dose after another 1 month interval. Partial regression of 25-50% of the tumor volume has been obtained after the first series of irradiation in 19% of patients and more than 50% in 28% of patients, complete regression in 4% of patients. 15,5% of the total number of patients survived 1 year since the initiation of the irradiation, 5% without symptoms of the neoplasm. Worse prognosis is connected with major advancement of the tumor (T 4 , N 2 ), poor general condition, cachexia and alcohol addition. Absence of improvement after the first series of irradiations indicates the non-effectiveness of the treatment. Palliative treatment by irradiation with high fractionated doses and planned interval is a safe and efficacious method. 1 fig., 6 tabs., 14 refs. (author)

  17. Accelerated partial breast irradiation in the elderly: 5-year results of high-dose rate multi-catheter brachytherapy

    International Nuclear Information System (INIS)

    Genebes, Caroline; Hannoun-Levi, Jean-Michel; Chand, Marie-Eve; Gal, Jocelyn; Gautier, Mathieu; Raoust, Ines; Ihrai, Tarik; Courdi, Adel; Ferrero, Jean-Marc; Peyrottes, Isabelle

    2014-01-01

    To evaluate clinical outcome after accelerated partial breast irradiation (APBI) in the elderly after high-dose-rate interstitial multi-catheter brachytherapy (HIBT). Between 2005 and 2013, 70 patients underwent APBI using HIBT. Catheter implant was performed intra or post-operatively (referred patients) after lumpectomy and axillary sentinel lymph node dissection. Once the pathological results confirmed the indication of APBI, planification CT-scan was performed to deliver 34 Gy/10f/5d or 32 Gy/8f/4d. Dose-volume adaptation was manually achieved (graphical optimization). Dosimetric results and clinical outcome were retrospectively analyzed. Physician cosmetic evaluation was reported. With a median follow-up of 60.9 months [4.6 – 90.1], median age was 80.7 years [62 – 93.1]. Regarding APBI ASTRO criteria, 61.4%, 18.6% and 20% were classified as suitable, cautionary and non-suitable respectively. Axillary sentinel lymph node dissection was performed in 94.3%; 8 pts (11.5%) presented an axillary involvement. A median dose of 34 Gy [32 – 35] in 8 to 10 fractions was delivered. Median CTV was 75.2 cc [16.9 – 210], median D90 EQD2 was 43.3 Gy [35 – 72.6] and median DHI was 0.54 [0.19 – 0.74]. One patient experienced ipsilateral recurrence (5-year local free recurrence rate: 97.6%. Five-year specific and overall survival rates were 97.9% and 93.2% respectively. Thirty-four patients (48%) presented 47 late complications classified grade 1 (80.8%) and grade 2 (19.2%) with no grade ≥ 3. Cosmetic results were considered excellent/good for 67 pts (95.7%). APBI using HIBT and respecting strict rules of implantation and planification, represents a smart alternative between no post-operative irradiation and whole breast irradiation delivered over 6 consecutive weeks

  18. Mechanism of action for anti-radiation vaccine in reducing the biological impact of high-dose gamma irradiation

    Science.gov (United States)

    Maliev, Vladislav; Popov, Dmitri; Jones, Jeffrey A.; Casey, Rachael C.

    Ionizing radiation is a major health risk of long-term space travel, the biological consequences of which include genetic and oxidative damage. In this study, we propose an original mechanism by which high doses of ionizing radiation induce acute toxicity. We identified biological components that appear in the lymphatic vessels shortly after high-dose gamma irradiation. These radiation-induced toxins, which we have named specific radiation determinants (SRD), were generated in the irradiated tissues and then circulated throughout the body via the lymph circulation and bloodstream. Depending on the type of SRD elicited, different syndromes of acute radiation sickness (ARS) were expressed. The SRDs were developed into a vaccine used to confer active immunity against acute radiation toxicity in immunologically naïve animals. Animals that were pretreated with SRDs exhibited resistance to lethal doses of gamma radiation, as measured by increased survival times and survival rates. In comparison, untreated animals that were exposed to similar large doses of gamma radiation developed acute radiation sickness and died within days. This phenomenon was observed in a number of mammalian species. Initial analysis of the biochemical characteristics indicated that the SRDs were large molecular weight (200-250 kDa) molecules that were comprised of a mixture of protein, lipid, carbohydrate, and mineral. Further analysis is required to further identify the SRD molecules and the biological mechanism by which they mediate the toxicity associated with acute radiation sickness. By doing so, we may develop an effective specific immunoprophylaxis as a countermeasure against the acute effects of ionizing radiation.

  19. External beam radiotherapy alone or combined with high-dose-rate intracavitary irradiation in the treatment of cancer of the esophagus

    International Nuclear Information System (INIS)

    Hishikawa, Y.; Taniguchi, M.; Kamikonya, N.; Tanaka, S.; Miura, T.

    1988-01-01

    Autopsy findings of 35 patients, treated with radiotherapy for an esophageal carcinoma, were reviewed. A residual tumor was seen at autopsy in 7 of 16 patients treated with high-dose-rate intracavitary irradiation following external irradiation, in 13 of 14 patients treated with external irradiation of 50 Gy or more, and in all 5 patients treated with external irradiation of less than 50 Gy. Incidence on lymph node metastasis, at autopsy, did not diifer between the combined radiotherapy group and the external irradiation groups. However, it correlated with disease stage. It was observed in 11 of 17 patients with Stage 1 and Stage 2 disease, compared to 17 of 18 patients with Stage 3 and Stage 4 disease. Distant organ metastasis, at autopsy, also did not differ between the combined radiotherapy group and the external irradiation groups, and was also correlated with disease stage. It was found in 8 of 17 patients with Stage 1 and Stage 2 disease, compared to all 18 patients with Stage 3 and Stage 4 disease. Mean survival was different between the patients treated by high-dose-rate intracavitary irradiation following external irradiation and those treated by external irradiation alone; 11.3 months in the 16 patients treated with combined therapy, as compared to 6.9 months in the 14 patients who received external irradiation of 50 Gy or more, and 3.6 months in the 5 patients who received external irradiation of less than 50 Gy. 6 refs.; 5 tabs

  20. Comparative study on hematopoietic damage of mice caused by high-dose of gamma-ray irradiation

    International Nuclear Information System (INIS)

    Wu Hongying; Wang Yueying; Li Deguan; Wang Xiaochun; Zhang Heng; Lu Lu; Chang Jianhui; Du Liqing; Wang Yan; Men Aimin

    2010-01-01

    Objective: To study the effect of high-dose of gamma-ray irradiation on hematopoiesis injury and recovery of IRM-2 and C57BL/6 J mouse. Methods: The experiment was designed to study the effects of radiation (4 Gy) on spleen index, CFU-S and DNA damage on the 9 th day of IRM-2 and ICR mice and the effects of radiation (6 Gy) on WBC change and its absolute value on the 45 th days of IRM-2 and C57BL/6 J mice. Results: The IRM-2 mouse spleen index, CFU-S and DNA were higher than ICR mouse on the 9 th days, and there were significant difference in CFU-S and DNA (P<0.01). The IRM-2 mouse WBC, RMC, HGB and HCT were higher than C57BL/6 J mouse on the 45 th days, and there were significant difference (P<0.01). Conclusion: IRM-2 mouse hematopoiesis resumes quicker than C57BL/6 J and ICR do after high-dose of gamma-ray irradiation. (authors)

  1. Ovarian function in survivors of childhood medulloblastoma: Impact of reduced dose craniospinal irradiation and high-dose chemotherapy with autologous stem cell rescue.

    Science.gov (United States)

    Balachandar, Sadana; Dunkel, Ira J; Khakoo, Yasmin; Wolden, Suzanne; Allen, Jeffrey; Sklar, Charles A

    2015-02-01

    Data on ovarian function (OvF) in medulloblastoma (MB) survivors is limited, with most studies describing outcomes in survivors treated with craniospinal irradiation (CSI) doses >24 Gy ± standard chemotherapy. The objective of the current study is to report on OvF: (i) across a range of CSI doses; and (ii) following high-dose chemotherapy with autologous stem cell rescue (ASCR). Retrospective review of female MB survivors who were diagnosed in childhood and followed at Memorial Sloan Kettering Cancer Center. Patients were divided into three groups: (i) CSI ≤24 Gy +/- standard chemotherapy; (ii) CSI ≥35 Gy +/- standard chemotherapy; and (iii) high-dose chemotherapy with ASCR +/- CSI. Primary ovarian dysfunction (POD) occurred in 2/17 subjects in group 1, 3/9 subjects in group 2 and 5/5 subjects in group 3 (P < 0.01). Normalization of function was noted in four subjects with POD. Persistent POD requiring hormone replacement (POF) was observed in 1/17 subjects in group 1, 2/9 in group 2, and 3/5 in group 3 (P = 0.02). Neither age at treatment nor type of standard chemotherapy correlated with risk of POD or POF. Both POD and POF appear to occur in a small proportion of patients who are treated with contemporary doses of CSI +/- standard chemotherapy. However, ovarian dysfunction requiring hormone replacement therapy is common following high-dose chemotherapy associated with ASCR. These findings will assist clinicians in counseling patients regarding fertility preservation and risk of impaired ovarian function/future fertility. Pediatr Blood Cancer 2015;62:317-321. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.

  2. Dependence of high density nitrogen-vacancy center ensemble coherence on electron irradiation doses and annealing time

    Science.gov (United States)

    Zhang, C.; Yuan, H.; Zhang, N.; Xu, L. X.; Li, B.; Cheng, G. D.; Wang, Y.; Gui, Q.; Fang, J. C.

    2017-12-01

    Negatively charged nitrogen-vacancy (NV-) center ensembles in diamond have proved to have great potential for use in highly sensitive, small-package solid-state quantum sensors. One way to improve sensitivity is to produce a high-density NV- center ensemble on a large scale with a long coherence lifetime. In this work, the NV- center ensemble is prepared in type-Ib diamond using high energy electron irradiation and annealing, and the transverse relaxation time of the ensemble—T 2—was systematically investigated as a function of the irradiation electron dose and annealing time. Dynamical decoupling sequences were used to characterize T 2. To overcome the problem of low signal-to-noise ratio in T 2 measurement, a coupled strip lines waveguide was used to synchronously manipulate NV- centers along three directions to improve fluorescence signal contrast. Finally, NV- center ensembles with a high concentration of roughly 1015 mm-3 were manipulated within a ~10 µs coherence time. By applying a multi-coupled strip-lines waveguide to improve the effective volume of the diamond, a sub-femtotesla sensitivity for AC field magnetometry can be achieved. The long-coherence high-density large-scale NV- center ensemble in diamond means that types of room-temperature micro-sized solid-state quantum sensors with ultra-high sensitivity can be further developed in the near future.

  3. Lactose and sucrose aqueous solutions for high-dose dosimetry with 10-MeV electron beam irradiation

    International Nuclear Information System (INIS)

    Amraei, R.; Kheirkhah, M.; Raisali, G.

    2012-01-01

    In the present study, dosimetric characterisation of aqueous solutions of lactose and sucrose was analysed by UV spectrometry following irradiation using 10-MeV electron beam at doses between 0.5 and 10.5 kGy. As a dosimetric index, absorbance is selected at 256 and 264 nm for lactose and sucrose aqueous solutions, respectively. The intensity of absorbance for irradiated solutions depends on the pre-irradiation concentration of lactose and sucrose. The post-irradiation stability of both solutions was investigated at room temperature for a measurement period of 22 d. (authors)

  4. In vivo assessment of the gastric mucosal tolerance dose after single fraction, small volume irradiation of liver malignancies by computed tomography-guided, high-dose-rate brachytherapy

    International Nuclear Information System (INIS)

    Streitparth, Florian; Pech, Maciej; Boehmig, Michael; Ruehl, Ricarda; Peters, Nils; Wieners, Gero; Steinberg, Johannes; Lopez-Haenninen, Enrique; Felix, Roland; Wust, Peter; Ricke, Jens

    2006-01-01

    Purpose: The aim of this study was to assess the tolerance dose of gastric mucosa for single-fraction computed tomography (CT)-guided, high-dose-rate (HDR) brachytherapy of liver malignancies. Methods and Materials: A total of 33 patients treated by CT-guided HDR brachytherapy of liver malignancies in segments II and/or III were included. Dose planning was performed upon a three-dimensional CT data set acquired after percutaneous applicator positioning. All patients received gastric protection post-treatment. For further analysis, the contours of the gastric wall were defined in every CT slice using Brachyvision Software. Dose-volume histograms were calculated for each treatment and correlated with clinical data derived from questionnaires assessing Common Toxicity Criteria (CTC). All patients presenting symptoms of upper GI toxicity were examined endoscopically. Results: Summarizing all patients the minimum dose applied to 1 ml of the gastric wall (D 1ml ) ranged from 6.3 to 34.2 Gy; median, 14.3 Gy. Toxicity was present in 18 patients (55%). We found nausea in 16 (69%), emesis in 9 (27%), cramping in 13 (39%), weight loss in 12 (36%), gastritis in 4 (12%), and ulceration in 5 patients (15%). We found a threshold dose D 1ml of 11 Gy for general gastric toxicity and 15.5 Gy for gastric ulceration verified by an univariate analysis (p = 0.01). Conclusions: For a single fraction, small volume irradiation we found in the upper abdomen a threshold dose D 1ml of 15.5 Gy for the clinical endpoint ulceration of the gastric mucosa. This in vivo assessment is in accordance with previously published tolerance data

  5. Spirogyra varians mutant generated by high dose gamma-irradiation shows increased antioxidant properties

    International Nuclear Information System (INIS)

    Lee, Hak-Jyung; Yoon, Minchul; Sung, Nak-Yun; Choi, Jong-il

    2012-01-01

    The aim of this study was to evaluate the antioxidant properties of a Spirogyra varians mutant (Mut) produced by gamma irradiation. Methanol extracts were prepared from Spirogyra varians wild-type and Mut plants, and their antioxidant activities and total phenolic content (TPC) were determined. Antioxidant parameters, including the 2-diphenyl-1-picrylhydrazyl radical-scavenging activity and ferric-reducing/antioxidant power, were higher in the Mut extract. Moreover, the TPC level was higher (P<0.05) in the Mut methanol extract. Therefore, these results suggest that gamma irradiation-induced S. varians Mut has superior antioxidant properties. - Highlights: ► The antioxidative properties of a Spirogyra varians mutant produced by gamma-irradiation was investiated. ► The antioxidant activities and total phenolic content levels were higher in mutant strain. ► These results suggest that gamma-irradiation induced algae mutant with superior antioxidant properties.

  6. Complications from high-dose para-aortic and pelvic irradiation for malignant genitourinary tumors

    International Nuclear Information System (INIS)

    Komaki, R.; Barber-Derus, S.; Glisch, C.; Lawton, C.A.; Cox, J.D.; Wilson, J.F.

    1986-01-01

    Between 1967 and 1982, 59 patients (33 with gynecologic malignancies and 26 with malignant tumors of the genitourinary system) received irradiation of 40 Gy or more for metastases to the para-aortic lymph nodes, in addition to pelvic irradiation. Disease in the para-aortic lymph nodes was controlled in 50 patients; the treatment failed in nine. Moderately acute side effects were seen in 25 patients, but none was severe. Late effects of irradiation were moderate in five patients and severe in three. Thirty patients are alive at 5 years. The benefits of local control and prolonged disease-free survival appear to outweigh considerably the risk of late effects from pelvic and para-aortic irradiation for advanced malignant tumors of the genitourinary system

  7. Induction and persistence of multicentric chromosomes in cultured human peripheral blood lymphocytes following high-dose gamma irradiation

    International Nuclear Information System (INIS)

    Suto, Yumiko; Hirai, Momoki; Akiyama, Miho; Nakagawa, Takashi; Tominaga, Takako; Suzuki, Toshikazu; Sugiura, Nobuyuki; Yuki, Masanori; Nakayama, Fumiaki

    2012-01-01

    Among radiation-induced chromosome aberrations, multicentric chromosomes, as represented by dicentric chromosomes (dicentrics), are regarded as sensitive and specific biomarkers for assessing radiation dose in the 0 to 5 Gy range. The objective of this study was to characterize chromosome aberrations induced in vitro by a higher dose of radiation. Peripheral blood lymphocytes were exposed to 15 Gy gamma rays at a dose rate of 0.5 Gy/min and harvested at 48, 50, 52, 54, 56 and 72 h. The first mitotic peak appeared at 52-54 h, showing about a 6 h mitotic delay as compared with nonirradiated control cultures. Cell-cycle analysis of parallel and simultaneous cultures by sister-chromatid differentiation staining suggests that metaphase cells examined in 48-56 h cultures were in the first mitosis after culture initiation. The mean dicentric equivalent counts ranged from 9.0 to 9.3 in consecutively harvested cultures with no significant differences among them. At 72 h, about 20% of dividing cells were tetraploid, persisting with faithfully replicated unstable chromosome aberrations. The non-random distribution of replicated chromosome pairs, deduced from multicolor fluorescence in situ hybridization analysis, led us to surmise that the predominant mechanism underlying the induction of tetraploid cells is endoreduplication. These findings suggest that a high-dose in vitro irradiation applied to peripheral blood lymphocytes may affect on the replication process, in addition to structural chromosome damage. (author)

  8. Analysis of Chromosomal Aberrations after Low and High Dose Rate Gamma Irradiation in ATM or NBS Suppressed Human Fibroblast Cells

    Science.gov (United States)

    Hada, M.; Huff, J. L.; Patel, Z.; Pluth, J. M.; George, K. A.; Cucinotta, F. A.

    2009-01-01

    A detailed understanding of the biological effects of heavy nuclei is needed for space radiation protection and for cancer therapy. High-LET radiation produces more complex DNA lesions that may be non-repairable or that may require additional processing steps compared to endogenous DSBs, increasing the possibility of misrepair. Interplay between radiation sensitivity, dose, and radiation quality has not been studied extensively. Previously we studied chromosome aberrations induced by low- and high- LET radiation in several cell lines deficient in ATM (ataxia telangactasia mutated; product of the gene that is mutated in ataxia telangiectasia patients) or NBS (nibrin; product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase (DNA-PK) activity. We found that the yields of both simple and complex chromosomal aberrations were significantly increased in the DSB repair defective cells compared to normal cells. The increased aberrations observed for the ATM and NBS defective lines was due to a significantly larger quadratic dose-response term compared to normal fibroblasts for both simple and complex aberrations, while the linear dose-response term was significantly higher in NBS cells only for simple exchanges. These results point to the importance of the functions of ATM and NBS in chromatin modifications that function to facilitate correct DSB repair and minimize aberration formation. To further understand the sensitivity differences that were observed in ATM and NBS deficient cells, in this study, chromosomal aberration analysis was performed in normal lung fibroblast cells treated with KU-55933, a specific ATM kinase inhibitor, or Mirin, an MRN complex inhibitor involved in activation of ATM. We are also testing siRNA knockdown of these proteins. Normal and ATM or NBS suppressed cells were irradiated with gamma-rays and chromosomes were collected with a premature chromosome

  9. High doses of ionizing radiation on bone repair: is there effect outside the irradiated site?

    Science.gov (United States)

    Rocha, Flaviana Soares; Dias, Pâmella Coelho; Limirio, Pedro Henrique Justino Oliveira; Lara, Vitor Carvalho; Batista, Jonas Dantas; Dechichi, Paula

    2017-03-01

    Local ionizing radiation causes damage to bone metabolism, it reduces blood supply and cellularity over time. Recent studies indicate that radiation promotes biological response outside the treatment field. The aim of this study was to investigate the effects of ionizing radiation on bone repair outside the irradiated field. Ten healthy male Wistar rats were used; and five animals were submitted to radiotherapy on the left femur. After 4 weeks, in all animals were created bone defects in the right and left femurs. Seven days after surgery, animals were euthanized. The femurs were removed and randomly divided into 3 groups (n=5): Control (C) (right femur of the non-irradiated animals); Local ionizing radiation (IR) (left femur of the irradiated animals); Contralateral ionizing radiation (CIR) (right femur of the irradiated animals). The femurs were processed and embedded in paraffin; and bone histologic sections were evaluated to quantify the bone neoformation. Histomorphometric analysis showed that there was no significant difference between groups C (24.6±7.04) and CIR (25.3±4.31); and IR group not showed bone neoformation. The results suggest that ionizing radiation affects bone repair, but does not interfere in bone repair distant from the primary irradiated site. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. High-Dose, Single-Fraction Irradiation Rapidly Reduces Tumor Vasculature and Perfusion in a Xenograft Model of Neuroblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Jani, Ashish; Shaikh, Fauzia; Barton, Sunjay [Department of Radiation Oncology, Columbia University Medical Center, New York, New York (United States); Willis, Callen [Department of Surgery, Columbia University Medical Center, New York, New York (United States); Banerjee, Debarshi [Department of Pediatrics, Columbia University Medical Center, New York, New York (United States); Mitchell, Jason [Department of Surgery, Columbia University Medical Center, New York, New York (United States); Hernandez, Sonia L. [Department of Surgery, University of Chicago, Chicago, Illinois (United States); Hei, Tom [Department of Radiation Oncology, Columbia University Medical Center, New York, New York (United States); Kadenhe-Chiweshe, Angela [Department of Surgery, Columbia University Medical Center, New York, New York (United States); Yamashiro, Darrell J. [Department of Surgery, Columbia University Medical Center, New York, New York (United States); Department of Pediatrics, Columbia University Medical Center, New York, New York (United States); Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York (United States); Connolly, Eileen P., E-mail: epc2116@cumc.columbia.edu [Department of Radiation Oncology, Columbia University Medical Center, New York, New York (United States)

    2016-04-01

    Purpose: To characterize the effects of high-dose radiation therapy (HDRT) on neuroblastoma tumor vasculature, including the endothelial cell (EC)–pericyte interaction as a potential target for combined treatment with antiangiogenic agents. Methods and Materials: The vascular effects of radiation therapy were examined in a xenograft model of high-risk neuroblastoma. In vivo 3-dimensional contrast-enhanced ultrasonography (3D-CEUS) imaging and immunohistochemistry (IHC) were performed. Results: HDRT significantly reduced tumor blood volume 6 hours after irradiation compared with the lower doses used in conventionally fractionated radiation. There was a 63% decrease in tumor blood volume after 12-Gy radiation compared with a 24% decrease after 2 Gy. Analysis of tumor vasculature by lectin angiography showed a significant loss of small vessel ends at 6 hours. IHC revealed a significant loss of ECs at 6 and 72 hours after HDRT, with an accompanying loss of immature and mature pericytes at 72 hours. Conclusions: HDRT affects tumor vasculature in a manner not observed at lower doses. The main observation was an early reduction in tumor perfusion resulting from a reduction of small vessel ends with a corresponding loss of endothelial cells and pericytes.

  11. Mechanism of Action for Anti-radiation Vaccine in Reducing the Biological Impact of High-dose Gamma Irradiation

    Science.gov (United States)

    Maliev, Vladislav; Popov, Dmitri; Jones, Jeffrey A.; Casey, Rachael C.

    2007-01-01

    Ionizing radiation is a major health risk of long-term space travel, the biological consequences of which include genetic and oxidative damage. In this study, we propose an original mechanism by which high doses of ionizing radiation induce acute toxicity. We identified biological components that appear in the lymphatic vessels shortly after gamma irradiation. These radiation-induced toxins, which we have named specific radiation determinants (SRD), were generated in the irradiated tissues and then collected and circulated throughout the body via the lymph circulation and bloodstream. Depending on the type of SRD elicited, different syndromes of acute radiation sickness (ARS) were expressed. The SRDs were developed into a vaccine used to confer active immunity against acute radiation toxicity in immunologically naive animals. Animals that were pretreated with SRDs exhibited resistance to lethal doses of gamma radiation, as measured by increased survival times and survival rates. In comparison, untreated animals that were exposed to similar large doses of gamma radiation developed acute radiation sickness and died within days. This phenomenon was observed in a number of mammalian species. Initial analysis of the biochemical characteristics indicated that the SRDs were large molecular weight (200-250 kDa) molecules that were comprised of a mixture of protein, lipid, carbohydrate, and mineral. Further analysis is required to further identify the SRD molecules and the biological mechanism by which the mediate the toxicity associated with acute radiation sickness. By doing so, we may develop an effective specific immunoprophylaxis as a countermeasure against the acute effects of ionizing radiation.

  12. low dose irradiation growth in zirconium

    International Nuclear Information System (INIS)

    Fortis, A.M.

    1987-01-01

    Low dose neutron irradiation growth in textured and recrystallized zirconium, is studied, at the Candu Reactors Calandria temperature (340 K) and at 77 K. It was necessary to design and build 1: A facility to irradiate at high temperatures, which was installed in the Argentine Atomic Energy Commission's RA1 Reactor; 2: Devices to carry out thermal recoveries, and 3: Devices for 'in situ' measurements of dimensional changes. The first growth kinetics curves were obtained at 365 K and at 77 K in a cryostat under neutron fluxes of similar spectra. Irradiation growth experiments were made in zirconium doped with fissionable material (0,1 at % 235 U). In this way an equivalent dose two orders of magnitude greater than the reactor's fast neutrons dose was obtained, significantly reducing the irradiation time. The specimens used were bimetallic couples, thus obtaining a great accuracy in the measurements. The results allow to determine that the dislocation loops are the main cause of irradiation growth in recrystallized zirconium. Furthermore, it is shown the importance of 'in situ' measurements as a way to avoid the effect that temperature changes have in the final growth measurement; since they can modify the residual stresses and the overconcentrations of defects. (M.E.L.) [es

  13. High dose-rate irradiation of materials with pulsed ion beams at NDCX-II

    Science.gov (United States)

    Seidl, Peter; Treffert, F.; Ji, Q.; Ludewigt, B.; Persaud, A.; Kong, X.; de Leon, S. J.; Dowling, E.; Waldron, W. L.; Schenkel, T.; Barnard, J. J.; Friedman, A.; Grote, D. P.; Stepanov, A.; Gilson, E. P.; Kaganovich, I. D.

    2017-10-01

    Charged particle radiation effects in materials is important for the design of fusion plasma facing components. Also, radiation effects in semiconductor devices are of interest for many applications such as detectors and space electronics. We present results from radiation effects studies with intense pulses of helium ions that impinged on thin samples at the induction linac at Berkeley Lab (Neutralized Drift Compression Experiment-II). Intense bunches of 1.2 MeV He+ ions with peak currents of 2 A, 1-mm beam spot radius and 2-30 ns FWHM duration create controlled high instantaneous dose rates enabling the exploration of collective damage effects. We use in-situ diagnostics to monitor transient effects due to rapid heating and the ionization and damage cascade dynamics. For tin, single pulses deposit sufficient energy in the foil to drive phase transitions. A new Thomson parabola to measures ion energy loss and charge state distributions following transmission of a few micron thick samples. In silicon, ion pulses induce free electron densities of order 1021 cm-3. Supported by the Office of Science of the US DOE under contracts DE-AC0205CH11231, DE-AC52-07NA27344 and DE-AC02-09CH11466 and by the China Scholarship Council.

  14. Dose distribution of non-coplanar irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, Toshiharu; Wada, Yoichi; Takenaka, Eiichi

    1987-02-01

    Non-coplanar irradiations were applied to the treatment of brain tumor. The dose distribution around the target area due to non-coplanar irradiation was half less than the dose when coplanar irradiation used. Integral volume dose due to this irradiation was not always less than that due to conventional opposing or rotational irradiation. This irradiation has the better application to the following;as a boost therapy, glioblastoma multiforme;as a radical therapy, recurrent brain tumor, well differentiated brain tumor such as craniopharyngioma, hypophyseal tumor etc and AV-malformation.

  15. Investigation of Interfraction Variations of MammoSite Balloon Applicator in High-Dose-Rate Brachytherapy of Partial Breast Irradiation

    International Nuclear Information System (INIS)

    Kim, Yongbok; Johnson, Mark M.S.; Trombetta, Mark G.; Parda, David S.; Miften, Moyed

    2008-01-01

    Purpose: To measure the interfraction changes of the MammoSite applicator and evaluate their dosimetric effect on target coverage and sparing of organs at risk. Methods and Materials: A retrospective evaluation of the data from 19 patients who received 10 fractions (34 Gy) of high-dose-rate partial breast irradiation was performed. A computed tomography-based treatment plan was generated for Fraction 1, and a computed tomography scan was acquired just before the delivery of each fraction to ensure a consistent shape of the balloon. The eccentricity, asymmetry, and planning target volume (PTV) for plan evaluation purposes (PTV E VAL), as well as trapped air gaps, were measured for all patients. Furthermore, 169 computed tomography-based treatment plans were retrospectively generated for Fractions 2-10. Interfraction dosimetric variations were evaluated using the %PTV E VAL coverage, target dose homogeneity index, target dose conformal index, and maximum doses to the organs at risks. Results: The average variation of eccentricity and asymmetry from Fraction 1 values of 3.5% and 1.1 mm was -0.4% ± 1.6% and -0.1 ± 0.6 mm. The average trapped air gap volume was dramatically reduced from before treatment (3.7 cm 3 ) to Fraction 1 (0.8 cm 3 ). The PTV E VAL volume change was insignificant. The average variation for the %PTV E VAL, target dose homogeneity, and target dose conformal index from Fraction 1 values of 94.7%, 0.64, and 0.85 was 0.15% ± 2.4%, -0.35 ± 2.4%, and -0.34 ± 4.9%, respectively. The average Fraction 1 maximum skin and ipsilateral lung dose of 3.2 Gy and 2.0 Gy varied by 0.08 ± 0.47 and -0.16 ± 0.29 Gy, respectively. Conclusion: The interfraction variations were patient specific and fraction dependent. Although the average interfraction dose variations for the target and organs at risk were not clinically significant, the maximum variations could be clinically significant

  16. Effect of chemoradiotherapy using ACNU, vincristine, and nicardipine with high-dose irradiation on malignant astrocytomas

    Energy Technology Data Exchange (ETDEWEB)

    Genka, Shigeru; Shitara, Nobuyuki; Nakamura, Hirohiko; Takakura, Kintomo [Tokyo Univ. (Japan). Hospital

    1993-05-01

    Fifty-two patients with malignant astrocytoma were treated with cellular synchronization radiation therapy at the University of Tokyo Hospital between 1977 and 1989. Twenty-five patients (Group 1) received 1 - (4-amino-2-methyl-5-pyrimidinyl)methyl - 3 - (2-chloroethyl) - 3 - nitrosourea hydrochloride (ACNU), vincristine, and 60 Gy of irradiation, and 27 patients (Group 2) ACNU, vincristine, the Ca-channel blocker nicardipine, and 72 Gy of irradiation. Median survival times for Groups 1 and 2 were 15 and 30 months, respectively. Although there was no significant difference, Group 2 achieved longer survival with 1-, 2-, and 3-year survival rates of 85.2, 65.8, and 46.9% compared to rates of 66.7, 40.0, and 26.7%, respectively, for Group 1. (author).

  17. Effect of chemoradiotherapy using ACNU, vincristine, and nicardipine with high-dose irradiation on malignant astrocytomas

    International Nuclear Information System (INIS)

    Genka, Shigeru; Shitara, Nobuyuki; Nakamura, Hirohiko; Takakura, Kintomo

    1993-01-01

    Fifty-two patients with malignant astrocytoma were treated with cellular synchronization radiation therapy at the University of Tokyo Hospital between 1977 and 1989. Twenty-five patients (Group 1) received 1 - (4-amino-2-methyl-5-pyrimidinyl)methyl - 3 - (2-chloroethyl) - 3 - nitrosourea hydrochloride (ACNU), vincristine, and 60 Gy of irradiation, and 27 patients (Group 2) ACNU, vincristine, the Ca-channel blocker nicardipine, and 72 Gy of irradiation. Median survival times for Groups 1 and 2 were 15 and 30 months, respectively. Although there was no significant difference, Group 2 achieved longer survival with 1-, 2-, and 3-year survival rates of 85.2, 65.8, and 46.9% compared to rates of 66.7, 40.0, and 26.7%, respectively, for Group 1. (author)

  18. Low dose irradiation and biological defense mechanisms

    International Nuclear Information System (INIS)

    Sugahara, Tsutomu; Sagan, L.A.; Aoyama, Takashi

    1992-01-01

    It has been generally accepted in the context of radiation protection that ionizing radiation has some adverse effect even at low doses. However, epidemiological studies of human populations cannot definitively show its existence or absence. Furthermore, recent studies of populations living in areas of different background radiation levels reported some decrease in adverse health effects at high background levels. Genetic studies of atomic bomb survivors failed to produce statistically significant findings on the mutagenic effects of ionizing radiation. A British study however, suggests that a father's exposure to low dose radiation on the job may increase his children's risk of leukemia. On the other hand, many experimental studies have raised the possibility that low doses of ionizing radiation may not be harmful or may even produce stimulating or adaptive responses. The term 'hormesis' has come to be used to describe these phenomena produced by low doses of ionizing radiation when they were beneficial for the organisms studied. At the end of the International Conference on Low Dose Irradiation one conclusion appeared to be justified: radiation produces an adaptive response, though it is not universally detected yet. The conference failed to obtain any consensus on risk assessment at low doses, but raised many problems to be dealt with by future studies. The editors therefore believe that the Proceedings will be useful for all scientists and people concerned with radiation protection and the biological effects of low-dose irradiation

  19. Schistosoma mansoni: is acquired immunity induced by highly x-irradiated cercariae dependent on the size of the challenging dose

    International Nuclear Information System (INIS)

    Hsue, S.Y.; Hsue, H.F.; Osborne, J.W.; Johnson, S.C.

    1982-01-01

    A high degree of immunity, as shown by a 91% reduction of the number of worms recovered was found in five groups of mice that were immunized five times with highly X-irradiated cercariae and then challenged with 10, 20, 50, 100, or 500 normal Schistosoma mansoni cercariae. The results indicated that there were no significant differences in worm reduction in immunized mice challenged with different numbers of cercariae; consequently the immunity induced by this immunization method did not appear to be challenge-dose-dependent. However, the results also showed that when immunized mice were challenged with 500, 100, 50, 20, and 10 cercariae, 0, 13, 26, 56, and 68%, respectively, of the experimental animals were free of worms. Thus, the percentage of worm-negative cases increased as the number of challenge cercariae decreased. When viewed in this manner, the acquired immunity may be considered challenge-dose-dependent as well. If this method of vaccination is used for schistosomiasis control, we may anticipate that in both hypo- and hyperendemic areas, the intensity of infection and the severity of the disease will be reduced owing to a reduction in worms burdens, and in hypoendemic areas, there will be a number of worm-free cases

  20. Hyperfractionated high-dose total body irradiation in bone marrow transplantation for Ph{sup 1}-positive acute lymphoblastic leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Akira; Ebihara, Yasuhiro; Mitsui, Tetsuo [Tokyo Univ. (Japan). Hospital of the Institute of Medical Science] [and others

    1998-12-01

    In two cases of Philadelphia-positive childhood acute lymphoblastic leukemia (Ph{sup 1} ALL), we performed allogeneic bone marrow transplantation (AlloBMT) with preconditioning regimen, including hyperfractionated high-dose total body irradiation (TBI) (13.5 Gy, in 9 fractions). Their disease statuses at BMT were hematological relapse in case 1 and molecular relapse in case 2. Bone marrow donors were unrelated in case 1, and HLA was a partially mismatched mother in case 2. Regimen-related toxicity was tolerable in both cases. Hematological recovery was rapid, and engraftment was obtained on day 14 in case 1 and on day 12 in case 2. BCR/ABL message in bone marrow disappeared on day 89 in case 1 and on day 19 in case 2 and throughout their subsequent clinical courses. Although short-term MTX and Cy-A continuous infusion were used for GVHD prophylaxis, grade IV GVHD was observed in case 1 and grade III in case 2. Both cases experienced hemorrhagic cystitis because of adenovirus type 11 infection. Although case 1 died of interstitial pneumonitis on day 442, case 2 has been free of disease through day 231. AlloBMT for Ph{sup 1} ALL with preconditioning regimen including hyperfractionated high-dose TBI is considered to be worth further investigation. (author)

  1. In vivo dosimetry of high-dose fractionated irradiation in an experimental set-up with rats

    Energy Technology Data Exchange (ETDEWEB)

    Fortan, L; Van Hecke, H; Van Duyse, B; De Neve, W; De Meerleer, B [Ghent Rijksuniversiteit (Belgium). Kliniek voor Radiotherapie en Kerngeneeskunde; Pattyn, P; Van Renthergem, K [Ghent University (Belgium). Dept. of Surgery

    1995-12-01

    The feasibility to irradiate a limited section of a rat abdomen with well-defined edges was assessed. Because of the relative small volume involved, in vivo dosimetry with TLDs was necessary in providing us information about the accuracy of the irradiation method. Three to five days prior to the start of the radiotherapy treatment, two plastic strips - each containing a TLD-dosimeter (Harshaw TLD10 LiF rods, 1 mm dia x 6 mm) sealed in polyethylene tubing, and a lead bean - were implanted in the rat abdomen. The plastic strips made a closed loop around the bowel, through the mesenterium, and were fixed with a single stitch on the inner abdominal wall. One loop was made in the hepatic area; another was made in the lower abdomen, around the rectosigmoid. Conscious animals were irradiated using a purpose-build plexi-holder, with rear legs immobilised to avoid longitudinal movements. The implanted lead beans enabled us to simulate the rat prior to each radiation session. This way, the radiation field could be set up individually for each rat, in such way that the rectosigmoid area received full dose and the hepatic area received no irradiation dose at all. Irradiation was carried out, using 5 MV photons of a linear accelerator. Fifteen animals per group were irradiated according a conventional (2.0 Gy / fraction; 5 fractions / week) or a hyperfractionated (1.6 Gy / fraction; 2 daily fractions; 5 days / week) schedule, with different total doses. Prior to implantation, TLDs were individually calibrated and checked for stability. After removal from the abdomen . TLDs were tested again for accuracy. TLDs with an unacceptable read-out curve were rejected (about 2 to 4 TLDs per group of 15). The obtained accumulated doses - as determined by TLD read-outs-were comparable to the theoretical doses, indicating that fractionated radiation of small fields, with well defined mark off, in rats is feasible.

  2. In vivo dosimetry of high-dose fractionated irradiation in an experimental set-up with rats

    International Nuclear Information System (INIS)

    Fortan, L.; Van Hecke, H.; Van Duyse, B.; De Neve, W.; De Meerleer, B.; Pattyn, P.; Van Renthergem, K.

    1995-01-01

    The feasibility to irradiate a limited section of a rat abdomen with well-defined edges was assessed. Because of the relative small volume involved, in vivo dosimetry with TLDs was necessary in providing us information about the accuracy of the irradiation method. Three to five days prior to the start of the radiotherapy treatment, two plastic strips - each containing a TLD-dosimeter (Harshaw TLD10 LiF rods, 1 mm dia x 6 mm) sealed in polyethylene tubing, and a lead bean - were implanted in the rat abdomen. The plastic strips made a closed loop around the bowel, through the mesenterium, and were fixed with a single stitch on the inner abdominal wall. One loop was made in the hepatic area; another was made in the lower abdomen, around the rectosigmoid. Conscious animals were irradiated using a purpose-build plexi-holder, with rear legs immobilised to avoid longitudinal movements. The implanted lead beans enabled us to simulate the rat prior to each radiation session. This way, the radiation field could be set up individually for each rat, in such way that the rectosigmoid area received full dose and the hepatic area received no irradiation dose at all. Irradiation was carried out, using 5 MV photons of a linear accelerator. Fifteen animals per group were irradiated according a conventional (2.0 Gy / fraction; 5 fractions / week) or a hyperfractionated (1.6 Gy / fraction; 2 daily fractions; 5 days / week) schedule, with different total doses. Prior to implantation, TLDs were individually calibrated and checked for stability. After removal from the abdomen . TLDs were tested again for accuracy. TLDs with an unacceptable read-out curve were rejected (about 2 to 4 TLDs per group of 15). The obtained accumulated doses - as determined by TLD read-outs-were comparable to the theoretical doses, indicating that fractionated radiation of small fields, with well defined mark off, in rats is feasible

  3. Treatment of small cell carcinoma of lung with combined high dose mediastinal irradiation, whole brain prophylaxis and chemotherapy

    International Nuclear Information System (INIS)

    Shank, B.; Natale, R.B.; Hilaris, B.S.; Wittes, R.E.

    1981-01-01

    Survival of patients with small cell carcinoma of lung, treated on a new combined radiotherapy-chemotherapy protocol, compares favorably with other regimens in the literature and our own previous combined approaches. Radiation, given after induction chemotherapy, consisted of whole brain prophylaxis in all 44 evaluable patients. Patients with limited disease were also treated to the primary and mediastinum to a high dose (5000 rad equivalent) using multiple fields. The new chemotherapy regimen consisted of induction with cyclophosphamide, doxorubicin, and vincristine alternated with cis-platinum and VP-16 (an epipodophyllotoxin) for two cycles, followed by consolidation with low dose cyclophosphamide and vincristine concurrent with irradiation. Patients with limited disease who achieved less than complete response, and all patients with extensive disease were not continued on maintenance chemotherapy. Out of 24 evaluable patients with limited disease, there was 73% survival at 1 year by life-table analysis, measured from treatment initiation. After induction, 16/24 of these limited disease patients were CR (complete responders): 20/24 were CR at completion of their irradiation. Out of 20 evaluable patients with extensive disease, there was 59% survival at 1 year by life-table analysis. Only 4/44 (9%) brain parenchymal relapses occurred, one at 3 months and one at 6 months after local failure and two in patients who did not become CRs, implicating a possible re-seeding mechanism. Five patients had central nervous system relapses outside of brain parenchyma (spinal epidural and leptomeningeal); in three patients this was the initial site of failure. Significant complications included leukopenia (50%) and thrombocytopenia (24%) primarily during induction, and chronic pulmonary fibrosis (25%), possibly contributing to two deaths

  4. Use of high dose X-irradiation to block back stimulation in the MLC reaction

    International Nuclear Information System (INIS)

    Sasazuki, T.; McMichael, A.; Radvany, R.; Payne, R.; McDevitt, H.

    1976-01-01

    Paradoxical stimulation, ''back stimulation'' was observed in MLR (mixed lymphocyte culture reaction) in both family and population studies. This is one of the major problems in obtaining clear cut-off points for stimulation and non-stimulation in MLR using LD (lymphocyte defined) homozygous typing cells. The ability to provoke back stimulation was found to be different among LD homozygous typing cells. The presence of nonspecific blastogenic factors in supernatant from mixed culture of LD homozygous and heterozygous cells, which might be responsible for back stimulation, was confirmed. It was clearly shown that irradiation of LD homozygous typing cells with 6,000 rads instead of the widely used 3,000 rads can greatly reduce or eliminate this back stimulation without introducing any false non-stimulation. (author)

  5. High-dose-rate afterloading intracavitary irradiation and expandable metallic biliary endoprosthesis for malignant biliary obstruction

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, Hitoshi; Ohishi, Hajime; Yoshioka, Tetsuya [Nara Medical Univ., Kashihara (Japan); and others

    1989-04-01

    A double lumen catheter was developed as an applicator for the remote afterloading system (RALS) of {sup 60}Co for the intracavitary irradiation of an obstructed common bile duct due to gallbladder cancer in 1 case and by cholangiocarcinoma in 7 cases. This was followed by the biliary endoprosthesis with expandable metallic stents to maintain patency. The mean survival period after treatment was not long (14 weeks). However, removal of the external drainage tube was possible in 7 of the 8 cases, and none of the 8 cases showed dislodgement or deformity of the stent, or obstruction of the bile duct in the stent-inserted area. This combination effectively provided palliation, and has considerable potential for malignant biliary obstruction. (author).

  6. Intestinal recovery in pigs irradiated at high doses. Enzymological, histological and functional data

    International Nuclear Information System (INIS)

    Daburon, F.; Remy, J.; Villiers, P.-A.; Gregond, J.-C.; Tricaud, Y.; Sevignac, M.; Haag, J.

    1975-01-01

    The kinetics of appearance and possible recovery of intestinal injuries were studied in pigs following 60 Co γ exposure of the hind part, in the dose range between 800 and 1,250rd; histological, enzymological and functional aspects were investigated successively. Following 800-950rd exposure, good recovery occured within less than a month as to histology and enzymology of the intestinal mucosa, but malabsorption of lipids and calcium was long lasting. Following 1,250rd exposure, incipient recovery led to permanently atrophic and non-functional mucosa impairing enteral nutrition [fr

  7. The Effect of Local Irradiation in Prevention and Reversal of Acute Rejection of Transplanted Kidney with High-dose Steroid Pulse

    International Nuclear Information System (INIS)

    Kim, I. H.; Ha, S. W.; Park, C. I.; Kim, S. T.

    1986-01-01

    From 1979 to 1984, 39 local allograft irradiations were given to 29 patients: 10 irradiations were administered for prevention and 29 for reversal of acute rejection of transplanted kidney. Three doses of 150 cGy every other day were combined with high-dose of methylprednisolone pulse (1 gm/day) for 3 days. For prevention of acute rejection, local irradiation was delivered on the days 1, 3, and 5 after the transplantation, and for reversal, irradiation started after the diagnosis of acute rejection. Eight out of 10 patients irradiated for prevention had acute allograft rejection, and, what is more, there was no surviving graft at 15 months after transplantation. Reversal of acute rejection was achieved in 71%. When the pre-irradiation level of serum creatinine was below 5.5 mg%, the reversal rate was 93%, but above 5.5 mg% the reversal rate was only 17% (p<0.01). Reirradiation after failure was not successful. Among 15 reversed patients, 7 (47%) had subsequent rejection (s). The functional graft survivals at 6 month, 1, 2, and 3 year were 70%, 65%, 54%, and 65%, respectively. Therapeutic irradiation resulted in better graft survival when serum creatinine was below 5.5 mg% (p<0.001) or when irradiation started within 15 days after the diagnosis of acute rejection (p<0.001)

  8. Low dose irradiation reduces cancer mortality rates

    International Nuclear Information System (INIS)

    Luckey, T.D.

    2000-01-01

    Low doses of ionizing radiation stimulate development, growth, memory, sensual acuity, fecundity, and immunity (Luckey, T.D., ''Radiation Hormesis'', CRC Press, 1991). Increased immune competence reduces cancer mortality rates and provides increased average lifespan in animals. Decreased cancer mortality rates in atom bomb victims who received low dose irradiation makes it desirable to examine populations exposed to low dose irradiation. Studies with over 300,000 workers and 7 million person-years provide a valid comparison of radiation exposed and control unclear workers (Luckey, T.D., Nurture with Ionizing Radiation, Nutrition and Cancer, 34:1-11, 1999). Careful selection of controls eliminated any ''healthy worker effect''. The person-year corrected average indicated the cancer mortality rate of exposed workers was only 51% that of control workers. Lung cancer mortality rates showed a highly significant negative correlation with radon concentrations in 272,000 U.S. homes (Cohen, B.L., Health Physics 68:157-174, 1995). In contrast, radon concentrations showed no effect on lung cancer rates in miners from different countries (Lubin, J.H. Am. J. Epidemiology 140:323-332, 1994). This provides evidence that excessive lung cancer in miners is caused by particulates (the major factor) or toxic gases. The relative risk for cancer mortality was 3.7% in 10,000 Taiwanese exposed to low level of radiation from 60 Co in their steel supported homes (Luan, Y.C. et al., Am. Nuclear Soc. Trans. Boston, 1999). This remarkable finding needs further study. A major mechanism for reduced cancer mortality rates is increased immune competence; this includes both cell and humoral components. Low dose irradiation increases circulating lymphocytes. Macrophage and ''natural killer'' cells can destroy altered (cancer) cells before the mass becomes too large. Low dose irradiation also kills suppressor T-cells; this allows helper T-cells to activate killer cells and antibody producing cells

  9. Effect of high-dose irradiation on the optically stimulated luminescence of Al{sub 2}O{sub 3}:C

    Energy Technology Data Exchange (ETDEWEB)

    Yukihara, E.G. E-mail: yukihara@thor.phy.okstate.edu; Whitley, V.H.; McKeever, S.W.S. E-mail: swsm@okstate.edu; Akselrod, A.E.; Akselrod, M.S

    2004-06-01

    This paper examines the effect of high-dose irradiation on the optically stimulated luminescence (OSL) of Al{sub 2}O{sub 3}:C, principally on the shape of the OSL decay curve and on the OSL sensitivity. The effect of the degree of deep trap filling on the OSL was also studied by monitoring the sensitivity changes after doses of beta irradiation and after step-annealing of samples previously irradiated with high doses. The OSL response to dose shows a linear-supralinear-saturation behavior, with a decrease in the response for doses higher than those required for saturation. This behavior correlates with the sensitivity changes observed in the samples annealed only to 773 K, which show sensitization for doses up to 20-50 Gy and desensitization for higher doses. Data from the step-annealing study leads to the suggestion that the sensitization is caused by the filling of deep electron traps, which become thermally unstable at 1100-1200 K, whereas the desensitization is caused by the filling of deep hole traps, which become thermally unstable at 800-875 K, along with a concomitant decrease in the concentration of recombination centers (F{sup +}-centers). Changes in the shape of the OSL decay curves are also observed at high doses, the decay becoming faster as the dose increases. These changes in the OSL decay curves are discussed in terms of multiple overlapping components, each characterized by different photoionization cross-sections. However, using numerical solutions of the rate equations for a simple model consisting of a main trap and a recombination center, it is shown that the kinetics of OSL process may also be partially responsible for the changes in the OSL curves at high doses in Al{sub 2}O{sub 3}:C. Finally, the implication of these results for the dosimetry of heavy charged particles is discussed.

  10. Evaluation of two intracavitary high-dose-rate brachytherapy devices for irradiating additional and irregularly shaped volumes of breast tissue

    International Nuclear Information System (INIS)

    Lu, Sharon M.; Scanderbeg, Daniel J.; Barna, Patrick; Yashar, William; Yashar, Catheryn

    2012-01-01

    The SAVI and Contura breast brachytherapy applicators represent 2 recent advancements in brachytherapy technology that have expanded the number of women eligible for accelerated partial breast irradiation in the treatment of early-stage breast cancer. Early clinical experience with these 2 single-entry, multichannel high-dose-rate brachytherapy devices confirms their ease of use and dosimetric versatility. However, current clinical guidelines for SAVI and Contura brachytherapy may result in a smaller or less optimal volume of treated tissue compared with traditional interstitial brachytherapy. This study evaluates the feasibility of using the SAVI and Contura to irradiate larger and irregularly shaped target volumes, approaching what is treatable with the interstitial technique. To investigate whether additional tissue can be treated, 17 patients treated with the SAVI and 3 with the Contura were selected. For each patient, the planning target volume (PTV) was modified to extend 1.1 cm, 1.3 cm, and 1.5 cm beyond the tumor bed cavity. To evaluate dose conformance to an irregularly shaped target volume, 9 patients treated with the SAVI and 3 with the Contura were selected from the original 20 patients. The following asymmetric PTV margin combinations were assessed for each patient: 1.5/0.3, 1.3/0.3, and 1.1/0.3 cm. For all patients, treatment planning was performed, adopting the National Surgical Adjuvant Breast and Bowel Project guidelines, and dosimetric comparisons were made. The 6–1 and 8–1 SAVI devices can theoretically treat a maximal tissue margin of 1.5 cm and an asymmetric PTV with margins ranging from 0.3 to 1.5 cm. The 10–1 SAVI and Contura can treat a maximal margin of 1.3 cm and 1.1 cm, respectively, and asymmetric PTV with margins ranging from 0.3–1.3 cm. Compared with the Contura, the SAVI demonstrated greater dosimetric flexibility. Risk of developing excessive hot spots increased with the size of the SAVI device. Both the SAVI and Contura

  11. Dose distributions in electron irradiated plastic tubing

    International Nuclear Information System (INIS)

    Miller, A.; Pederson, W.B.

    1981-01-01

    Plastic tubes have been crosslinked by irradiation at a 10 MeV linear electron accelerator and at a 400 keV DC electron accelerator at different irradiation geometries. The diameter of the different tubes was 20, 33 and 110 millimeters. Dose distributions have been measured with thin radiochromic dye films, indicating that in all cases irradiation from two sides is a necessary and sufficient condition for obtaining a satisfactory dose distribution. (author)

  12. Seed irradiation with continuously increasing doses of thermal neutrons

    International Nuclear Information System (INIS)

    Uhlik, J.; Pfeifer, M.; Pittermann, P.

    1977-01-01

    In the 'Raman' pea cv. the biological activity of thermal neutrons was investigated after irradiation of a 780 mm column of seeds for 3000 and 4167 seconds with a flux of 5.607 x 10 9 n.cm -2 per second. For different fractions of the seed column the average density of the neutron flux was calculated. It was proved that for the described method of seed irradiation it was sufficient to determine only the dose approaching the lethal dose. If a sufficiently high column of seeds is used part of the column of seeds will be irradiated with the optimum range of doses. The advantages of the suggested method of irradiation are not only smaller time and technological requirements resulting from the need for the determination of only the critical lethal dose of radiation by means of inhibition tests performed with seedlings, but also a simpler irradiation procedure. The suggested method of irradiation is at least nine times cheaper. (author)

  13. Accelerated partial-breast irradiation using high-dose-rate interstitial brachytherapy: 12-year update of a prospective clinical study

    International Nuclear Information System (INIS)

    Polgar, Csaba; Major, Tibor; Fodor, Janos; Sulyok, Zoltan; Somogyi, Andras; Loevey, Katalin; Nemeth, Gyoergy; Kasler, Miklos

    2010-01-01

    Background and purpose: To report the 12-year updated results of accelerated partial-breast irradiation (APBI) using multicatheter interstitial high-dose-rate (HDR) brachytherapy (BT). Patients and methods: Forty-five prospectively selected patients with T1N0-N1mi, nonlobular breast cancer without the presence of an extensive intraductal component and with negative surgical margins were treated with APBI after breast-conserving surgery (BCS) using interstitial HDR BT. A total dose of 30.3 Gy (n = 8) and 36.4 Gy (n = 37) in seven fractions within 4 days was delivered to the tumour bed plus a 1-2 cm margin. The median follow-up time was 133 months for surviving patients. Local and regional control, disease-free (DFS), cancer-specific (CSS), and overall survival (OS), as well as late side effects, and cosmetic results were assessed. Results: Four (8.9%) ipsilateral breast tumour recurrences were observed, for a 5-, 10-, and 12-year actuarial rate of 4.4%, 9.3%, and 9.3%, respectively. A total of two regional nodal failures were observed for a 12-year actuarial rate of 4.4%. The 12-year DFS, CSS, and OS was 75.3%, 91.1%, and 88.9%, respectively. Grade 3 fibrosis was observed in one patient (2.2%). No patient developed grade 3 teleangiectasia. Fat necrosis requiring surgical intervention occurred in one woman (2.2%). Cosmetic results were rated excellent or good in 35 patients (77.8%). Conclusions: Twelve-year results with APBI using HDR multicatheter interstitial implants continue to demonstrate excellent long-term local tumour control, survival, and cosmetic results with a low-rate of late side effects.

  14. The high dose response of silicon carbide MESFET; Reponse d'un transistor MESFET SiC irradie a de tres fortes doses cumulees

    Energy Technology Data Exchange (ETDEWEB)

    Brisset, C.; Picard, C.; Joffre, F. [CEA Saclay, Dept. d' Electronique et d' Instrumentation Nucleaire, LETI, 91 - Gif-sur-Yvette (France); Noblanc, O.; Brylinski, C. [Thomson-CSF Lab. Central de Recherches, 91 - Orsay (France)

    1999-07-01

    The performance of MESFET-SiC transistors submitted to {sup 60}Co gamma radiation has been studied. MESFETs irradiated in the passing mode present a satisfactorily behaviour till cumulated dose below 10 MGy(Si). The off-state operating mode is the most unfavourable, in this case a complete loss of functionality was observed, followed by a slow comeback to an almost normal functioning after several months of rest. (A.C.)

  15. Establishing the irradiation dose for paper decontamination

    International Nuclear Information System (INIS)

    Moise, Ioan Valentin; Virgolici, Marian; Negut, Constantin Daniel; Manea, Mihaela; Alexandru, Mioara; Trandafir, Laura; Zorila, Florina Lucica; Talasman, Catalina Mihaela; Manea, Daniela; Nisipeanu, Steluta; Haiducu, Maria; Balan, Zamfir

    2012-01-01

    Museums, libraries and archives are preserving documents that are slowly degrading due to the inherent ageing of the cellulose substrate or to the technological errors of the past (acid paper, iron gall ink). Beside this, large quantities of paper are rapidly damaged by biological attacks following natural disasters and improper storage conditions. The treatment of paper documents with ionizing radiation can be used for mass decontamination of cultural heritage items but conservators and restaurators are still reserved because of the radiation induced degradation. We conducted a study for establishing the dose needed for the effective treatment of paper documents, taking into account the biological burden and the irradiation effects on paper structure. We used physical testing specific to paper industry and less destructive analytical methods (thermal analysis). Our results show that an effective treatment can be performed with doses lower than 10 kGy. Old paper appears to be less affected by gamma radiation than recent paper but the sampling is highly affected by the non-uniform degree of the initial degradation status. The extent of testing for degradation and the magnitude of acceptable degradation should take into account the biological threat and the expected life time of the paper documents. - RESEARCH HIGHLIGHTS: ► For doses <15 kGy, the measurement uncertainty of mechanical properties is higher than the radiation induced degradation. ► The statistics of measuring induced degradation may be improved by testing both mechanical properties and thermal decomposition of paper. ►Because of the large variability of paper samples, testing to only one irradiation dose has no or reduced relevance. ►It was choused for the irradiation of paper items from archives and collections a dose range of 5–7 kGy.

  16. Correlation between physical and mechanical properties changes of austenitic steel ChS-68 under high dose irradiation

    International Nuclear Information System (INIS)

    Ershova, O.V.; Shcherbakov, E.N.; Evseev, M.V.; Shihkalev, V.S.; Kozlov, A.V.; Garner, F.

    2007-01-01

    Full text of publication follows: It is well known that void swelling at high levels exerts significant influence on physical, mechanical and creep properties of austenitic steels. For many fusion or fission reactor concepts it is desirable not only to characterize these relationships but also to develop nondestructive measurements to measure swelling without removing components from the reactor. Previous studies at this institute have shown that swelling can be estimated using changes in elastic moduli via ultrasonic techniques and electrical resistivity via electro-resistive methods. In this study we examined two pin claddings of ChS-68 (Fe-16Cr-15Ni-2Mo-2Mn-Ti-Si irradiated at somewhat different dpa rates in the high-flux BN-600 fast reactor, with temperatures ranging from 370-590 deg. C to maximum doses of 69 and 78 dpa. After removing the fuel, ring specimens were cut and used to conduct tensile tests using a standardized ring-pull test. Changes in density, elastic moduli and electrical resistivity were performed prior to tensile testing. Maximum swelling levels in the two pins reached ∼7 and 12%, with strong consequences observed in mechanical properties. At the higher swelling level there was a total loss of ductility over a significant middle portion of the pin. In both the lower swelling and higher swelling pins there was a clear correlation between the local swelling along the pin length with declining ultimate strength and total elongation, providing clear evidence of void-induced embrittlement. Changes in electrical resistivity and elastic moduli correlated well with predictions based on void swelling at lower irradiation temperatures where precipitates were not a dominant part of the radiation-induced microstructure. At higher temperatures large precipitates of Ni-rich radiation-stable phases are a large portion of the microstructure and void-based predictions of elastic moduli and electrical resistivity do not agree well with the measurements

  17. Identification of radiation response genes and proteins from mouse pulmonary tissues after high-dose per fraction irradiation of limited lung volumes.

    Science.gov (United States)

    Jin, Hee; Jeon, Seulgi; Kang, Ga-Young; Lee, Hae-June; Cho, Jaeho; Lee, Yun-Sil

    2017-02-01

    The molecular effects of focal exposure of limited lung volumes to high-dose per fraction irradiation (HDFR) such as stereotactic body radiotherapy (SBRT) have not been fully characterized. In this study, we used such an irradiation system and identified the genes and proteins after HDFR to mouse lung, similar to those associated with human therapy. High focal radiation (90 Gy) was applied to a 3-mm volume of the left lung of C57BL6 mice using a small-animal stereotactic irradiator. As well as histological examination for lungs, a cDNA micro array using irradiated lung tissues and a protein array of sera were performed until 4 weeks after irradiation, and radiation-responsive genes and proteins were identified. For comparison, the long-term effects (12 months) of 20 Gy radiation wide-field dose to the left lung were also investigated. The genes ermap, epb4.2, cd200r3 (up regulation) and krt15, hoxc4, gdf2, cst9, cidec, and bnc1 (down-regulation) and the proteins of AIF, laminin, bNOS, HSP27, β-amyloid (upregulation), and calponin (downregulation) were identified as being responsive to 90 Gy HDFR. The gdf2, cst9, and cidec genes also responded to 20 Gy, suggesting that they are universal responsive genes in irradiated lungs. No universal proteins were identified in both 90 Gy and 20 Gy. Calponin, which was downregulated in protein antibody array analysis, showed a similar pattern in microarray data, suggesting a possible HDFR responsive serum biomarker that reflects gene alteration of irradiated lung tissue. These genes and proteins also responded to the lower doses of 20 Gy and 50 Gy HDFR. These results suggest that identified candidate genes and proteins are HDFR-specifically expressed in lung damage induced by HDFR relevant to SBRT in humans.

  18. Korean space food development: Ready-to-eat Kimchi, a traditional Korean fermented vegetable, sterilized with high-dose gamma irradiation

    Science.gov (United States)

    Song, Beom-Seok; Park, Jin-Gyu; Park, Jae-Nam; Han, In-Jun; Kim, Jae-Hun; Choi, Jong-Il; Byun, Myung-Woo; Lee, Ju-Woon

    2009-07-01

    Addition of calcium lactate and vitamin C, a mild heating, deep-freezing, and gamma irradiation at 25 kGy were conducted to prepare Kimchi as a ready-to-eat space food. It was confirmed that the space food was sterilized by an irradiation at 25 kGy through incubation at 37 °C for 30 days. The hardness of the Space Kimchi (SK) was lower than the untreated Kimchi (CON), but higher than the irradiated Kimchi (IR). Also, this result was supported by the scanning electron microscopic observation. Sensory attributes of the SK were similar to CON, and maintained during preservation at 35 °C for 30 days. According to the Ames test, Kimchi sterilized with a high-dose irradiation exerted no mutagenic activity in the bacterial strains of Salmonella typhimurium. And, the SK was certificated for use in space flight conditions during 30 days by the Russian Institute of Biomedical Problems.

  19. High-dose antibiotic therapy is superior to a 3-drug combination of prostanoids and lipid A derivative in protecting irradiated canines

    International Nuclear Information System (INIS)

    Kumar, K.S.; Srinivasan, V.; Toles, R.E.; Miner, V.L.; Jackson, W.E.; Seed, T.M.

    2002-01-01

    There is an urgent need to develop non-toxic radioprotectors. We tested the efficacy of a 3-drug combination (3-DC) of iloprost, misoprostol, and 3D-MPL (3-deacylated monophosphoryl lipid A) and the effects of postirradiation clinical support with high doses of antibiotics and blood transfusion. Canines were given 3-DC or the vehicle and exposed to 3.4 Gy or 4.1 Gy of 60 Co radiation. Canines irradiated at 4.1 Gy were also given clinical support, which consisted of blood transfusion and antibiotics (gentamicin, and cefoxitin or cephalexin). Peripheral blood cell profile and 60-day survival were used as indices of protection. At 3.4 Gy, 3-DC- or vehicle-treated canines without postirradiation clinical support survived only for 10 to 12 days. Fifty percent of the canines treated with 3-DC or vehicle and provided postirradiation clinical support survived 4.1-Gy irradiation. Survival of canines treated with vehicle before irradiation significantly correlated with postirradiation antibiotic treatments, but not with blood transfusion. The recovery profile of peripheral blood cells in 4.1 Gy-irradiated canines treated with vehicle and antibiotics was better than drug-treated canines. These results indicate that therapy with high doses of intramuscular aminoglycoside antibiotic (gentamicin) and an oral cephalosporin (cephalexin) enhanced survival of irradiated canines. Although blood transfusion correlated with survival of 3-DC treated canines, there were no additional survivors with 3-DC treated canines than the controls. (author)

  20. Prospective hormone study of hypothalamic-pituitary function in patients with nasopharyngeal carcinoma after high dose irradiation

    International Nuclear Information System (INIS)

    Chen, Ming-Shen; Lin, Fang-Jen; Huang, Miau-Ju; Wang, Pei-Wan; Tang, Simon; Leung, Wei-Man; Leung, Wan

    1989-01-01

    With the aim of evaluating the effect of high dose irradiation (6,500 cGy/36 fractions or higher) to pituitary fossa, a prospective study was carried out in patients with nasopharyngeal cancer by a serial determination of several hormones in the serum, before and after the course of radiation therapy (RT). The radiation treatment field was at least 1 cm above the skull base with bilateral parallel opposing fields. Hormone assays were performed three times on each patient: (1)prior to, (2)one month after, (3)15-18 months after radiation therapy. The study included determination of serum luteinizing hormone (LH), follicle-stimulating hormone (FSH), thyroid-stimulating hormone (TSH), cortisol, growth hormone (GH) and prolactin concentrations and LH-releasing hormone, thyrotrophin-releasing hormone stimulation and insulin tolerance tests were also carried out. Complete profiles were obtained in 24 patients (16 males and 8 females), aged 16-67 years. The results showed a significant decrease in the level of serum peak value of LH in males 18 months after therapy, and also in GH both one month and 18 months after therapy. A significant increase in the peak value of serum TSH was observed after therapy. Decreased serum FSH, cortisol and prolactin levels were noted, but these did not reach statistical significance. The decrease in GH level appeared earlier and was more sensitive than that found for the other hormones, and could prove to be a useful parameter for clinical evaluation. None of the patients showed any clinically recognizable symptoms or signs of hormone deficiency in the 18-33 months following completion of the radiation therapy. (author)

  1. Volume dose of organs at risk in the irradiated volume

    International Nuclear Information System (INIS)

    Hishikawa, Yoshio; Tanaka, Shinichi; Miura, Takashi

    1984-01-01

    Absorbed dose of organs at risk in the 50% irradiated volume needs to be carefully monitored because there is high risk of radiation injury. This paper reports on the histogram of threedimensional volume dose of organs at risk, which is obtained by computer calculation of CT scans. In order to obtain this histogram, CT is first performed in the irradiation field. The dose in each pixel is then examined by the computer as to each slice. After the pixels of all slices in the organ at risk of the irradiated field are classified according to the doses, the number of pixels in the same dose class is counted. The result is expressed in a histogram. The histogram can show the differences of influence to organs at risk given by various radiation treatment techniques. Total volume dose of organs at risk after radiotherapy can also be obtained by integration of each dose of different treatment techniques. (author)

  2. Dose uniformity estimations in the blood irradiator

    International Nuclear Information System (INIS)

    George, J.R.

    2002-01-01

    Use of irradiated blood in transfusions is recognized as the most effective way of preventing Graft Versus Host Disease (GVHD). This paper shows the study carried out in the dose rate variation for various source arrangements for optimising the source-sample chamber geometry, during the development of the Blood Irradiator, Bl-2000

  3. Stimulation of seeds by low dose irradiation

    International Nuclear Information System (INIS)

    Lawson, Helen

    1976-05-01

    The first section of the bibliography lists materials on the stimulation of seeds by low dose irradiation, with particular reference to stimulation of germination and yield. The second section contains a small number of selected references on seed irradiation facilities. (author)

  4. Distinctive Genomic Profiles of Normal and Transformed Thyrocytes Irradiated with Low vs. High Doses of X-irradiation both in vivo and in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Abou-El-Ardat, K. [Radiobiology, SCK-CEN, Mol (Belgium); Molecular Biotechnology, Universiteit Gent, Ghent (Belgium); Monsieurs, P. [Microbiology, SCK-CEN, Mol (Belgium); Janssen, A.; Beck, M; Michaux, A.; Benotmane, R.; Derradji, H.; Baatout, S. [Radiobiology, SCK-CEN, Mol (Belgium); Anastasov, N.; Atkinson, M. [Radiology, Helmholtz Zentrum Munchen, Munich (Germany); Beckaert, S.; Van Criekinge, W. [Molecular Biotechnology, Universiteit Gent, Ghent (Belgium)

    2012-07-01

    The increase in cases of papillary thyroid carcinoma (PTC) in the aftermath of the Chernobyl disaster led to an elevation of interest in the effect of radiation on the thyroid. Our work hopes to uncover some of the effects of low doses of external X-radiation in in vitro and in vivo models using several techniques and robust analysis. Here we describe the use of such models combined with micro-arrays and sound statistical analysis. we find that low doses of radiation act differently on murine thyroids carrying and lacking the RET/PTC translocation and even bear a distinctive profile to higher irradiation doses in both in vitro and in vivo models. We also find that micro-RNAs are involved in the response of these cells to radiation, even at low doses and that two in particular, let-7g and miR-106a, were significantly involved in the cells' p53-mediated anti-proliferative response

  5. SR-TXRF analysis of trace elements in whole blood and heart of rats: effects of irradiation with low and high doses

    Science.gov (United States)

    Mota, C. L.; Pickler, A.; Braz, D.; Barroso, R. C.; Mantuano, A.; Salata, C.; Ferreira-Machado, S. C.; Lau, C. C.; de Almeida, C. E.

    2018-04-01

    In the last decades, studies showed that the exposure to low doses of ionizing radiation of the body could sense and activate the cell signaling pathways needed to respond to any induced cellular damage. This procedure reduces cell killing compared with a single dose of high radiation dose. Damage to the vasculature can affect the function of most body organs by restricting blood flow and oxygen to tissues; however, the heart and brain are of main concern. The precise relationship between long-term health effects and low-dose exposures remain poorly understood. Biological markers are powerful tools that can be used to determine dose- response relationships and to estimate risk, especially when dealing with, the effects of low dose exposures in humans. These markers should be specific, sensitive, as well as easy and fast to quantify. Various types of biologic specimens are potential candidates for identifying biomarkers but blood has the advantage of being minimally invasive to obtain. In this study, we propose to apply total reflection X-ray fluorescence to quantify possible chemical elemental concentration (sulfer, iron, zinc, potassium and calcium) changes in blood and heart tissues of Wistar rats after total body irradiation with low (0.1 Gy) and high (2.5 Gy) doses. The fluorescence measurements were carried out at the X-ray Fluorescence beamline in the Brazilian Synchrotron Light Laboratory. The results showed that the irradiated animals with low doses have significant alterations in blood and cardiac tissue when compared with animals that received high doses of radiation. Taken together the analysis of all the elements, we can observe that the radiation induced oxidative stress may be the leading cause for alteration of the elemental level in the studied samples.

  6. High-dose Extended-Field Irradiation and High-Dose-Rate Brachytherapy With Concurrent Chemotherapy for Cervical Cancer With Positive Para-Aortic Lymph Nodes

    International Nuclear Information System (INIS)

    Kim, Young Seok; Kim, Jong Hoon; Ahn, Seung Do; Lee, Sang-wook; Shin, Seong Soo; Nam, Joo-Hyun; Kim, Young-Tak; Kim, Yong-Man; Kim, Jong-Hyeok; Choi, Eun Kyung

    2009-01-01

    Purpose: To determine the efficacy and toxicity of extended-field radiotherapy (RT) with concurrent platinum-based chemotherapy in patients with uterine cervical carcinoma and positive para-aortic nodes. Methods and Materials: We retrospectively reviewed the results for 33 women with Stage IB-IVB cervical cancer. Each patient had received 59.4 Gy, including a three-dimensional conformal boost to the para-aortic lymph nodes and 41.4-50.4 Gy of external beam radiotherapy to the pelvis. Each patient also underwent six or seven applications of high-dose-rate brachytherapy (median, 5 Gy to point A at each session). Results: The median follow-up period of surviving patients was 39 months. The most common acute toxicity was hematologic, observed in 23 women. Severe acute and late gastrointestinal toxicity was observed in 3 and 4 patients, respectively. More than three-quarters of patients showed a complete response, encompassing the primary mass, metastatic pelvic, and para-aortic lymph nodes. Of the 33 women, 15 had no evidence of disease, 6 had persistent disease, 4 developed in-field failures, and 6 developed distant failures. The 5-year overall and disease-free survival rate was 47% and 42%, respectively. Conclusion: Concurrent chemoradiotherapy with extended-field radiotherapy is feasible in women with uterine cervical carcinoma and positive para-aortic lymph nodes, with acceptable late morbidity and a high survival rate, although it was accompanied by substantial acute toxicity.

  7. Dose mapping in category I irradiators

    International Nuclear Information System (INIS)

    Mondal, Sandip; Shinde, S.H.; Mhatre, S.G.V.

    2012-01-01

    Category I irradiators such as Gamma Chambers and Blood Irradiators are compact self shielded, dry source storage gamma irradiators offering irradiation volume of few hundred cubic centimeters. In the present work, dose distribution profiles along the central vertical plane of the irradiation volume of Gamma Chamber 900 and Blood Irradiator 2000 were measured using Fricke, FBX, and alanine dosimeters. Measured dose distribution profiles in Gamma Chamber 900 differed from the typical generic dose distribution pattern whereas that in Blood Irradiator 2000 was in agreement with the typical pattern. All reagents used were of analytical reagent grade and were used without further purification. Preparation and dose estimations of Fricke and FBX were carried out as recommended. Alanine pellets were directly placed in precleaned polystyrene container having dimensions 6.5 mm o.d., 32 mm height and 3 mm wall thickness. For these dosimeters, dose measurements were made using e-scan Bruker BioSpin alanine dedicated ESR spectrometer. Specially designed perspex jigs were used during irradiation in Gamma Chamber 900 and Blood Irradiator 2000. These jigs provided the reproducible geometry during irradiation, Absorbance measurements were made using a spectrophotometer calibrated as per the recommended procedure. In Gamma Chamber 900, there is a dose distribution variation of about 34% from top to the center, 18% from center to the bottom, and 15% from center to the periphery. Such a dose distribution profile is largely deviating from the typical profile wherein 15% variation is observed from center to the periphery on all sides. Further investigation showed that there was a nonalignment in the source and sample chamber. However, in Blood Irradiator 2000, there is a dose distribution variation of about 20% from top to the center, 15% from center to the bottom, and 12% from center to the periphery. This pattern is very much similar to the typical profile. Hence it is recommended

  8. Radiation tolerance of the cervical spinal cord: incidence and dose-volume relationship of symptomatic and asymptomatic late effects following high dose irradiation of paraspinal tumors

    International Nuclear Information System (INIS)

    Liu, Mitchell C.C.; Munzenrider, John E.; Finkelstein, Dianne; Liebsch, Norbert; Adams, Judy; Hug, Eugen B.

    1997-01-01

    Purpose: Low grade chordomas and chondrosarcomas require high radiation doses for effective, lasting tumor control. Fractionated, 3-D planned, conformal proton radiation therapy has been used for lesions along the base of skull and spine to deliver high target doses, while respecting constraints of critical, normal tissues. In this study, we sought to determine the incidence of myelopathy after high dose radiotherapy to the cervical spine and investigated the influence of various treatment parameters, including dose-volume relationship. Methods and Materials: Between December 1980 and March 1996, 78 patients were treated at the Massachusetts General Hospital and Harvard Cyclotron Laboratory for primary or recurrent chordomas and chondrosarcomas of the cervical spine using combined proton and photon radiation therapy. In general, the tumor dose given was between 64.5 to 79.2 CGE (Cobalt Gray Equivalent). The guidelines for maximum permissible doses to spinal cord were: ≤ 64 CGE to the spinal cord surface and ≤ 53 CGE to the spinal cord center. Dose volume histograms of the spinal cord were analyzed to investigate a possible dose and volume relationship. Results: With a mean follow-up period of 46.6 months (range: 3 - 157 months), 4 of 78 patients (5.1%) developed high-grade (RTOG Grade 3 and 4) late toxicity: 3 patients (3.8%) experienced sensory deficits without motor deficits, none had any limitations of daily activities. One patient (1.2%) developed motor deficit with loss of motor function of one upper extremity. The only patient, who developed permanent motor damage had received additional prior radiation treatment and therefore received a cumulative spinal cord dose higher than the treatment guidelines. No patient treated within the guidelines experienced any motor impairment. Six patients (7.7%) experienced transient Lhermitt's syndrome and 1 patient (1.2%) developed asymptomatic radiographic MR findings only. Time to onset of symptoms of radiographic

  9. Dose Distribution of Rectum and Bladder in Intracavitary Irradiation

    International Nuclear Information System (INIS)

    Chu, S. S.; Oh, W. Y.; Suh, C. O.; Kim, G. E.

    1984-01-01

    The intrauterine irradiation is essential to achieve adequate tumor dose to central tumor mass of uterine malignancy in radiotherapy. The complications of pelvic organ are known to be directly related to radiation dose and physical parameters. The simulation radiogram and medical records of 206 patients, who were treated with intrauterine irradiation from Feb. 1983 to Oct. 1983, were critically analyzed. The physical parameters to include distances between lateral walls of vaginal fornices, longitudinal and lateral cervix to the central axis of ovoid were measured for low dose rate irradiation system and high dose rate remote control after loading system. The radiation doses and dose distributions within cervical area including interesting points and bladder, rectum, according to sources arrangement and location of applicator, were estimated with personal computer. Followings were summary of study results; 1. In distances between lateral walls of vaginal fornices, the low dose rate system showed as 4-7cm width and high dose rate system showed as 5-6cm. 2. In Horizontal angulation of tandem to body axis, the low dose rate system revealed mid position 64.6%, left deviation 19.2% and right deviation 16.2%. 3. In longitudinal angulation of tandem to body axis, the mid position was 11.8% and anterior angulation 88.2% in low dose rate system but in high dose rate system, anterior angulation was 98.5%. 4. Down ward displacement of ovoid below external os was only 3% in low dose rate system and 66.6% in high dose rate system. 5. In radiation source arrangement, the most activities of tandem and ovoid were 35 by 30 in low dose rate system but 50 by 40 in high dose rate system. 6. In low and high dose rate system, the total doses and TDF were 80, 70 Gy and 131, 123 including 40 Gy external irradiation. 7. The doses and TDF in interesting points Co, B, were 98, 47 Gy and 230, 73 in high dose rate system but in low dose rate system 125, 52 Gy and 262, 75 respectively. 8. Doses

  10. Formation of dislocations and hardening of LiF under high-dose irradiation with 5-21 MeV {sup 12}C ions

    Energy Technology Data Exchange (ETDEWEB)

    Zabels, R.; Manika, I.; Maniks, J.; Grants, R. [Institute of Solid State Physics, University of Latvia, Riga (Latvia); Schwartz, K. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Dauletbekova, A.; Baizhumanov, M. [L.N. Gumilyov Eurasian National University, Astana (Kazakhstan); Zdorovets, M. [Institute of Nuclear Physics, Almaty (Kazakhstan)

    2017-05-15

    The emergence of dislocations and hardening of LiF crystals irradiated to high doses with {sup 12}C ions have been investigated using chemical etching, AFM, nanoindentation, and thermal annealing. At fluences ensuring the overlapping of tracks (Φ ≥6 x 10{sup 11} ions/cm{sup 2}), the formation of dislocation-rich structure and ion-induced hardening is observed. High-fluence (10{sup 15} ions/cm{sup 2}) irradiation with {sup 12}C ions causes accumulation of extended defects and induces hardening comparable to that reached by heavy ions despite of large differences in ion mass, energy, energy loss, and track morphology. The depth profiles of hardness indicate on a notable contribution of elastic collision mechanism (nuclear loss) in the damage production and hardening. The effect manifests at the end part of the ion range and becomes significant at high fluences (≥10{sup 14} ions/cm{sup 2}). (orig.)

  11. Modeling the influence of high dose irradiation on the deformation and damage behavior of RAFM steels under low cycle fatigue conditions

    Energy Technology Data Exchange (ETDEWEB)

    Aktaa, J. [Forschungszentrum Karlsruhe GmbH, Institute for Materials Research II, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)], E-mail: aktaa@imf.fzk.de; Petersen, C. [Forschungszentrum Karlsruhe GmbH, Institute for Materials Research II, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2009-06-01

    A viscoplastic deformation damage model developed for RAFM steels in the reference un-irradiated state was modified taking into account the irradiation influence. The modification mainly consisted in adding an irradiation hardening variable with an appropriate evolution equation including irradiation dose driven terms as well as inelastic deformation and thermal recovery terms. With this approach, the majority of the material and temperature dependent model parameters are no longer dependent on the irradiation dose and only few parameters need to be determined by applying the model to RAFM steels in the irradiated state. The modified model was then applied to describe the behavior of EUROFER 97 observed in the post irradiation examinations of the irradiation programs ARBOR 1, ARBOR 2 and SPICE. The application results will be presented and discussed in addition.

  12. Can loco-regional irradiation be a routine supplement to high dose chemotherapy with autologous bone marrow transplant in women with poor prognosis breast cancer

    International Nuclear Information System (INIS)

    Wobeck, Linda K.; Holland, H. Kent; Landry, Jerome C.; Lynn, Michael J.; Hughes, Lorie L.

    1997-01-01

    Purpose: High dose chemotherapy followed by bone marrow transplantation (BMT) is currently being performed in many women with localized, poor prognosis breast cancer. The purpose of this study was to examine patterns of care in radiation treatment as well as acute side effects in women who received breast or chest wall and regional nodal irradiation (XRT) post BMT. Methods: The records of 126 consecutive women with localized, poor prognosis breast cancer who received an autologous BMT at Emory University between (3(90)) and (7(96)) were retrospectively reviewed. Results: All 126 women underwent high dose chemotherapy with cyclophosphamide, carboplatinum and thiotepa followed by BMT. Loco - regional XRT after BMT was routinely recommended for patients with 10 or more positive axillary lymph nodes or inflammatory carcinoma. Overall, 90 patients received local +/- regional XRT; 11 patients prior to BMT and 79 patients post BMT. Three of these patients had a local relapse prior to beginning XRT post BMT. Thirty six patients did not receive XRT for the following reasons: major post BMT morbidity or insufficient hematological recovery (15 patients), less than 10 positive axillary lymph nodes (12 patients), or refusal/not referred (9 patients). Therefore, of the 103 patients (excludes those with less than 10 positive nodes) intended to receive post BMT irradiation, 14.5 % (15 patients- 2 with inflammatory carcinoma) were unable to receive it secondary to post BMT morbidity and 9% (9 patients) refused or were not referred. Of these 79 patients irradiated post BMT, 16 had stage IIA, 20 stage IIB, 27 stage IIIA and 16 inflammatory carcinoma (IIIB). The median time from transplant to irradiation was 82 days (range 44 - 641). Average dose to breast or chest wall was 49.5 Gy (range 42-55.8 Gy). Boost dose (mean 12 Gy, range 10-22 Gy) was given in 62% of patients. The median tumor bed/mastectomy scar dose was 60 Gy (range 42-72 Gy). Supraclavicular, posterior axillary and

  13. Role of carbon impurities on the surface morphology evolution of tungsten under high dose helium ion irradiation

    International Nuclear Information System (INIS)

    Al-Ajlony, A.; Tripathi, J.K.; Hassanein, A.

    2015-01-01

    The effect of carbon impurities on the surface evolution (e.g., fuzz formation) of tungsten (W) surface during 300 eV He ions irradiation was studied. Several tungsten samples were irradiated by He ion beam with a various carbon ions percentage. The presence of minute carbon contamination within the He ion beam was found to be effective in preventing the fuzz formation. At higher carbon concentration, the W surface was found to be fully covered with a thick graphitic layer on the top of tungsten carbide (WC) layer that cover the sample surface. Lowering the ion beam carbon percentage was effective in a significant reduction in the thickness of the surface graphite layer. Under these conditions the W surface was also found to be immune for the fuzz formation. The effect of W fuzz prevention by the WC formation on the sample surface was more noticeable when the He ion beam had much lower carbon (C) ions content (0.01% C). In this case, the fuzz formation was prevented on the vast majority of the W sample surface, while W fuzz was found in limited and isolated areas. The W surface also shows good resistance to morphology evolution when bombarded by high flux of pure H ions at 900 °C. - Highlights: • Reporting formation of W nanostructure (fuzz) due to low energy He ion beam irradiation. • The effect of adding various percentage of carbon impurity to the He ion beam on the trend of W fuzz formation was studied. • Mitigation of W fuzz formation due to addition of small percentage of carbon to the He ion beam is reported. • The formation of long W nanowires due to He ion beam irradiation mixed with 0.01% carbon ions is reported.

  14. Efficacy of modest dose irradiation in combination with long-term endocrinal treatment for high-risk prostate cancer. A preliminary report

    International Nuclear Information System (INIS)

    Sasaki, Tomonari; Nakamura, Katsumasa; Shioyama, Yoshiyuki

    2004-01-01

    Although radiotherapy in combination with endocrinal manipulation has been identified as an effective treatment for patients with high-risk prostate cancer, the optimal dose for locoregional control of prostate cancer in combination with hormonal therapy has not yet been determined. The efficacy of modest doses of irradiation (60-62 Gy) combined with long-term endocrinal treatment for patients with high-risk prostate cancer (defined as a pretreatment prostate-specific antigen (PSA) level greater than 20 ng/ml or a Gleason's score of 8-10 or T3-T4 disease) was analyzed in 60 Japanese patients. The patients included in this study had received radical radiotherapy with long-term endocrinal manipulation in the period between 1993 and 2000. The median age of the patients was 70 years (range, 56-83). Neoadjuvant hormonal therapy with a median duration of 3.9 months was performed prior to radiotherapy, and hormonal therapy was continued until recurrence. A median dose of 61.4 Gy (range, 44-71.4) was delivered to the prostate. Pelvic node irradiation was performed in 49 patients (81.6%). After a median follow-up period of 28.5 months, the overall survival, cause-specific survival and biochemical relapse-free survival at 3 years were 94.4%, 96% and 89.8%, respectively. Local failure was observed in one patient, distant metastases were observed in three patients and a late toxic effect greater than Grade 2 was not observed in any patients. This study, though preliminary due to a short-term follow-up period, reveals the possibility that modest doses of irradiation combined with long-term endocrinal treatment could be an effective means of achieving excellent local control of high-risk prostate cancer. (author)

  15. Ionizing radiation and autoimmunity: Induction of autoimmune disease in mice by high dose fractionated total lymphoid irradiation and its prevention by inoculating normal T cells

    International Nuclear Information System (INIS)

    Sakaguchi, N.; Sakaguchi, S.; Miyai, K.

    1992-01-01

    Ionizing radiation can functionally alter the immune system and break self-tolerance. High dose (42.5 Gy), fractionated (2.5 Gy 17 times) total lymphoid irradiation (TLI) on mice caused various organ-specific autoimmune diseases, such as gastritis, thyroiditis, and orchitis, depending on the radiation dosages, the extent of lymphoid irradiation, and the genetic background of the mouse strains. Radiation-induced tissue damage is not the primary cause of the autoimmune disease because irradiation of the target organs alone failed to elicit the autoimmunity and shielding of the organs from irradiation was unable to prevent it. In contrast, irradiation of both the thymus and the peripheral lymphoid organs/tissues was required for efficient induction of autoimmune disease by TLI. TLI eliminated the majority of mature thymocytes and the peripheral T cells for 1 mo, and inoculation of spleen cell, thymocyte, or bone marrow cell suspensions (prepared from syngeneic nonirradiated mice) within 2 wk after TLI effectively prevented the autoimmune development. Depletion of T cells from the inocula abrogated the preventive activity. CD4 + T cells mediated the autoimmune prevention but CD8 + T cells did not. CD4 + T cells also appeared to mediate the TLI-induced autoimmune disease because CD4 + T cells from disease-bearing TLI mice adoptively transferred the autoimmune disease to syngeneic naive mice. Taken together, these results indicate that high dose, fractionated ionizing radiation on the lymphoid organs/tissues can cause autoimmune disease by affecting the T cell immune system, rather than the target self-Ags, presumably by altering T cell-dependent control of self-reactive T cells. 62 refs., 9 figs., 2 tabs

  16. Technology development on production of test specimens from irradiated capsule outer-tube and mechanical evaluation test of stainless steel with high dose carried out by the technology

    International Nuclear Information System (INIS)

    Hayashi, Koji; Shibata, Akira; Iwamatsu, Shigemi; Sozawa, Shizuo; Takada, Fumiki; Ohmi, Masao; Nakagawa, Tetsuya

    2008-03-01

    The irradiation capsule 74M-52J was irradiated during total 136 cycles at reactor core of JMTR and the maximum neutron dose reached on 3.9x10 26 n/m 2 at the capsule outer-tube made of a type 304 stainless steel. In order to produce mechanical test specimens from the outer-tube, a punching technique was developed as a simple remote-handling method in a hot-cell. From comparison between the punching and the mechanical cutting methods, it was clarified that the punching technique was applicable to practical use. Moreover, an evaluation test of mechanical properties using specimens sampled from the 74M-52 was performed with in-water high temperature condition, less than 288degC. The result shows that the residual elongation is 18% at 150degC and 13% at 288degC. It was confirmed that the type 304 stainless steel irradiated up to such high dose shows enough ductility. (author)

  17. Nano-structural changes in the RPV steels irradiated in MTR to high doses. 3D atom probe and positron annihilation study

    International Nuclear Information System (INIS)

    Dohi, Kenji; Soneda, Naoki; Nomoto, Akiyoshi; Ishino, Shiori

    2005-01-01

    Reactor pressure vessel (RPV) steels of life-extended light water reactors are to be exposed to higher neutron fluence. The understanding of radiation embrittlement of RPV steels is very important in order to improve prediction of the embrittlement. The radiation embrittlement is mainly cased by copper-enriched cluster (CEC) and matrix damage (MD) due to irradiation. The state-or-the art technique such as three dimensional atom probe (3DAP) and positron annihilation (PA) has enabled to observe these microstructural features. The effect of highly dose irradiation on the formation of clusters in a low copper base metal and a high copper weld metal is investigated by means of the 3DAP and PA observations in this paper. The materials were irradiated to a neutron fluence of 10 20 n/cm 2 at 290 degC in a test reactor. The 3DAP observation shows that high dense CRCs in size of about 2 nm are formed in the high Cu weld metal. The CRCs consist of Si in addition to Fe, Cu, Mn, and Ni. Solute atom clusters below 2 nm are also observed in low Cu base metal, but the clusters include a large amount of Si and free from Cu. These clusters may be peculiar to highly irradiated materials because of no literature reporting such the clusters in the similar steels irradiated at the lower fluence. The data of the positron annihilation coincidence Doppler broadening measurement for both materials also shows the formation of clusters containing Cu, Ni, Mn, and Si. This means the clusters observed by 3DAP are uniformly distributed in the materials. Hardness tests and PA measurement combined with isochronal annealing show that defects, e.g. dislocation loop etc., having a positron lifetime of about 140 psec influence on mechanical properties of the steels. (author)

  18. Transient engraftment of syngeneic bone marrow after conditioning with high-dose cyclophosphamide and thoracoabdominal irradiation in a patient with aplastic anemia

    International Nuclear Information System (INIS)

    Matsue, K.; Niki, T.; Shiobara, S.; Ueda, M.; Ohtake, S.; Mori, T.; Matsuda, T.; Harada, M.

    1990-01-01

    We describe the clinical course of a 16 year old girl with aplastic anemia who was treated by syngeneic bone marrow transplantation. Engraftment was not obtained by simple infusion of bone marrow without immunosuppression. The patient received a high-dose cyclophosphamide and thoracoabdominal irradiation, followed by second marrow transplantation from the same donor. Incomplete but significant hematologic recovery was observed; however, marrow failure recurred 5 months after transplantation. Since donor and recipient pairs were genotypically identical, graft failure could not be attributed to immunological reactivity of recipient cells to donor non-HLA antigens. This case report implies that graft failure in some cases of aplastic anemia might be mediated by inhibitory cells resistant to cyclophosphamide and irradiation

  19. Dose survival of G0 lymphocytes irradiated in vitro: A test for a possible population bias in the cohort of atomic-bomb survivors exposed to high doses

    International Nuclear Information System (INIS)

    Nakamura, Nori; Sposto, R.; Akiyama, Mitoshi.

    1993-04-01

    An in-vitro colony assay was employed for X-ray dose-survival studies of peripheral-blood lymphocytes from 117 Adult Health Study participants with Dosimetry System 1986 doses 10 values (the X-ray dose required to kill 90% of cells) for these two groups were 3.40 Gy (7.5%) and 3.34 Gy (7.8%), respectively. No statistically significant differences in their distributions were detected. In addition, neither sex nor age affected the in-vitro radiosensitivity of lymphocytes for either group or for all subjects combined. Therefore it was concluded that, as far as the G 0 -lymphocyte colony assay is concerned, there is no evidence for preferential loss of individuals with higher cellular radiosensitivity among the high-dose atomic bomb survivors. However, it should be noted that the interindividual variations in cellular radiosensitivity were not large compared with the experimental variations. Consequently, the above-mentioned results should be considered due to the small heterogeneity of lymphocyte radiosensitivity among the survivors. (J.P.N.)

  20. Dose measurement method suitable for management of food irradiation

    International Nuclear Information System (INIS)

    Tanaka, Ryuichi

    1990-01-01

    The report describes major features of dose measurement performed for the management of food irradiation processes, and dose measuring methods suitable for this purpose, and outlines some activities for establishing international standards for dose measurement. Traceability studies made recently are also reviewed. Compared with the sterilization of medical materials, food irradiation is different in some major points from a viewpoint of dose measurement: foods can undergo significant changes in bulk density, depending on its properties, during irradiation, and the variation in the uniformity of bulk density can be large within an irradiation unit and among different units. An accurate dosimeter and well-established traceability are essential for food irradiation control, and basically a dosimeter should be high in reproducibility and stable in dose response, and should be easy to readjust for eliminating systematic errors. A new type of dosimeter was developed recently, in which ESR is used to measure the free radicals generated by radiations in crystals of alanine, an amino acid. Standardization of large dose measurement procedures has been carried out by committee E10 set up under ASTM. (N.K.)

  1. Study on cellular survival adaptive response induced by low dose irradiation of 153Sm

    International Nuclear Information System (INIS)

    Zhu Shoupeng; Xiao Dong

    1999-01-01

    The present study engages in determining whether low dose irradiation of 153 Sm could cut down the responsiveness of cellular survival to subsequent high dose exposure of 153 Sm so as to make an inquiry into approach the protective action of adaptive response by second irradiation of 153 Sm. Experimental results indicate that for inductive low dose of radionuclide 153 Sm 3.7 kBq/ml irradiated beforehand to cells has obvious resistant effect in succession after high dose irradiation of 153 Sm 3.7 x 10 2 kBq/ml was observed. Cells exposed to low dose irradiation of 153 Sm become adapted and therefore the subsequent cellular survival rate induced by high dose of 153 Sm is sufficiently higher than high dose of 153 Sm merely. It is evident that cellular survival adaptive response could be induced by pure low dose irradiation of 153 Sm only

  2. Results of Hematopoietic Stem Cell Transplantation After Treatment With Different High-Dose Total-Body Irradiation Regimens in Five Dutch Centers

    International Nuclear Information System (INIS)

    Loes van Kempen-Harteveld, M.; Brand, Ronald; Kal, Henk B.; Verdonck, Leo F.; Hofman, Pieter; Schattenberg, Anton V.; Maazen, Richard W. van der; Cornelissen, Jan J.; Eijkenboom, Wil M.H.; Lelie, Johannes P. van der; Oldenburger, Foppe; Barge, Renee M.; Biezen, Anja van; Vossen, Jaak M.J.J.; Noordijk, Evert M.; Struikmans, Henk

    2008-01-01

    Purpose: To evaluate results of high-dose total-body irradiation (TBI) regimens for hematopoietic stem cell transplantation. Methods and Materials: A total of 1,032 patients underwent TBI in one or two fractions before autologous or allogeneic hematologic stem cell transplantation for acute leukemia and non-Hodgkin's lymphoma. The TBI regimens were normalized by using the biological effective dose (BED) concept. The BED values were divided into three dose groups. Study end points were relapse incidence (RI), non-relapse mortality (NRM), relapse-free survival (RFS), and overall survival (OS). Multivariate analysis was performed, stratified by disease. Results: In the highest TBI dose group, RI was significantly lower and NRM was higher vs. the lower dose groups. However, a significant influence on RFS and OS was not found. Relapses in the eye region were found only after shielding to very low doses. Age was of significant influence on OS, RFS, and NRM in favor of younger patients. The NRM of patients older than 40 years significantly increased, and OS decreased. There was no influence of age on RI. Men had better OS and RFS and lower NRM. Type of transplantation significantly influenced RI and NRM for patients with acute leukemia and non-Hodgkin's lymphoma. There was no influence on RFS and OS. Conclusions: Both RI and NRM were significantly influenced by the size of the BED of single-dose or two-fraction TBI regimens; OS and RFS were not. Age was of highly significant influence on NRM, but there was no influence of age on RI. Hyperfractionated TBI with a high BED might be useful, assuming NRM can be reduced

  3. High activity gamma irradiators developed in Hungary

    International Nuclear Information System (INIS)

    Stenger, V.

    1997-01-01

    The development of high activity Gamma irradiators began in Hungary already in the early years of 60s. The very first designs were serving research in irradiation chemistry, radiation physics, food and agricultural research, radiation sterilization, plastic radiation chemistry, radiobiology, cancer therapy, personal and high dose dosimetry, following the international trends. Domestic and new international demands forced us to design and construct High Activity Gamma Irradiators: Multipurpose Pilot, Portable and Large scale bulk, Multipurpose Industrial scale types

  4. Ultra-rapid high dose irradiation schedules for the palliation of brain metastases: final results of the first two studies by the radiation therapy oncology group

    International Nuclear Information System (INIS)

    Borgelt, B.; Gelber, R.; Larson, M.; Hendrickson, F.; Griffin, T.; Rother, R.

    1981-01-01

    Between January, 1971, and February, 1976, the Radiation Therapy Oncology Group entered 1902 evaluable patients into two sequential Phase III national cooperative trials to study the effectiveness of different time dose radiotherapy schemes on the palliation of patients with brain metastases. Each trial included an optional arm into which patients were randomized to receive 1000 rad/1 fraction (26 patients, First study) or 1200 rad/2 fractions (33 patients, Second study). Comparisons were made with 143 control patients randomized by the same participating institutions to receive a more protracted course of irradiation (2000, 3000 or 4000 rad/1-4wks). Response of patients receiving ultra-rapid treatment, as assessed by the percent who had improvement in neurologic function, was comparable to that of patients receiving the more protracted schedules. Promptness of neurologic function improvement, treatment morbidity and median survival were also comparable to those of patients receiving 2000 to 4000 rad. However, the duration of improvement, time to progression of neurologic status and rate of complete disappearance of neurologic symptoms were generally less for those patients who received 1000 or 1200 rad. These results suggest that ultra-rapid, high dose irradiation schedules may not be so effective as higher dose schedules in the palliation of patients with brain metastases

  5. The irradiation tolerance dose of the proximal vagina

    International Nuclear Information System (INIS)

    Au, Samuel P.; Grigsby, Perry W.

    2003-01-01

    Purpose: The purpose of this investigation was to determine the irradiation tolerance level and complication rates of the proximal vagina to combined external irradiation and low dose rate (LDR) brachytherapy. Also, the mucosal tolerance for fractionated high dose rate (HDR) brachytherapy is further projected based on the biological equivalent dose (BED) of LDR for an acceptable complication rate. Materials and methods: Two hundred seventy-four patients with stages I-IV cervical carcinoma treated with irradiation therapy alone from 1987 to 1997 were retrospectively reviewed for radiation-associated late sequelae of the proximal vagina. All patients received LDR brachytherapy and 95% also received external pelvic irradiation. Follow-up ranged from 15 to 126 months (median, 43 months). The proximal vagina mucosa dose from a single ovoid (single source) or from both ovoids plus the tandem (all sources), together with the external irradiation dose, were used to derive the probability of a complication using the maximum likelihood logistic regression technique. The BED based on the linear-quadratic model was used to compute the corresponding tolerance levels for LDR or HDR brachytherapy. Results: Grades 1 and 2 complications occurred in 10.6% of patients and Grade 3 complications occurred in 3.6%. There were no Grade 4 complications. Complications occurred from 3 to 71 months (median, 7 months) after completion of irradiation, with over 60% occurring in the first year. By logistic regression analysis, both the mucosal dose from a single ovoid or that from all sources, combined with the external irradiation dose, demonstrate a statistically significant fit to the dose response complication curves (both with P=0.016). The single source dose was highly correlated with the all source dose with a cross-correlation coefficient 0.93. The all source dose was approximately 1.4 times the single source dose. Over the LDR brachytherapy dose rate range, the complication rate was

  6. TU-F-CAMPUS-T-01: Dose and Energy Spectra From Neutron Induced Radioactivity in Medical Linear Accelerators Following High Energy Total Body Irradiation

    International Nuclear Information System (INIS)

    Keehan, S; Taylor, M; Franich, R; Smith, R; Dunn, L; Kron, T

    2015-01-01

    Purpose: To assess the risk posed by neutron induced activation of components in medical linear accelerators (linacs) following the delivery of high monitor unit 18 MV photon beams such as used in TBI. Methods: Gamma spectroscopy was used to identify radioisotopes produced in components of a Varian 21EX and an Elekta Synergy following delivery of photon beams. Dose and risk estimates for TBI were assessed using dose deliveries from an actual patient treatment. A 1 litre spherical ion chamber (PTW, Germany) has been used to measure the dose at the beam exit window and at the total body irradiation (TBI) treatment couch following large and small field beams with long beam-on times. Measurements were also made outside of the closed jaws to quantify the benefit of the attenuation provided by the jaws. Results: The radioisotopes produced in the linac head have been identified as 187 W, 56 Mn, 24 Na and 28 Al, which have half-lives from between 2.3 min to 24 hours. The dose at the beam exit window following an 18 MV 2197 MU TBI beam delivery was 12.6 µSv in ten minutes. The dose rate at the TBI treatment couch 4.8 m away is a factor of ten lower. For a typical TBI delivered in six fractions each consisting of four beams and an annual patient load of 24, the annual dose estimate for a staff member at the treatment couch for ten minutes is 750 µSv. This can be further reduced by a factor of about twelve if the jaws are closed before entering the room, resulting in a dose estimate of 65 µSv. Conclusion: The dose resulting from the activation products for a representative TBI workload at our clinic of 24 patients per year is 750 µSv, which can be further reduced to 65 µSv by closing the jaws

  7. Threshold irradiation dose for amorphization of silicon carbide

    International Nuclear Information System (INIS)

    Snead, L.L.; Zinkle, S.J.

    1997-01-01

    The amorphization of silicon carbide due to ion and electron irradiation is reviewed with emphasis on the temperature-dependent critical dose for amorphization. The effect of ion mass and energy on the threshold dose for amorphization is summarized, showing only a weak dependence near room temperature. Results are presented for 0.56 MeV silicon ions implanted into single crystal 6H-SiC as a function of temperature and ion dose. From this, the critical dose for amorphization is found as a function of temperature at depths well separated from the implanted ion region. Results are compared with published data generated using electrons and xenon ions as the irradiating species. High resolution TEM analysis is presented for the Si ion series showing the evolution of elongated amorphous islands oriented such that their major axis is parallel to the free surface. This suggests that surface or strain effects may be influencing the apparent amorphization threshold. Finally, a model for the temperature threshold for amorphization is described using the Si ion irradiation flux and the fitted interstitial migration energy which was found to be ∼0.56eV. This model successfully explains the difference in the temperature dependent amorphization behavior of SiC irradiated with 0.56 MeV Si + at 1 x 10 -3 dpa/s and with fission neutrons irradiated at 1 x 10 -6 dpa/s irradiated to 15 dpa in the temperature range of ∼340±10K

  8. Threshold irradiation dose for amorphization of silicon carbide

    International Nuclear Information System (INIS)

    Snead, L.L.; Zinkle, S.J.

    1997-01-01

    The amorphization of silicon carbide due to ion and electron irradiation is reviewed with emphasis on the temperature-dependent critical dose for amorphization. The effect of ion mass and energy on the threshold dose for amorphization is summarized, showing only a weak dependence near room temperature. Results are presented for 0.56 MeV silicon ions implanted into single crystal 6H-SiC as a function of temperature and ion dose. From this, the critical dose for amorphization is found as a function of temperature at depths well separated from the implanted ion region. Results are compared with published data generated using electrons and xenon ions as the irradiating species. High resolution TEM analysis is presented for the Si ion series showing the evolution of elongated amorphous islands oriented such that their major axis is parallel to the free surface. This suggests that surface of strain effects may be influencing the apparent amorphization threshold. Finally, a model for the temperature threshold for amorphization is described using the Si ion irradiation flux and the fitted interstitial migration energy which was found to be ∼0.56 eV. This model successfully explains the difference in the temperature-dependent amorphization behavior of SiC irradiated with 0.56 MeV silicon ions at 1 x 10 -3 dpa/s and with fission neutrons irradiated at 1 x 10 -6 dpa/s irradiated to 15 dpa in the temperature range of ∼340 ± 10K

  9. Modifying effect of low dose irradiation

    International Nuclear Information System (INIS)

    Kalendo, G.S.

    1989-01-01

    It is shown that irradiation of Hela cells with stimulating doses of 0,1 Gy changes the cells' response to the subsequent radiation effect of greater value: instead of DNA synthesis inhibition stimulation takes place. Modifying effect of preliminary irradiation with 0,1 Gy manifests it self only in case if there is a certain time interval not less than 3 minutes and not more than 10 minutes (3-5 minutes is optimal interval). Data on modifying effect with 0,1 Gy at subcellular and cellular-population levels are presented. 21 refs.; 6 figs

  10. Analysis of FT-IR for dosimetric characterization of poly(vinylidene fluoride - hexafluoropropylene) irradiated with high doses of gamma radiation

    International Nuclear Information System (INIS)

    Liz, Otavio Souza Rocha; Medeiros, Adriana de Souza

    2011-01-01

    Polymeric materials when exposed to ionizing radiation undergo changes such as the crosslinking and chain oxidation. Recently, the optical absorption intensities in the ultraviolet visible region (273 nm) due to radio- induction of conjugated C=C bonds in P(VDF-TrFE) copolymers has been successfully used for high dose dosimetry purposes in gamma fields ranging from 0.1 to 200 kGy. In this context, the interest of performing a systematic investigation on another fluorinated copolymer of PVDF, the (Polyvinylidene fluoride - hexa fluoro propylene) [P(VDF- HFP)] has come to light, not only for UV-VIS range but also for the near and medium infrared ranges. In this investigation FTIR and UV-Vis spectra, acquired before and after irradiation, were used to investigate the relationship between optical absorbance and delivered gamma doses ranging from 100 to 3,000 kGy. The results indicate that the absorption band at 1729 cm-1, originated by the chain oxidation through the radioinduction of C=O bonds, presents an unambiguous behavior with the delivered gamma doses in a very large extension, ranging from 0 to 1,000 kGy. This results lead to conclude that P(VDF-HFP) copolymer shows excellent dosimetric properties which make it able to be investigated as a high dose dosimeter

  11. Comparison of responses of thermoluminescent dosemeters irradiated by soft x-rays at very low and very high dose rate levels

    International Nuclear Information System (INIS)

    Pietrikova-Farnikova, M.; Krasa, J.; Juha, L.

    1994-01-01

    Recent great progress in construction and application of bright sources of soft X-rays gave a strong impetus for the development of methods of their dosimetric diagnostics. The soft X-ray sources are primarily represented by synchrotron radiation sources and by sources based on laser-produced plasma, including X-ray lasers. Their characteristics spread over a very wide region of photon energies, peak and average powers and densities. From our preliminary experiments it follows that thermoluminescent dosemeters can serve as a suitable tool for the determination of these characteristics. Problem lies in the fact that routine use of the thermoluminescent dosemeters for the dosimetry of soft X-rays requires their spectral calibration, which can be carried out with low peak power sources (synchrotron radiation and radionuclide sources). On the contrary, many important sources, especially these based on laser-produced plasmas, exhibit a very high peak power, i.e. dosemeters are irradiated at extremely high dose rate. In comparative experiments carried out with laser-produced plasmas and radionuclides using TLD 200 (CaF 2 :Dy) and GR 200A (LiF:Mg,Cu,P) it was satisfactorily proven that total thermoluminescent signals are independent of the dose rate. Dependence of glow curve shapes on the dose, dose rate and photon energy were equally determined

  12. Conditioned instrumental behaviour in the rat: Effects of prenatal irradiation with various low dose-rate doses

    International Nuclear Information System (INIS)

    Klug, H.

    1986-01-01

    4 groups of rats of the Wistar-strain were subjected to γ-irradiation on the 16th day of gestation. 5 rats received 0,6 Gy low dose rate irradiation, 5 animals received 0,9 Gy low dose and 6 high dose irradiation, 3 females were shamirradiated. The male offspring of these 3 irradiation groups and 1 control group were tested for locomotor coordination on parallel bars and in a water maze. The female offspring were used in an operant conditioning test. The locomotor test showed slight impairment of locomotor coordination in those animals irradiated with 0,9 Gy high dose rate. Swimming ability was significantly impaired by irradiation with 0,9 Gy high dose rate. Performance in the operant conditioning task was improved by irradiation with 0,9 Gy both low and high dose rate. The 0,9 Gy high dose rate group learned faster than all the other groups. For the dose of 0,9 Gy a significant dose rate effect could be observed. For the dose of 0,6 Gy a similar tendency was observed, differences between 0,6 Gy high and low dose rate and controls not being significant. (orig./MG) [de

  13. Biological changes in experimental animals after irradiation with sublethal doses

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Dae Seong; Park, Yong Dae; Jin, Chang Hyun; Byun, Myung Woo; Jeong, Il Yun [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2008-05-15

    The objective of the present study was to investigate general clinical aspects such as weekly body weight and blood changes, and weekly food intake in gamma-irradiated C57BL/6j male mice fed AIN-76A purified rodent diet for 14 weeks. The mice were whole-body irradiated with 0, 2, 4 and 6 Gy of gamma-rays (Gammacell 40 Exactor, {sup 137}Cs, MDS Nordion) at a dose rate of 1.8 {sub c}Gy per second. The mean body weight change of 6 Gy-irradiated mice significantly decreased when compared to that of the non-irradiated control mice. Moreover, high dose of radiation resulted in decreased levels of AST, ALT, but in increased levels of total cholersterol, triglyceride, HDL-C in mice.

  14. In Vivo Imaging Reveals Significant Tumor Vascular Dysfunction and Increased Tumor Hypoxia-Inducible Factor-1α Expression Induced by High Single-Dose Irradiation in a Pancreatic Tumor Model

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Azusa [Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Chen, Yonghong; Bu, Jiachuan; Mujcic, Hilda [Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Wouters, Bradly G. [Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); DaCosta, Ralph S., E-mail: rdacosta@uhnres.utoronto.ca [Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Techna Institute, University Health Network, Toronto, Ontario (Canada)

    2017-01-01

    Purpose: To investigate the effect of high-dose irradiation on pancreatic tumor vasculature and microenvironment using in vivo imaging techniques. Methods and Materials: A BxPC3 pancreatic tumor xenograft was established in a dorsal skinfold window chamber model and a subcutaneous hind leg model. Tumors were irradiated with a single dose of 4, 12, or 24 Gy. The dorsal skinfold window chamber model was used to assess tumor response, vascular function and permeability, platelet and leukocyte adhesion to the vascular endothelium, and tumor hypoxia for up to 14 days after 24-Gy irradiation. The hind leg model was used to monitor tumor size, hypoxia, and vascularity for up to 65 days after 24-Gy irradiation. Tumors were assessed histologically to validate in vivo observations. Results: In vivo fluorescence imaging revealed temporary vascular dysfunction in tumors irradiated with a single dose of 4 to 24 Gy, but most significantly with a single dose of 24 Gy. Vascular functional recovery was observed by 14 days after irradiation in a dose-dependent manner. Furthermore, irradiation with 24 Gy caused platelet and leukocyte adhesion to the vascular endothelium within hours to days after irradiation. Vascular permeability was significantly higher in irradiated tumors compared with nonirradiated controls 14 days after irradiation. This observation corresponded with increased expression of hypoxia-inducible factor-1α in irradiated tumors. In the hind leg model, irradiation with a single dose of 24 Gy led to tumor growth delay, followed by tumor regrowth. Conclusions: Irradiation of the BxPC3 tumors with a single dose of 24 Gy caused transient vascular dysfunction and increased expression of hypoxia-inducible factor-1α. Such biological changes may impact tumor response to high single-dose and hypofractionated irradiation, and further investigations are needed to better understand the clinical outcomes of stereotactic body radiation therapy.

  15. Application of accelerated evaluation method of alteration temperature and constant dose rate irradiation on bipolar linear regulator LM317

    International Nuclear Information System (INIS)

    Deng Wei; Wu Xue; Wang Xin; Zhang Jinxin; Zhang Xiaofu; Zheng Qiwen; Ma Wuying; Lu Wu; Guo Qi; He Chengfa

    2014-01-01

    With different irradiation methods including high dose rate irradiation, low dose rate irradiation, alteration temperature and constant dose rate irradiation, and US military standard constant high temperature and constant dose rate irradiation, the ionizing radiation responses of bipolar linear regulator LM317 from three different companies were investigated under the operating and zero biases. The results show that compared with constant high temperature and constant dose rate irradiation method, the alteration temperature and constant dose rate irradiation method can not only very rapidly and accurately evaluate the dose rate effect of three bipolar linear regulators, but also well simulate the damage of low dose rate irradiation. Experiment results make the alteration temperature and constant dose rate irradiation method successfully apply to bipolar linear regulator. (authors)

  16. Effects of intense abdominal irradiation at a high dose (1100 rd) on gastric secretion and apparent feed digestibility in swine

    International Nuclear Information System (INIS)

    Daburon, F.; Tricaud, Y.; Bourhoven, D.

    1980-01-01

    Gastric and pancreatic secretions were studied in 8 pigs irradiated at 1100 rd on the hind-half of the body. Irradiation always caused achlorhydria lasting at least 10 days. Recovery was partial and variable; rehabilitation or the persistence of anorexia closely depended on recovery. Stomachal mucosa response to gastrin stimulation was very disturbed. Impairment of the pancreatic endocrine function led to progressive diabetes; the exocrine function also seemed to decrease with the survival time

  17. Toxicity and efficacy of re-irradiation of high-grade glioma in a phase I dose- and volume escalation trial

    DEFF Research Database (Denmark)

    Møller, Søren; Munck Af Rosenschöld, Per; Costa, Junia

    2017-01-01

    .1-3.5) and the median overall survival was 7.0 months (95%CI: 3.5-10.5). Early side effects were mild and included headache and fatigue. Seven patients were progression-free beyond 10 weeks and were evaluable for late toxicity. Among these patients, three (43%) suffered late adverse events which included radionecrosis......INTRODUCTION: The purpose of this study was to evaluate the safety and efficacy of PET and MRI guided re-irradiation of recurrent high-grade glioma (HGG) and to assess the impact of radiotherapy dose, fractionation and irradiated volume. MATERIAL AND METHODS: Patients with localized, recurrent HGG...... (grades III-IV) and no other treatment options were eligible for a prospective phase I trial. Gross tumor volumes for radiotherapy were defined using T1-contrast enhanced MRI and (18)F-fluoro-ethyl tyrosine PET. Radiotherapy was delivered using volumetric modulated arc therapy with a 2-mm margin. The dose...

  18. The irradiation effects and processing dose for pet foods decontamination

    International Nuclear Information System (INIS)

    Zhu Jiating; Feng Min; Liu Chunquan; Zhao Yongfu; Jin Yudong; Ji Ping; Ha Yiming; Gao Meixu; Li Shurong; Wang Feng; Zhou Hongjie

    2009-01-01

    The applied dose range of irradiation processing of 4 kinds of pet foods had been studied. More than 92% microorganisms was inactive at the irradiation dose of 4 kGy, while more than 99% was inactive at 6 kGy. The microorganism load of irradiated pet food by 8 kGy met the requirement of national standards. The 10 kGy irradiation could sterilize the treated pet food. Salmonella had not been checked in irradiated or unirradiated samples. When irradiation dose ranged 4-10 kGy, there was no significant difference on contents of moisture, fat, protein, coarse fiber, carbohydrates, minerals (not including Calcium) or amino acids between irradiated and un-irradiated pet food. There was also no significant change on sensory quality of irradiated samples within this dose range. It is concluded that the recommended irradiation processing dose range for pet foods is 4-10 kGy. (authors)

  19. Absorbed dose to mice in prolonged irradiation by low-dose rate ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Shiragai, Akihiro [National Inst. of Radiological Sciences, Chiba (Japan); Saitou, Mikio; Kudo, Iwao [and others

    2000-07-01

    In this paper, the dose absorbed by mice was evaluated as a preliminary study of the late effects of prolonged continuous irradiation of mice with low-dose rate ionizing radiation. Eight-week-old male and female SPF C3H/HeN mice in three irradiation rooms were exposed to irradiation at 8000, 400, and 20 mGy, respectively, using a {sup 137}Cs {gamma}-source. Nine racks were arranged in a circle approximately 2.5 m from the source in each room, and 10 cages were arranged on the 4 shelves of each rack. Dose distributions, such as in air at the source level, in the three rooms were estimated by using ionization chambers, and the absorbed dose distributions in the room and relative dose distributions in the cages in relation to the distance of the cage center were examined. The mean abdomen doses of the mice measured by TLD were compared with the absorbed doses in the cages. The absorbed dose distributions showed not only inverse-inverse-square-law behavior with distance from the source, but geometric symmetry in every room. The inherent scattering and absorption in each room are responsible for such behavior and asymmetry. Comparison of relative dose distributions revealed cage positions that are not suitable for experiments with high precision doses, but all positions can be used for prolonged continuous irradiation experiments if the position of the cages is rotated regularly. The mean abdomen doses of the mice were similar in each cage. The mean abdomen doses of the mice and the absorbed doses in a cage were almost the same in all cages. Except for errors concerning the positions of the racks and cages, the uncertainties in the exposure doses were estimated to be about {+-}12% for 8000 mGy group, 17% for 400 mGy group, and 35% for 20 mGy group. (K.H.)

  20. Low dose irradiation facilitates hepatocellular carcinoma genesis involving HULC.

    Science.gov (United States)

    Li, Yuan; Ge, Chang; Feng, Guoxing; Xiao, Huiwen; Dong, Jiali; Zhu, Changchun; Jiang, Mian; Cui, Ming; Fan, Saijun

    2018-03-24

    Irradiation exposure positive correlates with tumor formation, such as breast cancer and lung cancer. However, whether low dose irradiation induces hepatocarcinogenesis and the underlying mechanism remain poorly defined. In the present study, we reported that low dose irradiation facilitated the proliferation of hepatocyte through up-regulating HULC in vitro and in vivo. Low dose irradiation exposure elevated HULC expression level in hepatocyte. Deletion of heightened HULC erased the cells growth accelerated following low dose irradiation exposure. CDKN1, the neighbor gene of HULC, was down-regulated by overexpression of HULC following low dose irradiation exposure via complementary base pairing, resulting in promoting cell cycle process. Thus, our findings provide new insights into the mechanism of low dose irradiation-induced hepatocarcinogenesis through HULC/CDKN1 signaling, and shed light on the potential risk of low dose irradiation for the development of hepatocellular carcinoma in pre-clinical settings. © 2018 Wiley Periodicals, Inc.

  1. Is high dose methotrexate without irradiation of the brain sufficiently effective in prevention of CNS disease in children with acute lymphoblastic leukemia?

    International Nuclear Information System (INIS)

    Cap, J.; Foltinova, A.; Kaiserova, E.; Mojzesova, A.; Sejnova, D.; Jamarik, M.

    1998-01-01

    We present 5-year results of treatment in 93 children suffering from acute lymphoblastic leukemia using two therapeutic protocols containing multidrug chemotherapy including high dose methotrexate. We could ascertain different results in standard and high risk patients. In a group of 62 children with standard risk we observed improvement in complete remission rate being 98.9% after induction phase of therapy, only one patient died on septicemia. Relapse rate in this group was 21.2% and that 14. 7% in the bone marrow and 6.5% in CNS and no testicular relapse at all. In the group of 31 children with high risk leukemia all patients achieved complete remission. Only one of them died on acute pancreatitis due to toxicity. Overall relapse rate in this group was 28.9% with 12.8% of medullary relapse and 16.1 % of CNS relapse. The last one was significantly higher than in the previous study when brain irradiation was a part of therapeutic procedure. It seems that this treatment is effective mainly in the standard risk leukemia, however, in the high risk leukemias this procedure appears to be less effective in preventing CNS leukemia. In this group of patients irradiation of the brain need to be enclosed in the therapy. (authors)

  2. Variations of dose distribution in high energy electron beams as a function of geometrical parameters of irradiation. Application to computer calculation

    International Nuclear Information System (INIS)

    Villeret, O.

    1985-04-01

    An algorithm is developed for the purpose of compter treatment planning of electron therapy. The method uses experimental absorbed dose distribution data in the irradiated medium for electron beams in the 8-20 MeV range delivered by the Sagittaire linear accelerator (study of central axis depth dose, beam profiles) in various geometrical conditions. Experimental verification of the computer program showed agreement with 2% between dose measurement and computer calculation [fr

  3. Results of high intensity afterloading irradiation with 192 iridium in the therapy of genital tumors in women under different dose rates, fractionations and total doses in comparison with conventional radium contact irradiation. Ergebnisse der High-Intensity-Afterloadingbestrahlung mit 192 Iridium in der Therapie von Genitaltumoren der Frau unter verschiedenen Dosisleistungen, Fraktionierungen und Gesamtdosen im Vergleich mit konventioneller Radiumkontaktbestrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Giers, G

    1986-05-07

    In comparison to conventional radium therapy are to be evaluated the results of the high intensity afterloading technique with the help of the parameters survial rate and complication rate. Thereby were included in the examination 4 documentations of results (collum, cervix stump, corpus and vaginal carcinoma) with altogether 742 patients with 2806 single irradiations and an evaluation of the therapy after several modifications of the therapy schemes. The 5-year survival rate was in the case of collum carcinoma: 68.4%, cervix stump: 50%, corpus carcinoma: 76%, and vaginal carcinoma: 66.6%. The corresponding 3-year survival rates were: 74.2%, 80%, 84% and 70% with primary irradiation. Only with cervix stump carcinoma were the values for post-operative irradiation. The description of the irradiation results showed, that with the changing of the fractionation mode and the dose level in collum and corpus carcinoma the irreversible complications as an expression of the success of a new therapy were reduced. The for now best suited therapy schema (fractionation and dosing) are described. (TRV).

  4. Fiber optics in high dose radiation fields

    International Nuclear Information System (INIS)

    Partin, J.K.

    1985-01-01

    A review of the behavior of state-of-the-art optical fiber waveguides in high dose (greater than or equal to 10 5 rad), steady state radiation fields is presented. The influence on radiation-induced transmission loss due to experimental parameters such as dose rate, total dose, irradiation history, temperature, wavelength, and light intensity, for future work in high dose environments are given

  5. Focal exposure of limited lung volumes to high-dose irradiation down-regulated organ development-related functions and up-regulated the immune response in mouse pulmonary tissues.

    Science.gov (United States)

    Kim, Bu-Yeo; Jin, Hee; Lee, Yoon-Jin; Kang, Ga-Young; Cho, Jaeho; Lee, Yun-Sil

    2016-01-27

    Despite the emergence of stereotactic body radiotherapy (SBRT) for treatment of medically inoperable early-stage non-small-cell lung cancer patients, the molecular effects of focal exposure of limited lung volumes to high-dose radiation have not been fully characterized. This study was designed to identify molecular changes induced by focal high-dose irradiation using a mouse model of SBRT. Central areas of the mouse left lung were focally-irradiated (3 mm in diameter) with a single high-dose of radiation (90 Gy). Temporal changes in gene expression in the irradiated and non-irradiated neighboring lung regions were analyzed by microarray. For comparison, the long-term effect (12 months) of 20 Gy radiation on a diffuse region of lung was also measured. The majority of genes were down-regulated in the focally-irradiated lung areas at 2 to 3 weeks after irradiation. This pattern of gene expression was clearly different than gene expression in the diffuse region of lungs exposed to low-dose radiation. Ontological and pathway analyses indicated these down-regulated genes were mainly associated with organ development. Although the number was small, genes that were up-regulated after focal irradiation were associated with immune-related functions. The temporal patterns of gene expression and the associated biological functions were also similar in non-irradiated neighboring lung regions, although statistical significance was greatly reduced when compared with those from focally-irradiated areas of the lung. From network analysis of temporally regulated genes, we identified inter-related modules associated with diverse functions, including organ development and the immune response, in both the focally-irradiated regions and non-irradiated neighboring lung regions. Focal exposure of lung tissue to high-dose radiation induced expression of genes associated with organ development and the immune response. This pattern of gene expression was also observed in non-irradiated

  6. Increased viability and resilience of haemolymph cells in blue mussels following pre-treatment with acute high-dose gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Jaeschke, B. [Stockholm University (Sweden)

    2014-07-01

    In an initial experiment, blue mussels (Mytilus edulis) were exposed to a range of acute high doses of gamma radiation in the laboratory. Haemolymph was extracted and the haemocytes (blood cells) were scored for cell viability (% living cells) under a microscope, directly after irradiation (0.04, 0.4 or 4 Gy) and again after a subsequent treatment with hydrogen peroxide in vitro (final H{sub 2}O{sub 2} conc.: 0.2 μM). Cell viability in controls (0 Gy) was approximately 100% and no cell death was observable from radiation exposure alone. When treated with H{sub 2}O{sub 2} a decrease in cell viability was seen across all treatments, however this decrease in viability was reduced with increasing radiation pre-treatment (0 Gy = 53%; 0.04 Gy = 66%; 0.4 Gy = 75%; 4 Gy = 83%). To investigate the mechanism for this therapeutic effect observed, the experiment was repeated. Using mussels from a different location, the same, but more extensive method of irradiation (0[control], 0.04, 0.4 Gy, 5 or 40 Gy) and H{sub 2}O{sub 2} treatment was used. Additional haemolymph sub-samples were taken for analysis of catalase concentration. In this second experiment, viability of cells from controls was only 62%, indicating the mussels were in a poorer condition than those of the previous experiment. The lowest level of radiation exposure (0.04 Gy) further decreased the viability (56%). However, at higher doses the viability was increased compared to control, which then gradually declined with increasing dose (0.4 Gy = 75%; 5 Gy = 72%; 40 Gy = 65%). Catalase analysis demonstrated a complimentary pattern of activity of the antioxidant in the haemolymph, directly correlating with radiation dose (0 Gy = 0.2 U; 0.04 Gy = 0.1 U; 0.4 Gy = 1.3 U; 5 Gy = 0.9 U; 40 Gy = 0.1 Gy). Treatment with H{sub 2}O{sub 2} decreased cell viability across all treatments, but no pattern between radiation treatments was discernable. The results indicate that an acute dose of radiation not only has negligible

  7. Clinical implementation of total skin electron irradiation treatment with a 6 MeV electron beam in high-dose total skin electron mode

    International Nuclear Information System (INIS)

    Lucero, J. F.; Rojas, J. I.

    2016-01-01

    Total skin electron irradiation (TSEI) is a special treatment technique offered by modern radiation oncology facilities, given for the treatment of mycosis fungoides, a rare skin disease, which is type of cutaneous T-cell lymphoma [1]. During treatment the patient’s entire skin is irradiated with a uniform dose. The aim of this work is to present implementation of total skin electron irradiation treatment using IAEA TRS-398 code of practice for absolute dosimetry and taking advantage of the use of radiochromic films.

  8. Clinical implementation of total skin electron irradiation treatment with a 6 MeV electron beam in high-dose total skin electron mode

    Energy Technology Data Exchange (ETDEWEB)

    Lucero, J. F., E-mail: fernando.lucero@hoperadiotherapy.com.gt [Universidad Nacional de Costa Rica, Heredia (Costa Rica); Hope International, Guatemala (Guatemala); Rojas, J. I., E-mail: isaac.rojas@siglo21.cr [Centro Médico Radioterapia Siglo XXI, San José (Costa Rica)

    2016-07-07

    Total skin electron irradiation (TSEI) is a special treatment technique offered by modern radiation oncology facilities, given for the treatment of mycosis fungoides, a rare skin disease, which is type of cutaneous T-cell lymphoma [1]. During treatment the patient’s entire skin is irradiated with a uniform dose. The aim of this work is to present implementation of total skin electron irradiation treatment using IAEA TRS-398 code of practice for absolute dosimetry and taking advantage of the use of radiochromic films.

  9. Indirect Tumor Cell Death After High-Dose Hypofractionated Irradiation: Implications for Stereotactic Body Radiation Therapy and Stereotactic Radiation Surgery

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chang W., E-mail: songx001@umn.edu [Department of Therapeutic Radiology-Radiation Oncology, University of Minnesota Medical School, Minneapolis, Minnesota (United States); Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Lee, Yoon-Jin [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Griffin, Robert J. [Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Park, Inhwan [Department of Therapeutic Radiology-Radiation Oncology, University of Minnesota Medical School, Minneapolis, Minnesota (United States); Koonce, Nathan A. [Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Hui, Susanta [Department of Therapeutic Radiology-Radiation Oncology, University of Minnesota Medical School, Minneapolis, Minnesota (United States); Kim, Mi-Sook [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Dusenbery, Kathryn E. [Department of Therapeutic Radiology-Radiation Oncology, University of Minnesota Medical School, Minneapolis, Minnesota (United States); Sperduto, Paul W. [Minneapolis Radiation Oncology and Gamma Knife Center, University of Minnesota, Minneapolis, Minnesota (United States); Cho, L. Chinsoo [Department of Therapeutic Radiology-Radiation Oncology, University of Minnesota Medical School, Minneapolis, Minnesota (United States)

    2015-09-01

    Purpose: The purpose of this study was to reveal the biological mechanisms underlying stereotactic body radiation therapy (SBRT) and stereotactic radiation surgery (SRS). Methods and Materials: FSaII fibrosarcomas grown subcutaneously in the hind limbs of C3H mice were irradiated with 10 to 30 Gy of X rays in a single fraction, and the clonogenic cell survival was determined with in vivo–in vitro excision assay immediately or 2 to 5 days after irradiation. The effects of radiation on the intratumor microenvironment were studied using immunohistochemical methods. Results: After cells were irradiated with 15 or 20 Gy, cell survival in FSaII tumors declined for 2 to 3 days and began to recover thereafter in some but not all tumors. After irradiation with 30 Gy, cell survival declined continuously for 5 days. Cell survival in some tumors 5 days after 20 to 30 Gy irradiation was 2 to 3 logs less than that immediately after irradiation. Irradiation with 20 Gy markedly reduced blood perfusion, upregulated HIF-1α, and increased carbonic anhydrase-9 expression, indicating that irradiation increased tumor hypoxia. In addition, expression of VEGF also increased in the tumor tissue after 20 Gy irradiation, probably due to the increase in HIF-1α activity. Conclusions: Irradiation of FSaII tumors with 15 to 30 Gy in a single dose caused dose-dependent secondary cell death, most likely by causing vascular damage accompanied by deterioration of intratumor microenvironment. Such indirect tumor cell death may play a crucial role in the control of human tumors with SBRT and SRS.

  10. Genistein protects against biomarkers of delayed lung sequelae in mice surviving high-dose total body irradiation

    International Nuclear Information System (INIS)

    Day, R.M.; Barshishat-Kupper, M.; Mog, S.R.; Mccart, E.A.; Prasanna, P.G.S.; Landauer, M.R.; Davis, T.A.

    2008-01-01

    The effects of genistein on 30-day survival and delayed lung injury were examined in C57BL/6J female mice. A single subcutaneous injection of vehicle (PEG-400) or genistein (200 mg/kg) was administered 24 h before total body irradiation (7.75 Gy 60 Co, 0.6 Gy/min). Experimental groups were: No treatment+Sham (NC), Vehicle+Sham (VC), Genistein+Sham (GC), Radiation only (NR), Vehicle+Radiation (VR), Genistein+Radiation (GR). Thirty-day survivals after 7.75 Gy were: NR 23%, VR 53%, and GR 92%, indicating significant protection from acute radiation injury by genistein. Genistein also mitigated radiation-induced weight loss on days 13-28 postirradiation. First generation lung fibroblasts were analyzed for micronuclei 24 h postirradiation. Fibroblasts from the lungs of GR-treated mice had significantly reduced micronuclei compared with NR mice. Collagen deposition was examined by histochemical staining. At 90 days postirradiation one half of the untreated and vehicle irradiated mice had focal distributions of small collagen-rich plaques in the lungs, whereas all of the genistein-treated animals had morphologically normal lungs. Radiation reduced the expression of COX-2, transforming growth factor-β receptor (TGFβR) I and II at 90 days after irradiation. Genistein prevented the reduction in TGFβRI. However, by 180 days postirradiation, these proteins normalized in all groups. These results demonstrate that genistein protects against acute radiation-induced mortality in female mice and that GR-treated mice have reduced lung damage compared to NR or VR. These data suggest that genistein is protective against a range of radiation injuries. (author)

  11. Genistein Protects Against Biomarkers of Delayed Lung Sequelae in Mice Surviving High-Dose Total Body Irradiation

    Science.gov (United States)

    DAY, Regina M.; BARSHISHAT-KUPPER, Michal; MOG, Steven R.; MCCART, Elizabeth A.; PRASANNA, P. G. S.; DAVIS, Thomas A.; LANDAUER, Michael R.

    2008-01-01

    The effects of genistein on 30-day survival and delayed lung injury were examined in C57BL/6J female mice. A single subcutaneous injection of vehicle (PEG-400) or genistein (200 mg/kg) was administered 24 h before total body irradiation (7.75 Gy 60Co, 0.6 Gy/min). Experimental groups were: No treatment + Sham (NC), Vehicle + Sham (VC), Genistein + Sham (GC), Radiation only (NR), Vehicle + Radiation (VR), Genistein + Radiation (GR). Thirty-day survivals after 7.75 Gy were: NR 23%, VR 53%, and GR 92%, indicating significant protection from acute radiation injury by genistein. Genistein also mitigated radiation-induced weight loss on days 13–28 postirradiation. First generation lung fibroblasts were analyzed for micronuclei 24 h postirradiation. Fibroblasts from the lungs of GR-treated mice had significantly reduced micronuclei compared with NR mice. Collagen deposition was examined by histochemical staining. At 90 days postirradiation one half of the untreated and vehicle irradiated mice had focal distributions of small collagen-rich plaques in the lungs, whereas all of the genistein-treated animals had morphologically normal lungs. Radiation reduced the expression of COX-2, transforming growth factor-β receptor (TGFβR) I and II at 90 days after irradiation. Genistein prevented the reduction in TGFβRI. However, by 180 days postirradiation, these proteins normalized in all groups. These results demonstrate that genistein protects against acute radiation-induced mortality in female mice and that GR-treated mice have reduced lung damage compared to NR or VR. These data suggest that genistein is protective against a range of radiation injuries. PMID:18434686

  12. Microstructural study of Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7-x}/Ag samples irradiated with {sup 60}Co {gamma} rays at high doses

    Energy Technology Data Exchange (ETDEWEB)

    Rangel, R [Programa de Postgrado en Fisica de Materiales, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Apartado Postal 2681, CP 22800, Ensenada, BC (Mexico); Galvan, D H [CECIMAC-UNAM, Apartado Postal 2681, CP 22800, Ensenada, BC (Mexico); Adem, E [Instituto de Fisica-UNAM, Apartado Postal 20-364, CP 01000, Mexico DF (Mexico); Bartolo-Perez, P [CINVESTAV-IPN Unidad Merida, Departamento de Fisica Aplicada, Merida, Yucatan (Mexico); Maple, M B [Physics Department and Institute for Pure and Applied Physical Sciences, La Jolla, CA (United States)

    1998-06-01

    We have investigated the damage induced by irradiation in Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7-x} silver added samples. The samples were prepared with 0 and 6.5 wt% of silver and irradiated by high-energy {gamma} irradiation (50-150 Mrad). The roles of silver and dosage irradiation are discussed in terms of their effects on microstructure, crystallinity, critical temperature (T{sub c}) and zero-resistance temperature (T{sub 0}). After irradiation, T{sub c} decreased while the room-temperature electrical resistance increased by a factor of 8 for some of the samples. The difference in T{sub 0} between irradiated and non-irradiated YBCO samples was of the order of 10 K. We have found that the difference is bigger for silver-added samples. We have also observed several changes in diffraction patterns of YBCO and YBCO-silver samples. SEM images, EDS and XPS analysis showed that silver resided inside the grains as single atoms and as metallic clusters. The relative concentrations of the elements in samples were quantified by Auger electron spectroscopy. The values showed a gradual increase for radiation doses ranging between 0 and 100 Mrad. For doses up to 100 Mrad, J{sub c} decreased because of the weak-link breakage induced by high doses of {gamma} rays. (author)

  13. Steep Dose-Response Relationship for Stage I Non-Small-Cell Lung Cancer Using Hypofractionated High-Dose Irradiation by Real-Time Tumor-Tracking Radiotherapy

    International Nuclear Information System (INIS)

    Onimaru, Rikiya; Fujino, Masaharu; Yamazaki, Koichi; Onodera, Yuya; Taguchi, Hiroshi; Katoh, Norio; Hommura, Fumihiro; Oizumi, Satoshi; Nishimura, Masaharu; Shirato, Hiroki

    2008-01-01

    Purpose: To investigate the clinical outcomes of patients with pathologically proven, peripherally located, Stage I non-small-cell lung cancer who had undergone stereotactic body radiotherapy using real-time tumor tracking radiotherapy during the developmental period. Methods and Materials: A total of 41 patients (25 with Stage T1 and 16 with Stage T2) were admitted to the study between February 2000 and June 2005. A 5-mm planning target volume margin was added to the clinical target volume determined with computed tomography at the end of the expiratory phase. The gating window ranged from ±2 to 3 mm. The dose fractionation schedule was 40 or 48 Gy in four fractions within 1 week. The dose was prescribed at the center of the planning target volume, giving more than an 80% dose at the planning target volume periphery. Results: For 28 patients treated with 48 Gy in four fractions, the overall actuarial survival rate at 3 years was 82% for those with Stage IA and 32% for those with Stage IB. For patients treated with 40 Gy in four fractions within 1 week, the overall actuarial survival rate at 3 years was 50% for those with Stage IA and 0% for those with Stage IB. A significant difference was found in local control between those with Stage IB who received 40 Gy vs. 48 Gy (p = 0.0015) but not in those with Stage IA (p = 0.5811). No serious radiation morbidity was observed with either dose schedule. Conclusion: The results of our study have shown that 48 Gy in four fractions within 1 week is a safe and effective treatment for peripherally located, Stage IA non-small-cell lung cancer. A steep dose-response curve between 40 and 48 Gy using a daily dose of 12 Gy delivered within 1 week was identified for Stage IB non-small-cell lung cancer in stereotactic body radiotherapy using real-time tumor tracking radiotherapy

  14. Threshold irradiation dose for amorphization of silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Snead, L.L.; Zinkle, S.J. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    The amorphization of silicon carbide due to ion and electron irradiation is reviewed with emphasis on the temperature-dependent critical dose for amorphization. The effect of ion mass and energy on the threshold dose for amorphization is summarized, showing only a weak dependence near room temperature. Results are presented for 0.56 MeV silicon ions implanted into single crystal 6H-SiC as a function of temperature and ion dose. From this, the critical dose for amorphization is found as a function of temperature at depths well separated from the implanted ion region. Results are compared with published data generated using electrons and xenon ions as the irradiating species. High resolution TEM analysis is presented for the Si ion series showing the evolution of elongated amorphous islands oriented such that their major axis is parallel to the free surface. This suggests that surface of strain effects may be influencing the apparent amorphization threshold. Finally, a model for the temperature threshold for amorphization is described using the Si ion irradiation flux and the fitted interstitial migration energy which was found to be {approximately}0.56 eV. This model successfully explains the difference in the temperature-dependent amorphization behavior of SiC irradiated with 0.56 MeV silicon ions at 1 x 10{sup {minus}3} dpa/s and with fission neutrons irradiated at 1 x 10{sup {minus}6} dpa/s irradiated to 15 dpa in the temperature range of {approximately}340 {+-} 10K.

  15. On the mechanism of vomiting in the primary reaction period following whole-body irradiation at high doses

    International Nuclear Information System (INIS)

    Martirosov, K.S.; Grigor'ev, Yu.G.; Zorin, V.V.; Norkin, I.M.

    1997-01-01

    In the experiments of dogs exposed to ionizing radiations at doses of 50 and 70 Gy, an essential role of the central mechanism in the origin of early postradiation vomiting has been confirmed. Insufficient efficiency of dimethpramide, a dophaminolytics, in this case may be connected either with initiation of other (non-dophaminosensitive) structures of the chemoreceptor trigger zone or with a growing role of the reflex way of vomiting arising due to a considerable intestinal injury that causes diarrhea. The inhibition of intestinal M-cholinoreceptors by methacine prevented diarrhea but didn't change the intensity of the vomiting reaction which, however, dose not eliminate the possibility of afferentation from receptors that respond to others biologically active substances. (author)

  16. Alteration of cellular and subcellular electrophysiological parameters in mammalian cells by high- and low-LET irradiation at low dose-levels. Part of a coordinated programme on cell membrane probes as biological indicators in radiation accidents

    International Nuclear Information System (INIS)

    Pohl-Rueling, J.

    1980-12-01

    The transmembrane resting potential (MRP) was chosen as a highly sensitive indicator for cellular reactions. The MRP was studied for its suitability as biological indicator of the level of accidental radiation exposure. The development of methodology and installation of a low-cost test chamber, and dose-response studies of MRP-changes of human cells after irradiation with low- and high-LET radiation were considered. Cultured human embryonic lung fibroblasts and human lung biopsy samples were used, with a Co-60 source for low-LET irradiation at dose rates of 2 rad and 20 rad/min, respectively. For high-LET irradiation an Am-241 source was used. The onset of radiation induced effects on cell membranes was prompt but of short duration. In general, full recovery followed within hours of irradiation, at least under the particular experimental conditions. MRP changes in irradiated cells proved a highly sensitive parameter for assessing radiation effects on cell membranes. It appears premature to draw conclusions on the suitability of the method as a biological indicator of radiation damage from accidental exposure, in view of the short duration and prompt reversibility of the effects, and an incomplete understanding of the radiation-induced reactions involved at different LET's and at different doses and dose-rates

  17. Comparison of stability of WSiX/SiC and Ni/SiC Schottky rectifiers to high dose gamma-ray irradiation

    International Nuclear Information System (INIS)

    Kim, Jihyun; Ren, F.; Chung, G.Y.; MacMillan, M.F.; Baca, A.G.; Briggs, R.D.; Schoenfeld, D.; Pearton, S.J.

    2004-01-01

    SiC Schottky rectifiers with moderate breakdown voltages of ∼450 V and with either WSi X or Ni rectifying contacts were irradiated with Co-60 γ-rays to doses up to ∼315 Mrad. The Ni/SiC rectifiers show severe reaction of the contact after irradiation at the highest dose, badly degrading the forward current characteristics and increasing the on-state resistance by up to a factor of 6 after irradiation. By sharp contrast, the WSi X /SiC devices show little deterioration of the contact with the same conditions and changes in on-state resistance of X contacts appear promising for applications requiring improved contact stability

  18. Long-term results of high-dose conformal radiotherapy for patients with medically inoperable T1-3N0 non-small-cell lung cancer: Is low incidence of regional failure due to incidental nodal irradiation?

    International Nuclear Information System (INIS)

    Chen Ming; Hayman, James A.; Haken, Randall K. ten; Tatro, Daniel; Fernando, Shaneli; Kong, F.-M.

    2006-01-01

    Purpose: To report the results of high-dose conformal irradiation and examine incidental nodal irradiation and nodal failure in patients with inoperable early-stage non-small-cell lung cancer (NSCLC). Methods and Materials: This analysis included patients with inoperable CT-staged T1-3N0M0 NSCLC treated on our prospective dose-escalation trial. Patients were treated with radiation alone (total dose, 63-102.9 Gy in 2.1-Gy daily fractions) with a three-dimensional conformal technique without intentional nodal irradiation. Bilateral highest mediastinal and upper/lower paratracheal, prevascular and retrotracheal, sub- and para-aortic, subcarinal, paraesophageal, and ipsilateral hilar regions were delineated individually. Nodal failure and doses of incidental irradiation were studied. Results: The potential median follow-up was 104 months. For patients who completed protocol treatment, median survival was 31 months. The actuarial overall survival rate was 86%, 61%, 43%, and 21% and the cause-specific survival rate was 89%, 70%, 53%, and 35% at 1, 2, 3, and 5 years, respectively. Weight loss (p = 0.008) and radiation dose in Gy (p = 0.013) were significantly associated with overall survival. In only 22% and 13% of patients examined did ipsilateral hilar and paratracheal (and subaortic for left-sided tumor) nodal regions receive a dose of ≥40 Gy, respectively. Less than 10% of all other nodal regions received a dose of ≥40 Gy. No patients failed initially at nodal sites. Conclusions: Radiation dose is positively associated with overall survival in patients with medically inoperable T1-3N0 NSCLC, though long-term results remain poor. The nodal failure rate is low and does not seem to be due to high-dose incidental irradiation

  19. Ionization chamber for high dose measurements

    International Nuclear Information System (INIS)

    Rodrigues Junior, Ary de Araujo

    2005-01-01

    Industrial gamma irradiators facilities are designed for processing large amounts of products, which are exposed to large doses of gamma radiation. The irradiation, in industrial scale, is usually carried out in a dynamic form, where the products go through a 60 Co gamma source with activity of TBq to P Bq (k Ci to MCi). The dose is estimated as being directly proportional to the time that the products spend to go through the source. However, in some situations, mainly for research purposes or for validation of customer process following the ISO 11137 requirements, it is required to irradiate small samples in a static position with fractional deliver doses. The samples are put inside the irradiation room at a fixed distance from the source and the dose is usually determined using dosimeters. The dose is only known after the irradiation, by reading the dosimeter. Nevertheless, in the industrial irradiators, usually different kinds of products with different densities go through between the source and the static position samples. So, the dose rate varies in function of the product density. A suitable methodology would be to monitor the samples dose in real time, measuring the dose on line with a radiation detector, which would improve the dose accuracy and avoid the overdose. A cylindrical ionization chamber of 0.9 cm 3 has been developed for high-doses real-time monitoring, during the sample irradiation at a static position in a 60 Co gamma industrial plant. Nitrogen and argon gas at pressure of 10 exp 5 Pa (1 bar) was utilized to fill the ionization chamber, for which an appropriate configuration was determined to be used as a detector for high-dose measurements. To transmit the signal generated in the ionization chamber to the associated electronic and processing unit, a 20 m mineral insulated cable was welded to the ionization chamber. The signal to noise ratio produced by the detector was about 100. The dosimeter system was tested at a category I gamma

  20. The researches on the effects of low doses irradiation

    International Nuclear Information System (INIS)

    2009-02-01

    All research conducted as part of 'Risc-Rad' and those conducted by actors in international programs on low doses allow progress in understanding mechanisms of carcinogenesis associated with irradiation. The data do not question the use in radiation protection, risk estimation models based on a linear increase of the risk with the dose of radiation. Nevertheless, they show that the nature of biological responses induced by low doses of radiation has differences with the responses induced by high doses of radiation. They also show the diversity of effects/dose relationships as the mechanism observed and the importance of genetic predisposition in the individual sensitivity to low doses of radiation. It is therefore essential to continue to bring new data to better understand the complex biological effects and their impact on the establishment of radiation protection standards. In addition, the results have often been at the cellular level. The diversity of responses induced by radiations is also a function of cell types observed, the aging of cells and tissue organization. It is essential to strengthen researches at the tissue and body level, involving in vitro and in vivo approaches while testing the hypothesis in epidemiology with a global approach to systems biology. Over the past four years, the collaboration between partners of 'Risc-Rad' using experimental biology approaches and those using mathematical modeling techniques aimed at developing a new model describing the carcinogenesis induced by low radiation doses. On an other hand, The High level expert group on European low dose risk research (H.L.E.G.) develop programmes in the area of low dose irradiation (Germany, Finland, France, Italy and United Kingdom). It proposed a structure of trans national government called M.E.L.O.D.I. ( multidisciplinary european low dose initiative). Its objective is to structure and integrate European research by gathering around a common programme of multidisciplinary

  1. Systemic response of Korean dark-striped field mice, Apodenmus agrarius coreae after high-dose- rate γ-irradiation: Organ weights, hemato-chemistry, apoptosis of splenocytes and sperm

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Kwang Hee; Choi, Hoon; Joo, Hyun Jin; Kim, Hee Sun [Radiation Health Research Institute, KHNP, Gyeongju (Korea, Republic of); Keum, Dong Kwon [Nuclear Environment Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-11-15

    Since the territory of the radio-contaminated area is in homeogenous in radiation level and spectrum, investigation of the genetical mutation process in the natural animal populations inhabiting the radioontaminated areas will be provide a realistic picture of genetic effects for radiation exposure. However, little is known about the basic data such as systemic responses after ionizing radiation exposures in wild small rodents. Taking into account different radio-sensitivity of dark-striped field mice (A. a. coreae, THOMAS), the objective of the study is focus on investigate the level of systemic responses, included organ weights, hemato-chemistry and apoptosis in splenocytes and sperm of caudal epididymis after high-dose-rate irradiation especially as a potential biological dosimeter in radio-ecology. Figure 1 summarizes the results of the apoptotic events in spleen (data not shown at here) and in sperm of caudal epididymis at 24hrs after a single high-dose-rate γ-irradiation. The results of apoptosis in spleen and sperm caused by exposure to different doses of γ-irradiation are displayed. The data show that the field striped mice after irradiated with more than high dose of 0.5 Gy induces an significantly increased apoptosis. Results also shown that for exposure to 0.5 Gy, the apoptosis of both organs ware decreased compared to those of other γ-irradiated mice.

  2. A new thermoplastic resin shell for immobilization of patients receiving high-dose-rate intracavitary irradiation for rectal cancer

    International Nuclear Information System (INIS)

    Kamikonya, Norihiko; Hishikawa, Yoshio; Kurisu, Koichi; Taniguchi, Midori; Miura, Takashi

    1990-01-01

    An adjustable immobilizing shell, made of thermoplastic resin (Kurare Shell Filter, KSL) was developed for stabilizing the source during radiotherapy. A piece of KSF was cut to about 15 x 30 cm in size. The KSF was heated at 70-80deg C to soften up. It was kept at room temperature until it cooled to 40deg C. A colonoscope was used to determine the source position in patients being in a left lateral position on the table of the simulator. A piece of KSF was then molded around the patient to fit it over the gluteofemoral region in conformity with the body curvature. The position of the anus was confirmed and marked on the KSF. A cold towel was applied to the shell to harden it rapidly. When the KSF became transparent and hard, it was detached from the patient. A hole was made to insert the outer tube of the radiation source. A cylinder for immobilizing the outer tube was attached. The outer tube of the radiation source was inserted into the patient lying in a left lateral position on the radiotherapy couch. The shell was placed over the outer tube and hold in position on the patient using an elastic tape. The inner tube with its dummy source was introduced into the outer tube, and the source position was fluoroscopically determined. The shell and the inner tube were immobilized with a tape and irradiation was commenced. The newly developed shell was clinically used in 5 patients. The movement of the source during radiotherapy was compared with that in 5 other patients not using the shell. There were no significant differences in irradiation time between the groups, The movement of the source per unit time varied between 0 and 0.13 with a mean of 0.05 in the shell group and 0.09 and 0.60 with a mean of 0.48 in the non-shell group, with statistically significant difference. (N.K.)

  3. Response of human fibroblasts to low dose rate gamma irradiation

    International Nuclear Information System (INIS)

    Dritschilo, A.; Brennan, T.; Weichselbaum, R.R.; Mossman, K.L.

    1984-01-01

    Cells from 11 human strains, including fibroblasts from patients with the genetic diseases of ataxia telangiectasia (AT), xeroderma pigmentosum (XP), and Fanconi's anemia (FA), were exposed to γ radiation at high (1.6-2.2 Gy/min) and at low (0.03-0.07 Gy/min) dose rates. Survival curves reveal an increase inthe terminal slope (D 0 ) when cells are irradiated at low dose rates compared to high dose rates. This was true for all cell lines tested, although the AT, FA, and XP cells are reported or postulated to have radiation repair deficiencies. From the response of these cells, it is apparent that radiation sensitivities differ; however, at low dose rate, all tested human cells are able to repair injury

  4. X-raying with low dose irradiation

    International Nuclear Information System (INIS)

    Malevich, E.E.; Kisel, E.M.; Shpita, I.D.; Lazovsky, A.S.

    2001-01-01

    With the purpose of the improvement of diagnostics quality and reduction of beam load on a patient in modern x-ray devices pulse x-raying is applied. It is based on the using of radiation pulses with various frequencies of intervals between them instead of continuous radiation. At pulse x-raying with the net control the principle of filling of an interval is used, when the information about the image, received with the last pulse, get into memory and is displayed before occurrence of other pulse. It creates impression of the continuous image even at low frequency of pulses. Due to the unique concept of the simultaneous (double) control, all of 3 parameters, which define the quality of the image (pressure(voltage), force of a current and length of a pulse), are adjusted automatically at each pulse, thus optimum adaptation to varied thickness of object during dynamic researches occurs. At x-raying pulse the presence of a free interval from x-ray radiation between two pulses results in the decrease of a radiation dose. Pulsing occurs some times per one second with equal intervals between pulses. Thus, the degree of decrease irradiation dose depends on duration of a pause between pulses. On the screen the image of last pulse before occurrence of the following is kept and repeats. The principle of x-raying pulse was realized in system Grid Controlled Fluoroscopy by the firm 'Philips Medi zin Systeme'. In the x-ray tube of this system inclusion and de energizing of radiation occurs directly on a source. Electron cloud is broken off by the special grid, which is located between the cathode and the anode and operates as a barrier. Thus the tube continues to be energized. In usual devices for pulses formation is used generator pulsation system, which at increase and attenuation of a x-ray pulse results in occurrence of the increasing and fading radiation which are not participating in the formation of the image, but creating beam load on the patient and the personnel. Thus

  5. Analytical dose modeling for preclinical proton irradiation of millimetric targets.

    Science.gov (United States)

    Vanstalle, Marie; Constanzo, Julie; Karakaya, Yusuf; Finck, Christian; Rousseau, Marc; Brasse, David

    2018-01-01

    Due to the considerable development of proton radiotherapy, several proton platforms have emerged to irradiate small animals in order to study the biological effectiveness of proton radiation. A dedicated analytical treatment planning tool was developed in this study to accurately calculate the delivered dose given the specific constraints imposed by the small dimensions of the irradiated areas. The treatment planning system (TPS) developed in this study is based on an analytical formulation of the Bragg peak and uses experimental range values of protons. The method was validated after comparison with experimental data from the literature and then compared to Monte Carlo simulations conducted using Geant4. Three examples of treatment planning, performed with phantoms made of water targets and bone-slab insert, were generated with the analytical formulation and Geant4. Each treatment planning was evaluated using dose-volume histograms and gamma index maps. We demonstrate the value of the analytical function for mouse irradiation, which requires a targeting accuracy of 0.1 mm. Using the appropriate database, the analytical modeling limits the errors caused by misestimating the stopping power. For example, 99% of a 1-mm tumor irradiated with a 24-MeV beam receives the prescribed dose. The analytical dose deviations from the prescribed dose remain within the dose tolerances stated by report 62 of the International Commission on Radiation Units and Measurements for all tested configurations. In addition, the gamma index maps show that the highly constrained targeting accuracy of 0.1 mm for mouse irradiation leads to a significant disagreement between Geant4 and the reference. This simulated treatment planning is nevertheless compatible with a targeting accuracy exceeding 0.2 mm, corresponding to rat and rabbit irradiations. Good dose accuracy for millimetric tumors is achieved with the analytical calculation used in this work. These volume sizes are typical in mouse

  6. Dose rate distribution for products irradiated in a semi-industrial irradiation plant. 1st stage

    International Nuclear Information System (INIS)

    Mangussi, J.

    2005-01-01

    The model of the bulk product absorbed dose rate distribution in a semi industrial irradiation plant is presented. In this plant the products are subject to a dynamic irradiation process: single-plaque, single-direction, four-passes. The additional two passes, also one on each side of the plaque, serve to minimize the lateral dose variation as well as the depth-dose non-uniformity. The first stage of this model takes only into account the direct absorbed dose rate; the model outputs are the depth-dose distribution and the lateral-dose distribution. The calculated absorbed dose in the bulk product and its uniformity-ratio after the dynamic irradiation process for different products is compared. The model results are in good agreement with the experimental measurements in a bulk of irradiated product; and the air absorbed dose rate in the irradiation chamber behind the product subject to the dynamic irradiation process. (author) [es

  7. Accelerated partial breast irradiation: An analysis of variables associated with late toxicity and long-term cosmetic outcome after high-dose-rate interstitial brachytherapy

    International Nuclear Information System (INIS)

    Wazer, David E.; Kaufman, Seth; Cuttino, Laurie; Di Petrillo, Thomas; Arthur, Douglas W.

    2006-01-01

    Purpose: To perform a detailed analysis of variables associated with late tissue effects of high-dose-rate (HDR) interstitial brachytherapy accelerated partial breast irradiation (APBI) in a large cohort of patients with prolonged follow-up. Methods and Materials: Beginning in 1995, 75 women with Stage I/II breast cancer were enrolled in identical institutional trials evaluating APBI as monotherapy after lumpectomy. Patients eligible included those with T1-2, N0-1 (≤3 nodes positive), M0 tumors of nonlobular histology with negative surgical margins, no extracapsular nodal extension, and negative results on postexcision mammogram. All patients underwent surgical excision and postoperative irradiation with HDR interstitial brachytherapy. The planning target volume was defined as the excision cavity plus a 2-cm margin. Treatment was delivered with a high-activity Ir-192 source at 3.4 Gy per fraction twice daily for 5 days to a total dose of 34 Gy. Dosimetric analyses were performed with three-dimensional postimplant dose and volume reconstructions. All patients were evaluated at 3-6-month intervals and assessed with a standardized cosmetic rating scale and according to Radiation Therapy Oncology Group late normal tissue toxicity scoring criteria. Clinical and therapy-related features were analyzed for their relationship to cosmetic outcome and toxicity rating. Clinical features analyzed included age, volume of resection, history of diabetes or hypertension, extent of axillary surgery, and systemic therapies. Therapy-related features analyzed included volume of tissue encompassed by the 100%, 150%, and 200% isodose lines (V100, V150, and V200, respectively), the dose homogeneity index (DHI), number of source dwell positions, and planar separation. Results: The median follow-up of all patients was 73 months (range, 43-118 months). The cosmetic outcome at last follow-up was rated as excellent, good, and fair/poor in 67%, 24%, and 9% of patients, respectively

  8. Ameliorative effects of low dose/low dose-rate irradiation on reactive oxygen species-related diseases model mice

    International Nuclear Information System (INIS)

    Nomura, Takaharu

    2008-01-01

    β-cells against superoxide generated by glycation reaction evoked by high glucose environment. Continuous irradiation at 0.63 mGy/hr from 28 days of age elongates life span, and recovers splenic inflammatory response in Klotho-mice bearing ageing syndrome. The radiation increases anti-oxidants in liver, implicating the prevention of ageing through the suppression of cellular oxidative damages. Our results suggest that low dose/low dose-rate radiation effectively ameliorates diseases related to reactive oxygen species, and elongates life span of animals, at least in part through the stimulation of protective responses against oxidative stress. These findings are important not only for clinical use of low dose/low dose-rate radiation for human diseases, but also for non-cancerous risk estimation at dose and dose rate range argued in legal restrictions. (author)

  9. Paint compositions for indicating irradiation dose

    International Nuclear Information System (INIS)

    Maruyama, T.; Murata, K.

    1975-01-01

    Paint compositions for indicating irradiation dose are prepared from chlorine-combined polyester, 5 to 30 percent by weight of a reductive discoloring substance or a mixture of said substances, and/or 0.005 to 2.0 percent by weight of a reducing dyestuff or a mixture of said dyestuffs, in which said chlorine-combined polyester is obtained by a chlorinated dibasic acid or its anhydride as an acid component or a part of an acid component selected from a group consisting of 3-chlorophthalic acid, 4-chlorophthalic acid, dichlorinated phthalic acid, tetrachlorophthalic acid, 1,4,5,6,7,7-hexachlorobicyclo-(2,2,1)-5-heptene-2,3-dicarboxylic acid, 4-chloro-4-cyclohexene-1,2-dicarboxylic acid and the anhydrides corresponding to said acids. (auth)

  10. Evaluation of dose to cardiac structures during breast irradiation

    DEFF Research Database (Denmark)

    Aznar, M C; Korreman, S-S; Pedersen, A N

    2011-01-01

    delivered to the heart and the LAD in respiration-adapted radiotherapy of patients with left-sided breast cancer. METHODS: 24 patients referred for adjuvant radiotherapy after breast-conserving surgery for left-sided lymph node positive breast cancer were evaluated. The whole heart, the arch of the LAD...... and the whole LAD were contoured. The radiation doses to all three cardiac structures were evaluated. RESULTS: For 13 patients, the plans were acceptable based on the criteria set for all 3 contours. For seven patients, the volume of heart irradiated was well below the set clinical threshold whereas a high dose...

  11. Pathological consequences of chronic low daily dose gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Seed, T.M.; Miller, A.C.; Ramakrishnan, N. [Armed Forces Radiobiology Research Inst., Bethesda, MD (United States); Fritz, T.E.

    2000-07-01

    The quantitative relationships between the chronic radiation exposure parameters of dose-rate and total dose in relation to associated health risks was examined in dogs. At a dose-rate of 75, 128, and 263 mGy/d the incidence of acute lymphohematopoietic suppression (aplastic anemia) and associated septic complications was 73%, 87%, and 100%, respectively, and it increased in dose-dependent manner. By contrast, at dose-rates below 75 mGy/d, late cancers contributed significantly to the death of relatively long-lived animals, whose mean survival time was 1800 days. Myeloproliferative disease (MPD), mainly myeloid leukemia, was the dominant pathology seen at the higher daily dose-rates (18.8-75 mGy/d). When daily exposure was carried out continuously, the incidence of MPD was quite high. It should be noted that the induction radiation-induced MPD in this study was highly significant, because spontaneous MPD is exceedingly rare in the dog. However, when the daily dose-rate was reduced further or exposure was discontinued, the incidence of MPD declined significantly. At these lower dose-rates, solid tumors contributed heavily to the life-shortening effects of chronic irradiation. The induction and progression of these survival-compromising, late forms of pathology appeared to be driven by the degree of hematopoietic suppression that occurred early during the exposure phase, and in turn by the capacity of hematopoietic system to repair itself, recover, and to accommodate under chronic radiation stress. (K.H.)

  12. Inactive Doses and Protein Concentration of Gamma Irradiated Yersinia Enterocolitica

    International Nuclear Information System (INIS)

    Irawan Sugoro; Sandra Hermanto

    2009-01-01

    Yersinia enterocolitica is one of bacteria which cause coliform mastitis in dairy cows. The bacteria could be inactivated by gamma irradiation as inactivated vaccine candidate. The experiment has been conducted to determine the inactive doses and the protein concentration of Yersinia enterocolitica Y3 which has been irradiated by gamma rays. The cells cultures were irradiated by gamma rays with doses of 0, 100, 200, 400, 600, 800, 1.000 and 1.500 Gy (doses rate was 1089,59 Gy/hours). The inactive dose was determined by the drop test method and the protein concentration of cells were determined by Lowry method. The results showed that the inactive doses occurred on 800 – 1500 Gy. The different irradiation doses of cell cultures showed the effect of gamma irradiation on the protein concentration that was random and has a significant effect on the protein concentration. (author)

  13. Treatment of aggressive multiple myeloma by high-dose chemotherapy and total body irradiation followed by blood stem cells autologous graft

    International Nuclear Information System (INIS)

    Fermand, J.P.; Levy, Y.; Gerota, J.; Benbunan, M.; Cosset, J.M.; Castaigne, S.; Seligmann, M.; Brouet, J.C.

    1989-01-01

    Eight patients with stage III aggressive multiple myeloma, refractory to current chemotherapy in six cases, were treated by high-dose chemotherapy (nitrosourea, etoposide, and melphalan) (HDC) and total body irradiation (TBI), followed by autografting with blood stem cells. These cells were previously collected by leukapheresis performed during hematologic recovery following cytotoxic drug-induced bone marrow aplasia. Seven patients were alive 9 to 17 months after HDC-TBI and graft. One died at day 40 from cerebral bleeding. All living patients achieved a 90% or greater reduction in tumor mass. In two cases, a complete remission (CR) has persisted at a follow-up of 15 and 16 months. Three patients have been well and off therapy with stable minimal residual disease (RD) since 10, 11, and 17 months, respectively. A patient in apparent CR and another with RD have relapsed 9 to 12 months posttreatment. Autologous blood-derived hematopoietic stem cells induced successful and sustained engraftment in all living patients. These results, although still preliminary, indicate that HDC and TBI, followed by blood stem cells autograft, which has both practical and theoretical interest over allogeneic or autologous bone marrow transplantation, deserve consideration in selected patients with multiple myeloma

  14. Microbiological quality and biogenic amines in ready-to-eat grilled chicken fillets under vacuum packing, freezing, and high-dose irradiation.

    Science.gov (United States)

    Baptista, R F; Lemos, M; Teixeira, C E; Vital, H C; Carneiro, C S; Mársico, E T; Conte Júnior, C A; Mano, S B

    2014-06-01

    The combined effects of cooking, vacuum packing, freezing, and high-dose gamma irradiation in the microbiological conservation and in biogenic amine (BA) contents of ready-to-eat grilled breast chicken fillets are investigated in this work. After seasoning, cooking, and vacuum packing, one-third of the samples were stored at -25°C (T1). The remaining two-thirds were treated with 48 kGy, one-third being stored at -25°C (T2) and the other one-third kept at room temperature (T3). All samples were periodically analyzed to determine growth of heterotrophic aerobic mesophilic bacteria (HAMB) and levels of BA (tyramine, TYM; putrescine, PUT; cadaverine, CAD; spermidine, SPD; histamine, HYM; and spermine, SPM). Variance analysis was performed to determine significant changes in the measured data. Grilling caused HAMB counts in seasoned samples to drop from 5.3 log cfu/g to zero. In addition, no viable HAMB cells were detected in the samples throughout the 12-mo storage time. Regarding the BA analyses, the highest mean levels were measured for SPM and CAD with significantly higher levels (P chicken breast fillets throughout the 12 mo of storage at room temperature. Poultry Science Association Inc.

  15. Dose-response of photographic emulsions under gamma irradiation

    International Nuclear Information System (INIS)

    Tran Dai Nghiep; Do Thi Nguyet Minh; Le Van Vinh

    2003-01-01

    Photographic emulsion is irradiated under gamma rays irradiation of 137 Cs in the IAEA/WHO secondary standard dosimetry laboratory. Dose-response of the film is established. The sensitivity of the film is determined. The dose-rate effect is studied. (author)

  16. Dose verification by OSLDs in the irradiation of cell cultures

    International Nuclear Information System (INIS)

    Meca C, E. A.; Bourel, V.; Notcovich, C.; Duran, H.

    2015-10-01

    The determination of value of irradiation dose presents difficulties when targets are irradiated located in regions where electronic equilibrium of charged particle is not reached, as in the case of irradiation -in vitro- of cell lines monolayer-cultured, in culture dishes or flasks covered with culture medium. The present study aimed to implement a methodology for dose verification in irradiation of cells in culture media by optically stimulated luminescence dosimetry (OSLD). For the determination of the absorbed dose in terms of cell proliferation OSL dosimeters of aluminum oxide doped with carbon (Al 2 O 3 :C) were used, which were calibrated to the irradiation conditions of culture medium and at doses that ranged from 0.1 to 15 Gy obtained with a linear accelerator of 6 MV photons. Intercomparison measurements were performed with an ionization chamber of 6 cm 3 . Different geometries were evaluated by varying the thicknesses of solid water, air and cell culture medium. The results showed deviations below 2.2% when compared with the obtained doses of OSLDs and planning system used. Also deviations were observed below 3.4% by eccentric points of the irradiation plane, finding homogeneous dose distribution. Uncertainty in the readings was less than 2%. The proposed methodology contributes a contribution in the dose verification in this type of irradiations, eliminating from the calculation uncertainties, potential errors in settling irradiation or possible equipment failure with which is radiating. It also provides certainty about the survival curves to be plotted with the experimental data. (Author)

  17. CONTRASTING DOSE-RATE EFFECTS OF GAMMA-IRRADIATION ON RAT SALIVARY-GLAND FUNCTION

    NARCIS (Netherlands)

    VISSINK, A; DOWN, JD; KONINGS, AWT

    The aim of this study was to investigate the effects of Co-60 irradiation delivered at high (HDR) and low (LDR) dose-rates on rat salivary gland function. Total-body irradiation (TBI; total doses 7.5, 10 and 12.5 Gy) was applied from a Co-60 source at dose-rates of 1 cGy/min (LDR) and 40 cGy/min

  18. Autologous stem cell transplantation following high-dose whole-body irradiation of dogs - influence of cell number and fractionation regimes

    International Nuclear Information System (INIS)

    Bodenberger, U.

    1981-01-01

    The acute radiation syndrome after a single dose of 1600 R (approx. 12-14 Gy in body midline) and after fractionated irradiation with 2400 R (approx. 18-20 Gy) was studied with regard to fractionation time and to the number of bone marrow cells infused. The acute radiation syndrome consisted of damage to the alimentary tract and of damage to the hemopoietic system. Damage of hemopoiesis was reversible in dogs which had been given a sufficient amount of hemopoietic cells. Furthermore changes in skin and in the mucous membranes occurred. Hemopoietic recovery following infusion of various amounts of bone marrow was investigated in dogs which were irradiated with 2400 R within 7 days. Repopulation of bone marrow as well as rise of leukocyte and platelet counts in the peripheral blood was taken as evidence of complete hemopoietic reconstitution. The results indicate that the acute radiation syndrom following 2400 R TBI and autologous BMT can be controlled by fractionation of this dose within 5 or 7 days. The acute gastrointestinal syndrome is aggravated by infusion of a lesser amount of hemopoietic cells. However, TBI with 2400 R does not require greater numbers of hemopoietic cells for restoration of hemopoiesis. Thus, the hemopoiesis supporting tissue can not be damage by this radiation dose to an essential degree. Longterm observations have not revealed serious late defects which could represent a contraindication to the treatment of malignent diseases with 2400 R of TBI. (orig./MG) [de

  19. NIST high-dose calibration services

    International Nuclear Information System (INIS)

    Humphreys, J.C.

    1989-01-01

    There is a need for the standardization of high-dose measurements used in the radiation-processing industry in order to provide assured traceability to national standards. NIST provides dosimetry calibration services to this industry. One of these services involves administration of known absorbed doses of gamma rays to customer-supplied dosimeters. The dosimeters are packaged to provide electron equilibrium conditions and are irradiated in a standard 60 Co calibration facility; this provides a calibration of that batch of dosimeters. Another service consists of supplying to a customer calibrated transfer dosimeters for irradiation with the customer's radiation source. The irradiated transfer dosimeters are then returned to NIST for analysis; the results are reported to the customer, providing a calibration of the dose rate of the customer's source. (orig.)

  20. Development of a dose simulation software for gamma irradiation systems

    International Nuclear Information System (INIS)

    Omi, Nelson Minoru

    2000-01-01

    The use of high temperature, thermal and chemical treatment are among the used sterilization process of food and many products. The ionizing radiation came as another option, it has being used for many purposes and it became available due to the technological development in the second half of the 20 th century. Together with sterilization, many uses of the ionizing radiation were developed, such as applications on health, industrial products and waste recycling, food irradiation, vulcanizing, polymerization and gems color enhancing. The 60 Co gamma stands out among the used radiation sources on commercial facilities. lt is used to optimize this process with many dose mapping tests. The objective of this work is to develop a software to simulate the doses in 60 Co gamma irradiation systems. lt can be used to optimize a process on the project stage of a facility and to make viability studies for new applications in installations already set up. The validation of this software was done comparing the simulation results with the dosimetry data of an operating irradiation plant. The flexibility of the software was verified with extra dosimetry tests performed in another sterilization facility. (author)

  1. Dosimetric systems of high dose, dose rate and dose uniformity in food and medical products

    International Nuclear Information System (INIS)

    Vargas, J.; Vivanco, M.; Castro, E.

    2014-08-01

    In the Instituto Peruano de Energia Nuclear (IPEN) we use the chemical dosimetry Astm-E-1026 Fricke as a standard dosimetric system of reference and different routine dosimetric systems of high doses, according to the applied doses to obtain the desired effects in the treated products and the doses range determined for each type of dosimeter. Fricke dosimetry is a chemical dosimeter in aqueous solution indicating the absorbed dose by means an increase in absorbance at a specific wavelength. A calibrated spectrophotometer with controlled temperature is used to measure absorbance. The adsorbed dose range should cover from 20 to 400 Gy, the Fricke solution is extremely sensitive to organic impurities, to traces of metal ions, in preparing chemical products of reactive grade must be used and the water purity is very important. Using the referential standard dosimetric system Fricke, was determined to March 5, 2013, using the referential standard dosimetric system Astm-1026 Fricke, were irradiated in triplicate Fricke dosimeters, to 5 irradiation times (20; 30; 40; 50 and 60 seconds) and by linear regression, the dose rate of 5.400648 kGy /h was determined in the central point of the irradiation chamber (irradiator Gamma cell 220 Excel), applying the decay formula, was compared with the obtained results by manufacturers by means the same dosimetric system in the year of its manufacture, being this to the date 5.44691 kGy /h, with an error rate of 0.85. After considering that the dosimetric solution responds to the results, we proceeded to the irradiation of a sample of 200 g of cereal instant food, 2 dosimeters were placed at the lateral ends of the central position to maximum dose and 2 dosimeters in upper and lower ends as minimum dose, they were applied same irradiation times; for statistical analysis, the maximum dose rate was 6.1006 kGy /h and the minimum dose rate of 5.2185 kGy /h; with a dose uniformity of 1.16. In medical material of micro pulverized bone for

  2. Integral dose and evaluation of irradiated tissue volume

    International Nuclear Information System (INIS)

    Sivachenko, T.P.; Kalina, V.K.; Belous, A.K.; Gaevskij, V.I.

    1984-01-01

    Two parameters having potentialities of radiotherapy planning improvement are under consideration. One of these two parameters in an integral dose. An efficiency of application of special tables for integral dose estimation is noted. These tables were developed by the Kiev Physician Improvement Institute and the Cybernetics Institute of the Ukrainian SSR Academy of Science. The meaning of the term of ''irradiated tissue volume'' is specified, and the method of calculation of the irradiated tissue effective mass is considered. It is possible to evaluate with higher accuracy tolerance doses taking into account the irradiated mass

  3. Swelling of spinel after low-dose neutron irradiation

    International Nuclear Information System (INIS)

    Coghlan, W.A.; Clinard, F.W. Jr.; Itoh, N.; Greenwood, L.R.

    1986-01-01

    Swelling was determined in samples of single-crystal MgAl 2 O 4 spinel, irradiated to doses as high as 8 x 10 22 n/m 2 (E > 0.1 MeV) at approx. =50 0 C in the Omega West Reactor. Swelling effectively saturated at approx. =2 x 10 22 n/m 2 which corresponds to a damage level of only approx. =2 x 10 -3 dpa. In addition subsequent measurements after irradiation have revealed that the samples continued swelling for several weeks. These results imply that irradiation defects begin to interact by recombination and aggregation at low damage levels in this material at 50 0 C and perhaps continue to cluster at room temperature after irradiation. Rate equations have been employed to determine defect concentrations at saturation. Results to date show that the observed swelling is consistent with the number of surviving defects if swelling per Frenkel defect pair is taken to be one atomic volume

  4. Defect evolution in a Ni−Mo−Cr−Fe alloy subjected to high-dose Kr ion irradiation at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, Massey de los [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, 2234 (Australia); Nuclear Fuel Cycle Royal Commission (NFCRC), 50 Grenfell Street Adelaide South Australia, 5000 (Australia); Voskoboinikov, Roman [The National Research Centre ‘Kurchatov Institute’, Kurchatov Sq 1, Moscow 123182 (Russian Federation); Kirk, Marquis A. [Nuclear Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Huang, Hefei [Shanghai Institute of Applied Physics, Chinese Academy of Science (CAS), 2019 Jialuo Road, Jiading District, Shanghai 201800 (China); Lumpkin, Greg [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, 2234 (Australia); Bhattacharyya, Dhriti, E-mail: dhriti.bhattacharyya@ansto.gov.au [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, 2234 (Australia)

    2016-06-15

    A candidate Ni−Mo−Cr−Fe alloy (GH3535) for application as a structural material in a molten salt nuclear reactor was irradiated with 1 MeV Kr{sup 2+} ions (723 K, max dose of 100 dpa) at the IVEM-Tandem facility. The evolution of defects like dislocation loops and vacancy- and self-interstitial clusters was examined in-situ. For obtaining a deeper insight into the true nature of these defects, the irradiated sample was further analysed under a TEM post-facto. The results show that there is a range of different types of defects formed under irradiation. Interaction of radiation defects with each other and with pre-existing defects, e.g., linear dislocations, leads to the formation of complex microstructures. Molecular dynamics simulations used to obtain a greater understanding of these defect transformations showed that the interaction between linear dislocations and radiation induced dislocation loops could form faulted structures that explain the fringed contrast of these defects observed in TEM.

  5. Dose rate and dose fractionation studies in total body irradiation of dogs

    International Nuclear Information System (INIS)

    Kolb, H.J.; Netzel, B.; Schaffer, E.; Kolb, H.

    1979-01-01

    Total body irradiation (TBI) with 800-900 rads and allogeneic bone marrow transplantation according to the regimen designated by the Seattle group has induced remissions in patients with otherwise refractory acute leukemias. Relapse of leukemia after bone marrow transplantation remains the major problem, when the Seattle set up of two opposing 60 Co-sources and a low dose rate is used in TBI. Studies in dogs with TBI at various dose rates confirmed observations in mice that gastrointestinal toxicity is unlike toxicity against hemopoietic stem cells and possibly also leukemic stem cells depending on the dose rate. However, following very high single doses (2400 R) and marrow infusion acute gastrointestinal toxicity was not prevented by the lowest dose rate studied (0.5 R/min). Fractionated TBI with fractions of 600 R in addition to 1200 R (1000 rads) permitted the application of total doses up to 300 R followed by marrow infusion without irreversible toxicity. 26 dogs given 2400-3000 R have been observed for presently up to 2 years with regard to delayed radiation toxicity. This toxicity was mild in dogs given single doses at a low dose rate or fractionated TBI. Fractionated TBI is presently evaluated with allogeneic transplants in the dog before being applied to leukemic patients

  6. A study on mice exposure dose for low-dose gamma-irradiation using glass dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sung Jin; Kim, Hyo Jin; Kim, Hyun; Jeong, Dong Hyeok; Son, Tae Gen; Kim, Jung Ki; Yang, Kwang Mo; Kang, Yeong Rok [Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan (Korea, Republic of); Nam, Sang Hee [Dept. of Biomedical Engineering, Inje University, Gimhae (Korea, Republic of)

    2015-12-15

    The low dose radiation is done for a long period, thus researchers have to know the exact dose distribution for the irradiated mouse. This research has been conducted in order to find out methods in transmitting an exact dose to mouse in a mouse irradiation experiment carried out using {sup 137}C{sub s} irradiation equipment installed in the DIRAMS (Dongnam Institution of Radiological and Medical Sciences) research center. We developed a single mouse housing cage and shelf with adjustable geometric factors such as distance and angle from collimator. The measurement of irradiated dose showed a maximal 42% difference of absorbed dose from the desired dose in the conventional irradiation system, whereas only 6% difference of the absorbed dose was measured in the self-developed mouse apartment system. In addition, multi mice housing showed much difference of the absorbed dose in between head and body, compared to single mouse housing in the conventional irradiation system. This research may allow further research about biological effect assessment for the low dose irradiation using the self-developed mouse apartment to provide more exact doses which it tries to transmit, and to have more reliability for the biological analysis results.

  7. Researches, development and characterization of dosimetric materials for monitoring in irradiation processes with high doses; Pesquisa, desenvolvimento e caracterizacao de materiais dosimetricos para monitoramento em processos de irradiacao com doses altas

    Energy Technology Data Exchange (ETDEWEB)

    Galante, Ana Maria Sisti

    2003-07-01

    Dosimetric materials that can be produced in Brazil with material acquired in the national market to replace the imported dosimeters used in radiation processing were developed in this work. Mixtures of potassium nitrate and sensitizers compounds as manganese dioxide, barium nitrate and potassium bromide were prepared in the pellet form. Dosimetric characteristics such as dose-response useful range, sensitivity, environmental conditions and dose rate influences were evaluated in {sup 60}Co gamma radiation fields. Dyed polymethylmethacrylate detectors were also produced and its dosimetric characteristics were evaluated. The main characteristics evaluated in this case were: dose response useful range sensitivity, environmental conditions, dose rate influences and radiation energy dependence in gamma radiation fields and accelerated electrons beam of 0.8 to 1.5 MeV. The applied analytic technique was spectrophotometry. The calibration was performed in the irradiation facilities belonging to IPEN and certified by the International Atomic Energy Agency by means of the program IDAS (International Dose Assurance Service ) using the Fricke dosimeter. The mixture of potassium nitrate and manganese dioxide presented the best results and a wide dose range between 200 and 600 kGy. The response of the developed polymethylmethacrylate detectors are similar to the imported detectors and the dose range is characteristic to each detector and depends on the dye added in its formulation. (author)

  8. Post-irradiation stability of polyvinyl chloride at sterilizing doses

    International Nuclear Information System (INIS)

    Naimian, F.; Katbab, A.A.; Nazokdast, H.

    1994-01-01

    Post-irradiation stability of plasticized PVC irradiated by 60 Co gamma ray at sterilizing doses has been studied. Effects of irradiation upon chemical structure, mechanical properties and rheological behaviour of samples contained different amounts of Di(2-ethylhexyl)phthalate as plasticizer have been investigated. Formation of conjugated double bonds, carbonyl and hydroxyl groups have been followed by UV and FTIR spectrometers up to 6 months after irradiation. FTIR spectra of irradiated samples showed no significant changes in carbonyl and hydroxyl groups even 6 months after irradiation. However, changes in UV-visible spectra was observed for the irradiated samples up to 6 months post-irradiation. This has been attributed to the formation of polyenes which leads to the discoloration of this polymer. Despite a certain degree of discoloration, it appears that the mechanical properties of PVC are not affected by irradiation at sterilizing doses. No change in the melt viscosity of the irradiated PVC samples with post-irradiation was observed, which is inconsistent with the IR results. (author)

  9. Irradiation preservation study on Beijing roast duck by low dose

    Energy Technology Data Exchange (ETDEWEB)

    Weiguo, Wang; Yongbao, Gu; Fengmei, Li [Beijing Normal Univ., BJ (China). Inst. of Low Energy Nuclear Physics; and others

    1989-02-01

    The irradiation technique combined with freezing has been used to control the microorganism in Beijing Roast Duck. Cobal-60 was chosen as {gamma}-ray source. The absorbed dose was 2 kGy on an average. After irrdiation, the microbe counts have reached the tolerable. Compared with untreated ducks, the irradiated ones showed no remarkable change in nutrition, chemistry, vitamin etc. It has been proved through test that the irradiated frozen Beijing Roast Duck is wholesome.

  10. Irradiation preservation study on Beijing roast duck by low dose

    International Nuclear Information System (INIS)

    Wang Weiguo; Gu Yongbao; Li Fengmei

    1989-01-01

    The irradiation technique combined with freezing has been used to control the microorganism in Beijing Roast Duck. Cobal-60 was chosen as γ-ray source. The absorbed dose was 2 kGy on an average. After irrdiation, the microbe counts have reached the tolerable. Compared with untreated ducks, the irradiated ones showed no remarkable change in nutrition, chemistry, vitamin etc. It has been proved through test that the irradiated frozen Beijing Roast Duck is wholesome

  11. Dose controlled low energy electron irradiator for biomolecular films.

    Science.gov (United States)

    Kumar, S V K; Tare, Satej T; Upalekar, Yogesh V; Tsering, Thupten

    2016-03-01

    We have developed a multi target, Low Energy Electron (LEE), precise dose controlled irradiator for biomolecular films. Up to seven samples can be irradiated one after another at any preset electron energy and dose under UHV conditions without venting the chamber. In addition, one more sample goes through all the steps except irradiation, which can be used as control for comparison with the irradiated samples. All the samples are protected against stray electron irradiation by biasing them at -20 V during the entire period, except during irradiation. Ethernet based communication electronics hardware, LEE beam control electronics and computer interface were developed in house. The user Graphical User Interface to control the irradiation and dose measurement was developed using National Instruments Lab Windows CVI. The working and reliability of the dose controlled irradiator has been fully tested over the electron energy range of 0.5 to 500 eV by studying LEE induced single strand breaks to ΦX174 RF1 dsDNA.

  12. Dose controlled low energy electron irradiator for biomolecular films

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S. V. K., E-mail: svkk@tifr.res.in; Tare, Satej T.; Upalekar, Yogesh V.; Tsering, Thupten [Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005 (India)

    2016-03-15

    We have developed a multi target, Low Energy Electron (LEE), precise dose controlled irradiator for biomolecular films. Up to seven samples can be irradiated one after another at any preset electron energy and dose under UHV conditions without venting the chamber. In addition, one more sample goes through all the steps except irradiation, which can be used as control for comparison with the irradiated samples. All the samples are protected against stray electron irradiation by biasing them at −20 V during the entire period, except during irradiation. Ethernet based communication electronics hardware, LEE beam control electronics and computer interface were developed in house. The user Graphical User Interface to control the irradiation and dose measurement was developed using National Instruments Lab Windows CVI. The working and reliability of the dose controlled irradiator has been fully tested over the electron energy range of 0.5 to 500 eV by studying LEE induced single strand breaks to ΦX174 RF1 dsDNA.

  13. Dose and dose rate effects on coherent-to-incoherent transition of precipitates upon irradiation

    Institute of Scientific and Technical Information of China (English)

    LI Zhengchao

    2006-01-01

    A typical precipitation hardened alloy, Cu-Co dilute alloy was selected to study the precipitation behavior and irradiation effect on precipitates. It is found that the principal effect of ion irradiation on the coherent precipitates is loss of coherency, and TEM cross-section observations show that the fraction of the incoherent precipitates is dependent on dose but not on dose rate during heavy ion irradiation.

  14. Oxidative stress and low dose irradiation

    International Nuclear Information System (INIS)

    Emerit, I.; Alaoui-Youssefi, A.; Cernjavski, L.

    1997-01-01

    Studies of this working group indicate a shift of the prooxidant - antioxidant balance to the prooxidant side for a large proportion of workers engaged in the clean-up of the Chernobyl Nuclear Power Plant in 1986-87. Similar findings were obtained in children exposed to radiation after the explosion or still living within contaminated regions. Increased superoxide and hydrogen peroxide production by phagocytes were correlated with an increase in lipid peroxiation products and a decrease in the enzymatic and non enzymatic antioxidant defenses of the organism. The calstogenic factor test, which detects the presence of lipid peroxidation products and cytokines due to their chromosome damaging effects, yielded positive results for 41% of 89 workers from Armenia and 52% of 200 workers from St. Petersburg. Clastogenic plasma activity was increased even in those workers, who had received radiation doses between 5 and 10 cGy only. The number of CF-positive workers increased in the subgroups with increasing radiation dose. In children, the data varied according to sites and suggested correlations with the radioactive contamination of the soil. Treatments with antioxidant vitamins, flavonoids and terpenes improved the health status of this high risk population. However, the type of antioxidant, the treatment schedule and the dosage have to be standardized in order to obtain comparable results. (author)

  15. Need for High Radiation Dose (≥70 Gy) in Early Postoperative Irradiation After Radical Prostatectomy: A Single-Institution Analysis of 334 High-Risk, Node-Negative Patients

    International Nuclear Information System (INIS)

    Cozzarini, Cesare; Montorsi, Francesco; Fiorino, Claudio; Alongi, Filippo; Bolognesi, Angelo; Da Pozzo, Luigi Filippo; Guazzoni, Giorgio; Freschi, Massimo; Roscigno, Marco; Scattoni, Vincenzo; Rigatti, Patrizio; Di Muzio, Nadia

    2009-01-01

    Purpose: To determine the clinical benefit of high-dose early adjuvant radiotherapy (EART) in high-risk prostate cancer (hrCaP) patients submitted to radical retropubic prostatectomy plus pelvic lymphadenectomy. Patients and Methods: The clinical outcome of 334 hrCaP (pT3-4 and/or positive resection margins) node-negative patients submitted to radical retropubic prostatectomy plus pelvic lymphadenectomy before 2004 was analyzed according to the EART dose delivered to the prostatic bed, <70.2 Gy (lower dose, median 66.6 Gy, n = 153) or ≥70.2 Gy (median 70.2 Gy, n = 181). Results: The two groups were comparable except for a significant difference in terms of median follow-up (10 vs. 7 years, respectively) owing to the gradual increase of EART doses over time. Nevertheless, median time to prostate-specific antigen (PSA) failure was almost identical, 38 and 36 months, respectively. At univariate analysis, both 5-year biochemical relapse-free survival (bRFS) and disease-free survival (DFS) were significantly higher (83% vs. 71% [p = 0.001] and 94% vs. 88% [p = 0.005], respectively) in the HD group. Multivariate analysis confirmed EART dose ≥70 Gy to be independently related to both bRFS (hazard ratio 2.5, p = 0.04) and DFS (hazard ratio 3.6, p = 0.004). Similar results were obtained after the exclusion of patients receiving any androgen deprivation. After grouping the hormone-naive patients by postoperative PSA level the statistically significant impact of high-dose EART on both 5-year bRFS and DFS was maintained only for those with undetectable values, possibly owing to micrometastatic disease outside the irradiated area in case of detectable postoperative PSA values. Conclusion: This series provides strong support for the use of EART doses ≥70 Gy after radical retropubic prostatectomy in hrCaP patients with undetectable postoperative PSA levels.

  16. Identification of irradiated foods prospects for post-irradiation estimate of irradiation dose in irradiated dry egg products

    International Nuclear Information System (INIS)

    Katusin-Raxem, B.; Mihaljievic, B.; Razem, D.

    2002-01-01

    Radiation-induced chemical changes in foods are generally very small at the usual processing doses. Some exception is radiation degradation of lipids, which are the components most susceptible to oxidation. A possible use of lipid hydroperoxides (LOOH) as indicators of irradiation is described for whole egg and egg yolk powders. A sensitive and reproducible spectrophotometric method for LOOH measurement based on feric thiocyanate, as modified in our laboratory, was applied. This method enabled the determination of LOOH, including oleic acid hydroperoxides, which is usually not possible with some other frequently used methods. The lowest limit of 0.05 mmol LOOH/kg lipid could be measured. The measurements were performed in various batches of whole egg and egg yolk powders by the same producer, as well as in samples supplied by various producers. Baseline level in unirradiated egg powder 0.110 ± 0.067 mmol LOOH /kgL was established. The formation of LOOH with dose, as well as the influence of age, irradiation conditions, storage time and storage conditions on LOOH were investigated. The irradiation of whole egg and egg yolk powders in the presence of air revealed an initially slow increase of LOOH, caused by an inherent antioxidative capacity, followed by a fast linear increase after the inhibition dose (D o ). In all investigated samples D o of 2 kGy was determined. Hydroperoxides produced in irradiated materials decay with time. In whole egg and egg yolk powders, after an initially fast decay, the level of LOOH continued to decrease by the first-order decay. Nevertheless, after a six months storage it was still possible to unambiguously identify samples which had been irradiated with 2 kGy in the presence of air. Reirradiation of these samples revealed a significant reduction of D o to 1 kGy. In samples irradiated with 4 kGy and kept under the same conditions, the shortening of D o to 0.5 kGy was determined by reirradiation. This offers a possibility for the

  17. Pre-irradiation at a low dose-rate blunted p53 response

    International Nuclear Information System (INIS)

    Takahashi, A.; Ohnishi, K.; Asakawa, I.; Tamamoto, T.; Yasumoto, J.; Yuki, K.; Ohnishi, T.; Tachibana, A.

    2003-01-01

    Full text: We have studied whether the p53-centered signal transduction pathway induced by acute radiation is interfered with chronic pre-irradiation at a low dose-rate in human cultured cells and whole body of mice. In squamous cell carcinoma cells, we found that a challenge irradiation with X-ray immediately after chronic irradiation resulted in lower levels of p53 than those observed after the challenge irradiation alone. In addition, the induction of p53-centered apoptosis and the accumulation of its related proteins after the challenge irradiation were strongly correlated with the above-mentioned phenomena. In mouse spleen, the induction of apoptosis and the accumulation of p53 and Bax were observed dose-dependently at 12 h after a challenge irradiation. In contrast, we found significant suppression of them induced by challenge irradiation at a high dose-rate when mice were pre-irradiated with chronic irradiation at a low dose-rate. These findings suggest that chronic pre-irradiation suppressed the p53 function through radiation-induced p53-dependent signal transduction processes. There are numerous papers about p53 functions in apoptosis, radiosensitivity, genomic instability and cancer incidence in cultured cells or animals. According to our data and other findings, since p53 can prevent carcinogenesis, pre-irradiation at a low dose-rate might enhance the predisposition to cancer. Therefore, it is possible that different maximal permissible dose equivalents for the public populations are appropriate. Furthermore, concerning health of human beings, studies of the adaptive responses to radiation are quite important, because the radiation response strongly depends on experience of prior exposure to radiation

  18. Evaluation of absorbed doses during irradiation of patients

    International Nuclear Information System (INIS)

    Denisenko, O.N.; Kozlov, V.A.

    1981-01-01

    Provided is an analysis of a general scheme for the method of control over the dose field realization in the patient's body using direct dose measurements in patients. On the basis of data from literature presented are error limits in the stages of preradiation preparation and irradiation of patients, and in the stage of dose measurement for different irradiation techniques and radiation types. The authors also provide scientific data of their own. It has been concluded that the main emphasis should be placed on the improvement of topometry facilities, field calculation, patients posture and visual control methods of the radiation beam position [ru

  19. Dose mapping of the multi-purpose gamma irradiation facility

    Energy Technology Data Exchange (ETDEWEB)

    Cabalfin, E G; Lanuza, L G; Villamater, D T [Irradiation Services, Nuclear Services and Training Division, Philippine Nuclear Research Institute, Quezon City (Philippines)

    1989-12-01

    In radiation processing, reliable dosimetry constitutes a very important part of process control and quality assurance. Radiation dosimetry is the only acceptable method to guarantee that the irradiated product has undergone the correct radiation treatment. In preparation therefore, for the routine operation of the newly installed multi-purpose gamma irradiation facility at the Philippine Nuclear Research Institute (PNRI), dose mapping distribution studies were undertaken. Results of dose distribution in air as well as in dummy product are presented. The effects of product bulk density, product geometry and product to source distance on minimum absorbed dose and uniformity ratio have been determined. (Author).

  20. Dose mapping of the multi-purpose gamma irradiation facility

    International Nuclear Information System (INIS)

    Cabalfin, E.G.; Lanuza, L.G.; Villamater, D.T.

    1989-01-01

    In radiation processing, reliable dosimetry constitutes a very important part of process control and quality assurance. Radiation dosimetry is the only acceptable method to guarantee that the irradiated product has undergone the correct radiation treatment. In preparation therefore, for the routine operation of the newly installed multi-purpose gamma irradiation facility at the Philippine Nuclear Research Institute (PNRI), dose mapping distribution studies were undertaken. Results of dose distribution in air as well as in dummy product are presented. The effects of product bulk density, product geometry and product to source distance on minimum absorbed dose and uniformity ratio have been determined. (Author)

  1. Dose volume relationships for intraoperatively irradiated saphenous nerve

    International Nuclear Information System (INIS)

    Gillette, E.L.; Powers, B.E.; Gillette, S.M.; Thames, H.D.; Childs, G.; Vujaskovic, Z.; LaRue, S.M.

    1995-01-01

    Purpose/Objective: Intraoperative radiation therapy (IORT) is used to deliver high single doses of radiation to the tumor bed following surgical removal of various abdominal malignancies. The advantage of IORT is the ability to remove sensitive normal tissues from the treatment field and to limit the volume of normal tissue irradiated. The purpose of this study was to determine dose-volume relationships for retroperitoneal tissues. Materials and methods: 134 adult beagle dogs were irradiated to the surgically exposed paraaortic area. Normal tissues included in the treatment field were aorta, peripheral nerve, ureter, bone and muscle. Groups of 4 - 8 dogs were irradiated to doses ranging from 18 - 54 Gy for a 2x5 cm field, from 12 - 46 Gy for a 4x5 cm field, and 12 - 42 Gy to an 8x5 cm field. The radiations were done using 6 MeV electrons from a linear accelerator. Dogs were observed for three years after radiation. Electrophysiologic procedures were done prior to irradiation and annually following irradiation. The procedures included electromyography of the pelvic limb and paralumbar muscles supplied by the L1 to S1 spinal nerves to determine presence and degree of motor unit disease. Motor nerve conduction velocities of the proximal and distal sciatic nerves were determined. Sensory nerve conduction velocities of the saphenous nerve were also determined. Evoked lumbosacral and thoraco-lumbar spinal cord potentials were evaluated following stimulation of the left sciatic nerve. In addition to electrophysiologic studies, neurologic examinations were done prior to treatment and at six month intervals for the three year observation period. At the three year time period, dogs were euthanatized, sections of peripheral nerve taken, routinely processed, stained with Masson's trichrome and evaluated histomorphometrically using point count techniques. Results: Twenty-two dogs were euthanatized prior to the three year observation period due to peripheral nerve damage

  2. The dose effect of irradiated rice pollen on double fertilization

    International Nuclear Information System (INIS)

    Wang Houcong; Chen Zhengming; Chen Ruming; Qiu Simi; Yang Juemin; Yang Huijie

    1995-01-01

    The mature panicles of rice were treated with 60 Co γ-rays in the range of 0∼0.372 kGy. The male sterile line used as the female plants were fertilized with γ-irradiated pollen manually. The dose effect of the irradiated pollen on double fertilization was investigated. It was found that double fertilization of the irradiated pollen was suppressed to different degrees as compared with the control. The effect was noticeable as that the fusion time of the male nucleolus with the female one was delayed with the increasing of γ-radiation dose. The delayed time was less than 13 hours when the dose was below 0.186 kGy and it was more than 15 hours when the dose was above 0.279 kGy. Furthermore, several types of deformed embryonic cells and endosperm nuclei were observed

  3. Effects of low dose rate irradiation on induction of myeloid leukemia in mice

    International Nuclear Information System (INIS)

    Furuse, Takeshi

    1999-01-01

    We investigated the induction of myeloid leukemia and other kinds of neoplasias in C3H male mice irradiated at several dose rate levels. We compared the incidence of neoplasias among these groups, obtained dose and dose rate effectiveness factors (DDREF) for myeloid leukemia. C3H/He male mice were exposed to whole body gamma-ray irradiation at 8 weeks of age. All mice were maintained for their entire life span and teh pathologically examined after their death. Radiation at a high dose-rate of 882 mGy/min (group H), a medium dose-rate of 95.6 mGy/min (group M), and low dose-rates of 0.298 mGy/min (group L-A), 0.067 mGy/min (group L-B) or 0.016 mGy/min (group L-C) were delivered from 137 Cs sources. The mice in group L were irradiated continuously for 22 hours daily up to total doses of 1, 2, 3, 4, 10 Gy over a period of 3 days to 200 days. As for the induction of neoplasias, myeloid leukemia developed significantly more frequently in irradiated groups than in unirradiated groups. The time distribution of mice dying from myeloid leukemia did not show a difference between groups H and L. The incidence of myeloid leukemia showed a greater increase in the high dose-rate groups than in the low and medium dose-rate groups in the dose range over 2 Gy, it also showed significant increases in the groups irradiated with 1 Gy of various dose rate, but the difference between these groups was not clear. These dose effect curves had their highest values on each curve at about 3 Gy. We obtained DDREF values of 2-3 by linear fittings for their dose response curves of dose ranges in which leukemia incidences were increasing. (author)

  4. Effects of low-dose rate irradiation on two types of type II diabetes model mice

    International Nuclear Information System (INIS)

    Nomura, Takaji; Sakai, Kazuo

    2004-01-01

    The effects of low-dose rate gamma-irradiation were investigated in two mouse strains - C57BL/KsJ-db/db (db mouse) and AKITA (AKITA mouse)-for type II diabetes mellitus. Both strains develop the developed type II diabetes by about 8 weeks of age due to dysfunction of the insulin/insulin receptor. The db Mouse' shows obese and exhibits hyperinsulinism, and the onset of Type II diabetes like resembles that for Westerners. On the other hand, the AKITA mouse has exhibits disordered insulin secretion, and the diabetes such as resembles that of Asians. Ten-week old female mice, in groups of 8 or 12, were irradiated at 0.65 mGy/hr in the low-dose rate irradiation facility in the Low Dose Radiation Research Center. The level of urine glucose was measured with test slips. The urine glucose levels of all of the mice were highly elevated the beginning of the irradiation. In the irradiated group of db mice, three mice showed decrease in glucose level compare to the level of non-irradiated diabetes mice after 35, 52 or 80 weeks of irradiation. All had maintained a normal level thereafter. No such improvement in diabetes was ever observed in the 12 mice of in the non-irradiated control group. The AKITA mice, however, did not decrease the glucose level regardless of the irradiation. Both the db mice and AKITA mice had their lives prolonged their life by the irradiation. The survival rate of db mice at the age of 90 weeks was 75% in the irradiated group, but 50% in the non-irradiated group. The average life span was 104 weeks in the irradiated group and 87 weeks in the control group. Furthermore, a marked difference was furthermore observed in the appearance of the coat hair, skin, and tail; appearances were well preserved in the irradiated group. The average life span in the irradiated AKITA mice was also longer than that for the non-irradiated mice, 51 weeks and 41 weeks in the irradiated and non-irradiated group respectively. These results suggest that the low-dose irradiation

  5. Correlation of Yield Stress And Microhardness in 08cr16ni11mo3 Irradiated To High Dose In The Bn-350 Fast Reactor

    International Nuclear Information System (INIS)

    Maksimkin, O.P.; Gusev, M.N.; Tivanova, O.S.; Silnaygina, N.S.; Garner, Francis A.

    2006-01-01

    The relationship between values of the microhardness and the engineering yield stress in steel 08Cr16Ni11Mo3 (Russian analog of AISI 316) heavily irradiated in the BN-350 reactor has been experimentally derived. It agrees very well with the previously published correlation developed by Toloczko for unirradiated 316 in a variety of cold-work conditions. Even more importantly, when the correlation is derived in the K δ format where the correlation involves changes in the two properties, we find excellent agreement with a universal K δ correlation developed by Busby and coworkers. With this K δ correlation, one can predict the value of yield stress in irradiated material based on measured values of microhardness. The technique is particularly suitable when the material of interest is in an inconvenient location or configuration, or when significant gradients in mechanical properties are anticipated over small dimensions. This approach makes it possible to reduce the labor input and risk when conducting such work. It appears that the derived correlation is equally applicable to both Russian and Western austenitic steel, and also in both irradiated and unirradiated conditions. Additionally, this report points out that microhardness measurements must take into account that high temperature sodium exposure alters the metal surface to produce ferrite, and therefore the altered layers should be removed prior to testing

  6. Dose and dose rate effects of whole-body gamma-irradiation: II. Hematological variables and cytokines

    Science.gov (United States)

    Gridley, D. S.; Pecaut, M. J.; Miller, G. M.; Moyers, M. F.; Nelson, G. A.

    2001-01-01

    The goal of part II of this study was to evaluate the effects of gamma-radiation on circulating blood cells, functional characteristics of splenocytes, and cytokine expression after whole-body irradiation at varying total doses and at low- and high-dose-rates (LDR, HDR). Young adult C57BL/6 mice (n = 75) were irradiated with either 1 cGy/min or 80 cGy/min photons from a 60Co source to cumulative doses of 0.5, 1.5, and 3.0 Gy. The animals were euthanized at 4 days post-exposure for in vitro assays. Significant dose- (but not dose-rate-) dependent decreases were observed in erythrocyte and blood leukocyte counts, hemoglobin, hematocrit, lipopolysaccharide (LPS)-induced 3H-thymidine incorporation, and interleukin-2 (IL-2) secretion by activated spleen cells when compared to sham-irradiated controls (p factor-beta 1 (TGF-beta 1) and splenocyte secretion of tumor necrosis factor-alpha (TNF-alpha) were not affected by either the dose or dose rate of radiation. The data demonstrate that the responses of blood and spleen were largely dependent upon the total dose of radiation employed and that an 80-fold difference in the dose rate was not a significant factor in the great majority of measurements.

  7. Dose Profiles in ECAL Crystals for Various Irradiation Conditions

    CERN Document Server

    Huhtinen, Mika

    1998-01-01

    Simulated dose profiles in various irradiation and beam test conditions are compared to the expected dose profiles in the ECAL crystals at LHC. Simple front or side irradiations with photons give too steep or too flat dose profiles, respectively. Thus, if dose maxima are fitted to agree, front irradiation underestimate the average dose whereas side irradiations tend to overestimate. Different profiles are difficult to compare reliably, but it seems likely that in both cases the discrepancy is about a factor of 2-3 but in different directions. For most purposes this is likely to be good enough, but should be taken into account in the interpretation of the test results. It is shown that using a customized lead mask between the source and the crystal can significantly improve the agreement between 60 Co side irradiations and the LHC predictions. A 400 MeV/c pion beam incident on a crystal matrix can also reproduce rather well the profiles expected in the barrel ECAL.

  8. The effect of irradiation dose and age of bird on the ESR signal in irradiated chicken drumsticks

    International Nuclear Information System (INIS)

    Gray, R.; Stevenson, M.H.; Kilpatrick, D.J.

    1990-01-01

    Groups of 20 broiler chickens of the same genetic strain and reared under identical conditions were slaughtered at either 4, 5, 6, 7 or 8 weeks of age. Pairs of drumsticks were removed from each bird and groups were either not irradiated or irradiated at 2.5, 5.0, 7.5 or 10.0 kGy using a cobalt 60 source. Bone samples were excised, fragmented, freeze dried and ground prior to the determination of free radical concentration using electron spin resonance (ESR) spectroscopy. Increasing irradiation dose gave a highly significant increase in free radical concentration whilst for each irradiation dose, bones from younger birds gave significantly lower concentrations compared to those for older birds. Crystallinity coefficient increased linearly with age of bird and this may account in part for the increased signal observed as the birds aged. (author)

  9. The biological effect of 125I seed continuous low dose rate irradiation in CL187 cells

    Directory of Open Access Journals (Sweden)

    Zhuang Hong-Qing

    2009-01-01

    Full Text Available Abstract Background To investigate the effectiveness and mechanism of 125I seed continuous low-dose-rate irradiation on colonic cell line CL187 in vitro. Methods The CL187 cell line was exposed to radiation of 60Coγ ray at high dose rate of 2 Gy/min and 125I seed at low dose rate of 2.77 cGy/h. Radiation responses to different doses and dose rates were evaluated by colony-forming assay. Under 125I seed low dose rate irradiation, a total of 12 culture dishes were randomly divided into 4 groups: Control group, and 2, 5, and 10 Gy irradiation groups. At 48 h after irradiation, apoptosis was detected by Annexin and Propidium iodide (PI staining. Cell cycle arrests were detected by PI staining. In order to investigate the influence of low dose rate irradiation on the MAPK signal transduction, the expression changes of epidermal growth factor receptor (EGFR and Raf under continuous low dose rate irradiation (CLDR and/or EGFR monoclonal antibodies were determined by indirect immunofluorescence. Results The relative biological effect (RBE for 125I seeds compared with 60Co γ ray was 1.41. Apoptosis rates of CL187 cancer cells were 13.74% ± 1.63%, 32.58% ± 3.61%, and 46.27% ± 3.82% after 2 Gy, 5 Gy, and 10 Gy irradiation, respectively; however, the control group apoptosis rate was 1.67% ± 0.19%. G2/M cell cycle arrests of CL187 cancer cells were 42.59% ± 3.21%, 59.84% ± 4.96%, and 34.61% ± 2.79% after 2 Gy, 5 Gy, and 10 Gy irradiation, respectively; however, the control group apoptosis rate was 26.44% ± 2.53%. P 2/M cell cycle arrest. After low dose rate irradiation, EGFR and Raf expression increased, but when EGFR was blocked by a monoclonal antibody, EGFR and Raf expression did not change. Conclusion 125I seeds resulted in more effective inhibition than 60Co γ ray high dose rate irradiation in CL187 cells. Apoptosis following G2/M cell cycle arrest was the main mechanism of cell-killing effects under low dose rate irradiation. CLDR could

  10. Effect of low-dose-rate irradiation on the division potential of cells in vitro. V. Human skin fibroblasts from donors with a high risk of cancer

    International Nuclear Information System (INIS)

    Diatloff, C.; Macieira-Coelho, A.

    1979-01-01

    Skin fibroblasts from normal donors, donors with ataxia-telanglectasia or Fanconi's anemia, and from 1 cancer patient were treated with repeated γ radiation at about 16 rads per hour. The remaining division potential of all fibroblasts, except for the Fanconi's anemia cells, was reduced to different extents by radiation. The growth potential of Fanconl's anemia cells was increased in all the irradiated cultures. The increase was 54% in the group that survived the longest. These results were identical to those obtained with fibroblasts from certain species that have a high probability of transformation

  11. Age-dependent conversion coefficients for organ doses and effective doses for external neutron irradiation

    International Nuclear Information System (INIS)

    Nishizaki, Chihiro; Endo, Akira; Takahashi, Fumiaki

    2006-06-01

    To utilize dose assessment of the public for external neutron irradiation, conversion coefficients of absorbed doses of organs and effective doses were calculated using the numerical simulation technique for six different ages (adult, 15, 10, 5 and 1 years and newborn), which represent the member of the public. Calculations were performed using six age-specific anthropomorphic phantoms and a Monte Carlo radiation transport code for two irradiation geometries, anterior-posterior and rotational geometries, for 20 incident energies from thermal to 20 MeV. Effective doses defined by the 1990 Recommendation of ICRP were calculated from the absorbed doses in 21 organs. The calculated results were tabulated in the form of absorbed doses and effective doses per unit neutron fluence. The calculated conversion coefficients are used for dose assessment of the public around nuclear facilities and accelerator facilities. (author)

  12. Alterations in water and electrolyte absorption in the rat colon following neutron irradiation: influence of neutron component and irradiation dose.

    Science.gov (United States)

    Dublineau, I; Ksas, B; Joubert, C; Aigueperse, J; Gourmelon, P; Griffiths, N M

    2002-12-01

    To study the absorptive function of rat colon following whole-body exposure to neutron irradiation, either to the same total dose with varying proportion of neutrons or to the same neutron proportion with an increasing irradiation dose. Different proportions of neutron irradiation were produced from the reactor SILENE using a fissile solution of uranium nitrate (8, 47 and 87% neutron). Water and electrolyte fluxes were measured in the rat in vivo under anaesthesia by insertion into the descending colon of an agarose gel cylinder simulating the faeces. Functional studies were completed by histological analyses. In the first set of experiments, rats received 3.8 Gy with various neutron percentages and were studied from 1 to 14 days after exposure. In the second set of experiments, rats were exposed to increasing doses of irradiation (1-4Gy) with a high neutron percentage (87%n) and were studied at 4 days after exposure. The absorptive capacity of rat colon was diminished by irradiation at 3-5 days, with a nadir at 4 days. The results demonstrate that an increase in the neutron proportion is associated with an amplification of the effects. Furthermore, a delay in the re-establishment of normal absorption was observed with the high neutron proportion (87%n). A dose-dependent reduction of water absorption by rat colon was also observed following neutron irradiation (87%n), with a 50% reduction at 3 Gy. Comparison of this dose-effect curve with the curve obtained following gamma (60)Co-irradiation indicates an RBE of 2.2 for absorptive colonic function in rat calculated at 4 days after exposure.

  13. Pre-1989 epidemiological surveys of low-level dose pre-conception irradiation

    International Nuclear Information System (INIS)

    Rose, K.S.B.

    1990-01-01

    Information from 59 pre-1989 epidemiological surveys concerning pre-conception irradiation at doses less than 0.1 Gy has been collated to determine whether any consistent patterns of health effects emerge. The surveys are considered in three groups: childhood malignancies, Down's syndrome and indicators of reproductive damage. Although a pattern is observed for Down's syndrome, no reliable associations are apparent for childhood malignancies (where all surveys pre-date the Gardner survey at Sellafield) or indications of reproductive damage. The twelve surveys of Down's syndrome in relation to maternal pre-conception irradiation received for medical reasons show a pattern consistent with a doubling dose of about 20 mGy. This doubling dose value is, however, not based on individual measurements of ovarian dose and is inconsistent with results from high-level dose surveys. There is no association between paternal irradiation and Down's syndrome. (author)

  14. Cytogenetic characterization of low-dose hyper-radiosensitivity in Cobalt-60 irradiated human lymphoblastoid cells

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Gnanada S. [Department of Biological Sciences, Wayne State University, Detroit, MI 48202 (United States); Joiner, Michael C. [Department of Radiation Oncology, Wayne State University, Detroit, MI 48201 (United States); Tucker, James D., E-mail: jtucker@biology.biosci.wayne.edu [Department of Biological Sciences, Wayne State University, Detroit, MI 48202 (United States)

    2014-12-15

    Highlights: • Human cells were irradiated in G1 or G2 and evaluated for micronuclei and bridges. • Cells irradiated in G2 but not in G1 exhibit low dose hyper-radiosensitivity. • Response curves of cells irradiated in G2 do not fit a linear-no-threshold model. • Response curves of cells irradiated in G1 fit a linear-no-threshold model. - Abstract: The dose-effect relationships of cells exposed to ionizing radiation are frequently described by linear quadratic (LQ) models over an extended dose range. However, many mammalian cell lines, when acutely irradiated in G2 at doses ≤0.3 Gy, show hyper-radiosensitivity (HRS) as measured by reduced clonogenic cell survival, thereby indicating greater cell lethality than is predicted by extrapolation from high-dose responses. We therefore hypothesized that the cytogenetic response in G2 cells to low doses would also be steeper than predicted by LQ extrapolation from high doses. We tested our hypothesis by exposing four normal human lymphoblastoid cell lines to 0–400 cGy of Cobalt-60 gamma radiation. The cytokinesis block micronucleus assay was used to determine the frequencies of micronuclei and nucleoplasmic bridges. To characterize the dependence of the cytogenetic damage on dose, univariate and multivariate regression analyses were used to compare the responses in the low- (HRS) and high-dose response regions. Our data indicate that the slope of the response for all four cell lines at ≤20 cGy during G2 is greater than predicted by an LQ extrapolation from the high-dose responses for both micronuclei and bridges. These results suggest that the biological consequences of low-dose exposures could be underestimated and may not provide accurate risk assessments following such exposures.

  15. High dose gamma-ray standard

    International Nuclear Information System (INIS)

    Macrin, R.; Moraru, R.

    1999-01-01

    The high gamma-ray doses produced in a gamma irradiator are used, mainly, for radiation processing, i.e. sterilization of medical products, processing of food, modifications of polymers, irradiation of electronic devices, a.s.o. The used absorbed doses depend on the application and cover the range 10 Gy to 100 MGy. The regulations in our country require that the response of the dosimetry systems, used for the irradiation of food and medical products, be calibrated and traceable to the national standards. In order to be sure that the products receive the desired absorbed dose, appropriate dosimetric measurements must be performed, including the calibration of the dosemeters and their traceability to the national standards. The high dose gamma-ray measurements are predominantly based on the use of reference radiochemical dosemeters. Among them the ferrous sulfate can be used as reference dosemeter for low doses (up to 400 Gy) but due to its characteristics it deserves to be considered a standard dosemeter and to be used for transferring the conventional absorbed dose to other chemical dosemeters used for absorbed doses up to 100 MGy. The study of the ferrous sulfate dosemeter consisted in preparing many batches of solution by different operators in quality assurance conditions and in determining for all batches the linearity, the relative intrinsic error, the repeatability and the reproducibility. The principal results are the following: the linear regression coefficient: 0.999, the relative intrinsic error: max.6 %, the repeatability (for P* = 95 %): max.3 %, the reproducibility (P* = 95%): max.5 %. (authors)

  16. Treatment of localized prostate cancer using a combination of high dose rate lridium-192 brachytherapy and external beam irradiation: Initial Australian experience

    International Nuclear Information System (INIS)

    Stevens, M.J.; Stricker, P.D.; Brenner, P.C.; Kooner, R.; O'Neil, G.F.A.; Duval, P.J.; Jagavkar, R.S.; Cross, P.; Saalfeld, J.; Martland, J.

    2003-01-01

    Combination high dose rate brachytherapy (HDRB) and external beam radiation therapy is technically and clinically feasible as definitive treatment for localized prostate cancer. We report the first large Australian experience using this technique of radiation dose escalation in 82 patients with intermediate- and high-risk disease. With a median follow up of 3 years (156 weeks), complications were low and overall prostate-specific antigen progression-free survival was 91% using the American Society for Therapeutic Radiology and Oncology consensus definition. The delivery of hypofractionated radiation through the HDRB component shortens overall treatment time and is both biologically and logistically advantageous. As a radiation boost strategy, HDRB is easy to learn and could be introduced into most facilities with brachytherapy capability. Copyright (2003) Blackwell Science Pty Ltd

  17. Irradiation Creep of Ferritic-Martensitic Steels EP-450, EP-823 and EI-852 Irradiated in the BN-350 Reactor over Wide Ranges of Irradiation Temperature and Dose

    International Nuclear Information System (INIS)

    Porollo, S.I.; Konobeev, Y.V.; Ivanov, A.A.; Shulepin, S.V.; Garner, F.

    2007-01-01

    Full text of publication follows: Ferritic/martensitic (F/M) steels appear to be the most promising materials for advanced nuclear systems, especially for fusion reactors. Their main advantages are higher resistance to swelling and lower irradiation creep rate as has been repeatedly demonstrated in examinations of these materials after irradiation. Nevertheless, available experimental data on irradiation resistance of F/M steels are insufficient, with the greatest deficiency of data for high doses and for both low and high irradiation temperatures. From the very beginning of operation the BN-350 fast reactor has been used for irradiation of specimens of structural materials, including F/M steels. The most unique feature of BN-350 was its low inlet sodium temperature, allowing irradiation at temperatures over a very wide range of temperatures compared with the range in other fast reactors. In this paper data are presented on swelling and irradiation creep of three Russian F/M steels EP-450, EP-823 and EI-852, irradiated in experimental assemblies of the BN-350 reactor at temperatures in the range of 305-700 deg. C to doses ranging from 20 to 89 dpa. The investigation was performed using gas-pressurized creep tubes with hoop stresses in the range of 0 - 294 MPa. (authors)

  18. Gamma dosimetry of high doses

    International Nuclear Information System (INIS)

    Martinez C, T.; Galvan G, A.; Canizal, G.

    1991-01-01

    The gamma dosimetry of high doses is problematic in almost all the classic dosemeters either based on the thermoluminescence, electric, chemical properties, etc., because they are saturated to very high dose and they are no longer useful. This work carries out an investigation in the interval of high doses. The solid system of heptahydrate ferrous sulfate, can be used as solid dosemeter of routine for high doses of radiation. The proposed method is simple, cheap and it doesn't require sophisticated spectrophotometers or spectrometers but expensive and not common in some laboratories

  19. Dose rate modelled for the outdoors of a gamma irradiation

    International Nuclear Information System (INIS)

    Mangussi, J

    2012-01-01

    A model for the absorbed dose rate calculation on the surroundings of a gamma irradiation plant is developed. In such plants, a part of the radiation emitted upwards reach's the outdoors. The Compton scatterings on the wall of the exhausting pipes through de plant roof and on the outdoors air are modelled. The absorbed dose rate generated by the scattered radiation as far as 200 m is calculated. The results of the models, to be used for the irradiation plant design and for the environmental studies, are showed on graphics (author)

  20. The Optimum Irradiation Dose in Preservation of Mahkota Dewa (Phaleria macrocarpa (Scheff) Boerl.) As Anticancer Agent

    International Nuclear Information System (INIS)

    Hendig Winarno; Ermin Katrin W; Wisnurahadi; Swasono R Tamat

    2010-01-01

    The purpose of this experiment was to obtain the optimum irradiation dose, in order to preserve and protect the damage of anticancer compounds in mahkota dewa bark. The specimens of mahkota dewa bark were irradiated using 60 Co at the variation doses of 0; 5; 7,5 ; 10; 15; and 20 kGy, respectively at the dose rate of 10 kGy/h. The irradiated and control samples were macerated in n-hexane and ethyl acetate, respectively, then the ethyl acetate extract was then fractionated using chromatography column to obtain 8 fractions. The examination of irradiated and control samples of mahkota dewa bark against microbe contaminants showed that irradiation at doses ≥5 kGy could inhibit the growth of bacteria, mold and yeast and destroyed them. The cytotoxicity test of irradiated ethyl acetate extract of mahkota dewa bark against leukemia L1210 cell showed that irradiation at the dose up to 20 kGy can decreased cytotoxic activities performance, however these IC 50 values lower than 50 μg/ml, which is the cytotoxic activity threshold for extract. The cytotoxic activity test of fraction 6, the most active fraction in mahkota dewa bark, showed that irradiation at the dose up to 20 kGy can also decreased the cytotoxic activities performance, however these IC 50 values was lower than 20 μg/ml, which is the cytotoxic activity threshold for fraction. Analysis of 2,4’-dihydroxy-4 methoxy benzophenone-2-O-β-D-glucopyranoside by high performance liquid chromatography (HPLC) in fraction 6 of irradiated samples showed that the concentration of this compound in irradiated samples significantly decreased, compared to the control sample. Decreasing the concentration of 2,4’-dihydroxy-4 methoxy benzophenone-2-O-β-D-glucopyranoside was not comparable to the cytotoxic activity of ethyl acetate extract or fraction 6, therefore this compound can not be used as marker of irradiation effect on decreasing the cytotoxic activity of the mahkota dewa bark. Irradiation at doses of 5 up to 20 k

  1. Radiation processing and high-dose dosimetry at ANSTO

    International Nuclear Information System (INIS)

    Gant, G.J.; Saunders, M.; Banos, C.; Mo, L.; Davies, J.; Evans, O.

    2001-01-01

    The Radiation Technology group at ANSTO is part of the Physics Division and provides services and advice in the areas of gamma irradiation and high-dose dosimetry. ANSTO's irradiation facilities are designed for maximum dose uniformity and provide a precision irradiation service unique in Australia. Radiation Technology makes and sells reference and transfer standard dosimeters which are purchased by users and suppliers of commercial irradiation services in Australia and the Asia-Pacific region. A calibration service is also provided for dosimeters purchased from other suppliers

  2. Parametric relationships for gamma dose and irradiation homogeneity in a sewage sludge irradiator

    International Nuclear Information System (INIS)

    Krishnamurthy, K.

    1986-01-01

    A study on the inter-relationships between factors governing γ dose and irradiation homogeneity in a sewage sludge irradiator is presented here. The analysis involves a 60 Co irradiator of cylindrical irradiation geometry with batchwise operation for hygienisation of liquid sludge. The influence of the parameters such as the source-target geometry, strength of 60 Co sources in the irradiator, hygienisation dose and rheological and hydraulic characteristics of sewage sludge on the selection of the three critical factors viz. the pumping rate (P) required to maintain turbulent flow regime in the irradiation zone; the mininum re-circulation time (Tsub(m)) essential to achieve a certain degree of homogeneity of dose absorption in the fluid; and the irradiation time (Tsub(i)) required to impart the necessary dose for the desired hygienisation effect in the sludge has been discussed in detail and inter-relationships among these three factors have been worked out. The applicability of the relationships to a typical operating plant has also been elucidated. (author)

  3. Estimation of dose in irradiated chicken bone by ESR method

    International Nuclear Information System (INIS)

    Tanabe, Hiroko; Hougetu, Daisuke

    1998-01-01

    The author studied the conditions needed to routinely estimate the radiation dose in chicken bone by repeated re-irradiation and measuring ESR signals. Chicken meat containing bone was γ-irradiated at doses of up to 3kGy, accepted as the commercially used dose. The results show that points in sample preparation and ESR measurement are as follows: Both ends of bone are cut off and central part of compact bone is used for experiment. To obtain accurate ESR spectrum, marrow should be scraped out completely. Sample bone fragments of 1-2mm particle size and ca.100mg are recommended to obtain stable and maximum signal. In practice, by re-irradiating up to 5kGy and extrapolating data of the signal intensity to zero using linear regression analysis, radiation dose is estimated. For example, in one experiment, estimated doses of chicken bones initially irradiated at 3.0kGy, 1.0kGy, 0.50kGy and 0.25kGy were 3.4kGy, 1.3kGy, 0.81kGy and 0.57kGy. (author)

  4. Estimate of absorbed dose received by individuals irradiated with neutrons

    International Nuclear Information System (INIS)

    Fonseca, E.S. da; Mauricio, C.L.P.

    1995-01-01

    An innovating methodology is proposed to estimate the absorbed dose received by individuals irradiated with neutrons in an accident, even in the case that the victim is not using any kind of neutron dosemeter. The method combines direct measurements of 24 Na and 32 P activated in the human body. The calculation method was developed using data taken from previously published papers and experimental measurements. Other irradiations results in different neutron spectra prove the validity of the methodology here proposed. Using a whole body counter to measure 24 Na activity, it is possible to evaluate neutron absorbed doses in the order of 140 μGy of very soft (thermal) spectra. For fast neutron fields, the lower limit for neutron dose detection increases, but the present method continues to be very useful in accidents, with higher neutron doses. (author). 5 refs., 1 fig., 4 tabs

  5. Effects of single doses of X-rays on renal function in the pig after the irradiation of both kidneys

    International Nuclear Information System (INIS)

    Robbins, M.E.C.; Hopewell, J.W.

    1988-01-01

    Irradiation of a single kidney in the pig with relatively low doses of X-rays, in the order of 8 Gy, produces a pronounced reduction in both glomerular filtration rate (GFR) and effective renal plasma flow (ERPF). This apparent high radiosensitivity may be due, in part, to the compensatory hypertrophy displayed by the contralateral unirradiated kidney. This could suppress any potential for recovery by the irradiated kidney. To test this hypothesis, both kidneys of 14-week-old Large White pigs were sequentially irradiated with single doses of 250 kV X-rays, in the range 8.8 to 12.6 Gy. Two weeks after irradiation, GFR and ERPF increased markedly in all irradiated kidneys; levels then declined in a dose-dependent manner. Following a dose of 8.8 Gy renal haemodynamics returned to control values within 4 weeks of irradiation. After higher doses, GFR and ERPF decreased markedly and remained below control values up to 24 weeks after irradiation. At all doses the mean functional status of irradiated kidneys in animals in which both kidneys were irradiated was significantly greater than that previously observed in the irradiated kidney of pigs in which only one kidney was irradiated. The findings support the above hypothesis, and indicate that individual kidneys in the same animal may differ in their response to a similar nephrotoxic insult. 35 refs.; 6 figs.; 2 tabs

  6. Correlation of yield stress and microhardness in 08Cr16Ni11Mo3 stainless steel irradiated to high dose in the BN-350 fast reactor

    International Nuclear Information System (INIS)

    Gusev, M.N.; Maksimkin, O.P.; Tivanova, O.V.; Silnaygina, N.S.; Garner, F.A.

    2006-01-01

    The relationship between the microhardness and the engineering yield stress in 08Cr16Ni11Mo3 steel after irradiation in the BN-350 reactor has been experimentally derived and agrees with a previously published correlation developed by Toloczko for unirradiated 316 in a variety of cold-work conditions. Even more importantly, when the correlation is derived in the K Δ format where the correlation involves changes in the two properties, excellent agreement is found with a universal K Δ correlation developed by Busby and coworkers. Additionally, this report points out that microhardness measurements must take into account that sodium exposure at high temperature and neutron fluence alters the metal surface to produce ferrite, and therefore the altered layers should be removed prior to testing

  7. Dose determination in irradiated chicken meat by ESR method

    International Nuclear Information System (INIS)

    Polat, M.

    1996-01-01

    In this work, the properties of the radicals produced in chicken bones have been investigated by ESR technique to determine the amount of dose applied to the chicken meats during the food irradiation. For this goal, the drumsticks from 6-8 weeks old chickens purchased from a local market were irradiated at dose levels of 0; 2; 4; 6; 8 and 10 kGy. Then, the ESR spectra of the powder samples prepared from the bones of the drumsticks have been investigated. Unirradiated chicken bones have been observed to show a weak ESR signal of single line character. CO-2 ionic radicals of axial symmetry with g=1.9973 and g=2.0025 were observed to be produced in irradiated samples which would give rise to a three peaks ESR spectrum. In addition, the signal intensities of the samples were found to depend linearly on the irradiation dose in the dose range of 0-10 kGy. The powder samples prepared from chicken leg bones cleaned from their meats and marrow and irradiated at dose levels of 1, 2, 3, 4, 5, 6, B, 10, 12,14, 16, 1B, 20 and 22 kGy were used to get the dose-response curve. It was found that this curve has biphasic character and that the dose yield was higher in the 12-1B kGy dose range and a decrease appears in this curve over 18 kGy. The radical produced in the bones were found to be the same whether the irradiation was performed after stripping the meat and removing the marrow from the bone or before the stripping. The ESR spectra of both irradiated and non irradiated samples were investigated in the temperature range of 100 K-450 K and changes in the ESR spectra of CO-2 radical have been studied. For non irradiated samples (controls). the signal intensities were found to decrease when the temperature was increased. The same investigation has been carried out for irradiated samples and it was concluded that the signal intensities relative to the peaks of the radical spectrum increase in the temperature range of 100 K-330 K, then they decrease over 330 K. The change in the

  8. Behavior of high Tc-superconductors and irradiated defects under reactor irradiation

    International Nuclear Information System (INIS)

    Atobe, Kozo; Honda, Makoto; Fukuoka, Noboru; Yoshida, Hiroyuki.

    1991-01-01

    It has been well known that the lattice defects of various types are introduced in ceramics without exception, and exert large effect to the function of these materials. Among oxides, the electronic materials positively using oxygen defect control have been already put in practical use. Also in the oxide high temperature superconductors which are Perovskite type composite oxides, the superconductive characteristics are affected largely by the concentration of the oxygen composing them. This is regarded as an important factor for causing superconductivity, related with the oxygen cavities arising at this time and the carriers bearing superconductivity. In this study, the irradiation effect with relatively low dose, the measurement under irradiation, the effect of irradiation temperature, and the effect of radiation quality were evaluated by the irradiation of YBCO, EBCO and LBCO. The experimental method, and the irradiation effect at low temperature and normal temperature, the effect of Co-60 gamma ray irradiation instead of reactor irradiation are reported. (K.I.)

  9. Reparative processes in spleen of rats irradiated with higher daily dose rates of continuous irradiation

    International Nuclear Information System (INIS)

    Mackova, N.; Praslicka, M.; Misurova, E.

    1975-01-01

    Histological and DNA content values were used in evaluating repair processes in the spleen of rats at various intervals following continuous irradiation with daily doses of 50 R, 100 R, 200 R and 500 R (a total dose of 1000 R), and following a single exposure to 1000 R. Histological changes found immediately after irradiation indicated the induction of significant injuries, this mainly as a result of daily doses of 200 R and 500 R. The complete repair of the DNA content and of a number of erythroid elements and also a 70 to 80% regeneration of the white pulp took place within 25 days. The same period was found to be insufficient for the complete repair of megakaryocytes. No signs of repair were observed in spleen in the histological picture or DNA content after a single irradiation with a dose of 1000 R. (author)

  10. Reparative processes in spleen of rats irradiated with higher daily dose rates of continuous irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Mackova, N; Praslicka, M; Misurova, E [Univerzita P.J. Safarika, Kosice (Czechoslovakia). Prirodovedecka Fakulta

    1975-01-01

    Histological and DNA content values were used in evaluating repair processes in the spleen of rats at various intervals following continuous irradiation with daily doses of 50 R, 100 R, 200 R and 500 R (a total dose of 1000 R), and following a single exposure to 1000 R. Histological changes found immediately after irradiation indicated the induction of significant injuries, this mainly as a result of daily doses of 200 R and 500 R. The complete repair of the DNA content and of a number of erythroid elements and also a 70 to 80% regeneration of the white pulp took place within 25 days. The same period was found to be insufficient for the complete repair of megakaryocytes. No signs of repair were observed in spleen in the histological picture or DNA content after a single irradiation with a dose of 1000 R.

  11. Evaluation of the efficacy of palliative irradiation with high fractionated doses and planned intervals of patients with advanced cancer of the oral cavity and pharynx. Ocena skutecznosci paliatywnego napromieniania wysokimi dawkami frakcyjnymi z planowanymi przerwami chorych na zaawansowanego raka jamy ustnej i gardla

    Energy Technology Data Exchange (ETDEWEB)

    Skolyszewski, J; Reinfuss, M [Instytut Onkologii, Cracow (Poland)

    1988-01-01

    200 patients, previously not treated, with advanced highly differentiated cancer of the oral cavity and pharynx have been palliatively irradiated in the Oncology Center in Cracow in the years 1976-1985. Megavoltage irradiation with fractionated doses 4-5 Gy up to the dose of 20 Gy to the tumor with 4-5 fractions during 4-7 days has been applied. 64 patients received 20 Gy as simple dose, in 65 cases such dose has been repeated after month. 71 patients have been irradiated for the third time with similar dose after another 1 month interval. Partial regression of 25-50% of the tumor volume has been obtained after the first series of irradiation in 19% of patients and more than 50% in 28% of patients, complete regression in 4% of patients. 15,5% of the total number of patients survived 1 year since the initiation of the irradiation, 5% without symptoms of the neoplasm. Worse prognosis is connected with major advancement of the tumor (T{sub 4}, N{sub 2}), poor general condition, cachexia and alcohol addition. Absence of improvement after the first series of irradiations indicates the non-effectiveness of the treatment. Palliative treatment by irradiation with high fractionated doses and planned interval is a safe and efficacious method. 1 fig., 6 tabs., 14 refs. (author).

  12. Identification and dose evaluation of irradiated beef containing bones

    International Nuclear Information System (INIS)

    Mangiacotti, M.; Alberti, A.; Fuochi, P.G.; Chiesa, L.M.

    2011-01-01

    Complete text of publication follows. Food irradiation is a well-established technique to extend the food shelf life and to reduce the food-related health hazards caused by pathogenic micro-organisms. At present, radiation treatment is permitted for various categories of food and food ingredients in many countries. At the European level, irradiation of food is regulated by the European Directives 1999/2/EC and 1999/3/EC. Community legislation states that any food or food ingredients, authorised in the European Union, must be labelled with the word 'irradiated' and that every year each Member State has to carry out checks at the product marketing stage to enforce correct labelling. The present work aimed at identifying irradiated beef meat by using a reliable and sensitive detection of DNA comets as screening biological method and performing an Electron Spin Resonance (ESR) spectrometry as confirmatory qualitative standard. The influence of storage conditions and time after irradiation on DNA degradation was also investigated. Furthermore the application of ESR technique as a quantitative method was successfully applied to beef bones, using the approach of calibration curve. Results, although the limited statistics, proved for reliability of the dose reconstruction method and blind tests were carried out resulting in very satisfactory difference between actual treatment dose and reconstructed dose.

  13. High-energy irradiation in the management of chondrosarcoma

    International Nuclear Information System (INIS)

    Kim, R.Y.; Salter, M.M.; Brascho, D.J.

    1983-01-01

    We present a retrospective analysis of seven patients with chondrosarcoma of the bone treated by high-energy irradiation between 1961 and 1976. Its major role in this series was prevention of local recurrence in cases with inadequate resection. In three of the five cases in which radiation therapy was adjuvant rather than primary treatment, long-term local control was obtained in a dose of 5,000 to 6,500 rads in five to six weeks. Although primary treatment of chondrosarcoma is surgical, high-dose radiation therapy is indicated when surgical resection is not possible. Chondrosarcoma can respond to high doses of irradiation even though the response is slow

  14. The investigation of fetal doses in mantle field irradiation

    International Nuclear Information System (INIS)

    Karacam, S. C; Gueralp, O. S; Oeksuez, D. C; Koca, A.; Cepni, I.; Cepni, K.; Bese, N.

    2009-01-01

    To determine clinically the fetal dose from irradiation of Hodgkin's disease during pregnancy and to quantify the components of fetal dose using phantom measurements. The fetal dose was measured with phantom measurements using thermoluminescent dosemeters (TLDs). Phantom measurements were performed by simulating the treatment conditions on an anthropomorphic phantom. TLDs were placed on the phantom 41, 44, 46.5 and 49.5 cm from the centre of the treatment field. Two TLDs were placed on the surface of the phantom. The estimated total dose to all the TLDs ranged from 8.8 to 13.2 cGy for treatment with 60 Co and from 8.2 to 11.8 cGy for 4 MV photons. It was concluded that the doses in different sections were evaluated to investigate dose changes in different points and depths of fetal tissues in phantom. Precise planning and the use of supplemental fetal shielding may help reduce fetal exposure. (authors)

  15. Genetic efficiency of low-dose chronic irradiation in mammals and fish

    International Nuclear Information System (INIS)

    Goncharova, R.; Ryabokon, N.; Smolich, I.; Slukvin, A.

    2001-01-01

    The problem of biological effects of low-dose chronic irradiation is central radiobiological problem and seems to be very important for human monitoring and risk assessment Since 1986 we are engaged in studying genetic effects of low-dose chronic irradiation in natural populations of small mammals (bank vole - Clethrioiiomys glareolus) inhabiting radiocontaminated monitoring sites, in laboratory hybrid mice CBA*C57BI/6 j exposed to chronic irradiation at radiocontaminated sites, as well as in pond carp (Cyprinus carpio) reared in fish farms in areas contaminated due to the Chernobyl accident. The mean ground depositions in monitoring sites were 8-2330 kBq/m 2 and the mean bottom depositions in ponds were 52-3235 Bq/kg for Cs 137. We used conventional cytogenetics and genetics tests [1-3] and the following approaches in studying on genetic effects of low-dose chronic irradiation: Radiation exposures from external γ- and internal α, β, γ-irradiation from incorporated radionuclides were estimated for each specimen tested. Regression analysis of dose-effect relationships based on comparison of individual genetic end-points with individual absorbed doses was carried out We observed statistically significant changes in the frequencies of genetic end-points, which have been studied in somatic and germ cells, as well as in embryos of irradiated mammals and fish. So, the frequencies of chromosome aberrations in bank vole populations had up to 7-fold increase in comparison with background and pre-accident levels. It is of great importance to emphasize high radio-sensitivity of fertilized eggs (zygotes) and pond carp, embryos produced by chronically irradiated parents. Regression analysis allowed to reveal dependence of the studied parameters' frequencies on radiation exposure namely on the concentrations of basic dose forming radionuclides, absorbed dose rate and whole body absorbed dose. In most cases, dose-effect relationships were better approximated by non

  16. The effects of chronic low dose irradiation on drosophila melanogaster

    International Nuclear Information System (INIS)

    Zajnullin, V.G.; Moskalev, A.A.; Shaposhnikov, M.V.; Yuraneva, I.N.; Taskaev, A.I.

    2001-01-01

    It was investigated the influence of the chronic gamma-irradiation in the dose rate of 0.17 cGy/h on the rate of genetic variability and on the life-span in the laboratory strains of Drosophila melanogaster with genotypic distinguishes in mobile genetic elements and defects in the DNA repair processes. It is shown that the radiation-induced alteration of the traits under study depends from genotype of investigated strains. In the different strains we have observed an increase as well as a decrease of the mutation rate and life-span. Also it was established that irradiation leads to the frequencies of the GD-sterility and mutability of the snw and h(w+) in the P-M and H-E dysgenic crosses. The obtained results suggest that mobile genetic elements play an important role in the forming of genetic effects in response to low dose irradiation. (author)

  17. Genetic effects of low-dose irradiation in Drosophila Melanogaster

    International Nuclear Information System (INIS)

    Zajnulin, V.G.; Shaposhnikov, M.V.; Yuraneva, I.N.

    2000-01-01

    Influence of chronic γ-irradiation at the dose rate of 0.17 cGy/h on the rate of genetic variability in the laboratory strains of Drosophila Melanogaster with genotypic distinguishes by families of mobile genetic elements and of systems of hybrid disgenesis and also violations in reparation processes control mechanisms. It was shown that the rates of induction of recessive lethal mutations depended on genotype of investigated strains. In the different strains an increase as well as a decrease of the mutation rate were observed. Also in was established that irradiation leads to the increase in frequencies of the gonads sterility and mutability of the sn w and h(w + ) in the P-M and H-E dysgenic crosses. Obtained results suggest that mobile genetic elements play an important role in the forming of genetic effects in response to low dose irradiation [ru

  18. Dose and dose rate effects of whole-body gamma-irradiation: II. Hematological variables and cytokines

    Science.gov (United States)

    Gridley, D. S.; Pecaut, M. J.; Miller, G. M.; Moyers, M. F.; Nelson, G. A.

    2001-01-01

    The goal of part II of this study was to evaluate the effects of gamma-radiation on circulating blood cells, functional characteristics of splenocytes, and cytokine expression after whole-body irradiation at varying total doses and at low- and high-dose-rates (LDR, HDR). Young adult C57BL/6 mice (n = 75) were irradiated with either 1 cGy/min or 80 cGy/min photons from a 60Co source to cumulative doses of 0.5, 1.5, and 3.0 Gy. The animals were euthanized at 4 days post-exposure for in vitro assays. Significant dose- (but not dose-rate-) dependent decreases were observed in erythrocyte and blood leukocyte counts, hemoglobin, hematocrit, lipopolysaccharide (LPS)-induced 3H-thymidine incorporation, and interleukin-2 (IL-2) secretion by activated spleen cells when compared to sham-irradiated controls (p < 0.05). Basal proliferation of leukocytes in the blood and spleen increased significantly with increasing dose (p < 0.05). Significant dose rate effects were observed only in thrombocyte counts. Plasma levels of transforming growth factor-beta 1 (TGF-beta 1) and splenocyte secretion of tumor necrosis factor-alpha (TNF-alpha) were not affected by either the dose or dose rate of radiation. The data demonstrate that the responses of blood and spleen were largely dependent upon the total dose of radiation employed and that an 80-fold difference in the dose rate was not a significant factor in the great majority of measurements.

  19. Lipid peroxidation in microsomes of murine bone marrow after low-dose γ-irradiation

    International Nuclear Information System (INIS)

    Schwenke, K.; Coslar, S.; Muehlensiepen, H.; Altman, K.I.; Feinendegen, L.E.

    1994-01-01

    The principal aim of the study was to investigate the effect of low-dose γ-irradiation on lipid peroxidation (LPO) in murine bone marrow. To this end, the degree of LPO in suspensions of microsomes of murine bone marrow cells (BMC) was determined in terms of malondialdehyde (MDA) formation after whole-body or in vitro exposure to various doses of γ-radiation. These effects were compared to some extent with similar effects in liver and spleen preparations. As to the effect of γ-irradiation on LPO in BMC, the response depends on the dose level and on whether whole-body or in vitro exposures are involved. Whole-body irradiation did not result in an increase in LPO in BMC microsomes, even at such high doses as 15 Gy, although hepatic microsomes showed a marked increase. In contrast, in vitro irradiation of BMC microsomes with 0.1, 10 and 50 Gy brought about an increase in LPO. This increase was already significant (P < 0.05) at 0.1 Gy following a post-irradiation incubation and substantial at 50 Gy, even without subsequent incubation. The results show that low doses of γ-irradiation are able to induce an elevation of LPO in murine BMC microsomes, but only after in vitro irradiation. In the case of whole-body irradiation cellular radical scavengers and other metabolic reactions may prevent a measurable increase in LPO. This is partly illustrated by the case of vitamin-E deficiency, where a substantial increase in LPO in BMC microsomes is observed even without γ-irradiation in comparison with euvitaminotic mice because normally occurring radicals are not scavenged sufficiently. (orig.)

  20. SU-E-T-481: In Vivo and Post Mortem Animal Irradiation: Measured Vs. Calculated Doses

    Energy Technology Data Exchange (ETDEWEB)

    Heintz, P [Univ New Mexico Radiology Dept., Albuquerque, NM (United States); Heintz, B [Texas Oncology, PA, Southlake, TX (United States); Sandoval, D [University of New Mexico, Albuquerque, NM (United States); Weber, W; Melo, D; Guilmette, R [Lovelace Respiratory Research Institute, Albuquerque, NM (United States)

    2015-06-15

    Purpose: Computerized radiation therapy treatment planning is performed on almost all patients today. However it is seldom used for laboratory irradiations. The first objective is to assess whether modern radiation therapy treatment planning (RTP) systems accurately predict the subject dose by comparing in vivo and decedent dose measurements to calculated doses. The other objective is determine the importance of using a RTP system for laboratory irradiations. Methods: 5 MOSFET radiation dosimeters were placed enterically in each subject (2 sedated Rhesus Macaques) to measure the absorbed dose at 5 levels (carina, lung, heart, liver and rectum) during whole body irradiation. The subjects were treated with large opposed lateral fields and extended distances to cover the entire subject using a Varian 600C linac. CT simulation was performed ante-mortem (AM) and post-mortem (PM). To compare AM and PM doses, calculation points were placed at the location of each dosimeter in the treatment plan. The measured results were compared to the results using Varian Eclipse and Prowess Panther RTP systems. Results: The Varian and Prowess treatment planning system agreed to within in +1.5% for both subjects. However there were significant differences between the measured and calculated doses. For both animals the calculated central axis dose was higher than prescribed by 3–5%. This was caused in part by inaccurate measurement of animal thickness at the time of irradiation. For one subject the doses ranged from 4% to 7% high and the other subject the doses ranged 7% to 14% high when compared to the RTP doses. Conclusions: Our results suggest that using proper CT RTP system can more accurately deliver the prescribed dose to laboratory subjects. It also shows that there is significant dose variation in such subjects when inhomogeneities are not considered in the planning process.

  1. Method for dose calculation in intracavitary irradiation of endometrical carcinoma

    International Nuclear Information System (INIS)

    Zevrieva, I.F.; Ivashchenko, N.T.; Musapirova, N.A.; Fel'dman, S.Z.; Sajbekov, T.S.

    1979-01-01

    A method for dose calculation for the conditions of intracavitary gamma therapy of endometrial carcinoma using spherical and linear 60 Co sources was elaborated. Calculations of dose rates for different amount and orientation of spherical radiation sources and for different planes were made with the aid of BEhSM-4M computer. Dosimet were made with the aid of BEhSM-4M computer. Dosimetric study of dose fields was made using a phantom imitating the real conditions of irradiation. Discrepancies between experimental and calculated values are within the limits of the experiment accuracy

  2. Dose Response of Alanine Detectors Irradiated with Carbon Ion Beams

    DEFF Research Database (Denmark)

    Herrmann, Rochus; Jäkel, Oliver; Palmans, Hugo

    2011-01-01

    Purpose: The dose response of the alanine detector shows a dependence on particle energy and type, when irradiated with ion beams. The purpose of this study is to investigate the response behaviour of the alanine detector in clinical carbon ion beams and compare the results with model predictions......-dose curves deviate from predictions in the peak region, most pronounced at the distal edge of the peak. Conclusions: The used model and its implementation show a good overall agreement for quasi mono energetic measurements. Deviations in depth-dose measurements are mainly attributed to uncertainties...

  3. Two-peaked dose curves for irradiated pollen growth

    International Nuclear Information System (INIS)

    Andrejchenko, S.V.; Grodzinskij, D.M.

    1992-01-01

    The effect of γ-radiation on growth activity of bicellular pollen of hybrid petunia has been investigated. Irradiation of pollen with doses of 5 to 70 Gy increases the pollen tube growth in an artificial culture medium. As the radiation dose increases the germination ability of pollen gradually decreases and the mean pollen tube length shortens, which is accompanied by the suppression of the generative cell division into spermia and inhibition of the unscheduled incorporation of labelled thymidine into DNA. With radiation doses of 1200 to 1700 Gy some pollen tubes grow intensively. It is suggested that the phenomenon observed lays the basis for the gametic transformation

  4. High-temperature absorbed dose measurements in the megagray range

    International Nuclear Information System (INIS)

    Balian, P.; Ardonceau, J.; Zuppiroli, L.

    1988-01-01

    Organic conductors of the tetraselenotetracene family have been tested as ''high-temperature'' absorbed dose dosimeters. They were heated up to 120 0 C and irradiated at this temperature with 1-MeV electrons in order to simulate, in a short time, a much longer γ-ray irradiation. The electric resistance increase of the crystal can be considered a good measurement of the absorbed dose in the range 10 6 Gy to a few 10 8 Gy and presumably one order of magnitude more. This dosimeter also permits on-line (in-situ) measurements of the absorbed dose without removing the sensor from the irradiation site. The respective advantages of organic and inorganic dosimeters at these temperature and dose ranges are also discussed. In this connection, we outline new, but negative, results concerning the possible use of silica as a high-temperature, high-dose dosimeter. (author)

  5. Dose and dose rate effects of whole-body gamma-irradiation: I. Lymphocytes and lymphoid organs

    Science.gov (United States)

    Pecaut, M. J.; Nelson, G. A.; Gridley, D. S.

    2001-01-01

    The major goal of part I of this study was to compare varying doses and dose rates of whole-body gamma-radiation on lymphoid cells and organs. C57BL/6 mice (n = 75) were exposed to 0, 0.5, 1.5, and 3.0 Gy gamma-rays (60Co) at 1 cGy/min (low-dose rate, LDR) and 80 cGy/min (high-dose rate, HDR) and euthanized 4 days later. A significant dose-dependent loss of spleen mass was observed with both LDR and HDR irradiation; for the thymus this was true only with HDR. Decreasing leukocyte and lymphocyte numbers occurred with increasing dose in blood and spleen at both dose rates. The numbers (not percentages) of CD3+ T lymphocytes decreased in the blood in a dose-dependent manner at both HDR and LDR. Splenic T cell counts decreased with dose only in HDR groups; percentages increased with dose at both dose rates. Dose-dependent decreases occurred in CD4+ T helper and CD8+ T cytotoxic cell counts at HDR and LDR. In the blood the percentages of CD4+ cells increased with increasing dose at both dose rates, whereas in the spleen the counts decreased only in the HDR groups. The percentages of the CD8+ population remained stable in both blood and spleen. CD19+ B cell counts and percentages in both compartments declined markedly with increasing HDR and LDR radiation. NK1.1+ natural killer cell numbers and proportions remained relatively stable. Overall, these data indicate that the observed changes were highly dependent on the dose, but not dose rate, and that cells in the spleen are more affected by dose rate than those in blood. The results also suggest that the response of lymphocytes in different body compartments may be variable.

  6. Suppression of carcinogenesis in mice by adaptive responses to low dose rate irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Kazuo; Iwasaki, Toshiyasu; Hoshi, Yuko; Nomura, Takaharu; Ina, Yasuhiro; Tanooka, Hiroshi [Central Research Institute of Electric Power Industry, Low Dose Radiation Research Center, Komae, Tokyo (Japan)

    2003-07-01

    Effects of prolonged low-dose-rate irradiation on the process of carcinogenesis were examined in mice treated with chemical carcinogen or irradiated with high doses of X-rays. Female ICR mice, 5 week-old, 35 in each group, were exposed to gamma-rays from a {sup 137}Cs source in the long-term low dose rate irradiation facility at CRIEPI. The dose rate was 2.6 mGy/hr (A), 0.96 mGy/hr (B), or 0.30 mGy/hr (C). Thirty-five days later, the mice were injected into the groin with 0.5 mg of methylcholanthrene (MC) dissolved in olive oil and irradiation was continued. Cumulative tumor incidences after 216 days following MC injection were 89% in group A, 76% in group B, and 94% in group C. That in non-irradiated control group was 94%. The difference in the tumor incidence between the control and position B was statistically significant, indicating the suppressive effect of the low dose rate irradiation on the process of MC-induced carcinogenesis with an optimum dose rate around 1 mGy/hr. In B6C3F1 mice, although the suppression of tumor incidence was not observed, there was a significant delay in tumor appearance in the irradiated mice between 100-150 days after MC injection. A group of 20 female C57BL/6N mice, 5 weeks old, were exposed to gamma-rays at 0.95 mGy/hr for 5 weeks. Then, they were exposed weekly to 1.8 Gy whole body X-irradiation (300 kVp) for consecutive 4 weeks to induce thymic lymphoma. Another group received only the fractionated irradiation. The first mouse died from thymic lymphoma appeared 89 days after the last irradiation in the group received only the fractionated irradiation, while 110 days in the group combined with the low dose rate irradiation. (author)

  7. Effect of high-dose irradiation and autoclave treatment on microbial safety and quality of ready-to-eat Bulgogi sauce

    International Nuclear Information System (INIS)

    Park, Jin-Gyu; Song, Beom-Seok; Kim, Jae-Hun; Han, In-Jun; Yoon, Yohan; Chung, Hyung-Wook; Kim, Eun-Jeong; Gao Meixu; Lee, Ju-Woon

    2012-01-01

    In Korea, commercialized sauce for ready-to-eat (RTE) Bulgogi is usually manufactured using heat treatment to ensure that it has a long shelf-life. However, heat treatment may adversely affect the taste and flavor of the sauce, thus, the development of suitable sterilizing methods for RTE sauces is necessary to preserve the quality of the sauce during long storage periods. In this study, total bacterial growth, the viscosity, and the sensory properties of Bulgogi sauce were compared between sterilization with gamma irradiation (0–40 kGy) and autoclave treatment during storage at 35 °C for 90 days. No bacterial growth was observed following irradiation at more than 10 kGy or after autoclave treatment. However, the viscosity and sensory properties of samples gamma-irradiated at above 10 kGy or autoclave-treated were significantly changed, even though autoclave treatment induced a burnt taste and flavor. Therefore, a gamma irradiation of 10 kGy was effective to prepare ready-to-eat Bulgogi sauce with microbial safety and original sensory qualities. - Highlights: ► No bacterial growth in gamma-irradiated Bulgogi sauce ≥10 kGy or autoclaved sample was observed. ► Viscosity of irradiated sample at 40 kGy was similar to that of autoclaved sample. ► Sensory properties of irradiated sample >10 kGy or autoclaved sample deteriorated.

  8. Irradiation doses on thyroid gland during the postoperative irradiation for breast cancer.

    Science.gov (United States)

    Akın, Mustafa; Ergen, Arzu; Unal, Aysegul; Bese, Nuran

    2014-01-01

    Thyroid gland is one of the radiosensitive endocrine organs in the body. It has been shown that direct irradiation of thyroid with total doses of 26 to 30 Gy can lead to functional abnormalities. In this study, irradiation doses on thyroid gland of the patients who received postoperative chest-wall/breast and regional nodal irradiation were assessed. Retrospective analyses of treatment plans from 122 breast cancer patients who were treated with 3D conformal radiotherapy (3D CRT) planning was performed. All patients received irradiation to supraclavicular/level III lymph nodes in addition to chest-wall/breast. A total dose of 46 Gy was delivered in 25 days to supraclavicular/level III lymph node region while a total dose of 50 Gy was delivered to whole breast/chest-wall. Thyroid gland was contoured on 2-5 mm thickness of computed tomography scans. Absolute thyroid volume, mean thyroid doses were calculated. The mean thyroid volume of all patients was 16.7 cc (min: 1.9 cc, max: 41.6 cc). The mean irradiation dose on was 22.5 Gy (0.32 Gy-46.5 Gy). The level of dose was higher than 26 Gy in 44% of the patients. In majority of the node-positive breast cancer patients treated with 3D CRT, the thyroid gland was exposed to considerable doses. On the other hand, for 44% of the patients are at risk for developing thyroid function abnormalities which should be considered during the routine follow-up.

  9. Repair of sublethal damage in mammalian cells irradiated at ultrahigh dose rates

    International Nuclear Information System (INIS)

    Gerweck, L.E.; Epp, E.R.; Michaels, H.B.; Ling, C.C.; Peterson, E.C.

    1979-01-01

    The lethal response of asynchronous Chinese hamster ovary (CHO) cells exposed to single and split doses of radiation at conventional or ultrahigh dose rates has been examined to determine whether repair of sublethal damage occurs in cells irradiated at ultrahigh dose rates. The high-intensity irradiations were performed with electrons delivered in single 3-nsec pulses from a 600-kV field emission source under medium-removed, thin-layer conditions. Conventional dose-rate experiments were done under identical thin-layer conditions with 50-kVp x rays, or under full-medium conditions with 280-kVp x rays. Oxygenated cells were irradiated and maintained at 22 to 24 0 C between exposures. Survival did not increase as the time between two doses of pulsed electrons increased from 0 to 4 min, indicating no evidence of fast repair. However, increased survival was observed when 30 to 90 min was allowed to elapse between the split doses. The half-time for maximum repair was approx. = 30 min irrespective of the exposure conditions and radiation modality used. Observed repair ratios increased from approx. = 2 to 4 as the single-dose surviving fraction decreased from 10 -2 to 5 x 10 -4 . Over this survival range the repair ratios, measured at the same value of surviving fraction, were independent of dose rate. The observed repair ratios imply that the shoulder regions of the nonfractionated x-ray and pulsed-electron survival curves were not completely restored between the split doses. However, the fraction of the shoulder restored between split doses of radiation was dose-rate-independent. It is concluded that sublethal damage can be repaired in oxygenated CHO cells irradiated at dose rates of the order of 10 11 rad/sec

  10. Attenuation measurements show that the presence of a TachoSil surgical patch will not compromise target irradiation in intra-operative electron radiation therapy or high-dose-rate brachytherapy.

    Science.gov (United States)

    Sarmento, Sandra; Costa, Filipa; Pereira, Alexandre; Lencart, Joana; Dias, Anabela; Cunha, Luís; Sousa, Olga; Silva, José Pedro; Santos, Lúcio

    2015-01-09

    Surgery of locally advanced and/or recurrent rectal cancer can be complemented with intra-operative electron radiation therapy (IOERT) to deliver a single dose of radiation directly to the unresectable margins, while sparing nearby sensitive organs/structures. Haemorrhages may occur and can affect the dose distribution, leading to an incorrect target irradiation. The TachoSil (TS) surgical patch, when activated, creates a fibrin clot at the surgical site to achieve haemostasis. The aim of this work was to determine the effect of TS on the dose distribution, and ascertain whether it could be used in combination with IOERT. This characterization was extended to include high dose rate (HDR) intraoperative brachytherapy, which is sometimes used at other institutions instead of IOERT. CT images of the TS patch were acquired for initial characterization. Dosimetric measurements were performed in a water tank phantom, using a conventional LINAC with a hard-docking system of cylindrical applicators. Percentage Depth Dose (PDD) curves were obtained, and measurements made at the depth of dose maximum for the three clinically used electron energies (6, 9 and 12MeV), first without any attenuator and then with the activated patch of TS completely covering the tip of the IOERT applicator. For HDR brachytherapy, a measurement setup was improvised using a solid water phantom and a Farmer ionization chamber. Our measurements show that the attenuation of a TachoSil patch is negligible, both for high energy electron beams (6 to 12MeV), and for a HDR (192)Ir brachytherapy source. Our results cannot be extrapolated to lower beam energies such as 50 kVp X-rays, which are sometimes used for breast IORT. The TachoSil surgical patch can be used in IORT procedures using 6MeV electron energies or higher, or HDR (192)Ir brachytherapy.

  11. Attenuation measurements show that the presence of a TachoSil surgical patch will not compromise target irradiation in intra-operative electron radiation therapy or high-dose-rate brachytherapy

    International Nuclear Information System (INIS)

    Sarmento, Sandra; Costa, Filipa; Pereira, Alexandre; Lencart, Joana; Dias, Anabela; Cunha, Luís; Sousa, Olga; Silva, José Pedro; Santos, Lúcio

    2015-01-01

    Surgery of locally advanced and/or recurrent rectal cancer can be complemented with intra-operative electron radiation therapy (IOERT) to deliver a single dose of radiation directly to the unresectable margins, while sparing nearby sensitive organs/structures. Haemorrhages may occur and can affect the dose distribution, leading to an incorrect target irradiation. The TachoSil (TS) surgical patch, when activated, creates a fibrin clot at the surgical site to achieve haemostasis. The aim of this work was to determine the effect of TS on the dose distribution, and ascertain whether it could be used in combination with IOERT. This characterization was extended to include high dose rate (HDR) intraoperative brachytherapy, which is sometimes used at other institutions instead of IOERT. CT images of the TS patch were acquired for initial characterization. Dosimetric measurements were performed in a water tank phantom, using a conventional LINAC with a hard-docking system of cylindrical applicators. Percentage Depth Dose (PDD) curves were obtained, and measurements made at the depth of dose maximum for the three clinically used electron energies (6, 9 and 12MeV), first without any attenuator and then with the activated patch of TS completely covering the tip of the IOERT applicator. For HDR brachytherapy, a measurement setup was improvised using a solid water phantom and a Farmer ionization chamber. Our measurements show that the attenuation of a TachoSil patch is negligible, both for high energy electron beams (6 to 12MeV), and for a HDR 192 Ir brachytherapy source. Our results cannot be extrapolated to lower beam energies such as 50 kVp X-rays, which are sometimes used for breast IORT. The TachoSil surgical patch can be used in IORT procedures using 6MeV electron energies or higher, or HDR 192 Ir brachytherapy

  12. Studies on chronic effects of lower dose level irradiation

    International Nuclear Information System (INIS)

    Yun, T.G.; Yun, Y.S.; Yun, M.S.

    1980-01-01

    This experiment is being carried out to elucidate the chronic effects of Co 60 (γ-ray) - low doses irradiation on JCR mice at 3rd week, 6th week, and 5th month after their birth. Experimental mice at 3rd week of age have been irradiated with Co 60 - 60mR weekly, Co 60 - 500mR weekly and Co 60 - 61R biweekly at the dose rate of 60mR per second for 23 weeks until now. Co 60 - 61R irradiated mice were subdivided into Co 60 - alone group and Co 60 combined with red ginseng extracts group. In their survivor's rate and their body weight etc., no significant differences between control groups and test groups in these experimental mice. Experimented mice at 6 weeks and 5 months of age are also being irradiated with Co 60 in the same doses as the above for 14 weeks and 8 weeks until present. In these experimental groups, there are also no significant differences between control groups and experimental groups in their survivor's rate and their body weight

  13. Implementation of high-dose chemical dosimetry for industrial facilities

    International Nuclear Information System (INIS)

    Conceicao, Cirilo Cezar Sant'Anna da

    2006-01-01

    The purpose of this work is the implementation of methodology for high dose measurements using chemical dosimeters in liquid phase, traceable to the international metrology system, and make available in the country, the standard of high-dose to industrial irradiation facilities and research irradiators, trough the quality program with comparative measurements and direct use of the standard dosimeters in routine. The use of these low cost dosimetry systems in industrial irradiation facilities, assists to the certification requirements and it can reduce the costs with dosimetry for approximately 20% of the total dosimetry costs, using these systems in routine measurements and validation process, largely substituting the imported PMMA dosimeters, among others. (author)

  14. Specification of absorbed dose for reporting a therapeutic irradiation

    International Nuclear Information System (INIS)

    Wambersie, A.; Chassagne, D.

    1981-01-01

    The problem of dose specification in external beam therapy with photons and electrons has been dealt with in ICRU Report 29 (1978). This problem arises from the fact that the absorbed dose distribution is usually not uniform in the target volume and that for the purpose of treatment reporting a nominal absorbed dose - which will be called target absorbed dose - has to be selected. When comparing the clinical results obtained between radiotherapy centres, the differences in the reported target absorbed doses which can be introduced by differences in the methods of dose specification often are much larger than the differences related to the dosimetric procedures themselves. This shows the importance of the problem. In this paper, some definitions of terms and concepts currently used in radiotherapy are first recalled: tumour volume, target volume, treatment volume, etc. These definitions have been proposed in ICRU Report 29 for photon and electron beams; they can be extended to any kind of irradiation. For external beam therapy with photons and electrons, the target absorbed dose is defined as the absorbed dose at selected point(s) (specification point(s)) having a meaningful relation to the target volume and/or the irradiation beams. Examples are discussed for typical cases. As far as interstitial and intracavitary therapy is concerned, the problem is more complex and no recommendations have so far been made by the ICRU Commission. A major difficulty arises from the sharp dose gradient as a function of the distance to the sources. The particular case of the treatment of cervix carcinoma is considered and some possible methods of specification are discussed: (1) the indication of the sources (in adequate units) and the duration of the application, (2) the absorbed doses at selected reference points (bladder, rectum, bony structures) and (3) the description of the tissue volume (height, width, thickness) encompassed by a given isodose surface (60Gy). (author)

  15. Dose volume assessment of high dose rate 192IR endobronchial implants

    International Nuclear Information System (INIS)

    Cheng, B. Saw; Korb, Leroy J.; Pawlicki, Todd; Wu, Andrew

    1996-01-01

    Purpose: To study the dose distributions of high dose rate (HDR) endobronchial implants using the dose nonuniformity ratio (DNR) and three volumetric irradiation indices. Methods and Materials: Multiple implants were configured by allowing a single HDR 192 Ir source to step through a length of 6 cm along an endobronchial catheter. Dwell times were computed to deliver a dose of 5 Gy to points 1 cm away from the catheter axis. Five sets of source configurations, each with different dwell position spacings from 0.5 to 3.0 cm, were evaluated. Three-dimensional (3D) dose distributions were then generated for each source configuration. Differential and cumulative dose-volume curves were generated to quantify the degree of target volume coverage, dose nonuniformity within the target volume, and irradiation of tissues outside the target volume. Evaluation of the implants were made using the DNR and three volumetric irradiation indices. Results: The observed isodose distributions were not able to satisfy all the dose constraints. The ability to optimally satisfy the dose constraints depended on the choice of dwell position spacing and the specification of the dose constraint points. The DNR and irradiation indices suggest that small dwell position spacing does not result in a more homogeneous dose distribution for the implant. This study supports the existence of a relationship between the dwell position spacing and the distance from the catheter axis to the reference dose or dose constraint points. Better dose homogeneity for an implant can be obtained if the spacing of the dwell positions are about twice the distance from the catheter axis to the reference dose or dose constraint points

  16. Proton and photon absorbed-dose conversion coefficients for embryo and foetus from top-down irradiation geometry

    International Nuclear Information System (INIS)

    Chen, J.

    2007-01-01

    Absorbed-dose conversion coefficients are calculated for the embryo of 8 weeks and the foetus of 3, 6 or 9 months when the mother's body is exposed to protons and photons from top-down (TOP) direction. It provides data sets in addition to other standard irradiation geometries published previously. The TOP-irradiation geometry is considered here, because high-energy particles are often peaked from the TOP direction onboard aircraft. The results show that absorbed-doses from high-energy particles could be underestimated significantly if isotropic (ISO) irradiation geometry is assumed. For protons of 100 GeV, absorbed-doses from TOP irradiation are ∼2.3-2.9 times higher than the doses from ISO irradiation for different foetal ages. For 10 GeV photons, foetal doses from TOP irradiation are ∼6.8-12 times higher than the doses from ISO irradiation. The coefficients from TOP-irradiation geometry are given in wide energy ranges, from 100 MeV to 100 GeV for protons and from 50 V to 10 GeV for photons. They can, therefore, be used in various applications whenever exposure from the TOP-irradiation direction is concerned. (authors)

  17. Dose determination of 600 MeV proton irradiated specimens

    International Nuclear Information System (INIS)

    Gavillet, D.

    1991-01-01

    The calculation method for the experimental determination of the atomic production cross section from the γ activity measurements are presented. This method is used for the determination of some isotope production cross sections for 600 MeV proton irradition in MANET steel, copper, tungsten, gold and titanium. The results are compared with some calculation. These values are used to determine the dose of specimens irradiated in the PIREX II facility. The results are discussed in terms of the irradiation parameters. A guide for the use of the production cross section determined in the dosimetry experiment are given. (author) tabs., refs

  18. Uterine malignant degeneration after low-dose endometrial irradiation

    International Nuclear Information System (INIS)

    Nikkanen, V.; Salmi, T.; Groenroos, M.

    1980-01-01

    The effectiveness of low-dose intrauterine irradiation for benign diseases and its possible carcinogenic effect on the uterus was studied in 190 patients who were treated during the years 1952-1974. The indications for irradiation were premenopausal functional bleeding, leukemia, hemophilia, fibroids, endometriosis or other benign reason. Radiation was also performed on patients with severe neurologic diseases that contraindicated surgery and on some mentally retarded patients whose restlessness and epileptic seizures were aggravated premenstrually and during menstruation. The mean follow-up period was 15 years. Uterine bleeding recurred in 21 percent of the patients. No cases of uterine malignant degeneration were found. (author)

  19. Effect of low doses gamma irradiation of cotton seeds

    International Nuclear Information System (INIS)

    Al-Oudat, M.; Khalifa, Kh.

    1996-01-01

    Field experiments and then large scale application of irradiated cotton seeds (C.V. Aleppo-40) were carried out during three seasons (1986, 1987 and 1988) for field experiment at ACSAD Station in Dier-Ezzor and 1988, 1989 and 1990 for large scale application at Euphrate's Basin, Al-Ghab and Salamia, farmers farms. The above areas were selected as they represent major cotton production areas in Syria. The aims of the experiments were to study the effect of low doses of gamma irradiation 0, 5, 10, 20, 30, 40 and 50 Gy on cotton yield and to look for the optimum dose of gamma irradiation to obtain best results. The results show that, there were positive effect (P<0.95) for doses 5-30 Gy in increasing cotton yield. The highest increase was at dose of 10 Gy. which as 19.5% higher than control. For the large scale application using 10 Gy the increase in cotton yield varied from 10-39% compared to control. (author). 11 refs., 6 figs

  20. Effect of large dose gamma-ray irradiation on polyimide

    International Nuclear Information System (INIS)

    Morita, Yohsuke; Watanabe, Kiyoshi; Yagyu, Hideki.

    1988-01-01

    In the radiation environment of atomic energy, space and so on, with the heightening of the performance of equipment, the organic materials having the radiation resistance up to several hundreds MGy have been demanded. Polyimide is one of a small number of the polymers which are considered to be applicable to such environment. However, actually the characteristics as the insulator for such large dose radiation environment have not been sufficiently verified. In this study, the gamma-ray of as large dose as 100 MGy was irradiated on the polyimides having different chemical structure in the air and in nitrogen, and the change of their mechanical and electrical characteristics was elucidated, at the same time, the structural change was examined. The four kinds of polyimides used for the experiment were three kinds of thermosetting type and thermoplastic polyether imide. Co-60 gamma-ray was irradiated at the dose rate of 17 kGy/h at room temperature. The tensile properties, volume resistivity, dielectric tangent, gel fraction, glass transition temperature and IR spectra were examined. In the air, the characteristics lowered by large dose irradiation due to the severance of main chains. In nitrogen, the deterioration was extremely slight, and cross-linking occurred. (K.I.)

  1. Irradiated radiation dose measurements of multilayer mirrors and permanent magnets used at FELI facilities

    International Nuclear Information System (INIS)

    Wakisaka, K.; Tongu, H.; Okuma, S.; Oshita, E.; Wakita, K.; Takii, T.; Tomimasu, Takio

    1997-01-01

    Recently the operation time of the free electron laser (FEL) user's facilities is close on three thousand hours per year. Cavity mirrors of their optical resonators and permanent magnets of their undulators are used under high intensity radiation field along their high current electron beam lines. Among these mirrors and permanent magnets, multilayer mirrors and Nd-Fe-B permanent magnets are not so strong against radiation damage compared with Au-coated copper mirrors and Sm-Co permanent magnets. A radiation damage on Ta 2 O 5 /SiO 2 mirrors was found for the first time after about fifty hours visible FEL operation at the FELI. The damage is due to irradiated bremsstrahlung and intracavity FEL. However, radiation damages on Nd-Fe-B permanent magnets were already reported compared with Sm-Co ones using high energy neutrons, protons, deuterons and 60 Coγ-rays. Mixed irradiation effects of 85-MeV electrons, bremsstrahlung and 60 Coγ-rays and of 17-MeV electrons and 60 Coγ-rays were also studied. The latest results show that the magnetic flux loss of Nd-Fe-B is 2% at an absorbed dose of 10 MGy. The present work was carried out to study the irradiated dose distributions near the multilayer mirrors and Nd-Fe-B permanent magnets with thermoluminescence dosimeters (TLDs). The irradiated dose to the cavity mirrors used in Linac-based FEL experiment is estimated to be 0.3 MGray for fifty hours irradiation. The irradiated dose to the Nd-Fe-B magnets is estimated to be 16 MGray for 2 thousand hours operation. The decrease of their magnetic flux due to 16 MGray is estimated to be about 3%. These dose monitorings are useful to reduce irradiated dosages to the mirrors and the permanent magnets as low as possible and to estimate their safety lifetimes. (author)

  2. Prediction of midline dose from entrance ad exit dose using OSLD measurements for total irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Heon; Park, Jong Min; Park, So Yeon; Chun, Min Soo; Han, Ji Hye; Cho, Jin Dong; Kim, Jung In [Dept. of Radiation Oncology, Seoul National University Hospital, Seoul (Korea, Republic of)

    2017-06-15

    This study aims to predict the midline dose based on the entrance and exit doses from optically stimulated luminescence detector (OSLD) measurements for total body irradiation (TBI). For TBI treatment, beam data sets were measured for 6 MV and 15 MV beams. To evaluate the tissue lateral effect of various thicknesses, the midline dose and peak dose were measured using a solid water phantom (SWP) and ion chamber. The entrance and exit doses were measured using OSLDs. OSLDs were attached onto the central beam axis at the entrance and exit surfaces of the phantom. The predicted midline dose was evaluated as the sum of the entrance and exit doses by OSLD measurement. The ratio of the entrance dose to the exit dose was evaluated at various thicknesses. The ratio of the peak dose to the midline dose was 1.12 for a 30 cm thick SWP at both energies. When the patient thickness is greater than 30 cm, the 15 MV should be used to ensure dose homogeneity. The ratio of the entrance dose to the exit dose was less than 1.0 for thicknesses of less than 30 cm and 40 cm at 6 MV and 15 MV, respectively. Therefore, the predicted midline dose can be underestimated for thinner body. At 15 MV, the ratios were approximately 1.06 for a thickness of 50 cm. In cases where adult patients are treated with the 15 MV photon beam, it is possible for the predicted midline dose to be overestimated for parts of the body with a thickness of 50 cm or greater. The predicted midline dose and OSLD-measured midline dose depend on the phantom thickness. For in-vivo dosimetry of TBI, the measurement dose should be corrected in order to accurately predict the midline dose.

  3. Protection of lethally irradiated mice with allogeneic fetal liver cells: influence of irradiation dose on immunologic reconstitution

    International Nuclear Information System (INIS)

    Tulunay, O.; Good, R.A.; Yunis, E.J.

    1975-01-01

    After lethal irradiation long-lived, immunologically vigorous C3Hf mice were produced by treatment with syngeneic fetal liver cells or syngeneic newborn or adult spleen cells. Treatment of lethally irradiated mice with syngeneic or allogeneic newborn thymus cells or allogeneic newborn or adult spleen cells regularly led to fatal secondary disease or graft-versus-host reactions. Treatment of the lethally irradiated mice with fetal liver cells regularly yielded long-lived, immunologically vigorous chimeras. The introduction of the fetal liver cells into the irradiated mice appeared to be followed by development of immunological tolerance of the donor cells. The findings suggest that T-cells at an early stage of differentiation are more susceptible to tolerance induction than are T-lymphocytes at later stages of differentiation. These investigations turned up a perplexing paradox which suggests that high doses of irradiation may injure the thymic stroma, rendering it less capable of supporting certain T-cell populations in the peripheral lymphoid tissue. Alternatively, the higher and not the lower dose of irradiation may have eliminated a host cell not readily derived from fetal liver precursors which represents an important helper cell in certain cell-mediated immune functions, e.g., graft-versus-host reactions, but which is not important in others, e.g., allograft rejections. The higher dose of lethal irradiation did not permit development or maintenance of a population of spleen cells that could initiate graft-versus-host reactions but did permit the development of a population of donor cells capable of achieving vigorous allograft rejection

  4. Calculation of dose conversion factors for doses in the fingernails to organ doses at external gamma irradiation in air

    International Nuclear Information System (INIS)

    Khailov, A.M.; Ivannikov, A.I.; Skvortsov, V.G.; Stepanenko, V.F.; Orlenko, S.P.; Flood, A.B.; Williams, B.B.; Swartz, H.M.

    2015-01-01

    Absorbed doses to fingernails and organs were calculated for a set of homogenous external gamma-ray irradiation geometries in air. The doses were obtained by stochastic modeling of the ionizing particle transport (Monte Carlo method) for a mathematical human phantom with arms and hands placed loosely along the sides of the body. The resulting dose conversion factors for absorbed doses in fingernails can be used to assess the dose distribution and magnitude in practical dose reconstruction problems. For purposes of estimating dose in a large population exposed to radiation in order to triage people for treatment of acute radiation syndrome, the calculated data for a range of energies having a width of from 0.05 to 3.5 MeV were used to convert absorbed doses in fingernails to corresponding doses in organs and the whole body as well as the effective dose. Doses were assessed based on assumed rates of radioactive fallout at different time periods following a nuclear explosion. - Highlights: • Elemental composition and density of nails were determined. • MIRD-type mathematical human phantom with arms and hands was created. • Organ doses and doses to nails were calculated for external photon exposure in air. • Effective dose and nail doses values are close for rotational and soil surface exposures.

  5. Life shortening, tumor induction, and tissue dose for fission-neutron and gamma-ray irradiations

    International Nuclear Information System (INIS)

    Grahn, D.; Duggal, K.; Lombard, L.S.

    1985-01-01

    The primary focus of this program is to obtain information on the late effects of whole body exposure to low doses of a high linear-energy-transfer (LET) and a low-LET ionizing radiation in experimental animals to provide guidance for the prediction of radiation hazards to man. The information obtained takes the form of dose-response curves for life shortening and for the induction of numerous specific types of tumors. The animals are irradiated with fission neutrons from the Janus reactor and with 60 Co gamma rays, delivered as single, weekly, or duration-of-life exposures covering the range of doses and dose rates. 6 refs

  6. Low Dose Total Body Irradiation Combined With Recombinant CD19-Ligand × Soluble TRAIL Fusion Protein is Highly Effective Against Radiation-resistant B-precursor Acute Lymphoblastic Leukemia in Mice

    Directory of Open Access Journals (Sweden)

    Fatih M. Uckun

    2015-04-01

    Full Text Available In high-risk remission B-precursor acute lymphoblastic leukemia (BPL patients, relapse rates have remained high post-hematopoietic stem cell transplantation (HSCT even after the use of very intensive total body irradiation (TBI-based conditioning regimens, especially in patients with a high “minimal residual disease” (MRD burden. New agents capable of killing radiation-resistant BPL cells and selectively augmenting their radiation sensitivity are therefore urgently needed. We report preclinical proof-of-principle that the potency of radiation therapy against BPL can be augmented by combining radiation with recombinant human CD19-Ligand × soluble TRAIL (“CD19L–sTRAIL” fusion protein. CD19L–sTRAIL consistently killed radiation-resistant primary leukemia cells from BPL patients as well as BPL xenograft cells and their leukemia-initiating in vivo clonogenic fraction. Low dose total body irradiation (TBI combined with CD19L–sTRAIL was highly effective against (1 xenografted CD19+ radiochemotherapy-resistant human BPL in NOD/SCID (NS mice challenged with an otherwise invariably fatal dose of xenograft cells derived from relapsed BPL patients as well as (2 radiation-resistant advanced stage CD19+ murine BPL with lymphomatous features in CD22ΔE12xBCR-ABL double transgenic mice. We hypothesize that the incorporation of CD19L–sTRAIL into the pre-transplant TBI regimens of patients with very high-risk BPL will improve their survival outcome after HSCT.

  7. High-water-base hydraulic fluid-irradiation experiments

    International Nuclear Information System (INIS)

    Bradley, E.C.; Meacham, S.A.

    1981-10-01

    A remote system for shearing spent nuclear fuel assemblies is being designed under the direction of the Consolidated Fuel Reprocessing Program (CFRP). The design incorporates a dual hydraulic fluid actuation system in which only one of the fluids, a high-water-base (HWBF), would be exposed to ionizing radiation and radioactive contamination. A commercially available synthetic, solution-type HWBF was selected as the reference. Single-sample irradiation experiments were conducted with three commercial fluids over a range of irradiation exposures. The physical and chemical properties of the irradiated HWBFs were analyzed and compared with unirradiated samples. In general, the results of the analyses showed increasing degradation of fluid properties with increasing irradiation dose. The results also indicated that a synthetic solution-type HWBF would perform satisfactorily in the remote shear system where irradiation doses up to 10 6 Gy (10 8 rad) are expected

  8. High-water-base hydraulic fluid-irradiation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, E.C.; Meacham, S.A.

    1981-10-01

    A remote system for shearing spent nuclear fuel assemblies is being designed under the direction of the Consolidated Fuel Reprocessing Program (CFRP). The design incorporates a dual hydraulic fluid actuation system in which only one of the fluids, a high-water-base (HWBF), would be exposed to ionizing radiation and radioactive contamination. A commercially available synthetic, solution-type HWBF was selected as the reference. Single-sample irradiation experiments were conducted with three commercial fluids over a range of irradiation exposures. The physical and chemical properties of the irradiated HWBFs were analyzed and compared with unirradiated samples. In general, the results of the analyses showed increasing degradation of fluid properties with increasing irradiation dose. The results also indicated that a synthetic solution-type HWBF would perform satisfactorily in the remote shear system where irradiation doses up to 10/sup 6/ Gy (10/sup 8/ rad) are expected.

  9. Relative biological effectiveness of 125I seeds for low-dose-rate irradiation of PANC-1

    International Nuclear Information System (INIS)

    Wang Jidong; Wang Junjie; Zhuang Hongqing; Liao Anyan; Zhao Yong

    2008-01-01

    Objective: To investigate the relative biological effectiveness(RBE) of National Model 6711 125 I seeds and the response patterns of PANC-1 exposed to 125 I seeds irradiation. Methods: PANC-1 cells in exponential growth were irradiated at initial dose rate of 2.59 cGy/h in vitro and exposed to 1, 2, 4, 6, 8 and 10 Gy. Meanwhile, the other part of cells were exposed to the same doses by 60 Co at dose rate of 2.21 Gy/min. After irradiation, the cells were stained by trypan blue to measure the cellular mortality rate and to compare the changes along with plating times of 12, 24, 48 and 72 h after 4 Gy. The colonies were counted to obtain the plating efficiencies by colony-forming assay and the cell surviving faction was calculated to plot cell survival curves, and RBE of 125 I seeds relative to 60 Co was determined. Results: The cell death rate for continuous low- dose-rate (LDR) irradiation by 125 I seeds was greater than 60 Co at the same doses above or equal to 4 Gy. After 4 Gy irradiation, the cellular mortality rates were increased with times. The difference was significant between 125 I seeds and 60 Co. The survival fractions of 125 I were lower than those of 60 Co, and the RBE of 125 I relative to 60 Co was determined to be 1.45. Conclusion: The cell-killing effects for continuous low-dose-rate (LDR) irradiation by 125 I seeds are greater than acute high-dose-rate of 60 Co. (authors)

  10. Transcriptome profiling of mice testes following low dose irradiation

    DEFF Research Database (Denmark)

    Belling, Kirstine C.; Tanaka, Masami; Dalgaard, Marlene Danner

    2013-01-01

    ABSTRACT: BACKGROUND: Radiotherapy is used routinely to treat testicular cancer. Testicular cells vary in radio-sensitivity and the aim of this study was to investigate cellular and molecular changes caused by low dose irradiation of mice testis and to identify transcripts from different cell types...... in the adult testis. METHODS: Transcriptome profiling was performed on total RNA from testes sampled at various time points (n = 17) after 1 Gy of irradiation. Transcripts displaying large overall expression changes during the time series, but small expression changes between neighbouring time points were...... selected for further analysis. These transcripts were separated into clusters and their cellular origin was determined. Immunohistochemistry and in silico quantification was further used to study cellular changes post-irradiation (pi). RESULTS: We identified a subset of transcripts (n = 988) where changes...

  11. Hematological changes after single large dose half-body irradiation

    International Nuclear Information System (INIS)

    Herrmann, T.; Friedrich, S.; Jochem, I.; Eberhardt, H.J.; Koch, R.; Knorr, A.

    1981-01-01

    The determination of different peripheral blood parameters aimed at the study of side effects on the hematological cellular system following a 5 - 8 Gy single large dose half-body irradiation in 20 patients. Compared to the initial values the leukocytes between the 6. and 14., the thrombocytes between the 14. and 21. postirradiation day as well as the lymphocytes between 3 hours and 4 weeks postirradiation were significantly decreased without exhibiting complications such as hemorrhages or infections. The hemoglobin, hematocrit and reticulocyte values revealed but a slight decrease normalized within a 28 days postirradiation period. Transfusions were necessary when a tumor-caused anemia was present prior to irradiation. Changes in serum activity of aminotransferases and lactate dehydrogenase occured during the first hours after irradiation and were due to enzyme release from destroyed tumor cells

  12. Calculation of midplane dose for total body irradiation from entrance and exit dose MOSFET measurements.

    Science.gov (United States)

    Satory, P R

    2012-03-01

    This work is the development of a MOSFET based surface in vivo dosimetry system for total body irradiation patients treated with bilateral extended SSD beams using PMMA missing tissue compensators adjacent to the patient. An empirical formula to calculate midplane dose from MOSFET measured entrance and exit doses has been derived. The dependency of surface dose on the air-gap between the spoiler and the surface was investigated by suspending a spoiler above a water phantom, and taking percentage depth dose measurements (PDD). Exit and entrances doses were measured with MOSFETs in conjunction with midplane doses measured with an ion chamber. The entrance and exit doses were combined using an exponential attenuation formula to give an estimate of midplane dose and were compared to the midplane ion chamber measurement for a range of phantom thicknesses. Having a maximum PDD at the surface simplifies the prediction of midplane dose, which is achieved by ensuring that the air gap between the compensator and the surface is less than 10 cm. The comparison of estimated midplane dose and measured midplane dose showed no dependence on phantom thickness and an average correction factor of 0.88 was found. If the missing tissue compensators are kept within 10 cm of the patient then MOSFET measurements of entrance and exit dose can predict the midplane dose for the patient.

  13. Facility for gamma irradiations of cultured cells at low dose rates: design, physical characteristics and functioning

    International Nuclear Information System (INIS)

    Esposito, Giuseppe; Anello, Pasquale; Pecchia, Ilaria; Tabocchini, Maria Antonella; Campa, Alessandro

    2016-01-01

    We describe a low dose/dose rate gamma irradiation facility (called LIBIS) for in vitro biological systems, for the exposure, inside a CO_2 cell culture incubator, of cells at a dose rate ranging from few μGy/h to some tens of mGy/h. Three different "1"3"7Cs sources are used, depending on the desired dose rate. The sample is irradiated with a gamma ray beam with a dose rate uniformity of at least 92% and a percentage of primary 662 keV photons greater than 80%. LIBIS complies with high safety standards. - Highlights: • A gamma irradiation facility for chronic exposures of cells was set up at the Istituto Superiore di Sanità. • The dose rate uniformity and the percentage of primary 662 keV photons on the sample are greater than 92% and 80%, respectively. • The GEANT4 code was used to design the facility. • Good agreement between simulation and experimental dose rate measurements has been obtained. • The facility will allow to safely investigate different issues about low dose rate effects on cultured cells.

  14. Clinical evaluation of high dose rate intra-cavitary irradiation for treatment of uterine cervical cancer, combined with pepleomycin suppository in uterine cavity

    International Nuclear Information System (INIS)

    Yamanashi, Shunji; Abe, Tatsuyuki; Mochizuki, Sachio; Murakami, Yoshitaka; Iida, Nobuhisa.

    1990-01-01

    By means of re-irradiation using pepleomycin suppository in uterine cavity, we attained local control for one patient who had local recurrence in uterine cavity and suffered from uterine fluor in which viable cancer cells were confirmed. We were enlightened by this therapeutic experience, so we attempted combination therapy using pepleomycin suppositories to supplement intra-cavitary irradiation, for the 11 selected patients who were suffering from uterine fluor. We investigated the treatment results in 7 patients of stage III out of 11 patients (of all stages), in comparison with 13 patients of stage III who were treated by irradiation alone. Consequently, these treatment results were approximately equivalent, and the incidence of sigmoid complications could be decreased. Side effects which were followed by the combination therapy were not serious, and so we believe that pepleomycin suppository is a simple method and valuable to supplement radiation therapy of uterine cervical cancer. (author)

  15. Clinical evaluation of high dose rate intra-cavitary irradiation for treatment of uterine cervical cancer, combined with pepleomycin suppository in uterine cavity

    Energy Technology Data Exchange (ETDEWEB)

    Yamanashi, Shunji; Abe, Tatsuyuki; Mochizuki, Sachio (Jikei Univ., Tokyo (Japan). School of Medicine); Murakami, Yoshitaka; Iida, Nobuhisa

    1990-02-01

    By means of re-irradiation using pepleomycin suppository in uterine cavity, we attained local control for one patient who had local recurrence in uterine cavity and suffered from uterine fluor in which viable cancer cells were confirmed. We were enlightened by this therapeutic experience, so we attempted combination therapy using pepleomycin suppositories to supplement intra-cavitary irradiation, for the 11 selected patients who were suffering from uterine fluor. We investigated the treatment results in 7 patients of stage III out of 11 patients (of all stages), in comparison with 13 patients of stage III who were treated by irradiation alone. Consequently, these treatment results were approximately equivalent, and the incidence of sigmoid complications could be decreased. Side effects which were followed by the combination therapy were not serious, and so we believe that pepleomycin suppository is a simple method and valuable to supplement radiation therapy of uterine cervical cancer. (author).

  16. Irradiation in helical scanner: doses estimation, parameters choice

    International Nuclear Information System (INIS)

    Cordoliani, Y.S.; Boyer, B.; Jouan, E.; Beauvais, H.

    2001-01-01

    The new generation of helical scanners improves the diagnosis abilities and the service done to the patients. The rational use allows to give the patients a ratio benefit/risk far better than the almost medical examinations. It is particularly true for over sixty years old aged people, that have a null genetic risk and a practically null carcinogen risk; However, for young adults and children, it is necessary to banish any useless irradiation and limit exposure to the strict necessary for the diagnosis. It is necessary to develop a radiation protection culture, possible by the radiation doses index display and doses benchmarks knowledge. (N.C.)

  17. Effect of low doses gamma irradiation on seed, bulblets and bulbs of onion

    International Nuclear Information System (INIS)

    Al-Oudat, Mohammad

    1991-10-01

    Presowing seed irradiation has been reported as a useful application of radiation in agriculture to stimulate growth and increase the yield of certain crops. To the best of our knowledge the feasibility of this treatment has not yet been tested on onion in Syria. The effect of low doses gamma irradiation on onion seeds, bulblets and bulbs of two local varieties, red and white, was studied during three consecutive seasons (1986 - 1988). Air dried seeds were irradiated by gamma rays from 137 Cs source. Five, 10, 15, 20 and 30 GY, were applied at dose rate of 9.8 Gy/min. The irradiation of onion bulblets and bulbs were carried out with gamma-rays from 60 Co source at a dose rate of 0.5 Gy/min. using 1, 2, 3, 4 and 5 Gy. Within 7 - 10 days after irradiation, both controlled and irradiated seeds, bulblets and bulbs were sown in the field in complete randomized block design with 4 replicates. Irradiation of seeds with doses of 5, 10 and 15 Gy led to highly significant increases in bulblets yield in the three seasons. The increases ranged from 14.5 to 22.1 for red variety and from 16.2 to 22.3 for white variety. The irradiation of bulblets with 1 and 2 Gy increase significantly the yield of bulbs by 21.6 - 26.0% for red variety and 21.6 - 24.4% for white variety. A considerable increase in seed yield was obtained after irradiation of bulbs with 1 and 2 Gy doses. The average increment was about 21.0% for both varieties. Large scale application were performed in 1989 and 1990 using doses of 10 Gy for seeds and 1 Gy for bulblets and bulbs. A considerable increase in the yield was obtained. The average percentage increment was 16.9% and 23.3% for seeds, 18.6 and 20.9% for bulblets, 24.8 and 27.3% for bulbs, for red and white varieties respectively. Therefore, presowing irradiation of seeds, bulblets and bulbs of onion with low doses of gamma-rays (5 - 15 Gy for seeds and 1 - 2 Gy for bulblets and bulbs) can be of practical application resulting in improvement of yield of

  18. Chemical dosimetry principles in high dose dosimetry

    International Nuclear Information System (INIS)

    Mhatre, Sachin G.V.

    2016-01-01

    In radiation processing, activities of principal concern are process validation and process control. The objective of such formalized procedures is to establish documentary evidence that the irradiation process has achieved the desired results. The key element of such activities is inevitably a well characterized reliable dosimetry system that is traceable to recognized national and international dosimetry standards. Only such dosimetry systems can help establish the required documentary evidence. In addition, industrial radiation processing such as irradiation of foodstuffs and sterilization of health careproducts are both highly regulated, in particular with regard to dose. Besides, dosimetry is necessary for scaling up processes from the research level to the industrial level. Thus, accurate dosimetry is indispensable

  19. Neutron and X-ray diffraction analysis of the effect of irradiation dose and temperature on microstructure of irradiated HT-9 steel

    International Nuclear Information System (INIS)

    Mosbrucker, P.L.; Brown, D.W.; Anderoglu, O.; Balogh, L.; Maloy, S.A.; Sisneros, T.A.; Almer, J.; Tulk, E.F.; Morgenroth, W.; Dippel, A.C.

    2013-01-01

    Material harvested from several positions within a nuclear fuel duct (the ACO-3 duct) used in a 6-year irradiation of a fuel assembly in the Fast Flux Test Reactor Facility (FFTF) was examined using neutron and high-energy X-ray diffraction. Samples with a wide range of irradiation dose and irradiation temperature history, reaching doses of up to 147 dpa and temperatures of up to 777 K, were examined. The response of various microstructural characteristics such as the weight fraction of M 23 C 6 carbides, the dislocation density and character, and the crystallographic texture were determined using whole profile analysis of the diffraction data and related to the macroscopic mechanical behavior. For instance, the dislocation density was observed to be intimately linked with observed flow strength of the irradiated materials, following the Taylor law. In general, at the high doses studied in this work, the irradiation temperature is the predominant controlling factor of the dislocation density and, thus, the flow strength of the irradiated material. The results, representing some of the first diffraction work done on samples exposed to such a high received dose, demonstrate how non-destructive and stand-off diffraction techniques can be used to characterize irradiation induced microstructure and at least estimate mechanical properties in irradiated materials without exposing workers to radiation hazards

  20. Effect of high-dose irradiation and autoclave treatment on microbial safety and quality of ready-to-eat Bulgogi sauce

    Science.gov (United States)

    Park, Jin-Gyu; Song, Beom-Seok; Kim, Jae-Hun; Han, In-Jun; Yoon, Yohan; Chung, Hyung-Wook; Kim, Eun-Jeong; Gao, Meixu; Lee, Ju-Woon

    2012-08-01

    In Korea, commercialized sauce for ready-to-eat (RTE) Bulgogi is usually manufactured using heat treatment to ensure that it has a long shelf-life. However, heat treatment may adversely affect the taste and flavor of the sauce, thus, the development of suitable sterilizing methods for RTE sauces is necessary to preserve the quality of the sauce during long storage periods. In this study, total bacterial growth, the viscosity, and the sensory properties of Bulgogi sauce were compared between sterilization with gamma irradiation (0-40 kGy) and autoclave treatment during storage at 35 °C for 90 days. No bacterial growth was observed following irradiation at more than 10 kGy or after autoclave treatment. However, the viscosity and sensory properties of samples gamma-irradiated at above 10 kGy or autoclave-treated were significantly changed, even though autoclave treatment induced a burnt taste and flavor. Therefore, a gamma irradiation of 10 kGy was effective to prepare ready-to-eat Bulgogi sauce with microbial safety and original sensory qualities.

  1. Effects of irradiation at different dose rates on the onset of type I diabetes in model mice

    International Nuclear Information System (INIS)

    Nomura, Takashi; Sakai, Kazuo

    2003-01-01

    We previously demonstrated that low-dose irradiation (0.5 Gy) increased the level of antioxidants and decreased the level of lipid peroxide in normal mice. We also found that 0.5 Gy-irradiation of NOD mice suppressed the onset of type I diabetes. These results were obtained by the irradiation at high dose rate. The aim of the present study is to examine the effects at the low dose rate. The mice were acutely irradiated with 0.5 Gy of X-rays (300 kVp) at 94.2 Gy/hr at 10, 11, 12, 13 or 14 weeks of age, or chronically irradiated with 0.5 Gy of 137 Cs γ-rays at 0.95 mGy/hr starting at 10,11,12,13 or 14 weeks of age. When irradiated at 12th week with the high dose rate X-rays, the onset of diabetes suppressed, and the increase in the specific activity of superoxide dismutase (SOD) in pancreas was observed. On the other hand, the low dose rate γ-rays delivered from 12th week of age to 14th was less effective in the suppression of the incidence of diabetes than the high dose rate X-rays at the 12-14 weeks of age. Furthermore, the significant increase in pancreatic SOD activity was not observed after the low dose irradiation. Splenic macrophage activities of superoxide generation were not affected by the high dose rate irradiation nor the low dose rate irradiation. (author)

  2. Thermal stability of low dose Ga+ ion irradiated spin valves

    International Nuclear Information System (INIS)

    Qi Xianjin; Wang Yingang; Zhou Guanghong; Li Ziquan

    2009-01-01

    The thermal stability of low dose Ga + ion irradiated spin valves has been investigated and compared with that of the as-prepared ones. The dependences of exchange field, measured using vibrating sample magnetometer at room temperature, on magnetic field sweep rate and time spent at negative saturation of the pinned ferromagnetic layer, and training effect were explored. The training effect is observed on both the irradiated spin valves and the as-prepared ones. The magnetic field sweep rate dependence of the exchange bias field of the irradiated spin valves is nearly the same as that of the as-prepared ones. For the as-prepared structure thermal activation has been observed, which showed that holding the irradiated structure at negative saturation of the pinned ferromagnetic layer for up to 28 hours results in no change in the exchange field. The results indicate that the thermal stability of the ion irradiated spin valves is the same as or even better than the as-prepared ones.

  3. Temperature and dose dependencies of microstructure and hardness of neutron irradiated OFHC copper

    International Nuclear Information System (INIS)

    Singh, B.N.; Horsewell, A.; Toft, P.; Edwards, D.J.

    1995-01-01

    Tensile specimens of pure oxygen free high conductivity (OFHC) copper were irradiated with fission neutrons between 320 and 723 K to fluences in the range 5x10 21 to 1.5x10 24 n/m 2 (E>1 MeV) with a flux of 2.5x10 17 n/m 2 s. Irradiated specimens were investigated by transmission electron microscopy (TEM) and quantitative determinations were made of defect clusters and cavities. The dose dependence of tensile properties of specimens irradiated at 320 K was determined at 295 K. Hardness measurements were made at 295 K on specimens irradiated at different temperatures and doses. Microstructures of tensile tested specimens were also investigated by TEM. Results show that the increase in cluster density and hardening nearly saturate at a dose of similar 0.3 dpa. Irradiations at 320 K cause a drastic decrease in the uniform elongation already at ∼ =0.1 dpa. It is suggested that the irradiation-induced increase in the initial yield stress and a drastic decrease in the ability of copper to deform plastically in a homogeneous fashion are caused by a substantial reduction in the ability of grown-in dislocations to act as efficient dislocation sources. ((orig.))

  4. Pre-irradiation at a low dose-rate blunted p53 response

    International Nuclear Information System (INIS)

    Takahashi, Akihisa

    2002-01-01

    We investigated whether chronic irradiation at a low dose-rate interferes with the p53-centered signal transduction pathyway induced by radiation in human cultured cells and C57BL/6N mice. In in vitro experiments, we found that a challenge with X-ray irradiation immediately after chronic irradiation resulted in lower levels of p53 than those observed after the challenge alone in glioblastoma cells (A-172). In addition, the levels of p53-centered apoptosis and its related proteins after the challenge were strongly correlated with the above-mentioned phenomena in squamous cell carcinoma cells (SAS/neo). In in vivo experiments, the accumulation of p53 and Bax, and the induction of apoptosis were observed dose-dependently in mouse spleen at 12 h after a challenge with X-rays (3.0 Gy). However, we found significant suppression of p53 and Bax accumulation and the induction of apoptosis 12 h after challenge irradiation at 3.0 Gy with a high doses-rate following chronic pre-irradiation (1.5 Gy, 0.001 Gy/min). These findings suggest that chronic pre-irradiation suppressed the p53 function through radiation-induced signaling and/or p53 stability. (author)

  5. Overview of Radiosensitivity of Human Tumor Cells to Low-Dose-Rate Irradiation

    International Nuclear Information System (INIS)

    Williams, Jerry R.; Zhang Yonggang; Zhou Haoming; Gridley, Daila S.; Koch, Cameron J.; Slater, James M.; Little, John B.

    2008-01-01

    Purpose: We compared clonogenic survival in 27 human tumor cell lines that vary in genotype after low-dose-rate (LDR) or high-dose rate (HDR) irradiation. We measured susceptibility to LDR-induced redistribution in the cell cycle in eight of these cell lines. Methods and Materials: We measured clonogenic survival after up to 96 hours of LDR (0.25 Gy/h) irradiation. We compared these with clonogenic survival after HDR irradiation (50 Gy/h). Using flow cytometry, we measured LDR-induced redistribution as a function of time during LDR irradiation in eight of these cell lines. Results: Coefficients that describe clonogenic survival after both LDR and HDR irradiation segregate into four radiosensitivity groups that associate with cell genotype: mutant (mut)ATM, wild-type TP53, mutTP53, and an unidentified gene in radioresistant glioma cells. The LDR and HDR radiosensitivity correlates at lower doses (∼2 Gy HDR, ∼6 Gy LDR), but not at higher doses (HDR > 4 Gy; LDR > 6 Gy). The rate of LDR-induced loss of clonogenic survival changes at approximately 24 hours; wild-type TP53 cells become more resistant and mutTP53 cells become more sensitive. Redistribution induced by LDR irradiation also changes at approximately 24 hours. Conclusions: Radiosensitivity of human tumor cells to both LDR and HDR irradiation is genotype dependent. Analysis of coefficients that describe cellular radiosensitivity segregates 27 cell lines into four statistically distinct groups, each associating with specific genotypes. Changes in cellular radiosensitivity and redistribution in the cell cycle are strongly time dependent. Our data establish a genotype-dependent time-dependent model that predicts clonogenic survival, explains the inverse dose-rate effect, and suggests possible clinical applications

  6. Radiation doses inside industrial irradiation installation with linear electron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Alexandre R., E-mail: alexandre.lima@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil); Pelegrineli, Samuel Q.; Alo, Gabriel F., E-mail: samuelfisica@yahoo.com.br, E-mail: gabriel.alo@aceletron.com.br [Aceletron Irradiacao Industrial, Aceletrica Comercio e Representacoes Ltda, Rio de Janeiro, RJ (Brazil); Silva, Francisco C.A. Da, E-mail: dasilva@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    Aceletron Industrial Irradiation Company is the unique installation in South America to provide industrial irradiation service using two linear electron accelerators of 18 kW and 10 MeV energy. The electron beam technology allows using electrons to irradiate many goods and materials, such as hospital and medical equipment, cosmetics, herbal products, polymers, peat, gemstones and food. Aceletron Company uses a concrete bunker with 3.66 m of thickness to provide the necessary occupational and environmental radiation protection of X-rays produced. The bunker is divided in main four areas: irradiation room, maze, tower and pit. Inside the irradiation room the x-rays radiation rates are measured in two ways: direct beam and 90 deg C. The rates produced in the conveyor system using 10 MeV energy are 500 Gy/min/mA and 15 Gy/min/mA, respectively. For a 1.8 mA current, the rates produced are 900 Gy/min and 27 Gy/min, respectively. Outside the bunker the radiation rate is at background level, but in the tower door and modulation room the radiation rate is 10 μSv/h. In 2014, during a routine operation, an effective dose of 30.90 mSv was recorded in a monthly individual dosimeter. After the investigation, it was concluded that the dose was only in the dosimeter because it felt inside the irradiation room. As Aceletron Company follows the principles of safety culture, it was decided to perform the radiation isodose curves, inside the four areas of the installation, to know exactly the hotspots positions, exposure times and radiation doses. Five hotspots were chosen taking into account worker's routes and possible operational places. The first experiment was done using a package with three TLD and OSLD dosimeters to obtain better statistical results. The first results for the five hotspots near the accelerator machine showed that the radiation dose rates were between 26 Gy/h and 31 Gy/h. The final measurements were performed using a package with one TLD and one OSLD

  7. Radiation doses inside industrial irradiation installation with linear electron accelerator

    International Nuclear Information System (INIS)

    Lima, Alexandre R.; Pelegrineli, Samuel Q.; Alo, Gabriel F.; Silva, Francisco C.A. Da

    2015-01-01

    Aceletron Industrial Irradiation Company is the unique installation in South America to provide industrial irradiation service using two linear electron accelerators of 18 kW and 10 MeV energy. The electron beam technology allows using electrons to irradiate many goods and materials, such as hospital and medical equipment, cosmetics, herbal products, polymers, peat, gemstones and food. Aceletron Company uses a concrete bunker with 3.66 m of thickness to provide the necessary occupational and environmental radiation protection of X-rays produced. The bunker is divided in main four areas: irradiation room, maze, tower and pit. Inside the irradiation room the x-rays radiation rates are measured in two ways: direct beam and 90 deg C. The rates produced in the conveyor system using 10 MeV energy are 500 Gy/min/mA and 15 Gy/min/mA, respectively. For a 1.8 mA current, the rates produced are 900 Gy/min and 27 Gy/min, respectively. Outside the bunker the radiation rate is at background level, but in the tower door and modulation room the radiation rate is 10 μSv/h. In 2014, during a routine operation, an effective dose of 30.90 mSv was recorded in a monthly individual dosimeter. After the investigation, it was concluded that the dose was only in the dosimeter because it felt inside the irradiation room. As Aceletron Company follows the principles of safety culture, it was decided to perform the radiation isodose curves, inside the four areas of the installation, to know exactly the hotspots positions, exposure times and radiation doses. Five hotspots were chosen taking into account worker's routes and possible operational places. The first experiment was done using a package with three TLD and OSLD dosimeters to obtain better statistical results. The first results for the five hotspots near the accelerator machine showed that the radiation dose rates were between 26 Gy/h and 31 Gy/h. The final measurements were performed using a package with one TLD and one OSLD

  8. Dose Calculation Evolution for Internal Organ Irradiation in Humans

    International Nuclear Information System (INIS)

    Jimenez V, Reina A.

    2007-01-01

    The International Commission of Radiation Units (ICRU) has established through the years, a discrimination system regarding the security levels on the prescription and administration of doses in radiation treatments (Radiotherapy, Brach therapy, Nuclear Medicine). The first level is concerned with the prescription and posterior assurance of dose administration to a point of interest (POI), commonly located at the geometrical center of the region to be treated. In this, the effects of radiation around that POI, is not a priority. The second level refers to the dose specifications in a particular plane inside the patient, mostly the middle plane of the lesion. The dose is calculated to all the structures in that plane regardless if they are tumor or healthy tissue. In this case, the dose is not represented by a point value, but by level curves called 'isodoses' as in a topographic map, so you can assure the level of doses to this particular plane, but it also leave with no information about how this values go thru adjacent planes. This is why the third level is referred to the volumetrical description of doses so these isodoses construct now a volume (named 'cloud') that give us better assurance about tissue irradiation around the volume of the lesion and its margin (sub clinical spread or microscopic illness). This work shows how this evolution has resulted, not only in healthy tissue protection improvement but in a rise of tumor control, quality of life, better treatment tolerance and minimum permanent secuelae

  9. Dose compensation of the total body irradiation therapy

    International Nuclear Information System (INIS)

    Lin, J.-P.; Chu, T.-C.; Liu, M.-T.

    2001-01-01

    The aim of the study is to improve dose uniformity in the body by the compensator-rice and to decrease the dose to the lung by the partial lung block. Rando phantom supine was set up to treat bilateral fields with a 15 MV linear accelerator at 415 cm treatment distance. The experimental procedure included three parts. The first part was the bilateral irradiation without rice compensator, and the second part was with rice compensator. In the third part, rice compensator and partial lung block were both used. The results of thermoluminescent dosimeters measurements indicated that without rice compensator the dose was non-uniform. Contrarily, the average dose homogeneity with rice compensator was measured within ±5%, except for the thorax region. Partial lung block can reduce the dose which the lung received. This is a simple method to improve the dose homogeneity and to reduce the lung dose received. The compensator-rice is cheap, and acrylic boxes are easy to obtain. Therefore, this technique is suitable for more studies

  10. Stability of uranium silicides during high energy ion irradiation

    International Nuclear Information System (INIS)

    Birtcher, R.C; Wang, L.M.

    1991-11-01

    Changes induced by 1.5 MeV Kr ion irradiation of both U 3 Si and U 3 Si 2 have been followed by in situ transmission electron microscopy. When irradiated at sufficiently low temperatures, both alloys transform from the crystalline to the amorphous state. When irradiated at temperatures above the temperature limit for ion beam amorphization, both compounds disorder with the Martensite twin structure in U 3 Si disappearing from view in TEM. Prolonged irradiation of the disordered crystalline phases results in nucleation of small crystallites within the initially large crystal grains. The new crystallites increase in number during continued irradiation until a fine grain structure is formed. Electron diffraction yields a powder-like diffraction pattern that indicates a random alignment of the small crystallites. During a second irradiation at lower temperatures, the small crystallizes retard amorphization. After 2 dpa at high temperatures, the amorphization dose is increased by over twenty times compared to that of initially unirradiated material

  11. Effects on the glucose metabolism in type II diabetes model mice treated with dose-rates irradiation

    International Nuclear Information System (INIS)

    Nomura, Takaharu; Sakai, Kazuo

    2004-01-01

    The effects of low-dose rate gamma-irradiation on the type II diabetes mellitus were investigated in C57BL/KsJ-ab/db (db mouse). This mouse develops the type II diabetes within 8 weeks of the birth due to a dysfunction of the insulin receptors. As a result the db mouse shows obese and exhibits hyperinsulinism. Ten-week old female mice (12 mice in each group) were irradiated with gamma-rays at 0.35 mGy/hr, 0.65 mGy/hr or 1.2 mGy/hr in the low-dose rate irradiation facility in the Low Dose Radiation Research Center. The level of plasma glucose and insulin was measured. After 2 weeks irradiation, the glucose level slightly increased, however the difference between the irradiated mice and non-irradiated groups was not significant. The plasma insulin concentration decreased in the non-irradiated group to half of the initial level. In the irradiated group, it also decreased but in the group of 0.65 mGy/hr and 0.35 mGy/hr, it was significantly differed from that in the non-irradiated group. In the glucose tolerance test, plasma glucose level increased shortly after 0.1 mg/head glucose injection by mouth and reached to a peak at 90-120 min after the injection. The glucose level of the non-irradiated mice was slightly higher than that of irradiated mice. The plasma insulin level of non-irradiated group was enhanced after the injection and maintained the level during the test. However the levels of irradiated mice were decreased at 30-60 min after the injection. Both the level of non-irradiated an irradiated was almost same but the non-irradiated one was a little high. In all of mice, the plasma insulin level was highly elevated right after the 0.05 units/head insulin injection by i.p. and the levels were also gradually decreased. The level of the non-irradiated group was slowly decreased and was higher than the irradiated mice. The plasma glucose levels of all mice did not change after the test; however, the levels of irradiated mice were slightly lower than that of non-irradiated

  12. Peripheral blood corticotropin-releasing factor, adrenocorticotropic hormone and cytokine (Interleukin Beta, Interleukin 6, tumor necrosis factor alpha) levels after high- and low-dose total-body irradiation in humans

    International Nuclear Information System (INIS)

    Girinsky, T.A.; Pallardy, M.; Comoy, E.; Benassi, T.; Roger, R.; Ganem, G.; Socie, G.; Cossett, J.M.; Magdelenat, H.

    1994-01-01

    Total-body irradiation (TBI) induces an increase in levels of granulocytes and cortisol in blood. To explore the underlying mechanisms, we studied 26 patients who had TBI prior to bone marrow transplantation. Our findings suggest that only a high dose of TBI (10 Gy) was capable of activating the hypothalamopituitary area since corticotropin-releasing factor and blood adrenocorticotropic hormone levels increased at the end of the TBI. There was a concomitant increase in the levels of interleukin 6 and tumor necrosis factor in blood, suggesting that these cytokines might activate the hypothalamo-pituitary adrenal axis. Interleukin 1 was not detected. Since vascular injury is a common after radiation treatment, it is possible that interleukin 6 was secreted by endothelial cells. The exact mechanisms of the production of cyctokines induced by ionizing radiation remain to be determined. 25 refs., 1 fig

  13. Response to annealing and reirradiation of AISI 304L stainless steel following initial high-dose neutron irradiation in EBR-II

    International Nuclear Information System (INIS)

    Porter, D.L.; McVay, G.L.; Walters, L.C.

    1980-01-01

    The object of this study was to measure the stability of irradiation-induced microstructure upon annealing and, by selectively annealing out some of these features and reirradiating the material, it was expected that information could be gained concerning the role of microstructural changes in the void swelling process. Transmission electron microscopic examinations of isochronally annealed (200 to 1050 0 C) AISI 304L stainless steel, which had been irradiated at approximately 415 0 C to a fast (E > 0.1 MeV) neutron fluence of approximately 5.1 x 10 26 n/m 2 , verified that the two-stage hardness recovery with temperatures was related to a low temperature annealing of dislocation structures and a higher temperature annealing of voids and solute redistribution

  14. Establishment of a dosimetric system for high doses using glasses

    International Nuclear Information System (INIS)

    Correa Quezada, Valeria de la Asuncion

    1997-01-01

    A routine dosimetric system was developed using commercial glass samples. The dosimetric characteristics of national and imported samples were studied: batch uniformity, response repeatability, reutilization, absorbed dose response, detection range, response stability as a function of absorbed dose, storage temperature and thermal treatments pre- and post-irradiation, using the optical absorption technique. As an application, the dosimetric system was tested in a flower irradiation process at IPEN. All the obtained results show the usefulness of the proposed system for high dose dosimetry. (author)

  15. Hematopoietic tissue repair under chronic low daily dose irradiation

    International Nuclear Information System (INIS)

    Seed, T.M.

    1994-01-01

    The capacity of the hematopoietic system to repair constantly accruing cellular damage under chronic, low daily dose gamma irradiation is essential for the maintenance of a functional hematopoietic system, and, in turn, long term survival. In certain individuals, however, such continuous cycles of damage and repair provide an essential inductive environment for selected types of hematopathologies, e.g., myeloid leukemia (ML). We have been studying temporal and causal relationships between hematopoietic capacity, associated repair functions, and propensities for hematologic disease in canines under variable levels of chronic radiation stress (0.3-26.3 cGy d -1 ). Results indicate that the maximum exposure rate tolerated by the hematopoietic system is highly individual-specific and is based largely on the degree to which repair capacity, and, in turn, hematopoietic restoration, is augmented under chronic exposure. In low-tolerance individuals (prone to aplastic anemia, subgroup (1), the failure to augment basic m-pair functions seemingly results in a progressive accumulation of genetic and cellular damage within vital progenitorial marrow compartments particularly marked within erythroid compartments. that results in loss of reproductive capacity and ultimately in collapse of the hematopoietic system. The high-tolerance individuals (radioaccomodated and either prone- or not prone to ML, subgroup 2 ampersand 3 appear to minimize the accumulating damage effect of daily exposures by extending repair functions, which preserves reproductive integrity and fosters regenerative hematopoietic responses. As the strength of the regenerative response manifests the extent of repair augmentation, the relatively strong response of high- tolerance individuals progressing to patent ML suggests an insufficiency of repair quality rather than repair quantity

  16. High dose potassium-nitrate chemical dosimeter

    International Nuclear Information System (INIS)

    Dorda de Cancio, E.M.; Munoz, S.S.

    1982-01-01

    This dosimeter is used to control 10 kGY-order doses (1 Mrad). Nitrate suffers a radiolitic reduction phenomena, which is related to the given dose. The method to use potassium nitrate as dosimeter is described, as well as effects of the temperature of irradiation, pH, nitrate concentration and post-irradiation stability. Nitrate powder was irradiated at a Semi-Industrial Plant, at Centro Atomico Ezeiza, and also in a Gammacell-220 irradiator. The dose rates used were 2,60 and 1,80 KGY/hour, and the given doses varied between 1,0 and 150 KGY. The uncertainty was +-3% in all the range. (author) [es

  17. Effect of gamma irradiation at intermediate doses on the performance of reverse osmosis membranes

    International Nuclear Information System (INIS)

    Combernoux, Nicolas; Labed, Véronique; Schrive, Luc; Wyart, Yvan; Carretier, Emilie; Moulin, Philippe

    2016-01-01

    The goal of this study is to explain the degradation of Polyamide (PA) composite reverse osmosis membrane (RO) in function of the irradiation dose. Irradiations were performed with a gamma 60 Co source in wet conditions and under oxygen atmosphere. For different doses of 0.2 and 0.5 MGy with a constant dose rate of 0.5 kGy h −1 , RO membranes performances (NaCl retention, permeability) were studied before and after irradiation. ATR-FTIR, ion chromatography and gas chromatography were used to characterize structural modification. Results showed that the permeability of RO membranes irradiated at 0.2 MGy exhibited a small decrease, related to scissions of the PVA coating. However, retention did not change at this dose. At 0.5 MGy, permeability showed a large increase of a factor around 2 and retention began to decrease from 99% to 95%. Chromatography measurements revealed a strong link between permselectivity properties variation, ion leakage and oxygen consumption. Add to ATR-FTIR observations, these results emphasized that the cleavages of amide and ester bonds were observed at 0.5 MGy, more precisely the loss of hydrogen bonds between polyamide chains. By different analysis, modifications of the polysulfone layer occur until a dose of 0.2 MGy. - Highlights: • Irradiation of RO membranes at intermediate dose (0.2 and 0.5 MGy). • For a dose rate of 0.5 kGy h −1 RO membranes are radiation resistant until 0.2 MGy. • Cleavages of polymer bonds in the active layer at 0.5 MGy. • Decrease in permselectivity properties of the membrane at 0.5 MGy. • High oxygen consumption between 0.2 and 0.5 MGy related to the membranes degradation.

  18. Minimizing and measuring lens dose when giving cranial irradiation

    International Nuclear Information System (INIS)

    Woo, S.Y.; Donaldson, S.S.; Heck, R.J.; Nielson, K.L.; Shostak, C.

    1989-01-01

    Three different techniques of administering cranial irradiation were used to determine the dose to the lens as measured in the Rando phantom. The techniques employed were as follows: (1) the central axis of the radiation beam was placed at the thickest portion of the cranium; (2) the central axis of the radiation beam was placed at the lateral orbital rim (bon canthus); (3) the central axis of the radiation beam was placed at the thickest portion of the cranium but with the beam angled 5deg posteriorly away from the eye. Thermal luminescent dosimeters (TLD) were placed in a phantom, at a point determined from a life-sized anatomical section of the plane through the midsection of the eye, to be at the location of the posterior capsule of the lens. In addition, TLDs were placed on the outer surface of the phantom head, directly lateral to the location determined to be where the lens would lie. With equally weighted lateral opposed beams, delivering a midplane dose of 200cGy, the TLDs at the point of the lens measured 21, 9.9 and 10.6% of the midplane doses from the three techniques respectively. TLDs placed directly lateral to the lens on the surface of the phantom head gave an approximation of the lens dose, particularly when techniques 2 and 3 were used. Isodose curve generated by a General Electric treatment planning computer gave lens doses similar to those of the phantom data for each of the three different radiotherapy techniques. Cranial irradiation should be carried out by either technique 2 or technique 3 to minimize radiation dose to the lens. (author). 11 refs.; 2 figs.; 3 tabs

  19. A novel theory of radiation damage at high doses

    International Nuclear Information System (INIS)

    Seeger, A.; Stuttgart Univ.

    1989-01-01

    Deviations of radiation damage (in the case of metals usually monitored by the residual electrical resistivity) from proportionality with the irradiation dose have so far been analysed almost exclusively in terms of extensions of models originally developed for small doses. The present theory considers the opposite limit i.e. the quasi-saturated state. It is argued that at high doses the Lueck-Sizmann effect may result in a self-organization of clusters of vacancies and self-interstitials, forming a heterogeneous froth. Possible structures of this froth and its effect on the electrical resistivity of metals are discussed. The model is shown to account for the dependence of the ''saturation resistivity'' on the nature of the irradiation as well as for several other hitherto poorly explained observations. Among them are the electrical-resistivity variation induced by high-dose irradiation with heavy ions, the amorphization of certain alloys by high-dose electron irradiation, and the occurrence of ordered arrays of stacking-fault tetrahedra after in-situ irradiations in high-voltage electron microscopes. (author)

  20. Patient absorbed radiation doses estimation related to irradiation anatomy

    International Nuclear Information System (INIS)

    Soares, Flavio Augusto Penna; Soares, Amanda Anastacio; Kahl, Gabrielly Gomes

    2014-01-01

    Developed a direct equation to estimate the absorbed dose to the patient in x-ray examinations, using electric, geometric parameters and filtering combined with data from irradiated anatomy. To determine the absorbed dose for each examination, the entrance skin dose (ESD) is adjusted to the thickness of the patient's specific anatomy. ESD is calculated from the estimated KERMA greatness in the air. Beer-Lambert equations derived from power data mass absorption coefficients obtained from the NIST / USA, were developed for each tissue: bone, muscle, fat and skin. Skin thickness was set at 2 mm and the bone was estimated in the central ray of the site, in the anteroposterior view. Because they are similar in density and attenuation coefficients, muscle and fat are treated as a single tissue. For evaluation of the full equations, we chose three different anatomies: chest, hand and thigh. Although complex in its shape, the equations simplify direct determination of absorbed dose from the characteristics of the equipment and patient. The input data is inserted at a single time and total absorbed dose (mGy) is calculated instantly. The average error, when compared with available data, is less than 5% in any combination of device data and exams. In calculating the dose for an exam and patient, the operator can choose the variables that will deposit less radiation to the patient through the prior analysis of each combination of variables, using the ALARA principle in routine diagnostic radiology sector

  1. Effects of low dose gamma irradiation on the germination and physiological activity of old red pepper (Capsicum annuum L.) seed

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Sung; Back, Myung Hwa; Lee, Hae Youn; Lee, Young Keun [KAERI, Daejeon (Korea, Republic of)

    2001-12-15

    To observe the stimulating effects of low dose gamma radiation on the germination and physiological activity of germinating seeds of old red pepper (Capsicum annuum L. cv, Jokwang and cv. Hongkwang), seeds were irradiated at the dose of 2{approx}50 Gy. The germination rate of irradiation group was higher than that of the control. Especially it was highest at the early stage of induction. The germination rate at 7 days after sowing in Jokwang and Hongkwang cultivar was high as 74% and 11% at 4 Gy and 8 Gy irradiation group, respectively. The seedling height of Jokwang cultivar was noticeably high at 4 Gy irradiation group and that of Hongkwang cultivar at 8 Gy Irradiation group. The protein contents of seedlings from seeds irradiated with low dose gamma radiation of Jokwang cultivar increased at the late stage of induction and that of Hongkwang cultivar at the early stage of induction. Catalase and peroxidase activities of seedlings from seeds irradiated with low dose gamma radiation of Jokwang cultivar increased at 4 Gy irradiation group and that of Hongkwang cultivar at 8 Gy irradiation group.

  2. Dose-time relationships for post-irradiation cutaneous telangiectasia

    International Nuclear Information System (INIS)

    Cohen, L.; Ubaldi, S.E.

    1977-01-01

    Seventy-five patients who had received electron beam radiation a year or more previously were studied. The irradiated skin portals were photographed and late reactions graded in terms of the number and severity of telangiectatic lesions observed. The skin dose, number of fractions, overall treatment time and irradiated volume were recorded in each case. A Strandqvist-type iso-effect line was derived for this response. A multi-probit search program also was used to derive best-fitting cell population kinetic parameters for the same data. From these parameters a comprehensive iso-effect table could be computed for a wide range of treatment schedules including daily treatment as well as fractionation at shorter and longer intervals; this provided a useful set of normal tissue tolerance limits for late effects

  3. Comparison between apparent viscosity related to irradiation dose for corn starch and black pepper

    International Nuclear Information System (INIS)

    Casandroiu, T.; Oprita, N.; Ferdes, O.S.

    1999-01-01

    Dose-effect relationship was studied in the rheoviscometric behaviour of geliffied suspensions of irradiated corn starch and black pepper, as the variation of the apparent viscosity and the shear stress related to the dose. Irradiation has been performed up to 16 kGy. Black pepper was ground and sieved to three particle sizes to analyse also the influence of particle size on the apparent viscosity variation by dose. The rheoviscometric measurements have been carried out by a rotationary viscometer on geliffied suspensions of starch and black pepper, into equivalent starch concentration and alkalinised suspensions for pepper. For starch, shear stress variation by dose is exponential, where the coefficients depend on the shear rate. For black pepper, the curves of apparent viscosity relation to dose also fit an exponential equation and the influence of particle size is discussed, too. Viscometric behaviour similar to irradiation of both corn starch and black pepper could be attributed to starch degradation at relatively high doses and should be used to develop an identification and control method for the ionizing treatment of starch-based food materials. (author)

  4. Long-term follow-up of low-dose external pituitary irradiation for Cushing's disease

    International Nuclear Information System (INIS)

    Littley, M.D.; Shalet, S.M.; Beardwell, C.G.; Ahmed, S.R.; Sutton, M.L.

    1990-01-01

    Twenty-four patients (three male) with Cushing's disease, aged between 11 and 67 years, were treated with low-dose external pituitary irradiation (20 Gy in eight fractions over 10-12 days) and followed for between 13 and 171 months (median 93 months). Eleven patients (46%) went into remission 4-36 months after irradiation, but five subsequently relapsed. In this series, the low incidence of radiation-induced hypopituitarism and absence of other complications attributable to radiotherapy suggest that low-dose pituitary irradiation may be a useful treatment option in selected patients. However, long-term follow-up has demonstrated a high relapse rate and failure to prevent Nelson's syndrome in adrenalectomized patients, indicating that it should not be used as primary treatment in preference to selective adenomectomy. (author)

  5. Blood compounds irradiation process: assessment of absorbed dose using Fricke and Thermoluminescent dosimetric systems

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Gabriela de Amorim; Squair, Peterson Lima; Pinto, Fausto Carvalho; Belo, Luiz Claudio Meira; Grossi, Pablo Andrade [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN-CNEN/MG), Belo Horizonte, MG (Brazil)], e-mail: gas@cdtn.br, e-mail: pls@cdtn.br, e-mail: fcp@cdtn.br, e-mail: lcmb@cdtn.br, e-mail: pabloag@cdtn.br

    2009-07-01

    The assessment of gamma absorbed doses in irradiation facilities allows the quality assurance and control of the irradiation process. The liability of dose measurements is assign to the metrological procedures adopted including the uncertainty evaluation. Fricke and TLD 800 dosimetric systems were used to measure absorbed dose in the blood compounds using the methodology presented in this paper. The measured absorbed doses were used for evaluating the effectiveness of the irradiation procedure and the gamma dose absorption inside the irradiation room of a gamma irradiation facility. The radiation eliminates the functional and proliferative capacities of donor T-lymphocytes, preventing Transfusion associated graft-versus-host disease (TA-GVHD), a possible complication of blood transfusions. The results show the applicability of such dosimetric systems in quality assurance programs, assessment of absorbed doses in blood compounds and dose uniformity assign to the blood compounds irradiation process by dose measurements in a range between 25 Gy and 100 Gy. (author)

  6. Blood compounds irradiation process: assessment of absorbed dose using Fricke and Thermoluminescent dosimetric systems

    International Nuclear Information System (INIS)

    Soares, Gabriela de Amorim; Squair, Peterson Lima; Pinto, Fausto Carvalho; Belo, Luiz Claudio Meira; Grossi, Pablo Andrade

    2009-01-01

    The assessment of gamma absorbed doses in irradiation facilities allows the quality assurance and control of the irradiation process. The liability of dose measurements is assign to the metrological procedures adopted including the uncertainty evaluation. Fricke and TLD 800 dosimetric systems were used to measure absorbed dose in the blood compounds using the methodology presented in this paper. The measured absorbed doses were used for evaluating the effectiveness of the irradiation procedure and the gamma dose absorption inside the irradiation room of a gamma irradiation facility. The radiation eliminates the functional and proliferative capacities of donor T-lymphocytes, preventing Transfusion associated graft-versus-host disease (TA-GVHD), a possible complication of blood transfusions. The results show the applicability of such dosimetric systems in quality assurance programs, assessment of absorbed doses in blood compounds and dose uniformity assign to the blood compounds irradiation process by dose measurements in a range between 25 Gy and 100 Gy. (author)

  7. Effects of low dose gamma radiation on the early growth of red pepper and the resistance to subsquent high dose of radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. S.; Baek, M. H.; Kim, D. H.; Lee, Y. K. [KAERI, Taejon (Korea, Republic of); Lee, Y. B. [Chungnam National Univ., Taejon (Korea, Republic of)

    2001-05-01

    Red pepper (capsicum annuum L. cv. Jokwang and cv. Johong) seeds were irradiated with the dose of 0{approx}50 Gy to investigated the effect of the low dose gamma radiation on the early growth and resistance to subsequent high dose of radiation. The effect of the low dose gamma radiation on the early growth and resistance to subsequenct high dose of radiation were enhanced in Johong cultivar but not in Jokwang cultivar. Germination rate and early growth of Johong cultivar were noticeably increased at 4 Gy-, 8 Gy- and 20 Gy irradiation group. Resistance to subsequent high dose of radiation of Johong cultivar were increased at almost all of the low dose irradiation group. Especially it was highest at 4 Gy irradiation group. The carotenoid contents and enzyme activity on the resistance to subsequent high dose of radiation of Johong cultivar were increased at the 4 Gy and 8 Gy irradiation group.

  8. On possible risks of low-dose irradiation

    International Nuclear Information System (INIS)

    Hug, O.; Gesellschaft fuer Strahlen- und Umweltforschung m.b.H., Neuherberg/Muenchen

    1974-01-01

    The survey on more recent experimental and epidemiological data and newer concepts for a realistic estimation of the radiation risk leads to the conclusion that for radiation late damages and possibly also for genetic damages with a chronical radiation exposure in the order of magnitude of the natural radiation exposure and probably also in the order of magnitude of the maximum permissible radiation dose, the risk is very probably lower than is to be expected based on the findings after relatively high doses and dose rates. A few less direct comparative studies have detected a time factor of 3 to 5. Considering the analysis of the RBW demely ionizing radiation which at high doses is not greater than 3, increases with decreasing dose and according to biophysical considerations, can possibly reach a value of 30, an effectiveness reduced by a factor of 10 of small doses and dose rates of loosely ionizing radiation would be even to be expected. All radiobiological knowledge on the effect of ionizing radiation allows one to expect that even smallest radiation doses can cause cellular damages due to the linear irreversable components of the radiation effect and probably that these damages can even be the starting point of a malignant tumour. Regarding this cancer-initiating effect however, the effectiveness of loosely ionizing radiation per rad in the region of natural radiation exposure lie considerably below that existing at high doses and dose rates. Whether however this initial carcinogenic effect of very small doses is at all noticeable during the average life duration in an increase of the spontaneous age-specific tumour rate is questionable if the assumption is confirmed that with decreasing dose, the time manifestation of the radiation induced tumours is delayed. (orig./LH) [de

  9. A comparison study on of tumor cell-killing effects between low-dose-rate β-irradiation of 32P and γ-irradiation of 60Co

    International Nuclear Information System (INIS)

    Feng Huiru; Tian Jiahe; Ding Weimin; Zhang Jinming; Chen Yingmao

    2004-01-01

    The paper is to elucidate radiobiological characteristics and radiobiological mechanism in killing tumor cells with low dose rate β-rays and high dose rate γ-rays. HeLa cells were exposed to low-rate β-irradiation of 32 P or high-dose-rate γ-irradiation of 60 Co. Cell response-patterns were compared between two the types of radiations in terms of their inhibition of cell proliferation and cell cycle blockage, evaluated by trypanblue excluded method and flow cytometry, respectively. Results show that there is a different way in growth inhibition effect on HeLa cells between low-dose-rate irradiation of 32 P and high-dose-rate irradiation of 60 Co γ. In exposure to 32 P, the inhibition of cell proliferation in HeLa cell was a prolong course, whereas and the effect was in a more serious and quick way in 60 Co irradiation. Cell cycle arrest in G 2 phase induced by 32 P was lower and more prolong than that induced by 60 Co. The inhibition effect on tumor cells between the two types of radiations is different. Impaired DNA repair system by continuous low-dose-rate radiation might contribute to the final radiation effect of 32 P

  10. Effect of the dose of irradiation on the conservation of the spice

    International Nuclear Information System (INIS)

    Ben Abdelkader, Houcine

    2008-01-01

    The effect of the gamma rays treatment emitted by a source of cobalt 60 in dose of 0, 3, 6 and 10 kGy on the microbiological and psycho-chemical properties of three samples of spice (hot pepper, fennel and coriander) have been studied. This study allowed us to measure the effect of these doses of irradiation on the lengthening of the lengthen conservation during storage of eight weeks to ambient temperature. The results show that the irradiation is very effective from a microbiological stand point. In fact, starting from 10 kGy the spices was not contaminated any more. The irradiation until a dose of dose 10 kGy has not generated any significant modifications, mainly in the physico-chemical parameters of the spices. But high diminishing has ac cured in water potency. Regarding colour variation, the irradiation has permitted the creation of a brighter colour for the three spices treated. A long the follow up we have an important multiplication in all bacteria existent in the three spices. Hew ever for the spices treated in 10 kGy we did not get any recontamination. (Author)

  11. Conditioned instrumental behaviour in the rat: Effects of prenatal irradiation with various low dose-rate doses. Instrumentelle Verhaltensuntersuchungen an der Ratte: Ueber die Wirkung verschiedener Dosen einer praenatalen Bestrahlung niedriger Dosisleistung

    Energy Technology Data Exchange (ETDEWEB)

    Klug, H.

    1986-01-01

    4 groups of rats of the Wistar-strain were subjected to ..gamma..-irradiation on the 16th day of gestation. 5 rats received 0,6 Gy low dose rate irradiation, 5 animals received 0,9 Gy low dose and 6 high dose irradiation, 3 females were shamirradiated. The male offspring of these 3 irradiation groups and 1 control group were tested for locomotor coordination on parallel bars and in a water maze. The female offspring were used in an operant conditioning test. The locomotor test showed slight impairment of locomotor coordination in those animals irradiated with 0,9 Gy high dose rate. Swimming ability was significantly impaired by irradiation with 0,9 Gy high dose rate. Performance in the operant conditioning task was improved by irradiation with 0,9 Gy both low and high dose rate. The 0,9 Gy high dose rate group learned faster than all the other groups. For the dose of 0,9 Gy a significant dose rate effect could be observed. For the dose of 0,6 Gy a similar tendency was observed, differences between 0,6 Gy high and low dose rate and controls not being significant.

  12. Wholesomeness of food irradiated with doses above 10 kGy

    Energy Technology Data Exchange (ETDEWEB)

    Kaferstein, F [Director, Programme of Food Safety and Food Aid, WHO, CH-1211, Geneva 27, (Switzerland)

    1998-12-31

    Strictly from the scientific point of view, no ceiling should be set for food irradiated with doses greater than the currently recommended upper level of 10 kGy by the Codex Alimentarius Commission. The food irradiation technology itself is safe to such a degree that as long as sensory qualities of food are retained and harmful microorganisms are destroyed, the actual amount of ionizing radiation applied is of secondary consideration. That was the main conclusion of a week-long meeting on high dose irradiation organized jointly by the World Health Organization (WHO), the United Nations Food and Agriculture Organization (FAO) and the International Atomic Energy Agency (IAEA). The knowledge of what can and does occur chemically in high dose irradiated foods which derives from over 50 years of research tells us that one can go as high as 75 kGy, as has already been done in some countries, and the result is the same food is safe and wholesome and nutritionally adequate. (Author)

  13. Wholesomeness of food irradiated with doses above 10 kGy

    International Nuclear Information System (INIS)

    Kaferstein, F.

    1997-01-01

    Strictly from the scientific point of view, no ceiling should be set for food irradiated with doses greater than the currently recommended upper level of 10 kGy by the Codex Alimentarius Commission. The food irradiation technology itself is safe to such a degree that as long as sensory qualities of food are retained and harmful microorganisms are destroyed, the actual amount of ionizing radiation applied is of secondary consideration. That was the main conclusion of a week-long meeting on high dose irradiation organized jointly by the World Health Organization (WHO), the United Nations Food and Agriculture Organization (FAO) and the International Atomic Energy Agency (IAEA). The knowledge of what can and does occur chemically in high dose irradiated foods which derives from over 50 years of research tells us that one can go as high as 75 kGy, as has already been done in some countries, and the result is the same food is safe and wholesome and nutritionally adequate. (Author)

  14. Wholesomeness of food irradiated with doses above 10 kGy

    Energy Technology Data Exchange (ETDEWEB)

    Kaferstein, F. [Director, Programme of Food Safety and Food Aid, WHO, CH-1211, Geneva 27, (Switzerland)

    1997-12-31

    Strictly from the scientific point of view, no ceiling should be set for food irradiated with doses greater than the currently recommended upper level of 10 kGy by the Codex Alimentarius Commission. The food irradiation technology itself is safe to such a degree that as long as sensory qualities of food are retained and harmful microorganisms are destroyed, the actual amount of ionizing radiation applied is of secondary consideration. That was the main conclusion of a week-long meeting on high dose irradiation organized jointly by the World Health Organization (WHO), the United Nations Food and Agriculture Organization (FAO) and the International Atomic Energy Agency (IAEA). The knowledge of what can and does occur chemically in high dose irradiated foods which derives from over 50 years of research tells us that one can go as high as 75 kGy, as has already been done in some countries, and the result is the same food is safe and wholesome and nutritionally adequate. (Author)

  15. Quality characteristics of mechanically deboned chicken meat irradiated with different dose rates

    Energy Technology Data Exchange (ETDEWEB)

    Brito, Poliana de Paula; Roque, Claudio Vitor; Fukuma, Henrique Takuji; Gomes, Heliana de Azevedo [Brazilian Nuclear Energy Commission (CNEN-MG), Pocos de Caldas, MG (Brazil)]. E-mails: polibrito@yahoo.com.br; cvroque@cnen.gov.br; htfukuma@cnen.gov.br; hgomes@cnen.gov.br; Cipolli, Katia Maria Vieira Avelar Bittencourt [Sao Paulo Agribusiness Technology Agency (APTA), Monte Alegre do Sul, SP (Brazil). Polo Regional do Leste Paulista]. E-mail: katiacipolli@aptaregional.sp.gov.br; Pereira, Jose Luiz [Campinas State University UNICAMP, Campinas, SP (Brazil). Dept. of Food Sciences]. E-mail: pereira@fea.unicamp.br

    2007-07-01

    Mechanically Deboned Chicken Meat (MDCM) is a low cost raw material used in the production of emulsified prepared food, but presents a favorable medium for development of microorganisms. Several studies were carried out with irradiation of edible goods in order to establish a dose that would be capable of decreasing levels of microorganisms without altering the sensorial and nutritional characteristics of the food. Frozen samples of MDCM with skin were irradiated with doses of 0.0 kGy, 3.0 kGy-4.04 kGy.h{sup -1}, and 3.0- 0.32 kGy.h{sup -1}. Individual lots of irradiated and control samples were evaluated during the 11 day refrigeration period for the following parameters: total count of psychotropic bacteria, substances reactive to Thiobarbituric Acid, sensorial evaluation (irradiated odor, oxidized odor, pink and brown colors). The average values in this period were 4.28 log (CFU.g{sup -1}), 2.32 log (CFU.g{sup -1}), and 1.68 log (CFU.g{sup -1}) for control samples, low and high dose rate, respectively. TBARS average values for control samples, low and high dose rate were 0.38 mg.Mal.kg{sup -1}, 2.89 mg.Mal.kg{sup -1}, and 3.64 mg.Mal.kg{sup -}'1, respectively. A difference between irradiated samples and the control sample was observed. The 3.0 kGy-4.04 kGy.h{sup -1} dose rate was verified as the best condition for MDCM processing through the evaluation of all the variables in the conditions of the present study. (author)

  16. Optical fiber sensor for low dose gamma irradiation monitoring

    Science.gov (United States)

    de Andrés, Ana I.; Esteban, Ã.`scar; Embid, Miguel

    2016-05-01

    An optical fiber gamma ray detector is presented in this work. It is based on a Terbium doped Gadolinium Oxysulfide (Gd2O2S:Tb) scintillating powder which cover a chemically etched polymer fiber tip. This etching improves the fluorescence gathering by the optical fiber. The final diameter has been selected to fulfill the trade-off between light gathering and mechanical strength. Powder has been encapsulated inside a microtube where the fiber tip is immersed. The sensor has been irradiated with different air Kerma doses up to 2 Gy/h with a 137Cs source, and the spectral distribution of the fluorescence intensity has been recorded in a commercial grade CCD spectrometer. The obtained signal-to-noise ratio is good enough even for low doses, which has allowed to reduce the integration time in the spectrometer. The presented results show the feasibility for using low cost equipment to detect/measure ionizing radiation as gamma rays are.

  17. Biological dose estimation for accidental supra-high dose gamma-ray exposure

    International Nuclear Information System (INIS)

    Chen, Y.; Yan, X.K.; Du, J.; Wang, Z.D.; Zhang, X.Q.; Zeng, F.G.; Zhou, P.K.

    2011-01-01

    To correctly estimate the biological dose of victims accidentally exposed to a very high dose of 60 Co gamma-ray, a new dose-effect curve of chromosomal dicentrics/multicentrics and rings in the supra-high dose range was established. Peripheral blood from two healthy men was irradiated in vitro with doses of 60 Co gamma-rays ranging from 6 to 22 Gy at a dose rate of 2.0 Gy/min. Lymphocytes were concentrated, cultured and harvested at 52 h, 68 h and 72 h. The numbers of dic + r were counted. The dose-effect curves were established and validated using comparisons with doses from the Tokai-mura accident and were then applied to two victims of supra-high dose exposure accident. The results indicated that there were no significant differences in chromosome aberration frequency among the different culture times from 52 h to 72 h. The 6-22 Gy dose-effect curve was fitted to a linear quadratic model Y = -2.269 + 0.776D - 7.868 x l0 -3 D 2 . Using this mathematic model, the dose estimates were similar to data from Tokai-mura which were estimated by PCC ring. Whole body average doses of 9.7 Gy and 18.1 Gy for two victims in the Jining accident were satisfactorily given. We established and successfully applied a new dose-effect curve of chromosomal dicentrics plus ring (dic + r) after 6-22 Gy γ-irradiation from a supra-high dose 60 Co gamma-ray accident.

  18. The alterations in high density polyethylene properties with gamma irradiation

    Science.gov (United States)

    Zaki, M. F.; Elshaer, Y. H.; Taha, Doaa. H.

    2017-10-01

    In the present investigation, high density polyethylene (HDPE) polymer has been used to study the alterations in its properties under gamma-irradiation. Physico-chemical properties have been investigated with different spectroscopy techniques, Fourier Transform Infrared spectroscopy (FTIR), X-ray diffraction (XRD), biocompatibility properties, as well as, mechanical properties change. The FT-IR analysis shows the formation of new band at 1716 cm-1 that is attributed to the oxidation of irradiated polymer chains, which is due to the formation of carbonyl groups (C˭O). XRD patterns show that a decrease in the crystallite size and increase in the Full Width at Half Maximum (FWHM). This means that the crystallinity of irradiated samples is decreased with increase in gamma dose. The contact angle measurements show an increase in the surface free energy as the gamma irradiation increases. The measurements of mechanical properties of irradiated HDPE samples were discussed.

  19. Effects of low-dose fractionated external irradiation on metabolic and structural characteristics of rat thyroid

    Energy Technology Data Exchange (ETDEWEB)

    Nadolnik, L.; Niatsetskaya, Z. [Institute of Biochemistry, National Academy of Sciences of Belarus, Grodno (Belarus)

    2006-07-01

    , the activity of thyroid-induced NADPH-malate-dehydrogenase in the rat liver cytosolic fraction was decreased to varying degrees in all the groups of irradiated animals (1.32 -2.36-fold). The decreased blood thyroid hormone concentration an d liver NADPH-MDH activity indicate development of radiation-induced hypothyrosis in the radiated animals. As early as after a day following the radiation, the morphologic examination revealed extension of follicular lumen, lymphocytic infiltration of the stroma, desquamation of the follicular epithelium. At remote periods, 0.1 Gy-irradiated animals were revealed thyroid stroma edema, reduction of the follicular dimensions and the presence of loose connective tissue interlayers. After the action of the higher ionizing irradiation doses, there was observed focal perivascular sclerosis, pronounced desquamation of the follicular epithelium with vacuolisation as well as accumulation of lymphoid cells and siderophages. The morphometric examination revealed thyrocytes decreased functional activity. Our research indicates high thyroid sensitivity to effect of external low-dose irradiation. The effect of ionizing irradiation is impaired thyroid iodide metabolism, disturbed thyroid structure and development of hypothyrosis. No pronounced injuring effects of ionizing radiation were revealed only at the 0.1 Gy radiation dose. We suggest the high thyroid radiosensitivity to be due to the specific metabolic features of its cells as well as the specific follicular tissue structure. (authors)

  20. Low dose radiation enhance the anti-tumor effect of high dose radiation on human glioma cell U251

    International Nuclear Information System (INIS)

    Wang Chang; Wang Guanjun; Tan Yehui; Jiang Hongyu; Li Wei

    2008-01-01

    Objective: To detect the effect on the growth of human glioma cell U251 induced by low dose irradiation and low dose irradiation combined with large dose irradiation. Methods: Human glioma cell line U251 and nude mice carried with human glioma were used. The tumor cells and the mice were treated with low dose, high dose, and low dose combined high dose radiation. Cells growth curve, MTT and flow cytometry were used to detect the proliferation, cell cycle and apoptosis of the cells; and the tumor inhibition rate was used to assess the growth of tumor in vivo. Results: After low dose irradiation, there was no difference between experimental group and control group in cell count, MTT and flow cytometry. Single high dose group and low dose combined high dose group both show significantly the suppressing effect on tumor cells, the apoptosis increased and there was cell cycle blocked in G 2 period, but there was no difference between two groups. In vivo apparent anti-tumor effect in high dose radiation group and the combining group was observed, and that was more significant in the combining group; the prior low dose radiation alleviated the injury of hematological system. There was no difference between single low dose radiation group and control. Conclusions: There is no significant effect on human glioma cell induced by low dose radiation, and low dose radiation could not induce adaptive response. But in vivo experience, low dose radiation could enhance the anti-tumor effect of high dose radiation and alleviated the injury of hematological system. (authors)

  1. Characterization of death of human fetal bone marrow CD34+ cells after different dose of γ-irradiation

    International Nuclear Information System (INIS)

    Xiang Yingsong; Yang Rujun; Tang Gusheng

    2001-01-01

    Objective: To investigate the characterization of death of the human hematopoietic stem cells after irradiation. Methods: Human fetal bone marrow mononuclear cells were irradiated with different doses of 60 Co γ-rays at different high dose rates. Apoptosis and necrosis of CD34 + cells were analyzed by flow cytometry, following three-color labelling with PE-CD34/FITC-Annexin V/7AAD at different times after irradiation. Results: The death of CD34 + cells after 5 Gy and 8 Gy irradiation showed a continuous process of reproductive death during the first week,and the main death type was apoptosis. A majority of CD34 + cells died of necrosis during the first day after 10 Gy and 12 Gy irradiation, and all of them died within a week. Conclusion: Niches are continuously vacated every day within a week following irradiation and reproductive death of hematopoietic stem cells occurred

  2. Alternatives to dose, quality factor and dose equivalent for low level irradiation

    International Nuclear Information System (INIS)

    Sondhaus, C.A.; Bond, V.P.; Feinendegen, L.E.

    1988-01-01

    Randomly occurring energy deposition events produced by low levels of ionizing radiation interacting with tissue deliver variable amounts of energy to the sensitive target volumes within a small fraction of the cell population. A model is described in which an experimentally derived function relating event size to cell response probability operates mathematically on the microdosimetric event size distribution characterizing a given irradiation and thus determines the total fractional number of responding cells; this fraction measures the effectiveness of the given radiation. Normalizing to equal numbers of events produced by different radiations and applying this cell response or hit size effectiveness function (HSEF) should define radiation quality, or relative effectiveness, on a more nearly absolute basis than do the absorbed dose and dose evaluation, which are confounded when applied to low level irradiations. Examples using both calculation and experimental data are presented. 15 refs., 18 figs

  3. Identification of irradiated meat using electron spin resonance (ESR) spectroscopy and estimation of applied dose using re-irradiation

    International Nuclear Information System (INIS)

    Chawla, S.P.; Thomas, Paul; Bongirwar, D.R.

    2001-01-01

    An in-house blind trail on bone-in meat chunks was carried out in which 35 coded samples were correctly identified. The samples were either left unirradiated or had been irradiated to dose of 1, 2.5 or 4 kGy. Using re-irradiation, the dose received by the samples were determined with either linear, quadratic or exponential equation. The quadratic or exponential equation gave more successful estimates of irradiation dose whereas linear fit equations tend to over estimate the dose. (author)

  4. Treatment results by uneven fractionated irradiation, low-dose rate telecobalt therapy as a boost, and intraoperative irradiation for malignant glioma

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Shogo; Takai, Yoshihiro; Nemoto, Kenji; Ogawa, Yoshihiro; Kakuto, Yoshihisa; Hoshi, Akihiko; Sakamoto, Kiyohiko; Kayama, Takamasa; Yoshimoto, Takashi (Tohoku Univ., Sendai (Japan). School of Medicine)

    1992-08-01

    The prognosis of malignant glioma is extremely poor. We applied conventionally fractionated irradiation combined with 1-(4-aminio-2-methyl-5-pyrimidinyl)methyl-3-(2-chloroethyl)-3-nitrosourea (ACNU), uneven fractionated irradiation with ACNU, low dose rate telecobalt therapy as a boost, and intraoperative irradiation against 110 malignant gliomas to investigate the efficacy of these methods as alternative treatments for malignant glioma. Although local tumor control by uneven fractionated irradiation was better than that by the other methods, no significant improvement was obtained in survival rates. As a result of multiple regression analysis, age and histology were major factors for survival rates, and the difference of treatment methods was not important. Both low-dose rate telecobalt therapy as a boost and intraoperative irradiation showed little advantage because of the high risk of brain necrosis associated with them. (author).

  5. Sterilization of boll weevil pupae with fractionated doses of gamma irradiation

    International Nuclear Information System (INIS)

    Haynes, J.W.; Mitlin, N.; Davich, T.B.; Dawson, J.R.; McGovern, W.L.; McKibben, G.H.

    1977-01-01

    Fractionated doses of 6,250-8,000 rads of gamma irradiation administered to pupae of the boll weevil, Anthonomus grandis Boh., sexually sterilized both sexes. Mortality of males thus treated with 6,250 and 8,000 rads via fractionation was 14% and 27% respectively, by 5 days posttreatment compared with 46% mortality when an equivalent acute dose was administered to newly emerged adults. Pheromone production of males irradiated at 6,250 rads was one-third that of the control for the first 4 days, but equal that of the control during 5-11 days posttreatment. This procedure lends itself to the large-scale sterilization of weevils needed in an eradication program. This technique is applicable to other insects that are highly susceptible to acute doses

  6. Inverse dose-rate-effects on the expressions of extra-cellular matrix-related genes in low-dose-rate γ-ray irradiated murine cells

    International Nuclear Information System (INIS)

    Sugihara, Takashi; Tanaka, Kimio; Oghiso, Yoichi; Murano, Hayato

    2008-01-01

    Based on the results of previous microarray analyses of murine NIH3T3/PG13Luc cells irradiated with continuous low-dose-rate (LDR) γ-ray or end-high-dose-rate-irradiations (end-HDR) at the end of the LDR-irradiation period, the inverse dose-rate-effects on gene expression levels were observed. To compare differences of the effects between LDR-irradiation and HDR-irradiation, HDR-irradiations at 2 different times, one (ini-HDR) at the same time at the start of LDR-irradiation and the other (end-HDR), were performed. The up-regulated genes were classified into two types, in which one was up-regulated in LDR-, ini-HDR-, and end-HDR irradiation such as Cdkn1a and Ccng1, which were reported as p53-dependent genes, and the other was up-regulated in LDR- and ini-HDR irradiations such as pro-collagen TypeIa2/Colla2, TenascinC/Tnc, and Fibulin5/Fbln5, which were reported as extra-cellular matrix-related (ECM) genes. The time dependent gene expression patterns in LDR-irradiation were also classified into two types, in which one was an early response such as in Cdkn1a and Ccng1 and the other was a delayed response such as the ECM genes which have no linearity to total dose. The protein expression pattern of Cdkn1a increased dose dependently in LDR- and end-HDR-irradiations, but those of p53Ser15/18 and MDM2 in LDR-irradiations were different from end-HDR-irradiations. Furthermore, the gene expression levels of the ECM genes in embryonic fibroblasts from p53-deficient mice were not increased by LDR- and end-HDR-irradiation, so the delayed expressions of the ECM genes seem to be regulated by p53. Consequently, the inverse dose-rate-effects on the expression levels of the ECM genes in LDR- and end-HDR-irradiations may be explained from different time responses by p53 status. (author)

  7. Equivalent uniform dose concept evaluated by theoretical dose volume histograms for thoracic irradiation.

    Science.gov (United States)

    Dumas, J L; Lorchel, F; Perrot, Y; Aletti, P; Noel, A; Wolf, D; Courvoisier, P; Bosset, J F

    2007-03-01

    The goal of our study was to quantify the limits of the EUD models for use in score functions in inverse planning software, and for clinical application. We focused on oesophagus cancer irradiation. Our evaluation was based on theoretical dose volume histograms (DVH), and we analyzed them using volumetric and linear quadratic EUD models, average and maximum dose concepts, the linear quadratic model and the differential area between each DVH. We evaluated our models using theoretical and more complex DVHs for the above regions of interest. We studied three types of DVH for the target volume: the first followed the ICRU dose homogeneity recommendations; the second was built out of the first requirements and the same average dose was built in for all cases; the third was truncated by a small dose hole. We also built theoretical DVHs for the organs at risk, in order to evaluate the limits of, and the ways to use both EUD(1) and EUD/LQ models, comparing them to the traditional ways of scoring a treatment plan. For each volume of interest we built theoretical treatment plans with differences in the fractionation. We concluded that both volumetric and linear quadratic EUDs should be used. Volumetric EUD(1) takes into account neither hot-cold spot compensation nor the differences in fractionation, but it is more sensitive to the increase of the irradiated volume. With linear quadratic EUD/LQ, a volumetric analysis of fractionation variation effort can be performed.

  8. Constant-dose microwave irradiation of insect pupae

    Science.gov (United States)

    Olsen, Richard G.

    Pupae of the yellow mealworm Tenebrio molitor L. were subjected to microwave irradiation for 1.5-24 hours at power density levels adjusted to produce a total dosage of approximately 1123 J/g in each insect for every experiment. Insects without visible blemishes were exposed in a standing wave irradiation system such that half of them were exposed in the plane of maximum electric field (E field) and the other half were exposed in the plane of maximum magnetic field (H field). Both E field and H field insects exhibited nearly the same specific absorption rate (SAR) for pupal orientation parallel to the magnetic field vector at 5.95 GHz. Irradiations were conducted both with and without the use of a ventilating fan to control the temperature rise in the irradiation chamber. Abnormal development as a result of the microwave exposure was seen only in the high-power, short-duration experiment without chamber ventilation. This result suggests a thermal interaction mechanism for explanation of observed microwave-induced abnormalities. A study of the time course of the average temperature rise in the irradiated insects indicates that teratological effects for this configuration have a temperature threshold of approximately 40°C.

  9. Implementation of the technique of partial irradiation accelerated the breast with high doses (HDR) brachytherapy; Puesta en marcha de la tecnica de irradiacion parcial acelerada de la mama con braquterapia de alta tasa de dosis (HDR)

    Energy Technology Data Exchange (ETDEWEB)

    Molina Lopez, M. Y.; Pardo Perez, E.; Castro Novais, J.; Martinez Ortega, J.; Ruiz Maqueda, S.; Cerro Penalver, E. del

    2013-07-01

    The objective of this work is presents procedure carried out in our Centre for the implementation of the accelerated partial breast irradiation (APBI, accelerated partial-breast irradiation) with high-rate brachytherapy (HDR), using plastic tubes as applicators. Carried out measures, the evaluation of the dosimetric parameters analyzing and presenting the results. (Author)

  10. Effect of irradiation dose and irradiation temperature on the thiamin content of raw and cooked chicken breast meat

    International Nuclear Information System (INIS)

    Graham, W.D.; Stevenson, M.H.; Stewart, E.M.

    1998-01-01

    The usefulness of ionising radiation for the elimination of pathogenic bacteria in poultry meat has been well documented as have the effects of this processing treatment on the nutritional status of the food, in particular, the vitamins. Unfortunately, much of the earlier research carried out on the effect of irradiation on vitamins was carried out in solution or in model systems at doses much greater than those used commercially thereby resulting in considerable destruction of these compounds. Thus, those opposed to the process of food irradiation labelled the treated food as nutritionally poor. However, in reality, due to the complexity of food systems the effects of irradiation on vitamins are generally not as marked and many processes, for example cooking, cause the same degree of change to the vitamins. Thiamin (vitamin B1) is the most radiation sensitive of the water-soluble vitamins and is therefore a good indicator of the effect of irradiation treatment. In this study the effects of irradiation at either 4°C or −20°C followed by cooking on the thiamin content of chicken breast meat was determined. Results showed that whilst both irradiation and cooking resulted in a decrease in thiamin concentration, the losses incurred were unlikely to be of nutritional significance and could be further minimised by irradiating the chicken meat at a low temperature. Thiamin analyses were carried out using high-performance liquid chromatography since this technique is faster and more selective than the chemical or microbiological methods more commonly employed. Total thiamin, both free and combined form, was determined following acid and enzyme hydrolysis. © 1998 Society of Chemical Industry

  11. Serum metabonomics of rats irradiated by low-dose γ-rays

    Directory of Open Access Journals (Sweden)

    Ying HE

    2014-08-01

    Full Text Available Objective To explore the effect of low-dose γ-rays on the metabolites in rat serum. Methods Sixteen healthy male SD rats were randomly divided into control group and irradiated group (n=8. The rats in irradiated group were irradiated by 60Co γ-rays with a dose rate of 72mGy/h for 7 days (1 hour per day. At the 7th day after irradiation, blood samples were taken from abdominal aorta to obtain the serum. The metabolic fingerprints of serum were obtained from the two groups of rats, and 1H nuclear magnetic resonance (NMR spectroscopy, principal component analysis (PCA and orthogonal signal correction-partial least squares (OSC-PLS method were used for pattern recognition, and the difference in metabolite profile between two groups was identified by SIMCA-P software. Results The rat serum 1H NMR spectra revealed a significant difference between control group and irradiated group, the OSC-PLS plots of the serum samples presented marked clustering between two groups. Compared with the control group, the content of lipid, glucose, creatine, glycine/glucose, high density lipoprotein, low density lipoprotein, very low density lipoprotein/low density lipoprotein and unsaturated fatty acid increased, while the content of lactic acid, threonine/lipid, alanine, N-acetyl glycoprotein 1, N-acetyl glycoprotein 2, saturated fatty acid and phosphatidyl choline decreased in irradiated group. Conclusion Irradiation with low-dose γ-ray could induce changes in metabolites in rat serum, concerning mainly immune function, energy metabolism, carbohydrate metabolism and lipid metabolism. DOI: 10.11855/j.issn.0577-7402.2014.07.02

  12. Absorbed dose distribution analyses in irradiation with adjacent fields

    International Nuclear Information System (INIS)

    Cudalbu, C.; Onuc, C.; Andrada, S.

    2002-01-01

    Because the special irradiation technique with adjacent fields is the most used in the case of medulloblastoma treatment, we consider very important to specify some general information about medulloblastoma. This malignant disease has a large incidence in children with age between 5-7 years. This tumor usually originates in the cerebellum and is referred to as primitive undifferentiated tumor. It may spread contiguously to the cerebellar peduncle, floor of the fourth ventricle, into the cervical spine. In addition, it may spread via the cerebrospinal fluid intracranially and/or to the spinal cord. For this purpose it is necessary to perform a treatment technique with cranial tangential fields combined with adjacent fields for the entire spinal cord to achieve a perfect coverage of the zones with malignant cells. The treatment in this case is an association between surgery-radio-chemotherapy, where the radiotherapy has a very important roll and a curative purpose. This is due to the fact that the migration of malignant cells in the body can't be controlled by surgery. Because of this special irradiation technique used in medulloblastoma treatment, we chase to describe in this paper this complex type of irradiation where the implications of the beams divergence in doses distribution are essentials

  13. measurement of high dose radiation using yellow perspex dosimeter

    International Nuclear Information System (INIS)

    Thamrin, M Thoyib; Sofyan, Hasnel

    1996-01-01

    Measurement of high dose radiation using yellow perspex dosemeter has been carried out. Dose range used was between 0.1 to 3.0 kGy. Measurement of dose rate against Fricke dosemeter as a standard dose meter From the irradiation of Fricke dosemeter with time variation of 3,6,9,12,15 and 18 minute, it was obtained average dose rate of 955.57 Gy/hour, linear equation of dose was Y= 2.333+15.776 X with its correlation factor r = 0.9999. Measurement result using yellow perspex show that correlation between net optical density and radiation dose was not linear with its