WorldWideScience

Sample records for high dispersal potential

  1. High density dispersion fuel

    International Nuclear Information System (INIS)

    Hofman, G.L.

    1996-01-01

    A fuel development campaign that results in an aluminum plate-type fuel of unlimited LEU burnup capability with an uranium loading of 9 grams per cm 3 of meat should be considered an unqualified success. The current worldwide approved and accepted highest loading is 4.8 g cm -3 with U 3 Si 2 as fuel. High-density uranium compounds offer no real density advantage over U 3 Si 2 and have less desirable fabrication and performance characteristics as well. Of the higher-density compounds, U 3 Si has approximately a 30% higher uranium density but the density of the U 6 X compounds would yield the factor 1.5 needed to achieve 9 g cm -3 uranium loading. Unfortunately, irradiation tests proved these peritectic compounds have poor swelling behavior. It is for this reason that the authors are turning to uranium alloys. The reason pure uranium was not seriously considered as a dispersion fuel is mainly due to its high rate of growth and swelling at low temperatures. This problem was solved at least for relatively low burnup application in non-dispersion fuel elements with small additions of Si, Fe, and Al. This so called adjusted uranium has nearly the same density as pure α-uranium and it seems prudent to reconsider this alloy as a dispersant. Further modifications of uranium metal to achieve higher burnup swelling stability involve stabilization of the cubic γ phase at low temperatures where normally α phase exists. Several low neutron capture cross section elements such as Zr, Nb, Ti and Mo accomplish this in various degrees. The challenge is to produce a suitable form of fuel powder and develop a plate fabrication procedure, as well as obtain high burnup capability through irradiation testing

  2. Seed Dispersal Potential of Asian Elephants

    DEFF Research Database (Denmark)

    Harich, Franziska K.; Treydte, Anna Christina; Ogutu, Joseph Ochieng

    2016-01-01

    Elephants, the largest terrestrial mega-herbivores, play an important ecological role in maintaining forest ecosystem diversity. While several plant species strongly rely on African elephants (Loxodonta africana; L. cyclotis) as seed dispersers, little is known about the dispersal potential of As...

  3. Potential spread of highly pathogenic avian influenza H5N1 by wildfowl: dispersal ranges and rates determined from large-scale satellite telemetry

    Science.gov (United States)

    Gaidet, Nicolas; Cappelle, Julien; Takekawa, John Y.; Prosser, Diann J.; Iverson, Samuel A.; Douglas, David C.; Perry, William M.; Mundkur, Taej; Newman, Scott H.

    2010-01-01

    1. Migratory birds are major candidates for long-distance dispersal of zoonotic pathogens. In recent years, wildfowl have been suspected of contributing to the rapid geographic spread of the highly pathogenic avian influenza (HPAI) H5N1 virus. Experimental infection studies reveal that some wild ducks, geese and swans shed this virus asymptomatically and hence have the potential to spread it as they move. 2. We evaluate the dispersive potential of HPAI H5N1 viruses by wildfowl through an analysis of the movement range and movement rate of birds monitored by satellite telemetry in relation to the apparent asymptomatic infection duration (AID) measured in experimental studies. We analysed the first large-scale data set of wildfowl movements, including 228 birds from 19 species monitored by satellite telemetry in 2006–2009, over HPAI H5N1 affected regions of Asia, Europe and Africa. 3. Our results indicate that individual migratory wildfowl have the potential to disperse HPAI H5N1 over extensive distances, being able to perform movements of up to 2900 km within timeframes compatible with the duration of asymptomatic infection. 4. However, the likelihood of such virus dispersal over long distances by individual wildfowl is low: we estimate that for an individual migratory bird there are, on average, only 5–15 days per year when infection could result in the dispersal of HPAI H5N1 virus over 500 km. 5. Staging at stopover sites during migration is typically longer than the period of infection and viral shedding, preventing birds from dispersing a virus over several consecutive but interrupted long-distance movements. Intercontinental virus dispersion would therefore probably require relay transmission between a series of successively infected migratory birds. 6. Synthesis and applications. Our results provide a detailed quantitative assessment of the dispersive potential of HPAI H5N1 virus by selected migratory birds. Such dispersive potential rests on the

  4. Improving IUE High Dispersion Extraction

    Science.gov (United States)

    Lawton, Patricia J.; VanSteenberg, M. E.; Massa, D.

    2007-01-01

    We present a different method to extract high dispersion International Ultraviolet Explorer (IUE) spectra from the New Spectral Image Processing System (NEWSIPS) geometrically and photometrically corrected (SI HI) images of the echellogram. The new algorithm corrects many of the deficiencies that exist in the NEWSIPS high dispersion (SIHI) spectra . Specifically, it does a much better job of accounting for the overlap of the higher echelle orders, it eliminates a significant time dependency in the extracted spectra (which can be traced to the background model used in the NEWSIPS extractions), and it can extract spectra from echellogram images that are more highly distorted than the NEWSIPS extraction routines can handle. Together, these improvements yield a set of IUE high dispersion spectra whose scientific integrity is sign ificantly better than the NEWSIPS products. This work has been supported by NASA ADP grants.

  5. Regional differentiation and post-glacial expansion of the Atlantic silverside, Menidia menidia, an annual fish with high dispersal potential

    OpenAIRE

    Mach, Megan E.; Sbrocco, Elizabeth J.; Hice, Lyndie A.; Duffy, Tara A.; Conover, David O.; Barber, Paul H.

    2010-01-01

    The coastal marine environment of the Northwest Atlantic contains strong environmental gradients that create distinct marine biogeographic provinces by limiting dispersal, recruitment, and survival. This region has also been subjected to numerous Pleistocene glacial cycles, resulting in repeated extirpations and recolonizations in northern populations of marine organisms. In this study, we examined patterns of genetic structure and historical demography in the Atlantic silverside, Menidia men...

  6. High-resolution GPS tracking reveals habitat selection and the potential for long-distance seed dispersal by Madagascan flying foxes Pteropus rufus

    Directory of Open Access Journals (Sweden)

    Ryszard Oleksy

    2015-01-01

    Full Text Available Long-distance seed dispersal can be important for the regeneration of forested habitats, especially in regions where deforestation has been severe. Old World fruit bats (Pteropodidae have considerable potential for long-distance seed dispersal. We studied the movement patterns and feeding behaviour of the endemic Madagascan flying fox Pteropus rufus, in Berenty Reserve, southeast Madagascar. Between July and September 2012 (the dry season nine males and six females were tagged with customised GPS loggers which recorded fixes every 2.5 min between 18.00 and 06.00 h. The combined home range of all of the tagged bats during 86 nights exceeded 58,000 ha. Females had larger home ranges and core foraging areas and foraged over longer distances (average 28.1 km; median 26.7 km than males (average 15.4 km; median 9.5 km. Because the study was conducted during the gestation period, the increased energy requirements of females may explain their greater mean foraging area. Compositional analysis revealed that bats show strong preferences for overgrown sisal (Agave sisalana plantations (a mix of shrub, trees and sisal plants and remnant riverside forest patches. Sisal nectar and pollen were abundant food sources during the tracking period and this probably contributed to the selective use of overgrown sisal plantations. The bats also ate large quantities of figs (Ficus grevei during the study, and dispersed seeds of this important pioneer species. The bats flew at an average speed of 9.13 m/s, perhaps to optimise gliding performance. The study confirms that P. rufus has the potential to be a long-distance seed disperser, and is able to fly over a large area, often crossing cleared parts of its habitat. It potentially plays an important role in the regeneration of threatened forest habitats in this biodiversity hotspot.

  7. Highly dispersive transparency in coupled metamaterials

    International Nuclear Information System (INIS)

    Thuy, V T T; Park, J W; Lee, Y P; Tung, N T; Lam, V D; Rhee, J Y

    2010-01-01

    We investigate the coupling between bright and quasi-dark eigenmodes in a planar metamaterial supporting highly dispersive transparency. The specific design of such a metamaterial consists of a cut wire (CW) and a single-gap split-ring resonator (SRR). Through the numerical simulation and the equivalent-circuit analysis, we demonstrate that the response of the SRR, which is weakly excited by external electric field, plays the role of a quasi-dark eigenmode in the presence of a strongly radiative CW. Furthermore, by extending and relating our study to the trapped mode resonances and the coupling between dark and bright modes, a more comprehensive perspective for the metamaterial realization of highly dispersive transmission and slow-light applications is provided

  8. Utilities for high performance dispersion model PHYSIC

    International Nuclear Information System (INIS)

    Yamazawa, Hiromi

    1992-09-01

    The description and usage of the utilities for the dispersion calculation model PHYSIC were summarized. The model was developed in the study of developing high performance SPEEDI with the purpose of introducing meteorological forecast function into the environmental emergency response system. The procedure of PHYSIC calculation consists of three steps; preparation of relevant files, creation and submission of JCL, and graphic output of results. A user can carry out the above procedure with the help of the Geographical Data Processing Utility, the Model Control Utility, and the Graphic Output Utility. (author)

  9. Measuring short distance dispersal of Alliaria petiolata and determining potential long distance dispersal mechanisms

    Directory of Open Access Journals (Sweden)

    Christopher A. Loebach

    2018-03-01

    Full Text Available Introduction Alliaria petiolata, an herbaceous plant, has invaded woodlands in North America. Its ecology has been thoroughly studied, but an overlooked aspect of its biology is seed dispersal distances and mechanisms. We measured seed dispersal distances in the field and tested if epizoochory is a potential mechanism for long-distance seed dispersal. Methods Dispersal distances were measured by placing seed traps in a sector design around three seed point sources, which consisted of 15 second-year plants transplanted within a 0.25 m radius circle. Traps were placed at intervals ranging from 0.25–3.25 m from the point source. Traps remained in the field until a majority of seeds were dispersed. Eight probability density functions were fitted to seed trap counts via maximum likelihood. Epizoochory was tested as a potential seed dispersal mechanism for A. petiolata through a combination of field and laboratory experiments. To test if small mammals transport A. petiolata seeds in their fur, experimental blocks were placed around dense A. petiolata patches. Each block contained a mammal inclusion treatment (MIT and control. The MIT consisted of a wood-frame (31 × 61× 31 cm covered in wire mesh, except for the two 31 × 31 cm ends, placed over a germination tray filled with potting soil. A pan filled with bait was placed in the center of the tray. The control frame (11 × 31 × 61 cm was placed over a germination tray and completely covered in wire mesh to exclude animal activity. Treatments were in the field for peak seed dispersal. In March, trays were moved to a greenhouse and A. petiolata seedlings were counted and then compared between treatments. To determine if A. petiolata seeds attach to raccoon (Procyon lotor and white-tailed deer (Odocoileus virginianus fur, wet and dry seeds were dropped onto wet and dry fur. Furs were rotated 180 degrees and the seeds that remained attached were counted. To measure seed retention, seeds

  10. Review of potential models for UF6 dispersion

    International Nuclear Information System (INIS)

    Sykes, R.I.; Lewellen, W.S.

    1992-07-01

    A survey of existing atmospheric dispersion models has been conducted to determine the most appropriate basis for the development of a model for predicting the consequences of an accidental UF 6 release. The model is required for safety analysis studies and should therefore be computationally efficient. The release of UF 6 involves a number of physical phenomena which make the situation more complicated than passive dispersion of a trace gas. The safety analysis must consider the density variations in the UF 6 cloud, which can be heavier or lighter than the ambient air. The release also involves rapid chemical reactions and associated heat release, which must be modeled. Other Department of Energy storage facilities require a dense gas prediction capability, so the model must be sufficiently general for use with a variety of release scenarios. The special problems associated with UF 6 make it unique, so there are very few models with existing capability for the problem. There are, however, a large number of dense gas dispersion models, some with relevant chemical reaction modeling, that could potentially form the basis of an advanced UF 6 model. We have examined a large selection of possible candidates, and selected 5 models for detailed consideration

  11. Fabrication procedures for manufacturing high uranium concentration dispersion fuel elements

    International Nuclear Information System (INIS)

    Souza, Jose Antonio Batista de

    2011-01-01

    IPEN-CNEN/SP developed the technology to produce the dispersion type fuel elements for research reactors and made it available for routine production. Today, the fuel produced in IPEN-CNEN/SP is limited to the uranium concentration of 3.0 gU/cm 3 for U 3 Si 2 -Al dispersion-based and 2.3 gU/cm 3 for U 3 O 8 -Al dispersion. The increase of uranium concentration in fuel plates enables the reactivity of the reactor core reactivity to be higher and extends the fuel life. Concerning technology, it is possible to increase the uranium concentration in the fuel meat up to the limit of 4.8 gU/cm 3 in U 3 Si 2 -Al dispersion and 3.2 gU/cm 3 U 3 O 8 -Al dispersion. These dispersions are well qualified worldwide. This work aims to develop the manufacturing process of both fuel meats with high uranium concentrations, by redefining the manufacturing procedures currently adopted in the Nuclear Fuel Center of IPEN-CNEN/SP. Based on the results, it was concluded that to achieve the desired concentration, it is necessary to make some changes in the established procedures, such as in the particle size of the fuel powder and in the feeding process inside the matrix, before briquette pressing. These studies have also shown that the fuel plates, with a high concentration of U 3 Si 2 -Al, met the used specifications. On the other hand, the appearance of the microstructure obtained from U 3 O 8 -Al dispersion fuel plates with 3.2 gU/cm 3 showed to be unsatisfactory, due to the considerably significant porosity observed. The developed fabrication procedure was applied to U 3 Si 2 production at 4.8 gU/cm 3 , with enriched uranium. The produced plates were used to assemble the fuel element IEA-228, which was irradiated in order to check its performance in the IEA-R1 reactor at IPEN-CNEN/SP. These new fuels have potential to be used in the new Brazilian Multipurpose Reactor - RMB. (author)

  12. Chitosan-magnesium aluminum silicate composite dispersions: characterization of rheology, flocculate size and zeta potential.

    Science.gov (United States)

    Khunawattanakul, Wanwisa; Puttipipatkhachorn, Satit; Rades, Thomas; Pongjanyakul, Thaned

    2008-03-03

    Composite dispersions of chitosan (CS), a positively charged polymer, and magnesium aluminum silicate (MAS), a negatively charged clay, were prepared and rheology, flocculate size and zeta potential of the CS-MAS dispersions were investigated. High and low molecular weights of CS (HCS and LCS, respectively) were used in this study. Moreover, the effects of heat treatment at 60 degrees C on the characteristics of the CS-MAS dispersions and the zeta potential of MAS upon addition of CS at different pHs were examined. Incorporation of MAS into CS dispersions caused an increase in viscosity and a shift of CS flow type from Newtonian to pseudoplastic flow with thixotropic properties. Heat treatment brought about a significant decrease in viscosity and hysteresis area of the composite dispersions. Microscopic studies showed that flocculation of MAS occurred after mixing with CS. The size and polydispersity index of the HCS-MAS flocculate were greater than those of the LCS-MAS flocculate. However, a narrower size distribution and the smaller size of the HCS-MAS flocculate were found after heating at 60 degrees C. Zeta potentials of the CS-MAS flocculates were positive and slightly increased with increasing MAS content. In the zeta potential studies, the negative charge of the MAS could be neutralized by the addition of CS. Increasing the pH and molecular weight of CS resulted in higher CS concentrations required to neutralize the charge of MAS. These findings suggest that the electrostatic interaction between CS and MAS caused a change in flow behavior and flocculation of the composite dispersions, depending on the molecular weight of CS. Heat treatment affected the rheological properties and the flocculate size of the composite dispersions. Moreover, pH of medium and molecular weight of CS influence the zeta potential of MAS.

  13. Solid lipid dispersions: potential delivery system for functional ingredients in foods.

    Science.gov (United States)

    Asumadu-Mensah, Aboagyewa; Smith, Kevin W; Ribeiro, Henelyta S

    2013-07-01

    Structured solid lipid (SL) systems have the advantages of long-term physical stability, low surfactant concentrations, and may exhibit controlled release of active ingredients. In this research work, the potential use of high-melting SLs for the production of the above structured SL carrier systems was investigated. Dispersions containing either SL or blend of solid lipid and oil (SL+O) were produced by a hot melt high-pressure homogenization method. Experiments involved the use of 3 different SLs for the disperse phase: stearic acid, candelilla wax and carnauba wax. Sunflower oil was incorporated in the disperse phase for the production of the dispersions containing lipid and oil. In order to evaluate the practical aspects of structured particles, analytical techniques were used including: static light scattering to measure particle sizes, transmission electron microscopy (TEM) for investigating particle morphology and differential scanning calorimetry (DSC) to investigate the crystallization behavior of lipids in bulk and in dispersions. Results showed different mean particle sizes depending on the type of lipid used in the disperse phase. Particle sizes for the 3 lipids were: stearic acid (SL: 195 ± 2.5 nm; SL+O: 138 ± 6.0 nm); candelilla wax (SL: 178 ± 1.7 nm; SL+O: 144 ± 0.6 nm); carnauba wax (SL: 303 ± 1.5 nm; SL+O: 295 ± 5.0 nm). TEM results gave an insight into the practical morphology, showing plate-like and needle-like structures. DSC investigations also revealed that SL dispersions melted and crystallized at lower temperatures than the bulk. This decrease can be explained by the small particle sizes of the dispersion, the high-specific surface area, and the presence of a surfactant. © 2013 Institute of Food Technologists®

  14. Dispersion relations for 1D high-gain FELs

    International Nuclear Information System (INIS)

    Webb, S.D.; Litvinenko, V.N.

    2010-01-01

    We present analytical results for the one-dimensional dispersion relation for high-gain FELs. Using kappa-n distributions, we obtain analytical relations between the dispersion relations for various order kappa distributions. Since an exact solution exists for the kappa-1 (Lorentzian) distribution, this provides some insight into the number of modes on the way to the Gaussian distribution.

  15. Tongue Images Classification Based on Constrained High Dispersal Network

    Directory of Open Access Journals (Sweden)

    Dan Meng

    2017-01-01

    Full Text Available Computer aided tongue diagnosis has a great potential to play important roles in traditional Chinese medicine (TCM. However, the majority of the existing tongue image analyses and classification methods are based on the low-level features, which may not provide a holistic view of the tongue. Inspired by deep convolutional neural network (CNN, we propose a novel feature extraction framework called constrained high dispersal neural networks (CHDNet to extract unbiased features and reduce human labor for tongue diagnosis in TCM. Previous CNN models have mostly focused on learning convolutional filters and adapting weights between them, but these models have two major issues: redundancy and insufficient capability in handling unbalanced sample distribution. We introduce high dispersal and local response normalization operation to address the issue of redundancy. We also add multiscale feature analysis to avoid the problem of sensitivity to deformation. Our proposed CHDNet learns high-level features and provides more classification information during training time, which may result in higher accuracy when predicting testing samples. We tested the proposed method on a set of 267 gastritis patients and a control group of 48 healthy volunteers. Test results show that CHDNet is a promising method in tongue image classification for the TCM study.

  16. Potential of largemouth bass as vectors of 137Cs dispersal

    International Nuclear Information System (INIS)

    Paller, M.H.; Fletcher, D.E.; Jones, T.; Dyer, S.A.; Isely, J.J.; Littrell, J.W.

    2005-01-01

    We conducted a radio telemetry study on the movements of potentially contaminated largemouth bass between Steel Creek, a restricted access 137 Cs contaminated stream on the Savannah River Site (located in South Carolina, USA), and the publicly accessible Savannah River. Largemouth bass were relatively mobile in lower Steel Creek and the portion of the Savannah River near Steel Creek, and there was considerable movement between these two habitats. Largemouth bass had home ranges of about 500 linear meters of shoreline in the Savannah River but sometimes moved long distances. Such movements occurred primarily during the spawning season, largely upstream, and increased when water levels were changing or elevated. However, approximately 90% of the largemouth bass observations were within 10 km of Steel Creek. The total quantity of 137 Cs transported into the Savannah River by largemouth bass was much less than transported by water and suspended sediments discharged from Steel Creek. We conclude that largemouth bass from the Savannah River Site are unlikely to be responsible for long distance dispersal of substantial radiological contamination in the Savannah River

  17. High temperature mechanical properties of unirradiated dispersion strengthened copper

    International Nuclear Information System (INIS)

    Gentzbittel, J.M.; Rigollet, C.; Robert, G.

    1994-01-01

    Oxide Dispersion Strengthened (ODS) copper material, due to its excellent thermal conductivity associated with a high temperature strength is a candidate material for structural applications as divertor plasma facing components of thermonuclear fusion reactor. Tensile and creep results of oxide dispersion strengthened copper are presented. The most important features of ODS copper high temperature behaviour are the high strength corresponding to low creep rates, high stress creep rate dependence, a poor ductility and a brittleness which result in a premature creep fracture at high applied stress. (R.P.) 2 refs.; 6 figs

  18. Highly Dispersed Alloy Catalyst for Durability

    Energy Technology Data Exchange (ETDEWEB)

    Murthi, Vivek S.; Izzo, Elise; Bi, Wu; Guerrero, Sandra; Protsailo, Lesia

    2013-01-08

    Achieving DOE's stated 5000-hr durability goal for light-duty vehicles by 2015 will require MEAs with characteristics that are beyond the current state of the art. Significant effort was placed on developing advanced durable cathode catalysts to arrive at the best possible electrode for high performance and durability, as well as developing manufacturing processes that yield significant cost benefit. Accordingly, the overall goal of this project was to develop and construct advanced MEAs that will improve performance and durability while reducing the cost of PEMFC stacks. The project, led by UTC Power, focused on developing new catalysts/supports and integrating them with existing materials (membranes and gas diffusion layers (GDLs)) using state-of-the-art fabrication methods capable of meeting the durability requirements essential for automotive applications. Specifically, the project work aimed to lower platinum group metals (PGM) loading while increasing performance and durability. Appropriate catalysts and MEA configuration were down-selected that protects the membrane, and the layers were tailored to optimize the movements of reactants and product water through the cell to maximize performance while maintaining durability.

  19. High density fuels using dispersion and monolithic fuel

    International Nuclear Information System (INIS)

    Gomes, Daniel S.; Silva, Antonio T.; Abe, Alfredo Y.; Muniz, Rafael O.R.; Giovedi, Claudia; Universidade de São Paulo

    2017-01-01

    Fuel plates used in high-performance research reactors need to be converted to low-enrichment uranium fuel; the fuel option based on a monolithic formulation requires alloys to contain 6 - 10 wt% Mo. In this case, the fuel plates are composed of the metallic alloy U-10Mo surrounded by a thin zirconium layer encapsulated in aluminum cladding. This study reviewed the physical properties of monolithic forms. The constraints produced during the manufacturing process were analyzed and compared to those of dispersed fuel. The bonding process used for dispersion fuels differs from the techniques applied to foil bonding used for pure alloys. The quality of monolithic plates depends on the fabrication method, which usually involves hot isostatic pressing and the thermal annealing effect of residual stress, which degrades the uranium cubic phase. The preservation of the metastable phase has considerable influence on fuel performance. The physical properties of the foil fuel under irradiation are superior to those of aluminum-dispersed fuels. The fuel meat, using zirconium as the diffusion barrier, prevents the interaction layer from becoming excessively thick. The problem with dispersed fuel is breakaway swelling with a medium fission rate. It has been observed that the fuel dispersed in aluminum was minimized in monolithic forms. The pure alloys exhibited a suitable response from a rate at least twice as much as the fission rate of dispersions. The foils can support fissile material concentration combined with a reduced swelling rate. (author)

  20. High density fuels using dispersion and monolithic fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Daniel S.; Silva, Antonio T.; Abe, Alfredo Y.; Muniz, Rafael O.R.; Giovedi, Claudia, E-mail: dsgomes@ipen.br, E-mail: teixeira@ipen.br, E-mail: alfredo@ctmsp.mar.mil.br, E-mail: rafael.orm@gmail.com, E-mail: claudia.giovedi@ctmsp.mar.mil.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Universidade de São Paulo (USP), SP (Brazil). Departamento de Engenharia Naval e Oceânica

    2017-07-01

    Fuel plates used in high-performance research reactors need to be converted to low-enrichment uranium fuel; the fuel option based on a monolithic formulation requires alloys to contain 6 - 10 wt% Mo. In this case, the fuel plates are composed of the metallic alloy U-10Mo surrounded by a thin zirconium layer encapsulated in aluminum cladding. This study reviewed the physical properties of monolithic forms. The constraints produced during the manufacturing process were analyzed and compared to those of dispersed fuel. The bonding process used for dispersion fuels differs from the techniques applied to foil bonding used for pure alloys. The quality of monolithic plates depends on the fabrication method, which usually involves hot isostatic pressing and the thermal annealing effect of residual stress, which degrades the uranium cubic phase. The preservation of the metastable phase has considerable influence on fuel performance. The physical properties of the foil fuel under irradiation are superior to those of aluminum-dispersed fuels. The fuel meat, using zirconium as the diffusion barrier, prevents the interaction layer from becoming excessively thick. The problem with dispersed fuel is breakaway swelling with a medium fission rate. It has been observed that the fuel dispersed in aluminum was minimized in monolithic forms. The pure alloys exhibited a suitable response from a rate at least twice as much as the fission rate of dispersions. The foils can support fissile material concentration combined with a reduced swelling rate. (author)

  1. Neutron optical potential of 28Si derived from the dispersion relation

    International Nuclear Information System (INIS)

    Kitazawa, H.; Igarasi, S.; Katsuragi, D.; Harima, Y.

    1992-01-01

    Based upon the dispersion theory, an optical potential of 28 Si was determined at the neutron energies from the Fermi energy to 20 MeV. In particular, discussion was given on a characteristic behavior of the optical potential for low-energy neutrons. Moreover, the validity of the dispersion theory was investigated for neutron single-particle bound states in 29 Si. (orig.)

  2. The use of dispersion relations to construct unified nucleon optical potentials

    International Nuclear Information System (INIS)

    Hodgson, P.E.

    1991-01-01

    The dispersion relations provide a simple and accurate way of parametrizing the optical potential for a particular nucleus over a range of energies. A method is proposed for obtaining a global nucleon optical potential incorporating the dispersion relations. (author). 9 refs, 3 figs

  3. Irradiation testing of high density uranium alloy dispersion fuels

    International Nuclear Information System (INIS)

    Hayes, S.L.; Trybus, C.L.; Meyer, M.K.

    1997-10-01

    Two irradiation test vehicles have been designed, fabricated, and inserted into the Advanced Test Reactor in Idaho. Irradiation of these experiments began in August 1997. These irradiation tests were designed to obtain irradiation performance information on a variety of potential new, high-density dispersion fuels. Each of the two irradiation vehicles contains 32 microplates. Each microplate is aluminum clad, having an aluminum matrix phase and containing one of the following compositions as the fuel phase: U-10Mo, U-8Mo, U-6Mo, U-4Mo, U-9Nb-3Zr, U-6Nb-4Zr, U-5Nb-3Zr, U-6Mo-1Pt, U-6Mo-0.6Ru, U-10Mo-0.05Sn, U 2 Mo, or U 3 Si 2 . These experiments will be discharged at peak fuel burnups of 40% and 80%. Of particular interest is the fission gas retention/swelling characteristics of these new fuel alloys. This paper presents the design of the irradiation vehicles and the irradiation conditions

  4. Postirradiation examination of high-density uranium alloy dispersion fuels

    International Nuclear Information System (INIS)

    Hayes, S.L.; Meyer, M.K.; Hofman, G.L.; Strain, R.V.

    1998-01-01

    Two irradiation test vehicles, designated RERTR-2, were inserted into the Advanced Test reactor in Idaho in August 1997. These tests were designed to obtain irradiation performance information on a variety of potential new, high-density uranium alloy dispersion fuels, including U-10Mo, U-8Mo, U-6Mo, U-4Mo, U-9Nb-3Zr, U-6Nb-4Zr, U-5Nb-3Zr, U-6Mo-1Pt, U-6Mo-0.6Ru and U-10Mo-0.05Sn: the intermetallic compounds U 2 Mo and U-10Mo-0.-5Sn; the intermetallic compounds U 2 Mo and U 3 Si 2 were also included in the fuel test matrix. These fuels are included in the experiments as microplates (76 mm x 22 mm x 1.3mm outer dimensions) with a nominal fuel volume loading of 25% and irradiated at relatively low temperature (∼100 deg C). RERTR-1 and RERTR-2 were discharged from the reactor in November 1997 and July 1998, respectively at calculated peak fuel burnups of 45 and 71 at %-U 235 Both experiments are currently under examination at the Alpha Gamma Hot Cell Facility at Argonne National Laboratory in Chicago. This paper presents the postirradiation examination results available to date from these experiments. (author)

  5. Irradiation testing of high-density uranium alloy dispersion fuels

    International Nuclear Information System (INIS)

    Hayes, S.L.; Trybus, C.L.; Meyer, M.K.

    1997-01-01

    Two irradiation test vehicles have been designed, fabricated, and inserted into the Advanced Test Reactor in Idaho. Irradiation of these experiments began in August 1997. These irradiation tests were designed to obtain irradiation performance information on a variety of potential new, high-density dispersion fuels. Each of the two irradiation vehicles contains 32 'microplates'. Each microplate is aluminum clad, having an aluminum matrix phase and containing one of the following compositions as the fuel phase: U-10Mo, U-8Mo, U-6Mo, U-4Mo, U-9Nb-3Zr, U-6Nb-4Zr, U-5Nb-3Zr, U-6Mo-1Pt, U-6Mo-0.6Ru, U10Mo-0.05Sn, U2Mo, or U 3 Si 2 . These experiments will be discharged at peak fuel burnups of approximately 40 and 80 at.% U 235 . Of particular interest are the extent of reaction of the fuel and matrix phases and the fission gas retention/swelling characteristics of these new fuel alloys. This paper presents the design of the irradiation vehicles and the irradiation conditions. (author)

  6. High Explosive Radiological Dispersion Device: Time and Distance Multiscale Study

    International Nuclear Information System (INIS)

    Sharon, A.; Sattinger, I.; Halevy, D.; Banaim, P.; Yaar, I.; Krantz, L.

    2014-01-01

    A wide range of explosion tests imitates different explosive RDD scenarios were conducted and aimed at increasing the preparedness for possible terrorism events, where radioactive (RA) materials disperse via an explosive charge. About 20 atmospheric dispersion tests were conducted using6-8 Ci of 99mTc which were coupled to TNT charges within the range of 0.2525 kg. Tests performed above different typical urban ground surfaces (in order to study the surface effect on the activity ground deposition pattern due to different in particles size distribution). We have used an efficient aerosolizing devices, means that most of the RA particles were initially created within the size of fine aerosols, mostly respirable. Ground activity measurements were performed both, around the dispersion point and up to few hundred meters downwind. Micrometeorology parameters (wind intensity and direction, potential temperature, relative humidity, solar radiation and atmospheric stability) were collected allowing comparisons topredictions of existing atmospheric dispersion models’1. Based on the experimental results, new model parameterizations were performed. Improvements in the models’ predictions were achieved and a set of thumb rules for first responders was formulated. This paper describes the project objectives, some of the experimental setups and results obtained. Post detonation nuclear forensic considerations can be made based upon results achieved

  7. Gas dispersal potential of bedding as a cause for sudden infant death.

    Science.gov (United States)

    Sakai, Jun; Kanetake, Jun; Takahashi, Shirushi; Kanawaku, Yoshimasa; Funayama, Masato

    2008-09-18

    We assessed the gas dispersal potential of bedding articles used by 14 infants diagnosed with sudden unexpected infant death at autopsy. Of these cases, eight exhibited FiCO(2) values greater than 10% within 2.5 min, six of which were found prone and two supine. The results demonstrated that these eight beddings had a high rebreathing potential if they covered the babies' faces. We did not, however, take into account in our model the large tissue stores of CO(2). As some bicarbonate pools will delay or suppress the increase of FiCO(2), the time-FiCO(2) graphs of this study are not true for living infants. This model, however, demonstrated the potential gas dispersal ability of bedding. The higher the FiCO(2) values, the more dangerous the situation for rebreathing infants. In addition, FiO(2) in the potential space around the model's face can be estimated mathematically using FiCO(2) values. The FiO(2) graph pattern for each bedding item corresponded roughly to the inverse of the FiCO(2) time course. The FiO(2) of the above eight cases decreased by 8.5% within 2.5 min. Recent studies using living infants placed prone to sleep reported that some babies exhibited larger decreases in FiO(2) than increases observed in FiCO(2). While the decrease of FiO(2) in our model is still theoretical, CO(2) accumulation and O(2) deprivation are closely related. If a striking O(2) deficiency occurs in a short period, babies can lose consciousness before an arousal response is evoked and all infants could be influenced by the poor gas dispersal of bedding; the main cause of sudden death in infancy would thus be asphyxia. When the bedding is soft, the potential for trapping CO(2) seems to be high; however, it is impossible to assess it by appearance alone. We sought to provide some objective indices for the assessment of respiratory compromise in relation to bedding using our model. When a baby is found unresponsive with his/her face covered with poor gas dispersal bedding, we should

  8. Movement patterns and dispersal potential of Pecos bluntnose shiner (Notropis simus pecosensis) revealed using otolith microchemistry

    Science.gov (United States)

    Chase, Nathan M.; Caldwell, Colleen A.; Carleton, Scott A.; Gould, William R.; Hobbs, James A.

    2015-01-01

    Natal origin and dispersal potential of the federally threatened Pecos bluntnose shiner (Notropis simus pecosensis) were successfully characterized using otolith microchemistry and swimming performance trials. Strontium isotope ratios (87Sr:86Sr) of otoliths within the resident plains killifish (Fundulus zebrinus) were successfully used as a surrogate for strontium isotope ratios in water and revealed three isotopically distinct reaches throughout 297 km of the Pecos River, New Mexico, USA. Two different life history movement patterns were revealed in Pecos bluntnose shiner. Eggs and fry were either retained in upper river reaches or passively dispersed downriver followed by upriver movement during the first year of life, with some fish achieving a minimum movement of 56 km. Swimming ability of Pecos bluntnose shiner confirmed upper critical swimming speeds (Ucrit) as high as 43.8 cm·s−1 and 20.6 body lengths·s−1 in 30 days posthatch fish. Strong swimming ability early in life supports our observations of upriver movement using otolith microchemistry and confirms movement patterns that were previously unknown for the species. Understanding patterns of dispersal of this and other small-bodied fishes using otolith microchemistry may help redirect conservation and management efforts for Great Plains fishes.

  9. Potential of dispersion of Tecoma stans and chemical attributes of some soils of the Paraná state

    Directory of Open Access Journals (Sweden)

    Celina Wisniewski

    2009-03-01

    Full Text Available This work correlated invasiveness characteristic (potential dispersion of Tecoma stans (L. Jussieu ex. Kunth(BIGNONIACEAE known as a Yellow-Bell. Open field test was developed starting from stakes in vases with four different types soilsof the Paraná State, conduced to randomized block design with four treatments and five replications. The soils were analyzedregarding the pH, CTC, level of C, Al+³, macro and micronutrients, and content of sand, silt and clay. After 6 months the leaf area, dryweight of leaves and potential dispersion, calculated by given numeric values from 1 to 4 for phonological phases presented. Themacro and micronutrients content (except K and Fe were high in all the soils. The correlations between dispersion potential and pHand the V% were positive and significant and with effective CTC, the Fe and clay content were negative. It was not found significantcorrelations between the dispersion potential and biomass or leaf area. Positive and significant correlations of biomass and leaf areawith macro (except P and micronutrients (except Cu apparently indicate that if the evaluation had been accomplished at the end of theflowering period of the species, nutritional relationships with the dispersion potential would be clearer, although it can be concludedthat the species has a preference for less acid soils.

  10. High dispersity of carbon nanotubes diminishes immunotoxicity in spleen.

    Science.gov (United States)

    Lee, Soyoung; Khang, Dongwoo; Kim, Sang-Hyun

    2015-01-01

    From the various physiochemical material properties, the chemical functionalization order of single-walled carbon nanotubes (swCNTs) has not been considered as a critical factor for modulating immunological responses and toxicological aspects in drug delivery applications. Although most nanomaterials, including carbon nanotubes, are specifically accumulated in spleen, few studies have focused on spleen immunotoxicity. For this reason, this study demonstrated that the dispersity of swCNTs significantly influenced immunotoxicity in vitro and in vivo. For cytotoxicity of swCNTs, MTT assay, reactive oxygen species production, superoxide dismutase activity, cellular uptake, and confocal microscopy were used in macrophages. In the in vivo study, female BALB/c mice were intravenously administered with 1 mg/kg/day of swCNTs for 2 weeks. The body weight, organ weight, hematological change, reverse-transcription polymerase chain reaction, and lymphocyte population were evaluated. Different orders of chemical functionalization of swCNTs controlled immunotoxicity. In short, less-dispersed swCNTs caused cytotoxicity in macrophages and abnormalities in immune organs such as spleen, whereas highly dispersed swCNTs did not result in immunotoxicity. This study clarified that increasing carboxyl groups on swCNTs significantly mitigated immunotoxicity in vitro and in vivo. Our findings clarified the effective immunotoxicological factors of swCNTs by increasing dispersity of swCNTs and provided useful guidelines for the effective use of nanomaterials.

  11. Predicting the Dispersal Potential of an Invasive Polychaete Pest along a Complex Coastal Biome.

    Science.gov (United States)

    David, Andrew A; Matthee, Conrad A; Loveday, Benjamin R; Simon, Carol A

    2016-10-01

    Boccardia proboscidea is a recently introduced polychaete in South Africa where it is a notorious pest of commercially reared abalone. Populations were originally restricted to abalone farms but a recent exodus into the wild at some localities has raised conservation concerns due to the species' invasive status in other parts of the world. Here, we assessed the dispersal potential of B. proboscidea by using a population genetic and oceanographic modeling approach. Since the worm is in its incipient stages of a potential invasion, we used the closely related Polydora hoplura as a proxy due its similar reproductive strategy and its status as a pest of commercially reared oysters in the country. Populations of P. hoplura were sampled from seven different localities and a section of the mtDNA gene, Cyt b and the intron ATPSa was amplified. A high resolution model of the coastal waters around southern Africa was constructed using the Regional Ocean Modeling System. Larvae were represented by passive drifters that were deployed at specific points along the coast and dispersal was quantified after a 12-month integration period. Our results showed discordance between the genetic and modeling data. There was low genetic structure (Φ = 0.04 for both markers) and no geographic patterning of mtDNA and nDNA haplotypes. However, the dispersal model found limited connectivity around Cape Point-a major phylogeographic barrier on the southern African coast. This discordance was attributed to anthropogenic movement of larvae and adult worms due to vectors such as aquaculture and shipping. As such, we hypothesized that cryptic dispersal could be overestimating genetic connectivity. Though wild populations of B. proboscidea could become isolated due to the Cape Point barrier, anthropogenic movement may play the critical role in facilitating the dispersal and spread of this species on the southern African coast. © The Author 2016. Published by Oxford University Press on behalf of the

  12. Characterization of exoplanet atmospheres using high-dispersion spectroscopy with the E-ELT and beyond

    Directory of Open Access Journals (Sweden)

    Snellen Ignas

    2013-04-01

    Full Text Available Ground-based high-dispersion (R ∼ 100,000 spectroscopy provides unique information on exoplanet atmospheres, inaccessible from space - even using the JWST or other future space telescopes. Recent successes in transmission- and dayside spectroscopy using CRIRES on the Very Large Telescope prelude the enormous discovery potential of high-dispersion spectrographs on the E-ELT, such as METIS in the thermal infrared, and HIRES in the optical/near-infrared. This includes the orbital inclination and masses of hundred(s of non-transiting planets, line-by-line molecular band spectra, planet rotation and global wind patterns, longitudinal spectral variations, and possibly isotopologue ratios. Thinking beyond the E-ELT, we advocate that ultimately a systematic search for oxygen in atmospheres of nearby Earth-like planets can be conducted using large arrays of relatively low-cost flux collector telescopes equipped with high-dispersion spectrographs.

  13. 1-D profiling using highly dispersive guided waves

    International Nuclear Information System (INIS)

    Volker, Arno; Zon, Tim van

    2014-01-01

    Corrosion is one of the industries major issues regarding the integrity of assets. Currently, inspections are conducted at regular intervals to ensure a sufficient integrity level of these assets. Cost reduction while maintaining a high level of reliability and safety of installations is a major challenge. There are many situations where the actual defect location is not accessible, e.g., a pipe support or a partially buried pipe. Guided wave tomography has been developed to reconstruct the wall thickness of steel pipes. In case of bottom of the line corrosion, i.e., a single corrosion pit, a simpler approach may be followed. Data is collected in a pitch-catch configuration at the 12 o'clock position using highly dispersive guided waves. After dispersion correction the data collapses to a short pulse, any residual dispersion indicates wall loss. The phase spectrum is used to invert for the wall thickness profile in the circumferential direction, assuming a Gaussian defect profile. The approach is evaluated on numerically simulated and on measured data. The method is intended for rapid, semi-quantitative screening of pipes

  14. Rheological behavior of high-concentration sodium caseinate dispersions.

    Science.gov (United States)

    Loveday, Simon M; Rao, M Anandha; Creamer, Lawrence K; Singh, Harjinder

    2010-03-01

    Apparent viscosity and frequency sweep (G', G'') data for sodium caseinate dispersions with concentrations of approximately 18% to 40% w/w were obtained at 20 degrees C; colloidal glass behavior was exhibited by dispersions with concentration >or=23% w/w. The high concentrations were obtained by mixing frozen powdered buffer with sodium caseinate in boiling liquid nitrogen, and allowing the mixtures to thaw and hydrate at 4 degrees C. The low-temperature G'-G'' crossover seen in temperature scans between 60 and 5 degrees C was thought to indicate gelation. Temperature scans from 5 to 90 degrees C revealed gradual decrease in G' followed by plateau values. In contrast, G'' decreased gradually and did not reach plateau values. Increase in hydrophobicity of the sodium caseinate or a decrease in the effective volume fraction of its aggregates may have contributed to these phenomena. The gelation and end of softening temperatures of the dispersions increased with the concentration of sodium caseinate. From an Eldridge-Ferry plot, the enthalpy of softening was estimated to be 29.6 kJ mol(-1). The results of this study should be useful for creating new products with high concentrations of sodium caseinate.

  15. 1-D profiling using highly dispersive guided waves

    Science.gov (United States)

    Volker, Arno; van Zon, Tim

    2014-02-01

    Corrosion is one of the industries major issues regarding the integrity of assets. Currently, inspections are conducted at regular intervals to ensure a sufficient integrity level of these assets. Cost reduction while maintaining a high level of reliability and safety of installations is a major challenge. There are many situations where the actual defect location is not accessible, e.g., a pipe support or a partially buried pipe. Guided wave tomography has been developed to reconstruct the wall thickness of steel pipes. In case of bottom of the line corrosion, i.e., a single corrosion pit, a simpler approach may be followed. Data is collected in a pitch-catch configuration at the 12 o'clock position using highly dispersive guided waves. After dispersion correction the data collapses to a short pulse, any residual dispersion indicates wall loss. The phase spectrum is used to invert for the wall thickness profile in the circumferential direction, assuming a Gaussian defect profile. The approach is evaluated on numerically simulated and on measured data. The method is intended for rapid, semi-quantitative screening of pipes.

  16. Development of technology of high density LEU dispersion fuel fabrication

    International Nuclear Information System (INIS)

    Wiencek, T.; Totev, T.

    2007-01-01

    Advanced Materials Fabrication Facilities at Argonne National Laboratory have been involved in development of LEU dispersion fuel for research and test reactors from the beginning of RERTR program. This paper presents development of technology of high density LEU dispersion fuel fabrication for full size plate type fuel elements. A brief description of Advanced Materials Fabrication Facilities where development of the technology was carried out is given. A flow diagram of the manufacturing process is presented. U-Mo powder was manufactured by the rotating electrode process. The atomization produced a U-Mo alloy powder with a relatively uniform size distribution and a nearly spherical shape. Test plates were fabricated using tungsten and depleted U-7 wt.% Mo alloy, 4043 Al and Al-2 wt% Si matrices with Al 6061 aluminum alloy for the cladding. During the development of the technology of manufacturing of full size high density LEU dispersion fuel plates special attention was paid to meet the required homogeneity, bonding, dimensions, fuel out of zone and other mechanical characteristics of the plates.

  17. Evaluating dispersal potential of an invasive fish by the use of aerobic scope and osmoregulation capacity.

    Directory of Open Access Journals (Sweden)

    Jane W Behrens

    Full Text Available Non-indigenous species (NIS can impact marine biodiversity and ecosystem structure and function. Once introduced into a new region, secondary dispersal is limited by the physiology of the organism in relation to the ambient environment and by complex interactions between a suite of ecological factors such as presence of predators, competitors, and parasites. Early prediction of dispersal potential and future 'area of impact' is challenging, but also a great asset in taking appropriate management actions. Aerobic scope (AS in fish has been linked to various fitness-related parameters, and may be valuable in determining dispersal potential of aquatic invasive species in novel environments. Round goby, Neogobius melanostomus, one of the most wide-ranging invasive fish species in Europe and North America, currently thrives in brackish and fresh water, but its ability to survive in high salinity waters is unknown to date. We show that AS in round goby is reduced by 30% and blood plasma osmolality increased (indicating reduced capacity for osmoregulation at salinities approaching oceanic conditions, following slow ramping (5 PSU per week and subsequent long-term acclimation to salinities ranging between 0 and 30 PSU (8 days at final treatment salinities before blood plasma osmolality measurements, 12-20 additional days before respirometry. Survival was also reduced at the highest salinities yet a significant proportion (61% of the fish survived at 30 PSU. Reduced physiological performance at the highest salinities may affect growth and competitive ability under oceanic conditions, but to what extent reduced AS and osmoregulatory capacity will slow the current 30 km year-1 rate of advance of the species through the steep salinity gradient from the brackish Baltic Sea and into the oceanic North Sea remains speculative. An unintended natural experiment is in progress to test whether the rate of advance slows down. At the current rate of advance the

  18. Support the Design of Improved IUE NEWSIPS High Dispersion Extraction Algorithms: Improved IUE High Dispersion Extraction Algorithms

    Science.gov (United States)

    Lawton, Pat

    2004-01-01

    The objective of this work was to support the design of improved IUE NEWSIPS high dispersion extraction algorithms. The purpose of this work was to evaluate use of the Linearized Image (LIHI) file versus the Re-Sampled Image (SIHI) file, evaluate various extraction, and design algorithms for evaluation of IUE High Dispersion spectra. It was concluded the use of the Re-Sampled Image (SIHI) file was acceptable. Since the Gaussian profile worked well for the core and the Lorentzian profile worked well for the wings, the Voigt profile was chosen for use in the extraction algorithm. It was found that the gamma and sigma parameters varied significantly across the detector, so gamma and sigma masks for the SWP detector were developed. Extraction code was written.

  19. Dispersion relation and Landau damping of waves in high-energy density plasmas

    International Nuclear Information System (INIS)

    Zhu Jun; Ji Peiyong

    2012-01-01

    We present a theoretical investigation on the propagation of electromagnetic waves and electron plasma waves in high energy density plasmas using the covariant Wigner function approach. Based on the covariant Wigner function and Dirac equation, a relativistic quantum kinetic model is established to describe the physical processes in high-energy density plasmas. With the zero-temperature Fermi–Dirac distribution, the dispersion relation and Landau damping of waves containing the relativistic quantum corrected terms are derived. The relativistic quantum corrections to the dispersion relation and Landau damping are analyzed by comparing our results with those obtained in classical and non-relativistic quantum plasmas. We provide a detailed discussion on the Landau damping obtained in classical plasmas, non-relativistic Fermi plasmas and relativistic Fermi plasmas. The contributions of the Bohm potential, the Fermi statistics pressure and relativistic effects to the dispersion relation and Landau damping of waves are quantitatively calculated with real plasma parameters. (paper)

  20. Fabrication procedures for manufacturing high uranium concentration dispersion fuel elements

    International Nuclear Information System (INIS)

    Souza, J.A.B.; Durazzo, M.

    2010-01-01

    IPEN developed and made available for routine production the technology for manufacturing dispersion type fuel elements for use in research reactors. However, the fuel produced at IPEN is limited to the uranium concentration of 3.0 gU/cm 3 by using the U 3 Si 2 -Al dispersion. Increasing the uranium concentration of the fuel is interesting by the possibility of increasing the reactor core reactivity and lifetime of the fuel. It is possible to increase the concentration of uranium in the fuel up to the technological limit of 4.8 gU/cm 3 for the U 3 Si 2 -Al dispersion, which is well placed around the world. This new fuel will be applicable in the new Brazilian-Multipurpose Reactor RMB. This study aimed to develop the manufacturing process of high uranium concentration fuel, redefining the procedures currently used in the manufacture of IPEN. This paper describes the main procedures adjustments that will be necessary. (author)

  1. Fabrication procedures for manufacturing high uranium concentration dispersion fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Jose Antonio Batista de; Durazzo, Michelangelo, E-mail: jasouza@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    IPEN developed and made available for routine production the technology for manufacturing dispersion type fuel elements for use in research reactors. However, the fuel produced at IPEN is limited to the uranium concentration of 3.0 g U/c m3 by using the U{sub 3}Si{sub 2}-Al dispersion. Increasing the uranium concentration of the fuel is interesting by the possibility of increasing the reactor core reactivity and lifetime of the fuel. It is possible to increase the concentration of uranium in the fuel up to the technological limit of 4.8 g U/c m3 for the U{sub 3}Si{sub 2}-Al dispersion, which is well placed around the world. This new fuel will be applicable in the new Brazilian- Multipurpose Reactor RMB. This study aimed to develop the manufacturing process of high uranium concentration fuel, redefining the procedures currently used in the manufacture of IPEN. This paper describes the main procedures adjustments that will be necessary. (author)

  2. Proposal of highly sensitive optofluidic sensors based on dispersive photonic crystal waveguides

    DEFF Research Database (Denmark)

    Xiao, Sanshui; Mortensen, Niels Asger

    2007-01-01

    Optofluidic sensors based on highly dispersive two-dimensional photonic crystal waveguides are studied theoretically. Results show that these structures are strongly sensitive to the refractive index of the infiltrated liquid (nl), which is used to tune dispersion of the photonic crystal waveguide....... The waveguide mode-gap edge shifts about 1.2 nm for δnl = 0.002. The shifts can be explained well by band structure theory combined with first-order perturbation theory. These devices are potentially interesting for chemical sensing applications....

  3. Effect of exchange correlation potential on dispersion properties of lower hybrid wave in degenerate plasma

    Science.gov (United States)

    Rimza, Tripti; Sharma, Prerana

    2017-05-01

    The dispersion properties of lower hybrid wave are studied in electron-iondegenerate plasma with exchange effect in non-relativistic regime. It is found that the combined effect of Bohm potential and exchange correlation potential significantly modifies the dispersion properties of lower hybrid wave. The graphical results explicitly show the influence of degeneracy pressure, Bohm force and exchange correlation potential on the frequency of the lower hybrid mode. Present work should be of relevance for the dense astrophysical environments like white dwarfs and for laboratory experiments.

  4. Highly-dispersive electromagnetic induced transparency in planar symmetric metamaterials.

    Science.gov (United States)

    Lu, Xiqun; Shi, Jinhui; Liu, Ran; Guan, Chunying

    2012-07-30

    We propose, design and experimentally demonstrate highly-dispersive electromagnetically induced transparency (EIT) in planar symmetric metamaterials actively switched and controlled by angles of incidence. Full-wave simulation and measurement results show EIT phenomena, trapped-mode excitations and the associated local field enhancement of two symmetric metamaterials consisting of symmetrically split rings (SSR) and a fishscale (FS) metamaterial pattern, respectively, strongly depend on angles of incidence. The FS metamaterial shows much broader spectral splitting than the SSR metamaterial due to the surface current distribution variation.

  5. Fabrication of highly dispersed ZnO nanoparticles embedded in graphene nanosheets for high performance supercapacitors

    International Nuclear Information System (INIS)

    Fang, Linxia; Zhang, Baoliang; Li, Wei; Zhang, Jizhong; Huang, Kejing; Zhang, Qiuyu

    2014-01-01

    We report a facile strategy to synthesize ZnO-graphene nanocomposites as an advanced electrode material for high-performance supercapacitors. The ZnO-graphene nanocomposites have been fabricated via a facile, low-temperature in situ wet chemistry process. During this process, high dispersed ZnO nanoparticles are embedded in graphene nanosheets, leading to sandwich-structured ZnO-graphene nanocomposites. Thus, intimate interfacial contact between ZnO nanoparticles and graphene nanosheets are achieved, which facilitates electrochemical activity and enhance electrochemical properties due to fast electron transfer. The as-prepared ZnO-graphene nanocomposites exhibit a maximum specific capacitance of 786 F g −1 and excellent cycle life with capacity retention of about 92% after 500 cycles. This facile design and rational synthesis offers an effective strategy to enhance the electrochemical performance of supercapacitors and shows promising potential for large-scale application in energy storage

  6. Novel star-like surfactant as dispersant for multi-walled carbon nanotubes in aqueous suspensions at high concentration

    Science.gov (United States)

    Qiao, Min; Ran, Qianping; Wu, Shishan

    2018-03-01

    A kind of novel surfactant with star-like molecular structure and terminated sulfonate was synthesized, and it was used as the dispersant for multi-walled carbon nanotubes (CNTs) in aqueous suspensions compared with a traditional single-chained surfactant. The star-like surfactant showed good dispersing ability for multi-walled CNTs in aqueous suspensions. Surface tension analysis, total organic carbon analysis, X-ray photoelectron spectroscopy, zeta potential, dynamic light scattering and transmission electron microscopy were performed to research the effect of star-like surfactant on the dispersion of multi-walled CNTs in aqueous suspensions. With the assistance of star-like surfactant, the CNTs could disperse well in aqueous suspension at high concentration of 50 g/L for more than 30 days, while the CNTs precipitated completely in aqueous suspension after 1 day without any dispersant or after 10 days with sodium 4-dodecylbenzenesulfonic acid as dispersant.

  7. Monolayer graphene dispersion and radiative cooling for high power LED

    Science.gov (United States)

    Hsiao, Tun-Jen; Eyassu, Tsehaye; Henderson, Kimberly; Kim, Taesam; Lin, Chhiu-Tsu

    2013-10-01

    Molecular fan, a radiative cooling by thin film, has been developed and its application for compact electronic devices has been evaluated. The enhanced surface emissivity and heat dissipation efficiency of the molecular fan coating are shown to correlate with the quantization of lattice modes in active nanomaterials. The highly quantized G and 2D bands in graphene are achieved by our dispersion technique, and then incorporated in an organic-inorganic acrylate emulsion to form a coating assembly on heat sinks (for LED and CPU). This water-based dielectric layer coating has been formulated and applied on metal core printed circuit boards. The heat dissipation efficiency and breakdown voltage are evaluated by a temperature-monitoring system and a high-voltage breakdown tester. The molecular fan coating on heat dissipation units is able to decrease the equilibrium junction temperature by 29.1 ° C, while functioning as a dielectric layer with a high breakdown voltage (>5 kV). The heat dissipation performance of the molecular fan coating applied on LED devices shows that the coated 50 W LED gives an enhanced cooling of 20% at constant light brightness. The schematics of monolayer graphene dispersion, undispersed graphene platelet, and continuous graphene sheet are illustrated and discussed to explain the mechanisms of radiative cooling, radiative/non-radiative, and non-radiative heat re-accumulation.

  8. Monolayer graphene dispersion and radiative cooling for high power LED

    International Nuclear Information System (INIS)

    Hsiao, Tun-Jen; Eyassu, Tsehaye; Henderson, Kimberly; Kim, Taesam; Lin, Chhiu-Tsu

    2013-01-01

    Molecular fan, a radiative cooling by thin film, has been developed and its application for compact electronic devices has been evaluated. The enhanced surface emissivity and heat dissipation efficiency of the molecular fan coating are shown to correlate with the quantization of lattice modes in active nanomaterials. The highly quantized G and 2D bands in graphene are achieved by our dispersion technique, and then incorporated in an organic-inorganic acrylate emulsion to form a coating assembly on heat sinks (for LED and CPU). This water-based dielectric layer coating has been formulated and applied on metal core printed circuit boards. The heat dissipation efficiency and breakdown voltage are evaluated by a temperature-monitoring system and a high-voltage breakdown tester. The molecular fan coating on heat dissipation units is able to decrease the equilibrium junction temperature by 29.1 ° C, while functioning as a dielectric layer with a high breakdown voltage (>5 kV). The heat dissipation performance of the molecular fan coating applied on LED devices shows that the coated 50 W LED gives an enhanced cooling of 20% at constant light brightness. The schematics of monolayer graphene dispersion, undispersed graphene platelet, and continuous graphene sheet are illustrated and discussed to explain the mechanisms of radiative cooling, radiative/non-radiative, and non-radiative heat re-accumulation. (paper)

  9. Mountain bikes as seed dispersers and their potential socio-ecological consequences.

    Science.gov (United States)

    Weiss, Fabio; Brummer, Tyler J; Pufal, Gesine

    2016-10-01

    Seed dispersal critically influences plant community composition and species distributions. Increasingly, human mediated dispersal is acknowledged as important dispersal mechanism, but we are just beginning to understand the different vectors that might play a role. We assessed the role of mountain bikes as potential dispersal vectors and associated social-ecological consequences in areas of conservation concern near Freiburg, Germany. Seed attachment and detachment on a mountain bike were measured experimentally at distances from 0 to 500 m. We assessed effects of seed traits, weather conditions, riding distance and tire combinations using generalized linear mixed effect models. Most seeds detached from the mountain bike within the first 5-20 m. However, a small proportion of seeds remained on tires after 200-500 m. Attachment was higher, and the rate of detachment slower, in semi-wet conditions and lighter seeds travelled farther. Seed dispersal by mountain bikes was moderate compared to other forms of human mediated dispersal. However, we found that lighter seeds could attach to other bike parts and remain there until cleaning which, depending on riders' preferences, might only be after 70 km and in different habitats. Ecological impacts of mountain biking are growing with the popularity of the activity. We demonstrate that mountain bikes are effective seeds dispersers at landscape scales. Thus, management to mitigate their potential to spread non-native species is warranted. We suggest bike cleaning between rides, control of non-native species at trailheads and increased awareness for recreationalists in areas of conservation concern to mitigate the potential negative consequences of seed dispersal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Oil Spills and Dispersants Can Cause the Initiation of Potentially Harmful Dinoflagellate Blooms ("Red Tides").

    Science.gov (United States)

    Almeda, Rodrigo; Cosgrove, Sarah; Buskey, Edward J

    2018-04-25

    After oil spills and dispersant applications the formation of red tides or harmful algal blooms (HABs) has been observed, which can cause additional negative impacts in areas affected by oil spills. However, the link between oil spills and HABs is still unknown. Here, we present experimental evidence that demonstrates a connection between oil spills and HABs. We determined the effects of oil, dispersant-treated oil, and dispersant alone on the structure of natural plankton assemblages in the Northern Gulf of Mexico. In coastal waters, large tintinnids and oligotrich ciliates, major grazers of phytoplankton, were negatively affected by the exposure to oil and dispersant, whereas bloom-forming dinoflagellates ( Prorocentrum texanum, P. triestinum, and Scrippsiella trochoidea) notably increased their concentration. The removal of key grazers due to oil and dispersant disrupts the predator-prey controls ("top-down controls") that normally function in plankton food webs. This disruption of grazing pressure opens a "loophole" that allows certain dinoflagellates with higher tolerance to oil and dispersants than their grazers to grow and form blooms when there are no growth limiting factors (e.g., nutrients). Therefore, oil spills and dispersants can act as disrupters of predator-prey controls in plankton food webs and as indirect inducers of potentially harmful dinoflagellate blooms.

  11. High Temperature Strength of Oxide Dispersion Strengthened Aluminium

    DEFF Research Database (Denmark)

    Clauer, A.H.; Hansen, Niels

    1984-01-01

    constant (except for the material with the lowest oxide content). The high temperature values of the modulus-corrected yield stresses are approximately two-thirds of the low temperature value. During high temperature creep, there is a definite indication of a threshold stress. This threshold stress......The tensile flow stress of coarse-grained dispersion strengthened Al-Al2O3 materials were measured as a function of temperature (77–873 K) and volume fraction (0.19-0.92 vol.%) of aluminium oxide. For the same material, the creep strength was determined as a function of temperature in the range 573......–873 K. The modulus-corrected yield stress (0.01 offset) is found to be temperature independent at low temperature (195–472 K). Between 473 and 573 K, the yield stress starts to decrease with increasing temperature. At high temperatures (573–873 K), the modulus-corrected yield stress is approximately...

  12. Analysis and classification of nonlinear dispersive evolution equations in the potential representation

    International Nuclear Information System (INIS)

    Eichmann, U.A.; Draayer, J.P.; Ludu, A.

    2002-01-01

    A potential representation for the subset of travelling solutions of nonlinear dispersive evolution equations is introduced. The procedure involves reduction of a third-order partial differential equation to a first-order ordinary differential equation. The potential representation allows us to deduce certain properties of the solutions without the actual need to solve the underlying evolution equation. In particular, the paper deals with the so-called K(n, m) equations. Starting from their respective potential representations it is shown that these equations can be classified according to a simple point transformation. As a result, e.g., all equations with linear dispersion join the same equivalence class with the Korteweg-deVries equation being its representative, and all soliton solutions of higher order nonlinear equations are thus equivalent to the KdV soliton. Certain equations with both linear and quadratic dispersions can also be treated within this equivalence class. (author)

  13. Effects of Atorvastatin on Ventricular Late Potentials and Repolarization Dispersion in Patients with Hypercholesterolemia

    Directory of Open Access Journals (Sweden)

    Chih-Sheng Chu

    2007-05-01

    Full Text Available Emerging evidence suggests that statins have a favorable impact on the reduction of arrhythmia events and sudden cardiac death in patients with structural heart disease. We aimed to investigate the possibly and directly favorable effects of statins on ventricular late potentials, QT dispersion, and transmural dispersion of repolarization attained by analyzing clinical electrocardiography (ECG risk stratification parameters in patients with hypercholesterolemia without structural heart disease. In total, 82 patients (45 females; mean age, 62 ± 10 years with hypercholesterolemia were enrolled in this prospective study to examine the effects of statin therapy (atorvastatin 10mg/day for 3 months on ECG risk stratification parameters. Surface 12-lead ECG and signal-average ECG (SAECG were recorded before and after statin treatment. The SAECG parameters, QT dispersion, Bazett-corrected QT (QTc dispersion, T wave peak-to-end interval (Tpe, and percentage of Tpe/QT interval were calculated and compared before and after statin therapy. Twelve-lead ambulatory 24-hour ECGs were recorded in 12 patients. The results demonstrated that after statin therapy for 3 months, serum levels of total cholesterol and low-density lipoprotein cholesterol were significantly reduced (both p values < 0.001. However, neither significant changes of each SAECG parameter nor the frequency of late potentials were demonstrated after atorvastatin therapy. In addition, no significant changes in QT dispersion, QTc dispersion, Tpe, or Tpe/QT were found. However, 24-hour ambulatory ECG revealed a flattening effect of circadian variation of QTc dispersion after atorvastatin therapy. In conclusion, the favorable antiarrhythmia effect of atorvastatin (10 mg/day therapy cannot be directly reflected by analyzing these noninvasive ECG risk stratification parameters in low-risk patients with hypercholesterolemia.

  14. Change of lattice parameters in highly disperse nickel powders

    International Nuclear Information System (INIS)

    Gamarnik, M.Ya.

    1991-01-01

    A monotonous increase of the lattice parameters with the decrease of particle size is established by an X-ray study for highly disperse nickel powders in the interval of sizes from 4.9 to 35 nm. The relative changes of lattice parameters are from 4.9x10 -3 ±5x10 -4 up to 3x10 -4 ±1x10 -4 . The effect is explained by the decrease of the intracrystalline pressure in small particles stipulated by electrostatic interaction of the elements of crystal charge lattice. A calculated dependence of the lattice parameters which agrees with experimental curve is obtained in the framework of the model suggested by the charge lattice represented by an ion-electron lattice of positive ions and collectivized electrons with regard of the lattice of atomic neutral cores (the contribution of the latter is proved very small as found from the calculations). (orig.)

  15. Potential of endozoochorous seed dispersal by sheep in calcareous grasslands: correlations with seed traits.

    NARCIS (Netherlands)

    Kuiters, A.T.; Huiskes, H.P.J.

    2010-01-01

    Questions: What is the potential of sheep to serve as seed dispersers via ingestion and defecation in calcareous grasslands? Is the presence of viable seeds from dung correlated with specific seed traits? Location: Calcareous grasslands, South Limburg, the Netherlands/Belgium. Methods: Dung samples

  16. Dispersion compensated mid-infrared quantum cascade laser frequency comb with high power output

    Directory of Open Access Journals (Sweden)

    Q. Y. Lu

    2017-04-01

    Full Text Available Chromatic dispersion control plays an underlying role in optoelectronics and spectroscopy owing to its enhancement to nonlinear interactions by reducing the phase mismatching. This is particularly important to optical frequency combs based on quantum cascade lasers which require negligible dispersions for efficient mode locking of the dispersed modes into equally spaced comb modes. Here, we demonstrated a dispersion compensated mid-IR quantum cascade laser frequency comb with high power output at room temperature. A low-loss dispersive mirror has been engineered to compensate the device’s dispersion residue for frequency comb generation. Narrow intermode beating linewidths of 40 Hz in the comb-working currents were identified with a high power output of 460 mW and a broad spectral coverage of 80 cm-1. This dispersion compensation technique will enable fast spectroscopy and high-resolution metrology based on QCL combs with controlled dispersion and suppressed noise.

  17. Fused silica thermal conductivity dispersion at high temperature

    International Nuclear Information System (INIS)

    Bouchut, P.; Decruppe, D.; Delrive, L.

    2004-01-01

    A continuous CO 2 laser is focused to locally anneal small fused silica spots. A noncontact radiometry diagnostic enables us to follow surface temperature variation that occurs from site to site. A 'steady state' dispersion of surface temperature is observed across our sample. We show that nonhomogeneous silica thermal conductivity, above 1000 K is responsible for this temperature dispersion

  18. 1D profiling using highly dispersive guided waves

    International Nuclear Information System (INIS)

    Volker, Arno; Zon, Tim van; Enthoven, Daniel; Verburg, Wesley

    2015-01-01

    Corrosion is one of the industries major issues regarding the integrity of assets. Currently inspections are conducted at regular intervals to ensure a sufficient integrity level of these assets. Cost reduction while maintaining a high level of reliability and safety of installations is a major challenge. There are many situations where the actual defect location is not accessible, e.g., a pipe support or a partially buried pipe. Guided wave tomography has been developed to reconstruct the wall thickness. In case of bottom of the line corrosion, i.e., a single corrosion pit, a simpler approach may be followed. Data is collected in a pit-catch configuration at the 12 o'clock position using highly dispersive guided waves. The phase spectrum is used to invert for a wall thickness profile in the circumferential direction, assuming a Gaussian defect profile. An EMAT sensor design has been made to measure at the 12 o'clock position of a pipe. The concept is evaluated on measured data, showing good sizing capabilities on a variety simple defect profiles

  19. High Resilience of Seed Dispersal Webs Highlighted by the Experimental Removal of the Dominant Disperser.

    Science.gov (United States)

    Timóteo, Sérgio; Ramos, Jaime Albino; Vaughan, Ian Phillip; Memmott, Jane

    2016-04-04

    The pressing need to conserve and restore habitats in the face of ongoing species loss [1, 2] requires a better understanding of what happens to communities when species are lost or reinstated [3, 4]. Theoretical models show that communities are relatively insensitive to species loss [5, 6]; however, they disagree with field manipulations showing a cascade of extinctions [7, 8] and have seldom been tested under field conditions (e.g., [9]). We experimentally removed the most abundant seed-dispersing ant species from seed dispersal networks in a Mediterranean landscape, replicating the experiment in three types of habitat, and then compared these communities to un-manipulated control communities. Removal did not result in large-scale changes in network structure. It revealed extensive structural plasticity of the remaining community, which rearranged itself through rewiring, while maintaining its functionality. The remaining ant species widened their diet breadth in a way that maintained seed dispersal, despite the identity of many interactions changing. The species interaction strength decreased; thus, the importance of each ant species for seed dispersal became more homogeneous, thereby reducing the dependence of seed species on one dominant ant species. Compared to the experimental results, a simulation model that included rewiring considerably overestimated the effect of species loss on network robustness. If community-level species loss models are to be of practical use in ecology or conservation, they need to include behavioral and population responses, and they need to be routinely tested under field conditions; doing this would be to the advantage of both empiricists and theoreticians. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Evaluating the potential for weed seed dispersal based on waterfowl consumption and seed viability.

    Science.gov (United States)

    Farmer, Jaime A; Webb, Elisabeth B; Pierce, Robert A; Bradley, Kevin W

    2017-12-01

    Migratory waterfowl have often been implicated in the movement of troublesome agronomic and wetland weed species. However, minimal research has been conducted to investigate the dispersal of agronomically important weed species by waterfowl. The two objectives for this project were to determine what weed species are being consumed by ducks and snow geese, and to determine the recovery rate and viability of 13 agronomic weed species after passage through a duck's digestive system. Seed recovered from digestive tracts of 526 ducks and geese harvested during a 2-year field study had 35 020 plants emerge. A greater variety of plant species emerged from ducks each year (47 and 31 species) compared to geese (11 and 3 species). Viable seed from 11 of 13 weed species fed to ducks in a controlled feeding study were recovered. Viability rate and gut retention times indicated potential dispersal up to 2900 km from the source depending on seed characteristics and variability in waterfowl dispersal distances. Study results confirm that waterfowl are consuming seeds from a variety of agronomically important weed species, including Palmer amaranth, which can remain viable after passage through digestive tracts and have potential to be dispersed over long distances by waterfowl. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. High Potentials: A CEO Perspective

    Science.gov (United States)

    Hermans, Jeanine

    2007-01-01

    Finding high potentials has been identified as one of the major challenges for society and for higher education. But how does one find the talented individuals who will design the future of society? Can and should universities cooperate or compete with business and industry for these talents? Three CEOs reflect on this worldwide competition for…

  2. High-frequency parameters of magnetic films showing magnetization dispersion

    International Nuclear Information System (INIS)

    Sidorenkov, V.V.; Zimin, A.B.; Kornev, Yu.V.

    1988-01-01

    Magnetization dispersion leads to skewed resonance curves shifted towards higher magnetizing fields, together with considerable reduction in the resonant absorption, while the FMR line width is considerably increased. These effects increase considerably with frequency, in contrast to films showing magnetic-anisotropy dispersion, where they decrease. It is concluded that there may be anomalies in the frequency dependence of the resonance parameters for polycrystalline magnetic films

  3. High-temperature axion potential

    International Nuclear Information System (INIS)

    Dowrick, N.J.; McDougall, N.A.

    1989-01-01

    We investigate the possibility of new terms in the high-temperature axion potential arising from the dynamical nature of the axion field and from higher-order corrections to the θ dependence in the free energy of the quark-gluon plasma. We find that the dynamical nature of the axion field does not affect the potential but that the higher-order effects lead to new terms in the potential which are larger than the term previously considered. However, neither the magnitude nor the sign of the potential can be calculated by a perturbative expansion of the free energy since the coupling is too large. We show that a change in the magnitude of the potential does not significantly affect the bound on the axion decay constant but that the sign of the potential is of crucial importance. By investigating the formal properties of the functional integral within the instanton dilute-gas approximation, we find that the sign of the potential does not change and that the minimum remains at θ=0. We conclude that the standard calculation of the axion energy today is not significantly modified by this investigation

  4. Atmospheric Dispersion Assessment for Potential Accidental Releases at Yonggwang Nuclear Power Plants

    International Nuclear Information System (INIS)

    Na, Man Gyun; Sim, Young Rok; Jung, Chul Kee; Lee, Goung Jin; Kim, Soong Pyung; Chung, Sung Tai

    2000-01-01

    XOQ DW code is currently used to assess the atmospheric dispersion for the routine releases of radioactive gaseous effluents at Yonggwang nuclear power plants. This code was developed based on XOQDOQ code and an additional code is required to assess the atmospheric dispersion for potential accidental releases. In order to assess the atmospheric dispersion for the accidental releases, XOQAR code has been developed by using PAVAN code that is based on Reg. Guide 1.145. The terrain data of XOQ DW code inputs and the relative concentrations (X/Q) of XOQ DW code outputs are used as the inputs of the XOQAR code through the interface with XOQ DW code. By using this code, the maximum values of X/Q at exclusion area and low population zone boundaries except for sea areas were assessed as 1.33 x 10 -4 and 7.66 x 10 -6 sec/m 3 , respectively. Through the development of this code, a code system is prepared for assessing the atmospheric dispersion for the accidental releases as well as the routine releases. This developed code can be used for other domestic nuclear power plants by modifying the terrain input data

  5. High transmittance optical films based on quantum dot doped nanoscale polymer dispersed liquid crystals

    Science.gov (United States)

    Gandhi, Sahil Sandesh; Chien, Liang-Chy

    2016-04-01

    We propose a simple way to fabricate highly transparent nanoscale polymer dispersed liquid crystal (nano-PDLC) films between glass substrates and investigate their incident angle dependent optical transmittance properties with both collimated and Lambertian intensity distribution light sources. We also demonstrate that doping nano-PDLC films with 0.1% InP/ZnS core/shell quantum dots (QD) results in a higher optical transmittance. This work lays the foundation for such nanostructured composites to potentially serve as roll-to-roll coatable light extraction or brightness enhancement films in emissive display applications, superior to complex nanocorrugation techniques proposed in the past.

  6. Heavy-ion optical potential for sub-barrier fusion deduced from a dispersion relation

    International Nuclear Information System (INIS)

    Kim, B.T.; Kim, H.C.; Park, K.E.

    1988-01-01

    The heavy-ion energy-dependent optical potentials for the 16 O+ 208 Pb system are deduced from a dispersion relation. These potentials are used to analyze the elastic scattering, fusion, and spin distributions of compound nuclei for the system in a unified way based on the direct reaction theory. It turns out that the energy dependence of the optical potential is essential in explaining the data at near- and sub-barrier energies. The real part of the energy-dependent optical potential deduced was also used in calculating the elastic and fusion cross sections by the conventional barrier penetration model using an incoming wave boundary condition. The predictions of the elastic scattering, fusion cross sections, and the spin distributions of compound nuclei are not satisfactory compared with those from the direct reaction approach. It seems to originate from the fact that this model neglects absorption around the Coulomb barrier region

  7. Polarization dependent dispersion and its impact on optical parametric process in high nonlinear microstructure fibre

    International Nuclear Information System (INIS)

    Xiao Li; Zhang Wei; Huang Yidong; Peng Jiangde

    2008-01-01

    High nonlinear microstructure fibre (HNMF) is preferred in nonlinear fibre optics, especially in the applications of optical parametric effects, due to its high optical nonlinear coefficient. However, polarization dependent dispersion will impact the nonlinear optical parametric process in HNMFs. In this paper, modulation instability (MI) method is used to measure the polarization dependent dispersion of a piece of commercial HNMF, including the group velocity dispersion, the dispersion slope, the fourth-order dispersion and group birefringence. It also experimentally demonstrates the impact of the polarization dependent dispersion on the continuous wave supercontinuum (SC) generation. On one axis MI sidebands with symmetric frequency detunings are generated, while on the other axis with larger MI frequency detuning, SC is generated by soliton self-frequency shift

  8. The effect of seed morphology on the potential dispersal of aquatic macrophytes by the common carp (Cyprinus carpio)

    NARCIS (Netherlands)

    Pollux, B.J.A.; de Jong, M.D.E.; Steegh, A.; Ouborg, N.J.; Van Groenendael, J.M.; Klaassen, M.R.J.

    2006-01-01

    1. The potential for seed dispersal by fish (ichthyochory) will vary among aquatic plants because of differences in seed size and morphology. 2. To examine how seed morphology influences the probability of dispersal by the common carp (Cyprinus carpio), we studied seed ingestion, retention time and

  9. On the possibility of high-dispersed composite material obtaining in impulsive high-enthalpy flow

    International Nuclear Information System (INIS)

    Blinkov, I.V.; Brodyagin, A.G.; Ivanov, A.V.

    1987-01-01

    Thermodynamic possibility for the formation of TiC-Mo composite dispersed material in 1200-2800 K temperature interval and effect of H/Cl, C/Ti relation on the composite material composition are demonstrated. Investigation into the plasmo-chemical process of producing high-dispersed composite material in the pulsed regime has pointed out to a possibility of the product chemical composition regulation by changing the energy, flow-rate parameters and by conditions of component introduction into the plasmochemical reactor. Molybdenum-carbide composition powders produced are characterized by the particle size of ∼ 10 nm and high Mo and TiC distribution steadyness which allows one to exclude the stage of a long-term component mixing under the composition production

  10. Evaluating dispersal potential of an invasive fish by the use of aerobic scope and osmoregulation capacity

    DEFF Research Database (Denmark)

    Behrens, Jane W.; Deurs, Mikael van; Christensen, Emil Aputsiaq Flindt

    2017-01-01

    factors such as presence of predators, competitors, and parasites. Early prediction of dispersal potential and future 'area of impact' is challenging, but also a great asset in taking appropriate management actions. Aerobic scope (AS) in fish has been linked to various fitness-related parameters, and may...... waters is unknown to date. We show that AS in round goby is reduced by 30% and blood plasma osmolality increased (indicating reduced capacity for osmoregulation) at salinities approaching oceanic conditions, following slow ramping (5 PSU per week) and subsequent long-term acclimation to salinities...

  11. High-order FDTD methods for transverse electromagnetic systems in dispersive inhomogeneous media.

    Science.gov (United States)

    Zhao, Shan

    2011-08-15

    This Letter introduces a novel finite-difference time-domain (FDTD) formulation for solving transverse electromagnetic systems in dispersive media. Based on the auxiliary differential equation approach, the Debye dispersion model is coupled with Maxwell's equations to derive a supplementary ordinary differential equation for describing the regularity changes in electromagnetic fields at the dispersive interface. The resulting time-dependent jump conditions are rigorously enforced in the FDTD discretization by means of the matched interface and boundary scheme. High-order convergences are numerically achieved for the first time in the literature in the FDTD simulations of dispersive inhomogeneous media. © 2011 Optical Society of America

  12. Preparation of Highly Dispersed Copper Particles in Zeolite

    OpenAIRE

    Tanabe, Shuji; Matsumoto, Hiroshige

    1986-01-01

    Temperature programmed reduction and desorption techniques have been used to investigate the reduction process of CuY. The reduction of Cu^2+ ions in zeolite with H_2 occurs via a two-step mechanism in which Cu^+ is first formed and then reduced to metal. In the first step of reduction NH_3 was used as the reducing agent instead of H_2. Cu particles in the reduced CuY with NH_3 pretreatment were uniformly dispersed compared with those of CuY without one. The average particle size of Cu metal ...

  13. THz Tube Waveguides With Low Loss, Low Dispersion, and High Bandwidth

    DEFF Research Database (Denmark)

    Bao, Hualong; Nielsen, Kristian; Bang, Ole

    2014-01-01

    We propose, model and experimentally characterize a novel class of terahertz hollow-core tube waveguides with high-loss cladding material, resulting in propagation with low loss, low dispersion, and high useful bandwidth.......We propose, model and experimentally characterize a novel class of terahertz hollow-core tube waveguides with high-loss cladding material, resulting in propagation with low loss, low dispersion, and high useful bandwidth....

  14. Dispersive excitations in the high-temperature superconductor La2-xSrxCuO4

    DEFF Research Database (Denmark)

    Christensen, N.B.; McMorrow, D.F.; Rønnow, H.M.

    2004-01-01

    High-resolution neutron scattering experiments on optimally doped La(2-x)Sr(x)CuO(4) (x=0.16) reveal that the magnetic excitations are dispersive. The dispersion is the same as in YBa(2)Cu(3)O(6.85), and is quantitatively related to that observed with charge sensitive probes. The associated veloc...

  15. Plasmon dispersion and dynamic exchange-correlation potential from two-pair excitations in degenerate plasmas

    International Nuclear Information System (INIS)

    Boehm, H.M.; Conti, S.; Tosi, M.P.

    1995-11-01

    Electron energy loss experiments have shown a rapid softening of the bulk plasmon dispersion across the series of the alkali metals. Motivated by these observations, we reconsider the evaluation of the dynamic, long-wavelength exchange-correlation potential f xc (ω) in the electron fluid, which is of interest for applications in time-dependent density functional theory. The value of Re[f xc (ω pl )] at the plasma frequency ω pl determines the exchange-correlation contribution to the leading plasmon dispersion coefficient in the homogeneous electron fluid. Whereas an interpolation scheme originally proposed by Gross and Kohn assumes a monotonic increase of Re[f xc (ω) - f xc (0)] across the plasma frequency, we examine the possibility of strongly non-monotonic behaviour arising from a resonance process between plasmons and two-pair excitations. This process is evaluated with the help of sum rules and selfconsistency requirements with a single-pole approximation of the dielectric function. The cases of a fermion plasma and of a boson plasma are treated in parallel and the reliability of the results for the fermion plasma at low coupling is tested by calculations within a random phase approximation for the dielectric function. In all cases it is found that the resonance process accumulates oscillator strength in the neighbourhood of 2ω pl , thus decreasing the value of Re[f xc (ω pl )] below the static value f xc (0) fixed by the compressibility sum rule. Although this lowering does not suffice to account by itself for the measured plasmon dispersion coefficient in the low-density alkali metals, our results provide useful input for combined band-structure and exchange-correlation calculations. (author). 40 refs, 9 figs, 2 tabs

  16. Efficient Hydrogenolysis of Guaiacol over Highly Dispersed Ni/MCM-41 Catalyst Combined with HZSM-5

    Directory of Open Access Journals (Sweden)

    Songbai Qiu

    2016-09-01

    Full Text Available A series of MCM-41 supported Ni catalysts with high metal dispersion was successfully synthesized by simple co-impregnation using proper ethylene glycol (EG. The acquired Ni-based catalysts performed the outstanding hydrogenolysis activity of guaiacol. The effects of the synthesis parameters including drying temperature, calcination temperature, and metal loading on the physical properties of NiO nanoparticles were investigated through the use of X-ray diffraction (XRD. The drying temperature was found to significantly influence the particle sizes of NiO supported on MCM-41, but the calcination temperature and metal loading had less influence. Interestingly, the small particle size (≤3.3 nm and the high dispersion of NiO particles were also obtained for co-impregnation on the mixed support (MCM-41:HZSM-5 = 1:1, similar to that on the single MCM-41 support, leading to excellent hydrogenation activity at low temperature. The guaiacol conversion could reach 97.9% at 150 °C, and the catalytic activity was comparative with that of noble metal catalysts. The hydrodeoxygenation (HDO performance was also promoted by the introduction of acidic HZSM-5 zeolite and an 84.1% yield of cyclohexane at 240 °C was achieved. These findings demonstrate potential applications for the future in promoting and improving industrial catalyst performance.

  17. FINDING EXTRATERRESTRIAL LIFE USING GROUND-BASED HIGH-DISPERSION SPECTROSCOPY

    International Nuclear Information System (INIS)

    Snellen, I. A. G.; Le Poole, R.; Brogi, M.; Birkby, J.; De Kok, R. J.

    2013-01-01

    Exoplanet observations promise one day to unveil the presence of extraterrestrial life. Atmospheric compounds in strong chemical disequilibrium would point to large-scale biological activity just as oxygen and methane do in the Earth's atmosphere. The cancellation of both the Terrestrial Planet Finder and Darwin missions means that it is unlikely that a dedicated space telescope to search for biomarker gases in exoplanet atmospheres will be launched within the next 25 years. Here we show that ground-based telescopes provide a strong alternative for finding biomarkers in exoplanet atmospheres through transit observations. Recent results on hot Jupiters show the enormous potential of high-dispersion spectroscopy to separate the extraterrestrial and telluric signals, making use of the Doppler shift of the planet. The transmission signal of oxygen from an Earth-twin orbiting a small red dwarf star is only a factor of three smaller than that of carbon monoxide recently detected in the hot Jupiter τ Boötis b, albeit such a star will be orders of magnitude fainter. We show that if Earth-like planets are common, the planned extremely large telescopes can detect oxygen within a few dozen transits. Ultimately, large arrays of dedicated flux-collector telescopes equipped with high-dispersion spectrographs can provide the large collecting area needed to perform a statistical study of life-bearing planets in the solar neighborhood.

  18. Gas production potential of disperse low-saturation hydrate accumulations in oceanic sediments

    International Nuclear Information System (INIS)

    Moridis, George J.; Sloan, E. Dendy

    2007-01-01

    In this paper, we evaluate the gas production potential of disperse, low-saturation (S H H hydrate-bearing sediments subject to depressurization-induced dissociation over a 10-year production period. We investigate the sensitivity of items (a)-(c) to the following hydraulic properties, reservoir conditions, and operational parameters: intrinsic permeability, porosity, pressure, temperature, hydrate saturation, and constant pressure at which the production well is kept. The results of this study indicate that, despite wide variations in the aforementioned parameters (covering the entire spectrum of such deposits), gas production is very limited, never exceeding a few thousand cubic meters of gas during the 10-year production period. Such low production volumes are orders of magnitude below commonly accepted standards of economic viability, and are further burdened with very unfavorable gas-to-water ratios. The unequivocal conclusion from this study is that disperse, low-S H hydrate accumulations in oceanic sediments are not promising targets for gas production by means of depressurization-induced dissociation, and resources for early hydrate exploitation should be focused elsewhere

  19. Potential of radioactive and other waste disposals on the continental margin by natural dispersal processes

    International Nuclear Information System (INIS)

    Ryan, W.B.F.; Farre, J.A.

    1983-01-01

    Mass wasting, an erosional process, has recently been active at deepwater waste disposal sites on the mid-Atlantic margin of the United States. On the continental slope there is a subsea drainage network consisting of canyons, gullies, and chutes, and there are meandering channels, erosional scars, and debris aprons present on the continental rise. Fresh-looking blocks of 40 to 45 million-year-old marl and chalk (from cobble to boulder size) are strewn among canisters of low-level radioactive wastes. Some of the blocks have traveled from their original place of deposition for distances in excess of 170 km. Waste containers on the continental slope and rise cannot be considered to be disposed of permanently. The drainage network of the slope provides a natural process for collecting wastes over a catchment area, and for concentrating it with interim storage in canyons. Erosion by slumping, sliding, and debris flows ultimately will transport the wastes from the continental slope and disperse it over potentially large areas on the continental rise and abyssal plain. If it is desirable that the wastes be buried in the seafloor and isolated from the environment, then the continental slope and rise are not attractive repositories. If, however, it is deemed beneficial that the wastes ultimately be dispersed over a wide area, then the continental slope could be used as a disposal site

  20. Atmospheric Dispersal and Dispostion of Tephra From a Potential Volcanic Eruption at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    G. Keating; W.Statham

    2004-02-12

    The purpose of this model report is to provide documentation of the conceptual and mathematical model (ASHPLUME) for atmospheric dispersal and subsequent deposition of ash on the land surface from a potential volcanic eruption at Yucca Mountain, Nevada. This report also documents the ash (tephra) redistribution conceptual model. The ASHPLUME conceptual model accounts for incorporation and entrainment of waste fuel particles associated with a hypothetical volcanic eruption through the Yucca Mountain repository and downwind transport of contaminated tephra. The ASHPLUME mathematical model describes the conceptual model in mathematical terms to allow for prediction of radioactive waste/ash deposition on the ground surface given that the hypothetical eruptive event occurs. This model report also describes the conceptual model for tephra redistribution from a basaltic cinder cone. Sensitivity analyses and model validation activities for the ash dispersal and redistribution models are also presented. Analyses documented in this model report will improve and clarify the previous documentation of the ASHPLUME mathematical model and its application to the Total System Performance Assessment (TSPA) for the License Application (TSPA-LA) igneous scenarios. This model report also documents the redistribution model product outputs based on analyses to support the conceptual model.

  1. Color and odor of artificial fruit used to signal potential dispersers in the Atlantic forest in Brazil

    Directory of Open Access Journals (Sweden)

    Aliny Oliveira Barcelos

    2012-06-01

    Full Text Available Fruit color and odor are the main features regulating the rate of fruit predation and dispersal. The aim of this study was to analyze the effect of odor and color on fruit predators and dispersers. The present study was conducted in a 30ha area of secondary forest in Southeastern Atlantic Brazil. This area was divided into two transects, in which four points were marked with a 30m distance from each other. Each sampling point contained a total of 30 artificial fruit which belong to six different treatment groups, with five artificial fruit per group. Each group was randomly placed on the ground and that artificial fruit was checked every seven days. For each group of five fruit, 5mL of essence (vanilla or pineapple were placed, and no essence was used in the control group. Artificial fruit was made with green and red nontoxic modeling clay, as well as artificial essences (vanilla and pineapple. A total of 960 fruits were used. Predated fruit equaled 26.9% (258 units, from which the red/pineapple had the highest predation rate (81.9%, followed by red/vanilla (46.3%, while green/control fruits were not predated. Throughout the experiment, bitten fruit and pecked fruit equaled 58.3% and 41.7%, respectively. No significant differences were recorded (x²=7.57, df=5, p=0.182 between bitten and pecked fruit. Fruit color and odor are important in attracting predators and dispersers, which explains the high rate of predation of red/vanilla and red/pineapple, and the absence of predated fruits in the green/control group. Regarding the potential disperser, there was no statistically significant difference between pecked fruit and bitten fruit. As a result, it should be taken into consideration that zoochory (mammalochory and ornithochory is the most important dispersal; therefore, it should be concluded that birds are more attracted by color and mammals by odor. Rev. Biol. Trop. 60 (2: 925-931. Epub 2012 June 01.

  2. Noise study of all-normal dispersion supercontinuum sources for potential application in optical coherence tomography

    Science.gov (United States)

    Gonzalo, I. B.; Engelsholm, R. D.; Bang, O.

    2018-03-01

    Commercially available silica-fiber-based and ultra-broadband supercontinuum (SC) sources are typically generated by pumping close to the zero-dispersion wavelength (ZDW) of a photonic crystal fiber (PCF), using high-power picosecond or nanosecond laser pulses. Despite the extremely broad bandwidths, such sources are characterized by large intensity fluctuations, limiting their performance for applications in imaging such as optical coherence tomography (OCT). An approach to eliminate the influence of noise sensitive effects is to use a so-called all-normal dispersion (ANDi) fiber, in which the dispersion is normal for all the wavelengths of interest. Pumping these types of fibers with short enough femtosecond pulses allows to suppress stimulated Raman scattering (SRS), which is known to be as noisy process as modulation instability (MI), and coherent SC is generated through self-phase modulation (SPM) and optical wave breaking (OWB). In this study, we show the importance of the pump laser and fiber parameters in the design of low-noise ANDi based SC sources, for application in OCT. We numerically investigate the pulse-to-pulse fluctuations of the SC, calculating the relative intensity noise (RIN) as a function of the pump pulse duration and fiber length. Furthermore, we experimentally demonstrate the role of the fiber length on the RIN of the ANDi SC, validating the results calculated numerically. In the end, we compare the RIN of a commercial SC source based on MI and the ANDi SC source developed here, which shows better noise performance when it is carefully designed.

  3. Evaluating dispersal potential of an invasive fish by the use of aerobic scope and osmoregulation capacity

    DEFF Research Database (Denmark)

    Behrens, Jane W.; Deurs, Mikael van; Christensen, Emil Aputsiaq Flindt

    2017-01-01

    factors such as presence of predators, competitors, and parasites. Early prediction of dispersal potential and future 'area of impact' is challenging, but also a great asset in taking appropriate management actions. Aerobic scope (AS) in fish has been linked to various fitness-related parameters, and may...... waters is unknown to date. We show that AS in round goby is reduced by 30% and blood plasma osmolality increased (indicating reduced capacity for osmoregulation) at salinities approaching oceanic conditions, following slow ramping (5 PSU per week) and subsequent long-term acclimation to salinities...... ranging between 0 and 30 PSU (8 days at final treatment salinities before blood plasma osmolality measurements, 12-20 additional days before respirometry). Survival was also reduced at the highest salinities yet a significant proportion (61%) of the fish survived at 30 PSU. Reduced physiological...

  4. High seed dispersal ability of Pinus canariensis in stands of contrasting density inferred from genotypic data

    Directory of Open Access Journals (Sweden)

    Unai López de Heredia

    2015-04-01

    Full Text Available Aim of the study: Models that combine parentage analysis from molecular data with spatial information of seeds and seedlings provide a framework to describe and identify the factors involved in seed dispersal and recruitment of forest species. In the present study we used a spatially explicit method (the gene shadow model in order to assess primary and effective dispersal in Pinus canariensis. Area of study: Pinus canariensis is endemic to the Canary Islands (Spain. Sampling sites were a high density forest in southern slopes of Tenerife and a low density stand in South Gran Canaria. Materials and methods: We fitted models based on parentage analysis from seeds and seedlings collected in two sites with contrasting stand density, and then compared the resulting dispersal distributions. Main results: The results showed that: 1 P. canariensis has a remarkable dispersal ability compared to other pine species; 2 there is no discordance between primary and effective dispersals, suggesting limited secondary dispersal by animals and lack of Janzen-Connell effect; and 3 low stand densities enhance the extent of seed dispersal, which was higher in the low density stand. Research highlights: The efficient dispersal mechanism of P. canariensis by wind inferred by the gene shadow model is congruent with indirect measures of gene flow, and has utility in reconstructing past demographic events and in predicting future distribution ranges for the species.

  5. Observations of High Dispersion Clusters of Galaxies: Constraints on Cold Dark Matter

    Science.gov (United States)

    Oegerle, William R.; Hill, John M.; Fitchett, Michael J.

    1995-07-01

    We have studied the dynamics of several Abell clusters of galaxies, which were previously reported to have large velocity dispersions, and hence very large masses. In particular, we have investigated the assertion of Frenk et al. (1990) that clusters with intrinsic velocity dispersions ~> 1200 km s^-1^ are extremely rare in the universe, and that large observed dispersions are due to projection effects. We report redshifts for 303 galaxies in the fields of A1775, A2029, A2142, and A2319, obtained with the Nessie multifiber spectrograph at the Mayall 4 m telescope. A1775 appears to be two poor, interacting clusters, separated in velocity space by ~3075 km s^-1^ (in the cluster rest frame). A2029 has a velocity dispersion of 1436 km s^-1^, based on 85 cluster member redshifts. There is evidence that a group or poor cluster of galaxies of slightly different redshift is projected onto (or is merging with) the core of A2029. However, the combined kinematic and x-ray data for A2029 argue for an intrinsically large dispersion for this cluster. Based on redshifts for 103 members of A2142, we find a dispersion of 1280 km s^-1^, and evidence for subclustering. With 130 redshifts in the A2319 field, we have isolated a subcluster ~10' NW of the cD galaxy. After its removal, A2319 has a velocity dispersion of 1324 km s^-1^. The data obtained here have been combined with recent optical and X-ray data for other supposedly high-mass clusters to study the cluster velocity dispersion distribution in a sample of Abell clusters. We find that clusters with true velocity dispersions ~> 1200 km s^-1^ are not extremely rare, but account for ~5% of all Abell clusters with R >= 0. If these clusters are in virial equilibrium, then our results are inconsistent with a high-bias (b~>22), high-density CDM model.

  6. ATMOSPHERIC DISPERSAL AND DEPOSITION OF TEPHRA FROM A POTENTIAL VOLCANIC ERUPTION AT YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    C. Harrington

    2004-01-01

    The purpose of this model report is to provide documentation of the conceptual and mathematical model (Ashplume) for atmospheric dispersal and subsequent deposition of ash on the land surface from a potential volcanic eruption at Yucca Mountain, Nevada. This report also documents the ash (tephra) redistribution conceptual model. These aspects of volcanism-related dose calculation are described in the context of the entire igneous disruptive events conceptual model in ''Characterize Framework for Igneous Activity'' (BSC 2004 [DIRS 169989], Section 6.1.1). The Ashplume conceptual model accounts for incorporation and entrainment of waste fuel particles associated with a hypothetical volcanic eruption through the Yucca Mountain repository and downwind transport of contaminated tephra. The Ashplume mathematical model describes the conceptual model in mathematical terms to allow for prediction of radioactive waste/ash deposition on the ground surface given that the hypothetical eruptive event occurs. This model report also describes the conceptual model for tephra redistribution from a basaltic cinder cone. Sensitivity analyses and model validation activities for the ash dispersal and redistribution models are also presented. Analyses documented in this model report update the previous documentation of the Ashplume mathematical model and its application to the Total System Performance Assessment (TSPA) for the License Application (TSPA-LA) igneous scenarios. This model report also documents the redistribution model product outputs based on analyses to support the conceptual model. In this report, ''Ashplume'' is used when referring to the atmospheric dispersal model and ''ASHPLUME'' is used when referencing the code of that model. Two analysis and model reports provide direct inputs to this model report, namely ''Characterize Eruptive Processes at Yucca Mountain, Nevada and Number of Waste Packages Hit by Igneous Intrusion''. This model report provides direct inputs to

  7. ATMOSPHERIC DISPERSAL AND DEPOSITION OF TEPHRA FROM A POTENTIAL VOLCANIC ERUPTION AT YUCCA MOUNTAIN, NEVADA

    Energy Technology Data Exchange (ETDEWEB)

    C. Harrington

    2004-10-25

    The purpose of this model report is to provide documentation of the conceptual and mathematical model (Ashplume) for atmospheric dispersal and subsequent deposition of ash on the land surface from a potential volcanic eruption at Yucca Mountain, Nevada. This report also documents the ash (tephra) redistribution conceptual model. These aspects of volcanism-related dose calculation are described in the context of the entire igneous disruptive events conceptual model in ''Characterize Framework for Igneous Activity'' (BSC 2004 [DIRS 169989], Section 6.1.1). The Ashplume conceptual model accounts for incorporation and entrainment of waste fuel particles associated with a hypothetical volcanic eruption through the Yucca Mountain repository and downwind transport of contaminated tephra. The Ashplume mathematical model describes the conceptual model in mathematical terms to allow for prediction of radioactive waste/ash deposition on the ground surface given that the hypothetical eruptive event occurs. This model report also describes the conceptual model for tephra redistribution from a basaltic cinder cone. Sensitivity analyses and model validation activities for the ash dispersal and redistribution models are also presented. Analyses documented in this model report update the previous documentation of the Ashplume mathematical model and its application to the Total System Performance Assessment (TSPA) for the License Application (TSPA-LA) igneous scenarios. This model report also documents the redistribution model product outputs based on analyses to support the conceptual model. In this report, ''Ashplume'' is used when referring to the atmospheric dispersal model and ''ASHPLUME'' is used when referencing the code of that model. Two analysis and model reports provide direct inputs to this model report, namely ''Characterize Eruptive Processes at Yucca Mountain, Nevada and Number of Waste Packages Hit

  8. Strategies for dispersing carbon nanotubes in highly viscous polymers

    NARCIS (Netherlands)

    Grossiord, N.; Loos, J.; Koning, C.E.

    2005-01-01

    We describe a new technique based on latex technology, which allows the production of conductive composites with potential applications in electronics. These composites consist of exfoliated single-wall nanotubes in a polymer matrix of choice, with very low percolation threshold.

  9. A highly accurate finite-difference method with minimum dispersion error for solving the Helmholtz equation

    KAUST Repository

    Wu, Zedong

    2018-04-05

    Numerical simulation of the acoustic wave equation in either isotropic or anisotropic media is crucial to seismic modeling, imaging and inversion. Actually, it represents the core computation cost of these highly advanced seismic processing methods. However, the conventional finite-difference method suffers from severe numerical dispersion errors and S-wave artifacts when solving the acoustic wave equation for anisotropic media. We propose a method to obtain the finite-difference coefficients by comparing its numerical dispersion with the exact form. We find the optimal finite difference coefficients that share the dispersion characteristics of the exact equation with minimal dispersion error. The method is extended to solve the acoustic wave equation in transversely isotropic (TI) media without S-wave artifacts. Numerical examples show that the method is is highly accurate and efficient.

  10. High-order optical nonlinearities in nanocomposite films dispersed with semiconductor quantum dots at high concentrations

    International Nuclear Information System (INIS)

    Tomita, Yasuo; Matsushima, Shun-suke; Yamagami, Ryu-ichi; Jinzenji, Taka-aki; Sakuma, Shohei; Liu, Xiangming; Izuishi, Takuya; Shen, Qing

    2017-01-01

    We describe the nonlinear optical properties of inorganic-organic nanocomposite films in which semiconductor CdSe quantum dots as high as 6.8 vol.% are dispersed. Open/closed Z-scan measurements, degenerate multi-wave mixing and femtosecond pump-probe/transient grating measurements are conducted. It is shown that the observed fifth-order optical nonlinearity has the cascaded third-order contribution that becomes prominent at high concentrations of CdSe QDs. It is also shown that there are picosecond-scale intensity-dependent and nanosecond-scale intensity-independent decay components in absorptive and refractive nonlinearities. The former is caused by the Auger process, while the latter comes from the electron-hole recombination process. (paper)

  11. Comment on "Design of a broadband highly dispersive pure silica photonic crystal fiber"

    DEFF Research Database (Denmark)

    Mortensen, Niels Asger

    2008-01-01

    In a recent paper, Subbaraman et al. [Appl. Opt. 46, 3263–3268 (2007)] reported a theoretical and numerical study of highly dispersive pure silica photonic crystal fiber supporting group-velocity dispersion exceeding −2 × 104 ps=nm=km. This Comment argues that the authors consider only one of two...... sides of the same coin by not taking the corresponding beating length into account....

  12. Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition.

    Science.gov (United States)

    Riemensberger, Johann; Hartinger, Klaus; Herr, Tobias; Brasch, Victor; Holzwarth, Ronald; Kippenberg, Tobias J

    2012-12-03

    We demonstrate dispersion engineering of integrated silicon nitride based ring resonators through conformal coating with hafnium dioxide deposited on top of the structures via atomic layer deposition. Both, magnitude and bandwidth of anomalous dispersion can be significantly increased. The results are confirmed by high resolution frequency-comb-assisted-diode-laser spectroscopy and are in very good agreement with the simulated modification of the mode spectrum.

  13. DNA-dispersed graphene/NiO hybrid materials for highly sensitive non-enzymatic glucose sensor

    International Nuclear Information System (INIS)

    Lv Wei; Jin Fengmin; Guo Quangui; Yang Quanhong; Kang Feiyu

    2012-01-01

    Highlights: ► We investigated the potential of GNS/NiO/DNA hybrid used as a nonenzymatic sensor. ► DNA is a highly efficient disperse agent for GNS/NiO hybrid than ionic surfactants. ► GNS/NiO/DNA hybrid shows fast electron transfer in the electrochemical reaction. ► GNS/NiO/DNA hybrid shows good detection performance towards glucose. - Abstract: We demonstrate graphene nanosheet/NiO hybrids (GNS/NiO) as the active material for high-performance non-enzymatic glucose sensors. Such sensors are fabricated by DNA-dispersed GNS/NiO suspension deposited on glassy carbon electrodes. ss-DNA shows strong dispersing ability for the GNS/NiO hybrid materials resulting in stable water-dispersible GNS/NiO/DNA hybrids with fully separated layers. The GNS/NiO/DNA hybrids show enhanced electron transfer in the electrocatalytic reaction process, and accordingly, such hybrids modified electrodes show good sensing performance towards glucose and are characterized by large detection ranges, short response periods, low detection limit and high sensitivity and stability.

  14. All-solid-state flexible supercapacitors based on highly dispersed polypyrrole nanowire and reduced graphene oxide composites.

    Science.gov (United States)

    Yu, Chenfei; Ma, Peipei; Zhou, Xi; Wang, Anqi; Qian, Tao; Wu, Shishan; Chen, Qiang

    2014-10-22

    Highly dispersed polypyrrole nanowires are decorated on reduced graphene oxide sheets using a facile in situ synthesis route. The prepared composites exhibit high dispersibility, large effective surface area, and high electric conductivity. All-solid-state flexible supercapacitors are assembled based on the prepared composites, which show excellent electrochemical performances with a specific capacitance of 434.7 F g(-1) at a current density of 1 A g(-1). The as-fabricated supercapacitor also exhibits excellent cycling stability (88.1% capacitance retention after 5000 cycles) and exceptional mechanical flexibility. In addition, outstanding power and energy densities were obtained, demonstrating the significant potential of prepared material for flexible and portable energy storage devices.

  15. Highly Dispersed PVP Supported Ir-Ni Bimetallic Nanoparticles as ...

    Indian Academy of Sciences (India)

    8

    comparison to Ir-Ni (1:2) due to their small size and high stability for the oxidation of ... reason, but also because many dyes and their breakdown products are toxic to ..... which may be due to the involvement of same type of interaction amongst ...

  16. Small seed size increases the potential for dispersal of wetland plants by ducks

    NARCIS (Netherlands)

    Soons, M.B.; van der Vlugt, C.; van Lith, B.; Heil, G.W.; Klaassen, M.R.J.

    2008-01-01

    1. Long-distance dispersal (LDD) is important in plants of dynamic and ephemeral habitats. For plants of dynamic wetland habitats, waterfowl are generally considered to be important LDD vectors. However, in comparison to the internal (endozoochorous) dispersal of terrestrial plants by birds,

  17. Characteristics of air pollutant dispersion around a high-rise building

    International Nuclear Information System (INIS)

    Zhang, Y.; Kwok, K.C.S.; Liu, X.-P.; Niu, J.-L.

    2015-01-01

    A numerical wind tunnel model was proposed. The computed results of the pollutant diffusion around a typical Hong Kong high-rise building model (at a linear scale of 1:30), were found to show a similar trend to the outcomes of self-conducted experimental measurements that the pathways of pollutant migration for windward and leeward pollutant emission are different. For the case with windward pollutant emission at the 3rd floor within a re-entry, the pollutant migrated downwards due to the downwash created by the wind. In contrast, for the case with leeward pollution emission, dispersion is dominated by intense turbulent mixing in the near wake and characterized by the upward migration of the pollutant in the leeward re-entry. The simulated results of haze-fog (HF) studies confirm that the pathway of pollutant migration is dominated by wind–structure interaction and buoyancy effect only plays a minor role in the dispersion process. - Highlights: • A self-developed numerical wind tunnel model was proposed. • Characteristics of air pollutant dispersion with windward/leeward emission were discussed. • Wind–structure interaction controls the air pollutant dispersion around the building. - The different characteristics of air pollutant dispersion around a high-rise building, for both cases of a dispersion source in either the windward face or leeward face, are dominated by wind–structure interaction, with buoyancy effect playing only a minor role

  18. Hydrodynamic dispersion in a combined magnetohydrodynamic- electroosmotic-driven flow through a microchannel with slowly varying wall zeta potentials

    Science.gov (United States)

    Vargas, C.; Arcos, J.; Bautista, O.; Méndez, F.

    2017-09-01

    The effective dispersion coefficient of a neutral solute in the combined electroosmotic (EO) and magnetohydrodynamic (MHD)-driven flow of a Newtonian fluid through a parallel flat plate microchannel is studied. The walls of the microchannel are assumed to have modulated and low zeta potentials that vary slowly in the axial direction in a sinusoidal manner. The flow field required to obtain the dispersion coefficient is solved using the lubrication approximation theory. The solution of the electrical potential is based on the Debye-Hückel approximation for a symmetric (Z :Z ) electrolyte solution. The EO and MHD effects, together with the variations in the zeta potentials of the walls, are observed to notably modify the axial distribution of the effective dispersion coefficient. The problem is formulated for two cases of the zeta potential function. Note that the dispersion coefficient primarily depends on the Hartmann number, on the ratio of the half height of the microchannel to the Debye length, and on the assumed variation in the zeta potentials of the walls.

  19. Mild Hydroprocessing with Dispersed Catalyst of Highly Asphaltenic Pitch

    Science.gov (United States)

    Isquierdo, Fernanda

    Asphaltene are known to have diverse negative impacts on heavy oil extraction and hydroprocessing. This research then, explores the optimal conditions to convert asphaltenes into lighter material using mild conditions of pressure and temperature, and investigates changes in asphaltene structure during hydroprocessing. Feedstock and products were characterized by Simulated Distillation, Microdeasphalting, Sulfur content, X-ray diffraction, X-ray photoelectron spectroscopy, and Nuclear magnetic resonance spectroscopy. Solid catalysts were analyzed by Themogravimetric analysis, X-ray diffraction, and Dynamic light scattering. Based on the results obtained from X-ray diffraction and Nuclear magnetic resonance spectroscopy analysis a mechanism for the asphaltene hydroprocessing at mild conditions is proposed in which the alky peripheric portion from the original asphaltenes is partially removed during the reaction. The consequence of that process being an increase in the stacking of the aromatics sheets in the remaining asphaltenes. Also, this study investigates different for ultradispersed catalyst compositions, where CoWS, CoMoS, NiWS, FeWS, NiMo/NaHFeSi 2O6 and NaHFeSi2O6 showed a high asphaltene conversion as determined by asphaltene microdeasphalting, FeMoS and NaHFeSi 2O6 presented a high Vacuum Residue as determined by distillation (SIMDIST) analysis conversion, and in terms of sulfur removal CoMoS gave the higher conversion. In addition, all the catalyst tested showed a coke production lower than 1%. Finally, a kinetic study for the pitch hydroprocessing using CoMoS as catalysts gave a global activation energy of 97.3 kJ/mol.

  20. On the calculation of the structure of charge-stabilized colloidal dispersions using density-dependent potentials

    International Nuclear Information System (INIS)

    Castañeda-Priego, R; Lobaskin, V; Mixteco-Sánchez, J C; Rojas-Ochoa, L F; Linse, P

    2012-01-01

    The structure of charge-stabilized colloidal dispersions has been studied through a one-component model using a Yukawa potential with density-dependent parameters examined with integral equation theory and Monte Carlo simulations. Partial thermodynamic consistency was guaranteed by considering the osmotic pressure of the dispersion from the approximate mean-field renormalized jellium and Poisson-Boltzmann cell models. The colloidal structures could be accurately described by the Ornstein-Zernike equation with the Rogers-Young closure by using the osmotic pressure from the renormalized jellium model. Although we explicitly show that the correct effective pair-potential obtained from the inverse Monte Carlo method deviates from the Yukawa shape, the osmotic pressure constraint allows us to have a good description of the colloidal structure without losing information on the system thermodynamics. Our findings are corroborated by primitive model simulations of salt-free colloidal dispersions. (paper)

  1. Combined microfluidization and ultrasonication: a synergistic protocol for high-efficient processing of SWCNT dispersions with high quality

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Sida, E-mail: s.luo@buaa.edu.cn [Beihang University, School of Mechanical Engineering and Automation (China); Liu, Tao, E-mail: tliu@fsu.edu [Florida State University, High-Performance Materials Institute (United States); Wang, Yong; Li, Liuhe [Beihang University, School of Mechanical Engineering and Automation (China); Wang, Guantao; Luo, Yun [China University of Geosciences, Center of Safety Research, School of Engineering and Technology (China)

    2016-08-15

    High-efficient and large-scale production of high-quality CNT dispersions is necessary for meeting the future needs to develop various CNT-based electronic devices. Herein, we have designed novel processing protocols by combining conventional ultrasonication process with a new microfluidization technique to produce high-quality SWCNT dispersions with improved processing efficiency. To judge the quality of SWCNT dispersions, one critical factor is the degree of exfoliation, which could be quantified by both geometrical dimension of the exfoliated nanotubes and percentage of individual tubes in a given dispersion. In this paper, the synergistic effect of the combined protocols was systematically investigated through evaluating SWCNT dispersions with newly developed characterization techniques, namely preparative ultracentrifuge method (PUM) and simultaneous Raman scattering and photoluminescence spectroscopy (SRSPL). The results of both techniques draw similar conclusions that as compared with either of the processes operated separately, a low-pass microfluidization followed by a reasonable duration of ultrasonication could substantially improve the processing efficiency to produce high-quality SWCNT dispersions with averaged particle length and diameter as small as ~600 and ~2 nm, respectively.Graphical abstract.

  2. Influential factors of 2-chlorobiphenyl reductive dechlorination by highly dispersed bimetallic nanoparticles

    Directory of Open Access Journals (Sweden)

    Jiang Junrong

    2016-01-01

    Full Text Available Highly dispersed Pd-Fe0 bimetallic nanoparticles were prepared in the presence of 40 kHz ultrasonic irradiation in order to enhance disparity and reactivity, and simultaneously avoid agglomeration. Influential factors of 2-chlorobiphenyl (2-Cl BP reductive dechlorination by highly dispersed Pd-Fe0 nanoparticles were investigated. Experimental results showed that highly dispersed Pd-Fe0 nanoparticles prepared in the in the presence of ultrasound could further improve the dechlorination efficiency of 2-Cl BP, meanwhile the biphenyl (BP formation rates increased obviously and increased from 47.4% (in the absence of ultrasound to 95.3% (in the presence of ultrasound within 300 min. The catalytic reductive dechlorination effciency of 2-Cl BP was dependent on Pd-Fe0 nanoparticles prepared methods, Pd-Fe0 nanoparticles dosage, Pd loading percentage over Fe0 and initial pH values

  3. Oil Spills and Dispersants Can Cause the Initiation of Potentially Harmful Dinoflagellate Blooms ("Red Tides")

    DEFF Research Database (Denmark)

    Almeda, Rodrigo; Cosgrove, Sarah; Buskey, Edward J.

    2018-01-01

    After oil spills and dispersant applications the formation of red tides or harmful algal blooms (HABs) has been observed, which can cause additional negative impacts in areas affected by oil spills. However, the link between oil spills and HABs is still unknown. Here, we present experimental...... evidence that demonstrates a connection between oil spills and HABs. We determined the effects of oil, dispersant-treated oil, and dispersant alone on the structure of natural plankton assemblages in the Northern Gulf of Mexico. In coastal waters, large tintinnids and oligotrich ciliates, major grazers...

  4. Dispersive XAS on a High Brilliance Source: Highlights and Future Opportunities

    International Nuclear Information System (INIS)

    Pascarelli, S.; Aquilanti, G.; Guilera, G.; Mathon, O.; Newton, M. A.; Trapananti, A.; Dubrovinsky, L.; Munoz, M.; Pasquale, M.

    2007-01-01

    Energy Dispersive X-ray Absorption Spectroscopy is a now a well-established method which has been applied to a broad range of applications. Ten years from the construction of beamline ID24 at the ESRF, the first dispersive XAS spectrometer using undulator radiation on a third generation source, we report an overview of recent results in very diverse fields of research, ranging from automotive catalysts to magnetism at extreme conditions. We also illustrate how pushing the instrument to its limits has opened new opportunities, such as an enhanced sensitivity to detection of tiny atomic displacements and the potential for micro-probe redox and speciation imaging

  5. On adiabatic pair potentials of highly charged colloid particles

    Science.gov (United States)

    Sogami, Ikuo S.

    2018-03-01

    Generalizing the Debye-Hückel formalism, we develop a new mean field theory for adiabatic pair potentials of highly charged particles in colloid dispersions. The unoccupied volume and the osmotic pressure are the key concepts to describe the chemical and thermodynamical equilibrium of the gas of small ions in the outside region of all of the colloid particles. To define the proper thermodynamic quantities, it is postulated to take an ensemble averaging with respect to the particle configurations in the integrals for their densities consisting of the electric potential satisfying a set of equations that are derived by linearizing the Poisson-Boltzmann equation. With the Fourier integral representation of the electric potential, we calculate first the internal electric energy of the system from which the Helmholtz free energy is obtained through the Legendre transformation. Then, the Gibbs free energy is calculated using both ways of the Legendre transformation with respect to the unoccupied volume and the summation of chemical potentials. The thermodynamic functions provide three types of pair potentials, all of which are inversely proportional to the fraction of the unoccupied volume. At the limit when the fraction factor reduces to unity, the Helmholtz pair potential turns exactly into the well known Derjaguin-Landau-Verwey-Overbeek repulsive potential. The Gibbs pair potential possessing a medium-range strong repulsive part and a long-range weak attractive tail can explain the Schulze-Hardy rule for coagulation in combination with the van der Waals-London potential and describes a rich variety of phenomena of phase transitions observed in the dilute dispersions of highly charged particles.

  6. Description of nucleon scattering on 208Pb by a fully Lane-consistent dispersive spherical optical model potential

    Science.gov (United States)

    Sun, W. L.; Wang, J.; Soukhovitskii, E. Sh.; Capote, R.; Quesada, J. M.

    2017-09-01

    A fully Lane-consistent dispersive spherical optical potential is proposed to describe nucleon scattering interaction with doubly magic nucleus 208Pb up to 200 MeV. The experimental neutron total cross sections, elastically scattered nucleon angular distributions and (p,n) data had been used to search the potential parameters. Good agreement between experiments and the calculations with this potential is observed. Meanwhile, the application of the determined optical potential with the same parameters to neighbouring near magic Pb-Bi isotopes is also examined to show the predictive power of this potential.

  7. Clearly Transparent Nanopaper from Highly Concentrated Cellulose Nanofiber Dispersion Using Dilution and Sonication

    Directory of Open Access Journals (Sweden)

    Takaaki Kasuga

    2018-02-01

    Full Text Available Nanopaper prepared from holocellulose pulp is one of the best substrates for flexible electronics because of its high thermal resistance and high clear transparency. However, the clearness of nanopaper decreases with increasing concentration of the starting cellulose nanofiber dispersion—with the use of a 2.2 wt % dispersion, for example—resulting in translucent nanopaper with a high haze of 44%. To overcome this problem, we show that the dilution of this high-concentration dispersion with water followed by sonication for 10 s reduces the haze to less than 10% while maintaining the high thermal resistance of the nanopaper. Furthermore, the combination of water dilution and a short sonication treatment improves the clearness of the nanopaper, which would translate into cost savings for the transportation and storage of this highly concentrated cellulose nanofiber dispersion. Finally, we demonstrate the improvement of the electrical conductivity of clear transparent nanopaper prepared from an initially high-concentration dispersion by dropping and heating silver nanowire ink on the nanopaper. These achievements will pave the way toward the realization of the mass production of nanofiber-based flexible devices.

  8. High-order dispersion control of 10-petawatt Ti:sapphire laser facility.

    Science.gov (United States)

    Li, Shuai; Wang, Cheng; Liu, Yanqi; Xu, Yi; Li, Yanyan; Liu, Xingyan; Gan, Zebiao; Yu, Lianghong; Liang, Xiaoyan; Leng, Yuxin; Li, Ruxin

    2017-07-24

    A grism pair is utilized to control the high-order dispersion of the Shanghai Superintense Ultrafast Lasers Facility, which is a large-scale project aimed at delivering 10-PW laser pulses. We briefly present the characteristics of the laser system and calculate the cumulative B-integral, which determines the nonlinear phase shift influence on material dispersion. Three parameters are selected, grism separation, angle of incidence and slant distance of grating compressor, to determine their optimal values through an iterative searching procedure. Both the numerical and experimental results confirm that the spectral phase distortion is controlled, and the recompressed pulse with a duration of 24 fs is obtained in the single-shot mode. The distributions and stabilities of the pulse duration at different positions of the recompressed beam are also investigated. This approach offers a new feasible solution for the high-order dispersion compensation of femtosecond petawatt laser systems.

  9. Novel highly dispersible, thermally stable core/shell proppants for geothermal applications

    Energy Technology Data Exchange (ETDEWEB)

    Childers, Ian M.; Endres, Mackenzie; Burns, Carolyne; Garcia, Benjamin J.; Liu, Jian; Wietsma, Thomas W.; Bonneville, Alain; Moore, Joseph; Leavy, Ian I.; Zhong, Lirong; Schaef, Herbert T.; Fu, Li; Wang, Hong-Fei; Fernandez, Carlos A.

    2017-11-01

    The use of proppants during reservoir stimulation in tight oil and gas plays requires the introduction of highly viscous fluids to transport the proppants (µm–mm) with the fracturing fluid. The highly viscous fluids required result in increased pump loads and energy costs. Furthermore, although proppant deployment with fracturing fluids is a standard practice for unconventional oil and gas stimulation operations, there are only a few examples in the US of the applying proppant technology to geothermal energy production. This is due to proppant dissolution, proppant flowback and loss of permeability associated with the extreme temperatures found in enhanced geothermal systems (EGS). This work demonstrates proof-of-concept of a novel, CO2-responsive, lightweight sintered-bauxite/polymer core/shell proppant. The polymer shell has two main roles; 1) increase the stability of the proppant dispersion in water without the addition of rheology modifiers, and 2) once at the fracture network react with CO2 to promote particle aggregation and prop fractures open. In this work, both of these roles are demonstrated together with the thermal and chemical stability of the materials showing the potential of these CO2-responsive proppants as an alternative proppant technology for geothermal and unconventional oil/gas applications.

  10. Synthesis and properties of highly dispersed ionic silica-poly(ethylene oxide) nanohybrids.

    KAUST Repository

    Fernandes, Nikhil J

    2013-02-04

    We report an ionic hybrid based on silica nanoparticles as the anion and amine-terminated poly(ethylene oxide) (PEO) as a cation. The charge on the nanoparticle anion is carried by the surface hydroxyls. SAXS and TEM reveal an exceptional degree of dispersion of the silica in the polymer and high degree of order in both thin film and bulk forms. In addition to better dispersion, the ionic hybrid shows improved flow characteristics compared to silica/PEO mixtures in which the ionic interactions are absent.

  11. Synthesis and properties of highly dispersed ionic silica-poly(ethylene oxide) nanohybrids.

    KAUST Repository

    Fernandes, Nikhil J; Akbarzadeh, Johanna; Peterlik, Herwig; Giannelis, Emmanuel P

    2013-01-01

    We report an ionic hybrid based on silica nanoparticles as the anion and amine-terminated poly(ethylene oxide) (PEO) as a cation. The charge on the nanoparticle anion is carried by the surface hydroxyls. SAXS and TEM reveal an exceptional degree of dispersion of the silica in the polymer and high degree of order in both thin film and bulk forms. In addition to better dispersion, the ionic hybrid shows improved flow characteristics compared to silica/PEO mixtures in which the ionic interactions are absent.

  12. An analysis of superluminal propagation becoming subluminal in highly dispersive media

    Science.gov (United States)

    Nanda, L.

    2018-05-01

    In this article the time-moments of the Poynting vector associated with an electromagnetic pulse are used to characterize the traversal time and the pulse width as the pulse propagates through highly dispersive media. The behaviour of these quantities with propagation distance is analyzed in two physical cases: Lorentz absorptive medium, and Raman gain doublet amplifying medium. It is found that the superluminal pulse propagation in these two cases with anomalous dispersion is always accompanied by pulse compression and eventually the pulse becomes subluminal with increasing distance of propagation.

  13. Considering the Geographic Dispersion of Homeless and Highly Mobile Students and Families

    Science.gov (United States)

    Miller, Peter M.; Bourgeois, Alexis K.

    2013-01-01

    This article addresses school and community-level issues associated with the expanding crisis of student homelessness in the United States. We note that while an increased geographic dispersion of homeless and highly mobile (HHM) families is largely attributed to the widespread effects of the economic recession, it is also furthered by shifting…

  14. Use of polysulfides of alkali and alkaline-earth metals to obtain highly dispersed sulfur

    International Nuclear Information System (INIS)

    Massalimov, I.A.; Vikhareva, I.N.; Kireeva, M.S.

    2008-01-01

    Possibilities of obtaining polysulfides of alkali and alkaline earth metals (M is Na, K, Ca, Sr, Ba) in aqueous solutions were considered. The composition of the polysulfides and their concentration in solutions were found. The efficiencies of application of highly dispersed sulfur, produced from calcium polysulfide, and colloid sulfur as a fungicide were compared [ru

  15. Synthesis and magnetic properties of highly dispersed tantalum carbide nanoparticles decorated on carbon spheres

    CSIR Research Space (South Africa)

    Bhattacharjee, K

    2016-01-01

    Full Text Available The decoration of carbon spheres (CS) by highly dispersed tantalum carbide nanoparticles (TaC NPs) was achieved, for the first time by a unique carbothermal reduction method at 1350 °C for 30 min under reduced oxygen partial pressure. TaC NPs...

  16. Two simple ansaetze for obtaining exact solutions of high dispersive nonlinear Schroedinger equations

    International Nuclear Information System (INIS)

    Palacios, Sergio L.

    2004-01-01

    We propose two simple ansaetze that allow us to obtain different analytical solutions of the high dispersive cubic and cubic-quintic nonlinear Schroedinger equations. Among these solutions we can find solitary wave and periodic wave solutions representing the propagation of different waveforms in nonlinear media

  17. Preparation of highly dispersed palladium–phosphorus nanoparticles and its electrocatalytic performance for formic acid electrooxidation

    International Nuclear Information System (INIS)

    Sun Hanjun; Xu Jiangfeng; Fu Gengtao; Mao Xinbiao; Zhang, Lu; Chen Yu; Zhou Yiming; Lu Tianhong; Tang Yawen

    2012-01-01

    Highly dispersed and ultrafine palladium–phosphorus (Pd–P) nanoparticles (NPs) are prepared with a novel phosphorus reduction method. The structural and electronic properties of Pd–P NPs are characterized using Fourier transform infrared (FT-IR), energy dispersive spectrometer (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The electrooxidation of formic acid on Pd–P NPs are investigated by using cyclic voltammetry, chronoamperometry and CO-stripping measurements. The physical characterizations indicate the doped P element can enhance the content of Pd 0 species in Pd NPs, decrease the particle size and improve the dispersion of Pd–P NPs. The electrochemical measurements show the Pd–P NPs have a better catalytic performance for formic acid electrooxidation than Pd NPs.

  18. Time moments of the energy flow of optical pulses in highly dispersive media

    International Nuclear Information System (INIS)

    Nanda, Lipsa; Wanare, Harshawardhan; Ramakrishna, S Anantha

    2010-01-01

    We use the time moments of the Poynting vector associated with an electromagnetic pulse to characterize the traversal times and temporal pulse widths as the pulse propagates in highly dispersive media. The behaviour of these quantities with the propagation distance is analysed in three canonical cases: Lorentz absorptive medium, a Raman gain doublet amplifying medium and a medium exhibiting electromagnetically induced transparency. We find that superluminal pulse propagation in the first two cases with anomalous dispersion is usually accompanied by pulse compression and eventually the pulse becomes subluminal with increasing distance of propagation. In a medium with electromagnetically induced transparency with large normal dispersion, we identify a range of frequencies for which the pulse undergoes minimal temporal expansion while propagating with ultra-slow speed.

  19. Model Equation for Acoustic Nonlinear Measurement of Dispersive Specimens at High Frequency

    Science.gov (United States)

    Zhang, Dong; Kushibiki, Junichi; Zou, Wei

    2006-10-01

    We present a theoretical model for acoustic nonlinearity measurement of dispersive specimens at high frequency. The nonlinear Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation governs the nonlinear propagation in the SiO2/specimen/SiO2 multi-layer medium. The dispersion effect is considered in a special manner by introducing the frequency-dependant sound velocity in the KZK equation. Simple analytic solutions are derived by applying the superposition technique of Gaussian beams. The solutions are used to correct the diffraction and dispersion effects in the measurement of acoustic nonlinearity of cottonseed oil in the frequency range of 33-96 MHz. Regarding two different ultrasonic devices, the accuracies of the measurements are improved to ±2.0% and ±1.3% in comparison with ±9.8% and ±2.9% obtained from the previous plane wave model.

  20. Potential roles of fish, birds, and water in swamp privet (Forestiera acuminata) seed dispersal

    Science.gov (United States)

    Susan B. Adams; Paul B. Hamel; Kristina Connor; Bryce Burke; Emile S. Gardiner; David Wise

    2007-01-01

    Forestiera acuminata (swamp privet) is a common wetland shrub/small tree native to the southeastern United States. We examined several possible dispersal avenues for the plant. We tested germination of seeds exposed to various treatments, including passage through Ictalurus punctatus (Channel Catfi sh) guts, and conducted other...

  1. Dispersion of radionuclides potentially released from the Atolls of Mururoa and Fangataufa to neighboring archipelagos

    International Nuclear Information System (INIS)

    Osvath, I.

    1999-01-01

    This paper presents a compartmental model developed to simulate dispersion of radionuclides released to the ocean from the atolls of Mururoa and Fangataufa on a scale of 3000 x 1700 km (150 deg. to 300 deg. S latitude, 130 deg. to 160 deg. W longitude), including the Tuamotu, Cook, Society, Gambier and Austral archipelagos

  2. Lanthanide Phytanates: Liquid-Crystalline Phase Behavior, Colloidal Particle Dispersions, and Potential as Medical Imaging Agents

    Energy Technology Data Exchange (ETDEWEB)

    Conn, Charlotte E.; Panchagnula, Venkateswarlu; Weerawardena, Asoka; Waddington, Lynne J.; Kennedy, Danielle F.; Drummond, Calum J. (CSIRO/MHT); (CSIRO/MSE)

    2010-08-23

    Lanthanide salts of phytanic acid, an isoprenoid-type amphiphile, have been synthesized and characterized. Elemental analysis and FTIR spectroscopy were used to confirm the formed product and showed that three phytanate anions are complexed with one lanthanide cation. The physicochemical properties of the lanthanide phytanates were investigated using DSC, XRD, SAXS, and cross-polarized optical microscopy. Several of the hydrated salts form a liquid-crystalline hexagonal columnar mesophase at room temperature, and samarium(III) phytanate forms this phase even in the absence of water. Select lanthanide phytanates were dispersed in water, and cryo-TEM images indicate that some structure has been retained in the dispersed phase. NMR relaxivity measurements were conducted on these systems. It has been shown that a particulate dispersion of gadolinium(III) phytanate displays proton relaxivity values comparable to those of a commercial contrast agent for magnetic resonance imaging and a colloidal dispersion of europium(III) phytanate exhibits the characteristics of a fluorescence imaging agent.

  3. Lanthanide Phytanates: Liquid-Crystalline Phase Behavior, Colloidal Particle Dispersions, and Potential as Medical Imaging Agents

    International Nuclear Information System (INIS)

    Conn, Charlotte E.; Panchagnula, Venkateswarlu; Weerawardena, Asoka; Waddington, Lynne J.; Kennedy, Danielle F.; Drummond, Calum J.

    2010-01-01

    Lanthanide salts of phytanic acid, an isoprenoid-type amphiphile, have been synthesized and characterized. Elemental analysis and FTIR spectroscopy were used to confirm the formed product and showed that three phytanate anions are complexed with one lanthanide cation. The physicochemical properties of the lanthanide phytanates were investigated using DSC, XRD, SAXS, and cross-polarized optical microscopy. Several of the hydrated salts form a liquid-crystalline hexagonal columnar mesophase at room temperature, and samarium(III) phytanate forms this phase even in the absence of water. Select lanthanide phytanates were dispersed in water, and cryo-TEM images indicate that some structure has been retained in the dispersed phase. NMR relaxivity measurements were conducted on these systems. It has been shown that a particulate dispersion of gadolinium(III) phytanate displays proton relaxivity values comparable to those of a commercial contrast agent for magnetic resonance imaging and a colloidal dispersion of europium(III) phytanate exhibits the characteristics of a fluorescence imaging agent.

  4. Independent control of arbitrary orders of dispersion at the high power end of CPA lasers

    International Nuclear Information System (INIS)

    Goerbe, M.; Jojart, P.; Szeged University, Szeged; Kovacs, M.; Osvay, K.

    2010-01-01

    Complete text of publication follows. One of the most crucial issues in chirped pulse amplification (CPA) systems is the precise temporal recompression of the pulses hitting the target. In case of few cycle high intensity lasers, the stabilization of the carrier-envelope phase (CEP) of the pulses is also required. An acousto-optical programmable dispersion filter can satisfy both aims, providing dispersion (pre)compensation up to the fourth order of dispersion and make the CEP shift stable. Its use is, however, limited to a pulse intensity of 100 MW/cm 2 , hence its application is restricted to the front end of the (OP)CPA laser systems. A simple optical arrangement consisting of wedges with different materials and different apex angles was proposed recently for isochronic control of CEP of a pulse train. In this paper we show that assembly of wedges can be specifically designed to tune only one of the dispersion coefficients, while all the others, including CEP, remain practically unchanged. Wedge pairs changing solely the zeroth (CEP) and second order (group delay) dispersion (GDD) are experimentally presented along with a triplet of wedges tuning the third order dispersion (TOD) only. The experiment was carried out with the use of spectrally resolved interferometry (SRI). A Michelson-interferometer was illuminated by 100 nm bandwidth laser pulses of a Ti:Sapphire oscillator. The sample arm of the interferometer contained the wedge assembly, set to near Brewster-angle incidence at each surfaces, designed for tuning the required order of dispersion. At the output of the interferometer the spectral interference between the pulses from the sample and reference arms was resolved with a spectrograph. The dispersion was tuned by perpendicular shift of the entire wedge assembly to the laser beam. In the measurements spectral interferograms were recorded and evaluated at each spatial position of the assembly. Three different wedge combinations, two doublets and a triplet

  5. Acid functionalized, highly dispersed carbonaceous spheres: an effective solid acid for hydrolysis of polysaccharides

    Science.gov (United States)

    Jiang, Yijun; Li, Xiutao; Cao, Quan; Mu, Xindong

    2011-02-01

    Highly dispersed carbonaceous spheres with sulfonic acid groups were successfully prepared from glucose by hydrothermal method. Transmission electron microscopy (TEM) showed the as-synthesized carbonaceous materials were uniform, spherical in shape with an average diameter of about 450 nm. Fourier transform infrared (FT-IR) proved that -SO3H, -COOH, OH groups were grafted on the surface of the carbonaceous spheres during the sulfonation. Interestingly, the functionalized carbonaceous spheres exhibited high dispersibility in the polar solvent due to the hydrophilic groups on the surface. The mechanism of the formation for the carbonaceous spheres was also discussed based on the analysis of structure and composition. At last, the functionalized carbonaceous spheres were employed as solid acid to hydrolyze starch and cellulose. By comparison, the as-synthesized catalyst showed considerable high yield of glucose.

  6. Acid functionalized, highly dispersed carbonaceous spheres: an effective solid acid for hydrolysis of polysaccharides

    International Nuclear Information System (INIS)

    Jiang Yijun; Li Xiutao; Cao Quan; Mu Xindong

    2011-01-01

    Highly dispersed carbonaceous spheres with sulfonic acid groups were successfully prepared from glucose by hydrothermal method. Transmission electron microscopy (TEM) showed the as-synthesized carbonaceous materials were uniform, spherical in shape with an average diameter of about 450 nm. Fourier transform infrared (FT-IR) proved that –SO 3 H, –COOH, OH groups were grafted on the surface of the carbonaceous spheres during the sulfonation. Interestingly, the functionalized carbonaceous spheres exhibited high dispersibility in the polar solvent due to the hydrophilic groups on the surface. The mechanism of the formation for the carbonaceous spheres was also discussed based on the analysis of structure and composition. At last, the functionalized carbonaceous spheres were employed as solid acid to hydrolyze starch and cellulose. By comparison, the as-synthesized catalyst showed considerable high yield of glucose.

  7. Gum tragacanth dispersions: Particle size and rheological properties affected by high-shear homogenization.

    Science.gov (United States)

    Farzi, Mina; Yarmand, Mohammad Saeed; Safari, Mohammad; Emam-Djomeh, Zahra; Mohammadifar, Mohammad Amin

    2015-08-01

    The effect of high-shear homogenization on the rheological and particle size characteristics of three species of gum tragacanth (GT) was detected. Dispersions were subjected to 0-20 min treatment. Static light scattering techniques and rheological tests were used to study the effect of treatment. The results showed that the process caused a decrease in particle size parameters for all three species, but interestingly, the apparent viscosities increased. The highest increase of apparent viscosity was found for solutions containing Astragalus gossypinus, which possessed the highest insoluble fraction. The viscoelastic behaviors of dispersions were also significantly influenced by the process. Homogenization caused an increase in both G' and G″, in all three species. The alterations seem to be highly dependent on GT species and structure. The results could be of high importance in the industry, since the process will lead to textural modifications of food products containing GT. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Noise study of all-normal dispersion supercontinuum sources for potential application in optical coherence tomography

    DEFF Research Database (Denmark)

    Bravo Gonzalo, Ivan; Engelsholm, Rasmus Dybbro; Bang, Ole

    2017-01-01

    bandwidths, such sources are characterized by large intensity fluctuations, limiting their performance for applications in imaging such as optical coherence tomography (OCT). An approach to eliminate the influence of noise sensitive effects is to use a so-called all-normal dispersion (ANDi) fiber, in which...... the dispersion is normal for all the wavelengths of interest. Pumping these types of fibers with short enough femtosecond pulses allows to suppress stimulated Raman scattering (SRS), which is known to be as noisy process as modulation instability (MI), and coherent SC is generated through self-phase modulation...... (SPM) and optical wave breaking (OWB). In this study, we show the importance of the pump laser and fiber parameters in the design of low-noise ANDi based SC sources, for application in OCT. We numerically investigate the pulse-to-pulse fluctuations of the SC, calculating the relative intensity noise...

  9. Extreme genetic structure in a social bird species despite high dispersal capacity.

    Science.gov (United States)

    Morinha, Francisco; Dávila, José A; Bastos, Estela; Cabral, João A; Frías, Óscar; González, José L; Travassos, Paulo; Carvalho, Diogo; Milá, Borja; Blanco, Guillermo

    2017-05-01

    Social barriers have been shown to reduce gene flow and contribute to genetic structure among populations in species with high cognitive capacity and complex societies, such as cetaceans, apes and humans. In birds, high dispersal capacity is thought to prevent population divergence unless major geographical or habitat barriers induce isolation patterns by dispersal, colonization or adaptation limitation. We report that Iberian populations of the red-billed chough, a social, gregarious corvid with high dispersal capacity, show a striking degree of genetic structure composed of at least 15 distinct genetic units. Monitoring of marked individuals over 30 years revealed that long-distance movements over hundreds of kilometres are common, yet recruitment into breeding populations is infrequent and highly philopatric. Genetic differentiation is weakly related to geographical distance, and habitat types used are overall qualitatively similar among regions and regularly shared by individuals of different populations, so that genetic structure is unlikely to be due solely to isolation by distance or isolation by adaptation. Moreover, most population nuclei showed relatively high levels of genetic diversity, suggesting a limited role for genetic drift in significantly differentiating populations. We propose that social mechanisms may underlie this unprecedented level of genetic structure in birds through a pattern of isolation by social barriers not yet described, which may have driven this remarkable population divergence in the absence of geographical and environmental barriers. © 2017 John Wiley & Sons Ltd.

  10. High-value utilization of eucalyptus kraft lignin: Preparation and characterization as efficient dye dispersant.

    Science.gov (United States)

    Zhang, Hui; Yu, Boming; Zhou, Wanpeng; Liu, Xinxin; Chen, Fangeng

    2018-04-01

    The dark color of industrial lignin is the main obstacle for their high value-added use in areas such as dyestuff dispersants. A kind of light-colored lignosulfonate with favorable dispersibility and remarkable stain resistance is prepared using fractionated eucalyptus kraft lignin. The fractionated lignins named as D (insoluble part) and X (soluble part) and sulfonated lignin fractions named as SD and SX are characterized by FTIR spectroscopy, 1 H NMR spectroscopy, GPC and brightness test. The results reveal that fraction X presents a lower molecular weight but a higher hydroxyl content than that of fraction D, which lead to the differences on the SO 3 H content, dispersibility and color performance of SD and SX. The sulfonated fractions perform a similar molecular weight to that of unsulfonated lignins and show light color due to the phenolic hydroxyl blocking of 1,4-BS (1,4-butane sultone) and the postprocessing of sodium borohydride. The SX that performs the best of all exhibits obvious decrease on phenolic hydroxyl groups and increase on brightness value which is improved by 85.8% compared with control sample. The SX reaches the highest level (grade 5) in the dispersibility test and presents remarkable stain resistance on different textiles, especially on the dacron and cotton. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Diamond dispersed cemented carbide produced without using ultra high pressure equipment

    International Nuclear Information System (INIS)

    Moriguchi, H.; Tsuzuki, K.; Ikegaya, A.

    2001-01-01

    We have developed a composite material of dispersed diamond particles in cemented carbide without using ultra high pressure equipment. The developed diamond dispersed cemented carbide combines the excellent properties of cemented carbide with diamond and also provides 1.5 times improved fracture toughness over that of cemented carbide. They also show 10 times higher wear resistance over that of cemented carbide in a wear resistance test against bearing steel, and 5 times greater grindability than diamond compacts. Because ultra high pressure equipment is not used to produce the developed material, large compacts over 100 mm in diameter can be manufactured. The developed material showed 10-25 times higher wear resistance in real use as wear-resistant tools such as centerless blades and work-rests. (author)

  12. High heat load properties of TiC dispersed Mo alloys

    International Nuclear Information System (INIS)

    Tokunaga, Kazutoshi; Yoshida, Naoaki; Miura, Yasushi; Kurishita, Hiroaki; Kitsunai, Yuji; Kayano, Hideo.

    1996-01-01

    Electron beam high heat load experiment of new developed three kinds of TiC dispersed Mo alloys (Mo-0.1wt%TiC, Mo-0.5wt%TiC and Mo-1.0wt%TiC) was studied so as to evaluate it's high heat load at using as the surface materials of divertor. The obtained results indicated that cracks were not observed by embrittlement by recrystallization until about 2200degC of surface temperature and the gas emission properties were not different from sintered molibdenum. However, at near melting point, deep cracks on grain boundary and smaller gas emission than that of sintered Mo were observed. So that, we concluded that TiC dispersed Mo alloy was good surface materials used under the conditions of the stationary heat flux and less than the melting point, although not good one to be melted under nonstationary large heat flux. (S.Y.)

  13. High Emigration Propensity and Low Mortality on Transfer Drives Female-Biased Dispersal of Pyriglena leucoptera in Fragmented Landscapes.

    Directory of Open Access Journals (Sweden)

    Marcelo Awade

    Full Text Available Dispersal is a biological process performed in three stages: emigration, transfer and immigration. Intra-specific variation on dispersal behavior, such as sex-bias, is very common in nature, particularly in birds and mammals. However, dispersal is difficult to measure in the field and many hypotheses concerning the causes of sex-biased dispersal remain without empirical confirmation. An important limitation of most empirical studies is that inferences about sex-biased dispersal are based only on emigration proneness or immigration success data. Thus, we still do not know whether sex-biased immigration in fragmented landscapes occurs during emigration, transfer or in both stages. We conducted translocation and radiotracking experiments to assess i whether inter-patch dispersal movements of a rainforest bird (Pyriglena leucoptera is sex-biased and ii how dispersal stages and the perceptual range of the individuals are integrated to generate dispersal patterns. Our results showed that inter-patch dispersal is sex-biased at all stages for P. leucoptera, as females not only exhibit a higher emigration propensity but are subjected to a lower risk of predation when moving through the matrix. Moreover, our data support a perceptual range of 80 m and our results showed that dispersal success decreases considerably when inter-patch distances exceeds this perceptual range. In this case, birds have a higher probability of travelling over longer routes and, as a consequence, the risk of predation increases, specially for males. Overall, results supported that assuming dispersal as a single-stage process to describe dispersal behavior may be misleading. In this way, our study advanced our understanding of processes and patterns related to inter-patch dispersal of neotropical forest birds, shedding light on potential implications for population dynamics and for the management of fragmented landscapes.

  14. Development of local-scale high-resolution atmospheric dispersion model using large-eddy simulation. Part 3: turbulent flow and plume dispersion in building arrays

    Czech Academy of Sciences Publication Activity Database

    Nakayama, H.; Jurčáková, Klára; Nagai, H.

    2013-01-01

    Roč. 50, č. 5 (2013), s. 503-519 ISSN 0022-3131 Institutional support: RVO:61388998 Keywords : local-scale high-resolution dispersion model * nuclear emergency response system * large-eddy simulation * spatially developing turbulent boundary layer flow Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.452, year: 2013

  15. High-quality poly-dispersed mixtures applied in additive 3D technologies.

    Science.gov (United States)

    Gerasimov, M. D.; Brazhnik, Yu V.; Gorshkov, P. S.; Latyshev, S. S.

    2018-03-01

    The paper describes the new mixer design to obtain high-quality poly-dispersed powders applied in additive 3D technologies. It also considers a new mixing principle of dry powder particles ensuring the distribution of such particles in the total volume, which is close to ideal. The paper presents the mathematical model of mixer operation providing for the quality assessment of the ready mixtures. Besides, it demonstrates experimental results and obtained rational values of mixer process parameters.

  16. Dispersal and survival rates of adult and juvenile Red-tailed tropicbirds (Phaethon rubricauda exposed to potential contaminants

    Directory of Open Access Journals (Sweden)

    Schreiber, E. A.

    2004-06-01

    Full Text Available Annual survival and dispersal rates of adult and juvenile red-tailed tropicbirds were examined in connection with exposure to heavy metals. From 1990-2000 the incineration of a U.S. stockpile of chemical weapons stored at Johnston Atoll exposed nesting tropicbirds to increased levels of human disturbance, smoke stack emissions and potential leaks. Using a multi-state mark-recapture modeling approach, birds nesting in this site (downwind of the plant were compared to those nesting in a reference site (upwind of the plant with less human disturbance, no exposure to smoke stack emissions or other potential incineration emissions. We did not find any difference in survival of adults or juveniles when comparing the two sites. Adult breeding dispersal rates did not differ between the sites but we did find differences in the age-specific natal dispersal rates. Birds fledged from downwind areas were less likely to return to their natal area to nest and more likely to immigrate to the upwind area than vice-versa. This asymmetry in emigration rates is believed to be due to differing vegetation densities and has implications for vegetation management in relation to tropicbird nest success and population size.

  17. Humid microclimates within the plumage of mallard ducks (Anas platyrhynchos) can potentially facilitate long distance dispersal of propagules

    Science.gov (United States)

    Coughlan, Neil E.; Kelly, Tom C.; Davenport, John; Jansen, Marcel A. K.

    2015-05-01

    Birds as carriers of propagules are major agents in the dispersal of plants, animals, fungi and microbes. However, there is a lack of empirical data in relation to bird-mediated, epizoochorous dispersal. The microclimate found within the plumage likely plays a pivotal role in survival during flight conditions. To investigate the potential of epizoochory, we have analysed the microclimatic conditions within the plumage of mallard ducks (Anas platyrhynchos). Under similar ambient conditions of humidity and temperature, a sample of mallards showed a consistent microclimatic regime with variation across the body surface. The highest (mean) temperature and specific humidity occurred between feathers of the postpatagium. The lowest humidity was found between feathers of the centre back and the lowest temperature in the crissum. Observed differences in plumage depth and density, and distance from the skin, are all likely to be determining factors of microclimate condition. Specific humidity found within the plumage was on average 1.8-3.5 times greater than ambient specific humidity. Thus, the plumage can supply a microclimate buffered from that of the exterior environment. Extrapolating survival data for Lemna minor desiccation at various temperature and humidity levels to the measured plumage microclimatic conditions of living birds, survival for up to 6 h can be anticipated, especially in crissum, crural and breast plumage. The results are discussed in the context of potential long distance epizoochorous dispersal by A. platyrhynchos and similar species.

  18. On-sky Closed-loop Correction of Atmospheric Dispersion for High-contrast Coronagraphy and Astrometry

    Science.gov (United States)

    Pathak, P.; Guyon, O.; Jovanovic, N.; Lozi, J.; Martinache, F.; Minowa, Y.; Kudo, T.; Kotani, T.; Takami, H.

    2018-02-01

    Adaptive optic (AO) systems delivering high levels of wavefront correction are now common at observatories. One of the main limitations to image quality after wavefront correction comes from atmospheric refraction. An atmospheric dispersion compensator (ADC) is employed to correct for atmospheric refraction. The correction is applied based on a look-up table consisting of dispersion values as a function of telescope elevation angle. The look-up table-based correction of atmospheric dispersion results in imperfect compensation leading to the presence of residual dispersion in the point spread function (PSF) and is insufficient when sub-milliarcsecond precision is required. The presence of residual dispersion can limit the achievable contrast while employing high-performance coronagraphs or can compromise high-precision astrometric measurements. In this paper, we present the first on-sky closed-loop correction of atmospheric dispersion by directly using science path images. The concept behind the measurement of dispersion utilizes the chromatic scaling of focal plane speckles. An adaptive speckle grid generated with a deformable mirror (DM) that has a sufficiently large number of actuators is used to accurately measure the residual dispersion and subsequently correct it by driving the ADC. We have demonstrated with the Subaru Coronagraphic Extreme AO (SCExAO) system on-sky closed-loop correction of residual dispersion to instruments which require sub-milliarcsecond correction.

  19. Dispersion and Reinforcement of Nanotubes in High Temperature Polymers for Ultrahigh Strength and Thermally Conductive Nanocomposites

    National Research Council Canada - National Science Library

    Yang, Arnold C

    2007-01-01

    Fundamental approaches for controlled dispersion of multiwalled carbon nanotubes in polymers and the molecular reinforcement in their nanocomposites were studied to design and fabricate well-dispersed...

  20. Dispersion-engineered and highly-nonlinear microstructured polymer optical fibres

    DEFF Research Database (Denmark)

    Frosz, Michael Henoch; Nielsen, Kristian; Hlubina, Petr

    2009-01-01

    We demonstrate dispersion-engineering of microstructured polymer optical fibres (mPOFs) made of poly(methyl methacrylate) (PMMA). A significant shift of the total dispersion from the material dispersion is confirmed through measurement of the mPOF dispersion using white-light spectral interferome......We demonstrate dispersion-engineering of microstructured polymer optical fibres (mPOFs) made of poly(methyl methacrylate) (PMMA). A significant shift of the total dispersion from the material dispersion is confirmed through measurement of the mPOF dispersion using white-light spectral...

  1. Final Technical Report - High-Performance, Oxide-Dispersion-Strengthened Tubes for Production of Ethylene adn Other Industrial Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    McKimpson, Marvin G.

    2006-04-06

    This project was undertaken by Michigan Technological University and Special Metals Corporation to develop creep-resistant, coking-resistant oxide-dispersion-strengthened (ODS) tubes for use in industrial-scale ethylene pyrolysis and steam methane reforming operations. Ethylene pyrolysis tubes are exposed to some of the most severe service conditions for metallic materials found anywhere in the chemical process industries, including elevated temperatures, oxidizing atmospheres and high carbon potentials. During service, hard deposits of carbon (coke) build up on the inner wall of the tube, reducing heat transfer and restricting the flow of the hydrocarbon feedstocks. About every 20 to 60 days, the reactor must be taken off-line and decoked by burning out the accumulated carbon. This decoking costs on the order of $9 million per year per ethylene plant, accelerates tube degradation, and requires that tubes be replaced about every 5 years. The technology developed under this program seeks to reduce the energy and economic cost of coking by creating novel bimetallic tubes offering a combination of improved coking resistance, creep resistance and fabricability not available in current single-alloy tubes. The inner core of this tube consists of Incoloy(R) MA956, a commercial ferritic Fe-Cr-Al alloy offering a 50% reduction in coke buildup combined with improved carburization resistance. The outer sheath consists of a new material - oxide dispersion strengthened (ODS) Alloy 803(R) developed under the program. This new alloy retains the good fireside environmental resistance of Alloy 803, a commercial wrought alloy currently used for ethylene production, and provides an austenitic casing to alleviate the inherently-limited fabricability of the ferritic Incoloy(R) MA956 core. To provide mechanical compatibility between the two alloys and maximize creep resistance of the bimetallic tube, both the inner Incoloy(R) MA956 and the outer ODS Alloy 803 are oxide dispersion

  2. Elastic-resilience-induced dispersion of carbon nanotubes: a novel way of fabricating high performance elastomer

    International Nuclear Information System (INIS)

    Wu, Siwu; Lin, Tengfei; Guo, Baochun

    2013-01-01

    State-of-the-art processes cannot achieve rubber/multi-walled carbon nanotube (MWCNT) composites with satisfactory performance by using pristine MWCNTs and conventional processing equipment. In this work, high performance rubber/MWCNT composites featuring a combination of good mechanical properties, electrical and thermal conductivities and damping capacity over a wide temperature range are fabricated based on a well-developed master batch process. It is demonstrated that the MWCNTs are dispersed homogeneously due to the disentanglement induced by well-wetting and shearing, and the elastic-resilience-induced dispersion of the MWCNTs by rubber chains via the novel processing method. To further enhance the efficacy of elastic-resilience-induced dispersion for MWCNTs, a slightly pre-crosslinked network is constructed in the master batch. Consequently, we obtain rubber/MWCNT composites with unprecedented performance by amplifying the reinforcing effect of relatively low MWCNT loading. This work provides a novel insight into the fabrication of high performance functional elastomeric composites with pristine CNTs by taking advantage of the unique elastic resilience of rubber chains as the driving force for the disentanglement of CNTs. (paper)

  3. Bio-Inspired Supramolecular Chemistry Provides Highly Concentrated Dispersions of Carbon Nanotubes in Polythiophene

    Directory of Open Access Journals (Sweden)

    Yen-Ting Lin

    2016-06-01

    Full Text Available In this paper we report the first observation, through X-ray diffraction, of noncovalent uracil–uracil (U–U dimeric π-stacking interactions in carbon nanotube (CNT–based supramolecular assemblies. The directionally oriented morphology determined using atomic force microscopy revealed highly organized behavior through π-stacking of U moieties in a U-functionalized CNT derivative (CNT–U. We developed a dispersion system to investigate the bio-inspired interactions between an adenine (A-terminated poly(3-adeninehexyl thiophene (PAT and CNT–U. These hybrid CNT–U/PAT materials interacted through π-stacking and multiple hydrogen bonding between the U moieties of CNT–U and the A moieties of PAT. Most importantly, the U···A multiple hydrogen bonding interactions between CNT–U and PAT enhanced the dispersion of CNT–U in a high-polarity solvent (DMSO. The morphology of these hybrids, determined using transmission electron microscopy, featured grape-like PAT bundles wrapped around the CNT–U surface; this tight connection was responsible for the enhanced dispersion of CNT–U in DMSO.

  4. High-performance 3D printing of hydrogels by water-dispersible photoinitiator nanoparticles.

    Science.gov (United States)

    Pawar, Amol A; Saada, Gabriel; Cooperstein, Ido; Larush, Liraz; Jackman, Joshua A; Tabaei, Seyed R; Cho, Nam-Joon; Magdassi, Shlomo

    2016-04-01

    In the absence of water-soluble photoinitiators with high absorbance in the ultraviolet (UV)-visible range, rapid three-dimensional (3D) printing of hydrogels for tissue engineering is challenging. A new approach enabling rapid 3D printing of hydrogels in aqueous solutions is presented on the basis of UV-curable inks containing nanoparticles of highly efficient but water-insoluble photoinitiators. The extinction coefficient of the new water-dispersible nanoparticles of 2,4,6-trimethylbenzoyl-diphenylphosphine oxide (TPO) is more than 300 times larger than the best and most used commercially available water-soluble photoinitiator. The TPO nanoparticles absorb significantly in the range from 385 to 420 nm, making them suitable for use in commercially available, low-cost, light-emitting diode-based 3D printers using digital light processing. The polymerization rate at this range is very fast and enables 3D printing that otherwise is impossible to perform without adding solvents. The TPO nanoparticles were prepared by rapid conversion of volatile microemulsions into water-dispersible powder, a process that can be used for a variety of photoinitiators. Such water-dispersible photoinitiator nanoparticles open many opportunities to enable rapid 3D printing of structures prepared in aqueous solutions while bringing environmental advantages by using low-energy curing systems and avoiding the need for solvents.

  5. Highly water-dispersible silver sulfadiazine decorated with polyvinyl pyrrolidone and its antibacterial activities

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ping; Wu, Longlong [Key Laboratory for Special Functional Materials, Henan University, Kaifeng 475004 (China); Li, Binjie, E-mail: lbj821@163.com [Key Laboratory for Special Functional Materials, Henan University, Kaifeng 475004 (China); Medical School of Henan University, Kaifeng 475004 (China); Zhao, Yanbao [Key Laboratory for Special Functional Materials, Henan University, Kaifeng 475004 (China); Qu, Peng [Department of Chemistry, Shangqiu Normal University, Shangqiu 476000 (China)

    2016-03-01

    Highly water-dispersible silver sulfadiazine (SSD) was prepared by liquid phase method with polyvinyl pyrrolidone (PVP) as a surface modification agent. The structure and morphology of the PVP-modified silver sulfadiazine (P-SSD) were investigated by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and Fourier-transform infrared (FT-IR) spectrometry. The produced particles are ginkgo leaf-like architecture with the sizes of micron-nanometer. Due to hydrophilic PVP decorated on the surface, the P-SSD has excellent dispersion in water over a period of 24 h, which is obviously stable by comparison to that of the commercial silver sulfadiazine (C-SSD). In addition, the P-SSD exhibits good antibacterial activities against Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus). - Highlights: • Polyvinyl pyrrolidone decorated silver sulfadiazine was synthesized via a one-pot protocol. • The produced particles present ginkgo leaf-like architectures with sizes of micro-nanometer. • The resulted silver sulfadiazine has highly dispersible in water over a period of 24 h. • The obtained sliver sulfadiazine exhibits excellent antibacterial activities against E. coli, P. aeruginosa and S. aureus.

  6. A Soft X-ray Spectrometer using a Highly Dispersive Multilayer Grating

    International Nuclear Information System (INIS)

    Warwick, Tony; Padmore, Howard; Voronov, Dmitriy; Yashchuk, Valeriy

    2010-01-01

    There is a need for higher resolution spectrometers as a tool for inelastic x-ray scattering. Currently, resolving power around R = 10,000 is advertised. Measured RIXS spectra are often limited by this instrumental resolution and higher resolution spectrometers using conventional gratings would be prohibitively large. We are engaged in a development program to build blazed multilayer grating structures for diffracting soft x-rays in high order. This leads to spectrometers with dispersion much higher than is possible using metal coated-gratings. The higher dispersion then provides higher resolution and the multilayer gratings are capable of operating away from grazing incidence as required. A spectrometer design is presented with a total length 3.8 m and capable of 10 5 resolving power.

  7. A Soft X-ray Spectrometer using a Highly Dispersive Multilayer Grating

    International Nuclear Information System (INIS)

    Warwick, Tony; Padmore, Howard; Voronov, Dmitriy; Yashchuk, Valeriy

    2010-01-01

    There is a need for higher resolution spectrometers as a tool for inelastic x-ray scattering. Currently, resolving power around R = 10,000 is advertised. Measured RIXS spectra are often limited by this instrumental resolution and higher resolution spectrometers using conventional gratings would be prohibitively large. We are engaged in a development program to build blazed multilayer grating structures for diffracting soft x-rays in high order. This leads to spectrometers with dispersion much higher than is possible using metal coated-gratings. The higher dispersion then provides higher resolution and the multilayer gratings are capable of operating away from grazing incidence as required. A spectrometer design is presented with a total length 3.8m and capable of 10 5 resolving power.

  8. Electric field driven plasmon dispersion in AlGaN/GaN high electron mobility transistors

    International Nuclear Information System (INIS)

    Tan Ren-Bing; Qin Hua; Zhang Xiao-Yu; Xu Wen

    2013-01-01

    We present a theoretical study on the electric field driven plasmon dispersion of the two-dimensional electron gas (2DEG) in AlGaN/GaN high electron mobility transistors (HEMTs). By introducing a drifted Fermi—Dirac distribution, we calculate the transport properties of the 2DEG in the AlGaN/GaN interface by employing the balance-equation approach based on the Boltzmann equation. Then, the nonequilibrium Fermi—Dirac function is obtained by applying the calculated electron drift velocity and electron temperature. Under random phase approximation (RPA), the electric field driven plasmon dispersion is investigated. The calculated results indicate that the plasmon frequency is dominated by both the electric field E and the angle between wavevector q and electric field E. Importantly, the plasmon frequency could be tuned by the applied source—drain bias voltage besides the gate voltage (change of the electron density)

  9. Modeling of laser radiation transport in powder beds with high-dispersive metal particles

    Energy Technology Data Exchange (ETDEWEB)

    Kharanzhevskiy, Evgeny, E-mail: eh@udsu.ru [Udmurt State University, 426034 Universitetskaya St., 1, Izhevsk (Russian Federation); Kostenkov, Sergey [Udmurt State University, 426034 Universitetskaya St., 1, Izhevsk (Russian Federation)

    2014-02-15

    Highlights: ► Transport of laser energy in dispersive powder beds was numerically simulated. ► The results of simulating are compared with physicals experiments. ► We established the dependence of the extinction coefficient from powder properties. ► A confirmation of a geometric optic approach for monodisperse powders was proposed. -- Abstract: Two-dimensional transfer of laser radiation in a high-dispersive powder heterogeneous media is numerically calculated. The size of particles is comparable with the wave length of laser radiation so the model takes into account all known physical effects that are occurred on the vacuum–metal surface interface. It is shown that in case of small particles size both morphology of powder particles and porosity of beds influence on absorptance by the solid phase and laser radiation penetrate deep into the area of geometric shadow. Intensity of laser radiation may be described as a function corresponded to the Beer–Lambert–Bouguer law.

  10. Modeling of laser radiation transport in powder beds with high-dispersive metal particles

    International Nuclear Information System (INIS)

    Kharanzhevskiy, Evgeny; Kostenkov, Sergey

    2014-01-01

    Highlights: ► Transport of laser energy in dispersive powder beds was numerically simulated. ► The results of simulating are compared with physicals experiments. ► We established the dependence of the extinction coefficient from powder properties. ► A confirmation of a geometric optic approach for monodisperse powders was proposed. -- Abstract: Two-dimensional transfer of laser radiation in a high-dispersive powder heterogeneous media is numerically calculated. The size of particles is comparable with the wave length of laser radiation so the model takes into account all known physical effects that are occurred on the vacuum–metal surface interface. It is shown that in case of small particles size both morphology of powder particles and porosity of beds influence on absorptance by the solid phase and laser radiation penetrate deep into the area of geometric shadow. Intensity of laser radiation may be described as a function corresponded to the Beer–Lambert–Bouguer law

  11. Non-dispersive method for measuring longitudinal neutron coherence length using high frequency cold neutron pulser

    International Nuclear Information System (INIS)

    Kawai, T.; Tasaki, S.; Ebisawa, T.; Hino, M.; Yamazaki, D.; Achiwa, N.

    1999-01-01

    Complete text of publication follows. A non-dispersive method is proposed for measuring the longitudinal coherence length of a neutron using a high frequency cold neutron pulser (hf-CNP) placed between two multilayer spin splitters (MSS) which composes the cold neutron spin interferometer. Two spin eigenstates of a neutron polarized x-y plane are split non-dispersively and longitudinally in time by the hf-CNP which could reflect two components alternatively in time. The reduction of the visibility of interference fringes after being superposed by the second MSS is measured as a function of the frequency of the pulser by TOF method. From the zero visibility point obtained by extrapolation one could obtain the longitudinal coherence length of the neutron. (author)

  12. Color and odor of artificial fruit used to signal potential dispersers in the Atlantic forest in Brazil

    Directory of Open Access Journals (Sweden)

    Aliny Oliveira Barcelos

    2012-06-01

    Full Text Available Fruit color and odor are the main features regulating the rate of fruit predation and dispersal. The aim of this study was to analyze the effect of odor and color on fruit predators and dispersers. The present study was conducted in a 30ha area of secondary forest in Southeastern Atlantic Brazil. This area was divided into two transects, in which four points were marked with a 30m distance from each other. Each sampling point contained a total of 30 artificial fruit which belong to six different treatment groups, with five artificial fruit per group. Each group was randomly placed on the ground and that artificial fruit was checked every seven days. For each group of five fruit, 5mL of essence (vanilla or pineapple were placed, and no essence was used in the control group. Artificial fruit was made with green and red nontoxic modeling clay, as well as artificial essences (vanilla and pineapple. A total of 960 fruits were used. Predated fruit equaled 26.9% (258 units, from which the red/pineapple had the highest predation rate (81.9%, followed by red/vanilla (46.3%, while green/control fruits were not predated. Throughout the experiment, bitten fruit and pecked fruit equaled 58.3% and 41.7%, respectively. No significant differences were recorded (x²=7.57, df=5, p=0.182 between bitten and pecked fruit. Fruit color and odor are important in attracting predators and dispersers, which explains the high rate of predation of red/vanilla and red/pineapple, and the absence of predated fruits in the green/control group. Regarding the potential disperser, there was no statistically significant difference between pecked fruit and bitten fruit. As a result, it should be taken into consideration that zoochory (mammalochory and ornithochory is the most important dispersal; therefore, it should be concluded that birds are more attracted by color and mammals by odor. Rev. Biol. Trop. 60 (2: 925-931. Epub 2012 June 01.El olor y el color de los frutos son las

  13. Study of dispersive and nonlinear effects of coastal wave dynamics with a fully nonlinear potential flow model

    Science.gov (United States)

    Benoit, Michel; Yates, Marissa L.; Raoult, Cécile

    2017-04-01

    bathymetric profile also compare well with the measured values. The statistical distributions of the free surface elevation and wave height, calculated from the simulated time series, are compared to those of the measurements, with particular attention paid to the extreme waves. To use this model for realistic cases with complex bathymetric variations and multidirectional wave fields, the model has been extended to two horizontal dimensions (2DH). The spectral approach in the vertical dimension is retained, while the horizontal plane is discretized with scattered nodes to maintain the model's flexibility. The horizontal derivatives are estimated with finite-difference type formulas using Radial Basis Functions (Wright and Fornberg, 2006). The 2DH version of the code is applied to simulate the propagation of regular waves over a semi-circular step, which acts as a focusing lens. The simulation results are compared to the experimental data set of Whalin (1971). The evolution of the higher harmonic amplitudes in the shallow-water zone demonstrates the ability of the model to simulate wave propagation over complex 2DH coastal bathymetries. References: Becq-Girard F., Forget P., Benoit M. (1999) Non-linear propagation of unidirectional wave fields over varying topography. Coastal Eng., 38, 91-113. Tian Y., Sato S. (2008) A numerical model on the interaction between nearshore nonlinear waves and strong currents. Coast. Eng. Journal, 50(4), 369-395. Whalin R.W. (1971) The limit of applicability of linear wave refraction theory in a convergence zone. Technical report, DTIC Documents. Wright G.B., Fornberg B. (2006) Scattered node compact finite difference-type formulas generated from radial basis functions. J. Comp. Phys., 212, 99-123. Yates M.L., Benoit M. (2015) Accuracy and efficiency of two numerical methods of solving the potential flow problem for highly nonlinear and dispersive water waves. Int. J. Numer. Meth. Fluids, 77, 616-640. Zakharov V.E. (1968) Stability of periodic

  14. Use of analytical Born amplitude representation in studies of dispersion potentials and electron-atom scattering

    International Nuclear Information System (INIS)

    Carvalho, I.L. de.

    1985-01-01

    Two distinct problems have been studied using simplifield Born's Amplitude Analitical Expressions. The first problem deals with the dispersion energy between the constituent members of the systems He - Ne, - He and H 2 - H 2 . In the second problem second order Born Aproximation has been used for the Electron - Atom Inelastic Scattering for the transitions 1 1 S → 2 1 S and 1 1 S → 2 1 P of helium atom and 1 S → 1 s 2 ([3s' {1/2} sup(o) 1; M sub(j)>) of neon atom (in the case of neon we have used the coupling scheme proposed by Cowan and Andrew). The results obtained by us have been compared with the theoretical and experimental results available in the literature. (author) [pt

  15. Silica Modified with Polyaniline as a Potential Sorbent for Matrix Solid Phase Dispersion (MSPD) and Dispersive Solid Phase Extraction (d-SPE) of Plant Samples

    Science.gov (United States)

    Sowa, Ireneusz; Wójciak-Kosior, Magdalena; Strzemski, Maciej; Sawicki, Jan; Staniak, Michał; Dresler, Sławomir; Szwerc, Wojciech; Mołdoch, Jarosław; Latalski, Michał

    2018-01-01

    Polyaniline (PANI) is one of the best known conductive polymers with multiple applications. Recently, it was also used in separation techniques, mostly as a component of composites for solid-phase microextraction (SPME). In the present paper, sorbent obtained by in situ polymerization of aniline directly on silica gel particles (Si-PANI) was used for dispersive solid phase extraction (d-SPE) and matrix solid–phase extraction (MSPD). The efficiency of both techniques was evaluated with the use of high performance liquid chromatography with diode array detection (HPLC-DAD) quantitative analysis. The quality of the sorbent was verified by Raman spectroscopy and microscopy combined with automated procedure using computer image analysis. For extraction experiments, triterpenes were chosen as model compounds. The optimal conditions were as follows: protonated Si-PANI impregnated with water, 160/1 sorbent/analyte ratio, 3 min of extraction time, 4 min of desorption time and methanolic solution of ammonia for elution of analytes. The proposed procedure was successfully used for pretreatment of plant samples. PMID:29565297

  16. Silica Modified with Polyaniline as a Potential Sorbent for Matrix Solid Phase Dispersion (MSPD and Dispersive Solid Phase Extraction (d-SPE of Plant Samples

    Directory of Open Access Journals (Sweden)

    Ireneusz Sowa

    2018-03-01

    Full Text Available Polyaniline (PANI is one of the best known conductive polymers with multiple applications. Recently, it was also used in separation techniques, mostly as a component of composites for solid-phase microextraction (SPME. In the present paper, sorbent obtained by in situ polymerization of aniline directly on silica gel particles (Si-PANI was used for dispersive solid phase extraction (d-SPE and matrix solid–phase extraction (MSPD. The efficiency of both techniques was evaluated with the use of high performance liquid chromatography with diode array detection (HPLC-DAD quantitative analysis. The quality of the sorbent was verified by Raman spectroscopy and microscopy combined with automated procedure using computer image analysis. For extraction experiments, triterpenes were chosen as model compounds. The optimal conditions were as follows: protonated Si-PANI impregnated with water, 160/1 sorbent/analyte ratio, 3 min of extraction time, 4 min of desorption time and methanolic solution of ammonia for elution of analytes. The proposed procedure was successfully used for pretreatment of plant samples.

  17. Potential applications of high temperature helium

    International Nuclear Information System (INIS)

    Schleicher, R.W. Jr.; Kennedy, A.J.

    1992-09-01

    This paper discusses the DOE MHTGR-SC program's recent activity to improve the economics of the MHTGR without sacrificing safety performance and two potential applications of high temperature helium, the MHTGR gas turbine plant and a process heat application for methanol production from coal

  18. Implicit Assumptions in High Potentials Recruitment

    Science.gov (United States)

    Posthumus, Jan; Bozer, Gil; Santora, Joseph C.

    2016-01-01

    Purpose: Professionals of human resources (HR) use different criteria in practice than they verbalize. Thus, the aim of this research was to identify the implicit criteria used for the selection of high-potential employees in recruitment and development settings in the pharmaceutical industry. Design/methodology/approach: A semi-structured…

  19. High resolution electromagnetic methods and low frequency dispersion of rock conductivity

    Directory of Open Access Journals (Sweden)

    V. V. Ageev

    1999-06-01

    Full Text Available The influence of frequency dispersion of conductivity (induced polarization of rocks on the results of electromagnetic (EM sounding was studied on the basis of calculation of electric field of vertical magnetic dipole above horizontally layered polarizable sections. Frequency dispersion was approximated by the Debye formula. Polarizable homogeneous halfspace, two, three and multilayered sections were analyzed in frequency and time domains. The calculations for different values of chargeability and time constants of polarization were performed. In the far zone of a source, the IP of rocks led to quasi-wave phenomena. They produced rapid fluctuations of frequency and transient sounding curves (interference phenomena, multireflections in polarizable layers. In the case of transient sounding in the near zone of a source quasistatic distortions prevailed, caused by the counter electromotive force arising in polarizable layers which may lead to strong changes in transient curves. In some cases quasiwave and quasistatic phenomena made EM sounding curves non-interpretable in the class of quasistationary curves over non-dispersive sections. On the other hand, they could increase the resolution and depth of investigation of EM sounding. This was confirmed by an experience of "high-resolution" electroprospecting in Russia. The problem of interpretation of EM sounding data in polarizable sections is nonunique. To achieve uniqueness it is probably necessary to complement them by soundings of other type.

  20. High resolution electromagnetic methods and low frequency dispersion of rock conductivity

    International Nuclear Information System (INIS)

    Svetov, B.S.; Ageev, V.V.

    1999-01-01

    The influence of frequency dispersion of conductivity (induced polarization) of rocks on the results of electromagnetic (EM) sounding was studied on the basis of calculation of electric field of vertical magnetic dipole above horizontally layered polarizable sections. Frequency dispersion was approximated by the Debye formula. Polarizable homogeneous half space, two, three and multilayered section were analyzed in frequency and tim domains. The calculations for different values of charge ability and time constants of polarization were performed. In the far zone of a source, the IP of rocks led to quasi-wave phenomena. They produced rapid fluctuations of frequency and transient sounding curves (interference phenomena, multireflections in polarizable layers). In the case of transient sounding in the near zone of a source quasistatic distortions prevailed, caused by the counter electromotive force arising in polarizable layers which may lead to strong change in transient curves. In same case in quasiwave and quasistatic phenomena made EM sounding curves non-interpretable in the class of quasistationary curves over non-dispersive sections. On the other hand, they could increase the resolution and depth of investigation of EM sounding. This was confirmed by an experience of 'high-resolution' electroprospectring in Russia. The problem of interpretation of EM sounding data in polarizable sections is non unique. To achieve uniqueness it is probably to complement them by sounding of other type

  1. High resolution electromagnetic methods and low frequency dispersion of rock conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Svetov, B.S.; Ageev, V.V. [Geoelectromagnetic Research Institute, Institute of Physics of the Earth, RAS, Moscow (Russian Federation)

    1999-08-01

    The influence of frequency dispersion of conductivity (induced polarization) of rocks on the results of electromagnetic (EM) sounding was studied on the basis of calculation of electric field of vertical magnetic dipole above horizontally layered polarizable sections. Frequency dispersion was approximated by the Debye formula. Polarizable homogeneous half space, two, three and multilayered section were analyzed in frequency and tim domains. The calculations for different values of charge ability and time constants of polarization were performed. In the far zone of a source, the IP of rocks led to quasi-wave phenomena. They produced rapid fluctuations of frequency and transient sounding curves (interference phenomena, multireflections in polarizable layers). In the case of transient sounding in the near zone of a source quasistatic distortions prevailed, caused by the counter electromotive force arising in polarizable layers which may lead to strong change in transient curves. In same case in quasi wave and quasistatic phenomena made Em sounding curves non-interpretable in the class of quasistationary curves over non-dispersive sections. On the other hand, they could increase the resolution and depth of investigation of Em sounding. This was confirmed by an experience of 'high-resolution' electroprospectring in Russia. The problem of interpretation of EM sounding data in polarizable sections is non unique. To achieve uniqueness it is probably to complement them by sounding of other type.

  2. Dispersive effects in radiation transport and radiation hydrodynamics in matter at high density

    International Nuclear Information System (INIS)

    Crowley, B.J.B.

    1983-01-01

    In a recent research program (reported in AWRE 0 20/82) I have investigated the generalisation of the equations of radiation hydrodynamics when electromagnetic radiation is assumed to obey a linear-response dispersion relation of the form nω=kc where the refractive index n depends on the frequency ω and/or wave number k. From the application of the Boltzmann-Liouville transport theory to photons in the short-wavelength (geometrical optics) limit, I derive the energy and momentum equations which, when combined with a classical (Euler-Lagrange-Navier-Stokes) treatment of a fluid material medium in LTE, yield a complete dynamical theory of linear interactions (+ stimulated processes) between incoherent (thermal) radiation and dense, locally isotropic matter. The theory includes an account of pondero-motive forces and electro (magneto) striction. Moreover, it is apparently capable of being generalised to non-linear interactions in which the refractive index depends on the local specific intensity of the radiation field, and, to some extent, to the treatment of high-frequency coherent radiation. The generalisation of various approximated forms of radiation-transport theory (esp. diffusion) has been considered in detail. Some problems remain however. One such is the treatment of anomalous dispersion. Current research work is concentrating on the interesting atomic physics aspects of electromagnetic (esp. radiative) properties of a dispersive material medium

  3. Effect of highly dispersed yttria addition on thermal stability of hydroxyapatite

    International Nuclear Information System (INIS)

    Parente, P.; Savoini, B.; Ferrari, B.; Monge, M.A.; Pareja, R.; Sanchez-Herencia, A.J.

    2013-01-01

    The capability of the colloidal method to produce yttria (Y 2 O 3 ) dispersed hydroxyapatite (HA) has been investigated as an alternative method to the conventional method of mechanical mixing and sintering for developing HA-based materials that could exhibit controllable and enhanced functional properties. A water based colloidal route to produce HA materials with highly dispersed Y 2 O 3 has been applied, and the effect of 10 wt.% Y 2 O 3 addition to HA investigated by thermal analysis, X-ray diffraction and Fourier transform infrared spectroscopy. These measurements evidence a remarkable effect of this Y 2 O 3 addition on decomposition mechanisms of synthetic HA. Results show that incorporation of Y 2 O 3 as dispersed second phase is beneficial because it hinders the decomposition mechanisms of HA into calcium phosphates. This retardation will allow the control of the sintering conditions for developing HA implants with improved properties. Besides, substitution of Ca 2+ with Y 3+ ions appears to promote the formation of OH − vacancies, which could improve the conductive properties of HA favorable to osseointegration. - Highlights: ► We reveal the influence of Y 2 O 3 on thermal stability of hydroxyapatite. ► Incorporation of Y 2 O 3 delays decomposition of hydroxyapatite to calcium phosphates. ► Addition of Y 2 O 3 enables sintering conditions more favorable to the densification.

  4. Genetic diversity of dispersed seeds is highly variable among leks of the long-wattled umbrellabird

    Science.gov (United States)

    Ottewell, Kym; Browne, Luke; Cabrera, Domingo; Olivo, Jorge; Karubian, Jordan

    2018-01-01

    Frugivorous animals frequently generate clumped distributions of seeds away from source trees, but genetic consequences of this phenomenon remain poorly resolved. Seed dispersal of the palm Oenocarpus bataua by long-wattled umbrellabirds Cephalopterus penduliger generates high seed densities in leks (i.e., multi-male display sites), providing a suitable venue to investigate how dispersal by this frugivore may influence seed source diversity and genetic structure at local and landscape levels. We found moderate levels of maternal seed source diversity in primary seed rain across five leks in northwest Ecuador (unweighted mean alpha diversity α = 9.52, weighted mean αr = 3.52), with considerable variation among leks (αr range: 1.81-24.55). Qualitatively similar findings were obtained for allelic diversity and heterozygosity. Higher densities of O. bataua adults around leks were associated with higher values of αr and heterozygosity (non-significant trends) and allelic diversity (significant correlation). Seed source overlap between different leks was not common but did occur at low frequency, providing evidence for long-distance seed dispersal by umbrellabirds into leks. Our findings are consistent with the idea that seed pool diversity within leks may be shaped by the interaction between density of local trees, which can vary considerably between leks, and umbrellabird foraging ecology, particularly a lack of territorial defense of fruiting trees. Taken as a whole, this work adds to our growing appreciation of the ways resource distribution and associated frugivore foraging behaviors mechanistically shape seed dispersal outcomes and the distribution of plant genotypes across the landscape.

  5. Visible-Frequency Dielectric Metasurfaces for Multiwavelength Achromatic and Highly Dispersive Holograms.

    Science.gov (United States)

    Wang, Bo; Dong, Fengliang; Li, Qi-Tong; Yang, Dong; Sun, Chengwei; Chen, Jianjun; Song, Zhiwei; Xu, Lihua; Chu, Weiguo; Xiao, Yun-Feng; Gong, Qihuang; Li, Yan

    2016-08-10

    Dielectric metasurfaces built up with nanostructures of high refractive index represent a powerful platform for highly efficient flat optical devices due to their easy-tuning electromagnetic scattering properties and relatively high transmission efficiencies. Here we show visible-frequency silicon metasurfaces formed by three kinds of nanoblocks multiplexed in a subwavelength unit to constitute a metamolecule, which are capable of wavefront manipulation for red, green, and blue light simultaneously. Full phase control is achieved for each wavelength by independently changing the in-plane orientations of the corresponding nanoblocks to induce the required geometric phases. Achromatic and highly dispersive meta-holograms are fabricated to demonstrate the wavefront manipulation with high resolution. This technique could be viable for various practical holographic applications and flat achromatic devices.

  6. Highly dispersed TaOx nanoparticles prepared by electrodeposition as oxygen reduction electrocatalysts for polymer electrolyte fuel cells

    KAUST Repository

    Seo, Jeongsuk

    2013-06-06

    Based on the chemical stability of group IV and V elements in acidic solutions, TaOx nanoparticles prepared by electrodeposition in an ethanol-based Ta plating bath at room temperature were investigated as novel nonplatinum electrocatalysts for the oxygen reduction reaction (ORR) in polymer electrolyte fuel cells (PEFCs). Electrodeposition conditions of Ta complexes and subsequent various heat treatments for the deposited TaOx were examined for the best performance of the ORR. TaOx particles on carbon black (CB), electrodeposited at a constant potential of -0.5 V Ag/AgCl for 10 s and then heat-treated by pure H2 flow at 523 K for 1 h, showed excellent catalytic activity with an onset potential of 0.93 VRHE (for 2 μA cm-2) for the ORR. Surface characterizations of the catalysts were performed by scanning transmission electron microscopy (STEM), transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy (EDS). The loading amounts of the electrodeposited material on the CB were determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES). All the physical results suggested that high dispersion of TaOx particles on the CB surface with 2-3 nm size was critical and key for high activity. The chemical identity and modified surface structure for the deposited TaOx catalysts before and after H 2 heat treatment were analyzed by X-ray photoelectron spectroscopy (XPS). The formation of more exposed active sites on the electrode surface and enhanced electroconductivity of the tantalum oxide promoted from the H 2 treatment greatly improved the ORR performance of the electrodeposited TaOx nanoparticles on CB. Finally, the highly retained ORR activity after an accelerated durability test in an acidic solution confirmed and proved the chemical stability of the oxide nanoparticles. The high utilization of the electrodeposited TaOx nanoparticles uniformly dispersed on CB for the ORR was comparable to that of commercial Pt/CB catalysts

  7. Creep and rupture of an ODS alloy with high stress rupture ductility. [Oxide Dispersion Strengthened

    Science.gov (United States)

    Mcalarney, M. E.; Arsons, R. M.; Howson, T. E.; Tien, J. K.; Baranow, S.

    1982-01-01

    The creep and stress rupture properties of an oxide (Y2O3) dispersion strengthened nickel-base alloy, which also is strengthened by gamma-prime precipitates, was studied at 760 and 1093 C. At both temperatures, the alloy YDNiCrAl exhibits unusually high stress rupture ductility as measured by both elongation and reduction in area. Failure was transgranular, and different modes of failure were observed including crystallographic fracture at intermediate temperatures and tearing or necking almost to a chisel point at higher temperatures. While the rupture ductility was high, the creep strength of the alloy was low relative to conventional gamma prime strengthened superalloys in the intermediate temperature range and to ODS alloys in the higher temperature range. These findings are discussed with respect to the alloy composition; the strengthening oxide phases, which are inhomogeneously dispersed; the grain morphology, which is coarse and elongated and exhibits many included grains; and the second phase inclusion particles occurring at grain boundaries and in the matrix. The creep properties, in particular the high stress dependencies and high creep activation energies measured, are discussed with respect to the resisting stress model of creep in particle strengthened alloys.

  8. Highly-dispersed Ta-oxide catalysts prepared by electrodeposition in a non-aqueous plating bath for polymer electrolyte fuel cell cathodes

    KAUST Repository

    Seo, Jeongsuk; Cha, Dong Kyu; Takanabe, Kazuhiro; Kubota, Jun; Domen, Kazunari

    2012-01-01

    The Ta-oxide cathode catalysts were prepared by electrodeposition in a non-aqueous solution. These catalysts showed excellent catalytic activity and have an onset potential of 0.92 V RHE for the oxygen reduction reaction (ORR). The highly-dispersed Ta species at the nanometer scale on the carbon black was an important contributor to the high activity. © 2012 The Royal Society of Chemistry.

  9. Gas dispersal potential of infant bedding of sudden death cases. (I): CO2 accumulation around the face of infant mannequin model.

    Science.gov (United States)

    Sakai, Jun; Takahashi, Shirushi; Funayama, Masato

    2009-04-01

    We assessed CO(2) gas dispersal potential of bedding that had actually been used by 26 infants diagnosed with sudden unexpected infant death using a baby mannequin model. The age of victims ranged from 1 to 12 months. In some cases, the parents alleged that the infant faces were not covered with bedding when they were found. The parent's memories, however, may not have been accurate; therefore, we examined the potential for gas dispersal based on the supposition that the bedding had covered their faces. The mannequin was connected with a respirator set on the tidal volume and respiratory rates matched with the baby's age. Before measuring, CO(2) flow was regulated in 5%+/-0.1% of end-tidal PCO(2). After the model was placed on each bedding condition, measurements were performed at least five times under each respiratory condition. Four cases showed a plateau of FiCO(2) bedding. Especially, the latter seven bedding could have high rebreathing potential if they covered the infant's faces and the probability of environmental asphyxia should be considered.

  10. Mild hydrothermal treatment to prepare highly dispersed multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Zhang Li; Hashimoto, Yoshio; Taishi, Toshinori; Ni Qingqing

    2011-01-01

    Multi-walled carbon nanotubes (MWCNTs) with improved dispersion property have been prepared by a mild and fast hydrothermal treatment. The hydrothermal process avoids using harsh oxidants and organic solvents, which is environmental friendly and greatly decreases the damage to intrinsic structure of MWCNTs. The modified MWCNTs were highly soluble in polar solvents such as water, ethanol and dimethylformamide. Morphological observation by TEM indicated that the diameter and inherent structure were well reserved in modified MWCNTs. X-ray photoelectron spectroscopy and Raman spectroscopy were used to quantify functional groups created on the MWCNT surface, and to determine rational parameters of hydrothermal process.

  11. In situ polymerization of highly dispersed polypyrrole on reduced graphite oxide for dopamine detection.

    Science.gov (United States)

    Qian, Tao; Yu, Chenfei; Wu, Shishan; Shen, Jian

    2013-12-15

    A composite consisting of reduced graphite oxide and highly dispersed polypyrrole nanospheres was synthesized by a straightforward technique, by in situ chemical oxidative polymerization. The novel polypyrrole nanospheres can prevent the aggregation of reduced graphite oxide sheets by electrostatic repulsive interaction, and enhance their electrochemical properties in the nano-molar measurement of dopamine in biological systems with a linear range of 1-8000 nM and a detection limit as low as 0.3 nM. © 2013 Elsevier B.V. All rights reserved.

  12. Oxide dispersion strengthened CoCrFeNiMn high-entropy alloy

    Czech Academy of Sciences Publication Activity Database

    Hadraba, Hynek; Chlup, Zdeněk; Dlouhý, Antonín; Dobeš, Ferdinand; Roupcová, Pavla; Vilémová, Monika; Matějíček, Jiří

    2017-01-01

    Roč. 689, MAR (2017), s. 252-256 ISSN 0921-5093 R&D Projects: GA ČR(CZ) GA14-25246S; GA ČR(CZ) GA14-22834S Institutional support: RVO:68081723 ; RVO:61389021 Keywords : Creep * High-entropy alloy (HEA) * Mechanical alloying * Oxide dispersion strength ened (ODS) alloy * Powder metallurgy * Spark plasma sintering Subject RIV: JG - Metallurgy; JG - Metallurgy (UFP-V) OBOR OECD: Materials engineering; Materials engineering (UFM-A); Materials engineering (UFP-V) Impact factor: 3.094, year: 2016

  13. The study on preparation of high dispersion and pure cerium dioxide for producing automotive exhaust catalysts

    International Nuclear Information System (INIS)

    Le Minh Tuan; Nguyen Trong Hung; Nguyen Thanh Chung

    2003-01-01

    The multi-stage counter-current solvent extraction process using TBP as the solvent has been carried out for purifying cerium and the ammonium carbonate precipitation method has been used to produce the cerium oxide of high dispersion and pure. The flow sheet of extraction system includes 3 extraction stages with O/A = 0.7,2 stripping stages and 4 scrubbing stages with O/A = 5. The condition for ammonium carbonate precipitation, drying and calcination have been investigated and a procedure that seem to be practically suitable to prepare cerium dioxide powder with great specific surface area for producing automotive exhaust catalyst has been proposed. (LMT)

  14. High resolution neutron diffraction crystallographic investigation of Oxide Dispersion Strengthened steels of interest for fusion technology

    International Nuclear Information System (INIS)

    Coppola, R.; Rodriguez-Carvajal, J.; Wang, M.; Zhang, G.; Zhou, Z.

    2014-01-01

    High resolution neutron diffraction measurements have been carried out to characterize the crystallographic phases present in different Oxide Dispersion Strengthened (ODS) steels of interest for fusion technology. The different lattice structures, Im3m for the ferritic ODS and Fm3m for the austenitic ODS, are resolved showing line anisotropy effects possibly correlated with differences in dislocation densities and texture. Many contributions from minority phases are detected well above the background noise; none of the expected crystallographic phases, such as M 23 C 6 and including Y 2 O 3 , fits them, but the TiN phase is identified in accordance with results of other microstructural techniques

  15. High-energy pulse compressor using self-defocusing spectral broadening in anomalously dispersive media

    DEFF Research Database (Denmark)

    2015-01-01

    (3) with a net positive dispersion. Furthermore, the net positive dispersion in the dispersive unit at least partially compensates for the negative nonlinear phase variation and the negative group-velocity dispersion produced by the bulk quadratic nonlinear medium when the optical pulse passes......A method and a pulse compressor (1) for compressing an optical pulse, wherein the pulse compressor comprising a bulk quadratic nonlinear medium (2) adapted for generating a negative nonlinear phase variation on the optical pulse and having a negative group-velocity dispersion, and a dispersive unit...

  16. Imaging the Formation of High-Energy Dispersion Anomalies in the Actinide UCoGa_{5}

    Directory of Open Access Journals (Sweden)

    Tanmoy Das

    2012-11-01

    Full Text Available We use angle-resolved photoemission spectroscopy to image the emergence of substantial dispersion and spectral-weight anomalies in the electronic renormalization of the actinide compound UCoGa_{5} that was presumed to belong to a conventional Fermi-liquid family. Kinks or abrupt breaks in the slope of the quasiparticle dispersion are detected both at low (approximately 130 meV and high (approximately 1 eV binding energies below the Fermi energy, ruling out any significant contribution of phonons. We perform numerical calculations to demonstrate that the anomalies are adequately described by coupling between itinerant fermions and spin fluctuations arising from the particle-hole continuum of the spin-orbit-split 5f states of uranium. These anomalies resemble the “waterfall” phenomenon of the high-temperature copper-oxide superconductors, suggesting that spin fluctuations are a generic route toward multiform electronic phases in correlated materials as different as high-temperature superconductors and actinides.

  17. Controllable Edge Oxidation and Bubbling Exfoliation Enable the Fabrication of High Quality Water Dispersible Graphene.

    Science.gov (United States)

    Tian, Suyun; Sun, Jing; Yang, Siwei; He, Peng; Wang, Gang; Di, Zengfeng; Ding, Guqiao; Xie, Xiaoming; Jiang, Mianheng

    2016-09-26

    Despite significant progresses made on mass production of chemically exfoliated graphene, the quality, cost and environmental friendliness remain major challenges for its market penetration. Here, we present a fast and green exfoliation strategy for large scale production of high quality water dispersible few layer graphene through a controllable edge oxidation and localized gas bubbling process. Mild edge oxidation guarantees that the pristine sp 2 lattice is largely intact and the edges are functionalized with hydrophilic groups, giving rise to high conductivity and good water dispersibility at the same time. The aqueous concentration can be as high as 5.0 mg mL -1 , which is an order of magnitude higher than previously reports. The water soluble graphene can be directly spray-coated on various substrates, and the back-gated field effect transistor give hole and electron mobility of ~496 and ~676 cm 2 V -1 s -1 , respectively. These results achieved are expected to expedite various applications of graphene.

  18. Controllable Edge Oxidation and Bubbling Exfoliation Enable the Fabrication of High Quality Water Dispersible Graphene

    Science.gov (United States)

    Tian, Suyun; Sun, Jing; Yang, Siwei; He, Peng; Wang, Gang; di, Zengfeng; Ding, Guqiao; Xie, Xiaoming; Jiang, Mianheng

    2016-09-01

    Despite significant progresses made on mass production of chemically exfoliated graphene, the quality, cost and environmental friendliness remain major challenges for its market penetration. Here, we present a fast and green exfoliation strategy for large scale production of high quality water dispersible few layer graphene through a controllable edge oxidation and localized gas bubbling process. Mild edge oxidation guarantees that the pristine sp2 lattice is largely intact and the edges are functionalized with hydrophilic groups, giving rise to high conductivity and good water dispersibility at the same time. The aqueous concentration can be as high as 5.0 mg mL-1, which is an order of magnitude higher than previously reports. The water soluble graphene can be directly spray-coated on various substrates, and the back-gated field effect transistor give hole and electron mobility of ~496 and ~676 cm2 V-1 s-1, respectively. These results achieved are expected to expedite various applications of graphene.

  19. Development of dispersion interferometer for magnetic confinement plasmas and high-pressure plasmas

    Science.gov (United States)

    Akiyama, T.; Yasuhara, R.; Kawahata, K.; Nakayama, K.; Okajima, S.; Urabe, K.; Terashima, K.; Shirai, N.

    2015-09-01

    A CO2 laser dispersion interferometer (DI) has been developed for both magnetically fusion plasmas and high pressure industrial plasmas. The DI measures the phase shift caused by dispersion in a medium. Therefore, it is insensitive to the mechanical vibrations and changes in the neutral gas density, which degrade the resolution of the electron density measurement. We installed the DI on the Large Helical Device (LHD) and demonstrated a high density resolution of 2× 1017 m-3 without any vibration-free bench. The measured electron density with the DI shows good agreement with results of the existing far infrared laser (a wavelength of 119 μ m) interferometer. The DI system is also applied to the electron density measurement of high-pressure small-scale plasmas. The significant suppression of the phase shift caused by the neutral gas is proven. The achieved density resolution was 1.5× 1019 m-3 with a response time of 100 μ s. A shorter version of this contribution is due to be published in PoS at: 1st EPS conference on Plasma Diagnostics

  20. Terminal velocity of liquids and granular materials dispersed by a high explosive

    Science.gov (United States)

    Loiseau, J.; Pontalier, Q.; Milne, A. M.; Goroshin, S.; Frost, D. L.

    2018-04-01

    The explosive dispersal of a layer of solid particles or a layer of liquid surrounding a spherical high-explosive charge generates a turbulent, multiphase flow. Shock compression of the material layer during the initial acceleration may partially consolidate the material, leading to the formation of jet-like structures when the layer fragments and sheds particles upon release. Similarly, release of a shock-compressed liquid shell causes the nucleation of cavitation sites, leading to the radial breakup of the shell and the formation of jets upon expansion. In the current study, a wide variety of granular materials and liquids were explosively dispersed. The maximum terminal jet tip or shell velocity was measured using high-speed videography. Charges were constructed using thin-walled glass bulbs of various diameters and contained a central C-4 charge surrounded by the material to be dispersed. This permitted variation of the ratio of material mass to charge mass (M/C) from 4 to 300. Results indicated that material velocity broadly correlates with predictions of the Gurney model. For liquids, the terminal velocity was accurately predicted by the Gurney model. For granular materials, Gurney over-predicted the terminal velocity by 25-60%, depending on the M/C ratio, with larger M/C values exhibiting larger deficits. These deficits are explained by energy dissipation during the collapse of voids in the granular material bed. Velocity deficits were insensitive to the degree of jetting and granular material properties. Empirical corrections to the Gurney model are presented with improved agreement with the dry powder experimental velocities.

  1. Terminal velocity of liquids and granular materials dispersed by a high explosive

    Science.gov (United States)

    Loiseau, J.; Pontalier, Q.; Milne, A. M.; Goroshin, S.; Frost, D. L.

    2018-05-01

    The explosive dispersal of a layer of solid particles or a layer of liquid surrounding a spherical high-explosive charge generates a turbulent, multiphase flow. Shock compression of the material layer during the initial acceleration may partially consolidate the material, leading to the formation of jet-like structures when the layer fragments and sheds particles upon release. Similarly, release of a shock-compressed liquid shell causes the nucleation of cavitation sites, leading to the radial breakup of the shell and the formation of jets upon expansion. In the current study, a wide variety of granular materials and liquids were explosively dispersed. The maximum terminal jet tip or shell velocity was measured using high-speed videography. Charges were constructed using thin-walled glass bulbs of various diameters and contained a central C-4 charge surrounded by the material to be dispersed. This permitted variation of the ratio of material mass to charge mass ( M/ C) from 4 to 300. Results indicated that material velocity broadly correlates with predictions of the Gurney model. For liquids, the terminal velocity was accurately predicted by the Gurney model. For granular materials, Gurney over-predicted the terminal velocity by 25-60%, depending on the M/ C ratio, with larger M/ C values exhibiting larger deficits. These deficits are explained by energy dissipation during the collapse of voids in the granular material bed. Velocity deficits were insensitive to the degree of jetting and granular material properties. Empirical corrections to the Gurney model are presented with improved agreement with the dry powder experimental velocities.

  2. Preparation and characterization of CeO2 highly dispersed on activated carbon

    International Nuclear Information System (INIS)

    Serrano-Ruiz, J.C.; Ramos-Fernandez, E.V.; Silvestre-Albero, J.; Sepulveda-Escribano, A.; Rodriguez-Reinoso, F.

    2008-01-01

    A new material constituted by cerium dioxide highly dispersed on activated carbon (CeO 2 /AC) was prepared by an impregnation method using cerium(III) nitrate as CeO 2 precursor. In order to evaluate the degree of ceria dispersion on the carbon support, CeO 2 /AC was characterized by a number of techniques: thermogravimetry coupled with a mass spectrometer (TG-MS), N 2 adsorption at 77 K, temperature-programmed desorption (TPD), temperature-programmed reduction (TPR) and transmission electron microscopy (TEM). The analysis of the decomposition process under inert atmosphere indicated that cerium nitrate decomposes at 440-460 K, with the evolution of NO. Furthermore, this process produces an additional oxidation of the carbon surface (with evolution of N 2 O) and the subsequent onset of new oxygen surface groups, detected by means of temperature-programmed desorption. The ceria deposition process takes place with a decrease in the N 2 adsorption capacity of the starting carbon support, and the analysis of the pore size distribution showed that the majority of ceria particles are situated at the most internal part of the carbon porosity. The temperature-programmed reduction profile of CeO 2 /AC was very different to that shown by unsupported CeO 2 , with only one continuous reduction process at low temperatures (800-900 K). Finally, TEM pictures gave direct evidence that ceria is highly dispersed on the carbon surface, with a narrow CeO 2 particle distribution centred around 3 nm

  3. Neuroprotective potential of high-dose biotin.

    Science.gov (United States)

    McCarty, Mark F; DiNicolantonio, James J

    2017-11-01

    A recent controlled trial has established that high-dose biotin supplementation - 100 mg, three times daily - has a stabilizing effect on progression of multiple sclerosis (MS). Although this effect has been attributed to an optimization of biotin's essential cofactor role in the brain, a case can be made that direct stimulation of soluble guanylate cyclase (sGC) by pharmacological concentrations of biotin plays a key role in this regard. The utility of high-dose biotin in MS might reflect an anti-inflammatory effect of cGMP on the cerebral microvasculature, as well on oligodendrocyte differentiation and on Schwann cell production of neurotrophic factors thought to have potential for managing MS. But biotin's ability to boost cGMP synthesis in the brain may have broader neuroprotective potential. In many types of neurons and neural cells, cGMP exerts neurotrophic-mimetic effects - entailing activation of the PI3K-Akt and Ras-ERK pathways - that promote neuron survival and plasticity. Hippocampal long term potentiation requires nitric oxide synthesis, which in turn promotes an activating phosphorylation of CREB via a pathway involving cGMP and protein kinase G (PKG). In Alzheimer's disease (AD), amyloid beta suppresses this mechanism by inhibiting sGC activity; agents which exert a countervailing effect by boosting cGMP levels tend to restore effective long-term potentiation in rodent models of AD. Moreover, NO/cGMP suppresses amyloid beta production within the brain by inhibiting expression of amyloid precursor protein and BACE1. In conjunction with cGMP's ability to oppose neuron apoptosis, these effects suggest that high-dose biotin might have potential for the prevention and management of AD. cGMP also promotes neurogenesis, and may lessen stroke risk by impeding atherogenesis and hypertrophic remodeling in the cerebral vasculature. The neuroprotective potential of high-dose biotin likely could be boosted by concurrent administration of brain

  4. Self-dispersible nanocrystals of albendazole produced by high pressure homogenization and spray-drying.

    Science.gov (United States)

    Paredes, Alejandro Javier; Llabot, Juan Manuel; Sánchez Bruni, Sergio; Allemandi, Daniel; Palma, Santiago Daniel

    2016-10-01

    Albendazole (ABZ) is a broad-spectrum antiparasitic drug used in the treatment of human or animal infections. Although ABZ has shown a high efficacy for repeated doses in monogastric mammals, its low aqueous solubility leads to erratic bioavailability. The aim of this work was to optimize a procedure in order to obtain ABZ self-dispersible nanocrystals (SDNC) by combining high pressure homogenization (HPH) and spray-drying (SD). The material thus obtained was characterized and the variables affecting both the HPH and SD processes were studied. As expected, the homogenizing pressure and number of cycles influenced the final particle size, while the stabilizer concentration had a strong impact on SD output and redispersion of powders upon contact with water. ABZ SDNC were successfully obtained with high process yield and redispersibility. The characteristic peaks of ABZ were clearly identified in the X-ray patterns of the processed samples. A noticeable increase in the dissolution rate was observed in the aqueous environment.

  5. Allopatric speciation of Meteterakis (Heterakoidea: Heterakidae), a highly dispersible parasitic nematode, in the East Asian islands.

    Science.gov (United States)

    Sata, Naoya

    2018-04-25

    To clarify how the species diversity of highly dispersible parasites has developed, molecular phylogenetic analyses of Meteterakis spp., multi-host endoparasitic nematodes of reptiles and amphibians from the East Asian islands, were conducted. The results demonstrated the existence of two major clades, the J- and A-groups, with exclusive geographic ranges that are discordant with the host faunal province. However, diversification within the J-group was concordant with the host biogeography and suggested co-divergence of this group with vicariance of the host fauna. In contrast, the phylogenetic pattern within the A-group was discordant with host biogeography and implied diversification by repeated colonization. In addition, the mosaic distribution pattern of a J-group and an A-group species in the Japanese Archipelago, along with comparison of population genetic parameters and the genetic distance from their closest relatives, suggested the initial occurrence of a J-group lineage followed by exclusion in the western part of this region caused by invasion of an A-group lineage. Thus, the present study suggested that the species diversity of highly dispersible parasites including Meteterakis is formed not only by co-divergence with host faunal vicariance but also by peripatric speciation and exclusive interactions between species. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Interplay between absorption, dispersion and refraction in high-order harmonic generation

    International Nuclear Information System (INIS)

    Dachraoui, H; Helmstedt, A; Bartz, P; Michelswirth, M; Mueller, N; Pfeiffer, W; Heinzmann, U; Auguste, T; Salieres, P

    2009-01-01

    We report a detailed experimental and theoretical study on high-order harmonic generation of a femtosecond Ti-sapphire laser focused at an intensity of around 10 15 W cm -2 onto a high-pressure (50-210 mbar) neon gas cell of variable length (1-3 mm). Using thorough three-dimensional simulations, we discuss the interplay between the different factors influencing the harmonic-generation efficiency, i.e. phase matching determined by the electronic and atomic dispersions, re-absorption of the harmonics by the medium and refraction of the generating laser beam. Generically, we find that, in our generation conditions, the emission yield of harmonics from the plateau region of the spectrum is absorption limited, whereas the emission from harmonics in the cut-off is strongly reduced due to both electron dispersion and ionization-induced refraction of the laser beam. A good agreement between the numerical results and the experimental data is obtained for the harmonic yield dependence on the various generation parameters (gas pressure, medium length and laser intensity).

  7. High performance graphene- and MWCTNs-based PS/PPO composites obtained via organic solvent dispersion

    NARCIS (Netherlands)

    Ghislandi, M.G.; Tkalya, E.; Schillinger, S.; Koning, C.E.; With, de G.

    2013-01-01

    The concept of liquid-phase dispersion was applied for the preparation of well-dispersed suspensions of MWCNTs and graphene in chloroform, using long-time ultra-sonication without the use of surfactants. The dispersions with pre-defined filler concentration (0.5 mg/ml) were monitored via UV–Vis

  8. Operational mesoscale atmospheric dispersion prediction using high performance parallel computing cluster for emergency response

    International Nuclear Information System (INIS)

    Srinivas, C.V.; Venkatesan, R.; Muralidharan, N.V.; Das, Someshwar; Dass, Hari; Eswara Kumar, P.

    2005-08-01

    An operational atmospheric dispersion prediction system is implemented on a cluster super computer for 'Online Emergency Response' for Kalpakkam nuclear site. The numerical system constitutes a parallel version of a nested grid meso-scale meteorological model MM5 coupled to a random walk particle dispersion model FLEXPART. The system provides 48 hour forecast of the local weather and radioactive plume dispersion due to hypothetical air borne releases in a range of 100 km around the site. The parallel code was implemented on different cluster configurations like distributed and shared memory systems. Results of MM5 run time performance for 1-day prediction are reported on all the machines available for testing. A reduction of 5 times in runtime is achieved using 9 dual Xeon nodes (18 physical/36 logical processors) compared to a single node sequential run. Based on the above run time results a cluster computer facility with 9-node Dual Xeon is commissioned at IGCAR for model operation. The run time of a triple nested domain MM5 is about 4 h for 24 h forecast. The system has been operated continuously for a few months and results were ported on the IMSc home page. Initial and periodic boundary condition data for MM5 are provided by NCMRWF, New Delhi. An alternative source is found to be NCEP, USA. These two sources provide the input data to the operational models at different spatial and temporal resolutions and using different assimilation methods. A comparative study on the results of forecast is presented using these two data sources for present operational use. Slight improvement is noticed in rainfall, winds, geopotential heights and the vertical atmospheric structure while using NCEP data probably because of its high spatial and temporal resolution. (author)

  9. A high resolution complex terrain dispersion study in the Rocky Flats, Colorado vicinity

    International Nuclear Information System (INIS)

    Poulos, G.S.; Bossert, J.E.

    1992-01-01

    In January/February, 1991 an intensive set of measurements was taken around Rocky Flats near Denver, CO under the auspices of the Department of Energy Atmospheric Studies over Complex Terrain (ASCOT) program. This region of the country is known as the Front Range, and is characterized by a transition from the relatively flat terrain of the Great Plains to the highly varied terrain of the Rocky Mountains. One goal of the ASCOT 1991 program was to gain insight into multi-scale meteorological interaction by observing wintertime drainage conditions at the mountain-valley-plains interface. ASCOT data included surface and upper air measurements on approximately a 50km 2 scale. Simultaneously, an SF 6 tracer release study was being conducted around Rocky Flats, a nuclear materials production facility. Detailed surface concentration measurements were completed for the SF 6 plume. This combination of meteorological and tracer concentration data provided a unique data set for comparisons of mesoscale and dispersion modeling results with observations and for evaluating our capability to predict pollutant transport. Our approach is to use the Regional Atmospheric Modeling System (RAMS) mesoscale model to simulate atmospheric conditions and the Lagrangian Particle Dispersion Model (LPDM), a component of the RAMS system, to model the dispersion of the SF 6 . We have chosen the 4--5 February, 1991 overnight period as our case study. This night was characterized by strong drainage flows from the Rocky Mountains to the west of Rocky Flats, southerly winds in a layer about lkm thick above the drainage flows, and northwesterly winds above that layer extending to the tropopause

  10. Release behavior of fission products from irradiated dispersion fuels at high temperatures

    International Nuclear Information System (INIS)

    Iwai, Takashi; Shimizu, Michio; Nakagawa, Tetsuya

    1990-02-01

    As a framework of reduced enrichment fuel program of JMTR Project, the measurements of fission products release rates at high temperatures (600degC - 1100degC) were performed in order to take the data to use for safety evaluation of LEU fuel. Three type miniplates of dispersion silicide and aluminide fuel, 20% enrichment LEU fuel with 4.8 gU/cc (U 3 Si 2 90 %, USi 10 % and U 3 Si 2 50 %, U 3 Si 50 % dispersed in aluminium) and 45 % enrichment MEU fuel with 1.6 gU/cc, were irradiated in JMTR. The burnups attained by one cycle (22 days) irradiation were within 21.6 % - 22.5 % of initial 235 U. The specimens cut down from miniplates were measured on fission products release rates by means of new apparatus specially designed for this experiment. The specimens were heated up within 600degC - 1100degC in dry air. Then fission products such as 85 Kr, 133 Xe, 131 I, 137 Cs, 103 Ru, 129m Te were collected at each temperature and measured on release rates. In the results of measurement, the release rates of 85 Kr, 133 Xe, 131 I, 129m Te from all specimens were slightly less than that of G.W. Parker's data on U-Al alloy fuel. For 137 Cs and 103 Ru from a silicide specimen (U 3 Si 2 90 %, USi 10 % dispersed in aluminium) and 137 Cs from an aluminide specimen, the release rates were slightly higher than that of G.W. Parker's. (author)

  11. Effect of highly dispersed yttria addition on thermal stability of hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Parente, P., E-mail: pparente@icv.csic.es [Instituto de Ceramica y Vidrio, CSIC, C/Kelsen 5, Madrid 28049 (Spain); Savoini, B. [Departamento de Fisica, Universidad Carlos III de Madrid, Avda. Universidad 30, Leganes 28911 (Spain); Ferrari, B. [Instituto de Ceramica y Vidrio, CSIC, C/Kelsen 5, Madrid 28049 (Spain); Monge, M.A.; Pareja, R. [Departamento de Fisica, Universidad Carlos III de Madrid, Avda. Universidad 30, Leganes 28911 (Spain); Sanchez-Herencia, A.J. [Instituto de Ceramica y Vidrio, CSIC, C/Kelsen 5, Madrid 28049 (Spain)

    2013-03-01

    The capability of the colloidal method to produce yttria (Y{sub 2}O{sub 3}) dispersed hydroxyapatite (HA) has been investigated as an alternative method to the conventional method of mechanical mixing and sintering for developing HA-based materials that could exhibit controllable and enhanced functional properties. A water based colloidal route to produce HA materials with highly dispersed Y{sub 2}O{sub 3} has been applied, and the effect of 10 wt.% Y{sub 2}O{sub 3} addition to HA investigated by thermal analysis, X-ray diffraction and Fourier transform infrared spectroscopy. These measurements evidence a remarkable effect of this Y{sub 2}O{sub 3} addition on decomposition mechanisms of synthetic HA. Results show that incorporation of Y{sub 2}O{sub 3} as dispersed second phase is beneficial because it hinders the decomposition mechanisms of HA into calcium phosphates. This retardation will allow the control of the sintering conditions for developing HA implants with improved properties. Besides, substitution of Ca{sup 2+} with Y{sup 3+} ions appears to promote the formation of OH{sup -} vacancies, which could improve the conductive properties of HA favorable to osseointegration. - Highlights: Black-Right-Pointing-Pointer We reveal the influence of Y{sub 2}O{sub 3} on thermal stability of hydroxyapatite. Black-Right-Pointing-Pointer Incorporation of Y{sub 2}O{sub 3} delays decomposition of hydroxyapatite to calcium phosphates. Black-Right-Pointing-Pointer Addition of Y{sub 2}O{sub 3} enables sintering conditions more favorable to the densification.

  12. Highly dispersed Pt-Ni nanoparticles on nitrogen-doped carbon nanotubes for application in direct methanol fuel cells.

    Science.gov (United States)

    Jiang, Shujuan; Ma, Yanwen; Tao, Haisheng; Jian, Guoqiang; Wang, Xizhang; Fan, Yining; Zhu, Jianmin; Hu, Zheng

    2010-06-01

    Binary Pt-Ni alloyed nanoparticles supported on nitrogen-doped carbon nanotubes (NCNTs) have been facilely constructed without pre-modification by making use of the active sites in NCNTs due to the N-participation. So-obtained binary Pt-Ni alloyed nanoparticles have been highly dispersed on the outer surface of the support with the size of about 3-4 nm. The electrochemical properties of the catalysts for methanol oxidation have been systematically evaluated. Binary Pt-Ni alloyed composites with molar ratio (Pt:Ni) of 3:2 and 3:1 present enhanced electrocatalytic activities and improved tolerance to CO poisoning as well as the similar stability, in comparison with the commercial Pt/C catalyst and the monometallic Pt/NCNTs catalysts. These results imply that so-constructed nanocomposite catalysts have the potential for applications in direct methanol fuel cells.

  13. The variance of dispersion measure of high-redshift transient objects as a probe of ionized bubble size during reionization

    Science.gov (United States)

    Yoshiura, Shintaro; Takahashi, Keitaro

    2018-01-01

    The dispersion measure (DM) of high-redshift (z ≳ 6) transient objects such as fast radio bursts can be a powerful tool to probe the intergalactic medium during the Epoch of Reionization. In this paper, we study the variance of the DMs of objects with the same redshift as a potential probe of the size distribution of ionized bubbles. We calculate the DM variance with a simple model with randomly distributed spherical bubbles. It is found that the DM variance reflects the characteristics of the probability distribution of the bubble size. We find that the variance can be measured precisely enough to obtain the information on the typical size with a few hundred sources at a single redshift.

  14. Synthesis, characterization of novel chitosan based water dispersible polyurethanes and their potential deployment as antibacterial textile finish.

    Science.gov (United States)

    Arshad, Noureen; Zia, Khalid Mahmood; Jabeen, Farukh; Anjum, Muhammad Naveed; Akram, Nadia; Zuber, Mohammad

    2018-05-01

    Our current research work comprised of synthesis of a series of novel chitosan based water dispersible polyurethanes. The synthesis was carried out in three steps, in first step, the NCO end capped PU-prepolymer was formed through the reaction between Polyethylene glycol (PEG) (Mn = 600), Dimethylolpropionic acid (DMPA) and Isophorone diisocyanate (IPDI). In second step, the neutralization step was carried out by using Triethylamine (TEA) which resulted the formation of neutralized NCO terminated PU-prepolymer, after that the last step chain extension was performed by the addition of chitosan and followed the formation of dispersion by adding calculated amount of water. The proposed structure of CS-WDPUs was confirmed by using FTIR technique. The antimicrobial activities of the plain weave poly-cotton printed and dyed textile swatches after application of CS-WDPUs were also evaluated. The results showed that the chitosan incorporation in to PU backbone has markedly enhanced the antibacterial activity of WDPUs. These synthesized CS-WDPUs are eco-friendly antimicrobial finishes (using natural bioactive agents such as chitosan) with potential applications on polyester/cotton textiles. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. High Resolution, Non-Dispersive X-Ray Calorimeter Spectrometers on EBITs and Orbiting Observatories

    Science.gov (United States)

    Porter, Frederick S.

    2010-01-01

    X-ray spectroscopy is the primary tool for performing atomic physics with Electron beam ion trap (EBITs). X-ray instruments have generally fallen into two general categories, 1) dispersive instruments with very high spectral resolving powers but limited spectral range, limited count rates, and require an entrance slit, generally, for EBITs, defined by the electron beam itself, and 2) non-dispersive solid-state detectors with much lower spectral resolving powers but that have a broad dynamic range, high count rate ability and do not require a slit. Both of these approaches have compromises that limit the type and efficiency of measurements that can be performed. In 1984 NASA initiated a program to produce a non-dispersive instrument with high spectral resolving power for x-ray astrophysics based on the cryogenic x-ray calorimeter. This program produced the XRS non-dispersive spectrometers on the Astro-E, Astro-E2 (Suzaku) orbiting observatories, the SXS instrument on the Astro-H observatory, and the planned XMS instrument on the International X-ray Observatory. Complimenting these spaceflight programs, a permanent high-resolution x-ray calorimeter spectrometer, the XRS/EBIT, was installed on the LLNL EBIT in 2000. This unique instrument was upgraded to a spectral resolving power of 1000 at 6 keV in 2003 and replaced by a nearly autonomous production-class spectrometer, the EBIT Calorimeter Spectrometer (ECS), in 2007. The ECS spectrometer has a simultaneous bandpass from 0.07 to over 100 keV with a spectral resolving power of 1300 at 6 keV with unit quantum efficiency, and 1900 at 60 keV with a quantum efficiency of 30%. X-ray calorimeters are event based, single photon spectrometers with event time tagging to better than 10 us. We are currently developing a follow-on instrument based on a newer generation of x-ray calorimeters with a spectral resolving power of 3000 at 6 keV, and improved timing and measurement cadence. The unique capabilities of the x

  16. Extrinsic and Intrinsic Frequency Dispersion of High-k Materials in Capacitance-Voltage Measurements

    Directory of Open Access Journals (Sweden)

    S. Taylor

    2012-06-01

    Full Text Available In capacitance-voltage (C-V measurements, frequency dispersion in high-k dielectrics is often observed. The frequency dependence of the dielectric constant (k-value, that is the intrinsic frequency dispersion, could not be assessed before suppressing the effects of extrinsic frequency dispersion, such as the effects of the lossy interfacial layer (between the high-k thin film and silicon substrate and the parasitic effects. The effect of the lossy interfacial layer on frequency dispersion was investigated and modeled based on a dual frequency technique. The significance of parasitic effects (including series resistance and the back metal contact of the metal-oxide-semiconductor (MOS capacitor on frequency dispersion was also studied. The effect of surface roughness on frequency dispersion is also discussed. After taking extrinsic frequency dispersion into account, the relaxation behavior can be modeled using the Curie-von Schweidler (CS law, the Kohlrausch-Williams-Watts (KWW relationship and the Havriliak-Negami (HN relationship. Dielectric relaxation mechanisms are also discussed.

  17. Evaluation of field-collected drifter and subsurface fluorescein dye concentration data and comparisons to high frequency radar surface current mapping data for dispersed oil transport modeling

    Energy Technology Data Exchange (ETDEWEB)

    Payne, J.R. [Payne Environmental Consultants Inc., Encinitas, CA (United States); Terrill, E.; Carter, M.; Otero, M.; Middleton, W.; Chen, A. [Scripps Inst. of Oceanography, La Jolla, CA (United States); French McCay, D.; Mueller, C.; Jayko, K. [Applied Science Associates Inc., Narragansett, RI (United States); Nordhausen, W.; Lewis, R.; Lampinen, M.; Evans, T. [California Dept. of Fish and Game, San Diego, CA (United States). Office of Spill Prevention and Response; Ohlmann, C. [California Univ., Santa Barbara, CA (United States); Via, G.L.; Ruiz-Santana, H.; Maly, M.; Willoughby, B.; Varela, C. [United States Coast Guard Pacific Strike Team, Novato, CA (United States); Lynch, P.; Sanchez, P. [Marine Spill Response Corp., San Diego, CA (United States)

    2007-07-01

    Extensive coastal areas in the United States have been designated as pre-approved zones for dispersant applications in the event of an oil spill. Although the use of dispersants may reduce impacts to wildlife and shoreline habitats, it is recognized that the dispersed oil may cause impacts to organisms in the water column. The State of California Department of Fish and Game Office of Spill Prevention and Response is currently using oil spill fate and transport modeling to address this issue. The purpose is to develop the time and spatial scales, and equipment needs for a formal dispersed oil monitoring plan (DOMP) to document hydrocarbon water column concentrations, potentially exposed zooplankton, and the impact of the oil spills with and without dispersant use. A series of 7 fluorescein dye releases were completed off the coast of San Diego, California in order to test the operational framework for repeated sampling of dispersed oil plumes as outlined in the DOMP. The ability of high-frequency radar to provide surface current input data to oil spill models was also evaluated. The dye concentrations were measured over three spatial dimensions and time in order to verify the model-predicted movement of subsurface dye. Surface current fields at varying depths were also measured and the subsurface dye plume structure was mapped using a GPS coupled towed-fluorometer equipped with pressure sensors. Measurements were compared with data from traditional special monitoring of applied response technology (SMART). The database acquired through this program represents a technical resource that can help physical and chemical oceanographers, modelers, spill response and contingency planners involved in the debate of whether or not to use dispersants to mitigate near shore and open ocean marine oil spills. 14 refs., 2 tabs., 14 figs.

  18. Energy dispersive X-ray diffraction at high pressure in CHESS

    International Nuclear Information System (INIS)

    Ruoff, A.L.; Baublitz, M.A. Jr.

    1981-01-01

    Energy dispersive X-ray techniques were used with a diamond anvil cell in the Cornell High Energy Synchrotron Source (CHESS). It was shown that quantitative relative intensity measurement could be made when the pressure was hydrostatic and the crystals were relatively defect free. The crystal structures of the high pressure polymorphs of Ge, GaAs, GaP, and AlSb were studied. Ge exhibits the β-tetragonal structure as found by Jamieson; however, the transition pressure is 80 +- 5 kbars. GaAs exhibits an orthorhombic structure above 172 +- 7 kbars, GaP the β-Sn structure above 215 +- 8 kbars, and AlSb an orthorhombic structure above 77 +- 5 kbars. (Auth.)

  19. Supercapacitors based on highly dispersed polypyrrole-reduced graphene oxide composite with a folded surface

    Science.gov (United States)

    Wang, Anqi; Zhou, Xi; Qian, Tao; Yu, Chenfei; Wu, Shishan; Shen, Jian

    2015-08-01

    Highly dispersed polypyrrole particles were decorated on reduced graphene oxide sheets using a facile in situ synthesis route. The prepared composite, which obtained a folded surface, shows remarkable performance as the electrode material of supercapacitors. The specific capacitance reaches 564.1 F g-1 at a current density of 1 A g-1 and maintains 86.4 % after 1000 charging-discharging cycles at a current density of 20 A g-1, which indicates a good cycling stability. Furthermore, the prepared supercapacitor demonstrates an ultrahigh energy density of 50.13 Wh kg-1 at power density of 0.40 kW kg-1, and remains of 45.33 Wh kg-1 even at high power density of 8.00 kW kg-1, which demonstrate that the hybrid supercapacitor can be a promising energy storage system for fast and efficient energy storage in the future.

  20. Magnetic properties of Ni nanoparticles dispersed in silica prepared by high-energy ball milling

    Science.gov (United States)

    González, E. M.; Montero, M. I.; Cebollada, F.; de Julián, C.; Vicent, J. L.; González, J. M.

    1998-04-01

    We analyze the magnetic properties of mechanically ground nanosized Ni particles dispersed in a SiO2 matrix. Our magnetic characterization of the as-milled samples show the occurrence of two blocking processes and that of non-monotonic milling time evolutions of the magnetic-order temperature, the high-field magnetization and the saturation coercivity. The measured coercivities exhibit giant values and a uniaxial-type temperature dependence. Thermal treatment carried out in the as-prepared samples result in a remarkable coercivity reduction and in an increase of the high-field magnetization. We conclude, on the basis of the consideration of a core (pure Ni) and shell (Ni-Si inhomogeneous alloy) particle structure, that the magnetoelastic anisotropy plays the dominant role in determining the magnetic properties of our particles.

  1. High Spectral Resolution Lidar Based on a Potassium Faraday Dispersive Filter for Daytime Temperature Measurement

    Directory of Open Access Journals (Sweden)

    Abo Makoto

    2016-01-01

    Full Text Available In this paper, a new high-spectral-resolution lidar technique is proposed for measuring the profiles of atmospheric temperature in daytime. Based on the theory of high resolution Rayleigh scattering, the feasibility and advantages of using potassium (K Faraday dispersive optical filters as blocking filters for measuring atmospheric temperature are demonstrated with a numerical simulation. It was found that temperature profiles could be measured within 1K error for the height of 9 km with a 500 m range resolution in 60 min by using laser pulses with 1mJ/pulse and 1 kHz, and a 50 cm diameter telescope. Furthermore, we are developing compact pulsed laser system for temperature lidar transmitter.

  2. Evolution of colloidal dispersions in novel time-varying optical potentials

    Science.gov (United States)

    Koss, Brian Alan

    Optical traps use forces exerted by a tightly focused light beam to trap objects from tens of nanometers to tens of micrometers in size. Since their introduction in 1986, optical tweezers have become very useful to biology, chemistry, and soft condensed-matter physics. Work presented here, promises to advance optical tweezers not only in fundamental scientific research, but also in applications outside of the laboratory and into the mainstream of miniaturized manufacturing and diagnostics. By providing unprecedented access to the mesoscopic world, a new generation of optical traps, called Dynamic Holographic Optical Tweezers (HOTs) offers revolutionary new opportunities for fundamental and applied research. To demonstrate this technique, HOTs will be used to pump particles via a new method of transport called Optical Peristalsis (OP). OP is efficient method for transporting mesoscopic objects in three dimensions using short repetitive sequences of holographic optical trapping patterns. Transport in this process is analogous to peristaltic pumping, with the configurations of optical traps mimicking states of a peristaltic pump. While not limited to the deterministic particle transport, OP, can also be a platform to investigate the stochastic limit of particle transport. Advances in recent years have demonstrated that a variety of time-varying perturbations can induce drift in a diffusive system without exerting an overall force. Among these, are thermal ratchet models in which the system is subjected to time-varying energy landscapes that break spatiotemporal symmetry and thereby induce drift. Typically, the potential energy landscape is chosen to be the sawtooth potential. This work describes an alternate class of symmetric thermal ratchet models, that are not sawtooth, and demonstrates their efficacy in biasing the diffusion of colloidal spheres in both the stochastic and deterministic limits. Unlike previous models, each state in this thermal ratchet consists of

  3. FOUR HIGHLY DISPERSED MILLISECOND PULSARS DISCOVERED IN THE ARECIBO PALFA GALACTIC PLANE SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, F. [Department of Physics and Astronomy, Franklin and Marshall College, P.O. Box 3003, Lancaster, PA 17604 (United States); Stovall, K. [Center for Gravitational Wave Astronomy, University of Texas at Brownsville, Brownsville, TX 78520 (United States); Lyne, A. G.; Stappers, B. W. [Jodrell Bank Centre for Astrophysics, University of Manchester, Manchester M13 9PL (United Kingdom); Nice, D. J. [Department of Physics, Lafayette College, Easton, PA 18042 (United States); Stairs, I. H. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Lazarus, P. [Department of Physics, McGill University, 3600 University Street, Montreal, QC H3A 2T8 (Canada); Hessels, J. W. T. [ASTRON, The Netherlands Institute for Radio Astronomy, Postbus 2, 7990-AA Dwingeloo (Netherlands); Freire, P. C. C.; Champion, D. J.; Desvignes, G. [Max-Planck-Institut fuer Radioastronomie, auf dem Huegel 69, D-53121 Bonn (Germany); Allen, B. [Albert-Einstein-Institut, Max-Planck-Institut fuer Gravitationsphysik, D-30167 Hannover (Germany); Bhat, N. D. R.; Camilo, F. [Center for Astrophysics and Supercomputing, Swinburne University, Hawthorn, Victoria 3122 (Australia); Bogdanov, S. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Brazier, A.; Chatterjee, S.; Cordes, J. M. [Astronomy Department, Cornell University, Ithaca, NY 14853 (United States); Cognard, I. [Laboratoire de Physique et Chimie de l' Environnement et de l' Espace, LPC2E, CNRS et Universite d' Orleans, and Station de radioastronomie de Nancay, Observatoire de Paris, F-18330 Nancay (France); Deneva, J. S., E-mail: fcrawfor@fandm.edu [Arecibo Observatory, HC3 Box 53995, Arecibo, PR 00612 (United States); and others

    2012-09-20

    We present the discovery and phase-coherent timing of four highly dispersed millisecond pulsars (MSPs) from the Arecibo PALFA Galactic plane survey: PSRs J1844+0115, J1850+0124, J1900+0308, and J1944+2236. Three of the four pulsars are in binary systems with low-mass companions, which are most likely white dwarfs, and which have orbital periods on the order of days. The fourth pulsar is isolated. All four pulsars have large dispersion measures (DM >100 pc cm{sup -3}), are distant ({approx}> 3.4 kpc), faint at 1.4 GHz ({approx}< 0.2 mJy), and are fully recycled (with spin periods P between 3.5 and 4.9 ms). The three binaries also have very small orbital eccentricities, as expected for tidally circularized, fully recycled systems with low-mass companions. These four pulsars have DM/P ratios that are among the highest values for field MSPs in the Galaxy. These discoveries bring the total number of confirmed MSPs from the PALFA survey to 15. The discovery of these MSPs illustrates the power of PALFA for finding weak, distant MSPs at low-Galactic latitudes. This is important for accurate estimates of the Galactic MSP population and for the number of MSPs that the Square Kilometer Array can be expected to detect.

  4. Design of compact dispersion interferometer with a high efficiency nonlinear crystal and a low power CO2 laser

    Science.gov (United States)

    Akiyama, T.; Yoshimura, S.; Tomita, K.; Shirai, N.; Murakami, T.; Urabe, K.

    2017-12-01

    When the electron density of a plasma generated in high pressure environment is measured by a conventional interferometer, the phase shifts due to changes of the neutral gas density cause significant measurement errors. A dispersion interferometer, which measures the phase shift that arises from dispersion of medium between the fundamental and the second harmonic wavelengths of laser light, can suppress the measured phase shift due to the variations of neutral gas density. In recent years, the CO2 laser dispersion interferometer has been applied to the atmospheric pressure plasmas and its feasibility has been demonstrated. By combining a low power laser and a high efficiency nonlinear crystal for the second harmonic component generation, a compact dispersion interferometer can be designed. The optical design and preliminary experiments are conducted.

  5. Analysis of plant soil seed banks and seed dispersal vectors: Its potential and limits for forensic investigations.

    Science.gov (United States)

    Šumberová, Kateřina; Ducháček, Michal

    2017-01-01

    Plant seeds exhibit many species-specific traits, thus potentially being especially helpful for forensic investigations. Seeds of a broad range of plant species occur in soil seed banks of various habitats and may become attached in large quantities to moving objects. Although plant seeds are now routinely used as trace evidence in forensic practice, only scant information has been published on this topic in the scientific literature. Thus, the standard methods remain unknown to specialists in such botanical subjects as plant ecology and plant geography. These specialists, if made aware of the forensic uses of seeds, could help in development of new, more sophisticated approaches. We aim to bridge the gap between forensic analysts and botanists. Therefore, we explore the available literature and compare it with our own experiences to reveal both the potential and limits of soil seed bank and seed dispersal analysis in forensic investigations. We demonstrate that habitat-specific and thus relatively rare species are of the greatest forensic value. Overall species composition, in terms of species presence/absence and relative abundance can also provide important information. In particular, the ecological profiles of seeds found on any moving object can help us identify the types of environments through which the object had travelled. We discuss the applicability of this approach to various European environments, with the ability to compare seed samples with georeferenced vegetation databases being particularly promising for forensic investigations. We also explore the forensic limitations of soil seed bank and seed dispersal vector analyses. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Hydrothermal Synthesis of Highly Water-dispersible Anatase Nanoparticles with Large Specific Surface Area and Their Adsorptive Properties

    OpenAIRE

    Hu Xueting; Zhang Dongyun; Zhao Siqin; Asuha Sin

    2016-01-01

    Highly water-dispersible and very small TiO2 nanoparticles (~3 nm anatase) with large specific surface area have been synthesized by hydrolysis and hydrothermal reactions of titanium butoxide and used for the removal of three azo dyes (Congo red, orange II, and methyl orange) with different molecular structure from simulated wastewaters. The synthesized TiO2 nanoparticles are well dispersed in water with large specific surface area up to 417 m2 g−1. Adsorption experiments demonstrated that th...

  7. Experimental study and modelling of the high temperature mechanical behavior of oxide dispersion strengthened ferritic steels

    International Nuclear Information System (INIS)

    Steckmeyer, A.

    2012-01-01

    The strength of metals, and therefore their maximum operating temperature, can be improved by oxide dispersion strengthening (ODS). Numerous research studies are carried out at the French Atomic Energy Commission (CEA) in order to develop a cladding tube material for Gen IV nuclear power reactors. Oxide dispersion strengthened steels appear to be the most promising candidates for such application, which demands a minimum operating temperature of 650 C. The present dissertation intends to improve the understanding of the mechanical properties of ODS steels, in terms of creep lifetime and mechanical anisotropy. The methodology of this work includes mechanical tests between room temperature and 900 C as well as macroscopic and polycrystalline modelling. These tests are carried out on a Fe-14Cr1W0,26Ti + 0,3 Y 2 O 3 ODS ferritic steel processed at CEA by mechanical alloying and hot extrusion. The as-received material is a bar with a circular section. The mechanical tests reveal the high mechanical strength of this steel at high temperature. A strong influence of the strain rate on the ductility and the mechanical strength is also observed. A macroscopic mechanical model has been developed on the basis of some experimental statements such as the high kinematic contribution to the flow stress. This model has a strong ability to reproduce the mechanical behaviour of the studied material. Two different polycrystalline models have also been developed in order to reproduce the mechanical anisotropy of the material. They are based on its specific grain morphology and crystallographic texture. The discrepancy between the predictions of both models and experimental results reveal the necessity to formulate alternate assumptions on the deformation mechanisms of ODS ferritic steels. (author) [fr

  8. Microwave-induced synthesis of highly dispersed gold nanoparticles within the pore channels of mesoporous silica

    International Nuclear Information System (INIS)

    Gu Jinlou; Fan Wei; Shimojima, Atsushi; Okubo, Tatsuya

    2008-01-01

    Highly dispersed gold nanoparticles have been incorporated into the pore channels of SBA-15 mesoporous silica through a newly developed strategy assisted by microwave radiation (MR). The sizes of gold are effectively controlled attributed to the rapid and homogeneous nucleation, simultaneous propagation and termination of gold precursor by MR. Diol moieties with high dielectric and dielectric loss constants, and hence a high microwave activation, were firstly introduced to the pore channels of SBA-15 by a simple addition reaction between amino group and glycidiol and subsequently served as the reduction centers for gold nanoparticles. Extraction of the entrapped gold from the nanocomposite resulted in milligram quantities of gold nanoparticles with low dispersity. The successful assembly process of diol groups and formation of gold nanoparticles were monitored and tracked by solid-state NMR and UV-vis measurements. Characterization by small angle X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicated that the incorporation of gold nanoparticles would not breakup the structural integrity and long-range periodicity of SBA-15. The gold nanoparticles had a narrow size distribution with diameters in the size range of 5-10 nm through TEM observation. The average particles size is 7.9 nm via calculation by the Scherrer formula and TEM measurements. Nitrogen adsorption and desorption isotherms gave further evidence that the employed method was efficient and gold nanoparticles were successfully incorporated into the pore channels of SBA-15. - Graphical abstract: A facile and novel strategy has been developed to incorporate gold nanoparticles into the pore channels of mesoporous SBA-15 assisted by microwave radiation (MR) with mild reaction condition and rapid reaction speed. Due to the rapid and homogeneous nucleation, simultaneous propagation and termination by MR, the size of gold nanoparticles are effectively controlled

  9. Phylogeography and dispersal in the velvet gecko (Oedura lesueurii, and potential implications for conservation of an endangered snake (Hoplocephalus bungaroides

    Directory of Open Access Journals (Sweden)

    Dubey Sylvain

    2012-05-01

    Full Text Available Abstract Background To conserve critically endangered predators, we also need to conserve the prey species upon which they depend. Velvet geckos (Oedura lesueurii are a primary prey for the endangered broad-headed snake (Hoplocephalus bungaroides, which is restricted to sandstone habitats in southeastern Australia. We sequenced the ND2 gene from 179 velvet geckos, to clarify the lizards’ phylogeographic history and landscape genetics. We also analysed 260 records from a longterm (3-year capture-mark-recapture program at three sites, to evaluate dispersal rates of geckos as a function of locality, sex and body size. Results The genetic analyses revealed three ancient lineages in the north, south and centre of the species’ current range. Estimates of gene flow suggest low dispersal rates, constrained by the availability of contiguous rocky habitat. Mark-recapture records confirm that these lizards are highly sedentary, with most animals moving  Conclusion The low vagility of these lizards suggests that they will be slow to colonise vacant habitat patches; and hence, efforts to restore degraded habitats for broad-headed snakes may need to include translocation of lizards.

  10. Phylogeography and dispersal in the velvet gecko (Oedura lesueurii), and potential implications for conservation of an endangered snake (Hoplocephalus bungaroides)

    Science.gov (United States)

    2012-01-01

    Background To conserve critically endangered predators, we also need to conserve the prey species upon which they depend. Velvet geckos (Oedura lesueurii) are a primary prey for the endangered broad-headed snake (Hoplocephalus bungaroides), which is restricted to sandstone habitats in southeastern Australia. We sequenced the ND2 gene from 179 velvet geckos, to clarify the lizards’ phylogeographic history and landscape genetics. We also analysed 260 records from a longterm (3-year) capture-mark-recapture program at three sites, to evaluate dispersal rates of geckos as a function of locality, sex and body size. Results The genetic analyses revealed three ancient lineages in the north, south and centre of the species’ current range. Estimates of gene flow suggest low dispersal rates, constrained by the availability of contiguous rocky habitat. Mark-recapture records confirm that these lizards are highly sedentary, with most animals moving < 30 m from their original capture site even over multi-year periods. Conclusion The low vagility of these lizards suggests that they will be slow to colonise vacant habitat patches; and hence, efforts to restore degraded habitats for broad-headed snakes may need to include translocation of lizards. PMID:22583676

  11. Hydrodeoxygenation of water-insoluble bio-oil to alkanes using a highly dispersed Pd-Mo catalyst.

    Science.gov (United States)

    Duan, Haohong; Dong, Juncai; Gu, Xianrui; Peng, Yung-Kang; Chen, Wenxing; Issariyakul, Titipong; Myers, William K; Li, Meng-Jung; Yi, Ni; Kilpatrick, Alexander F R; Wang, Yu; Zheng, Xusheng; Ji, Shufang; Wang, Qian; Feng, Junting; Chen, Dongliang; Li, Yadong; Buffet, Jean-Charles; Liu, Haichao; Tsang, Shik Chi Edman; O'Hare, Dermot

    2017-09-19

    Bio-oil, produced by the destructive distillation of cheap and renewable lignocellulosic biomass, contains high energy density oligomers in the water-insoluble fraction that can be utilized for diesel and valuable fine chemicals productions. Here, we show an efficient hydrodeoxygenation catalyst that combines highly dispersed palladium and ultrafine molybdenum phosphate nanoparticles on silica. Using phenol as a model substrate this catalyst is 100% effective and 97.5% selective for hydrodeoxygenation to cyclohexane under mild conditions in a batch reaction; this catalyst also demonstrates regeneration ability in long-term continuous flow tests. Detailed investigations into the nature of the catalyst show that it combines hydrogenation activity of Pd and high density of both Brønsted and Lewis acid sites; we believe these are key features for efficient catalytic hydrodeoxygenation behavior. Using a wood and bark-derived feedstock, this catalyst performs hydrodeoxygenation of lignin, cellulose, and hemicellulose-derived oligomers into liquid alkanes with high efficiency and yield.Bio-oil is a potential major source of renewable fuels and chemicals. Here, the authors report a palladium-molybdenum mixed catalyst for the selective hydrodeoxygenation of water-insoluble bio-oil to mixtures of alkanes with high carbon yield.

  12. A dispersive optical model potential for nucleon induced reactions on 238U and 232Th nuclei with full coupling

    Directory of Open Access Journals (Sweden)

    Chiba Satoshi

    2013-03-01

    Full Text Available A dispersive coupled-channel optical model potential (DCCOMP that couples the ground-state rotational and low-lying vibrational bands of 238U and 232Th nuclei is studied. The derived DCCOMP couples almost all excited levels below 1 MeV of excitation energy of the corresponding even-even actinides. The ground state, octupole, beta, gamma, and non-axial bands are coupled. The first two isobar analogue states (IAS populated in the quasi-elastic (p,n reaction are also coupled in the proton induced calculation, making the potential approximately Lane consistent. The coupled-channel potential is based on a soft-rotor description of the target nucleus structure, where dynamic vibrations are considered as perturbations of the rigid rotor underlying structure. Matrix elements required to use the proposed structure model in Tamura coupled-channel scheme are derived. Calculated ratio R(U238/Th232 of the total cross-section difference to the averaged σT for 238U and 232Th nuclei is shown to be in excellent agreement with measured data.

  13. Highly Selective TiN-Supported Highly Dispersed Pt Catalyst: Ultra Active toward Hydrogen Oxidation and Inactive toward Oxygen Reduction.

    Science.gov (United States)

    Luo, Junming; Tang, Haibo; Tian, Xinlong; Hou, Sanying; Li, Xiuhua; Du, Li; Liao, Shijun

    2018-01-31

    The severe dissolution of the cathode catalyst, caused by an undesired oxygen reduction reaction at the anode during startup and shutdown, is a fatal challenge to practical applications of polymer electrolyte membrane fuel cells. To address this important issue, according to the distinct structure-sensitivity between the σ-type bond in H 2 and the π-type bond in O 2 , we design a HD-Pt/TiN material by highly dispersing Pt on the TiN surface to inhibit the unwanted oxygen reduction reaction. The highly dispersed Pt/TiN catalyst exhibits excellent selectivity toward hydrogen oxidation and oxygen reduction reactions. With a Pt loading of 0.88 wt %, our catalyst shows excellent hydrogen oxidation reaction activity, close to that of commercial 20 wt % Pt/C catalyst, and much lower oxygen reduction reaction activity than the commercial 20 wt % Pt/C catalyst. The lack of well-ordered Pt facets is responsible for the excellent selectivity of the HD-Pt/TiN materials toward hydrogen oxidation and oxygen reduction reactions. Our work provides a new and cost-effective solution to design selective catalysts toward hydrogen oxidation and oxygen reduction reactions, making the strategy of using oxygen-tolerant anode catalyst to improve the stability of polymer electrolyte membrane fuel cells during startup and shutdown more affordable and practical.

  14. Instantaneous strain measurements during high-temperature stress cycling of a dispersion-strengthened niobium alloy

    International Nuclear Information System (INIS)

    Farkas, D.M.; Mishra, R.S.; Mukherjee, A.K.

    1995-01-01

    Experimental results obtained from stress cycling tests performed during high-temperature creep of a dispersion strengthened niobium alloy indicate that the instantaneous strain following the stress change decreases with accumulated strain. The true work-hardening rate was shown to be a small fraction of the elastic modulus which remained fairly constant throughout the strain history. The instantaneous strain change from a stress addition was typically greater than the strain from the corresponding stress reduction. This effect is quite pronounced for small stress changes and diminishes as the magnitude of the stress change increases. This implies that the mobility of dislocations is impeded in the reverse direction unless the magnitude of stress reduction exceeds the value of the internal stress

  15. Fast adsorption kinetics of highly dispersed ultrafine nickel/carbon nanoparticles for organic dye removal

    Science.gov (United States)

    Kim, Taek-Seung; Song, Hee Jo; Dar, Mushtaq Ahmad; Lee, Hack-Jun; Kim, Dong-Wan

    2018-05-01

    Magnetic metal/carbon nano-materials are attractive for pollutant adsorption and removal. In this study, ultrafine nickel/carbon nanoparticles are successfully prepared via electrical wire explosion processing in ethanol media for the elimination of pollutant organic dyes such as Rhodamine B and methylene blue in aqueous solutions. High specific surface areas originating from both the nano-sized particles and the existence of carbon on the surface of Ni nanoparticles enhance dye adsorption capacity. In addition to this, the excellent dispersity of Ni/C nanoparticles in aqueous dye solutions leads to superior adsorption rates. The adsorption kinetics for the removal of organic dyes by Ni/C nanoparticles agree with a pseudo-second-order model and follow Freundlich adsorption isotherm behavior.

  16. High Methanol Oxidation Activity of Well-Dispersed Pt Nanoparticles on Carbon Nanotubes Using Nitrogen Doping

    Directory of Open Access Journals (Sweden)

    Fang Wei-Chuan

    2009-01-01

    Full Text Available Abstract Pt nanoparticles (NPs with the average size of 3.14 nm well dispersed on N-doped carbon nanotubes (CNTs without any pretreatment have been demonstrated. Structural properties show the characteristic N bonding within CNTs, which provide the good support for uniform distribution of Pt NPs. In electrochemical characteristics, N-doped CNTs covered with Pt NPs show superior current density due to the fact that the so-called N incorporation could give rise to the formation of preferential sites within CNTs accompanied by the low interfacial energy for immobilizing Pt NPs. Therefore, the substantially enhanced methanol oxidation activity performed by N-incorporation technique is highly promising in energy-generation applications.

  17. Role of Acetone in the Formation of Highly Dispersed Cationic Polystyrene Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ernawati Lusi

    2017-03-01

    Full Text Available A modified emulsion polymerisation synthesis route for preparing highly dispersed cationic polystyrene (PS nanoparticles is reported. The combined use of 2,2′-azobis[2-(2-imidazolin- 2-ylpropane] di-hydrochloride (VA-044 as the initiator and acetone/water as the solvent medium afforded successful synthesis of cationic PS particles as small as 31 nm in diameter. A formation mechanism for the preparation of PS nanoparticles was proposed, whereby the occurrence of rapid acetone diffusion caused spontaneous rupture of emulsion droplets into smaller droplets. Additionally, acetone helped to reduce the surface tension and increase the solubility of styrene, thus inhibiting aggregation and coagulation among the particles. In contrast, VA-044 initiator could effectively regulate the stability of the PS nanoparticles including both the surface charge and size. Other reaction parameters i.e. VA-044 concentration and reaction time were examined to establish the optimum polymerisation conditions.

  18. A compact spectrum splitting concentrator for high concentration photovoltaics based on the dispersion of a lens

    Science.gov (United States)

    He, J.; Flowers, C. A.; Yao, Y.; Atwater, H. A.; Rockett, A. A.; Nuzzo, R. G.

    2018-06-01

    Photovoltaic devices used in conjunction with functional optical elements for light concentration and spectrum splitting are known to be a viable approach for highly efficient photovoltaics. Conventional designs employ discrete optical elements, each with the task of either performing optical concentration or separating the solar spectrum. In the present work, we examine the performance of a compact photovoltaic architecture in which a single lens plays a dual role as both a concentrator and a spectrum splitter, the latter made possible by exploiting its intrinsic dispersion. A four-terminal two-junction InGaP/GaAs device is prepared to validate the concept and illustrates pathways for improvements. A spectral separation in the visible range is demonstrated at the focal point of a plano-convex lens with a geometric concentration ratio of 1104X with respect to the InGaP subcell.

  19. Improvement of the homogeneity of atomized particles dispersed in high uranium density research reactor fuels

    International Nuclear Information System (INIS)

    Kim, Chang-Kyu; Kim, Ki-Hwan; Park, Jong-Man; Lee, Yoon-Sang; Lee, Don-Bae; Sohn, Woong-Hee; Hong, Soon-Hyung

    1998-01-01

    A study on improving the homogeneous dispersion of atomized spherical particles in fuel meats has been performed in connection with the development of high uranium density fuel. In comparing various mixing methods, the better homogeneity of the mixture could be obtained as in order of Spex mill, V-shape tumbler mixer, and off-axis rotating drum mixer. The Spex mill mixer required some laborious work because of its small capacity per batch. Trough optimizing the rotating speed parameter for the V-shape tumbler mixer, almost the same homogeneity as with the Spex mill could be obtained. The homogeneity of the extruded fuel meats appeared to improve through extrusion. All extruded fuel meats with U 3 Si powder of 50-volume % had fairly smooth surfaces. The homogeneity of fuel meats by V-shaped tumbler mixer revealed to be fairly good on micrographs. (author)

  20. Potential aerospace applications of high temperature superconductors

    Science.gov (United States)

    Selim, Raouf

    1994-01-01

    The recent discovery of High Temperature Superconductors (HTS) with superconducting transition temperature, T(sub c), above the boiling point of liquid nitrogen has opened the door for using these materials in new and practical applications. These materials have zero resistance to electric current, have the capability of carrying large currents and as such have the potential to be used in high magnetic field applications. One of the space applications that can use superconductors is electromagnetic launch of payloads to low-earth-orbit. An electromagnetic gun-type launcher can be used in small payload systems that are launched at very high velocity, while sled-type magnetically levitated launcher can be used to launch larger payloads at smaller velocities. Both types of launchers are being studied by NASA and the aerospace industry. The use of superconductors will be essential in any of these types of launchers in order to produce the large magnetic fields required to obtain large thrust forces. Low Temperature Superconductor (LTS) technology is mature enough and can be easily integrated in such systems. As for the HTS, many leading companies are currently producing HTS coils and magnets that potentially can be mass-produced for these launchers. It seems that designing and building a small-scale electromagnetic launcher is the next logical step toward seriously considering this method for launching payloads into low-earth-orbit. A second potential application is the use of HTS to build sensitive portable devices for the use in Non Destructive Evaluation (NDE). Superconducting Quantum Interference Devices (SQUID's) are the most sensitive instruments for measuring changes in magnetic flux. By using HTS in SQUID's, one will be able to design a portable unit that uses liquid nitrogen or a cryocooler pump to explore the use of gradiometers or magnetometers to detect deep cracks or corrosion in structures. A third use is the replacement of Infra-Red (IR) sensor leads on

  1. Dispersion-optimized optical fiber for high-speed long-haul dense wavelength division multiplexing transmission

    Science.gov (United States)

    Wu, Jindong; Chen, Liuhua; Li, Qingguo; Wu, Wenwen; Sun, Keyuan; Wu, Xingkun

    2011-07-01

    Four non-zero-dispersion-shifted fibers with almost the same large effective area (Aeff) and optimized dispersion properties are realized by novel index profile designing and modified vapor axial deposition and modified chemical vapor deposition processes. An Aeff of greater than 71 μm2 is obtained for the designed fibers. Three of the developed fibers with positive dispersion are improved by reducing the 1550nm dispersion slope from 0.072ps/nm2/km to 0.063ps/nm2/km or 0.05ps/nm2/km, increasing the 1550nm dispersion from 4.972ps/nm/km to 5.679ps/nm/km or 7.776ps/nm/km, and shifting the zero-dispersion wavelength from 1500nm to 1450nm. One of these fibers is in good agreement with G655D and G.656 fibers simultaneously, and another one with G655E and G.656 fibers; both fibers are beneficial to high-bit long-haul dense wavelength division multiplexing systems over S-, C-, and L-bands. The fourth developed fiber with negative dispersion is also improved by reducing the 1550nm dispersion slope from 0.12ps/nm2/km to 0.085ps/nm2/km, increasing the 1550nm dispersion from -4ps/nm/km to -6.016ps/nm/km, providing facilities for a submarine transmission system. Experimental measurements indicate that the developed fibers all have excellent optical transmission and good macrobending and splice performances.

  2. Influence of dispersing additives and blend composition on stability of marine high-viscosity fuels

    Directory of Open Access Journals (Sweden)

    Т. Н. Митусова

    2017-12-01

    Full Text Available The article offers a definition of the stability of marine high-viscosity fuel from the point of view of the colloid-chemical concept of oil dispersed systems. The necessity and importance of the inclusion in the current regulatory requirements of this quality parameter of high-viscosity marine fuel is indicated. The objects of the research are high-viscosity marine fuels, the basic components of which are heavy oil residues: fuel oil that is the atmospheric residue of oil refining and viscosity breaking residue that is the product of light thermal cracking of fuel oil. As a thinning agent or distillate component, a light gas oil was taken from the catalytic cracking unit. The stability of the obtained samples was determined through the xylene equivalent index, which characterizes the stability of marine high-viscosity fuel to lamination during storage, transportation and operation processes. To improve performance, the resulting base compositions of high-viscosity marine fuels were modified by introducing small concentrations (0.05 % by weight of stabilizing additives based on oxyethylated amines of domestic origin and alkyl naphthalenes of foreign origin.

  3. Modeling of high-density U-MO dispersion fuel plate performance

    International Nuclear Information System (INIS)

    Hayes, S.L.; Meyer, M.K.; Hofman, G.L.; Rest, J.; Snelgrove, J.L.

    2002-01-01

    Results from postirradiation examinations (PIE) of highly loaded U-Mo/Al dispersion fuel plates over the past several years have shown that the interaction between the metallic fuel particles and the matrix aluminum can be extensive, reducing the volume of the high-conductivity matrix phase and producing a significant volume of low-conductivity reaction-product phase. This phenomenon results in a significant decrease in fuel meat thermal conductivity during irradiation. PIE has further shown that the fuel-matrix interaction rate is a sensitive function of irradiation temperature. The interplay between fuel temperature and fuel-matrix interaction makes the development of a simple empirical correlation between the two difficult. For this reason a comprehensive thermal model has been developed to calculate temperatures throughout the fuel plate over its lifetime, taking into account the changing volume fractions of fuel, matrix and reaction-product phases within the fuel meat owing to fuel-matrix interaction; this thermal model has been incorporated into the dispersion fuel performance code designated PLATE. Other phenomena important to fuel thermal performance that are also treated in PLATE include: gas generation and swelling in the fuel and reaction-product phases, incorporation of matrix aluminum into solid solution with the unreacted metallic fuel particles, matrix extrusion resulting from fuel swelling, and cladding corrosion. The phenomena modeled also make possible a prediction of fuel plate swelling. This paper presents a description of the models and empirical correlations employed within PLATE as well as validation of code predictions against fuel performance data for U-Mo experimental fuel plates from the RERTR-3 irradiation test. (author)

  4. High resolution Transmission Electron Microscopy characterization of a milled oxide dispersion strengthened steel powder

    Energy Technology Data Exchange (ETDEWEB)

    Loyer-Prost, M., E-mail: marie.loyer-prost@cea.fr [DEN-Service de Recherches de Métallurgie Physique, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Merot, J.-S. [Laboratoire d’Etudes des Microstructures – UMR 104, CNRS/ONERA, BP72-29, Avenue de la Division Leclerc, 92 322, Châtillon (France); Ribis, J. [DEN-Service de Recherches de Métallurgie Appliquée, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Le Bouar, Y. [Laboratoire d’Etudes des Microstructures – UMR 104, CNRS/ONERA, BP72-29, Avenue de la Division Leclerc, 92 322, Châtillon (France); Chaffron, L. [DEN-Service de Recherches de Métallurgie Appliquée, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Legendre, F. [DEN-Service de la Corrosion et du Comportement des Matériaux dans leur Environnement, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France)

    2016-10-15

    Oxide Dispersion Strengthened (ODS) steels are promising materials for generation IV fuel claddings as their dense nano-oxide dispersion provides good creep and irradiation resistance. Even if they have been studied for years, the formation mechanism of these nano-oxides is still unclear. Here we report for the first time a High Resolution Transmission Electron Microscopy and Energy Filtered Transmission Electron Microscopy characterization of an ODS milled powder. It provides clear evidence of the presence of small crystalline nanoclusters (NCs) enriched in titanium directly after milling. Small NCs (<5 nm) have a crystalline structure and seem partly coherent with the matrix. They have an interplanar spacing close to the (011) {sub bcc} iron structure. They coexist with larger crystalline spherical precipitates of 15–20 nm in size. Their crystalline structure may be metastable as they are not consistent with any Y-Ti-O or Ti-O structure. Such detailed observations in the as-milled grain powder confirm a mechanism of Y, Ti, O dissolution in the ferritic matrix followed by a NC precipitation during the mechanical alloying process of ODS materials. - Highlights: • We observed an ODS ball-milled powder by high resolution transmission microscopy. • The ODS ball-milled powder exhibits a lamellar microstructure. • Small crystalline nanoclusters were detected in the milled ODS powder. • The nanoclusters in the ODS milled powder are enriched in titanium. • Larger NCs of 15–20 nm in size are, at least, partly coherent with the matrix.

  5. Hydrothermal Synthesis of Highly Water-dispersible Anatase Nanoparticles with Large Specific Surface Area and Their Adsorptive Properties

    Directory of Open Access Journals (Sweden)

    Hu Xueting

    2016-01-01

    Full Text Available Highly water-dispersible and very small TiO2 nanoparticles (~3 nm anatase with large specific surface area have been synthesized by hydrolysis and hydrothermal reactions of titanium butoxide and used for the removal of three azo dyes (Congo red, orange II, and methyl orange with different molecular structure from simulated wastewaters. The synthesized TiO2 nanoparticles are well dispersed in water with large specific surface area up to 417 m2 g−1. Adsorption experiments demonstrated that the water-dispersible TiO2 nanoparticles possess excellent adsorption capacities for Congo red, orange II, and methyl orange, which could be attributed to their good water-dispersibility and large specific surface area.

  6. Integration of measurements with atmospheric dispersion models: Source term estimation for dispersal of (239)Pu due to non-nuclear detonation of high explosive

    Science.gov (United States)

    Edwards, L. L.; Harvey, T. F.; Freis, R. P.; Pitovranov, S. E.; Chernokozhin, E. V.

    1992-10-01

    The accuracy associated with assessing the environmental consequences of an accidental release of radioactivity is highly dependent on our knowledge of the source term characteristics and, in the case when the radioactivity is condensed on particles, the particle size distribution, all of which are generally poorly known. This paper reports on the development of a numerical technique that integrates the radiological measurements with atmospheric dispersion modeling. This results in a more accurate particle-size distribution and particle injection height estimation when compared with measurements of high explosive dispersal of (239)Pu. The estimation model is based on a non-linear least squares regression scheme coupled with the ARAC three-dimensional atmospheric dispersion models. The viability of the approach is evaluated by estimation of ADPIC model input parameters such as the ADPIC particle size mean aerodynamic diameter, the geometric standard deviation, and largest size. Additionally we estimate an optimal 'coupling coefficient' between the particles and an explosive cloud rise model. The experimental data are taken from the Clean Slate 1 field experiment conducted during 1963 at the Tonopah Test Range in Nevada. The regression technique optimizes the agreement between the measured and model predicted concentrations of (239)Pu by varying the model input parameters within their respective ranges of uncertainties. The technique generally estimated the measured concentrations within a factor of 1.5, with the worst estimate being within a factor of 5, very good in view of the complexity of the concentration measurements, the uncertainties associated with the meteorological data, and the limitations of the models. The best fit also suggest a smaller mean diameter and a smaller geometric standard deviation on the particle size as well as a slightly weaker particle to cloud coupling than previously reported.

  7. Integration of measurements with atmospheric dispersion models: Source term estimation for dispersal of 239Pu due to non- nuclear detonation of high explosive

    International Nuclear Information System (INIS)

    Edwards, L.L.; Harvey, T.F.; Freis, R.P.; Pitovranov, S.E.; Chernokozhin, E.V.

    1992-10-01

    The accuracy associated with assessing the environmental consequences of an accidental release of radioactivity is highly dependent on our knowledge of the source term characteristics and, in the case when the radioactivity is condensed on particles, the particle size distribution, all of which are generally poorly known. This paper reports on the development of a numerical technique that integrates the radiological measurements with atmospheric dispersion modeling. This results in a more accurate particle-size distribution and particle injection height estimation when compared with measurements of high explosive dispersal of 239 Pu. The estimation model is based on a non-linear least squares regression scheme coupled with the ARAC three-dimensional atmospheric dispersion models. The viability of the approach is evaluated by estimation of ADPIC model input parameters such as the ADPIC particle size mean aerodynamic diameter, the geometric standard deviation, and largest size. Additionally we estimate an optimal ''coupling coefficient'' between the particles and an explosive cloud rise model. The experimental data are taken from the Clean Slate 1 field experiment conducted during 1963 at the Tonopah Test Range in Nevada. The regression technique optimizes the agreement between the measured and model predicted concentrations of 239 Pu by varying the model input parameters within their respective ranges of uncertainties. The technique generally estimated the measured concentrations within a factor of 1.5, with the worst estimate being within a factor of 5, very good in view of the complexity of the concentration measurements, the uncertainties associated with the meteorological data, and the limitations of the models. The best fit also suggest a smaller mean diameter and a smaller geometric standard deviation on the particle size as well as a slightly weaker particle to cloud coupling than previously reported

  8. Application of large-scale parentage analysis for investigating natal dispersal in highly vagile vertebrates: a case study of American black bears (Ursus americanus).

    Science.gov (United States)

    Moore, Jennifer A; Draheim, Hope M; Etter, Dwayne; Winterstein, Scott; Scribner, Kim T

    2014-01-01

    Understanding the factors that affect dispersal is a fundamental question in ecology and conservation biology, particularly as populations are faced with increasing anthropogenic impacts. Here we collected georeferenced genetic samples (n = 2,540) from three generations of black bears (Ursus americanus) harvested in a large (47,739 km2), geographically isolated population and used parentage analysis to identify mother-offspring dyads (n = 337). We quantified the effects of sex, age, habitat type and suitability, and local harvest density at the natal and settlement sites on the probability of natal dispersal, and on dispersal distances. Dispersal was male-biased (76% of males dispersed) but a small proportion (21%) of females also dispersed, and female dispersal distances (mean ± SE  =  48.9±7.7 km) were comparable to male dispersal distances (59.0±3.2 km). Dispersal probabilities and dispersal distances were greatest for bears in areas with high habitat suitability and low harvest density. The inverse relationship between dispersal and harvest density in black bears suggests that 1) intensive harvest promotes restricted dispersal, or 2) high black bear population density decreases the propensity to disperse. Multigenerational genetic data collected over large landscape scales can be a powerful means of characterizing dispersal patterns and causal associations with demographic and landscape features in wild populations of elusive and wide-ranging species.

  9. Application of large-scale parentage analysis for investigating natal dispersal in highly vagile vertebrates: a case study of American black bears (Ursus americanus.

    Directory of Open Access Journals (Sweden)

    Jennifer A Moore

    Full Text Available Understanding the factors that affect dispersal is a fundamental question in ecology and conservation biology, particularly as populations are faced with increasing anthropogenic impacts. Here we collected georeferenced genetic samples (n = 2,540 from three generations of black bears (Ursus americanus harvested in a large (47,739 km2, geographically isolated population and used parentage analysis to identify mother-offspring dyads (n = 337. We quantified the effects of sex, age, habitat type and suitability, and local harvest density at the natal and settlement sites on the probability of natal dispersal, and on dispersal distances. Dispersal was male-biased (76% of males dispersed but a small proportion (21% of females also dispersed, and female dispersal distances (mean ± SE  =  48.9±7.7 km were comparable to male dispersal distances (59.0±3.2 km. Dispersal probabilities and dispersal distances were greatest for bears in areas with high habitat suitability and low harvest density. The inverse relationship between dispersal and harvest density in black bears suggests that 1 intensive harvest promotes restricted dispersal, or 2 high black bear population density decreases the propensity to disperse. Multigenerational genetic data collected over large landscape scales can be a powerful means of characterizing dispersal patterns and causal associations with demographic and landscape features in wild populations of elusive and wide-ranging species.

  10. High temperature oxidation test of oxide dispersion strengthened (ODS) steel claddings

    International Nuclear Information System (INIS)

    Narita, Takeshi; Ukai, Shigeharu; Kaito, Takeji; Ohtsuka, Satoshi; Matsuda, Yasushi

    2006-07-01

    In a feasibility study of ODS steel cladding, its high temperature oxidation resistance was evaluated. Although addition of Cr is effective for preventing high temperature oxidation, excessively higher amount of Cr leads to embrittlement due to the Cr-rich α' precipitate formation. In the ODS steel developed by the Japan Atomic Energy Agency (JAEA), the Cr content is controlled in 9Cr-ODS martensite and 12Cr-ODS ferrite. In this study, high temperature oxidation test was conducted for ODS steels, and their results were compared with that of conventional austenitic stainless steel and ferritic-martensitic stainless steel. Following results were obtained in this study. (1) 9Cr-ODS martensitic and 12Cr-ODS ferritic steel have superior high temperature oxidation resistance compared to 11mass%Cr PNC-FMS and even 17mass% SUS430 and equivalent to austenitic PNC316. (2) The superior oxidation resistance of ODS steel was attributed to earlier formation of the protective alpha-Cr 2 O 3 layer at the matrix and inner oxide scale interface. The grain size of ODS steel is finer than that of PNC-FMS, so the superior oxidation resistance of ODS steel can be attributed to the enhanced Cr-supplying rate throughout the accelerated grain boundary diffusion. Finely dispersed Y 2 O 3 oxide particles in the ODS steel matrix may also stabilized the adherence between the protective alpha-Cr 2 O 3 layer and the matrix. (author)

  11. The dissolution enhancement of piroxicam in its physical mixtures and solid dispersion formulations using gluconolactone and glucosamine hydrochloride as potential carriers.

    Science.gov (United States)

    Al-Hamidi, Hiba; Obeidat, Wasfy M; Nokhodchi, Ali

    2015-01-01

    The solid dispersion technique is one of the most effective methods for improving the dissolution rate of poorly water-soluble drugs; however this is reliant on a suitable carrier and solvent being selected. The work presented explores amino sugars (d-glucosamine HCl and d-gluconolactone) as potential hydrophilic carriers to improve dissolution rate of a poorly water-soluble drug, piroxicam, from physical mixtures and solid dispersion formulations. Solid dispersions of the drug and carrier were prepared using different ratios by the conventional solvent evaporation method. Acetone was used as solvent in the preparation of solid dispersions. Physical mixtures of piroxicam and carrier were also prepared for comparison. The properties of all solid dispersions and physical mixtures were studied using a dissolution tester, Fourier transform infrared, XRD, SEM and differential scanning calorimetry. These results showed that the presence of glucosamine or gluconolactone can increase dissolution rate of piroxicam compared to pure piroxicam. Glucosamine or Gluconolactone could be used as carrier in solid dispersion formulations and physical mixtures to enhance the dissolution rate. Solid state studies showed that no significant changes occurred for piroxicam in physical mixtures and solid dispersion.

  12. Dispersion of fruit flies (Diptera: Tephritidae) at high and low densities and consequences of mismatching dispersions of wild and sterile flies

    International Nuclear Information System (INIS)

    Meats, A.

    2007-01-01

    Both wild and released (sterile) Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) and wild Bactrocera papayae (Drew and Hancock) in Australia had patchy distributions and comparisons with predictions of the negative binomial model indicated that the degree of clumping was sometimes very high, particularly at low densities during eradication. An increase of mean recapture rate of sterile B. tryoni on either of 2 trap arrays was not accompanied by a reduction in its coefficient of variation and when recapture rates were high, the percentage of traps catching zero decreased only slightly with increase in recapture rate, indicating that it is not practicable to decrease the heterogeneity of dispersion of sterile flies by increasing the number released. There was often a mismatch between the dispersion patterns of the wild and sterile flies, and the implications of this for the efficiency of the sterile insect technique (SIT) were investigated with a simulation study with the observed degrees of mismatch obtained from the monitoring data and assuming the overall ratio of sterile to wild flies to be 100:1. The simulation indicated that mismatches could result in the imposed rate of increase of wild flies being up to 3.5 times higher than that intended (i.e., 0.35 instead of 0.1). The effect of a mismatch always reduces the efficiency of SIT. The reason for this asymmetry is discussed and a comparison made with host-parasitoid and other systems. A release strategy to counter this effect is suggested. (author) [es

  13. The origin of high eccentricity planets: The dispersed planet formation regime for weakly magnetized disks

    Directory of Open Access Journals (Sweden)

    Yusuke Imaeda

    2017-03-01

    Full Text Available In the tandem planet formation regime, planets form at two distinct sites where solid particles are densely accumulated due to the on/off state of the magnetorotational instability (MRI. We found that tandem planet formation can reproduce the solid component distribution of the Solar System and tends to produce a smaller number of large planets through continuous pebble flow into the planet formation sites. In the present paper, we investigate the dependence of tandem planet formation on the vertical magnetic field of the protoplanetary disk. We calculated two cases of Bz=3.4×10−3 G and Bz=3.4×10−5 G at 100 AU as well as the canonical case of Bz=3.4×10−4 G. We found that tandem planet formation holds up well in the case of the strong magnetic field (Bz=3.4×10−3 G. On the other hand, in the case of a weak magnetic field (Bz=3.4×10−5 G at 100 AU, a new regime of planetary growth is realized: the planets grow independently at different places in the dispersed area of the MRI-suppressed region of r=8−30 AU at a lower accretion rate of M˙<10−7.4 M⊙yr−1. We call this the “dispersed planet formation” regime. This may lead to a system with a larger number of smaller planets that gain high eccentricity through mutual collisions.

  14. N, S co-doped carbon spheres with highly dispersed CoO as non-precious metal catalyst for oxygen reduction reaction

    Science.gov (United States)

    Chen, Linlin; Guo, Xingpeng; Zhang, Guoan

    2017-08-01

    It is still a great challenge in preparing non-precious metal catalysts with high activity and long-term stability to substitute for precious metal catalysts for oxygen reduction reaction (ORR) in fuel cells. Herein, we report a novel and facile catalyst-N, S co-doped carbon spheres with highly dispersed CoO (CoO@NS-CSs), where biomass glucose spheres act as carbon precursor and H2S, NH3 derived from the decomposition of thiourea not only provide N, S sources but also can etch carbon spheres to produce nanoporous structure. CoO@NS-CSs catalyst exhibits excellent ORR activity with a high onset potential of 0.946 V vs. RHE (reversible hydrogen electrode) and a half-wave potential of 0.821 V vs. RHE through a four-electron pathway in alkaline solution, which is comparable to commercial Pt/C catalyst (onset potential: 0.926 V vs. RHE, half-wave potential: 0.827 V vs. RHE). Furthermore, both the long-term stability and methanol-tolerance of CoO@NS-CSs catalyst are superior to those of commercial Pt/C catalyst. The excellent ORR performance of CoO@NS-CSs catalyst can be attributed to its micro-mesopore structure, high specific surface area (667 m2 g-1), and highly dispersed CoO. This work manifests that the obtained CoO@NS-CSs catalyst is promising to be applied to fuel cells.

  15. Phototoxic potential of undispersed and dispersed fresh and weathered Macondo crude oils to Gulf of Mexico Marine Organisms.

    Science.gov (United States)

    Finch, Bryson E; Marzooghi, Solmaz; Di Toro, Dominic M; Stubblefield, William A

    2017-10-01

    Crude oils contain a mixture of hydrocarbons, including phototoxic polycyclic aromatic hydrocarbons (PAHs) that have the ability to absorb ultraviolet (UV) light. Absorption of UV light by PAHs can substantially increase their toxicity to marine organisms. The objective of the present study was to examine the potential for phototoxicity of fresh and naturally weathered Macondo crude oils alone and in combination with the dispersant Corexit 9500 to mysid shrimp (Americamysis bahia), inland silverside (Menidia beryllina), sheepshead minnow (Cyprinodon variegatus), and Gulf killifish (Fundulus grandis). Acute toxicity tests were conducted using combinations of natural or artificial sunlight and low-energy water-accommodated fractions (WAFs) of fresh and weathered Macondo crude oils collected from the Gulf of Mexico. Studies were also conducted to compare the phototoxicity resulting from natural and artificial sunlight. Fresh Macondo crude oil was more phototoxic than weathered crude oils, both in the presence and in the absence of UV light. Differences in toxicity between fresh and weathered crude oils were likely attributed to lighter-ringed PAHs in fresh crude oils. Phototoxic PAHs were relatively resistant to weathering compared with lighter-ringed PAHs. The addition of Corexit 9500 to crude oil increased toxicity compared with tests with crude oil alone, by increasing phototoxic PAH concentrations in WAFs. Macondo crude oils had the potential to be phototoxic to Gulf of Mexico marine organisms if specific light conditions and PAH concentrations were present during the Deepwater Horizon oil spill. Environ Toxicol Chem 2017;36:2640-2650. © 2017 SETAC. © 2017 SETAC.

  16. Combustion of Shock-Dispersed Flake Aluminum - High-Speed Visualization

    Energy Technology Data Exchange (ETDEWEB)

    Neuwald, P; Reichenbach, H; Kuhl, A

    2006-06-19

    Charges of 0.5 g PETN were used to disperse 1 g of flake aluminum in a rectangular test chamber of 4 liter inner volume and inner dimensions of approximately 10 cm x 10 cm x 40 cm. The subsequent combustion of the flake aluminum with the ambient air in the chamber gave rise to a highly luminous flame. The evolution of the luminous region was studied by means of high-speed cinematography. The high-speed camera is responsive to a broad spectral range in the visible and near infra-red. For a number of tests this response range was narrowed down by means of a band-pass filter with a center wavelength of 488 nm and a half-width of 23 nm. The corresponding images were expected to have a stronger temperature dependence than images obtained without the filter, thus providing better capability to highlight hot-spots. Emission in the range of the pass-band of the filter can be due to continuous thermal radiation from hot Al and Al{sub 2}O{sub 3} particles or to molecular band emission from gaseous AlO. A time-resolving spectrometer was improvised to inspect this topic. The results suggest that AlO emission occurs, but that the continuous spectrum is the dominating effect in our experiments.

  17. Hyperbolic Method for Dispersive PDEs: Same High-Order of Accuracy for Solution, Gradient, and Hessian

    Science.gov (United States)

    Mazaheri, Alireza; Ricchiuto, Mario; Nishikawa, Hiroaki

    2016-01-01

    In this paper, we introduce a new hyperbolic first-order system for general dispersive partial differential equations (PDEs). We then extend the proposed system to general advection-diffusion-dispersion PDEs. We apply the fourth-order RD scheme of Ref. 1 to the proposed hyperbolic system, and solve time-dependent dispersive equations, including the classical two-soliton KdV and a dispersive shock case. We demonstrate that the predicted results, including the gradient and Hessian (second derivative), are in a very good agreement with the exact solutions. We then show that the RD scheme applied to the proposed system accurately captures dispersive shocks without numerical oscillations. We also verify that the solution, gradient and Hessian are predicted with equal order of accuracy.

  18. Characterisation of high-temperature damage mechanisms of oxide dispersion strengthened (ODS) ferritic steels

    International Nuclear Information System (INIS)

    Salmon-Legagneur, Hubert

    2017-01-01

    The development of the fourth generation of nuclear power plants relies on the improvement of cladding materials, in order to achieve resistance to high temperature, stress and irradiation dose levels. Strengthening of ferritic steels through nano-oxide dispersion allows obtaining good mechanical strength at high temperature and good resistance to irradiation induced swelling. Nonetheless, studies available from open literature evidenced an unusual creep behavior of these materials: high anisotropy in time to rupture and flow behavior, low ductility and quasi-inexistent tertiary creep stage. These phenomena, and their still unclear origin are addressed in this study. Three 14Cr ODS steels rods have been studied. Their mechanical behavior is similar to those of other ODS steels from open literature. During creep tests, the specimens fractured by through crack nucleation and propagation from the lateral surfaces, followed by ductile tearing once the critical stress intensity factor was reached at the crack tip. Tensile and creep properties did not depend on the chemical environment of specimens. Crack propagation tests performed at 650 C showed a low value of the stress intensity factor necessary to start crack propagation. The cracks followed an intergranular path through the smaller-grained regions, which partly explains the anisotropy of high temperature strength. Notched specimens have been used to study the impact of the main loading parameters (deformation rate, temperature, stress triaxiality) on macroscopic crack initiation and stable propagation, from the central part of the specimens. These tests allowed revealing cavities created during high temperature loading, but unexposed to the external environment. These cavities showed a high chemical reactivity of the free surfaces in this material. The performed tests also evidenced different types of grain boundaries, which presented different damage development behaviors, probably due to differences in local

  19. Fuel dispersal in high-speed aircraft/soil impact scenarios

    International Nuclear Information System (INIS)

    Tieszen, S.R.; Attaway, S.W.

    1996-01-01

    The objective of this study is to determine how the jet fuel contained in aircraft wing tanks disperses on impact with a soft terrain, i.e., soils, at high impact velocities. The approach used in this study is to combine experimental and numerical methods. Tests were conducted with an approximately 1/42 linear-scale mass-model of a 1/4 span section of a C-141 wing impacting a sand/clay mixture. The test results showed that within the uncertainty of the data, the percentage of incident liquid mass remaining in the crater is the same as that qualitatively described in earlier napalm bomb development studies. Namely, the percentage of fuel in the crater ranges from near zero for grazing impacts to 25%--50% for high angles of impact. To support a weapons system safety assessment (WSSA), the data from the current study have been reduced to correlations. The numerical model used in the current study is a unique coupling of a Smooth Particle Hydrodynamics (SPH) method with the transient dynamics finite element code PRONTO. Qualitatively, the splash, erosion, and soil compression phenomena are all numerically predicted. Quantitatively, the numerical method predicted a smaller crater cross section than was observed in the tests

  20. Design of high density gamma-phase uranium alloys for LEU dispersion fuel applications

    International Nuclear Information System (INIS)

    Hofman, Gerard L.; Meyer, Mitchell K.; Ray, Allison E.

    1998-01-01

    Uranium alloys are candidates for the fuel phase in aluminium matrix dispersion fuels requiring high uranium loading. Certain uranium alloys have been shown to have good irradiation performance at intermediate burnup. previous studies have shown that acceptable fission gas swelling behavior and fuel-aluminium interaction is possible only if the fuel alloy can be maintained in the high temperature body-centered-cubic γ-phase during fabrication and irradiation, at temperatures at which αU is the equilibrium phase. transition metals in Groups V through VIII are known to allow metastable retention of the gamma phase below the equilibrium isotherm. These metals have varying degrees of effectiveness in stabilizing the gamma phase. Certain alloys are metastable for very long times at the relatively low fuel temperatures seen in research operation. In this paper, the existing data on the gamma stability of binary and ternary uranium alloys is analysed. The mechanism and kinetics of decomposition of the gamma phase are assessed with the help of metal alloy theory. Alloys with the highest possible uranium content, good gamma-phase stability, and good neutronic performance are identified for further metallurgical studies and irradiation tests. Results from theory will be compared with experimentally generated data. (author)

  1. Accurate, high-throughput typing of copy number variation using paralogue ratios from dispersed repeats.

    Science.gov (United States)

    Armour, John A L; Palla, Raquel; Zeeuwen, Patrick L J M; den Heijer, Martin; Schalkwijk, Joost; Hollox, Edward J

    2007-01-01

    Recent work has demonstrated an unexpected prevalence of copy number variation in the human genome, and has highlighted the part this variation may play in predisposition to common phenotypes. Some important genes vary in number over a high range (e.g. DEFB4, which commonly varies between two and seven copies), and have posed formidable technical challenges for accurate copy number typing, so that there are no simple, cheap, high-throughput approaches suitable for large-scale screening. We have developed a simple comparative PCR method based on dispersed repeat sequences, using a single pair of precisely designed primers to amplify products simultaneously from both test and reference loci, which are subsequently distinguished and quantified via internal sequence differences. We have validated the method for the measurement of copy number at DEFB4 by comparison of results from >800 DNA samples with copy number measurements by MAPH/REDVR, MLPA and array-CGH. The new Paralogue Ratio Test (PRT) method can require as little as 10 ng genomic DNA, appears to be comparable in accuracy to the other methods, and for the first time provides a rapid, simple and inexpensive method for copy number analysis, suitable for application to typing thousands of samples in large case-control association studies.

  2. Local-scale high-resolution atmospheric dispersion model using large-eddy simulation. LOHDIM-LES

    International Nuclear Information System (INIS)

    Nakayama, Hiromasa; Nagai, Haruyasu

    2016-03-01

    We developed LOcal-scale High-resolution atmospheric DIspersion Model using Large-Eddy Simulation (LOHDIM-LES). This dispersion model is designed based on LES which is effective to reproduce unsteady behaviors of turbulent flows and plume dispersion. The basic equations are the continuity equation, the Navier-Stokes equation, and the scalar conservation equation. Buildings and local terrain variability are resolved by high-resolution grids with a few meters and these turbulent effects are represented by immersed boundary method. In simulating atmospheric turbulence, boundary layer flows are generated by a recycling turbulent inflow technique in a driver region set up at the upstream of the main analysis region. This turbulent inflow data are imposed at the inlet of the main analysis region. By this approach, the LOHDIM-LES can provide detailed information on wind velocities and plume concentration in the investigated area. (author)

  3. High temperature monitoring of silicon carbide ceramics by confocal energy dispersive X-ray fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fangzuo; Liu, Zhiguo; Sun, Tianxi, E-mail: stx@bnu.edu.cn

    2016-04-15

    Highlights: • X-ray scattering was used for monitoring oxidation situation of SiC ceramics. • A calibration curve was obtained. • The confocal X-ray scattering technology was based on polycapillary X-ray optics. • The variations of contents of components of SiC ceramics were obtained. - Abstract: In the present work, we presented an alternative method for monitoring of the oxidation situation of silicon carbide (SiC) ceramics at various high temperatures in air by measuring the Compton-to-Rayleigh intensity ratios (I{sub Co}/I{sub Ra}) and effective atomic numbers (Z{sub eff}) of SiC ceramics with the confocal energy dispersive X-ray fluorescence (EDXRF) spectrometer. A calibration curve of the relationship between I{sub Co}/I{sub Ra} and Z{sub eff} was established by using a set of 8 SiC calibration samples. The sensitivity of this approach is so high that it can be easily distinguished samples of Z{sub eff} differing from each other by only 0.01. The linear relationship between the variation of Z{sub eff} and the variations of contents of C, Si and O of SiC ceramics were found, and the corresponding calculation model of the relationship between the ΔZ and the ΔC{sub C}, ΔC{sub Si}, and ΔC{sub O} were established. The variation of contents of components of the tested SiC ceramics after oxidation at high temperature was quantitatively calculated based on the model. It was shown that the results of contents of carbon, silicon and oxygen obtained by this method were in good agreement with the results obtained by XPS, giving values of relative deviation less than 1%. It was concluded that the practicality of this proposed method for monitoring of the oxidation situation of SiC ceramics at high temperatures was acceptable.

  4. Constant potential high-voltage generator

    International Nuclear Information System (INIS)

    Resnick, T.A.; Dupuis, W.A.; Palermo, T.

    1980-01-01

    An X-ray tube voltage generator with automatic stabilization circuitry is disclosed. The generator includes a source of pulsating direct current voltage such as from a rectified 3 phase transformer. This pulsating voltage is supplied to the cathode and anode of an X-ray tube and forms an accelerating potential for electrons within that tube. The accelerating potential is stabilized with a feedback signal which is provided by a feedback network. The network includes an error signal generator which compares an instantaneous accelerating potential with a preferred reference accelerating potential and generates an error function. This error function is transmitted to a control tube grid which in turn causes the voltage difference between X-ray tube cathode and anode to stabilize and thereby reduce the error function. In this way stabilized accelerating potentials are realized and uniform X-ray energy distributions produced. (Auth.)

  5. Synthesis of highly dispersed Pt nanoclusters anchored graphene composites and their application for non-enzymatic glucose sensing

    International Nuclear Information System (INIS)

    Chang, Gang; Shu, Honghui; Huang, Qiwei; Oyama, Munetaka; Ji, Kai; Liu, Xiong; He, Yunbin

    2015-01-01

    Highlights: • PtNCs/graphene (PVP) composites were obtained by a clean and facile method. • The addition of graphene effectively promotes the catalytic performance of composites. • The highly dispersed PtNCs show superior electrocatalytic activity to glucose oxidation. • PtNCs/graphene (PVP) composites exhibit excellent stability and selectivity for nonenzymatic glucose detection. - Abstract: A facile and clean method by using ascorbic acid as mild reductant was developed to synthesize nanocomposites of graphene and platinum nanoclusters (PtNCs/graphene), in which Polyvinyl-Pyrrolidone (PVP) was added during the one-step reductive process so as to improve the dispersity of PtNCs on the graphene and decrease the size of PtNCs. By several characterization methods such as X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS), we demonstrated that Pt nanoclusters have successfully anchored on the surface of graphene sheets with average diameter of 22 nm. It was found that with the assistant of PVP, Pt nanoclusters appeared with smaller particle size and narrower particle size distribution. Cyclic voltammetry and amperometric methods were used to evaluate the electro-catalytic activity of the synthesized nanocomposites toward the oxidation of glucose in neutral media (0.1 M PBS, pH 7.4). The PtNCs/graphene exhibited a rapid response time (about 3 s), a broad linear range (1 mM to 25 mM), good stability, and sensitivity estimated to be 1.21 μA cm −2 mM −1 (R = 0.995, 71.9 μA cm −2 mM −1 vs. geometric area). Additionally, the impact from the oxidation of interferences can be effectively limited by choosing the appropriate detection potential. These results indicated a great potential of PtNCs/graphene in fabricating novel non-enzymatic glucose sensors with high performance

  6. Potential role of frugivorous birds (Passeriformes) on seed dispersal of six plant species in a restinga habitat, southeastern Brazil.

    Science.gov (United States)

    Gomes, Verônica Souza da Mota; Correia, Maria Célia Rodrigues; de Lima, Heloisa Alves; Alves, Maria Alice S

    2008-03-01

    Restingas are considered stressful habitats associated with the Brazilian Atlantic forest, and their ecological interactions are poorly known. The goal of the present study was to determine the potential role of frugivorous birds as seed dispersers in a restinga habitat. Data were collected in Parque Nacional da Restinga de Jurubatiba, southeastern Brazil, where the main physiognomy (Open Clusia Formation) is characterized by the presence of patches of vegetation covering 20 to 48 % of the sandy soil and reaching a height of 5 m. Birds were captured with mist nets (12 x 2.5 m; 36 mm mesh; 1,680 net-hrs) and had their fecal and regurgitate samples inspected for seeds. Six plant species found in these bird samples were studied. The germination of seeds obtained from plants was compared to those from the birds. Both groups of seeds were set on Petri dishes at room temperature and washed when infected with fungi. In general, there was no effect on germination rate, and the effect on germination speed was negative. Germination of seeds from Pilosocereus arrabidae treated by the birds seemed to be influenced by storage of defecated seeds, while few Miconia cinnamomifolia seeds both from plants and from birds germinated. Ocotea notata presented a great variation in time to the onset of germination, perhaps an advantage against dissecation. Aechmea nudicaulis, Clusia hilariana and Erythroxylum subsessile probably take advantage of the arrival to favorable microhabitats, not by the gut effect on the seeds. All plant species studied are numerically important for the community and some of them are main actors in the succession of vegetation patches. Among the birds, Mimus gilvus is an important resident species, endemic to restingas in Brazil, while Turdus amaurochalinus is a visitor and may be important for plants that fructify during its passage by the study site. Although the effect of pulp removal was only tested for one species (Achmea nudicaulis) in the present study

  7. Unusually high dispersion of nitrogen-doped carbon nanotubes in DNA solution.

    Science.gov (United States)

    Kim, Jin Hee; Kataoka, Masakazu; Fujisawa, Kazunori; Tojo, Tomohiro; Muramatsu, Hiroyuki; Vega-Díaz, Sofía M; Tristán-López, F; Hayashi, Takuya; Kim, Yoong Ahm; Endo, Morinobu; Terrones, Mauricio; Dresselhaus, Mildred S

    2011-12-08

    The dispersibility in a DNA solution of bundled multiwalled carbon nanotubes (MWCNTs), having different chemical functional groups on the CNT sidewall, was investigated by optical spectroscopy. We observed that the dispersibility of nitrogen (N)-doped MWCNTs was significantly higher than that of pure MWCNTs and MWCNTs synthesized in the presence of ethanol. This result is supported by the larger amount of adsorbed DNA on N-doped MWCNTs, as well as by the higher binding energy established between nucleobases and the N-doped CNTs. Pure MWCNTs are dispersed in DNA solution via van der Waals and hydrophobic interactions; in contrast, the nitrogenated sites within N-doped MWCNTs provided additional sites for interactions that are important to disperse nanotubes in DNA solutions. © 2011 American Chemical Society

  8. High-temperature deformation of dispersion-strengthened Cu-Zr-Ti-C alloys

    International Nuclear Information System (INIS)

    Palma, Rodrigo H.; Sepulveda, Aquiles; Espinoza, Rodrigo; Dianez, M. Jesus; Criado, Jose M.; Sayagues, M. Jesus

    2005-01-01

    The hot mechanical behaviour and microstructure of Cu-5 vol.% TiC, Cu-5 vol.% ZrO 2 and Cu-2.5 vol.% TiC-2.5 vol.% ZrO 2 alloys prepared by reaction milling were studied. After a test of 1 h annealing at 1173 K, the Cu-5 vol.% ZrO 2 alloy presented the lower softening resistance to annealing, while the other two ones kept their initial room-temperature hardness (about 2 GPa). Hot-compression tests at 773 and 1123 K, at initial true strain rates of 0.85 x 10 -3 and 0.85 x 10 -4 s -1 were performed. The Cu-2.5 vol.% TiC-2.5 vol.% ZrO 2 and the Cu-5 vol.% ZrO 2 alloys were the strongest and softest materials, respectively. Moreover, by electron microscopy, nanometric TiC and micrometric particles were detected in the Cu-5 vol.% TiC and Cu-5 vol.% ZrO 2 alloys, respectively. A possible explanation for the observed behaviour of these materials is proposed. In the compression tests, it was also found that strain rate has a low effect on flow stress, as it has been previously observed by various authors in dispersion-strengthened alloys deformed at high temperatures

  9. Lanthanide-containing polymer microspheres by multiple-stage dispersion polymerization for highly multiplexed bioassays.

    Science.gov (United States)

    Abdelrahman, Ahmed I; Dai, Sheng; Thickett, Stuart C; Ornatsky, Olga; Bandura, Dmitry; Baranov, Vladimir; Winnik, Mitchell A

    2009-10-28

    We describe the synthesis and characterization of metal-encoded polystyrene microspheres by multiple-stage dispersion polymerization with diameters on the order of 2 mum and a very narrow size distribution. Different lanthanides were loaded into these microspheres through the addition of a mixture of lanthanide salts (LnCl(3)) and excess acrylic acid (AA) or acetoacetylethyl methacrylate (AAEM) dissolved in ethanol to the reaction after about 10% conversion of styrene, that is, well after the particle nucleation stage was complete. Individual microspheres contain ca. 10(6)-10(8) chelated lanthanide ions, of either a single element or a mixture of elements. These microspheres were characterized one-by-one utilizing a novel mass cytometer with an inductively coupled plasma (ICP) ionization source and time-of-flight (TOF) mass spectrometry detection. Microspheres containing a range of different metals at different levels of concentration were synthesized to meet the requirements of binary encoding and enumeration encoding protocols. With four different metals at five levels of concentration, we could achieve a variability of 624, and the strategy we report should allow one to obtain much larger variability. To demonstrate the usefulness of element-encoded beads for highly multiplexed immunoassays, we carried out a proof-of-principle model bioassay involving conjugation of mouse IgG to the surface of La and Tm containing particles and its detection by an antimouse IgG bearing a metal-chelating polymer with Pr.

  10. Artificial dispersion via high-order homogenization: magnetoelectric coupling and magnetism from dielectric layers

    Science.gov (United States)

    Liu, Yan; Guenneau, Sébastien; Gralak, Boris

    2013-01-01

    We investigate a high-order homogenization (HOH) algorithm for periodic multi-layered stacks. The mathematical tool of choice is a transfer matrix method. Expressions for effective permeability, permittivity and magnetoelectric coupling are explored by frequency power expansions. On the physical side, this HOH uncovers a magnetoelectric coupling effect (odd-order approximation) and artificial magnetism (even-order approximation) in moderate contrast photonic crystals. Comparing the effective parameters' expressions of a stack with three layers against that of a stack with two layers, we note that the magnetoelectric coupling effect vanishes while the artificial magnetism can still be achieved in a centre-symmetric periodic structure. Furthermore, we numerically check the effective parameters through the dispersion law and transmission property of a stack with two dielectric layers against that of an effective bianisotropic medium: they are in good agreement throughout the low-frequency (acoustic) band until the first stop band, where the analyticity of the logarithm function of the transfer matrix () breaks down. PMID:24101891

  11. High-temperature behavior of oxide dispersion strengthening CoNiCrAlY

    Energy Technology Data Exchange (ETDEWEB)

    Unocic, Kinga A. [ORNL; Bergholz, Jan [Forschungszentrum Jülich GmbH; Huang, T [Institute for Energy and Climate Research, IEK-2, Forschungszentrum Jülich GmbH; Naumenko, Dymtro [Forschungszentrum Julich GmbH (Julich Research Centre), Germany; Pint, Bruce A. [ORNL; Vaßen, Robert [Forschungszentrum Julich, Germany; Quadakkers, Willem Joseph [Forschungszentrum Julich, Germany

    2017-11-01

    To fabricate oxide dispersion strengthened bond coatings, commercial Co–30wt-%Ni–20Cr–8Al–0•4Y powder was milled with 2% additions of Al2O3, Y2O3 or Y2O3 + HfO2. Low-pressure plasma sprayed, free-standing specimens were oxidised in air + 10%H2O at 1100 °C both isothermally (100 h) and in 500, 1-h cycles. Dry air cyclic testing conducted at both ORNL and FZJ showed remarkably similar results. In general, the water vapour addition caused more scale spallation. Two LPPS specimens without oxide additions were tested for comparison. The specimens with 2%Al2O3 addition exhibited the best behaviour as the powder already contained 0•4%Y. Additions of 2%Y2O3 and especially 1%Y2O3 + 1%HfO2 resulted in over-doping as evidenced by high mass gains and the formation of Y- and Hf-rich pegs. Scanning transmission electron microscopy of the isothermal specimens showed no Hf and/or Y segregation to the alumina scale grain boundaries in the over-doped specimens.

  12. High resolution electromagnetic methods and low frequency dispersion of rock conductivity

    OpenAIRE

    Svetov, B. S.; Ageev, V. V.

    1999-01-01

    The influence of frequency dispersion of conductivity (induced polarization) of rocks on the results of electromagnetic (EM) sounding was studied on the basis of calculation of electric field of vertical magnetic dipole above horizontally layered polarizable sections. Frequency dispersion was approximated by the Debye formula. Polarizable homogeneous halfspace, two, three and multilayered sections were analyzed in frequency and time domains. The calculations for different values of chargeabil...

  13. High dispersal in a frog species suggests that it is vulnerable to habitat fragmentation

    OpenAIRE

    Funk, W. Chris; Greene, Allison E; Corn, Paul Stephen; Allendorf, Fred W

    2005-01-01

    Global losses of amphibian populations are a major conservation concern and their causes have generated substantial debate. Habitat fragmentation is considered one important cause of amphibian decline. However, if fragmentation is to be invoked as a mechanism of amphibian decline, it must first be established that dispersal is prevalent among contiguous amphibian populations using formal movement estimators. In contrast, if dispersal is naturally low in amphibians, fragmentation can be disreg...

  14. Synthesis of highly dispersed platinum particles on carbon nanotubes by an in situ vapor-phase method

    Energy Technology Data Exchange (ETDEWEB)

    Mercado-Zúñiga, C. [Depto. Ing. Metalurgia y Materiales, Instituto Politecnico Nacional, Mexico 07300 D.F. (Mexico); Vargas-García, J.R., E-mail: rvargasga@ipn.mx [Depto. Ing. Metalurgia y Materiales, Instituto Politecnico Nacional, Mexico 07300 D.F. (Mexico); Hernández-Pérez, M.A. [Depto. Ing. Metalurgia y Materiales, Instituto Politecnico Nacional, Mexico 07300 D.F. (Mexico); Figueroa-Torres, M.Z. [Depto. Eco-Materiales y Energia, Univ. Autonoma de Nuevo Leon, Nuevo Leon 66450 (Mexico); Cervantes-Sodi, F. [Depto. Fisica y Matematicas, Univ. Iberoamericana, Mexico 01209 D.F. (Mexico); Torres-Martínez, L.M. [Depto. Eco-Materiales y Energia, Univ. Autonoma de Nuevo Leon, Nuevo Leon 66450 (Mexico)

    2014-12-05

    Highlights: • Highly dispersed Pt nanoparticles were prepared on functionalized carbon nanotubes. • A simple and competitive vapor-phase method was employed. • Carbonyl groups were assumed to be responsible for assisted decomposition of Pt-acac. • Pt particles were highly dispersed because carbonyl groups served as reaction sites. • Particles of 2.3 nm in size were highly dispersed even the high loading (27 wt%Pt). - Abstract: Highly dispersed Pt nanoparticles were prepared on functionalized multi-walled carbon nanotubes (f-MWCNTs) using a simple in situ vapor-phase method. The method consisted in two-step procedure in which an initial mixture of Pt precursor (Pt-acac) and f-MWCNTs was heated in a quartz tube reactor, first at 180 °C and then at 400 °C. Fourier transform infrared spectroscopy (FTIR–ATR), thermal gravimetric analysis (TGA) and X-ray diffraction (XRD) were used to follow the chemical and structural transformations of mixture components during heating steps. The functionalization of MWCNTs with HNO{sub 3}/H{sub 2}SO{sub 4} solution resulted in formation of surface carbonyl groups. The FTIR–ATR and XRD results indicated that individual Pt-acac withstood heating at 180 °C, whereas it was dissociated when heated in contact with f-MWCNTs at the same temperature. Thus, the functional carbonyl groups were found to be responsible for assisted decomposition of Pt-acac at 180 °C. Since carbonyl groups served as reaction sites for decomposition of Pt-acac, the resulting particles were highly and homogeneously dispersed on the surface of MWCNTs even the relatively high metallic loading of 27 wt%. TEM observations revealed that crystalline Pt particles exhibit narrow size distribution with a mean size of 2.3 nm.

  15. Synthesis of highly dispersed platinum particles on carbon nanotubes by an in situ vapor-phase method

    International Nuclear Information System (INIS)

    Mercado-Zúñiga, C.; Vargas-García, J.R.; Hernández-Pérez, M.A.; Figueroa-Torres, M.Z.; Cervantes-Sodi, F.; Torres-Martínez, L.M.

    2014-01-01

    Highlights: • Highly dispersed Pt nanoparticles were prepared on functionalized carbon nanotubes. • A simple and competitive vapor-phase method was employed. • Carbonyl groups were assumed to be responsible for assisted decomposition of Pt-acac. • Pt particles were highly dispersed because carbonyl groups served as reaction sites. • Particles of 2.3 nm in size were highly dispersed even the high loading (27 wt%Pt). - Abstract: Highly dispersed Pt nanoparticles were prepared on functionalized multi-walled carbon nanotubes (f-MWCNTs) using a simple in situ vapor-phase method. The method consisted in two-step procedure in which an initial mixture of Pt precursor (Pt-acac) and f-MWCNTs was heated in a quartz tube reactor, first at 180 °C and then at 400 °C. Fourier transform infrared spectroscopy (FTIR–ATR), thermal gravimetric analysis (TGA) and X-ray diffraction (XRD) were used to follow the chemical and structural transformations of mixture components during heating steps. The functionalization of MWCNTs with HNO 3 /H 2 SO 4 solution resulted in formation of surface carbonyl groups. The FTIR–ATR and XRD results indicated that individual Pt-acac withstood heating at 180 °C, whereas it was dissociated when heated in contact with f-MWCNTs at the same temperature. Thus, the functional carbonyl groups were found to be responsible for assisted decomposition of Pt-acac at 180 °C. Since carbonyl groups served as reaction sites for decomposition of Pt-acac, the resulting particles were highly and homogeneously dispersed on the surface of MWCNTs even the relatively high metallic loading of 27 wt%. TEM observations revealed that crystalline Pt particles exhibit narrow size distribution with a mean size of 2.3 nm

  16. High-concentration graphene dispersion stabilized by block copolymers in ethanol.

    Science.gov (United States)

    Perumal, Suguna; Lee, Hyang Moo; Cheong, In Woo

    2017-07-01

    This article describes a comprehensive study for the preparation of graphene dispersions by liquid-phase exfoliation using amphiphilic diblock copolymers; poly(ethylene oxide)-block-poly(styrene) (PEO-b-PS), poly(ethylene oxide)-block-poly(4-vinylpyridine) (PEO-b-PVP), and poly(ethylene oxide)-block-poly(pyrenemethyl methacrylate) (PEO-b-PPy) with similar block lengths. Block copolymers were prepared from PEO using the Steglich coupling reaction followed by reversible addition-fragmentation chain transfer (RAFT) polymerization. Graphite platelets (G) and reduced graphene oxide (rGO) were used as graphene sources. The dispersion stability of graphene in ethanol was comparatively investigated by on-line turbidity, and the graphene concentration in the dispersions was determined gravimetrically. Our results revealed that the graphene dispersions with PEO-b-PVP were much more stable and included graphene with fewer defects than that with PEO-b-PS or PEO-b-PPy, as confirmed by turbidity and Raman analyses. Gravimetry confirmed that graphene concentrations up to 1.7 and 1.8mg/mL could be obtained from G and rGO dispersions, respectively, using PEO-b-PVP after one week. Distinctions in adhesion forces of PS, VP, PPy block units with graphene surface and the variation in solubility of the block copolymers in ethanol medium significantly affected the stability of the graphene dispersion. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. The human ether-a-go-go-related gene (hERG) current inhibition selectively prolongs action potential of midmyocardial cells to augment transmural dispersion.

    Science.gov (United States)

    Yasuda, C; Yasuda, S; Yamashita, H; Okada, J; Hisada, T; Sugiura, S

    2015-08-01

    The majority of drug induced arrhythmias are related to the prolongation of action potential duration following inhibition of rapidly activating delayed rectifier potassium current (I(Kr)) mediated by the hERG channel. However, for arrhythmias to develop and be sustained, not only the prolongation of action potential duration but also its transmural dispersion are required. Herein, we evaluated the effect of hERG inhibition on transmural dispersion of action potential duration using the action potential clamp technique that combined an in silico myocyte model with the actual I(Kr) measurement. Whole cell I(Kr) current was measured in Chinese hamster ovary cells stably expressing the hERG channel. The measured current was coupled with models of ventricular endocardial, M-, and epicardial cells to calculate the action potentials. Action potentials were evaluated under control condition and in the presence of 1, 10, or 100 μM disopyramide, an hERG inhibitor. Disopyramide dose-dependently increased the action potential durations of the three cell types. However, action potential duration of M-cells increased disproportionately at higher doses, and was significantly different from that of epicardial and endocardial cells (dispersion of repolarization). By contrast, the effects of disopyramide on peak I(Kr) and instantaneous current-voltage relation were similar in all cell types. Simulation study suggested that the reduced repolarization reserve of M-cell with smaller amount of slowly activating delayed rectifier potassium current levels off at longer action potential duration to make such differences. The action potential clamp technique is useful for studying the mechanism of arrhythmogenesis by hERG inhibition through the transmural dispersion of repolarization.

  18. Nacre-Templated Synthesis of Highly Dispersible Carbon Nanomeshes for Layered Membranes with High-Flux Filtration and Sensing Properties.

    Science.gov (United States)

    Kong, Meng; Li, Mingjie; Shang, Ruoxu; Wu, Jingyu; Yan, Peisong; Xu, Dongmei; Li, Chaoxu

    2018-01-24

    Marine shells not only represent a rapidly accumulating type of fishery wastes but also offer a unique sort of hybrid nanomaterials produced greenly and massively in nature. The elaborate "brick and mortar" structures of nacre enabled the synthesis of carbon nanomeshes with <1 nm thickness, hierarchical porosity, and high specific surface area through pyrolysis, in which two-dimensional (2D) organic layers served as the carbonaceous precursor and aragonite platelets as the hard template. Mineral bridges within 2D organic layers templated the formation of mesh pores of 20-70 nm. In contrast to other hydrophobic carbon nanomaterials, these carbon nanomeshes showed super dispersibility in diverse solvents and thus processability for membranes through filtration, patterning, spray-coating, and ink-writing. The carbon membranes with layered structures were capable of serving not only for high-flux filtration and continuous flow absorption but also for electrochemical and strain sensing with high sensitivity. Thus, utilization of marine shells, on one hand, relieves the environmental concern of shellfish waste, on the other hand, offers a facile, green, low-cost, and massive approach to synthesize unique carbon nanomeshes alternative to graphene nanomeshes and applicable in environmental adsorption, filtration, wearable sensors, and flexible microelectronics.

  19. Comparison of dairy desserts produced with a potentially probiotic mixed culture and dispersions obtained from Gracilaria birdiae and Gracilaria domingensis seaweeds used as thickening agents.

    Science.gov (United States)

    Tavares Estevam, Adriana Carneiro; de Almeida, Michele Correia; de Oliveira, Tiago Almeida; Florentino, Eliane Rolim; Alonso Buriti, Flávia Carolina; Porto, Ana Lúcia Figueiredo

    2017-09-20

    Dairy desserts have emerged as interesting options for the incorporation of probiotics, bioactive ingredients and alternative sources of thickeners. This shows an opportunity to investigate the use of Gracilaria seaweeds in the formulation of potentially probiotic dairy desserts. This study aimed to compare the effects of dispersions obtained from Gracilaria domingensis and Gracilaria birdiae used as thickening agents on texture properties of dairy desserts fermented with SAB 440-A, composed of the starter Streptococcus thermophilus and the potential probiotics Bifidobacterium animalis and Lactobacillus acidophilus, and also to study their physicochemical characteristics, microbial viability and sensory acceptability. No significant differences between desserts with G. birdiae or G. domingensis dispersions regarding total solids, ash and fat content, as well as pH, titratable acidity, the viability of the microorganisms of the mixed culture and sensory acceptability were verified (P > 0.05). Nonetheless, the dessert with G. domingensis dispersion showed higher dietary fibre content and significantly increased firmness than the one produced with G. birdiae (P desserts, in the presence of either G. birdiae or G. domingensis dispersions, despite the fact that L. acidophilus has shown low viability in the final products. Therefore, the G. domingensis dispersion is suitable to be used as a thickening agent to produce dairy desserts with enhanced firmness and good sensory acceptability, it being also advisable to use only B. animalis as a probiotic for this product.

  20. HIGH ENERGY PHYSICS POTENTIAL AT MUON COLLIDERS

    International Nuclear Information System (INIS)

    PARSA, Z.

    2000-01-01

    In this paper, high energy physics possibilities and future colliders are discussed. The μ + μ - collider and experiments with high intensity muon beams as the stepping phase towards building Higher Energy Muon Colliders (HEMC) are briefly reviewed and encouraged

  1. Biogeography of Aegagropila linnaei (Cladophorophyceae, Chlorophyta): a widespread freshwater alga with low effective dispersal potential shows a glacial imprint in its distribution

    NARCIS (Netherlands)

    Boedeker, C.; Eggert, A.; Immers, A.; Wakana, I.

    2010-01-01

    Aim:Aegagropila linnaei is a freshwater macroalga that is generally regarded as a rare species. It is apparently absent from large but seemingly suitable areas of the Northern Hemisphere, implying a limited dispersal potential and an imprint of Pleistocene glaciations in its biogeography. However,

  2. Fabrication procedures for manufacturing high uranium concentration dispersion fuel elements; Procedimentos de fabricacao de elementos combustiveis a base de dispersoes com alta concentracao de uranio

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Jose Antonio Batista de

    2011-07-01

    IPEN-CNEN/SP developed the technology to produce the dispersion type fuel elements for research reactors and made it available for routine production. Today, the fuel produced in IPEN-CNEN/SP is limited to the uranium concentration of 3.0 gU/cm{sup 3} for U{sub 3}Si{sub 2}-Al dispersion-based and 2.3 gU/cm{sup 3} for U{sub 3}O{sub 8}-Al dispersion. The increase of uranium concentration in fuel plates enables the reactivity of the reactor core reactivity to be higher and extends the fuel life. Concerning technology, it is possible to increase the uranium concentration in the fuel meat up to the limit of 4.8 gU/cm{sup 3} in U{sub 3}Si{sub 2}-Al dispersion and 3.2 gU/cm{sup 3} U{sub 3}O{sub 8}-Al dispersion. These dispersions are well qualified worldwide. This work aims to develop the manufacturing process of both fuel meats with high uranium concentrations, by redefining the manufacturing procedures currently adopted in the Nuclear Fuel Center of IPEN-CNEN/SP. Based on the results, it was concluded that to achieve the desired concentration, it is necessary to make some changes in the established procedures, such as in the particle size of the fuel powder and in the feeding process inside the matrix, before briquette pressing. These studies have also shown that the fuel plates, with a high concentration of U{sub 3}Si{sub 2}-Al, met the used specifications. On the other hand, the appearance of the microstructure obtained from U{sub 3}O{sub 8}-Al dispersion fuel plates with 3.2 gU/cm{sup 3} showed to be unsatisfactory, due to the considerably significant porosity observed. The developed fabrication procedure was applied to U{sub 3}Si{sub 2} production at 4.8 gU/cm{sup 3}, with enriched uranium. The produced plates were used to assemble the fuel element IEA-228, which was irradiated in order to check its performance in the IEA-R1 reactor at IPEN-CNEN/SP. These new fuels have potential to be used in the new Brazilian Multipurpose Reactor - RMB. (author)

  3. Polymer-mediated synthesis of a nitrogen-doped carbon aerogel with highly dispersed Pt nanoparticles for enhanced electrocatalytic activity

    International Nuclear Information System (INIS)

    2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" data-affiliation=" (World Class University (WCU) Program of Chemical Convergence for Energy & Environment C2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" >Kim, Gil-Pyo; 2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" data-affiliation=" (World Class University (WCU) Program of Chemical Convergence for Energy & Environment C2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" >Lee, Minzae; Lee, Yoon Jae; 2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" data-affiliation=" (World Class University (WCU) Program of Chemical Convergence for Energy & Environment C2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" >Bae, Seongjun; 2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" data-affiliation=" (World Class University (WCU) Program of Chemical Convergence for Energy & Environment C2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" >Song, Hyeon Dong; Song, In Kyu; 2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" data-affiliation=" (World Class University (WCU) Program of Chemical Convergence for Energy & Environment C2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" >Yi, Jongheop

    2016-01-01

    Highlights: • Highly dispersed Pt nanoparticles on N-doped carbon aerogel were synthesized for ORR. • Poly(ethyleneimine) was used as nitrogen source and as nucleation sites for Pt. • Precise discussion were conducted to clarify the effect of poly(ethyleneimine). • High Pt dispersion and N-doping results in superior electrocatalytic activity. - Abstract: A simple chemical process for the direct synthesis of a nitrogen (N)-doped carbon aerogel (NCA) with highly dispersed Pt nanoparticles via a poly(ethyleneimine) (PEI)-assisted strategy is described. A resorcinol-formaldehyde (RF) gel was treated with water soluble cationic PEI, which mainly functions as an anchoring site for metal ions. The functionalized PEI chains on the surface of the RF gel resulted in the unique formation of chemical complexes, with PtCl 6 2− anchored to the RF gel, and subsequent homogeneous metal nanoparticle growth. The abundant amino groups containing PEI grafted to the RF gel also allowed the nitrogen atoms to be incorporated into the carbon framework, which can directly be converted into a NCA. The spherical Pt nanoparticles in the resulting material (Pt/NCA) were highly dispersed on the surface of the NCA without any evidenced of agglomeration, even after a thermal annealing at 900 °C. Compared with a Pt/CA synthesized by a conventional reduction method, the Pt/NCA showed enhanced electrochemical performance with a high electrochemically active surface area (191.1 cm 2 g −1 ) and electrocatalytic activity (V onset = 0.95 V vs. RHE) with respect to oxygen reduction. The superior electrocatalytic activities of the Pt/NCA can be attributed to the synergistic effect of the highly dispersed Pt nanoparticles and the N-doped carbon supports that were prepared using the PEI-assisted strategy. The findings reported herein suggest that the use of PEI can be effectively extended to broad applications that require the homogeneous deposition of metal nanoparticles.

  4. Phylogeography of a habitat specialist with high dispersal capability: the Savi's Warbler Locustella luscinioides.

    Directory of Open Access Journals (Sweden)

    Júlio M Neto

    Full Text Available In order to describe the influence of Pleistocene glaciations on the genetic structure and demography of a highly mobile, but specialized, passerine, the Savi's Warbler (Locustella luscinioides, mitochondrial DNA sequences (ND2 and microsatellites were analysed in c.330 individuals of 17 breeding and two wintering populations. Phylogenetic, population genetics and coalescent methods were used to describe the genetic structure, determine the timing of the major splits and model the demography of populations. Savi's Warblers split from its sister species c.8 million years ago and have two major haplotype groups that diverged in the early/middle Pleistocene. One of these clades originated in the Balkans and is currently widespread, showing strong evidence for population expansion; whereas the other is restricted to Iberia and remained stable. Microsatellites agreed with a genetic break around the Pyrenees, but showed considerable introgression and a weaker genetic structure. Both genetic markers showed an isolation-by-distance pattern associated with the population expansion of the eastern clade. Breeding populations seem to be segregated at the wintering sites, but results on migratory connectivity are preliminary. Savi's Warbler is the only known migratory bird species in which Iberian birds did not expand beyond the Pyrenees after the last glaciation. Despite the long period of independent evolution of western and eastern populations, complete introgression occurred when these groups met in Iberia. Mitochondrial sequences indicated the existence of refugia-within-refugia in the Iberian Peninsula during the last glacial period, which is surprising given the high dispersal capacity of this species. Plumage differences of eastern subspecies seemed to have evolved recently through natural selection, in agreement with the glacial expansion hypothesis. This study supports the great importance of the Iberian Peninsula and its role for the conservation

  5. Dispersing Si{sub 3}N{sub 4} at high solids loading - applied to protein forming

    Energy Technology Data Exchange (ETDEWEB)

    Lyckfeldt, O.; Palmqvist, L. [Swedish Ceramic Inst., Goeteborg (Sweden); Poeydemenge, F. [ENSCI, Limoges (France)

    2002-07-01

    The dispersing of a Si{sub 3}N{sub 4} powder (UBE SN-E10) at high solids loading in aqueous media was investigated. The powder was used in the as-received (raw) state, after thermal (calcinations) and/or mechanical pre-treatments (ball milling{yields}freeze granulation{yields}freeze-drying). Slips were prepared using pH adjustment with NH{sub 4}OH or an addition of Tiron (low-M{sub w} sulphonic acid). Zeta potential measurements of diluted systems and rheological evaluations of concentrated suspensions were conducted. The effect of adding whey protein concentrate (WPC) was also studied. Zeta potential measurements showed a clear decrease in pH{sub iep} by calcination, whereas Tiron slightly increased the pH{sub iep} of calcined powder and decreased the pH{sub iep} of the as-received powder. Rheological data showed that pH adjustment to 10 was more efficient in stabilising the as-received powder than the calcined powder. pH adjustment was also considered to be the most important effect of adding small amounts of Tiron (0.08 wt%). However, for calcined powder, Tiron was shown to be equally efficient as pH adjustment. Pre-milling followed by freeze granulation/freeze-drying resulted in de-agglomerated powders with improved ability to rapidly disperse and, hence, extend the possibility of achieving extreme solids loadings. When approaching the practical limits in solids loading of these pre-milled powders, slips with 49.5 vol% of as-received and 46.6 vol% of calcined powders displayed clear shear thickening behaviour. However, addition of WPC (12 wt% based on water) significantly decreased the degree of shear thickening although the viscosity at lower shear rates increased. The gelling of WPC was distinct and rapid in suspensions with the two pre-milled powders, as-received stabilised at pH 10 and calcined stabilised with Tiron. (orig.)

  6. High-accuracy alignment based on atmospherical dispersion - technological approaches and solutions for the dual-wavelength transmitter

    International Nuclear Information System (INIS)

    Burkhard, Boeckem

    1999-01-01

    In the course of the progressive developments of sophisticated geodetic systems utilizing electromagnetic waves in the visible or near IR-range a more detailed knowledge of the propagation medium and coevally solutions of atmospherically induced limitations will become important. An alignment system based on atmospherical dispersion, called a dispersometer, is a metrological solution to the atmospherically induced limitations, in optical alignment and direction observations of high accuracy. In the dispersometer we are using the dual-wavelength method for dispersive air to obtain refraction compensated angle measurements, the detrimental impact of atmospheric turbulence notwithstanding. The principle of the dual-wavelength method utilizes atmospherical dispersion, i.e. the wavelength dependence of the refractive index. The difference angle between two light beams of different wavelengths, which is called the dispersion angle Δβ, is to first approximation proportional to the refraction angle: β IR ν(β blue - β IR ) = ν Δβ, this equation implies that the dispersion angle has to be measured at least 42 times more accurate than the desired accuracy of the refraction angle for the wavelengths used in the present dispersometer. This required accuracy constitutes one major difficulty for the instrumental performance in applying the dispersion effect. However, the dual-wavelength method can only be successfully used in an optimized transmitter-receiver combination. Beyond the above mentioned resolution requirement for the detector, major difficulties in instrumental realization arise in the availability of a suitable dual-wavelength laser light source, laser light modulation with a very high extinction ratio and coaxial emittance of mono-mode radiation at both wavelengths. Therefore, this paper focuses on the solutions of the dual-wavelength transmitter introducing a new hardware approach and a complete re-design of the in [1] proposed conception of the dual

  7. One-pot solvothermal synthesis of highly water-dispersible size-tunable functionalized magnetite nanocrystal clusters for lipase immobilization.

    Science.gov (United States)

    Zhu, Hao; Hou, Chen; Li, Yijing; Zhao, Guanghui; Liu, Xiao; Hou, Ke; Li, Yanfeng

    2013-07-01

    A facile one-pot synthesis of highly water-dispersible size-tunable magnetite (Fe3O4) nanocrystal clusters (MNCs) end-functionalized with amino or carboxyl groups by a modified solvothermal reduction reaction has been developed. Dopamine and 3,4-dihydroxyhydroxycinnamic acid were used for the first time as both a surfactant and interparticle linker in a polylol process for economical and environment-friendly purposes. Morphology, chemical composition, and magnetic properties of the prepared particles were investigated by several methods, including FESEM, TEM, XRD, XPS, Raman, FTIR, TGA, zeta potential, and VSM. The sizes of the particles could be easily tuned over a wide range from 175 to 500 nm by varying the surfactant concentration. Moreover, ethylene glycol/diethylene glycol (EG/DEG) solvent mixtures with different ratios could be used as reductants to obtain the particles with smaller sizes. The XRD data demonstrated that the surfactants restrained the crystal growth of the grains. The nanoparticles showed superior magnetic properties and high colloidal stability in water. The cytotoxicity results indicated the feasibility of using the synthesized nanocrystals in biology-related fields. To estimate the applicability of the obtained MNCs in biotechnology, Candida rugosa lipase was selected for the enzyme immobilization process. The immobilized lipase exhibited excellent thermal stability and reusability in comparison with the free enzyme. This novel strategy would simplify the reaction protocol and improve the efficiency of materials functionalization, thus offering new potential applications in biotechnology and organocatalysis. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. CNTs/Al5083 Composites of High-performance Uniform and Dispersion Fabricated by High-energy Ball-milling

    Directory of Open Access Journals (Sweden)

    GUO Li

    2017-11-01

    Full Text Available Carbon nanotubes (CNTs, mass fraction of 0%-2% reinforced Al5083 composites were fabricated by horizontal high-energy ball milling. The effects of ball milling time and CNTs contents on the properties of composite materials were studied. The micro morphology of CNTs/Al5083 composites was characterized by scanning electron microscopy(SEM and transmission electron microscopy(TEM, the tensile strength and microhardness of the composites were tested. The results indicate that after high-energy ball milling for 1.5h, the carbon nanotubes are dispersed homogeneously in the Al5083 matrix, and good interfacial bonding strength between CNTs and Al5083 is obtained at the addition of 1.5%CNTs. Under these conditions, the tensile strength and microhardness of CNTs/Al5083 composites are 188.8MPa and 136HV, respectively. Compared to Al5083 matrix without CNTs reinforcement, tensile strength and microhardness of CNTs/Al5083 composites are increased by 32.2% and 36%, respectively.

  9. Synthesis of a highly dispersed CuO catalyst on CoAl-HT for the epoxidation of styrene.

    Science.gov (United States)

    Hu, Rui; Yang, Pengfei; Pan, Yongning; Li, Yunpeng; He, Yufei; Feng, Junting; Li, Dianqing

    2017-10-10

    A highly dispersed CuO catalyst was prepared by the deposition-precipitation method and evaluated for the catalytic epoxidation of styrene with tert-butyl hydroperoxide (TBHP) as the oxidant under solvent acetonitrile conditions. Compared with MgAl hydrotalcite (MgAl-HT)-, MgO-, TiO 2 -, C-, and MCM-22-supported catalysts, CuO/CoAl-HT exhibited preferable activity and selectivity towards styrene oxide (72% selectivity at 99.5% styrene conversion) due to its high dispersion of CuO and surface area of Cu. The improved dispersion of CuO/CoAl-HT could be ascribed to the nature of HT support, especially the synergistic effect of acidic and basic sites on the surface, which facilitated the formation of highly dispersed CuO species. A structure-performance relationship study indicated that copper(ii) in CuO was the active site for the epoxidation and oxidation of styrene, and that Cu II of rich electronic density favored the improvement of selectivity of styrene oxide. Based on these results, a reaction mechanism was proposed. Moreover, the preferred catalytic performance of CuO/CoAl-HT could be maintained in five reused cycles.

  10. Development of high dispersed TiO2 paste for transparent screen-printable self-cleaning coatings on glass

    International Nuclear Information System (INIS)

    Wang Yuanhao; Lu, Lin; Yang Hongxing; Che Quande

    2013-01-01

    This paper reports a cheap and facile method to fabricate transparent self-cleaning coatings on glass by screen-printing high dispersed TiO 2 paste. Three kinds of ZrO 2 beads with diameter of 2, 1, and 0.1–0.2 mm were utilized to investigate their influence on the grinding and dispersion of the commercial TiO 2 powder in the ball mill. From the SEM images, surface profiler and transmittance spectrum it could be demonstrated that the smallest ZrO 2 bead with the diameter of 0.1–0.2 mm was the best candidate to disperse the TiO 2 powder into nanoscale size to make the high dispersed TiO 2 paste which was the key factor to achieve a smooth, high transparent TiO 2 coating. The surface wettability measurement showed that all the screen-printed coatings had super hydrophilic surfaces, which was independent to the surface morphology. However, the coating with the highest transparency showed the lowest photocatalytic activity which is mainly due to the light loss.

  11. Theory of dispersive microlenses

    Science.gov (United States)

    Herman, B.; Gal, George

    1993-01-01

    A dispersive microlens is a miniature optical element which simultaneously focuses and disperses light. Arrays of dispersive mircolenses have potential applications in multicolor focal planes. They have a 100 percent optical fill factor and can focus light down to detectors of diffraction spot size, freeing up areas on the focal plane for on-chip analog signal processing. Use of dispersive microlenses allows inband color separation within a pixel and perfect scene registration. A dual-color separation has the potential for temperature discrimination. We discuss the design of dispersive microlenses and present sample results for efficient designs.

  12. The Campanian Ignimbrite Eruption: New Data on Volcanic Ash Dispersal and Its Potential Impact on Human Evolution

    Science.gov (United States)

    Fitzsimmons, Kathryn E.; Hambach, Ulrich; Veres, Daniel; Iovita, Radu

    2013-01-01

    The Campanian Ignimbrite (CI) volcanic eruption was the most explosive in Europe in the last 200,000 years. The event coincided with the onset of an extremely cold climatic phase known as Heinrich Event 4 (HE4) approximately 40,000 years ago. Their combined effect may have exacerbated the severity of the climate through positive feedbacks across Europe and possibly globally. The CI event is of particular interest not only to investigate the role of volcanism on climate forcing and palaeoenvironments, but also because its timing coincides with the arrival into Europe of anatomically modern humans, the demise of Neanderthals, and an associated major shift in lithic technology. At this stage, however, the degree of interaction between these factors is poorly known, based on fragmentary and widely dispersed data points. In this study we provide important new data from Eastern Europe which indicate that the magnitude of the CI eruption and impact of associated distal ash (tephra) deposits may have been substantially greater than existing models suggest. The scale of the eruption is modelled by tephra distribution and thickness, supported by local data points. CI ashfall extends as far as the Russian Plain, Eastern Mediterranean and northern Africa. However, modelling input is limited by very few data points in Eastern Europe. Here we investigate an unexpectedly thick CI tephra deposit in the southeast Romanian loess steppe, positively identified using geochemical and geochronological analyses. We establish the tephra as a widespread primary deposit, which blanketed the topography both thickly and rapidly, with potentially catastrophic impacts on local ecosystems. Our discovery not only highlights the need to reassess models for the magnitude of the eruption and its role in climatic transition, but also suggests that it may have substantially influenced hominin population and subsistence dynamics in a region strategic for human migration into Europe. PMID:23799050

  13. A scalable synthesis of highly stable and water dispersible Ag 44(SR)30 nanoclusters

    KAUST Repository

    AbdulHalim, Lina G.; Ashraf, Sumaira; Katsiev, Khabiboulakh; Kirmani, Ahmad R.; Kothalawala, Nuwan; Anjum, Dalaver H.; Abbas, Sikandar Zameer; Amassian, Aram; Stellacci, Francesco; Dass, Amala; Hussain, Irshad; Bakr, Osman

    2013-01-01

    We report the synthesis of atomically monodisperse thiol-protected silver nanoclusters [Ag44(SR)30] m, (SR = 5-mercapto-2-nitrobenzoic acid) in which the product nanocluster is highly stable in contrast to previous preparation methods. The method is one-pot, scalable, and produces nanoclusters that are stable in aqueous solution for at least 9 months at room temperature under ambient conditions, with very little degradation to their unique UV-Vis optical absorption spectrum. The composition, size, and monodispersity were determined by electrospray ionization mass spectrometry and analytical ultracentrifugation. The produced nanoclusters are likely to be in a superatom charge-state of m = 4-, due to the fact that their optical absorption spectrum shares most of the unique features of the intense and broadly absorbing nanoparticles identified as [Ag44(SR) 30]4- by Harkness et al. (Nanoscale, 2012, 4, 4269). A protocol to transfer the nanoclusters to organic solvents is also described. Using the disperse nanoclusters in organic media, we fabricated solid-state films of [Ag44(SR)30]m that retained all the distinct features of the optical absorption spectrum of the nanoclusters in solution. The films were studied by X-ray diffraction and photoelectron spectroscopy in order to investigate their crystallinity, atomic composition and valence band structure. The stability, scalability, and the film fabrication method demonstrated in this work pave the way towards the crystallization of [Ag44(SR)30]m and its full structural determination by single crystal X-ray diffraction. Moreover, due to their unique and attractive optical properties with multiple optical transitions, we anticipate these clusters to find practical applications in light-harvesting, such as photovoltaics and photocatalysis, which have been hindered so far by the instability of previous generations of the cluster. © 2013 The Royal Society of Chemistry.

  14. Numerical Analysis of Molten Corium Dispersion during Hypothetical High-Pressure Accidents in APR1400 Nuclear Power Plant

    International Nuclear Information System (INIS)

    Kim, Jong Tae; Ha, Kwang Soon; Kim, Sang Baik; Kim, Hee Dong; Jeong, Jae Sik

    2010-01-01

    During a hypothetical high-pressure accident in a nuclear power plant (NPP), molten corium can be ejected through a breach of a reactor pressure vessel (RPV) and dispersed by the following jet of a high pressure steam in the RPV. The dispersed corium is fragmented into smaller droplets in a reactor cavity of the NPP by the steam jet with very high velocity and is released into the upper compartment of the NPP by an overpressure in the cavity. The heat-carrying fragments of the corium transfer the thermal energy to the ambient air in the containment and react chemically with steam and generate hydrogen which may be burnt in the containment. The thermal loads from the ejected molten corium on the containment which is called direct containment heating (DCH) can threaten the integrity of the containment. New generation NPPs such as APR1400 and EPR have been designed in consideration of reducing the possibility of the containment failure from the DCH. In order for that, APR1400 has a convolute-type corium chamber connected to the reactor cavity. In the case of EPR, severe-accident dedicated depressurization valves are installed to preclude a high pressure melt ejection (HPME). DCH in a NPP containment is related to many physical phenomena such as multi-phase hydrodynamics, thermodynamics and chemical reaction. In the evaluation of the DCH load, the melt dispersion rates depending on the RPV pressure are the most important parameter. Mostly, DCH was evaluated by using lumped-analysis codes with some correlations obtained from experiments for the dispersion rates. The corium dispersion rates for many types of the NPP containments had been obtained by experiments in 90s. And some correlations from the experimental data were developed. As mentioned above, APR1400 has a corium chamber to reduce the corium dispersion rate. But there is no experimental data for the dispersion rate specific to the APR1400 cavity geometry. So its performance for capturing of the dispersed corium

  15. Optimised dispersion management and modulation formats for high speed optical communication systems

    DEFF Research Database (Denmark)

    Tokle, Torger

    2004-01-01

    both narrow spectral width and good transmission properties. The cost of an optical communication system can be lowered by using longer span lengths to reduce the number of amplifier stations. We experimentally study optimum dispersion compensation schemes for systems with 160 km fibre spans made...... modulated signals. In summary, we show that dispersion management using recently developed fibres in combination with advanced modulation formats significantly improves the transmission performance compared to traditional systems. Multi-level phase modulation is demonstrated at bit rates up to 80 Gbit......This thesis studies dispersion management and modulation formats for optical communication systems using per channel bit rates at and above 10 Gbit/s. Novel modulation formats—including recently proposed multilevel phase modulation—are investigated and demonstrated at bit rates up to 80 Gbit/s. New...

  16. Potentialities of high temperature reactors (HTR)

    International Nuclear Information System (INIS)

    Hittner, D.

    2001-01-01

    This articles reviews the assets of high temperature reactors concerning the amount of radioactive wastes produced. 2 factors favors HTR-type reactors: high thermal efficiency and high burn-ups. The high thermal efficiency is due to the high temperature of the coolant, in the case of the GT-MHR project (a cooperation between General Atomic, Minatom, Framatome, and Fuji Electric) designed to burn Russian military plutonium, the expected yield will be 47% with an outlet helium temperature of 850 Celsius degrees. The high temperature of the coolant favors a lot of uses of the heat generated by the reactor: urban heating, chemical processes, or desalination of sea water.The use of a HTR-type reactor in a co-generating way can value up to 90% of the energy produced. The high burn-up is due to the technology of HTR-type fuel that is based on encapsulation of fuel balls with heat-resisting materials. The nuclear fuel of Fort-Saint-Vrain unit (Usa) has reached values of burn-ups from 100.000 to 120.000 MWj/t. It is shown that the quantity of unloaded spent fuel can be divided by 4 for the same amount of electricity produced, in the case of the GT-MHR project in comparison with a light water reactor. (A.C.)

  17. On the Optimum Dispersion of a Storage Ring for Electron Cooling with High Space Charge

    CERN Document Server

    Bosser, Jacques; Chanel, M; Marié, L; Möhl, D; Tranquille, G

    2000-01-01

    With the intense electron beams used for cooling, matching of the ion and electron velocity over the largest possible fraction of the beam profile becomes important. In this situation, a finite dispersion from the ring in the cooling section can lead to an appreciable gain in the transverse cooling speed. Based on a simple model of the cooling force, an expression for the "optimum" dispersion as a function of the electron beam intensity, the momentum spread and other properties of the ion beam will be derived. This simple theory will be compared to measurements made on the Low Energy Ion Ring (LEIR) at CERN during 1997.

  18. Potential role of frugivorous birds (Passeriformes on seed dispersal of six plant species in a restinga habitat, southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Verônica Souza da Mota Gomes

    2008-03-01

    Full Text Available Restingas are considered stressful habitats associated with the Brazilian Atlantic forest, and their ecological interactions are poorly known. The goal of the present study was to determine the potential role of frugivorous birds as seed dispersers in a restinga habitat. Data were collected in Parque Nacional da Restinga de Jurubatiba, southeastern Brazil, where the main physiognomy (Open Clusia Formation is characterized by the presence of patches of vegetation covering 20 to 48 % of the sandy soil and reaching a height of 5 m. Birds were captured with mist nets (12 x 2.5 m; 36 mm mesh; 1 680 net-hrs and had their fecal and regurgitate samples inspected for seeds. Six plant species found in these bird samples were studied. The germination of seeds obtained from plants was compared to those from the birds. Both groups of seeds were set on Petri dishes at room temperature and washed when infected with fungi. In general, there was no effect on germination rate, and the effect on germination speed was negative. Germination of seeds from Pilosocereus arrabidae treated by the birds seemed to be influenced by storage of defecated seeds, while few Miconia cinnamomifolia seeds both from plants and from birds germinated. Ocotea notata presented a great variation in time to the onset of germination, perhaps an advantage against dissecation. Aechmea nudicaulis, Clusia hilariana and Erythroxylum subsessile probably take advantage of the arrival to favorable microhabitats, not by the gut effect on the seeds. All plant species studied are numerically important for the community and some of them are main actors in the succession of vegetation patches. Among the birds, Mimus gilvus is an important resident species, endemic to restingas in Brazil, while Turdus amaurochalinus is a visitor and may be important for plants that fructify during its passage by the study site. Although the effect of pulp removal was only tested for one species (Achmea nudicaulis in the

  19. Fast high-temperature consolidation of Oxide-Dispersion Strengthened (ODS) steels: process, microstructure, precipitation, properties

    International Nuclear Information System (INIS)

    Boulnat, Xavier

    2014-01-01

    This work aims to lighten the understanding of the behavior of a class of metallic materials called Oxide-Dispersion Strengthened (ODS) ferritic steels. ODS steels are produced by powder metallurgy with various steps including atomization, mechanical alloying and high-temperature consolidation. The consolidation involves the formation of nanoparticles in the steel and various evolutions of the microstructure of the material that are not fully understood. In this thesis, a novel consolidation technique assisted by electric field called 'Spark Plasma Sintering' (SPS) or 'Field-Assisted Sintering Technique' (FAST) was assessed. Excellent mechanical properties were obtained by SPS, comparable to those of conventional hot isostatic pressed (HIP) materials but with much shorter processing time. Also, a broad range of microstructures and thus of tensile strength and ductility were obtained by performing SPS on either milled or atomized powder at different temperatures. However, SPS consolidation failed to avoid heterogeneous microstructure composed of ultrafine-grained regions surrounded by micron grains despite of the rapid consolidation kinetics. A multi-scale characterization allowed to understand and model the evolution of this complex microstructure. An analytical evaluation of the contributing mechanisms can explain the appearance of the complex grain structure and its thermal stability during further heat treatments. Inhomogeneous distribution of plastic deformation in the powder is argued to be the major cause of heterogeneous recrystallization and further grain growth during hot consolidation. Even if increasing the solute content of yttrium, titanium and oxygen does not impede abnormal growth, it permits to control the fraction and the size of the retained ultrafine grains, which is a key-factor to tailor the mechanical properties. Since precipitation through grain boundary pinning plays a significant role on grain growth, a careful

  20. Dispersion-Flattened Composite Highly Nonlinear Fibre Optimised for Broadband Pulsed Four-Wave Mixing

    DEFF Research Database (Denmark)

    Lillieholm, Mads; Galili, Michael; Oxenløwe, Leif Katsuo

    2016-01-01

    We present a segmented composite HNLF optimised for mitigation of dispersion-fluctuation impairments for broadband pulsed four-wave mixing. The HNLF-segmentation allows for pulsed FWMprocessing of a 13-nm wide input WDM-signal with -4.6-dB conversion efficiency...

  1. The improvement of technology for high-uranium-density Al-base dispersion fuel plates

    International Nuclear Information System (INIS)

    Shouhui, Dai; Rongxian, Sun; Hejian, Mao; Baosheng, Zhao; Changgen, Yin

    1987-01-01

    An improved rolling process was developed for manufacturing Al-base dispersion fuel plates. When the fuel content in the meat increased up to 50 vol%, the non-uniformity of uranium is not more than ± 7.2%, and the minimum cladding thickness is not less than 0.32 mm. (Author)

  2. Dispersion-modulation by high material loss in microstructured polymer optical fibers

    DEFF Research Database (Denmark)

    Frosz, Michael Henoch

    2009-01-01

    The influence of strong loss peaks on the dispersion (through the Kramers-Kronig relations) of a nonlinear waveguide is investigated theore­ti­cally. It is found specifically for degenerate four-wave mixing in a poly(methyl methacrylate) microstructured polymer optical fiber that the loss...

  3. High-resolution modelling of atmospheric dispersion of dense gas using TWODEE-2.1: application to the 1986 Lake Nyos limnic eruption

    Science.gov (United States)

    Folch, Arnau; Barcons, Jordi; Kozono, Tomofumi; Costa, Antonio

    2017-06-01

    Atmospheric dispersal of a gas denser than air can threat the environment and surrounding communities if the terrain and meteorological conditions favour its accumulation in topographic depressions, thereby reaching toxic concentration levels. Numerical modelling of atmospheric gas dispersion constitutes a useful tool for gas hazard assessment studies, essential for planning risk mitigation actions. In complex terrains, microscale winds and local orographic features can have a strong influence on the gas cloud behaviour, potentially leading to inaccurate results if not captured by coarser-scale modelling. We introduce a methodology for microscale wind field characterisation based on transfer functions that couple a mesoscale numerical weather prediction model with a microscale computational fluid dynamics (CFD) model for the atmospheric boundary layer. The resulting time-dependent high-resolution microscale wind field is used as input for a shallow-layer gas dispersal model (TWODEE-2.1) to simulate the time evolution of CO2 gas concentration at different heights above the terrain. The strategy is applied to review simulations of the 1986 Lake Nyos event in Cameroon, where a huge CO2 cloud released by a limnic eruption spread downslopes from the lake, suffocating thousands of people and animals across the Nyos and adjacent secondary valleys. Besides several new features introduced in the new version of the gas dispersal code (TWODEE-2.1), we have also implemented a novel impact criterion based on the percentage of human fatalities depending on CO2 concentration and exposure time. New model results are quantitatively validated using the reported percentage of fatalities at several locations. The comparison with previous simulations that assumed coarser-scale steady winds and topography illustrates the importance of high-resolution modelling in complex terrains.

  4. Spatio-temporal Genetic Structure of a Tropical Bee Species Suggests High Dispersal Over a Fragmented Landscape.

    Science.gov (United States)

    Suni, Sevan S; Bronstein, Judith L; Brosi, Berry J

    2014-03-01

    Habitat destruction threatens biodiversity by reducing the amount of available resources and connectivity among geographic areas. For organisms living in fragmented habitats, population persistence may depend on dispersal, which maintains gene flow among fragments and can prevent inbreeding within them. It is centrally important to understand patterns of dispersal for bees living in fragmented areas given the importance of pollination systems and recently documented declines in bee populations. We used population and landscape genetic techniques to characterize patterns of dispersal over a large fragmented area in southern Costa Rica for the orchid bee species Euglossa championi . First, we estimated levels of genetic differentiation among forest fragments as φ pt , an analog to the traditional summary statistic F st , as well as two statistics that may more adequately represent levels of differentiation, G ' st and D est . Second, we used a Bayesian approach to determine the number and composition of genetic groups in our sample. Third we investigated how genetic differentiation changes with distance. Fourth, we determined the extent to which deforested areas restrict dispersal. Finally, we estimated the extent to which there were temporal differences in allele frequencies within the same forest fragments. Within years we found low levels of differentiation even over 80 km, and no effect of land use type on level of genetic differentiation. However, we found significant genetic differentiation between years. Taken together our results suggest that there are high levels of gene flow over this geographic area, and that individuals show low site fidelity over time.

  5. Simultaneous pore enlargement and introduction of highly dispersed Fe active sites in MSNs for enhanced catalytic activity

    International Nuclear Information System (INIS)

    Gu Jinlou; Dong Xu; Elangovan, S.P.; Li Yongsheng; Zhao Wenru; Iijima, Toshio; Yamazaki, Yasuo; Shi Jianlin

    2012-01-01

    An effective post-hydrothermal treatment strategy has been developed to dope highly dispersed iron catalytical centers into the framework of mesoporous silica, to keep the particle size in nanometric scale, and in the meanwhile, to expand the pore size of the synthesized mesoporous silica nanoparticles (MSNs). Characterization techniques such as XRD, BET, SEM and TEM support that the synthesized samples are long period ordered with particles size about 100 nm and a relatively large pore size of ca. 3.5 nm. UV–vis, XPS and EPR measurements demonstrate that the introduced iron active centers are highly dispersed in a coordinatively unsaturated status. NH 3 -TPD verifies that the acid amount of iron-doped MSNs is quite high. The synthesized nanocatalysts show an excellent catalytic performance for benzylation of benzene by benzyl chloride, and they present relatively higher yield and selectivity to diphenylmethane with a lower iron content and much shorter reaction time. - Graphical abstract: Uniform MSNs with iron active centers and large pore size have been prepared by a newly developed strategy, which demonstrates enhanced catalytic performance for benzylation of benzene by benzyl chloride. Highlights: ► Iron species were introduced into the framework of mesoporous silica nanoparticles with uniform dispersion. ► The pore sizes of the synthesized nanocatalysts were expanded. ► The acidic site quantities were quite high and the acidic centers were accessible. ► The nanocatalysts presented higher yield and selectivity to diphenylmethane with significantly lower Fe content.

  6. High-dispersion spectroscopy of extrasolar planets: from CO in hot Jupiters to O2 in exo-Earths.

    Science.gov (United States)

    Snellen, Ignas

    2014-04-28

    Ground-based high-dispersion spectroscopy could reveal molecular oxygen as a biomarker gas in the atmospheres of twin-Earths transiting red dwarf stars within the next 25 years. The required contrasts are only a factor of 3 lower than that already achieved for carbon monoxide in hot Jupiter atmospheres today but will need much larger telescopes because the target stars will be orders of magnitude fainter. If extraterrestrial life is very common and can therefore be found on planets around the most nearby red dwarf stars, it may be detectable via transmission spectroscopy with the next-generation extremely large telescopes. However, it is likely that significantly more collecting area is required for this. This can be achieved through the development of low-cost flux collector technology, which combines a large collecting area with a low but sufficient image quality for high-dispersion spectroscopy of bright stars.

  7. Non-transferable van der Waals potentials: Insulators at high pressure

    International Nuclear Information System (INIS)

    Maggs, A.C.; Ashcroft, N.W.

    1987-01-01

    For a simple model whose cohesion is dominated by dispersion forces we show that the expansion of the energy in terms of multi-center interactions is ill conditioned at a low density. This density is physically realizable for systems with highly polarizable atoms, and in these circumstances an alternative expression for the internal energy is required. For polarizable systems the requisite densities are readily achievable with the use of modern high pressure capabilities, and have consequences for the interpretation of equation of state data in terms of potential energy functions. 13 refs., 3 figs

  8. Description and validation of ERAD: An atmospheric dispersion model for high explosive detonations

    Energy Technology Data Exchange (ETDEWEB)

    Boughton, B.A.; DeLaurentis, J.M.

    1992-10-01

    The Explosive Release Atmospheric Dispersion (ERAD) model is a three-dimensional numerical simulation of turbulent atmospheric transport and diffusion. An integral plume rise technique is used to provide a description of the physical and thermodynamic properties of the cloud of warm gases formed when the explosive detonates. Particle dispersion is treated as a stochastic process which is simulated using a discrete time Lagrangian Monte Carlo method. The stochastic process approach permits a more fundamental treatment of buoyancy effects, calm winds and spatial variations in meteorological conditions. Computational requirements of the three-dimensional simulation are substantially reduced by using a conceptualization in which each Monte Carlo particle represents a small puff that spreads according to a Gaussian law in the horizontal directions. ERAD was evaluated against dosage and deposition measurements obtained during Operation Roller Coaster. The predicted contour areas average within about 50% of the observations. The validation results confirm the model`s representation of the physical processes.

  9. Computing the spectrum of black hole radiation in the presence of high frequency dispersion: an analytical approach

    OpenAIRE

    Corley, Steven

    1997-01-01

    We present a method for computing the spectrum of black hole radiation of a scalar field satisfying a wave equation with high frequency dispersion. The method involves a combination of Laplace transform and WKB techniques for finding approximate solutions to ordinary differential equations. The modified wave equation is obtained by adding a higher order derivative term suppressed by powers of a fundamental momentum scale $k_0$ to the ordinary wave equation. Depending on the sign of this new t...

  10. Using Synoptic Systems' Typical Wind Trajectories for the Analysis of Potential Atmospheric Long-Distance Dispersal of Lumpy Skin Disease Virus.

    Science.gov (United States)

    Klausner, Z; Fattal, E; Klement, E

    2017-04-01

    Lumpy skin disease virus (LSDV) is an infectious, arthropod-borne virus that affects mostly cattle. Solitary outbreaks have occurred in Israel in 1989 and 2006. In both years, the outbreaks occurred parallel to a severe outbreak in Egypt, and LSDV was hypothesized to be transmitted from Egypt to Israel via long-distance dispersal (LDD) of infected vectors by wind. The aim of this study was to identify possible events of such transport. At the first stage, we identified the relevant synoptic systems that allowed wind transport from Egypt to Israel during the 3 months preceding each outbreak. Three-dimensional backwards Lagrangian trajectories were calculated from the receptor sites in Israel for each occurrence of such relevant synoptic system. The analysis revealed several events in which atmospheric connection routes between the affected locations in Egypt and Israel were established. Specifically, during the 1989, Damietta and Port Said stand out as likely sources for the outbreak in Israel. In 2006, different locations acted simultaneously as potential sources of the outbreak in Israel. These locations were situated in the Nile delta, the Suez Canal and in northern Sinai. The analysis pointed out Sharav low and Shallow Cyprus low to the North to be the most likely systems to enable windborne transport from Egypt to Israel. These findings are of high importance for the analysis of the risk of transmission of vectorborne viruses in the eastern Mediterranean region. © 2015 Blackwell Verlag GmbH.

  11. Size matters for violent discharge height and settling speed of Sphagnum spores: important attributes for dispersal potential.

    Science.gov (United States)

    Sundberg, Sebastian

    2010-02-01

    Initial release height and settling speed of diaspores are biologically controlled components which are key to modelling wind dispersal. Most Sphagnum (peat moss) species have explosive spore liberation. In this study, how capsule and spore sizes affect the height to which spores are propelled were measured, and how spore size and spore number of discharged particles relate to settling speed in the aspherical Sphagnum spores. Spore discharge and spore cloud development were filmed in a closed chamber (nine species). Measurements were taken from snapshots at three stages of cloud development. Settling speed of spores (14 species) and clusters were timed in a glass tube. The maximum discharge speed measured was 3.6 m s(-1). Spores reached a maximum height of 20 cm (average: 15 cm) above the capsule. The cloud dimensions at all stages were related positively to capsule size (R(2) = 0.58-0.65). Thus species with large shoots (because they have large capsules) have a dispersal advantage. Half of the spores were released as singles and the rest as clusters (usually two to four spores). Single spores settled at 0.84-1.86 cm s(-1), about 52 % slower than expected for spherical spores with the same diameters. Settling speed displayed a positive curvilinear relationship with spore size, close to predictions by Stokes' law for spherical spores with 68 % of the actual diameters. Light-coloured spores settled slower than dark spores. Settling speed of spore clusters agrees with earlier studies. Effective spore discharge and small, slowly settling spores appear particularly important for species in forested habitats. The spore discharge heights in Sphagnum are among the greatest for small, wind-dispersed propagules. The discharge heights and the slow settling of spores affect dispersal distances positively and may help to explain the wide distribution of most boreal Sphagnum species.

  12. Atomic layer deposition of highly dispersed Pt nanoparticles on a high surface area electrode backbone for electrochemical promotion of catalysis

    NARCIS (Netherlands)

    Hajar, Y.; di Palma, V.; Kyriakou, V.; Verheijen, M. A.; Baranova, E. A.; Vernoux, P.; Kessels, W. M. M.; Creatore, M.; van de Sanden, M. C. M.; Tsampas, M. N.

    2017-01-01

    A novel catalyst design for electrochemical promotion of catalysis (EPOC) is proposed which overcomes the main bottlenecks that limit EPOC commercialization, i.e., the low dispersion and small surface area of metal catalysts. We have increased the surface area by using a porous composite electrode

  13. Equatorward dispersion of a high-latitude volcanic plume and its relation to the Asian summer monsoon: a case study of the Sarychev eruption in 2009

    Science.gov (United States)

    Wu, Xue; Griessbach, Sabine; Hoffmann, Lars

    2017-11-01

    Tropical volcanic eruptions have been widely studied for their significant contribution to stratospheric aerosol loading and global climate impacts, but the impact of high-latitude volcanic eruptions on the stratospheric aerosol layer is not clear and the pathway of transporting aerosol from high latitudes to the tropical stratosphere is not well understood. In this work, we focus on the high-latitude volcano Sarychev (48.1° N, 153.2° E), which erupted in June 2009, and the influence of the Asian summer monsoon (ASM) on the equatorward dispersion of the volcanic plume. First, the sulfur dioxide (SO2) emission time series and plume height of the Sarychev eruption are estimated with SO2 observations of the Atmospheric Infrared Sounder (AIRS) and a backward trajectory approach using the Lagrangian particle dispersion model Massive-Parallel Trajectory Calculations (MPTRAC). Then, the transport and dispersion of the plume are simulated using the derived SO2 emission time series. The transport simulations are compared with SO2 observations from AIRS and validated with aerosol observations from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). The MPTRAC simulations show that about 4 % of the sulfur emissions were transported to the tropical stratosphere within 50 days after the beginning of the eruption, and the plume dispersed towards the tropical tropopause layer (TTL) through isentropic transport above the subtropical jet. The MPTRAC simulations and MIPAS aerosol data both show that between the potential temperature levels of 360 and 400 K, the equatorward transport was primarily driven by anticyclonic Rossby wave breaking enhanced by the ASM in boreal summer. The volcanic plume was entrained along the anticyclone flows and reached the TTL as it was transported southwestwards into the deep tropics downstream of the anticyclone. Further, the ASM anticyclone influenced the pathway of aerosols by isolating an aerosol hole inside of the ASM, which

  14. Opto-mechanical design of a new cross dispersion unit for the CRIRES+ high resolution spectrograph for the VLT

    Science.gov (United States)

    Lizon, Jean Louis; Klein, Barbara; Oliva, Ernesto; Löwinger, Tom; Anglada Escude, Guillem; Baade, Dietrich; Bristow, Paul; Dorn, Reinhold J.; Follert, Roman; Grunhut, Jason; Hatzes, Artie; Heiter, Ulrike; Ives, Derek; Jung, Yves; Kerber, Florian; Lockhart, Matt; Marquart, Thomas; Origlia, Livia; Pasquini, Luca; Paufique, Jerome; Piskunov, N.; Pozna, Eszter; Reiners, Ansgar; Smette, Alain; Smoker, Jonathan; Seemann, Ulf; Stempels, Eric; Valenti, Elena

    2014-07-01

    CRIRES is one of the few IR (0.92-5.2 μm) high-resolution spectrographs in operation at the VLT since 2006. Despite good performance it suffers a limitation that significantly hampers its ability: a small spectral coverage per exposure. The CRIRES upgrade (CRIRES+) proposes to transform CRIRES into a cross-dispersed spectrograph while maintaining the high resolution (100000) and increasing the wavelength coverage by a factor 10 compared to the current capabilities. A major part of the upgrade is the exchange of the actual cryogenic pre-disperser module by a new cross disperser unit. In addition to a completely new optical design, a number of important changes are required on key components and functions like the slit unit and detectors units. We will outline the design of these new units fitting inside a predefined and restricted space. The mechanical design of the new functions including a description and analysis will be presented. Finally we will present the strategy for the implementation of the changes.

  15. The response of dispersion-strengthened copper alloys to high fluence neutron irradiation at 415 degrees C

    International Nuclear Information System (INIS)

    Edwards, D.J.; Newkirk, J.W.; Garner, F.A.; Hamilton, M.L.; Nadkarni, A.; Samal, P.

    1993-01-01

    Various oxide-dispersion-strengthened copper alloys have been irradiated to 150 dpa at 415 degrees C in the Fast Flux Test Facility (FFTF). The Al 2 O 3 -strengthened GlidCop TM alloys, followed closely by a HfO 2 -strengthened alloy, displayed the best swelling resistance, electrical conductivity, and tensile properties. The conductivity of the HfO 2 -strengthened alloy reached a plateau at the higher levels of irradiation, instead of exhibiting the steady decrease in conductivity observed in the other alloys. A high initial oxygen content results in significantly higher swelling for a series of castable oxide-dispersion-strengthened alloys, while a Cr 2 O 3 -strengthened alloy showed poor resistance to radiation

  16. Factors influencing formation of highly dispersed BaTiO3 nanospheres with uniform sizes in static hydrothermal synthesis

    International Nuclear Information System (INIS)

    Gao, Jiabing; Shi, Haiyue; Dong, Huina; Zhang, Rui; Chen, Deliang

    2015-01-01

    Highly dispersed BaTiO 3 nanospheres with uniform sizes have important applications in micro/nanoscale functional devices. To achieve well-dispersed spherical BaTiO 3 nanocrystals, we carried out as reported in this paper the systematic investigation on the factors that influence the formation of BaTiO 3 nanospheres by the static hydrothermal process, including the NaOH concentrations [NaOH], molar Ba/Ti ratios (R Ba/Ti ), hydrothermal temperatures, and durations, with an emphasis on understanding the related mechanisms. Barium nitrate and TiO 2 sols derived from tetrabutyl titanate were used as the starting materials. The as-synthesized BaTiO 3 samples were characterized by X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray analysis, thermogravimetry, differential thermal analysis, and FT-IR spectra. The highly dispersed BaTiO 3 nanospheres (76 ± 13 nm) were achieved under the optimum hydrothermal conditions at 200 °C for 10 h: [NaOH] = 2.0 mol L −1 and R Ba/Ti  = 1.5. Higher NaOH concentrations, higher Ba/Ti ratios, higher hydrothermal temperatures, and longer hydrothermal durations are favorable in forming BaTiO 3 nanospheres with larger fractions of tetragonal phase and higher yields; but too long hydrothermal durations resulted in abnormal growth and reduced the uniformity in particle sizes. The possible formation mechanisms for BaTiO 3 nanocrystals under the static hydrothermal conditions were investigated

  17. Air pollutant dispersion from a large semi-enclosed stadium in an urban area: high-resolution CFD modeling versus full-scale measurements

    NARCIS (Netherlands)

    Hooff, van T.A.J.; Blocken, B.J.E.; Seppelt, R.; Voinov, A.A.; Lange, S.; Bankamp, D.

    2012-01-01

    Abstract: High-resolution CFD simulations and full-scale measurements have been performed to assess the dispersion of air pollutants (CO2) from the large semi-enclosed Amsterdam ArenA football stadium. The dispersion process is driven by natural ventilation by the urban wind flow and by buoyancy,

  18. High throughput screening of phenoxy carboxylic acids with dispersive solid phase extraction followed by direct analysis in real time mass spectrometry.

    Science.gov (United States)

    Wang, Jiaqin; Zhu, Jun; Si, Ling; Du, Qi; Li, Hongli; Bi, Wentao; Chen, David Da Yong

    2017-12-15

    A high throughput, low environmental impact methodology for rapid determination of phenoxy carboxylic acids (PCAs) in water samples was developed by combing dispersive solid phase extraction (DSPE) using velvet-like graphitic carbon nitride (V-g-C 3 N 4 ) and direct analysis in real time mass spectrometry (DART-MS). Due to the large surface area and good dispersity of V-g-C 3 N 4 , the DSPE of PCAs in water was completed within 20 s, and the elution of PCAs was accomplished in 20 s as well using methanol. The eluents were then analyzed and quantified using DART ionization source coupled to a high resolution mass spectrometer, where an internal standard was added in the samples. The limit of detection ranged from 0.5 ng L -1 to 2 ng L -1 on the basis of 50 mL water sample; the recovery 79.9-119.1%; and the relative standard deviation 0.23%-9.82% (≥5 replicates). With the ease of use and speed of DART-MS, the whole protocol can complete within mere minutes, including sample preparation, extraction, elution, detection and quantitation. The methodology developed here is simple, fast, sensitive, quantitative, requiring little sample preparation and consuming significantly less toxic organic solvent, which can be used for high throughput screening of PCAs and potentially other contaminants in water. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. High Involvement Mothers of High Achieving Children: Potential Theoretical Explanations

    Science.gov (United States)

    Hunsaker, Scott L.

    2013-01-01

    In American society, parents who have high aspirations for the achievements of their children are often viewed by others in a negative light. Various pejoratives such as "pushy parent," "helicopter parent," "stage mother," and "soccer mom" are used in the common vernacular to describe these parents. Multiple…

  20. Cyclotron Phase-Coherent Ion Spatial Dispersion in a Non-Quadratic Trapping Potential is Responsible for FT-ICR MS at the Cyclotron Frequency

    Science.gov (United States)

    Nagornov, Konstantin O.; Kozhinov, Anton N.; Tsybin, Yury O.

    2018-01-01

    Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) at the cyclotron frequency instead of the reduced cyclotron frequency has been experimentally demonstrated using narrow aperture detection electrode (NADEL) ICR cells. Here, based on the results of SIMION simulations, we provide the initial mechanistic insights into the cyclotron frequency regime generation in FT-ICR MS. The reason for cyclotron frequency regime is found to be a new type of a collective motion of ions with a certain dispersion in the initial characteristics, such as pre-excitation ion velocities, in a highly non-quadratic trapping potential as realized in NADEL ICR cells. During ion detection, ions of the same m/z move in phase for cyclotron ion motion but out of phase for magnetron (drift) ion motion destroying signals at the fundamental and high order harmonics that comprise reduced cyclotron frequency components. After an initial magnetron motion period, ion clouds distribute into a novel type of structures - ion slabs, elliptical cylinders, or star-like structures. These structures rotate at the Larmor (half-cyclotron) frequency on a plane orthogonal to the magnetic field, inducing signals at the true cyclotron frequency on each of the narrow aperture detection electrodes. To eliminate the reduced cyclotron frequency peak upon dipolar ion detection, a number of slabs or elliptical cylinders organizing a star-like configuration are formed. In a NADEL ICR cell with quadrupolar ion detection, a single slab or an elliptical cylinder is sufficient to minimize the intensity of the reduced cyclotron frequency components, particularly the second harmonic. [Figure not available: see fulltext.

  1. Solitonic dynamics and excitations of the nonlinear Schrödinger equation with third-order dispersion in non-Hermitian PT-symmetric potentials.

    Science.gov (United States)

    Chen, Yong; Yan, Zhenya

    2016-03-22

    Solitons are of the important significant in many fields of nonlinear science such as nonlinear optics, Bose-Einstein condensates, plamas physics, biology, fluid mechanics, and etc. The stable solitons have been captured not only theoretically and experimentally in both linear and nonlinear Schrödinger (NLS) equations in the presence of non-Hermitian potentials since the concept of the parity-time -symmetry was introduced in 1998. In this paper, we present novel bright solitons of the NLS equation with third-order dispersion in some complex -symmetric potentials (e.g., physically relevant -symmetric Scarff-II-like and harmonic-Gaussian potentials). We find stable nonlinear modes even if the respective linear -symmetric phases are broken. Moreover, we also use the adiabatic changes of the control parameters to excite the initial modes related to exact solitons to reach stable nonlinear modes. The elastic interactions of two solitons are exhibited in the third-order NLS equation with -symmetric potentials. Our results predict the dynamical phenomena of soliton equations in the presence of third-order dispersion and -symmetric potentials arising in nonlinear fiber optics and other physically relevant fields.

  2. Monitoring and control requirement definition study for Dispersed Storage and Generation (DSG). Volume 3, appendix B: State of the art, trends, and potential growth of selected DSG technologies

    Science.gov (United States)

    1980-01-01

    Present and future relatively small (30 MW) energy systems, such as solar thermal electric, photovoltaic, wind, fuel cell, storage battery, hydro, and cogeneration can help achieve national energy goals and can be dispersed throughout the distribution portion of an electric utility system. Based on current projections, it appears that dispersed storage and generation (DSG) electrical energy will comprise only a small portion, from 4 to 10 percent, of the national total by the end of this century. In general, the growth potential for DSG seems favorable in the long term because of finite fossil energy resources and increasing fuel prices. Recent trends, especially in the institutional and regulatory fields, favor greater use of the DSGs for the future.

  3. Kinetics of Low Temperature Polyester Dyeing with High Molecular Weight Disperse Dyes by Solvent Microemulsion and AgroSourced Auxiliaries

    Directory of Open Access Journals (Sweden)

    Shahram Radei

    2018-02-01

    Full Text Available This work focused on the evaluation of the kinetics of dyeing polyester fabrics with high molecular weight disperse dyes, at low temperature by solvent microemulsion. This study also compared the effect of two non-toxic agro-sourced auxiliaries (o-vanillin and coumarin using a non-toxic organic solvent. A dyeing bath consisting of a micro-emulsion system involving a small proportion of n-butyl acetate was used, and the kinetics of dyeing were analysed at four temperatures (83, 90, 95 and 100 °C. Moreover, the dyeing rate constants, correlation coefficient and activation energies were proposed for this system. It was found that o-vanillin yielded higher dye absorption levels than coumarin, leading to exhaustions of 88% and 87% for Disperse Red 167 and Disperse Blue 79, respectively. K/S values of dyed polyester were also found to be higher for dye baths containing o-vanillin with respect to the ones with coumarin. In terms of hot pressing fastness and wash fastness, generally no adverse influence on fastness properties was reported, while o-vanillin showed slightly better results compared to coumarin.

  4. TS-1 supported highly dispersed sub-5 nm gold nanoparticles toward direct propylene epoxidation using H2 and O2

    Science.gov (United States)

    Li, Naixu; Chen, Yong; Shen, Quanhao; Yang, Bin; Liu, Ming; Wei, Lingfei; Tian, Wei; Zhou, Jiancheng

    2018-05-01

    We report a simple and efficient method for the preparation of highly dispersed Au nanoparticles (< 5 nm) on TS-1 substrate. The synthesis relies on the use of NaBH4 as a reductant for rapid Au atom generation, as well as PVA as a capping agent confining the particle size and dispersion. The samples were characterized by N2 physisorption, inductively coupled plasma mass spectrometry, power X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, CO pulse chemisorption and thermogravimetric analysis. The size of Au particles can be controlled in the range of 3-5 nm. The supported catalyst shows both good activity and selectivity for propylene oxide (PO) generation from direct propylene epoxidation. An optimal performance with PO formation rate of 102.94 gPO h-1 kg-1cat and selectivity of 84.83% is achieved over 2.0 wt% Au/TS-1 catalyst, which is prepared by controlling PVA/Au3+ mass ratio of 1.5/1 and NaBH4/Au3+ mole ratio of 5/1. After 50 h test at 200 °C, no significant decrement of both catalytic activity and PO selectivity can be observed, indicating the excellent thermally stability of the catalyst. Furthermore, a possible reaction mechanism is described on basis of the previous researches and our experimental results.

  5. Analysis of chlorpheniramine in human urine samples using dispersive liquid-liquid microextraction combined with high-performance liquid chromatography

    Directory of Open Access Journals (Sweden)

    Mehdi Maham

    2014-09-01

    Full Text Available A simple and environmentally friendly microextraction technique was used for determination of chlorpheniramine (CPM, an antihistamine drug, in human urine samples using dispersive liquid-liquid microextraction (DLLME followed by high performance liquid chromatography with diode array detection (HPLC-DAD. In this extraction technique, an appropriate mixture of acetonitrile (disperser solvent and carbon tetrachloride (extraction solvent was rapidly injected into the urine sample containing the target analyte. Tiny droplets of extractant were formed and dispersed into the sample solution and then sedimented at the bottom of the conical test tube by centrifugation. Under optimal conditions, the calibration curve was linear in the range of 0.055-5.5 µg mL-1, with a detection limit of 16.5 ng mL-1. This proposed method was successfully applied to the analysis of real urine samples. Low consumption of toxic organic solvents, simplicity of operation, low cost and acceptable figures of merit are the main advantages of the proposed technique.

  6. HYDRODYNAMICS OF HIGH-REDSHIFT GALAXY COLLISIONS: FROM GAS-RICH DISKS TO DISPERSION-DOMINATED MERGERS AND COMPACT SPHEROIDS

    International Nuclear Information System (INIS)

    Bournaud, Frederic; Chapon, Damien; Teyssier, Romain; Powell, Leila C.; Duc, Pierre-Alain; Elmegreen, Bruce G.; Elmegreen, Debra Meloy; Contini, Thierry; Epinat, Benoit; Shapiro, Kristen L.

    2011-01-01

    Disk galaxies at high redshift (z ∼ 2) are characterized by high fractions of cold gas, strong turbulence, and giant star-forming clumps. Major mergers of disk galaxies at high redshift should then generally involve such turbulent clumpy disks. Merger simulations, however, model the interstellar medium as a stable, homogeneous, and thermally pressurized medium. We present the first merger simulations with high fractions of cold, turbulent, and clumpy gas. We discuss the major new features of these models compared to models where the gas is artificially stabilized and warmed. Gas turbulence, which is already strong in high-redshift disks, is further enhanced in mergers. Some phases are dispersion dominated, with most of the gas kinetic energy in the form of velocity dispersion and very chaotic velocity fields, unlike merger models using a thermally stabilized gas. These mergers can reach very high star formation rates, and have multi-component gas spectra consistent with SubMillimeter Galaxies. Major mergers with high fractions of cold turbulent gas are also characterized by highly dissipative gas collapse to the center of mass, with the stellar component following in a global contraction. The final galaxies are early type with relatively small radii and high Sersic indices, like high-redshift compact spheroids. The mass fraction in a disk component that survives or re-forms after a merger is severely reduced compared to models with stabilized gas, and the formation of a massive disk component would require significant accretion of external baryons afterwards. Mergers thus appear to destroy extended disks even when the gas fraction is high, and this lends further support to smooth infall as the main formation mechanism for massive disk galaxies.

  7. Novel all-optical dispersion monitoring technique for ultra-high-speed WDM networks

    Energy Technology Data Exchange (ETDEWEB)

    Cui Sheng; Li Li; Liu Deming, E-mail: cuisheng@mail.hust.edu.cn [Wuhan National Laboratory for Optoelectronics, No.1037, Luoyu Road, Wuhan, Hubei, 430074 (China)

    2011-02-01

    This paper represents a novel all-optical dispersion monitoring technique based on fiber parametric amplifiers (FOPAs). The monitoring method is truly bit-rate transparent because it is enabled by the exponential power transfer function (PTF) provided by the FOPA gain. The slope of the PTF is increased from 2 to 3 by choosing appropriate phase-matching conditions. Due to the steeper PTF the monitoring sensitivity is greatly improved compared to the other PTF-based methods proposed before. The PTF obtained by numerical simulations agrees very well with the experimental results. Numerical simulations are then used to demonstrate that our method can be used to monitor signals in various modulation formats.

  8. Influence of particle size on the low and high strain rate behavior of dense colloidal dispersions of nanosilica

    Energy Technology Data Exchange (ETDEWEB)

    Asija, Neelanchali; Chouhan, Hemant; Gebremeskel, Shishay Amare; Bhatnagar, Naresh, E-mail: nareshb@mech.iitd.ac.in [Indian Institute of Technology Delhi, Mechanical Engineering Department (India)

    2017-01-15

    Shear thickening is a non-Newtonian flow behavior characterized by the increase in apparent viscosity with the increase in applied shear rate, particularly when the shear rate exceeds a critical value termed as the critical shear rate (CSR). Due to this remarkable property of shear-thickening fluids (STFs), they are extensively used in hip protection pads, protective gear for athletes, and more recently in body armor. The use of STFs in body armor has led to the development of the concept of liquid body armor. In this study, the effect of particle size is explored on the low and high strain rate behavior of nanosilica dispersions, so as to predict the efficacy of STF-aided personal protection systems (PPS), specifically for ballistic applications. The low strain rate study was conducted on cone and plate rheometer, whereas the high strain rate characterization of STF was conducted on in-house fabricated split Hopkinson pressure bar (SHPB) system. Spherical nanosilica particles of three different sizes (100, 300, and 500 nm) as well as fumed silica particles of four different specific surface areas (Aerosil A-90, A-130, A-150, and A-200), respectively, were used in this study. The test samples were prepared by dispersing nanosilica particles in polypropylene glycol (PPG) using ultrasonic homogenization method. The low strain rate studies aided in determining the CSR of the synthesized STF dispersions, whereas the high strain rate studies explored the impact-resisting ability of STFs in terms of the impact toughness and the peak stress attained during the impact loading of STF in SHPB testing.

  9. Finite-difference modeling and dispersion analysis of high-frequency love waves for near-surface applications

    Science.gov (United States)

    Luo, Y.; Xia, J.; Xu, Y.; Zeng, C.; Liu, J.

    2010-01-01

    Love-wave propagation has been a topic of interest to crustal, earthquake, and engineering seismologists for many years because it is independent of Poisson's ratio and more sensitive to shear (S)-wave velocity changes and layer thickness changes than are Rayleigh waves. It is well known that Love-wave generation requires the existence of a low S-wave velocity layer in a multilayered earth model. In order to study numerically the propagation of Love waves in a layered earth model and dispersion characteristics for near-surface applications, we simulate high-frequency (>5 Hz) Love waves by the staggered-grid finite-difference (FD) method. The air-earth boundary (the shear stress above the free surface) is treated using the stress-imaging technique. We use a two-layer model to demonstrate the accuracy of the staggered-grid modeling scheme. We also simulate four-layer models including a low-velocity layer (LVL) or a high-velocity layer (HVL) to analyze dispersive energy characteristics for near-surface applications. Results demonstrate that: (1) the staggered-grid FD code and stress-imaging technique are suitable for treating the free-surface boundary conditions for Love-wave modeling, (2) Love-wave inversion should be treated with extra care when a LVL exists because of a lack of LVL information in dispersions aggravating uncertainties in the inversion procedure, and (3) energy of high modes in a low-frequency range is very weak, so that it is difficult to estimate the cutoff frequency accurately, and "mode-crossing" occurs between the second higher and third higher modes when a HVL exists. ?? 2010 Birkh??user / Springer Basel AG.

  10. Spatially Extended and High-Velocity Dispersion Molecular Component in Spiral Galaxies: Single-Dish Versus Interferometric Observations

    Science.gov (United States)

    Caldú-Primo, Anahi; Schruba, Andreas; Walter, Fabian; Leroy, Adam; Bolatto, Alberto D.; Vogel, Stuart

    2015-02-01

    Recent studies of the molecular medium in nearby galaxies have provided mounting evidence that the molecular gas can exist in two phases: one that is clumpy and organized as molecular clouds and another one that is more diffuse. This last component has a higher velocity dispersion than the clumpy one. In order to investigate these two molecular components further, we compare the fluxes and line widths of CO in NGC 4736 and NGC 5055, two nearby spiral galaxies for which high-quality interferometric as well as single-dish data sets are available. Our analysis leads to two main results: (1) employing three different methods, we determine the flux recovery of the interferometer as compared to the single-dish to be within a range of 35%-74% for NGC 4736 and 81%-92% for NGC 5055, and (2) when focusing on high (S/N ≥ 5) lines of sight (LOSs), the single-dish line widths are larger by ˜(40 ± 20)% than the ones derived from interferometric data, which is in agreement with stacking all LOSs. These results point to a molecular gas component that is distributed over spatial scales larger than 30″(˜1 kpc), and is therefore filtered out by the interferometer. The available observations do not allow us to distinguish between a truly diffuse gas morphology and a uniform distribution of small clouds that are separated by less than the synthesized beam size (˜3″ or ˜100 pc), as they would both be invisible for the interferometer. This high velocity dispersion component has a dispersion similar to what is found in the atomic medium, as traced through observations of the H i line.

  11. Spatially extended and high-velocity dispersion molecular component in spiral galaxies: Single-dish versus interferometric observations

    International Nuclear Information System (INIS)

    Caldú-Primo, Anahi; Walter, Fabian; Schruba, Andreas; Leroy, Adam; Bolatto, Alberto D.; Vogel, Stuart

    2015-01-01

    Recent studies of the molecular medium in nearby galaxies have provided mounting evidence that the molecular gas can exist in two phases: one that is clumpy and organized as molecular clouds and another one that is more diffuse. This last component has a higher velocity dispersion than the clumpy one. In order to investigate these two molecular components further, we compare the fluxes and line widths of CO in NGC 4736 and NGC 5055, two nearby spiral galaxies for which high-quality interferometric as well as single-dish data sets are available. Our analysis leads to two main results: (1) employing three different methods, we determine the flux recovery of the interferometer as compared to the single-dish to be within a range of 35%–74% for NGC 4736 and 81%–92% for NGC 5055, and (2) when focusing on high (S/N ≥ 5) lines of sight (LOSs), the single-dish line widths are larger by ∼(40 ± 20)% than the ones derived from interferometric data, which is in agreement with stacking all LOSs. These results point to a molecular gas component that is distributed over spatial scales larger than 30″(∼1 kpc), and is therefore filtered out by the interferometer. The available observations do not allow us to distinguish between a truly diffuse gas morphology and a uniform distribution of small clouds that are separated by less than the synthesized beam size (∼3″ or ∼100 pc), as they would both be invisible for the interferometer. This high velocity dispersion component has a dispersion similar to what is found in the atomic medium, as traced through observations of the H i line.

  12. Kinetics of low temperature polyester dyeing with high molecular weight disperse dyes by solvent microemulsion and agrosourced auxiliaries

    OpenAIRE

    Radei, Shahram; Carrión-Fité, Francisco Javier; Ardanuy Raso, Mònica; Canal Arias, José Ma

    2018-01-01

    This work focused on the evaluation of the kinetics of dyeing polyester fabrics with high molecular weight disperse dyes, at low temperature by solvent microemulsion. This study also compared the effect of two non-toxic agro-sourced auxiliaries (o-vanillin and coumarin) using a non-toxic organic solvent. A dyeing bath consisting of a micro-emulsion system involving a small proportion of n-butyl acetate was used, and the kinetics of dyeing were analysed at four temperatures (83, 90, 95 and 100...

  13. Kinetics of Low Temperature Polyester Dyeing with High Molecular Weight Disperse Dyes by Solvent Microemulsion and AgroSourced Auxiliaries

    OpenAIRE

    Shahram Radei; F. Javier Carrión-Fité; Mònica Ardanuy; José María Canal

    2018-01-01

    This work focused on the evaluation of the kinetics of dyeing polyester fabrics with high molecular weight disperse dyes, at low temperature by solvent microemulsion. This study also compared the effect of two non-toxic agro-sourced auxiliaries (o-vanillin and coumarin) using a non-toxic organic solvent. A dyeing bath consisting of a micro-emulsion system involving a small proportion of n-butyl acetate was used, and the kinetics of dyeing were analysed at four temperatures (83, 90, 95 and 100...

  14. Diagnostics for liquid dispersion due to a high-speed impact with accident or vulnerability assessment application

    International Nuclear Information System (INIS)

    Jepsen, Richard A; O'Hern, Timothy; Demosthenous, Byron; Bystrom, Ed; Nissen, Mark; Romero, Edward; Yoon, Sam S

    2009-01-01

    The high-speed impact and subsequent dispersion of a large liquid slug is of interest for assessing vulnerability of structures when subjected to such an event. The Weber number associated with such liquid impacts is generally between 10 5 and 10 8 . Because of the experiment scale and destructive nature of these high-energy impacts, most traditional diagnostics are difficult to implement. Therefore, unique diagnostics were employed in several tests to gather information on impact force, spreading instability, slug break-up, ejection velocity, droplet deformation and spray characteristics. Measurement techniques discussed here include high-speed photometrics, particle image velocimetry (PIV), TrackEye particle analysis, speckle correlation, single-pass schlieren imaging, phase Doppler particle analyzer (PDPA) and load cell measurements as applied to large-scale, high-speed liquid impacts

  15. Atmospheric and dispersion modeling in areas of highly complex terrain employing a four-dimensional data assimilation technique

    International Nuclear Information System (INIS)

    Fast, J.D.; O'Steen, B.L.

    1994-01-01

    The results of this study indicate that the current data assimilation technique can have a positive impact on the mesoscale flow fields; however, care must be taken in its application to grids of relatively fine horizontal resolution. Continuous FDDA is a useful tool in producing high-resolution mesoscale analysis fields that can be used to (1) create a better initial conditions for mesoscale atmospheric models and (2) drive transport models for dispersion studies. While RAMS is capable of predicting the qualitative flow during this evening, additional experiments need to be performed to improve the prognostic forecasts made by RAMS and refine the FDDA procedure so that the overall errors are reduced even further. Despite the fact that a great deal of computational time is necessary in executing RAMS and LPDM in the configuration employed in this study, recent advances in workstations is making applications such as this more practical. As the speed of these machines increase in the next few years, it will become feasible to employ prognostic, three-dimensional mesoscale/transport models to routinely predict atmospheric dispersion of pollutants, even to highly complex terrain. For example, the version of RAMS in this study could be run in a ''nowcasting'' model that would continually assimilate local and regional observations as soon as they become available. The atmospheric physics in the model would be used to determine the wind field where no observations are available. The three-dimensional flow fields could be used as dynamic initial conditions for a model forecast. The output from this type of modeling system will have to be compared to existing diagnostic, mass-consistent models to determine whether the wind field and dispersion forecasts are significantly improved

  16. Ionic liquid-assisted synthesis of highly dispersive bowknot-like ZnO microrods for photocatalytic applications

    Science.gov (United States)

    Zhao, Shuo; Zhang, Yiwei; Zhou, Yuming; Zhang, Chao; Sheng, Xiaoli; Fang, Jiasheng; Zhang, Mingyu; Yang, Yong

    2017-04-01

    Here we present a facile method for the preparation of highly dispersive ZnO materials by using ionic liquid 1-methyl-3-[3‧-(trimethoxysilyl) propyl] imidazolium chloride as the template. The influence of ionic liquid concentration and calcined atmosphere on the photoactivity is studied. The samples were characterized by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), scanning electron microscope (SEM), N2 gas sorption and ultraviolet-visible diffuse reflectance spectroscopy. The results showed that the as-fabricated ZnO materials consisted of individual microrods with self-assembled bowknot-like architecture whose size was about 1 μm. The formation mechanism of the bowknot-like ZnO materials which is based on the self-assembly of ionic liquid is tentatively elucidated. Moreover, the ZnO-2.6N sample exhibited the higher activity for the photodegradation of MB than the photodegradation of MO and RhB. Furthermore, it was found that the ZnO materials calcined under air atmosphere showed the better photocatalytic activities than that of samples calcined under nitrogen atmosphere in the degradation of methylene blue (MB) under UV irradiation. And the special structure, surface area, adsorption capability of dye, the separation rate of photogenerated electron-hole pairs and band gap had effects on the photocatalytic activity of ZnO photocatalysts. O2rad - was the main active species for the photocatalytic degradation of MB. It is valuable to develop this facile route preparing the highly dispersive bowknot-like ZnO materials and the ZnO materials can be beneficial for environmental protection.

  17. Ionic liquid-assisted synthesis of highly dispersive bowknot-like ZnO microrods for photocatalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Shuo [School of Chemistry and Chemical Engineering, Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Nanjing 211189 (China); Zhang, Yiwei, E-mail: zhangchem@seu.edu.cn [School of Chemistry and Chemical Engineering, Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Nanjing 211189 (China); Zhou, Yuming, E-mail: ymzhou@seu.edu.cn [School of Chemistry and Chemical Engineering, Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Nanjing 211189 (China); Zhang, Chao; Sheng, Xiaoli; Fang, Jiasheng; Zhang, Mingyu [School of Chemistry and Chemical Engineering, Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Nanjing 211189 (China); Yang, Yong [School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei St, Nanjing 210094, Jiangsu (China)

    2017-04-01

    Highlights: • Ionic liquid was used as template for dispersive bowknot-like ZnO microrods. • The bowknot-like ZnO consists of individual microrods whose size is about 1 μm. • The formation mechanism of the ZnO materials is tentatively elucidated. • The bowknot-like ZnO exhibited the high catalytic activity in the photodegradation. • Photocatalytic activity is a result of the combination of various factors. - Abstract: Here we present a facile method for the preparation of highly dispersive ZnO materials by using ionic liquid 1-methyl-3-[3′-(trimethoxysilyl) propyl] imidazolium chloride as the template. The influence of ionic liquid concentration and calcined atmosphere on the photoactivity is studied. The samples were characterized by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), scanning electron microscope (SEM), N{sub 2} gas sorption and ultraviolet-visible diffuse reflectance spectroscopy. The results showed that the as-fabricated ZnO materials consisted of individual microrods with self-assembled bowknot-like architecture whose size was about 1 μm. The formation mechanism of the bowknot-like ZnO materials which is based on the self-assembly of ionic liquid is tentatively elucidated. Moreover, the ZnO-2.6N sample exhibited the higher activity for the photodegradation of MB than the photodegradation of MO and RhB. Furthermore, it was found that the ZnO materials calcined under air atmosphere showed the better photocatalytic activities than that of samples calcined under nitrogen atmosphere in the degradation of methylene blue (MB) under UV irradiation. And the special structure, surface area, adsorption capability of dye, the separation rate of photogenerated electron–hole pairs and band gap had effects on the photocatalytic activity of ZnO photocatalysts. O{sub 2}·{sup −} was the main active species for the photocatalytic degradation of MB. It is valuable to develop this facile

  18. Ionic liquid-assisted synthesis of highly dispersive bowknot-like ZnO microrods for photocatalytic applications

    International Nuclear Information System (INIS)

    Zhao, Shuo; Zhang, Yiwei; Zhou, Yuming; Zhang, Chao; Sheng, Xiaoli; Fang, Jiasheng; Zhang, Mingyu; Yang, Yong

    2017-01-01

    Highlights: • Ionic liquid was used as template for dispersive bowknot-like ZnO microrods. • The bowknot-like ZnO consists of individual microrods whose size is about 1 μm. • The formation mechanism of the ZnO materials is tentatively elucidated. • The bowknot-like ZnO exhibited the high catalytic activity in the photodegradation. • Photocatalytic activity is a result of the combination of various factors. - Abstract: Here we present a facile method for the preparation of highly dispersive ZnO materials by using ionic liquid 1-methyl-3-[3′-(trimethoxysilyl) propyl] imidazolium chloride as the template. The influence of ionic liquid concentration and calcined atmosphere on the photoactivity is studied. The samples were characterized by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), scanning electron microscope (SEM), N_2 gas sorption and ultraviolet-visible diffuse reflectance spectroscopy. The results showed that the as-fabricated ZnO materials consisted of individual microrods with self-assembled bowknot-like architecture whose size was about 1 μm. The formation mechanism of the bowknot-like ZnO materials which is based on the self-assembly of ionic liquid is tentatively elucidated. Moreover, the ZnO-2.6N sample exhibited the higher activity for the photodegradation of MB than the photodegradation of MO and RhB. Furthermore, it was found that the ZnO materials calcined under air atmosphere showed the better photocatalytic activities than that of samples calcined under nitrogen atmosphere in the degradation of methylene blue (MB) under UV irradiation. And the special structure, surface area, adsorption capability of dye, the separation rate of photogenerated electron–hole pairs and band gap had effects on the photocatalytic activity of ZnO photocatalysts. O_2·"− was the main active species for the photocatalytic degradation of MB. It is valuable to develop this facile route preparing

  19. Spectroscopic and magnetic studies of highly dispersible superparamagnetic silica coated magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Tadyszak, Krzysztof [NanoBioMedical Centre, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań (Poland); Institute of Molecular Physics Polish Academy of Sciences, ul. Mariana Smo.luchowskiego 17, 60-179 Poznań (Poland); Kertmen, Ahmet, E-mail: ahmet.kertmen@pg.gda.pl [Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk (Poland); Coy, Emerson [NanoBioMedical Centre, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań (Poland); Andruszkiewicz, Ryszard; Milewski, Sławomir [Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk (Poland); Kardava, Irakli; Scheibe, Błażej; Jurga, Stefan [NanoBioMedical Centre, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań (Poland); Chybczyńska, Katarzyna, E-mail: katarzyna.chybczynska@ifmpan.poznan.pl [Institute of Molecular Physics Polish Academy of Sciences, ul. Mariana Smo.luchowskiego 17, 60-179 Poznań (Poland)

    2017-07-01

    Highlights: • Superparamagnetic core-shell nanoparticles of Fe{sub 2}O{sub 3}@Silica were obtained. • Magnetic response was studied by DC, AC magnetometry and EPR spectroscopy. • Nanoparticles show magnetite structure with a well-defined Verwey transition. • Samples show no inter particle magnetic interactions or agglomeration. - Abstract: Superparamagnetic behavior in aqueously well dispersible magnetite core-shell Fe{sub 3}O{sub 4}@SiO{sub 2} nanoparticles is presented. The magnetic properties of core-shell nanoparticles were measured with use of the DC, AC magnetometry and EPR spectroscopy. Particles where characterized by HR-TEM and Raman spectroscopy, showing a crystalline magnetic core of 11.5 ± 0.12 nm and an amorphous silica shell of 22 ± 1.5 nm in thickness. The DC, AC magnetic measurements confirmed the superparamagnetic nature of nanoparticles, additionally the EPR studies performed at much higher frequency than DC, AC magnetometry (9 GHz) have confirmed the paramagnetic nature of the nanoparticles. Our results show the excellent magnetic behavior of the particles with a clear magnetite structure, which are desirable properties for environmental remediation and biomedical applications.

  20. An investigation on fuel meats extruded with atomized U-10wt% Mo powder for uranium high-density dispersion fuel

    International Nuclear Information System (INIS)

    Kim, Chang-Kyu; Kim, Ki-Hwan; Park, Jong-Man; Lee, Don-Bae; Sohn, Dong-Seong

    1997-01-01

    The RERTR program has been making an effort to develop dispersion fuels with uranium densities of 8 to 9 g U/cm3 for research and test reactors. Using atomized U-10wt%Mo powder, fuel meats have been fabricated successfully up to 55 volume % of fuel powder. The uranium density of an extruded meat with a 55 volume % of fuel powder was obtained to be 7.7 g/cm3. A relatively high porosity of 7.3% was formed due to cracking of particles, presumably induced by the impingement among agglomerated particles. Tensile test results indicated that the strength of fuel meats with 55% volume fraction decreased some and a little of ductility was maintained. Examination on the fracture surface revealed that some U-10%Mo particles appeared to be broken by the tensile force in brittle rupture mode. The increase of broken particles in high fuel fraction is considered to be induced mainly by the impingement among agglomerated particles. Uranium loading density is assumed to be improved through the development of the better homogeneous dispersion technology. (author)

  1. Preparation of Highly Dispersed Reduced Graphene Oxide Decorated with Chitosan Oligosaccharide as Electrode Material for Enhancing the Direct Electron Transfer of Escherichia coli.

    Science.gov (United States)

    Luo, Zhimin; Yang, Dongliang; Qi, Guangqin; Yuwen, Lihui; Zhang, Yuqian; Weng, Lixing; Wang, Lianhui; Huang, Wei

    2015-04-29

    Water-dispersed reduced graphene oxide/chitosan oligosaccharide (RGO-CTSO) was prepared by chemical reduction of graphene oxide and synchronous functionalization with biocompatible chitosan oligosaccharide (CTSO). ζ potential measurement indicated that RGO-CTSO was highly stable in the acidic aqueous solution. RGO-CTSO was used to modify glassy carbon electrode (GCE) as the growth template of Escherichia coli (E. coli). The enhanced direct electron transfer of E. coli on the RGO-CTSO-modified GCE was studied by cyclic voltammetry. Compared with GCE or RGO-modified GCE, RGO-CTSO-modified GCE was more suitable for the adhesion growth of E. coli to improve direct electron transfer. The biocompatibility and versatility of RGO-CTSO made it promising for use as an anode material in microbial fuel cells.

  2. Mixed matrix membranes prepared from high impact polystyrene with dispersed TiO2 nanoparticles for gas separation

    Directory of Open Access Journals (Sweden)

    P. Safaei

    2016-01-01

    Full Text Available The current study presents synthesis and characterization of high impact polystyrene - TiO2 nanoparticles mixed matrix membranes for separation of carbon dioxide from nitrogen. The solution-casting method was used for preparation of membranes. The nano mixed matrix membranes were characterized using scanning electron microscopy to ensure the suitable dispersion of nano particles in high impact polystyrene matrix. The effect of TiO2 nanoparticles loading on membrane performance was investigated. The separation performance of synthesized membranes was investigated in separation of CO2 from CO2/N2 mixture. Effect of feed pressure and TiO2 content on separation of CO2 was studied. The results revealed that increase of feed pressure decreases flux of gases through the mixed matrix membrane. The results also confirmed that the best separation performance can be obtained at TiO2 nanoparticles loading of 7 wt.%.

  3. Survey of potential electronic applications of high temperature superconductors

    International Nuclear Information System (INIS)

    Hammond, R.B.; Bourne, L.C.

    1991-01-01

    In this paper the authors present a survey of the potential electronic applications of high temperature superconductor (HTSC) thin films. During the past four years there has been substantial speculation on this topic. The authors will cover only a small fraction of the potential electronic applications that have been identified. Their treatment is influenced by the developments over the past few years in materials and device development and in market analysis. They present their view of the most promising potential applications. Superconductors have two important properties that make them attractive for electronic applications. These are (a) low surface resistance at high frequencies, and (b) the Josephson effect

  4. The influence of selected containment structures on debris dispersal and transport following high pressure melt ejection from the reactor vessel

    International Nuclear Information System (INIS)

    Pilch, M.; Tarbell, W.W.; Brockmann, J.E.

    1988-09-01

    High pressure expulsion of molten core debris from the reactor pressure vessel may result in dispersal of the debris from the reactor cavity. In most plants, the cavity exits into the containment such that the debris impinges on structures. Retention of the debris on the structures may affect the further transport of the debris throughout the containment. Two tests were done with scaled structural shapes placed at the exit of 1:10 linear scale models of the Zion cavity. The results show that the debris does not adhere significantly to structures. The lack of retention is attributed to splashing from the surface and reentrainment in the gas flowing over the surface. These processes are shown to be applicable to reactor scale. A third experiment was done to simulate the annular gap between the reactor vessel and cavity wall. Debris collection showed that the fraction of debris exiting through the gap was greater than the gap-to-total flow area ratio. Film records indicate that dispersal was primarily by entrainment of the molten debris in the cavity. 29 refs., 36 figs., 11 tabs

  5. Cross-phase modulation instability in optical fibres with exponential saturable nonlinearity and high-order dispersion

    International Nuclear Information System (INIS)

    Xian-Qiong, Zhong; An-Ping, Xiang

    2010-01-01

    Utilizing the linear-stability analysis, this paper analytically investigates and calculates the condition and gain spectra of cross-phase modulation instability in optical fibres in the case of exponential saturable nonlinearity and high-order dispersion. The results show that, the modulation instability characteristics here are similar to those of conventional saturable nonlinearity and Kerr nonlinearity. That is to say, when the fourth-order dispersion has the same sign as that of the second-order one, a new gain spectral region called the second one which is far away from the zero point may appear. The existence of the exponential saturable nonlinearity will make the spectral width as well as the peak gain of every spectral region increase with the input powers before decrease. Namely, for every spectral regime, this may lead to a unique value of peak gain and spectral width for two different input powers. In comparison with the case of conventional saturable nonlinearity, however, when the other parameters are the same, the variations of the spectral width and the peak gain with the input powers will be faster in case of exponential saturable nonlinearity. (classical areas of phenomenology)

  6. Smoke Dispersion Modeling Over Complex Terrain Using High-Resolution Meteorological Data and Satellite Observations: The FireHub Platform

    Science.gov (United States)

    Solomos, S.; Amiridis, V.; Zanis, P.; Gerasopoulos, E.; Sofiou, F. I.; Herekakis, T.; Brioude, J.; Stohl, A.; Kahn, R. A.; Kontoes, C.

    2015-01-01

    A total number of 20,212 fire hot spots were recorded by the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite instrument over Greece during the period 2002e2013. The Fire Radiative Power (FRP) of these events ranged from 10 up to 6000 MW at 1 km resolution, and many of these fire episodes resulted in long-range transport of smoke over distances up to several hundred kilometers. Three different smoke episodes over Greece are analyzed here using real time hot-spot observations from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) satellite instrument as well as from MODIS hot-spots. Simulations of smoke dispersion are performed with the FLEXPART-WRF model and particulate matter emissions are calculated directly from the observed FRP. The modeled smoke plumes are compared with smoke stereo-heights from the Multiangle Imaging Spectroradiometer (MISR) instrument and the sensitivities to atmospheric and modeling parameters are examined. Driving the simulations with high resolution meteorology (4 4 km) and using geostationary satellite data to identify the hot spots allows the description of local scale features that govern smoke dispersion. The long-range transport of smoke is found to be favored over the complex coastline environment of Greece due to the abrupt changes between land and marine planetary boundary layers (PBL) and the decoupling of smoke layers from the surface.

  7. High resolution modelling of aerosol dispersion regimes during the CAPITOUL field experiment: from regional to local scale interactions

    Directory of Open Access Journals (Sweden)

    B. Aouizerats

    2011-08-01

    Full Text Available High resolution simulation of complex aerosol particle evolution and gaseous chemistry over an atmospheric urban area is of great interest for understanding air quality and processes. In this context, the CAPITOUL (Canopy and Aerosol Particle Interactions in the Toulouse Urban Layer field experiment aims at a better understanding of the interactions between the urban dynamics and the aerosol plumes. During a two-day Intensive Observational Period, a numerical model experiment was set up to reproduce the spatial distribution of specific particle pollutants, from the regional scales and the interactions between different cities, to the local scales with specific turbulent structures. Observations show that local dynamics depends on the day-regime, and may lead to different mesoscale dynamical structures. This study focuses on reproducing these fine scale dynamical structures, and investigate the impact on the aerosol plume dispersion. The 500-m resolution simulation manages to reproduce convective rolls at local scale, which concentrate most of the aerosol particles and can locally affect the pollutant dispersion and air quality.

  8. Practice for dispersing pigments and other materials into water-based suspensions with a high intensity mixer

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 In preparing ceramic glazes and slurries for use, it is often necessary to add pigments to develop a desired fired color, to incorporate viscosity control agents for developing, or providing to develop the desired thickness of the glaze on the ware, to add materials which stabilize the suspension, control bacterial growth, and develop the desired hardness of the glaze on the ware to allow moving and handling before firing. While it is convenient to add these materials to the glaze or slurry in the dry form, it is often possible to use slurries where these materials are dispersed in a slurry and the slurry then added to the liquid glaze. Regardless of the state of the additions (dry or slurry), the dispersion can be done efficiently and effectively by the use of a high intensity mixer (sometimes referred to as a dissolver) and the procedure used is described here. 1.2 The values stated in SI units are to be regarded as the standard. This standard does not purport to address all of the safety concerns, if...

  9. Hydrodynamic dispersion

    International Nuclear Information System (INIS)

    Pryce, M.H.L.

    1985-01-01

    A dominant mechanism contributing to hydrodynamic dispersion in fluid flow through rocks is variation of travel speeds within the channels carrying the fluid, whether these be interstices between grains, in granular rocks, or cracks in fractured crystalline rocks. The complex interconnections of the channels ensure a mixing of those parts of the fluid which travel more slowly and those which travel faster. On a macroscopic scale this can be treated statistically in terms of the distribution of times taken by a particle of fluid to move from one surface of constant hydraulic potential to another, lower, potential. The distributions in the individual channels are such that very long travel times make a very important contribution. Indeed, while the mean travel time is related to distance by a well-defined transport speed, the mean square is effectively infinite. This results in an asymmetrical plume which differs markedly from a gaussian shape. The distribution of microscopic travel times is related to the distribution of apertures in the interstices, or in the microcracks, which in turn are affected in a complex way by the stresses acting on the rock matrix

  10. Highly dispersed PVP-supported Ir–Ni bimetallic nanoparticles as ...

    Indian Academy of Sciences (India)

    2018-05-23

    May 23, 2018 ... high performance catalyst for degradation of metanil yellow ... Department of Chemistry, KGC, Gurukul Kangri University, Haridwar 249407, India. ∗. Author for ... dyes possess one or more azo groups and are widely used ... streams from textile plants are highly coloured in most cases. The ... from toxicity.

  11. High temperature creep strength of Advanced Radiation Resistant Oxide Dispersion Strengthened Steels

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sanghoon; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Austenitic stainless steel may be one of the candidates because of good strength and corrosion resistance at the high temperatures, however irradiation swelling well occurred to 120dpa at high temperatures and this leads the decrease of the mechanical properties and dimensional stability. Compared to this, ferritic/martensitic steel is a good solution because of excellent thermal conductivity and good swelling resistance. Unfortunately, the available temperature range of ferritic/martensitic steel is limited up to 650 .deg. C. ODS steel is the most promising structural material because of excellent creep and irradiation resistance by uniformly distributed nano-oxide particles with a high density which is extremely stable at the high temperature in ferritic/martensitic matrix. In this study, high temperature strength of advanced radiation resistance ODS steel was investigated for the core structural material of next generation nuclear systems. ODS martensitic steel was designed to have high homogeneity, productivity and reproducibility. Mechanical alloying, hot isostactic pressing and hot rolling processes were employed to fabricate the ODS steels, and creep rupture test as well as tensile test were examined to investigate the behavior at high temperatures. ODS steels were fabricated by a mechanical alloying and hot consolidation processes. Mechanical properties at high temperatures were investigated. The creep resistance of advanced radiation resistant ODS steels was more superior than those of ferritic/ martensitic steel, austenitic stainless steel and even a conventional ODS steel.

  12. Development of Highly Nano-Dispersed NiO/GDC Catalysts from Ion Exchange Resin Templates

    Directory of Open Access Journals (Sweden)

    Angel Caravaca

    2017-11-01

    Full Text Available Novel NiO/GDC (Gadolinium-doped Ceria cermet catalysts were developed by the Weak Acid Resin (WAR method using an ion exchange resin template. In addition, the specific surface area of these tunable materials was enhanced by NiO partial dissolution in aqueous acid solution. The whole procedure highly improved the micro-structural properties of these materials compared to previous studies. Catalysts with high metal loadings (≥10%, small Ni nanoparticles (<10 nm, and high specific surface areas (>70 m2/g were achieved. These properties are promising for catalytic applications such as methane steam reforming for H2 production.

  13. Physics potential of ATLAS detector with high luminosity

    International Nuclear Information System (INIS)

    Zhou, Bing

    2004-01-01

    The ATLAS detector is designed to exploit the full physics potential in the TeV energy region opened up by the Large Hadron Collider at a center of mass energy of 14 TeV with very high luminosities. The physics performance of the ATLAS detector on Higgs, extra-dimension and strong symmetry breaking scenario is summarized in this note. ATLAS experiment has great discovery potential for these new phenomena with high luminosity. Triple gauge couplings are very sensitive for probing new physics at TeV scale. We show that ATLAS can measure these couplings very precisely with high luminosity. (orig.)

  14. Highly water-dispersible, mixed ionic-electronic conducting, polymer acid-doped polyanilines as ionomers for direct methanol fuel cells.

    Science.gov (United States)

    Murthy, Arun; Manthiram, Arumugam

    2011-06-28

    Highly water-dispersible polymer acid-doped polyanilines have been synthesized and evaluated as an alternative for expensive Nafion ionomers in the anode of direct methanol fuel cells (DMFC). These polymers as ionomers lead to higher performance in single cell DMFC compared to Nafion ionomers due to mixed ionic-electronic conduction, water dispersibility, and co-catalytic activity. This journal is © The Royal Society of Chemistry 2011

  15. Estimating nitrogen loading and far-field dispersal potential from background sources and coastal finfish aquaculture: A simple framework and case study in Atlantic Canada

    Science.gov (United States)

    McIver, R.; Milewski, I.; Loucks, R.; Smith, R.

    2018-05-01

    Far-field nutrient impacts associated with finfish aquaculture have been identified as a topic of concern for regulators, managers, scientists, and the public for over two decades but disentangling aquaculture impacts from those caused by other natural and anthropogenic sources has impeded the development of monitoring metrics and management plans. We apply a bulk, steady-state nitrogen loading model (NLM) framework to estimate the annual input of Total Dissolved Nitrogen (TDN) from point and non-point sources to the watershed surrounding Port Mouton Bay, Nova Scotia (Canada). We then use the results of the NLM together with estimates of dissolved inorganic nitrogen (DIN) loading from a sea-cage trout farm in the Bay and progressive vector diagrams to illustrate potential patterns of DIN dispersal from the trout farm. Our estimated anthropogenic nitrogen contribution to Port Mouton Bay from all terrestrial and atmospheric sources is ∼211,703 kg TDN/year with atmospheric deposition accounting for almost all (98.6%). At a stocking level of ∼400,000 rainbow trout, the Port Mouton Bay sea-cage farm increases the annual anthropogenic TDN loading to the bay by 14.4% or 30,400 kg. Depending on current flow rates, nitrogen flux from the trout farm can be more than double the background concentrations of TDN near the farm site. Although it is unlikely that nitrogen loading from this single fish farm is saturating the DIN requirements of the entire bay, progressive vector diagrams suggest that the dispersal potential may be insufficient to mitigate potential symptoms of eutrophication associated with nitrogen fluxes. We present an accessible and user-friendly tool for managers to estimate baseline nutrient loading in relation to aquaculture and our use of progressive vector diagrams illustrate a practical and simple method for characterizing potential nutrient dispersal based on local conditions and spatial scales. Our study joins numerous studies which have highlighted

  16. A highly accurate finite-difference method with minimum dispersion error for solving the Helmholtz equation

    KAUST Repository

    Wu, Zedong; Alkhalifah, Tariq Ali

    2018-01-01

    Numerical simulation of the acoustic wave equation in either isotropic or anisotropic media is crucial to seismic modeling, imaging and inversion. Actually, it represents the core computation cost of these highly advanced seismic processing methods

  17. ESA Gaia & the multifrequency behavior of high-energy sources with ultra-low dispersion spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Hudec, René; Šimon, Vojtěch; Hudec, L.; Hudcová, Věra

    2012-01-01

    Roč. 83, č. 1 (2012), s. 342-346 ISSN 0037-8720. [Workshop on multifrequency behaviour of high energy cosmic sources. Vulcano, 23.05.2011-28.05.2011] R&D Projects: GA ČR GA205/08/1207 Institutional research plan: CEZ:AV0Z10030501 Keywords : X-rays * high-energy sources * satellites Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  18. Using thermal limits to assess establishment of fish dispersing to high-latitude and high-elevation watersheds

    Science.gov (United States)

    Dunmall, Karen M.; Mochnacz, Neil J.; Zimmerman, Christian E.; Lean, Charles; Reist, James D.

    2016-01-01

    Distributional shifts of biota to higher latitudes and elevations are presumably influenced by species-specific physiological tolerances related to warming temperatures. However, it is establishment rather than dispersal that may be limiting colonizations in these cold frontier areas. In freshwater ecosystems, perennial groundwater springs provide critical winter thermal refugia in these extreme environments. By reconciling the thermal characteristics of these refugia with the minimum thermal tolerances of life stages critical for establishment, we develop a strategy to focus broad projections of northward and upward range shifts to the specific habitats that are likely for establishments. We evaluate this strategy using chum salmon (Oncorhynchus keta) and pink salmon (Oncorhynchus gorbuscha) that seem poised to colonize Arctic watersheds. Stream habitats with a minimum temperature of 4 °C during spawning and temperatures above 2 °C during egg incubation were most vulnerable to establishments by chum and pink salmon. This strategy will improve modelling forecasts of range shifts for cold freshwater habitats and focus proactive efforts to conserve both newly emerging fisheries and native species at northern and upper distributional extremes.

  19. Nozzle for electric dispersion reactor

    Science.gov (United States)

    Sisson, W.G.; Basaran, O.A.; Harris, M.T.

    1995-11-07

    A nozzle for an electric dispersion reactor includes two concentric electrodes, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode. 4 figs.

  20. A comparison between different oxide dispersion strengthened ferritic steel ongoing in situ oxide dissolution in High Voltage Electron Microscope

    International Nuclear Information System (INIS)

    Monnet, I.; Van den Berghe, T.; Dubuisson, Ph.

    2012-01-01

    ODS materials are considered for nuclear applications but previous experimental studies have shown a partial dissolution of some oxides under neutron irradiation. In this work, electron irradiations were used to evaluate the stability of the oxides depending on the chemical composition of the oxide dispersion. Four ferritic steels based on EM10 (Fe–9Cr–1Mo) and reinforced respectively by Al 2 O 3 , MgO, MgAl 2 O 4 and Y 2 O 3 , were studied. These materials were irradiated with 1 MeV or 1.2 MeV electrons in a High Voltage Electron Microscope. This technique allows to follow one single oxide and to determine the evolution of its size during the irradiation. In situ HVEM observations indicate that the dissolution rate depends on the chemical composition of the oxide, on the temperature and on the irradiation dose.

  1. Eco-friendly one-pot synthesis of highly dispersible functionalized graphene nanosheets with free amino groups

    International Nuclear Information System (INIS)

    Liu Zhiting; Duan Xuezhi; Qian Gang; Zhou Xinggui; Yuan Weikang

    2013-01-01

    An eco-friendly, facile and scalable hydrothermal approach, in which the reduction and functionalization of graphite oxide (GO) are completed in one pot, is proposed for the synthesis of monolayer 3-aminopropyltriethoxysilane (APTES)-functionalized graphenes (A-FGs). Atomic force microscopy, transmission electron microscopy and x-ray diffraction analyses indicate that the as-synthesized A-FGs consist of only one or a few layered graphenes, while x-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis reveal that APTES is bonded to graphene by the dehydration reaction between the Si–OH (produced by APTES hydration) and the –OH on the GO surface. As a result, free amino groups are left on the A-FGs. Moreover, A-FGs are highly dispersible in dimethylsulfoxide, APTES and ethylene glycol, and their solubilities are up to 0.89, 4.03 and 0.90 mg ml −1 , respectively. (paper)

  2. Highly Dispersed Nickel-Containing Mesoporous Silica with Superior Stability in Carbon Dioxide Reforming of Methane: The Effect of Anchoring

    Directory of Open Access Journals (Sweden)

    Wenjia Cai

    2014-03-01

    Full Text Available A series of nickel-containing mesoporous silica samples (Ni-SiO2 with different nickel content (3.1%–13.2% were synthesized by the evaporation-induced self-assembly method. Their catalytic activity was tested in carbon dioxide reforming of methane. The characterization results revealed that the catalysts, e.g., 6.7%Ni-SiO2, with highly dispersed small nickel particles, exhibited excellent catalytic activity and long-term stability. The metallic nickel particle size was significantly affected by the metal anchoring effect between metallic nickel particles and unreduced nickel ions in the silica matrix. A strong anchoring effect was suggested to account for the remaining of small Ni particle size and the improved catalytic performance.

  3. Effects of fourth-order dispersion in very high-speed optical time-division multiplexed transmission.

    Science.gov (United States)

    Capmany, J; Pastor, D; Sales, S; Ortega, B

    2002-06-01

    We present a closed-form expression for computation of the output pulse's rms time width in an optical fiber link with up to fourth-order dispersion (FOD) by use of an optical source with arbitrary linewidth and chirp parameters. We then specialize the expression to analyze the effect of FOD on the transmission of very high-speed linear optical time-division multiplexing systems. By suitable source chirping, FOD can be compensated for to an upper link-length limit above which other techniques must be employed. Finally, a design formula to estimate the maximum attainable bit rate limited by FOD as a function of the link length is also presented.

  4. Quantum optical rotatory dispersion

    Science.gov (United States)

    Tischler, Nora; Krenn, Mario; Fickler, Robert; Vidal, Xavier; Zeilinger, Anton; Molina-Terriza, Gabriel

    2016-01-01

    The phenomenon of molecular optical activity manifests itself as the rotation of the plane of linear polarization when light passes through chiral media. Measurements of optical activity and its wavelength dependence, that is, optical rotatory dispersion, can reveal information about intricate properties of molecules, such as the three-dimensional arrangement of atoms comprising a molecule. Given a limited probe power, quantum metrology offers the possibility of outperforming classical measurements. This has particular appeal when samples may be damaged by high power, which is a potential concern for chiroptical studies. We present the first experiment in which multiwavelength polarization-entangled photon pairs are used to measure the optical activity and optical rotatory dispersion exhibited by a solution of chiral molecules. Our work paves the way for quantum-enhanced measurements of chirality, with potential applications in chemistry, biology, materials science, and the pharmaceutical industry. The scheme that we use for probing wavelength dependence not only allows one to surpass the information extracted per photon in a classical measurement but also can be used for more general differential measurements. PMID:27713928

  5. Observing Exoplanets with High-dispersion Coronagraphy. II. Demonstration of an Active Single-mode Fiber Injection Unit

    Energy Technology Data Exchange (ETDEWEB)

    Mawet, D.; Ruane, G.; Xuan, W.; Echeverri, D.; Klimovich, N.; Randolph, M.; Fucik, J.; Wang, J.; Dekany, R.; Delorme, J.-R. [Department of Astronomy, California Institute of Technology, 1200 East California Boulevard, MC 249-17, Pasadena, CA 91125 (United States); Wallace, J. K.; Vasisht, G.; Mennesson, B.; Choquet, E.; Serabyn, E., E-mail: dmawet@astro.caltech.edu [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2017-04-01

    High-dispersion coronagraphy (HDC) optimally combines high-contrast imaging techniques such as adaptive optics/wavefront control plus coronagraphy to high spectral resolution spectroscopy. HDC is a critical pathway toward fully characterizing exoplanet atmospheres across a broad range of masses from giant gaseous planets down to Earth-like planets. In addition to determining the molecular composition of exoplanet atmospheres, HDC also enables Doppler mapping of atmosphere inhomogeneities (temperature, clouds, wind), as well as precise measurements of exoplanet rotational velocities. Here, we demonstrate an innovative concept for injecting the directly imaged planet light into a single-mode fiber, linking a high-contrast adaptively corrected coronagraph to a high-resolution spectrograph (diffraction-limited or not). Our laboratory demonstration includes three key milestones: close-to-theoretical injection efficiency, accurate pointing and tracking, and on-fiber coherent modulation and speckle nulling of spurious starlight signal coupling into the fiber. Using the extreme modal selectivity of single-mode fibers, we also demonstrated speckle suppression gains that outperform conventional image-based speckle nulling by at least two orders of magnitude.

  6. Hydrodynamic disperser

    Energy Technology Data Exchange (ETDEWEB)

    Bulatov, A.I.; Chernov, V.S.; Prokopov, L.I.; Proselkov, Yu.M.; Tikhonov, Yu.P.

    1980-01-15

    A hydrodynamic disperser is suggested which contains a housing, slit nozzles installed on a circular base arranged opposite from each other, resonators secured opposite the nozzle and outlet sleeve. In order to improve the effectiveness of dispersion by throttling the flow, each resonator is made in the form of a crimped plate with crimpings that decrease in height in a direction towards the nozzle.

  7. High dielectric permittivity elastomers from well-dispersed expanded graphite in low concentrations

    DEFF Research Database (Denmark)

    Daugaard, Anders Egede; Hassouneh, Suzan Sager; Kostrzewska, Malgorzata

    2013-01-01

    The development of elastomer materials with a high dielectric permittivity has attracted increased interest over the last years due to their use in for example dielectric electroactive polymers. For this particular use, both the electrically insulating properties - as well as the mechanical...

  8. Exceptional heat stability of high protein content dispersions containing whey protein particles

    NARCIS (Netherlands)

    Saglam, D.; Venema, P.; Vries, de R.J.; Linden, van der E.

    2014-01-01

    Due to aggregation and/or gelation during thermal treatment, the amount of whey proteins that can be used in the formulation of high protein foods e.g. protein drinks, is limited. The aim of this study was to replace whey proteins with whey protein particles to increase the total protein content and

  9. Accurate, high-throughput typing of copy number variation using paralogue ratios from dispersed repeats.

    NARCIS (Netherlands)

    Armour, J.A.; Palla, R.; Zeeuwen, P.L.J.M.; Heijer, M. den; Schalkwijk, J.; Hollox, E.J.

    2007-01-01

    Recent work has demonstrated an unexpected prevalence of copy number variation in the human genome, and has highlighted the part this variation may play in predisposition to common phenotypes. Some important genes vary in number over a high range (e.g. DEFB4, which commonly varies between two and

  10. Potential bird dispersers of Psychotria in a area of Atlantic forest on Ilha Grande, RJ, Southeastern Brazil: a biochemical analysis of the fruits

    Directory of Open Access Journals (Sweden)

    E. M. Almeida

    Full Text Available The present study assessed the fruiting pattern, bird foraging behavior, and sugar content of ripe fruits of two sympatric species of Rubiaceae (Psychotria brasiliensis and P. nuda. This study was carried out in an Atlantic forest area on Ilha Grande, RJ, between August 1998 and July 1999. Fruit production occurred year round, with a peak of mature P. brasiliensis fruits in December 1998 and another of P. nuda in February of 1999. Lipaugus lanioides (Cotingidae, Baryphtengus ruficapillus (Momotidae and Saltator similis (Emberizidae made the most frequent foraging visits to fruiting P. brasiliensis, so that L. lanioides and B. ruficapillus removed the fruits with sallying maneuvers while S. similis gleaned the fruits. Lipaugus lanioides was by far the most important consumer, and potentially the main disperser of P. brasiliensis. Birds of this genus are heavy frugivores in the tropical forests and are widely assumed to be important seed dispersers. The fruits were analyzed quantitatively and qualitatively in relation to the amounts of sucrose and starch. Psychotria brasiliensis (the visited species showed the smallest quantity of sucrose and the highest amount of starch. These findings suggest that what may influence the birds' choice of fruit is the proportion of starch in the Psychotria species studied here rather than the carbohydrate composition.

  11. Evaluating within-population variability in behavior and demography for the adaptive potential of a dispersal-limited species to climate change

    Science.gov (United States)

    Muñoz, David J.; Miller Hesed, Kyle; Grant, Evan H. Campbell; Miller, David A.W.

    2016-01-01

    Multiple pathways exist for species to respond to changing climates. However, responses of dispersal-limited species will be more strongly tied to ability to adapt within existing populations as rates of environmental change will likely exceed movement rates. Here, we assess adaptive capacity in Plethodon cinereus, a dispersal-limited woodland salamander. We quantify plasticity in behavior and variation in demography to observed variation in environmental variables over a 5-year period. We found strong evidence that temperature and rainfall influence P. cinereus surface presence, indicating changes in climate are likely to affect seasonal activity patterns. We also found that warmer summer temperatures reduced individual growth rates into the autumn, which is likely to have negative demographic consequences. Reduced growth rates may delay reproductive maturity and lead to reductions in size-specific fecundity, potentially reducing population-level persistence. To better understand within-population variability in responses, we examined differences between two common color morphs. Previous evidence suggests that the color polymorphism may be linked to physiological differences in heat and moisture tolerance. We found only moderate support for morph-specific differences for the relationship between individual growth and temperature. Measuring environmental sensitivity to climatic variability is the first step in predicting species' responses to climate change. Our results suggest phenological shifts and changes in growth rates are likely responses under scenarios where further warming occurs, and we discuss possible adaptive strategies for resulting selective pressures.

  12. Directly patching high-level exchange-correlation potential based on fully determined optimized effective potentials

    Science.gov (United States)

    Huang, Chen; Chi, Yu-Chieh

    2017-12-01

    The key element in Kohn-Sham (KS) density functional theory is the exchange-correlation (XC) potential. We recently proposed the exchange-correlation potential patching (XCPP) method with the aim of directly constructing high-level XC potential in a large system by patching the locally computed, high-level XC potentials throughout the system. In this work, we investigate the patching of the exact exchange (EXX) and the random phase approximation (RPA) correlation potentials. A major challenge of XCPP is that a cluster's XC potential, obtained by solving the optimized effective potential equation, is only determined up to an unknown constant. Without fully determining the clusters' XC potentials, the patched system's XC potential is "uneven" in the real space and may cause non-physical results. Here, we developed a simple method to determine this unknown constant. The performance of XCPP-RPA is investigated on three one-dimensional systems: H20, H10Li8, and the stretching of the H19-H bond. We investigated two definitions of EXX: (i) the definition based on the adiabatic connection and fluctuation dissipation theorem (ACFDT) and (ii) the Hartree-Fock (HF) definition. With ACFDT-type EXX, effective error cancellations were observed between the patched EXX and the patched RPA correlation potentials. Such error cancellations were absent for the HF-type EXX, which was attributed to the fact that for systems with fractional occupation numbers, the integral of the HF-type EXX hole is not -1. The KS spectra and band gaps from XCPP agree reasonably well with the benchmarks as we make the clusters large.

  13. Status of fuel element technology for plate type dispersion fuels with high uranium density

    International Nuclear Information System (INIS)

    Hrovat, M.; Huschka, H.; Koch, K.H.; Nazare, S.; Ondracek, G.

    1983-01-01

    A number of about 20 Material Test and Research Reactors in Germany and abroad is supplied with fuel elements by the company NUKEM. The power of these reactors differs widely ranging from up to about 100 MW. Consequently, the uranium density of the fuel elements in the meat varies considerably depending on the reactor type and is usually within the range from 0.4 to 1.3 g U/cm 3 if HEU is used. In order to convert these reactors to lower uranium enrichment (19.75% 235-U) extensive work is carried out at NUKEM since about two years with the goal to develop fuel elements with high U-density. This work is sponsored by the German Ministry for Research and Technology in the frame of the AF-program. This paper reports on the present state of development for fuel elements with high U-density fuels at NUKEM is reported. The development works were so far concentrated on UAl x , U 3 O 8 and UO 2 fuels which will be described in more detail. In addition fuel plates with new fuels like e.g. U-Si or U-Fe compounds are developed in collaboration with KfK. The required uranium densities for some typical reactors with low, medium, and high power are listed allowing a comparison of HEU and LEU uranium density requirements. The 235-U-content in the case of LEU is raised by 18%. Two different meat thicknesses are considered: Standard thickness of 0.5 mm; and increased thickness of 0.76 mm. From this data compilation the objective follows: in the case of conversion to LEU (19.75% 235-U-enrichment), uranium densities have to be made available up to 24 gU/cm 3 meat for low power level reactors, up to 33 gU/cm 3 meat for medium power level reactors, and between 5.75 and 7.03 g/cm 3 meat for high power level reactors according to this consideration

  14. A superconducting detector endstation for high-resolution energy-dispersive SR-XRF

    International Nuclear Information System (INIS)

    Friedrich, S.; Niedermayr, T.; Drury, O.; Cunningham, M.F.; Berg, M.L. van den; Ullom, J.N.; Loshak, A.; Funk, T.; Cramer, S.P.; Batteux, J.D.; See, E.; Frank, M.; Labov, S.E.

    2001-01-01

    We have built a two-stage adiabatic demagnetization refrigerator (ADR) to operate cryogenic high-resolution X-ray detectors in synchrotron-based fluorescence applications. The detector is held at the end of a 40 cm cold finger that extends into a UHV sample chamber. The ADR attains a base temperature below 100 mK with about 20 h hold time below 400 mK, and does not require pumping on the liquid He bath. We will discuss cryostat design and performance

  15. A superconducting detector endstation for high-resolution energy-dispersive SR-XRF

    International Nuclear Information System (INIS)

    Friedrich, S.; Drury, O.; Niedermayr, T.; Cunningham, M.F.; Van den Berg, M.L.; Ullom, J.N.; Loshak, A.; Cramer, S.P.; Batteux, J.D.; See, E.; Frank, M.; Labov, S.E.

    2000-01-01

    We have built a two-stage adiabatic demagnetization refrigerator (ADR) to operate cryogenic high-resolution x-ray detectors in synchrotron-based fluorescence applications. The detector is held at the end of a 40 cm cold finger that extends into a UHV sample chamber. The ADR attains a base temperature below 100 mK with about 24 hours hold time below 400 mK, and does not require pumping on the liquid He bath. We will discuss cryostat design and performance

  16. A superconducting detector endstation for high-resolution energy-dispersive SR-XRF

    CERN Document Server

    Friedrich, S; Drury, O B; Cunningham, M F; Berg, M L; Ullom, J N; Loshak, A; Funk, T; Cramer, S P; Batteux, J D; See, E; Frank, M; Labov, S E

    2001-01-01

    We have built a two-stage adiabatic demagnetization refrigerator (ADR) to operate cryogenic high-resolution X-ray detectors in synchrotron-based fluorescence applications. The detector is held at the end of a 40 cm cold finger that extends into a UHV sample chamber. The ADR attains a base temperature below 100 mK with about 20 h hold time below 400 mK, and does not require pumping on the liquid He bath. We will discuss cryostat design and performance.

  17. A superconducting detector endstation for high-resolution energy-dispersive SR-XRF

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, S. E-mail: friedrich1@llnl.gov; Niedermayr, T.; Drury, O.; Cunningham, M.F.; Berg, M.L. van den; Ullom, J.N.; Loshak, A.; Funk, T.; Cramer, S.P.; Batteux, J.D.; See, E.; Frank, M.; Labov, S.E

    2001-07-21

    We have built a two-stage adiabatic demagnetization refrigerator (ADR) to operate cryogenic high-resolution X-ray detectors in synchrotron-based fluorescence applications. The detector is held at the end of a 40 cm cold finger that extends into a UHV sample chamber. The ADR attains a base temperature below 100 mK with about 20 h hold time below 400 mK, and does not require pumping on the liquid He bath. We will discuss cryostat design and performance.

  18. Highly dispersive ion exchangers in the analytical chemistry of uranium, particularly regarding separation methods

    International Nuclear Information System (INIS)

    Schoening, R.

    1975-01-01

    The reaction of water-insoluble polyvinyl pyrrolidon with uranium VI was investigated and a determination method for uranium was worked out in which the polyvinyl pyrrolidon was used as specific exchanger. Good separations of uranium from numerous transition metal ions were achieved here. The application of this exchanger for a fast and simple elution and determination method was of particular importance. A possible sorption mechanism was suggested based on the capacity curve of uranium with polyvinyl pyrrolidon and nitrogen and chloride content at maximum load. The sorption occurs by coordination of the carbonyl oxygen of single pyrrolidon rings with the protons of the complex acides and uranium. This assumption is supported by IR investigations. The sorbability of other inorganic acids was also investigated and possible structures were formulated for the sorption mechanism. In addition to this, ion exchangers were prepared based on cellulose by converting cellulose powder with aziridine and tris-1-aziridinyl-phosphine oxide. A polyethylene imine cellulose of high capacity was obtained in the conversion of cellulose powder with aziridine. This exchanger absorbs cobalt III very strongly. The exchanger loaded with cobalt III was used to separate the uranium as cyanato complex. The exchanger obtained in converting chlorated cellulose with tris-1-aziridinyl phosphine oxide also absorbs uranium VI very strongly. Thus a separation method of high specifity and selectivity was developed. (orig.) [de

  19. Design of modified xanthan mini-matrices for monitoring oral discharge of highly soluble Soluplus{sup ®}–glibenclamide dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Bakshi, Paromita; Sadhukhan, Sayantan; Maiti, Sabyasachi, E-mail: sabya245@rediffmail.com

    2015-09-01

    In this work, Soluplus{sup ®} was used as a hydrophilic carrier for the preparation of solid dispersion (SD) of a model BCS class II drug, glibenclamide by applying hot melting process and microwave irradiation in combination. Increasing the concentration of carrier relative to drug significantly increased the drug solubility, which corresponded to a maximum 75 fold increase at a drug:carrier ratio of 1:7. Scanning electron microscopy, differential scanning calorimetry, and x-ray diffraction analyses confirmed complete amorphization of the drug in SD. In animal study, about two fold reductions in hyperglycemic level were achieved by SD compared to pure drug. SD-loaded O-carboxymethyl xanthan mini-matrices controlled the release of drug into gastro-luminal fluid over longer duration. The drug release corroborated with pH-dependent swelling behavior of the matrices and approximated anomalous diffusion mechanism. This study proved the potential of Soluplus{sup ®}-based dispersion in improving the clinical performance of the drug, especially when embedded in modified xanthan mini-matrices. - Highlights: • Microwave-induced solid dispersion of glibenclamide was prepared using Soluplus®. • Solubility of drug corresponded to 75 fold increase at a drug:Soluplus® ratio of 1:7. • Thermal and x-ray analyses suggested amorphization of drug in solid dispersion. • About two fold reductions in hyperglycemic level were achieved by solid dispersion. • Modified xanthan gum showed potential in controlling anomalous transport of drug.

  20. Quality assessment and potential utilization of high amylolytic ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-03

    Dec 3, 2008 ... Defatted flour was dispersed in. 70% ethanol at a ratio .... This suggests that they all contain almost the same mineral content. Lipid bodies decrease in .... fermented composite blends of cereal and soybeans. Plant Food. Hum.

  1. Determination of five antiarrhythmic drugs in human plasma by dispersive liquid-liquid microextraction and high-performance liquid chromatography.

    Science.gov (United States)

    Jouyban, Abolghasem; Sorouraddin, Mohammad Hossein; Farajzadeh, Mir Ali; Somi, Mohammad Hossein; Fazeli-Bakhtiyari, Rana

    2015-03-01

    A fast and sensitive high-performance liquid chromatography (HPLC) method with ultraviolet (UV) detection was developed and validated for the simultaneous quantitation of five antiarrhythmic drugs (metoprolol, propranolol, carvedilol, diltiazem, and verapamil) in human plasma samples. It involves dispersive liquid-liquid microextraction (DLLME) of the desired drugs from 660 µL plasma and separation using isocratic elution with UV detection at 200 nm. The complete separation of all analytes was achieved within 7 min. Acetonitrile (as disperser solvent) resulting from the protein precipitation procedure was mixed with 100 µL dichloromethane (as an extraction solvent) and rapidly injected into 5 mL aqueous solution (pH 11.5) containing 1% (w/v), NaCl. After centrifugation, the sedimented phase containing enriched analytes was collected and evaporated to dryness. The residue was re-dissolved in 50 µL de-ionized water (acidified to pH 3) and injected into the HPLC system for analysis. Under the optimal conditions, the enrichment factors and extraction recoveries ranged between 4.4-10.8 and 33-82%, respectively. The suggested method was linear (r(2) ≥0.997) over a dynamic range of 0.02-0.80 µg mL(-1) in plasma. The intra- and inter-days relative standard deviation (RSD%) and relative error (RE%) values of the method were below 20%, which shows good precision and accuracy. Finally, this method was applied to the analysis of real plasma samples obtained from the patients treated with these drugs. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Analysis of drugs of abuse in human plasma by dispersive liquid-liquid microextraction and high-performance liquid chromatography.

    Science.gov (United States)

    Fernández, P; Regenjo, M; Bermejo, A M; Fernández, A M; Lorenzo, R A; Carro, A M

    2015-04-01

    Opioids and cocaine are widely used at present, both for recreational purposes and as drugs of abuse. This raises the need to develop new analytical methods specifically designed for the simultaneous detection of several drugs of abuse in biological samples. In this work, dispersive liquid-liquid microextraction (DLLME) was assessed as a new sample treatment for the simultaneous extraction of morphine (MOR), 6-acetylmorphine (6AM), cocaine (COC), benzoylecgonine (BZE) and methadone (MET) from human plasma. Preliminary assays were done before developing an experimental design based on a Uniform Network Doehlert which allowed the optimum extraction conditions to be identified, namely: a volume of extractant solvent (chloroform) and dispersant solvent (acetonitrile) of 220 µl and 3.2 ml, respectively; 0.2 g of NaCl as a salting-out additive; pH 10.6 and ultrasound stirring for 3.5 min. The resulting extracts were analyzed by high-performance liquid chromatography with photodiode array detection (HPLC-PDA), using an XBridge® RP18 column (250 × 4.6 mm i.d., 5 µm particle size). Calibration graphs were linear over the concentration range 0.1-10 µg ml⁻¹, and detection limits ranged from 13.9 to 28.5 ng ml⁻¹. Precision calculated at three different concentration levels in plasma was included in the range 0.1-6.8% RSD. Recoveries of the five drugs were all higher than 84% on average. Finally the proposed method was successfully applied to 22 plasma samples from heroin, cocaine and/or methadone users, and the most frequently detected drug was benzoylecgonine, followed by methadone, cocaine and morphine. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Potential ramifications of the global economic crisis on human-mediated dispersal of marine non-indigenous species.

    Science.gov (United States)

    Floerl, Oliver; Coutts, Ashley

    2009-11-01

    The global economy is currently experiencing one of its biggest contractions on record. A sharp decline in global imports and exports since 2008 has affected global merchant vessel traffic, the principal mode of bulk commodity transport around the world. During the first quarter of 2009, 10% and 25% of global container and refrigerated vessels, respectively, were reported to be unemployed. A large proportion of these vessels are lying idle at anchor in the coastal waters of South East Asia, sometimes for periods of greater than 3 months. Whilst at anchor, the hulls of such vessels will develop diverse and extensive assemblages of marine biofouling species. Once back in service, these vessels are at risk of transporting higher-than-normal quantities of marine organisms between their respective global trading ports. We discuss the potential ramifications of the global economic crisis on the spread of marine non-indigenous species via global commercial shipping.

  4. Lead dioxide electrodes for high potential anodic processes

    OpenAIRE

    A. B. VELICHENKO; ROSSANO AMADELLI

    2001-01-01

    Doping of PbO2 by cations (Fe3+, Co2+ and Ni2+), by F- and by cations and F- simultaneously is discussed as a way of improving the stability and electrochemical activity in processes occurring at high potentials. Doping allows the control of the amount of structural water in an oxide. Radiotracer experiments showed that high electrodeposition current densities favour the segregation of incorporated tritium (protons) at the surface. On the other hand, fluorine doping results in a marked decrea...

  5. Simultaneous determination of phenolic compounds in Equisetum palustre L. by ultra high performance liquid chromatography with tandem mass spectrometry combined with matrix solid-phase dispersion extraction.

    Science.gov (United States)

    Wei, Zuofu; Pan, Youzhi; Li, Lu; Huang, Yuyang; Qi, Xiaolin; Luo, Meng; Zu, Yuangang; Fu, Yujie

    2014-11-01

    A method based on matrix solid-phase dispersion extraction followed by ultra high performance liquid chromatography with tandem mass spectrometry is presented for the extraction and determination of phenolic compounds in Equisetum palustre. This method combines the high efficiency of matrix solid-phase dispersion extraction and the rapidity, sensitivity, and accuracy of ultra high performance liquid chromatography with tandem mass spectrometry. The influential parameters of the matrix solid-phase dispersion extraction were investigated and optimized. The optimized conditions were as follows: silica gel was selected as dispersing sorbent, the ratio of silica gel to sample was selected to be 2:1 (400/200 mg), and 8 mL of 80% methanol was used as elution solvent. Furthermore, a fast and sensitive ultra high performance liquid chromatography with tandem mass spectrometry method was developed for the determination of nine phenolic compounds in E. palustre. This method was carried out within <6 min, and exhibited satisfactory linearity, precision, and recovery. Compared with ultrasound-assisted extraction, the proposed matrix solid-phase dispersion procedure possessed higher extraction efficiency, and was more convenient and time saving with reduced requirements on sample and solvent amounts. All these results suggest that the developed method represents an excellent alternative for the extraction and determination of active components in plant matrices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Magnetic fluid with high dispersion and heating performance using nano-sized Fe{sub 3}O{sub 4} platelets

    Energy Technology Data Exchange (ETDEWEB)

    Kishimoto, Mikio, E-mail: kishimoto.mikio.gb@u.tsukuba.ac.jp [Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Miyamoto, Ryoichi; Oda, Tatsuya [Department of Surgery, Division of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Yanagihara, Hideto [Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Ohkohchi, Nobuhiro [Department of Surgery, Division of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Kita, Eiji [Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan)

    2016-01-15

    Magnetic fluid with high dispersion and heating performance was developed using 30 to 50 nm platelet Fe{sub 3}O{sub 4} particles. This fluid was prepared by mechanical dispersion in ethyl alcohol with a silane coupling agent, bonding with polyethylene glycol (PEG), and removal of aggregates formed by precipitation. The peak diameter of the resulting Fe{sub 3}O{sub 4} particles, measured by dynamic light scattering, was approximately 150 nm. The fluid exhibited a 300 W/g specific loss power (measured at 114 kHz by a 50.9 kA/m magnetic field). Distribution of the Fe{sub 3}O{sub 4} particles in tissues was observed by intravenously administrating the fluid in mice. The Fe{sub 3}O{sub 4} particles passed through the lungs, and were uniformly distributed throughout the liver and spleen. High dispersion and high heating performance were simultaneously achieved in the magnetic fluid using platelet Fe{sub 3}O{sub 4} particles surface modified with PEG. - Highlights: • Magnetic fluid with high dispersion and heating performance using Fe{sub 3}O{sub 4} particles. • Fluid prepared by mechanical dispersion, bonding with polyethylene glycol. • TEM observation and measurements of particle size distribution and specific loss power of fluid. • Observation of distribution of particles in mice tissues intravenously administrated fluid.

  7. Seed-dispersal distributions by trumpeter hornbills in fragmented landscapes

    Science.gov (United States)

    Lenz, Johanna; Fiedler, Wolfgang; Caprano, Tanja; Friedrichs, Wolfgang; Gaese, Bernhard H.; Wikelski, Martin; Böhning-Gaese, Katrin

    2011-01-01

    Frugivorous birds provide important ecosystem services by transporting seeds of fleshy fruited plants. It has been assumed that seed-dispersal kernels generated by these animals are generally leptokurtic, resulting in little dispersal among habitat fragments. However, little is known about the seed-dispersal distribution generated by large frugivorous birds in fragmented landscapes. We investigated movement and seed-dispersal patterns of trumpeter hornbills (Bycanistes bucinator) in a fragmented landscape in South Africa. Novel GPS loggers provide high-quality location data without bias against recording long-distance movements. We found a very weakly bimodal seed-dispersal distribution with potential dispersal distances up to 14.5 km. Within forest, the seed-dispersal distribution was unimodal with an expected dispersal distance of 86 m. In the fragmented agricultural landscape, the distribution was strongly bimodal with peaks at 18 and 512 m. Our results demonstrate that seed-dispersal distributions differed when birds moved in different habitat types. Seed-dispersal distances in fragmented landscapes show that transport among habitat patches is more frequent than previously assumed, allowing plants to disperse among habitat patches and to track the changing climatic conditions. PMID:21177686

  8. High-temperature deformation and processing maps of Zr-4 metal matrix with dispersed coated surrogate nuclear fuel particles

    Science.gov (United States)

    Chen, Jing; Liu, Huiqun; Zhang, Ruiqian; Li, Gang; Yi, Danqing; Lin, Gaoyong; Guo, Zhen; Liu, Shaoqiang

    2018-06-01

    High-temperature compression deformation of a Zr-4 metal matrix with dispersed coated surrogate nuclear fuel particles was investigated at 750 °C-950 °C with a strain rate of 0.01-1.0 s-1 and height reduction of 20%. Scanning electron microscopy was utilized to investigate the influence of the deformation conditions on the microstructure of the composite and damage to the coated surrogate fuel particles. The results indicated that the flow stress of the composite increased with increasing strain rate and decreasing temperature. The true stress-strain curves showed obvious serrated oscillation characteristics. There were stable deformation ranges at the initial deformation stage with low true strain at strain rate 0.01 s-1 for all measured temperatures. Additionally, the coating on the surface of the surrogate nuclear fuel particles was damaged when the Zr-4 matrix was deformed at conditions of high strain rate and low temperature. The deformation stability was obtained from the processing maps and microstructural characterization. The high-temperature deformation activation energy was 354.22, 407.68, and 433.81 kJ/mol at true strains of 0.02, 0.08, and 0.15, respectively. The optimum deformation parameters for the composite were 900-950 °C and 0.01 s-1. These results are expected to provide guidance for subsequent determination of possible hot working processes for this composite.

  9. Highly stressed carbon film coatings on silicon potential applications

    CERN Multimedia

    Sharda, T

    2002-01-01

    The fabrication of highly stressed and strongly adhered nanocrystalline diamond films on Si substrates is presented. A microwave plasma CVD method with controlled and continuous bias current density was used to grow the films. The stress/curvature of the films can be varied and controlled by altering the BCD. Potential applications for these films include particle physics and x-ray optics.

  10. Highly birefringent photonic crystal fiber with ultra-flattened negative dispersion over S + C + L + U bands

    DEFF Research Database (Denmark)

    Habib, Selim; Khandker, Emran

    2015-01-01

    We present a new cladding design for photonic crystal fiber (PCF) on a decagonal structure to simultaneously achieve ultra-flattened large negative dispersion and ultrahigh birefringence. Numerical results confirm that the proposed PCFexhibits ultra-flattened large negative dispersion over the S ...

  11. Appearance of ferroelectricity by suppressing superconductivity in nanoparticle dispersed glassy precursor for high Tc superconductor

    International Nuclear Information System (INIS)

    Mukherjee, Soma; Chaudhuri, B.K.; Sakata, H.

    2003-01-01

    The multicomponent Bi 1.8 Pb 0.3 Sr 2 Ca 2 Cu 2.8 K 0.2 O δ (FG) glass is found to show ferroelectric (FE) transition around T fc = 530K. Microstructural (TEM) studies of these glasses indicated the presence of nano-crystalline particles/ clusters (∼10-30 nm size). In this glass-nanoparticle composite (GNC), presence of ferroelectric nano-particles/ islands is considered to be responsible for the FE behavior. The K-free FG type glasses showing no dielectric anomaly (or ferroelectricity) are precursors of high T c superconductors which become superconductors (T c ∼80K) by annealing around 840 degC. The K-doped (FG) GNC is, however, not superconducting in the corresponding annealed phase which indicates suppression of superconductivity due to the presence of K or by the appearance of ferroelectricity. Transport and dielectric properties of both K doped and undoped GNC have been studied and they are found to be semiconducting and follow non-adiabatic small polaron hopping conduction mechanism. (author)

  12. Should high-level nuclear waste be disposed of at geographically dispersed sites?

    International Nuclear Information System (INIS)

    Bassett, G.W. Jr.

    1992-01-01

    Consideration of the technical feasibility of Yucca Mountain in Nevada as the site for a high-level nuclear waste repository has led to an intense debate regarding the economic, social, and political impacts of the repository. Impediments to the siting process mean that the nuclear waste problem is being resolved by adhering to the status quo, in which nuclear waste is stored at scattered sites near major population centers. To assess the merits of alternative siting strategies--including both the permanent repository and the status quo- we consider the variables that would be included in a model designed to select (1) the optimal number of disposal facilities, (2) the types of facilities (e.g., permanent repository or monitored retrievable facility), and (3) the geographic location of storage sites. The objective function in the model is an all-inclusive measure of social cost. The intent of the exercise is not to demonstrate the superiority of any single disposal strategy; uncertainties preclude a conclusive proof of optimality for any of the disposal options. Instead, we want to assess the sensitivity of a variety of proposed solutions to variations in the physical, economic, political, and social variables that influence a siting strategy

  13. Investigation of proton spin relaxation in water with dispersed silicon nanoparticles for potential magnetic resonance imaging applications

    Science.gov (United States)

    Kargina, Yu. V.; Gongalsky, M. B.; Perepukhov, A. M.; Gippius, A. A.; Minnekhanov, A. A.; Zvereva, E. A.; Maximychev, A. V.; Timoshenko, V. Yu.

    2018-03-01

    Porous and nonporous silicon (Si) nanoparticles (NPs) prepared by ball-milling of electrochemically etched porous Si layers and crystalline Si wafers were studied as potential agents for enhancement of the proton spin relaxation in aqueous media. While nonporous Si NPs did not significantly influence the spin relaxation, the porous ones resulted in strong shortening of the transverse relaxation times. In order to investigate an effect of the electron spin density in porous Si NPs on the proton spin relaxation, we use thermal annealing of the NPs in vacuum or in air. The transverse relaxation rate of about 0.5 l/(g s) was achieved for microporous Si NPs, which were thermally annealing in vacuum to obtain the electron spin density of the order of 1017 g-1. The transverse relaxation rate was found to be almost proportional to the concentration of porous Si NPs in the range from 0.1 to 20 g/l. The obtained results are discussed in view of possible biomedical applications of Si NPs as contrast agents for magnetic resonance imaging.

  14. Dispersal of suspended sediments in the turbid and highly stratified Red River plume

    Science.gov (United States)

    van Maren, D. S.; Hoekstra, P.

    2005-03-01

    The Red River, annually transporting 100 million tons of sediment, flows into a shallow shelf sea where it rapidly deposits most of its sediment on a prograding delta front. Oceanographic cruises were carried out in February-March and July-August 2000 to determine the vertical structure of the Ba Lat river plume and sediment transport patterns on the delta front. The surface waters in the coastal zone were strongly stratified with a low density and high sediment concentration during the larger part of the wet season, caused by low mixing rates of river plumes with ambient water. The river plume is advected to the south by a well-developed coastal current which originates from the river plumes that enter the Gulf of Tonkin North of the Ba Lat and are deflected southward by the Coriolis force. Sediment predominantly leaves the surface plume by settling from suspension and less by mixing of fresh and marine water. A one-dimensional model for plume deposition valid for fair weather conditions indicates that most sediment is deposited within 10 km and southward of the river mouth. Of prime importance for this depositional pattern is the phase relation between river outflow and tidal currents, in combination with the southward surface flow; alongshore advection is very low during outflow of the turbid river plume. The agreement of modeled plume sedimentation patterns with long-term bathymetric changes strongly suggests that fair weather depositional processes determine delta front development. This may be related to the fact that reworking of sediment mainly occurs several months after the peak deposition period; in the meantime sediment compaction and consolidation have increased the shear strength of deposited sediments.

  15. Population genomics of Pacific lamprey: adaptive variation in a highly dispersive species.

    Science.gov (United States)

    Hess, Jon E; Campbell, Nathan R; Close, David A; Docker, Margaret F; Narum, Shawn R

    2013-06-01

    Unlike most anadromous fishes that have evolved strict homing behaviour, Pacific lamprey (Entosphenus tridentatus) seem to lack philopatry as evidenced by minimal population structure across the species range. Yet unexplained findings of within-region population genetic heterogeneity coupled with the morphological and behavioural diversity described for the species suggest that adaptive genetic variation underlying fitness traits may be responsible. We employed restriction site-associated DNA sequencing to genotype 4439 quality filtered single nucleotide polymorphism (SNP) loci for 518 individuals collected across a broad geographical area including British Columbia, Washington, Oregon and California. A subset of putatively neutral markers (N = 4068) identified a significant amount of variation among three broad populations: northern British Columbia, Columbia River/southern coast and 'dwarf' adults (F(CT) = 0.02, P ≪ 0.001). Additionally, 162 SNPs were identified as adaptive through outlier tests, and inclusion of these markers revealed a signal of adaptive variation related to geography and life history. The majority of the 162 adaptive SNPs were not independent and formed four groups of linked loci. Analyses with matsam software found that 42 of these outlier SNPs were significantly associated with geography, run timing and dwarf life history, and 27 of these 42 SNPs aligned with known genes or highly conserved genomic regions using the genome browser available for sea lamprey. This study provides both neutral and adaptive context for observed genetic divergence among collections and thus reconciles previous findings of population genetic heterogeneity within a species that displays extensive gene flow. © 2012 John Wiley & Sons Ltd.

  16. Damage in agitated vessels of large visco-elastic particles dispersed in a highly viscous fluid.

    Science.gov (United States)

    Bouvier, Laurent; Moreau, Anne; Line, Alain; Fatah, Nouria; Delaplace, Guillaume

    2011-01-01

    Many food recipes entail several homogenization steps for solid particles in hot or cold viscous liquids, such as pureed fruit and sugar, jam or sauce with mushroom pieces. Unfortunately, these unavoidable processes induce damage to the solid particles. To date, little is known of the extent and nature of the damage caused. Consequently, few clear guidelines are available for monitoring solid particle integrity when mixing solid/liquid suspensions in an agitated tank. In this study, an attempt is made to quantify the impact of various physical parameters including the influence of the rotational speed of the impeller and the processing time on particle attrition, when a suspension of large visco-elastic particles in a highly viscous fluid is mixed under isothermal condition. Pectin gel particles were immerged in a viscous liquid and homogenized for various times and rotational speeds, while the evolution of the particle's morphological parameters was monitored. Then, a set of dimensionless numbers governing the attrition mechanism is established and some empirical process relationships are proposed to correlate these numbers to the morphological characteristics and mass balance ratios. From the conditions observed, it is clear that 2 dimensionless ratios could be responsible for a change in the damaging mechanisms. These 2 ratios are the Froude and impeller rotation numbers. Finally, in the conditions tested, mass balance ratios appear to be mainly sensitive to the impeller rotational number, while the shape ratios are both impacted by the Froude and impeller rotational numbers. Damage to solid particles suspended in a stirred vessel reduce the final product quality in industrial cooking processes. Examples of this are fruit in jam or sauces with mushroom pieces. The attrition phenomenon was measured and the influences of the impeller rotational speed and processing time were evaluated quantitatively in function of dimensionless numbers. This study contributes key

  17. Relative neutronic performance of proposed high-density dispersion fuels in water-moderated and D2O-reflected research reactors

    International Nuclear Information System (INIS)

    Bretscher, M.M.; Matos, J.E.; Snelgrove, J.L.

    1996-01-01

    This paper provides an overview of the neutronic performance of an idealized research reactor using several high density LEU fuels that are being developed by the RERTR program. High-density LEU dispersion fuels are needed for new and existing high-performance research reactors and to extend the lifetime of fuel elements in other research reactors. This paper discusses the anticipated neutronic behavior of proposed advanced fuels containing dispersions of U 3 Si 2 , UN, U 2 Mo and several uranium alloys with Mo, or Zr and Nb. These advanced fuels are ranked based on the results of equilibrium depletion calculations for a simplified reactor model having a small H 2 O-cooled core and a D 2 O reflector. Plans have been developed to fabricate and irradiate several uranium alloy dispersion fuels in order to test their stability and compatibility with the matrix material and to establish practical loading limits

  18. Relative neutronic performance of proposed high-density dispersion fuels in water-moderated and D2O-reflected research reactors

    International Nuclear Information System (INIS)

    Bretscher, M.M.; Matos, J.E.; Snelgrove, J.L.

    1996-01-01

    This paper provides an overview of the neutronic performance of an idealized research reactor using several high density Leu fuels that are being developed by the Rarita program. High-density Leu dispersion fuels are needed for new and existing high-performance research reactors and to extend the lifetime of fuel elements in other research reactors. This paper discusses the anticipated neutronic behavior of proposed advanced fuels containing dispersions of U 3 Si 2 , UN, U 2 Mo and several uranium alloys with Mo, or Zr and Nb. These advanced fuels are ranked based on the results of equilibrium depletion calculations for a simplified reactor model having a small H 2 O-cooled core and a D 2 O reflector. Plans have been developed to fabricate and irradiate several uranium alloy dispersion fuels in order to test their stability and compatibility with the matrix material and to establish practical loading limits. (author)

  19. The Born-Mayer-Huggins potential in high temperature superconductors

    Science.gov (United States)

    Singh, Hempal; Singh, Anu; Indu, B. D.

    2016-07-01

    The Born-Mayer-Huggins potential which has been found the best suitable potential to study the YBa2Cu3O7-δ type high temperature superconductors is revisited in a new framework. A deeper insight in it reveals that the Born-Mayer parameters for different interactions in high temperature superconductor are not simple quantities but several thermodynamic and spatial functions enter the problem. Based on the new theory, the expressions for pressure, bulk modulus and Born-Mayer parameters have been derived and it is established that these quantities depend upon Gruneisen parameter which is the measure of the strength of anharmonic effects in high temperature superconductors. This theory has been applied to a specific model YBa2Cu3O7-δ crystal for the purpose of numerical estimates to justify the new results.

  20. Turkey's High Temperature Geothermal Energy Resources and Electricity Production Potential

    Science.gov (United States)

    Bilgin, Ö.

    2012-04-01

    Turkey is in the first 7 countries in the world in terms of potential and applications. Geothermal energy which is an alternative energy resource has advantages such as low-cost, clean, safe and natural resource. Geothermal energy is defined as hot water and steam which is formed by heat that accumulated in various depths of the Earth's crust; with more than 20oC temperature and which contain more than fused minerals, various salts and gases than normal underground and ground water. It is divided into three groups as low, medium and high temperature. High-temperature fluid is used in electricity generation, low and medium temperature fluids are used in greenhouses, houses, airport runways, animal farms and places such as swimming pools heating. In this study high temperature geothermal fields in Turkey which is suitable for electricity production, properties and electricity production potential was investigated.

  1. Dispersion Forces

    CERN Document Server

    Buhmann, Stefan Yoshi

    2012-01-01

    In this book, a modern unified theory of dispersion forces on atoms and bodies is presented which covers a broad range of advanced aspects and scenarios. Macroscopic quantum electrodynamics is shown to provide a powerful framework for dispersion forces which allows for discussing general properties like their non-additivity and the relation between microscopic and macroscopic interactions. It is demonstrated how the general results can be used to obtain dispersion forces on atoms in the presence of bodies of various shapes and materials. Starting with a brief recapitulation of volume I, this volume II deals especially with bodies of irregular shapes, universal scaling laws, dynamical forces on excited atoms, enhanced forces in cavity quantum electrodynamics, non-equilibrium forces in thermal environments and quantum friction. The book gives both the specialist and those new to the field a thorough overview over recent results in the field. It provides a toolbox for studying dispersion forces in various contex...

  2. High precision electrostatic potential calculations for cylindrically symmetric lenses

    International Nuclear Information System (INIS)

    Edwards, David Jr.

    2007-01-01

    A method is developed for a potential calculation within cylindrically symmetric electrostatic lenses using mesh relaxation techniques, and it is capable of considerably higher accuracies than currently available. The method involves (i) creating very high order algorithms (orders of 6, 8, and 10) for determining the potentials at points in the net using surrounding point values, (ii) eliminating the effect of the large errors caused by singular points, and (iii) reducing gradients in the high gradient regions of the geometry, thereby allowing the algorithms used in these regions to achieve greater precisions--(ii) and (iii) achieved by the use of telescopic multiregions. In addition, an algorithm for points one unit from a metal surface is developed, allowing general mesh point algorithms to be used in these situations, thereby taking advantage of the enhanced precision of the latter. A maximum error function dependent on a sixth order gradient of the potential is defined. With this the single point algorithmic errors are able to be viewed over the entire net. Finally, it is demonstrated that by utilizing the above concepts and procedures, the potential of a point in a reasonably high gradient region of a test geometry can realize a precision of less than 10 -10

  3. Mesostructured Au/C materials obtained by replication of functionalized SBA-15 silica containing highly dispersed gold nanoparticles

    KAUST Repository

    Kerdi, Fatmé

    2011-04-01

    The preparation and characterization of highly dispersed gold nanoparticles in ordered mesoporous carbons CMK-3 are reported. These carbons were obtained using gold-containing functionalized SBA-15 silicas as hard templates. Two series of Au/SiO2 templates were prepared, depending on the nature of the functionalization molecule. While ammonium-functionalized silicas gave gold particles with a size determined by the pores of the silica support, the use of mercaptopropyltrimethoxysilane as grafting molecule afforded the possibility to control the particle size inside the mesopores. Both series gave highly ordered mesoporous carbons with gold particles incorporated in the carbon nanorods. However, the gold particle size in mesoporous carbons was the same for both series and apparently did not depend on the nature of the silica template. Both Au/SiO2 templates and their corresponding Au/CMK-3 materials have been characterized by X-ray diffraction, nitrogen adsorption/desorption, chemical analysis, solid-state nuclear magnetic resonance and transmission electron microscopy. They were also used as catalysts in the aerobic oxidation of cyclohexene and trans-stilbene in the liquid phase. © 2010 Elsevier Inc. All rights reserved.

  4. Peroxymonosulfate activation and pollutants degradation over highly dispersed CuO in manganese oxide octahedral molecular sieve

    Science.gov (United States)

    Li, Jun; Ye, Peng; Fang, Jia; Wang, Manye; Wu, Deming; Xu, Aihua; Li, Xiaoxia

    2017-11-01

    Manganese oxide octahedral molecular sieves (OMS-2) supported CuO catalysts were synthesized, characterized and used in the removal of Acid Orange 7 (AO7) in aqueous solution by an oxidation process involving peroxymonosulfate (PMS). It was found that the CuO species were highly dispersed in OMS-2 with a high ratio of easily reduced surface oxygen species. The synergetic effect between CuO and OMS-2 significantly improved the dye degradation rate and catalytic stability, compared with CuO, OMS-2 and supported CuO on other materials. About 97% of the dye was removed within 15 min at neutral solution pH by using 0.2 g/L of CuO/OMS-2 and PMS. The effect of initial solution pH, PMS concentration, reaction temperature and CuO content in the composites on AO7 degradation was also investigated. Mechanism study indicated that SO4-rad radicals generated from the interaction between PMS and Mn and Cu species with different oxidation states, mainly accounted for the degradation.

  5. Program for in-pile qualification of high density silicide dispersion fuel at IPEN/CNEN-SP

    International Nuclear Information System (INIS)

    Silva, Jose E.R. da; Silva, Antonio T. e; Terremoto, Luis A.A.; Durazzo, Michelangelo

    2009-01-01

    The development of high density nuclear fuel (U 3 Si 2 -Al) with 4,8 gU/cm 3 is on going at IPEN, at this time. This fuel has been considered to be utilized at the new Brazilian Multipurpose Reactor (RMB), planned to be constructed up to 2014. As Brazil does not have hot-cell facilities available for post-irradiation analysis, an alternative qualifying program for this fuel is proposed based on the same procedures used at IPEN since 1988 for qualifying its own U 3 O 8 -Al (1,9 and 2,3 gU/cm 3 ) and U 3 Si 2 -Al (3,0 gU/cm 3 ) dispersion fuels. The fuel miniplates and full-size fuel elements irradiations should be tested at IEA-R1 core. The fuel characterization along the irradiation time should be made by means of non-destructive methods, including periodical visual inspections with an underwater video camera system, sipping tests for fuel elements suspected of leakage, and underwater dimensional measurements for swelling evaluation, performed inside the reactor pool. This work presents the program description for the qualification of the high density nuclear fuel (U 3 Si 2 -Al) with 4,8 gU/cm 3 , and describes the IPEN fuel fabrication infrastructure and some basic features of the available systems for non-destructive tests at IEA-R1 research reactor. (author)

  6. Calibration and energy resolution study of a high dispersive power Thomson Parabola Spectrometer with monochromatic proton beams

    International Nuclear Information System (INIS)

    Schillaci, F.; Cirrone, G.A.P.; Cuttone, G.; Pisciotta, P.; Rifuggiato, D.; Romano, F.; Scuderi, V.; Stancampiano, C.; Tramontana, A.; Amato, A.; Caruso, G.F.; Salamone, S.; Maggiore, M.; Velyhan, A.; Margarone, D.; Palumbo, G. Parasiliti; Russo, G.

    2014-01-01

    A high energy resolution, high dispersive power Thomson Parabola Spectrometer has been developed at INFN-LNS in order to characterize laser-driven beams up to 30- 40 MeV for protons. This device has parallel electric and magnetic field to deflect particles of a certain charge-to-mass ratio onto parabolic traces on the detection plane. Calibration of the deflection sector is crucial for data analysis, namely energy determination of analysed beam, and to evaluate the effective energy limit and resolution. This work reports the study of monochromatic proton beams delivered by the TANDEM accelerator at LNS (Catania) in the energy range between 6 and 12.5 MeV analysed with our spectrometer which allows a precise characterization of the electric and magnetic deflections. Also the energy and the Q/A resolutions and the energy limits have been evaluated proposing a mathematical model that can be used for data analysis, for the experimental set up and for the device scalability for higher energy

  7. Electrochemical corrosion potential and noise measurement in high temperature water

    International Nuclear Information System (INIS)

    Fong, Clinton; Chen, Yaw-Ming; Chu, Fang; Huang, Chia-Shen

    2000-01-01

    Hydrogen water chemistry (HWC) is one of the most important methods in boiling water reactor(BWR) system to mitigate and prevent stress corrosion cracking (SCC) problems of stainless steel components. Currently, the effectiveness of HWC in each BWR is mainly evaluated by the measurement of electrochemical corrosion potentials (ECP) and on-line monitoring of SCC behaviors of stainless steels. The objective of this work was to evaluate the characteristics and performance of commercially available high temperature reference electrodes. In addition, SCC monitoring technique based on electrochemical noise analysis (ECN) was also tested to examine its crack detection capability. The experimental work on electrochemical corrosion potential (ECP) measurements reveals that high temperature external Ag/AgCl reference electrode of highly dilute KCl electrolyte can adequately function in both NWC and HWC environments. The high dilution external Ag/AgCl electrode can work in conjunction with internal Ag/AgCl reference electrode, and Pt electrode to ensure the ECP measurement reliability. In simulated BWR environment, the electrochemical noise tests of SCC were carried out with both actively and passively loaded specimens of type 304 stainless steel with various electrode arrangements. From the coupling current and corrosion potential behaviors of the passive loading tests during immersion test, it is difficult to interpret the general state of stress corrosion cracking based on the analytical results of overall current and potential variations, local pulse patterns, statistical characteristics, or power spectral density of electrochemical noise signals. However, more positive SCC indication was observed in the power spectral density analysis. For aqueous environments of high solution impedance, successful application of electrochemical noise technique for SCC monitoring may require further improvement in specimen designs and analytical methods to enhance detection sensitivity

  8. Material-specific imaging system using energy-dispersive X-ray diffraction and spatially resolved CdZnTe detectors with potential application in breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Barbes, Damien, E-mail: damien.barbes@cea.fr [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Tabary, Joachim, E-mail: joachim.tabary@cea.fr [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Paulus, Caroline, E-mail: caroline.paulus@cea.fr [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Hazemann, Jean-Louis, E-mail: jean-louis.hazemann@neel.cnrs.fr [Univ.Grenoble Alpes, Inst NEEL, F-38042 Grenoble (France); CNRS, Inst NEEL, F-38042 Grenoble (France); Verger, Loïck, E-mail: loick.verger@cea.fr [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France)

    2017-03-11

    This paper presents a coherent X-ray-scattering imaging technique using a multipixel energy-dispersive system. Without any translation, the technique produces specific 1D image from data recorded by a single CdZnTe detector pixel using subpixelation techniques. The method is described in detail, illustrated by a simulation and then experimentally validated. As the main considered application of our study is breast imaging, this validation involves 2D imaging of a phantom made of plastics mimicking breast tissues. The results obtained show that our system can specifically image the phantom using a single detector pixel. For the moment, in vivo breast imaging applications remain difficult, as the dose delivered by the system is too high, but some adjustments are considered for further work.

  9. Highly dispersed metal catalyst

    Science.gov (United States)

    Xiao, Xin; West, William L.; Rhodes, William D.

    2016-11-08

    A supported catalyst having an atomic level single atom structure is provided such that substantially all the catalyst is available for catalytic function. A process of forming a single atom catalyst unto a porous catalyst support is also provided.

  10. Grain growth behavior of Cr dispersed UO{sub 2} pellets according to change of oxygen potential during the isothermal sintering

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jang Soo; Yang, Jae Ho; Kim, Dong Joo; Kim, Jong Hun; Nam, Ik Hui; Rhee, Young Woo; Kim, Keon Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    Recent development of advanced UO{sub 2} pellet materials for commercial reactors is mainly focused on the large grain pellet which can deform easily at an elevated temperature. Cr{sub 2}O{sub 3}-doped UO{sub 2} pellet is one of the promising candidates. To increase the grain size effectively, it is important to control the additive content and sintering atmosphere. Relevant research on the Cr{sub 2}O{sub 3} doped UO{sub 2} system revealed that the doped Cr{sub 2}O{sub 3} formed a liquid phase under optimized oxygen potential, and those liquid phases promoted the grain growth. Recent work also showed that step-wise variation of sintering atmosphere during the isothermal annealing step significantly increased the grain size of Cr{sub 2}O{sub 3} doped UO{sub 2} pellet. In this paper, we investigated effect of oxygen potential change at the beginning of isothermal sintering stage on the grain growth in metallic Cr dispersed UO{sub 2} pellets. The study on the milling effect of powder mixture on the grain growth is also a part of this work.

  11. Assessment of potential solder candidates for high temperature applications

    DEFF Research Database (Denmark)

    pressure to eliminate lead containing materials despite the fact that materials for high Pb containing alloys are currently not affected by any legislations. A tentative assessment was carried out to determine the potential solder candidates for high temperature applications based on the solidification...... criterion, phases predicted in the bulk solder and the thermodynamic stability of chlorides. These promising solder candidates were precisely produced using the hot stage microscope and its respective anodic and cathodic polarization curves were investigated using a micro-electrochemical set up...

  12. High-power CO laser and its potential applications

    International Nuclear Information System (INIS)

    Sato, Shunichi; Takahashi, Kunimitsu; Shimamoto, Kojiro; Takashima, Yoichi; Matsuda, Keiichi; Kuribayashi, Shizuma; Noda, Osamu; Imatake, Shigenori; Kondo, Motoe.

    1995-01-01

    The R and D program for the development of a high-power CO laser and its application technologies is described. Based on a self-sustained discharge excitation scheme, the available laser output has been successfully scaled to over 20 kW. The CO laser cutting experiments for thick metals have been performed in association with the decommissioning technologies development. Other potential applications, which include those based on photo chemical process, are reviewed. Recently demonstrated high-power tunable operation and room-temperature operation are also reported. (author)

  13. Grinding as an approach to the production of high-strength, dispersion-strengthened nickel-base alloys

    Science.gov (United States)

    Orth, N. W.; Quatinetz, M.; Weeton, J. W.

    1970-01-01

    Mechanical process produces dispersion-strengthened metal alloys. Power surface contamination during milling is removed by a cleaning method that involves heating thin shapes or partially-compacted milled powder blends in hydrogen to carefully controlled temperature schedules.

  14. Effects of eddy current and dispersion of magnetic anisotropy on the high-frequency permeability of Fe-based nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Han, M., E-mail: mangui@gmail.com [State Key Laboratory of Electronic Thin Films & Integrated Devices, University of Electronic Science and Technology of China, Chengdu (China); Rozanov, K.N.; Zezyulina, P.A. [Institute for Theoretical and Applied Electromagnetics, Russian Academy of Sciences, Moscow (Russian Federation); Wu, Yan-Hui [State Key Laboratory of Electronic Thin Films & Integrated Devices, University of Electronic Science and Technology of China, Chengdu (China)

    2015-06-01

    Fe–Cu–Nb–Si–B microflakes have been prepared by ball milling. The structural, magnetostatic and microwave permeability of the flakes and flake-filled composites have been studied. Two ferromagnetic phases, nanograins and amorphous matrix, are found in the flakes. The Mössbauer study shows that the nanograins are α-Fe{sub 3}(Si) with D0{sub 3} superlattice structure. High resolution transmission electron microscopy shows that the nanograins are well dispersed in the matrix. The microwave permeability of composites containing the flakes has been measured. The comparison of the intrinsic permeability of the flakes obtained from the permeability measurements and from the anisotropy field distribution reveals a disagreement in the magnetic loss peak location. It is concluded that the low-frequency loss in the composites is not due to the effect of eddy currents. The low-frequency loss may be attributed to other sources, such as domain wall motion or peculiarities of the magnetic structure of the flakes in the composite. - Highlights: • Hyperfine interactions have been studied for the Fe-based nanocomposites. Please see Fig. 3. • The distribution of magnetic anisotropy has been derived from the initial magnetization curve of the composite. Please see Fig. 6. • The magnetic loss peak has been reconstructed from the measured permeability of composites and from the anisotropy field distribution. Please see Fig. 9.

  15. Effects of eddy current and dispersion of magnetic anisotropy on the high-frequency permeability of Fe-based nanocomposites

    International Nuclear Information System (INIS)

    Han, M.; Rozanov, K.N.; Zezyulina, P.A.; Wu, Yan-Hui

    2015-01-01

    Fe–Cu–Nb–Si–B microflakes have been prepared by ball milling. The structural, magnetostatic and microwave permeability of the flakes and flake-filled composites have been studied. Two ferromagnetic phases, nanograins and amorphous matrix, are found in the flakes. The Mössbauer study shows that the nanograins are α-Fe 3 (Si) with D0 3 superlattice structure. High resolution transmission electron microscopy shows that the nanograins are well dispersed in the matrix. The microwave permeability of composites containing the flakes has been measured. The comparison of the intrinsic permeability of the flakes obtained from the permeability measurements and from the anisotropy field distribution reveals a disagreement in the magnetic loss peak location. It is concluded that the low-frequency loss in the composites is not due to the effect of eddy currents. The low-frequency loss may be attributed to other sources, such as domain wall motion or peculiarities of the magnetic structure of the flakes in the composite. - Highlights: • Hyperfine interactions have been studied for the Fe-based nanocomposites. Please see Fig. 3. • The distribution of magnetic anisotropy has been derived from the initial magnetization curve of the composite. Please see Fig. 6. • The magnetic loss peak has been reconstructed from the measured permeability of composites and from the anisotropy field distribution. Please see Fig. 9

  16. Highly Dispersed Pseudo-Homogeneous and Heterogeneous Catalysts Synthesized via Inverse Micelle Solutions for the Liquefaction of Coal

    Energy Technology Data Exchange (ETDEWEB)

    Hampden-Smith, M.; Kawola, J.S.; Martino, A.; Sault, A.G.; Yamanaka, S.A.

    1999-01-05

    The mission of this project was to use inverse micelle solutions to synthesize nanometer sized metal particles and test the particles as catalysts in the liquefaction of coal and other related reactions. The initial focus of the project was the synthesis of iron based materials in pseudo-homogeneous form. The frost three chapters discuss the synthesis, characterization, and catalyst testing in coal liquefaction and model coal liquefaction reactions of iron based pseudo-homogeneous materials. Later, we became interested in highly dispersed catalysts for coprocessing of coal and plastic waste. Bifunctional catalysts . to hydrogenate the coal and depolymerize the plastic waste are ideal. We began studying, based on our previously devised synthesis strategies, the synthesis of heterogeneous catalysts with a bifunctional nature. In chapter 4, we discuss the fundamental principles in heterogeneous catalysis synthesis with inverse micelle solutions. In chapter 5, we extend the synthesis of chapter 4 to practical systems and use the materials in catalyst testing. Finally in chapter 6, we return to iron and coal liquefaction now studied with the heterogeneous catalysts.

  17. Dispersion of silicon carbide nanoparticles in a AA2024 aluminum alloy by a high-energy ball mill

    International Nuclear Information System (INIS)

    Carreño-Gallardo, C.; Estrada-Guel, I.; López-Meléndez, C.; Martínez-Sánchez, R.

    2014-01-01

    Highlights: • Synthesis of 2024-SiC NP nanocomposite by mechanical milling process. • SiC nanoparticles improved mechanical properties of aluminum alloy 2024 matrix. • A homogeneous distribution of SiC nanoparticles were observed in the matrix • Compressive and hardness properties of the composite are improved significantly. -- Abstract: Al 2024 alloy was reinforced with silicon carbide nanoparticles (SiC NP ), whose concentration was varied in the range from 0 to 5 wt.%; some composites were synthesized with the mechanical milling (MM) process. Structure and microstructure of the consolidated samples were studied by X-ray diffraction and transmission electron microscopy, while mechanical properties were investigated by compressive tests and hardness measurements. The microstructural evidence shows that SiC NP were homogeneously dispersed into the Al 2024 alloy using high-energy MM after 2 h of processing. On the other hand, an increase of the mechanical properties (yield stress, maximum strength and hardness) was observed in the synthesized composites as a direct function of the SiC NP content. In this research several strengthening mechanisms were observed, but the main was the obstruction of dislocations movement by the addition of SiC NP

  18. Dispersal limitation does not control high elevational distribution of alien plant species in the southern Sierra Nevada, California

    Science.gov (United States)

    Rundel, Philip W.; Keeley, Jon E.

    2016-01-01

    Patterns of elevational distribution of alien plant species in the southern Sierra Nevada of California were used to test the hypothesis that alien plant species invading high elevations around the world are typically climate generalists capable of growing across a wide elevational range. The Sierra Nevada has been heavily impacted for more than a century and a half, first by heavy grazing up into high elevation meadows, followed by major logging, and finally, by impacts associated with recreational use. The comparative elevational patterns of distribution and growth form were compared for native and alien plant species in the four families (Asteraceae, Brassicaceae, Fabaceae, and Poaceae) that contribute the majority of naturalized aliens in the study area. The distribution of realized climatic niche breadth, as measured by elevational range of occurrence, was virtually identical for alien and native species, with both groups showing a roughly Gaussian distribution peaking with species whose range covers a span of 1500–1999 m. In contrast to alien species, which only rarely occurred at higher elevations, native species showed a distribution of upper elevation limits peaking at 3000–3499 m, an elevation that corresponds to the zone of upper montane and subalpine forests. Consistent with a hypothesis of abiotic limitations, only a few alien species have been ecologically successful invaders at subalpine and alpine elevations above 2500 m. The low diversity of aliens able to become established in these habitats is unlikely due to dispersal limitations, given the long history of heavy grazing pressure at high elevations across this region. Instead, this low diversity is hypothesized to be a function of life history traits and multiple abiotic stresses that include extremes of cold air and soil temperature, heavy snowfall, short growing seasons, and low resource availability. These findings have significant implications for resource managers.

  19. Well-dispersed cellulose nanocrystals in hydrophobic polymers by in situ polymerization for synthesizing highly reinforced bio-nanocomposites.

    Science.gov (United States)

    Geng, Shiyu; Wei, Jiayuan; Aitomäki, Yvonne; Noël, Maxime; Oksman, Kristiina

    2018-04-20

    In nanocomposites, dispersing hydrophilic nanomaterials in a hydrophobic matrix using simple and environmentally friendly methods remains challenging. Herein, we report a method based on in situ polymerization to synthesize nanocomposites of well-dispersed cellulose nanocrystals (CNCs) and poly(vinyl acetate) (PVAc). We have also shown that by blending this PVAc/CNC nanocomposite with poly(lactic acid) (PLA), a good dispersion of the CNCs can be reached in PLA. The outstanding dispersion of CNCs in both PVAc and PLA/PVAc matrices was shown by different microscopy techniques and was further supported by the mechanical and rheological properties of the composites. The in situ PVAc/CNC nanocomposites exhibit enhanced mechanical properties compared to the materials produced by mechanical mixing, and a theoretical model based on the interphase effect and dispersion that reflects this behavior was developed. Comparison of the rheological and thermal behaviors of the mixed and in situ PVAc/CNC also confirmed the great improvement in the dispersion of nanocellulose in the latter. Furthermore, a synergistic effect was observed with only 0.1 wt% CNCs when the in situ PVAc/CNC was blended with PLA, as demonstrated by significant increases in elastic modulus, yield strength, elongation to break and glass transition temperature compared to the PLA/PVAc only material.

  20. In situ oxide dispersion strengthened tungsten alloys with high compressive strength and high strain-to-failure

    International Nuclear Information System (INIS)

    Huang, Lin; Jiang, Lin; Topping, Troy D.; Dai, Chen; Wang, Xin; Carpenter, Ryan; Haines, Christopher; Schoenung, Julie M.

    2017-01-01

    In this work a novel process methodology to concurrently improve the compressive strength (2078 MPa at a strain rate of 5 × 10"−"4 s"−"1) and strain-to-failure (over 40%) of bulk tungsten materials has been described. The process involves the in situ formation of intragranular tungsten oxide nanoparticles, facilitated by the application of a pressure of 1 GPa at a low sintering temperature of 1200 °C during spark plasma sintering (SPS). The results show that the application of a high pressure of 1 GPa during SPS significantly accelerates the densification process. Concurrently, the second phase oxide nanoparticles with an average grain size of 108 nm, which are distributed within the interiors of the W grains, simultaneously provide strengthening and plasticity by inhibiting grain growth, and generating, blocking, and storing dislocations. - Graphical abstract: In this work a novel process methodology to concurrently improve the compressive strength (2078 MPa at a strain rate of 5 × 10"−"4 s"−"1) and strain-to-failure (over 40%) of bulk W materials has been described. The process involves the in situ formation of intragranular tungsten oxide nanoparticles, facilitated by the application of a pressure of 1 GPa at a low sintering temperature of 1200 °C during spark plasma sintering (SPS).

  1. Properties of B4C–PbO–Al(OH)3-epoxy nanocomposite prepared by ultrasonic dispersion approach for high temperature neutron shields

    International Nuclear Information System (INIS)

    Lee, M.K.; Lee, J.K.; Kim, J.W.; Lee, G.J.

    2014-01-01

    High functional epoxy nanocomposites with three different filler materials, i.e., B 4 C, PbO, and Al(OH) 3 , were fabricated using an effective fabrication method consisting of an ultrasonic dispersion of nanoparticles in low-viscosity hardener and a subsequent mixing of a hardener-nanoparticle colloid with epoxy resins. It was confirmed that this approach provided not only an uniform dispersion but also an excellent wetting with enhanced interfacial adhesion of nano-particulate fillers within the matrix. By incorporating those three fillers, a synergistic effect was verified in multiple properties such as mechanical strength properties, thermal degradation, flame retardancy, and radiation shielding performance

  2. Synthesis of highly dispersed Pd nanoparticles supported on multi-walled carbon nanotubes and their excellent catalytic performance for oxidation of benzyl alcohol

    NARCIS (Netherlands)

    Shinde, V.M.; Skupien, E.; Makkee, M.

    2015-01-01

    Narrow sized and highly homogeneous dispersed Pd nanoparticles have been synthesized on nitric acid-functionalized multi-walled carbon nanotubes (CNTs) without a capping agent. The TEM images show that the extremely small Pd nanoparticles with an average size of about 1.5 nm were homogeneously

  3. Facile synthesis of highly stable and well-dispersed mesoporous ZrO(2)/carbon composites with high performance in oxidative dehydrogenation of ethylbenzene.

    Science.gov (United States)

    Li, Qiang; Xu, Jie; Wu, Zhangxiong; Feng, Dan; Yang, Jianping; Wei, Jing; Wu, Qingling; Tu, Bo; Cao, Yong; Zhao, Dongyuan

    2010-09-28

    Highly ordered mesoporous ZrO(2)/carbon (FDU-15) composites have been synthesized via a facile evaporation induced triconstituent co-assembly (EISA) approach by using Pluronic F127 as a template and zirconium oxychloride octahydrate and resol as Zr and carbon sources. The synthesized mesoporous composites exhibit a highly ordered two-dimensional (2-D) hexagonal mesostructure with relatively high specific surface areas (up to 947 m(2) g(-1)), pore sizes around 3.8 nm and high pore volumes (up to 0.71 cm(3) g(-1)). The results clearly show that the crystalline zirconia nanoparticles (ca. 1.9-3.9 nm) are well-dispersed in amorphous matrices of the ordered mesoporous carbon FDU-15 materials, which construct the nanocomposites. The ordered mesostructures of the obtained ZrO(2)/FDU-15 composites can be well-retained even at the high pyrolysis temperature (up to 900 degrees C), suggesting a high thermal stability. The zirconia content of the ZrO(2)/FDU-15 composites can be tunable in a wide range (up to 47%). Moreover, the resultant mesoporous ZrO(2)/FDU-15 composites exhibit high catalytic activity in oxidative dehydrogenation (ODH) of ethylbenzene (EB) to styrene (ST), with high ethylbenzene conversion (59.6%) and styrene selectivity (90.4%), which is mainly attributed to the synergistic catalytic effect between the oxygen-containing groups located on the carbon pore walls and weakly basic sites of the nanocrystalline ZrO(2). Furthermore, the high specific surface areas and opening pore channels are also responsible for their high catalytic activity. Therefore, it is a very promising catalyst material in styrene production on an industrial scale.

  4. Determination of diflubenzuron and chlorbenzuron in fruits by combining acetonitrile-based extraction with dispersive liquid-liquid microextraction followed by high-performance liquid chromatography.

    Science.gov (United States)

    Ruan, Chunqiang; Zhao, Xiang; Liu, Chenglan

    2015-09-01

    In this study, a simple and low-organic-solvent-consuming method combining an acetonitrile-partitioning extraction procedure followed by "quick, easy, cheap, effective, rugged and safe" cleanup with ionic-liquid-based dispersive liquid-liquid microextraction and high-performance liquid chromatography with diode array detection was developed for the determination of diflubenzuron and chlorbenzuron in grapes and pears. Ionic-liquid-based dispersive liquid-liquid microextraction was performed using the ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate as the extractive solvent and acetonitrile extract as the dispersive solvent. The main factors influencing the efficiency of the dispersive liquid-liquid microextraction were evaluated, including the extractive solvent type and volume and the dispersive solvent volume. The validation parameters indicated the suitability of the method for routine analyses of benzoylurea insecticides in a large number of samples. The relative recoveries at three spiked levels ranged between 98.6 and 109.3% with relative standard deviations of less than 5.2%. The limit of detection was 0.005 mg/kg for the two insecticides. The proposed method was successfully used for the rapid determination of diflubenzuron and chlorbenzuron residues in real fruit samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Matrix solid-phase dispersion coupled with homogeneous ionic liquid microextraction for the determination of sulfonamides in animal tissues using high-performance liquid chromatography.

    Science.gov (United States)

    Wang, Zhibing; He, Mengyu; Jiang, Chunzhu; Zhang, Fengqing; Du, Shanshan; Feng, Wennan; Zhang, Hanqi

    2015-12-01

    Matrix solid-phase dispersion coupled with homogeneous ionic liquid microextraction was developed and applied to the extraction of some sulfonamides, including sulfamerazine, sulfamethazine, sulfathiazole, sulfachloropyridazine, sulfadoxine, sulfisoxazole, and sulfaphenazole, in animal tissues. High-performance liquid chromatography was applied to the separation and determination of the target analytes. The solid sample was directly treated by matrix solid-phase dispersion and the eluate obtained was treated by homogeneous ionic liquid microextraction. The ionic liquid was used as the extraction solvent in this method, which may result in the improvement of the recoveries of the target analytes. To avoid using organic solvent and reduce environmental pollution, water was used as the elution solvent of matrix solid-phase dispersion. The effects of the experimental parameters on recoveries, including the type and volume of ionic liquid, type of dispersant, ratio of sample to dispersant, pH value of elution solvent, volume of elution solvent, amount of salt in eluate, amount of ion-pairing agent (NH4 PF6 ), and centrifuging time, were evaluated. When the present method was applied to the analysis of animal tissues, the recoveries of the analytes ranged from 85.4 to 118.0%, and the relative standard deviations were lower than 9.30%. The detection limits for the analytes were 4.3-13.4 μg/kg. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Dispersal and metapopulation stability

    Directory of Open Access Journals (Sweden)

    Shaopeng Wang

    2015-10-01

    Full Text Available Metapopulation dynamics are jointly regulated by local and spatial factors. These factors may affect the dynamics of local populations and of the entire metapopulation differently. Previous studies have shown that dispersal can stabilize local populations; however, as dispersal also tends to increase spatial synchrony, its net effect on metapopulation stability has been controversial. Here we present a simple metapopulation model to study how dispersal, in interaction with other spatial and local processes, affects the temporal variability of metapopulations in a stochastic environment. Our results show that in homogeneous metapopulations, the local stabilizing and spatial synchronizing effects of dispersal cancel each other out, such that dispersal has no effect on metapopulation variability. This result is robust to moderate heterogeneities in local and spatial parameters. When local and spatial dynamics exhibit high heterogeneities, however, dispersal can either stabilize or destabilize metapopulation dynamics through various mechanisms. Our findings have important theoretical and practical implications. We show that dispersal functions as a form of spatial intraspecific mutualism in metapopulation dynamics and that its effect on metapopulation stability is opposite to that of interspecific competition on local community stability. Our results also suggest that conservation corridors should be designed with appreciation of spatial heterogeneities in population dynamics in order to maximize metapopulation stability.

  7. Self-assembly of caseinomacropeptide as a potential key mechanism in the formation of visible storage induced aggregates in acidic whey protein isolate dispersions

    DEFF Research Database (Denmark)

    Villumsen, Nanna Stengaard; Jensen, Hanne Bak; Thu Le, Thao Thi

    2015-01-01

    Visible aggregates formed during storage in acidic whey protein isolate (WPI) dispersions represent a challenge to the beverage industry. Batch-to-batch variations are observed that prevents consistent quality and shelf-life prediction. Heat-treatment of WPI dispersions at 120°C for 20s instead...

  8. Do Hybrid Trees Inherit Invasive Characteristics? Fruits of Corymbia torelliana X C. citriodora Hybrids and Potential for Seed Dispersal by Bees.

    Science.gov (United States)

    Wallace, Helen Margaret; Leonhardt, Sara Diana

    2015-01-01

    Tree invasions have substantial impacts on biodiversity and ecosystem functioning, and trees that are dispersed by animals are more likely to become invasive. In addition, hybridisation between plants is well documented as a source of new weeds, as hybrids gain new characteristics that allow them to become invasive. Corymbia torelliana is an invasive tree with an unusual animal dispersal mechanism: seed dispersal by stingless bees, that hybridizes readily with other species. We examined hybrids between C. torelliana and C. citriodora subsp. citriodora to determine whether hybrids have inherited the seed dispersal characteristics of C. torelliana that allow bee dispersal. Some hybrid fruits displayed the characteristic hollowness, resin production and resin chemistry associated with seed dispersal by bees. However, we did not observe bees foraging on any hybrid fruits until they had been damaged. We conclude that C. torelliana and C. citriodora subsp. citriodora hybrids can inherit some fruit characters that are associated with dispersal by bees, but we did not find a hybrid with the complete set of characters that would enable bee dispersal. However, around 20,000 hybrids have been planted in Australia, and ongoing monitoring is necessary to identify any hybrids that may become invasive.

  9. Conserving archaeological sites as biological and historical resources in the Gulf of Mexico: the effects of crude oil and dispersant on the biodiversity and corrosion potential of shipwreck bacterial biofilms

    Science.gov (United States)

    Salerno, J. L.; Little, B.; Lee, J.; Ray, R.; Hamdan, L. J.

    2016-02-01

    There are more than 2,000 documented shipwrecks in the Gulf of Mexico. Historic shipwrecks are invaluable cultural resources, but also serve as artificial reefs, enhancing biodiversity in the deep sea. Oil and gas-related activities have the potential to impact shipwreck sites. An estimated 30% of the oil from the Deepwater Horizon spill was deposited in the deep-sea, in areas that contain shipwrecks. We conducted field and laboratory experiments to determine if crude oil, dispersed oil, and/or dispersant affect the community composition, metabolic function, and/or corrosion potential of microorganisms inhabiting shipwrecks. Platforms containing carbon steel coupons (CSC) (n = 34 per platform) were placed at impacted and non-impacted shipwrecks or into four experimental microcosm tanks. After a 2-week acclimation period, tanks were treated with crude oil and/or dispersant or received no treatment. CSC and seawater (SW) samples for bacterial genetic analysis were collected bi-weekly (at 16 wks for field samples). Proteobacteria dominated field and lab CSC bacterial communities (77-97% of sequences). Field CSC bacterial communities differed at each wreck site (P = 0.001), with oil-impacted sites differing from control sites. Lab CSC bacterial communities differed between all treatment groups (P = 0.005) and changed over the course of the experiment (P = 0.001). CSC bacterial species richness, diversity, and dominance increased with time across all treatments indicating the recruitment and establishment of microbial biofilms on CSCs. SW bacterial communities differed between treatment groups (P = 0.001), with the dispersant treatment being most dissimilar from all other treatments (P < 0.01), and changed over time (P = 0.001). Oil- and oil/dispersant-treated CSCs exhibited higher corrosion compared to dispersant and control treatments. These findings indicate that exposure to oil and/or dispersant may alter bacterial community composition and corrosion potential.

  10. Chemical dispersants

    NARCIS (Netherlands)

    Rahsepar, Shokouhalsadat; Smit, Martijn P.J.; Murk, Albertinka J.; Rijnaarts, Huub H.M.; Langenhoff, Alette A.M.

    2016-01-01

    Chemical dispersants were used in response to the Deepwater Horizon oil spill in the Gulf of Mexico, both at the sea surface and the wellhead. Their effect on oil biodegradation is unclear, as studies showed both inhibition and enhancement. This study addresses the effect of Corexit on oil

  11. An Updated Comprehensive Risk Analysis for Radioisotopes Identified of High Risk to National Security in the Event of a Radiological Dispersion Device Scenario

    Science.gov (United States)

    Robinson, Alexandra R.

    An updated global survey of radioisotope production and distribution was completed and subjected to a revised "down-selection methodology" to determine those radioisotopes that should be classified as potential national security risks based on availability and key physical characteristics that could be exploited in a hypothetical radiological dispersion device. The potential at-risk radioisotopes then were used in a modeling software suite known as Turbo FRMAC, developed by Sandia National Laboratories, to characterize plausible contamination maps known as Protective Action Guideline Zone Maps. This software also was used to calculate the whole body dose equivalent for exposed individuals based on various dispersion parameters and scenarios. Derived Response Levels then were determined for each radioisotope using: 1) target doses to members of the public provided by the U.S. EPA, and 2) occupational dose limits provided by the U.S. Nuclear Regulatory Commission. The limiting Derived Response Level for each radioisotope also was determined.

  12. Preparation and properties of high storage stability polyester polyol dispersion for two-component waterborne polyurethane coating

    Science.gov (United States)

    Hao, H.; Hu, J. Q.; Wang, F.; Tu, W. P.

    2017-01-01

    A new type of polyester polyol dispersion with good storage stability was prepared based on a hydrophilic monomer 5-sodium sulfodimethyl isophthalate (5-SIPM), and frequently-used monomers such as neopentyl glycol (NPG), dimethyl terephthalate (DMT), dimethyl phthalate (DMP) and trimethylolpropane (TMP) by the transpolycondensation and polycondensation method. The polyester polyol dispersion was characterized by FTIR and GPC. The proper content of these monomers were determined by the performance of polyester dispersion: the content of TMP was 15wt%, the content of NPG was 7.5wt% and the hydrophilic monomer 5-SIPM content was 5wt%. Two-component waterborne polyurethane (2K-WPU) coatings were prepared by Bayhydur® XP2487/1 and polyester polyol dispersions, which were stored before and after at 40 ° for 6 weeks, the prepared films have no differences in drying time, adhesion, pencil hardness, gloss and chemical resistance, the result also reveals that the polyester polyol dispersion have excellent storage stability resistance.

  13. Passive restoration following ungulate removal in a highly disturbed tropical wet forest devoid of native seed dispersers

    Science.gov (United States)

    Nafus, Melia; Savidge, Julie A.; Yackel Adams, Amy A.; Christy, Michelle T.; Reed, Robert

    2018-01-01

    Overabundant ungulate populations can alter forests. Concurrently, global declines of seed dispersers may threaten native forest structure and function. On an island largely devoid of native vertebrate seed dispersers, we monitored forest succession for 7 years following ungulate exclusion from a 5-ha area and adjacent plots with ungulates still present. We observed succession from open scrub to forest and understory cover by non-native plants declined. Two trees, native Hibiscus tiliaceus and non-native Leucaena leucocephala, accounted for most forest regeneration, with the latter dominant. Neither species is dependent on animal dispersers nor was there strong evidence that plants dependent on dispersers migrated into the 5-ha study area. Passive restoration following ungulate removal may facilitate restoration, but did not show promise for fully restoring native forest on Guam. Restoration of native forest plants in bird depopulated areas will likely require active outplanting of native seedlings, control of factors resulting in bird loss, and reintroduction of seed dispersers.

  14. Polybrominated diphenyl ethers in road and farmland soils from an e-waste recycling region in Southern China: Concentrations, source profiles, and potential dispersion and deposition

    International Nuclear Information System (INIS)

    Luo Yong; Luo Xiaojun; Lin Zhen; Chen Shejun; Liu Juan; Mai Bixian; Yang Zhongyi

    2009-01-01

    The present study analyzed road soils collected near the dismantling workshops of an e-waste recycling region in South China to determine the PBDE profiles. Farmland soils at a distance of about 2 km from the dismantling workshops were also collected to evaluate the potential dispersion and deposition of PBDEs in the surrounding environment. Total PBDE concentrations ranged from 191 to 9156 ng/g dry weight in road soils and from 2.9 to 207 ng/g dry weight in farmland soils, respectively. Three PBDE source profiles were observed from the road soils by principal component analysis, and were compared with the congener patterns in different technical products. Elevated abundances of octa- and nona-congeners were found in the 'deca-' derived PBDEs as compared with the deca-BDE products. The results in this study suggest that debromination of BDE 209 may have occurred during the use of electric and electronic equipment and/or another technical formulation (Bromkal 79-8DE) was also likely the source of octa- and nona-congeners in e-wastes. Comparison of the PBDE patterns in road and farmland soils implied that the PBDEs in farmland soils have been subject to complex environmental processes

  15. High level waste at Hanford: Potential for waste loading maximization

    International Nuclear Information System (INIS)

    Hrma, P.R.; Bailey, A.W.

    1995-09-01

    The loading of Hanford nuclear waste in borosilicate glass is limited by phase-related phenomena, such as crystallization or formation of immiscible liquids, and by breakdown of the glass structure because of an excessive concentration of modifiers. The phase-related phenomena cause both processing and product quality problems. The deterioration of product durability determines the ultimate waste loading limit if all processing problems are resolved. Concrete examples and mass-balance based calculations show that a substantial potential exists for increasing waste loading of high-level wastes that contain a large fraction of refractory components

  16. Highly dispersed Co0.5Zn0.5Fe2O4/polypyrrole nanocomposites for cost-effective, high-performance defluoridation using a magnetically controllable microdevice

    International Nuclear Information System (INIS)

    Wang, Gang; Shi, Guoying; Mu, Qinghui; Zhang, Qinghong; Wang, Hongzhi; Li, Yaogang

    2012-01-01

    Highlights: ► Highly dispersed CZFO/PPy nanocomposites are synthesized in microfluidic reactor. ► The as-synthesized nanocomposites behave as a high performance adsorbent. ► The magnetic microdevice has advantages over traditional methods for defluoridation. - Abstract: Highly dispersed Co 0.5 Zn 0.5 Fe 2 O 4 /polypyrrole (CZFO/PPy) nanocomposites with enhanced electromagnetic properties and large surface area were rapidly and controllably prepared using microfluidic reactors. A novel magnetically controllable microdevice using the new adsorbent in a highly dispersed form was assembled and used for fluoride adsorption. Compared with traditional adsorption methods, the device displayed high adsorption efficiency and capacity. The adsorbents were regenerated with no significant loss in defluoridation ability, which indicates that the device is a realistic and highly efficient alternative way of removing fluoride pollution at low cost.

  17. High spin rotations of nuclei with the harmonic oscillator potential

    International Nuclear Information System (INIS)

    Cerkaski, M.; Szymanski, Z.

    1978-01-01

    Calculations of the nuclear properties at high angular momentum have been performed recently. They are based on the liquid drop model of a nucleus and/or on the assumption of the single particle shell structure of the nucleonic motion. The calculations are usually complicated and involve long computer codes. In this article we shall discuss general trends in fast rotating nuclei in the approximation of the harmonic oscillator potential. We shall see that using the Bohr Mottelson simplified version of the rigorous solution of Valatin one can perform a rather simple analysis of the rotational bands, structure of the yrast line, moments of inertia etc. in the rotating nucleus. While the precision fit to experimental data in actual nuclei is not the purpose of this paper, one can still hope to reach some general understanding within the model of the simple relations resulting in nuclei at high spin. (author)

  18. Fabrication, characterization and gamma rays shielding properties of nano and micro lead oxide-dispersed-high density polyethylene composites

    Science.gov (United States)

    Mahmoud, Mohamed E.; El-Khatib, Ahmed M.; Badawi, Mohamed S.; Rashad, Amal R.; El-Sharkawy, Rehab M.; Thabet, Abouzeid A.

    2018-04-01

    Polymer composites of high-density polyethylene (HD-PE) filled with powdered lead oxide nanoparticles (PbO NPs) and bulk lead oxide (PbO Blk) were prepared with filler weight fraction [10% and 50%]. These polymer composites were investigated for radiation-shielding of gamma-rays emitted from radioactive point sources [241Am, 133Ba, 137Cs, and 60Co]. The polymer was found to decrease the heaviness of the shielding material and increase the flexibility while the metal oxide fillers acted as principle radiation attenuators in the polymer composite. The prepared composites were characterized by Fourier transform infrared spectrophotometer (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscope (SEM), Brunauer-Emmett-Teller surface area (BET) and field emission transmission electron microscope (FE-TEM). The morphological analysis of the assembled composites showed that, PbO NPs and PbO Blk materials exhibited homogenous dispersion in the polymer-matrix. Thermogravimetric analysis (TGA) demonstrated that the thermal-stability of HD-PE was enhanced in the presence of both PbO Blk and PbO NPs. The results declared that, the density of polymer composites was increase with the percentage of filler contents. The highest density value was identified as 1.652 g cm-3 for 50 wt% of PbO NPs. Linear attenuation coefficients (μ) have been estimated from the use of XCOM code and measured results. Reasonable agreement was attended between theoretical and experimental results. These composites were also found to display excellent percentage of heaviness with respect to other conventional materials.

  19. Dissolvable layered double hydroxide as an efficient nanosorbent for centrifugeless air-agitated dispersive solid-phase extraction of potentially toxic metal ions from bio-fluid samples

    Energy Technology Data Exchange (ETDEWEB)

    Rajabi, Maryam, E-mail: mrajabi@semnan.ac.ir; Arghavani-Beydokhti, Somayeh; Barfi, Behruz; Asghari, Alireza

    2017-03-08

    and tap water samples. - Highlights: • A novel centrifugeless dispersive solid-phase extraction method was developed. • A new functionalized LDH nanosorbent was introduced. • The proposed method extends application of D-SPE in on-line systems. • Some potentially toxic heavy metals were quantified in different biological fluids. • Elimination of centrifugation and elution steps, are most advantages of the method.

  20. Dissolvable layered double hydroxide as an efficient nanosorbent for centrifugeless air-agitated dispersive solid-phase extraction of potentially toxic metal ions from bio-fluid samples

    International Nuclear Information System (INIS)

    Rajabi, Maryam; Arghavani-Beydokhti, Somayeh; Barfi, Behruz; Asghari, Alireza

    2017-01-01

    In the present work, a novel nanosorbent namely layered double hydroxides with 4-amino-5-hydroxyl-2,7-naphthalendisulfonic acid monosodium salt interlayer anion (Mg-Al-AHNDA-LDH) was synthesized and applied as a dissolvable nanosorbent in a centrifugeless ultrasound-enhanced air-agitated dispersive solid-phase extraction (USE-AA-D-SPE) method. This method was used for the separation and preconcentration of some metal ions including Cd 2+ , Cr 6+ , Pb 2+ , Co 2+ , and Ni 2+ prior to their determination using the micro-sampling flame atomic absorption spectrometry (MS-FAAS) technique. The most interesting aspect of this nanosorbent is its immediate dissolvability at pH values lower than 4. This capability drastically eliminates the elution step, leading to a great improvement in the extraction efficiency and a decrease in the extraction time. Also in this method, the use of a syringe nanofilter eliminates the need for the centrifugation step, which is time-consuming and essentially causes the analysis to be off-line. Several effective parameters governing the extraction efficiency including the sample solution pH, amount of nanosorbent, eluent condition, number of air-agitation cycles, and sonication time were investigated and optimized. Under the optimized conditions, the good linear dynamic ranges of 2–70, 6–360, 7–725, 7–370, and 8–450 ng mL −1 for the Cd 2+ , Cr 6+ , Pb 2+ , Co 2+ and Ni 2+ ions, respectively, with the correlation of determinations (R 2 s) higher than 0.997 were obtained. The limits of detection (LODs) were found to be 0.6, 1.7, 2.0, 2.1, and 2.4 for the Cd 2+ , Cr 6+ , Pb 2+ , Co 2+ , and Ni 2+ ions, respectively. The intra-day and inter-day precisions (percent relative standard deviations (%RSDs) (n = 5)) were below 7.8%. The proposed method was also successfully applied for the extraction and determination of the target ions in different biological fluid and tap water samples. - Highlights: • A novel centrifugeless dispersive

  1. Highly Anisotropic Magnon Dispersion in Ca_{2}RuO_{4}: Evidence for Strong Spin Orbit Coupling.

    Science.gov (United States)

    Kunkemöller, S; Khomskii, D; Steffens, P; Piovano, A; Nugroho, A A; Braden, M

    2015-12-11

    The magnon dispersion in Ca_{2}RuO_{4} has been determined by inelastic neutron scattering on single crytals containing 1% of Ti. The dispersion is well described by a conventional Heisenberg model suggesting a local moment model with nearest neighbor interaction of J=8  meV. Nearest and next-nearest neighbor interaction as well as interlayer coupling parameters are required to properly describe the entire dispersion. Spin-orbit coupling induces a very large anisotropy gap in the magnetic excitations in apparent contrast with a simple planar magnetic model. Orbital ordering breaking tetragonal symmetry, and strong spin-orbit coupling can thus be identified as important factors in this system.

  2. Agglomerate properties and dispersibility changes of salmeterol xinafoate from powders for inhalation after storage at high relative humidity.

    Science.gov (United States)

    Das, Shyamal; Larson, Ian; Young, Paul; Stewart, Peter

    2009-06-28

    This study investigated changes in agglomeration and the mechanism of dispersibility decrease of salmeterol xinafoate (SX) from SX-lactose mixtures for inhalation after storage at 75% RH for 3 months. The dispersibility, PSD and in situ PSD of aerosol plumes of SX alone and SX-coarse lactose (CL) mixtures containing 0, 5, 10 and 20% micronized lactose (ML) before and after storage were determined by a Next Generation Impactor (NGI), a Mastersizer 2000 and a Spraytec, respectively. The PSD of ML increased after storage at 75% RH, but dispersibility of SX using the stored ML increased. After storage, the %SX of the mixture containing 20% ML (M20F) significantly increased (Pagglomerates, probably occurring through enhanced capillary interaction and/or solid bridging of ML, entrapping and preventing the release of SX particles.

  3. In situ generation of highly dispersed metal nanoparticles on two-dimensional layered SiO2 by topotactic structure conversion and their superior catalytic activity

    Science.gov (United States)

    Chen, Zhe; Jia, Da-Shuang; Zhou, Yue; Hao, Jiang; Liang, Yu; Cui, Zhi-Min; Song, Wei-Guo

    2018-03-01

    Metal nanoparticles such as Ag, Cu and Fe are effective catalysts for many reactions, whereas a facile method to prepare metal nanoparticles with high uniformed dispersion is still desirable. Herein, the topotactic structure conversion of layered silicate, RUB-15, was utilized to support metal nanoparticles. Through simple ion-exchange and following calcination step, metal nanoparticles were generated in situ inside the interlayer space of layered silica, and the topotactic structure conversion process assured nano-sized and highly uniformed dispersion of metal nanoparticles. The obtained Ag/SiO2 composite showed superior catalytic activity for the reduction of 4-nitrophenol (4-NP) and methylene blue (MB), with a rate constant as high as 0.0607 s-1 and 0.0778 s-1. The simple and universal synthesis method as well as high activity of the product composite endow the strategy good application prospect.

  4. Renewable carbohydrates are a potential high-density hydrogen carrier

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.-H. Percival [Biological Systems Engineering Department, 210-A Seitz Hall, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Institute for Critical Technology and Applied Sciences (ICTAS), Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); DOE BioEnergy Science Center (BESC), Oak Ridge, TN 37831 (United States)

    2010-10-15

    The possibility of using renewable biomass carbohydrates as a potential high-density hydrogen carrier is discussed here. Gravimetric density of polysaccharides is 14.8 H{sub 2} mass% where water can be recycled from PEM fuel cells or 8.33% H{sub 2} mass% without water recycling; volumetric densities of polysaccharides are >100 kg of H{sup 2}/m{sup 3}. Renewable carbohydrates (e.g., cellulosic materials and starch) are less expensive based on GJ than are other hydrogen carriers, such as hydrocarbons, biodiesel, methanol, ethanol, and ammonia. Biotransformation of carbohydrates to hydrogen by cell-free synthetic (enzymatic) pathway biotransformation (SyPaB) has numerous advantages, such as high product yield (12 H{sub 2}/glucose unit), 100% selectivity, high energy conversion efficiency (122%, based on combustion energy), high-purity hydrogen generated, mild reaction conditions, low-cost of bioreactor, few safety concerns, and nearly no toxicity hazards. Although SyPaB may suffer from current low reaction rates, numerous approaches for accelerating hydrogen production rates are proposed and discussed. Potential applications of carbohydrate-based hydrogen/electricity generation would include hydrogen bioreactors, home-size electricity generators, sugar batteries for portable electronics, sugar-powered passenger vehicles, and so on. Developments in thermostable enzymes as standardized building blocks for cell-free SyPaB projects, use of stable and low-cost biomimetic NAD cofactors, and accelerating reaction rates are among the top research and development priorities. International collaborations are urgently needed to solve the above obstacles within a short time. (author)

  5. Computer simulation analysis on the machinability of alumina dispersion enforced copper alloy for high performance compact heat exchanger

    International Nuclear Information System (INIS)

    Ishiyama, Shintaro; Muto, Yasushi

    2001-01-01

    Feasibility study on a HTGR-GT (High Temperature Gas cooled Reactor-Gas Turbine) system is examining the application of the high strength / high thermal conductivity alumina dispersed copper (AL-25) in the ultra-fine rectangle plate fin of the recuperator for the system. However, it is very difficult to manufacture a ultra-fine fin by large-scale plastic deformation from the hard and brittle Al-25 foil. Therefor, in present study, to establish the fine fin manufacturing technology of the AL-25 foil, it did the processing simulation of the fine fin first by the large-scale elasto-plastic finite element analysis (FEM) and it estimated a forming limit. Next, it experimentally made the manufacturing equipment where it is possible to do new processing using these analytical results, and it implemented a manufacturing experiment on the AL-25 foil. With these results, the following conclusion was obtained. (1) It did the processing simulation to manufacture a fine rectangle fin (fin height x pitch x thickness, 3 mm x 4 mm x 0.156 mm) from AL-25 foil (Thickness=0.156 mm) by the large-scale elasto-plastic FEM using the double action processing method. As a result, the manufacturing of a fine rectangle fin found a possible thing in the following condition by the double action processing method. It made that 0.8 mm and 0.25 mm were a best value respectively in the R part and the clearance between dies by making double action processing examination equipment experimentally and implementing a manufacturing examination using this equipment. (2) It succeeded in the manufacturing of the fine fin that the height x pitch x thickness is 3 mm x 4 mm x (0.156 mm±0.001 mm) after implementing a fine rectangle fin manufacturing examination from the AL-25 foil. (3) The change of the process of the deformation and the thickness by the processing of the AL-25 foil which was estimated by the large-scale elasto-plastic FEM showed the result of the processing experiment and good agreement

  6. Source strength and dispersion of CO2 releases from high-pressure pipelines: CFD model using real gas equation of state

    International Nuclear Information System (INIS)

    Liu, Xiong; Godbole, Ajit; Lu, Cheng; Michal, Guillaume; Venton, Philip

    2014-01-01

    Highlights: • Validated CFD models for decompression and dispersion of CO 2 releases from pipelines. • Incorporation of real gas EOS into CFD code for source strength estimation. • Demonstration of better performance of SST k–ω turbulence model for jet flow. • Demonstration of better performance of real gas EOS compared to ideal gas EOS. • Demonstration of superiority of CFD models over a commercial risk assessment package. - Abstract: Transportation of CO 2 in high-pressure pipelines forms a crucial link in the ever-increasing application of Carbon Capture and Storage (CCS) technologies. An unplanned release of CO 2 from a pipeline presents a risk to human and animal populations and the environment. Therefore it is very important to develop a deeper understanding of the atmospheric dispersion of CO 2 before the deployment of CO 2 pipelines, to allow the appropriate safety precautions to be taken. This paper presents a two-stage Computational Fluid Dynamics (CFD) study developed (1) to estimate the source strength, and (2) to simulate the subsequent dispersion of CO 2 in the atmosphere, using the source strength estimated in stage (1). The Peng–Robinson (PR) EOS was incorporated into the CFD code. This enabled accurate modelling of the CO 2 jet to achieve more precise source strength estimates. The two-stage simulation approach also resulted in a reduction in the overall computing time. The CFD models were validated against experimental results from the British Petroleum (BP) CO 2 dispersion trials, and also against results produced by the risk management package Phast. Compared with the measurements, the CFD simulation results showed good agreement in both source strength and dispersion profile predictions. Furthermore, the effect of release direction on the dispersion was studied. The presented research provides a viable method for the assessment of risks associated with CCS

  7. Potential of Nonfullerene Small Molecules with High Photovoltaic Performance.

    Science.gov (United States)

    Li, Wanning; Yao, Huifeng; Zhang, Hao; Li, Sunsun; Hou, Jianhui

    2017-09-05

    Over the past decades, fullerene derivatives have become the most successful electron acceptors in organic solar cells (OSCs) and have achieved great progress, with power conversion efficiencies (PCEs) of over 11 %. However, fullerenes have some drawbacks, such as weak absorption, limited energy-level tunability, and morphological instability. In addition, fullerene-based OSCs usually suffer from large energy losses of over 0.7 eV, which limits further improvements in the PCE. Recently, nonfullerene small molecules have emerged as promising electron acceptors in OSCs. Their highly tunable absorption spectra and molecular energy levels have enabled fine optimization of the resulting devices, and the highest PCE has surpassed 12 %. Furthermore, several studies have shown that OSCs based on small-molecule acceptors (SMA) have very efficient charge generation and transport efficiency at relatively low energy losses of below 0.6 eV, which suggests great potential for the further improvement of OSCs. In this focus review, we analyze the challenges and potential of SMA-based OSCs and discuss molecular design strategies for highly efficient SMAs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The mutagenic potential of high flash aromatic naphtha.

    Science.gov (United States)

    Schreiner, C A; Edwards, D A; McKee, R H; Swanson, M; Wong, Z A; Schmitt, S; Beatty, P

    1989-06-01

    Catalytic reforming is a refining process that converts naphthenes to aromatics by dehydrogenation to make higher octane gasoline blending components. A portion of this wide boiling range hydrocarbon stream can be separated by distillation and used for other purposes. One such application is a mixture of predominantly 9-carbon aromatic molecules (C9 aromatics, primarily isomers of ethyltoluene and trimethylbenzene), which is removed and used as a solvent--high-flash aromatic naphtha. A program was initiated to assess the toxicological properties of high-flash aromatic naphtha since there may be human exposure through inhalation or external body contact. The current study was conducted partly to assess the potential for mutagenic activity and also to assist in an assessment of carcinogenic potential. The specific tests utilized included the Salmonella/mammalian microsome mutagenicity assay, the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) forward mutation assay in CHO cells, in vitro chromosome aberration and sister chromatid exchange (SCE) assays in CHO cells, and an in vivo chromosome aberration assay in rat bone marrow.

  9. Seed dispersal increases local species richness and reduces spatial turnover of tropical tree seedlings.

    Science.gov (United States)

    Wandrag, Elizabeth M; Dunham, Amy E; Duncan, Richard P; Rogers, Haldre S

    2017-10-03

    Dispersal is thought to be a key process underlying the high spatial diversity of tropical forests. Just how important dispersal is in structuring plant communities is nevertheless an open question because it is very difficult to isolate dispersal from other processes, and thereby measure its effect. Using a unique situation, the loss of vertebrate seed dispersers on the island of Guam and their presence on the neighboring islands of Saipan and Rota, we quantify the contribution of vertebrate seed dispersal to spatial patterns of diversity of tree seedlings in treefall gaps. The presence of vertebrate seed dispersers approximately doubled seedling species richness within canopy gaps and halved species turnover among gaps. Our study demonstrates that dispersal plays a key role in maintaining local and regional patterns of diversity, and highlights the potential for ongoing declines in vertebrate seed dispersers to profoundly alter tropical forest composition.

  10. Wavelength conversion, time demultiplexing and multicasting based on cross-phase modulation and four-wave mixing in dispersion-flattened highly nonlinear photonic crystal fiber

    International Nuclear Information System (INIS)

    Hui, Zhan-Qiang; Zhang, Jian-Guo

    2012-01-01

    We propose the use of cross-phase modulation (XPM) and four-wave mixing (FWM) in dispersion-flattened highly nonlinear photonic crystal fibers (HNL-PCFs) to implement the functionalities of wavelength conversion, simultaneous time demultiplexing and wavelength multicasting in optical time-division multiplexing (OTDM) systems. The experiments on wavelength conversion at 80 Gbit s −1 and OTDM demultiplexing from 80 to 10 Gbit s −1 with wavelength multicasting of two channels are successfully demonstrated to validate the proposed scheme, which are carried out by using two segments of dispersion-flattened HNL-PCFs with lengths of 100 and 50 m, respectively. Moreover, the bit error rate (BER) performance is also measured. The results show that our designed system can achieve a power penalty of less than 4.6 dB for two multicasting channels with a 24 nm wavelength span at the BER of 10 −9 when compared with the 10 Gbit/s back-to-back measurement. The proposed system is transparent to bit rate since only an ultrafast third-order nonlinear effect is used. The resulting configuration is compact, robust and reliable, benefiting from the use of dispersion-flattened HNL-PCFs with short lengths. This also makes the proposed system more flexible in the operational wavelengths than those based on dispersion-shifted fibers and traditional highly nonlinear fibers. (paper)

  11. Influence of High Shear Dispersion on the Production of Cellulose Nanofibers by Ultrasound-Assisted TEMPO-Oxidation of Kraft Pulp

    Directory of Open Access Journals (Sweden)

    Claude Daneault

    2012-09-01

    Full Text Available Cellulose nanofibers can be produced using a combination of TEMPO, sodium bromide (NaBr and sodium hypochlorite, and mechanical dispersion. Recently, this process has been the subject of intensive investigation. However, studies on the aspects of mechanical treatment of this process remain marginal. The main objective of this study is to evaluate the high shear dispersion parameters (e.g., consistency, stator-rotor gap, recirculation rate and pH and determine their influences on nanocellulose production using ultrasound-assisted TEMPO-oxidation of Kraft pulp. All nanofiber gels produced in this study exhibited rheological behaviors known as shear thinning. From all the dispersion parameters, the following conditions were identified as optimal: 0.042 mm stator-rotor gap, 200 mL/min recycle rate, dispersion pH of 7 and a feed consistency of 2%. High quality cellulose gel could be produced under these conditions. This finding is surely of great interest for the pulp and paper industry.

  12. Application of dispersive liquid-liquid microextraction and dispersive micro-solid-phase extraction for the determination of quinolones in swine muscle by high-performance liquid chromatography with diode-array detection

    International Nuclear Information System (INIS)

    Tsai, Wen-Hsien; Chuang, Hung-Yi; Chen, Ho-Hsien; Huang, Joh-Jong; Chen, Hwi-Chang; Cheng, Shou-Hsun; Huang, Tzou-Chi

    2009-01-01

    Dispersive liquid-liquid microextraction (DLLME) and dispersive micro-solid-phase extraction (DMSPE) are two simple and low-cost sample preparation methods for liquid samples. In this work, these two methods were applied to solid tissue sample for the determination of seven quinolones by high-performance liquid chromatography with diode-array detection (HPLC-DAD). After the homogenization of the swine muscle with acetonitrile and salt-promoted partitioning, small amounts of the extract were used for the DLLME and DMSPE methods. In the DLLME approach, the target analytes in the extraction solvent were rapidly extracted into a small volume of dichloromethane for drying and the residue was reconstituted for HPLC-DAD analysis. In the DMSPE approach, the target analytes in the extraction solvent were trapped by dispersive silica-based PSA (primary and secondary amine) sorbents and desorbed into a small amount of desorption solution for HPLC-DAD analysis. Under the optimal conditions, relative recoveries were determined for swine muscle spiked 50-200 μg kg -1 and quantification was achieved by matrix-matched calibration. The calibration curves of seven quinolones showed linearity with a correlation coefficient value above 0.998 for both approaches. Relative recoveries ranged from 93.0 to 104.7% and from 95.5 to 111.0% for DLLME and DMSPE, respectively. Limits of detection (LODs) ranged from 5.6 to 23.8 μg kg -1 and from 7.5 to 26.3 μg kg -1 for DLLME and DMSPE, respectively.

  13. In-reactor behaviour of centrifugally atomized U3Si dispersion fuel irradiated at high temperature in HANARO

    International Nuclear Information System (INIS)

    Kim, Ki Hwan; Park, Jong Man; Yoo, Byeong Ok; Park, Dae Kyu; Lee, Choong Sung; Kim, Chang Kyu

    2002-01-01

    The irradiation test on full-size U 3 Si dispersion fuel elements, prepared by centrifugal atomization and conventional comminution method, has been performed up to about 77 at.% U-235 in maximum burn-up at CT hole position having the highest power condition in the HANARO reactor, in order to examine the irradiation performance of the atomized U 3 Si for the driver fuels of HANARO. The in-reactor interaction of the atomized U 3 Si dispersion fuel meats is generally assumed to be acceptable with the range of 5-15 μm in average thickness. The atomized spherical particles have more uniform and thinner reaction layer than the comminuted irregular particles. The U 3 Si particles have relatively fine and uniform size distribution of fission gas bubbles, irrespective of the powdering method. The bubble population in the atomized particles appears to be finer and more homogeneous with the characteristics of narrower bubble size distribution than that of the comminuted fuel. The atomized U 3 Si dispersion fuel elements exhibit sound swelling behaviours of 5 % in ΔV/V m even at ∼77 at.% U-235 burn-up, which meets with the safety criterion of the fuel rod, 20vol.% for HANARO. The atomized U3Si dispersion fuel elements show smaller swelling than the comminuted fuel elements

  14. Facile solid-state synthesis of highly dispersed Cu nanospheres anchored on coal-based activated carbons as an efficient heterogeneous catalyst for the reduction of 4-nitrophenol

    Science.gov (United States)

    Wang, Shan; Gao, Shasha; Tang, Yakun; Wang, Lei; Jia, Dianzeng; Liu, Lang

    2018-04-01

    Coal-based activated carbons (AC) were acted as the support, Cu/AC catalysts were synthesized by a facile solid-state reaction combined with subsequent heat treatment. In Cu/AC composites, highly dispersed Cu nanospheres were anchored on AC. The catalytic activity for 4-nitrophenol (4-NP) was investigated, the effects of activation temperature and copper loading on the catalytic performance were studied. The catalysts exhibited very high catalytic activity and moderate chemical stability due to the unique characteristics of the particle-assembled nanostructures, the high surface area and the porous structure of coal-based AC and the good dispersion of metal particles. Design and preparation of non-noble metal composite catalysts provide a new direction for improving the added value of coal.

  15. New perspectives on potential hydrogen storage materials using high pressure.

    Science.gov (United States)

    Song, Yang

    2013-09-21

    In addressing the global demand for clean and renewable energy, hydrogen stands out as the most suitable candidate for many fuel applications that require practical and efficient storage of hydrogen. Supplementary to the traditional hydrogen storage methods and materials, the high-pressure technique has emerged as a novel and unique approach to developing new potential hydrogen storage materials. Static compression of materials may result in significant changes in the structures, properties and performance that are important for hydrogen storage applications, and often lead to the formation of unprecedented phases or complexes that have profound implications for hydrogen storage. In this perspective article, 22 types of representative potential hydrogen storage materials that belong to four major classes--simple hydride, complex hydride, chemical hydride and hydrogen containing materials--were reviewed. In particular, their structures, stabilities, and pressure-induced transformations, which were reported in recent experimental works together with supporting theoretical studies, were provided. The important contextual aspects pertinent to hydrogen storage associated with novel structures and transitions were discussed. Finally, the summary of the recent advances reviewed and the insight into the future research in this direction were given.

  16. Does Environmental Knowledge Inhibit Hominin Dispersal?

    Science.gov (United States)

    Wren, Colin D; Costopoulos, Andre

    2015-07-01

    We investigated the relationship between the dispersal potential of a hominin population, its local-scale foraging strategies, and the characteristics of the resource environment using an agent-based modeling approach. In previous work we demonstrated that natural selection can favor a relatively low capacity for assessing and predicting the quality of the resource environment, especially when the distribution of resources is highly clustered. That work also suggested that the more knowledge foraging populations had about their environment, the less likely they were to abandon the landscape they know and disperse into novel territory. The present study gives agents new individual and social strategies for learning about their environment. For both individual and social learning, natural selection favors decreased levels of environmental knowledge, particularly in low-heterogeneity environments. Social acquisition of detailed environmental knowledge results in crowding of agents, which reduces available reproductive space and relative fitness. Agents with less environmental knowledge move away from resource clusters and into areas with more space available for reproduction. These results suggest that, rather than being a requirement for successful dispersal, environmental knowledge strengthens the ties to particular locations and significantly reduces the dispersal potential as a result. The evolved level of environmental knowledge in a population depends on the characteristics of the resource environment and affects the dispersal capacity of the population.

  17. A High Redox Potential Laccase from Pycnoporus sanguineus RP15: Potential Application for Dye Decolorization

    Directory of Open Access Journals (Sweden)

    Ana L. R. L. Zimbardi

    2016-05-01

    Full Text Available Laccase production by Pycnoporus sanguineus RP15 grown in wheat bran and corncob under solid-state fermentation was optimized by response surface methodology using a Central Composite Rotational Design. A laccase (Lacps1 was purified and characterized and the potential of the pure Lacps1 and the crude culture extract for synthetic dye decolorization was evaluated. At optimal conditions (eight days, 26 °C, 18% (w/w milled corncob, 0.8% (w/w NH4Cl and 50 mmol·L−1 CuSO4, initial moisture 4.1 mL·g−1, the laccase activity reached 138.6 ± 13.2 U·g−1. Lacps1 was a monomeric glycoprotein (67 kDa, 24% carbohydrate. Optimum pH and temperature for the oxidation of 2,2’-azino-bis(3-ethylbenzthiazoline-6-sulfonate (ABTS were 4.4 and 74.4 °C, respectively. Lacps1 was stable at pH 3.0–8.0, and after two hours at 55–60 °C, presenting high redox potential (0.747 V vs. NHE. ABTS was oxidized with an apparent affinity constant of 147.0 ± 6.4 μmol·L−1, maximum velocity of 413.4 ± 21.2 U·mg−1 and catalytic efficiency of 3140.1 ± 149.6 L·mmol−1·s−1. The maximum decolorization percentages of bromophenol blue (BPB, remazol brilliant blue R and reactive blue 4 (RB4, at 25 or 40 °C without redox mediators, reached 90%, 80% and 60%, respectively, using either pure Lacps1 or the crude extract. This is the first study of the decolorization of BPB and RB4 by a P. sanguineus laccase. The data suggested good potential for treatment of industrial dye-containing effluents.

  18. Auroral electron time dispersion

    International Nuclear Information System (INIS)

    Kletzing, C.A.

    1989-01-01

    A sounding rocket flight was launched from Greenland in 1985 to study high latitude, early morning auroral physics. The payload was instrumented with electron and ion detectors, AC and DC electric field experiments, a plasma density experiment, and a magnetometer to measure the ambient field. The rocket was launched during disturbed conditions, when the polar cap was in a contracted state with visible aurora overhead. The electron data contained numerous signatures indicative of time-of-flight energy dispersion characterized by a coherent structure in which lower energy electrons arrived at the rocket after higher energy electrons. A model was constructed to explain this phenomena by the sudden application of a region of parallel electric field along a length of magnetic field line above the rocket. The model incorporates detector response and uses an altitudinal density profile based on auroral zone measurements. Three types of potential structures were tried: linear, quadratic and cubic. Of the three it was found that the cubic (electric field growing in a quadratic manner moving up the field line) produced the best fit to the data. The potential region was found to be approximately 1-2 R e in extent with the lower edge 3000-4000 km away from the rocket. The background electron temperature in the model which produced the best fit to the data was of the order of 15 eV

  19. Synthesis of an excellent electrocatalyst for oxygen reduction reaction with supercritical fluid: Graphene cellular monolith with ultrafine and highly dispersive multimetallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yazhou; Cheng, Xiaonong; Yen, Clive H.; Wai, Chien M.; Wang, Chongmin; Yang, Juan; Lin, Yuehe

    2017-04-01

    Graphene cellular monolith (GCM) can be used as an excellent support for nanoparticles in widespread applications. However, it's still a great challenge to deposit the desirable nanoparticles in GCM that have small size, controllable structure, composition, and high dispersion using the current methods. Here we demonstrate a green, efficient and large-scale method to address this challenge using supercritical fluid (SCF). By this superior method, graphene hydrogel can be transferred into GCM while being deposited with ultrafine and highly dispersive nanoparticles. Specifically, the bimetallic PtFe/GCM and the trimetallic PtFeCo/GCM catalysts are successfully synthesized, and their electrocatalytic performances toward oxygen reduction reaction (ORR) are also studied. The resultant PtFe/GCM shows the significant enhancement in ORR activity, including a factor of 8.47 enhancement in mass activity (0.72 A mgPt-1), and a factor of 7.67 enhancement in specific activity (0.92 mA cm-2), comparing with those of the commercial Pt/C catalyst (0.085 A mgPt-1, 0.12 mA cm-2). Importantly, by introducing the Co, the trimetallic PtFeCo/GCM exhibits the further improved ORR activities (1.28 A mgPt-1, 1.80 mA cm-2). The high ORR activity is probably attributed to the alloying structure, ultrafine size, highly dispersive, well-defined, and a better interface with 3D porous graphene support.

  20. Lead dioxide electrodes for high potential anodic processes

    Directory of Open Access Journals (Sweden)

    A. B. VELICHENKO

    2001-12-01

    Full Text Available Doping of PbO2 by cations (Fe3+, Co2+ and Ni2+, by F- and by cations and F- simultaneously is discussed as a way of improving the stability and electrochemical activity in processes occurring at high potentials. Doping allows the control of the amount of structural water in an oxide. Radiotracer experiments showed that high electrodeposition current densities favour the segregation of incorporated tritium (protons at the surface. On the other hand, fluorine doping results in a marked decrease in the amount of surface oxygen species. The influence of doping with metal cations strongly depends on the nature of the metal. Iron behaves like fluorine, while nickel causes an accumulation of surface oxygen species. Doped PbO2 electrodes have quite good activities for the electrogeneration of ozone. In particular, Fe and Co doped PbO2 showed a current efficiency of 15–20 % for this process. This result is relevant to our recent studies on “cathodic oxidation”, i.e., an ozone mediated electrochemical method in which an O2 stream is used to sweep the O2/O3 gas mixture produced at a PbO2 anode into the cathodic compartment of the same electrochemical cell containing polluting species.

  1. Consequence Prioritization Process for Potential High Consequence Events (HCE)

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, Sarah G. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-10-31

    This document describes the process for Consequence Prioritization, the first phase of the Consequence-Driven Cyber-Informed Engineering (CCE) framework. The primary goal of Consequence Prioritization is to identify potential disruptive events that would significantly inhibit an organization’s ability to provide the critical services and functions deemed fundamental to their business mission. These disruptive events, defined as High Consequence Events (HCE), include both events that have occurred or could be realized through an attack of critical infrastructure owner assets. While other efforts have been initiated to identify and mitigate disruptive events at the national security level, such as Presidential Policy Directive 41 (PPD-41), this process is intended to be used by individual organizations to evaluate events that fall below the threshold for a national security. Described another way, Consequence Prioritization considers threats greater than those addressable by standard cyber-hygiene and includes the consideration of events that go beyond a traditional continuity of operations (COOP) perspective. Finally, Consequence Prioritization is most successful when organizations adopt a multi-disciplinary approach, engaging both cyber security and engineering expertise, as in-depth engineering perspectives are required to recognize and characterize and mitigate HCEs. Figure 1 provides a high-level overview of the prioritization process.

  2. Anti-arrhythmic peptide N-3-(4-hydroxyphenyl)propionyl Pro-Hyp-Gly-Ala-Gly-OH reduces dispersion of action potential duration during ischemia/reperfusion in rabbit hearts

    DEFF Research Database (Denmark)

    Kjølbye, Anne Louise; Petersen, Jørgen Søberg; Holstein-Rathlou, N.-H.

    2002-01-01

    During ischemia, cardiac gap junctions close and neighboring cells uncouple. This leads to slow conduction, increased dispersion of APD90 (duration from action potential beginning to 90% of repolarization), nonuniform anisotropy, and unidirectional conduction block, all of which favor the induction...... of reentry arrhythmias. It has been suggested that anti-arrhythmic peptides increase gap junction conductance during states of reduced coupling. The aim of this study was to test the effect of the anti-arrhythmic peptide N-3-(4-hydroxyphenyl)propionyl Pro-Hyp-Gly-Ala-Gly-OH (HP-5) (10(-10) ) on dispersion...... of epicardial APD90 during both normokalemic and hypokalemic ischemia/reperfusion in isolated perfused rabbit hearts. HP-5 did not affect average APD90, heart rate, left ventricular contractility (LVP dP/dtmax), or mean coronary flow. HP-5 significantly reduced the epicardial APD dispersion during hypokalemic...

  3. High Latitude Reefs: A Potential Refuge for Reef Builders

    Science.gov (United States)

    Amat, A.; Bates, N.

    2003-04-01

    Coral reefs globally show variable signs of deterioration or community structure changes due to a host of anthropogenic and natural factors. In these global scenarios, rates of calcification by reef builders such as Scleractinian corals are predicted to significantly decline in the future due to the increase in atmospheric CO_2. When considering the response of reefs to the present climate change, temperature effects should also be taken into account. Here, we investigate the simultaneous impact of temperature and CO_2 on the high-latitude Bermuda coral reef system (32^oN, 64^oE)through a series of in vitro experiments at different CO_2 levels and seasonally different summer (27^oC) and winter (20^oC) temperature conditions. Four species of Scleractinian corals (Porites astreoides, Diploria labyrinthiformis, Madracis mirabilis and decactis) were acclimated for three months at: 20^oC and 27^oC (both with CO_2 levels at 400 ppm (control) and 700 ppm). Growth was assessed by buoyant weight techniques during the acclimation period. Photosynthesis, respiration and calcification were measured at the end of this period using respirometric chambers. A reproduction experiment was also undertaken under 27^oC. Photosynthesis mainly remains constant or increases under high CO_2 conditions. The results of the integrated calcification measurements confirm the hypothesis that an increase in CO_2 induces a decrease in calcification. However an increase in photosynthesis can be observed when CO_2 is unfavorable for calcification suggesting that a biological control of calcification through photosynthesis could prevent a drop in the calcification potential. Buoyant weight results indicate that the CO_2 impact could be less detrimental under lower temperature. This result will be compared with the instantaneous calcification measurements in the chambers and some in situ coral growth assessments in winter and summer conditions. The consequences for the response of marginal reefs

  4. DEVELOPMENT OF HIGH-DENSITY U/AL DISPERSION PLATES FOR MO-99 PRODUCTION USING ATOMIZED URANIUM POWDER

    Directory of Open Access Journals (Sweden)

    HO JIN RYU

    2013-12-01

    Full Text Available Uranium metal particle dispersion plates have been proposed as targets for Molybdenum-99 (Mo-99 production to improve the radioisotope production efficiency of conventional low enriched uranium targets. In this study, uranium powder was produced by centrifugal atomization, and miniature target plates containing uranium particles in an aluminum matrix with uranium densities up to 9 g-U/cm3 were fabricated. Additional heat treatment was applied to convert the uranium particles into UAlx compounds by a chemical reaction of the uranium particles and aluminum matrix. Thus, these target plates can be treated with the same alkaline dissolution process that is used for conventional UAlx dispersion targets, while increasing the uranium density in the target plates

  5. Highly anisotropic magnon dispersion in Ca{sub 2}RuO{sub 4}. Evidence for strong spin orbit coupling

    Energy Technology Data Exchange (ETDEWEB)

    Kunkemoeller, Stefan; Khomskii, Daniel; Braden, Markus [II. Physikalisches Institut, Universitaet zu Koeln (Germany); Steffens, Paul; Piovano, Andrea [Institut Laue Langevin, Grenoble (France); Nugroho, Augustinus Agung [Institut Teknologi Bandung (Indonesia)

    2016-07-01

    Ca{sub 2}RuO{sub 4} is a key material for the understanding of the impact of spin-orbit coupling in 4d and 5d compounds, which is intensively studied at present. We have studied the magnon dispersion in Ca{sub 2}RuO{sub 4} by inelastic neutron scattering on large single crystals containing 1% of Ti. With this unmagnetic substitution large single crystals could be obtained with the floating zone method. The magnon dispersion can be well described with the simple conventional Heisenberg model. Ca{sub 2}RuO{sub 4} reveals a large anisotropy gap of 13 meV, which shows that spin-orbit coupling and some in-plane orbital ordering are both important parameters for the description of the electronic and magnetic properties of Ca{sub 2}RuO{sub 4}.

  6. History of Resistance Welding Oxide Dispersion Strengthened Cladding and other High Temperature Materials at Center for Advanced Energy Studies

    Energy Technology Data Exchange (ETDEWEB)

    Larry Zirker; Nathan Jerred; Dr. Indrajit Charit; James Cole

    2012-03-01

    Research proposal 08-1079, 'A Comparative Study of Welded ODS Cladding Materials for AFCI/GNEP,' was funded in 2008 under an Advanced Fuel Cycle Initiative (AFCI) Research and Development Funding Opportunity, number DE-PS07-08ID14906. Th proposal sought to conduct research on joining oxide dispersion strengthen (ODS) tubing material to a solid end plug. This document summarizes the scientific and technical progress achieved during the project, which ran from 2008 to 2011.

  7. History of Resistance Welding Oxide Dispersion Strengthened Cladding and other High Temperature Materials at Center for Advanced Energy Studies

    International Nuclear Information System (INIS)

    Zirker, Larry; Jerred, Nathan; Charit, Indrajit; Cole, James

    2012-01-01

    Research proposal 08-1079, 'A Comparative Study of Welded ODS Cladding Materials for AFCI/GNEP,' was funded in 2008 under an Advanced Fuel Cycle Initiative (AFCI) Research and Development Funding Opportunity, number DE-PS07-08ID14906. Th proposal sought to conduct research on joining oxide dispersion strengthen (ODS) tubing material to a solid end plug. This document summarizes the scientific and technical progress achieved during the project, which ran from 2008 to 2011.

  8. DEVELOPMENT OF HIGH-DENSITY U/AL DISPERSION PLATES FOR MO-99 PRODUCTION USING ATOMIZED URANIUM POWDER

    OpenAIRE

    RYU, HO JIN; KIM, CHANG KYU; SIM, MOONSOO; PARK, JONG MAN; LEE, JONG HYUN

    2013-01-01

    Uranium metal particle dispersion plates have been proposed as targets for Molybdenum-99 (Mo-99) production to improve the radioisotope production efficiency of conventional low enriched uranium targets. In this study, uranium powder was produced by centrifugal atomization, and miniature target plates containing uranium particles in an aluminum matrix with uranium densities up to 9 g-U/cm3 were fabricated. Additional heat treatment was applied to convert the uranium particles into UAlx compou...

  9. Construction of high-quality NN potential models

    International Nuclear Information System (INIS)

    Stoks, V.G.J.; Klomp, R.A.M.; Terheggen, C.P.F.; de Swart, J.J.

    1994-01-01

    We present an updated version (Nijm93) of the Nijmegen soft-core potential, which gives a much better description of the np data than the older version (Nijm78). The χ 2 per datum is 1.87. The configuration-space and momentum-space versions of this potential are exactly equivalent, a unique feature among meson-theoretical potentials. We also present three new NN potential models: a nonlocal Reid-like Nijmegen potential (Nijm I), a local version (Nijm II), and an updated regularized version (Reid 93) of the Reid soft-core potential. These three potentials all have a nearly optimal χ 2 per datum and can therefore be considered as alternative partial-wave analyses. All potentials contain the proper charge-dependent one-pion-exchange tail

  10. High organic containing tanks: Assessing the hazard potential

    International Nuclear Information System (INIS)

    Hill, R.C.P.; Babad, H.

    1991-09-01

    Eight Hanford Site tanks contain organic chemicals at concentrations believed to be greater than 10 mole percent sodium acetate equivalent mixed with the oxidizing salts sodium nitrate/sodium nitrite. Also, three of the hydrogen and ferrocyanide tanks appear on the organic tank list. Concentrations of organics that may be present in some tanks could cause an exothermic reaction given a sufficient driving force, such as high temperatures. However, the difference between ignition temperatures and actual tank temperatures measured is so large that the probability of such a reaction is considered very low. The consequences of the postulated reaction are about the same as the scenarios for an explosion in a ''burping'' hydrogen tank. Although work on this issue is just beginning, consideration of hazards associated with heating nitrate-nitrite mixtures containing organic materials is an integral part of both the hydrogen and ferrocyanide tank efforts. High concentrations of organic compounds have been inferred (from tank transfer, flow sheet records, and limited analytical data) in eight single-shell tanks. Many organic chemicals, if present in concentrations above 10 dry weight percent (sodium acetate equivalent), have the potential to react with nitrate-nitrites constituents at temperatures above 200 degree C (392 degree F) in an exothermic manner. The concentrations of organic materials in the listed single-shell tanks, and their chemical identity, is not accurately known at present. A tank sampling program has been planned to provide more information on the contents of these tanks and to serve as a basis for laboratory testing and safety evaluations. 2 refs., 1 fig., 2 tabs

  11. Low and High-Frequency Field Potentials of Cortical Networks ...

    Science.gov (United States)

    Neural networks grown on microelectrode arrays (MEAs) have become an important, high content in vitro assay for assessing neuronal function. MEA experiments typically examine high- frequency (HF) (>200 Hz) spikes, and bursts which can be used to discriminate between different pharmacological agents/chemicals. However, normal brain activity is additionally composed of integrated low-frequency (0.5-100 Hz) field potentials (LFPs) which are filtered out of MEA recordings. The objective of this study was to characterize the relationship between HF and LFP neural network signals, and to assess the relative sensitivity of LFPs to selected neurotoxicants. Rat primary cortical cultures were grown on glass, single-well MEA chips. Spontaneous activity was sampled at 25 kHz and recorded (5 min) (Multi-Channel Systems) from mature networks (14 days in vitro). HF (spike, mean firing rate, MFR) and LF (power spectrum, amplitude) components were extracted from each network and served as its baseline (BL). Next, each chip was treated with either 1) a positive control, bicuculline (BIC, 25μM) or domoic acid (DA, 0.3μM), 2) or a negative control, acetaminophen (ACE, 100μM) or glyphosate (GLY, 100μM), 3) a solvent control (H2O or DMSO:EtOH), or 4) a neurotoxicant, (carbaryl, CAR 5, 30μM ; lindane, LIN 1, 10μM; permethrin, PERM 25, 50μM; triadimefon, TRI 5, 65μM). Post treatment, 5 mins of spontaneous activity was recorded and analyzed. As expected posit

  12. Assessment of the phytoextraction potential of high biomass crop plants

    International Nuclear Information System (INIS)

    Hernandez-Allica, Javier; Becerril, Jose M.; Garbisu, Carlos

    2008-01-01

    A hydroponic screening method was used to identify high biomass crop plants with the ability to accumulate metals. Highest values of shoot accumulation were found in maize cv. Ranchero, rapeseed cv. Karat, and cardoon cv. Peralta for Pb (18 753 mg kg -1 ), Zn (10 916 mg kg -1 ), and Cd (242 mg kg -1 ), respectively. Subsequently, we tested the potential of these three cultivars for the phytoextraction of a metal spiked compost, finding out that, in cardoon and maize plants, increasing Zn and Cd concentrations led to lower values of root and shoot DW. By contrast, rapeseed shoot growth was not significantly affected by Cd concentration. Finally, a metal polluted soil was used to check these cultivars' phytoextraction capacity. Although the soil was phytotoxic enough to prevent the growth of cardoon and rapeseed plants, maize plants phytoextracted 3.7 mg Zn pot -1 . We concluded that the phytoextraction performance of cultivars varies depending on the screening method used. - The phytoextraction performance of cultivars varies significantly depending on the screening method used

  13. Assessment of the phytoextraction potential of high biomass crop plants

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Allica, Javier [NEIKER-tecnalia, Basque Institute of Agricultural Research and Development, c/Berreaga 1, E-48160 Derio (Spain); Becerril, Jose M. [Department of Plant Biology and Ecology, University of the Basque Country, P.O. Box 644, E-48080 Bilbao (Spain); Garbisu, Carlos [NEIKER-tecnalia, Basque Institute of Agricultural Research and Development, c/Berreaga 1, E-48160 Derio (Spain)], E-mail: cgarbisu@neiker.net

    2008-03-15

    A hydroponic screening method was used to identify high biomass crop plants with the ability to accumulate metals. Highest values of shoot accumulation were found in maize cv. Ranchero, rapeseed cv. Karat, and cardoon cv. Peralta for Pb (18 753 mg kg{sup -1}), Zn (10 916 mg kg{sup -1}), and Cd (242 mg kg{sup -1}), respectively. Subsequently, we tested the potential of these three cultivars for the phytoextraction of a metal spiked compost, finding out that, in cardoon and maize plants, increasing Zn and Cd concentrations led to lower values of root and shoot DW. By contrast, rapeseed shoot growth was not significantly affected by Cd concentration. Finally, a metal polluted soil was used to check these cultivars' phytoextraction capacity. Although the soil was phytotoxic enough to prevent the growth of cardoon and rapeseed plants, maize plants phytoextracted 3.7 mg Zn pot{sup -1}. We concluded that the phytoextraction performance of cultivars varies depending on the screening method used. - The phytoextraction performance of cultivars varies significantly depending on the screening method used.

  14. High Altitude Emissions of Black Carbon Aerosols: Potential Climate Implications

    Science.gov (United States)

    Satheesh, S. K.

    2017-12-01

    Synthesizing a series of ground-based and airborne measurements of aerosols over the Indian region during summer and pre-monsoon seasons have revealed the persistence of elevated absorbing aerosol layers over most of the Indian region; more than 50% of which located above clouds. Subsequent, in situ measurements of black carbon (BC) using high-altitude balloons, showed surprising layers with high concentrations in the middle and upper troposphere even at an altitude of 8 to 10 kms. Simultaneous measurements of the vertical thermal structure have shown localized warming due to BC absorption leading to large reduction in lapse rate and sharp temperature inversion, which in turn increases the atmospheric stability. This aerosol-induced stable layer is conducive for maintaining the black carbon layer longer at that level, leading thereby to further solar absorption and subsequently triggering dry convection. These observations support the `solar escalator' concept through which absorption-warming-convection cycles lead to self-lifting of BC to upper troposphere or even to lower stratosphere under favorable conditions in a matter of a few days. Employing an on-line regional chemistry transport model (WRF-Chem), incorporating aircraft emissions, it is shown that emissions from high-flying aircrafts as the most likely source of these elevated black carbon layers. These in-situ injected particles, produce significant warming of the thin air in those heights and lift these layers to even upper tropospheric/lower stratospheric heights, aided by the strong monsoonal convection occurring over the region, which are known to overshoot the tropical tropopause leading to injection of tropospheric air mass (along with its constituent aerosols) into the stratosphere, especially during monsoon season when the tropical tropopause layer is known to be thinnest. These simulations are further supported by the CALIPSO space-borne LIDAR derived extinction coefficient profiles. Based on

  15. Polaron-electron assisted giant dielectric dispersion in SrZrO{sub 3} high-k dielectric

    Energy Technology Data Exchange (ETDEWEB)

    Borkar, Hitesh; Barvat, Arun; Pal, Prabir; Kumar, Ashok, E-mail: ashok553@nplindia.org [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-National Physical Laboratory (CSIR-NPL) Campus, Dr. K S Krishnan Marg, New Delhi 110012 (India); Shukla, A. K. [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Pulikkotil, J. J. [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-National Physical Laboratory (CSIR-NPL) Campus, Dr. K S Krishnan Marg, New Delhi 110012 (India); Computation and Networking Facility, CSIR-National Physical Laboratory, New Delhi 110012 (India)

    2016-06-07

    The SrZrO{sub 3} is a well known high-k dielectric constant (∼22) and high optical bandgap (∼5.8 eV) material and one of the potential candidates for future generation nanoelectronic logic elements (8 nm node technology) beyond silicon. Its dielectric behavior is fairly robust and frequency independent till 470 K; however, it suffers a strong small-polaron based electronic phase transition (T{sub e}) linking 650 to 750 K. The impedance spectroscopy measurements revealed the presence of conducting grains and grain boundaries at elevated temperature which provide energetic mobile charge carriers with activation energy in the range of 0.7 to 1.2 eV supporting the oxygen ions and proton conduction. X-ray photoemission spectroscopy measurements suggest the presence of weak non-stoichiometric O{sup 2−} anions and hydroxyl species bound to different sites at the surface and bulk. These thermally activated charge carriers at elevated temperature significantly contribute to the polaronic based dielectric anomaly and conductivity. Our dielectric anomaly supports pseudo phase transition due to high degree of change in ZrO{sub 6} octahedral angle in the temperature range of 650–750 K, where electron density and phonon vibration affect the dielectric and conductivity properties.

  16. Synthesis of carboxylate-functionalized graphene nanosheets for high dispersion of platinum nanoparticles based on the reduction of graphene oxide via 1-pyrenecarboxaldehyde

    International Nuclear Information System (INIS)

    Kuang, Yinjie; Zheng, Xingliang; Zhou, Qionghua; Lu, Cuihong; Chen, Jinhua; Zhang, Xiaohua

    2013-01-01

    A one-step reduction/functionalization strategy for the synthesis of carboxylate-functionalized graphene nanosheets is reported in this paper. 1-pyrenecarboxaldehyde (PCA) is introduced as a new reductant for the chemical reduction of graphene oxide (GO), serving three roles: reducing GO to graphene nanosheets (GNs), stabilizing the as-prepared GNs due to the electrostatic repulsion of the oxidation products of PCA (1-pyrenecarboxylate, PC − ) on the surface of the GNs and anchoring Pt nanoparticles (Pt NPs) with high dispersion and small particle size. Transmission electron microscopy shows that Pt NPs with an average diameter of 1.3 ± 0.2 nm are uniformly dispersed on the surface of the PC − -functionalized GNs (PC − -GNs). The obtained Pt NPs/PC − -GNs nanohybrids have higher electrocatalytic activity and stability towards methanol oxidation in comparison with Pt NPs supported on GNs obtained by the chemical reduction of GO with the typical reductant, hydrazine. (paper)

  17. Low Density Solvent-Based Dispersive Liquid-Liquid Microextraction for the Determination of Synthetic Antioxidants in Beverages by High-Performance Liquid Chromatography

    Science.gov (United States)

    Çabuk, Hasan; Köktürk, Mustafa

    2013-01-01

    A simple and efficient method was established for the determination of synthetic antioxidants in beverages by using dispersive liquid-liquid microextraction combined with high-performance liquid chromatography with ultraviolet detection. Butylated hydroxy toluene, butylated hydroxy anisole, and tert-butylhydroquinone were the antioxidants evaluated. Experimental parameters including extraction solvent, dispersive solvent, pH of sample solution, salt concentration, and extraction time were optimized. Under optimal conditions, the extraction recoveries ranged from 53 to 96%. Good linearity was observed by the square of correlation coefficients ranging from 0.9975 to 0.9997. The relative standard deviations ranged from 1.0 to 5.2% for all of the analytes. Limits of detection ranged from 0.85 to 2.73 ng mL−1. The method was successfully applied for determination of synthetic antioxidants in undiluted beverage samples with satisfactory recoveries. PMID:23853535

  18. Low Density Solvent-Based Dispersive Liquid-Liquid Microextraction for the Determination of Synthetic Antioxidants in Beverages by High-Performance Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Hasan Çabuk

    2013-01-01

    Full Text Available A simple and efficient method was established for the determination of synthetic antioxidants in beverages by using dispersive liquid-liquid microextraction combined with high-performance liquid chromatography with ultraviolet detection. Butylated hydroxy toluene, butylated hydroxy anisole, and tert-butylhydroquinone were the antioxidants evaluated. Experimental parameters including extraction solvent, dispersive solvent, pH of sample solution, salt concentration, and extraction time were optimized. Under optimal conditions, the extraction recoveries ranged from 53 to 96%. Good linearity was observed by the square of correlation coefficients ranging from 0.9975 to 0.9997. The relative standard deviations ranged from 1.0 to 5.2% for all of the analytes. Limits of detection ranged from 0.85 to 2.73 ng mL−1. The method was successfully applied for determination of synthetic antioxidants in undiluted beverage samples with satisfactory recoveries.

  19. The high-resolution cross-dispersed echelle white-pupil spectrometer of the McDonald Observatory 2.7-m telescope

    Science.gov (United States)

    Tull, Robert G.; Macqueen, Phillip J.; Sneden, Christopher; Lambert, David L.

    1995-01-01

    A new high-resolution cross-dispersed echelle spectrometer has been installed at the coude focus of the McDonald Observatory 2.7-m telescope. Its primary goal was simultaneously to gather spectra over as much of the spectral range 3400 A to 1 micrometer as practical, at a resolution R identical with lambda/Delta lambda which approximately = 60,000 with signal-to-noise ratio of approximately 100 for stars down to magnitude 11, using 1-h exposures. In the instrument as built, two exposures are all that are needed to cover the full range. Featuring a white-pupil design, fused silica prism cross disperser, and folded Schmidt camera with a Tektronix 2048x2048 CCD used at either of two foci, it has been in regularly scheduled operation since 1992 April. Design details and performance are described.

  20. Room and high temperature deformation behaviour of a forged Fe–15Al–5Nb alloy with a reinforcing dispersion of equiaxed Laves phase particles

    International Nuclear Information System (INIS)

    Morris, D.G.; Muñoz-Morris, M.A.

    2012-01-01

    Highlights: ► Forged Fe–15%Al–5%Nb has a composite structure of soft matrix with equiaxed Laves phase particles. ► The material shows good strength with excellent ductility at room temperature. ► Good creep strength is maintained to 700 °C. ► The coarse composite microstructure ensures good long term stability at high temperatures. ► High temperature strength depends on load sharing between phases and microstructural refinement. - Abstract: The cast-in network of continuous Laves phase in a Fe–15%Al–5%Nb alloy has been converted to a dispersion of coarse Laves phase particles by high temperature forging, and the room temperature and high temperature deformation behaviour examined. The material shows good room temperature tensile ductility and good creep strength at temperatures up to 700 °C. The good high temperature strength is explained by the refinement of substructure by the dispersion of Laves phase particles and load and strain partitioning between the stiff and hard phase and the softer matrix. The relatively coarse microstructure is expected to be highly stable against coarsening at high temperatures, which should allow retention of creep properties even for long exposure times.

  1. Keeping It Local: Dispersal Limitations of Coral Larvae to the High Latitude Coral Reefs of the Houtman Abrolhos Islands.

    Science.gov (United States)

    Markey, Kathryn L; Abdo, Dave A; Evans, Scott N; Bosserelle, Cyprien

    2016-01-01

    In 2011 the first recorded bleaching event for the high latitude Houtman Abrolhos Islands (HAI) coral communities was documented. This bleaching event highlighted the question of whether a supply of 'heat tolerant' coral recruits from the tropical north would be sufficient to provide a level of resistance for these reefs to future warming events. Using Lagrangian modelling we showed that due to its regional isolation, large-scale larval input from potential tropical northern source populations to the HAI is unlikely, despite the southward flowing Leeuwin current. Successful recruitment to artificial substrates was recorded following the bleaching event. However, this was negligible (0.4 ± 0.1 recruits per tile) compared to 2013 post impact recruitment (128.8 ± 15.8 recruits per tile). Our data therefore provides preliminary evidence suggesting that the connectivity of the HAI with coral communities in the north is limited, and population maintenance and recovery is likely driven primarily by self-recruitment. Given the low thermal tolerance of the HAI coral communities, the dominance of Acropora, and the apparent reliance on self-recruitment, an increased frequency of thermally anomalous conditions at the HAI (such as experienced in 2011) has the potential to reduce the long-term stability of the HAI coral populations and species that depend upon them.

  2. Keeping It Local: Dispersal Limitations of Coral Larvae to the High Latitude Coral Reefs of the Houtman Abrolhos Islands.

    Directory of Open Access Journals (Sweden)

    Kathryn L Markey

    Full Text Available In 2011 the first recorded bleaching event for the high latitude Houtman Abrolhos Islands (HAI coral communities was documented. This bleaching event highlighted the question of whether a supply of 'heat tolerant' coral recruits from the tropical north would be sufficient to provide a level of resistance for these reefs to future warming events. Using Lagrangian modelling we showed that due to its regional isolation, large-scale larval input from potential tropical northern source populations to the HAI is unlikely, despite the southward flowing Leeuwin current. Successful recruitment to artificial substrates was recorded following the bleaching event. However, this was negligible (0.4 ± 0.1 recruits per tile compared to 2013 post impact recruitment (128.8 ± 15.8 recruits per tile. Our data therefore provides preliminary evidence suggesting that the connectivity of the HAI with coral communities in the north is limited, and population maintenance and recovery is likely driven primarily by self-recruitment. Given the low thermal tolerance of the HAI coral communities, the dominance of Acropora, and the apparent reliance on self-recruitment, an increased frequency of thermally anomalous conditions at the HAI (such as experienced in 2011 has the potential to reduce the long-term stability of the HAI coral populations and species that depend upon them.

  3. Overview of the phase diagram of ionic magnetic colloidal dispersions

    International Nuclear Information System (INIS)

    Cousin, F.; Dubois, E.; Cabuil, V.; Boue, F.; Perzynski, R.

    2001-01-01

    We study ionic magnetic colloidal dispersions, which are constituted of γ-Fe 2 O 3 nanoparticles dispersed in water, and stabilized with electrostatic interparticle repulsion. The phase diagram PV versus Φ (P: osmotic pressure, V: particle volume, Φ: particle volume fraction) is explored, especially in the range of high Π and high Φ. The osmotic pressure P of the colloidal dispersion is known either by a measurement either because it is imposed during the sample preparation by osmotic compression. The structure of the colloidal dispersion is determined from Small Angle Neutron Scattering. Two regimes can be distinguished. At high pressure, fluid and solid phases can exist. Their structure is governed by strong electrostatic repulsion, the range of which is here evaluated. At low pressure, gas, liquid and glassy solids can exist. Their structure results from a sticky hard sphere potential. (author)

  4. BisGMA/TEGDMA dental nanocomposites containing glyoxylic acid modified high-aspect ratio hydroxyapatite nanofibers with enhanced dispersion

    Science.gov (United States)

    Chen, Liang; Xu, Changqi; Wang, Yong; Shi, Jian; Yu, Qingsong

    2012-01-01

    The purpose of this research was to investigate the influence of the glyoxylic acid (GA) modification of hydroxyapatite (HAP) nanofibers on their dispersion in bisphenol A glycidyl methacrylate (BisGMA)/triethylene glycol dimethacrylate (TEGDMA) dental composites and also investigate the mechanical properties, water absorption, and water solubility of the resulting dental resins and composites. Scanning/Transmission electron microscopy (STEM) images showed that microsized HAP nanofiber bundles could be effectively broken down to individual HAP nanofibers with an average length of ~15 μm after the surface modification process. Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and thermal gravimetric analysis (TGA) characterization confirmed glyoxylic acid was chemically grafted on the HAP nanofiber surface, hypothetically by reacting with the amine group on HAP nanofiber surface. The enhanced dispersion of HAP nanofibers in dental matrix led to increased biaxial flexural strength (BFS) compared with the corresponding dental resins and composites filled with untreated HAP nanofibers. In addition, impregnation of small mass fractions of the glyoxylic acid modified HAP nanofibers into the BisGMA/TEGDMA dental resins (5wt%, 10wt%) or composites (2wt%, 3wt%) could also substantially improve the BFS in comparison with the controls(pure resins or dental composites filled with silica particles alone). Larger mass fractions could not further increase the mechanical property or even degrade the BFS values. Water behavior testing results indicated that the addition of glyoxylic acid modified HAP nanofibers resulted in higher water absorption and water solubility values which is not preferred for clinical application. In summary, well dispersed HAP nanofibers and their dental composites with enhanced mechanical property have been successfully fabricated but the water absorption and water solubility of such dental composites need to be

  5. BisGMA/TEGDMA dental nanocomposites containing glyoxylic acid-modified high-aspect ratio hydroxyapatite nanofibers with enhanced dispersion

    International Nuclear Information System (INIS)

    Chen Liang; Yu Qingsong; Li Hao; Xu Changqi; Wang Yong; Shi Jian

    2012-01-01

    The purpose of this research was to investigate the influence of the glyoxylic acid (GA) modification of hydroxyapatite (HAP) nanofibers on their dispersion in bisphenol A glycidyl methacrylate (BisGMA)/triethylene glycol dimethacrylate (TEGDMA) dental composites and also to investigate the mechanical properties, water absorption and water solubility of the resulting dental resins and composites. Scanning/transmission electron microscopy images showed that microsized HAP nanofiber bundles could be effectively broken down into individual HAP nanofibers with an average length of ∼15 µm after the surface modification process. Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy and thermal gravimetric analysis characterization confirmed that GA was chemically grafted on the HAP nanofiber surface, hypothetically by reacting with the amine group on the HAP nanofiber surface. The enhanced dispersion of HAP nanofibers in the dental matrix led to increased biaxial flexural strength (BFS) compared with the corresponding dental resins and composites filled with untreated HAP nanofibers. In addition, impregnation of small mass fractions of the GA-modified HAP nanofibers into the BisGMA/TEGDMA dental resins (5 wt%, 10 wt%) or composites (2 wt%, 3 wt%) could also substantially improve the BFS in comparison with the controls (pure resins or dental composites filled with silica particles alone). Larger mass fractions could not increase the mechanical property further or even degraded the BFS values. Water behavior testing results indicated that the addition of the GA-modified HAP nanofibers resulted in higher water absorption and water solubility values, which are not preferred for clinical application. In summary, well-dispersed HAP nanofibers and their dental composites with enhanced mechanical properties have been successfully fabricated, but the water absorption and water solubility of such dental composites need to be further improved. (paper)

  6. Potential effects of arboreal and terrestrial avian dispersers on seed dormancy, seed germination and seedling establishment in Ormosia (Papilionoideae) species in Peru

    Science.gov (United States)

    Foster, Mercedes S.

    2008-01-01

    The relative effectiveness of arboreal or terrestrial birds at dispersing seeds of Ormosia macrocalyx and O. bopiensis (Fabaceae: Papilionoideae) were studied in south-eastern Peru. Seeds of both species were either scarified, to represent seed condition after dispersal by terrestrial birds, or left intact, to represent seed condition after dispersal by arboreal birds. Seeds were distributed along forest transects, and germination, seedling development and mortality were monitored to determine the successes of the two groups at producing seedlings. Scarified seeds germinated with the early rains of the dry-to-wet-season transition, when erratic rainfall was interspersed with long dry spells. Intact seeds germinated 30 d later when the rain was more plentiful and regular. Intact seeds of O. macrocalyx gave rise to significantly more seedlings (41.1% vs. 25.5%) than did scarified seeds, in part, because significantly more seedlings from scarified seeds (n = 20) than from intact seeds (n = 3) died from desiccation when their radicles failed to enter the dry ground present during the dry-to-wet-season transition. Also, seedlings from scarified seeds were neither larger nor more robust than those from intact seeds despite their longer growing period. Results are consistent with the hypothesis that dispersal effectiveness of arboreal birds, at least for O. macrocalyx, is greater than that of terrestrial birds. Screen-house experiments in which seedlings developed under different watering regimes supported this result. Numbers of seedlings developing from intact and scarified seeds of O. bopiensis did not differ significantly.

  7. The impact of anthropogenic food supply on fruit consumption by dusky-legged guan (Penelope obscura Temminck, 1815: potential effects on seed dispersal in an Atlantic forest area

    Directory of Open Access Journals (Sweden)

    J. Vasconcellos-Neto

    Full Text Available Abstract Frugivorous birds are important seed dispersers and influence the recruitment of many plant species in the rainforest. The efficiency of this dispersal generally depends on environment quality, bird species, richness and diversity of resources, and low levels of anthropogenic disturbance. In this study, we compared the sighting number of dusky-legged guans (Penelope obscura by km and their movement in two areas of Serra do Japi, one around the administrative base (Base where birds received anthropogenic food and a pristine area (DAE with no anthropogenic resource. We also compared the richness of native seeds in feces of birds living in these two areas. Although the abundance of P. obscura was higher in the Base, these individuals moved less, dispersed 80% fewer species of plants and consumed 30% fewer seeds than individuals from DAE. The rarefaction indicated a low richness in the frugivorous diet of birds from the Base when compared to the populations from DAE. We conclude that human food supply can interfere in the behavior of these birds and in the richness of native seeds dispersed.

  8. High internal phase agar hydrogel dispersions in cocoa butter and chocolate as a route towards reducing fat content.

    Science.gov (United States)

    Skelhon, Thomas S; Olsson, Patrik K A; Morgan, Adam R; Bon, Stefan A F

    2013-09-01

    Reducing the fat content of chocolate formulations is a major challenge for the confectionery industry. We report the suspension of aqueous microgel agar particles of up to 80% v/v within sunflower oil, cocoa butter, and ultimately chocolate. The optimised emulsification process involves a shear-cooling step. We demonstrate the versatility of our method when applied to white, milk, and dark chocolate formulations, whilst preserving the desired polymorph V of the cocoa butter matrix. In addition, we show that this technology can be used as a strategy to disperse alcoholic beverages into chocolate confectionery.

  9. Dispersion strengthening

    International Nuclear Information System (INIS)

    Scattergood, R.O.; Das, E.S.P.

    1976-01-01

    Using digital computer-based methods, models for dispersion strengthening can now be developed which take into account many of the important effects that have been neglected in the past. In particular, the self interaction of a dislocation can be treated, and a computer simulation method was developed to determine the flow stress of a random distribution of circular, impenetrable obstacles, taking into account all such interactions. The flow stress values depended on the obstacle sizes and spacings, over and above the usual 1/L dependence where L is the average obstacle spacing. From an analysis of the results, it was found that the main effects of the self interactions can be captured in a line tension analogue in which the obstacles appear to be penetrable

  10. STELLAR VELOCITY DISPERSION MEASUREMENTS IN HIGH-LUMINOSITY QUASAR HOSTS AND IMPLICATIONS FOR THE AGN BLACK HOLE MASS SCALE

    Energy Technology Data Exchange (ETDEWEB)

    Grier, C. J.; Martini, P.; Peterson, B. M.; Pogge, R. W.; Zu, Y. [Department of Astronomy, Ohio State University, 140 W 18th Avenue, Columbus, OH 43210 (United States); Watson, L. C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Bentz, M. C. [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States); Dasyra, K. M. [Observatoire de Paris, LERMA (CNRS:UMR8112), 61 Avenue de l' Observatoire, F-75014, Paris (France); Dietrich, M. [Department of Physics and Astronomy, Ohio University, Athens, OH 45601 (United States); Ferrarese, L. [Herzberg Institute of Astrophysics, National Research Council of Canada, 5071 West Saanich Road, Victoria BV V9E 2E7 (Canada)

    2013-08-20

    We present new stellar velocity dispersion measurements for four luminous quasars with the Near-Infrared Integral Field Spectrometer instrument and the ALTAIR laser guide star adaptive optics system on the Gemini North 8 m telescope. Stellar velocity dispersion measurements and measurements of the supermassive black hole (BH) masses in luminous quasars are necessary to investigate the coevolution of BHs and galaxies, trace the details of accretion, and probe the nature of feedback. We find that higher-luminosity quasars with higher-mass BHs are not offset with respect to the M{sub BH}-{sigma}{sub *} relation exhibited by lower-luminosity active galactic nuclei (AGNs) with lower-mass BHs, nor do we see correlations with galaxy morphology. As part of this analysis, we have recalculated the virial products for the entire sample of reverberation-mapped AGNs and used these data to redetermine the mean virial factor (f) that places the reverberation data on the quiescent M{sub BH}-{sigma}{sub *} relation. With our updated measurements and new additions to the AGN sample, we obtain (f) = 4.31 {+-} 1.05, which is slightly lower than, but consistent with, most previous determinations.

  11. The potential of high resolution ultrasonic in-situ methods

    International Nuclear Information System (INIS)

    Schuster, K.

    2010-01-01

    Document available in extended abstract form only. In the framework of geomechanical assessment of final repository underground openings the knowledge of geophysical rock parameters are of importance. Ultrasonic methods proved to be good geophysical tools to provide appropriate high resolution parameters for the characterisation of rock. In this context the detection and characterisation of rock heterogeneities at different scales, including the Excavation Damaged/disturbed Zone (EDZ/EdZ) features, play an important role. Especially, kinematic and dynamic parameters derived from ultrasonic measurements can be linked very close to rock mechanic investigations and interpretations. BGR uses high resolution ultrasonic methods, starting with emitted frequencies of about 1 kHz (seismic) and going up to about 100 kHz. The method development is going on and appropriate research and investigations are performed since many years at different European radioactive waste disposal related underground research laboratories in different potential host rocks. The most frequented are: Mont Terri Rock Laboratory, Switzerland (Opalinus Clay, OPA), Underground Research Laboratory Meuse/Haute- Marne, France (Callovo-Oxfordian, COX), Underground Research Facility Mol, Belgium (Boom Clay, BC), Aespoe Hard Rock Laboratory, Sweden (granites), Rock Laboratory Grimsel, Switzerland (granites) and Asse salt mine, Germany (rock salt). The methods can be grouped into borehole based methods and noninvasive methods like refraction and reflection methods, which are performed in general from the drift wall. Additionally, as a combination of these both methods a sort of vertical seismic profiling (VSP) is applied. The best qualified method, or a combination of methods, have to be chosen according to the scientific questions and the local site conditions. The degree of spatial resolution of zones of interest or any kind of anomaly depends strongly on the distance of these objects to the ultrasonic

  12. Determination of three estrogens and bisphenol A by functional ionic liquid dispersive liquid-phase microextraction coupled with ultra-high performance liquid chromatography and ultraviolet detection.

    Science.gov (United States)

    Jiang, Yuehuang; Tang, Tingting; Cao, Zhen; Shi, Guoyue; Zhou, Tianshu

    2015-06-01

    A hydroxyl-functionalized ionic liquid, 1-hydroxyethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, was employed in an improved dispersive liquid-phase microextraction method coupled with ultra high performance liquid chromatography for the enrichment and determination of three estrogens and bisphenol A in environmental water samples. The introduced hydroxyl group acted as the H-bond acceptor that dispersed the ionic liquid effectively in the aqueous phase without dispersive solvent or external force. Fourier transform infrared spectroscopy indicated that the hydroxyl group of the cation of the ionic liquid enhanced the combination of extractant and analytes through the formation of hydrogen bonds. The improvement of the extraction efficiency compared with that with the use of alkyl ionic liquid was proved by a comparison study. The main parameters including volume of extractant, temperature, pH, and extraction time were investigated. The calibration curves were linear in the range of 5.0-1000 μg/L for estrone, estradiol, and bisphenol A, and 10.0-1000 μg/L for estriol. The detection limits were in the range of 1.7-3.4 μg/L. The extraction efficiency was evaluated by enrichment factor that were between 85 and 129. The proposed method was proved to be simple, low cost, and environmentally friendly for the determination of the four endocrine disruptors in environmental water samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Operating range, hold-up, droplet size and axial mixing of pulsed plate columns in highly disperse and low-continuity volume flows

    International Nuclear Information System (INIS)

    Schmidt, H.; Miller, H.

    Operating behavior, hold-up, droplet size and axial mixing are investigated in highly disperse and slightly continuous volume flows in a pulsed plate column. The geometry of the column of 4-m length and 10-cm inside diameter was held constant. The hole shape of the column bases was changed, wherby the cylindrical, sharp-edge drilled hole is compared with the punched, nozzle-shaped hole in their effects on the fluid-dynamic behavior. In this case we varied the volume flows, the ratio of volume flows, the pulse frequency and the operating temperature. The operation was held constant for the aqueous, the organic, the continuous and the disperse phases. The objective was to demonstrate the applicability of pulsed plate columns with very large differences between the organic disperse and the aqueous continuous volume flow, to obtain design data for such columns and to perform a scale-up to industrial reprocessing plant-size. 18 references, 11 figures, 3 tables

  14. Preconcentration and determination of ceftazidime in real samples using dispersive liquid-liquid microextraction and high-performance liquid chromatography with the aid of experimental design.

    Science.gov (United States)

    Razmi, Rasoul; Shahpari, Behrouz; Pourbasheer, Eslam; Boustanifar, Mohammad Hasan; Azari, Zhila; Ebadi, Amin

    2016-11-01

    A rapid and simple method for the extraction and preconcentration of ceftazidime in aqueous samples has been developed using dispersive liquid-liquid microextraction followed by high-performance liquid chromatography analysis. The extraction parameters, such as the volume of extraction solvent and disperser solvent, salt effect, sample volume, centrifuge rate, centrifuge time, extraction time, and temperature in the dispersive liquid-liquid microextraction process, were studied and optimized with the experimental design methods. Firstly, for the preliminary screening of the parameters the taguchi design was used and then, the fractional factorial design was used for significant factors optimization. At the optimum conditions, the calibration curves for ceftazidime indicated good linearity over the range of 0.001-10 μg/mL with correlation coefficients higher than the 0.98, and the limits of detection were 0.13 and 0.17 ng/mL, for water and urine samples, respectively. The proposed method successfully employed to determine ceftazidime in water and urine samples and good agreement between the experimental data and predictive values has been achieved. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Highly selective determination of dopamine in the presence of ascorbic acid and serotonin at glassy carbon electrodes modified with carbon nanotubes dispersed in polyethylenimine.

    Science.gov (United States)

    Rodríguez, Marcela C; Rubianes, María D; Rivas, Gustavo A

    2008-11-01

    We report the highly selective and sensitive voltammetric dopamine quantification in the presence of ascorbic acid and serotonin by using glassy carbon electrodes modified with a dispersion of multi-wall carbon nanotubes (MWCNT) in polyethylenimine, PEI (GCE/MWCNT-PEI). The electrocatalytic activity of the MWCNT deposited on the glassy carbon electrode has allowed an important decrease in the overvoltages for the oxidation of ascorbic acid and dopamine, making possible a clear definition of dopamine, serotonin and ascorbic acid oxidation processes. The sensitivities for dopamine in the presence and absence of 1.0 mM ascorbic acid and serotonin were (2.18 +/- 0.03) x 10(5) microAM(-1) (r = 0.9998); and (2.10 +/- 0.07) x 10(5) miroAM(-1) (r=0.9985), respectively, demonstrating the excellent performance of the GCE/MWCNT-PEI. The detection limit for dopamine in the mixture was 9.2 x 10(-7) M. The R. S. D. for the determination of 50 microM dopamine using four different electrodes was 3.9% when modified with the same MWCNT/PEI dispersion, and 4.6% when using four different dispersions. The modified electrode has been successfully applied for recovery assays of dopamine in human blood serum. Therefore, the new sensor represents an interesting and promising alternative for the electrochemical quantification of neurotransmitters and other analytes of clinical interest.

  16. Well-Dispersed Co/CoO/C Nanospheres with Tunable Morphology as High-Performance Anodes for Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Bingqing Xu

    2016-11-01

    Full Text Available Well-dispersed Co/CoO/C nanospheres have been designed and constructed through a facile electrospinning method with a strategy controlling the morphology of nanocomposites via adjusting the pre-oxidized and heat treatments. Scanning electron microscopy results reveal that the as-synthesized sample pre-oxidized at 275 °C shows better spherical morphology with a diameter of around 300 nm without conspicuous agglomeration. X-ray diffraction analysis confirms the coexistence of cobalt and cobalt monoxide in the sample. Furthermore, the electrochemical tests reveal that the sample pre-oxidized at 275 °C displays excellent cycling stability with only 0.016% loss per cycle even after 400 cycles at 1000 mA·g−1 and enhanced high-rate capability with a specific discharge capacity of 354 mA·g−1 at 2000 mA·g−1. Besides, the sample pre-oxidized at 275 °C shows a specific capacity of 755 mA·g−1 at 100 mA·g−1 after 95 cycles. The improved electrochemical performance has been ascribed to the well dispersion of nanospheres, the improved electronic conductivity, and the structural integrity contribution from the carbon and cobalt coexisting nanocomposite. The strategy for preparing well-dispersed nanospheres by adjusting pre-oxidized and annealing processes could have insight for other oxide nanosphere synthesis.

  17. Fabrication procedures for manufacturing high uranium concentration dispersion fuel elements; Procedimentos de fabricacao de elementos combustiveis a base de dispersoes com alta concentracao de uranio

    Energy Technology Data Exchange (ETDEWEB)

    Souza, J.A.B.; Durazzo, M., E-mail: jasouza@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2010-07-01

    IPEN developed and made available for routine production the technology for manufacturing dispersion type fuel elements for use in research reactors. However, the fuel produced at IPEN is limited to the uranium concentration of 3.0 gU/cm{sup 3} by using the U{sub 3}Si{sub 2}-Al dispersion. Increasing the uranium concentration of the fuel is interesting by the possibility of increasing the reactor core reactivity and lifetime of the fuel. It is possible to increase the concentration of uranium in the fuel up to the technological limit of 4.8 gU/cm{sup 3} for the U{sub 3}Si{sub 2}-Al dispersion, which is well placed around the world. This new fuel will be applicable in the new Brazilian-Multipurpose Reactor RMB. This study aimed to develop the manufacturing process of high uranium concentration fuel, redefining the procedures currently used in the manufacture of IPEN. This paper describes the main procedures adjustments that will be necessary. (author)

  18. Electron injection dynamics in high-potential porphyrin photoanodes.

    Science.gov (United States)

    Milot, Rebecca L; Schmuttenmaer, Charles A

    2015-05-19

    promising sensitizers because their high reduction potentials are compatible with the energy requirements of water oxidation. TRTS of free-base and metalated pentafluorophenyl porphyrins reveal inefficient electron injection into TiO2 nanoparticles but more efficient electron injection into SnO2 nanoparticles. With SnO2, injection time scales depend strongly on the identity of the central substituent and are affected by competition with excited-state deactivation processes. Heavy or paramagnetic metal ions increase the electron injection time scale by roughly one order of magnitude relative to free-base or Zn(2+) porphyrins due to the possibility of electron injection from longer-lived, lower-lying triplet states. Furthermore, electron injection efficiency loosely correlates with DSSC performance. The carboxylate anchoring group is commonly used to bind DSSC sensitizers to metal oxide surfaces but typically is not stable under the aqueous and oxidative conditions required for water oxidation. Electron injection efficiency of several water-stable alternatives, including phosphonic acid, hydroxamic acid, acetylacetone, and boronic acid, were evaluated using TRTS, and hydroxamate was found to perform as well as the carboxylate. The next challenge is incorporating a water oxidation catalyst into the design. An early example, in which an Ir-based precatalyst is cosensitized with a fluorinated porphyrin, reveals decreased electron injection efficiency despite an increase in photocurrent. Future research will seek to better understand and address these difficulties.

  19. Extraction and characterization of highly purified collagen from bovine pericardium for potential bioengineering applications

    International Nuclear Information System (INIS)

    Santos, Maria Helena; Silva, Rafael M.; Dumont, Vitor C.; Neves, Juliana S.; Mansur, Herman S.; Heneine, Luiz Guilherme D.

    2013-01-01

    Bovine pericardium is widely used as a raw material in bioengineering as a source of collagen, a fundamental structural molecule. The physical, chemical, and biocompatibility characteristics of these natural fibers enable their broad use in several areas of the health sciences. For these applications, it is important to obtain collagen of the highest possible purity. The lack of a method to produce these pure biocompatible materials using simple and economically feasible techniques presents a major challenge to their production on an industrial scale. This study aimed to extract, purify, and characterize the type I collagen protein originating from bovine pericardium, considered to be an abundant tissue resource. The pericardium tissue was collected from male animals at slaughter age. Pieces of bovine pericardium were enzymatically digested, followed by a novel protocol developed for protein purification using ion-exchange chromatography. The material was extensively characterized by electrophoresis, scanning electron microscopy, energy dispersive X-ray spectroscopy, and infrared spectroscopy. The results showed a purified material with morphological properties and chemical functionalities compatible with type I collagen and similar to a highly purified commercial collagen. Thus, an innovative and relatively simple processing method was developed to extract and purify type I collagen from bovine tissue with potential applications as a biomaterial for regenerative tissue engineering. - Highlights: ► Type I collagen was obtained from bovine pericardium, an abundant tissue resource. ► A simple and feasible processing technique was developed to purify bovine collagen. ► The appropriate process may be performed on industrial scale. ► The pure collagen presented appropriate morphological and molecular characteristics. ► The purify collagen has shown potential use as a biomaterial in tissue engineering.

  20. Extraction and characterization of highly purified collagen from bovine pericardium for potential bioengineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Maria Helena, E-mail: mariahelena.santos@gmail.com [Department of Dentistry, Federal University of Vales do Jequitinhonha e Mucuri-UFVJM, Diamantina/MG 39100-000 (Brazil); Center for Assessment and Development of Biomaterials-BioMat, Federal University of Vales do Jequitinhonha e Mucuri-UFVJM, Diamantina/MG 39100-000 (Brazil); Silva, Rafael M.; Dumont, Vitor C. [Department of Dentistry, Federal University of Vales do Jequitinhonha e Mucuri-UFVJM, Diamantina/MG 39100-000 (Brazil); Center for Assessment and Development of Biomaterials-BioMat, Federal University of Vales do Jequitinhonha e Mucuri-UFVJM, Diamantina/MG 39100-000 (Brazil); Neves, Juliana S. [Center for Assessment and Development of Biomaterials-BioMat, Federal University of Vales do Jequitinhonha e Mucuri-UFVJM, Diamantina/MG 39100-000 (Brazil); Mansur, Herman S. [Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais-UFMG, Belo Horizonte/MG 31270-901 (Brazil); Heneine, Luiz Guilherme D. [Department of Health Science, Ezequiel Dias Foundation-FUNED, Belo Horizonte/MG 30510-010 (Brazil)

    2013-03-01

    Bovine pericardium is widely used as a raw material in bioengineering as a source of collagen, a fundamental structural molecule. The physical, chemical, and biocompatibility characteristics of these natural fibers enable their broad use in several areas of the health sciences. For these applications, it is important to obtain collagen of the highest possible purity. The lack of a method to produce these pure biocompatible materials using simple and economically feasible techniques presents a major challenge to their production on an industrial scale. This study aimed to extract, purify, and characterize the type I collagen protein originating from bovine pericardium, considered to be an abundant tissue resource. The pericardium tissue was collected from male animals at slaughter age. Pieces of bovine pericardium were enzymatically digested, followed by a novel protocol developed for protein purification using ion-exchange chromatography. The material was extensively characterized by electrophoresis, scanning electron microscopy, energy dispersive X-ray spectroscopy, and infrared spectroscopy. The results showed a purified material with morphological properties and chemical functionalities compatible with type I collagen and similar to a highly purified commercial collagen. Thus, an innovative and relatively simple processing method was developed to extract and purify type I collagen from bovine tissue with potential applications as a biomaterial for regenerative tissue engineering. - Highlights: Black-Right-Pointing-Pointer Type I collagen was obtained from bovine pericardium, an abundant tissue resource. Black-Right-Pointing-Pointer A simple and feasible processing technique was developed to purify bovine collagen. Black-Right-Pointing-Pointer The appropriate process may be performed on industrial scale. Black-Right-Pointing-Pointer The pure collagen presented appropriate morphological and molecular characteristics. Black-Right-Pointing-Pointer The purify

  1. Fasciculation potentials in high-density surface EMG.

    NARCIS (Netherlands)

    Drost, G.; Kleine, B.U.; Stegeman, D.F.; Engelen, B.G.M. van; Zwarts, M.J.

    2007-01-01

    Fasciculation potentials (FPs) are observed in healthy individuals, but also in patients with neurogenic disorders. The exact site of origin and the clinical relevance in distinguishing, for example, amyotrophic lateral sclerosis (ALS) from other neurogenic diseases based on specific characteristics

  2. Mountain-climbing bears protect cherry species from global warming through vertical seed dispersal.

    Science.gov (United States)

    Naoe, Shoji; Tayasu, Ichiro; Sakai, Yoichiro; Masaki, Takashi; Kobayashi, Kazuki; Nakajima, Akiko; Sato, Yoshikazu; Yamazaki, Koji; Kiyokawa, Hiroki; Koike, Shinsuke

    2016-04-25

    In a warming climate, temperature-sensitive plants must move toward colder areas, that is, higher latitude or altitude, by seed dispersal [1]. Considering that the temperature drop with increasing altitude (-0.65°C per 100 m altitude) is one hundred to a thousand times larger than that of the equivalent latitudinal distance [2], vertical seed dispersal is probably a key process for plant escape from warming temperatures. In fact, plant geographical distributions are tracking global warming altitudinally rather than latitudinally, and the extent of tracking is considered to be large in plants with better-dispersed traits (e.g., lighter seeds in wind-dispersed plants) [1]. However, no study has evaluated vertical seed dispersal itself due to technical difficulty or high cost. Here, we show using a stable oxygen isotope that black bears disperse seeds of wild cherry over several hundred meters vertically, and that the dispersal direction is heavily biased towards the mountain tops. Mountain climbing by bears following spring-to-summer plant phenology is likely the cause of this biased seed dispersal. These results suggest that spring- and summer-fruiting plants dispersed by animals may have high potential to escape global warming. Our results also indicate that the direction of vertical seed dispersal can be unexpectedly biased, and highlight the importance of considering seed dispersal direction to understand plant responses to past and future climate change. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Ionizing potential waves and high-voltage breakdown streamers.

    Science.gov (United States)

    Albright, N. W.; Tidman, D. A.

    1972-01-01

    The structure of ionizing potential waves driven by a strong electric field in a dense gas is discussed. Negative breakdown waves are found to propagate with a velocity proportional to the electric field normal to the wavefront. This causes a curved ionizing potential wavefront to focus down into a filamentary structure, and may provide the reason why breakdown in dense gases propagates in the form of a narrow leader streamer instead of a broad wavefront.

  4. A new X-ray pinhole camera for energy dispersive X-ray fluorescence imaging with high-energy and high-spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Romano, F.P., E-mail: romanop@lns.infn.it [IBAM, CNR, Via Biblioteca 4, 95124 Catania (Italy); INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Altana, C. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy); Cosentino, L.; Celona, L.; Gammino, S.; Mascali, D. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Pappalardo, L. [IBAM, CNR, Via Biblioteca 4, 95124 Catania (Italy); INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Rizzo, F. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy)

    2013-08-01

    A new X-ray pinhole camera for the Energy Dispersive X-ray Fluorescence (ED-XRF) imaging of materials with high-energy and high-spatial resolution, was designed and developed. It consists of a back-illuminated and deep depleted CCD detector (composed of 1024 × 1024 pixels with a lateral size of 13 μm) coupled to a 70 μm laser-drilled pinhole-collimator, positioned between the sample under analysis and the CCD. The X-ray pinhole camera works in a coaxial geometry allowing a wide range of magnification values. The characteristic X-ray fluorescence is induced on the samples by irradiation with an external X-ray tube working at a maximum power of 100 W (50 kV and 2 mA operating conditions). The spectroscopic capabilities of the X-ray pinhole camera were accurately investigated. Energy response and energy calibration of the CCD detector were determined by irradiating pure target-materials emitting characteristic X-rays in the energy working-domain of the system (between 3 keV and 30 keV). Measurements were performed by using a multi-frame acquisition in single-photon counting. The characteristic X-ray spectra were obtained by an automated processing of the acquired images. The energy resolution measured at the Fe–Kα line is 157 eV. The use of the X-ray pinhole camera for the 2D resolved elemental analysis was investigated by using reference-patterns of different materials and geometries. The possibility of the elemental mapping of samples up to an area of 3 × 3 cm{sup 2} was demonstrated. Finally, the spatial resolution of the pinhole camera was measured by analyzing the profile function of a sharp-edge. The spatial resolution determined at the magnification values of 3.2 × and 0.8 × (used as testing values) is about 90 μm and 190 μm respectively. - Highlights: • We developed an X-ray pinhole camera for the 2D X-ray fluorescence imaging. • X-ray spectra are obtained by a multi-frame acquisition in single photon mode. • The energy resolution in the X

  5. Dispersion properties of photonic crystal fibres

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Broeng, Jes; Dridi, Kim

    1998-01-01

    Approximate dispersion and bending properties of all-silica two-dimensional photonic crystal fibres are characterised by the combination of an effective-index model and classical analysis tools for optical fibres. We believe for the first time to have predicted the dispersion properties of photonic...... crystal fibres. The results strongly indicate that these fibres have potential applications as dispersion managing components...

  6. Transverse dispersion in heterogeneous fractures

    International Nuclear Information System (INIS)

    Dershowitz, Bill; Shuttle, Dawn; Klise, Kate; Outters, Nils; Hermanson, Jan

    2004-12-01

    This report evaluates the significance of transverse dispersion processes for solute transport in a single fracture. Transverse dispersion is a potentially significant process because it increases the fracture surface area available for sorptive and diffusive properties, and has the potential to transport solute between what would otherwise be distinctive, streamline pathways. Transverse dispersion processes are generally ignored in one-dimensional repository performance assessment approaches. This report provides an initial assessment of the magnitude of transverse dispersion effect in a single heterogeneous fracture on repository safety assessment. This study builds on a previous report which considered the network effects on transport dispersion including streamline routing and mixing at fracture intersections. The project uses FracMan software. This platform has been extensively used by SKB in other projects. FracMan software is designed to generate and analyze DFN's as well as to compute fluid flow in DFN's with the MAFIC Finite element method (FEM) code. Solute transport was modeled using the particle tracking inside MAFIC, the 2-D Laplace Transform Galerkin inside PAWorks/LTG, and the 1-D Laplace Transform approach designed to replicate FARF31 inside GoldSim.The study reported here focuses on a single, 20-meter scale discrete fracture, with simplified boundary conditions intended to represent the position of this fracture within a fracture network. The range of assumptions made regarding fracture heterogeneity were as follows: Base case, Heterogeneous fracture, geostatistical field, correlation length 0.01 m. Case 1a, Homogeneous fracture, transmissivity = 10 -7 m 2 /s. Case 1b, Heterogeneous fracture, non-channeled geostatistical field correlation length 5 m. Case 1c, Heterogeneous fracture, channeled, anisotropic geostatistical field. Case 1d, Heterogeneous fracture, fracture intersection zone (FIZ) permeability enhanced. Case 5, Simple channelized

  7. Potential scenarios of concern for high speed rail operations

    Science.gov (United States)

    2011-03-16

    Currently, multiple operating authorities are proposing the : introduction of high-speed rail service in the United States. : While high-speed rail service shares a number of basic : principles with conventional-speed rail service, the operational : ...

  8. The obtainment of highly concentrated uranium pellets for plate type (MTR) fuel by dispersion of uranium aluminides in aluminium

    International Nuclear Information System (INIS)

    Morando, R.A.; Raffaeli, H.A.; Balzaretti, D.E.

    1980-01-01

    The use of the intermetallic UAl 3 for manufacturing plate type MTR fuel with 20% U 235 enriched uranium and a density of about 20 kg/m 3 is analyzed. The technique used is the dispersion of UAl 3 particles in aluminium powder. The obtainment of the UAl 3 intermetallic was performed by fusion in an induction furnace in an atmosphere of argon at a pressure of 0.7 BAR (400 mm) using an alumina melting pot. To make the aluminide powder and attain the wished granulometry a cutting and a rotating crusher were used. Aluminide powders of different granulometries and different pressures of compactation were analyzed. In each case the densities were measured. The compacts were colaminated with the 'Picture Frame' technique at temperatures of 490 and 0 deg C with excellent results from the manufacturing view point. (M.E.L.) [es

  9. Highly coherent red-shifted dispersive wave generation around 1.3 μm for efficient wavelength conversion

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xia; Bi, Wanjun [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Chen, Wei; Xue, Tianfeng; Hu, Lili; Liao, Meisong, E-mail: liaomeisong@siom.ac.cn [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Gao, Weiqing [School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei 230009 (China)

    2015-03-14

    This research investigates the mechanism of the optical dispersive wave (DW) and proposes a scheme that can realize an efficient wavelength conversion. In an elaborately designed photonic crystal fiber, a readily available ytterbium laser operating at ∼1 μm can be transferred to the valuable 1.3 μm wavelength range. A low-order soliton is produced to concentrate the energy of the DW into the target wavelength range and improve the degree of coherence. The input chirp is demonstrated to be a factor that enhances the wavelength conversion efficiency. With a positive initial chirp, 76.6% of the pump energy in the fiber can be transferred into a spectral range between 1.24 and 1.4 μm. With the use of a grating compressor, it is possible to compress the generated coherent DW of several picoseconds into less than 90 fs.

  10. RAFT Aqueous Dispersion Polymerization of N-(2-(Methacryloyloxy)ethyl)pyrrolidone: A Convenient Low Viscosity Route to High Molecular Weight Water-Soluble Copolymers.

    Science.gov (United States)

    Cunningham, Victoria J; Derry, Matthew J; Fielding, Lee A; Musa, Osama M; Armes, Steven P

    2016-06-28

    RAFT solution polymerization of N -(2-(methacryoyloxy)ethyl)pyrrolidone (NMEP) in ethanol at 70 °C was conducted to produce a series of PNMEP homopolymers with mean degrees of polymerization (DP) varying from 31 to 467. Turbidimetry was used to assess their inverse temperature solubility behavior in dilute aqueous solution, with an LCST of approximately 55 °C being observed in the high molecular weight limit. Then a poly(glycerol monomethacylate) (PGMA) macro-CTA with a mean DP of 63 was chain-extended with NMEP using a RAFT aqueous dispersion polymerization formulation at 70 °C. The target PNMEP DP was systematically varied from 100 up to 6000 to generate a series of PGMA 63 -PNMEP x diblock copolymers. High conversions (≥92%) could be achieved when targeting up to x = 5000. GPC analysis confirmed high blocking efficiencies and a linear evolution in M n with increasing PNMEP DP. A gradual increase in M w / M n was also observed when targeting higher DPs. However, this problem could be minimized ( M w / M n RAFT aqueous dispersion polymerization of NMEP was approximately four times faster than the RAFT solution polymerization of NMEP in ethanol when targeting the same DP in each case. This is perhaps surprising because both 1 H NMR and SAXS studies indicate that the core-forming PNMEP chains remain relatively solvated at 70 °C in the latter formulation. Moreover, dissolution of the initial PGMA 63 -PNMEP x particles occurs on cooling from 70 to 20 °C as the PNMEP block passes through its LCST. Hence this RAFT aqueous dispersion polymerization formulation offers an efficient route to a high molecular weight water-soluble polymer in a rather convenient low-viscosity form. Finally, the relatively expensive PGMA macro-CTA was replaced with a poly(methacrylic acid) (PMAA) macro-CTA. High conversions were also achieved for PMAA 85 -PNMEP x diblock copolymers prepared via RAFT aqueous dispersion polymerization for x ≤ 4000. Again, better control was achieved when

  11. Plant functional groups of potential restoration use in advancing edges of high Andean forests

    International Nuclear Information System (INIS)

    Castellanos Castro, Carolina; Bonilla, Maria Argenis

    2011-01-01

    The study of plant functional groups constitutes a useful tool in the identification of ecological characteristics relevant in community regeneration. The aim of this study was to identify plant's functional groups in high Andean forest advance edges and to evaluate their role during secondary succession in abandoned pasture lands. Based on 10 x 10 m vegetation relevees for the shrubby-arboreal stratum and 1 x 1 m plots for the herbaceous stratum and the revision of vital attributes for each of the species found, this study uses a multivariate approach to construct a trait-based emergent group's classification. The most important attributes in the definition of the groups were the dispersion mechanism and the presence of basal trunk ramification in woody species; in addition differences in the presence of vegetative propagation, specific leaf area index and the ratio height/diameter at breast height were found between groups of the shrubby-arboreal stratum. Four distinct groups were defined in the herbaceous layer and five in the shrubby-arboreal layer, each group contains species with similar colonization strategies. Among the defined groups, the herbaceous species dispersed by various abiotic factors, the shrubby species with basal ramification and dispersed by wind and the species dispersed by birds constitute key strategies in forest recovery in adjacent abandoned pasture lands dominated by Holcus lanatus, and facilitate the establishment of secondary forest species.

  12. The High Luminosity Challenge: potential and limitations of High Intensity High Brightness in the LHC and its injectors

    CERN Document Server

    De Maria, R; Banfi, D; Barranco, J; Bartosik, H; Benedetto, E; Bruce, R; Brüning, O; Calaga, R; Cerutti, F; Damerau, H; Esposito, L; Fartoukh, S; Fitterer, M; Garoby, R; Gilardoni, S; Giovannozzi, M; Goddard, B; Gorini, B; Hanke, K; Iadarola, G; Lamont, M; Meddahi, M; Métral, E; Mikulec, B; Mounet, N; Papaphilippou, Y; Pieloni, T; Redaelli, S; Rossi, L; Rumolo, G; Shaposhnikova, E; Sterbini, G; Todesco, E; Tomás, R; Zimmermann, F; Valishev, A

    2014-01-01

    High-intensity and high-brightness beams are key ingredients to maximize the LHC integrated luminosity and to exploit its full potential. This contribution describes the optimization of beam and machine parameters to maximize the integrated luminosity as seen by the LHC experiments, by taking into account the expected intensity and brightness reach of LHC itself and its injector chain as well as the capabilities of the detectors for next run and foreseen upgrade scenarios.

  13. Normal-dispersion microresonator Kerr frequency combs

    Directory of Open Access Journals (Sweden)

    Xue Xiaoxiao

    2016-06-01

    Full Text Available Optical microresonator-based Kerr frequency comb generation has developed into a hot research area in the past decade. Microresonator combs are promising for portable applications due to their potential for chip-level integration and low power consumption. According to the group velocity dispersion of the microresonator employed, research in this field may be classified into two categories: the anomalous dispersion regime and the normal dispersion regime. In this paper, we discuss the physics of Kerr comb generation in the normal dispersion regime and review recent experimental advances. The potential advantages and future directions of normal dispersion combs are also discussed.

  14. Feasibility of disposal of high-level radioactive waste into the seabed. Volume 5: Dispersal of radionuclides in the oceans: Models, data sets and regional descriptions

    International Nuclear Information System (INIS)

    Marietta, M.G.; Simmons, W.F.

    1988-01-01

    One of the options suggested for disposal of high-level radioactive waste resulting from the generation of nuclear power is burial beneath the deep ocean floor in geologically stable sediment formations which have no economic value. The 8-volume series provides an assessment of the technical feasibility and radiological safety of this disposal concept based on the results obtained by ten years of co-operation and information exchange among the Member countries participating in the NEA Seabed Working Group. This report summarizes the development of a realistic and credible methodology to describe the oceanic dispersion of radionuclides for risk assessment calculations

  15. Study of dispersion of mass distribution of ultra-high energy cosmic rays using a surface array of muon and electromagnetic detectors

    Science.gov (United States)

    Vícha, Jakub; Trávníček, Petr; Nosek, Dalibor; Ebr, Jan

    2015-09-01

    We consider a hypothetical observatory of ultra-high energy cosmic rays consisting of two surface detector arrays that measure independently electromagnetic and muon signals induced by air showers. Using the constant intensity cut method, sets of events ordered according to each of both signal sizes are compared giving the number of matched events. Based on its dependence on the zenith angle, a parameter sensitive to the dispersion of the distribution of the logarithmic mass of cosmic rays is introduced. The results obtained using two post-LHC models of hadronic interactions are very similar and indicate a weak dependence on details of these interactions.

  16. High-transmission excited-state Faraday anomalous dispersion optical filter edge filter based on a Halbach cylinder magnetic-field configuration.

    Science.gov (United States)

    Rudolf, Andreas; Walther, Thomas

    2012-11-01

    We report on the realization of an excited-state Faraday anomalous dispersion optical filter (ESFADOF) edge filter based on the 5P(3/2)→8D(5/2) transition in rubidium. A maximum transmission of 81% has been achieved. This high transmission is only possible by utilizing a special configuration of magnetic fields taken from accelerator physics to provide a strong homogeneous magnetic field of approximately 6000 G across the vapor cell. The two resulting steep transmission edges are separated by more than 13 GHz, enabling its application in remote sensing.

  17. Analytical electron microscope based on scanning transmission electron microscope with wavelength dispersive x-ray spectroscopy to realize highly sensitive elemental imaging especially for light elements

    International Nuclear Information System (INIS)

    Koguchi, Masanari; Tsuneta, Ruriko; Anan, Yoshihiro; Nakamae, Koji

    2017-01-01

    An ana