WorldWideScience

Sample records for high detection frequency

  1. Low velocity target detection based on time-frequency image for high frequency ground wave radar

    Institute of Scientific and Technical Information of China (English)

    YAN Songhua; WU Shicai; WEN Biyang

    2007-01-01

    The Doppler spectral broadening resulted from non-stationary movement of target and radio-frequency interference will decrease the veracity of target detection by high frequency ground wave(HEGW)radar.By displaying the change of signal energy on two dimensional time-frequency images based on time-frequency analysis,a new mathematical morphology method to distinguish target from nonlinear time-frequency curves is presented.The analyzed results from the measured data verify that with this new method the target can be detected correctly from wide Doppler spectrum.

  2. Tsunami Arrival Detection with High Frequency (HF Radar

    Directory of Open Access Journals (Sweden)

    Donald Barrick

    2012-05-01

    Full Text Available Quantitative real-time observations of a tsunami have been limited to deep-water, pressure-sensor observations of changes in the sea surface elevation and observations of sea level fluctuations at the coast, which are essentially point measurements. Constrained by these data, models have been used for predictions and warning of the arrival of a tsunami, but to date no system exists for local detection of an actual incoming wave with a significant warning capability. Networks of coastal high frequency (HF-radars are now routinely observing surface currents in many countries. We report here on an empirical method for the detection of the initial arrival of a tsunami, and demonstrate its use with results from data measured by fourteen HF radar sites in Japan and USA following the magnitude 9.0 earthquake off Sendai, Japan, on 11 March 2011. The distance offshore at which the tsunami can be detected, and hence the warning time provided, depends on the bathymetry: the wider the shallow continental shelf, the greater this time. We compare arrival times at the radars with those measured by neighboring tide gauges. Arrival times measured by the radars preceded those at neighboring tide gauges by an average of 19 min (Japan and 15 min (USA The initial water-height increase due to the tsunami as measured by the tide gauges was moderate, ranging from 0.3 to 2 m. Thus it appears possible to detect even moderate tsunamis using this method. Larger tsunamis could obviously be detected further from the coast. We find that tsunami arrival within the radar coverage area can be announced 8 min (i.e., twice the radar spectral time resolution after its first appearance. This can provide advance warning of the tsunami approach to the coastline locations.

  3. The potential for very high-frequency gravitational wave detection

    International Nuclear Information System (INIS)

    Cruise, A M

    2012-01-01

    The science case for observing gravitational waves at frequencies in the millihertz-kilohertz range using LIGO, VIRGO, GEO600 or LISA is very strong and the first results are expected at these frequencies. However, as gravitational wave astronomy progresses beyond the first detections, other frequency bands may be worth exploring. Early predictions of gravitational wave emission from discrete sources at very much higher frequencies (megahertz and above) have been published and more recent studies of cosmological signals from inflation, Kaluza-Klein modes from gravitational interactions in brane worlds and plasma instabilities surrounding violent astrophysical events, are all possible sources. This communication examines current observational possibilities and the detector technology required to make meaningful observations at these frequencies. (paper)

  4. Detecting high-frequency gravitational waves with optically levitated sensors.

    Science.gov (United States)

    Arvanitaki, Asimina; Geraci, Andrew A

    2013-02-15

    We propose a tunable resonant sensor to detect gravitational waves in the frequency range of 50-300 kHz using optically trapped and cooled dielectric microspheres or microdisks. The technique we describe can exceed the sensitivity of laser-based gravitational wave observatories in this frequency range, using an instrument of only a few percent of their size. Such a device extends the search volume for gravitational wave sources above 100 kHz by 1 to 3 orders of magnitude, and could detect monochromatic gravitational radiation from the annihilation of QCD axions in the cloud they form around stellar mass black holes within our galaxy due to the superradiance effect.

  5. Rapid Fear Detection Relies on High Spatial Frequencies

    NARCIS (Netherlands)

    Stein, T.; Seymour, K.; Hebart, M.N.; Sterzer, P.

    Signals of threat—such as fearful faces—are processed with priority and have privileged access to awareness. This fear advantage is commonly believed to engage a specialized subcortical pathway to the amygdala that bypasses visual cortex and processes predominantly low-spatial-frequency information

  6. Development of a heterodyne laser interferometer for very small high frequency displacements detection

    International Nuclear Information System (INIS)

    Baarmann, P.

    1992-10-01

    A heterodyne laser interferometer with detection electronics has been developed for measuring very small amplitude high frequency vibrations. A laser beam from HeNe-laser is focused and reflected in the vibrating surface and the generated phase shifts are after interference with a reference beam detected with a photo detector and evaluated in a demodulation system. The set-up is a prototype and techniques to improve the accuracy and sensitivity of the system are presented. The present system can detect vibration amplitude from around 1 Angstrom and is linear up to 250 Angstrom (±4%). Frequencies from a few tens of kHz up to tens of MHz are covered. The low frequency region can be greatly improved. The minimum detectable displacement may be improved by narrowing the bandwidth of the detection system to the region of interest

  7. Detection of admittivity anomaly on high-contrast heterogeneous backgrounds using frequency difference EIT.

    Science.gov (United States)

    Jang, J; Seo, J K

    2015-06-01

    This paper describes a multiple background subtraction method in frequency difference electrical impedance tomography (fdEIT) to detect an admittivity anomaly from a high-contrast background conductivity distribution. The proposed method expands the use of the conventional weighted frequency difference EIT method, which has been used limitedly to detect admittivity anomalies in a roughly homogeneous background. The proposed method can be viewed as multiple weighted difference imaging in fdEIT. Although the spatial resolutions of the output images by fdEIT are very low due to the inherent ill-posedness, numerical simulations and phantom experiments of the proposed method demonstrate its feasibility to detect anomalies. It has potential application in stroke detection in a head model, which is highly heterogeneous due to the skull.

  8. Generation, detection and spectroscopic studies of high-frequency nonequilibrium phonons in crystals

    International Nuclear Information System (INIS)

    Dennis, W.M.; Yen, W.M.

    2007-01-01

    In this article we will review studies conducted in the past two decades on the dynamic properties of high-frequency (THz) phonons generated monochromatically with high power far infrared (FIR) laser pulses using defect-induced phonon absorption and detected using a vibronic sideband spectrometer fashioned after that devised by Kaplyanskii, the honoree of this special issue. The temporal and spectral evolution of the phonon signature provides information on the mechanisms that dominate the relaxation of high-frequency phonons in real crystals

  9. High frequency write head measurement with the phase detection magnetic force microscope

    International Nuclear Information System (INIS)

    Abe, M.; Tanaka, Y.

    2001-01-01

    We demonstrated the measurement of the high frequency (HF) magnetic field of a write head with the phase detection magnetic force microscope. An amplitude-modulated current was applied to the head coil to detect the force gradient induced by the HF magnetic field. Spatial resolution of this method was higher than that of the deflection detection method previously proposed. By the phase detection method, dynamic HF magnetic fields at the poles of the write heads were clearly imaged. HF magnetic field leakage was observed along the P2 pole shape on the air-bearing surface. The frequency dependence of the write head dynamics up to 350 MHz was also investigated. [copyright] 2001 American Institute of Physics

  10. Detection beyond the Debye screening length in a high-frequency nanoelectronic biosensor.

    Science.gov (United States)

    Kulkarni, Girish S; Zhong, Zhaohui

    2012-02-08

    Nanosensors based on the unique electronic properties of nanotubes and nanowires offer high sensitivity and have the potential to revolutionize the field of Point-of-Care (POC) medical diagnosis. The direct current (dc) detection of a wide array of organic and inorganic molecules has been demonstrated on these devices. However, sensing mechanism based on measuring changes in dc conductance fails at high background salt concentrations, where the sensitivity of the devices suffers from the ionic screening due to mobile ions present in the solution. Here, we successfully demonstrate that the fundamental ionic screening effect can be mitigated by operating single-walled carbon nanotube field effect transistor as a high-frequency biosensor. The nonlinear mixing between the alternating current excitation field and the molecular dipole field can generate mixing current sensitive to the surface-bound biomolecules. Electrical detection of monolayer streptavidin binding to biotin in 100 mM buffer solution is achieved at a frequency beyond 1 MHz. Theoretical modeling confirms improved sensitivity at high frequency through mitigation of the ionic screening effect. The results should promise a new biosensing platform for POC detection, where biosensors functioning directly in physiologically relevant condition are desired. © 2012 American Chemical Society

  11. Boxcar detection for high-frequency modulation in stimulated Raman scattering microscopy

    Science.gov (United States)

    Fimpel, P.; Riek, C.; Ebner, L.; Leitenstorfer, A.; Brida, D.; Zumbusch, A.

    2018-04-01

    Stimulated Raman scattering (SRS) microscopy is an important non-linear optical technique for the investigation of unlabeled samples. The SRS signal manifests itself as a small intensity exchange between the laser pulses involved in coherent excitation of Raman modes. Usually, high-frequency modulation is applied in one pulse train, and the signal is then detected on the other pulse train via lock-in amplification. While allowing shot-noise limited detection sensitivity, lock-in detection, which corresponds to filtering the signal in the frequency domain, is not the most efficient way of using the excitation light. In this manuscript, we show that boxcar averaging, which is equivalent to temporal filtering, is better suited for the detection of low-duty-cycle signals as encountered in SRS microscopy. We demonstrate that by employing suitable gating windows, the signal-to-noise ratios achievable with lock-in detection can be realized in shorter time with boxcar averaging. Therefore, high-quality images are recorded at a faster rate and lower irradiance which is an important factor, e.g., for minimizing degradation of biological samples.

  12. Squeezed light for the interferometric detection of high-frequency gravitational waves

    Science.gov (United States)

    Schnabel, R.; Harms, J.; Strain, K. A.; Danzmann, K.

    2004-03-01

    The quantum noise of the light field is a fundamental noise source in interferometric gravitational-wave detectors. Injected squeezed light is capable of reducing the quantum noise contribution to the detector noise floor to values that surpass the so-called standard quantum limit (SQL). In particular, squeezed light is useful for the detection of gravitational waves at high frequencies where interferometers are typically shot-noise limited, although the SQL might not be beaten in this case. We theoretically analyse the quantum noise of the signal-recycled laser interferometric gravitational-wave detector GEO 600 with additional input and output optics, namely frequency-dependent squeezing of the vacuum state of light entering the dark port and frequency-dependent homodyne detection. We focus on the frequency range between 1 kHz and 10 kHz, where, although signal recycled, the detector is still shot-noise limited. It is found that the GEO 600 detector with present design parameters will benefit from frequency-dependent squeezed light. Assuming a squeezing strength of -6 dB in quantum noise variance, the interferometer will become thermal noise limited up to 4 kHz without further reduction of bandwidth. At higher frequencies the linear noise spectral density of GEO 600 will still be dominated by shot noise and improved by a factor of 106dB/20dB ap 2 according to the squeezing strength assumed. The interferometer might reach a strain sensitivity of 6 × 10-23 above 1 kHz (tunable) with a bandwidth of around 350 Hz. We propose a scheme to implement the desired frequency-dependent squeezing by introducing an additional optical component into GEO 600's signal-recycling cavity.

  13. Squeezed light for the interferometric detection of high-frequency gravitational waves

    International Nuclear Information System (INIS)

    Schnabel, R; Harms, J; Strain, K A; Danzmann, K

    2004-01-01

    The quantum noise of the light field is a fundamental noise source in interferometric gravitational-wave detectors. Injected squeezed light is capable of reducing the quantum noise contribution to the detector noise floor to values that surpass the so-called standard quantum limit (SQL). In particular, squeezed light is useful for the detection of gravitational waves at high frequencies where interferometers are typically shot-noise limited, although the SQL might not be beaten in this case. We theoretically analyse the quantum noise of the signal-recycled laser interferometric gravitational-wave detector GEO 600 with additional input and output optics, namely frequency-dependent squeezing of the vacuum state of light entering the dark port and frequency-dependent homodyne detection. We focus on the frequency range between 1 kHz and 10 kHz, where, although signal recycled, the detector is still shot-noise limited. It is found that the GEO 600 detector with present design parameters will benefit from frequency-dependent squeezed light. Assuming a squeezing strength of -6 dB in quantum noise variance, the interferometer will become thermal noise limited up to 4 kHz without further reduction of bandwidth. At higher frequencies the linear noise spectral density of GEO 600 will still be dominated by shot noise and improved by a factor of 10 6dB/20dB ∼ 2 according to the squeezing strength assumed. The interferometer might reach a strain sensitivity of 6 x 10 -23 above 1 kHz (tunable) with a bandwidth of around 350 Hz. We propose a scheme to implement the desired frequency-dependent squeezing by introducing an additional optical component into GEO 600's signal-recycling cavity

  14. Detection of Fatigue Damage by Using High Frequency Nonlinear Laser Ultrasonic Signals

    International Nuclear Information System (INIS)

    Park, Seung Kyu; Park, Nak Kyu; Baik, Sung Hoon; Cheong, Yong Moo; Cha, Byung Heon

    2012-01-01

    The detection of fatigue damage for the components of a nuclear power plant is one of key techniques to prevent a catastrophic accident and the subsequent severe losses. Specifically, it is preferred to detect at an early stage of the fatigue damage. If the fatigue damage that is in danger of growing into a fracture is accurately detected, an appropriate treatment could be carried out to improve the condition. Although most engineers and designers take precautions against fatigue, some breakdowns of nuclear power plant components still occur due to fatigue damage. It is considered that ultrasound testing technique is the most promising method to detect the fatigue damage in many nondestructive testing methods. Laser ultrasound has attracted attention as a noncontact testing technique. Especially, laser ultrasonic signal has wide band frequency spectrum which can provide more accurate information for a testing material. The conventional linear ultrasonic technique is sensitive to gross defects or opened cracks whereas it is less sensitive to evenly distributed micro-cracks or degradation. An alternative technique to overcome this limitation is nonlinear ultrasound. The principal difference between linear and nonlinear technique is that in the latter the existence and characteristics of defects are often related to an acoustic signal whose frequency differs from that of the input signal. This is related to the radiation and propagation of finite amplitude, especially high power, ultrasound and its interaction with discontinuities, such as cracks, interfaces and voids. Since material failure or degradation is usually preceded by some kind of nonlinear mechanical behavior before significant plastic deformation or material damage occurs. The presence of nonlinear terms in the wave equation causes intense acoustic waves to generate new waves at frequencies which are multiples of the initial sound wave frequency. The nonlinear effect can exert a strong effect on the

  15. Transmission of High Frequency Vibrations in Rotating Systems. Application to Cavitation Detection in Hydraulic Turbines

    Directory of Open Access Journals (Sweden)

    David Valentín

    2018-03-01

    Full Text Available One of the main causes of damage in hydraulic turbines is cavitation. While not all cavitation appearing in a turbine is of a destructive type, erosive cavitation can severely affect the structure, thus increasing maintenance costs and reducing the remaining useful life of the machine. Of all types of cavitation, the maximum erosion occurs when clouds of bubbles collapse on the runner surface (cloud cavitation. When this occurs it is associated with a substantial increase in noise, and vibrations that are propagated everywhere throughout the machine. The generation of these cavitation clouds may occur naturally or it may be the response to a periodic pressure fluctuation, like the rotor/stator interaction in a hydraulic turbine. Erosive bubble cavitation generates high-frequency vibrations that are modulated by the shedding frequency. Therefore, the methods for the detection of erosive cavitation in hydraulic turbines are based on the measurement and demodulation of high-frequency vibrations. In this paper, the feasibility of detecting erosive cavitation in hydraulic turbines is investigated experimentally in a rotating disk system, which represents a simplified hydraulic turbine structure. The test rig used consists of a rotating disk submerged in a tank of water and confined with nearby axial and radial rigid surfaces. The excitation patterns produced by cloud cavitation are reproduced with a PZT (piezoelectric patch located on the disk. These patterns include pseudo-random excitations of different frequency bands modulated by one low carrier frequency, which model the erosive cavitation characteristics. Different types of sensors have been placed in the stationary and in the rotating parts (accelerometers, acoustic emission (AE, and a microphone in order to detect the excitation pattern. The results obtained for all the sensors tested have been compared in detail for the different excitation patterns applied to the disk. With this information

  16. Detection of High Frequency Oscillations by Hybrid Depth Electrodes in Standard Clinical Intracranial EEG Recordings

    Directory of Open Access Journals (Sweden)

    Efstathios D Kondylis

    2014-08-01

    Full Text Available High frequency oscillations (HFOs have been proposed as a novel marker for epileptogenic tissue, spurring tremendous research interest into the characterization of these transient events. A wealth of continuously recorded intracranial electroencephalographic (iEEG data is currently available from patients undergoing invasive monitoring for the surgical treatment of epilepsy. In contrast to data recorded on research-customized recording systems, data from clinical acquisition systems remain an underutilized resource for HFO detection in most centers. The effective and reliable use of this clinically obtained data would be an important advance in the ongoing study of HFOs and their relationship to ictogenesis. The diagnostic utility of HFOs ultimately will be limited by the ability of clinicians to detect these brief, sporadic, and low amplitude events in an electrically noisy clinical environment. Indeed, one of the most significant factors limiting the use of such clinical recordings for research purposes is their low signal to noise ratio, especially in the higher frequency bands. In order to investigate the presence of HFOs in clinical data, we first obtained continuous intracranial recordings in a typical clinical environment using a commercially available, commonly utilized data acquisition system and off the shelf hybrid macro/micro depth electrodes. This data was then inspected for the presence of HFOs using semi-automated methods and expert manual review. With targeted removal of noise frequency content, HFOs were detected on both macro- and micro-contacts, and preferentially localized to seizure onset zones. HFOs detected by the offline, semi-automated method were also validated in the clinical viewer, demonstrating that 1 this clinical system allows for the visualization of HFOs, and 2 with effective signal processing, clinical recordings can yield valuable information for offline analysis.

  17. High-Frequency X-ray Variability Detection in A Black Hole Transient with USA.

    Energy Technology Data Exchange (ETDEWEB)

    Shabad, Gayane

    2000-10-16

    Studies of high-frequency variability (above {approx}100 Hz) in X-ray binaries provide a unique opportunity to explore the fundamental physics of spacetime and matter, since the orbital timescale on the order of several milliseconds is a timescale of the motion of matter through the region located in close proximity to a compact stellar object. The detection of weak high-frequency signals in X-ray binaries depends on how well we understand the level of Poisson noise due to the photon counting statistics, i.e. how well we can understand and model the detector deadtime and other instrumental systematic effects. We describe the preflight timing calibration work performed on the Unconventional Stellar Aspect (USA) X-ray detector to study deadtime and timing issues. We developed a Monte Carlo deadtime model and deadtime correction methods for the USA experiment. The instrumental noise power spectrum can be estimated within {approx}0.1% accuracy in the case when no energy-dependent instrumental effect is present. We also developed correction techniques to account for an energy-dependent instrumental effect. The developed methods were successfully tested on USA Cas A and Cygnus X-1 data. This work allowed us to make a detection of a weak signal in a black hole candidate (BHC) transient.

  18. High temperature radio-frequency superconducting quantum interference device system for detection of magnetic nanoparticles

    International Nuclear Information System (INIS)

    Pretzell, Alf

    2012-01-01

    This doctoral thesis was aimed at establishing a set-up with high-temperature superconductor (HTS) radio-frequency (rf) superconducting quantum interference device (SQUID) technology for the detection of magnetic nanoparticles and in particular for testing applications of magnetic nanoparticle immunoassays. It was part of the EU-project ''Biodiagnostics'' running from 2005 to 2008. The method of magnetic binding assays was developed as an alternative to other methods of concentration determination like enzyme linked immunosorbent assay (ELISA), or fluorescent immunoassay. The ELISA has sensitivities down to analyte-concentrations of pg/ml. Multiple incubation and washing steps have to be performed for these techniques, the analyte has to diffuse to the site of binding. The magnetic assay uses magnetic nanoparticles as markers for the substance to be detected. It is being explored by current research and shows similar sensitivity compared to ELISA but in contrast - does not need any washing and can be read out directly after binding - can be applied in solution with opaque media, e.g. blood or muddy water - additionally allows magnetic separation or concentration - in combination with small magnetoresistive or Hall sensors, allows detection of only a few particles or even single beads. For medical or environmental samples, maybe opaque and containing a multitude of substances, it would be advantageous to devise an instrument, which allows to be read out quickly and with high sensitivity. Due to the mentioned items the magnetic assay might be a possibility here.

  19. On-line low and high frequency acoustic leak detection and location for an automated steam generator protection system

    International Nuclear Information System (INIS)

    Gaubatz, D.C.; Gluekler, E.L.

    1990-01-01

    Two on-line acoustic leak detection systems were operated and installed on a 76 MW hockey stick steam generator in the Sodium Components Test Installation (SCTI) at the Energy Technology Engineering Center (ETEC) in Southern California. The low frequency system demonstrated the capability to detect and locate leaks, both intentional and unintentional. No false alarms were issued during the two year test program even with adjacent blasting activities, pneumatic drilling, shuttle rocket engine testing nearby, scrams of the SCTI facility, thermal/hydraulic transient testing, and pump/control valve operations. For the high frequency system the capability to detect water into sodium reactions was established utilizing frequencies as high as 300 kHz. The high frequency system appeared to be sensitive to noise generated by maintenance work and system valve operations. Subsequent development work which is incomplete as of this date showed much more promise for the high frequency system. (author). 13 figs

  20. Building Quakes: Detection of Weld Fractures in Buildings using High-Frequency Seismic Techniques

    Science.gov (United States)

    Heckman, V.; Kohler, M. D.; Heaton, T. H.

    2009-12-01

    Catastrophic fracture of welded beam-column connections in buildings was observed in the Northridge and Kobe earthquakes. Despite the structural importance of such connections, it can be difficult to locate damage in structural members underneath superficial building features. We have developed a novel technique to locate fracturing welds in buildings in real time using high-frequency information from seismograms. Numerical and experimental methods were used to investigate an approach for detecting the brittle fracture of welds of beam-column connections in instrumented steel moment-frame buildings through the use of time-reversed Green’s functions and wave propagation reciprocity. The approach makes use of a prerecorded catalogue of Green’s functions for an instrumented building to detect high-frequency failure events in the building during a later earthquake by screening continuous data for the presence of one or more of the events. This was explored experimentally by comparing structural responses of a small-scale laboratory structure under a variety of loading conditions. Experimentation was conducted on a polyvinyl chloride frame model structure with data recorded at a sample rate of 2000 Hz using piezoelectric accelerometers and a 24-bit digitizer. Green’s functions were obtained by applying impulsive force loads at various locations along the structure with a rubber-tipped force transducer hammer. We performed a blind test using cross-correlation techniques to determine if it was possible to use the catalogue of Green’s functions to pinpoint the absolute times and locations of subsequent, induced failure events in the structure. A finite-element method was used to simulate the response of the model structure to various source mechanisms in order to determine the types of elastic waves that were produced as well as to obtain a general understanding of the structural response to localized loading and fracture.

  1. Cantilever-detected high-frequency ESR measurement using a backward travelling wave oscillator

    International Nuclear Information System (INIS)

    Tokuda, Y; Hirano, S; Ohmichi, E; Ohta, H

    2012-01-01

    Our cantilever-detected electron spin resonance (ESR) technique is motivated for terahertz ESR spectroscopy of a tiny single crystal at low temperature. In this technique, ESR signal is detected as deflection of a sample-mounted cantilever, which is sensitively detected by built-in piezoresistors. So far, ESR detection at 315 GHz was succeeded using Gunn oscillator. In this study, we combine our ESR technique with a backward traveling wave oscillator (BWO), which can cover a wide frequency range 120-1200 GHz, to achieve better spectral resolution. Experiments were carried out at 4.2 K for a single crystal of Co Tutton salt with a newly constructed optical system. We successfully observed two ESR absorption lines in BWO frequencies up to 370 GHz. From multi-frequency measurements, the observed ESR lines shifted linearly with BWO frequency, being consistent with paramagnetic resonance. The estimated g values are g 1 = 3.00 and g 2 = 3.21. The spin sensitivity was estimated to ∼10 12 spins/gauss at 370 GHz.

  2. Real-time, high frequency QRS electrocardiograph with reduced amplitude zone detection

    Science.gov (United States)

    Schlegel, Todd T. (Inventor); DePalma, Jude L. (Inventor); Moradi, Saeed (Inventor)

    2009-01-01

    Real time cardiac electrical data are received from a patient, manipulated to determine various useful aspects of the ECG signal, and displayed in real time in a useful form on a computer screen or monitor. The monitor displays the high frequency data from the QRS complex in units of microvolts, juxtaposed with a display of conventional ECG data in units of millivolts or microvolts. The high frequency data are analyzed for their root mean square (RMS) voltage values and the discrete RMS values and related parameters are displayed in real time. The high frequency data from the QRS complex are analyzed with imbedded algorithms to determine the presence or absence of reduced amplitude zones, referred to herein as ''RAZs''. RAZs are displayed as ''go, no-go'' signals on the computer monitor. The RMS and related values of the high frequency components are displayed as time varying signals, and the presence or absence of RAZs may be similarly displayed over time.

  3. Selectivity enhancement in photoacoustic gas analysis via phase-sensitive detection at high modulation frequency

    Science.gov (United States)

    Kosterev, Anatoliy (Inventor)

    2010-01-01

    A method for detecting a target fluid in a fluid sample comprising a first fluid and the target fluid using photoacoustic spectroscopy (PAS), comprises a) providing a light source configured to introduce an optical signal having at least one wavelength into the fluid sample; b) modulating the optical signal at a desired modulation frequency such that the optical signal generates an acoustic signal in the fluid sample; c) measuring the acoustic signal in a resonant acoustic detector; and d) using the phase of the acoustic signal to detect the presence of the target fluid.

  4. Comparison of low and high frequency transducers in the detection of liver metastases.

    Science.gov (United States)

    Schacherer, D; Wrede, C; Obermeier, F; Schölmerich, J; Schlottmann, K; Klebl, F

    2006-09-01

    To evaluate the benefit of the additional use of a high frequency ultrasound probe (7.5 MHz) in finding suspicious liver lesions compared to the examination using a 3.5-MHz transducer only. One hundred and fifty-seven patients with underlying malignant disease were examined with both transducers using one of three ultrasound machines (Siemens Sonoline Elegra, GE Healthcare Logic 9, or Hitachi EUB-8500). Findings on hepatic lesions were collected on a standardised documentation sheet and evaluated by descriptive statistics. Ninety-three patients (59.2% of all patients) showed no evident liver lesion on conventional ultrasound with the 3.5 MHz probe. In 29 patients (18.5%) new suspicious liver lesions were found by using the high frequency transducer. Thirteen of these 29 patients (44.8%) were suspected to suffer from diffuse infiltration of the liver with malignant lesions or at least 10 additional visible lesions. In 14 patients, no liver lesion had been known before high frequency ultrasound examination. The size of newly described liver lesions ranged from 2 mm to 1.5 cm. Time needed for the additional examination with the high frequency transducer ranged between 1 and 15 min with an average of 4.0 min. The additional use of a high frequency transducer in patients with underlying malignant disease slightly extends the examination time, but reveals new, potentially malignant hepatic lesions in almost every fifth patient.

  5. A High-Precision Time-Frequency Entropy Based on Synchrosqueezing Generalized S-Transform Applied in Reservoir Detection

    Directory of Open Access Journals (Sweden)

    Hui Chen

    2018-06-01

    Full Text Available According to the fact that high frequency will be abnormally attenuated when seismic signals travel across reservoirs, a new method, which is named high-precision time-frequency entropy based on synchrosqueezing generalized S-transform, is proposed for hydrocarbon reservoir detection in this paper. First, the proposed method obtains the time-frequency spectra by synchrosqueezing generalized S-transform (SSGST, which are concentrated around the real instantaneous frequency of the signals. Then, considering the characteristics and effects of noises, we give a frequency constraint condition to calculate the entropy based on time-frequency spectra. The synthetic example verifies that the entropy will be abnormally high when seismic signals have an abnormal attenuation. Besides, comparing with the GST time-frequency entropy and the original SSGST time-frequency entropy in field data, the results of the proposed method show higher precision. Moreover, the proposed method can not only accurately detect and locate hydrocarbon reservoirs, but also effectively suppress the impact of random noises.

  6. High frequency energy measurements

    International Nuclear Information System (INIS)

    Stotlar, S.C.

    1981-01-01

    High-frequency (> 100 MHz) energy measurements present special problems to the experimenter. Environment or available electronics often limit the applicability of a given detector type. The physical properties of many detectors are frequency dependent and in some cases, the physical effect employed can be frequency dependent. State-of-the-art measurements generally involve a detection scheme in association with high-speed electronics and a method of data recording. Events can be single or repetitive shot requiring real time, sampling, or digitizing data recording. Potential modification of the pulse by the detector and the associated electronics should not be overlooked. This presentation will review typical applications, methods of choosing a detector, and high-speed detectors. Special considerations and limitations of some applications and devices will be described

  7. High frequency microphone measurements for transition detection on airfoils. NACA-0015 appendix report

    DEFF Research Database (Denmark)

    Døssing, Mads

    Time series of pressure fluctuations has been obtained using high frequency microphones distributed over the surface of airfoils undergoing wind tunnel tests in the LM Windtunnel, owned by ’LM Glasfiber’, Denmark. The present report describes the dataanalysis, with special attention given to tran...

  8. Using high-frequency sampling to detect effects of atmospheric pollutants on stream chemistry

    Science.gov (United States)

    Stephen D. Sebestyen; James B. Shanley; Elizabeth W. Boyer

    2009-01-01

    We combined information from long-term (weekly over many years) and short-term (high-frequency during rainfall and snowmelt events) stream water sampling efforts to understand how atmospheric deposition affects stream chemistry. Water samples were collected at the Sleepers River Research Watershed, VT, a temperate upland forest site that receives elevated atmospheric...

  9. Edge Detection from High Resolution Remote Sensing Images using Two-Dimensional log Gabor Filter in Frequency Domain

    International Nuclear Information System (INIS)

    Wang, K; Yu, T; Meng, Q Y; Wang, G K; Li, S P; Liu, S H

    2014-01-01

    Edges are vital features to describe the structural information of images, especially high spatial resolution remote sensing images. Edge features can be used to define the boundaries between different ground objects in high spatial resolution remote sensing images. Thus edge detection is important in the remote sensing image processing. Even though many different edge detection algorithms have been proposed, it is difficult to extract the edge features from high spatial resolution remote sensing image including complex ground objects. This paper introduces a novel method to detect edges from the high spatial resolution remote sensing image based on frequency domain. Firstly, the high spatial resolution remote sensing images are Fourier transformed to obtain the magnitude spectrum image (frequency image) by FFT. Then, the frequency spectrum is analyzed by using the radius and angle sampling. Finally, two-dimensional log Gabor filter with optimal parameters is designed according to the result of spectrum analysis. Finally, dot product between the result of Fourier transform and the log Gabor filter is inverse Fourier transformed to obtain the detections. The experimental result shows that the proposed algorithm can detect edge features from the high resolution remote sensing image commendably

  10. Acoustic feedwater heater leak detection: Industry application of low ampersand high frequency detection increases response and reliability

    International Nuclear Information System (INIS)

    Woyshner, W.S.; Bryson, T.; Robertson, M.O.

    1993-01-01

    The Electric Power Research Institute has sponsored research associated with acoustic Feedwater Heater Leak Detection since the early 1980s. Results indicate that this technology is economically beneficial and dependable. Recent research work has employed acoustic sensors and signal conditioning with wider frequency range response and background noise elimination techniques to provide increased accuracy and dependability. Dual frequency sensors have been applied at a few facilities to provide information on this application of dual frequency response. Sensor mounting methods and attenuation due to various mounting configurations are more conclusively understood. These are depicted and discussed in detail. The significance of trending certain plant parameters such as heat cycle flows, heater vent and drain valve position, proper relief valve operation, etc. is also addressed. Test data were collected at various facilities to monitor the effect of varying several related operational parameters. A group of FWHLD Users have been involved from the inception of the project and reports on their latest successes and failures, along with various data depicting early detection of FWHLD tube leaks, will be included. 3 refs., 12 figs., 1 tab

  11. High-Throughput, Protein-Targeted Biomolecular Detection Using Frequency-Domain Faraday Rotation Spectroscopy.

    Science.gov (United States)

    Murdock, Richard J; Putnam, Shawn A; Das, Soumen; Gupta, Ankur; Chase, Elyse D Z; Seal, Sudipta

    2017-03-01

    A clinically relevant magneto-optical technique (fd-FRS, frequency-domain Faraday rotation spectroscopy) for characterizing proteins using antibody-functionalized magnetic nanoparticles (MNPs) is demonstrated. This technique distinguishes between the Faraday rotation of the solvent, iron oxide core, and functionalization layers of polyethylene glycol polymers (spacer) and model antibody-antigen complexes (anti-BSA/BSA, bovine serum albumin). A detection sensitivity of ≈10 pg mL -1 and broad detection range of 10 pg mL -1 ≲ c BSA ≲ 100 µg mL -1 are observed. Combining this technique with predictive analyte binding models quantifies (within an order of magnitude) the number of active binding sites on functionalized MNPs. Comparative enzyme-linked immunosorbent assay (ELISA) studies are conducted, reproducing the manufacturer advertised BSA ELISA detection limits from 1 ng mL -1 ≲ c BSA ≲ 500 ng mL -1 . In addition to the increased sensitivity, broader detection range, and similar specificity, fd-FRS can be conducted in less than ≈30 min, compared to ≈4 h with ELISA. Thus, fd-FRS is shown to be a sensitive optical technique with potential to become an efficient diagnostic in the chemical and biomolecular sciences. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. High-resolution broadband terahertz spectroscopy via electronic heterodyne detection of photonically generated terahertz frequency comb.

    Science.gov (United States)

    Pavelyev, D G; Skryl, A S; Bakunov, M I

    2014-10-01

    We report an alternative approach to the terahertz frequency-comb spectroscopy (TFCS) based on nonlinear mixing of a photonically generated terahertz pulse train with a continuous wave signal from an electronic synthesizer. A superlattice is used as a nonlinear mixer. Unlike the standard TFCS technique, this approach does not require a complex double-laser system but retains the advantages of TFCS-high spectral resolution and wide bandwidth.

  13. Intracerebrally recorded high frequency oscillations: Simple visual assessment versus automated detection

    Czech Academy of Sciences Publication Activity Database

    Pail, M.; Halámek, Josef; Daniel, P.; Kuba, R.; Tyrlíková, I.; Chrastina, J.; Jurák, Pavel; Rektor, I.; Brázdil, M.

    2013-01-01

    Roč. 124, č. 10 (2013), s. 1935-1942 ISSN 1388-2457 R&D Projects: GA ČR GAP103/11/0933; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : High frequency oscillations * Spikes * Ripples * Temporal lobe epilepsy * Extratemporal lobe epilepsy * Seizure onset zone * Epileptogenic zone Subject RIV: FH - Neurology Impact factor: 2.979, year: 2013

  14. Early Detection of Atrophy of Foot Muscles in Chinese Patients of Type 2 Diabetes Mellitus by High-Frequency Ultrasonography

    Directory of Open Access Journals (Sweden)

    Xiaohui Wang

    2014-01-01

    Full Text Available The aim of this study was to evaluate the diagnostic value of high-frequency ultrasonography in detecting atrophy of foot muscles in Chinese patients of type 2 diabetes mellitus (T2DM. Chinese patients of T2DM with (n=56 or without (n=50 diabetic peripheral neuropathy (DPN and the control subjects (n=50 were enrolled. The nondominant foot of all subjects was examined with high-frequency ultrasonography. The transverse diameter, thickness, and cross-sectional area of the extensor digitorum brevis muscle (EDB and the thickness of the muscles of the first interstitium (MILs were measured. The results showed that the ultrasonographic transverse diameter, thickness, and cross-sectional area of EDB and the thickness of MILs in patients of T2DM with DPN were significantly smaller than those in patients of T2DM without DPN (all P<0.01 and those in the control subjects (all P<0.01. The transverse diameter and cross-sectional area of the EDB and thickness of MILs in patients of T2DM without DPN were significantly smaller than those of the control subjects (all P<0.01. In conclusion, the atrophy of foot muscle in Chinese T2DM patients can be detected by high-frequency ultrasonography. Notably, ultrasonography may detect early atrophy of foot muscles in patients without DPN.

  15. Note of non-destructive detection of voids by a high frequency inversion technique

    International Nuclear Information System (INIS)

    Cohen, J.K.; Bleistein, N.

    1978-01-01

    An inverse method for nondestructive detection of scatterers of high contrast, such as voids or strongly reflecting inclusions, is described. The phase and range normalized far field scattering amplitude is shown to be directly proportional to the Fourier transform of the characteristic function of the scatterer. The characteristic function is equal to unity inside the region occupied by the scatterer and is zero outside. Thus, knowledge of this function provides a description of the scatterer. The method is applied to flaws in a sphere

  16. Study on the Application of an Ultra-High-Frequency Fractal Antenna to Partial Discharge Detection in Switchgears

    Directory of Open Access Journals (Sweden)

    Chenguo Yao

    2013-12-01

    Full Text Available The ultra-high-frequency (UHF method is used to analyze the insulation condition of electric equipment by detecting the UHF electromagnetic (EM waves excited by partial discharge (PD. As part of the UHF detection system, the UHF sensor determines the detection system performance in signal extraction and recognition. In this paper, a UHF antenna sensor with the fractal structure for PD detection in switchgears was designed by means of modeling, simulation and optimization. This sensor, with a flat-plate structure, had two resonance frequencies of 583 MHz and 732 MHz. In the laboratory, four kinds of insulation defect models were positioned in the testing switchgear for typical PD tests. The results show that the sensor could reproduce the electromagnetic waves well. Furthermore, to optimize the installation position of the inner sensor for achieving best detection performance, the precise simulation model of switchgear was developed to study the propagation characteristics of UHF signals in switchgear by finite-difference time-domain (FDTD method. According to the results of simulation and verification test, the sensor should be positioned at the right side of bottom plate in the front cabinet. This research established the foundation for the further study on the application of UHF technique in switchgear PD online detection.

  17. Robust fault detection for the dynamics of high-speed train with multi-source finite frequency interference.

    Science.gov (United States)

    Bai, Weiqi; Dong, Hairong; Yao, Xiuming; Ning, Bin

    2018-04-01

    This paper proposes a composite fault detection scheme for the dynamics of high-speed train (HST), using an unknown input observer-like (UIO-like) fault detection filter, in the presence of wind gust and operating noises which are modeled as disturbance generated by exogenous system and unknown multi-source disturbance within finite frequency domain. Using system input and system output measurements, the fault detection filter is designed to generate the needed residual signals. In order to decouple disturbance from residual signals without truncating the influence of faults, this paper proposes a method to partition the disturbance into two parts. One subset of the disturbance does not appear in residual dynamics, and the influence of the other subset is constrained by H ∞ performance index in a finite frequency domain. A set of detection subspaces are defined, and every different fault is assigned to its own detection subspace to guarantee the residual signals are diagonally affected promptly by the faults. Simulations are conducted to demonstrate the effectiveness and merits of the proposed method. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Experimental high-frequency ultrasound can detect graft rejection after small bowel transplantation.

    Science.gov (United States)

    Yang, R; Liu, Q; Wu, E X; Pescovitz, M D; Collins, M H; Kopecky, K K; Grosfeld, J L

    1994-02-01

    Early diagnosis of graft rejection after small bowel transplantation (SBT) can allow prompt institution of vigorous immunosuppressive therapy, with resultant reversal of the rejection process. The current method for graft monitoring is random mucosal biopsy from a stomal site or through an endoscope. However, because early rejection often has a patchy distribution, it could be missed by random biopsy. We hypothesized that the pathological process of rejection would alter acoustic impedance of the tissue and thus change the ultrasonic patterns of the graft intestinal wall. If this hypothesis is correct, then high-frequency endoscopic ultrasound (US) could be used to monitor the entire transplanted bowel and guide the biopsy, with improved yields. This hypothesis was tested in a rat orthotopic SBT model. Sixty-two intestinal specimens (9 isografts, 12 allografts treated with cyclosporine A [CsA], 22 untreated allografts, and 19 intestines from normal rats) were collected for in vitro transluminal US imaging (30 MHz) and histopathologic study. The echo pattern of normal rat intestinal wall consisted of five echo layers that correlated spatially with the histological layers: the innermost hyperechoic layer 1, plus hypoechoic layer 2, corresponded to the mucosa; hyperechoic layer 3, the submucosa; anechoic layer 4, the muscularis propria; and hyperechoic layer 5, the serosa. The isografts and CsA-treated allografts were identical histologically and ultrasonically to normal intestine. However, the echo patterns of the untreated allografts had progressive loss of architectural stratification, with worsening rejection. The change began with patchy indistinctness and disruption of hyperechoic layers 1, 3 and 5, and progressed to total obliteration of the layers, with the intestinal wall becoming a nonstratified hypoechoic structure.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Detection of intensity bursts using Hawkes processes: An application to high-frequency financial data

    Science.gov (United States)

    Rambaldi, Marcello; Filimonov, Vladimir; Lillo, Fabrizio

    2018-03-01

    Given a stationary point process, an intensity burst is defined as a short time period during which the number of counts is larger than the typical count rate. It might signal a local nonstationarity or the presence of an external perturbation to the system. In this paper we propose a procedure for the detection of intensity bursts within the Hawkes process framework. By using a model selection scheme we show that our procedure can be used to detect intensity bursts when both their occurrence time and their total number is unknown. Moreover, the initial time of the burst can be determined with a precision given by the typical interevent time. We apply our methodology to the midprice change in foreign exchange (FX) markets showing that these bursts are frequent and that only a relatively small fraction is associated with news arrival. We show lead-lag relations in intensity burst occurrence across different FX rates and we discuss their relation with price jumps.

  20. Analytical Approach to Target Detection and Localization at High-Frequency Bands Using Multipath Propagation

    Science.gov (United States)

    2016-04-25

    ElectroMagnetic, Multipath propagation, Reflection-diffraction, SAR signal processing 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18...protection, and traffic surveillance, etc. With these above reasons, we are motivated to introduce a new approach to the target detection and...coherent integrating the backscattering signal , we propose a 3D propagation model that is useful not only in explaining the mechanisms of wave

  1. DETECTING FLARING STRUCTURES IN SAGITTARIUS A* WITH HIGH-FREQUENCY VLBI

    International Nuclear Information System (INIS)

    Doeleman, Sheperd S.; Fish, Vincent L.; Rogers, Alan E. E.; Broderick, Avery E.; Loeb, Abraham

    2009-01-01

    The super-massive black hole candidate, Sagittarius A*, exhibits variability from radio to X-ray wavelengths on timescales that correspond to <10 Schwarzschild radii. We survey the potential of millimeter wavelength very long baseline interferometry (VLBI) to detect and constrain time-variable structures that could give rise to such variations, focusing on a model in which an orbiting hot spot is embedded in an accretion disk. Nonimaging algorithms are developed that use interferometric closure quantities to test for periodicity, and applied to an ensemble of hot spot models that sample a range of parameter space. We find that structural periodicity in a wide range of cases can be detected on most potential VLBI arrays using modern VLBI instrumentation. Future enhancements of millimeter/submillimeter VLBI arrays including phased-array processors to aggregate VLBI station collecting area, increased bandwidth recording, and addition of new VLBI sites all significantly aid periodicity detection. The methods described herein can be applied to other models of Sagittarius A*, including jet outflows and magnetohydrodynamic accretion simulations.

  2. RIPPLELAB: A Comprehensive Application for the Detection, Analysis and Classification of High Frequency Oscillations in Electroencephalographic Signals.

    Directory of Open Access Journals (Sweden)

    Miguel Navarrete

    Full Text Available High Frequency Oscillations (HFOs in the brain have been associated with different physiological and pathological processes. In epilepsy, HFOs might reflect a mechanism of epileptic phenomena, serving as a biomarker of epileptogenesis and epileptogenicity. Despite the valuable information provided by HFOs, their correct identification is a challenging task. A comprehensive application, RIPPLELAB, was developed to facilitate the analysis of HFOs. RIPPLELAB provides a wide range of tools for HFOs manual and automatic detection and visual validation; all of them are accessible from an intuitive graphical user interface. Four methods for automated detection-as well as several options for visualization and validation of detected events-were implemented and integrated in the application. Analysis of multiple files and channels is possible, and new options can be added by users. All features and capabilities implemented in RIPPLELAB for automatic detection were tested through the analysis of simulated signals and intracranial EEG recordings from epileptic patients (n = 16; 3,471 analyzed hours. Visual validation was also tested, and detected events were classified into different categories. Unlike other available software packages for EEG analysis, RIPPLELAB uniquely provides the appropriate graphical and algorithmic environment for HFOs detection (visual and automatic and validation, in such a way that the power of elaborated detection methods are available to a wide range of users (experts and non-experts through the use of this application. We believe that this open-source tool will facilitate and promote the collaboration between clinical and research centers working on the HFOs field. The tool is available under public license and is accessible through a dedicated web site.

  3. DETECTING CHANGING POLARIZATION STRUCTURES IN SAGITTARIUS A* WITH HIGH FREQUENCY VLBI

    Energy Technology Data Exchange (ETDEWEB)

    Fish, Vincent L; Doeleman, Sheperd S; Rogers, Alan E. E. [Massachusetts Institute of Technology, Haystack Observatory, Route 40, Westford, MA 01886 (United States); Broderick, Avery E [Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8 (Canada); Loeb, Abraham [Institute for Theory and Computation, Harvard University, Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2009-12-01

    Sagittarius A* is the source of near infrared, X-ray, radio, and (sub)millimeter emission associated with the supermassive black hole at the Galactic Center. In the submillimeter regime, Sgr A* exhibits time-variable linear polarization on timescales corresponding to <10 Schwarzschild radii of the presumed 4 x 10{sup 6} M {sub sun} black hole. In previous work, we demonstrated the potential for total-intensity (sub)millimeter-wavelength very long baseline interferometry (VLBI) to detect time-variable-and periodic-source structure changes in the Sgr A* black hole system using nonimaging analyses. Here, we extend this work to include full polarimetric VLBI observations. We simulate full-polarization (sub)millimeter VLBI data of Sgr A* using a hot spot model that is embedded within an accretion disk, with emphasis on nonimaging polarimetric data products that are robust against calibration errors. Although the source-integrated linear polarization fraction in the models is typically only a few percent, the linear polarization fraction on small angular scales can be much higher, enabling the detection of changes in the polarimetric structure of Sgr A* on a wide variety of baselines. The shortest baselines track the source-integrated linear polarization fraction, while longer baselines are sensitive to polarization substructures that are beam-diluted by connected-element interferometry. The detection of periodic variability in source polarization should not be significantly affected even if instrumental polarization terms cannot be calibrated out. As more antennas are included in the (sub)millimeter-VLBI array, observations with full polarization will provide important new diagnostics to help disentangle intrinsic source polarization from Faraday rotation effects in the accretion and outflow region close to the black hole event horizon.

  4. DETECTING CHANGING POLARIZATION STRUCTURES IN SAGITTARIUS A* WITH HIGH FREQUENCY VLBI

    International Nuclear Information System (INIS)

    Fish, Vincent L.; Doeleman, Sheperd S.; Rogers, Alan E. E.; Broderick, Avery E.; Loeb, Abraham

    2009-01-01

    Sagittarius A* is the source of near infrared, X-ray, radio, and (sub)millimeter emission associated with the supermassive black hole at the Galactic Center. In the submillimeter regime, Sgr A* exhibits time-variable linear polarization on timescales corresponding to 6 M sun black hole. In previous work, we demonstrated the potential for total-intensity (sub)millimeter-wavelength very long baseline interferometry (VLBI) to detect time-variable-and periodic-source structure changes in the Sgr A* black hole system using nonimaging analyses. Here, we extend this work to include full polarimetric VLBI observations. We simulate full-polarization (sub)millimeter VLBI data of Sgr A* using a hot spot model that is embedded within an accretion disk, with emphasis on nonimaging polarimetric data products that are robust against calibration errors. Although the source-integrated linear polarization fraction in the models is typically only a few percent, the linear polarization fraction on small angular scales can be much higher, enabling the detection of changes in the polarimetric structure of Sgr A* on a wide variety of baselines. The shortest baselines track the source-integrated linear polarization fraction, while longer baselines are sensitive to polarization substructures that are beam-diluted by connected-element interferometry. The detection of periodic variability in source polarization should not be significantly affected even if instrumental polarization terms cannot be calibrated out. As more antennas are included in the (sub)millimeter-VLBI array, observations with full polarization will provide important new diagnostics to help disentangle intrinsic source polarization from Faraday rotation effects in the accretion and outflow region close to the black hole event horizon.

  5. Detecting Changing Polarization Structures in Sagittarius A* with High Frequency VLBI

    Science.gov (United States)

    Fish, Vincent L.; Doeleman, Sheperd S.; Broderick, Avery E.; Loeb, Abraham; Rogers, Alan E. E.

    2009-12-01

    Sagittarius A* is the source of near infrared, X-ray, radio, and (sub)millimeter emission associated with the supermassive black hole at the Galactic Center. In the submillimeter regime, Sgr A* exhibits time-variable linear polarization on timescales corresponding to errors. Although the source-integrated linear polarization fraction in the models is typically only a few percent, the linear polarization fraction on small angular scales can be much higher, enabling the detection of changes in the polarimetric structure of Sgr A* on a wide variety of baselines. The shortest baselines track the source-integrated linear polarization fraction, while longer baselines are sensitive to polarization substructures that are beam-diluted by connected-element interferometry. The detection of periodic variability in source polarization should not be significantly affected even if instrumental polarization terms cannot be calibrated out. As more antennas are included in the (sub)millimeter-VLBI array, observations with full polarization will provide important new diagnostics to help disentangle intrinsic source polarization from Faraday rotation effects in the accretion and outflow region close to the black hole event horizon.

  6. [Design of High Frequency Signal Detecting Circuit of Human Body Impedance Used for Ultrashort Wave Diathermy Apparatus].

    Science.gov (United States)

    Fan, Xu; Wang, Yunguang; Cheng, Haiping; Chong, Xiaochen

    2016-02-01

    The present circuit was designed to apply to human tissue impedance tuning and matching device in ultra-short wave treatment equipment. In order to judge if the optimum status of circuit parameter between energy emitter circuit and accepter circuit is in well syntony, we designed a high frequency envelope detect circuit to coordinate with automatic adjust device of accepter circuit, which would achieve the function of human tissue impedance matching and tuning. Using the sampling coil to receive the signal of amplitude-modulated wave, we compared the voltage signal of envelope detect circuit with electric current of energy emitter circuit. The result of experimental study was that the signal, which was transformed by the envelope detect circuit, was stable and could be recognized by low speed Analog to Digital Converter (ADC) and was proportional to the electric current signal of energy emitter circuit. It could be concluded that the voltage, transformed by envelope detect circuit can mirror the real circuit state of syntony and realize the function of human tissue impedance collecting.

  7. RIPPLELAB: A Comprehensive Application for the Detection, Analysis and Classification of High Frequency Oscillations in Electroencephalographic Signals

    Science.gov (United States)

    Alvarado-Rojas, Catalina; Le Van Quyen, Michel; Valderrama, Mario

    2016-01-01

    High Frequency Oscillations (HFOs) in the brain have been associated with different physiological and pathological processes. In epilepsy, HFOs might reflect a mechanism of epileptic phenomena, serving as a biomarker of epileptogenesis and epileptogenicity. Despite the valuable information provided by HFOs, their correct identification is a challenging task. A comprehensive application, RIPPLELAB, was developed to facilitate the analysis of HFOs. RIPPLELAB provides a wide range of tools for HFOs manual and automatic detection and visual validation; all of them are accessible from an intuitive graphical user interface. Four methods for automated detection—as well as several options for visualization and validation of detected events—were implemented and integrated in the application. Analysis of multiple files and channels is possible, and new options can be added by users. All features and capabilities implemented in RIPPLELAB for automatic detection were tested through the analysis of simulated signals and intracranial EEG recordings from epileptic patients (n = 16; 3,471 analyzed hours). Visual validation was also tested, and detected events were classified into different categories. Unlike other available software packages for EEG analysis, RIPPLELAB uniquely provides the appropriate graphical and algorithmic environment for HFOs detection (visual and automatic) and validation, in such a way that the power of elaborated detection methods are available to a wide range of users (experts and non-experts) through the use of this application. We believe that this open-source tool will facilitate and promote the collaboration between clinical and research centers working on the HFOs field. The tool is available under public license and is accessible through a dedicated web site. PMID:27341033

  8. Surface electromyography based muscle fatigue detection using high-resolution time-frequency methods and machine learning algorithms.

    Science.gov (United States)

    Karthick, P A; Ghosh, Diptasree Maitra; Ramakrishnan, S

    2018-02-01

    Surface electromyography (sEMG) based muscle fatigue research is widely preferred in sports science and occupational/rehabilitation studies due to its noninvasiveness. However, these signals are complex, multicomponent and highly nonstationary with large inter-subject variations, particularly during dynamic contractions. Hence, time-frequency based machine learning methodologies can improve the design of automated system for these signals. In this work, the analysis based on high-resolution time-frequency methods, namely, Stockwell transform (S-transform), B-distribution (BD) and extended modified B-distribution (EMBD) are proposed to differentiate the dynamic muscle nonfatigue and fatigue conditions. The nonfatigue and fatigue segments of sEMG signals recorded from the biceps brachii of 52 healthy volunteers are preprocessed and subjected to S-transform, BD and EMBD. Twelve features are extracted from each method and prominent features are selected using genetic algorithm (GA) and binary particle swarm optimization (BPSO). Five machine learning algorithms, namely, naïve Bayes, support vector machine (SVM) of polynomial and radial basis kernel, random forest and rotation forests are used for the classification. The results show that all the proposed time-frequency distributions (TFDs) are able to show the nonstationary variations of sEMG signals. Most of the features exhibit statistically significant difference in the muscle fatigue and nonfatigue conditions. The maximum number of features (66%) is reduced by GA and BPSO for EMBD and BD-TFD respectively. The combination of EMBD- polynomial kernel based SVM is found to be most accurate (91% accuracy) in classifying the conditions with the features selected using GA. The proposed methods are found to be capable of handling the nonstationary and multicomponent variations of sEMG signals recorded in dynamic fatiguing contractions. Particularly, the combination of EMBD- polynomial kernel based SVM could be used to

  9. ALMA High Frequency Techniques

    Science.gov (United States)

    Meyer, J. D.; Mason, B.; Impellizzeri, V.; Kameno, S.; Fomalont, E.; Chibueze, J.; Takahashi, S.; Remijan, A.; Wilson, C.; ALMA Science Team

    2015-12-01

    The purpose of the ALMA High Frequency Campaign is to improve the quality and efficiency of science observing in Bands 8, 9, and 10 (385-950 GHz), the highest frequencies available to the ALMA project. To this end, we outline observing modes which we have demonstrated to improve high frequency calibration for the 12m array and the ACA, and we present the calibration of the total power antennas at these frequencies. Band-to-band (B2B) transfer and bandwidth switching (BWSW), techniques which improve the speed and accuracy of calibration at the highest frequencies, are most necessary in Bands 8, 9, and 10 due to the rarity of strong calibrators. These techniques successfully enable increased signal-to-noise on the calibrator sources (and better calibration solutions) by measuring the calibrators at lower frequencies (B2B) or in wider bandwidths (BWSW) compared to the science target. We have also demonstrated the stability of the bandpass shape to better than 2.4% for 1 hour, hidden behind random noise, in Band 9. Finally, total power observing using the dual sideband receivers in Bands 9 and 10 requires the separation of the two sidebands; this procedure has been demonstrated in Band 9 and is undergoing further testing in Band 10.

  10. Detection and characterization of benthic filamentous algal stands (Cladophora sp.) on rocky substrata using a high-frequency echosounder

    Science.gov (United States)

    Depew, David C.; Stevens, Andrew W.; Smith, Ralph E.H.; Hecky, Robert E.

    2009-01-01

    A high-frequency echosounder was used to detect and characterize percent cover and stand height of the benthic filamentous green alga Cladophora sp. on rocky substratum of the Laurentian Great Lakes. Comparisons between in situ observations and estimates of the algal stand characteristics (percent cover, stand height) derived from the acoustic data show good agreement for algal stands that exceeded the height threshold for detection by acoustics (~7.5 cm). Backscatter intensity and volume scattering strength were unable to provide any predictive power for estimating algal biomass. A comparative analysis between the only current commercial software (EcoSAV™) and an alternate method using a graphical user interface (GUI) written in MATLAB® confirmed previous findings that EcoSAV functions poorly in conditions where the substrate is uneven and bottom depth changes rapidly. The GUI method uses a signal processing algorithm similar to that of EcoSAV but bases bottom depth classification and algal stand height classification on adjustable thresholds that can be visualized by a trained analyst. This study documents the successful characterization of nuisance quantities of filamentous algae on hard substrate using an acoustic system and demonstrates the potential to significantly increase the efficiency of collecting information on the distribution of nuisance macroalgae. This study also highlights the need for further development of more flexible classification algorithms that can be used in a variety of aquatic ecosystems.

  11. High frequency electromagnetic dosimetry

    CERN Document Server

    Sánchez-Hernández, David A

    2009-01-01

    Along with the growth of RF and microwave technology applications, there is a mounting concern about the possible adverse effects over human health from electromagnetic radiation. Addressing this issue and putting it into perspective, this groundbreaking resource provides critical details on the latest advances in high frequency electromagnetic dosimetry.

  12. Three-Dimensional High-Frequency Ultrasonography for Early Detection and Characterization of Embryo Implantation Site Development in the Mouse.

    Directory of Open Access Journals (Sweden)

    Mary C Peavey

    Full Text Available Ultrasonography is a powerful tool to non-invasively monitor in real time the development of the human fetus in utero. Although genetically engineered mice have served as valuable in vivo models to study both embryo implantation and pregnancy progression, such studies usually require sacrifice of parous mice for subsequent phenotypic analysis. To address this issue, we used three-dimensional (3-D reconstruction in silico of high-frequency ultrasound (HFUS imaging data for early detection and characterization of murine embryo implantation sites and their development in utero. With HFUS imaging followed by 3-D reconstruction, we were able to precisely quantify embryo implantation site number and embryonic developmental progression in pregnant C57BL6J/129S mice from as early as 5.5 days post coitus (d.p.c. through to 9.5 d.p.c. using a VisualSonics Vevo 2100 (MS550S transducer. In addition to measurements of implantation site number, location, volume and spacing, embryo viability via cardiac activity monitoring was also achieved. A total of 12 dams were imaged with HFUS with approximately 100 embryos examined per embryonic day. For the post-implantation period (5.5 to 8.5 d.p.c., 3-D reconstruction of the gravid uterus in mesh or solid overlay format enabled visual representation in silico of implantation site location, number, spacing distances, and site volume within each uterine horn. Therefore, this short technical report describes the feasibility of using 3-D HFUS imaging for early detection and analysis of post-implantation events in the pregnant mouse with the ability to longitudinally monitor the development of these early pregnancy events in a non-invasive manner. As genetically engineered mice continue to be used to characterize female reproductive phenotypes, we believe this reliable and non-invasive method to detect, quantify, and characterize early implantation events will prove to be an invaluable investigative tool for the study of

  13. High frequency asymptotic methods

    International Nuclear Information System (INIS)

    Bouche, D.; Dessarce, R.; Gay, J.; Vermersch, S.

    1991-01-01

    The asymptotic methods allow us to compute the interaction of high frequency electromagnetic waves with structures. After an outline of their foundations with emphasis on the geometrical theory of diffraction, it is shown how to use these methods to evaluate the radar cross section (RCS) of complex tri-dimensional objects of great size compared to the wave-length. The different stages in simulating phenomena which contribute to the RCS are reviewed: physical theory of diffraction, multiple interactions computed by shooting rays, research for creeping rays. (author). 7 refs., 6 figs., 3 insets

  14. High frequency microphone measurements for transition detection on airfoils. Risø C2-18 appendix report

    DEFF Research Database (Denmark)

    Døssing, Mads

    Time series of pressure fluctuations has been obtained using high frequency microphones distributed over the surface of airfoils undergoing wind tunnel tests in the LM Windtunnel, owned by ’LM Glasfiber’, Denmark. The present report describes the dataanalysis, with special attention given to tran...

  15. High frequency microphone measurements for transition detection on airfoils. Risø B1-18 appendix report

    DEFF Research Database (Denmark)

    Døssing, Mads

    Time series of pressure fluctuations has been obtained using high frequency microphones distributed over the surface of airfoils undergoing wind tunnel tests in the LM Windtunnel, owned by ’LM Glasfiber’, Denmark. The present report describes the dataanalysis, with special attention given to tran...

  16. High Frequency Oscillatory Ventilation

    Directory of Open Access Journals (Sweden)

    AC Bryan

    1996-01-01

    Full Text Available High frequency oscillatory (HFO ventilation using low tidal volume and peak airway pressures is extremely efficient at eliminating carbon dioxide and raising pH in the newborn infant with acute respiratory failure. Improvement in oxygenation requires a strategy of sustained or repetitive inflations to 25 to 30 cm H2O in order to place the lung on the deflation limb of the pressure-volume curve. This strategy has also been shown to decrease the amount of secondary lung injury in animal models. Experience of the use of HFO ventilation as a rescue therapy as well as several published controlled trials have shown improved outcomes and a decrease in the use of extracorporeal membrane oxygenation when it has been used in newborns.

  17. Real-Time 12-Lead High-Frequency QRS Electrocardiography for Enhanced Detection of Myocardial Ischemia and Coronary Artery Disease

    Science.gov (United States)

    Schlegel, Todd T.; Kulecz, Walter B.; DePalma, Jude L.; Feiveson, Alan H.; Wilson, John S.; Rahman, M. Atiar; Bungo, Michael W.

    2004-01-01

    Several studies have shown that diminution of the high-frequency (HF; 150-250 Hz) components present within the central portion of the QRS complex of an electrocardiogram (ECG) is a more sensitive indicator for the presence of myocardial ischemia than are changes in the ST segments of the conventional low-frequency ECG. However, until now, no device has been capable of displaying, in real time on a beat-to-beat basis, changes in these HF QRS ECG components in a continuously monitored patient. Although several software programs have been designed to acquire the HF components over the entire QRS interval, such programs have involved laborious off-line calculations and postprocessing, limiting their clinical utility. We describe a personal computer-based ECG software program developed recently at the National Aeronautics and Space Administration (NASA) that acquires, analyzes, and displays HF QRS components in each of the 12 conventional ECG leads in real time. The system also updates these signals and their related derived parameters in real time on a beat-to-beat basis for any chosen monitoring period and simultaneously displays the diagnostic information from the conventional (low-frequency) 12-lead ECG. The real-time NASA HF QRS ECG software is being evaluated currently in multiple clinical settings in North America. We describe its potential usefulness in the diagnosis of myocardial ischemia and coronary artery disease.

  18. High frequency breakdown voltage

    International Nuclear Information System (INIS)

    Chu, Thanh Duy.

    1992-03-01

    This report contains information about the effect of frequency on the breakdown voltage of an air gap at standard pressure and temperature, 76 mm Hg and O degrees C, respectively. The frequencies of interest are 47 MHz and 60 MHz. Additionally, the breakdown in vacuum is briefly considered. The breakdown mechanism is explained on the basis of collision and ionization. The presence of the positive ions produced by ionization enhances the field in the gap, and thus determines the breakdown. When a low-frequency voltage is applied across the gap, the breakdown mechanism is the same as that caused by the DC or static voltage. However, when the frequency exceeds the first critical value f c , the positive ions are trapped in the gap, increasing the field considerably. This makes the breakdown occur earlier; in other words, the breakdown voltage is lowered. As the frequency increases two decades or more, the second critical frequency, f ce , is reached. This time the electrons start being trapped in the gap. Those electrons that travel multiple times across the gap before reaching the positive electrode result in an enormous number of electrons and positive ions being present in the gap. The result is a further decrease of the breakdown voltage. However, increasing the frequency does not decrease the breakdown voltage correspondingly. In fact, the associated breakdown field intensity is almost constant (about 29 kV/cm).The reason is that the recombination rate increases and counterbalances the production rate, thus reducing the effect of the positive ions' concentration in the gap. The theory of collision and ionization does not apply to the breakdown in vacuum. It seems that the breakdown in vacuum is primarily determined by the irregularities on the surfaces of the electrodes. Therefore, the effect of frequency on the breakdown, if any, is of secondary importance

  19. Micromachined silicon cantilevers with integrated high-frequency magnetoimpedance sensors for simultaneous strain and magnetic field detection

    Science.gov (United States)

    Buettel, G.; Joppich, J.; Hartmann, U.

    2017-12-01

    Giant magnetoimpedance (GMI) measurements in the high-frequency regime utilizing a coplanar waveguide with an integrated Permalloy multilayer and micromachined on a silicon cantilever are reported. The fabrication process is described in detail. The aspect ratio of the magnetic multilayer in the magnetoresistive and magnetostrictive device was varied. Tensile strain and compressive strain were applied. Vector network analyzer measurements in the range from the skin effect to ferromagnetic resonance confirm the technological potential of GMI-based micro-electro-mechanical devices for strain and magnetic field sensing applications. The strain-impedance gauge factor was quantified by finite element strain calculations and reaches a maximum value of almost 200.

  20. A New Real-Time Cycle Slip Detection and Repair Method under High Ionospheric Activity for a Triple-Frequency GPS/BDS Receiver.

    Science.gov (United States)

    Liu, Wanke; Jin, Xueyuan; Wu, Mingkui; Hu, Jie; Wu, Yun

    2018-02-01

    Cycle slip detection and repair is a prerequisite for high-precision global navigation satellite system (GNSS)-based positioning. With the modernization and development of GNSS systems, more satellites are available to transmit triple-frequency signals, which allows the introduction of additional linear combinations and provides new opportunities for cycle slip detection and repair. In this paper, we present a new real-time cycle slip detection and repair method under high ionospheric activity for undifferenced Global Positioning System (GPS)/BeiDou Navigation Satellite System (BDS) triple-frequency observations collected with a single receiver. First, three optimal linearly independent geometry-free pseudorange minus phase combinations are selected to correctly and uniquely determine the cycle slips on the original triple-frequency carrier phase observations. Then, a second-order time-difference algorithm is employed for the pseudorange minus phase combinations to mitigate the impact of between-epoch ionospheric residuals on cycle slip detection, which is especially beneficial under high ionospheric activity. The performance of the approach is verified with static GPS/BDS triple-frequency observations that are collected with a 30 s sampling interval under active ionospheric conditions, and observations are manually inserted with simulated cycle slips. The results show that the method can correctly detect and repair cycle slips at a resolution as small as 1 cycle. Moreover, kinematic data collected from car-driven and airborne experiments are also processed to verify the performance of the method. The experimental results also demonstrate that the method is effective in processing kinematic data.

  1. Amplitude modulation detection with concurrent frequency modulation.

    Science.gov (United States)

    Nagaraj, Naveen K

    2016-09-01

    Human speech consists of concomitant temporal modulations in amplitude and frequency that are crucial for speech perception. In this study, amplitude modulation (AM) detection thresholds were measured for 550 and 5000 Hz carriers with and without concurrent frequency modulation (FM), at AM rates crucial for speech perception. Results indicate that adding 40 Hz FM interferes with AM detection, more so for 5000 Hz carrier and for frequency deviations exceeding the critical bandwidth of the carrier frequency. These findings suggest that future cochlear implant processors, encoding speech fine-structures may consider limiting the FM to narrow bandwidth and to low frequencies.

  2. Binaural beats at high frequencies.

    Science.gov (United States)

    McFadden, D; Pasanen, E G

    1975-10-24

    Binaural beats have long been believed to be audible only at low frequencies, but an interaction reminiscent of a binaural beat can sometimes be heard when different two-tone complexes of high frequency are presented to the two ears. The primary requirement is that the frequency separation in the complex at one ear be slightly different from that in the other--that is, that there be a small interaural difference in the envelope periodicities. This finding is in accord with other recent demonstrations that the auditory system is not deaf to interaural time differences at high frequencies.

  3. Response-only method for damage detection of beam-like structures using high accuracy frequencies with auxiliary mass spatial probing

    Science.gov (United States)

    Zhong, Shuncong; Oyadiji, S. Olutunde; Ding, Kang

    2008-04-01

    This paper proposes a new approach based on auxiliary mass spatial probing using spectral centre correction method (SCCM), to provide a simple solution for damage detection by just using the response time history of beam-like structures. The natural frequencies of a damaged beam with a traversing auxiliary mass change due to change in the inertia of the beam as the auxiliary mass is traversed along the beam, as well as the point-to-point variations in the flexibility of the beam. Therefore the auxiliary mass can enhance the effects of the crack on the dynamics of the beam and, therefore, facilitate the identification and location of damage in the beam. That is, the auxiliary mass can be used to probe the dynamic characteristic of the beam by traversing the mass from one end of the beam to the other. However, it is impossible to obtain accurate modal frequencies by the direct operation of the fast Fourier transform (FFT) of the response data of the structure because the frequency spectrum can be only calculated from limited sampled time data which results in the well-known leakage effect. SCCM is identical to the energy centrobaric correction method (ECCM) which is a practical and effective method used in rotating mechanical fault diagnosis and which resolves the shortcoming of FFT and can provide high accuracy estimate of frequency, amplitude and phase. In the present work, the modal responses of damaged simply supported beams with auxiliary mass are computed using the finite element method (FEM). The graphical plots of the natural frequencies calculated by SCCM versus axial location of auxiliary mass are obtained. However, it is difficult to locate the crack directly from the curve of natural frequencies. A simple and fast method, the derivatives of natural frequency curve, is proposed in the paper which can provide crack information for damage detection of beam-like structures. The efficiency and practicability of the proposed method is illustrated via numerical

  4. High frequency ignition arrangement

    Energy Technology Data Exchange (ETDEWEB)

    Canup, R E

    1977-03-03

    The invention concerns an HF ignition arrangement for combustion engines with a transistor oscillator. As this oscillator requires a current of 10A, with peak currents up to about 50A, it is not sensible to take this current through the remote ignition switch for switching it on and off. According to the invention the HF high voltage transformer of the ignition is provided with a control winding, which only requires a few milliamps DC and which can therefore be switched via the ignition switch. If the ignition switch is in the 'running' position, then a premagnetising DC current flows through the control winding, which suppresses the oscillation of the oscillator which has current flowing through it, until this current is interrupted by the interruptor contacts controlled by the combustion engine, so that the oscillations of the oscillator start immediately; the oscillator only continues to oscillate during the period during which the interruptor contacts controlled by the machine are open and interrupt the premagnetisation current. The control winding is short circuited in the 'off' position of the ignition switch.

  5. Helper T lymphocyte precursor frequency analysis in alloreactivity detection

    International Nuclear Information System (INIS)

    Cukrova, V.; Dolezalova, L.; Loudova, M.; Vitek, A.

    1998-01-01

    The utility of IL-2 secreting helper T lymphocyte precursors (HTLp) frequency testing has been evaluated for detecting alloreactivity. The frequency of HTLp was approached by limiting dilution assay. High HTLp frequency was detected in 20 out of 30 HLA matched unrelated pairs (67%). The comparison of HTLp and CTLp (cytotoxic T lymphocyte precursors) frequencies in HLA matched unrelated pairs showed that the two examinations are not fully alternative in detecting alloreactivity. This could suggest the utility of combined testing of both HTLp and CTLp frequencies for alloreactivity assessment. In contrast, five positive HTLp values were only found among 28 HLA genotypic identical siblings (18%). Previous CTLp limiting dilution studies showed very low or undetectable CTLp frequency results in that group. For that, HTLp assay remains to be the only cellular in vitro technique detecting alloreactivity in these combinations. (authors)

  6. Geographies of High Frequency Trading

    DEFF Research Database (Denmark)

    Grindsted, Thomas Skou

    2016-01-01

    This paper investigates the geographies of high frequency trading. Today shares shift hands within micro seconds, giving rise to a form of financial geographies termed algorithmic capitalism. This notion refers to the different spatio-temporalities produced by high frequency trading, under...... the valuation of time. As high frequency trading accelerates financial markets, the paper examines the spatio-temporalities of automated trading by the ways in which the speed of knowledge exploitation in financial markets is not only of interest, but also the expansion between different temporalities....... The paper demonstrates how the intensification of time-space compression produces radical new dynamics in the financial market and develops information rent in HFT as convertible to a time rent and a spatio-temporal rent. The final section discusses whether high frequency trading only responds to crises...

  7. High Frequency Voltage Injection Methods and Observer Design for Initial Position Detection of Permanent Magnet Synchronous Machines

    DEFF Research Database (Denmark)

    Jin, Xinhai; Ni, Ronggang; Chen, Wei

    2018-01-01

    The information of the initial rotor position is essential for smooth start up and robust control of Permanent Magnet Synchronous Machines (PMSMs). RoTating Voltage Injection (RTVI) methods in the stationary reference frame have been commonly adopted to detect the initial rotor position at stands......The information of the initial rotor position is essential for smooth start up and robust control of Permanent Magnet Synchronous Machines (PMSMs). RoTating Voltage Injection (RTVI) methods in the stationary reference frame have been commonly adopted to detect the initial rotor position...

  8. Lipa, B. et al. Tsunami Arrival Detection with High Frequency (HF Radar. Remote Sens. 2012, 4, 1448-1461

    Directory of Open Access Journals (Sweden)

    Donald Barrick

    2012-11-01

    Full Text Available We neglected to state that the radar data from Tokushima and Anan is owned by the Ministry of Land, Infrastructure, Transport and Tourism, Shikoku Regional Development Bureau, Komatsushima port and airport office, Japan. Lipa et al. [1] describe results on tsunami detection using data measured by two radars located at Tokushima and Anan on the Kii channel. This data is owned by the Ministry of Land, Infrastructure, Transport and Tourism, Shikoku Regional Development Bureau, Komatsushima port and airport office, Japan. Locations of the radars are shown in Figure 4(a,c [1]. Results of the data analysis are given in Section 3.1.2, plotted in Figure 6 and listed in Table 1 [1].

  9. [Detection of a higher incidence of pathologic somatic findings in globus sensation by use of high frequency cinematography].

    Science.gov (United States)

    Hannig, C; Wuttge-Hannig, A; Bockmeyer, M

    1987-07-01

    Since December 1984 303 patients have undergone examination in our Multidisciplinary Consultation Service for Swallowing Disorders; 117 of them were suffering from typical globus symptoms. We were able to increase the yield of detection of organic lesions by use of the technique of 35 mm film cineradiography with a rate of 50 frames/s. Frame-by-frame analysis and computer-assisted evaluation showed that 80% of the patients with globus symptoms suffered from one or more underlying organic diseases, which could often be treated later with success. We found an increased incidence of early hypopharyngeal diverticula, webs, and motility disorders of the upper esophageal sphincter often associated with gastro-esophageal reflux or weakness of the pharyngeal wall. Cineradiography proved to be a very important tool in the analysis of the pharyngeal swallow in globus pharyngis.

  10. High Frequency Trading, Information, and Takeovers

    NARCIS (Netherlands)

    Humphery-Jenner, M.

    2011-01-01

    This paper (1) proposes new variables to detect informed high-frequency trading (HFT), (2) shows that HFT can help to predict takeover targets, and (3) shows that HFT in uences target announcement announcement returns. Prior literature suggests that informed trade may occur before takeovers, but has

  11. High-frequency Trader Subjectivity

    DEFF Research Database (Denmark)

    Borch, Christian; Lange, Ann-Christina

    2017-01-01

    In this article, we examine the recent shift in financial markets toward high-frequency trading (HFT). This turn is being legitimized with reference to how algorithms are allegedly more rational and efficient than human traders, and less prone to emotionally motivated decisions. We argue......-techniques of the ideal high-frequency trader. We demonstrate that these traders face the challenge of avoiding emotional interference in their algorithms and that they deploy a set of disciplinary self-techniques to curb the importance of emotional attachment....

  12. High frequency of human papillomavirus detection in the vagina before first vaginal intercourse among females enrolled in a longitudinal cohort study.

    Science.gov (United States)

    Shew, Marcia L; Weaver, Bree; Tu, Wanzhu; Tong, Yan; Fortenberry, J Dennis; Brown, Darron R

    2013-03-15

    Genital human papillomavirus (HPV) infection is believed to be primarily sexually transmitted. Few studies have documented the detection of HPV in the vagina before first vaginal intercourse. We used a longitudinally followed cohort of adolescent females without prior vaginal intercourse to examine the frequency of detection of vaginal HPV and the association between first reported HPV detection and noncoital sexual behaviors. HPV was detected in 45.5% of subjects (10 of 22) before first vaginal sex. Seven of these 10 subjects reported noncoital behaviors that, in part, might have explained genital transmission. HPV can be detected in the vagina before first sexual intercourse, highlighting the need for early vaccination.

  13. Low frequency phase signal measurement with high frequency squeezing

    OpenAIRE

    Zhai, Zehui; Gao, Jiangrui

    2011-01-01

    We calculate the utility of high-frequency squeezed-state enhanced two-frequency interferometry for low-frequency phase measurement. To use the high-frequency sidebands of the squeezed light, a two-frequency intense laser is used in the interferometry instead of a single-frequency laser as usual. We find that the readout signal can be contaminated by the high-frequency phase vibration, but this is easy to check and avoid. A proof-of-principle experiment is in the reach of modern quantum optic...

  14. Giant magnetoimpedance and high frequency electrical detection of magnetic transition in La{sub 0.75}Sr{sub 0.25}MnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Barik, S K; Rebello, A; Tan, C L; Mahendiran, R [Department of Physics, Faculty of Science, National University of Singapore 2 Science Drive 3, Singapore-117542 (Singapore)

    2008-01-21

    We show that high frequency electrical transport is an efficient technique for detecting the magnetic transition hidden by the scattering of charges at grain boundaries in colossal magnetoresistive oxides, even in the absence of any external magnetic field. The dc resistivity which shows only a weak anomaly at the Curie temperature in La{sub 0.75}Sr{sub 0.25} MnO{sub 3} transforms into abrupt jumps in both resistive (Z') and reactive (Z-prime) parts of the ac impedance, Z(f, T, H) = Z'(f, T, H) + jZ-prime(f, T, H) at higher frequencies (f = 0.1-5 MHz). The anomaly in Z' and Z-prime at T{sub C} decreases as much as 19% and 15%, respectively, in a dc magnetic field of H 65 mT compared with 1% dc magnetoresistance, suggesting a possible giant low-field magnetoimpedance effect which could be exploited for room temperature practical applications. We interpret our observations due to changes in the magnetic penetration depth induced by the spontaneous ordering of spins and by the applied field. (fast track communication)

  15. Molecular Detection of Malaria at Delivery Reveals a High Frequency of Submicroscopic Infections and Associated Placental Damage in Pregnant Women from Northwest Colombia

    Science.gov (United States)

    Arango, Eliana M.; Samuel, Roshini; Agudelo, Olga M.; Carmona-Fonseca, Jaime; Maestre, Amanda; Yanow, Stephanie K.

    2013-01-01

    Plasmodium infection in pregnancy causes substantial maternal and infant morbidity and mortality. In Colombia, both P. falciparum and P. vivax are endemic, but the impact of either species on pregnancy is largely unknown in this country. A cross-sectional study was carried out with 96 pregnant women who delivered at their local hospital. Maternal, placental, and cord blood were tested for malaria infection by microscopy and real-time quantitative polymerase chain reaction (qPCR). A high frequency of infection was detected by qPCR (45%). These infections had low concentrations of parasite DNA, and 79% were submicroscopic. Submicroscopic infections were associated with placental villitis and intervillitis. In conclusion, the overall frequency of Plasmodium infection at delivery in Colombia is much higher than previously reported. These data prompt a re-examination of the local epidemiology of malaria using molecular diagnostics to establish the clinical relevance of submicroscopic infections during pregnancy as well as their consequences for mothers and newborns. PMID:23716408

  16. Lessons derived from two high-frequency sea level events in the Atlantic: implications for coastal risk analysis and tsunami detection

    Directory of Open Access Journals (Sweden)

    Begoña Pérez-Gómez

    2016-11-01

    Full Text Available The upgrade and enhancement of sea level networks worldwide for integration in sea level hazard warning systems have significantly increased the possibilities for measuring and analyzing high frequency sea level oscillations, with typical periods ranging from a few minutes to a few hours. Many tide gauges now afford 1 min or more frequent sampling and have shown such events to be a common occurrence. Their origins and spatial distribution are diverse and must be well understood in order to correctly design and interpret, for example, the automatic detection algorithms used by tsunami warning centers. Two events recorded recently in European Atlantic waters are analyzed here: possible wave-induced seiches that occurred along the North coast of Spain during the storms of January and February of 2014, and oscillations detected after an earthquake in the mid-Atlantic the 13th of February of 2015. The former caused significant flooding in towns and villages and a huge increase in wave-induced coastal damage that was reported in the media for weeks. The second was a smaller signal present in several tide gauges along the Atlantic coast that, that coincided with the occurrence of this earthquake, leading to a debate on the potential detection of a very small tsunami and how it might yield significant information for tsunami wave modelers and for the development of tsunami detection software. These kinds of events inform us about the limitations of automatic algorithms for tsunami warning and help to improve the information provided to tsunami warning centers, whilst also emphasizing the importance of other forcings in generating extreme sea levels and their associated potential for causing damage to infrastructure.

  17. Frequency Based Fault Detection in Wind Turbines

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob

    2014-01-01

    In order to obtain lower cost of energy for wind turbines fault detection and accommodation is important. Expensive condition monitoring systems are often used to monitor the condition of rotating and vibrating system parts. One example is the gearbox in a wind turbine. This system is operated...... in parallel to the control system, using different computers and additional often expensive sensors. In this paper a simple filter based algorithm is proposed to detect changes in a resonance frequency in a system, exemplified with faults resulting in changes in the resonance frequency in the wind turbine...... gearbox. Only the generator speed measurement which is available in even simple wind turbine control systems is used as input. Consequently this proposed scheme does not need additional sensors and computers for monitoring the condition of the wind gearbox. The scheme is evaluated on a wide-spread wind...

  18. High-frequency, high-intensity photoionization

    Science.gov (United States)

    Reiss, H. R.

    1996-02-01

    Two analytical methods for computing ionization by high-frequency fields are compared. Predicted ionization rates compare well, but energy predictions for the onset of ionization differ radically. The difference is shown to arise from the use of a transformation in one of the methods that alters the zero from which energy is measured. This alteration leads to an apparent energy threshold for ionization that can, especially in the stabilization regime, differ strongly from the laboratory measurement. It is concluded that channel closings in intense-field ionization can occur at high as well as low frequencies. It is also found that the stabilization phenomenon at high frequencies, very prominent for hydrogen, is absent in a short-range potential.

  19. High-Frequency Seafloor Acoustics

    CERN Document Server

    Jackson, Darrell R

    2007-01-01

    High-Frequency Seafloor Acoustics is the first book in a new series sponsored by the Office of Naval Research on the latest research in underwater acoustics. This exciting new title provides ready access to experimental data, theory, and models relevant to high-frequency seafloor acoustics and will be of interest to sonar engineers and researchers working in underwater acoustics. The physical characteristics of the seafloor affecting acoustic propagation and scattering are covered, including physical and geoacoustic properties and surface roughness. Current theories for acoustic propagation in sediments are presented along with corresponding models for reflection, scattering, and seafloor penetration. The main text is backed up by an extensive bibliography and technical appendices.

  20. Tsunami detection by high-frequency radar in British Columbia: performance assessment of the time-correlation algorithm for synthetic and real events

    Science.gov (United States)

    Guérin, Charles-Antoine; Grilli, Stéphan T.; Moran, Patrick; Grilli, Annette R.; Insua, Tania L.

    2018-02-01

    The authors recently proposed a new method for detecting tsunamis using high-frequency (HF) radar observations, referred to as "time-correlation algorithm" (TCA; Grilli et al. Pure Appl Geophys 173(12):3895-3934, 2016a, 174(1): 3003-3028, 2017). Unlike standard algorithms that detect surface current patterns, the TCA is based on analyzing space-time correlations of radar signal time series in pairs of radar cells, which does not require inverting radial surface currents. This was done by calculating a contrast function, which quantifies the change in pattern of the mean correlation between pairs of neighboring cells upon tsunami arrival, with respect to a reference correlation computed in the recent past. In earlier work, the TCA was successfully validated based on realistic numerical simulations of both the radar signal and tsunami wave trains. Here, this algorithm is adapted to apply to actual data from a HF radar installed in Tofino, BC, for three test cases: (1) a simulated far-field tsunami generated in the Semidi Subduction Zone in the Aleutian Arc; (2) a simulated near-field tsunami from a submarine mass failure on the continental slope off of Tofino; and (3) an event believed to be a meteotsunami, which occurred on October 14th, 2016, off of the Pacific West Coast and was measured by the radar. In the first two cases, the synthetic tsunami signal is superimposed onto the radar signal by way of a current memory term; in the third case, the tsunami signature is present within the radar data. In light of these test cases, we develop a detection methodology based on the TCA, using a correlation contrast function, and show that in all three cases the algorithm is able to trigger a timely early warning.

  1. Tsunami detection by high-frequency radar in British Columbia: performance assessment of the time-correlation algorithm for synthetic and real events

    Science.gov (United States)

    Guérin, Charles-Antoine; Grilli, Stéphan T.; Moran, Patrick; Grilli, Annette R.; Insua, Tania L.

    2018-05-01

    The authors recently proposed a new method for detecting tsunamis using high-frequency (HF) radar observations, referred to as "time-correlation algorithm" (TCA; Grilli et al. Pure Appl Geophys 173(12):3895-3934, 2016a, 174(1): 3003-3028, 2017). Unlike standard algorithms that detect surface current patterns, the TCA is based on analyzing space-time correlations of radar signal time series in pairs of radar cells, which does not require inverting radial surface currents. This was done by calculating a contrast function, which quantifies the change in pattern of the mean correlation between pairs of neighboring cells upon tsunami arrival, with respect to a reference correlation computed in the recent past. In earlier work, the TCA was successfully validated based on realistic numerical simulations of both the radar signal and tsunami wave trains. Here, this algorithm is adapted to apply to actual data from a HF radar installed in Tofino, BC, for three test cases: (1) a simulated far-field tsunami generated in the Semidi Subduction Zone in the Aleutian Arc; (2) a simulated near-field tsunami from a submarine mass failure on the continental slope off of Tofino; and (3) an event believed to be a meteotsunami, which occurred on October 14th, 2016, off of the Pacific West Coast and was measured by the radar. In the first two cases, the synthetic tsunami signal is superimposed onto the radar signal by way of a current memory term; in the third case, the tsunami signature is present within the radar data. In light of these test cases, we develop a detection methodology based on the TCA, using a correlation contrast function, and show that in all three cases the algorithm is able to trigger a timely early warning.

  2. High-Resolution Physical Properties Logging of the AND-1B Sediment Core - Opportunity for Detecting High-Frequency Signals of Paleoenvironmental Changes

    Science.gov (United States)

    Niessen, F.; Magens, D.; Kuhn, G.; Helling, D.

    2008-12-01

    . Values range over several orders of magnitude from diatomites to 8000 (10-5 SI) in single clasts (mainly dolerite). Synchronous minima and maxima in both WBD and MS support dramatic changes in the depositional environment, driven by oscillations in ice extent in response to global climate fluctuations on orbital timescales. Superimposed on this, small-amplitude variations of high frequency are found within diatomite units. A rhythmic pattern of probably millennial to centennial pacing proposes an additional non-orbital forcing as control on system dynamics, at least during interglacials.

  3. High-frequency magnetic components

    CERN Document Server

    Kazimierczuk, Marian K

    2013-01-01

    A unique text on the theory and design fundaments of inductors and transformers, updated with more coverage on the optimization of magnetic devices and many new design examples The first edition is popular among a very broad audience of readers in different areas of engineering and science. This book covers the theory and design techniques of the major types of high-frequency power inductors and transformers for a variety of applications, including switching-mode power supplies (SMPS) and resonant dc-to-ac power inverters and dc-to-dc power converters. It describes eddy-current phenomena (su

  4. High-frequency plasma oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Akhiezer, A I; Fainberg, Y B; Sitenko, A G; Stepanov, K; Kurilko, V; Gorbatenko, M; Kirochkin, U [Academy of Sciences of the Ukrainian SSR (USSR)

    1958-07-01

    It is well known that the electrical conductivity of a plasma, the ion-electron equilibration time, and the time required to heat the electron component of the plasma all increase greatly with increasing temperature. Consequently, the usual method of Joule heating a plasma may be difficult to apply in the region of high temperatures (> 10{sup 6}K), especially if the plasma current alone, without any additional measures, is used to generate magnetic fields for the confinement of the plasma. Therefore, it is of interest to study methods of plasma heating that do not directly use Joule heat, especially methods by which energy is directly supplied to the ion component during the time between collisions. Some of these methods make use of ionic resonance as well as other resonance phenomena which can occur in plasma in an external magnetic field. This paper deals with certain aspects of the theory of high-frequency plasma oscillations.

  5. High Temperature Radio Frequency Loads

    CERN Document Server

    Federmann, S; Grudiev, A; Montesinos, E; Syratchev, I

    2011-01-01

    In the context of energy saving and recovery requirements the design of reliable and robust RF power loads which permit a high outlet temperature and high pressure of the cooling water is desirable. Cooling water arriving at the outlet withmore than 150 ◦C and high pressure has a higher value than water with 50 ◦C under low pressure. Conventional RF power loads containing dielectric and magnetic materials as well as sensitive ceramic windows usually do not permit going much higher than 90 ◦C. Here we present and discuss several design concepts for "metal only" RF high power loads. One concept is the application of magnetic steel corrugated waveguides near cutoff – this concept could find practical use above several GHz. Another solution are resonant structures made of steel to be installed in large waveguides for frequencies of 500 MHz or lower. Similar resonant structures above 100 MHz taking advantage of the rather high losses of normal steel may also be used in coaxial line geometries with large di...

  6. Frequency modulation detection atomic force microscopy in the liquid environment

    Science.gov (United States)

    Jarvis, S. P.; Ishida, T.; Uchihashi, T.; Nakayama, Y.; Tokumoto, H.

    True atomic resolution imaging using frequency modulation detection is already well established in ultra-high vacuum. In this paper we demonstrate that it also has great potential in the liquid environment. Using a combination of magnetic activation and high-aspect-ratio carbon nanotube probes, we show that imaging can be readily combined with point spectroscopy, revealing both the tip-sample interaction and the structure of the intermediate liquid.

  7. Econometrics of financial high-frequency data

    CERN Document Server

    Hautsch, Nikolaus

    2011-01-01

    This book covers major approaches in high-frequency econometrics. It discusses implementation details, provides insights into properties of high-frequency data as well as institutional settings and presents applications.

  8. Correcting length-frequency distributions for imperfect detection

    Science.gov (United States)

    Breton, André R.; Hawkins, John A.; Winkelman, Dana L.

    2013-01-01

    Sampling gear selects for specific sizes of fish, which may bias length-frequency distributions that are commonly used to assess population size structure, recruitment patterns, growth, and survival. To properly correct for sampling biases caused by gear and other sources, length-frequency distributions need to be corrected for imperfect detection. We describe a method for adjusting length-frequency distributions when capture and recapture probabilities are a function of fish length, temporal variation, and capture history. The method is applied to a study involving the removal of Smallmouth Bass Micropterus dolomieu by boat electrofishing from a 38.6-km reach on the Yampa River, Colorado. Smallmouth Bass longer than 100 mm were marked and released alive from 2005 to 2010 on one or more electrofishing passes and removed on all other passes from the population. Using the Huggins mark–recapture model, we detected a significant effect of fish total length, previous capture history (behavior), year, pass, year×behavior, and year×pass on capture and recapture probabilities. We demonstrate how to partition the Huggins estimate of abundance into length frequencies to correct for these effects. Uncorrected length frequencies of fish removed from Little Yampa Canyon were negatively biased in every year by as much as 88% relative to mark–recapture estimates for the smallest length-class in our analysis (100–110 mm). Bias declined but remained high even for adult length-classes (≥200 mm). The pattern of bias across length-classes was variable across years. The percentage of unadjusted counts that were below the lower 95% confidence interval from our adjusted length-frequency estimates were 95, 89, 84, 78, 81, and 92% from 2005 to 2010, respectively. Length-frequency distributions are widely used in fisheries science and management. Our simple method for correcting length-frequency estimates for imperfect detection could be widely applied when mark–recapture data

  9. Ultrasensitive detection of atmospheric trace gases using frequency modulation spectroscopy

    Science.gov (United States)

    Cooper, David E.

    1986-01-01

    Frequency modulation (FM) spectroscopy is a new technique that promises to significantly extend the state-of-the-art in point detection of atmospheric trace gases. FM spectroscopy is essentially a balanced bridge optical heterodyne approach in which a small optical absorption or dispersion from an atomic or molecular species of interest generates an easily detected radio frequency (RF) signal. This signal can be monitored using standard RF signal processing techniques and is, in principle, limited only by the shot noise generated in the photodetector by the laser source employed. The use of very high modulation frequencies which exceed the spectral width of the probed absorption line distinguishes this technique from the well-known derivative spectroscopy which makes use of low (kHz) modulation frequencies. FM spectroscopy was recently extended to the 10 micron infrared (IR) spectral region where numerous polyatomic molecules exhibit characteristic vibrational-rotational bands. In conjunction with tunable semiconductor diode lasers, the quantum-noise-limited sensitivity of the technique should allow for the detection of absorptions as small as .00000001 in the IR spectral region. This sensitivity would allow for the detection of H2O2 at concentrations as low as 1 pptv with an integration time of 10 seconds.

  10. Detection of high frequency of mutations in a breast and/or ovarian cancer cohort: implications of embracing a multi-gene panel in molecular diagnosis in India.

    Science.gov (United States)

    Mannan, Ashraf U; Singh, Jaya; Lakshmikeshava, Ravikiran; Thota, Nishita; Singh, Suhasini; Sowmya, T S; Mishra, Avshesh; Sinha, Aditi; Deshwal, Shivani; Soni, Megha R; Chandrasekar, Anbukayalvizhi; Ramesh, Bhargavi; Ramamurthy, Bharat; Padhi, Shila; Manek, Payal; Ramalingam, Ravi; Kapoor, Suman; Ghosh, Mithua; Sankaran, Satish; Ghosh, Arunabha; Veeramachaneni, Vamsi; Ramamoorthy, Preveen; Hariharan, Ramesh; Subramanian, Kalyanasundaram

    2016-06-01

    Breast and/or ovarian cancer (BOC) are among the most frequently diagnosed forms of hereditary cancers and leading cause of death in India. This emphasizes on the need for a cost-effective method for early detection of these cancers. We sequenced 141 unrelated patients and families with BOC using the TruSight Cancer panel, which includes 13 genes strongly associated with risk of inherited BOC. Multi-gene sequencing was done on the Illumina MiSeq platform. Genetic variations were identified using the Strand NGS software and interpreted using the StrandOmics platform. We were able to detect pathogenic mutations in 51 (36.2%) cases, out of which 19 were novel mutations. When we considered familial breast cancer cases only, the detection rate increased to 52%. When cases were stratified based on age of diagnosis into three categories, ⩽40 years, 40-50 years and >50 years, the detection rates were higher in the first two categories (44.4% and 53.4%, respectively) as compared with the third category, in which it was 26.9%. Our study suggests that next-generation sequencing-based multi-gene panels increase the sensitivity of mutation detection and help in identifying patients with a high risk of developing cancer as compared with sequential tests of individual genes.

  11. High-frequency detection of cell activity of Physarum polycephalum by a planar open gate AlGaN/GaN HEMT

    International Nuclear Information System (INIS)

    Witte, Hartmut; Lippelt, Thomas; Warnke, Christian; Dadgar, Armin; Krost, Alois; Hauser, Marcus J B

    2014-01-01

    The dynamics of cells of the slime mould Physarum polycephalum are investigated with a planar AlGaN/GaN high electron mobility transistor (HEMT) without any gate metallization. The source–drain contacts are used in a two-electrode arrangement whereas the free gate surface area is occupied by the Physarum cell. In order to understand the measured signals, basic properties of the interface between the cell and the HEMT surface were analysed by impedance spectroscopy. At high frequencies the interface impedance is governed by the conductance of the cell due to a direct current through the HEMT/cell interface. The locomotive dynamics of Physarum were recorded by the source–drain impedance at 10 kHz in combination with simultaneous video imaging that monitored the degree of occupancy of the HEMT surface by the cell. A precise correlation was found between the impedance and the coverage of the HEMT surface by the cell. It is observed that the entire region between the contacts is sensitive to the cell activity. Well-resolved cellular oscillations were observed for all measured parameters. Their periods corresponded to the typical periods of the intracellular shuttle streaming of protoplasma in Physarum. This demonstrates that high-frequency impedance measurements with AlGaN/GaN HEMT structures are well suited for the analysis of both the static parts of single Physarum cells as well as of their dynamic behaviour, such as their expansion and motility. (paper)

  12. Beat frequency ultrasonic microsphere contrast agent detection system

    Science.gov (United States)

    Pretlow, III, Robert A. (Inventor); Yost, William T. (Inventor); Cantrell, Jr., John H. (Inventor)

    1997-01-01

    A system for and method of detecting and measuring concentrations of an ultrasonically-reflective microsphere contrast agent involving detecting non-linear sum and difference beat frequencies produced by the microspheres when two impinging signals with non-identical frequencies are combined by mixing. These beat frequencies can be used for a variety of applications such as detecting the presence of and measuring the flow rates of biological fluids and industrial liquids, including determining the concentration level of microspheres in the myocardium.

  13. Design and development of ITER high-frequency magnetic sensor

    NARCIS (Netherlands)

    Ma, Y.; Vayakis, G.; Begrambekov, L. B.; Cooper, J.J.; Duran, I.; Hirsch, M.; Laqua, H.P.; Moreau, Ph.; Oosterbeek, J.W.; Spuig, P.; Stange, T.; Walsh, M.

    2016-01-01

    High-frequency (HF) inductive magnetic sensors are the primary ITER diagnostic set for Toroidal Alfvén Eigenmodes (TAE) detection, while they also supplement low-frequency MHD and plasma equilibrium measurements. These sensors will be installed on the inner surface of ITER vacuum vessel, operated in

  14. High Frequency Components Recovery in Music Signals

    Directory of Open Access Journals (Sweden)

    V. Sebesta

    1999-04-01

    Full Text Available A new technique is presented which improves the subjective quality of band-limited music by recovery of high frequency components. Sequences of harmonics are found in the band-limited signal and these sequences are expanded to the high frequency band to estimate the lost part of spectrum. High frequency signal is generated to match this estimation and is added to the band-limited signal.

  15. Lightweight, high-frequency transformers

    Science.gov (United States)

    Schwarze, G. E.

    1983-01-01

    The 25-kVA space transformer was developed under contract by Thermal Technology Laboratory, Buffalo, N. Y. The NASA Lewis transformer technology program attempted to develop the baseline technology. For the 25-kVA transformer the input voltage was chosen as 200 V, the output voltage as 1500 V, the input voltage waveform as square wave, the duty cycle as continuous, the frequency range (within certain constraints) as 10 to 40 kHz, the operating temperatures as 85 deg. and 130 C, the baseplate temperature as 50 C, the equivalent leakage inductance as less than 10 micro-h, the operating environment as space, and the life expectancy as 10 years. Such a transformer can also be used for aircraft, ship and terrestrial applications.

  16. High quality factor gigahertz frequencies in nanomechanical diamond resonators

    OpenAIRE

    Gaidarzhy, Alexei; Imboden, Matthias; Mohanty, Pritiraj; Rankin, Janet; Sheldon, Brian W.

    2007-01-01

    We report actuation and detection of gigahertz-range resonance frequencies in nano-crystalline diamond mechanical resonators. High order transverse vibration modes are measured in coupled-beam resonators exhibiting frequencies up to 1.441 GHz. The cantilever-array design of the resonators translates the gigahertz-range resonant motion of micron-long cantilever elements to the displacement of the central supporting structure. Use of nano-crystalline diamond further increases the frequency comp...

  17. Iterative MMSE Detection for MIMO/BLAST DS-CDMA Systems in Frequency Selective Fading Channels - Achieving High Performance in Fully Loaded Systems

    Science.gov (United States)

    Silva, João Carlos; Souto, Nuno; Cercas, Francisco; Dinis, Rui

    A MMSE (Minimum Mean Square Error) DS-CDMA (Direct Sequence-Code Division Multiple Access) receiver coupled with a low-complexity iterative interference suppression algorithm was devised for a MIMO/BLAST (Multiple Input, Multiple Output / Bell Laboratories Layered Space Time) system in order to improve system performance, considering frequency selective fading channels. The scheme is compared against the simple MMSE receiver, for both QPSK and 16QAM modulations, under SISO (Single Input, Single Output) and MIMO systems, the latter with 2Tx by 2Rx and 4Tx by 4Rx (MIMO order 2 and 4 respectively) antennas. To assess its performance in an existing system, the uncoded UMTS HSDPA (High Speed Downlink Packet Access) standard was considered.

  18. High-frequency conductivity of photoionized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Anakhov, M. V.; Uryupin, S. A., E-mail: uryupin@sci.lebedev.ru [National Research Nuclear University “MEPhI,” (Russian Federation)

    2016-08-15

    The tensor of the high-frequency conductivity of a plasma created via tunnel ionization of atoms in the field of linearly or circularly polarized radiation is derived. It is shown that the real part of the conductivity tensor is highly anisotropic. In the case of a toroidal velocity distribution of photoelectrons, the possibility of amplification of a weak high-frequency field polarized at a sufficiently large angle to the anisotropy axis of the initial nonequilibrium distribution is revealed.

  19. Cooking Appliances Using High-Frequency Heating

    OpenAIRE

    木村, 秀行; Hideyuki, KIMURA; (株)日立製作所機械研究所

    2007-01-01

    We have produced a guide suitable for people with no technical knowledge of cooking appliances that use high-frequency heating. In general, cooking appliances that use an electric heat source are popular since, they are simple to use because the offer easy heat control, are safe because they do not have naked flames, and do not make kitchens dirty because there is no exhaust. In recent years, high-efficiency cooking appliances using high-frequency heating technology have surged in popularity....

  20. High frequency oscillations in brain hemodynamic response

    Science.gov (United States)

    Akin, Ata; Bolay, Hayrunnisa

    2007-07-01

    Tight autoregulation of vessel tone guarantees proper delivery of nutrients to the tissues. This regulation is maintained at a more delicate level in the brain since any decrease in the supply of glucose and oxygen to neuronal tissues might lead to unrecoverable injury. Functional near infrared spectroscopy has been proposed as a new tool to monitor the cerebrovascular response during cognitive activity. We have observed that during a Stroop task three distinct oscillatory patterns govern the control of the cerebrovascular reactivity: very low frequency (0.02-0.05 Hz), low frequency (0.08-0.12 Hz) and high frequency (0.12-0.18 Hz). High frequency oscillations have been shown to be related to stress level of the subjects. Our findings indicate that as the stress level is increased so does the energy of the high frequency component indicating a higher stimulation from the autonomic nervous system.

  1. 75 FR 81284 - Nationwide Use of High Frequency and Ultra High Frequency Active SONAR Technology; Draft...

    Science.gov (United States)

    2010-12-27

    ... Frequency and Ultra High Frequency Active SONAR Technology; Draft Programmatic Environmental Assessment and... Programmatic Environmental Assessment (PEA) for the Nationwide Use of High Frequency (HF) and Ultra High... potential impacts of each alternative on the human and natural environments. DATES: Comments and related...

  2. High frequency dynamics in centrifugal compressors

    NARCIS (Netherlands)

    Twerda, A.; Meulendijks, D.; Smeulers, J.P.M.; Handel, R. van den; Lier, L.J. van

    2008-01-01

    Problems with centrifugal compressors relating to high frequency, i.e. Blade passing frequency (BPF) are increasing. Pulsations and vibrations generated in centrifugal compressors can lead to nuisance, due to strong tonal noise, and even breakdown. In several cases the root cause of a failure or a

  3. Detection and Analytical Capabilities for Trace Level of Carbon in High-Purity Metals by Laser-Induced Breakdown Spectroscopy with a Frequency Quintupled 213 nm Nd:YAG Laser

    Directory of Open Access Journals (Sweden)

    Masaki Ohata

    2017-01-01

    Full Text Available The laser-induced breakdown spectroscopy (LIBS with a frequency quintupled 213 nm Nd:YAG laser was examined to the analysis of trace level of carbon (C in high-purity metals and its detection and analytical capabilities were evaluated. Though C signal in a wavelength of 247.9 nm, which showed the highest sensitivity of C, could be obtained from Cd, Ti, and Zn ca. 7000 mg kg−1 C in Fe could not be detected due to the interferences from a lot of Fe spectra. Alternative C signal in a wavelength of 193.1 nm could not be also detected from Fe due to the insufficient laser output energy of the frequency quintupled 213 nm Nd:YAG laser. The depth analysis of C by LIBS was also demonstrated and the C in Cd and Zn was found to be contaminated in only surface area whereas the C in Ti was distributed in bulk. From these results, the frequency quintupled 213 nm Nd:YAG laser, which was adopted widely as a commercial laser ablation (LA system coupled with inductively coupled plasma mass spectrometry (ICPMS for trace element analysis in solid materials, could be used for C analysis to achieve simultaneous measurements for both C and trace elements in metals by LIBS and LA-ICPMS, respectively.

  4. Superconducting high frequency high power resonators

    International Nuclear Information System (INIS)

    Hobbis, C.; Vardiman, R.; Weinman, L.

    1974-01-01

    A niobium superconducting quarter-wave helical resonator has been designed and built. The resonator has been electron-beam welded and electropolished to produce a smooth flaw-free surface. This has been followed by an anodization to produce a 1000 A layer of Nb 2 0 5 . At the resonant frequency of approximately 15 MHz the unloaded Q was approximately equal to 4.6x10 6 with minimal dielectric support. With the resonator open to the helium bath to provide cooling, and rigidly supported by a teflon cylinder, 350 V of power were transferred at a doubly loaded Q of 3500. The extrapolation of the results to a Qsub(DL) of 1000 meet the power handling criteria of one kilowatt for the intended application. (author)

  5. Overview of the Advanced High Frequency Branch

    Science.gov (United States)

    Miranda, Felix A.

    2015-01-01

    This presentation provides an overview of the competencies, selected areas of research and technology development activities, and current external collaborative efforts of the NASA Glenn Research Center's Advanced High Frequency Branch.

  6. Nanostructures for Very High Frequency Electronics

    National Research Council Canada - National Science Library

    Gelmont, Boris

    2002-01-01

    The study of a new class of mesoscopic high frequency semi-conductor devices based on resonant tunneling in staggered-bandgap heterostructures with III-V semi-conductor ternary alloys such as AlGaSb...

  7. High frequency system project implementation plan

    International Nuclear Information System (INIS)

    Moon, L.L.

    1976-01-01

    The High Frequency System is a new mobile, digital diagnostic recording system for use at the Nevada Test Site. Many different kinds of event data will be digitized in real-time by this system, and these data will be recorded and stored for later read-out and transmission to NADCEN. The hardware and software requirements of the High Frequency System are examined, and the parameters of the system are proposed

  8. High frequency conductivity in carbon nanotubes

    Directory of Open Access Journals (Sweden)

    S. S. Abukari

    2012-12-01

    Full Text Available We report on theoretical analysis of high frequency conductivity in carbon nanotubes. Using the kinetic equation with constant relaxation time, an analytical expression for the complex conductivity is obtained. The real part of the complex conductivity is initially negative at zero frequency and become more negative with increasing frequency, until it reaches a resonance minimum at ω ∼ ωB for metallic zigzag CNs and ω < ωB for armchair CNs. This resonance enhancement is indicative for terahertz gain without the formation of current instabilities induced by negative dc conductivity. We noted that due to the high density of states of conduction electrons in metallic zigzag carbon nanotubes and the specific dispersion law inherent in hexagonal crystalline structure result in a uniquely high frequency conductivity than the corresponding values for metallic armchair carbon nanotubes. We suggest that this phenomenon can be used to suppress current instabilities that are normally associated with a negative dc differential conductivity.

  9. Frequency-agile THz-wave generation and detection system using nonlinear frequency conversion at room temperature.

    Science.gov (United States)

    Guo, Ruixiang; Ikar'i, Tomofumi; Zhang, Jun; Minamide, Hiroaki; Ito, Hiromasa

    2010-08-02

    A surface-emitting THz parametric oscillator is set up to generate a narrow-linewidth, nanosecond pulsed THz-wave radiation. The THz-wave radiation is coherently detected using the frequency up-conversion in MgO: LiNbO(3) crystal. Fast frequency tuning and automatic achromatic THz-wave detection are achieved through a special optical design, including a variable-angle mirror and 1:1 telescope devices in the pump and THz-wave beams. We demonstrate a frequency-agile THz-wave parametric generation and THz-wave coherent detection system. This system can be used as a frequency-domain THz-wave spectrometer operated at room-temperature, and there are a high possible to develop into a real-time two-dimensional THz spectral imaging system.

  10. Extremely high frequency RF effects on electronics.

    Energy Technology Data Exchange (ETDEWEB)

    Loubriel, Guillermo Manuel; Vigliano, David; Coleman, Phillip Dale; Williams, Jeffery Thomas; Wouters, Gregg A.; Bacon, Larry Donald; Mar, Alan

    2012-01-01

    The objective of this work was to understand the fundamental physics of extremely high frequency RF effects on electronics. To accomplish this objective, we produced models, conducted simulations, and performed measurements to identify the mechanisms of effects as frequency increases into the millimeter-wave regime. Our purpose was to answer the questions, 'What are the tradeoffs between coupling, transmission losses, and device responses as frequency increases?', and, 'How high in frequency do effects on electronic systems continue to occur?' Using full wave electromagnetics codes and a transmission-line/circuit code, we investigated how extremely high-frequency RF propagates on wires and printed circuit board traces. We investigated both field-to-wire coupling and direct illumination of printed circuit boards to determine the significant mechanisms for inducing currents at device terminals. We measured coupling to wires and attenuation along wires for comparison to the simulations, looking at plane-wave coupling as it launches modes onto single and multiconductor structures. We simulated the response of discrete and integrated circuit semiconductor devices to those high-frequency currents and voltages, using SGFramework, the open-source General-purpose Semiconductor Simulator (gss), and Sandia's Charon semiconductor device physics codes. This report documents our findings.

  11. High-Frequency Percussive Ventilation Revisited

    Science.gov (United States)

    2010-01-01

    be implemented. ‡ Follow the reverse of the ventilation sequence if respiratory alkalosis develops—however, start at ventilation goal sequence 1 not at...High-frequency percussive ventilation (HFPV) has demonstrated a potential role as a rescue option for refractory acute respiratory distress syndrome...frequency percussive ventilation (HFPV) has demon- strated a potential role as a salvage option for refrac- tory acute respiratory distress syndrome

  12. High Frequency Traders and Market Structure

    NARCIS (Netherlands)

    Menkveld, A.J.

    2014-01-01

    The arrival of high-frequency traders (HFTs) coincided with the entry of new markets and, subsequently, strong fragmentation of the order flow. These trends might be related as new markets serve HFTs who seek low fees and high speed. New markets only thrive on competitive price quotes that

  13. High-frequency energy in singing and speech

    Science.gov (United States)

    Monson, Brian Bruce

    While human speech and the human voice generate acoustical energy up to (and beyond) 20 kHz, the energy above approximately 5 kHz has been largely neglected. Evidence is accruing that this high-frequency energy contains perceptual information relevant to speech and voice, including percepts of quality, localization, and intelligibility. The present research was an initial step in the long-range goal of characterizing high-frequency energy in singing voice and speech, with particular regard for its perceptual role and its potential for modification during voice and speech production. In this study, a database of high-fidelity recordings of talkers was created and used for a broad acoustical analysis and general characterization of high-frequency energy, as well as specific characterization of phoneme category, voice and speech intensity level, and mode of production (speech versus singing) by high-frequency energy content. Directionality of radiation of high-frequency energy from the mouth was also examined. The recordings were used for perceptual experiments wherein listeners were asked to discriminate between speech and voice samples that differed only in high-frequency energy content. Listeners were also subjected to gender discrimination tasks, mode-of-production discrimination tasks, and transcription tasks with samples of speech and singing that contained only high-frequency content. The combination of these experiments has revealed that (1) human listeners are able to detect very subtle level changes in high-frequency energy, and (2) human listeners are able to extract significant perceptual information from high-frequency energy.

  14. PageRank for low frequency earthquake detection

    Science.gov (United States)

    Aguiar, A. C.; Beroza, G. C.

    2013-12-01

    We have analyzed Hi-Net seismic waveform data during the April 2006 tremor episode in the Nankai Trough in SW Japan using the autocorrelation approach of Brown et al. (2008), which detects low frequency earthquakes (LFEs) based on pair-wise waveform matching. We have generalized this to exploit the fact that waveforms may repeat multiple times, on more than just a pair-wise basis. We are working towards developing a sound statistical basis for event detection, but that is complicated by two factors. First, the statistical behavior of the autocorrelations varies between stations. Analyzing one station at a time assures that the detection threshold will only depend on the station being analyzed. Second, the positive detections do not satisfy "closure." That is, if window A correlates with window B, and window B correlates with window C, then window A and window C do not necessarily correlate with one another. We want to evaluate whether or not a linked set of windows are correlated due to chance. To do this, we map our problem on to one that has previously been solved for web search, and apply Google's PageRank algorithm. PageRank is the probability of a 'random surfer' to visit a particular web page; it assigns a ranking for a webpage based on the amount of links associated with that page. For windows of seismic data instead of webpages, the windows with high probabilities suggest likely LFE signals. Once identified, we stack the matched windows to improve the snr and use these stacks as template signals to find other LFEs within continuous data. We compare the results among stations and declare a detection if they are found in a statistically significant number of stations, based on multinomial statistics. We compare our detections using the single-station method to detections found by Shelly et al. (2007) for the April 2006 tremor sequence in Shikoku, Japan. We find strong similarity between the results, as well as many new detections that were not found using

  15. High-frequency and microwave circuit design

    CERN Document Server

    Nelson, Charles

    2007-01-01

    An integral part of any communications system, high-frequency and microwave design stimulates major progress in the wireless world and continues to serve as a foundation for the commercial wireless products we use every day. The exceptional pace of advancement in developing these systems stipulates that engineers be well versed in multiple areas of electronics engineering. With more illustrations, examples, and worked problems, High-Frequency and Microwave Circuit Design, Second Edition provides engineers with a diverse body of knowledge they can use to meet the needs of this rapidly progressi

  16. High frequency and pulse scattering physical acoustics

    CERN Document Server

    Pierce, Allan D

    1992-01-01

    High Frequency and Pulse Scattering investigates high frequency and pulse scattering, with emphasis on the phenomenon of echoes from objects. Geometrical and catastrophe optics methods in scattering are discussed, along with the scattering of sound pulses and the ringing of target resonances. Caustics and associated diffraction catastrophes are also examined.Comprised of two chapters, this volume begins with a detailed account of geometrically based approximation methods in scattering theory, focusing on waves transmitted through fluid and elastic scatterers and glory scattering; surface ray r

  17. Dispersive detection of radio-frequency-dressed states

    Science.gov (United States)

    Jammi, Sindhu; Pyragius, Tadas; Bason, Mark G.; Florez, Hans Marin; Fernholz, Thomas

    2018-04-01

    We introduce a method to dispersively detect alkali-metal atoms in radio-frequency-dressed states. In particular, we use dressed detection to measure populations and population differences of atoms prepared in their clock states. Linear birefringence of the atomic medium enables atom number detection via polarization homodyning, a form of common path interferometry. In order to achieve low technical noise levels, we perform optical sideband detection after adiabatic transformation of bare states into dressed states. The balanced homodyne signal then oscillates independently of field fluctuations at twice the dressing frequency, thus allowing for robust, phase-locked detection that circumvents low-frequency noise. Using probe pulses of two optical frequencies, we can detect both clock states simultaneously and obtain population difference as well as the total atom number. The scheme also allows for difference measurements by direct subtraction of the homodyne signals at the balanced detector, which should technically enable quantum noise limited measurements with prospects for the preparation of spin squeezed states. The method extends to other Zeeman sublevels and can be employed in a range of atomic clock schemes, atom interferometers, and other experiments using dressed atoms.

  18. Dry friction damping couple at high frequencies

    Czech Academy of Sciences Publication Activity Database

    Půst, Ladislav; Pešek, Luděk; Košina, Jan; Radolfová, Alena

    2014-01-01

    Roč. 8, č. 1 (2014), s. 91-100 ISSN 1802-680X Institutional support: RVO:61388998 Keywords : dry friction * damping * high frequencies Subject RIV: BI - Acoustics http://www.kme.zcu.cz/acm/acm/article/view/239/265

  19. Essays on high frequency financial econometrics

    NARCIS (Netherlands)

    Yang, X.

    2015-01-01

    It has long been demonstrated that continuous-time methods are powerful tools in financial modeling. Yet only in recent years, their counterparts in empirical analysis—high frequency econometrics—began to emerge with the availability of intra-day data and relevant statistical tools. This

  20. Evolution of Very High Frequency Power Supplies

    DEFF Research Database (Denmark)

    Knott, Arnold; Andersen, Toke Meyer; Kamby, Peter

    2013-01-01

    The ongoing demand for smaller and lighter power supplies is driving the motivation to increase the switching frequencies of power converters. Drastic increases however come along with new challenges, namely the increase of switching losses in all components. The application of power circuits used...... in radio frequency transmission equipment helps to overcome those. However those circuits were not designed to meet the same requirements as power converters. This paper summarizes the contributions in recent years in application of very high frequency (VHF) technologies in power electronics, shows results...... of the recent advances and describes the remaining challenges. The presented results include a self-oscillating gate-drive, air core inductor optimizations, an offline LED driver with a power density of 8.9 W/cm3 and a 120 MHz, 9 W DC powered LED driver with 89 % efficiency as well as a bidirectional VHF...

  1. Music students: conventional hearing thresholds and at high frequencies.

    Science.gov (United States)

    Lüders, Débora; Gonçalves, Cláudia Giglio de Oliveira; Lacerda, Adriana Bender de Moreira; Ribas, Ângela; Conto, Juliana de

    2014-01-01

    Research has shown that hearing loss in musicians may cause difficulty in timbre recognition and tuning of instruments. To analyze the hearing thresholds from 250 Hz to 16,000 Hz in a group of music students and compare them to a non-musician group in order to determine whether high-frequency audiometry is a useful tool in the early detection of hearing impairment. Study design was a retrospective observational cohort. Conventional and high-frequency audiometry was performed in 42 music students (Madsen Itera II audiometer and TDH39P headphones for conventional audiometry, and HDA 200 headphones for high-frequency audiometry). Of the 42 students, 38.1% were female students and 61.9% were male students, with a mean age of 26 years. At conventional audiometry, 92.85% had hearing thresholds within normal limits; but even within the normal limits, the worst results were observed in the left ear for all frequencies, except for 4000 Hz; compared to the non-musician group, the worst results occurred at 500 Hz in the left ear, and at 250 Hz, 6000 Hz, 9000 Hz, 10,000 Hz, and 11,200 Hz in both the ears. The periodic evaluation of high-frequency thresholds may be useful in the early detection of hearing loss in musicians. Copyright © 2014 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  2. Music students: conventional hearing thresholds and at high frequencies

    Directory of Open Access Journals (Sweden)

    Débora Lüders

    2014-07-01

    Full Text Available INTRODUCTION: Research has shown that hearing loss in musicians may cause difficulty in timbre recognition and tuning of instruments. AIM: To analyze the hearing thresholds from 250 Hz to 16,000 Hz in a group of music students and compare them to a non-musician group in order to determine whether high-frequency audiometry is a useful tool in the early detection of hearing impairment. METHODS: Study design was a retrospective observational cohort. Conventional and high-frequency audiometry was performed in 42 music students (Madsen Itera II audiometer and TDH39P headphones for conventional audiometry, and HDA 200 headphones for high-frequency audiometry. RESULTS: Of the 42 students, 38.1% were female students and 61.9% were male students, with a mean age of 26 years. At conventional audiometry, 92.85% had hearing thresholds within normal limits; but even within the normal limits, the worst results were observed in the left ear for all frequencies, except for 4000 Hz; compared to the non-musician group, the worst results occurred at 500 Hz in the left ear, and at 250 Hz, 6000 Hz, 9000 Hz, 10,000 Hz, and 11,200 Hz in both the ears. CONCLUSION: The periodic evaluation of high-frequency thresholds may be useful in the early detection of hearing loss in musicians.

  3. High-frequency Rayleigh-wave method

    Science.gov (United States)

    Xia, J.; Miller, R.D.; Xu, Y.; Luo, Y.; Chen, C.; Liu, J.; Ivanov, J.; Zeng, C.

    2009-01-01

    High-frequency (???2 Hz) Rayleigh-wave data acquired with a multichannel recording system have been utilized to determine shear (S)-wave velocities in near-surface geophysics since the early 1980s. This overview article discusses the main research results of high-frequency surface-wave techniques achieved by research groups at the Kansas Geological Survey and China University of Geosciences in the last 15 years. The multichannel analysis of surface wave (MASW) method is a non-invasive acoustic approach to estimate near-surface S-wave velocity. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that simultaneous inversion with higher modes and the fundamental mode can increase model resolution and an investigation depth. The other important seismic property, quality factor (Q), can also be estimated with the MASW method by inverting attenuation coefficients of Rayleigh waves. An inverted model (S-wave velocity or Q) obtained using a damped least-squares method can be assessed by an optimal damping vector in a vicinity of the inverted model determined by an objective function, which is the trace of a weighted sum of model-resolution and model-covariance matrices. Current developments include modeling high-frequency Rayleigh-waves in near-surface media, which builds a foundation for shallow seismic or Rayleigh-wave inversion in the time-offset domain; imaging dispersive energy with high resolution in the frequency-velocity domain and possibly with data in an arbitrary acquisition geometry, which opens a door for 3D surface-wave techniques; and successfully separating surface-wave modes, which provides a valuable tool to perform S-wave velocity profiling with high-horizontal resolution. ?? China University of Geosciences (Wuhan) and Springer-Verlag GmbH 2009.

  4. High-Order Frequency-Locked Loops

    DEFF Research Database (Denmark)

    Golestan, Saeed; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2017-01-01

    In very recent years, some attempts for designing high-order frequency-locked loops (FLLs) have been made. Nevertheless, the advantages and disadvantages of these structures, particularly in comparison with a standard FLL and high-order phase-locked loops (PLLs), are rather unclear. This lack...... study, and its small-signal modeling, stability analysis, and parameter tuning are presented. Finally, to gain insight about advantages and disadvantages of high-order FLLs, a theoretical and experimental performance comparison between the designed second-order FLL and a standard FLL (first-order FLL...

  5. High Frequency Amplitude Detector for GMI Magnetic Sensors

    Directory of Open Access Journals (Sweden)

    Aktham Asfour

    2014-12-01

    Full Text Available A new concept of a high-frequency amplitude detector and demodulator for Giant-Magneto-Impedance (GMI sensors is presented. This concept combines a half wave rectifier, with outstanding capabilities and high speed, and a feedback approach that ensures the amplitude detection with easily adjustable gain. The developed detector is capable of measuring high-frequency and very low amplitude signals without the use of diode-based active rectifiers or analog multipliers. The performances of this detector are addressed throughout the paper. The full circuitry of the design is given, together with a comprehensive theoretical study of the concept and experimental validation. The detector has been used for the amplitude measurement of both single frequency and pulsed signals and for the demodulation of amplitude-modulated signals. It has also been successfully integrated in a GMI sensor prototype. Magnetic field and electrical current measurements in open- and closed-loop of this sensor have also been conducted.

  6. High Speed Edge Detection

    Science.gov (United States)

    Prokop, Norman F (Inventor)

    2016-01-01

    Analog circuits for detecting edges in pixel arrays are disclosed. A comparator may be configured to receive an all pass signal and a low pass signal for a pixel intensity in an array of pixels. A latch may be configured to receive a counter signal and a latching signal from the comparator. The comparator may be configured to send the latching signal to the latch when the all pass signal is below the low pass signal minus an offset. The latch may be configured to hold a last negative edge location when the latching signal is received from the comparator.

  7. High Temperature, High Frequency Fuel Metering Valve, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Active Signal Technologies and its subcontractor Moog propose to develop a high-frequency actuator driven valve intended to achieve TRL 6 by the end of Phase II....

  8. 78 FR 70567 - Nationwide Use of High Frequency and Ultra High Frequency Active SONAR Technology; Final...

    Science.gov (United States)

    2013-11-26

    ... Frequency and Ultra High Frequency Active SONAR Technology; Final Programmatic Environmental Assessment and... each alternative on the human and natural environments. FOR FURTHER INFORMATION CONTACT: If you have... Programmatic Environmental Assessment The scope of the PEA focuses on potential impacts associated with the...

  9. Single- and multi-frequency detection of surface displacements via scanning probe microscopy.

    Science.gov (United States)

    Romanyuk, Konstantin; Luchkin, Sergey Yu; Ivanov, Maxim; Kalinin, Arseny; Kholkin, Andrei L

    2015-02-01

    Piezoresponse force microscopy (PFM) provides a novel opportunity to detect picometer-level displacements induced by an electric field applied through a conducting tip of an atomic force microscope (AFM). Recently, it was discovered that superb vertical sensitivity provided by PFM is high enough to monitor electric-field-induced ionic displacements in solids, the technique being referred to as electrochemical strain microscopy (ESM). ESM has been implemented only in multi-frequency detection modes such as dual AC resonance tracking (DART) and band excitation, where the response is recorded within a finite frequency range, typically around the first contact resonance. In this paper, we analyze and compare signal-to-noise ratios of the conventional single-frequency method with multi-frequency regimes of measuring surface displacements. Single-frequency detection ESM is demonstrated using a commercial AFM.

  10. Fault detection of gearbox using time-frequency method

    Science.gov (United States)

    Widodo, A.; Satrijo, Dj.; Prahasto, T.; Haryanto, I.

    2017-04-01

    This research deals with fault detection and diagnosis of gearbox by using vibration signature. In this work, fault detection and diagnosis are approached by employing time-frequency method, and then the results are compared with cepstrum analysis. Experimental work has been conducted for data acquisition of vibration signal thru self-designed gearbox test rig. This test-rig is able to demonstrate normal and faulty gearbox i.e., wears and tooth breakage. Three accelerometers were used for vibration signal acquisition from gearbox, and optical tachometer was used for shaft rotation speed measurement. The results show that frequency domain analysis using fast-fourier transform was less sensitive to wears and tooth breakage condition. However, the method of short-time fourier transform was able to monitor the faults in gearbox. Wavelet Transform (WT) method also showed good performance in gearbox fault detection using vibration signal after employing time synchronous averaging (TSA).

  11. Inverter design for high frequency power distribution

    Science.gov (United States)

    King, R. J.

    1985-01-01

    A class of simple resonantly commutated inverters are investigated for use in a high power (100 KW - 1000 KW) high frequency (10 KHz - 20 KHz) AC power distribution system. The Mapham inverter is found to provide a unique combination of large thyristor turn-off angle and good utilization factor, much better than an alternate 'current-fed' inverter. The effects of loading the Mapham inverter entirely with rectifier loads are investigated by simulation and with an experimental 3 KW 20 KHz inverter. This inverter is found to be well suited to a power system with heavy rectifier loading.

  12. Advances in Very High Frequency Power Conversion

    DEFF Research Database (Denmark)

    Kovacevic, Milovan

    Resonant and quasi-resonant converters operated at frequencies above 30 MHz have attracted special attention in the last two decades. Compared to conventional converters operated at ~100 kHz, they offer significant advantages: smaller volume and weight, lower cost, and faster transient performance....... Excellent performance and small size of magnetic components and capacitors at very high frequencies, along with constant advances in performance of power semiconductor devices, suggests a sizable shift in consumer power supplies market into this area in the near future. To operate dc-dc converter power...... method provides low complexity and low gate loss simultaneously. A direct design synthesis method is provided for resonant SEPIC converters employing this technique. Most experimental prototypes were developed using low cost, commercially available power semiconductors. Due to very fast transient...

  13. Parametric nanomechanical amplification at very high frequency.

    Science.gov (United States)

    Karabalin, R B; Feng, X L; Roukes, M L

    2009-09-01

    Parametric resonance and amplification are important in both fundamental physics and technological applications. Here we report very high frequency (VHF) parametric resonators and mechanical-domain amplifiers based on nanoelectromechanical systems (NEMS). Compound mechanical nanostructures patterned by multilayer, top-down nanofabrication are read out by a novel scheme that parametrically modulates longitudinal stress in doubly clamped beam NEMS resonators. Parametric pumping and signal amplification are demonstrated for VHF resonators up to approximately 130 MHz and provide useful enhancement of both resonance signal amplitude and quality factor. We find that Joule heating and reduced thermal conductance in these nanostructures ultimately impose an upper limit to device performance. We develop a theoretical model to account for both the parametric response and nonequilibrium thermal transport in these composite nanostructures. The results closely conform to our experimental observations, elucidate the frequency and threshold-voltage scaling in parametric VHF NEMS resonators and sensors, and establish the ultimate sensitivity limits of this approach.

  14. Coherent radio-frequency detection for narrowband direct comb spectroscopy.

    Science.gov (United States)

    Anstie, James D; Perrella, Christopher; Light, Philip S; Luiten, Andre N

    2016-02-22

    We demonstrate a scheme for coherent narrowband direct optical frequency comb spectroscopy. An extended cavity diode laser is injection locked to a single mode of an optical frequency comb, frequency shifted, and used as a local oscillator to optically down-mix the interrogating comb on a fast photodetector. The high spectral coherence of the injection lock generates a microwave frequency comb at the output of the photodiode with very narrow features, enabling spectral information to be further down-mixed to RF frequencies, allowing optical transmittance and phase to be obtained using electronics commonly found in the lab. We demonstrate two methods for achieving this step: a serial mode-by-mode approach and a parallel dual-comb approach, with the Cs D1 transition at 894 nm as a test case.

  15. A Frequency-Based Approach to Intrusion Detection

    Directory of Open Access Journals (Sweden)

    Mian Zhou

    2004-06-01

    Full Text Available Research on network security and intrusion detection strategies presents many challenging issues to both theoreticians and practitioners. Hackers apply an array of intrusion and exploit techniques to cause disruption of normal system operations, but on the defense, firewalls and intrusion detection systems (IDS are typically only effective in defending known intrusion types using their signatures, and are far less than mature when faced with novel attacks. In this paper, we adapt the frequency analysis techniques such as the Discrete Fourier Transform (DFT used in signal processing to the design of intrusion detection algorithms. We demonstrate the effectiveness of the frequency-based detection strategy by running synthetic network intrusion data in simulated networks using the OPNET software. The simulation results indicate that the proposed intrusion detection strategy is effective in detecting anomalous traffic data that exhibit patterns over time, which include several types of DOS and probe attacks. The significance of this new strategy is that it does not depend on the prior knowledge of attack signatures, thus it has the potential to be a useful supplement to existing signature-based IDS and firewalls.

  16. [Detecting high risk pregnancy].

    Science.gov (United States)

    Doret, Muriel; Gaucherand, Pascal

    2009-12-20

    Antenatal care is aiming to reduce maternal land foetal mortality and morbidity. Maternal and foetal mortality can be due to different causes. Their knowledge allows identifying pregnancy (high risk pregnancy) with factors associated with an increased risk for maternal and/or foetal mortality and serious morbidity. Identification of high risk pregnancies and initiation of appropriate treatment and/or surveillance should improve maternal and/or foetal outcome. New risk factors are continuously described thanks to improvement in antenatal care and development in biology and cytopathology, increasing complexity in identifying high risk pregnancies. Level of risk can change all over the pregnancy. Ideally, it should be evaluated prior to the pregnancy and at each antenatal visit. Clinical examination is able to screen for intra-uterin growth restriction, pre-eclampsia, threatened for preterm labour; ultrasounds help in the diagnosis of foetal morphological anomalies, foetal chromosomal anomalies, placenta praevia and abnormal foetal growth; biological exams are used to screen for pre-eclampsia, gestational diabetes, trisomy 21 (for which screening method just changed), rhesus immunisation, seroconversion for toxoplasmosis or rubeola, unknown infectious disease (syphilis, hepatitis B, VIH). During pregnancy, most of the preventive strategies have to be initiated during the first trimester or even before conception. Prevention for neural-tube defects, neonatal hypocalcemia and listeriosis should be performed for all women. On the opposite, some measures are concerning only women with risk factors such as prevention for toxoplasmosis, rhesus immunization (which recently changed), tobacco complications and pre-eclampsia and intra-uterine growth factor restriction.

  17. High-frequency shear-horizontal surface acoustic wave sensor

    Science.gov (United States)

    Branch, Darren W

    2013-05-07

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  18. CSI Frequency Domain Fingerprint-Based Passive Indoor Human Detection

    Directory of Open Access Journals (Sweden)

    Chong Han

    2018-04-01

    Full Text Available Passive indoor personnel detection technology is now a hot topic. Existing methods have been greatly influenced by environmental changes, and there are problems with the accuracy and robustness of detection. Passive personnel detection based on Wi-Fi not only solves the above problems, but also has the advantages of being low cost and easy to implement, and can be better applied to elderly care and safety monitoring. In this paper, we propose a passive indoor personnel detection method based on Wi-Fi, which we call FDF-PIHD (Frequency Domain Fingerprint-based Passive Indoor Human Detection. Through this method, fine-grained physical layer Channel State Information (CSI can be extracted to generate feature fingerprints so as to help determine the state in the scene by matching online fingerprints with offline fingerprints. In order to improve accuracy, we combine the detection results of three receiving antennas to obtain the final test result. The experimental results show that the detection rates of our proposed scheme all reach above 90%, no matter whether the scene is human-free, stationary or a moving human presence. In addition, it can not only detect whether there is a target indoors, but also determine the current state of the target.

  19. Tha AGS Booster high frequency rf system

    International Nuclear Information System (INIS)

    Sanders, R.; Cameron, P.; Damn, R.

    1988-01-01

    A high level rf system, including a power amplifier and cavity has been designed for the AGS Booster. It covers a frequency range of 2.4 to 4.2 Mhz and will be used to accelerate high intensity proton, and low intensity polarized proton beams to 1.5 GeV and heavy ions to 0.35 GeV per nucleon. A total accelerating voltage of up to 90kV will be provided by two cavities, each having two gaps. The internally cross-coupled, pushpull cavities are driven by an adjacently located power amplifier. In order to accommodate the high beam intensity, up to 0.75 /times/ 10 13 protons per bunch, a low plate resistance power tetrode is used. The tube anode is magnetically coupled to one of the cavity's two paralleled cells. The amplifier is a grounded cathode configuration driven by a remotely located solid state amplifier

  20. Cultures of High-frequency Trading

    DEFF Research Database (Denmark)

    Lange, Ann-Christina; Lenglet, Marc; Seyfert, Robert

    2016-01-01

    As part of ongoing work to lay a foundation for social studies of high-frequency trading (HFT), this paper introduces the culture(s) of HFT as a sociological problem relating to knowledge and practice. HFT is often discussed as a purely technological development, where all that matters is the speed...... of allocating, processing and transmitting data. Indeed, the speed at which trades are executed and data transmitted is accelerating, and it is fair to say that algorithms are now the primary interacting agents operating in the financial markets. However, we contend that HFT is first and foremost a cultural...

  1. Pulsed-High Field/High-Frequency EPR Spectroscopy

    Science.gov (United States)

    Fuhs, Michael; Moebius, Klaus

    Pulsed high-field/high-frequency electron paramagnetic resonance (EPR) spectroscopy is used to disentangle many kinds of different effects often obscured in continuous wave (cw) EPR spectra at lower magnetic fields/microwave frequencies. While the high magnetic field increases the resolution of G tensors and of nuclear Larmor frequencies, the high frequencies allow for higher time resolution for molecular dynamics as well as for transient paramagnetic intermediates studied with time-resolved EPR. Pulsed EPR methods are used for example for relaxation-time studies, and pulsed Electron Nuclear DOuble Resonance (ENDOR) is used to resolve unresolved hyperfine structure hidden in inhomogeneous linewidths. In the present article we introduce the basic concepts and selected applications to structure and mobility studies on electron transfer systems, reaction centers of photosynthesis as well as biomimetic models. The article concludes with an introduction to stochastic EPR which makes use of an other concept for investigating resonance systems in order to increase the excitation bandwidth of pulsed EPR. The limited excitation bandwidth of pulses at high frequency is one of the main limitations which, so far, made Fourier transform methods hardly feasible.

  2. The JET high frequency pellet injector project

    International Nuclear Information System (INIS)

    Geraud, Alain; Dentan, M.; Whitehead, A.; Butcher, P.; Communal, D.; Faisse, F.; Gedney, J.; Gros, G.; Guillaume, D.; Hackett, L.; Hennion, V.; Homfray, D.; Lucock, R.; McKivitt, J.; Sibbald, M.; Portafaix, C.; Perin, J.P.; Reade, M.; Sands, D.; Saille, A.

    2007-01-01

    A new deuterium ice pellet injector is in preparation for JET. It is designed to inject both small pellets (variable volume within 1-2 mm 3 ) at high frequency (up to 60 Hz) for ELM mitigation experiments and large pellets (volume within 35-70 mm 3 ) at moderate frequency (up to 15 Hz) for plasma fuelling. It is based on the screw extruder technology developed by PELIN and pneumatic acceleration. An injection line will connect the injector to the flight tubes already in place to convey the pellets toward the plasma either from the low field side or from the high field side of the torus. This injection line enables: (i) the pumping of the propellant gas, (ii) the provision of the vacuum interface with the torus and (iii) the selection of the flight tube to be used via a fast selector. All the interfaces have been designed and a prototype injector is being built, to demonstrate that the required performance is achievable

  3. The positive effects of high-frequency right dorsolateral prefrontal cortex repetitive transcranial magnetic stimulation on memory, correlated with increases in brain metabolites detected by proton magnetic resonance spectroscopy in recently detoxified alcohol-dependent patients.

    Science.gov (United States)

    Qiao, Jun; Jin, Guixing; Lei, Licun; Wang, Lan; Du, Yaqiang; Wang, Xueyi

    2016-01-01

    To explore the effect of right dorsolateral prefrontal cortex (DLPFC) repetitive transcranial magnetic stimulation (rTMS) on memory, and its correlation with levels of hippocampal brain metabolites detected by proton magnetic resonance spectroscopy ( 1 H-MRS) in recently detoxified alcohol-dependent patients. In this randomized, double-blind sham-controlled trial, alcohol-dependent patients were enrolled and randomized into two groups: the experimental group (rTMS, 10 Hz, on right DLPFC, 20 sessions) and the control group (sham stimulation). Memory function was assessed using Hopkins Verbal Learning Test-Revised (HVLT-R) and Brief Visuospatial Memory Test-Revised (BVMT-R) before and after treatment. 1 H-MRS was used to detect the levels of N -acetyl aspartic acid (NAA), choline (Cho), and creatine (Cr) in bilateral hippocampi before and after treatment. Thirty-eight patients (18 in the experimental group and 20 in the control group) were included in the analyses. The experimental group showed significantly greater changes in HVLT-R, BVMT-R, NAA/Cr, and Cho/Cr after rTMS from baseline than the control group. The percentage change in BVMT-R and HVLT-R correlated with the percentage change in NAA/Cr and Cho/Cr in the right brain. High-frequency right DLPFC rTMS was associated with improvement in memory dysfunction, which is correlated with levels of hippocampal brain metabolites detected by 1 H-MRS in recently detoxified alcohol-dependent patients.

  4. High Tc superconductors at microwave frequencies

    International Nuclear Information System (INIS)

    Gruener, G.

    1991-01-01

    The author discusses various experiments conducted in the micro- and millimeter wave spectral range on thin film and single crystal specimens of the high temperature oxide superconductors. For high quality film the surface resistance R s is, except at low temperatures, due to thermally excited carriers, with extrinsic effects playing only a secondary role. Because of the low loss various passive microwave components, such as resonators, delay lines and filters, with performance far superior to those made of normal metals can be fabricated. The conductivity measured at millimeter wave frequencies displays a peak below T c . Whether this is due to coherence factors or due to the change of the relaxation rate when the materials enter the superconducting state remains to be seen

  5. High-frequency behavior of magnetic composites

    International Nuclear Information System (INIS)

    Lagarkov, Andrey N.; Rozanov, Konstantin N.

    2009-01-01

    The paper reviews recent progress in the field of microwave magnetic properties of composites. The problem under discussion is developing composites with high microwave permeability that are needed in many applications. The theory of magnetic composites is briefly sketched with the attention paid to the laws governing the magnetic frequency dispersion in magnetic materials and basic mixing rules for composites. Recent experimental reports on the microwave performance of magnetic composites, as well as data on the agreement of the mixing rules with the measured permeability of composites that are available from the literature are discussed. From the data, a conclusion is made that the validity of a mixing rule is determined by the permeability contrast in the composite, i.e., the difference between permeability of inclusions and that of the host matrix. When the contrast is low, the Maxwell Garnet mixing rule is frequently valid. When the contrast is high, which is of the most interest for obtaining high microwave permeability of a composite, no conventionally accepted theory is capable of accurately predicting the permeability of the composites. Therefore, the mixing rules do not allow the microwave properties of magnetic composites to be predicted when the permeability of inclusions is high, that is the case of the most interest. Because of that, general limitations to the microwave performance of composites are of importance. In particular, an important relation constraining the microwave permeability of composites follows from Kittel's theory of ferromagnetic resonance and analytical properties of frequency dependence of permeability. Another constraint concerning the bandwidth of electromagnetic wave absorbers follows from the Kramers-Kronig relations for the reflection coefficient. The constraints are of importance in design and analysis of electromagnetic wave absorbers and other devices that employ the microwave magnetic properties of composites, such as

  6. High frequency oscillations evoked by peripheral magnetic stimulation.

    Science.gov (United States)

    Biller, S; Simon, L; Fiedler, P; Strohmeier, D; Haueisen, J

    2011-01-01

    The analysis of somatosensory evoked potentials (SEP) and / or fields (SEF) is a well-established and important tool for investigating the functioning of the peripheral and central human nervous system. A standard technique to evoke SEPs / SEFs is the stimulation of the median nerve by using a bipolar electrical stimulus. We aim at an alternative stimulation technique enabling stimulation of deep nerve structures while reducing patient stress and error susceptibility. In the current study, we apply a commercial transcranial magnetic stimulation system for peripheral magnetic stimulation of the median nerve. We compare the results of simultaneously recorded EEG signals to prove applicability of our technique to evoke SEPs including low frequency components (LFC) as well as high frequency oscillations (HFO). Therefore, we compare amplitude, latency and time-frequency characteristics of the SEP of 14 healthy volunteers after electric and magnetic stimulation. Both low frequency components and high frequency oscillations were detected. The HFOs were superimposed onto the primary cortical response N20. Statistical analysis revealed significantly lower amplitudes and increased latencies for LFC and HFO components after magnetic stimulation. The differences indicate the inability of magnetic stimulation to elicit supramaximal responses. A psycho-perceptual evaluation showed that magnetic stimulation was less unpleasant for 12 out of the 14 volunteers. In conclusion, we showed that LFC and HFO components related to median nerve stimulation can be evoked by peripheral magnetic stimulation.

  7. High precision pulsar timing and spin frequency second derivatives

    Science.gov (United States)

    Liu, X. J.; Bassa, C. G.; Stappers, B. W.

    2018-05-01

    We investigate the impact of intrinsic, kinematic and gravitational effects on high precision pulsar timing. We present an analytical derivation and a numerical computation of the impact of these effects on the first and second derivative of the pulsar spin frequency. In addition, in the presence of white noise, we derive an expression to determine the expected measurement uncertainty of a second derivative of the spin frequency for a given timing precision, observing cadence and timing baseline and find that it strongly depends on the latter (∝t-7/2). We show that for pulsars with significant proper motion, the spin frequency second derivative is dominated by a term dependent on the radial velocity of the pulsar. Considering the data sets from three Pulsar Timing Arrays, we find that for PSR J0437-4715 a detectable spin frequency second derivative will be present if the absolute value of the radial velocity exceeds 33 km s-1. Similarly, at the current timing precision and cadence, continued timing observations of PSR J1909-3744 for about another eleven years, will allow the measurement of its frequency second derivative and determine the radial velocity with an accuracy better than 14 km s-1. With the ever increasing timing precision and observing baselines, the impact of the, largely unknown, radial velocities of pulsars on high precision pulsar timing can not be neglected.

  8. Modulation of high frequency noise by engine tones of small boats.

    Science.gov (United States)

    Pollara, Alexander; Sutin, Alexander; Salloum, Hady

    2017-07-01

    The effect of modulation of high frequency ship noise by propeller rotation frequencies is well known. This modulation is observed with the Detection of Envelope Modulation on Noise (DEMON) algorithm. Analysis of the DEMON spectrum allows the revolutions per minute and number of blades of the propeller to be determined. This work shows that the high frequency noise of a small boat can also be modulated by engine frequencies. Prior studies have not reported high frequency noise amplitude modulated at engine frequencies. This modulation is likely produced by bubbles from the engine exhaust system.

  9. Advances in high frequency ultrasound separation of particulates from biomass.

    Science.gov (United States)

    Juliano, Pablo; Augustin, Mary Ann; Xu, Xin-Qing; Mawson, Raymond; Knoerzer, Kai

    2017-03-01

    In recent years the use of high frequency ultrasound standing waves (megasonics) for droplet or cell separation from biomass has emerged beyond the microfluidics scale into the litre to industrial scale applications. The principle for this separation technology relies on the differential positioning of individual droplets or particles across an ultrasonic standing wave field within the reactor and subsequent biomass material predisposition for separation via rapid droplet agglomeration or coalescence into larger entities. Large scale transducers have been characterised with sonochemiluminescence and hydrophones to enable better reactor designs. High frequency enhanced separation technology has been demonstrated at industrial scale for oil recovery in the palm oil industry and at litre scale to assist olive oil, coconut oil and milk fat separation. Other applications include algal cell dewatering and milk fat globule fractionation. Frequency selection depends on the material properties and structure in the biomass mixture. Higher frequencies (1 and 2MHz) have proven preferable for better separation of materials with smaller sized droplets such as milk fat globules. For palm oil and olive oil, separation has been demonstrated within the 400-600kHz region, which has high radical production, without detectable impact on product quality. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  10. Design and development of ITER high-frequency magnetic sensor

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Y., E-mail: Yunxing.Ma@iter.org [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Fircroft Engineering, Lingley House, 120 Birchwood Point, Birchwood Boulevard, Warrington, WA3 7QH (United Kingdom); Vayakis, G. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Begrambekov, L.B. [National Research Nuclear University (MEPhI), 115409, Moscow, Kashirskoe shosse 31 (Russian Federation); Cooper, J.-J. [Culham Centre for Fusion Energy (CCFE), Abingdon, Oxfordshire OX14 3DB (United Kingdom); Duran, I. [IPP Prague, Za Slovankou 1782/3, 182 00 Prague 8 (Czech Republic); Hirsch, M.; Laqua, H.P. [Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald, Wendelsteinstraße 1, D-17491 Greifswald (Germany); Moreau, Ph. [CEA Cadarache, 13108 Saint Paul lez Durance Cedex (France); Oosterbeek, J.W. [Eindhoven University of Technology (TU/e), PO Box 513, 5600 MB Eindhoven (Netherlands); Spuig, P. [CEA Cadarache, 13108 Saint Paul lez Durance Cedex (France); Stange, T. [Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald, Wendelsteinstraße 1, D-17491 Greifswald (Germany); Walsh, M. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)

    2016-11-15

    Highlights: • ITER high-frequency magnetic sensor system has been designed. • Prototypes have been successfully manufactured. • Manufactured prototypes have been tested in various labs. • Test results experimentally validated the design. - Abstract: High-frequency (HF) inductive magnetic sensors are the primary ITER diagnostic set for Toroidal Alfvén Eigenmodes (TAE) detection, while they also supplement low-frequency MHD and plasma equilibrium measurements. These sensors will be installed on the inner surface of ITER vacuum vessel, operated in a harsh environment with considerable neutron/nuclear radiation and high thermal load. Essential components of the HF sensor system, including inductive coil, electron cyclotron heating (ECH) shield, electrical cabling and termination load, have been designed to meet ITER measurement requirements. System performance (e.g. frequency response, thermal conduction) has been assessed. A prototyping campaign was initiated to demonstrate the manufacturability of the designed components. Prototypes have been produced according to the specifications. A series of lab tests have been performed to examine assembly issues and validate electrical and thermo-mechanical aspects of the design. In-situ microwave radiation test has been conducted in the MISTRAL test facility at IPP-Greifswald to experimentally examine the microwave shielding efficiency and structural integrity of the ECH shield. Low-power microwave attenuation measurement and scanning electron microscopic inspection were conducted to probe and examine the quality of the metal coating on the ECH shield.

  11. Occupational hearing loss: tonal audiometry X high frequencies audiometry

    Directory of Open Access Journals (Sweden)

    Lauris, José Roberto Pereira

    2009-09-01

    Full Text Available Introduction: Studies on the occupational exposure show that noise has been reaching a large part of the working population around the world, and NIHL (noise-induced hearing loss is the second most frequent disease of the hearing system. Objective: To review the audiometry results of employees at the campus of the University of São Paulo, Bauru. Method: 40 audiometry results were analyzed between 2007 and 2008, whose ages comprised between 32 and 59 years, of both sexes and several professions: gardeners, maintenance technicians, drivers etc. The participants were divided into 2 groups: those with tonal thresholds within acceptable thresholds and those who presented auditory thresholds alterations, that is tonal thresholds below 25 dB (NA in any frequency (Administrative Rule no. 19 of the Ministry of Labor 1998. In addition to the Conventional Audiologic Evaluation (250Hz to 8.000Hz we also carried out High Frequencies Audiometry (9000Hz, 10000Hz, 11200Hz, 12500Hz, 14000Hz and 16000Hz. Results: According to the classification proposed by FIORINI (1994, 25.0% (N=10 they presented with NIHL suggestive audiometric configurations. The results of high frequencies Audiometry confirmed worse thresholds than those obtained in the conventional audiometry in the 2 groups evaluated. Conclusion: The use of high frequencies audiometry proved to be an important register as a hearing alteration early detection method.

  12. Effect of high-frequency excitation on natural frequencies of spinning discs

    DEFF Research Database (Denmark)

    Hansen, Morten Hartvig

    2000-01-01

    The effect of high-frequency, non-resonant parametric excitation on the low-frequency response of spinning discs is considered. The parametric excitation is obtained through a non-constant rotation speed, where the frequency of the pulsating overlay is much higher than the lowest natural frequenc......The effect of high-frequency, non-resonant parametric excitation on the low-frequency response of spinning discs is considered. The parametric excitation is obtained through a non-constant rotation speed, where the frequency of the pulsating overlay is much higher than the lowest natural...

  13. Scheme for efficient extraction of low-frequency signal beyond the quantum limit by frequency-shift detection.

    Science.gov (United States)

    Yang, R G; Zhang, J; Zhai, Z H; Zhai, S Q; Liu, K; Gao, J R

    2015-08-10

    Low-frequency (Hz~kHz) squeezing is very important in many schemes of quantum precision measurement. But it is more difficult than that at megahertz-frequency because of the introduction of laser low-frequency technical noise. In this paper, we propose a scheme to obtain a low-frequency signal beyond the quantum limit from the frequency comb in a non-degenerate frequency and degenerate polarization optical parametric amplifier (NOPA) operating below threshold with type I phase matching by frequency-shift detection. Low-frequency squeezing immune to laser technical noise is obtained by a detection system with a local beam of two-frequency intense laser. Furthermore, the low-frequency squeezing can be used for phase measurement in Mach-Zehnder interferometer, and the signal-to-noise ratio (SNR) can be enhanced greatly.

  14. Proposed Sandia frequency shift for anti-islanding detection method based on artificial immune system

    Directory of Open Access Journals (Sweden)

    A.Y. Hatata

    2018-03-01

    Full Text Available Sandia frequency shift (SFS is one of the active anti-islanding detection methods that depend on frequency drift to detect an islanding condition for inverter-based distributed generation. The non-detection zone (NDZ of the SFS method depends to a great extent on its parameters. Improper adjusting of these parameters may result in failure of the method. This paper presents a proposed artificial immune system (AIS-based technique to obtain optimal parameters of SFS anti-islanding detection method. The immune system is highly distributed, highly adaptive, and self-organizing in nature, maintains a memory of past encounters, and has the ability to continually learn about new encounters. The proposed method generates less total harmonic distortion (THD than the conventional SFS, which results in faster island detection and better non-detection zone. The performance of the proposed method is derived analytically and simulated using Matlab/Simulink. Two case studies are used to verify the proposed method. The first case includes a photovoltaic (PV connected to grid and the second includes a wind turbine connected to grid. The deduced optimized parameter setting helps to achieve the “non-islanding inverter” as well as least potential adverse impact on power quality. Keywords: Anti-islanding detection, Sandia frequency shift (SFS, Non-detection zone (NDZ, Total harmonic distortion (THD, Artificial immune system (AIS, Clonal selection algorithm

  15. Detecting ultra high energy neutrinos with LOFAR

    International Nuclear Information System (INIS)

    Mevius, M.; Buitink, S.; Falcke, H.; Hörandel, J.; James, C.W.; McFadden, R.; Scholten, O.; Singh, K.; Stappers, B.; Veen, S. ter

    2012-01-01

    The NuMoon project aims to detect signals of Ultra High Energy (UHE) Cosmic Rays with radio telescopes on Earth using the Lunar Cherenkov technique at low frequencies (∼150MHz). The advantage of using low frequencies is the much larger effective detecting volume, with as trade-off the cut-off in sensitivity at lower energies. A first upper limit on the UHE neutrino flux from data of the Westerbork Radio Telescope (WSRT) has been published, while a second experiment, using the new LOFAR telescope, is in preparation. The advantages of LOFAR over WSRT are the larger collecting area, the better pointing accuracy and the use of ring buffers, which allow the implementation of a sophisticated self-trigger algorithm. The expected sensitivity of LOFAR reaches flux limits within the range of some theoretical production models.

  16. High frequency CARM driver for rf linacs

    International Nuclear Information System (INIS)

    Danly, B.G.

    1993-01-01

    This CARM program has successfully demonstrated the first ever long-pulse CARM oscillator operation; these results demonstrate the potential of CARMs as an alternative source of millimeter waves to the gyrotron for ECRH plasma heating. The result of 1.8 MW at 27.8 GHz and 0.5 μs pulse width in the TE 11 mode represent a clear demonstration of the capabilities of the CARM oscillator for the production of high powers with large frequency upshift. It is hoped that this successful proof-of-principle demonstration.will lead to further development of the CARM as an ECRH source by the DOE Office of Fusion Energy, Development and Technology Division. This success is a direct outcome of this support of the Advanced Energy Projects Office of DOE in the form of this program. The CARM amplifier component of the program, although unsuccessful at obtaining CARM amplifier operation at 17 GHz, has succeeded by furthering the understanding of the limitations and difficulties that lie ahead for continued CARM amplifier development. The amplifier component of the program has successfully demonstrated a high power second and third harmonic gyro-TWT amplifier. Up to 5 MW of power at 17.1 GHz and >50dB gain have been obtained. These results should be viewed as an important contribution of this program to the development of viable microwave sources for powering the next linear collider. Indeed, the present gyro-amplifier, which resulted from this program, is presently being used in ongoing high-gradient accelerator research at MIT under a DOE High Energy Physics grant. As a result of both the oscillator and amplifier advances made during this program, the CARM and harmonic gyro-TWT have reached a significantly more mature level; their future role in specific applications of benefit to DOEs OFE and HEP offices may now be pursued

  17. The AGS Booster high frequency rf system

    International Nuclear Information System (INIS)

    Sanders, R.T.; Cameron, P.; Eng, W.; Goldman, M.A.; Jablonski, E.; Kasha, D.; Keane, J.; McNerney, A.; Meth, M.; Plotkin, M.; Puglisi, M.; Ratti, A.; Spitz, R.

    1991-01-01

    A high level rf system, including a power amplifier and cavity, has been designed and built for the AGS Booster. It covers a frequency range of 2.4 to 4.2 MHz and will be used to accelerate high intensity protons. Low intensity polarized protons and heavy ions, to the 1.5 GeV level. A total accelerating voltage of up to 90 kV will be provided by two cavities, each having two gaps. The internally cross coupled, pushpull cavities are driven by an adjacently located power amplifier. In order to accommodate beam intensities up to 0.75 x 10 13 protons per bunch, a low plate resistance power tetrode is used. The tube anode is magnetically coupled to one of the cavity's two parallel cells. The amplifier is a grounded cathode configuration driven by a remotely located solid-state amplifier. It has been tested in the laboratory at full gap voltage with satisfactory results. 5 refs., 2 figs., 1 tab

  18. HIGH FREQUENCY ELECTROSTATIC INSTABILITIES IN A PLASMA

    Energy Technology Data Exchange (ETDEWEB)

    Klein, M W; Auer, P L

    1963-06-15

    The dispersion relation is examined for a collisionless infinite plasma in the presence of an anisotropic Maxwellian velocity distribution and a uniform external magnetic field. Unstable solutions exist below the muitiples of the electron cyclotron frequency provided the temperature anisotropy is sufficiently large. The dependence of the growth rate upon harmonic number, density, angle of propagation with respect to the magnetic field, and frequency is discussed for zero as well as non-zero parallel temperatures. In the latter case, the waves are strongly damped as their frequency approaches a multiple of the gyro- frequency. (auth)

  19. Frequency of urogenital mycoplasma detection in women of Dnipropetrovsk

    Directory of Open Access Journals (Sweden)

    K. V. Bubalo

    2014-04-01

    Full Text Available The frequency of urogenital mycoplasmas detection in women of different ages was studied in culture with the help of DUO test-system in order to determine their etiological significance in the development of inflammatory processes of women urogenital tract. We identified the researched cultures Mycoplasma hominis, Ureaplasma urealyticum in the diagnostic titer >104 TEM/ml indicating severe contamination by microorganisms, and in the titer 104 TEM/ml, 104 TEM/ml was observed in 55 women (46% and 20 women (17%, respectively, and the titer of <103 CFU/ml U. urealyticum was observed in 20 women (17%, and M. hominis in 18 women (15%. Analysis of genital mycoplasmas distribution among women of different ages has shown that there was the certain correlation between the patient age and frequency of genital mycoplasmas detection: the highest detection rate was observed in women age of 24–29. The dominant pathogen of urogenital tract inflammatory processes in women in 24–29 age group is U. urealyticum. The comparison of DUO test-system and PCR data has shown that DUO test-system in culture allowed more sensitive quantitave characterization of mycoplasmas, however, for the more effective laboratory diagnostics it was necessary to use complex methods to increase the probability of pathogen detection. Incidence of mycoplasmas in women with the presence of inflammation was higher than in women having the inflammation in the genital tract. In this case, potential symptom-free carriers exist for the development of inflammation of urogenital tract of women. Scientists have proved that mycoplasma could cause vulvovaginitis, urethritis, paraurethritis, bartholinitis, adnexitis, salpingitis, endometritis, and ovaritis.

  20. The positive effects of high-frequency right dorsolateral prefrontal cortex repetitive transcranial magnetic stimulation on memory, correlated with increases in brain metabolites detected by proton magnetic resonance spectroscopy in recently detoxified alcohol-dependent patients

    Directory of Open Access Journals (Sweden)

    Qiao J

    2016-09-01

    Full Text Available Jun Qiao,1,2 Guixing Jin,1,2 Licun Lei,3 Lan Wang,1,2 Yaqiang Du,3 Xueyi Wang1,2 1Institute of Mental Health, The First Hospital of Hebei Medical University, 2Brain Ageing and Cognitive Neuroscience Laboratory, Hebei Medical University, 3Department of Radiology, The First Hospital of Hebei Medical University, Hebei, People’s Republic of China Objective: To explore the effect of right dorsolateral prefrontal cortex (DLPFC repetitive transcranial magnetic stimulation (rTMS on memory, and its correlation with levels of hippocampal brain metabolites detected by proton magnetic resonance spectroscopy (1H-MRS in recently detoxified alcohol-dependent patients. Materials and methods: In this randomized, double-blind sham-controlled trial, alcohol-dependent patients were enrolled and randomized into two groups: the experimental group (rTMS, 10 Hz, on right DLPFC, 20 sessions and the control group (sham stimulation. Memory function was assessed using Hopkins Verbal Learning Test-Revised (HVLT-R and Brief Visuospatial Memory Test-Revised (BVMT-R before and after treatment. 1H-MRS was used to detect the levels of N-acetyl aspartic acid (NAA, choline (Cho, and creatine (Cr in bilateral hippocampi before and after treatment. Results: Thirty-eight patients (18 in the experimental group and 20 in the control group were included in the analyses. The experimental group showed significantly greater changes in HVLT-R, BVMT-R, NAA/Cr, and Cho/Cr after rTMS from baseline than the control group. The percentage change in BVMT-R and HVLT-R correlated with the percentage change in NAA/Cr and Cho/Cr in the right brain. Conclusion: High-frequency right DLPFC rTMS was associated with improvement in memory dysfunction, which is correlated with levels of hippocampal brain metabolites detected by 1H-MRS in recently detoxified alcohol-dependent patients. Keywords: alcohol dependence, memory, repetitive transcranial magnetic stimulation, MR spectroscopy

  1. Contact resistance measurement structures for high frequencies

    NARCIS (Netherlands)

    Roy, Deepu; Pijper, Ralf M.T.; Tiemeijer, Luuk F.; Wolters, Robertus A.M.

    2011-01-01

    Knowledge of the interfacial contact impedance offered by the device at its operating frequency range is crucial for accurate modelling and understanding of the device. In this article, a novel modified TLM test-structure has been devised to extract interfacial contact parameters at frequencies upto

  2. A detector for high frequency modulation in auroral particle fluxes

    Science.gov (United States)

    Spiger, R. J.; Oehme, D.; Loewenstein, R. F.; Murphree, J.; Anderson, H. R.; Anderson, R.

    1974-01-01

    A high time resolution electron detector has been developed for use in sounding rocket studies of the aurora. The detector is used to look for particle bunching in the range 50 kHz-10 MHz. The design uses an electron multiplier and an onboard frequency spectrum analyzer. By using the onboard analyzer, the data can be transmitted back to ground on a single 93-kHz voltage-controlled oscillator. The detector covers the 50 kHz-10 MHz range six times per second and detects modulation on the order of a new percent of the total electron flux. Spectra are presented for a flight over an auroral arc.

  3. Detection of horizontal transfer of individual genes by anomalous oligomer frequencies

    Directory of Open Access Journals (Sweden)

    Elhai Jeff

    2012-06-01

    Full Text Available Abstract Background Understanding the history of life requires that we understand the transfer of genetic material across phylogenetic boundaries. Detecting genes that were acquired by means other than vertical descent is a basic step in that process. Detection by discordant phylogenies is computationally expensive and not always definitive. Many have used easily computed compositional features as an alternative procedure. However, different compositional methods produce different predictions, and the effectiveness of any method is not well established. Results The ability of octamer frequency comparisons to detect genes artificially seeded in cyanobacterial genomes was markedly increased by using as a training set those genes that are highly conserved over all bacteria. Using a subset of octamer frequencies in such tests also increased effectiveness, but this depended on the specific target genome and the source of the contaminating genes. The presence of high frequency octamers and the GC content of the contaminating genes were important considerations. A method comprising best practices from these tests was devised, the Core Gene Similarity (CGS method, and it performed better than simple octamer frequency analysis, codon bias, or GC contrasts in detecting seeded genes or naturally occurring transposons. From a comparison of predictions with phylogenetic trees, it appears that the effectiveness of the method is confined to horizontal transfer events that have occurred recently in evolutionary time. Conclusions The CGS method may be an improvement over existing surrogate methods to detect genes of foreign origin.

  4. Multi-beam synchronous measurement based on PSD phase detection using frequency-domain multiplexing

    Science.gov (United States)

    Duan, Ying; Qin, Lan; Xue, Lian; Xi, Feng; Mao, Jiubing

    2013-10-01

    According to the principle of centroid measurement, position-sensitive detectors (PSD) are commonly used for micro displacement detection. However, single-beam detection method cannot satisfy such tasks as multi-dimension position measurement, three dimension vision reconstruction, and robot precision positioning, which require synchronous measurement of multiple light beams. Consequently, we designed PSD phase detection method using frequency-domain multiplexing for synchronous detection of multiple modulated light beams. Compared to previous PSD amplitude detection method, the phase detection method using FDM has advantages of simplified measuring system, low cost, high capability of resistance to light interference as well as improved resolution. The feasibility of multi-beam synchronous measurement based on PSD phase detection using FDM was validated by multi-beam measuring experiments. The maximum non-linearity error of the multi-beam synchronous measurement is 6.62%.

  5. High-frequency modulation of ion-acoustic waves.

    Science.gov (United States)

    Albright, N. W.

    1972-01-01

    A large amplitude, high-frequency electromagnetic oscillation is impressed on a nonrelativistic, collisionless plasma from an external source. The frequency is chosen to be far from the plasma frequency (in fact, lower). The resulting electron velocity distribution function strongly modifies the propagation of ion-acoustic waves parallel to the oscillating electric field. The complex frequency is calculated numerically.

  6. High frequency modeling of power transformers. Stresses and diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Bjerkan, Eilert

    2005-05-15

    resonant over voltages both internally and on terminals can be analysed using this method with sufficient accuracy, provided the discretization of the winding is sufficiently refined regarding the frequencies involved. Since terminal behaviour is given by the internal geometry and material parameters, it is assumed that internal behaviour is related to the accuracy of the terminal behaviour. FRA sensitivity to axial displacement is 1.2 percent of total axial height. The sensitivity to radial deformation (forced buckling) is found to be a buckling depth of 9 percent of the radius of the winding. Turn-to-turn short-circuits could not be modeled correctly since the lumped elements includes several turns. Disc-to-disc short circuits are easily detected. Axial bending is not detectable. Detection of loose windings and aged insulation is improbable and will be dependent on the available sensitivity (mainly related to the repeatability of the measurements and the reference utilized for comparison). The contributions in this work relates to different topics such as; Frequency-dependent iron core representation in FEM, study of interlaminar currents and its effect on the internal magnetic field, characterization of high frequency dielectric properties of impregnated press board and service-aged impregnated paper, procedure for evaluation of internal/external over voltages, and finally sensitivity guidelines for the application of FRA to mechanical deformations (author) (ml)

  7. Sheath impedance effects in very high frequency plasma experiments

    International Nuclear Information System (INIS)

    Schwarzenbach, W.; Howling, A.A.; Fivaz, M.; Brunner, S.; Hollenstein, C.

    1995-05-01

    The frequency dependence (13.56 MHz to 70 MHz) of the ion energy distribution at the ground electrode was measured by mass spectrometry in a symmetrical capacitive argon discharge. Reduced sheath impedance at Very High Frequency allows high levels of plasma power and substrate ion flux whilst maintaining low levels of ion energy and electrode voltage. The lower limit of ion bombardment energy is fixed by the sheath floating potential at high frequency, in contrast to low frequencies where only the rf voltage amplitude is determinant. The capacitive sheaths are thinner at high frequencies which accentuates the high frequency reduction in sheath impedance. It is argued that the frequency dependence of sheath impedance is responsible for the principal characteristics of Very High Frequency plasmas. The measurements are summarised by simple physical descriptions and compared with a Particle-In-Cell simulation. (author) figs., tabs., refs

  8. Prospects for detecting decreasing exoplanet frequency with main-sequence age using PLATO

    Science.gov (United States)

    Veras, D.; Brown, D. J. A.; Mustill, A. J.; Pollacco, D.

    2017-09-01

    The space mission PLATO will usher in a new era of exoplanetary science by expanding our current inventory of transiting systems and constraining host star ages, which are currently highly uncertain. This capability might allow PLATO to detect changes in planetary system architecture with time, particularly because planetary scattering due to Lagrange instability may be triggered long after the system was formed. Here, we utilize previously published instability time-scale prescriptions to determine PLATO's capability to detect a trend of decreasing planet frequency with age for systems with equal- mass planets. For two-planet systems, our results demonstrate that PLATO may detect a trend for planet masses which are at least as massive as super-Earths. For systems with three or more planets, we link their initial compactness to potentially detectable frequency trends in order to aid future investigations when these populations will be better characterized.

  9. Frequency-scanning MALDI linear ion trap mass spectrometer for large biomolecular ion detection.

    Science.gov (United States)

    Lu, I-Chung; Lin, Jung Lee; Lai, Szu-Hsueh; Chen, Chung-Hsuan

    2011-11-01

    This study presents the first report on the development of a matrix-assisted laser desorption ionization (MALDI) linear ion trap mass spectrometer for large biomolecular ion detection by frequency scan. We designed, installed, and tested this radio frequency (RF) scan linear ion trap mass spectrometer and its associated electronics to dramatically extend the mass region to be detected. The RF circuit can be adjusted from 300 to 10 kHz with a set of operation amplifiers. To trap the ions produced by MALDI, a high pressure of helium buffer gas was employed to quench extra kinetic energy of the heavy ions produced by MALDI. The successful detection of the singly charged secretory immunoglobulin A ions indicates that the detectable mass-to-charge ratio (m/z) of this system can reach ~385 000 or beyond.

  10. HIGH FREQUENCY INDUCTION WELDING OF HIGH SILICON STEEL TUBES

    Directory of Open Access Journals (Sweden)

    Ricardo Miranda Alé

    2012-06-01

    Full Text Available High-Si steel is a low cost alternative for the fabrication of tubular structures resistant to atmospheric corrosion. However, the literature has often pointed out that steels presenting a higher Si content and/or a lower Mn/Si ratio have higher susceptibility to defects at the weld bond line during HFIW (High Frequency Induction Welding process, which has been widely used for manufacturing small diameter tubes. In this study the effect of the HFIW conditions on the quality of steel tubes with high-Si content and low Mn/Si ratio is investigated. The quality of welded tubes was determined by flare test and the defects in the bond line were identified by SEM. It has been found that higher welding speeds, V-convergence angles and power input should be applied in welding of high-Si steel, when compared to similar strength C-Mn steel.

  11. Aircraft Fault Detection Using Real-Time Frequency Response Estimation

    Science.gov (United States)

    Grauer, Jared A.

    2016-01-01

    A real-time method for estimating time-varying aircraft frequency responses from input and output measurements was demonstrated. The Bat-4 subscale airplane was used with NASA Langley Research Center's AirSTAR unmanned aerial flight test facility to conduct flight tests and collect data for dynamic modeling. Orthogonal phase-optimized multisine inputs, summed with pilot stick and pedal inputs, were used to excite the responses. The aircraft was tested in its normal configuration and with emulated failures, which included a stuck left ruddervator and an increased command path latency. No prior knowledge of a dynamic model was used or available for the estimation. The longitudinal short period dynamics were investigated in this work. Time-varying frequency responses and stability margins were tracked well using a 20 second sliding window of data, as compared to a post-flight analysis using output error parameter estimation and a low-order equivalent system model. This method could be used in a real-time fault detection system, or for other applications of dynamic modeling such as real-time verification of stability margins during envelope expansion tests.

  12. Modulated convection at high frequencies and large modulation amplitudes

    International Nuclear Information System (INIS)

    Swift, J.B.; Hohenberg, P.C.

    1987-01-01

    Modulated Rayleigh-Benard convection is analyzed for high frequencies and large modulation amplitudes. The linear theory of Gershuni and Zhukhovitskii is generalized to the nonlinear domain, and a subcritical bifurcation to convection is found in agreement with the experiments of Niemela and Donnelly. The crossover between the high-frequency (''Stokes layer'') regime and the low-frequency regime studied previously is analyzed

  13. Calculation of Leakage Inductance for High Frequency Transformers

    DEFF Research Database (Denmark)

    Ouyang, Ziwei; Jun, Zhang; Hurley, William Gerard

    2015-01-01

    Frequency dependent leakage inductance is often observed. High frequency eddy current effects cause a reduction in leakage inductance. The proximity effect between adjacent layers is responsible for the reduction of leakage inductance. This paper gives a detailed analysis of high frequency leakag...

  14. Across frequency processes involved in auditory detection of coloration

    DEFF Research Database (Denmark)

    Buchholz, Jörg; Kerketsos, P

    2008-01-01

    filterbank was designed to approximate auditory filter-shapes measured by Oxenham and Shera [JARO, 2003, 541-554], derived from forward masking data. The results of the present study demonstrate that a “purely” spectrum-based model approach can successfully describe auditory coloration detection even at high......When an early wall reflection is added to a direct sound, a spectral modulation is introduced to the signal's power spectrum. This spectral modulation typically produces an auditory sensation of coloration or pitch. Throughout this study, auditory spectral-integration effects involved in coloration...... detection are investigated. Coloration detection thresholds were therefore measured as a function of reflection delay and stimulus bandwidth. In order to investigate the involved auditory mechanisms, an auditory model was employed that was conceptually similar to the peripheral weighting model [Yost, JASA...

  15. An inkjet vision measurement technique for high-frequency jetting

    International Nuclear Information System (INIS)

    Kwon, Kye-Si; Jang, Min-Hyuck; Park, Ha Yeong; Ko, Hyun-Seok

    2014-01-01

    Inkjet technology has been used as manufacturing a tool for printed electronics. To increase the productivity, the jetting frequency needs to be increased. When using high-frequency jetting, the printed pattern quality could be non-uniform since the jetting performance characteristics including the jetting speed and droplet volume could vary significantly with increases in jet frequency. Therefore, high-frequency jetting behavior must be evaluated properly for improvement. However, it is difficult to measure high-frequency jetting behavior using previous vision analysis methods, because subsequent droplets are close or even merged. In this paper, we present vision measurement techniques to evaluate the drop formation of high-frequency jetting. The proposed method is based on tracking target droplets such that subsequent droplets can be excluded in the image analysis by focusing on the target droplet. Finally, a frequency sweeping method for jetting speed and droplet volume is presented to understand the overall jetting frequency effects on jetting performance

  16. An inkjet vision measurement technique for high-frequency jetting

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kye-Si, E-mail: kskwon@sch.ac.kr; Jang, Min-Hyuck; Park, Ha Yeong [Department of Mechanical Engineering, Soonchunhyang University 22, Soonchunhyang-Ro, Shinchang, Asan Chungnam 336-745 (Korea, Republic of); Ko, Hyun-Seok [Department of Electrical and Robot Engineering, Soonchunhyang University, 22, Soonchunhyang-Ro, Shinchang, Asan Chungnam 336-745 (Korea, Republic of)

    2014-06-15

    Inkjet technology has been used as manufacturing a tool for printed electronics. To increase the productivity, the jetting frequency needs to be increased. When using high-frequency jetting, the printed pattern quality could be non-uniform since the jetting performance characteristics including the jetting speed and droplet volume could vary significantly with increases in jet frequency. Therefore, high-frequency jetting behavior must be evaluated properly for improvement. However, it is difficult to measure high-frequency jetting behavior using previous vision analysis methods, because subsequent droplets are close or even merged. In this paper, we present vision measurement techniques to evaluate the drop formation of high-frequency jetting. The proposed method is based on tracking target droplets such that subsequent droplets can be excluded in the image analysis by focusing on the target droplet. Finally, a frequency sweeping method for jetting speed and droplet volume is presented to understand the overall jetting frequency effects on jetting performance.

  17. High frequency noise studies at the Hartousov mofette area (CZE)

    Science.gov (United States)

    Schmidt, Andreas; Flores-Estrella, Hortencia; Pommerencke, Julia; Umlauft, Josefine

    2014-05-01

    Ambient noise analysis has been used as a reliable tool to investigate sub-surface structures at seismological quiet regions with none or less specific seismic events. Here, we consider the acoustic signals from a single mofette at the Hartoušov area (CZE) as a noise-like high frequency source caused by multiple near surface degassing processes in a restricted location. From this assumption we have used different array geometries for recording at least one hour of continuous noise. We installed triangular arrays with 3 component geophones: the first deployment consisted on two co-centric triangles with side length of 30 and 50 m with the mofette in the center; the second deployment consisted on two triangular arrays, both with side length of 30 m, co-directional to the mofette. Furthermore, we also installed profiles with 24 channels and vertical geophones locating them in different positions with respect to the mofette. In this work, we present preliminary results from the data analysis dependent on the geometry, to show the characteristics of the noise wave-field referring to frequency content and propagation features, such as directionality and surface wave velocity. The spectral analysis shows that the energy is concentrated in a frequency band among 10 and 40 Hz. However, in this interval there is no evidence of any exclusive fundamental frequencies. From this, man-induced influences can be identified as intermittent signal peaks in narrow frequency bands and can be separated to receive the revised mofette wave-field record. The inversion of dispersive surface waves, that were detected by interferometric methods, provides a velocity model down to 12 m with an S-wave velocity between 160 and 180 m/s on the uppermost layer. Furthermore, the interferometric signal properties indicate that it is not possible to characterize the mofette as a punctual source, but rather as a conglomerate of multiple sources with time and location variations.

  18. Adaptive High Frequency Laser Sonar System

    National Research Council Canada - National Science Library

    Cray, Benjamin A

    2007-01-01

    .... Antivibration mounts are joined between said scanning laser vibrometer and said housing. In further embodiments, the scanning laser vibrometer detects vibrations at a plurality of locations on the acoustic window forming a virtual array...

  19. High-frequency analog integrated circuit design

    CERN Document Server

    1995-01-01

    To learn more about designing analog integrated circuits (ICs) at microwave frequencies using GaAs materials, turn to this text and reference. It addresses GaAs MESFET-based IC processing. Describes the newfound ability to apply silicon analog design techniques to reliable GaAs materials and devices which, until now, was only available through technical papers scattered throughout hundred of articles in dozens of professional journals.

  20. Coplanar stripline components for high frequency application

    Science.gov (United States)

    Goverdhanam, Kavita; Simons, Rainee N.; Dib, Nihad; Katehi, Linda P. B.

    1996-01-01

    In this paper, coplanar stripline discontinuities such as a slit, a right angle bend and a T-junction are characterized and their performance is parameterized with respect to frequency and geometry. Lumped equivalent circuits are presented for some of them. The element values are obtained from the measured discontinuity scattering (S) parameters. The experimental results are compared with theoretical data obtained using the Finite Difference Time Domain (FD-TD) technique for validation and show very good agreement.

  1. Aircraft Detection from VHR Images Based on Circle-Frequency Filter and Multilevel Features

    Directory of Open Access Journals (Sweden)

    Feng Gao

    2013-01-01

    Full Text Available Aircraft automatic detection from very high-resolution (VHR images plays an important role in a wide variety of applications. This paper proposes a novel detector for aircraft detection from very high-resolution (VHR remote sensing images. To accurately distinguish aircrafts from background, a circle-frequency filter (CF-filter is used to extract the candidate locations of aircrafts from a large size image. A multi-level feature model is then employed to represent both local appearance and spatial layout of aircrafts by means of Robust Hue Descriptor and Histogram of Oriented Gradients. The experimental results demonstrate the superior performance of the proposed method.

  2. The Influence of High-Frequency Gravitational Waves Upon Muscles

    International Nuclear Information System (INIS)

    Moy, Lawrence S.; Baker, Robert M. L. Jr

    2007-01-01

    The objective of this paper is to present a theory for the possible influence of high-frequency gravitational waves or HFGWs and pulsed micro-current electromagnetic waves or EMs on biological matter specifically on muscle cells and myofibroblasts. The theory involves consideration of the natural frequency of contractions and relaxations of muscles, especially underlying facial skin, and the possible influence of HFGWs on that process. GWs pass without attenuation through all material thus conventional wisdom would dictate that GWs would have no influence on biological matter. On the other hand, GWs can temporarily modify a gravitational field in some locality if they are of high frequency and such a modification might have an influence in changing the skin muscles' natural frequency. Prior to the actual laboratory generation of HFGWs their influence can be emulated by micro-current EM pulses to the skin and some evidence presented here on that effect may predict the influence of HFGWs. We believe that the HFGW pulsations lead to increased muscle activity and may serve to reverse the aging process. A novel theoretical framework concerning these relaxation phenomena is one result of the paper. Another result is the analysis of the possible delivery system of the FBAR-generated HFGWs, the actual power of the generated HFGWs, and the system's application to nanostructural modification of the skin or muscle cells. It is concluded that a series of non-evasive experiments, which are identified, will have the potential to test theory by detecting and analyzing the possible HFGWs change in polarization, refraction, etc. after their interaction with the muscle cells

  3. Direct excitation of a high frequency wave by a low frequency wave in a plasma

    International Nuclear Information System (INIS)

    Tanaka, Takayasu

    1993-01-01

    A new mechanism is presented of an excitation of a high frequency wave by a low frequency wave in a plasma. This mechanism works when the low frequency wave varies in time in a manner deviated from a usual periodic motion with a constant amplitude. The conversion rate is usually not large but the conversion is done without time delay after the variation of the low frequency wave. The Manley Rowe relation in the usual sense does not hold in this mechanism. This mechanism can excite also waves with same or lower frequencies. (author)

  4. Design and Implementation of 1-2 GHz Stepped Frequency GPR for Buried Metal Detection

    Directory of Open Access Journals (Sweden)

    Joko Suryana

    2010-10-01

    Full Text Available In this paper, we describe the design and realization steps of 1 - 2 GHz SFGPR (Stepped Frequency Ground Penetrating Radar transceiver for metal detection under the ground. Before using prototyped GPR for detecting the metal under the ground, several of calibration processes must be performed, namely phase calibration and monocycle pulse waveform calibration. After completing the calibrations, this prototyped GPR would be ready for detecting a  hidden object such as a metal plate 5 cm under the ground in our small test range size 25 cm x 75 cm x 10 cm. From the calibration and detection results, we concluded that the prototyped SFGPR passed the technical specifications of the design and could perform the metal detection under the ground with high SNR.

  5. High-frequency homogenization of zero frequency stop band photonic and phononic crystals

    CERN Document Server

    Antonakakis, Tryfon; Guenneau, Sebastien

    2013-01-01

    We present an accurate methodology for representing the physics of waves, for periodic structures, through effective properties for a replacement bulk medium: This is valid even for media with zero frequency stop-bands and where high frequency phenomena dominate. Since the work of Lord Rayleigh in 1892, low frequency (or quasi-static) behaviour has been neatly encapsulated in effective anisotropic media. However such classical homogenization theories break down in the high-frequency or stop band regime. Higher frequency phenomena are of significant importance in photonics (transverse magnetic waves propagating in infinite conducting parallel fibers), phononics (anti-plane shear waves propagating in isotropic elastic materials with inclusions), and platonics (flexural waves propagating in thin-elastic plates with holes). Fortunately, the recently proposed high-frequency homogenization (HFH) theory is only constrained by the knowledge of standing waves in order to asymptotically reconstruct dispersion curves an...

  6. High Frequency Acoustic Propagation using Level Set Methods

    Science.gov (United States)

    2007-01-01

    solution of the high frequency approximation to the wave equation. Traditional solutions to the Eikonal equation in high frequency acoustics are...the Eikonal equation derived from the high frequency approximation to the wave equation, ucuH ∇±=∇ )(),( xx , with the nonnegative function c(x...For simplicity, we only consider the case ucuH ∇+=∇ )(),( xx . Two difficulties must be addressed when solving the Eikonal equation in a fixed

  7. Sources for high frequency heating. Performance and limitations

    International Nuclear Information System (INIS)

    Le Gardeur, R.

    1976-01-01

    The various problems encountered in high frequency heating of plasmas can be decomposed into three spheres of action: theoretical development, antenna designing, and utilization of power sources. By classifying heating into three spectral domains, present and future needs are enumerated. Several specific antenna designs are treated. High frequency power sources are reviewed. The actual development of the gyratron is discussed in view of future needs in very high frequency heating of plasmas [fr

  8. Wideband Radio Frequency Interference Detection for Microwave Radiometer Subsystem

    Data.gov (United States)

    National Aeronautics and Space Administration — Anthropogenic Radio-Frequency Interference (RFI) is threatening the quality and utility of multi-frequency passive microwave radiometry. The GPM Microwave Imager...

  9. Calibration of High Frequency MEMS Microphones

    Science.gov (United States)

    Shams, Qamar A.; Humphreys, William M.; Bartram, Scott M.; Zuckewar, Allan J.

    2007-01-01

    Understanding and controlling aircraft noise is one of the major research topics of the NASA Fundamental Aeronautics Program. One of the measurement technologies used to acquire noise data is the microphone directional array (DA). Traditional direction array hardware, consisting of commercially available condenser microphones and preamplifiers can be too expensive and their installation in hard-walled wind tunnel test sections too complicated. An emerging micro-machining technology coupled with the latest cutting edge technologies for smaller and faster systems have opened the way for development of MEMS microphones. The MEMS microphone devices are available in the market but suffer from certain important shortcomings. Based on early experiments with array prototypes, it has been found that both the bandwidth and the sound pressure level dynamic range of the microphones should be increased significantly to improve the performance and flexibility of the overall array. Thus, in collaboration with an outside MEMS design vendor, NASA Langley modified commercially available MEMS microphone as shown in Figure 1 to meet the new requirements. Coupled with the design of the enhanced MEMS microphones was the development of a new calibration method for simultaneously obtaining the sensitivity and phase response of the devices over their entire broadband frequency range. Over the years, several methods have been used for microphone calibration. Some of the common methods of microphone calibration are Coupler (Reciprocity, Substitution, and Simultaneous), Pistonphone, Electrostatic actuator, and Free-field calibration (Reciprocity, Substitution, and Simultaneous). Traditionally, electrostatic actuators (EA) have been used to characterize air-condenser microphones for wideband frequency ranges; however, MEMS microphones are not adaptable to the EA method due to their construction and very small diaphragm size. Hence a substitution-based, free-field method was developed to

  10. Cosmic microwave background distortions at high frequencies

    International Nuclear Information System (INIS)

    Peter, W.; Peratt, A.L.

    1988-01-01

    The authors analyze the deviation of the cosmic background radiation spectrum from the 2.76+-0.02 0 Κ blackbody curve. If the cosmic background radiation is due to absorption and re-emission of synchrotron radiation from galactic-width current filaments, higher-order synchrotron modes are less thermalized than lower-order modes, causing a distortion of the blackbody curve at higher frequencies. New observations of the microwave background spectrum at short wavelengths should provide an indication of the number of synchrotron modes thermalized in this process. The deviation of the spectrum from that of a perfect blackbody can thus be correlated with astronomical observations such as filament temperatures and electron energies. The results are discussed and compared with the theoretical predictions of other models which assume the presence of intergalactic superconducting cosmic strings

  11. Corrosion monitoring using high-frequency guided ultrasonic waves

    Science.gov (United States)

    Fromme, Paul

    2014-02-01

    Corrosion develops due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the structural integrity. The nondestructive detection and monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, guided wave modes were generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted and the wall thickness reduced by consecutive milling of the steel structure. Further measurements were conducted using accelerated corrosion in a salt water bath and the damage severity monitored. From the measured signal change due to the wave mode interference the wall thickness reduction was monitored. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  12. Iridoschisis: high frequency ultrasound imaging. Evidence for a genetic defect?

    Science.gov (United States)

    Danias, J; Aslanides, I M; Eichenbaum, J W; Silverman, R H; Reinstein, D Z; Coleman, D J

    1996-01-01

    AIMS: To elucidate changes in the anatomy of the anterior chamber associated with iridoschisis, a rare form of iris atrophy, and their potential contribution to angle closure glaucoma. METHODS: Both eyes of a 71-year-old woman with bilateral iridoschisis and fibrous dysplasia and her asymptomatic 50-year-old daughter were scanned with a very high frequency (50 MHz) ultrasound system. RESULTS: The symptomatic patient exhibited diffuse changes in the iris stoma with an intact posterior iris pigmented layer in both eyes. These changes were clinically compatible with the lack of iris transillumination defects. Additionally, iris bowing with a resultant narrowing of the angle occurred. The asymptomatic daughter showed discrete, but less severe iris stromal changes. CONCLUSION: This is the first detailed study of high frequency ultrasonic imaging of the iris in iridoschisis. The observed structural changes suggest angle narrowing by forward bowing of the anterior iris stroma may be a mechanism of IOP elevation in this condition. The ultrasonic detection of iris changes in the asymptomatic daughter of the symptomatic patient and the association of iridoschisis with fibrous dysplasia suggest a possible genetic component in the pathogenesis of this condition. Images PMID:9059271

  13. Method of detecting system function by measuring frequency response

    Science.gov (United States)

    Morrison, John L [Butte, MT; Morrison, William H [Manchester, CT; Christophersen, Jon P [Idaho Falls, ID

    2012-04-03

    Real-time battery impedance spectrum is acquired using a one-time record. Fast Summation Transformation (FST) is a parallel method of acquiring a real-time battery impedance spectrum using a one-time record that enables battery diagnostics. An excitation current to a battery is a sum of equal amplitude sine waves of frequencies that are octave harmonics spread over a range of interest. A sample frequency is also octave and harmonically related to all frequencies in the sum. The time profile of this signal has a duration that is a few periods of the lowest frequency. The voltage response of the battery, average deleted, is the impedance of the battery in the time domain. Since the excitation frequencies are known and octave and harmonically related, a simple algorithm, FST, processes the time record by rectifying relative to the sine and cosine of each frequency. Another algorithm yields real and imaginary components for each frequency.

  14. Method of detecting system function by measuring frequency response

    Science.gov (United States)

    Morrison, John L.; Morrison, William H.; Christophersen, Jon P.; Motloch, Chester G.

    2013-01-08

    Methods of rapidly measuring an impedance spectrum of an energy storage device in-situ over a limited number of logarithmically distributed frequencies are described. An energy storage device is excited with a known input signal, and a response is measured to ascertain the impedance spectrum. An excitation signal is a limited time duration sum-of-sines consisting of a select number of frequencies. In one embodiment, magnitude and phase of each frequency of interest within the sum-of-sines is identified when the selected frequencies and sample rate are logarithmic integer steps greater than two. This technique requires a measurement with a duration of one period of the lowest frequency. In another embodiment, where selected frequencies are distributed in octave steps, the impedance spectrum can be determined using a captured time record that is reduced to a half-period of the lowest frequency.

  15. Simulation of pulmonary ventilation at high frequency

    International Nuclear Information System (INIS)

    Dhawan, A.P.; LeRoyer, E.

    1986-01-01

    X-ray mammography is the only breast cancer detection technique presently available with proven efficacy. Mammographic detection of early breast cancer requires optimal radiological or image processing techniques to show the smallest details clearly. The present research is focused on the image processing techniques that may be applied on low-dose film mammograms to enhance mammographic features. The method is based on the optimal adaptive neighborhood processing technique using a suitable contrast enhancement function. This processing allows to enhance the mammographic features without enhancing the noise and undesired background variations. The authors developed an optimal adaptive neighborhood processing technique for mammographic feature enhancement using geometrical enhancement functions. In their previous approach, the selection of a suitable geometrical contrast enhancement function was difficult. The authors now developed a generalized mathematical model to enhance the contrast in optimal adaptive neighborhood processing. This model is based on the statistics of the image and also tunable to suit the visual perception of the radiologist. The overall evaluation of the technique with ROC analysis using the clinical film-mammograms is in progress

  16. Exploring the time-frequency content of high frequency oscillations for automated identification of seizure onset zone in epilepsy.

    Science.gov (United States)

    Liu, Su; Sha, Zhiyi; Sencer, Altay; Aydoseli, Aydin; Bebek, Nerse; Abosch, Aviva; Henry, Thomas; Gurses, Candan; Ince, Nuri Firat

    2016-04-01

    High frequency oscillations (HFOs) in intracranial electroencephalography (iEEG) recordings are considered as promising clinical biomarkers of epileptogenic regions in the brain. The aim of this study is to improve and automatize the detection of HFOs by exploring the time-frequency content of iEEG and to investigate the seizure onset zone (SOZ) detection accuracy during the sleep, awake and pre-ictal states in patients with epilepsy, for the purpose of assisting the localization of SOZ in clinical practice. Ten-minute iEEG segments were defined during different states in eight patients with refractory epilepsy. A three-stage algorithm was implemented to detect HFOs in these segments. First, an amplitude based initial detection threshold was used to generate a large pool of HFO candidates. Then distinguishing features were extracted from the time and time-frequency domain of the raw iEEG and used with a Gaussian mixture model clustering to isolate HFO events from other activities. The spatial distribution of HFO clusters was correlated with the seizure onset channels identified by neurologists in seven patient with good surgical outcome. The overlapping rates of localized channels and seizure onset locations were high in all states. The best result was obtained using the iEEG data during sleep, achieving a sensitivity of 81%, and a specificity of 96%. The channels with maximum number of HFOs identified epileptogenic areas where the seizures occurred more frequently. The current study was conducted using iEEG data collected in realistic clinical conditions without channel pre-exclusion. HFOs were investigated with novel features extracted from the entire frequency band, and were correlated with SOZ in different states. The results indicate that automatic HFO detection with unsupervised clustering methods exploring the time-frequency content of raw iEEG can be efficiently used to identify the epileptogenic zone with an accurate and efficient manner.

  17. Optimising 4-D surface change detection: an approach for capturing rockfall magnitude-frequency

    Science.gov (United States)

    Williams, Jack G.; Rosser, Nick J.; Hardy, Richard J.; Brain, Matthew J.; Afana, Ashraf A.

    2018-02-01

    We present a monitoring technique tailored to analysing change from near-continuously collected, high-resolution 3-D data. Our aim is to fully characterise geomorphological change typified by an event magnitude-frequency relationship that adheres to an inverse power law or similar. While recent advances in monitoring have enabled changes in volume across more than 7 orders of magnitude to be captured, event frequency is commonly assumed to be interchangeable with the time-averaged event numbers between successive surveys. Where events coincide, or coalesce, or where the mechanisms driving change are not spatially independent, apparent event frequency must be partially determined by survey interval.The data reported have been obtained from a permanently installed terrestrial laser scanner, which permits an increased frequency of surveys. Surveying from a single position raises challenges, given the single viewpoint onto a complex surface and the need for computational efficiency associated with handling a large time series of 3-D data. A workflow is presented that optimises the detection of change by filtering and aligning scans to improve repeatability. An adaptation of the M3C2 algorithm is used to detect 3-D change to overcome data inconsistencies between scans. Individual rockfall geometries are then extracted and the associated volumetric errors modelled. The utility of this approach is demonstrated using a dataset of ˜ 9 × 103 surveys acquired at ˜ 1 h intervals over 10 months. The magnitude-frequency distribution of rockfall volumes generated is shown to be sensitive to monitoring frequency. Using a 1 h interval between surveys, rather than 30 days, the volume contribution from small (< 0.1 m3) rockfalls increases from 67 to 98 % of the total, and the number of individual rockfalls observed increases by over 3 orders of magnitude. High-frequency monitoring therefore holds considerable implications for magnitude-frequency derivatives, such as hazard return

  18. Optimising 4-D surface change detection: an approach for capturing rockfall magnitude–frequency

    Directory of Open Access Journals (Sweden)

    J. G. Williams

    2018-02-01

    Full Text Available We present a monitoring technique tailored to analysing change from near-continuously collected, high-resolution 3-D data. Our aim is to fully characterise geomorphological change typified by an event magnitude–frequency relationship that adheres to an inverse power law or similar. While recent advances in monitoring have enabled changes in volume across more than 7 orders of magnitude to be captured, event frequency is commonly assumed to be interchangeable with the time-averaged event numbers between successive surveys. Where events coincide, or coalesce, or where the mechanisms driving change are not spatially independent, apparent event frequency must be partially determined by survey interval.The data reported have been obtained from a permanently installed terrestrial laser scanner, which permits an increased frequency of surveys. Surveying from a single position raises challenges, given the single viewpoint onto a complex surface and the need for computational efficiency associated with handling a large time series of 3-D data. A workflow is presented that optimises the detection of change by filtering and aligning scans to improve repeatability. An adaptation of the M3C2 algorithm is used to detect 3-D change to overcome data inconsistencies between scans. Individual rockfall geometries are then extracted and the associated volumetric errors modelled. The utility of this approach is demonstrated using a dataset of  ∼  9  ×  103 surveys acquired at  ∼  1 h intervals over 10 months. The magnitude–frequency distribution of rockfall volumes generated is shown to be sensitive to monitoring frequency. Using a 1 h interval between surveys, rather than 30 days, the volume contribution from small (< 0.1 m3 rockfalls increases from 67 to 98 % of the total, and the number of individual rockfalls observed increases by over 3 orders of magnitude. High-frequency monitoring therefore holds considerable

  19. High frequency response of open quantum dots

    International Nuclear Information System (INIS)

    Brunner, R.; Meisels, R.; Kuchar, F.; Ferry, D.; Elhassan, M.; Ishibashi, K.

    2002-01-01

    Full text: We investigate the response of the transport through open quantum dots to millimeterwave radiation (up to 55 GHz). In the low-field region ( 11 cm -2 and a mobility of 1.2 10 6 cm 2 /Vs. By applying a sufficiently negative voltage to the gates the 2DES is split into two regions connected only by a dot-like region (about 350 nm diameter) between them. The DC data exhibit backscattering peaks at fields of a few tenth of a Tesla. Shubnikovde- Haas (SdH) oscillations appear above 0.5 T. While the SdH oscillations show the usual temperature dependence, the backscattering peaks are temperature independent up to 2.5 K. The backscattering peak shows a reduction of 10 percent due to the millimeterwave irradiation. However, due to the temperature independence of this peak, this reduction cannot simply be attributed to electron heating. This conclusion is supported by the observation of a strong frequency dependence of the reduction of the peak height. (author)

  20. Gender Identification Using High-Frequency Speech Energy: Effects of Increasing the Low-Frequency Limit.

    Science.gov (United States)

    Donai, Jeremy J; Halbritter, Rachel M

    The purpose of this study was to investigate the ability of normal-hearing listeners to use high-frequency energy for gender identification from naturally produced speech signals. Two experiments were conducted using a repeated-measures design. Experiment 1 investigated the effects of increasing high-pass filter cutoff (i.e., increasing the low-frequency spectral limit) on gender identification from naturally produced vowel segments. Experiment 2 studied the effects of increasing high-pass filter cutoff on gender identification from naturally produced sentences. Confidence ratings for the gender identification task were also obtained for both experiments. Listeners in experiment 1 were capable of extracting talker gender information at levels significantly above chance from vowel segments high-pass filtered up to 8.5 kHz. Listeners in experiment 2 also performed above chance on the gender identification task from sentences high-pass filtered up to 12 kHz. Cumulatively, the results of both experiments provide evidence that normal-hearing listeners can utilize information from the very high-frequency region (above 4 to 5 kHz) of the speech signal for talker gender identification. These findings are at variance with current assumptions regarding the perceptual information regarding talker gender within this frequency region. The current results also corroborate and extend previous studies of the use of high-frequency speech energy for perceptual tasks. These findings have potential implications for the study of information contained within the high-frequency region of the speech spectrum and the role this region may play in navigating the auditory scene, particularly when the low-frequency portion of the spectrum is masked by environmental noise sources or for listeners with substantial hearing loss in the low-frequency region and better hearing sensitivity in the high-frequency region (i.e., reverse slope hearing loss).

  1. A high-switching-frequency flyback converter in resonant mode

    NARCIS (Netherlands)

    Li, Jianting; van Horck, Frank B.M.; Daniel, Bobby J.; Bergveld, Henk Jan

    2017-01-01

    The demand of miniaturization of power systems has accelerated the research on high-switching-frequency power converters. A flyback converter in resonant mode that features low switching losses, less transformer losses, and low switching noise at high switching frequency is investigated in this

  2. Feasibility of Detecting Natural Frequencies of Hydraulic Turbines While in Operation, Using Strain Gauges.

    Science.gov (United States)

    Valentín, David; Presas, Alexandre; Bossio, Matias; Egusquiza, Mònica; Egusquiza, Eduard; Valero, Carme

    2018-01-10

    Nowadays, hydropower plays an essential role in the energy market. Due to their fast response and regulation capacity, hydraulic turbines operate at off-design conditions with a high number of starts and stops. In this situation, dynamic loads and stresses over the structure are high, registering some failures over time, especially in the runner. Therefore, it is important to know the dynamic response of the runner while in operation, i.e., the natural frequencies, damping and mode shapes, in order to avoid resonance and fatigue problems. Detecting the natural frequencies of hydraulic turbine runners while in operation is challenging, because they are inaccessible structures strongly affected by their confinement in water. Strain gauges are used to measure the stresses of hydraulic turbine runners in operation during commissioning. However, in this paper, the feasibility of using them to detect the natural frequencies of hydraulic turbines runners while in operation is studied. For this purpose, a large Francis turbine runner (444 MW) was instrumented with several strain gauges at different positions. First, a complete experimental strain modal testing (SMT) of the runner in air was performed using the strain gauges and accelerometers. Then, the natural frequencies of the runner were estimated during operation by means of analyzing accurately transient events or rough operating conditions.

  3. Nanohertz frequency determination for the gravity probe B high frequency superconducting quantum interference device signal.

    Science.gov (United States)

    Salomon, M; Conklin, J W; Kozaczuk, J; Berberian, J E; Keiser, G M; Silbergleit, A S; Worden, P; Santiago, D I

    2011-12-01

    In this paper, we present a method to measure the frequency and the frequency change rate of a digital signal. This method consists of three consecutive algorithms: frequency interpolation, phase differencing, and a third algorithm specifically designed and tested by the authors. The succession of these three algorithms allowed a 5 parts in 10(10) resolution in frequency determination. The algorithm developed by the authors can be applied to a sampled scalar signal such that a model linking the harmonics of its main frequency to the underlying physical phenomenon is available. This method was developed in the framework of the gravity probe B (GP-B) mission. It was applied to the high frequency (HF) component of GP-B's superconducting quantum interference device signal, whose main frequency f(z) is close to the spin frequency of the gyroscopes used in the experiment. A 30 nHz resolution in signal frequency and a 0.1 pHz/s resolution in its decay rate were achieved out of a succession of 1.86 s-long stretches of signal sampled at 2200 Hz. This paper describes the underlying theory of the frequency measurement method as well as its application to GP-B's HF science signal.

  4. Shell structure in superdeformed nuclei at high rotational frequencies

    International Nuclear Information System (INIS)

    Ploszajczak, M.

    1980-01-01

    Properties of the shell structure in superdeformed nuclei at high rotational frequencies are discussed. Moreover, stability of the high spin compound nucleus with respect to the fission and the emission of light particles is investigated. (author)

  5. A Frequency-Weighted Energy Operator and complementary ensemble empirical mode decomposition for bearing fault detection

    Science.gov (United States)

    Imaouchen, Yacine; Kedadouche, Mourad; Alkama, Rezak; Thomas, Marc

    2017-01-01

    Signal processing techniques for non-stationary and noisy signals have recently attracted considerable attentions. Among them, the empirical mode decomposition (EMD) which is an adaptive and efficient method for decomposing signals from high to low frequencies into intrinsic mode functions (IMFs). Ensemble EMD (EEMD) is proposed to overcome the mode mixing problem of the EMD. In the present paper, the Complementary EEMD (CEEMD) is used for bearing fault detection. As a noise-improved method, the CEEMD not only overcomes the mode mixing, but also eliminates the residual of added white noise persisting into the IMFs and enhance the calculation efficiency of the EEMD method. Afterward, a selection method is developed to choose relevant IMFs containing information about defects. Subsequently, a signal is reconstructed from the sum of relevant IMFs and a Frequency-Weighted Energy Operator is tailored to extract both the amplitude and frequency modulations from the selected IMFs. This operator outperforms the conventional energy operator and the enveloping methods, especially in the presence of strong noise and multiple vibration interferences. Furthermore, simulation and experimental results showed that the proposed method improves performances for detecting the bearing faults. The method has also high computational efficiency and is able to detect the fault at an early stage of degradation.

  6. The Frequency Spectral Properties of Electrode-Skin Contact Impedance on Human Head and Its Frequency-Dependent Effects on Frequency-Difference EIT in Stroke Detection from 10Hz to 1MHz.

    Directory of Open Access Journals (Sweden)

    Lin Yang

    Full Text Available Frequency-difference electrical impedance tomography (fdEIT reconstructs frequency-dependent changes of a complex impedance distribution. It has a potential application in acute stroke detection because there are significant differences in impedance spectra between stroke lesions and normal brain tissues. However, fdEIT suffers from the influences of electrode-skin contact impedance since contact impedance varies greatly with frequency. When using fdEIT to detect stroke, it is critical to know the degree of measurement errors or image artifacts caused by contact impedance. To our knowledge, no study has systematically investigated the frequency spectral properties of electrode-skin contact impedance on human head and its frequency-dependent effects on fdEIT used in stroke detection within a wide frequency band (10 Hz-1 MHz. In this study, we first measured and analyzed the frequency spectral properties of electrode-skin contact impedance on 47 human subjects' heads within 10 Hz-1 MHz. Then, we quantified the frequency-dependent effects of contact impedance on fdEIT in stroke detection in terms of the current distribution beneath the electrodes and the contact impedance imbalance between two measuring electrodes. The results showed that the contact impedance at high frequencies (>100 kHz significantly changed the current distribution beneath the electrode, leading to nonnegligible errors in boundary voltages and artifacts in reconstructed images. The contact impedance imbalance at low frequencies (<1 kHz also caused significant measurement errors. We conclude that the contact impedance has critical frequency-dependent influences on fdEIT and further studies on reducing such influences are necessary to improve the application of fdEIT in stroke detection.

  7. The Frequency Spectral Properties of Electrode-Skin Contact Impedance on Human Head and Its Frequency-Dependent Effects on Frequency-Difference EIT in Stroke Detection from 10Hz to 1MHz.

    Science.gov (United States)

    Yang, Lin; Dai, Meng; Xu, Canhua; Zhang, Ge; Li, Weichen; Fu, Feng; Shi, Xuetao; Dong, Xiuzhen

    2017-01-01

    Frequency-difference electrical impedance tomography (fdEIT) reconstructs frequency-dependent changes of a complex impedance distribution. It has a potential application in acute stroke detection because there are significant differences in impedance spectra between stroke lesions and normal brain tissues. However, fdEIT suffers from the influences of electrode-skin contact impedance since contact impedance varies greatly with frequency. When using fdEIT to detect stroke, it is critical to know the degree of measurement errors or image artifacts caused by contact impedance. To our knowledge, no study has systematically investigated the frequency spectral properties of electrode-skin contact impedance on human head and its frequency-dependent effects on fdEIT used in stroke detection within a wide frequency band (10 Hz-1 MHz). In this study, we first measured and analyzed the frequency spectral properties of electrode-skin contact impedance on 47 human subjects' heads within 10 Hz-1 MHz. Then, we quantified the frequency-dependent effects of contact impedance on fdEIT in stroke detection in terms of the current distribution beneath the electrodes and the contact impedance imbalance between two measuring electrodes. The results showed that the contact impedance at high frequencies (>100 kHz) significantly changed the current distribution beneath the electrode, leading to nonnegligible errors in boundary voltages and artifacts in reconstructed images. The contact impedance imbalance at low frequencies (<1 kHz) also caused significant measurement errors. We conclude that the contact impedance has critical frequency-dependent influences on fdEIT and further studies on reducing such influences are necessary to improve the application of fdEIT in stroke detection.

  8. A MEMS-based high frequency x-ray chopper

    Energy Technology Data Exchange (ETDEWEB)

    Siria, A; Schwartz, W; Chevrier, J [Institut Neel, CNRS-Universite Joseph Fourier Grenoble, BP 166, F-38042 Grenoble Cedex 9 (France); Dhez, O; Comin, F [ESRF, 6 rue Jules Horowitz, F-38043 Grenoble Cedex 9 (France); Torricelli, G [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom)

    2009-04-29

    Time-resolved x-ray experiments require intensity modulation at high frequencies (advanced rotating choppers have nowadays reached the kHz range). We here demonstrate that a silicon microlever oscillating at 13 kHz with nanometric amplitude can be used as a high frequency x-ray chopper. We claim that using micro-and nanoelectromechanical systems (MEMS and NEMS), it will be possible to achieve higher frequencies in excess of hundreds of megahertz. Working at such a frequency can open a wealth of possibilities in chemistry, biology and physics time-resolved experiments.

  9. High Accelerating Field Superconducting Radio Frequency Cavities

    Science.gov (United States)

    Orr, R. S.; Saito, K.; Furuta, F.; Saeki, T.; Inoue, H.; Morozumi, Y.; Higo, T.; Higashi, Y.; Matsumoto, H.; Kazakov, S.; Yamaoka, H.; Ueno, K.; Sato, M.

    2008-06-01

    We have conducted a study of a series of single cell superconducting RF cavities at KEK. These tests were designed to investigate the effect of surface treatment on the maximum accelerating field attainable. All of these cavities are of the ICHIRO shape, based on the Low Loss shape. Our results indicate that accelerating fields as high as the theoretical maximum of 50MV/m are attainable.

  10. Improving mental task classification by adding high frequency band information.

    Science.gov (United States)

    Zhang, Li; He, Wei; He, Chuanhong; Wang, Ping

    2010-02-01

    Features extracted from delta, theta, alpha, beta and gamma bands spanning low frequency range are commonly used to classify scalp-recorded electroencephalogram (EEG) for designing brain-computer interface (BCI) and higher frequencies are often neglected as noise. In this paper, we implemented an experimental validation to demonstrate that high frequency components could provide helpful information for improving the performance of the mental task based BCI. Electromyography (EMG) and electrooculography (EOG) artifacts were removed by using blind source separation (BSS) techniques. Frequency band powers and asymmetry ratios from the high frequency band (40-100 Hz) together with those from the lower frequency bands were used to represent EEG features. Finally, Fisher discriminant analysis (FDA) combining with Mahalanobis distance were used as the classifier. In this study, four types of classifications were performed using EEG signals recorded from four subjects during five mental tasks. We obtained significantly higher classification accuracy by adding the high frequency band features compared to using the low frequency bands alone, which demonstrated that the information in high frequency components from scalp-recorded EEG is valuable for the mental task based BCI.

  11. RareVar: A Framework for Detecting Low-Frequency Single-Nucleotide Variants.

    Science.gov (United States)

    Hao, Yangyang; Xuei, Xiaoling; Li, Lang; Nakshatri, Harikrishna; Edenberg, Howard J; Liu, Yunlong

    2017-07-01

    Accurate identification of low-frequency somatic point mutations in tumor samples has important clinical utilities. Although high-throughput sequencing technology enables capturing such variants while sequencing primary tumor samples, our ability for accurate detection is compromised when the variant frequency is close to the sequencer error rate. Most current experimental and bioinformatic strategies target mutations with ≥5% allele frequency, which limits our ability to understand the cancer etiology and tumor evolution. We present an experimental and computational modeling framework, RareVar, to reliably identify low-frequency single-nucleotide variants from high-throughput sequencing data under standard experimental protocols. RareVar protocol includes a benchmark design by pooling DNAs from already sequenced individuals at various concentrations to target variants at desired frequencies, 0.5%-3% in our case. By applying a generalized, linear model-based, position-specific error model, followed by machine-learning-based variant calibration, our approach outperforms existing methods. Our method can be applied on most capture and sequencing platforms without modifying the experimental protocol.

  12. Chaos in high-power high-frequency gyrotrons

    International Nuclear Information System (INIS)

    Airila, M.

    2004-01-01

    Gyrotron interaction is a complex nonlinear dynamical process, which may turn chaotic in certain circumstances. The emergence of chaos renders dynamical systems unpredictable and causes bandwidth broadening of signals. Such effects would jeopardize the prospect of advanced gyrotrons in fusion. Therefore, it is important to be aware of the possibility of chaos in gyrotrons. There are three different chaos scenarios closely related to the development of high-power gyrotrons: First, the onset of chaos in electron trajectories would lead to difficulties in the design and efficient operation of depressed potential collectors, which are used for efficiency enhancement. Second, the radio-frequency signal could turn chaotic, decreasing the output power and the spectral purity of the output signal. As a result, mode conversion, transmission, and absorption efficiencies would be reduced. Third, spatio-temporal chaos in the resonator field structure can set a limit for the use of large-diameter interaction cavities and high-order TE modes (large azimuthal index) allowing higher generated power. In this thesis, the issues above are addressed with numerical modeling. It is found that chaos in electron residual energies is practically absent in the parameter region corresponding to high efficiency. Accordingly, depressed collectors are a feasible solution also in advanced high-power gyrotrons. A new method is presented for straightforward numerical solution of the one-dimensional self-consistent time-dependent gyrotron equations, and the method is generalized to two dimensions. In 1D, a chart of gyrotron oscillations is calculated. It is shown that the regions of stationary oscillations, automodulation, and chaos have a complicated topology in the plane of generalized gyrotron variables. The threshold current for chaotic oscillations exceeds typical operating currents by a factor of ten. However, reflection of the output signal may significantly lower the threshold. 2D

  13. High frequency characterization of Galfenol minor flux density loops

    Directory of Open Access Journals (Sweden)

    Ling Weng

    2017-05-01

    Full Text Available This paper presents the first measurement of ring-shaped Galfenol’s high frequency-dependent minor flux density loops. The frequencies of applied AC magnetic field are 1k, 5k, 10k, 50k, 100k, 200k, 300k, 500 kHz. The measurements show that the cycle area between the flux density and magnetic field curves increase with increasing frequency. High frequency-dependent characterization, including coercivity, specific power loss, residual induction, and maximum relative permeability are discussed. Minor loops for different max induction are also measured and discussed at the same frequency 100 kHz. Minor loops with the same max induction 0.05 T for different frequencies 50, 100, 200, 300, 400 kHz are measured and specific power loss are discussed.

  14. High-frequency multimodal atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Adrian P. Nievergelt

    2014-12-01

    Full Text Available Multifrequency atomic force microscopy imaging has been recently demonstrated as a powerful technique for quickly obtaining information about the mechanical properties of a sample. Combining this development with recent gains in imaging speed through small cantilevers holds the promise of a convenient, high-speed method for obtaining nanoscale topography as well as mechanical properties. Nevertheless, instrument bandwidth limitations on cantilever excitation and readout have restricted the ability of multifrequency techniques to fully benefit from small cantilevers. We present an approach for cantilever excitation and deflection readout with a bandwidth of 20 MHz, enabling multifrequency techniques extended beyond 2 MHz for obtaining materials contrast in liquid and air, as well as soft imaging of delicate biological samples.

  15. The Influence of High-Frequency Envelope Information on Low-Frequency Vowel Identification in Noise.

    Directory of Open Access Journals (Sweden)

    Wiebke Schubotz

    Full Text Available Vowel identification in noise using consonant-vowel-consonant (CVC logatomes was used to investigate a possible interplay of speech information from different frequency regions. It was hypothesized that the periodicity conveyed by the temporal envelope of a high frequency stimulus can enhance the use of the information carried by auditory channels in the low-frequency region that share the same periodicity. It was further hypothesized that this acts as a strobe-like mechanism and would increase the signal-to-noise ratio for the voiced parts of the CVCs. In a first experiment, different high-frequency cues were provided to test this hypothesis, whereas a second experiment examined more closely the role of amplitude modulations and intact phase information within the high-frequency region (4-8 kHz. CVCs were either natural or vocoded speech (both limited to a low-pass cutoff-frequency of 2.5 kHz and were presented in stationary 3-kHz low-pass filtered masking noise. The experimental results did not support the hypothesized use of periodicity information for aiding low-frequency perception.

  16. The Influence of High-Frequency Envelope Information on Low-Frequency Vowel Identification in Noise.

    Science.gov (United States)

    Schubotz, Wiebke; Brand, Thomas; Kollmeier, Birger; Ewert, Stephan D

    2016-01-01

    Vowel identification in noise using consonant-vowel-consonant (CVC) logatomes was used to investigate a possible interplay of speech information from different frequency regions. It was hypothesized that the periodicity conveyed by the temporal envelope of a high frequency stimulus can enhance the use of the information carried by auditory channels in the low-frequency region that share the same periodicity. It was further hypothesized that this acts as a strobe-like mechanism and would increase the signal-to-noise ratio for the voiced parts of the CVCs. In a first experiment, different high-frequency cues were provided to test this hypothesis, whereas a second experiment examined more closely the role of amplitude modulations and intact phase information within the high-frequency region (4-8 kHz). CVCs were either natural or vocoded speech (both limited to a low-pass cutoff-frequency of 2.5 kHz) and were presented in stationary 3-kHz low-pass filtered masking noise. The experimental results did not support the hypothesized use of periodicity information for aiding low-frequency perception.

  17. High frequency single mode traveling wave structure for particle acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Ivanyan, M.I.; Danielyan, V.A.; Grigoryan, B.A.; Grigoryan, A.H. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Tsakanian, A.V. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Technische Universität Darmstadt, Institut TEMF, 64289 Darmstadt (Germany); Tsakanov, V.M., E-mail: tsakanov@asls.candle.am [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Vardanyan, A.S.; Zakaryan, S.V. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia)

    2016-09-01

    The development of the new high frequency slow traveling wave structures is one of the promising directions in accomplishment of charged particles high acceleration gradient. The disc and dielectric loaded structures are the most known structures with slowly propagating modes. In this paper a large aperture high frequency metallic two-layer accelerating structure is studied. The electrodynamical properties of the slowly propagating TM{sub 01} mode in a metallic tube with internally coated low conductive thin layer are examined.

  18. Sync transmission method and apparatus for high frequency pulsed neutron spectral analysis systems

    International Nuclear Information System (INIS)

    Culver, R.B.

    1981-01-01

    An improved synchronization system was developed for high-frequency pulsed-neutron gamma ray well-logging which extends the upper limit of the usable source pulsing frequency. A clock is used to pulse the neutron generator at a given frequency and a scaler generates scaled-down sync pulses at a lower frequency. Radiation from the formations surrounding the borehole is detected and electrical signals related functionally to the radiation are generated. The scaled-down sync pulses and electrical signals are transmitted to the earth's surface via a seven conductor well logging cable. (DN)

  19. Sonic IR crack detection of aircraft turbine engine blades with multi-frequency ultrasound excitations

    International Nuclear Information System (INIS)

    Zhang, Ding; Han, Xiaoyan; Newaz, Golam

    2014-01-01

    Effectively and accurately detecting cracks or defects in critical engine components, such as turbine engine blades, is very important for aircraft safety. Sonic Infrared (IR) Imaging is such a technology with great potential for these applications. This technology combines ultrasound excitation and IR imaging to identify cracks and flaws in targets. In general, failure of engine components, such as blades, begins with tiny cracks. Since the attenuation of the ultrasound wave propagation in turbine engine blades is small, the efficiency of crack detection in turbine engine blades can be quite high. The authors at Wayne State University have been developing the technology as a reliable tool for the future field use in aircraft engines and engine parts. One part of the development is to use finite element modeling to assist our understanding of effects of different parameters on crack heating while experimentally hard to achieve. The development has been focused with single frequency ultrasound excitation and some results have been presented in a previous conference. We are currently working on multi-frequency excitation models. The study will provide results and insights of the efficiency of different frequency excitation sources to foster the development of the technology for crack detection in aircraft engine components

  20. Frequency Mixing Magnetic Detection Scanner for Imaging Magnetic Particles in Planar Samples.

    Science.gov (United States)

    Hong, Hyobong; Lim, Eul-Gyoon; Jeong, Jae-Chan; Chang, Jiho; Shin, Sung-Woong; Krause, Hans-Joachim

    2016-06-09

    The setup of a planar Frequency Mixing Magnetic Detection (p-FMMD) scanner for performing Magnetic Particles Imaging (MPI) of flat samples is presented. It consists of two magnetic measurement heads on both sides of the sample mounted on the legs of a u-shaped support. The sample is locally exposed to a magnetic excitation field consisting of two distinct frequencies, a stronger component at about 77 kHz and a weaker field at 61 Hz. The nonlinear magnetization characteristics of superparamagnetic particles give rise to the generation of intermodulation products. A selected sum-frequency component of the high and low frequency magnetic field incident on the magnetically nonlinear particles is recorded by a demodulation electronics. In contrast to a conventional MPI scanner, p-FMMD does not require the application of a strong magnetic field to the whole sample because mixing of the two frequencies occurs locally. Thus, the lateral dimensions of the sample are just limited by the scanning range and the supports. However, the sample height determines the spatial resolution. In the current setup it is limited to 2 mm. As examples, we present two 20 mm × 25 mm p-FMMD images acquired from samples with 1 µm diameter maghemite particles in silanol matrix and with 50 nm magnetite particles in aminosilane matrix. The results show that the novel MPI scanner can be applied for analysis of thin biological samples and for medical diagnostic purposes.

  1. High density terahertz frequency comb produced by coherent synchrotron radiation

    Science.gov (United States)

    Tammaro, S.; Pirali, O.; Roy, P.; Lampin, J.-F.; Ducournau, G.; Cuisset, A.; Hindle, F.; Mouret, G.

    2015-07-01

    Frequency combs have enabled significant progress in frequency metrology and high-resolution spectroscopy extending the achievable resolution while increasing the signal-to-noise ratio. In its coherent mode, synchrotron radiation is accepted to provide an intense terahertz continuum covering a wide spectral range from about 0.1 to 1 THz. Using a dedicated heterodyne receiver, we reveal the purely discrete nature of this emission. A phase relationship between the light pulses leads to a powerful frequency comb spanning over one decade in frequency. The comb has a mode spacing of 846 kHz, a linewidth of about 200 Hz, a fractional precision of about 2 × 10-10 and no frequency offset. The unprecedented potential of the comb for high-resolution spectroscopy is demonstrated by the accurate determination of pure rotation transitions of acetonitrile.

  2. High Energy Single Frequency Resonant Amplifier, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase I project proposes a single frequency high energy resonant amplifier for remote sensing. Current state-of-art technologies can not provide all...

  3. Oscillographic Chronopotentiometry with High and Low Frequency Current

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A novel electroanalytical method, oscillographic chronopotentiometry with high and low frequency current, is presented in this paper. With this method, the sensitivity of almost all kinds of oscillographic chronopotentiometry can be enhanced about one order.

  4. High-Frequency Microwave Processing of Materials Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Conducts research on high-frequency microwave processing of materials using a highpower, continuous-wave (CW), 83-GHz, quasi-optical beam system for rapid,...

  5. High-frequency matrix converter with square wave input

    Science.gov (United States)

    Carr, Joseph Alexander; Balda, Juan Carlos

    2015-03-31

    A device for producing an alternating current output voltage from a high-frequency, square-wave input voltage comprising, high-frequency, square-wave input a matrix converter and a control system. The matrix converter comprises a plurality of electrical switches. The high-frequency input and the matrix converter are electrically connected to each other. The control system is connected to each switch of the matrix converter. The control system is electrically connected to the input of the matrix converter. The control system is configured to operate each electrical switch of the matrix converter converting a high-frequency, square-wave input voltage across the first input port of the matrix converter and the second input port of the matrix converter to an alternating current output voltage at the output of the matrix converter.

  6. Instrumentation for high-frequency meteorological observations from research vessel

    Digital Repository Service at National Institute of Oceanography (India)

    VijayKumar, K.; Khalap, S.; Mehra, P.

    Ship provides an attractive platform from which high-frequency meteorological observations (e.g., wind components, water vapor density, and air temperature) can be made accurately. However, accurate observations of meteorological variables depend...

  7. Computation of High-Frequency Waves with Random Uncertainty

    KAUST Repository

    Malenova, Gabriela; Motamed, Mohammad; Runborg, Olof; Tempone, Raul

    2016-01-01

    or nonlinear functionals of the wave solution and its spatial/temporal derivatives. The numerical scheme combines two techniques: a high-frequency method based on Gaussian beams [2, 3], a sparse stochastic collocation method [4]. The fast spectral

  8. Detection of Dew-Point by substantial Raman Band Frequency Jumps (A new Method)

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.; Stenby, Erling Halfdan

    Detection of Dew-Point by substantial Raman Band Frequency Jumps (A new Method). See poster at http://www.kemi.dtu.dk/~ajo/rolf/jumps.pdf......Detection of Dew-Point by substantial Raman Band Frequency Jumps (A new Method). See poster at http://www.kemi.dtu.dk/~ajo/rolf/jumps.pdf...

  9. Robust detection of discordant sites in regional frequency analysis

    NARCIS (Netherlands)

    Neykov, N.M.; Neytchev, P.N.; Van Gelder, P.H.A.J.M.; Todorov, V.K.

    2007-01-01

    The discordancy measure in terms of the sample L?moment ratios (L?CV, L?skewness, L?kurtosis) of the at?site data is widely recommended in the screening process of atypical sites in the regional frequency analysis (RFA). The sample mean and the covariance matrix of the L?moments ratios, on which the

  10. Detection performance improvement of FMCW radar using frequency shift

    NARCIS (Netherlands)

    Wu, Y.; Linnartz, J.P.M.G.

    2011-01-01

    Frequency modulated continuous wave (FMCW) radars have been widely used for measuring target range and speed. In this paper, we present a mathematical model that quantifies the system-level performance of FMCW radar systems. In FMCW radar, the target range is measured through measuring the beat

  11. High and low spatial frequencies in website evaluations.

    Science.gov (United States)

    Thielsch, Meinald T; Hirschfeld, Gerrit

    2010-08-01

    Which features of websites are important for users' perceptions regarding aesthetics or usability? This study investigates how evaluations of aesthetic appeal and usability depend on high vs. low spatial frequencies. High spatial frequencies convey information on fine details, whereas low spatial frequencies convey information about the global layout. Participants rated aesthetic appeal and usability of 50 website screenshots from different domains. Screenshots were presented unfiltered, low-pass filtered with blurred targets or high-pass filtered with high-pass filtered targets. The main result is that low spatial frequencies can be seen to have a unique contribution in perceived website aesthetics, thus confirming a central prediction from processing fluency theory. There was no connection between low spatial frequencies and usability evaluations, whereas strong correlations were found between ratings of high-pass filtered websites and those of unfiltered websites in aesthetics and usability. This study thus offers a new perspective on the biological basis of users' website perceptions. This research links ergonomics to neurocognitive models of visual processing. This paper investigates how high and low spatial frequencies, which are neurologically processed in different visual pathways, independently contribute to users' perceptions of websites. This is very relevant for theories of website perceptions and for practitioners of web design.

  12. High Order Differential Frequency Hopping: Design and Analysis

    Directory of Open Access Journals (Sweden)

    Yong Li

    2015-01-01

    Full Text Available This paper considers spectrally efficient differential frequency hopping (DFH system design. Relying on time-frequency diversity over large spectrum and high speed frequency hopping, DFH systems are robust against hostile jamming interference. However, the spectral efficiency of conventional DFH systems is very low due to only using the frequency of each channel. To improve the system capacity, in this paper, we propose an innovative high order differential frequency hopping (HODFH scheme. Unlike in traditional DFH where the message is carried by the frequency relationship between the adjacent hops using one order differential coding, in HODFH, the message is carried by the frequency and phase relationship using two-order or higher order differential coding. As a result, system efficiency is increased significantly since the additional information transmission is achieved by the higher order differential coding at no extra cost on either bandwidth or power. Quantitative performance analysis on the proposed scheme demonstrates that transmission through the frequency and phase relationship using two-order or higher order differential coding essentially introduces another dimension to the signal space, and the corresponding coding gain can increase the system efficiency.

  13. Frequencies of inaudible high-frequency sounds differentially affect brain activity: positive and negative hypersonic effects.

    Directory of Open Access Journals (Sweden)

    Ariko Fukushima

    Full Text Available The hypersonic effect is a phenomenon in which sounds containing significant quantities of non-stationary high-frequency components (HFCs above the human audible range (max. 20 kHz activate the midbrain and diencephalon and evoke various physiological, psychological and behavioral responses. Yet important issues remain unverified, especially the relationship existing between the frequency of HFCs and the emergence of the hypersonic effect. In this study, to investigate the relationship between the hypersonic effect and HFC frequencies, we divided an HFC (above 16 kHz of recorded gamelan music into 12 band components and applied them to subjects along with an audible component (below 16 kHz to observe changes in the alpha2 frequency component (10-13 Hz of spontaneous EEGs measured from centro-parieto-occipital regions (Alpha-2 EEG, which we previously reported as an index of the hypersonic effect. Our results showed reciprocal directional changes in Alpha-2 EEGs depending on the frequency of the HFCs presented with audible low-frequency component (LFC. When an HFC above approximately 32 kHz was applied, Alpha-2 EEG increased significantly compared to when only audible sound was applied (positive hypersonic effect, while, when an HFC below approximately 32 kHz was applied, the Alpha-2 EEG decreased (negative hypersonic effect. These findings suggest that the emergence of the hypersonic effect depends on the frequencies of inaudible HFC.

  14. High frequency source localization in a shallow ocean sound channel using frequency difference matched field processing.

    Science.gov (United States)

    Worthmann, Brian M; Song, H C; Dowling, David R

    2015-12-01

    Matched field processing (MFP) is an established technique for source localization in known multipath acoustic environments. Unfortunately, in many situations, particularly those involving high frequency signals, imperfect knowledge of the actual propagation environment prevents accurate propagation modeling and source localization via MFP fails. For beamforming applications, this actual-to-model mismatch problem was mitigated through a frequency downshift, made possible by a nonlinear array-signal-processing technique called frequency difference beamforming [Abadi, Song, and Dowling (2012). J. Acoust. Soc. Am. 132, 3018-3029]. Here, this technique is extended to conventional (Bartlett) MFP using simulations and measurements from the 2011 Kauai Acoustic Communications MURI experiment (KAM11) to produce ambiguity surfaces at frequencies well below the signal bandwidth where the detrimental effects of mismatch are reduced. Both the simulation and experimental results suggest that frequency difference MFP can be more robust against environmental mismatch than conventional MFP. In particular, signals of frequency 11.2 kHz-32.8 kHz were broadcast 3 km through a 106-m-deep shallow ocean sound channel to a sparse 16-element vertical receiving array. Frequency difference MFP unambiguously localized the source in several experimental data sets with average peak-to-side-lobe ratio of 0.9 dB, average absolute-value range error of 170 m, and average absolute-value depth error of 10 m.

  15. Frequencies of inaudible high-frequency sounds differentially affect brain activity: positive and negative hypersonic effects.

    Science.gov (United States)

    Fukushima, Ariko; Yagi, Reiko; Kawai, Norie; Honda, Manabu; Nishina, Emi; Oohashi, Tsutomu

    2014-01-01

    The hypersonic effect is a phenomenon in which sounds containing significant quantities of non-stationary high-frequency components (HFCs) above the human audible range (max. 20 kHz) activate the midbrain and diencephalon and evoke various physiological, psychological and behavioral responses. Yet important issues remain unverified, especially the relationship existing between the frequency of HFCs and the emergence of the hypersonic effect. In this study, to investigate the relationship between the hypersonic effect and HFC frequencies, we divided an HFC (above 16 kHz) of recorded gamelan music into 12 band components and applied them to subjects along with an audible component (below 16 kHz) to observe changes in the alpha2 frequency component (10-13 Hz) of spontaneous EEGs measured from centro-parieto-occipital regions (Alpha-2 EEG), which we previously reported as an index of the hypersonic effect. Our results showed reciprocal directional changes in Alpha-2 EEGs depending on the frequency of the HFCs presented with audible low-frequency component (LFC). When an HFC above approximately 32 kHz was applied, Alpha-2 EEG increased significantly compared to when only audible sound was applied (positive hypersonic effect), while, when an HFC below approximately 32 kHz was applied, the Alpha-2 EEG decreased (negative hypersonic effect). These findings suggest that the emergence of the hypersonic effect depends on the frequencies of inaudible HFC.

  16. Quench detection on a superconducting radio-frequency cavity

    OpenAIRE

    Lai, Ru-Yu; Spirn, Daniel

    2017-01-01

    We study quench detection in superconducting accelerator cavities cooled with He-II. A rigorous mathematical formula is derived to localize the quench position from dynamical data over a finite time interval at a second sound detector.

  17. Real-time and high accuracy frequency measurements for intermediate frequency narrowband signals

    Science.gov (United States)

    Tian, Jing; Meng, Xiaofeng; Nie, Jing; Lin, Liwei

    2018-01-01

    Real-time and accurate measurements of intermediate frequency signals based on microprocessors are difficult due to the computational complexity and limited time constraints. In this paper, a fast and precise methodology based on the sigma-delta modulator is designed and implemented by first generating the twiddle factors using the designed recursive scheme. This scheme requires zero times of multiplications and only half amounts of addition operations by using the discrete Fourier transform (DFT) and the combination of the Rife algorithm and Fourier coefficient interpolation as compared with conventional methods such as DFT and Fast Fourier Transform. Experimentally, when the sampling frequency is 10 MHz, the real-time frequency measurements with intermediate frequency and narrowband signals have a measurement mean squared error of ±2.4 Hz. Furthermore, a single measurement of the whole system only requires approximately 0.3 s to achieve fast iteration, high precision, and less calculation time.

  18. THE RELATION OF FREQUENCY TO THE PHYSIOLOGICAL EFFECTS OF ULTRA-HIGH FREQUENCY CURRENTS.

    Science.gov (United States)

    Christie, R V; Loomis, A L

    1929-01-31

    1. Biological effects of electromagnetic waves emitted by a vacuum tube oscillator have been studied at frequencis ranging from 8,300,000 to 158,000,000 cycles per second (1.9 to 38 meters wave-length). 2. The effects produced on animals can be fully explained on the basis of the heat generated by high frequency currents which are induced in them. 3. No evidence was obtained to support the theory that certain wave-lengths have a specific action on living cells. 4. At frequencies below 50,000,000 cycles, the effect of these radiations on animals is proportionate to the intensity of the electro-magnetic field. As the frequency is increased beyond this point, the amount of induced current is diminished and the apparent lethality of the radiation is decreased. This can be explained by changes occurring in the dielectric properties of tissues at low wave-lengths.

  19. Enhanced detection of a low-frequency signal by using broad squeezed light and a bichromatic local oscillator

    Science.gov (United States)

    Li, Wei; Jin, Yuanbin; Yu, Xudong; Zhang, Jing

    2017-08-01

    We experimentally study a protocol of using the broadband high-frequency squeezed vacuum to detect the low-frequency signal. In this scheme, the lower sideband field of the squeezed light carries the low-frequency modulation signal, and the two strong coherent light fields are applied as the bichromatic local oscillator in the homodyne detection to measure the quantum entanglement of the upper and lower sideband for the broadband squeezed light. The power of one of the local oscillators for detecting the upper sideband can be adjusted to optimize the conditional variance in the low-frequency regime by subtracting the photocurrent of the upper sideband field of the squeezed light from that of the lower sideband field. By means of the quantum correlation of the upper and lower sideband for the broadband squeezed light, the low-frequency signal beyond the standard quantum limit is measured. This scheme is appropriate for enhancing the sensitivity of the low-frequency signal by the aid of the broad squeezed light, such as gravitational waves detection, and does not need to directly produce the low-frequency squeezing in an optical parametric process.

  20. Forecasting Value-at-Risk Using High-Frequency Information

    Directory of Open Access Journals (Sweden)

    Huiyu Huang

    2013-06-01

    Full Text Available in the prediction of quantiles of daily Standard&Poor’s 500 (S&P 500 returns we consider how to use high-frequency 5-minute data. We examine methods that incorporate the high frequency information either indirectly, through combining forecasts (using forecasts generated from returns sampled at different intraday interval, or directly, through combining high frequency information into one model. We consider subsample averaging, bootstrap averaging, forecast averaging methods for the indirect case, and factor models with principal component approach, for both direct and indirect cases. We show that in forecasting the daily S&P 500 index return quantile (Value-at-Risk or VaR is simply the negative of it, using high-frequency information is beneficial, often substantially and particularly so, in forecasting downside risk. Our empirical results show that the averaging methods (subsample averaging, bootstrap averaging, forecast averaging, which serve as different ways of forming the ensemble average from using high-frequency intraday information, provide an excellent forecasting performance compared to using just low-frequency daily information.

  1. Pattern-Directed Attention in Uncertain Frequency Detection.

    Science.gov (United States)

    1983-10-14

    performance when compared to a single frequency condition even if the listeners are aware that more than one signal can occur ( Creelman , 1960; Green...be missed. On the-other hand, the multiple band approach, introduced by Green (1958) and modified by Creelman (1960), assumes that listeners base...multiple-band approaches ( Creelman , 1960; Green, 1961; Macmillan & Schwartz, 1975). In general, the two views are difficult to distinguish empirically, and

  2. Research of the Electron Cyclotron Emission with Vortex Property excited by high power high frequency Gyrotron

    Science.gov (United States)

    Goto, Yuki; Kubo, Shin; Tsujimura, Tohru; Takubo, Hidenori

    2017-10-01

    Recently, it has been shown that the radiation from a single electron in cyclotron motion has vortex property. Although the cyclotron emission exists universally in nature, the vortex property has not been featured because this property is normally cancelled out due to the randomness in gyro-phase of electrons and the development of detection of the vortex property has not been well motivated. In this research, we are developing a method to generate the vortex radiation from electrons in cyclotron motion with controlled gyro-phase. Electron that rotates around the uniform static magnetic field is accelerated by right-hand circular polarized (RHCP) radiation resonantly when the cyclotron frequency coincides with the applied RHCP radiation frequency. A large number of electrons can be coherently accelerated in gyro-phase by a RHCP high power radiation so that these electrons can radiate coherent emission with vortex feature. We will show that vortex radiation created by purely rotating electrons for the first time.

  3. Control of extracellular cleavage of ProBDNF by high frequency neuronal activity

    OpenAIRE

    Nagappan, Guhan; Zaitsev, Eugene; Senatorov, Vladimir V.; Yang, Jianmin; Hempstead, Barbara L.; Lu, Bai

    2009-01-01

    Pro- and mature neurotrophins often elicit opposing biological effects. For example, mature brain-derived neurotrophic factor (mBDNF) is critical for long-term potentiation induced by high-frequency stimulation, whereas proBDNF facilitate long-term depression induced by low-frequency stimulation. Because mBDNF is derived from proBDNF by endoproteolytic cleavage, mechanisms regulating the cleavage of proBDNF may control the direction of BDNF regulation. Using methods that selectively detect pr...

  4. In vivo photoacoustics and high frequency ultrasound imaging of mechanical high intensity focused ultrasound (HIFU) ablation.

    Science.gov (United States)

    Daoudi, Khalid; Hoogenboom, Martijn; den Brok, Martijn; Eikelenboom, Dylan; Adema, Gosse J; Fütterer, Jürgen J; de Korte, Chris L

    2017-04-01

    The thermal effect of high intensity focused ultrasound (HIFU) has been clinically exploited over a decade, while the mechanical HIFU is still largely confined to laboratory investigations. This is in part due to the lack of adequate imaging techniques to better understand the in-vivo pathological and immunological effects caused by the mechanical treatment. In this work, we explore the use of high frequency ultrasound (US) and photoacoustics (PA) as a potential tool to evaluate the effect of mechanical ablation in-vivo , e.g. boiling histotripsy. Two mice bearing a neuroblastoma tumor in the right leg were ablated using an MRI-HIFU system conceived for small animals and monitored using MRI thermometry. High frequency US and PA imaging were performed before and after the HIFU treatment. Afterwards, the tumor was resected for further assessment and evaluation of the ablated region using histopathology. High frequency US imaging revealed the presence of liquefied regions in the treated area together with fragmentized tissue which appeared with different reflecting proprieties compared to the surrounding tissue. Photoacoustic imaging on the other hand revealed the presence of deoxygenated blood within the tumor after the ablation due to the destruction of blood vessel network while color Doppler imaging confirmed the blood vessel network destruction within the tumor. The treated area and the presence of red blood cells detected by photoacoustics were further confirmed by the histopathology. This feasibility study demonstrates the potential of high frequency US and PA approach for assessing in-vivo the effect of mechanical HIFU tumor ablation.

  5. Algorithmic and high-frequency trading in Borsa Istanbul

    Directory of Open Access Journals (Sweden)

    Oguz Ersan

    2016-12-01

    Full Text Available This paper investigates the levels of algorithmic trading (AT and high-frequency trading (HFT in an emerging market, Borsa Istanbul (BIST, utilizing a dataset of 354 trading days between January 2013 and May 2014. We find an upward trend in AT by using common proxies: number of messages per minute and algo_trad of Hendershott et al. (2011. Mean algo_trad for BIST 100 index constituents varies between −18 and −13 which is parallel to 2003–2005 levels of NASDAQ large cap stocks. Initially, we measure HFT involvement by detecting linked messages as in the way proposed in Hasbrouck and Saar (2013. Next, we propose an extended HFT measure which captures various HFT strategies. This measure attributes approximately 6% of the orders to HFT. HFT involvement is higher in large orders (11.96%, in orders submitted by portfolio/fund management firms (10.40%, after improvement of BIST's order submission platform and tick size reduction for certain stocks.

  6. On temporal correlations in high-resolution frequency counting

    OpenAIRE

    Dunker, Tim; Hauglin, Harald; Rønningen, Ole Petter

    2016-01-01

    We analyze noise properties of time series of frequency data from different counting modes of a Keysight 53230A frequency counter. We use a 10 MHz reference signal from a passive hydrogen maser connected via phase-stable Huber+Suhner Sucoflex 104 cables to the reference and input connectors of the counter. We find that the high resolution gap-free (CONT) frequency counting process imposes long-term correlations in the output data, resulting in a modified Allan deviation that is characteristic...

  7. On the Ongoing Evolution of Very High Frequency Power Supplies

    DEFF Research Database (Denmark)

    Knott, Arnold; Andersen, Toke Meyer; Kamby, Peter

    2013-01-01

    The ongoing demand for smaller and lighter power supplies is driving the motivation to increase the switching frequencies of power converters. Drastic increases however come along with new challenges, namely the increase of switching losses in all components. The application of power circuits used...... in radio frequency transmission equipment helps to overcome those. However those circuits were not designed to meet the same requirements as power converters. This paper summarizes the contributions in recent years in application of very high frequency (VHF) technologies in power electronics, describes...

  8. Measurements of Low Frequency Noise of Infrared Photo-Detectors with Transimpedance Detection System

    Directory of Open Access Journals (Sweden)

    Ciura Łukasz

    2014-08-01

    Full Text Available The paper presents the method and results of low-frequency noise measurements of modern mid-wavelength infrared photodetectors. A type-II InAs/GaSb superlattice based detector with nBn barrier architecture is compared with a high operating temperature (HOT heterojunction HgCdTe detector. All experiments were made in the range 1 Hz - 10 kHz at various temperatures by using a transimpedance detection system, which is examined in detail. The power spectral density of the nBn’s dark current noise includes Lorentzians with different time constants while the HgCdTe photodiode has more uniform 1/f - shaped spectra. For small bias, the low-frequency noise power spectra of both devices were found to scale linearly with bias voltage squared and were connected with the fluctuations of the leakage resistance. Leakage resistance noise defines the lower noise limit of a photodetector. Other dark current components give raise to the increase of low-frequency noise above this limit. For the same voltage biasing devices, the absolute noise power densities at 1 Hz in nBn are 1 to 2 orders of magnitude lower than in a MCT HgCdTe detector. In spite of this, low-frequency performance of the HgCdTe detector at ~ 230K is still better than that of InAs/GaSb superlattice nBn detector.

  9. Investigating strength and frequency effects in recognition memory using type-2 signal detection theory.

    Science.gov (United States)

    Higham, Philip A; Perfect, Timothy J; Bruno, Davide

    2009-01-01

    Criterion- versus distribution-shift accounts of frequency and strength effects in recognition memory were investigated with Type-2 signal detection receiver operating characteristic (ROC) analysis, which provides a measure of metacognitive monitoring. Experiment 1 demonstrated a frequency-based mirror effect, with a higher hit rate and lower false alarm rate, for low frequency words compared with high frequency words. In Experiment 2, the authors manipulated item strength with repetition, which showed an increased hit rate but no effect on the false alarm rate. Whereas Type-1 indices were ambiguous as to whether these effects were based on a criterion- or distribution-shift model, the two models predict opposite effects on Type-2 distractor monitoring under some assumptions. Hence, Type-2 ROC analysis discriminated between potential models of recognition that could not be discriminated using Type-1 indices alone. In Experiment 3, the authors manipulated Type-1 response bias by varying the number of old versus new response categories to confirm the assumptions made in Experiments 1 and 2. The authors conclude that Type-2 analyses are a useful tool for investigating recognition memory when used in conjunction with more traditional Type-1 analyses.

  10. High-energy sources at low radio frequency: the Murchison Widefield Array view of Fermi blazars

    International Nuclear Information System (INIS)

    Giroletti, M.; Massaro, F.; D’Abrusco, R.; Lico, R.; Burlon, D.

    2016-01-01

    Low-frequency radio arrays are opening a new window for the study of the sky, both to study new phenomena and to better characterize known source classes. Being flat-spectrum sources, blazars are so far poorly studied at low radio frequencies. In this paper, we characterize the spectral properties of the blazar population at low radio frequency, compare the radio and high-energy properties of the gamma-ray blazar population, and search for radio counterparts of unidentified gamma-ray sources. We cross-correlated the 6100 deg"2 Murchison Widefield Array Commissioning Survey catalogue with the Roma blazar catalogue, the third catalogue of active galactic nuclei detected by Fermi-LAT, and the unidentified members of the entire third catalogue of gamma-ray sources detected by Fermi-LAT. When available, we also added high-frequency radio data from the Australia Telescope 20 GHz catalogue. We find low-frequency counterparts for 186 out of 517 (36%) blazars, 79 out of 174 (45%) gamma-ray blazars, and 8 out of 73 (11%) gamma-ray blazar candidates. The mean low-frequency (120–180 MHz) blazar spectral index is (α_l_o_w) = 0.57 ± 0.02: blazar spectra are flatter than the rest of the population of low-frequency sources, but are steeper than at ~GHz frequencies. Low-frequency radio flux density and gamma-ray energy flux display a mildly significant and broadly scattered correlation. Ten unidentified gamma-ray sources have a (probably fortuitous) positional match with low radio frequency sources. Low-frequency radio astronomy provides important information about sources with a flat radio spectrum and high energy. However, the relatively low sensitivity of the present surveys still misses a significant fraction of these objects. Finally, upcoming deeper surveys, such as the GaLactic and Extragalactic All-Sky MWA (GLEAM) survey, will provide further insight into this population.

  11. FLEAD: online frequency likelihood estimation anomaly detection for mobile sensing

    NARCIS (Netherlands)

    Le Viet Duc, L Duc; Scholten, Johan; Havinga, Paul J.M.

    With the rise of smartphone platforms, adaptive sensing becomes an predominant key to overcome intricate constraints such as smartphone's capabilities and dynamic data. One way to do this is estimating the event probability based on anomaly detection to invoke heavy processes, such as switching on

  12. Extended High Frequency Audiometry in Polycystic Ovary Syndrome

    Directory of Open Access Journals (Sweden)

    Cuneyt Kucur

    2013-01-01

    and BMI of PCOS and control groups were comparable. Each subject was tested with low (250–2000 Hz, high (4000–8000 Hz, and extended high frequency audiometry (8000–20000. Hormonal and biochemical values including LH, LH/FSH, testosterone, fasting glucose, fasting insulin, HOMA-I, and CRP were calculated. Results. PCOS patients showed high levels of LH, LH/FSH, testosterone, fasting insulin, glucose, HOMA-I, and CRP levels. The hearing thresholds of the groups were similar at frequencies of 250, 500, 1000, 2000, and 4000 Hz; statistically significant difference was observed in 8000–14000 Hz in PCOS group compared to control group. Conclusion. PCOS patients have hearing impairment especially in extended high frequencies. Further studies are needed to help elucidate the mechanism behind hearing impairment in association with PCOS.

  13. Planck 2013 results. VI. High Frequency Instrument data processing

    DEFF Research Database (Denmark)

    Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.

    2013-01-01

    We describe the processing of the 531 billion raw data samples from the High Frequency Instrument (HFI), which we performed to produce six temperature maps from the first 473 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143,217, 353, 545......, these two high frequency channels are calibrated to within 5% and the 353 GHz channel to the percent level. The 100 and217 GHz channels, which together with the 143 GHz channel determine the high-multipole part of the CMB power spectrum (50

  14. HOM frequency control of SRF cavity in high current ERLs

    Science.gov (United States)

    Xu, Chen; Ben-Zvi, Ilan

    2018-03-01

    The acceleration of high-current beam in Superconducting Radio Frequency (SRF) cavities is a challenging but essential for a variety of advanced accelerators. SRF cavities should be carefully designed to minimize the High Order Modes (HOM) power generated in the cavities by the beam current. The reduction of HOM power we demonstrate in a particular case can be quite large. This paper presents a method to systematically control the HOM resonance frequencies in the initial design phase to minimize the HOM power generation. This method is expected to be beneficial for the design of high SRF cavities addressing a variety of Energy Recovery Linac (ERL) applications.

  15. Atmospheric and Fog Effects on Ultra-Wide Band Radar Operating at Extremely High Frequencies.

    Science.gov (United States)

    Balal, Nezah; Pinhasi, Gad A; Pinhasi, Yosef

    2016-05-23

    The wide band at extremely high frequencies (EHF) above 30 GHz is applicable for high resolution directive radars, resolving the lack of free frequency bands within the lower part of the electromagnetic spectrum. Utilization of ultra-wideband signals in this EHF band is of interest, since it covers a relatively large spectrum, which is free of users, resulting in better resolution in both the longitudinal and transverse dimensions. Noting that frequencies in the millimeter band are subjected to high atmospheric attenuation and dispersion effects, a study of the degradation in the accuracy and resolution is presented. The fact that solid-state millimeter and sub-millimeter radiation sources are producing low power, the method of continuous-wave wideband frequency modulation becomes the natural technique for remote sensing and detection. Millimeter wave radars are used as complementary sensors for the detection of small radar cross-section objects under bad weather conditions, when small objects cannot be seen by optical cameras and infrared detectors. Theoretical analysis for the propagation of a wide "chirped" Frequency-Modulated Continuous-Wave (FMCW) radar signal in a dielectric medium is presented. It is shown that the frequency-dependent (complex) refractivity of the atmospheric medium causes distortions in the phase of the reflected signal, introducing noticeable errors in the longitudinal distance estimations, and at some frequencies may also degrade the resolution.

  16. Frequency- and amplitude-transitioned waveforms mitigate the onset response in high-frequency nerve block

    Science.gov (United States)

    Gerges, Meana; Foldes, Emily L.; Ackermann, D. Michael; Bhadra, Narendra; Bhadra, Niloy; Kilgore, Kevin L.

    2010-12-01

    High-frequency alternating currents (HFAC) have proven to be a reversible and rapid method of blocking peripheral nerve conduction, holding promise for treatment of disorders associated with undesirable neuronal activity. The delivery of HFAC is characterized by a transient period of neural firing at its inception, termed the 'onset response'. The onset response is minimized for higher frequencies and higher amplitudes, but requires larger currents. However, the complete block can be maintained at lower frequencies and amplitudes, using lower currents. In this in vivo study on whole mammalian peripheral nerves, we demonstrate a method to minimize the onset response by initiating the block using a stimulation paradigm with a high frequency and large amplitude, and then transitioning to a low-frequency and low-amplitude waveform, reducing the currents required to maintain the conduction block. In five of six animals, it was possible to transition from a 30 kHz to a 10 kHz waveform without inducing any transient neural firing. The minimum transition time was 0.03 s. Transition activity was minimized or eliminated with longer transition times. The results of this study show that this method is feasible for achieving a nerve block with minimal onset responses and current amplitude requirements.

  17. Single Frequency Impedance Analysis on Reduced Graphene Oxide Screen-Printed Electrode for Biomolecular Detection.

    Science.gov (United States)

    Rajesh; Singal, Shobhita; Kotnala, Ravinder K

    2017-10-01

    A biofunctionalized reduced graphene oxide (rGO)-modified screen-printed carbon electrode (SPCE) was constructed as an immunosensor for C-reactive protein (CRP) detection, a biomarker released in early stage acute myocardial infarction. A different approach of single frequency analysis (SFA) study was utilized for the biomolecular sensing, by monitoring the response in phase angle changes obtained at an optimized frequency resulting from antigen-antibody interactions. A set of measurements were carried out to optimize a frequency where a maximum change in phase angle was observed, and in this case, we found it at around 10 Hz. The bioelectrode was characterized by contact angle measurements, scanning electron microscopy, and electrochemical techniques. A concentration-dependent response of immunosensor to CRP with the change in phase angle, at a fixed frequency of 10 Hz, was found to be in the range of 10 ng mL -1 to 10 μg mL -1 in PBS and was fit quantitative well with the Hill-Langmuir equation. Based on the concentration-response data, the dissociation constant (K d ) was found to be 3.5 nM (with a Hill coefficient n = 0.57), which indicated a negative cooperativity with high anti-CRP (antibody)-CRP (antigen) binding at the electrode surface. A low-frequency analysis of sensing with an ease of measurement on a disposable electroactive rGO-modified electrode with high selectivity and sensitivity makes it a potential tool for biological sensors.

  18. Carbon nanotube transistor based high-frequency electronics

    Science.gov (United States)

    Schroter, Michael

    At the nanoscale carbon nanotubes (CNTs) have higher carrier mobility and carrier velocity than most incumbent semiconductors. Thus CNT based field-effect transistors (FETs) are being considered as strong candidates for replacing existing MOSFETs in digital applications. In addition, the predicted high intrinsic transit frequency and the more recent finding of ways to achieve highly linear transfer characteristics have inspired investigations on analog high-frequency (HF) applications. High linearity is extremely valuable for an energy efficient usage of the frequency spectrum, particularly in mobile communications. Compared to digital applications, the much more relaxed constraints for CNT placement and lithography combined with already achieved operating frequencies of at least 10 GHz for fabricated devices make an early entry in the low GHz HF market more feasible than in large-scale digital circuits. Such a market entry would be extremely beneficial for funding the development of production CNTFET based process technology. This talk will provide an overview on the present status and feasibility of HF CNTFET technology will be given from an engineering point of view, including device modeling, experimental results, and existing roadblocks. Carbon nanotube transistor based high-frequency electronics.

  19. Efficient estimation for ergodic diffusions sampled at high frequency

    DEFF Research Database (Denmark)

    Sørensen, Michael

    A general theory of efficient estimation for ergodic diffusions sampled at high fre- quency is presented. High frequency sampling is now possible in many applications, in particular in finance. The theory is formulated in term of approximate martingale estimating functions and covers a large class...

  20. Detection of 16 Gamma-Ray Pulsars Through Blind Frequency Searches Using the Fermi LAT

    International Nuclear Information System (INIS)

    Anderson, B.; Atwood, W.B.; Dormody, M.; Johnson, R.P.; Porter, T.A.; Primack, J.R.; Sadrozinski, H.F.W.; Parkinson, P.M.S.; Ziegler, M.; Abdo, A.A.; Dermer, C.D.; Grove, J.E.; Gwon, C.; Johnson, W.N.; Lovellette, M.N.; Makeev, A.; Ray, P.S.; Strickman, M.S.; Wolff, M.T.; Wood, K.S.; Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R.D.; Borgland, A.W.; Cameron, R.A.; Chiang, J.; Claus, R.; Digel, S.W.; Silva, E.D.E.; Drell, P.S.; Dubois, R.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Kamae, T.; Kocian, M.L.; Lande, J.; Madejski, G.M.; Michelson, P.F.; Mitthumsiri, W.; Monzani, M.E.; Moskalenko, I.V.; Murgia, S.; Nolan, P.L.; Paneque, D.; Reimer, A.; Reimer, O.; Rochester, L.S.; Romani, R.W.; Tajima, H.; Tanaka, T.; Thayer, J.G.; Tramacere, A.; Uchiyama, Y.; Usher, T.L.; Van Etten, A.; Waite, A.P.; Wang, P.; Watters, K.; Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Bloom, E.D.; Borgland, A.W.; Cameron, R.A.; Chiang, J.; Claus, R.; Digel, S.W.; Silva, E.D.E.; Drell, P.S.; Dubois, R.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Kamae, T.; Kocian, M.L.; Lande, J.; Madejski, G.M.; Michelson, P.F.; Mitthumsiri, W.; Monzani, M.E.; Moskalenko, I.V.; Murgia, S.; Nolan, P.L.; Paneque, D.; Reimer, A.; Reimer, O.; Rochester, L.S.; Romani, R.W.; Tajima, H.; Tanaka, T.; Thayer, J.G.; Tramacere, A.; Uchiyama, Y.; Usher, T.L.; Van Etten, A.; Waite, A.P.; Wang, P.; Watters, K.; Axelsson, M.; Conrad, J.; Meurer, C.; Ryde, F.; Ylinen, T.; Axelsson, M.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Omodei, N.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.; Ballet, J.; Casandjian, J.M.; Grenier, I.A.; Pierbattista, M.; Starck, J.L.

    2009-01-01

    Pulsars are rapidly rotating, highly magnetized neutron stars emitting radiation across the electromagnetic spectrum. Although there are more than 1800 known radio pulsars, until recently only seven were observed to pulse in gamma rays, and these were all discovered at other wavelengths. The Fermi Large Area Telescope (LAT) makes it possible to pinpoint neutron stars through their gamma-ray pulsations. We report the detection of 16 gamma-ray pulsars in blind frequency searches using the LAT. Most of these pulsars are coincident with previously unidentified gamma-ray sources, and many are associated with supernova remnants. Direct detection of gamma-ray pulsars enables studies of emission mechanisms, population statistics, and the energetics of pulsar wind nebulae and supernova remnants. (authors)

  1. Small Displacement Detection of Biological Signals Using the Cyclic Frequency Method

    Directory of Open Access Journals (Sweden)

    Dan Zhang

    2015-01-01

    Full Text Available A new signal processing method called the Cyclic Frequency method is proposed for small displacement detection of vital signals such as heart rate and respiration using the CW radar method. We have presented experimental results of small displacement detection to confirm the validity of the method. The displacement amplitude 2.5 mm can be detected with a propagation frequency of 24.15 GHz. We may increase the propagation frequency for smaller displacement amplitude or target velocity.

  2. An autocorrelation method to detect low frequency earthquakes within tremor

    Science.gov (United States)

    Brown, J.R.; Beroza, G.C.; Shelly, D.R.

    2008-01-01

    Recent studies have shown that deep tremor in the Nankai Trough under western Shikoku consists of a swarm of low frequency earthquakes (LFEs) that occur as slow shear slip on the down-dip extension of the primary seismogenic zone of the plate interface. The similarity of tremor in other locations suggests a similar mechanism, but the absence of cataloged low frequency earthquakes prevents a similar analysis. In this study, we develop a method for identifying LFEs within tremor. The method employs a matched-filter algorithm, similar to the technique used to infer that tremor in parts of Shikoku is comprised of LFEs; however, in this case we do not assume the origin times or locations of any LFEs a priori. We search for LFEs using the running autocorrelation of tremor waveforms for 6 Hi-Net stations in the vicinity of the tremor source. Time lags showing strong similarity in the autocorrelation represent either repeats, or near repeats, of LFEs within the tremor. We test the method on an hour of Hi-Net recordings of tremor and demonstrates that it extracts both known and previously unidentified LFEs. Once identified, we cross correlate waveforms to measure relative arrival times and locate the LFEs. The results are able to explain most of the tremor as a swarm of LFEs and the locations of newly identified events appear to fill a gap in the spatial distribution of known LFEs. This method should allow us to extend the analysis of Shelly et al. (2007a) to parts of the Nankai Trough in Shikoku that have sparse LFE coverage, and may also allow us to extend our analysis to other regions that experience deep tremor, but where LFEs have not yet been identified. Copyright 2008 by the American Geophysical Union.

  3. Optical frequency comb for high resolution hydrogen spectroscopy

    International Nuclear Information System (INIS)

    Arnoult, O.

    2006-11-01

    In this work, we perform an absolute frequency measurement of the 1S-3S transition in atomic hydrogen, in order to improve the uncertainties on both the Rydberg constant and the Lamb shift L1S. In the experiment, a CW stabilized Ti:Sa laser is doubled twice in LBO (LiB 3 O 5 ) and BBO (β-BaB 2 O 4 ) crystals. The 1S-3S transition is excited by two photons at 205 nm in an optical cavity colinear with the atomic beam, at room temperature. The remaining second-order Doppler effect is compensated by a quadratic Stark effect resulting from an applied static magnetic field. An optical frequency comb is used to compare directly the Ti:Sa frequency with the microwave frequency standard. We detect fluorescence at 656 nm thanks to a CCD camera. Fitting the experimental data with our calculated line shapes leads to a value of the second-order Doppler effect in disagreement with approximative predictions for the 1S-3S frequency. We suggest the existence of stray electric fields as a possible systematic effect. The slides of the defence of the thesis have been added at the end of the document. (author)

  4. Control of high frequency microactuators using active structures

    International Nuclear Information System (INIS)

    Kreth, P A; Alvi, F S; Reese, B M; Oates, W S

    2015-01-01

    A fluidically driven microactuator that generates supersonic, pulsed microjets has been implemented with smart materials to actively and precisely control the frequency of the microjets in a closed-loop manner. Since this actuator relies on a number of microscale flow and acoustic phenomena to produce the pulsed microjets, its resonant frequency is determined by its geometry and other flow parameters. The design discussed in this paper integrates piezoelectric stacks by connecting them to movable sidewalls within the actuator such that the microactuator's internal geometry can be controlled by varying the voltage across the piezo-stacks. An open-loop control scheme demonstrates the frequency modulation capabilities that are enabled with this design: very large frequency deviations (up to ±500 Hz) around the actuator design frequency are attained at very high rates (up to 1 kHz). Closed-loop control of the microactuator's frequency was also demonstrated, and the results indicate that (combined with appropriate sensors) this actuator could be used effectively for active, feedback control in high-speed, resonance-dominated flowfields. This proof of concept study clearly illustrates the ability of this robust and compact actuator to produce perturbations that can be modulated and controlled based on the desired control objective. (paper)

  5. Thermal history of the plasma and high-frequency gravitons

    CERN Document Server

    Giovannini, Massimo

    2009-01-01

    Possible deviations from a radiation-dominated evolution, occurring prior the synthesis of light nuclei, impacted on the spectral energy density of high-frequency gravitons. For a systematic scrutiny of this situation, the $\\Lambda$CDM paradigm must be complemented by (at least two) physical parameters describing, respectively, a threshold frequency and a slope. The supplementary frequency scale sets the lower border of a high-frequency domain where the spectral energy grows with a slope which depends, predominantly, upon the total sound speed of the plasma right after inflation. While the infra-red region of the graviton energy spectrum is nearly scale-invariant, the expected signals for typical frequencies larger than 0.01 nHz are hereby analyzed in a model-independent framework by requiring that the total sound speed of the post-inflationary plasma is smaller than the speed of light. Current (e.g. low-frequency) upper limits on the tensor power spectra (determined from the combined analysis of the three la...

  6. Frequency and temperature dependence of high damping elastomers

    International Nuclear Information System (INIS)

    Kulak, R.F.; Hughes, T.H.

    1993-01-01

    High damping steel-laminated elastomeric seismic isolation bearings are one of the preferred devices for isolating large buildings and structures. In the US, the current reference design for the Advanced Liquid Metal Reactor (ALMR) uses laminated bearings for seismic isolation. These bearings are constructed from alternating layers of high damping rubber and steel plates. They are typically designed for shear strains between 50 and 100% and are expected to sustain two to three times these levels for beyond design basis loading conditions. Elastomeric bearings are currently designed to provide a system frequency between 0.4 and 0.8 Hz and expected to operate between -20 and 40 degrees Centigrade. To assure proper performance of isolation bearings, it is necessary to characterize the elastomer's response under expected variations of frequency and temperature. The dynamic response of the elastomer must be characterized within the frequency range that spans the bearing acceptance test frequency, which may be as low as 0.005 Hz, and the design frequency. Similarly, the variation in mechanical characteristics of the elastomer must be determined over the design temperature range, which is between -20 and 40 degrees Centigrade. This paper reports on (1) the capabilities of a testing facility at ANL for testing candidate elastomers, (2) the variation with frequency and temperature of the stiffness and damping of one candidate elastomer, and (3) the effect of these variations on bearing acceptance testing criteria and on the choice of bearing design values for stiffness and damping

  7. High frequency ultrasound imaging in pupillary block glaucoma.

    Science.gov (United States)

    Aslanides, I M; Libre, P E; Silverman, R H; Reinstein, D Z; Lazzaro, D R; Rondeau, M J; Harmon, G K; Coleman, D J

    1995-01-01

    BACKGROUND--The diagnosis of pupillary block glaucoma requires sufficient clarity of the ocular media. This is particularly important for assessment of both the presence and patency of an iridotomy, and the determination of central anterior chamber depth. METHODS--High frequency ultrasonography was used in three patients with suspected pupillary block to determine iris configuration, posterior chamber volume, and ciliary body conformation. RESULTS--All patients demonstrated high frequency ultrasonographic findings consistent with pupillary block: iris bombé, a formed posterior chamber, and a lack of anterior rotation of the ciliary processes. CONCLUSION--High frequency ultrasound imaging appears to be a valuable adjunct in making or corroborating the diagnosis of pupillary block glaucoma. Images PMID:8534666

  8. Detecting an atomic clock frequency anomaly using an adaptive Kalman filter algorithm

    Science.gov (United States)

    Song, Huijie; Dong, Shaowu; Wu, Wenjun; Jiang, Meng; Wang, Weixiong

    2018-06-01

    The abnormal frequencies of an atomic clock mainly include frequency jump and frequency drift jump. Atomic clock frequency anomaly detection is a key technique in time-keeping. The Kalman filter algorithm, as a linear optimal algorithm, has been widely used in real-time detection for abnormal frequency. In order to obtain an optimal state estimation, the observation model and dynamic model of the Kalman filter algorithm should satisfy Gaussian white noise conditions. The detection performance is degraded if anomalies affect the observation model or dynamic model. The idea of the adaptive Kalman filter algorithm, applied to clock frequency anomaly detection, uses the residuals given by the prediction for building ‘an adaptive factor’ the prediction state covariance matrix is real-time corrected by the adaptive factor. The results show that the model error is reduced and the detection performance is improved. The effectiveness of the algorithm is verified by the frequency jump simulation, the frequency drift jump simulation and the measured data of the atomic clock by using the chi-square test.

  9. High frequency conductivity of hot electrons in carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Amekpewu, M., E-mail: mamek219@gmail.com [Department of Applied Physics, University for Development Studies, Navrongo (Ghana); Mensah, S.Y. [Department of Physics, College of Agriculture and Natural Sciences, U.C.C. (Ghana); Musah, R. [Department of Applied Physics, University for Development Studies, Navrongo (Ghana); Mensah, N.G. [Department of Mathematics, College of Agriculture and Natural Sciences, U.C.C. (Ghana); Abukari, S.S.; Dompreh, K.A. [Department of Physics, College of Agriculture and Natural Sciences, U.C.C. (Ghana)

    2016-05-01

    High frequency conductivity of hot electrons in undoped single walled achiral Carbon Nanotubes (CNTs) under the influence of ac–dc driven fields was considered. We investigated semi-classically Boltzmann's transport equation with and without the presence of the hot electrons’ source by deriving the current densities in CNTs. Plots of the normalized current density versus frequency of ac-field revealed an increase in both the minimum and maximum peaks of normalized current density at lower frequencies as a result of a strong injection of hot electrons. The applied ac-field plays a twofold role of suppressing the space-charge instability in CNTs and simultaneously pumping an energy for lower frequency generation and amplification of THz radiations. These have enormous promising applications in very different areas of science and technology.

  10. Anomalous high-frequency resistivity of a plasma

    International Nuclear Information System (INIS)

    Kruer, W.L.; Dawson, J.M.

    1971-06-01

    In one- and two-dimensional computer simulations we investigate anomalous high-frequency resistivity in a plasma driven by a large electric field oscillating near the electron plasma frequency. The large field excites the oscillating two-stream and the ion-acoustic decay instabilities in agreement with the linear theory. When the ion and electron fluctuations saturate, a strong anomalous heating of the plasma sets in. This strong heating is due to an efficient coupling of the externally imposed large electric field to the plasma by ion fluctuations. We determine the anomalous collision frequency and the saturation fluctuation amplitudes as a function of the external field amplitude and frequency, and the electron-ion mass ratio. A simple nonlinear theory gives results in reasonable agreement with simulations. 24 refs., 10 figs

  11. High frequency relay protection channels on super high voltage lines

    Energy Technology Data Exchange (ETDEWEB)

    Mikutskii, G V

    1964-08-01

    General aspects of high voltage transmission line design are discussed. The relationships between line voltage and length and line dimensions and power losses are explained. Electrical interference in the line is classified under three headings: interference under normal operating conditions, interference due to insulation faults, and interference due to variations in operating conditions of the high-voltage network.

  12. Novel method for detecting weak magnetic fields at low frequencies

    Science.gov (United States)

    González-Martínez, S.; Castillo-Torres, J.; Mendoza-Santos, J. C.; Zamorano-Ulloa, R.

    2005-06-01

    A low-level-intensity magnetic field detection system has been designed and developed based on the amplification-selection process of signals. This configuration is also very sensitive to magnetic field changes produced by harmonic-like electrical currents transported in finite-length wires. Experimental and theoretical results of magnetic fields detection as low as 10-9T at 120Hz are also presented with an accuracy of around 13%. The assembled equipment is designed to measure an electromotive force induced in a free-magnetic-core coil in order to recover signals which are previously selected, despite the fact that their intensities are much lower than the environment electromagnetic radiation. The prototype has a signal-to-noise ratio of 60dB. This system also presents the advantage for using it as a portable unit of measurement. The concept and prototype may be applied, for example, as a nondestructive method to analyze any corrosion formation in metallic oil pipelines which are subjected to cathodic protection.

  13. High-frequency dynamics in a molten binary alloy

    International Nuclear Information System (INIS)

    Alvarez, M.; Bermejo, F.J.; Verkerk, P.; Roessli, B.

    1999-01-01

    The nature of the finite wavelength collective excitations in liquid binary mixtures composed of atoms of very different masses has been of interest for more than a decade. The most prominent fact is the high frequencies at which they appear, well above those expected for a continuation to large wave vector of hydrodynamic sound. To better understand the microscopic dynamics of such systems, an inelastic neutron scattering experiment was performed on the molten alloy Li 4 Pb. We present the high-frequency excitations of molten Li 4 Pb which indeed show features substantially deviating from those expected for the propagation of an acoustic mode. (authors)

  14. A hybrid polarization-selective atomic sensor for radio-frequency field detection with a passive resonant-cavity field amplifier

    OpenAIRE

    Anderson, David A.; Paradis, Eric G.; Raithel, Georg

    2018-01-01

    We present a hybrid atomic sensor that realizes radio-frequency electric field detection with intrinsic field amplification and polarization selectivity for robust high-sensitivity field measurement. The hybrid sensor incorporates a passive resonator element integrated with an atomic vapor cell that provides amplification and polarization selectivity for detection of incident radio-frequency fields. The amplified intra-cavity radio-frequency field is measured by atoms using a quantum-optical ...

  15. Synthesis of High-Frequency Ground Motion Using Information Extracted from Low-Frequency Ground Motion

    Science.gov (United States)

    Iwaki, A.; Fujiwara, H.

    2012-12-01

    Broadband ground motion computations of scenario earthquakes are often based on hybrid methods that are the combinations of deterministic approach in lower frequency band and stochastic approach in higher frequency band. Typical computation methods for low-frequency and high-frequency (LF and HF, respectively) ground motions are the numerical simulations, such as finite-difference and finite-element methods based on three-dimensional velocity structure model, and the stochastic Green's function method, respectively. In such hybrid methods, LF and HF wave fields are generated through two different methods that are completely independent of each other, and are combined at the matching frequency. However, LF and HF wave fields are essentially not independent as long as they are from the same event. In this study, we focus on the relation among acceleration envelopes at different frequency bands, and attempt to synthesize HF ground motion using the information extracted from LF ground motion, aiming to propose a new method for broad-band strong motion prediction. Our study area is Kanto area, Japan. We use the K-NET and KiK-net surface acceleration data and compute RMS envelope at four frequency bands: 0.5-1.0 Hz, 1.0-2.0 Hz, 2.0-4.0 Hz, .0-8.0 Hz, and 8.0-16.0 Hz. Taking the ratio of the envelopes of adjacent bands, we find that the envelope ratios have stable shapes at each site. The empirical envelope-ratio characteristics are combined with low-frequency envelope of the target earthquake to synthesize HF ground motion. We have applied the method to M5-class earthquakes and a M7 target earthquake that occurred in the vicinity of Kanto area, and successfully reproduced the observed HF ground motion of the target earthquake. The method can be applied to a broad band ground motion simulation for a scenario earthquake by combining numerically-computed low-frequency (~1 Hz) ground motion with the empirical envelope ratio characteristics to generate broadband ground motion

  16. Bilinear Time-frequency Analysis for Lamb Wave Signal Detected by Electromagnetic Acoustic Transducer

    Science.gov (United States)

    Sun, Wenxiu; Liu, Guoqiang; Xia, Hui; Xia, Zhengwu

    2018-03-01

    Accurate acquisition of the detection signal travel time plays a very important role in cross-hole tomography. The experimental platform of aluminum plate under the perpendicular magnetic field is established and the bilinear time-frequency analysis methods, Wigner-Ville Distribution (WVD) and the pseudo-Wigner-Ville distribution (PWVD), are applied to analyse the Lamb wave signals detected by electromagnetic acoustic transducer (EMAT). By extracting the same frequency component of the time-frequency spectrum as the excitation frequency, the travel time information can be obtained. In comparison with traditional linear time-frequency analysis method such as short-time Fourier transform (STFT), the bilinear time-frequency analysis method PWVD is more appropriate in extracting travel time and recognizing patterns of Lamb wave.

  17. Time-Frequency Analysis of Terahertz Radar Signals for Rapid Heart and Breath Rate Detection

    National Research Council Canada - National Science Library

    Massar, Melody L

    2008-01-01

    We develop new time-frequency analytic techniques which facilitate the detection of a person's heart and breath rates from the Doppler shift the movement of their body induces in a terahertz radar signal...

  18. Head Injury and Intracranial Pressure Monitor Using Ultrasonic and Low-Frequency Acoustic (ULFA) Detection

    National Research Council Canada - National Science Library

    Vo-Dinh, Tuan

    2001-01-01

    The main objective of this research project is the development of a non-invasive method and instrument for head injury detection and monitoring using a new approach based on ultrasonic and low-frequency acoustic (ULFA...

  19. Head Injury and Intracranial Pressure Monitor Using Ultrasonic and Low-Frequency (ULFA) Detection

    National Research Council Canada - National Science Library

    Vo-Dinh, Tuan

    2000-01-01

    The main objective of this research project is the development of a non-invasive method and instrument for head injury detection and monitoring using a new approach based on ultrasonic and low-frequency acoustic (ULFA...

  20. Frequency hopping signal detection based on wavelet decomposition and Hilbert-Huang transform

    Science.gov (United States)

    Zheng, Yang; Chen, Xihao; Zhu, Rui

    2017-07-01

    Frequency hopping (FH) signal is widely adopted by military communications as a kind of low probability interception signal. Therefore, it is very important to research the FH signal detection algorithm. The existing detection algorithm of FH signals based on the time-frequency analysis cannot satisfy the time and frequency resolution requirement at the same time due to the influence of window function. In order to solve this problem, an algorithm based on wavelet decomposition and Hilbert-Huang transform (HHT) was proposed. The proposed algorithm removes the noise of the received signals by wavelet decomposition and detects the FH signals by Hilbert-Huang transform. Simulation results show the proposed algorithm takes into account both the time resolution and the frequency resolution. Correspondingly, the accuracy of FH signals detection can be improved.

  1. Gear-box fault detection using time-frequency based methods

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob

    2015-01-01

    Gear-box fault monitoring and detection is important for optimization of power generation and availability of wind turbines. The current industrial approach is to use condition monitoring systems, which runs in parallel with the wind turbine control system, using expensive additional sensors...... in the gear-box resonance frequency can be detected. Two different time–frequency based approaches are presented in this paper. One is a filter based approach and the other is based on a Karhunen–Loeve basis. Both of them detect the gear-box fault with an acceptable detection delay of maximum 100s, which...... is neglectable compared with the fault developing time....

  2. Piezoelectric Nanotube Array for Broadband High-Frequency Ultrasonic Transducer.

    Science.gov (United States)

    Liew, Weng Heng; Yao, Kui; Chen, Shuting; Tay, Francis Eng Hock

    2018-03-01

    Piezoelectric materials are vital in determining ultrasonic transducer and imaging performance as they offer the function for conversion between mechanical and electrical energy. Ultrasonic transducers with high-frequency operation suffer from performance degradation and fabrication difficulty of the demanded piezoelectric materials. Hence, we propose 1-D polymeric piezoelectric nanostructure with controlled nanoscale features to overcome the technical limitations of high-frequency ultrasonic transducers. For the first time, we demonstrate the integration of a well-aligned piezoelectric nanotube array to produce a high-frequency ultrasonic transducer with outstanding performance. We find that nanoconfinement-induced polarization orientation and unique nanotube structure lead to significantly improved piezoelectric and ultrasonic transducing performance over the conventional piezoelectric thin film. A large bandwidth, 126% (-6 dB), is achieved at high center frequency, 108 MHz. Transmission sensitivity of nanotube array is found to be 46% higher than that of the monolithic thin film transducer attributed to the improved electromechanical coupling effectiveness and impedance match. We further demonstrate high-resolution scanning, ultrasonic imaging, and photoacoustic imaging using the obtained nanotube array transducers, which is valuable for biomedical imaging applications in the future.

  3. High frequency vibration analysis by the complex envelope vectorization.

    Science.gov (United States)

    Giannini, O; Carcaterra, A; Sestieri, A

    2007-06-01

    The complex envelope displacement analysis (CEDA) is a procedure to solve high frequency vibration and vibro-acoustic problems, providing the envelope of the physical solution. CEDA is based on a variable transformation mapping the high frequency oscillations into signals of low frequency content and has been successfully applied to one-dimensional systems. However, the extension to plates and vibro-acoustic fields met serious difficulties so that a general revision of the theory was carried out, leading finally to a new method, the complex envelope vectorization (CEV). In this paper the CEV method is described, underlying merits and limits of the procedure, and a set of applications to vibration and vibro-acoustic problems of increasing complexity are presented.

  4. A simple, tunable, and highly sensitive radio-frequency sensor.

    Science.gov (United States)

    Cui, Yan; Sun, Jiwei; He, Yuxi; Wang, Zheng; Wang, Pingshan

    2013-08-05

    We report a radio frequency (RF) sensor that exploits tunable attenuators and phase shifters to achieve high-sensitivity and broad band frequency tunability. Three frequency bands are combined to enable sensor operations from ∼20 MHz to ∼38 GHz. The effective quality factor ( Q eff ) of the sensor is as high as ∼3.8 × 10 6 with 200  μ l of water samples. We also demonstrate the measurement of 2-proponal-water-solution permittivity at 0.01 mole concentration level from ∼1 GHz to ∼10 GHz. Methanol-water solution and de-ionized water are used to calibrate the RF sensor for the quantitative measurements.

  5. High-frequency microrheology reveals cytoskeleton dynamics in living cells

    Science.gov (United States)

    Rigato, Annafrancesca; Miyagi, Atsushi; Scheuring, Simon; Rico, Felix

    2017-08-01

    Living cells are viscoelastic materials, dominated by an elastic response on timescales longer than a millisecond. On shorter timescales, the dynamics of individual cytoskeleton filaments are expected to emerge, but active microrheology measurements on cells accessing this regime are scarce. Here, we develop high-frequency microrheology experiments to probe the viscoelastic response of living cells from 1 Hz to 100 kHz. We report the viscoelasticity of different cell types under cytoskeletal drug treatments. On previously inaccessible short timescales, cells exhibit rich viscoelastic responses that depend on the state of the cytoskeleton. Benign and malignant cancer cells revealed remarkably different scaling laws at high frequencies, providing a unique mechanical fingerprint. Microrheology over a wide dynamic range--up to the frequency characterizing the molecular components--provides a mechanistic understanding of cell mechanics.

  6. Very High Frequency Switch-Mode Power Supplies

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre

    The importance of technology and electronics in our daily life is constantly increasing. At the same time portability and energy efficiency are currently some of the hottest topics. This creates a huge need for power converters in a compact form factor and with high efficiency, which can supply...... these electronic devices. This calls for new technologies in order to miniaturize the power electronics of today. One way to do this is by increasing the switching frequency dramatically and develop very high frequency switch mode power supplies. If these converters can be designed to operate efficiently, a huge...... size, weight and cost reduction can be achieved due to the smaller energy storing elements needed at these frequencies. The research presented in this thesis focuses on exactly this. First various technologies for miniaturization of power supplies are studied, e.g. piezo electric transformers, wide...

  7. Very High Frequency Galvanic Isolated Offline Power Supply

    DEFF Research Database (Denmark)

    Pedersen, Jeppe Arnsdorf

    During the last decades many researchers have turned their attention to raising the operation frequency of power converters to the very high frequency (VHF) range going from 30 MHz to 300 MHz. Increasing the operating frequency of a power converter leads to smaller energy storing components...... inverters with a single combined rectifier. The converter designed to deliver 9 W to a 60 V LED load and is achieving an efficiency of 89.4% and a power density of 2.14 W3 . The development of this converter proof that offline VHF converter can be implemented with high efficiencies even for low power applications...... are described together with the possibility of using capacitors as the power galvanic isolation, both methods of creating galvanic isolation are implemented in converters. Regarding EMC a series of converters with different filter implementations are examined. The results from the conducted mea-surement from 150...

  8. Computation of High-Frequency Waves with Random Uncertainty

    KAUST Repository

    Malenova, Gabriela

    2016-01-06

    We consider the forward propagation of uncertainty in high-frequency waves, described by the second order wave equation with highly oscillatory initial data. The main sources of uncertainty are the wave speed and/or the initial phase and amplitude, described by a finite number of random variables with known joint probability distribution. We propose a stochastic spectral asymptotic method [1] for computing the statistics of uncertain output quantities of interest (QoIs), which are often linear or nonlinear functionals of the wave solution and its spatial/temporal derivatives. The numerical scheme combines two techniques: a high-frequency method based on Gaussian beams [2, 3], a sparse stochastic collocation method [4]. The fast spectral convergence of the proposed method depends crucially on the presence of high stochastic regularity of the QoI independent of the wave frequency. In general, the high-frequency wave solutions to parametric hyperbolic equations are highly oscillatory and non-smooth in both physical and stochastic spaces. Consequently, the stochastic regularity of the QoI, which is a functional of the wave solution, may in principle below and depend on frequency. In the present work, we provide theoretical arguments and numerical evidence that physically motivated QoIs based on local averages of |uE|2 are smooth, with derivatives in the stochastic space uniformly bounded in E, where uE and E denote the highly oscillatory wave solution and the short wavelength, respectively. This observable related regularity makes the proposed approach more efficient than current asymptotic approaches based on Monte Carlo sampling techniques.

  9. Frequency-Wavenumber (FK)-Based Data Selection in High-Frequency Passive Surface Wave Survey

    Science.gov (United States)

    Cheng, Feng; Xia, Jianghai; Xu, Zongbo; Hu, Yue; Mi, Binbin

    2018-04-01

    Passive surface wave methods have gained much attention from geophysical and civil engineering communities because of the limited application of traditional seismic surveys in highly populated urban areas. Considering that they can provide high-frequency phase velocity information up to several tens of Hz, the active surface wave survey would be omitted and the amount of field work could be dramatically reduced. However, the measured dispersion energy image in the passive surface wave survey would usually be polluted by a type of "crossed" artifacts at high frequencies. It is common in the bidirectional noise distribution case with a linear receiver array deployed along roads or railways. We review several frequently used passive surface wave methods and derive the underlying physics for the existence of the "crossed" artifacts. We prove that the "crossed" artifacts would cross the true surface wave energy at fixed points in the f-v domain and propose a FK-based data selection technique to attenuate the artifacts in order to retrieve the high-frequency information. Numerical tests further demonstrate the existence of the "crossed" artifacts and indicate that the well-known wave field separation method, FK filter, does not work for the selection of directional noise data. Real-world applications manifest the feasibility of the proposed FK-based technique to improve passive surface wave methods by a priori data selection. Finally, we discuss the applicability of our approach.

  10. Frequency-Wavenumber (FK)-Based Data Selection in High-Frequency Passive Surface Wave Survey

    Science.gov (United States)

    Cheng, Feng; Xia, Jianghai; Xu, Zongbo; Hu, Yue; Mi, Binbin

    2018-07-01

    Passive surface wave methods have gained much attention from geophysical and civil engineering communities because of the limited application of traditional seismic surveys in highly populated urban areas. Considering that they can provide high-frequency phase velocity information up to several tens of Hz, the active surface wave survey would be omitted and the amount of field work could be dramatically reduced. However, the measured dispersion energy image in the passive surface wave survey would usually be polluted by a type of "crossed" artifacts at high frequencies. It is common in the bidirectional noise distribution case with a linear receiver array deployed along roads or railways. We review several frequently used passive surface wave methods and derive the underlying physics for the existence of the "crossed" artifacts. We prove that the "crossed" artifacts would cross the true surface wave energy at fixed points in the f- v domain and propose a FK-based data selection technique to attenuate the artifacts in order to retrieve the high-frequency information. Numerical tests further demonstrate the existence of the "crossed" artifacts and indicate that the well-known wave field separation method, FK filter, does not work for the selection of directional noise data. Real-world applications manifest the feasibility of the proposed FK-based technique to improve passive surface wave methods by a priori data selection. Finally, we discuss the applicability of our approach.

  11. Investigating Strength and Frequency Effects in Recognition Memory Using Type-2 Signal Detection Theory

    Science.gov (United States)

    Higham, Philip A.; Perfect, Timothy J.; Bruno, Davide

    2009-01-01

    Criterion- versus distribution-shift accounts of frequency and strength effects in recognition memory were investigated with Type-2 signal detection receiver operating characteristic (ROC) analysis, which provides a measure of metacognitive monitoring. Experiment 1 demonstrated a frequency-based mirror effect, with a higher hit rate and lower…

  12. High-frequency strontium vapor laser for biomedical applications

    Science.gov (United States)

    Hvorostovsky, A.; Kolmakov, E.; Kudashev, I.; Redka, D.; Kancer, A.; Kustikova, M.; Bykovskaya, E.; Mayurova, A.; Stupnikov, A.; Ruzankina, J.; Tsvetkov, K.; Lukyanov, N.; Paklinov, N.

    2018-02-01

    Sr-laser with high pulse repetition rate and high peak radiation power is a unique tool for studying rapidly occurring processes in time (plasma diagnostics, photoablation, etc.). In addition, the study of the frequency characteristics of the active medium of the laser helps to reveal the physics of the formation of an inverse medium in metal vapor lasers. In this paper, an experimental study of an Sr-laser with an active volume of 5.8 cm3 in the pulse repetition frequency range from 25 to 200 kHz is carried out, and a comparison with the frequency characteristics of media with large active volumes is given. We considered the frequency characteristics of the active medium in two modes: at a constant energy in the excitation pulse CU2 / 2 and at a constant average power consumed by the rectifier. In the presented work with a small-volume GRT using the TASITR-5/12 TASITRON switch, a laser was generated for Pairs of strontium at a CSF of 200 kHz. The behavior of the characteristics of the generation lines of 6.456 μm, 1 μm, and 3 μm at increased repetition frequencies is considered. Using the example of large-volume GRT, it is shown that tubes with a large active volume increase their energy characteristics with the growth of the CSF. The possibility of laser operation at pulse repetition rates above 200 kHz is shown.

  13. Balanced homodyne detection of optical quantum states at audio-band frequencies and below

    International Nuclear Information System (INIS)

    Stefszky, M S; Mow-Lowry, C M; Chua, S S Y; Shaddock, D A; Buchler, B C; Lam, P K; McClelland, D E; Vahlbruch, H; Khalaidovski, A; Schnabel, R

    2012-01-01

    The advent of stable, highly squeezed states of light has generated great interest in the gravitational wave community as a means for improving the quantum-noise-limited performance of advanced interferometric detectors. To confidently measure these squeezed states, it is first necessary to measure the shot-noise across the frequency band of interest. Technical noise, such as non-stationary events, beam pointing, and parasitic interference, can corrupt shot-noise measurements at low Fourier frequencies, below tens of kilo-hertz. In this paper we present a qualitative investigation into all of the relevant noise sources and the methods by which they can be identified and mitigated in order to achieve quantum noise limited balanced homodyne detection. Using these techniques, flat shot-noise down to Fourier frequencies below 0.5 Hz is produced. This enables the direct observation of large magnitudes of squeezing across the entire audio-band, of particular interest for ground-based interferometric gravitational wave detectors. 11.6 dB of shot-noise suppression is directly observed, with more than 10 dB down to 10 Hz. (paper)

  14. Resonant Frequency Calculation and Optimal Design of Peano Fractal Antenna for Partial Discharge Detection

    Directory of Open Access Journals (Sweden)

    Jian Li

    2012-01-01

    Full Text Available Ultra-high-frequency (UHF approaches have caught increasing attention recently and have been considered as a promising technology for online monitoring partial discharge (PD signals. This paper presents a Peano fractal antenna for UHF PD online monitoring of transformer with small size and multiband. The approximate formula for calculating the first resonant frequency of the Peano fractal antenna is presented. The results show that the first resonant frequency of the Peano fractal antenna is smaller than the Hilbert fractal antenna when the outer dimensions are equivalent approximately. The optimal geometric parameters of the antenna were obtained through simulation. Actual PD experiments had been carried out for two typically artificial insulation defect models, while the proposed antenna and the existing Hilbert antenna were both used for the PD measurement. The experimental results show that Peano fractal antenna is qualified for PD online UHF monitoring and a little more suitable than the Hilbert fractal antenna for pattern recognition by analyzing the waveforms of detected UHF PD signals.

  15. Design and development of ITER high-frequency magnetic sensor

    Czech Academy of Sciences Publication Activity Database

    Ma, Y.; Vayakis, G.; Begrambekov, L.B.; Cooper, J.-J.; Ďuran, Ivan; Hirsch, M.; Laqua, H.P.; Moreau, P.; Oosterbeek, J.W.; Spuig, P.; Stange, T.; Walsh, M.

    2016-01-01

    Roč. 112, November (2016), s. 594-612 ISSN 0920-3796 Institutional support: RVO:61389021 Keywords : ITER * High-frequency * Magnetic diagnostics * ECHa Subject RIV: JF - Nuclear Energetics OBOR OECD: Nuclear related engineering Impact factor: 1.319, year: 2016

  16. Very High Frequency Half Bridge DC/DC Converter

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    This paper presents the first, off chip, class DE (resonant half bridge) converter working in the Very High Frequency (VHF) range. The benefits of using half bridge circuits both in the inverter and rectifier part of a VHF resonant dc/dc converter are analyzed and design equations for all...

  17. Strange effects of strong high-frequency excitation

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2003-01-01

    Three general effects of mechanical high-frequency excitation (HFE) are described: Stiffening - an apparent change in the stiffness associated with an equilibrium; Biasing - a tendency for a system to move towards a particular state which does not exist or is unstable without HFE; and Smoothening...

  18. High frequency MOSFET gate drivers technologies and applications

    CERN Document Server

    Zhang, Zhiliang

    2017-01-01

    This book describes high frequency power MOSFET gate driver technologies, including gate drivers for GaN HEMTs, which have great potential in the next generation of switching power converters. Gate drivers serve as a critical role between control and power devices.

  19. Surface modification of lignocellulosic fibers using high-frequency ultrasound

    Science.gov (United States)

    Jayant B. Gadhe; Ram B. Gupta; Thomas Elder

    2005-01-01

    Enzymatic and chemical oxidation of fiber surfaces has been reported in the literature as a method for producing medium density fiberboards without using synthetic adhesives. This work focuses on modifying the surface properties of wood fibers by the generation of free radicals using high-frequency ultrasound. A sonochemical reactor operating at 610 kHz is used to...

  20. High frequency ground temperature fluctuation in a Convective Boundary Layer

    NARCIS (Netherlands)

    Garai, A.; Kleissl, J.; Lothon, M.; Lohou, F.; Pardyjak, E.; Saïd, F.; Cuxart, J.; Steeneveld, G.J.; Yaguë, C.; Derrien, S.; Alexander, D.; Villagrasa, D.M.

    2012-01-01

    To study influence of the turbulent structures in the convective boundary layer (CBL) on the ground temperature, during the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) observational campaign, high frequency ground temperature was recorded through infra-red imagery from 13 June - 8

  1. Elastic Modulus at High Frequency of Polymerically Stabilized Suspensions

    NARCIS (Netherlands)

    Nommensen, P.A.; Duits, Michael H.G.; van den Ende, Henricus T.M.; Mellema, J.

    2000-01-01

    The elastic moduli of polymerically stabilized suspensions consisting of colloidal silica particles coated with endgrafted PDMS (Mn = 80 000) in heptane, were measured as a function of concentration. And the elastic modulus at high frequency G'.. was quantitatively described by model calculations

  2. Modelling financial high frequency data using point processes

    DEFF Research Database (Denmark)

    Hautsch, Nikolaus; Bauwens, Luc

    In this chapter written for a forthcoming Handbook of Financial Time Series to be published by Springer-Verlag, we review the econometric literature on dynamic duration and intensity processes applied to high frequency financial data, which was boosted by the work of Engle and Russell (1997...

  3. Vacuum amplification of the high-frequency electromagnetic radiation

    OpenAIRE

    Vilkovisky, G. A.

    1998-01-01

    When an electrically charged source is capable of both emitting the electromagnetic waves and creating charged particles from the vacuum, its radiation gets so much amplified that only the backreaction of the vacuum makes it finite. The released energy and charge are calculated in the high-frequency approximation. The technique of expectation values is advanced and employed.

  4. Integrated Very High Frequency Switch Mode Power Supplies: Design Considerations

    DEFF Research Database (Denmark)

    Hertel, Jens Christian; Nour, Yasser; Knott, Arnold

    2017-01-01

    simulations. The required spiral inductors was modeled, and simulations show Q values of as high as 14 at a switching frequency of 250 MHz. Simulations of the converter show an efficiency of 55 % with a self oscillating gate drive. However the modeled inductor was not adequate for operating with the self...

  5. Collocations of High Frequency Noun Keywords in Prescribed Science Textbooks

    Science.gov (United States)

    Menon, Sujatha; Mukundan, Jayakaran

    2012-01-01

    This paper analyses the discourse of science through the study of collocational patterns of high frequency noun keywords in science textbooks used by upper secondary students in Malaysia. Research has shown that one of the areas of difficulty in science discourse concerns lexis, especially that of collocations. This paper describes a corpus-based…

  6. High resolution mid-infrared spectroscopy based on frequency upconversion

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Hu, Qi; Tidemand-Lichtenberg, Peter

    2013-01-01

    signals can be analyzed. The obtainable frequency resolution is usually in the nm range where sub nm resolution is preferred in many applications, like gas spectroscopy. In this work we demonstrate how to obtain sub nm resolution when using upconversion. In the presented realization one object point...... high resolution spectral performance by observing emission from hot water vapor in a butane gas burner....

  7. Risks and injuries in laser and high-frequency applications

    Science.gov (United States)

    Giering, K.; Philipp, Carsten M.; Berlien, Hans-Peter

    1995-01-01

    An analysis of injuries and risks using high frequency (HF) and lasers in medicine based on a literature search with MEDLINE was performed. The cases reported in the literature were classified according to the following criteria: (1) Avoidable in an optimal operational procedure. These kind of injuries are caused by a chain of unfortunate incidents. They are in principle avoidable by the 'right action at the right time' which presupposes an appropriate training of the operating team, selection of the optimal parameters for procedure and consideration of all safety instructions. (2) Avoidable, caused by malfunction of the equipment and/or accessories. The injuries classified into this group are avoidable if all safety regulations were fulfilled. This includes a pre-operational check-up and the use of medical lasers and high frequency devices only which meet the international safety standards. (3) Avoidable, caused by misuse/mistake. Injuries of this group were caused by an inappropriate selection of the procedure, wrong medical indication or mistakes during application. (4) Unavoidable, fateful. These injuries can be caused by risks inherent to the type of energy used, malfunction of the equipment and/or accessories though a pre-operational check-up was done. Some risks and complications are common to high frequency and laser application. But whereas these risks can be excluded easily in laser surgery there is often a great expenditure necessary or they are not avoidable if high frequency if used. No unavoidable risks due to laser energy occur.

  8. High-frequency Trading, Algorithmic Finance, and the Flash Crash

    DEFF Research Database (Denmark)

    Borch, Christian

    2016-01-01

    The Flash Crash of 6 May 2010 has an interesting status in discussions of high-frequency trading, i.e. fully automated, superfast computerized trading: it is invoked both as an important illustration of how this field of algorithmic trading operates and, more often, as an example of how fully aut...... about resonance in quantitative finance....

  9. Test the mergers of the primordial black holes by high frequency gravitational-wave detector

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xin; Wang, Li-Li; Li, Jin [Chongqing University, Department of Physics, Chongqing (China)

    2017-09-15

    The black hole could have a primordial origin if its mass is less than 1M {sub CircleDot}. The mergers of these black hole binaries generate stochastic gravitational-wave background (SGWB). We investigate the SGWB in high frequency band 10{sup 8}-10{sup 10} Hz. It can be detected by high frequency gravitational-wave detector. Energy density spectrum and amplitude of the SGWB are derived. The upper limit of the energy density spectrum is around 10{sup -7}. Also, the upper limit of the amplitude ranges from 10{sup -31.5} to 10{sup -29.5}. The fluctuation of spacetime origin from gravitational wave could give a fluctuation of the background electromagnetic field in a high frequency gravitational-wave detector. The signal photon flux generated by the SGWB in the high frequency band 10{sup 8}-10{sup 10} Hz is derived, which ranges from 1 to 10{sup 2} s{sup -1}. The comparison between the signal photon flux generated by relic gravitational waves (RGWs) and the SGWB is also discussed in this paper. It is shown that the signal photon flux generated by the RGW, which is predicted by the canonical single-field slow-roll inflation models, is sufficiently lower than the one generated by the SGWB in the high frequency band 10{sup 8}-10{sup 10} Hz. Our results indicate that the SGWB in the high frequency band 10{sup 8}-10{sup 10} Hz is more likely to be detected by the high frequency gravitational-wave detector. (orig.)

  10. [High-frequency components of occlusal sound in sliding movement].

    Science.gov (United States)

    Nagai, K

    1990-03-01

    We postulated that high-frequency components of the occlusal sound occurring due to the characteristic vibration of teeth can be useful data for confirmation of the stability in occlusion, and studied the high-frequency components in the cases both of an experimental sliding movement and a normal occlusion. The results obtained were as follows. 1. A study on high-frequency components of the occlusal sound in an experimental sliding movement. 1) A study on wave type of the occlusal sound revealed one damped oscillation in an impact form and two in a slide form. 2) Spectrum analysis of the damped oscillation showed a similar spectrum pattern with a peak existing between 16KHz or more and 17KHz or less in both impact and slide cases. 2. A study on high-frequency components of the occlusal sound in a normal occlusion case. 1) The wave type in occlusal sound we have observed in a normal occlusion group and in a prosthetic or operative group was as follows: One damped oscillation shown in an impact form and two damped oscillation in a slide form which were the same as those shown in the case where an interference device was attached. 2) Duration of the sliding movement was short in a normal occlusion group, but was prolonged in a prosthetic or operative group. 3) The incidence of the wave type in occlusal sound was 56.7% in a prosthetic or operative group as compared to 87.8% in a normal occlusion group in an impact form. In contrast, the incidence was 43.3% in a prosthetic or operative group as compared to 12.2% in a normal occlusion group in a slide form. Such difference in the incidence between the wave types suggested that high-frequency components of occlusal sound can be an index for judgement of the stability in occlusion.

  11. High-power non linear frequency converted laser diodes

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Andersen, Peter E.; Hansen, Anders Kragh

    2015-01-01

    We present different methods of generating light in the blue-green spectral range by nonlinear frequency conversion of tapered diode lasers achieving state-of-the-art power levels. In the blue spectral range, we show results using single-pass second harmonic generation (SHG) as well as cavity enh...... enhanced sum frequency generation (SFG) with watt-level output powers. SHG and SFG are also demonstrated in the green spectral range as a viable method to generate up to 4 W output power with high efficiency using different configurations....

  12. High frequency guided wave propagation in monocrystalline silicon wafers

    OpenAIRE

    Pizzolato, M.; Masserey, B.; Robyr, J. L.; Fromme, P.

    2017-01-01

    Monocrystalline silicon wafers are widely used in the photovoltaic industry for solar panels with high conversion efficiency. The cutting process can introduce micro-cracks in the thin wafers and lead to varying thickness. High frequency guided ultrasonic waves are considered for the structural monitoring of the wafers. The anisotropy of the monocrystalline silicon leads to variations of the wave characteristics, depending on the propagation direction relative to the crystal orientation. Full...

  13. Predicting High Frequency Exchange Rates using Machine Learning

    OpenAIRE

    Palikuca, Aleksandar; Seidl,, Timo

    2016-01-01

    This thesis applies a committee of Artificial Neural Networks and Support Vector Machines on high-dimensional, high-frequency EUR/USD exchange rate data in an effort to predict directional market movements on up to a 60 second prediction horizon. The study shows that combining multiple classifiers into a committee produces improved precision relative to the best individual committee members and outperforms previously reported results. A trading simulation implementing the committee classifier...

  14. Compact high voltage, high peak power, high frequency transformer for converter type modulator applications.

    Science.gov (United States)

    Reghu, T; Mandloi, V; Shrivastava, Purushottam

    2016-04-01

    The design and development of a compact high voltage, high peak power, high frequency transformer for a converter type modulator of klystron amplifiers is presented. The transformer has been designed to operate at a frequency of 20 kHz and at a flux swing of ±0.6 T. Iron (Fe) based nanocrystalline material has been selected as a core for the construction of the transformer. The transformer employs a specially designed solid Teflon bobbin having 120 kV insulation for winding the high voltage secondary windings. The flux swing of the core has been experimentally found by plotting the hysteresis loop at actual operating conditions. Based on the design, a prototype transformer has been built which is per se a unique combination of high voltage, high frequency, and peak power specifications. The transformer was able to provide 58 kV (pk-pk) at the secondary with a peak power handling capability of 700 kVA. The transformation ratio was 1:17. The performance of the transformer is also presented and discussed.

  15. Hearing thresholds at high frequency in patients with cystic fibrosis: a systematic review

    Directory of Open Access Journals (Sweden)

    Debora T.M. Caumo

    Full Text Available Abstract Introduction: High-frequency audiometry may contribute to the early detection of hearing loss caused by ototoxic medications. Many ototoxic drugs are widely used in the treatment of patients with cystic fibrosis. Early detection of hearing loss should allow known harmful drugs to be identified before the damage affects speech frequencies. The damage caused by ototoxicity is irreversible, resulting in important social and psychological consequences. In children, hearing loss, even when restricted to high frequencies, can affect the development of language. Objective: To investigate the efficacy and effectiveness of hearing monitoring through high-frequency audiometry in pediatric patients with cystic fibrosis. Methods: Electronic databases PubMed, MedLine, Web of Science and LILACS were searched, from January to November 2015. The selected studies included those in which high-frequency audiometry was performed in patients with cystic fibrosis, undergoing treatment with ototoxic drugs and published in Portuguese, English and Spanish. The GRADE system was chosen for the evaluation of the methodological quality of the articles. Results: During the search process carried out from January 2015 to November 2015, 512 publications were identified, of which 250 were found in PubMed, 118 in MedLine, 142 in Web of Science and 2 in LILACS. Of these, nine articles were selected. Conclusion: The incidence of hearing loss was identified at high frequencies in cystic fibrosis patients without hearing complaints. It is assumed that high-frequency audiometry can be an early diagnostic method to be recommended for hearing investigation of patients at risk of ototoxicity.

  16. Improving sensitivity of residual current transformers to high frequency earth fault currents

    Directory of Open Access Journals (Sweden)

    Czapp Stanislaw

    2017-09-01

    Full Text Available For protection against electric shock in low voltage systems residual current devices are commonly used. However, their proper operation can be interfered when high frequency earth fault current occurs. Serious hazard of electrocution exists then. In order to detect such a current, it is necessary to modify parameters of residual current devices, especially the operating point of their current transformer. The authors proposed the modification in the structure of residual current devices. This modification improves sensitivity of residual current devices when high frequency earth fault current occurs. The test of the modified residual current device proved that the authors’ proposition is appropriate.

  17. GaN-based High Power High Frequency Wide Range LLC Resonant Converter, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — SET Group will design, build and demonstrate a Gallium Nitride (GaN) based High Power High Frequency Wide Range LLC Resonant Converter capable of handling high power...

  18. Ulysses: accurate detection of low-frequency structural variations in large insert-size sequencing libraries.

    Science.gov (United States)

    Gillet-Markowska, Alexandre; Richard, Hugues; Fischer, Gilles; Lafontaine, Ingrid

    2015-03-15

    The detection of structural variations (SVs) in short-range Paired-End (PE) libraries remains challenging because SV breakpoints can involve large dispersed repeated sequences, or carry inherent complexity, hardly resolvable with classical PE sequencing data. In contrast, large insert-size sequencing libraries (Mate-Pair libraries) provide higher physical coverage of the genome and give access to repeat-containing regions. They can thus theoretically overcome previous limitations as they are becoming routinely accessible. Nevertheless, broad insert size distributions and high rates of chimerical sequences are usually associated to this type of libraries, which makes the accurate annotation of SV challenging. Here, we present Ulysses, a tool that achieves drastically higher detection accuracy than existing tools, both on simulated and real mate-pair sequencing datasets from the 1000 Human Genome project. Ulysses achieves high specificity over the complete spectrum of variants by assessing, in a principled manner, the statistical significance of each possible variant (duplications, deletions, translocations, insertions and inversions) against an explicit model for the generation of experimental noise. This statistical model proves particularly useful for the detection of low frequency variants. SV detection performed on a large insert Mate-Pair library from a breast cancer sample revealed a high level of somatic duplications in the tumor and, to a lesser extent, in the blood sample as well. Altogether, these results show that Ulysses is a valuable tool for the characterization of somatic mosaicism in human tissues and in cancer genomes. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Software for Displaying High-Frequency Test Data

    Science.gov (United States)

    Elmore, Jason L.

    2003-01-01

    An easy-to-use, intuitive computer program was written to satisfy a need of test operators and data requestors to quickly view and manipulate high-frequency test data recorded at the East and West Test Areas at Marshall Space Flight Center. By enabling rapid analysis, this program makes it possible to reduce times between test runs, thereby potentially reducing the overall cost of test operations. The program can be used to perform quick frequency analysis, using multiple fast- Fourier-transform windowing and amplitude options. The program can generate amplitude-versus-time plots with full zoom capabilities, frequency-component plots at specified time intervals, and waterfall plots (plots of spectral intensity versus frequency at successive small time intervals, showing the changing frequency components over time). There are options for printing of the plots and saving plot data as text files that can be imported into other application programs. The program can perform all of the aforementioned plotting and plot-data-handling functions on a relatively inexpensive computer; other software that performs the same functions requires computers with large amounts of power and memory.

  20. Comparative study between ultrahigh spatial frequency algorithm and high spatial frequency algorithm in high-resolution CT of the lungs

    International Nuclear Information System (INIS)

    Oh, Yu Whan; Kim, Jung Kyuk; Suh, Won Hyuck

    1994-01-01

    To date, the high spatial frequency algorithm (HSFA) which reduces image smoothing and increases spatial resolution has been used for the evaluation of parenchymal lung diseases in thin-section high-resolution CT. In this study, we compared the ultrahigh spatial frequency algorithm (UHSFA) with the high spatial frequency algorithm in the assessment of thin section images of the lung parenchyma. Three radiologists compared the UHSFA and HSFA on identical CT images in a line-pair resolution phantom, one lung specimen, 2 patients with normal lung and 18 patients with abnormal lung parenchyma. Scanning of a line-pair resolution phantom demonstrated no difference in resolution between two techniques but it showed that outer lines of the line pairs with maximal resolution looked thicker on UHSFA than those on HSFA. Lung parenchymal detail with UHSFA was judged equal or superior to HSFA in 95% of images. Lung parenchymal sharpness was improved with UHSFA in all images. Although UHSFA resulted in an increase in visible noise, observers did not found that image noise interfered with image interpretation. The visual CT attenuation of normal lung parenchyma is minimally increased in images with HSFA. The overall visual preference of the images reconstructed on UHSFA was considered equal to or greater than that of those reconstructed on HSFA in 78% of images. The ultrahigh spatial frequency algorithm improved the overall visual quality of the images in pulmonary parenchymal high-resolution CT

  1. Stereotyped high-frequency oscillations discriminate seizure onset zones and critical functional cortex in focal epilepsy.

    Science.gov (United States)

    Liu, Su; Gurses, Candan; Sha, Zhiyi; Quach, Michael M; Sencer, Altay; Bebek, Nerses; Curry, Daniel J; Prabhu, Sujit; Tummala, Sudhakar; Henry, Thomas R; Ince, Nuri F

    2018-01-30

    High-frequency oscillations in local field potentials recorded with intracranial EEG are putative biomarkers of seizure onset zones in epileptic brain. However, localized 80-500 Hz oscillations can also be recorded from normal and non-epileptic cerebral structures. When defined only by rate or frequency, physiological high-frequency oscillations are indistinguishable from pathological ones, which limit their application in epilepsy presurgical planning. We hypothesized that pathological high-frequency oscillations occur in a repetitive fashion with a similar waveform morphology that specifically indicates seizure onset zones. We investigated the waveform patterns of automatically detected high-frequency oscillations in 13 epilepsy patients and five control subjects, with an average of 73 subdural and intracerebral electrodes recorded per patient. The repetitive oscillatory waveforms were identified by using a pipeline of unsupervised machine learning techniques and were then correlated with independently clinician-defined seizure onset zones. Consistently in all patients, the stereotypical high-frequency oscillations with the highest degree of waveform similarity were localized within the seizure onset zones only, whereas the channels generating high-frequency oscillations embedded in random waveforms were found in the functional regions independent from the epileptogenic locations. The repetitive waveform pattern was more evident in fast ripples compared to ripples, suggesting a potential association between waveform repetition and the underlying pathological network. Our findings provided a new tool for the interpretation of pathological high-frequency oscillations that can be efficiently applied to distinguish seizure onset zones from functionally important sites, which is a critical step towards the translation of these signature events into valid clinical biomarkers.awx374media15721572971001. © The Author(s) (2018). Published by Oxford University Press on

  2. Factors controlling high-frequency radiation from extended ruptures

    Science.gov (United States)

    Beresnev, Igor A.

    2017-09-01

    Small-scale slip heterogeneity or variations in rupture velocity on the fault plane are often invoked to explain the high-frequency radiation from earthquakes. This view has no theoretical basis, which follows, for example, from the representation integral of elasticity, an exact solution for the radiated wave field. The Fourier transform, applied to the integral, shows that the seismic spectrum is fully controlled by that of the source time function, while the distribution of final slip and rupture acceleration/deceleration only contribute to directivity. This inference is corroborated by the precise numerical computation of the full radiated field from the representation integral. We compare calculated radiation from four finite-fault models: (1) uniform slip function with low slip velocity, (2) slip function spatially modulated by a sinusoidal function, (3) slip function spatially modulated by a sinusoidal function with random roughness added, and (4) uniform slip function with high slip velocity. The addition of "asperities," both regular and irregular, does not cause any systematic increase in the spectral level of high-frequency radiation, except for the creation of maxima due to constructive interference. On the other hand, an increase in the maximum rate of slip on the fault leads to highly amplified high frequencies, in accordance with the prediction on the basis of a simple point-source treatment of the fault. Hence, computations show that the temporal rate of slip, not the spatial heterogeneity on faults, is the predominant factor forming the high-frequency radiation and thus controlling the velocity and acceleration of the resulting ground motions.

  3. Multi-year high-frequency hydrothermal monitoring of selected high-threat Cascade Range volcanoes

    Science.gov (United States)

    Crankshaw, I. M.; Archfield, S. A.; Newman, A. C.; Bergfeld, D.; Clor, L. E.; Spicer, K. R.; Kelly, P. J.; Evans, W. C.; Ingebritsen, S. E.

    2018-05-01

    From 2009 to 2015 the U.S. Geological Survey (USGS) systematically monitored hydrothermal behavior at selected Cascade Range volcanoes in order to define baseline hydrothermal and geochemical conditions. Gas and water data were collected regularly at 25 sites on 10 of the highest-risk volcanoes in the Cascade Range. These sites include near-summit fumarole groups and springs/streams that show clear evidence of magmatic influence (high 3He/4He ratios and/or large fluxes of magmatic CO2 or heat). Site records consist mainly of hourly temperature and hydrothermal-flux data. Having established baseline conditions during a multiyear quiescent period, the USGS reduced monitoring frequency from 2015 to present. The archived monitoring data are housed at (doi:10.5066/F72N5088). These data (1) are suitable for retrospective comparison with other continuous geophysical monitoring data and (2) will provide context during future episodes of volcanic unrest, such that unrest-related variations at these thoroughly characterized sites will be more clearly recognizable. Relatively high-frequency year-round data are essential to achieve these objectives, because many of the time series reveal significant diurnal, seasonal, and inter-annual variability that would tend to mask unrest signals in the absence of baseline data. Here we characterize normal variability for each site, suggest strategies to detect future volcanic unrest, and explore deviations from background associated with recent unrest.

  4. Very high frequency (beyond 100 MHz) PZT kerfless linear arrays.

    Science.gov (United States)

    Wu, Da-Wei; Zhou, Qifa; Geng, Xuecang; Liu, Chang-Geng; Djuth, Frank; Shung, K Kirk

    2009-10-01

    This paper presents the design, fabrication, and measurements of very high frequency kerfless linear arrays prepared from PZT film and PZT bulk material. A 12-microm PZT thick film fabricated from PZT-5H powder/solution composite and a piece of 15-microm PZT-5H sheet were used to fabricate 32-element kerfless high-frequency linear arrays with photolithography. The PZT thick film was prepared by spin-coating of PZT sol-gel composite solution. The thin PZT-5H sheet sample was prepared by lapping a PZT-5H ceramic with a precision lapping machine. The measured results of the 2 arrays were compared. The PZT film array had a center frequency of 120 MHz, a bandwidth of 60% with a parylene matching layer, and an insertion loss of 41 dB. The PZT ceramic sheet array was found to have a center frequency of 128 MHz with a poorer bandwidth (40% with a parylene matching layer) but a better sensitivity (28 dB insertion loss).

  5. Signal Detection Theory-Based Information Processing for the Detection of Breast Cancer at Microwave Frequencies

    National Research Council Canada - National Science Library

    Nolte, Loren

    2002-01-01

    The hypothesis is that one can use signal detection theory to improve the performance in detecting tumors in the breast by using this theory to develop task-oriented information processing techniques...

  6. High-frequency ultrasound-responsive block copolymer micelle.

    Science.gov (United States)

    Wang, Jie; Pelletier, Maxime; Zhang, Hongji; Xia, Hesheng; Zhao, Yue

    2009-11-17

    Micelles of a diblock copolymer composed of poly(ethylene oxide) and poly(2-tetrahydropyranyl methacrylate) (PEO-b-PTHPMA) in aqueous solution could be disrupted by high-frequency ultrasound (1.1 MHz). It was found that, upon exposure to a high-intensity focused ultrasound (HIFU) beam at room temperature, the pH value of the micellar solution decreased over irradiation time. The infrared spectroscopic analysis of solid block copolymer samples collected from the ultrasound irradiated micellar solution revealed the formation of carboxylic acid dimers and hydroxyl groups. These characterization results suggest that the high-frequency HIFU beam could induce the hydrolysis reaction of THPMA at room temperature resulting in the cleavage of THP groups. The disruption of PEO-b-PTHPMA micelles by ultrasound was investigated by using dynamic light scattering, atomic force microscopy, and fluorescence spectroscopy. On the basis of the pH change, it was found that the disruption process was determined by a number of factors such as the ultrasound power, the micellar solution volume and the location of the focal spot of the ultrasound beam. This study shows the potential to develop ultrasound-sensitive block copolymer micelles by having labile chemical bonds in the polymer structure, and to use the high-frequency HIFU to trigger a chemical reaction for the disruption of micelles.

  7. Development of high frequency tungsten inert gas welding method

    International Nuclear Information System (INIS)

    Morisada, Yoshiaki; Fujii, Hidetoshi; Inagaki, Fuminori; Kamai, Masayoshi

    2013-01-01

    Highlights: ► A new ultrasonic wave TIG welding method was developed. ► The area of the blowholes decreased to less than about 1/8 in the normal TIG weld. ► The number of blowholes decreased with the decreasing frequency. ► The number of blowholes increased when the frequency was less than 15 kHz. ► The microstructure of the weld was refined by ultrasonic wave. -- Abstract: A new welding method, called high frequency tungsten inert gas (TIG) welding, was developed to decrease blowholes in a weld. A1050 aluminum alloy plates (100 mm l × 50 mm w × 5 mm t ) were welded at a frequency from 10 to 40 kHz. An Ar-1% hydrogen mixture was used as the shielding gas to generate blowholes in the experiments. The welding was performed in the horizontal position so that the blowholes can easily be a problem. For comparison, a normal TIG welding was also performed at 60 Hz. After welding, the distribution of the blowholes in the welds was observed in order to evaluate the effect of the sonic wave. The number of blowholes changed with the frequency. A frequency near 15 kHz is the most suitable to decrease the blowholes. Using this new method, the area of blowholes is decreased to less than about 1/8 of the normal TIG weld. This method is much more effective for decreasing the number of blowholes, compared with an ultrasonic wave vibrator which is directly fixed to the sample.

  8. Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections

    Energy Technology Data Exchange (ETDEWEB)

    Pawar, Dnyandeo; Rao, Ch. N.; Kale, S. N., E-mail: sangeetakale2004@gmail.com [Department of Applied Physics, Defence Institute of Advanced Technology (DU), Girinagar, Pune 411 025, Maharashtra (India); Choubey, Ravi Kant [Department of Applied Physics, Amity Institute of Applied Sciences, Amity University, Noida 201 313 (India)

    2016-01-25

    Low frequency under-water acoustic signal detections are challenging, especially for marine applications. A Mach-Zehnder interferometric hydrophone is demonstrated using polarization-maintaining photonic-crystal-fiber (PM-PCF), spliced between two single-mode-fibers, operated at 1550 nm source. These data are compared with standard hydrophone, single-mode and multimode fiber. The PM-PCF sensor shows the highest response with a power shift (2.32 dBm) and a wavelength shift (392.8 pm) at 200 Hz. High birefringence values and the effect of the imparted acoustic pressure on this fiber, introducing the difference between the fast and slow axis changes, owing to the phase change in the propagation waves, demonstrate the strain-optic properties of the sensor.

  9. HIGH-RESOLUTION RADIO OBSERVATIONS OF THE REMNANT OF SN 1987A AT HIGH FREQUENCIES

    International Nuclear Information System (INIS)

    Zanardo, Giovanna; Staveley-Smith, L.; Potter, T. M.; Ng, C.-Y.; Gaensler, B. M.; Manchester, R. N.; Tzioumis, A. K.

    2013-01-01

    We present new imaging observations of the remnant of Supernova (SN) 1987A at 44 GHz, performed in 2011 with the Australia Telescope Compact Array (ATCA). The 0.''35 × 0.''23 resolution of the diffraction-limited image is the highest achieved to date in high-dynamic range. We also present a new ATCA image at 18 GHz derived from 2011 observations, which is super-resolved to 0.''25. The flux density is 40 ± 2 mJy at 44 GHz and 81 ± 6 mJy at 18 GHz. At both frequencies, the remnant exhibits a ring-like emission with two prominent lobes, and an east-west brightness asymmetry that peaks on the eastern lobe. A central feature of fainter emission appears at 44 GHz. A comparison with previous ATCA observations at 18 and 36 GHz highlights higher expansion velocities of the remnant's eastern side. The 18-44 GHz spectral index is α = –0.80 (S ν ∝ν α ). The spectral index map suggests slightly steeper values at the brightest sites on the eastern lobe, whereas flatter values are associated with the inner regions. The remnant morphology at 44 GHz generally matches the structure seen with contemporaneous X-ray and Hα observations. Unlike the Hα emission, both the radio and X-ray emission peaks on the eastern lobe. The regions of flatter spectral index align and partially overlap with the optically visible ejecta. Simple free-free absorption models suggest that emission from a pulsar wind nebula or a compact source inside the remnant may now be detectable at high frequencies or at low frequencies if there are holes in the ionized component of the ejecta.

  10. The thermal history of the plasma and high-frequency gravitons

    International Nuclear Information System (INIS)

    Giovannini, Massimo

    2009-01-01

    Possible deviations from a radiation-dominated evolution, occurring prior to the synthesis of light nuclei, impacted on the spectral energy density of high-frequency gravitons. For a systematic scrutiny of this situation, the ΛCDM paradigm must be complemented by (at least two) physical parameters describing, respectively, a threshold frequency and a slope. The supplementary frequency scale sets the lower border of a high-frequency domain where the spectral energy grows with a slope which depends, predominantly, upon the total sound speed of the plasma right after inflation. While the infrared region of the graviton energy spectrum is nearly scale invariant, the expected signals for typical frequencies larger than 0.01 nHz are hereby analyzed in a model-independent framework by requiring that the total sound speed of the post-inflationary plasma be smaller than the speed of light. Current (e.g., low-frequency) upper limits on the tensor power spectra (determined from the combined analysis of the three large-scale data sets) are shown to be compatible with a detectable signal in the frequency range of wideband interferometers. In the present context, the scrutiny of the early evolution of the sound speed of the plasma can then be mapped onto a reliable strategy of parameter extraction including not only the well-established cosmological observables but also the forthcoming data from wideband interferometers.

  11. Fiber lightguide-coupled high frequency analog data system

    International Nuclear Information System (INIS)

    Davies, T.J.; Nelson, M.A.; Morton, J.R.; Pruett, B.

    1976-06-01

    An experimental system is described for measuring the time history of a high voltage, high frequency electrical pulse from a radiation detector. The system employs several fibers of a 500-m graded index light-guide cable to carry modelocked laser pulses from a safe location to an electro-optical Kerr cell located near the detector. These 200-ps pulses are widened to 500 ps at the cell by fiber dispersion. They are intensity-modulated in the cell by the electrical signal and returned over other cable fibers to an optical detector and recorder located near the laser. System frequency response exceeds 500 MHz over an amplitude dynamic range of 1000:1

  12. Peripheral Circulatory Features during High-Frequency Jet Ventilation

    Directory of Open Access Journals (Sweden)

    M. B. Kontorovich

    2010-01-01

    Full Text Available The paper gives the results of a study of peripheral circulatory features during high-frequency jet ventilation (HFJV. The main specific features of peripheral circulation and oxygen transport during HFJV are formulated on the basis of a study of cardiac output (impedance cardiography, peripheral vascular resistance, peripheral vascular blood filling (photoplethysmogram analysis, adaptive peripheral blood flow reactions (spectral analysis of peripheral vascular pulsation. HFJV gives rise to the peculiar pattern of peripheral hemodynamics and tissue gas exchange, which is characterized by higher oxygen uptake without a decrease in mixed venous blood saturation, with normal extraction coefficient and preserved low peripheral vascular resistance. During HFJV, unlike traditional ventilation, the main peripheral hemodynamic feature is the increased capillary bed blood volume caused by the blood flow involvement of reserve capillaries under control of volume (parasympathetic regulation of adaptive peripheral hemodynamic reactions. Key words: high-frequency jet ventilation, oxygen transport, peripheral hemodynamics.

  13. A comparison of high-frequency cross-correlation measures

    Science.gov (United States)

    Precup, Ovidiu V.; Iori, Giulia

    2004-12-01

    On a high-frequency scale the time series are not homogeneous, therefore standard correlation measures cannot be directly applied to the raw data. There are two ways to deal with this problem. The time series can be homogenised through an interpolation method (An Introduction to High-Frequency Finance, Academic Press, NY, 2001) (linear or previous tick) and then the Pearson correlation statistic computed. Recently, methods that can handle raw non-synchronous time series have been developed (Int. J. Theor. Appl. Finance 6(1) (2003) 87; J. Empirical Finance 4 (1997) 259). This paper compares two traditional methods that use interpolation with an alternative method applied directly to the actual time series.

  14. Generation of sheet currents by high frequency fast MHD waves

    Energy Technology Data Exchange (ETDEWEB)

    Núñez, Manuel, E-mail: mnjmhd@am.uva.es

    2016-07-01

    The evolution of fast magnetosonic waves of high frequency propagating into an axisymmetric equilibrium plasma is studied. By using the methods of weakly nonlinear geometrical optics, it is shown that the perturbation travels in the equatorial plane while satisfying a transport equation which enables us to predict the time and location of formation of shock waves. For plasmas of large magnetic Prandtl number, this would result into the creation of sheet currents which may give rise to magnetic reconnection and destruction of the original equilibrium. - Highlights: • Regular solutions of quasilinear hyperbolic systems may evolve into shocks. • The shock location is found for high frequency fast MHD waves. • The result is applied to static axisymmetric equilibria. • The previous process may lead to the formation of sheet currents and destruction of the equilibrium.

  15. A Technique for Real-Time Ionospheric Ranging Error Correction Based On Radar Dual-Frequency Detection

    Science.gov (United States)

    Lyu, Jiang-Tao; Zhou, Chen

    2017-12-01

    Ionospheric refraction is one of the principal error sources for limiting the accuracy of radar systems for space target detection. High-accuracy measurement of the ionospheric electron density along the propagation path of radar wave is the most important procedure for the ionospheric refraction correction. Traditionally, the ionospheric model and the ionospheric detection instruments, like ionosonde or GPS receivers, are employed for obtaining the electron density. However, both methods are not capable of satisfying the requirements of correction accuracy for the advanced space target radar system. In this study, we propose a novel technique for ionospheric refraction correction based on radar dual-frequency detection. Radar target range measurements at two adjacent frequencies are utilized for calculating the electron density integral exactly along the propagation path of the radar wave, which can generate accurate ionospheric range correction. The implementation of radar dual-frequency detection is validated by a P band radar located in midlatitude China. The experimental results present that the accuracy of this novel technique is more accurate than the traditional ionospheric model correction. The technique proposed in this study is very promising for the high-accuracy radar detection and tracking of objects in geospace.

  16. Ultra high frequency induction welding of powder metal compacts

    Energy Technology Data Exchange (ETDEWEB)

    Cavdar, U.; Gulsahin, I.

    2014-10-01

    The application of the iron based Powder Metal (PM) compacts in Ultra High Frequency Induction Welding (UHFIW) were reviewed. These PM compacts are used to produce cogs. This study investigates the methods of joining PM materials enforceability with UHFIW in the industry application. Maximum stress and maximum strain of welded PM compacts were determined by three point bending and strength tests. Microhardness and microstructure of induction welded compacts were determined. (Author)

  17. Ultra high frequency induction welding of powder metal compacts

    International Nuclear Information System (INIS)

    Cavdar, U.; Gulsahin, I.

    2014-01-01

    The application of the iron based Powder Metal (PM) compacts in Ultra High Frequency Induction Welding (UHFIW) were reviewed. These PM compacts are used to produce cogs. This study investigates the methods of joining PM materials enforceability with UHFIW in the industry application. Maximum stress and maximum strain of welded PM compacts were determined by three point bending and strength tests. Microhardness and microstructure of induction welded compacts were determined. (Author)

  18. High-Frequency Axial Fatigue Test Procedures for Spectrum Loading

    Science.gov (United States)

    2016-07-20

    cycle runout limit. PURPOSE 2. To develop the capability to perform High-Frequency (H-F) Spectrum Fatigue tests, an in- house Basic and...response of the test specimen to the command input signal for load cycling . These cycle -by- cycle errors accumulate over the life of the test specimen...fatigue life model. It is expected that the cycle -by- cycle P-V error may vary substantially depending on the load spectrum content, the compensation

  19. Investigation of Combined High-Frequency and Arc Discharges

    International Nuclear Information System (INIS)

    Taran, V.S.; Nezovibatko, Yu.N.; Marinin, V.G.; Shvets, O.M.; Ridozub, V.N.; Gasilin, V.V.

    2001-01-01

    In this paper we analyze experiment with arc and high-frequency (HF) plasma sources carried out in modified devise of the ''Bulat'' type. The HF-sources and combined discharges have attracted considerable attention for surface cleaning and coating. The utilization of such discharges allows decreasing droplet fraction formation and providing better adhesion and microhardness values. The existence of HF-field in plasma allows obtaining either conductive or dielectric coatings and they can be deposited on any substrates. (author)

  20. A novel high-frequency encoding algorithm for image compression

    Science.gov (United States)

    Siddeq, Mohammed M.; Rodrigues, Marcos A.

    2017-12-01

    In this paper, a new method for image compression is proposed whose quality is demonstrated through accurate 3D reconstruction from 2D images. The method is based on the discrete cosine transform (DCT) together with a high-frequency minimization encoding algorithm at compression stage and a new concurrent binary search algorithm at decompression stage. The proposed compression method consists of five main steps: (1) divide the image into blocks and apply DCT to each block; (2) apply a high-frequency minimization method to the AC-coefficients reducing each block by 2/3 resulting in a minimized array; (3) build a look up table of probability data to enable the recovery of the original high frequencies at decompression stage; (4) apply a delta or differential operator to the list of DC-components; and (5) apply arithmetic encoding to the outputs of steps (2) and (4). At decompression stage, the look up table and the concurrent binary search algorithm are used to reconstruct all high-frequency AC-coefficients while the DC-components are decoded by reversing the arithmetic coding. Finally, the inverse DCT recovers the original image. We tested the technique by compressing and decompressing 2D images including images with structured light patterns for 3D reconstruction. The technique is compared with JPEG and JPEG2000 through 2D and 3D RMSE. Results demonstrate that the proposed compression method is perceptually superior to JPEG with equivalent quality to JPEG2000. Concerning 3D surface reconstruction from images, it is demonstrated that the proposed method is superior to both JPEG and JPEG2000.

  1. Profiling high frequency accident locations using associations rules

    OpenAIRE

    GEURTS, Karolien; WETS, Geert; BRIJS, Tom; VANHOOF, Koen

    2002-01-01

    In Belgium, traffic safety is currently one of the government’s highest priorities. Identifying and profiling black spots and black zones in terms of accident related data and location characteristics must provide new insights into the complexity and causes of road accidents which, in turn, provide valuable input for government actions. In this paper, association rules are used to identify accident circumstances that frequently occur together at high frequency accident locations. Furthermore,...

  2. Profiling high-frequency accident locations using association rules

    OpenAIRE

    GEURTS, Karolien; WETS, Geert; BRIJS, Tom; VANHOOF, Koen

    2003-01-01

    In Belgium, traffic safety is currently one of the government's highest priorities. Identifying and profiling black spots and black zones in terms of accident related data and location characteristics must provide new insights into the complexity and causes of road accidents, which, in ram, provide valuable input for government actions. In this paper, association rules are used to identify accident circumstances that frequently occur together at high frequency accident locations. Furthermore...

  3. Design of 1 MHz Solid State High Frequency Power Supply

    Science.gov (United States)

    Parmar, Darshan; Singh, N. P.; Gajjar, Sandip; Thakar, Aruna; Patel, Amit; Raval, Bhavin; Dhola, Hitesh; Dave, Rasesh; Upadhay, Dishang; Gupta, Vikrant; Goswami, Niranjan; Mehta, Kush; Baruah, Ujjwal

    2017-04-01

    High Frequency Power supply (HFPS) is used for various applications like AM Transmitters, metallurgical applications, Wireless Power Transfer, RF Ion Sources etc. The Ion Source for a Neutral beam Injector at ITER-India uses inductively coupled power source at High Frequency (∼1 MHz). Switching converter based topology used to generate 1 MHz sinusoidal output is expected to have advantages on efficiency and reliability as compared to traditional RF Tetrode tubes based oscillators. In terms of Power Electronics, thermal and power coupling issues are major challenges at such a high frequency. A conceptual design for a 200 kW, 1 MHz power supply and a prototype design for a 600 W source been done. The prototype design is attempted with Class-E amplifier topology where a MOSFET is switched resonantly. The prototype uses two low power modules and a ferrite combiner to add the voltage and power at the output. Subsequently solution with Class-D H-Bridge configuration have been evaluated through simulation where module design is stable as switching device do not participate in resonance, further switching device voltage rating is substantially reduced. The rating of the modules is essentially driven by the maximum power handling capacity of the MOSFETs and ferrites in the combiner circuit. The output passive network including resonance tuned network and impedance matching network caters for soft switching and matches the load impedance to 50ohm respectively. This paper describes the conceptual design of a 200 kW high frequency power supply and experimental results of the prototype 600 W, 1 MHz source.

  4. High frequency microseismic noise as possible earthquake precursor

    OpenAIRE

    Ivica Sović; Kristina Šariri; Mladen Živčić

    2013-01-01

    Before an earthquake occurs, microseismic noise in high frequency (HF) range, i.e. 2-25 Hz, is being generated during preparation process. These signals change the microseismic noise and, consequently, the spectrum of microseismic noise. Time variation of spectra recorded at the same seismological station could imply the change of the state of noise source. We propose the image moment analysis approach to objectively compare microseismic noise spectra. The result could be used for earthquake ...

  5. Frequency locking, quasiperiodicity, subharmonic bifurcations and chaos in high frequency modulated stripe geometry DH semiconductor lasers

    International Nuclear Information System (INIS)

    Zhao Yiguang

    1991-01-01

    The method of obtaining self-consistent solutions of the field equation and the rate equations of photon density and carrier concentration has been used to study frequecny locking, quasiperiodicity, subharmonic bifurcations and chaos in high frequency modulated stripe geometry DH semiconductor lasers. The results show that the chaotic behavior arises in self-pulsing stripe geometry semiconductor lasers. The route to chaos is not period-double, but quasiperiodicity to chaos. All of the results agree with the experiments. Some obscure points in previous theory about chaos have been cleared up

  6. Modeling the dielectric logging tool at high frequency

    International Nuclear Information System (INIS)

    Chew, W.C.

    1987-01-01

    The high frequency dielectric logging tool has been used widely in electromagnetic well logging, because by measuring the dielectric constant at high frequencies (1 GHz), the water saturation of rocks could be known without measuring the water salinity in the rocks. As such, it could be used to delineate fresh water bearing zones, as the dielectric constant of fresh water is much higher than that of oil while they may have the same resistivity. The authors present a computer model, though electromagnetic field analysis, the response of such a measurement tool in a well logging environment. As the measurement is performed at high frequency, usually with small separation between the transmitter and receivers, some small geological features could be measured by such a tool. They use the computer model to study the behavior of such a tool across geological bed boundaries, and also across thin geological beds. Such a study could be very useful in understanding the limitation on the resolution of the tool. Furthermore, they could study the standoff effect and the depth of investigation of such a tool. This could delineate the range of usefulness of the measurement

  7. Planck 2013 results. VI. High Frequency Instrument data processing

    CERN Document Server

    Ade, P.A.R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J. -P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J.J.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Boulanger, F.; Bowyer, J.W.; Bridges, M.; Bucher, M.; Burigana, C.; Cardoso, J. -F.; Catalano, A.; Chamballu, A.; Chary, R. -R.; Chen, X.; Chiang, L. -Y; Chiang, H.C.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J. -M.; Désert, F. -X.; Dickinson, C.; Diego, J.M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Enßlin, T.A.; Eriksen, H.K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Girard, D.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J.E.; Hansen, F.K.; Hanson, D.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Herent, O.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hou, Z.; Hovest, W.; Huffenberger, K.M.; Hurier, G.; Jaffe, T.R.; Jaffe, A.H.; Jones, W.C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T.S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J. -M.; Lasenby, A.; Laureijs, R.J.; Lawrence, C.R.; Jeune, M. Le; Leonardi, R.; Leroy, C.; Lesgourgues, J.; Liguori, M.; Lilje, P.B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P.M.; Macías-Pérez, J.F.; MacTavish, C.J.; Maffei, B.; Mandolesi, N.; Maris, M.; Marshall, D.J.; Martin, P.G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Meinhold, P.R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M. -A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Mottet, S.; Munshi, D.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Nørgaard-Nielsen, H.U.; North, C.; Noviello, F.; Novikov, D.; Novikov, I.; Orieux, F.; Osborne, S.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G.W.; Prézeau, G.; Prunet, S.; Puget, J. -L.; Rachen, J.P.; Racine, B.; Reach, W.T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rusholme, B.; Sanselme, L.; Santos, D.; Sauvé, A.; Savini, G.; Shellard, E.P.S.; Spencer, L.D.; Starck, J. -L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A. -S.; Sygnet, J. -F.; Tauber, J.A.; Tavagnacco, D.; Techene, S.; Terenzi, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vibert, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L.A.; Wandelt, B.D.; White, S.D.M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-01-01

    We describe the processing of the 531 billion raw data samples from the High Frequency Instrument (hereafter HFI), which we performed to produce six temperature maps from the first 473 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143, 217, 353, 545, and 857 GHz with an angular resolution ranging from 9.7 to 4.6 arcmin. The detector noise per (effective) beam solid angle is respectively, 10, 6, 12 and 39 microKelvin in HFI four lowest frequency channel (100--353 GHz) and 13 and 14 kJy/sr for the 545 and 857 GHz channels. Using the 143 GHz channel as a reference, these two high frequency channels are intercalibrated within 5% and the 353 GHz relative calibration is at the percent level. The 100 and 217 GHz channels, which together with the 143 GHz channel determine the high-multipole part of the CMB power spectrum (50 < l <2500), are intercalibrated at better than 0.2 %.

  8. High-frequency hearing loss among mobile phone users.

    Science.gov (United States)

    Velayutham, P; Govindasamy, Gopala Krishnan; Raman, R; Prepageran, N; Ng, K H

    2014-01-01

    The objective of this study is to assess high frequency hearing (above 8 kHz) loss among prolonged mobile phone users is a tertiary Referral Center. Prospective single blinded study. This is the first study that used high-frequency audiometry. The wide usage of mobile phone is so profound that we were unable to find enough non-users as a control group. Therefore we compared the non-dominant ear to the dominant ear using audiometric measurements. The study was a blinded study wherein the audiologist did not know which was the dominant ear. A total of 100 subjects were studied. Of the subjects studied 53% were males and 47% females. Mean age was 27. The left ear was dominant in 63%, 22% were dominant in the right ear and 15% did not have a preference. This study showed that there is significant loss in the dominant ear compared to the non-dominant ear (P mobile phone revealed high frequency hearing loss in the dominant ear (mobile phone used) compared to the non dominant ear.

  9. Human-robot collision detection under modeling uncertainty using frequency boundary of manipulator dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Byung Jin; Koo, Ja Choon; Choi, Hyouk Ryeol; Moon, Hyung Pil [Sungkyunkwan University, Suwon (Korea, Republic of)

    2014-11-15

    This paper presents the development and experimental evaluation of a collision detection method for robotic manipulators sharing a workspace with humans. Fast and robust collision detection is important for guaranteeing safety and preventing false alarms. The main cause of a false alarm is modeling error. We use the characteristic of the maximum frequency boundary of the manipulator's dynamic model. The tendency of the frequency boundary's location in the frequency domain is applied to the collision detection algorithm using a band pass filter (band designed disturbance observer, BdDOB) with changing frequency windows. Thanks to the band pass filter, which considers the frequency boundary of the dynamic model, our collision detection algorithm can extract the collision caused by the disturbance from the mixed estimation signal. As a result, the collision was successfully detected under the usage conditions of faulty sensors and uncertain model data. The experimental result of a collision between a 7-DOF serial manipulator and a human body is reported.

  10. High-frequency EPR on high-spin transition-metal sites

    NARCIS (Netherlands)

    Mathies, Guinevere

    2012-01-01

    The electronic structure of transition-metal sites can be probed by electron-paramagnetic-resonance (EPR) spectroscopy. The study of high-spin transition-metal sites benefits from EPR spectroscopy at frequencies higher than the standard 9.5 GHz. However, high-frequency EPR is a developing field. In

  11. Harnessing high-dimensional hyperentanglement through a biphoton frequency comb

    Science.gov (United States)

    Xie, Zhenda; Zhong, Tian; Shrestha, Sajan; Xu, Xinan; Liang, Junlin; Gong, Yan-Xiao; Bienfang, Joshua C.; Restelli, Alessandro; Shapiro, Jeffrey H.; Wong, Franco N. C.; Wei Wong, Chee

    2015-08-01

    Quantum entanglement is a fundamental resource for secure information processing and communications, and hyperentanglement or high-dimensional entanglement has been separately proposed for its high data capacity and error resilience. The continuous-variable nature of the energy-time entanglement makes it an ideal candidate for efficient high-dimensional coding with minimal limitations. Here, we demonstrate the first simultaneous high-dimensional hyperentanglement using a biphoton frequency comb to harness the full potential in both the energy and time domain. Long-postulated Hong-Ou-Mandel quantum revival is exhibited, with up to 19 time-bins and 96.5% visibilities. We further witness the high-dimensional energy-time entanglement through Franson revivals, observed periodically at integer time-bins, with 97.8% visibility. This qudit state is observed to simultaneously violate the generalized Bell inequality by up to 10.95 standard deviations while observing recurrent Clauser-Horne-Shimony-Holt S-parameters up to 2.76. Our biphoton frequency comb provides a platform for photon-efficient quantum communications towards the ultimate channel capacity through energy-time-polarization high-dimensional encoding.

  12. Low-frequency high-definition power Doppler in visualizing and defining fetal pulmonary venous connections.

    Science.gov (United States)

    Liu, Lin; He, Yihua; Li, Zhian; Gu, Xiaoyan; Zhang, Ye; Zhang, Lianzhong

    2014-07-01

    The use of low-frequency high-definition power Doppler in assessing and defining pulmonary venous connections was investigated. Study A included 260 fetuses at gestational ages ranging from 18 to 36 weeks. Pulmonary veins were assessed by performing two-dimensional B-mode imaging, color Doppler flow imaging (CDFI), and low-frequency high-definition power Doppler. A score of 1 was assigned if one pulmonary vein was visualized, 2 if two pulmonary veins were visualized, 3 if three pulmonary veins were visualized, and 4 if four pulmonary veins were visualized. The detection rate between Exam-1 and Exam-2 (intra-observer variability) and between Exam-1 and Exam-3 (inter-observer variability) was compared. In study B, five cases with abnormal pulmonary venous connection were diagnosed and compared to their anatomical examination. In study A, there was a significant difference between CDFI and low-frequency high-definition power Doppler for the four pulmonary veins observed (P low-frequency high-definition power Doppler was higher than that when employing two-dimensional B-mode imaging or CDFI. There was no significant difference between the intra- and inter-observer variabilities using low-frequency high-definition power Doppler display of pulmonary veins (P > 0.05). The coefficient correlation between Exam-1 and Exam-2 was 0.844, and the coefficient correlation between Exam-1 and Exam-3 was 0.821. In study B, one case of total anomalous pulmonary venous return and four cases of partial anomalous pulmonary venous return were diagnosed by low-frequency high-definition power Doppler and confirmed by autopsy. The assessment of pulmonary venous connections by low-frequency high-definition power Doppler is advantageous. Pulmonary venous anatomy can and should be monitored during fetal heart examination.

  13. Long range ultra-high frequency (UHF) radio frequency identification (RFID) antenna design

    Science.gov (United States)

    Reynolds, Nathan D.

    There is an ever-increasing demand for radio frequency identification (RFID) tags that are passive, long range, and mountable on multiple surfaces. Currently, RFID technology is utilized in numerous applications such as supply chain management, access control, and public transportation. With the combination of sensory systems in recent years, the applications of RFID technology have been extended beyond tracking and identifying. This extension includes applications such as environmental monitoring and healthcare applications. The available sensory systems usually operate in the medium or high frequency bands and have a low read range. However, the range limitations of these systems are being overcome by the development of RFID sensors focused on utilizing tags in the ultra-high frequency (UHF) band. Generally, RFID tags have to be mounted to the object that is being identified. Often the objects requiring identification are metallic. The inherent properties of metallic objects have substantial effects on nearby electromagnetic radiation; therefore, the operation of the tag antenna is affected when mounted on a metallic surface. This outlines one of the most challenging problems for RFID systems today: the optimization of tag antenna performance in a complex environment. In this research, a novel UHF RFID tag antenna, which has a low profile, long range, and is mountable on metallic surfaces, is designed analytically and simulated using a 3-D electromagnetic simulator, ANSYS HFSS. A microstrip patch antenna is selected as the antenna structure, as patch antennas are low profile and suitable for mounting on metallic surfaces. Matching and theoretical models of the microstrip patch antenna are investigated. Once matching and theory of a microstrip patch antenna is thoroughly understood, a unique design technique using electromagnetic band gap (EBG) structures is explored. This research shows that the utilization of an EBG structure in the patch antenna design yields

  14. New generation neonatal high frequency ventilators: effect of oscillatory frequency and working principles on performance.

    Science.gov (United States)

    Grazioli, Serge; Karam, Oliver; Rimensberger, Peter C

    2015-03-01

    Several new generation neonatal ventilators that incorporate conventional as well as high frequency ventilation (HFOV) have appeared on the market. Most of them offer the possibility to use HFOV in a volume-targeted mode, despite absence of any preclinical data. With a bench test, we evaluated the performances of 4 new neonatal HFOV devices and compared them to the SensorMedics HFOV device. Expiratory tidal volumes (V(T)) were measured for various ventilator settings and lung characteristics (ie, modifications of compliance and resistance of the system), to mimic several clinical conditions of pre-term and term infants. Increasing the frequency proportionally decreased the V(T) for all the ventilators, although the magnitude of the decrease was highly variable between ventilators. At 15 Hz and a pressure amplitude of 60 cm H2O, the delivered V(T) ranged from 3.5 to 5.9 mL between devices while simulating pre-term infant conditions and from 2.6 to 6.3 mL while simulating term infant conditions. Activating the volume-targeted mode in the 3 machines that offer this mode allowed the V(T) to remain constant over the range of frequencies and with changes of lung mechanical properties, for pre-term infant settings only while targeting a V(T) of 1 mL. These new generation neonatal ventilators were able to deliver adequate V(T) under pre-term infant, but not term infant respiratory system conditions. The clinical relevance of these findings will need to be determined by further studies. Copyright © 2015 by Daedalus Enterprises.

  15. PCB Embedded Inductor for High-Frequency ZVS SEPIC Converter

    DEFF Research Database (Denmark)

    Dou, Yi; Ouyang, Ziwei; Thummala, Prasanth

    2018-01-01

    The volume and temperature rise of passive components, especially inductors, limit the momentum toward high power density in high-frequency power converters. To address the limitations, PCB integration of passive components should be considered with the benefit of low profile, excellent thermal...... characteristic and cost reduction. This paper investigates an embedded structure of inductors to further increase the power density of a low power DC-DC converter. A pair of coupling inductors have been embedded into the PCB. The detailed embedded process has been described and the characteristics of embedded...

  16. High-frequency harmonic imaging of the eye

    Science.gov (United States)

    Silverman, Ronald H.; Coleman, D. Jackson; Ketterling, Jeffrey A.; Lizzi, Frederic L.

    2005-04-01

    Purpose: Harmonic imaging has become a well-established technique for ultrasonic imaging at fundamental frequencies of 10 MHz or less. Ophthalmology has benefited from the use of fundamentals of 20 MHz to 50 MHz. Our aim was to explore the ability to generate harmonics for this frequency range, and to generate harmonic images of the eye. Methods: The presence of harmonics was determined in both water and bovine vitreous propagation media by pulse/echo and hydrophone at a series of increasing excitation pulse intensities and frequencies. Hydrophone measurements were made at the focal point and in the near- and far-fields of 20 MHz and 40 MHz transducers. Harmonic images of the anterior segment of the rabbit eye were obtained by a combination of analog filtering and digital post-processing. Results: Harmonics were generated nearly identically in both water and vitreous. Hydrophone measurements showed the maximum second harmonic to be -5 dB relative to the 35 MHz fundamental at the focus, while in pulse/echo the maximum harmonic amplitude was -15dB relative to the fundamental. Harmonics were absent in the near-field, but present in the far-field. Harmonic images of the eye showed improved resolution. Conclusion: Harmonics can be readily generated at very high frequencies, and at power levels compliant with FDA guidelines for ophthalmology. This technique may yield further improvements to the already impressive resolutions obtainable in this frequency range. Improved imaging of the macular region, in particular, may provide significant improvements in diagnosis of retinal disease.

  17. High-frequency high-voltage high-power DC-to-DC converters

    Science.gov (United States)

    Wilson, T. G.; Owen, H. A.; Wilson, P. M.

    1982-09-01

    A simple analysis of the current and voltage waveshapes associated with the power transistor and the power diode in an example current-or-voltage step-up (buck-boost) converter is presented. The purpose of the analysis is to provide an overview of the problems and design trade-offs which must be addressed as high-power high-voltage converters are operated at switching frequencies in the range of 100 kHz and beyond. Although the analysis focuses on the current-or-voltage step-up converter as the vehicle for discussion, the basic principles presented are applicable to other converter topologies as well.

  18. Relic gravitational waves with a running spectral index and its constraints at high frequencies

    International Nuclear Information System (INIS)

    Tong, M. L.; Zhang, Y.

    2009-01-01

    We study the impact of a running index α t on the spectrum of relic gravitational waves (RGWs) over the whole range of frequency (10 -18 ∼10 10 ) Hz and reveal its implications in RGWs detections and in cosmology. Analytical calculations show that, although the spectrum of RGWs on low frequencies is less affected by α t ≠0, on high frequencies, the spectrum is modified substantially. Investigations are made toward potential detections of the α t -modified RGWs for several kinds of current and planned detectors. The Advanced LIGO will likely be able to detect RGWs with α t ≥0 for inflationary models with the inflation index β=-1.956 and the tensor-scalar ratio r=0.55. The future LISA can detect RGWs for a much broader range of (α t ,β,r), and will have a better chance to break a degeneracy between them. Constraints on α t are estimated from several detections and cosmological observations. Among them, the most stringent one is from the bound of the big bang nucleosynthesis, and requires α t s to be of the same magnitude as α t , if both RGWs and scalar perturbations are generated by the same scalar inflation.

  19. Dielectric and acoustical high frequency characterisation of PZT thin films

    International Nuclear Information System (INIS)

    Conde, Janine; Muralt, Paul

    2010-01-01

    Pb(Zr, Ti)O 3 (PZT) is an interesting material for bulk acoustic wave resonator applications due to its high electromechanical coupling constant, which would enable fabrication of large bandwidth frequency filters. The major challenge of the PZT solid solution system is to overcome mechanical losses generally observed in PZT ceramics. To increase the understanding of these losses in textured thin films, thin film bulk acoustic resonators (TFBAR's) based on PZT thin films with compositions either in the tetragonal region or at the morphotropic phase boundary and (111) or {100} textures were fabricated and studied up to 2 GHz. The dielectric and elastic materials coefficients were extracted from impedance measurements at the resonance frequency. The dispersion of the dielectric constant was obtained from impedance measurements up to 2 GHz. The films with varying compositions, textures and deposition methods (sol-gel or sputtering) were compared in terms of dielectric and acoustical properties.

  20. Dielectric and acoustical high frequency characterisation of PZT thin films

    Science.gov (United States)

    Conde, Janine; Muralt, Paul

    2010-02-01

    Pb(Zr, Ti)O3 (PZT) is an interesting material for bulk acoustic wave resonator applications due to its high electromechanical coupling constant, which would enable fabrication of large bandwidth frequency filters. The major challenge of the PZT solid solution system is to overcome mechanical losses generally observed in PZT ceramics. To increase the understanding of these losses in textured thin films, thin film bulk acoustic resonators (TFBAR's) based on PZT thin films with compositions either in the tetragonal region or at the morphotropic phase boundary and (111) or {100} textures were fabricated and studied up to 2 GHz. The dielectric and elastic materials coefficients were extracted from impedance measurements at the resonance frequency. The dispersion of the dielectric constant was obtained from impedance measurements up to 2 GHz. The films with varying compositions, textures and deposition methods (sol-gel or sputtering) were compared in terms of dielectric and acoustical properties.

  1. Slow high-frequency effects in mechanics: problems, solutions, potentials

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2005-01-01

    – an apparent change in the stiffness associated with an equilibrium; Biasing – a tendency for a system to move towards a particular state which does not exist or is unstable without HFE; and Smoothening – a tendency for discontinuities to be apparently smeared out by HFE. The effects and a method for analyzing...... and compared: The Method of Direct Separation of Motions, the Method of Averaging, and the Method of Multiple Scales. The tutorial concludes by suggesting that more vibration experts, researchers and students should know about HFE effects, for the benefit not only of general vibration troubleshooting, but also......Strong high-frequency excitation (HFE) may change the ‘slow’ (i.e. effective or average) properties of mechanical systems, e.g. their stiffness, natural frequencies, equilibriums, equilibrium stability, and bifurcation paths. This tutorial describes three general HFE effects: Stiffening...

  2. Slow high-frequency effects in mechanics: problems, solutions, potentials

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    – an apparent change in the stiffness associated with an equilibrium; Biasing – a tendency for a system to move towards a particular state which does not exist or is unstable without HFE; and Smoothening – a tendency for discontinuities to be apparently smeared out by HFE. The effects and a method for analyzing...... and compared: The Method of Direct Separation of Motions, the Method of Averaging, and the Method of Multiple Scales. The tutorial concludes by suggesting that more vibration experts, researchers and students should know about HFE effects, for the benefit not only of general vibration troubleshooting, but also......Strong high-frequency excitation (HFE) may change the ‘slow’ (i.e. effective or average) properties of mechanical systems, e.g. their stiffness, natural frequencies, equilibriums, equilibrium stability, and bifurcation paths. This tutorial describes three general HFE effects: Stiffening...

  3. Francisella tularensis detection using magnetic labels and a magnetic biosensor based on frequency mixing

    International Nuclear Information System (INIS)

    Meyer, Martin H.F.; Krause, Hans-Joachim; Hartmann, Markus; Miethe, Peter; Oster, Juergen; Keusgen, Michael

    2007-01-01

    A biosensor that uses resonant coils with a special frequency-mixing technique and magnetic beads as detectable labels has been established for the detection of Francisella tularensis, the causative agent for tularemia. The detection principle is based on a sandwich immunoassay using an anti-Ft antibody for immunofiltration immobilized to ABICAP[reg] polyethylene filters, and biotinylated with streptavidin-coated magnetic beads as labels. The linear detection range of this biosensor was found to be 10 4 -10 6 cfu F. tularensis lipopolysaccharide (LPS) per ml. Tested sample matrices were physiological PBS buffer and rabbit serum

  4. Francisella tularensis detection using magnetic labels and a magnetic biosensor based on frequency mixing

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Martin H.F. [Institute for Pharmaceutical Chemistry, Philipps-Universitaet Marburg (Germany); Krause, Hans-Joachim [Institute of Bio-and Nanosystems (IBN-2), Research Center Juelich (Germany); Hartmann, Markus [Institute for Pharmaceutical Chemistry, Philipps-Universitaet Marburg (Germany); Miethe, Peter [SENOVA GmbH, Jena (Germany); Oster, Juergen [chemagen GmbH, Baesweiler (Germany); Keusgen, Michael [Institute for Pharmaceutical Chemistry, Philipps-Universitaet Marburg (Germany)]. E-mail: Keusgen@staff.uni-marburg.de

    2007-04-15

    A biosensor that uses resonant coils with a special frequency-mixing technique and magnetic beads as detectable labels has been established for the detection of Francisella tularensis, the causative agent for tularemia. The detection principle is based on a sandwich immunoassay using an anti-Ft antibody for immunofiltration immobilized to ABICAP[reg] polyethylene filters, and biotinylated with streptavidin-coated magnetic beads as labels. The linear detection range of this biosensor was found to be 10{sup 4}-10{sup 6} cfu F. tularensis lipopolysaccharide (LPS) per ml. Tested sample matrices were physiological PBS buffer and rabbit serum.

  5. High field high frequency EPR techniques and their application to single molecule magnets

    International Nuclear Information System (INIS)

    Edwards, R.S.; Hill, S.; Goy, P.; Wylde, R.; Takahashi, S.

    2004-01-01

    We present details of a new high-field/high-frequency EPR technique, and its application to measurements of single-molecule magnets (SMMs). By using a quasi-optical set-up and microwave sources covering a continuous frequency range from 170 to 600 GHz, in conjunction with a millimetre-wave vector network analyser, we are able to measure EPR to high magnetic fields. For example, a g=2 system will exhibit EPR at about 14 T at a frequency of 400 GHz. We illustrate the technique by presenting details of recent high-frequency experiments on several SMMs which are variations of the well-known SMM Mn 12 -Ac. This material has a spin ground state of S=10 and large uniaxial anisotropy, hence frequencies above 300 GHz are required in order to observe EPR from the ground state

  6. Improved Detection of Vowel Envelope Frequency Following Responses Using Hotelling's T2 Analysis.

    Science.gov (United States)

    Vanheusden, Frederique J; Bell, Steven L; Chesnaye, Michael A; Simpson, David M

    2018-05-11

    Objective detection of brainstem responses to natural speech stimuli is an important tool for the evaluation of hearing aid fitting, especially in people who may not be able to respond reliably in behavioral tests. Of particular interest is the envelope frequency following response (eFFR), which refers to the EEG response at the stimulus' fundamental frequency (and its harmonics), and here in particular to the response to natural spoken vowel sounds. This article introduces the frequency-domain Hotelling's T (HT2) method for eFFR detection. This method was compared, in terms of sensitivity in detecting eFFRs at the fundamental frequency (HT2_F0), to two different single-channel frequency domain methods (F test on Fourier analyzer (FA) amplitude spectra [FA-F-Test] and magnitude-squared coherence [MSC]) in detecting envelope following responses to natural vowel stimuli in simulated data and EEG data from normal-hearing subjects. Sensitivity was assessed based on the number of detections and the time needed to detect a response for a false-positive rate of 5%. The study also explored whether a single-channel, multifrequency HT2 (HT2_3F) and a multichannel, multifrequency HT2 (HT2_MC) could further improve response detection. Four repeated words were presented sequentially at 70 dB SPL LAeq through ER-2 insert earphones. The stimuli consisted of a prolonged vowel in a /hVd/ structure (where V represents different vowel sounds). Each stimulus was presented over 440 sweeps (220 condensation and 220 rarefaction). EEG data were collected from 12 normal-hearing adult participants. After preprocessing and artifact removal, eFFR detection was compared between the algorithms. For the simulation study, simulated EEG signals were generated by adding random noise at multiple signal to noise ratios (SNRs; 0 to -60dB) to the auditory stimuli as well as to a single sinusoid at the fluctuating and flattened fundamental frequency (f0). For each SNR, 1000 sets of 440 simulated epochs

  7. High resolution capacitance detection circuit for rotor micro-gyroscope

    Directory of Open Access Journals (Sweden)

    Ming-Yuan Ren

    2014-03-01

    Full Text Available Conventional methods for rotor position detection of micro-gyroscopes include common exciting electrodes (single frequency and common sensing electrodes (frequency multiplex, but they have encountered some problems. So we present a high resolution and low noise pick-off circuit for micro-gyroscopes which utilizes the time multiplex method. The detecting circuit adopts a continuous-time current sensing circuit for capacitance measurement, and its noise analysis of the charge amplifier is introduced. The equivalent output noise power spectral density of phase-sensitive demodulation is 120 nV/Hz1/2. Tests revealed that the whole circuitry has a relative capacitance resolution of 1 × 10−8.

  8. A novel reduced-complexity group detection structure in MIMO frequency selective fading channels

    KAUST Repository

    Qaraqe, Khalid A.; Ahimian, Nariman R.; Alouini, Mohamed-Slim

    2010-01-01

    In this paper a novel reduced complexity detection method named modified symbol flipping method is introduced and its advantages on reducing the burden of the calculations at the receiver compared to the optimum maximum likelihood detection method on multiple input- multiple output frequency selective fading channels are explained. The initial concept of the symbol flipping method is derived from a preliminary detection scheme named bit flipping which was introduced in [1]. The detection structure employed in this paper is ing, detection, and cancellation. On the detection stage, the proposed method is employed and the results are compared to the group maximum likelihood detection scheme proposed in [2]. Simulation results show that a 6 dB performance gain can be achieved at the expense of a slight increase in complexity in comparison with the conventional symbol flipping scheme. © 2010 Crown.

  9. A novel reduced-complexity group detection structure in MIMO frequency selective fading channels

    KAUST Repository

    Qaraqe, Khalid A.

    2010-09-01

    In this paper a novel reduced complexity detection method named modified symbol flipping method is introduced and its advantages on reducing the burden of the calculations at the receiver compared to the optimum maximum likelihood detection method on multiple input- multiple output frequency selective fading channels are explained. The initial concept of the symbol flipping method is derived from a preliminary detection scheme named bit flipping which was introduced in [1]. The detection structure employed in this paper is ing, detection, and cancellation. On the detection stage, the proposed method is employed and the results are compared to the group maximum likelihood detection scheme proposed in [2]. Simulation results show that a 6 dB performance gain can be achieved at the expense of a slight increase in complexity in comparison with the conventional symbol flipping scheme. © 2010 Crown.

  10. Change detection using landsat time series: A review of frequencies, preprocessing, algorithms, and applications

    Science.gov (United States)

    Zhu, Zhe

    2017-08-01

    The free and open access to all archived Landsat images in 2008 has completely changed the way of using Landsat data. Many novel change detection algorithms based on Landsat time series have been developed We present a comprehensive review of four important aspects of change detection studies based on Landsat time series, including frequencies, preprocessing, algorithms, and applications. We observed the trend that the more recent the study, the higher the frequency of Landsat time series used. We reviewed a series of image preprocessing steps, including atmospheric correction, cloud and cloud shadow detection, and composite/fusion/metrics techniques. We divided all change detection algorithms into six categories, including thresholding, differencing, segmentation, trajectory classification, statistical boundary, and regression. Within each category, six major characteristics of different algorithms, such as frequency, change index, univariate/multivariate, online/offline, abrupt/gradual change, and sub-pixel/pixel/spatial were analyzed. Moreover, some of the widely-used change detection algorithms were also discussed. Finally, we reviewed different change detection applications by dividing these applications into two categories, change target and change agent detection.

  11. Design of 1 MHz solid state high frequency power supply

    International Nuclear Information System (INIS)

    Parmar, Darshan Kumar; Singh, N.P.; Gajjar, Sandip

    2015-01-01

    A High Voltage High Frequency (HVHF) Power supply is used for various applications, like AM Transmitters, metallurgical applications, Wireless Power Transfer, RF Ion Sources, etc. The Ion Source for a Neutral beam Injector at ITER-India uses inductively coupled power source at High Frequency (∼ 1 MHz). Switching converter based topology used to generate 1 MHz sinusoidal output is expected to have advantages on efficiency and reliability as compared to traditional RF Tetrode tubes based oscillators. In terms of Power Electronics, thermal and power coupling issues are major challenges at such a high frequency. A conceptual design for a 200 kW, 1 MHz power supply and a prototype design for a 600W source been done. The prototype design is attempted with Class-E amplifier topology where a MOSFET is switched resonantly. The prototype uses two low power modules and a ferrite combiner to add the voltage and power at the output. Subsequently solution with class-D H-Bridge configuration have been evaluated through simulation where module design is stable as switching device do not participate in resonance, further switching device voltage rating is substantially reduced. The rating of the modules is essentially driven by the maximum power handling capacity of the MOSFETs and ferrites in the combiner circuit. The output passive network including resonance tuned network and impedance matching network caters for soft switching and matches the load impedance to 50 ohm respectively. This paper describes the conceptual design of a 200 kW power supply and experimental results of the prototype 600 W, 1 MHz source. (author)

  12. High-frequency audiometry: A means for early diagnosis of noise-induced hearing loss

    Directory of Open Access Journals (Sweden)

    Amir H Mehrparvar

    2011-01-01

    Full Text Available Noise-induced hearing loss (NIHL, an irreversible disorder, is a common problem in industrial settings. Early diagnosis of NIHL can help prevent the progression of hearing loss, especially in speech frequencies. For early diagnosis of NIHL, audiometry is performed routinely in conventional frequencies. We designed this study to compare the effect of noise on high-frequency audiometry (HFA and conventional audiometry. In a historical cohort study, we compared hearing threshold and prevalence of hearing loss in conventional and high frequencies of audiometry among textile workers divided into two groups: With and without exposure to noise more than 85 dB. The highest hearing threshold was observed at 4000 Hz, 6000 Hz and 16000 Hz in conventional right ear audiometry, conventional left ear audiometry and HFA in each ear, respectively. The hearing threshold was significantly higher at 16000 Hz compared to 4000. Hearing loss was more common in HFA than conventional audiometry. HFA is more sensitive to detect NIHL than conventional audiometry. It can be useful for early diagnosis of hearing sensitivity to noise, and thus preventing hearing loss in lower frequencies especially speech frequencies.

  13. [Detection of endotoxins of Gram-negative bacteria on the basis of electromagnetic radiation frequency spectrum].

    Science.gov (United States)

    Likhoded, V G; Kuleshova, N V; Sergieva, N V; Konev, Iu V; Trubnikova, I A; Sudzhian, E V

    2007-01-01

    Method of Gram-negative bacteria endotoxins detection on the basis of their own spectrum of electromagnetic radiation frequency was developed. Frequency spectrum typical for chemotype Re glycolipid, which is a part of lypopolysaccharides in the majority of Gram-negative bacteria, was used. Two devices--"Mini- Expert-DT" (manufactured by IMEDIS, Moscow) and "Bicom" (manufactured by Regumed, Germany)--were used as generators of electromagnetic radiation. Detection of endotoxin using these devices was performed by electropuncture vegetative resonance test. Immunoenzyme reaction with antibodies to chemotype Re glycolipid was used during analysis of preparations for assessment of resonance-frequency method specificity. The study showed that resonance-frequency method can detect lypopolysaccharides of different enterobacteria in quantities up to 0.1 pg as well as bacteria which contain lypopolysaccharides. At the same time, this method does not detect such bacteria as Staphylococcus aureus, Bifidobacterium spp., Lactobacillus spp., and Candida albicans. The method does not require preliminary processing of blood samples and can be used for diagnostics of endotoxinemia, and detection of endotoxins in blood samples or injection solutions.

  14. Relics in galaxy clusters at high radio frequencies

    Science.gov (United States)

    Kierdorf, M.; Beck, R.; Hoeft, M.; Klein, U.; van Weeren, R. J.; Forman, W. R.; Jones, C.

    2017-04-01

    Aims: We investigated the magnetic properties of radio relics located at the peripheries of galaxy clusters at high radio frequencies, where the emission is expected to be free of Faraday depolarization. The degree of polarization is a measure of the magnetic field compression and, hence, the Mach number. Polarization observations can also be used to confirm relic candidates. Methods: We observed three radio relics in galaxy clusters and one radio relic candidate at 4.85 and 8.35 GHz in total emission and linearly polarized emission with the Effelsberg 100-m telescope. In addition, we observed one radio relic candidate in X-rays with the Chandra telescope. We derived maps of polarization angle, polarization degree, and Faraday rotation measures. Results: The radio spectra of the integrated emission below 8.35 GHz can be well fitted by single power laws for all four relics. The flat spectra (spectral indices of 0.9 and 1.0) for the so-called Sausage relic in cluster CIZA J2242+53 and the so-called Toothbrush relic in cluster 1RXS 06+42 indicate that models describing the origin of relics have to include effects beyond the assumptions of diffuse shock acceleration. The spectra of the radio relics in ZwCl 0008+52 and in Abell 1612 are steep, as expected from weak shocks (Mach number ≈2.4). Polarization observations of radio relics offer a method of measuring the strength and geometry of the shock front. We find polarization degrees of more than 50% in the two prominent Mpc-sized radio relics, the Sausage and the Toothbrush, which are among the highest percentages of linear polarization detected in any extragalactic radio source to date. This is remarkable because the large beam size of the Effelsberg single-dish telescope corresponds to linear extensions of about 300 kpc at 8.35 GHz at the distances of the relics. The high degree of polarization indicates that the magnetic field vectors are almost perfectly aligned along the relic structure, as expected for shock

  15. Low Frequency Turbulence as the Source of High Frequency Waves in Multi-Component Space Plasmas

    Science.gov (United States)

    Khazanov, George V.; Krivorutsky, Emmanuel N.; Uritsky, Vadim M.

    2011-01-01

    Space plasmas support a wide variety of waves, and wave-particle interactions as well as wavewave interactions are of crucial importance to magnetospheric and ionospheric plasma behavior. High frequency wave turbulence generation by the low frequency (LF) turbulence is restricted by two interconnected requirements: the turbulence should be strong enough and/or the coherent wave trains should have the appropriate length. These requirements are strongly relaxed in the multi-component plasmas, due to the heavy ions large drift velocity in the field of LF wave. The excitation of lower hybrid waves (LHWs), in particular, is a widely discussed mechanism of interaction between plasma species in space and is one of the unresolved questions of magnetospheric multi-ion plasmas. It is demonstrated that large-amplitude Alfven waves, in particular those associated with LF turbulence, may generate LHW s in the auroral zone and ring current region and in some cases (particularly in the inner magnetosphere) this serves as the Alfven wave saturation mechanism. We also argue that the described scenario can playa vital role in various parts of the outer magnetosphere featuring strong LF turbulence accompanied by LHW activity. Using the data from THEMIS spacecraft, we validate the conditions for such cross-scale coupling in the near-Earth "flow-braking" magnetotail region during the passage of sharp injection/dipolarization fronts, as well as in the turbulent outflow region of the midtail reconnection site.

  16. Spectroscopic Constants and Vibrational Frequencies for l-C3H+ and Isotopologues from Highly-Accurate Quartic Force Fields: The Detection of l-C3H+ in the Horsehead Nebula PDR Questioned

    Science.gov (United States)

    Huang, Xinchuan; Fortenberry, Ryan Clifton; Lee, Timothy J.

    2013-01-01

    Very recently, molecular rotational transitions observed in the photon-dominated region of the Horsehead nebula have been attributed to l-C3H+. In an effort to corroborate this finding, we employed state-of-the art and proven high-accuracy quantum chemical techniques to compute spectroscopic constants for this cation and its isotopologues. Even though the B rotational constant from the fit of the observed spectrum and our computations agree to within 20 MHz, a typical level of accuracy, the D rotational constant differs by more than 40%, while the H rotational constant differs by three orders of magnitude. With the likely errors in the rotational transition energies resulting from this difference in D on the order of 1 MHz for the lowest observed transition (J = 4 yields 3) and growing as J increases, the assignment of the observed rotational lines from the Horsehead nebula to l-C3H+ is questionable.

  17. High Frequency Supercapacitors for Piezo-based Energy Harvesting

    Science.gov (United States)

    Ervin, Matthew; Pereira, Carlos; Miller, John; Outlaw, Ronald; Rastegar, Jay; Murray, Richard

    2013-03-01

    Energy harvesting is being investigated as an alternative to batteries for powering munition guidance and fuzing functions during flight. A piezoelectric system that generates energy from the oscillation of a mass on a spring (set in motion by the launch acceleration) is being developed. Original designs stored this energy in an electrolytic capacitor for use during flight. Here we replace the electrolytic capacitor with a smaller, lighter, and potentially more reliable electrochemical double layer capacitor (aka, supercapacitor). The potential problems with using supercapacitors in this application are that the piezoelectric output greatly exceeds the supercapacitor electrolyte breakdown voltage, and the frequency greatly exceeds the operating frequency of commercial supercapacitors. Here we have investigated the use of ultrafast vertically oriented graphene array-based supercapacitors for storing the energy in this application. We find that the electrolyte breakdown is not a serious limitation as it is either kinetically limited by the relatively high frequency of the piezoelectric output, or it is overcome by the self-healing nature of supercapacitors. We also find that these supercapacitors have sufficient dynamic response to efficiently store the generated energy.

  18. Planck early results. VI. The High Frequency Instrument data processing

    DEFF Research Database (Denmark)

    Colley, J.-M.; Bartlett, J.G.; Bucher, M.

    2011-01-01

    We describe the processing of the 336 billion raw data samples from the High Frequency Instrument (HFI) which we performed to produce six temperature maps from the first 295 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143, 217, 353, 545...... and 857 GHz with an angular resolution ranging from 9.9 to 4.4′. The white noise level is around 1.5 μK degree or less in the 3 main CMB channels (100-217 GHz). The photometric accuracy is better than 2% at frequencies between 100 and 353 GHz and around 7% at the two highest frequencies. The maps created...... by the HFI Data Processing Centre reach our goals in terms of sensitivity, resolution, and photometric accuracy. They are already sufficiently accurate and well-characterised to allow scientific analyses which are presented in an accompanying series of early papers. At this stage, HFI data appears...

  19. Ionospheric heating with oblique high-frequency waves

    International Nuclear Information System (INIS)

    Field, E.C. Jr.; Bloom, R.M.; Kossey, P.A.

    1990-01-01

    This paper presents calculations of ionospheric electron temperature and density perturbations and ground-level signal changes produced by intense oblique high-frequency (HF) radio waves. The analysis takes into account focusing at caustics, the consequent Joule heating of the surrounding plasma, heat conduction, diffusion, and recombination processes, these being the effects of a powerful oblique modifying wave. It neglects whatever plasma instabilities might occur. The authors then seek effects on a secondary test wave that is propagated along the same path as the first. The calculations predict ground-level field strength reductions of several decibels in the test wave for modifying waves having effective radiated power (ERP) in the 85- to 90-dBW range. These field strength changes are similar in sign, magnitude, and location to ones measured in Soviet experiments. The location of the signal change is sensitive to the frequency and the model ionosphere assumed; so future experiments should employ the widest possible range of frequencies and propagation conditions. An ERP of 90 dBW seems to be a sort of threshold that, if exceeded, might result in substantial rather than small signal changes. The conclusions are based solely on Joule heating and subsequent refraction of waves passing through caustic regions

  20. Detection of Second Sound in He-II for Thermal Quench Mapping of Superconducting Radio Frequency Accelerating Cavities

    OpenAIRE

    Stegmaier, Tobias; Grohmann, Steffen; Kind, Matthias; Furci, Hernán; Koettig, Torsten; Peters, Benedikt

    2018-01-01

    The development of future particle accelerators requires intensive testing of superconducting radio frequency cavities with different sizes and geometries. Non-contact thermometry quench localisation techniques proved to be beneficial for the localisation of surface defects that can originate a quench (sudden loss of superconducting state). These techniques are based on the detection of second sound in helium II. Transition Edge Sensors (TES) are highly sensitive thin film thermometers with f...

  1. Low power very high frequency resonant converter with high step down ratio

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.

    2013-01-01

    This paper presents the design of a resonant converter with a switching frequency in the very high frequency range (30-300MHz), a large step down ratio and low output power. This gives the designed converters specifications which are far from previous results. The class E inverter and rectifier...

  2. High Frequency Vibration Based Fatigue Testing of Developmental Alloys

    Science.gov (United States)

    Holycross, Casey M.; Srinivasan, Raghavan; George, Tommy J.; Tamirisakandala, Seshacharyulu; Russ, Stephan M.

    Many fatigue test methods have been previously developed to rapidly evaluate fatigue behavior. This increased test speed can come at some expense, since these methods may require non-standard specimen geometry or increased facility and equipment capability. One such method, developed by George et al, involves a base-excited plate specimen driven into a high frequency bending resonant mode. This resonant mode is of sufficient frequency (typically 1200 to 1700 Hertz) to accumulate 107 cycles in a few hours. One of the main limitations of this test method is that fatigue cracking is almost certainly guaranteed to be surface initiated at regions of high stress. This brings into question the validity of the fatigue test results, as compared to more traditional uniaxial, smooth-bar testing, since high stresses are subjecting only a small volume to fatigue damage. This limitation also brings into question the suitability of this method to screen developmental alloys, should their initiation life be governed by subsurface flaws. However, if applicable, the rapid generation of fatigue data using this method would facilitate faster design iterations, identifying more quickly, material and manufacturing process deficiencies. The developmental alloy used in this study was a powder metallurgy boron-modified Ti-6Al-4V, a new alloy currently being considered for gas turbine engine fan blades. Plate specimens were subjected to fully reversed bending fatigue. Results are compared with existing data from commercially available Ti-6Al-4V using both vibration based and more traditional fatigue test methods.

  3. Resonator as high frequency electromagnetic field oscillation generator

    International Nuclear Information System (INIS)

    Svoroba, O.V.; Scherbina, V.O.

    2007-01-01

    The problem of finding the u(x-vector) field potential in a specific waveguide with generalized corrugated core geometry is considered. The perturbation is brought to the system by high energy electron beam, injected in a waveguide. It is shown that the Neumann spectral problem can be reduced to finding Green approximation solution, and how it can be solved by the discretization technique. Considered parameterization allow to optimize the u(x-vector) field for specific frequency tuning. This method can be used as plasma heating method for thermonuclear temperature control

  4. Low-frequency oscillations at high density in JFT-2

    International Nuclear Information System (INIS)

    Maeno, Masaki; Katagiri, Masaki; Suzuki, Norio; Fujisawa, Noboru

    1977-12-01

    Low-frequency oscillations in a plasma were measured with magnetic probes and Si surface-barrier detectors, and behaviour of the high density plasmas was studied. The plasma current profile in the phase of decreasing density after the interruption of gas input is more peaked than during gas input. The introduction of hydrogen during a discharge results in a reduction of the impurities flux. The increase of density by fast gas input is limited with a negative voltage spike. Immediately before a negative voltage spike, oscillations of m=1,2 grow, leading to the spike. (auth.)

  5. High-efficiency ventilated metamaterial absorber at low frequency

    Science.gov (United States)

    Wu, Xiaoxiao; Au-Yeung, Ka Yan; Li, Xin; Roberts, Robert Christopher; Tian, Jingxuan; Hu, Chuandeng; Huang, Yingzhou; Wang, Shuxia; Yang, Zhiyu; Wen, Weijia

    2018-03-01

    We demonstrate a ventilated metamaterial absorber operating at low frequency (90%) has been achieved in both simulations and experiments. This high-efficiency absorption under the ventilation condition originates from the weak coupling of two identical split tube resonators constituting the absorber, which leads to the hybridization of the degenerate eigenmodes and breaks the absorption upper limit of 50% for conventional transmissive symmetric acoustic absorbers. The absorber can also be extended to an array and work in free space. The absorber should have potential applications in acoustic engineering where both noise reduction and ventilation are required.

  6. RF MEMS Fractal Capacitors With High Self-Resonant Frequencies

    KAUST Repository

    Elshurafa, Amro M.

    2012-07-23

    This letter demonstrates RF microelectromechanical systems (MEMS) fractal capacitors possessing the highest reported self-resonant frequencies (SRFs) in PolyMUMPS to date. Explicitly, measurement results show SRFs beyond 20 GHz. Furthermore, quality factors higher than 4 throughout a band of 1-15 GHz and reaching as high as 28 were achieved. Additional benefits that are readily attainable from implementing fractal capacitors in MEMS are discussed, including suppressing residual stress warping, eliminating the need for etching holes, and reducing parasitics. The latter benefits were acquired without any fabrication intervention. © 2011 IEEE.

  7. Electromagnetic Modelling of MMIC CPWs for High Frequency Applications

    Science.gov (United States)

    Sinulingga, E. P.; Kyabaggu, P. B. K.; Rezazadeh, A. A.

    2018-02-01

    Realising the theoretical electrical characteristics of components through modelling can be carried out using computer-aided design (CAD) simulation tools. If the simulation model provides the expected characteristics, the fabrication process of Monolithic Microwave Integrated Circuit (MMIC) can be performed for experimental verification purposes. Therefore improvements can be suggested before mass fabrication takes place. This research concentrates on development of MMIC technology by providing accurate predictions of the characteristics of MMIC components using an improved Electromagnetic (EM) modelling technique. The knowledge acquired from the modelling and characterisation process in this work can be adopted by circuit designers for various high frequency applications.

  8. Kapitza thermal resistance studied by high-frequency photothermal radiometry

    International Nuclear Information System (INIS)

    Horny, Nicolas; Chirtoc, Mihai; Hamaoui, Georges; Fleming, Austin; Ban, Heng

    2016-01-01

    Kapitza thermal resistance is determined using high-frequency photothermal radiometry (PTR) extended for modulation up to 10 MHz. Interfaces between 50 nm thick titanium coatings and silicon or stainless steel substrates are studied. In the used configuration, the PTR signal is not sensitive to the thermal conductivity of the film nor to its optical absorption coefficient, thus the Kapitza resistance is directly determined from single thermal parameter fits. Results of thermal resistances show the significant influence of the nature of the substrate, as well as of the presence of free electrons at the interface.

  9. Detection of artifacts from high energy bursts in neonatal EEG.

    Science.gov (United States)

    Bhattacharyya, Sourya; Biswas, Arunava; Mukherjee, Jayanta; Majumdar, Arun Kumar; Majumdar, Bandana; Mukherjee, Suchandra; Singh, Arun Kumar

    2013-11-01

    Detection of non-cerebral activities or artifacts, intermixed within the background EEG, is essential to discard them from subsequent pattern analysis. The problem is much harder in neonatal EEG, where the background EEG contains spikes, waves, and rapid fluctuations in amplitude and frequency. Existing artifact detection methods are mostly limited to detect only a subset of artifacts such as ocular, muscle or power line artifacts. Few methods integrate different modules, each for detection of one specific category of artifact. Furthermore, most of the reference approaches are implemented and tested on adult EEG recordings. Direct application of those methods on neonatal EEG causes performance deterioration, due to greater pattern variation and inherent complexity. A method for detection of a wide range of artifact categories in neonatal EEG is thus required. At the same time, the method should be specific enough to preserve the background EEG information. The current study describes a feature based classification approach to detect both repetitive (generated from ECG, EMG, pulse, respiration, etc.) and transient (generated from eye blinking, eye movement, patient movement, etc.) artifacts. It focuses on artifact detection within high energy burst patterns, instead of detecting artifacts within the complete background EEG with wide pattern variation. The objective is to find true burst patterns, which can later be used to identify the Burst-Suppression (BS) pattern, which is commonly observed during newborn seizure. Such selective artifact detection is proven to be more sensitive to artifacts and specific to bursts, compared to the existing artifact detection approaches applied on the complete background EEG. Several time domain, frequency domain, statistical features, and features generated by wavelet decomposition are analyzed to model the proposed bi-classification between burst and artifact segments. A feature selection method is also applied to select the

  10. High Detectivity Graphene-Silicon Heterojunction Photodetector.

    Science.gov (United States)

    Li, Xinming; Zhu, Miao; Du, Mingde; Lv, Zheng; Zhang, Li; Li, Yuanchang; Yang, Yao; Yang, Tingting; Li, Xiao; Wang, Kunlin; Zhu, Hongwei; Fang, Ying

    2016-02-03

    A graphene/n-type silicon (n-Si) heterojunction has been demonstrated to exhibit strong rectifying behavior and high photoresponsivity, which can be utilized for the development of high-performance photodetectors. However, graphene/n-Si heterojunction photodetectors reported previously suffer from relatively low specific detectivity due to large dark current. Here, by introducing a thin interfacial oxide layer, the dark current of graphene/n-Si heterojunction has been reduced by two orders of magnitude at zero bias. At room temperature, the graphene/n-Si photodetector with interfacial oxide exhibits a specific detectivity up to 5.77 × 10(13) cm Hz(1/2) W(-1) at the peak wavelength of 890 nm in vacuum, which is highest reported detectivity at room temperature for planar graphene/Si heterojunction photodetectors. In addition, the improved graphene/n-Si heterojunction photodetectors possess high responsivity of 0.73 A W(-1) and high photo-to-dark current ratio of ≈10(7) . The current noise spectral density of the graphene/n-Si photodetector has been characterized under ambient and vacuum conditions, which shows that the dark current can be further suppressed in vacuum. These results demonstrate that graphene/Si heterojunction with interfacial oxide is promising for the development of high detectivity photodetectors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Damage Detection Based on Cross-Term Extraction from Bilinear Time-Frequency Distributions

    Directory of Open Access Journals (Sweden)

    Ma Yuchao

    2014-01-01

    Full Text Available Abundant damage information is implicated in the bilinear time-frequency distribution of structural dynamic signals, which could provide effective support for structural damage identification. Signal time-frequency analysis methods are reviewed, and the characters of linear time-frequency distribution and bilinear time-frequency distribution typically represented by the Wigner-Ville distribution are compared. The existence of the cross-term and its application in structural damage detection are demonstrated. A method of extracting the dominant term is proposed, which combines the short-time Fourier spectrum and Wigner-Ville distribution; then two-dimensional time-frequency transformation matrix is constructed and the complete cross-term is extracted finally. The distribution character of which could be applied to the structural damage identification. Through theoretical analysis, model experiment and numerical simulation of the girder structure, the change rate of cross-term amplitude is validated to identify the damage location and degree. The effectiveness of the cross-term of bilinear time-frequency distribution for damage detection is confirmed and the analytical method of damage identification used in structural engineering is available.

  12. Noninvasive Diagnosis of Coronary Artery Disease Using 12-Lead High-Frequency Electrocardiograms

    Science.gov (United States)

    Schlegel, Todd T.; Arenare, Brian

    2006-01-01

    A noninvasive, sensitive method of diagnosing certain pathological conditions of the human heart involves computational processing of digitized electrocardiographic (ECG) signals acquired from a patient at all 12 conventional ECG electrode positions. In the processing, attention is focused on low-amplitude, high-frequency components of those portions of the ECG signals known in the art as QRS complexes. The unique contribution of this method lies in the utilization of signal features and combinations of signal features from various combinations of electrode positions, not reported previously, that have been found to be helpful in diagnosing coronary artery disease and such related pathological conditions as myocardial ischemia, myocardial infarction, and congestive heart failure. The electronic hardware and software used to acquire the QRS complexes and perform some preliminary analyses of their high-frequency components were summarized in Real-Time, High-Frequency QRS Electrocardiograph (MSC- 23154), NASA Tech Briefs, Vol. 27, No. 7 (July 2003), pp. 26-28. To recapitulate, signals from standard electrocardiograph electrodes are preamplified, then digitized at a sampling rate of 1,000 Hz, then analyzed by the software that detects R waves and QRS complexes and analyzes them from several perspectives. The software includes provisions for averaging signals over multiple beats and for special-purpose nonrecursive digital filters with specific low- and high-frequency cutoffs. These filters, applied to the averaged signal, effect a band-pass operation in the frequency range from 150 to 250 Hz. The output of the bandpass filter is the desired high-frequency QRS signal. Further processing is then performed in real time to obtain the beat-to-beat root mean square (RMS) voltage amplitude of the filtered signal, certain variations of the RMS voltage, and such standard measures as the heart rate and R-R interval at any given time. A key signal feature analyzed in the present

  13. Assessing the high frequency behavior of non-polarizable electrodes for spectral induced polarization measurements

    Science.gov (United States)

    Abdulsamad, Feras; Florsch, Nicolas; Schmutz, Myriam; Camerlynck, Christian

    2016-12-01

    During the last decades, the usage of spectral induced polarization (SIP) measurements in hydrogeology and detecting environmental problems has been extensively increased. However, the physical mechanisms which are responsible for the induced polarization response over the usual frequency range (typically 1 mHz to 10-20 kHz) require better understanding. The phase shift observed at high frequencies is sometimes attributed to the so-called Maxwell-Wagner polarization which takes place when charges cross an interface. However, SIP measurements of tap water show a phase shift at frequencies higher than 1 kHz, where no Maxwell-Wagner polarization may occur. In this paper, we enlighten the possible origin of this phase shift and deduce its likely relationship with the types of the measuring electrodes. SIP Laboratory measurements of tap water using different types of measuring electrodes (polarizable and non-polarizable electrodes) are carried out to detect the origin of the phase shift at high frequencies and the influence of the measuring electrodes types on the observed complex resistivity. Sodium chloride is used to change the conductivity of the medium in order to quantify the solution conductivity role. The results of these measurements are clearly showing the impact of the measuring electrodes type on the measured phase spectrum while the influence on the amplitude spectrum is negligible. The phenomenon appearing on the phase spectrum at high frequency (> 1 kHz) whatever the electrode type is, the phase shows an increase compared to the theoretical response, and the discrepancy (at least in absolute value) increases with frequency, but it is less severe when medium conductivity is larger. Additionally, the frequency corner is shifted upward in frequency. The dependence of this phenomenon on the conductivity and the measuring electrodes type (electrode-electrolyte interface) seems to be due to some dielectric effects (as an electrical double layer of small

  14. Change detection in quad and dual pol, single- and bi-frequency SAR data

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Conradsen, Knut; Skriver, Henning

    2015-01-01

    -value are given. In a case study airborne EMISAR C- and L-band SAR images covering agricultural fields and wooded areas near Foulum, Denmark, are used in single- and bi-frequency, bi-temporal change detection with full and dual polarimetry data. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation...

  15. CoSMOS: Performance of Kurtosis Algorithm for Radio Frequency Interference Detection and Mitigation

    DEFF Research Database (Denmark)

    Misra, Sidharth; Kristensen, Steen Savstrup; Skou, Niels

    2007-01-01

    The performance of a previously developed algorithm for Radio Frequency Interference (RFI) detection and mitigation is experimentally evaluated. Results obtained from CoSMOS, an airborne campaign using a fully polarimetric L-band radiometer are analyzed for this purpose. Data is collected using two...

  16. Corrosion monitoring using high-frequency guided waves

    Science.gov (United States)

    Fromme, P.

    2016-04-01

    Corrosion can develop due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Generalized corrosion leading to wall thickness loss can cause the reduction of the strength and thus degradation of the structural integrity. The monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic wedge transducers with single sided access to the structure, guided wave modes were selectively generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted for wall thickness reduction due to milling of the steel structure. From the measured signal changes due to the wave mode interference the reduced wall thickness was monitored. Good agreement with theoretical predictions was achieved. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  17. [High frequency electrocoagulation for treating noninvoluting congenital hemangioma].

    Science.gov (United States)

    Zhongqiang, Wang; Yafei, Wang; Jiashuang, Zhou; Quan, Zhou; Lijuan, Yang; Li, Wang

    2015-11-01

    To investigate the clinical efficiency of electrocoagulation for the treatment of noninvoluting congenital hemangioma. Sixteen infants with noninvoluting congenital hemangioma who were admitted to our hospital from January 2011 to June 2013 were included in this study. Color Doppler ultrasound was used to determine the hemangioma location, as well as its size and depth. High frequency electrocoagulation was adopted for the treatment. The output power was set at 10-20 W. The probes were inserted around the tumor or at the surface of the tumor. After switching on for 1-2 seconds, the direction and position of the probe was modulated until covering the whole tumor. After the treatment, the absorption of tumor was about 3-6 months. The efficiency was evaluated during the follow-up. Tumor atrophy was obvious after treatment in all patients. The temperature around the tumor mass was decreased, and the aberrant blood signals were decreased under the ultrasonic examination. Complete or partial atrophy were observed. The efficiency was graded as level I, II, III, IV in 0, 2, 9 and 5 patients, respectively. One patient showed local infection due to improper nursing, which was completely relieved after corresponding treatment. No severe adverse events were observed. High-frequency electrocoagulation is effective for treating noninvoluting congenital hemangioma through coagulating the aberrant blood vessels in the tumor, interrupting the vascular endothelial cell, blocking the aberrant blood flow, as well as leading to atrophy and absorption of tumor mass. Besides, no obvious scar is observed after the surgery.

  18. High relative frequency of thyroid papillary carcinoma in northern Portugal.

    Science.gov (United States)

    Sambade, M C; Gonçalves, V S; Dias, M; Sobrinho-Simões, M A

    1983-05-01

    Two hundred and twelve papillary and 40 follicular carcinomas were found in 3002 thyroid glands examined from 1931 to 1975 in four Laboratories of Pathology that fairly cover northern Portugal. There was a striking preponderance of women both in papillary (female:male = 6.9:1) and follicular carcinoma (5.7:1). Sex-specific frequency of malignancy was significantly greater in men (13.3%) than in women (8.8%). The overall papillary/follicular ratio was 5.3:1 and did not significantly change throughout the study period. Papillary/follicular ratio was not significantly greater in litoral (5.5:1) than in regions with a low iodine intake and a relatively high prevalence of goiter (3.5:1). It is advanced that this high relative frequency of papillary carcinoma in northern Portugal, even in goiter areas, may reflect the existence of a racial factor since there is not enough evidence to support the influence of dietary iodine, previous irradiation and concurrent thyroiditis.

  19. High-frequency behavior of amorphous microwires and its applications

    International Nuclear Information System (INIS)

    Marin, P.; Cortina, D.; Hernando, A.

    2005-01-01

    A magnetic microwire is a continuous filament of total diameter less than 100 μm consisting of an inner metallic magnetic nuclei covered by a glassy outer shell, usually obtained by Taylor's technique, with interesting magnetic properties connected with its high axial magnetic anisotropy. Magnetic sensors based on microwires used, as operating principle, the strong connection between the composition and the uniaxial anisotropy through a magnetostriction constant such as the large Barkhausen effect, Mateucci effect and giant magneto-impedance effect. The study of the microwave properties is also very promising technologically. In the microwave region (approaching GHz range), the ferromagnetic resonance (FMR) occurs and it is connected with the spin precession of the magnetisation vector due to the effect of the high-frequency electromagnetic field applied such that the magnetic component is perpendicular to the magnetisation vector. The natural ferromagnetic resonance (NFMR) has been also observed. The frequency depends upon the value of magnetic anisotropy and it is characterised by the single well-distinguished line in the 2-10 GHz range. Tags detector based on the microwires FMR and a new kind of electromagnetic radiation absorbers based on the microwires NFMR have been developed

  20. High-frequency response and the possibilities of frequency-tunable narrow-band terahertz amplification in resonant tunneling nanostructures

    International Nuclear Information System (INIS)

    Kapaev, V. V.; Kopaev, Yu. V.; Savinov, S. A.; Murzin, V. N.

    2013-01-01

    The characteristics of the high-frequency response of single- and double-well resonant tunneling structures in a dc electric field are investigated on the basis of the numerical solution of a time-dependent Schrödinger equation with open boundary conditions. The frequency dependence of the real part of high frequency conductivity (high-frequency response) in In 0.53 Ga 0.47 As/AlAs/InP structures is analyzed in detail for various values of the dc voltage V dc in the negative differential resistance (NDR) region. It is shown that double-well three-barrier structures are promising for the design of terahertz-band oscillators. The presence of two resonant states with close energies in such structures leads to a resonant (in frequency) response whose frequency is determined by the energy difference between these levels and can be controlled by varying the parameters of the structure. It is shown that, in principle, such structures admit narrow-band amplification, tuning of the amplification frequency, and a fine control of the amplification (oscillation) frequency in a wide range of terahertz frequencies by varying a dc electric voltage applied to the structure. Starting from a certain width of the central intermediate barrier in double-well structures, one can observe a collapse of resonances, where the structure behaves like a single-well system. This phenomenon imposes a lower limit on the oscillation frequency in three-barrier resonant tunneling structures.

  1. A High Energy and High Efficiency Spectral Shaping Single Frequency Fiber Laser, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase I project proposes a tunable single frequency high energy fiber laser system for coherent Lidar systems for remote sensing. Current state-of-art...

  2. A High Energy and High Efficiency Spectral Shaping Single Frequency Fiber Laser, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase II project proposes a single frequency high energy fiber laser system for coherent Lidar systems for remote sensing. Current state-of-art...

  3. An assessment of threshold shifts in nonprofessional pop/rock musicians using conventional and extended high-frequency audiometry.

    Science.gov (United States)

    Schmuziger, Nicolas; Patscheke, Jochen; Probst, Rudolf

    2007-09-01

    The clinical value of extended high-frequency audiometry for the detection of noise-induced hearing loss has not been established conclusively. The purpose of this study was to assess the relative temporary threshold shift (TTS) in two frequency regions (conventional versus extended high frequency). In this exploratory study, pure-tone thresholds from 0.5 to 14 kHz were measured in both ears of 16 nonprofessional pop/rock musicians (mean age, 35 yr; range, 27 to 49 yr), before and after a 90-minute rehearsal session. All had experienced repeated exposures to intense sound levels during at least 5 yr of their musical careers. After the rehearsal, median threshold levels were found to be significantly poorer for frequencies from 0.5 to 8 kHz (Wilcoxon signed rank test, p high-frequency range from 9 to 14 kHz. Decreases in the median threshold values measured before the rehearsal were present across the conventional frequency range, most notably at 6 kHz, but were not observed in the extended high-frequency range. On the basis of these results, extended high-frequency audiometry does not seem advantageous as a means of the early detection of noise-induced hearing loss.

  4. Prospects of Frequency-Time Correlation Analysis for Detecting Pipeline Leaks by Acoustic Emission Method

    International Nuclear Information System (INIS)

    Faerman, V A; Cheremnov, A G; Avramchuk, V V; Luneva, E E

    2014-01-01

    In the current work the relevance of nondestructive test method development applied for pipeline leak detection is considered. It was shown that acoustic emission testing is currently one of the most widely spread leak detection methods. The main disadvantage of this method is that it cannot be applied in monitoring long pipeline sections, which in its turn complicates and slows down the inspection of the line pipe sections of main pipelines. The prospects of developing alternative techniques and methods based on the use of the spectral analysis of signals were considered and their possible application in leak detection on the basis of the correlation method was outlined. As an alternative, the time-frequency correlation function calculation is proposed. This function represents the correlation between the spectral components of the analyzed signals. In this work, the technique of time-frequency correlation function calculation is described. The experimental data that demonstrate obvious advantage of the time-frequency correlation function compared to the simple correlation function are presented. The application of the time-frequency correlation function is more effective in suppressing the noise components in the frequency range of the useful signal, which makes maximum of the function more pronounced. The main drawback of application of the time- frequency correlation function analysis in solving leak detection problems is a great number of calculations that may result in a further increase in pipeline time inspection. However, this drawback can be partially reduced by the development and implementation of efficient algorithms (including parallel) of computing the fast Fourier transform using computer central processing unit and graphic processing unit

  5. Resolution improvement of low frequency AC magnetic field detection for modulated MR sensors.

    Science.gov (United States)

    Hu, Jinghua; Pan, Mengchun; Hu, Jiafei; Li, Sizhong; Chen, Dixiang; Tian, Wugang; Sun, Kun; Du, Qingfa; Wang, Yuan; Pan, Long; Zhou, Weihong; Zhang, Qi; Li, Peisen; Peng, Junping; Qiu, Weicheng; Zhou, Jikun

    2017-09-01

    Magnetic modulation methods especially Micro-Electro-Mechanical System (MEMS) modulation can improve the sensitivity of magnetoresistive (MR) sensors dramatically, and pT level detection of Direct Current (DC) magnetic field can be realized. While in a Low Frequency Alternate Current (LFAC) magnetic field measurement situation, frequency measurement is limited by a serious spectrum aliasing problem caused by the remanence in sensors and geomagnetic field, leading to target information loss because frequency indicates the magnetic target characteristics. In this paper, a compensation field produced with integrated coils is applied to the MR sensor to remove DC magnetic field distortion, and a LFAC magnetic field frequency estimation algorithm is proposed based on a search of the database, which is derived from the numerical model revealing the relationship of the LFAC frequency and determination factor [defined by the ratio of Discrete Fourier Transform (DFT) coefficients]. In this algorithm, an inverse modulation of sensor signals is performed to detect jumping-off point of LFAC in the time domain; this step is exploited to determine sampling points to be processed. A determination factor is calculated and taken into database to figure out frequency with a binary search algorithm. Experimental results demonstrate that the frequency measurement resolution of the LFAC magnetic field is improved from 12.2 Hz to 0.8 Hz by the presented method, which, within the signal band of a magnetic anomaly (0.04-2 Hz), indicates that the proposed method may expand the applications of magnetoresistive (MR) sensors to human healthcare and magnetic anomaly detection (MAD).

  6. Mechanisms and factors that influence high frequency retroviral recombination

    DEFF Research Database (Denmark)

    Delviks-Frankenberry, Krista; Galli, Andrea; Nikolaitchik, Olga

    2011-01-01

    With constantly changing environmental selection pressures, retroviruses rely upon recombination to reassort polymorphisms in their genomes and increase genetic diversity, which improves the chances for the survival of their population. Recombination occurs during DNA synthesis, whereby reverse...... transcriptase undergoes template switching events between the two copackaged RNAs, resulting in a viral recombinant with portions of the genetic information from each parental RNA. This review summarizes our current understanding of the factors and mechanisms influencing retroviral recombination, fidelity...... of the recombination process, and evaluates the subsequent viral diversity and fitness of the progeny recombinant. Specifically, the high mutation rates and high recombination frequencies of HIV-1 will be analyzed for their roles in influencing HIV-1 global diversity, as well as HIV-1 diagnosis, drug treatment...

  7. Mechanisms and Factors that Influence High Frequency Retroviral Recombination

    Science.gov (United States)

    Delviks-Frankenberry, Krista; Galli, Andrea; Nikolaitchik, Olga; Mens, Helene; Pathak, Vinay K.; Hu, Wei-Shau

    2011-01-01

    With constantly changing environmental selection pressures, retroviruses rely upon recombination to reassort polymorphisms in their genomes and increase genetic diversity, which improves the chances for the survival of their population. Recombination occurs during DNA synthesis, whereby reverse transcriptase undergoes template switching events between the two copackaged RNAs, resulting in a viral recombinant with portions of the genetic information from each parental RNA. This review summarizes our current understanding of the factors and mechanisms influencing retroviral recombination, fidelity of the recombination process, and evaluates the subsequent viral diversity and fitness of the progeny recombinant. Specifically, the high mutation rates and high recombination frequencies of HIV-1 will be analyzed for their roles in influencing HIV-1 global diversity, as well as HIV-1 diagnosis, drug treatment, and vaccine development. PMID:21994801

  8. Frequency selective surfaces based high performance microstrip antenna

    CERN Document Server

    Narayan, Shiv; Jha, Rakesh Mohan

    2016-01-01

    This book focuses on performance enhancement of printed antennas using frequency selective surfaces (FSS) technology. The growing demand of stealth technology in strategic areas requires high-performance low-RCS (radar cross section) antennas. Such requirements may be accomplished by incorporating FSS into the antenna structure either in its ground plane or as the superstrate, due to the filter characteristics of FSS structure. In view of this, a novel approach based on FSS technology is presented in this book to enhance the performance of printed antennas including out-of-band structural RCS reduction. In this endeavor, the EM design of microstrip patch antennas (MPA) loaded with FSS-based (i) high impedance surface (HIS) ground plane, and (ii) the superstrates are discussed in detail. The EM analysis of proposed FSS-based antenna structures have been carried out using transmission line analogy, in combination with the reciprocity theorem. Further, various types of novel FSS structures are considered in desi...

  9. High frequency modulation circuits based on photoconductive wide bandgap switches

    Science.gov (United States)

    Sampayan, Stephen

    2018-02-13

    Methods, systems, and devices for high voltage and/or high frequency modulation. In one aspect, an optoelectronic modulation system includes an array of two or more photoconductive switch units each including a wide bandgap photoconductive material coupled between a first electrode and a second electrode, a light source optically coupled to the WBGP material of each photoconductive switch unit via a light path, in which the light path splits into multiple light paths to optically interface with each WBGP material, such that a time delay of emitted light exists along each subsequent split light path, and in which the WBGP material conducts an electrical signal when a light signal is transmitted to the WBGP material, and an output to transmit the electrical signal conducted by each photoconductive switch unit. The time delay of the photons emitted through the light path is substantially equivalent to the time delay of the electrical signal.

  10. Development of high frequency and wide bandwidth Johnson noise thermometry

    International Nuclear Information System (INIS)

    Crossno, Jesse; Liu, Xiaomeng; Kim, Philip; Ohki, Thomas A.; Fong, Kin Chung

    2015-01-01

    We develop a high frequency, wide bandwidth radiometer operating at room temperature, which augments the traditional technique of Johnson noise thermometry for nanoscale thermal transport studies. Employing low noise amplifiers and an analog multiplier operating at 2 GHz, auto- and cross-correlated Johnson noise measurements are performed in the temperature range of 3 to 300 K, achieving a sensitivity of 5.5 mK (110 ppm) in 1 s of integration time. This setup allows us to measure the thermal conductance of a boron nitride encapsulated monolayer graphene device over a wide temperature range. Our data show a high power law (T ∼ 4) deviation from the Wiedemann-Franz law above T ∼ 100 K

  11. Articulated pipes conveying fluid pulsating with high frequency

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard

    1999-01-01

    Stability and nonlinear dynamics of two articulated pipes conveying fluid with a high-frequency pulsating component is investigated. The non-autonomous model equations are converted into autonomous equations by approximating the fast excitation terms with slowly varying terms. The downward hanging...... pipe position will lose stability if the mean flow speed exceeds a certain critical value. Adding a pulsating component to the fluid flow is shown to stabilize the hanging position for high values of the ratio between fluid and pipe-mass, and to marginally destabilize this position for low ratios....... An approximate nonlinear solution for small-amplitude flutter oscillations is obtained using a fifth-order multiple scales perturbation method, and large-amplitude oscillations are examined by numerical integration of the autonomous model equations, using a path-following algorithm. The pulsating fluid component...

  12. Searches for high frequency variations in the 8-B neutrino flux at the Sudbury neutrino observatory

    Energy Technology Data Exchange (ETDEWEB)

    Rielage, Keith [Los Alamos National Laboratory; Seibert, Stanley R [Los Alamos National Laboratory; Hime, Andrew [Los Alamos National Laboratory; Elliott, Steven R [Los Alamos National Laboratory; Stonehill, L C [Los Alamos National Laboratory; Wouters, J M [Los Alamos National Laboratory; Aharmim, B [LAURENTIAN UNIV; Ahmed, S N [QUEEN' S UNIV; Anthony, A E [UNIV OF TEXAS; Barros, N [PORTUGAL; Beier, E W [UNIV OF PA; Bellerive, A [CARLETON UNIV; Belttran, B [UNIV OF ALBERTA; Bergevin, M [LBNL; Biller, S D [UNIV OF OXFORD; Boudjemline, K [CARLETON UNIV; Burritt, T H [UNIV OF WASHINGTON; Cai, B [QUEEN' S UNIV; Chan, Y D [LBNL; Chauhan, D [LAURENTIAN UNIV; Chen, M [QUEEN' S UNIV; Cleveland, B T [UNIV OF OXFORD; Cox - Mobrand, G A [UNIV OF WASHINGTON; Dai, X [QUEEN' S UNIV; Deng, H [UNIV OF PA; Detwiler, J [LBNL; Dimarco, M [QUEEN' S UNIV; Doe, P J [UNIV OF WASHINGTON; Drouin, P - L [CARLTON UNIV; Duba, C A [UNIV OF WASHINGTON; Duncan, F A [SNOLAB, SUDBURY; Dunford, M [UNIV OF PA; Earle, E D [QUEEN' S UNIV; Evans, H C [QUEEN' S UNIV; Ewan, G T [QUEEN' S UNIV; Farine, J [LAURENTTIAN UNIV; Fergani, H [UNIV OF OXFORD; Fleurot, F [LAURENTIAN UNIV; Ford, R J [SNOLAB, SUDBURY; Formaggilo, J A [MASSACHUSETTS INST. OF TECH.; Gagnon, N [UNIV OF WASHINGTON; Goon, J Tm [LOUISIANA STATE UNIV; Guillian, E [QUEEN' S UNIV; Habib, S [UNIV OF ALBERTA; Hahn, R L [BNL; Hallin, A L [UNIV OF ALBERTA; Hallman, E D [LAURENTIAN UNIV; Harvey, P J [QUEEN' S UNIV; Hazama, R [UNIV OF WASHINGTON; Heintzelman, W J [UNIV OF PA; Heise, J [SNOLAB, SUDBURY; Helmer, R L [TRIUMF; Howard, C [UNIV OF ALBERTA; Howe, M A [UNIV OF WASHINGTON; Huang, M [UNIV OF TEXAS; Jamieson, B [UNIV OF BRITISH COLUMBIA; Jelley, N A [UNIV OF OXFORD; Keeter, K J [SNOLAB, SUDBURY; Klein, J R [UNIV OF TEXAS; Kos, M [QUEEN' S UNIV; Kraus, C [QUEEN' S UNIV; Krauss, C B [UNIV OF ALBERTA; Kutter, T [LOUISIANA STATE UNIV; Kyba, C C M [UNIV OF PA; Law, J [UNIV OF GUELPH; Lawson, I T [SNOLAB, SUDBURY; Lesko, K T [LBNL; Leslie, J R [QUEEN' S UNIV; Loach, J C [UNIV OF OXFORD; Maclellan, R [QUEEN' S UNIV; Majerus, S [UNIV OF OXFORD; Mak, H B [QUEEN' S UNIV; Maneira, J [PORTUGAL; Martin, R [QUEEN' S UNIV; Mccauley, N [UNIV OF PA; Mc Donald, A B [QUEEN' S UNIV; Mcgee, S [UNIV OF WASHINGTON; Miffin, C [CARLETON UNIV; Miller, M L [MASSACHUSETTS INST. OF TECH.; Monreal, B [MASSACHUSETTS INST. OF TECH.; Monroe, J [MASSACHUSETTS INST. OF TECH; Morissette, B [SNOLAB, SUDBURY; Nickel, B G [UNIV OF GUELPH; Noble, A J [QUEEN' S UNIV; O' Keeffe, H M [UNIV OF OXFORD; Oblath, N S [UNIV OF WASHINGTON; Orebi Gann, G D [UNIV OF OXFORD; Oser, S M [UNIV OF BRITISH COLUMBIA; Ott, R A [MASSACHUSETTS INST. OF TECH.; Peeters, S J M [UNIV OF OXFORD; Poon, A W P [LBNL; Prior, G [LBNL; Reitzner, S D [UNIV OF GUELPH; Robertson, B C [QUEEN' S UNIV; Robertson, R G H [UNIV OF WASHINGTON; Rollin, E [CARLETON UNIV; Schwendener, M H [LAURENTIAN UNIV; Secrest, J A [UNIV OF PA; Seibert, S R [UNIV OF TEXAS; Simard, O [CARLETON UNIV; Sinclair, D [CARLETON UNIV; Sinclair, L [CARLETON UNIV; Skensved, P [QUEEN' S UNIV; Sonley, T J [MASSACHUSETTS INST. OF TECH.; Tesic, G [CARLETON UNIV; Tolich, N [UNIV OF WASHINGTON; Tsui, T [UNIV OF BRITISH COLUMBIA; Tunnell, C D [UNIV OF TEXAS; Van Berg, R [UNIV OF PA; Van Devender, B A [UNIV OF WASHINGTON; Virtue, C J [LAURENTIAN UNIV; Wall, B L [UNIV OF WASHINGTON; Waller, D [CARLETON UNIV; Wan Chan Tseung, H [UNIV OF OXFORD; West, N [UNIV OF OXFORD; Wilkerson, J F [UNIV OF WASHINGTON; Wilson, J R [UNIV OF OXFORD; Wright, A [QUEEN' S UNIV; Yeh, M [BNL; Zhang, F [CARLETON UNIV; Zuber, K [UNIV OF OXFORD

    2009-01-01

    We have peformed three searches for high-frequency signals in the solar neutrino flux measured by the Sudbury Neutrino Observatory (SNO), motivated by the possibility that solar g-mode oscillations could affect the production or propagation of solar {sup 8}B neutrinos. The first search looked for any significant peak in the frequency range l/day to 144/day, with a sensitivity to sinusoidal signals with amplitudes of 12% or greater. The second search focused on regions in which g-mode signals have been claimed by experiments aboard the SoHO satellite, and was sensitive to signals with amplitudes of 10% or greater. The third search looked for extra power across the entire frequency band. No statistically significant signal was detected in any of the three searches.

  13. Use of high frequency analysis of acoustic emission signals to determine rolling element bearing condition

    International Nuclear Information System (INIS)

    Cockerill, A; Holford, K M; Pullin, R; Clarke, A; Bradshaw, T; Cole, P

    2015-01-01

    Acoustic Emission (AE) sensors were used to detect signals arising from a cylindrical roller bearing with artificial defects seeded onto the outer raceway. An SKF N204ECP roller bearing was placed between two double row spherical roller bearings, type SKF 22202E, and loaded between 0.29 and 1.79kN. Speed was constant at 5780rpm. High frequency analysis allowed insight into the condition of the bearings through the determination of an increase in the structural resonances of the system as the size of an artificial defect was increased. As higher loads were applied, frequencies around 100kHz were excited, indicating the release of AE possibly attributed to friction and the plastic deformation as peaks, induced through engraving of the raceway, were flattened and worn down. Sensitivity of AE to this level in bearings indicates the potential of the technique to detect the early stages of bearing failure during life tests. (paper)

  14. High frequency electromagnetic impedance measurements for characterization, monitoring and verification efforts. 1998 annual progress report

    International Nuclear Information System (INIS)

    Becker, A.; Lee, K.H.; Pellerin, L.

    1998-01-01

    'Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small due, and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high resolution imaging, accurate measurements are necessary so the field data can be mapped into the space of the subsurface parameters. The authors are developing a non-invasive method for accurately imaging the electrical conductivity and dielectric permittivity of the shallow subsurface using the plane wave impedance approach, known as the magnetotelluric (MT) method at low frequencies. Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques. The summary of the work to date is divided into three sections: equipment procurement, instrumentation, and theoretical developments. For most earth materials, the frequency range from 1 to 100 MHz encompasses a very difficult transition zone between the wave propagation of displacement currents and the diffusive behavior of conduction currents. Test equipment, such as signal generators and amplifiers, does not cover the entire range except at great expense. Hence the authors have divided the range of investigation into three sub-ranges: 1--10 MHz, 10--30 MHz, and 30--100 MHz. Results to date are in the lowest frequency range of 1--10 MHz. Even though conduction currents

  15. Comparing the effects of age on amplitude modulation and frequency modulation detection.

    Science.gov (United States)

    Wallaert, Nicolas; Moore, Brian C J; Lorenzi, Christian

    2016-06-01

    Frequency modulation (FM) and amplitude modulation (AM) detection thresholds were measured at 40 dB sensation level for young (22-28 yrs) and older (44-66 yrs) listeners with normal audiograms for a carrier frequency of 500 Hz and modulation rates of 2 and 20 Hz. The number of modulation cycles, N, varied between 2 and 9. For FM detection, uninformative AM at the same rate as the FM was superimposed to disrupt excitation-pattern cues. For both groups, AM and FM detection thresholds were lower for the 2-Hz than for the 20-Hz rate, and AM and FM detection thresholds decreased with increasing N. Thresholds were higher for older than for younger listeners, especially for FM detection at 2 Hz, possibly reflecting the effect of age on the use of temporal-fine-structure cues for 2-Hz FM detection. The effect of increasing N was similar across groups for both AM and FM. However, at 20 Hz, older listeners showed a greater effect of increasing N than younger listeners for both AM and FM. The results suggest that ageing reduces sensitivity to both excitation-pattern and temporal-fine-structure cues for modulation detection, but more so for the latter, while sparing temporal integration of these cues at low modulation rates.

  16. Quantitative Assessment of Detection Frequency for the INL Ambient Air Monitoring Network

    Energy Technology Data Exchange (ETDEWEB)

    Sondrup, A. Jeffrey [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rood, Arthur S. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-11-01

    A quantitative assessment of the Idaho National Laboratory (INL) air monitoring network was performed using frequency of detection as the performance metric. The INL air monitoring network consists of 37 low-volume air samplers in 31 different locations. Twenty of the samplers are located on INL (onsite) and 17 are located off INL (offsite). Detection frequencies were calculated using both BEA and ESER laboratory minimum detectable activity (MDA) levels. The CALPUFF Lagrangian puff dispersion model, coupled with 1 year of meteorological data, was used to calculate time-integrated concentrations at sampler locations for a 1-hour release of unit activity (1 Ci) for every hour of the year. The unit-activity time-integrated concentration (TICu) values were calculated at all samplers for releases from eight INL facilities. The TICu values were then scaled and integrated for a given release quantity and release duration. All facilities modeled a ground-level release emanating either from the center of the facility or at a point where significant emissions are possible. In addition to ground-level releases, three existing stacks at the Advanced Test Reactor Complex, Idaho Nuclear Technology and Engineering Center, and Material and Fuels Complex were also modeled. Meteorological data from the 35 stations comprising the INL Mesonet network, data from the Idaho Falls Regional airport, upper air data from the Boise airport, and three-dimensional gridded data from the weather research forecasting model were used for modeling. Three representative radionuclides identified as key radionuclides in INL’s annual National Emission Standards for Hazardous Air Pollutants evaluations were considered for the frequency of detection analysis: Cs-137 (beta-gamma emitter), Pu-239 (alpha emitter), and Sr-90 (beta emitter). Source-specific release quantities were calculated for each radionuclide, such that the maximum inhalation dose at any publicly accessible sampler or the National

  17. Buried Object Detection Method Using Optimum Frequency Range in Extremely Shallow Underground

    Science.gov (United States)

    Sugimoto, Tsuneyoshi; Abe, Touma

    2011-07-01

    We propose a new detection method for buried objects using the optimum frequency response range of the corresponding vibration velocity. Flat speakers and a scanning laser Doppler vibrometer (SLDV) are used for noncontact acoustic imaging in the extremely shallow underground. The exploration depth depends on the sound pressure, but it is usually less than 10 cm. Styrofoam, wood (silver fir), and acrylic boards of the same size, different size styrofoam boards, a hollow toy duck, a hollow plastic container, a plastic container filled with sand, a hollow steel can and an unglazed pot are used as buried objects which are buried in sand to about 2 cm depth. The imaging procedure of buried objects using the optimum frequency range is given below. First, the standardized difference from the average vibration velocity is calculated for all scan points. Next, using this result, underground images are made using a constant frequency width to search for the frequency response range of the buried object. After choosing an approximate frequency response range, the difference between the average vibration velocity for all points and that for several points that showed a clear response is calculated for the final confirmation of the optimum frequency range. Using this optimum frequency range, we can obtain the clearest image of the buried object. From the experimental results, we confirmed the effectiveness of our proposed method. In particular, a clear image of the buried object was obtained when the SLDV image was unclear.

  18. Detection of Second Sound in He-II for Thermal Quench Mapping of Superconducting Radio Frequency Accelerating Cavities

    CERN Document Server

    Stegmaier, Tobias; Kind, Matthias; Furci, Hernán; Koettig, Torsten; Peters, Benedikt

    The development of future particle accelerators requires intensive testing of superconducting radio frequency cavities with different sizes and geometries. Non-contact thermometry quench localisation techniques proved to be beneficial for the localisation of surface defects that can originate a quench (sudden loss of superconducting state). These techniques are based on the detection of second sound in helium II. Transition Edge Sensors (TES) are highly sensitive thin film thermometers with fast time response. In the present work, their capability as a thermal quench mapping device for superconducting radio frequency cavities is proven experimentally by detecting second sound waves emitted by SMD heaters in a He-II bath at saturated vapour pressure. A characterisation of the sensors at steady bath temperatures was conducted to calculate the thermal sensitivity. An intense metallurgical study of gold-tin TES with different compositions revealed important relations between the superconducting behaviour and the ...

  19. High-frequency homogenization for travelling waves in periodic media.

    Science.gov (United States)

    Harutyunyan, Davit; Milton, Graeme W; Craster, Richard V

    2016-07-01

    We consider high-frequency homogenization in periodic media for travelling waves of several different equations: the wave equation for scalar-valued waves such as acoustics; the wave equation for vector-valued waves such as electromagnetism and elasticity; and a system that encompasses the Schrödinger equation. This homogenization applies when the wavelength is of the order of the size of the medium periodicity cell. The travelling wave is assumed to be the sum of two waves: a modulated Bloch carrier wave having crystal wavevector [Formula: see text] and frequency ω 1 plus a modulated Bloch carrier wave having crystal wavevector [Formula: see text] and frequency ω 2 . We derive effective equations for the modulating functions, and then prove that there is no coupling in the effective equations between the two different waves both in the scalar and the system cases. To be precise, we prove that there is no coupling unless ω 1 = ω 2 and [Formula: see text] where Λ =(λ 1 λ 2 …λ d ) is the periodicity cell of the medium and for any two vectors [Formula: see text] the product a ⊙ b is defined to be the vector ( a 1 b 1 , a 2 b 2 ,…, a d b d ). This last condition forces the carrier waves to be equivalent Bloch waves meaning that the coupling constants in the system of effective equations vanish. We use two-scale analysis and some new weak-convergence type lemmas. The analysis is not at the same level of rigour as that of Allaire and co-workers who use two-scale convergence theory to treat the problem, but has the advantage of simplicity which will allow it to be easily extended to the case where there is degeneracy of the Bloch eigenvalue.

  20. High-Frequency Neuromuscular Electrical Stimulation Increases Anabolic Signaling.

    Science.gov (United States)

    Mettler, Joni A; Magee, Dillon M; Doucet, Barbara M

    2018-03-16

    Neuromuscular electrical stimulation (NMES) is commonly used in rehabilitation settings to increase muscle mass and strength. However, the effects of NMES on muscle growth are not clear and no human studies have compared anabolic signaling between low-frequency (LF-) and high-frequency (HF-) NMES. The purpose of this study was to determine the skeletal muscle anabolic signaling response to an acute bout of LF- and HF-NMES. Eleven young healthy volunteers (6 men; 5 women) received an acute bout of LF- (20 Hz) and HF- (60 Hz) NMES. Muscle biopsies were obtained from the vastus lateralis muscle prior to the first NMES treatment and 30-mins following each NMES treatment. Phosphorylation of the following key anabolic signaling proteins was measured by Western blot and proteins are expressed as a ratio of phosphorylated to total: mammalian target of rapamycin (mTOR), p70-S6 kinase 1 (S6K1), and eukaryotic initiation factor 4E binding protein 1 (4E-BP1). Compared to Pre-NMES, phosphorylation of mTOR was upregulated 40.2% for LF-NMES (P = 0.018) and 68.4% for HF-NMES (P 0.05). There were no differences between treatment conditions for 4E-BP1 phosphorylation (P > 0.05). An acute bout of LF- and HF-NMES upregulated anabolic signaling with HF-NMES producing a greater anabolic response compared to LF-NMES, suggesting that HF-stimulation may provide a stronger stimulus for processes that initiate muscle hypertrophy. Additionally, the stimulation frequency parameter should be considered by clinicians in the design of optimal NMES treatment protocols.

  1. Demonstration of the frequency modulation of optical signals with a high frequency deviation parameter

    International Nuclear Information System (INIS)

    Shamray, A V; Kozlov, A S; Il'ichev, I V; Petrov, M P

    2008-01-01

    A new type of an integrated optical modulator for the frequency coding of optical signals is developed and fabricated. The modulator operation is based on the original technology of the electric control of a Bragg grating. The frequency modulation of an optical signal with the frequency deviation of 25 GHz is demonstrated experimentally. The modular was used to transfer the ASCII code through an optical fibre. (optical communication)

  2. Microwave frequency sensor for detection of biological cells in microfluidic channels.

    Science.gov (United States)

    Nikolic-Jaric, M; Romanuik, S F; Ferrier, G A; Bridges, G E; Butler, M; Sunley, K; Thomson, D J; Freeman, M R

    2009-08-12

    We present details of an apparatus for capacitive detection of biomaterials in microfluidic channels operating at microwave frequencies where dielectric effects due to interfacial polarization are minimal. A circuit model is presented, which can be used to adapt this detection system for use in other microfluidic applications and to identify ones where it would not be suitable. The detection system is based on a microwave coupled transmission line resonator integrated into an interferometer. At 1.5 GHz the system is capable of detecting changes in capacitance of 650 zF with a 50 Hz bandwidth. This system is well suited to the detection of biomaterials in a variety of suspending fluids, including phosphate-buffered saline. Applications involving both model particles (polystyrene microspheres) and living cells-baker's yeast (Saccharomyces cerevisiae) and Chinese hamster ovary cells-are presented.

  3. The Effect of High-Frequency Stimulation on Sensory Thresholds in Chronic Pain Patients.

    Science.gov (United States)

    Youn, Youngwon; Smith, Heather; Morris, Brian; Argoff, Charles; Pilitsis, Julie G

    2015-01-01

    High-frequency stimulation (HFS) has recently gained attention as an alternative to parameters used in traditional spinal cord stimulation (SCS). Because HFS is paresthesia free, the gate theory of pain control as a basis of SCS has been called into question. The mechanism of action of HFS remains unclear. We compare the effects of HFS and traditional SCS on quantitative sensory testing parameters to provide insight into how HFS modulates the nervous system. Using quantitative sensory testing, we measured thermal detection and pain thresholds and mechanical detection and pressure pain thresholds, as well as vibratory detection, in 20 SCS patients off stimulation (OFF), on traditional stimulation (ON) and on HFS in a randomized order. HFS significantly increased the mechanical detection threshold compared to OFF stimulation (p < 0.001) and traditional SCS (p = 0.01). Pressure pain detection and vibratory detection thresholds also significantly increased with HFS compared to ON states (p = 0.04 and p = 0.01, respectively). In addition, HFS significantly decreased 10- and 40-gram pinprick detection compared to OFF states (both p = 0.01). No significant differences between OFF, ON and HFS states were seen in thermal and thermal pain detection. HFS is a new means of modulating chronic pain. The mechanism by which HFS works seems to differ from that of traditional SCS, offering a new platform for innovative advancements in treatment and a greater potential to treat patients by customizing waveforms. © 2015 S. Karger AG, Basel.

  4. [Reparative Osteogenesis and Angiogenesis in Low Intensity Electromagnetic Radiation of Ultra-High Frequency].

    Science.gov (United States)

    Iryanov, Y M; Kiryanov, N A

    2015-01-01

    Non-drug correction of reparative bone tissue regeneration in different pathological states - one of the most actual problems of modern medicine. Our aim was to conduct morphological analysis of the influence of electromagnetic radiation of ultra-high frequency and low intensity on reparative osteogenesis and angiogenesis in fracture treatment under transosseous osteosynthesis. A controlled nonrandomized study was carried out. In the experiment conducted on rats we modeled tibial fracture with reposition and fixation of the bone fragments both in control and experimental groups. In the animals of the experimental group the fracture zone was exposed to low intensity electromagnetic radiation of ultra-high frequency. Exposure simulation was performed in the control group. The operated bones were examined using radiography, light and electronic microscopy, X-ray electronic probe microanalysis. It has been established that electromagnetic radiation of ultra-high frequency sessions in fracture treatment stimulate secretory activity and degranulation of mast cells, produce microcirculatory bed vascular permeability increase, endotheliocyte migration phenotype expression, provide endovascular endothelial outgrowth formation, activate reparative osteogenesis and angiogenesis while fracture reparation becomes the one of the primary type. The full periosteal, intermediary and intraosteal bone union was defined in 28 days. Among the therapeutic benefits of electromagnetic radiation of ultra-high frequency in fracture treatment we can detect mast cell secretorv activity stimulation and endovascular anziozenesis activation.

  5. High-frequency underwater plasma discharge application in antibacterial activity

    International Nuclear Information System (INIS)

    Ahmed, M. W.; Choi, S.; Lyakhov, K.; Shaislamov, U.; Mongre, R. K.; Jeong, D. K.; Suresh, R.; Lee, H. J.

    2017-01-01

    Plasma discharge is a novel disinfection and effectual inactivation approach to treat microorganisms in aqueous systems. Inactivation of Gram-negative Escherichia coli (E. coli) by generating high-frequency, high-voltage, oxygen (O_2) injected and hydrogen peroxide (H_2O_2) added discharge in water was achieved. The effect of H_2O_2 dose and oxygen injection rate on electrical characteristics of discharge and E. coli disinfection has been reported. Microbial log reduction dependent on H_2O_2 addition with O_2 injection was observed. The time variation of the inactivation efficiency quantified by the log reduction of the initial E. coli population on the basis of optical density measurement was reported. The analysis of emission spectrum recorded after discharge occurrence illustrated the formation of oxidant species (OH"•, H, and O). Interestingly, the results demonstrated that O_2 injected and H_2O_2 added, underwater plasma discharge had fabulous impact on the E. coli sterilization. The oxygen injection notably reduced the voltage needed for generating breakdown in flowing water and escalated the power of discharge pulses. No impact of hydrogen peroxide addition on breakdown voltage was observed. A significant role of oxidant species in bacterial inactivation also has been identified. Furthermore the E. coli survivability in plasma treated water with oxygen injection and hydrogen peroxide addition drastically reduced to zero. The time course study also showed that the retardant effect on E. coli colony multiplication in plasma treated water was favorable, observed after long time. High-frequency underwater plasma discharge based biological applications is technically relevant and would act as baseline data for the development of novel antibacterial processing strategies.

  6. High-frequency underwater plasma discharge application in antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, M. W.; Choi, S.; Lyakhov, K.; Shaislamov, U. [Jeju National University, Department of Nuclear and Energy Engineering (Korea, Republic of); Mongre, R. K.; Jeong, D. K. [Jeju National University, Faculty of Biotechnology (Korea, Republic of); Suresh, R.; Lee, H. J., E-mail: hjlee@jejunu.ac.kr [Jeju National University, Department of Nuclear and Energy Engineering (Korea, Republic of)

    2017-03-15

    Plasma discharge is a novel disinfection and effectual inactivation approach to treat microorganisms in aqueous systems. Inactivation of Gram-negative Escherichia coli (E. coli) by generating high-frequency, high-voltage, oxygen (O{sub 2}) injected and hydrogen peroxide (H{sub 2}O{sub 2}) added discharge in water was achieved. The effect of H{sub 2}O{sub 2} dose and oxygen injection rate on electrical characteristics of discharge and E. coli disinfection has been reported. Microbial log reduction dependent on H{sub 2}O{sub 2} addition with O{sub 2} injection was observed. The time variation of the inactivation efficiency quantified by the log reduction of the initial E. coli population on the basis of optical density measurement was reported. The analysis of emission spectrum recorded after discharge occurrence illustrated the formation of oxidant species (OH{sup •}, H, and O). Interestingly, the results demonstrated that O{sub 2} injected and H{sub 2}O{sub 2} added, underwater plasma discharge had fabulous impact on the E. coli sterilization. The oxygen injection notably reduced the voltage needed for generating breakdown in flowing water and escalated the power of discharge pulses. No impact of hydrogen peroxide addition on breakdown voltage was observed. A significant role of oxidant species in bacterial inactivation also has been identified. Furthermore the E. coli survivability in plasma treated water with oxygen injection and hydrogen peroxide addition drastically reduced to zero. The time course study also showed that the retardant effect on E. coli colony multiplication in plasma treated water was favorable, observed after long time. High-frequency underwater plasma discharge based biological applications is technically relevant and would act as baseline data for the development of novel antibacterial processing strategies.

  7. Photoinduced High-Frequency Charge Oscillations in Dimerized Systems

    Science.gov (United States)

    Yonemitsu, Kenji

    2018-04-01

    Photoinduced charge dynamics in dimerized systems is studied on the basis of the exact diagonalization method and the time-dependent Schrödinger equation for a one-dimensional spinless-fermion model at half filling and a two-dimensional model for κ-(bis[ethylenedithio]tetrathiafulvalene)2X [κ-(BEDT-TTF)2X] at three-quarter filling. After the application of a one-cycle pulse of a specifically polarized electric field, the charge densities at half of the sites of the system oscillate in the same phase and those at the other half oscillate in the opposite phase. For weak fields, the Fourier transform of the time profile of the charge density at any site after photoexcitation has peaks for finite-sized systems that correspond to those of the steady-state optical conductivity spectrum. For strong fields, these peaks are suppressed and a new peak appears on the high-energy side, that is, the charge densities mainly oscillate with a single frequency, although the oscillation is eventually damped. In the two-dimensional case without intersite repulsion and in the one-dimensional case, this frequency corresponds to charge-transfer processes by which all the bonds connecting the two classes of sites are exploited. Thus, this oscillation behaves as an electronic breathing mode. The relevance of the new peak to a recently found reflectivity peak in κ-(BEDT-TTF)2X after photoexcitation is discussed.

  8. Earless toads sense low frequencies but miss the high notes

    DEFF Research Database (Denmark)

    Womack, Molly C; Christensen-Dalsgaard, Jakob; Coloma, Luis A

    2017-01-01

    Sensory losses or reductions are frequently attributed to relaxed selection. However, anuran species have lost tympanic middle ears many times, despite anurans' use of acoustic communication and the benefit of middle ears for hearing airborne sound. Here we determine whether pre-existing alternat......Sensory losses or reductions are frequently attributed to relaxed selection. However, anuran species have lost tympanic middle ears many times, despite anurans' use of acoustic communication and the benefit of middle ears for hearing airborne sound. Here we determine whether pre......-existing alternative sensory pathways enable anurans lacking tympanic middle ears (termed earless anurans) to hear airborne sound as well as eared species or to better sense vibrations in the environment. We used auditory brainstem recordings to compare hearing and vibrational sensitivity among 10 species (six eared......, four earless) within the Neotropical true toad family (Bufonidae). We found that species lacking middle ears are less sensitive to high-frequency sounds, however, low-frequency hearing and vibrational sensitivity are equivalent between eared and earless species. Furthermore, extratympanic hearing...

  9. Ultra High-Speed Radio Frequency Switch Based on Photonics.

    Science.gov (United States)

    Ge, Jia; Fok, Mable P

    2015-11-26

    Microwave switches, or Radio Frequency (RF) switches have been intensively used in microwave systems for signal routing. Compared with the fast development of microwave and wireless systems, RF switches have been underdeveloped particularly in terms of switching speed and operating bandwidth. In this paper, we propose a photonics based RF switch that is capable of switching at tens of picoseconds speed, which is hundreds of times faster than any existing RF switch technologies. The high-speed switching property is achieved with the use of a rapidly tunable microwave photonic filter with tens of gigahertz frequency tuning speed, where the tuning mechanism is based on the ultra-fast electro-optics Pockels effect. The RF switch has a wide operation bandwidth of 12 GHz and can go up to 40 GHz, depending on the bandwidth of the modulator used in the scheme. The proposed RF switch can either work as an ON/OFF switch or a two-channel switch, tens of picoseconds switching speed is experimentally observed for both type of switches.

  10. Dielectric and acoustical high frequency characterisation of PZT thin films

    Energy Technology Data Exchange (ETDEWEB)

    Conde, Janine; Muralt, Paul, E-mail: janine.conde@epfl.ch [Department of Materials Science, EPFL (Switzerland)

    2010-02-15

    Pb(Zr, Ti)O{sub 3} (PZT) is an interesting material for bulk acoustic wave resonator applications due to its high electromechanical coupling constant, which would enable fabrication of large bandwidth frequency filters. The major challenge of the PZT solid solution system is to overcome mechanical losses generally observed in PZT ceramics. To increase the understanding of these losses in textured thin films, thin film bulk acoustic resonators (TFBAR's) based on PZT thin films with compositions either in the tetragonal region or at the morphotropic phase boundary and (111) or {l_brace}100{r_brace} textures were fabricated and studied up to 2 GHz. The dielectric and elastic materials coefficients were extracted from impedance measurements at the resonance frequency. The dispersion of the dielectric constant was obtained from impedance measurements up to 2 GHz. The films with varying compositions, textures and deposition methods (sol-gel or sputtering) were compared in terms of dielectric and acoustical properties.

  11. High Frequency Longitudinal Damped Vibrations of a Cylindrical Ultrasonic Transducer

    Directory of Open Access Journals (Sweden)

    Mihai Valentin Predoi

    2014-01-01

    Full Text Available Ultrasonic piezoelectric transducers used in classical nondestructive testing are producing in general longitudinal vibrations in the MHz range. A simple mechanical model of these transducers would be very useful for wave propagation numerical simulations, avoiding the existing complicated models in which the real components of the transducer are modeled by finite elements. The classical model for longitudinal vibrations is not adequate because the generated longitudinal wave is not dispersive, the velocity being the same at any frequency. We have adopted the Rayleigh-Bishop model, which avoids these limitations, even if it is not converging to the first but to the second exact longitudinal mode in an elastic rod, as obtained from the complicated Pochhammer-Chree equations. Since real transducers have significant vibrations damping, we have introduced a damping term in the Rayleigh-Bishop model, increasing the imaginary part and keeping almost identical real part of the wavenumber. Common transducers produce amplitude modulated signals, completely attenuated after several periods. This can be modeled by two close frequencies, producing a “beat” phenomenon, superposed on the high damping. For this reason, we introduce a two-rod Rayleigh-Bishop model with damping. Agreement with measured normal velocity on the transducer free surface is encouraging for continuation of the research.

  12. Methods of Improving High Frequency Direct Injection Testing

    National Research Council Canada - National Science Library

    Lehr, Jane

    1997-01-01

    .... A major problem has been the frequency response of the voltage probes. This effort has identified the cause of the degradation of the voltage dividing ratio with frequency, through experiment and circuit simulation, as a capacitive effect...

  13. High-Frequency Antenna Arrays and Coupling Structures

    Data.gov (United States)

    National Aeronautics and Space Administration — We are fabricating antenna arrays and coupling structure for frequencies in the 200-300 GHz frequency bands. The primary motivation of this work is to develop...

  14. Contactless or High Frequency Conductometry or Oscillometry of Electrolytes

    OpenAIRE

    Kiumars Ghowsi; Hosein Ghowsi

    2013-01-01

    Circuit models are used to express the behavior of the conductometric cells in the radio frequency to microwave region .The capacitive cell has two era classic era and modern era as a detector for Capillary Zone Electrophoresis . Capacitive Cell where electrodes are outside the Cells and frequency of the electric signal is in the cell the radio frequency range is modeled. Both microscopic phenomena occurring at radio frequencies in electrolytes and macroscopic phenomena the circuit model for ...

  15. System and method for constructing filters for detecting signals whose frequency content varies with time

    Science.gov (United States)

    Qian, S.; Dunham, M.E.

    1996-11-12

    A system and method are disclosed for constructing a bank of filters which detect the presence of signals whose frequency content varies with time. The present invention includes a novel system and method for developing one or more time templates designed to match the received signals of interest and the bank of matched filters use the one or more time templates to detect the received signals. Each matched filter compares the received signal x(t) with a respective, unique time template that has been designed to approximate a form of the signals of interest. The robust time domain template is assumed to be of the order of w(t)=A(t)cos(2{pi}{phi}(t)) and the present invention uses the trajectory of a joint time-frequency representation of x(t) as an approximation of the instantaneous frequency function {phi}{prime}(t). First, numerous data samples of the received signal x(t) are collected. A joint time frequency representation is then applied to represent the signal, preferably using the time frequency distribution series. The joint time-frequency transformation represents the analyzed signal energy at time t and frequency f, P(t,f), which is a three-dimensional plot of time vs. frequency vs. signal energy. Then P(t,f) is reduced to a multivalued function f(t), a two dimensional plot of time vs. frequency, using a thresholding process. Curve fitting steps are then performed on the time/frequency plot, preferably using Levenberg-Marquardt curve fitting techniques, to derive a general instantaneous frequency function {phi}{prime}(t) which best fits the multivalued function f(t). Integrating {phi}{prime}(t) along t yields {phi}{prime}(t), which is then inserted into the form of the time template equation. A suitable amplitude A(t) is also preferably determined. Once the time template has been determined, one or more filters are developed which each use a version or form of the time template. 7 figs.

  16. A study of the high-frequency hearing thresholds of dentistry professionals

    Directory of Open Access Journals (Sweden)

    Lopes, Andréa Cintra

    2012-01-01

    Full Text Available Introduction: In the dentistry practice, dentists are exposed to harmful effects caused by several factors, such as the noise produced by their work instruments. In 1959, the American Dental Association recommended periodical hearing assessments and the use of ear protectors. Aquiring more information regarding dentists', dental nurses', and prosthodontists' hearing abilities is necessary to propose prevention measures and early treatment strategies. Objective: To investigate the auditory thresholds of dentists, dental nurses, and prosthodontists. Method: In this clinical and experimental study, 44 dentists (Group I; GI, 36 dental nurses (Group II; GII, and 28 prosthodontists (Group III; GIII were included, , with a total of 108 professionals. The procedures that were performed included a specific interview, ear canal inspection, conventional and high-frequency threshold audiometry, a speech reception threshold test, and an acoustic impedance test. Results: In the 3 groups that were tested, the comparison between the mean hearing thresholds provided evidence of worsened hearing ability relative to the increase in frequency. For the tritonal mean at 500 to 2,000 Hz and 3,000 to 6,000 Hz, GIII presented the worst thresholds. For the mean of the high frequencies (9,000 and 16,000 Hz, GII presented the worst thresholds. Conclusion: The conventional hearing threshold evaluation did not demonstrate alterations in the 3 groups that were tested; however, the complementary tests such as high-frequency audiometry provided greater efficacy in the early detection of hearing problems, since this population's hearing loss impaired hearing ability at frequencies that are not tested by the conventional tests. Therefore, we emphasize the need of utilizing high-frequency threshold audiometry in the hearing assessment routine in combination with other audiological tests.

  17. Low-frequency versus high-frequency synchronisation in chirp-evoked auditory brainstem responses

    DEFF Research Database (Denmark)

    Rønne, Filip Munch; Gøtsche-Rasmussen, Kristian

    2011-01-01

    This study investigates the frequency specific contribution to the auditory brainstem response (ABR) of chirp stimuli. Frequency rising chirps were designed to compensate for the cochlear traveling wave delay, and lead to larger wave-V amplitudes than for click stimuli as more auditory nerve fibr...

  18. A high-frequency survey of the southern Galactic plane for pulsars

    Science.gov (United States)

    Johnston, Simon; Lyne, A. G.; Manchester, R. N.; Kniffen, D. A.; D'Amico, N.; Lim, J.; Ashworth, M.

    1992-01-01

    Results of an HF survey designed to detect young, distant, and short-period pulsars are presented. The survey detected a total of 100 pulsars, 46 of which were previously unknown. The periods of the newly discovered pulsars range between 47 ms and 2.5 ms. One of the new discoveries, PSR 1259-63, is a member of a long-period binary system. At least three of the pulsars have ages less than 30,000 yr, bringing the total number of such pulsars to 12. The majority of the new discoveries are distant objects with high dispersion measures, which are difficult to detect at low frequencies. This demonstrates that the survey has reduced the severe selection effects of pulse scattering, high Galactic background temperature, and dispersion broadening, which hamper the detection of such pulsars at low radio frequencies. The pulsar distribution in the southern Galaxy is found to extend much further from the Galactic center than that in the north, probably due to two prominent spiral arms in the southern Galaxy.

  19. Extended high-frequency audiometry (9,000-20,000 Hz). Usefulness in audiological diagnosis.

    Science.gov (United States)

    Rodríguez Valiente, Antonio; Roldán Fidalgo, Amaya; Villarreal, Ithzel M; García Berrocal, José R

    2016-01-01

    Early detection and appropriate treatment of hearing loss are essential to minimise the consequences of hearing loss. In addition to conventional audiometry (125-8,000 Hz), extended high-frequency audiometry (9,000-20,000 Hz) is available. This type of audiometry may be useful in early diagnosis of hearing loss in certain conditions, such as the ototoxic effect of cisplatin-based treatment, noise exposure or oral misunderstanding, especially in noisy environments. Eleven examples are shown in which extended high-frequency audiometry has been useful in early detection of hearing loss, despite the subject having a normal conventional audiometry. The goal of the present paper was to highlight the importance of the extended high-frequency audiometry examination for it to become a standard tool in routine audiological examinations. Copyright © 2015 Elsevier España, S.L.U. y Sociedad Española de Otorrinolaringología y Patología Cérvico-Facial. All rights reserved.

  20. An integrative time-varying frequency detection and channel sounding method for dynamic plasma sheath

    Science.gov (United States)

    Shi, Lei; Yao, Bo; Zhao, Lei; Liu, Xiaotong; Yang, Min; Liu, Yanming

    2018-01-01

    The plasma sheath-surrounded hypersonic vehicle is a dynamic and time-varying medium and it is almost impossible to calculate time-varying physical parameters directly. The in-fight detection of the time-varying degree is important to understand the dynamic nature of the physical parameters and their effect on re-entry communication. In this paper, a constant envelope zero autocorrelation (CAZAC) sequence based on time-varying frequency detection and channel sounding method is proposed to detect the plasma sheath electronic density time-varying property and wireless channel characteristic. The proposed method utilizes the CAZAC sequence, which has excellent autocorrelation and spread gain characteristics, to realize dynamic time-varying detection/channel sounding under low signal-to-noise ratio in the plasma sheath environment. Theoretical simulation under a typical time-varying radio channel shows that the proposed method is capable of detecting time-variation frequency up to 200 kHz and can trace the channel amplitude and phase in the time domain well under -10 dB. Experimental results conducted in the RF modulation discharge plasma device verified the time variation detection ability in practical dynamic plasma sheath. Meanwhile, nonlinear phenomenon of dynamic plasma sheath on communication signal is observed thorough channel sounding result.

  1. Synchronization of vortex formation frequency with the body motion frequency at high Reynolds numbers

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Luiz Antonio Alcantara [Federal University of Itajuba (UNIFEI), MG (Brazil). Inst. of Mechanical Engineering], E-mail: luizantp@unifei.edu.br; Hirata, Miguel Hiroo [State University of Rio de Janeiro (FAT/UERJ), Resende, RJ (Brazil). Fac. de Tecnologia], E-mail: hirata@fat.uerj.br

    2010-07-01

    Understanding vortex induced vibrations is of great importance in the design of a variety of offshore engineering structures, nuclear plant components and cylindrical elements in tube-bank heat exchangers, for example. If a body is placed in a flow, it experiences alternating lift and drag forces caused by the asymmetric formation of vortices, which can cause a structure to vibrate. One of the most interesting features of this flow is the phenomenon of lock-in which is observed when the vortex shedding frequency is close to the body oscillation frequency. This paper presents the results of numerical experiments on vortex shedding from a circular cylinder vibrating in-line or transversely with an incident uniform flow at Reynolds number of 1.0 x 10{sup 5}. The frequencies of the lift and drag coefficients are compared with the body motion frequency when the frequency ratio is about unity. (author)

  2. Complex correlation approach for high frequency financial data

    Science.gov (United States)

    Wilinski, Mateusz; Ikeda, Yuichi; Aoyama, Hideaki

    2018-02-01

    We propose a novel approach that allows the calculation of a Hilbert transform based complex correlation for unevenly spaced data. This method is especially suitable for high frequency trading data, which are of a particular interest in finance. Its most important feature is the ability to take into account lead-lag relations on different scales, without knowing them in advance. We also present results obtained with this approach while working on Tokyo Stock Exchange intraday quotations. We show that individual sectors and subsectors tend to form important market components which may follow each other with small but significant delays. These components may be recognized by analysing eigenvectors of complex correlation matrix for Nikkei 225 stocks. Interestingly, sectorial components are also found in eigenvectors corresponding to the bulk eigenvalues, traditionally treated as noise.

  3. High Frequency QPOs due to Black Hole Spin

    Science.gov (United States)

    Kazanas, Demos; Fukumura, K.

    2009-01-01

    We present detailed computations of photon orbits emitted by flares at the innermost stable circular orbit (ISCO) of accretion disks around rotating black holes. We show that for sufficiently large spin parameter, i.e. a > 0.94 M, flare a sufficient number of photons arrive at an observer after multiple orbits around the black hole, to produce an "photon echo" of constant lag, i.e. independent of the relative phase between the black hole and the observer, of T approximates 14 M. This constant time delay, then, leads to a power spectrum with a QPO at a frequency nu approximates 1/14M, even for a totally random ensemble of such flares. Observation of such a QPO will provide incontrovertible evidence for the high spin of the black hole and a very accurate, independent, measurement of its mass.

  4. Effective High-Frequency Permeability of Compacted Metal Powders

    Science.gov (United States)

    Volkovskaya, I. I.; Semenov, V. E.; Rybakov, K. I.

    2018-03-01

    We propose a model for determination of the effective complex permeability of compacted metal-powder media. It is based on the equality of the magnetic moment in a given volume of the media with the desired effective permeability to the total magnetic moment of metal particles in the external high-frequency magnetic field, which arises due to excitation of electric eddy currents in the particles. Calculations within the framework of the proposed model allow us to refine the values of the real and imaginary components of the permeability of metal powder compacts in the microwave band. The conditions of applicability of the proposed model are formulated, and their fulfillment is verified for metal powder compacts in the microwave and millimeter wavelength bands.

  5. High-Performance Control in Radio Frequency Power Amplification Systems

    DEFF Research Database (Denmark)

    Høyerby, Mikkel Christian Kofod

    . It is clearly shown that single-phase switch-mode control systems based on oscillation (controlled unstable operation) of the whole power train provide the highest possible control bandwidth. A study of the limitations of cartesian feedback is also included. It is shown that bandwidths in excess of 4MHz can...... frequency power amplifiers (RFPAs) in conjunction with cartesian feedback (CFB) used to linearize the overall transmitter system. On a system level, it is demonstrated how envelope tracking is particularly useful for RF carriers with high peak-to-average power ratios, such as TEDS with 10dB. It is also...... demonstrated how the envelope tracking technique introduces a number of potential pitfalls to the system, namely in the form of power supply ripple intermodulation (PSIM), reduced RFPA linearity and a higherimpedance supply rail for the RFPA. Design and analysis techniques for these three issues are introduced...

  6. Ultra-high Frequency Linear Fiber Optic Systems

    CERN Document Server

    Lau, Kam

    2011-01-01

    This book provides an in-depth treatment of both linear fiber-optic systems and their key enabling devices. It presents a concise but rigorous treatment of the theory and practice of analog (linear) fiber-optics links and systems that constitute the foundation of Hybrid Fiber Coax infrastructure in present-day CATV distribution and cable modem Internet access. Emerging applications in remote fiber-optic feed for free-space millimeter wave enterprise campus networks are also described. Issues such as dispersion and interferometric noise are treated quantitatively, and means for mitigating them are explained. This broad but concise text will thus be invaluable not only to students of fiber-optics communication but also to practicing engineers. To the second edition of this book important new aspects of linear fiber-optic transmission technologies are added, such as high level system architectural issues, algorithms for deriving the optimal frequency assignment, directly modulated or externally modulated laser t...

  7. High-efficiency water-loaded microwave antenna in ultra-high-frequency band

    Science.gov (United States)

    Gong, Zilun; Bartone, Chris; Yang, Fuyi; Yao, Jie

    2018-03-01

    High-index dielectrics are widely used in microwave antennas to control the radiation characteristics. Liquid water, with a high dielectric index at microwave frequency, is an interesting material to achieving tunable functionalities. Here, we demonstrate a water-loaded microwave antenna system that has high loss-tolerance and wideband tunability enabled by fluidity. Our simulation and experimental results show that the resonance frequency can be effectively tuned by the size of loading water. Furthermore, the antenna systems with water loading can achieve high radiation efficiency (>90%) in the ultra-high-frequency (0.3-3 GHz) band. This work brings about opportunities in realistic tunable microwave antenna designs enabled by liquid.

  8. Low and High-Frequency Field Potentials of Cortical Networks ...

    Science.gov (United States)

    Neural networks grown on microelectrode arrays (MEAs) have become an important, high content in vitro assay for assessing neuronal function. MEA experiments typically examine high- frequency (HF) (>200 Hz) spikes, and bursts which can be used to discriminate between different pharmacological agents/chemicals. However, normal brain activity is additionally composed of integrated low-frequency (0.5-100 Hz) field potentials (LFPs) which are filtered out of MEA recordings. The objective of this study was to characterize the relationship between HF and LFP neural network signals, and to assess the relative sensitivity of LFPs to selected neurotoxicants. Rat primary cortical cultures were grown on glass, single-well MEA chips. Spontaneous activity was sampled at 25 kHz and recorded (5 min) (Multi-Channel Systems) from mature networks (14 days in vitro). HF (spike, mean firing rate, MFR) and LF (power spectrum, amplitude) components were extracted from each network and served as its baseline (BL). Next, each chip was treated with either 1) a positive control, bicuculline (BIC, 25μM) or domoic acid (DA, 0.3μM), 2) or a negative control, acetaminophen (ACE, 100μM) or glyphosate (GLY, 100μM), 3) a solvent control (H2O or DMSO:EtOH), or 4) a neurotoxicant, (carbaryl, CAR 5, 30μM ; lindane, LIN 1, 10μM; permethrin, PERM 25, 50μM; triadimefon, TRI 5, 65μM). Post treatment, 5 mins of spontaneous activity was recorded and analyzed. As expected posit

  9. High-frequency heating of plasma with two ion species

    International Nuclear Information System (INIS)

    Klima, R.; Longinov, A.V.; Stepanov, K.N.

    1975-01-01

    The authors consider the penetration of electromagnetic waves with a frequency of the order of the ion cyclotron frequencies and with a fixed longitudinal wave number ksub(long), so that Nsub(long)=ksub(long)c/ω>>1 deep into an inhomogeneous plasma with two ion species. The propagation of two kinds of waves (fast and slow) with widely differing polarization and transverse refraction index is possible. For both types of waves there is an evanescence region at the plasma periphery. The evanescence region is narrow for slow waves and they easily penetrate the plasma. In a dense plasma they become electrostatic and can reach the ion-ion hybrid resonance region. However, the damping of these waves due to Cherenkov interaction with electrons in a high-temperature plasma is strong and therefore they are not suitable for heating plasma of large dimensions, as they are absorbed at the plasma periphery. The fast waves have a wider evanescence region and can be excited effectively only if N 2 is not too high. These waves can be completely absorbed in the plasma (due to Cherenkov interaction with electrons) if xi approximately (v 2 sub(Ti)/v 2 sub(A))Zsub(e)(ωsub(pi)a/c)exp(-Zsub(e) 2 ) > 1, where a is the plasma radius and Zsub(e) = ω/(√2 ksub(long)vsub(Te)). Fast waves can also reach the region where they are transformed into slow waves. In this region their damping increases considerably. It is shown that the transformation region in an inhomogeneous plasma with two ion species in a non-uniform magnetic field may be at the centre of the plasma. Fast waves can be used effectively for heating plasma of large dimensions. (author)

  10. High frequency oscillatory ventilation in meconium aspiration syndrome

    Directory of Open Access Journals (Sweden)

    José Nona

    2009-03-01

    Full Text Available Objective: To evaluate and compare the management and associated morbidity in inborn and outborn babies with meconium aspiration syndrome admitted to the Neonatal Intensive Care Unit and ventilated with high frequency oscillatory ventilation. Methods: A retrospective cohort study with a review of clinical data from newborns, admitted to the Neonatal Intensive Care Unit during a six-year period (from 1999 to 2004 and ventilated with early high frequency oscillatory ventilation, first intention in inborns and immediately after Neonatal Intensive Care Unit arrival in outborns. Rresults: In the present study, 27 newborns were included: 12 inborn and 15 outborn infants. Severity criteria were similar in both groups. The pulmonary morbidity associated was severe persistent pulmonary hypertension - 12 (seven outborns, pneumothorax - five (three outborns, interstitial emphysema – two (one outborn and pulmonary hemorrhage – one outborn. Hypoxic-ischemic encephalopathy II-III occurred in six newborns (four outborns. The therapeutic procedures were surfactant administration in 22 newborns (13 outborns, nitric oxide in 12 newborns (7 outborns and magnesium sulphate in four newborns (three outborns. The median length of ventilation was six days (inborn infants: four and half days; outborn infants: ten days and the median length of oxygenation supply was ten days (inborn infants: four and half days; outborn infants: 15 days. The median length of stay was 13 days (inborn infants: 11 days; outborn infants: 16 days. One outborn infant died. Cconclusions: With this ventilation strategy, we have found no significant statistical differences between the two newborn groups, except for the length of oxygenation supply that was longer in the Outborn Group.

  11. Frequency conversion of high-intensity, femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Banks, P S

    1997-06-01

    Almost since the invention of the laser, frequency conversion of optical pulses via non- linear processes has been an area of active interest. However, third harmonic generation using ~(~1 (THG) in solids is an area that has not received much attention because of ma- terial damage limits. Recently, the short, high-intensity pulses possible with chirped-pulse amplification (CPA) laser systems allow the use of intensities on the order of 1 TW/cm2 in thin solids without damage. As a light source to examine single-crystal THG in solids and other high field inter- actions, the design and construction of a Ti:sapphire-based CPA laser system capable of ultimately producing peak powers of 100 TW is presented. Of special interest is a novel, all-reflective pulse stretcher design which can stretch a pulse temporally by a factor of 20,000. The stretcher design can also compensate for the added material dispersion due to propagation through the amplifier chain and produce transform-limited 45 fs pulses upon compression. A series of laser-pumped amplifiers brings the peak power up to the terawatt level at 10 Hz, and the design calls for additional amplifiers to bring the power level to the 100 TW level for single shot operation. The theory for frequency conversion of these short pulses is presented, focusing on conversion to the third harmonic in single crystals of BBO, KD*P, and d-LAP (deuterated I-arginine phosphate). Conversion efficiencies of up to 6% are obtained with 500 fs pulses at 1053 nm in a 3 mm thick BBO crystal at 200 GW/cm 2. Contributions to this process by unphasematched, cascaded second harmonic generation and sum frequency generation are shown to be very significant. The angular relationship between the two orders is used to measure the tensor elements of C = xt3)/4 with Crs = -1.8 x 1O-23 m2/V2 and .15Cri + .54Crs = 4.0 x 1O-23 m2/V2. Conversion efficiency in d-LAP is about 20% that in BBO and conversion efficiency in KD*P is 1% that of BBO. It is calculated

  12. Noninvasive Quantitative Imaging of Collagen Microstructure in Three-Dimensional Hydrogels Using High-Frequency Ultrasound.

    Science.gov (United States)

    Mercado, Karla P; Helguera, María; Hocking, Denise C; Dalecki, Diane

    2015-07-01

    Collagen I is widely used as a natural component of biomaterials for both tissue engineering and regenerative medicine applications. The physical and biological properties of fibrillar collagens are strongly tied to variations in collagen fiber microstructure. The goal of this study was to develop the use of high-frequency quantitative ultrasound to assess collagen microstructure within three-dimensional (3D) hydrogels noninvasively and nondestructively. The integrated backscatter coefficient (IBC) was employed as a quantitative ultrasound parameter to detect, image, and quantify spatial variations in collagen fiber density and diameter. Collagen fiber microstructure was varied by fabricating hydrogels with different collagen concentrations or polymerization temperatures. IBC values were computed from measurements of the backscattered radio-frequency ultrasound signals collected using a single-element transducer (38-MHz center frequency, 13-47 MHz bandwidth). The IBC increased linearly with increasing collagen concentration and decreasing polymerization temperature. Parametric 3D images of the IBC were generated to visualize and quantify regional variations in collagen microstructure throughout the volume of hydrogels fabricated in standard tissue culture plates. IBC parametric images of corresponding cell-embedded collagen gels showed cell accumulation within regions having elevated collagen IBC values. The capability of this ultrasound technique to noninvasively detect and quantify spatial differences in collagen microstructure offers a valuable tool to monitor the structural properties of collagen scaffolds during fabrication, to detect functional differences in collagen microstructure, and to guide fundamental research on the interactions of cells and collagen matrices.

  13. An Automated Measurement of Ciliary Beating Frequency using a Combined Optical Flow and Peak Detection.

    Science.gov (United States)

    Kim, Woojae; Han, Tae Hwa; Kim, Hyun Jun; Park, Man Young; Kim, Ku Sang; Park, Rae Woong

    2011-06-01

    The mucociliary transport system is a major defense mechanism of the respiratory tract. The performance of mucous transportation in the nasal cavity can be represented by a ciliary beating frequency (CBF). This study proposes a novel method to measure CBF by using optical flow. To obtain objective estimates of CBF from video images, an automated computer-based image processing technique is developed. This study proposes a new method based on optical flow for image processing and peak detection for signal processing. We compare the measuring accuracy of the method in various combinations of image processing (optical flow versus difference image) and signal processing (fast Fourier transform [FFT] vs. peak detection [PD]). The digital high-speed video method with a manual count of CBF in slow motion video play, is the gold-standard in CBF measurement. We obtained a total of fifty recorded ciliated sinonasal epithelium images to measure CBF from the Department of Otolaryngology. The ciliated sinonasal epithelium images were recorded at 50-100 frames per second using a charge coupled device camera with an inverted microscope at a magnification of ×1,000. The mean square errors and variance for each method were 1.24, 0.84 Hz; 11.8, 2.63 Hz; 3.22, 1.46 Hz; and 3.82, 1.53 Hz for optical flow (OF) + PD, OF + FFT, difference image [DI] + PD, and DI + FFT, respectively. Of the four methods, PD using optical flow showed the best performance for measuring the CBF of nasal mucosa. The proposed method was able to measure CBF more objectively and efficiently than what is currently possible.

  14. Vibro-Shock Dynamics Analysis of a Tandem Low Frequency Resonator—High Frequency Piezoelectric Energy Harvester

    Directory of Open Access Journals (Sweden)

    Darius Žižys

    2017-04-01

    Full Text Available Frequency up-conversion is a promising technique for energy harvesting in low frequency environments. In this approach, abundantly available environmental motion energy is absorbed by a Low Frequency Resonator (LFR which transfers it to a high frequency Piezoelectric Vibration Energy Harvester (PVEH via impact or magnetic coupling. As a result, a decaying alternating output signal is produced, that can later be collected using a battery or be transferred directly to the electric load. The paper reports an impact-coupled frequency up-converting tandem setup with different LFR to PVEH natural frequency ratios and varying contact point location along the length of the harvester. RMS power output of different frequency up-converting tandems with optimal resistive values was found from the transient analysis revealing a strong relation between power output and LFR-PVEH natural frequency ratio as well as impact point location. Simulations revealed that higher power output is obtained from a higher natural frequency ratio between LFR and PVEH, an increase of power output by one order of magnitude for a doubled natural frequency ratio and up to 150% difference in power output from different impact point locations. The theoretical results were experimentally verified.

  15. High frequency flow-structural interaction in dense subsonic fluids

    Science.gov (United States)

    Liu, Baw-Lin; Ofarrell, J. M.

    1995-01-01

    Prediction of the detailed dynamic behavior in rocket propellant feed systems and engines and other such high-energy fluid systems requires precise analysis to assure structural performance. Designs sometimes require placement of bluff bodies in a flow passage. Additionally, there are flexibilities in ducts, liners, and piping systems. A design handbook and interactive data base have been developed for assessing flow/structural interactions to be used as a tool in design and development, to evaluate applicable geometries before problems develop, or to eliminate or minimize problems with existing hardware. This is a compilation of analytical/empirical data and techniques to evaluate detailed dynamic characteristics of both the fluid and structures. These techniques have direct applicability to rocket engine internal flow passages, hot gas drive systems, and vehicle propellant feed systems. Organization of the handbook is by basic geometries for estimating Strouhal numbers, added mass effects, mode shapes for various end constraints, critical onset flow conditions, and possible structural response amplitudes. Emphasis is on dense fluids and high structural loading potential for fatigue at low subsonic flow speeds where high-frequency excitations are possible. Avoidance and corrective measure illustrations are presented together with analytical curve fits for predictions compiled from a comprehensive data base.

  16. Proton-irradiation technology for high-frequency high-current silicon welding diode manufacturing

    International Nuclear Information System (INIS)

    Lagov, P B; Drenin, A S; Zinoviev, M A

    2017-01-01

    Different proton irradiation regimes were tested to provide more than 20 kHz-frequency, soft reverse recovery “snap-less” behavior, low forward voltage drop and leakage current for 50 mm diameter 7 kA/400 V welding diode Al/Si/Mo structure. Silicon diode with such parameters is very suitable for high frequency resistance welding machines of new generation for robotic welding. (paper)

  17. Proton-irradiation technology for high-frequency high-current silicon welding diode manufacturing

    Science.gov (United States)

    Lagov, P. B.; Drenin, A. S.; Zinoviev, M. A.

    2017-05-01

    Different proton irradiation regimes were tested to provide more than 20 kHz-frequency, soft reverse recovery “snap-less” behavior, low forward voltage drop and leakage current for 50 mm diameter 7 kA/400 V welding diode Al/Si/Mo structure. Silicon diode with such parameters is very suitable for high frequency resistance welding machines of new generation for robotic welding.

  18. Design and development of high voltage and high frequency center tapped transformer for HVDC test generator

    International Nuclear Information System (INIS)

    Thaker, Urmil; Saurabh Kumar; Amal, S.; Baruah, U.K.; Bhatt, Animesh

    2015-01-01

    A High Voltage center tapped transformer for high frequency application had been designed, fabricated, and tested. It was designed as a part of 200 kV HVDC Test Generator. The High Frequency operation of transformer increases power density. Therefore it is possible to reduce power supply volume. The step up ratio in High Voltage transformer is limited due to stray capacitance and leakage inductance. The limit was overcome by winding multi secondary outputs. Switching frequency of transformer was 15.8 kHz. Input and output voltages of transformer were 270V and 16.5kV-0V-16.5kV respectively. Power rating of transformer is 7kVA. High Voltage transformer with various winding and core arrangement was fabricated to check variation in electrical characteristics. The transformer used a ferrite core (E Type) and nylon insulated primary and secondary bobbins. Two set of E-E geometry cores had been stacked in order to achieve the estimated core volume. Compared with traditional high voltage transformer, this transformer had good thermal behavior, good line insulation properties and a high power density. In this poster, design procedures, development stages and test results of high voltage and high frequency transformer are presented. Results of various parameters such as transformer loss, temperature rise, insulation properties, impedance of primary and secondary winding, and voltage regulation are discussed. (author)

  19. Comparison of spatial frequency domain features for the detection of side attack explosive ballistics in synthetic aperture acoustics

    Science.gov (United States)

    Dowdy, Josh; Anderson, Derek T.; Luke, Robert H.; Ball, John E.; Keller, James M.; Havens, Timothy C.

    2016-05-01

    Explosive hazards in current and former conflict zones are a threat to both military and civilian personnel. As a result, much effort has been dedicated to identifying automated algorithms and systems to detect these threats. However, robust detection is complicated due to factors like the varied composition and anatomy of such hazards. In order to solve this challenge, a number of platforms (vehicle-based, handheld, etc.) and sensors (infrared, ground penetrating radar, acoustics, etc.) are being explored. In this article, we investigate the detection of side attack explosive ballistics via a vehicle-mounted acoustic sensor. In particular, we explore three acoustic features, one in the time domain and two on synthetic aperture acoustic (SAA) beamformed imagery. The idea is to exploit the varying acoustic frequency profile of a target due to its unique geometry and material composition with respect to different viewing angles. The first two features build their angle specific frequency information using a highly constrained subset of the signal data and the last feature builds its frequency profile using all available signal data for a given region of interest (centered on the candidate target location). Performance is assessed in the context of receiver operating characteristic (ROC) curves on cross-validation experiments for data collected at a U.S. Army test site on different days with multiple target types and clutter. Our preliminary results are encouraging and indicate that the top performing feature is the unrolled two dimensional discrete Fourier transform (DFT) of SAA beamformed imagery.

  20. Prevalence and evolution of low frequency HIV drug resistance mutations detected by ultra deep sequencing in patients experiencing first line antiretroviral therapy failure.

    Science.gov (United States)

    Vandenhende, Marie-Anne; Bellecave, Pantxika; Recordon-Pinson, Patricia; Reigadas, Sandrine; Bidet, Yannick; Bruyand, Mathias; Bonnet, Fabrice; Lazaro, Estibaliz; Neau, Didier; Fleury, Hervé; Dabis, François; Morlat, Philippe; Masquelier, Bernard

    2014-01-01

    Clinical relevance of low-frequency HIV-1 variants carrying drug resistance associated mutations (DRMs) is still unclear. We aimed to study the prevalence of low-frequency DRMs, detected by Ultra-Deep Sequencing (UDS) before antiretroviral therapy (ART) and at virological failure (VF), in HIV-1 infected patients experiencing VF on first-line ART. Twenty-nine ART-naive patients followed up in the ANRS-CO3 Aquitaine Cohort, having initiated ART between 2000 and 2009 and experiencing VF (2 plasma viral loads (VL) >500 copies/ml or one VL >1000 copies/ml) were included. Reverse transcriptase and protease DRMs were identified using Sanger sequencing (SS) and UDS at baseline (before ART initiation) and VF. Additional low-frequency variants with PI-, NNRTI- and NRTI-DRMs were found by UDS at baseline and VF, significantly increasing the number of detected DRMs by 1.35 fold (plow-frequency DRMs modified ARV susceptibility predictions to the prescribed treatment for 1 patient at baseline, in whom low-frequency DRM was found at high frequency at VF, and 6 patients at VF. DRMs found at VF were rarely detected as low-frequency DRMs prior to treatment. The rare low-frequency NNRTI- and NRTI-DRMs detected at baseline that correlated with the prescribed treatment were most often found at high-frequency at VF. Low frequency DRMs detected before ART initiation and at VF in patients experiencing VF on first-line ART can increase the overall burden of resistance to PI, NRTI and NNRTI.

  1. High-frequency TRNS reduces BOLD activity during visuomotor learning.

    Directory of Open Access Journals (Sweden)

    Catarina Saiote

    Full Text Available Transcranial direct current stimulation (tDCS and transcranial random noise stimulation (tRNS consist in the application of electrical current of small intensity through the scalp, able to modulate perceptual and motor learning, probably by changing brain excitability. We investigated the effects of these transcranial electrical stimulation techniques in the early and later stages of visuomotor learning, as well as associated brain activity changes using functional magnetic resonance imaging (fMRI. We applied anodal and cathodal tDCS, low-frequency and high-frequency tRNS (lf-tRNS, 0.1-100 Hz; hf-tRNS 101-640 Hz, respectively and sham stimulation over the primary motor cortex (M1 during the first 10 minutes of a visuomotor learning paradigm and measured performance changes for 20 minutes after stimulation ceased. Functional imaging scans were acquired throughout the whole experiment. Cathodal tDCS and hf-tRNS showed a tendency to improve and lf-tRNS to hinder early learning during stimulation, an effect that remained for 20 minutes after cessation of stimulation in the late learning phase. Motor learning-related activity decreased in several regions as reported previously, however, there was no significant modulation of brain activity by tDCS. In opposition to this, hf-tRNS was associated with reduced motor task-related-activity bilaterally in the frontal cortex and precuneous, probably due to interaction with ongoing neuronal oscillations. This result highlights the potential of lf-tRNS and hf-tRNS to differentially modulate visuomotor learning and advances our knowledge on neuroplasticity induction approaches combined with functional imaging methods.

  2. Grid Cell Relaxation Effects on the High Frequency Vibration Characteristics

    International Nuclear Information System (INIS)

    Ryu, Joo-Young; Eom, Kyong-Bo; Jeon, Sang-Youn; Kim, Jae-Ik

    2015-01-01

    The plate structure of the grid of fuel assembly is always exposed to serious vortex induced vibration. Also, High Frequency flow induced Vibration (HFV) is primarily generated by vortex-shedding effect. When it comes to grid design as a fuel assembly component, HFV should be considered in advance since it is one of the critical factors. Excessive HFV has a possibility of making degradation of the fuel reliability that is directly related to the fuel robustness and operating performance. KEPCO NF (KNF) has performed HFV tests with various grid designs. While studying the HFV characteristics through the HFV tests, it has been observed that HFV amplitudes show different levels according to grid cell relaxation. It means that the testing could give different interpretations due to the condition of grid cell. Since the amount of relaxation is different under operating conditions and environments in a reactor, test specimens should be modified as much as possible to the real state of the fuel. Therefore, in order to consider the grid cell relaxation effects on the HFV tests, it is important to use cell sized or non-cell sized grids. The main focus of this study is to find out how the HFV characteristics such as amplitude and frequency are affected by grid cell relaxation. Three cases of the grid cell sized specimen which is nickel alloy were prepared and tested. Through the comparison of the test results, it could be concluded that HFV amplitudes show decreasing trend according to the grid cell relaxation in the case of nickel alloy grid. It is also possible to expect the tendency of grid cell relaxation of a zirconium alloy grid based on test results

  3. Detection of Traveling Ionospheric Disturbances by Medium Frequency Doppler Sounding Using AM Radio Transmissions

    Science.gov (United States)

    Chilcote, M. A.; Labelle, J. W.; Lind, F. D.; Coster, A. J.; Galkin, I. A.; Miller, E.; Weatherwax, A. T.

    2013-12-01

    Nighttime traveling ionosphere disturbances (TIDs) propagating in the lower F region of the ionosphere were detected from time variations in the Doppler shifts of commercial AM radio broadcast stations. Three separately deployed receivers, components of the Intercepted Signals for Ionospheric Science (ISIS) Array software radio instrumentation network, recorded signals from two radio stations during eleven nights in March-April, 2012. Combining these measurements established that variations in the frequencies of the received signals, with amplitudes up to a few tenths of a Hertz, resulted from Doppler shifts produced by the ionosphere. At times, TIDs were detected as large amplitude variations in the Doppler shift with approximately 40-minute period correlated across the array. For one study interval, 0000-0400 UT on April 13, 2012, simultaneous GPS-TEC, digisonde, and superDARN coherent backscatter radar measurements confirmed the detection of TIDs with the same period. Detection of the AM signals at widely spaced receivers allowed the phase velocity and wavelength of the TIDs to be inferred, with some limitations due to differing reflection heights for the different frequencies. These measurements will be compared to phase velocities and wavelengths determined from combining an array of GPS receivers; discrepancies due to the altitude sensitivity of the techniques or other effects will be discussed. These results demonstrate that AM radio signals can be used for detection of nighttime TIDs.

  4. Use of Time- and Frequency-Domain Approaches for Damage Detection in Civil Engineering Structures

    Directory of Open Access Journals (Sweden)

    V. H. Nguyen

    2014-01-01

    Full Text Available The aim of this paper is to apply both time- and frequency-domain-based approaches on real-life civil engineering structures and to assess their capability for damage detection. The methodology is based on Principal Component Analysis of the Hankel matrix built from output-only measurements and of Frequency Response Functions. Damage detection is performed using the concept of subspace angles between a current (possibly damaged state and a reference (undamaged state. The first structure is the Champangshiehl Bridge located in Luxembourg. Several damage levels were intentionally created by cutting a growing number of prestressed tendons and vibration data were acquired by the University of Luxembourg for each damaged state. The second example consists in reinforced and prestressed concrete panels. Successive damages were introduced in the panels by loading heavy weights and by cutting steel wires. The illustrations show different consequences in damage identification by the considered techniques.

  5. The Effect of the Different Frequency on Skin Depth of GPR Detection

    Directory of Open Access Journals (Sweden)

    Mohammed Mejbel Salih

    2017-05-01

    Full Text Available Today the utilization of Ground Penetration Radar are increasing with development civil works , the requirement is increase a low cost technique, time and accuracy, all these should be founded in same time to achieve the project with fullest. In this study will use GPR instrument with three frequency(500,800,1000 MHz,and applying the experiments in various medium with different object's materials for pipe that expected founded object underground for the purpose of extract the fixed data that serve who work interest in this field. This technique will help in solve problem of underground detection ,such as water leakage in underground pipe for different depth that considered complex and expensive problem in same time in urban life .The study contribute in solve issue of utilizing the suitable frequency with penetration for detection, this is clarify through the result gotten that refer to excellent outcome.

  6. Islanding Detection of Synchronous Machine-Based DGs using Average Frequency Based Index

    Directory of Open Access Journals (Sweden)

    M. Bakhshi

    2013-06-01

    Full Text Available Identification of intentional and unintentional islanding situations of dispersed generators (DGs is one of the most important protection concerns in power systems. Considering safety and reliability problems of distribution networks, an exact diagnosis index is required to discriminate the loss of the main network from the existing parallel operation. Hence, this paper introduces a new islanding detection method for synchronous machine–based DGs. This method uses the average value of the generator frequency to calculate a new detection index. The proposed method is an effective supplement of the over/under frequency protection (OFP/UFP system. The analytical equations and simulation results are used to assess the performance of the proposed method under various scenarios such as different types of faults, load changes and capacitor bank switching. To show the effectiveness of the proposed method, it is compared with the performance of both ROCOF and ROCOFOP methods.

  7. Fault detection in finite frequency domain for Takagi-Sugeno fuzzy systems with sensor faults.

    Science.gov (United States)

    Li, Xiao-Jian; Yang, Guang-Hong

    2014-08-01

    This paper is concerned with the fault detection (FD) problem in finite frequency domain for continuous-time Takagi-Sugeno fuzzy systems with sensor faults. Some finite-frequency performance indices are initially introduced to measure the fault/reference input sensitivity and disturbance robustness. Based on these performance indices, an effective FD scheme is then presented such that the generated residual is designed to be sensitive to both fault and reference input for faulty cases, while robust against the reference input for fault-free case. As the additional reference input sensitivity for faulty cases is considered, it is shown that the proposed method improves the existing FD techniques and achieves a better FD performance. The theory is supported by simulation results related to the detection of sensor faults in a tunnel-diode circuit.

  8. Internal Rot Detection with the Use of Low-Frequency Flaw Detector

    Science.gov (United States)

    Proskórnicki, Marek; Ligus, Grzegorz

    2014-12-01

    The issue of rot detection in standing timber or stocked wood is very important in forest management. Rot flaw detection used for that purpose is represented by invasive and non-invasive devices. Non-invasive devices are very accurate, but due to the cost and complicated operation they have not been applied on a large scale in forest management. Taking into account the practical needs of foresters a prototype of low-frequency flaw was developed. The principle of its operation is based on the difference in acoustic wave propagation in sound wood and wood with rot.

  9. FPGA implementation of high-frequency multiple PWM for variable voltage variable frequency controller

    Energy Technology Data Exchange (ETDEWEB)

    Boumaaraf, Abdelâali, E-mail: aboumaaraf@yahoo.fr [Université Abbès Laghrour, Laboratoire des capteurs, Instrumentations et procédés (LCIP), Khenchela (Algeria); University of Farhat Abbas Setif1, Sétif, 19000 (Algeria); Mohamadi, Tayeb [University of Farhat Abbas Setif1, Sétif, 19000 (Algeria); Gourmat, Laïd [Université Abbès Laghrour, Khenchela, 40000 (Algeria)

    2016-07-25

    In this paper, we present the FPGA implementation of the multiple pulse width modulation (MPWM) signal generation with repetition of data segments, applied to the variable frequency variable voltage systems and specially at to the photovoltaic water pumping system, in order to generate a signal command very easily between 10 Hz to 60 Hz with a small frequency and reduce the cost of the control system.

  10. Low temperature high frequency coaxial pulse tube for space application

    Energy Technology Data Exchange (ETDEWEB)

    Charrier, Aurelia; Charles, Ivan; Rousset, Bernard; Duval, Jean-Marc [SBT, UMR-E CEA / UJF-Grenoble 1, INAC, 17, rue des Martyrs, Grenoble, F-38054 (France); Daniel, Christophe [CNES, 18, avenue Edouard Belin, Toulouse, F-31401 (France)

    2014-01-29

    The 4K stage is a critical step for space missions. The Hershel mission is using a helium bath, which is consumed day by day (after depletion, the space mission is over) while the Plank mission is equipped with one He4 Joule-Thomson cooler. Cryogenic chain without helium bath is a challenge for space missions and 4.2K Pulse-Tube working at high frequency (around 30Hz) is one option to take it up. A low temperature Pulse-Tube would be suitable for the ESA space mission EChO (Exoplanet Characterisation Observatory, expected launch in 2022), which requires around 30mW cooling power at 6K; and for the ESA space mission ATHENA (Advanced Telescope for High ENergy Astrophysics), to pre-cool the sub-kelvin cooler (few hundreds of mW at 15K). The test bench described in this paper combines a Gifford-McMahon with a coaxial Pulse-Tube. A thermal link is joining the intercept of the Pulse-Tube and the second stage of the Gifford-McMahon. This intercept is a separator between the hot and the cold regenerators of the Pulse-Tube. The work has been focused on the cold part of this cold finger. Coupled with an active phase shifter, this Pulse-Tube has been tested and optimized and temperatures as low as 6K have been obtained at 30Hz with an intercept temperature at 20K.

  11. Fantoni’s Tracheostomy using Catheter High Frequency Jet Ventilation

    Directory of Open Access Journals (Sweden)

    P. Török

    2012-01-01

    Full Text Available Background: It has been shown previously that conventional ventilation delivered through a long cuffed endotracheal tube is associated with a high flow-resistance and frequent perioperative complications. Aim: We attempted to supersede the conventional ventilation by high-frequency jet ventilation through a catheter (HFJV-C and assess safety of the procedure. Material and methods: Using a translaryngeal tracheostomy kit, we performed a translaryngeal (Fantoni tracheostomy (TLT. Subsequently, we introduced a special 2-way prototype ventilatory catheter into the trachea via the TLT under bronchoscopic control. Satisfactory HFJV-C ventilation through the catheter was achieved in 218 patients. Results: There were no significant adverse effects on vital signs observed in the cohort during the study. The pH, SpO2, PaO2, and PaCO2 did not change significantly following the HFJV-C. The intrinsic PEEPi measured in trachea did not exceed 4—5 cm H2O during its application, which was significantly less than during the classical ventilation via the endotracheal tube fluctuating between 12 and 17 cm H2O. No serious medical complications occurred. Conclusion: The HFJV during Fantoni’s tracheostomy using the catheter HFJV-C proved to be a safe and effective method of lung ventilation at the intensive care unit. Key words: Translaryngeal tracheostomy, HFJV via catheter.

  12. Velocity field measurements on high-frequency, supersonic microactuators

    Science.gov (United States)

    Kreth, Phillip A.; Ali, Mohd Y.; Fernandez, Erik J.; Alvi, Farrukh S.

    2016-05-01

    The resonance-enhanced microjet actuator which was developed at the Advanced Aero-Propulsion Laboratory at Florida State University is a fluidic-based device that produces pulsed, supersonic microjets by utilizing a number of microscale, flow-acoustic resonance phenomena. The microactuator used in this study consists of an underexpanded source jet that flows into a cylindrical cavity with a single, 1-mm-diameter exhaust orifice through which an unsteady, supersonic jet issues at a resonant frequency of 7 kHz. The flowfields of a 1-mm underexpanded free jet and the microactuator are studied in detail using high-magnification, phase-locked flow visualizations (microschlieren) and two-component particle image velocimetry. These are the first direct measurements of the velocity fields produced by such actuators. Comparisons are made between the flow visualizations and the velocity field measurements. The results clearly show that the microactuator produces pulsed, supersonic jets with velocities exceeding 400 m/s for roughly 60 % of their cycles. With high unsteady momentum output, this type of microactuator has potential in a range of ow control applications.

  13. High frequency guided wave propagation in monocrystalline silicon wafers

    Science.gov (United States)

    Pizzolato, Marco; Masserey, Bernard; Robyr, Jean-Luc; Fromme, Paul

    2017-04-01

    Monocrystalline silicon wafers are widely used in the photovoltaic industry for solar panels with high conversion efficiency. The cutting process can introduce micro-cracks in the thin wafers and lead to varying thickness. High frequency guided ultrasonic waves are considered for the structural monitoring of the wafers. The anisotropy of the monocrystalline silicon leads to variations of the wave characteristics, depending on the propagation direction relative to the crystal orientation. Full three-dimensional Finite Element simulations of the guided wave propagation were conducted to visualize and quantify these effects for a line source. The phase velocity (slowness) and skew angle of the two fundamental Lamb wave modes (first anti-symmetric mode A0 and first symmetric mode S0) for varying propagation directions relative to the crystal orientation were measured experimentally. Selective mode excitation was achieved using a contact piezoelectric transducer with a custom-made wedge and holder to achieve a controlled contact pressure. The out-of-plane component of the guided wave propagation was measured using a noncontact laser interferometer. Good agreement was found with the simulation results and theoretical predictions based on nominal material properties of the silicon wafer.

  14. Comparison of three cell block techniques for detection of low frequency abnormal cells

    OpenAIRE

    McCormack M; Hecht SA

    2013-01-01

    Steven A Hecht, Matthew McCormackHologic Inc, Marlborough, MA, USABackground: The Cellient® Automated Cell Block System rapidly creates paraffin-embedded cell blocks by using vacuum filtration to deposit a layer of cells on a filter and infiltrate those cells with reagents and paraffin. This study used a “tracer” cell model to mimic low frequency abnormal cells and compare detection and representative sampling with simple sedimentation, Richard-Allan HistoGel&t...

  15. An automatized frequency analysis for vine plot detection and delineation in remote sensing

    OpenAIRE

    Delenne , Carole; Rabatel , G.; Deshayes , M.

    2008-01-01

    The availability of an automatic tool for vine plot detection, delineation, and characterization would be very useful for management purposes. An automatic and recursive process using frequency analysis (with Fourier transform and Gabor filters) has been developed to meet this need. This results in the determination of vine plot boundary and accurate estimation of interrow width and row orientation. To foster large-scale applications, tests and validation have been carried out on standard ver...

  16. Spectrally efficient polarization multiplexed direct-detection OFDM system without frequency gap.

    Science.gov (United States)

    Wei, Chia-Chien; Zeng, Wei-Siang; Lin, Chun-Ting

    2016-01-25

    We experimentally demonstrate a spectrally efficient direct-detection orthogonal frequency-division multiplexing (DD-OFDM) system. In addition to polarization-division multiplexing, removing the frequency gap further improves the spectral efficiency of the OFDM system. The frequency gap between a reference carrier and OFDM subcarriers avoids subcarrier-to-subcarrier beating interference (SSBI) in traditional DD-OFDM systems. Without dynamic polarization control, the resulting interference after square-law direct detection in the proposed gap-less system is polarization-dependent and composed of linear inter-carrier interference (ICI) and nonlinear SSBI. Thus, this work proposes an iterative multiple-input multiple-output detection scheme to remove the mixed polarization-dependent interference. Compared to the previous scheme, which only removes ICI, the proposed scheme can further eliminate SSBI to achieve the improvement of ∼ 7 dB in signal-to-noise ratio. Without the need for polarization control, we successfully utilize 7-GHz bandwidth to transmit a 39.5-Gbps polarization multiplexed OFDM signal over 100 km.

  17. Optical Transmitter Terminal for Selective RF High Frequency Bans

    Data.gov (United States)

    National Aeronautics and Space Administration — Recent improvements in multiplexing systems and tunable laser semiconductor diodes make the use of Wavelength Division Multiplexing to combine multiple frequency...

  18. An Islanding Detection Method by Using Frequency Positive Feedback Based on FLL for Single-Phase Microgrid

    DEFF Research Database (Denmark)

    Sun, Qinfei; Guerrero, Josep M.; Jing, Tianjun

    2017-01-01

    An active islanding detection method based on Frequency-Locked Loop (FLL) for constant power controlled inverter in single-phase microgrid is proposed. This method generates a phase shift comparing the instantaneous frequency obtained from FLL unit with the nominal frequency to modify the reference...

  19. Resonant frequency detection and adjustment method for a capacitive transducer with differential transformer bridge

    International Nuclear Information System (INIS)

    Hu, M.; Bai, Y. Z.; Zhou, Z. B.; Li, Z. X.; Luo, J.

    2014-01-01

    The capacitive transducer with differential transformer bridge is widely used in ultra-sensitive space accelerometers due to their simple structure and high resolution. In this paper, the front-end electronics of an inductive-capacitive resonant bridge transducer is analyzed. The analysis result shows that the performance of this transducer depends upon the case that the AC pumping frequency operates at the resonance point of the inductive-capacitive bridge. The effect of possible mismatch between the AC pumping frequency and the actual resonant frequency is discussed, and the theoretical analysis indicates that the output voltage noise of the front-end electronics will deteriorate by a factor of about 3 due to either a 5% variation of the AC pumping frequency or a 10% variation of the tuning capacitance. A pre-scanning method to determine the actual resonant frequency is proposed followed by the adjustment of the operating frequency or the change of the tuning capacitance in order to maintain expected high resolution level. An experiment to verify the mismatching effect and the adjustment method is provided

  20. Resonant frequency detection and adjustment method for a capacitive transducer with differential transformer bridge

    Energy Technology Data Exchange (ETDEWEB)

    Hu, M.; Bai, Y. Z., E-mail: abai@mail.hust.edu.cn; Zhou, Z. B., E-mail: zhouzb@mail.hust.edu.cn; Li, Z. X.; Luo, J. [MOE Key Laboratory of Fundamental Physical Quantities Measurement, School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-05-15

    The capacitive transducer with differential transformer bridge is widely used in ultra-sensitive space accelerometers due to their simple structure and high resolution. In this paper, the front-end electronics of an inductive-capacitive resonant bridge transducer is analyzed. The analysis result shows that the performance of this transducer depends upon the case that the AC pumping frequency operates at the resonance point of the inductive-capacitive bridge. The effect of possible mismatch between the AC pumping frequency and the actual resonant frequency is discussed, and the theoretical analysis indicates that the output voltage noise of the front-end electronics will deteriorate by a factor of about 3 due to either a 5% variation of the AC pumping frequency or a 10% variation of the tuning capacitance. A pre-scanning method to determine the actual resonant frequency is proposed followed by the adjustment of the operating frequency or the change of the tuning capacitance in order to maintain expected high resolution level. An experiment to verify the mismatching effect and the adjustment method is provided.

  1. A near infrared laser frequency comb for high precision Doppler planet surveys

    Directory of Open Access Journals (Sweden)

    Bally J.

    2011-07-01

    Full Text Available Perhaps the most exciting area of astronomical research today is the study of exoplanets and exoplanetary systems, engaging the imagination not just of the astronomical community, but of the general population. Astronomical instrumentation has matured to the level where it is possible to detect terrestrial planets orbiting distant stars via radial velocity (RV measurements, with the most stable visible light spectrographs reporting RV results the order of 1 m/s. This, however, is an order of magnitude away from the precision needed to detect an Earth analog orbiting a star such as our sun, the Holy Grail of these efforts. By performing these observations in near infrared (NIR there is the potential to simplify the search for distant terrestrial planets by studying cooler, less massive, much more numerous class M stars, with a tighter habitable zone and correspondingly larger RV signal. This NIR advantage is undone by the lack of a suitable high precision, high stability wavelength standard, limiting NIR RV measurements to tens or hundreds of m/s [1, 2]. With the improved spectroscopic precision provided by a laser frequency comb based wavelength reference producing a set of bright, densely and uniformly spaced lines, it will be possible to achieve up to two orders of magnitude improvement in RV precision, limited only by the precision and sensitivity of existing spectrographs, enabling the observation of Earth analogs through RV measurements. We discuss the laser frequency comb as an astronomical wavelength reference, and describe progress towards a near infrared laser frequency comb at the National Institute of Standards and Technology and at the University of Colorado where we are operating a laser frequency comb suitable for use with a high resolution H band astronomical spectrograph.

  2. On the performance of joint iterative detection and decoding in coherent optical channels with laser frequency fluctuations

    Science.gov (United States)

    Castrillón, Mario A.; Morero, Damián A.; Agazzi, Oscar E.; Hueda, Mario R.

    2015-08-01

    The joint iterative detection and decoding (JIDD) technique has been proposed by Barbieri et al. (2007) with the objective of compensating the time-varying phase noise and constant frequency offset experienced in satellite communication systems. The application of JIDD to optical coherent receivers in the presence of laser frequency fluctuations has not been reported in prior literature. Laser frequency fluctuations are caused by mechanical vibrations, power supply noise, and other mechanisms. They significantly degrade the performance of the carrier phase estimator in high-speed intradyne coherent optical receivers. This work investigates the performance of the JIDD algorithm in multi-gigabit optical coherent receivers. We present simulation results of bit error rate (BER) for non-differential polarization division multiplexing (PDM)-16QAM modulation in a 200 Gb/s coherent optical system that includes an LDPC code with 20% overhead and net coding gain of 11.3 dB at BER = 10-15. Our study shows that JIDD with a pilot rate ⩽ 5 % compensates for both laser phase noise and laser frequency fluctuation. Furthermore, since JIDD is used with non-differential modulation formats, we find that gains in excess of 1 dB can be achieved over existing solutions based on an explicit carrier phase estimator with differential modulation. The impact of the fiber nonlinearities in dense wavelength division multiplexing (DWDM) systems is also investigated. Our results demonstrate that JIDD is an excellent candidate for application in next generation high-speed optical coherent receivers.

  3. Structural Damage Detection Using Changes in Natural Frequencies: Theory and Applications

    Science.gov (United States)

    He, K.; Zhu, W. D.

    2011-07-01

    A vibration-based method that uses changes in natural frequencies of a structure to detect damage has advantages over conventional nondestructive tests in detecting various types of damage, including loosening of bolted joints, using minimum measurement data. Two major challenges associated with applications of the vibration-based damage detection method to engineering structures are addressed: accurate modeling of structures and the development of a robust inverse algorithm to detect damage, which are defined as the forward and inverse problems, respectively. To resolve the forward problem, new physics-based finite element modeling techniques are developed for fillets in thin-walled beams and for bolted joints, so that complex structures can be accurately modeled with a reasonable model size. To resolve the inverse problem, a logistical function transformation is introduced to convert the constrained optimization problem to an unconstrained one, and a robust iterative algorithm using a trust-region method, called the Levenberg-Marquardt method, is developed to accurately detect the locations and extent of damage. The new methodology can ensure global convergence of the iterative algorithm in solving under-determined system equations and deal with damage detection problems with relatively large modeling error and measurement noise. The vibration-based damage detection method is applied to various structures including lightning masts, a space frame structure and one of its components, and a pipeline. The exact locations and extent of damage can be detected in the numerical simulation where there is no modeling error and measurement noise. The locations and extent of damage can be successfully detected in experimental damage detection.

  4. Structural Damage Detection Using Changes in Natural Frequencies: Theory and Applications

    International Nuclear Information System (INIS)

    He, K; Zhu, W D

    2011-01-01

    A vibration-based method that uses changes in natural frequencies of a structure to detect damage has advantages over conventional nondestructive tests in detecting various types of damage, including loosening of bolted joints, using minimum measurement data. Two major challenges associated with applications of the vibration-based damage detection method to engineering structures are addressed: accurate modeling of structures and the development of a robust inverse algorithm to detect damage, which are defined as the forward and inverse problems, respectively. To resolve the forward problem, new physics-based finite element modeling techniques are developed for fillets in thin-walled beams and for bolted joints, so that complex structures can be accurately modeled with a reasonable model size. To resolve the inverse problem, a logistical function transformation is introduced to convert the constrained optimization problem to an unconstrained one, and a robust iterative algorithm using a trust-region method, called the Levenberg-Marquardt method, is developed to accurately detect the locations and extent of damage. The new methodology can ensure global convergence of the iterative algorithm in solving under-determined system equations and deal with damage detection problems with relatively large modeling error and measurement noise. The vibration-based damage detection method is applied to various structures including lightning masts, a space frame structure and one of its components, and a pipeline. The exact locations and extent of damage can be detected in the numerical simulation where there is no modeling error and measurement noise. The locations and extent of damage can be successfully detected in experimental damage detection.

  5. Adequacy of Frequency Reserves for High Wind Power Generation

    DEFF Research Database (Denmark)

    Das, Kaushik; Litong-Palima, Marisciel; Maule, Petr

    2017-01-01

    In this article, a new methodology is developed to assess the adequacy of frequency reserves to handle power imbalances caused by wind power forecast errors. The goal of this methodology is to estimate the adequate volume and speed of activation of frequency reserves required to handle power...

  6. A high frequency, high power CARM proposal for the DEMO ECRH system

    International Nuclear Information System (INIS)

    Mirizzi, Francesco; Spassovsky, Ivan; Ceccuzzi, Silvio; Dattoli, Giuseppe; Di Palma, Emanuele; Doria, Andrea; Gallerano, Gianpiero; Lampasi, Alessandro; Maffia, Giuseppe; Ravera, GianLuca; Sabia, Elio; Tuccillo, Angelo Antonio; Zito, Pietro

    2015-01-01

    Highlights: • ECRH system for DEMO. • Cyclotron Auto-Resonance Maser (CARM) devices. • Relativistic electron beams. • Bragg reflectors. • High voltage pulse modulators. - Abstract: ECRH&CD systems are extensively used on tokamak plasmas due to their capability of highly tailored power deposition, allowing very localised heating and non-inductive current drive, useful for MHD and profiles control. The high electron temperatures expected in DEMO will require ECRH systems with operating frequency in the 200–300 GHz range, equipped with a reasonable number of high power (P ≥ 1 MW) CW RF sources, for allowing central RF power deposition. In this frame the ENEA Fusion Department (Frascati) is coordinating a task force aimed at the study and realisation of a suitable high power, high frequency reliable source.

  7. A high frequency, high power CARM proposal for the DEMO ECRH system

    Energy Technology Data Exchange (ETDEWEB)

    Mirizzi, Francesco, E-mail: francesco.mirizzi@enea.it [Consorzio CREATE, Via Claudio 21, I-80125 Napoli (Italy); Spassovsky, Ivan [Unità Tecnica Applicazioni delle Radiazioni – ENEA, C.R. Frascati, via E. Fermi 45, I-00044 Frascati (Italy); Ceccuzzi, Silvio [Unità Tecnica Fusione – ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati, Roma (Italy); Dattoli, Giuseppe; Di Palma, Emanuele; Doria, Andrea; Gallerano, Gianpiero [Unità Tecnica Applicazioni delle Radiazioni – ENEA, C.R. Frascati, via E. Fermi 45, I-00044 Frascati (Italy); Lampasi, Alessandro; Maffia, Giuseppe; Ravera, GianLuca [Unità Tecnica Fusione – ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati, Roma (Italy); Sabia, Elio [Unità Tecnica Applicazioni delle Radiazioni – ENEA, C.R. Frascati, via E. Fermi 45, I-00044 Frascati (Italy); Tuccillo, Angelo Antonio; Zito, Pietro [Unità Tecnica Fusione – ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati, Roma (Italy)

    2015-10-15

    Highlights: • ECRH system for DEMO. • Cyclotron Auto-Resonance Maser (CARM) devices. • Relativistic electron beams. • Bragg reflectors. • High voltage pulse modulators. - Abstract: ECRH&CD systems are extensively used on tokamak plasmas due to their capability of highly tailored power deposition, allowing very localised heating and non-inductive current drive, useful for MHD and profiles control. The high electron temperatures expected in DEMO will require ECRH systems with operating frequency in the 200–300 GHz range, equipped with a reasonable number of high power (P ≥ 1 MW) CW RF sources, for allowing central RF power deposition. In this frame the ENEA Fusion Department (Frascati) is coordinating a task force aimed at the study and realisation of a suitable high power, high frequency reliable source.

  8. Construction of a dog training device with high frequency and high power pulses

    International Nuclear Information System (INIS)

    Viaud Trejos, Rafael Alfonso

    2013-01-01

    An electronic device is built to produce high frequency and high power sound. The device is used in training and control of dogs. Commercial ultrasonic devices used for dog training are analyzed. The best strategies and components of the design are determined from an electronic device to produce sounds in frequency from 15kHz to 50Khz. Effectiveness tests are performed to establish the adequate design of the ultrasonic electronic device. The test results are analyzed to find opportunities of improvement in the design or construction of the device [es

  9. Very high-frequency gravitational waves from magnetars and gamma-ray bursts

    Science.gov (United States)

    Wen, Hao; Li, Fang-Yu; Li, Jin; Fang, Zhen-Yun; Beckwith, Andrew

    2017-12-01

    Extremely powerful astrophysical electromagnetic (EM) systems could be possible sources of high-frequency gravitational waves (HFGWs). Here, based on properties of magnetars and gamma-ray bursts (GRBs), we address “Gamma-HFGWs” (with very high-frequency around 1020 Hz) caused by ultra-strong EM radiation (in the radiation-dominated phase of GRB fireballs) interacting with super-high magnetar surface magnetic fields (˜1011 T). By certain parameters of distance and power, the Gamma-HFGWs would have far field energy density Ω gw around 10-6, and they would cause perturbed signal EM waves of ˜10-20 W/m2 in a proposed HFGW detection system based on the EM response to GWs. Specially, Gamma-HFGWs would possess distinctive envelopes with characteristic shapes depending on the particular structures of surface magnetic fields of magnetars, which could be exclusive features helpful to distinguish them from background noise. Results obtained suggest that magnetars could be involved in possible astrophysical EM sources of GWs in the very high-frequency band, and Gamma-HFGWs could be potential targets for observations in the future. Supported by National Natural Science Foundation of China (11605015, 11375279, 11205254, 11647307) and the Fundamental Research Funds for the Central Universities (106112017CDJXY300003, 106112017CDJXFLX0014)

  10. Bearings fault detection in helicopters using frequency readjustment and cyclostationary analysis

    Science.gov (United States)

    Girondin, Victor; Pekpe, Komi Midzodzi; Morel, Herve; Cassar, Jean-Philippe

    2013-07-01

    The objective of this paper is to propose a vibration-based automated framework dealing with local faults occurring on bearings in the transmission of a helicopter. The knowledge of the shaft speed and kinematic computation provide theoretical frequencies that reveal deteriorations on the inner and outer races, on the rolling elements or on the cage. In practice, the theoretical frequencies of bearing faults may be shifted. They may also be masked by parasitical frequencies because the numerous noisy vibrations and the complexity of the transmission mechanics make the signal spectrum very profuse. Consequently, detection methods based on the monitoring of the theoretical frequencies may lead to wrong decisions. In order to deal with this drawback, we propose to readjust the fault frequencies from the theoretical frequencies using the redundancy introduced by the harmonics. The proposed method provides the confidence index of the readjusted frequency. Minor variations in shaft speed may induce random jitters. The change of the contact surface or of the transmission path brings also a random component in amplitude and phase. These random components in the signal destroy spectral localization of frequencies and thus hide the fault occurrence in the spectrum. Under the hypothesis that these random signals can be modeled as cyclostationary signals, the envelope spectrum can reveal that hidden patterns. In order to provide an indicator estimating fault severity, statistics are proposed. They make the hypothesis that the harmonics at the readjusted frequency are corrupted with an additive normally distributed noise. In this case, the statistics computed from the spectra are chi-square distributed and a signal-to-noise indicator is proposed. The algorithms are then tested with data from two test benches and from flight conditions. The bearing type and the radial load are the main differences between the experiences on the benches. The fault is mainly visible in the

  11. MONITORING HIGH-FREQUENCY OCEAN SIGNALS USING LOW-COST GNSS/IMU BUOYS

    Directory of Open Access Journals (Sweden)

    Y.-L. Huang

    2016-06-01

    Full Text Available In oceans there are different ocean signals covering the multi-frequencies including tsunami, meteotsunami, storm surge, as sea level change, and currents. These signals have the direct and significant impact on the economy and life of human-beings. Therefore, measuring ocean signals accurately becomes more and more important and necessary. Nowadays, there are many techniques and methods commonly used for monitoring oceans, but each has its limitation. For example, tide gauges only measure sea level relative to benchmarks and are disturbed unevenly, and satellite altimeter measurements are not continuous and inaccurate near coastal oceans. In addition, high-frequency ocean signals such as tsunami and meteotsunami cannot be sufficiently detected by 6-minutes tide gauge measurements or 10-day sampled altimetry data. Moreover, traditional accelerometer buoy is heavy, expensive and the low-frequency noise caused by the instrument is unavoidable. In this study, a small, low-cost and self-assembly autonomous Inertial Measurement Unit (IMU that independently collects continuous acceleration and angular velocity data is mounted on a GNSS buoy to provide the positions and tilts of the moving buoy. The main idea is to integrate the Differential GNSS (DGNSS or Precise Point Positioning (PPP solutions with IMU data, and then evaluate the performance by comparing with in situ tide gauges. The validation experiments conducted in the NCKU Tainan Hydraulics Laboratory showed that GNSS and IMU both can detect the simulated regular wave frequency and height, and the field experiments in the Anping Harbor, Tainan, Taiwan showed that the low-cost GNSS buoy has an excellent ability to observe significant wave heights in amplitude and frequency.

  12. Challenges in graphene integration for high-frequency electronics

    Science.gov (United States)

    Giannazzo, F.; Fisichella, G.; Greco, G.; Roccaforte, F.

    2016-06-01

    This paper provides an overview of the state-of-the-art research on graphene (Gr) for high-frequency (RF) devices. After discussing current limitations of lateral Gr RF transistors, novel vertical devices concepts such as the Gr Base Hot Electron Transistor (GBHET) will be introduced and the main challenges in Gr integration within these architectures will be discussed. In particular, a GBHET device based on Gr/AlGaN/GaN heterostructure will be considered. An approach to the fabrication of this heterostructure by transfer of CVD grown Gr on copper to the AlGaN surface will be presented. The morphological and electrical properties of this system have been investigated at nanoscale by atomic force microscopy (AFM) and conductive atomic force microscopy (CAFM). In particular, local current-voltage measurements by the CAFM probe revealed the formation of a Schottky contact with low barrier height (˜0.41 eV) and excellent lateral uniformity between Gr and AlGaN. Basing on the electrical parameters extracted from this characterization, the theoretical performances of a GBHET formed by a metal/Al2O3/Gr/AlGaN/GaN stack have been evaluated.

  13. Three-Dimensional Electromagnetic High Frequency Axisymmetric Cavity Scars.

    Energy Technology Data Exchange (ETDEWEB)

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt

    2014-10-01

    This report examines the localization of high frequency electromagnetic fi elds in three-dimensional axisymmetric cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This report treats both the case where the opposing sides, or mirrors, are convex, where there are no interior foci, and the case where they are concave, leading to interior foci. The scalar problem is treated fi rst but the approximations required to treat the vector fi eld components are also examined. Particular att ention is focused on the normalization through the electromagnetic energy theorem. Both projections of the fi eld along the scarred orbit as well as point statistics are examined. Statistical comparisons are m ade with a numerical calculation of the scars run with an axisymmetric simulation. This axisymmetric cas eformstheoppositeextreme(wherethetwomirror radii at each end of the ray orbit are equal) from the two -dimensional solution examined previously (where one mirror radius is vastly di ff erent from the other). The enhancement of the fi eldontheorbitaxiscanbe larger here than in the two-dimensional case. Intentionally Left Blank

  14. High-Frequency Chest Compression: A Summary of the Literature

    Directory of Open Access Journals (Sweden)

    Cara F Dosman

    2005-01-01

    Full Text Available The purpose of the present literature summary is to describe high-frequency chest compression (HFCC, summarize its history and outline study results on its effect on mucolysis, mucus transport, pulmonary function and quality of life. HFCC is a mechanical method of self-administered chest physiotherapy, which induces rapid air movement in and out of the lungs. This mean oscillated volume is an effective method of mucolysis and mucus clearance. HFCC can increase independence. Some studies have shown that HFCC leads to more mucus clearance and better lung function compared with conventional chest physiotherapy. However, HFCC also decreases end-expiratory lung volume, which can lead to increased airway resistance and a decreased oscillated volume. Adding positive end-expiratory pressure to HFCC has been shown to prevent this decrease in end-expiratory lung volume and to increase the oscillated volume. It is possible that the HFCC-induced decrease in end-expiratory lung volume may result in more mucus clearance in airways that remain open by reducing airway size. Adjunctive methods, such as positive end-expiratory pressure, may not always be needed to make HFCC more effective.

  15. High-frequency, transient magnetic susceptibility of ferroelectrics

    Science.gov (United States)

    Grimes, Craig A.

    1996-10-01

    A significant high-frequency magnetic susceptibility was measured both in weakly polarized and nonpolarized samples of barium titanate, lead zirconate titanate, and carnauba wax. Magnetic susceptibility measurements were made from 10 to 500 MHz using a thin film permeameter at room temperature; initial susceptibilities ranged from 0.1 to 2.5. These values are larger than expected for paramagnets and smaller than expected for ferromagnets. It was found that the magnetic susceptibility decreases rapidly with exposure to the exciting field. The origin of the magnetic susceptibility is thought to originate with the applied time varying electric field associated with the susceptibility measurements. An electric field acts to rotate an electric dipole, creating a magnetic quadrupole if the two moments are balanced, and a net magnetic dipole moment if imbalanced. It is thought that local electrostatic fields created at ferroelectric domain discontinuities associated with grain boundaries create an imbalance in the anion rotation that results in a net, measurable, magnetic moment. The origin of the magnetic aftereffect may be due to the local heating of the material through the moving charges associated with the magnetic moment.

  16. Improving NASICON Sinterability through Crystallization under High Frequency Electrical Fields

    Directory of Open Access Journals (Sweden)

    Ilya eLisenker

    2016-03-01

    Full Text Available The effect of high frequency (HF electric fields on the crystallization and sintering rates of a lithium aluminum germanium phosphate (LAGP ion conducting ceramic was investigated. LAGP with the nominal composition Li1.5Al0.5Ge1.5(PO43 was crystallized and sintered, both conventionally and under effect of electrical field. Electrical field application, of 300V/cm at 1MHz, produced up to a 40% improvement in sintering rate of LAGP that was crystallized and sintered under the HF field. Heat sink effect of the electrodes appears to arrest thermal runaway and subsequent flash behavior. Sintered pellets were characterized using XRD, SEM, TEM and EIS to compare conventionally and field sintered processes. The as-sintered structure appears largely unaffected by the field as the sintering curves tend to converge beyond initial stages of sintering. Differences in densities and microstructure after 1 hour of sintering were minor with measured sintering strains of 31% vs. 26% with and without field, respectively . Ionic conductivity of the sintered pellets was evaluated and no deterioration due to the use of HF field was noted, though capacitance of grain boundaries due to secondary phases was significantly increased.

  17. High-frequency Stark effect and two-quantum transitions

    International Nuclear Information System (INIS)

    Hildebrandt, J

    2007-01-01

    A problem which motivated a great deal of work about 20 years ago, namely, satellite lines occurring for atomic emitters undergoing a harmonic perturbation, is revisited. On a theoretical point of view, two photon mechanisms or equivalent are involved to explain those satellites due to high-frequency electric fields. Although today the activity on these problems is rather low, interest in observing such effects in the domain of x-ray spectroscopy exists, namely for hot and dense plasmas. More generally, satellites can be also seen as connected to turbulence diagnostics. This mainly motivates the design of plasmas and improvements of x-ray spectroscopy techniques. However, up to now, attempts to extend the methods of nonlinear spectroscopy to this domain have been rather disappointing. As a promotion for a resurgence of the field, an improved theory, founded on formalisms of nonlinear optics, is developed to suggest a new interpretation of the experiments. Previous publications are modified and an old problem is closed. Hopefully, this will help us to stimulate new applications of two-photon techniques in plasmas

  18. Ultra high frequency induction welding of powder metal compacts

    Directory of Open Access Journals (Sweden)

    Çavdar, Uǧur

    2014-06-01

    Full Text Available The application of the iron based Powder Metal (PM compacts in Ultra High Frequency Induction Welding (UHFIW were reviewed. These PM compacts are used to produce cogs. This study investigates the methods of joining PM materials enforceability with UHFIW in the industry application. Maximum stress and maximum strain of welded PM compacts were determined by three point bending and strength tests. Microhardness and microstructure of induction welded compacts were determined.Soldadura por inducción de ultra alta frecuencia de polvos de metal compactados. Se ha realizado un estudio de la aplicación de polvos de metal (PM de base hierro compactados por soldadura por inducción de ultra alta frecuencia (UHFIW. Estos polvos de metal compactados se utilizan para producir engranajes. Este estudio investiga los métodos de uni.n de los materiales de PM con UHFIW en su aplicación en la industria. La máxima tensión y la máxima deformación de los polvos de metal compactados soldados fueron determinadas por flexión en tres puntos y prueba de resistencia. Se determinó la microdureza y la microestructura de los polvos compactados por soldadura por inducción.

  19. High-Frequency Gravitational Wave Induced Nuclear Fusion

    International Nuclear Information System (INIS)

    Fontana, Giorgio; Baker, Robert M. L. Jr.

    2007-01-01

    Nuclear fusion is a process in which nuclei, having a total initial mass, combine to produce a single nucleus, having a final mass less than the total initial mass. Below a given atomic number the process is exothermic; that is, since the final mass is less than the combined initial mass and the mass deficit is converted into energy by the nuclear fusion. On Earth nuclear fusion does not happen spontaneously because electrostatic barriers prevent the phenomenon. To induce controlled, industrial scale, nuclear fusion, only a few methods have been discovered that look promising, but net positive energy production is not yet possible because of low overall efficiency of the systems. In this paper we propose that an intense burst of High Frequency Gravitational Waves (HFGWs) could be focused or beamed to a target mass composed of appropriate fuel or target material to efficiently rearrange the atomic or nuclear structure of the target material with consequent nuclear fusion. Provided that efficient generation of HFGW can be technically achieved, the proposed fusion reactor could become a viable solution for the energy needs of mankind and alternatively a process for beaming energy to produce a source of fusion energy remotely - even inside solid materials

  20. High-frequency EPR of surface impurities on nanodiamond

    Science.gov (United States)

    Peng, Zaili; Stepanov, Viktor; Takahashi, Susumu

    Diamond is a fascinating material, hosting nitrogen-vacancy (NV) defect centers with unique magnetic and optical properties. There have been many reports that suggest the existence of paramagnetic impurities near surface of various kinds of diamonds. Electron paramagnetic resonance (EPR) investigation of mechanically crushed nanodiamonds (NDs) as well as detonation NDs revealed g 2 like signals that are attributed to structural defects and dangling bonds near the diamond surface. In this presentation, we investigate paramagnetic impurities in various sizes of NDs using high-frequency (HF) continuous wave (cw) and pulsed EPR spectroscopy. Strong size dependence on the linewidth of HF cw EPR spectra reveals the existence of paramagnetic impurities in the vicinity of the diamond surface. We also study the size dependence of the spin-lattice and spin-spin relaxation times (T1 and T2) of single substitutional nitrogen defects in NDs Significant deviations from the temperature dependence of the phonon-assisted T1 process were observed in the ND samples, and were attributed to the contribution from the surface impurities. This work was supported by the Searle Scholars Program and the National Science Foundation (DMR-1508661 and CHE-1611134).