WorldWideScience

Sample records for high desert california

  1. Deserts

    Science.gov (United States)

    Belnap, Jayne; Webb, Robert H.; Esque, Todd; Brooks, Matthew L.; DeFalco, Lesley; MacMahon, James A.

    2016-01-01

    The deserts of California (Lead photo, Fig. 1) occupy approximately 38% of California’s landscape (Table 1) and consist of three distinct deserts: the Great Basin Desert, Mojave Desert, and Colorado Desert, the latter of which is a subdivision of the Sonoran Desert (Brown and Lowe 1980). The wide range of climates and geology found within each of these deserts result in very different vegetative communities and ecosystem processes and therefore different ecosystem services. In deserts, extreme conditions such as very high and low temperatures and very low rainfall result in abiotic factors (climate, geology, geomorphology, and soils) controlling the composition and function of ecosystems, including plant and animal distributions. This is in contrast to wetter and milder temperatures found in other ecosystems, where biotic interactions are the dominant driving force. However, despite the harsh conditions in deserts, they are home to a surprisingly large number of plants and animals. Deserts are also places where organisms display a wide array of adaptations to the extremes they encounter, providing some of the best examples of Darwinian selection (MacMahon and Wagner 1985, Ward 2009). Humans have utilized these regions for thousands of years, despite the relatively low productivity and harsh climates of these landscapes. Unlike much of California, most of these desert lands have received little high-intensity use since European settlement, leaving large areas relatively undisturbed. Desert landscapes are being altered, however, by the introduction of fire following the recent invasion of Mediterranean annual grasses. As most native plants are not fire-adapted, they Many do not recover, whereas the non-native grasses flourish. Because desert lands are slow to recover from disturbances, energy exploration and development, recreational use, and urban development will alter these landscapes for many years to come. This chapter provides a brief description of where the

  2. The potential of energy farming in the southeastern California desert

    Science.gov (United States)

    Lew, V.

    1980-04-01

    The use of energy forms to provide future sources of energy for California is considered. Marginal desert lands in southeastern California are proposed for the siting of energy farms using acacia, eucalyptus, euphorbia, guayule, jojoba, mesquite, or tamarisk.

  3. 76 FR 29153 - Revisions to the California State Implementation Plan, Mojave Desert Air Quality Management District

    Science.gov (United States)

    2011-05-20

    ... the California State Implementation Plan, Mojave Desert Air Quality Management District AGENCY... approve revisions to the Mojave Desert Air Quality Management District (MDAQMD) portion of the California... approving with the dates that they were adopted by the Mojave Desert Air Quality Management District (MDAQMD...

  4. 76 FR 29182 - Revisions to the California State Implementation Plan, Mojave Desert Air Quality Management District

    Science.gov (United States)

    2011-05-20

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 52 [EPA-R09-OAR-2011-0030; FRL-9308-4] Revisions to the California State Implementation Plan, Mojave Desert Air Quality Management District AGENCY... the Mojave Desert Air Quality Management District (MDAQMD) portion of the California State...

  5. Wilderness restoration: Bureau of Land Management and the Student Conservation Association in the California Desert District

    Science.gov (United States)

    J. Dan Abbe

    2007-01-01

    The California Desert Protection Act of 1994 was the largest park and wilderness legislation passed in the Lower 48 States since the Wilderness Act of 1964. It designated three national parks and 69 Bureau of Land Management wilderness areas. The California Desert and Wilderness Restoration Project is working to restore and revitalize these lands through a public/...

  6. 77 FR 65133 - Revisions to the California State Implementation Plan, Mojave Desert Air Quality Management District

    Science.gov (United States)

    2012-10-25

    ... the California State Implementation Plan, Mojave Desert Air Quality Management District AGENCY... limited disapproval of revisions to the Mojave Desert Air Quality Management District (MDAQMD) portion of.... * * * * * (c) * * * (379) * * * (i) * * * (E) Mojave Desert Air Quality Management District. (1) Rule 1159...

  7. 77 FR 11990 - Revisions to the California State Implementation Plan, Mojave Desert Air Quality Management...

    Science.gov (United States)

    2012-02-28

    ... the California State Implementation Plan, Mojave Desert Air Quality Management District and Yolo-Solano Air Quality Management District AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing to approve revisions to the Mojave Desert Air Quality Management...

  8. 77 FR 11992 - Revisions to the California State Implementation Plan, Mojave Desert Air Quality Management District

    Science.gov (United States)

    2012-02-28

    ... the California State Implementation Plan, Mojave Desert Air Quality Management District AGENCY... limited disapproval of revisions to the Mojave Desert Air Quality Management District (MDAQMD) portion of...,'' Northeast States for Coordinated Air Use Management, December 2000. B. Does the rule meet the evaluation...

  9. 76 FR 28450 - Meeting of the California Desert District Advisory Council

    Science.gov (United States)

    2011-05-17

    ... DEPARTMENT OF THE INTERIOR Bureau of Land Management [LLCAD01000 L12200000.AL 0000] Meeting of the California Desert District Advisory Council SUMMARY: Notice is hereby given, in accordance with Public Laws..., from 8 a.m. to 5 p.m. at the Handlery Hotel, 950 Hotel Circle North, San Diego, CA 92108. There will be...

  10. The geochemical associations of nitrate and naturally formed perchlorate in the Mojave Desert, California, USA

    Science.gov (United States)

    Lybrand, Rebecca A.; Michalski, Greg; Graham, Robert C.; Parker, David R.

    2013-03-01

    Perchlorate is a widely studied environmental contaminant that may adversely affect human health, and whose natural occurrence has emerged as a subject of great interest. Naturally formed perchlorate has been found to co-occur with nitrate in arid environments worldwide, but the relationship is not fully understood in the desert soils of the southwestern United States. The main objective of this research was to explore the origin, pedogenic distribution, and possible preservation of perchlorate and nitrate in the Mojave Desert mud hill deposits of California and to determine if the co-occurrence of putatively natural perchlorate was significantly correlated with nitrate in these soils. We identified 39 soil horizons in the Mojave Desert, California that contained reportable levels of perchlorate (MRL >165 μg kg-1) with a maximum concentration of 23 mg kg-1. A weak yet significant correlation was observed between perchlorate and nitrate (r2 = 0.321∗∗∗), which could be indicative of similar mechanisms of accumulation. When compared to published data for the Atacama Desert, the Mojave Desert perchlorate concentrations were remarkably lower for a given nitrate concentration. Oxygen isotopes in the nitrate were examined to identify variation within the Mojave Desert field sites, and to compare with the available literature for the Atacama Desert. The Mojave Desert Δ17O values ranged from 7‰ to 13‰, indicating a mixture of biologically and atmospherically-derived nitrate. An investigation of the distribution of perchlorate among soil horizons revealed that over sixty percent of the samples containing perchlorate were from C horizons while only twenty percent of the samples were from B horizons and even fewer in the overlying A horizons. Soil chemical, morphologic, and geologic characteristics of the soils suggest that the perchlorate, nitrate and/or other soluble salts have moved in a "bottom-up" manner wherein the salts were deposited in strata through

  11. 77 FR 39181 - Revisions to the California State Implementation Plan, Mojave Desert Air Quality Management...

    Science.gov (United States)

    2012-07-02

    ... the California State Implementation Plan, Mojave Desert Air Quality Management District (MDAQMD) and Yolo-Solano Air Quality Management District (YSAQMD) AGENCY: Environmental Protection Agency (EPA... Air Quality Management District. (1) Rule 1165, ``Glass Melting Furnaces,'' amended on August 25, 2008...

  12. Status of groundwater quality in the Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts study unit, 2008-2010: California GAMA Priority Basin Project

    Science.gov (United States)

    Parsons, Mary C.; Hancock, Tracy Connell; Kulongoski, Justin T.; Belitz, Kenneth

    2014-01-01

    Groundwater quality in the approximately 963-square-mile Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts study unit was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in southern California in San Bernardino, Riverside, San Diego, and Imperial Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey and the Lawrence Livermore National Laboratory. The GAMA Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts study was designed to provide a spatially unbiased assessment of the quality of untreated (raw) groundwater in the primary aquifer system. The assessment is based on water-quality and ancillary data collected by the U.S. Geological Survey from 52 wells (49 grid wells and 3 understanding wells) and on water-quality data from the California Department of Public Health database. The primary aquifer system was defined by the depth intervals of the wells listed in the California Department of Public Health database for the Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts study unit. The quality of groundwater in the primary aquifer system may be different from that in the shallower or deeper water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. This study assesses the status of the current quality of the groundwater resource by using data from samples analyzed for volatile organic compounds (VOCs), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. This status assessment is intended to characterize the quality of groundwater resources in the primary aquifer system of the Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts study unit, not the

  13. diurnal and seasonal water relations of the desert phreatophyte prosopis-glandulosa (honey mesquite) in the Sonoran Desert of California

    OpenAIRE

    Nilsen, E. T.; Sharifi, M. R.; Rundel, P. W.; Jarrell, W. M.; Virginia, R. A.

    1983-01-01

    Diurnal and Seasonal water relations were monitored in a population of Prosopis glandulosa var. torreyana in the Sonoran Desert of southern California. Prosopis glandulosa at this research site acquired its water from a ground water source 4-6 m deep. Measurements of diurnal and seasonal cycles of aboveground environmental conditions, soil moisture, and soil water potential (to 6 m depth) were taken to ascertain environmental water availability and water stress. Leaf water potential, leaf con...

  14. 75 FR 47619 - Notice of Availability of the Proposed California Desert Conservation Area Plan Amendment and...

    Science.gov (United States)

    2010-08-06

    ... DEPARTMENT OF THE INTERIOR Bureau of Land Management [CACA-48668, 49502, 49503, 49504, LLCAD09000.L51010000.FX0000, LVRWB09B2400] Notice of Availability of the Proposed California Desert Conservation Area Plan Amendment and Final Environmental Impact Statement for the Ivanpah Solar Electric Generating...

  15. Gopherus agassizii (Desert Tortoise). Non-native seed dispersal

    Science.gov (United States)

    Ennen, J.R.; Loughran, Caleb L.; Lovich, Jeffrey E.

    2011-01-01

    Sahara Mustard (Brassica tournefortii) is a non-native, highly invasive weed species of southwestern U.S. deserts. Sahara Mustard is a hardy species, which flourishes under many conditions including drought and in both disturbed and undisturbed habitats (West and Nabhan 2002. In B. Tellman [ed.], Invasive Plants: Their Occurrence and Possible Impact on the Central Gulf Coast of Sonora and the Midriff Islands in the Sea of Cortes, pp. 91–111. University of Arizona Press, Tucson). Because of this species’ ability to thrive in these habitats, B. tournefortii has been able to propagate throughout the southwestern United States establishing itself in the Mojave and Sonoran Deserts in Arizona, California, Nevada, and Utah. Unfortunately, naturally disturbed areas created by native species, such as the Desert Tortoise (Gopherus agassizii), within these deserts could have facilitated the propagation of B. tournefortii. (Lovich 1998. In R. G. Westbrooks [ed.], Invasive Plants, Changing the Landscape of America: Fact Book, p. 77. Federal Interagency Committee for the Management of Noxious and Exotic Weeds [FICMNEW], Washington, DC). However, Desert Tortoises have never been directly observed dispersing Sahara Mustard seeds. Here we present observations of two Desert Tortoises dispersing Sahara Mustard seeds at the interface between the Mojave and Sonoran deserts in California.

  16. Cumulative biological impacts framework for solar energy projects in the California Desert

    Science.gov (United States)

    Davis, Frank W.; Kreitler, Jason R.; Soong, Oliver; Stoms, David M.; Dashiell, Stephanie; Hannah, Lee; Wilkinson, Whitney; Dingman, John

    2013-01-01

    This project developed analytical approaches, tools and geospatial data to support conservation planning for renewable energy development in the California deserts. Research focused on geographical analysis to avoid, minimize and mitigate the cumulative biological effects of utility-scale solar energy development. A hierarchical logic model was created to map the compatibility of new solar energy projects with current biological conservation values. The research indicated that the extent of compatible areas is much greater than the estimated land area required to achieve 2040 greenhouse gas reduction goals. Species distribution models were produced for 65 animal and plant species that were of potential conservation significance to the Desert Renewable Energy Conservation Plan process. These models mapped historical and projected future habitat suitability using 270 meter resolution climate grids. The results were integrated into analytical frameworks to locate potential sites for offsetting project impacts and evaluating the cumulative effects of multiple solar energy projects. Examples applying these frameworks in the Western Mojave Desert ecoregion show the potential of these publicly-available tools to assist regional planning efforts. Results also highlight the necessity to explicitly consider projected land use change and climate change when prioritizing areas for conservation and mitigation offsets. Project data, software and model results are all available online.

  17. Nelson's big horn sheep (Ovis canadensis nelsoni) trample Agassiz's desert tortoise (Gopherus agassizii) burrow at a California wind energy facility

    Science.gov (United States)

    Agha, Mickey; Delaney, David F.; Lovich, Jeffrey E.; Briggs, Jessica; Austin, Meaghan; Price, Steven J.

    2015-01-01

    Research on interactions between Agassiz's desert tortoises (Gopherus agassizii) and ungulates has focused exclusively on the effects of livestock grazing on tortoises and their habitat (Oldemeyer, 1994). For example, during a 1980 study in San Bernardino County, California, 164 desert tortoise burrows were assessed for vulnerability to trampling by domestic sheep (Ovis aries). Herds of grazing sheep damaged 10% and destroyed 4% of the burrows (Nicholson and Humphreys 1981). In addition, a juvenile desert tortoise was trapped and an adult male was blocked from entering a burrow due to trampling by domestic sheep. Another study found that domestic cattle (Bos taurus) trampled active desert tortoise burrows and vegetation surrounding burrows (Avery and Neibergs 1997). Trampling also has negative impacts on diversity of vegetation and intershrub soil crusts in the desert southwest (Webb and Stielstra 1979). Trampling of important food plants and overgrazing has the potential to create competition between desert tortoises and domestic livestock (Berry 1978; Coombs 1979; Webb and Stielstra 1979).

  18. Land subsidence in the southwestern Mojave Desert, California, 1992–2009

    Science.gov (United States)

    Brandt, Justin; Sneed, Michelle

    2017-07-19

    Groundwater has been the primary source of domestic, agricultural, and municipal water supplies in the southwestern Mojave Desert, California, since the early 1900s. Increased demands on water supplies have caused groundwater-level declines of more than 100 feet (ft) in some areas of this desert between the 1950s and the 1990s (Stamos and others, 2001; Sneed and others, 2003). These water-level declines have caused the aquifer system to compact, resulting in land subsidence. Differential land subsidence (subsidence occurring at different rates across the landscape) can alter surface drainage routes and damage surface and subsurface infrastructure. For example, fissuring across State Route 247 at Lucerne Lake has required repairs as has pipeline infrastructure near Troy Lake.Land subsidence within the Mojave River and Morongo Groundwater Basins of the southwestern Mojave Desert has been evaluated using InSAR, ground-based measurements, geology, and analyses of water levels between 1992 and 2009 (years in which InSAR data were collected). The results of the analyses were published in three USGS reports— Sneed and others (2003), Stamos and others (2007), and Solt and Sneed (2014). Results from the latter two reports were integrated with results from other USGS/ MWA cooperative groundwater studies into the broader scoped USGS Mojave Groundwater Resources Web site (http://ca.water.usgs.gov/ mojave/). This fact sheet combines the detailed analyses from the three subsidence reports, distills them into a longer-term context, and provides an assessment of options for future monitoring.

  19. Δ17O Isotopic Investigation of Nitrate Salts Found in Co-Occurrence with Naturally Formed Perchlorate in the Mojave Desert, California, USA and the Atacama Desert, Chile

    Science.gov (United States)

    Lybrand, R. A.; Parker, D.; Rech, J.; Prellwitz, J.; Michalski, G.

    2009-12-01

    Perchlorate is both a naturally occurring and manmade contaminant that has been identified in soil, groundwater and surface water. Perchlorate directly affects human health by interfering with iodide uptake in the thyroid gland, which may in turn lower the production of key hormones that are needed for proper growth and development. Until recently, the Atacama Desert, Chile was thought to be the only location where perchlorate salts formed naturally. Recent work has documented the occurrence of these salts in several semi-arid regions of the United States. This study identified putatively natural sources of perchlorate in the Mojave Desert of California. Soil samples were collected from six field sites varying in geologic age. The co-occurrence of perchlorate and nitrate in caliches from the Atacama Desert and soils from the Mojave Desert was also investigated. Although the former are richer in NO3-, near-ore-grade (~5%) deposits occur in the vicinity of Death Valley National Park. Weak but significant correlations exist between ClO4- and NO3- at both locations, but the perchlorate levels are much higher (up to 800 mg/kg) in the Chilean samples than in California (atmospheric origin for the Atacama nitrate salts, and a mixture between biological nitrate and atmospherically-derived nitrate for the Mojave samples. When corrected for the percentage of atmospheric nitrate measured in the Atacama samples, the Mojave samples still contain much lower perchlorate concentrations than would be expected if the occurrence of perchlorate correlated strictly with atmospherically derived nitrate. These results indicate that the variation in the origins of the nitrate salts is not the only factor influencing perchlorate distribution in these environments. These findings suggest that there are other geologic differences in landform age and stability that are crucial to understanding the co-occurrence of nitrate and perchlorate between the two locations.

  20. 78 FR 4868 - Notice of Intent To Amend the California Desert Conservation Area Plan and Prepare an Associated...

    Science.gov (United States)

    2013-01-23

    ... specifically identified for sale in the CDCA Plan, as amended, and a plan amendment is therefore required to.... The BLM anticipates that the EA will consider both a plan amendment and the subsequent sale of the...] Notice of Intent To Amend the California Desert Conservation Area Plan and Prepare an Associated...

  1. Map showing areas of visible land disturbances caused by two military training operations in the Mojave Desert, California

    Science.gov (United States)

    Prose, D.V.

    1986-01-01

    This map shows areas that retain visible land disturbances produced during two military armored-vehicle training operations in the Mojave Desert, California. The map documents the lasting visual effects these operations have on this arid region and provides a data base for monitoring changes in the extent of visual disturbances in the future.

  2. 78 FR 40764 - Notice of Intent To Amend the California Desert Conservation Area Plan for the Needles Field...

    Science.gov (United States)

    2013-07-08

    ... for sale in the 1980 CDCA Plan, as amended, and a plan amendment is required to process a direct sale... anticipates that the EA will consider both a plan amendment and possible subsequent sales of the Federal...] Notice of Intent To Amend the California Desert Conservation Area Plan for the Needles Field Office and...

  3. 77 FR 60718 - Notice of Intent To Prepare an Amendment to the California Desert Conservation Area Plan and...

    Science.gov (United States)

    2012-10-04

    ... above is currently not available for sale under the 1980 CDCA Plan as amended, and a plan amendment is required to process a direct sale. This plan amendment will be limited to an analysis of whether the public...; CACA-53705] Notice of Intent To Prepare an Amendment to the California Desert Conservation Area Plan...

  4. Drawing a line in the sand: Effectiveness of off-highway vehicle management in California's Sonoran desert

    Science.gov (United States)

    Custer, Nathan; Defalco, Lesley A.; Nussear, Kenneth E.; Esque, Todd C.

    2017-01-01

    Public land policies manage multiple uses while striving to protect vulnerable plant and wildlife habitats from degradation; yet the effectiveness of such policies are infrequently evaluated, particularly for remote landscapes that are difficult to monitor. We assessed the use and impacts of recreational vehicles on Mojave Desert washes (intermittent streams) in the Chemehuevi Desert Wildlife Management Area (DWMA) of southern California. Wash zones designated as open and closed to off-highway vehicle (OHV) activity were designed in part to protect Mojave desert tortoise (Gopherus agassizii) habitat while allowing recreation in designated areas. OHV tracks were monitored in washes located near access roads during winter and early spring holidays – when recreation is typically high – and at randomly dispersed locations away from roads. Washes near access roads had fewer vehicle tracks within closed than open zones; further away from roads, OHV tracks were infrequent and their occurrence was not different between wash designations. Washes were in better condition in closed zones following major holidays as indicated by less vegetation damage, presence of trash, and wash bank damage. Furthermore, the frequency of washes with live tortoises and their sign was marginally greater in closed than open wash zones. Collectively, these results suggest that low impacts to habitats in designated closed wash zones reflect public compliance with federal OHV policy and regulations in the Chemehuevi DWMA during our study. Future monitoring to contrast wash use and impacts during other seasons as well as in other DWMAs will elucidate spatial and temporal patterns of recreation in these important conservation areas.

  5. Phylogeography and Ecological Niche Modeling of the Desert Iguana (Dipsosaurus dorsalis, Baird & Girard 1852) in the Baja California Peninsula.

    Science.gov (United States)

    Valdivia-Carrillo, Tania; García-De León, Francisco J; Blázquez, Ma Carmen; Gutiérrez-Flores, Carina; González Zamorano, Patricia

    2017-09-01

    Understanding the factors that explain the patterns of genetic structure or phylogeographic breaks at an intraspecific level is key to inferring the mechanisms of population differentiation in its early stages. These topics have been well studied in the Baja California region, with vicariance and the dispersal ability of individuals being the prevailing hypothesis for phylogeographic breaks. In this study, we evaluated the phylogeographic patterns in the desert iguana (Dipsosaurus dorsalis), a species with a recent history in the region and spatial variation in life history traits. We analyzed a total of 307 individuals collected throughout 19 localities across the Baja California Peninsula with 15 microsatellite DNA markers. Our data reveal the existence of 3 geographically discrete genetic populations with moderate gene flow and an isolation-by-distance pattern presumably produced by the occurrence of a refugium in the Cape region during the Pleistocene Last Glacial Maximum. Bayesian methods and ecological niche modeling were used to assess the relationship between population genetic structure and present and past climatic preferences of the desert iguana. We found that the present climatic heterogeneity of the Baja California Peninsula has a marked influence on the population genetic structure of the species, suggesting that there are alternative explanations besides vicariance. The information obtained in this study provides data allowing a better understanding of how historical population processes in the Baja California Peninsula can be understood from an ecological perspective. © The American Genetic Association 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Gopherus agassizii: Desert tortoise

    Science.gov (United States)

    Berry, Kristen H.; Swingland, Ian Richard; Klemens, Michael W.

    1989-01-01

    The desert tortoise is one of four allopatric North American tortoises. It occurs in the Mojave and Sonoran deserts of the southwestern United States and Mexico.Auffenberg (1976) divided the genus Gopherus (consisting of four species, G. agassizi, G. berlandieri, G.flavomarginatus, and G. polyphemus) in two osteological groups. Bramble (1982), using morphological and palaeontological data, divided the genus Gopherus into two separate complexes, each with two species. He established a new genus, Scaptochelys, for agassizi and berlandieri, retaining Gopherus for polyphemus and flavomarginatus. Bour and Dubois (1984) noted that Xerobates Agassiz had priority over Scaptochelys Bramble. Using mitochondrial DNA (mtDNA), Lamb et al. (1989) evaluated the evolutionary relationships of the North American tortoises, particularly the desert tortoise. They concluded that the mtDNA analysis provides strong support for generic recognition of the two distinct species groups described by Bramble (1982).Until a few decades ago, the desert tortoise was widespread at lower elevations throughout the Mojave and Sonoran deserts of the U.S.A. In the northern and western parts of the geographic range, large and relatively homogeneous populations with densities exceeding 1,000/sq km extended throughout parts of California, and probably into Nevada and Utah. In terms of biomass, the tortoise played an important role in the ecosystems. In most areas, numbers have declined dramatically and the extent of populations has been reduced. Most populations are now isolated and low in numbers. Conservation of the desert tortoise is a highly visible and political issue in the U.S.A., but not in Mexico.

  7. Stable isotope evidence for an atmospheric origin of desert nitrate deposits in northern Chile and southern California, U.S.A.

    Science.gov (United States)

    Böhlke, J.K.; Ericksen, G.E.; Revesz, K.

    1997-01-01

    Natural surficial accumulations of nitrate-rich salts in the Atacama Desert, northern Chile, and in the Death Valley region of the Mojave Desert, southern California, are well known, but despite many geologic and geochemical studies, the origins of the nitrates have remained controversial. N and O isotopes in nitrate, and S isotopes in coexisting soluble sulfate, were measured to determine if some proposed N sources could be supported or rejected, and to determine if the isotopic signature of these natural deposits could be used to distinguish them from various types of anthropogenic nitrate contamination that might be found in desert groundwaters. High-grade caliche-type nitrate deposits from both localities have ??15N values that range from -5 to +5???, but are mostly near 0???. Values of ??15N near 0??? are consistent with either bulk atmospheric N deposition or microbial N fixation as major sources of the N in the deposits. ??18O values of those desert nitrates with ??15N near 0??? range from about +31 to + 50??? (V-SMOW), significantly higher than that of atmospheric O2 (+ 23.5???). Such high values of ??18O are considered unlikely to result entirely from nitrification of reduced N, but rather resemble those of modern atmospheric nitrate in precipitation from some other localities. Assuming that limited modern atmospheric isotope data are applicable to the deposits, and allowing for nitrification of co-deposited ammonium, it is estimated that the fraction of the nitrate in the deposits that could be accounted for isotopically by atmospheric N deposition may be at least 20% and possibly as much as 100%. ??34S values are less diagnostic but could also be consistent with atmospheric components in some of the soluble sulfates associated with the deposits. The stable isotope data support the hypothesis that some high-grade caliche-type nitrate-rich salt deposits in some of the Earth's hyperarid deserts represent long-term accumulations of atmospheric deposition

  8. Tamarisk control on public lands in the desert of southern California: two case studies

    Science.gov (United States)

    1994-01-01

    As a land manager, the Federal Government faces enormous challenges from exotic pest invasions and associated changes to the structure and stability of native ecosystems (Bureau of Land Management, 1988). On public lands administered by the Bureau of Land Management (BLM) alone, it is estimated that almost three million hectares are occupied by invasive exotic plant species (weeds). Assuming an annual rate of invasion of 14 percent, 930 hectares of BLM-administered land are infested everyday by weeds (Jerry Asher, personal communication). When one considers the fact that BLM administers only about one-third of the public land in the United States (The Keystone Center, 1991), the magnitude of the problem assumes staggering proportions. The scenario described in the quote above portrays only some of the problems associated with the spread of the exotic plant tamarisk, a species on the California Exotic Pest Plant Council’s list of exotic pest plants of greatest concern (California Exotic Pest Plant Council, 1993). In this paper we review the threats posed by tamarisk invasion and proliferation and examine the traits that make the plant such a successful competitor. In addition, we highlight two tamarisk control efforts conducted by the Bureau of Land Management in the southern California desert.

  9. High Resolution Mapping of Soils and Landforms for the Desert Renewable Energy Conservation Plan (DRECP)

    Science.gov (United States)

    Potter, Christopher S.; Li, Shuang

    2014-01-01

    The Desert Renewable Energy Conservation Plan (DRECP), a major component of California's renewable energy planning efforts, is intended to provide effective protection and conservation of desert ecosystems, while allowing for the sensible development of renewable energy projects. This NASA mapping report was developed to support the DRECP and the Bureau of Land Management (BLM). We outline in this document remote sensing image processing methods to deliver new maps of biological soils crusts, sand dune movements, desert pavements, and sub-surface water sources across the DRECP area. We focused data processing first on the largely unmapped areas most likely to be used for energy developments, such as those within Renewable Energy Study Areas (RESA) and Solar Energy Zones (SEZs). We used imagery (multispectral and radar) mainly from the years 2009-2011.

  10. Vegetation - Central Mojave Desert [ds166

    Data.gov (United States)

    California Natural Resource Agency — The Department of Defense and the other desert managers are developing and organizing scientific information needed to better manage the natural resources of the...

  11. Effects of subsidized predators, resource variability, and human population density on desert tortoise populations in the Mojave Desert, USA

    Science.gov (United States)

    Esque, Todd C.; Nussear, Kenneth E.; Drake, K. Kristina; Walde, Andrew D.; Berry, Kristin H.; Averill-Murray, Roy C.; Woodman, A. Peter; Boarman, William I.; Medica, Phil A.; Mack, Jeremy S.; Heaton, Jill S.

    2010-01-01

    Understanding predator–prey relationships can be pivotal in the conservation of species. For 2 decades, desert tortoise Gopherus agassizii populations have declined, yet quantitative evidence regarding the causes of declines is scarce. In 2005, Ft. Irwin National Training Center, California, USA, implemented a translocation project including 2 yr of baseline monitoring of desert tortoises. Unusually high predation on tortoises was observed after translocation occurred. We conducted a retrospective analysis of predation and found that translocation did not affect the probability of predation: translocated, resident, and control tortoises all had similar levels of predation. However, predation rates were higher near human population concentrations, at lower elevation sites, and for smaller tortoises and females. Furthermore, high mortality rates were not limited to the National Training Center. In 2008, elevated mortality (as high as 43%) occurred throughout the listed range of the desert tortoise. Although no temporal prey base data are available for analysis from any of the study sites, we hypothesize that low population levels of typical coyote Canis latrans prey (i.e. jackrabbits Lepus californicus and other small animals) due to drought conditions influenced high predation rates in previous years. Predation may have been exacerbated in areas with high levels of subsidized predators. Many historical reports of increased predation, and our observation of a range-wide pattern, may indicate that high predation rates are more common than generally considered and may impact recovery of the desert tortoise throughout its range.

  12. Ozone Transport Aloft Drives Surface Ozone Maxima Across the Mojave Desert

    Science.gov (United States)

    VanCuren, R. A.

    2014-12-01

    A persistent layer of polluted air in the lower free troposphere over the Mojave Desert (California and Nevada) drives spring and summer surface ozone maxima as deep afternoon mixing delivers ozone and ozone precursors to surface measurement sites 200 km or more downwind of the mountains that separate the deserts from the heavily populated coastal areas of California. Pollutants in this elevated layer derive from California source regions (the Los Angeles megacity region and the intensive agricultural region of the San Joaquin Valley), and from long-range transport from Asia. Recognition of this poorly studied persistent layer explains and expands the significance of previously published reports of ozone and other pollutants observed in and over the Mojave Desert, resolves an apparent paradox in the timing of ozone peaks due to transport from the upwind basins, and provides a new perspective on the long-range downwind impacts of megacity pollution plumes.

  13. Three-dimensional geologic mapping of the Cenozoic basin fill, Amargosa Desert basin, Nevada and California

    Science.gov (United States)

    Taylor, Emily M.; Sweetkind, Donald S.

    2014-01-01

    Understanding the subsurface geologic framework of the Cenozoic basin fill that underlies the Amargosa Desert in southern Nevada and southeastern California has been improved by using borehole data to construct three-dimensional lithologic and interpreted facies models. Lithologic data from 210 boreholes from a 20-kilometer (km) by 90-km area were reduced to a limited suite of descriptors based on geologic knowledge of the basin and distributed in three-dimensional space using interpolation methods. The resulting lithologic model of the Amargosa Desert basin portrays a complex system of interfingered coarse- to fine-grained alluvium, playa and palustrine deposits, eolian sands, and interbedded volcanic units. Lithologic units could not be represented in the model as a stacked stratigraphic sequence due to the complex interfingering of lithologic units and the absence of available time-stratigraphic markers. Instead, lithologic units were grouped into interpreted genetic classes, such as playa or alluvial fan, to create a three-dimensional model of the interpreted facies data. Three-dimensional facies models computed from these data portray the alluvial infilling of a tectonically formed basin with intermittent internal drainage and localized regional groundwater discharge. The lithologic and interpreted facies models compare favorably to resistivity, aeromagnetic, and geologic map data, lending confidence to the interpretation.

  14. Vegetation - Anza-Borrego Desert State Park [ds165

    Data.gov (United States)

    California Natural Resource Agency — The Anza Borrego Desert State Park (ABDSP) Vegetation Map depicts vegetation within the Park and its surrounding environment. The map was prepared by the Department...

  15. Volcanic materials superconductivity in desert areas of the states of Sonora and Baja California

    International Nuclear Information System (INIS)

    Holguín, Aldo

    2017-01-01

    Research was conducted to find materials in their natural state at room temperature and exhibit the effects of superconductivity in the volcanic region of deserts Altar in Sonora and Baja California Norte. 100 were collected at random samples of materials from different parts of the region and underwent tests to determine their electromagnetic parameters of electrical resistance, magnetism, temperature and conductivity. Only it has been found that the effects of superconductivity in them is only present at very low temperatures corroborating what has been done in other investigations, however no indication that there is a material or combination of materials that can produce the effects of superconductivity other temperatures so it is suggested to continue the search for such materials and / or develop a technique at room temperature to allow mimic the behavior of atoms when superconductivity occurs at. (paper)

  16. Subsidence (2004-2009) in and near lakebeds of the Mojave River and Morongo groundwater basins, southwest Mojave Desert, California

    Science.gov (United States)

    Solt, Mike; Sneed, Michelle

    2014-01-01

    Subsidence, in the vicinity of dry lakebeds, within the Mojave River and Morongo groundwater basins of the southwest Mojave Desert has been measured by Interferometric Synthetic Aperture Radar (InSAR). The investigation has focused on determining the location, extent, and magnitude of changes in land-surface elevation. In addition, the relation of changes in land-surface elevation to changes in groundwater levels and lithology was explored. This report is the third in a series of reports investigating land-surface elevation changes in the Mojave and Morongo Groundwater Basins, California. The first report, U.S. Geological Survey (USGS) Water-Resources Investigations Report 03-4015 by Sneed and others (2003), describes historical subsidence and groundwater-level changes in the southwest Mojave Desert from 1969 to 1999. The second report, U.S. Geological Survey Water-Resources Investigations Report 07-5097, an online interactive report and map, by Sneed and Brandt (2007), describes subsidence and groundwater-level changes in the southwest Mojave Desert from 1999 to 2004. The purpose of this report is to document an updated assessment of subsidence in these lakebeds and selected neighboring areas from 2004 to 2009 as measured by InSAR methods. In addition, continuous Global Positioning System (GPS)(2005-10), groundwater level (1951-2010), and lithologic data, if available, were used to characterize compaction mechanisms in these areas. The USGS California Water Science Center’s interactive website for the Mojave River and Morongo groundwater basins was created to centralize information pertaining to land subsidence and water levels and to allow readers to access available data and related reports online. An interactive map of land subsidence and water levels in the Mojave River and Morongo groundwater basins displays InSAR interferograms, subsidence areas, subsidence contours, hydrographs, well information, and water-level contours. Background information, including

  17. Water appropriation and ecosystem stewardship in the Baja desert

    OpenAIRE

    de las Heras Alejandro; Rodriguez Mario A.; Islas-Espinoza Marina

    2014-01-01

    The UNESCO San Francisco Rock Paintings polygon within El Vizcaino Biosphere Reserve in the Baja California Peninsula derives its moisture from the North American monsoon. There, ranchers have depended on the desert since the 18th century. More recently, the desert has depended on the environmental stewardship of the ranchers who have allayed mining exploitation and archaeological looting. Using a Rapid Assessment Procedure (RAP), climate data, and geographical informa...

  18. 75 FR 53877 - Proposed Establishment of the Antelope Valley of the California High Desert Viticultural Area

    Science.gov (United States)

    2010-09-02

    ... Viticulture,'' by Albert J. Winkler, University of California Press, 1974, pp. 61-64). As a measurement of..., eighth edition, January 2007, Sunset Publishing Corporation, Menlo Park, California), which is discussed... Service, in cooperation with the University of California Agricultural Experiment Station). Annual...

  19. Are There High Meteorite Concentrations in the Atacama Desert/Chile?

    Science.gov (United States)

    Scherer, P.; Delisle, G.

    1992-07-01

    We have visited numerous regions of the Atacama desert between Copiapo (27 degrees, 15'S) and Calama (22 degrees, 25'S) to assess their potential as a high-yield meteorite concentration surface, easily exploitable by search efforts within a reasonable time frame. According to our observations, this desert is characterized by the following features: a) A high percentage of the desert consists of sloping surfaces on which soil movement occurs, presumably by very infrequent, though heavy rain. b) Vast areas of the desert are covered by a dm-thick sand layer of dark colour. Since the sand is too coarse-grained to be transported by wind it presumably resulted from in-situ weathering of rock debris derived from nearby mountains. We suspect that impacting smaller objects can easily penetrate the sand layer. c) The sand layer is typically dotted by rocks, fist-size or smaller, that are covered by a thick layer of desert paint (reddish-brown to black colour). Most country rocks are of volcanic origin (rhyolite, andesite, basalt) and are typically of grey to black colour. A noticeable colour contrast in particular to potential stony meteorites is almost nonexistent. d) Soil salts with a potential to speed up weathering processes are ubiquitous near the surface. e) The Pampa de Mejillones, 45 km north of Antofagasta, is one of the few light-coloured areas in the Atacama desert. The surface, being of Mio-Pliocene age, consists of an almost continuous layer of light-brown fossil shells (bivalves and gastropodes). Fluvially transported dark rocks from adjacent outcrops rest on top. The latter material is covered again by desert paint. Few meteorite discoveries have been reported from this area (Pampa (a),(b),(c)). f) Numerous old tire tracks, in particular around mines in operation, crisscross most areas of the Atacama. Undetected objects such as large masses of iron bodies are not likely to have remained undiscovered in great numbers any more. We conclude that the potential of

  20. Serologic and molecular evidence for testudinid herpesvirus 2 infection in wild Agassiz’s desert tortoise, Gopherus agassizii

    Science.gov (United States)

    Jacobson, Elliott R.; Berry, Kristin H.; Wellehan, James F. X.; Origgi, Francesco; Childress, April L.; Braun, Josephine; Schrenzel, Mark; Yee, Julie; Rideout, Bruce

    2012-01-01

    Following field observations of wild Agassiz’s desert tortoises (Gopherus agassizii) with oral lesions similar to those seen in captive tortoises with herpesvirus infection, we measured the prevalence of antibodies to Testudinid herpesvirus (TeHV) 3 in wild populations of desert tortoises in California. The survey revealed 30.9% antibody prevalence. In 2009 and 2010, two wild adult male desert tortoises, with gross lesions consistent with trauma and puncture wounds, respectively, were necropsied. Tortoise 1 was from the central Mojave Desert and tortoise 2 was from the northeastern Mojave Desert. We extracted DNA from the tongue of tortoise 1 and from the tongue and nasal mucosa of tortoise 2. Sequencing of polymerase chain reaction products of the herpesviral DNA-dependent DNA polymerase gene and the UL39 gene respectively showed 100% nucleotide identity with TeHV2, which was previously detected in an ill captive desert tortoise in California. Although several cases of herpesvirus infection have been described in captive desert tortoises, our findings represent the first conclusive molecular evidence of TeHV2 infection in wild desert tortoises. The serologic findings support cross-reactivity between TeHV2 and TeHV3. Further studies to determine the ecology, prevalence, and clinical significance of this virus in tortoise populations are needed.

  1. Holocene landscape response to seasonality of storms in the Mojave Desert

    Science.gov (United States)

    Miller, D.M.; Schmidt, K.M.; Mahan, S.A.; McGeehin, J.P.; Owen, L.A.; Barron, J.A.; Lehmkuhl, F.; Lohrer, R.

    2010-01-01

    New optically stimulated and radiocarbon ages for alluvial fan and lake deposits in the Mojave Desert are presented, which greatly improves the temporal resolution of surface processes. The new Mojave Desert climate-landscape record is particularly detailed for the late Holocene. Evidence from ephemeral lake deposits and landforms indicates times of sustained stream flow during a wet interval of the latter part of the Medieval Warm Period at ca. AD 1290 and during the Little Ice Age at ca. AD 1650. The former lakes postdate megadroughts of the Medieval Warm Period, whereas the latter match the Maunder Minimum of the Little Ice Age. Periods of alluvial fan aggradation across the Mojave Desert are 14-9 cal ka and 6-3 cal ka. This timing largely correlates to times of increased sea-surface temperatures in the Gulf of California and enhanced warm-season monsoons. This correlation suggests that sustained alluvial fan aggradation may be driven by intense summer-season storms. These data suggest that the close proximity of the Mojave Desert to the Pacific Ocean and the Gulf of California promotes a partitioning of landscape-process responses to climate forcings that vary with seasonality of the dominant storms. Cool-season Pacific frontal storms cause river flow, ephemeral lakes, and fan incision, whereas periods of intense warm-season storms cause hillslope erosion and alluvial fan aggradation. The proposed landscape-process partitioning has important implications for hazard mitigation given that climate change may increase sea-surface temperatures in the Gulf of California, which indirectly could increase future alluvial fan aggradation.

  2. Recovery of severely compacted soils in the Mojave Desert, California, USA

    Science.gov (United States)

    Webb, R.H.

    2002-01-01

    Often as a result of large-scale military maneuvers in the past, many soils in the Mojave Desert are highly vulnerable to soil compaction, particularly when wet. Previous studies indicate that natural recovery of severely compacted desert soils is extremely slow, and some researchers have suggested that subsurface compaction may not recover. Poorly sorted soils, particularly those with a loamy sand texture, are most vulnerable to soil compaction, and these soils are the most common in alluvial fans of the Mojave Desert. Recovery of compacted soil is expected to vary as a function of precipitation amounts, wetting-and-drying cycles, freeze-thaw cycles, and bioturbation, particularly root growth. Compaction recovery, as estimated using penetration depth and bulk density, was measured at 19 sites with 32 site-time combinations, including the former World War II Army sites of Camps Ibis, Granite, Iron Mountain, Clipper, and Essex. Although compaction at these sites was caused by a wide variety of forces, ranging from human trampling to tank traffic, the data do not allow segregation of differences in recovery rates for different compaction forces. The recovery rate appears to be logarithmic, with the highest rate of change occurring in the first few decades following abandonment. Some higher-elevation sites have completely recovered from soil compaction after 70 years. Using a linear model of recovery, the full recovery time ranges from 92 to 100 years; using a logarithmic model, which asymptotically approaches full recovery, the time required for 85% recovery ranges from 105-124 years.

  3. Persistence of historical population structure in an endangered species despite near-complete biome conversion in California's San Joaquin Desert

    Science.gov (United States)

    Richmond, Jonathan Q.; Wood, Dustin A.; Westphal, Michael F.; Vandergast, Amy; Leache, Adam D.; Saslaw, Lawrence; Butterfield, H. Scott; Fisher, Robert N.

    2017-01-01

    Genomic responses to habitat conversion can be rapid, providing wildlife managers with time-limited opportunities to enact recovery efforts that use population connectivity information that reflects predisturbance landscapes. Despite near-complete biome conversion, such opportunities may still exist for the endemic fauna and flora of California's San Joaquin Desert, but comprehensive genetic data sets are lacking for nearly all species in the region. To fill this knowledge gap, we studied the rangewide population structure of the endangered blunt-nosed leopard lizard Gambelia sila, a San Joaquin Desert endemic, using restriction site-associated DNA (RAD), microsatellite and mtDNA data to test whether admixture patterns and estimates of effective migration surfaces (EEMS) can identify land areas with high population connectivity prior to the conversion of native xeric habitats. Clustering and phylogenetic analyses indicate a recent shared history between numerous isolated populations and EEMS reveals latent signals of corridors and barriers to gene flow over areas now replaced by agriculture and urbanization. Conflicting histories between the mtDNA and nuclear genomes are consistent with hybridization with the sister species G. wislizenii, raising important questions about where legal protection should end at the southern range limit of G. sila. Comparative analysis of different data sets also adds to a growing list of advantages in using RAD loci for genetic studies of rare species. We demonstrate how the results of this work can serve as an evolutionary guidance tool for managing endemic, arid-adapted taxa in one of the world's most compromised landscapes.

  4. 76 FR 45606 - Desert Renewable Energy Conservation Plan, Habitat Conservation Plan and Possible Land Use Plan...

    Science.gov (United States)

    2011-07-29

    ...-N131; 80221-1112-80221-F2] Desert Renewable Energy Conservation Plan, Habitat Conservation Plan and Possible Land Use Plan Amendment, Southern California: Environmental Impact Statement AGENCY: Fish and..., as amended, for the proposed Desert Renewable Energy Conservation Plan (DRECP). The EIS will be a...

  5. A mechanistic modeling and data assimilation framework for Mojave Desert ecohydrology

    Science.gov (United States)

    Ng, Gene-Hua Crystal; Bedford, David R.; Miller, David M.

    2014-06-01

    This study demonstrates and addresses challenges in coupled ecohydrological modeling in deserts, which arise due to unique plant adaptations, marginal growing conditions, slow net primary production rates, and highly variable rainfall. We consider model uncertainty from both structural and parameter errors and present a mechanistic model for the shrub Larrea tridentata (creosote bush) under conditions found in the Mojave National Preserve in southeastern California (USA). Desert-specific plant and soil features are incorporated into the CLM-CN model by Oleson et al. (2010). We then develop a data assimilation framework using the ensemble Kalman filter (EnKF) to estimate model parameters based on soil moisture and leaf-area index observations. A new implementation procedure, the "multisite loop EnKF," tackles parameter estimation difficulties found to affect desert ecohydrological applications. Specifically, the procedure iterates through data from various observation sites to alleviate adverse filter impacts from non-Gaussianity in small desert vegetation state values. It also readjusts inconsistent parameters and states through a model spin-up step that accounts for longer dynamical time scales due to infrequent rainfall in deserts. Observation error variance inflation may also be needed to help prevent divergence of estimates from true values. Synthetic test results highlight the importance of adequate observations for reducing model uncertainty, which can be achieved through data quality or quantity.

  6. A mechanistic modeling and data assimilation framework for Mojave Desert ecohydrology

    Science.gov (United States)

    Ng, Gene-Hua Crystal.; Bedford, David; Miller, David

    2014-01-01

    This study demonstrates and addresses challenges in coupled ecohydrological modeling in deserts, which arise due to unique plant adaptations, marginal growing conditions, slow net primary production rates, and highly variable rainfall. We consider model uncertainty from both structural and parameter errors and present a mechanistic model for the shrub Larrea tridentata (creosote bush) under conditions found in the Mojave National Preserve in southeastern California (USA). Desert-specific plant and soil features are incorporated into the CLM-CN model by Oleson et al. (2010). We then develop a data assimilation framework using the ensemble Kalman filter (EnKF) to estimate model parameters based on soil moisture and leaf-area index observations. A new implementation procedure, the “multisite loop EnKF,” tackles parameter estimation difficulties found to affect desert ecohydrological applications. Specifically, the procedure iterates through data from various observation sites to alleviate adverse filter impacts from non-Gaussianity in small desert vegetation state values. It also readjusts inconsistent parameters and states through a model spin-up step that accounts for longer dynamical time scales due to infrequent rainfall in deserts. Observation error variance inflation may also be needed to help prevent divergence of estimates from true values. Synthetic test results highlight the importance of adequate observations for reducing model uncertainty, which can be achieved through data quality or quantity.

  7. GOPHERUS AGASSIZII (Desert Tortoise)

    International Nuclear Information System (INIS)

    JAMES L. BOONE, DANNY L. RAKESTRAW, AND KURT R. RAUTENSTRAUCH

    1997-01-01

    GOPHERLTS AGAISSIZII (Desert Tortoise). Predation. A variety of predators, most notably coyotes (Canis Iatrans) and Common Ravens (Corvis corau) have been reported to prey on hatchling desert tortoises (Emst et al. 1994). Turtles of the United States and Canada (Smithsonian Institution Press, Washington, D.C. 578 pp.). Here, we report an observation of a hatchling tortoise, fitted with a radiotransmitter, that was preyed upon by native fire ants (Solenopsis sp.) in the eastern Mojave Desert at Yucca Mountain, Nevada (36 degrees 50 minutes N, 116 degree 25 minutes E). On 8/27/94, tortoise No.9315 (carapace length = 45 mm, age = 5 d) was found alive with eyes, chin, and parts of the head and legs being eaten by ants. The tortoise was alive, but lethargic, and responded little when touched. Eight of 74 other radiomarked hatchlings monitored at Yucca Mountain during 1992-1994 were found dead with fire ants on their carcass 3-7 days after the hatchlings emerged from their nests. It is not known whether those tortoises were killed by ants or were being scavenged when found. While imported fire ants (S. invicta) have long been known to kill hatchling gopher tortoises (G. polyphemus; Mount 1981. J. Alabama Acad. Sci. 52: 71-78), native fire ants have previously not been implicated as predators of desert tortoises. However, only 1 of 75 (or at worst 9 of 75) was killed by fire ants, suggesting that although fire ants do kill hatchlings, they were not important predators on desert tortoises during this study. Tortoise specimens were deposited at the University of California at Berkeley

  8. Persistence of historical population structure in an endangered species despite near-complete biome conversion in California's San Joaquin Desert.

    Science.gov (United States)

    Richmond, Jonathan Q; Wood, Dustin A; Westphal, Michael F; Vandergast, Amy G; Leaché, Adam D; Saslaw, Lawrence R; Butterfield, H Scott; Fisher, Robert N

    2017-07-01

    Genomic responses to habitat conversion can be rapid, providing wildlife managers with time-limited opportunities to enact recovery efforts that use population connectivity information that reflects predisturbance landscapes. Despite near-complete biome conversion, such opportunities may still exist for the endemic fauna and flora of California's San Joaquin Desert, but comprehensive genetic data sets are lacking for nearly all species in the region. To fill this knowledge gap, we studied the rangewide population structure of the endangered blunt-nosed leopard lizard Gambelia sila, a San Joaquin Desert endemic, using restriction site-associated DNA (RAD), microsatellite and mtDNA data to test whether admixture patterns and estimates of effective migration surfaces (EEMS) can identify land areas with high population connectivity prior to the conversion of native xeric habitats. Clustering and phylogenetic analyses indicate a recent shared history between numerous isolated populations and EEMS reveals latent signals of corridors and barriers to gene flow over areas now replaced by agriculture and urbanization. Conflicting histories between the mtDNA and nuclear genomes are consistent with hybridization with the sister species G. wislizenii, raising important questions about where legal protection should end at the southern range limit of G. sila. Comparative analysis of different data sets also adds to a growing list of advantages in using RAD loci for genetic studies of rare species. We demonstrate how the results of this work can serve as an evolutionary guidance tool for managing endemic, arid-adapted taxa in one of the world's most compromised landscapes. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  9. Environmental considerations in a high desert, crude oil pipeline spill

    International Nuclear Information System (INIS)

    Lowe, M.A.; Mancini, E.R.; Chamberlain, D.W.; Albright, G.R.

    1993-01-01

    A road grader punctured a high-pressure crude oil pipeline in the California high desert resulting in the release of approximately 4,200 barrels of Alaska North Slope crude oil. Oil sprayed over a steeply sloped hillside and flowed into an adjacent, densely vegetated ephemeral stream channel which carried secondary treatment sewage discharge. Three underflow dams were constructed in the channel within 2.8 km of the site. To ensure containment at the first dam, the sewage discharge was diverted from the channel, eventually to an upland impulse sprinkler irrigation system. Channel water and phase-separated ANS crude oil, impounded behind the first dam, percolated through alluvial sands/gravels to a depth of about five meters. The oil percolated through the soils on the receding surface of the water, affecting soils to an equivalent depth and saturating a horizontally narrow band of stream-bank soils as much as two to four meters into the bank. Stream channel undergrowth and a small number of mature trees were cleared to provide access for cleanup and/or to remove oiled plants. A large number of trees experienced partial leaf-drop within 25 days of the spill while two heavily oiled trees died. New vegetative growth was evident within five weeks of the spill. Site restoration included planting cuttings of five riparian tree species and hydroseeding exposed banks. Total petroleum hydrocarbon concentrations ranged from not detectable to 203,000 parts per million and averaged approximately 25,000 ppm in affected soils as sampled in place and in stockpiles. Approximately 30,000 tons of hydrocarbon-contaminated soil was excavated from the length of the stream channel (3,600 tons) as well as the area behind the first dam and spill site (26,400 tons). All soils were staged on site for waste profiling and final disposition. After treatment, the contaminated soil was beneficially reused as daily cover at a southern California landfill at a turnkey cost of approximately $57/ton

  10. HIGH FOLIAR NITROGEN IN DESERT SHRUBS: AN IMPORTANT ECOSYSTEM TRAIT OR DEFECTIVE DESERT DOCTRINE?

    Science.gov (United States)

    Nitrogen concentrations in green and senesced leaves of perennial desert shrubs were compiled from a worldwide literature search to test the validity of the doctrine that desert shrubs produce foliage and leaf litter much richer in nitrogen than that in the foliage of plants from...

  11. Predicting Pinus monophylla forest cover in the Baja California Desert by remote sensing

    Directory of Open Access Journals (Sweden)

    Jonathan G. Escobar-Flores

    2018-04-01

    Full Text Available The Californian single-leaf pinyon (Pinus monophylla var. californiarum, a subspecies of the single-leaf pinyon (the world’s only one-needled pine, inhabits semi-arid zones of the Mojave Desert (southern Nevada and southeastern California, US and also of northern Baja California (Mexico. This tree is distributed as a relict subspecies, at elevations of between 1,010 and 1,631 m in the geographically isolated arid Sierra La Asamblea, an area characterized by mean annual precipitation levels of between 184 and 288 mm. The aim of this research was (i to estimate the distribution of P. monophylla var. californiarum in Sierra La Asamblea by using Sentinel-2 images, and (ii to test and describe the relationship between the distribution of P. monophylla and five topographic and 18 climate variables. We hypothesized that (i Sentinel-2 images can be used to predict the P. monophylla distribution in the study site due to the finer resolution (×3 and greater number of bands (×2 relative to Landsat-8 data, which is publically available free of charge and has been demonstrated to be useful for estimating forest cover, and (ii the topographical variables aspect, ruggedness and slope are particularly important because they represent important microhabitat factors that can determine the sites where conifers can become established and persist. An atmospherically corrected a 12-bit Sentinel-2A MSI image with 10 spectral bands in the visible, near infrared, and short-wave infrared light region was used in combination with the normalized differential vegetation index (NDVI. Supervised classification of this image was carried out using a backpropagation-type artificial neural network algorithm. Stepwise multiple linear binominal logistical regression and Random Forest classification including cross validation were used to model the associations between presence/absence of P. monophylla and the five topographical and 18 climate variables. Using supervised

  12. Gravity, magnetic, and physical property data in the Smoke Creek Desert area, northwest Nevada

    Science.gov (United States)

    Tilden, Janet E.; Ponce, David A.; Glen, Jonathan M.G.; Chuchel, Bruce A.; Tushman, Kira; Duvall, Alison

    2006-01-01

    The Smoke Creek Desert, located approximately 100 km (60 mi) north of Reno near the California-Nevada border, is a large basin situated along the northernmost parts of the Walker Lane Belt (Stewart, 1988), a physiographic province defined by northwest-striking topographic features and strike-slip faulting. Because geologic framework studies play an important role in understanding the hydrology of the Smoke Creek Desert, a geologic and geophysical effort was begun to help determine basin geometry, infer structural features, and estimate depth to Pre-Cenozoic rocks, or basement. In May and June of 2004, and June of 2005, the U.S. Geological Survey (USGS) collected 587 new gravity stations, more than 160 line-kilometers (100 line-miles) of truck-towed magnetometer data, and 111 rock property samples in the Smoke Creek Desert and vicinity in northwest Nevada, as part of an effort to characterize its hydrogeologic framework. In the Smoke Creek Desert area, gravity highs occur over rocks of the Skedaddle Mountains, Fox Range, Granite Range, and over portions of Tertiary volcanic rocks in the Buffalo Hills. These gravity highs likely reflect basement rocks, either exposed at the surface or buried at shallow depths. The southern Smoke Creek Desert corresponds to a 25-mGal isostatic gravity low, which corresponds with a basin depth of approximately 2 km. Magnetic highs are likely due to granitic, andesitic, and metavolcanic rocks, whereas magnetic lows are probably associated with less magnetic gneiss and metasedimentary rocks in the region. Three distinctive patterns of magnetic anomalies occur throughout the Smoke Creek Desert and Squaw Creek Valley, likely reflecting three different geological and structural settings.

  13. Seroepidemiology of upper respiratory tract disease in the desert tortoise of California

    Science.gov (United States)

    Brown, Mary B.; Berry, Kristin H.; Schumacher, Isabella M.; Nagy, Kenneth A.; Christopher, Mary M.; Klein, Paul A.

    1999-01-01

    Several factors have combined with an upper respiratory tract disease (URTD) to produce declines on some population numbers of desert tortoises (Gopherus agassizii) in the western USA. This study was designed to determine the seroepidemiology of URTD in a population of wild adult tortoises at the Desert Tortoise Research Natural Area (DTNA) study site in Kern County (California, USA). Prior to initiation of the study, there was a dramatic decline in the number of individuals in this population. At each individual time point, samples were obtained from 12 to 20 tortoises with radiotransmitters during winter, spring, summer, and fall from 1992 through 1995. During the course of the study, 35 animals were sampled at one or more times. Only 10 animals were available for consistent monitoring throughout the 4 yr period. Specific antibody (Ab) levels to Mycoplasma agassizii were determined for individual tortoises by an enzyme-linked immunosorbent assay (ELISA) test. Specific Ab levels were not influenced by the gender of the tortoise. Levels of Ab and distribution of ELISA+, ELISA– and suspect animals were not consistently affected by season within a single year or for a season among the study years. Significantly more tortoises presented with clinical signs in 1992 and 1995. The profile of ELISA+ animals with clinical signs shifted from 5% (1992) to 42% (1995). In 1992, 52% of tortoises lacked clinical signs and were ELISA–. In 1995, this category accounted for only 19% of tortoises. Based on the results of this study, we conclude that URTD was present in this population as evidenced by the presence of ELISA+ individual animals, and that the infectious agent is still present as evidenced by seroconversion of previously ELISA– animals during the course of the study. There is evidence to suggest that animals may remain ELISA+ without showing overt disease, a clinical pattern consistent with the chronic nature of most mycoplasmal infections. Further, there are

  14. Microbial communities in a High Arctic polar desert landscape

    Directory of Open Access Journals (Sweden)

    Clare M McCann

    2016-03-01

    Full Text Available The High Arctic is dominated by polar desert habitats whose microbial communities are poorly understood. In this study, we used next generation sequencing to describe the α- and β-diversity of polar desert soils from the Kongsfjorden region of Svalbard. Ten phyla consistently dominated the soils and accounted for 95 % of all sequences, with Proteobacteria, Actinobacteria and Chloroflexi being the dominant lineages. In contrast to previous investigations of Arctic soils, Acidobacterial relative abundances were low as were the Archaea throughout the Kongsfjorden polar desert landscape. Lower Acidobacterial abundances were attributed to the circumneutral soil pH in this region which has resulted from the weathering of the underlying carbonate geology. In addition, we correlated previously measured geochemical variables to determine potential controls on the communities. Soil phosphorus, pH, nitrogen and calcium significantly correlated with β-diversity indicating a landscape scale lithological control of soil nutrients which in turn influenced community composition. In addition, soil phosphorus and pH significantly correlated with α- diversity, specifically the Shannon diversity and Chao 1 richness indices.

  15. Landscape-scale distribution and density of raptor populations wintering in anthropogenic-dominated desert landscapes

    Science.gov (United States)

    Duerr, Adam E.; Miller, Tricia A.; Cornell Duerr, Kerri L; Lanzone, Michael J.; Fesnock, Amy; Katzner, Todd E.

    2015-01-01

    Anthropogenic development has great potential to affect fragile desert environments. Large-scale development of renewable energy infrastructure is planned for many desert ecosystems. Development plans should account for anthropogenic effects to distributions and abundance of rare or sensitive wildlife; however, baseline data on abundance and distribution of such wildlife are often lacking. We surveyed for predatory birds in the Sonoran and Mojave Deserts of southern California, USA, in an area designated for protection under the “Desert Renewable Energy Conservation Plan”, to determine how these birds are distributed across the landscape and how this distribution is affected by existing development. We developed species-specific models of resight probability to adjust estimates of abundance and density of each individual common species. Second, we developed combined-species models of resight probability for common and rare species so that we could make use of sparse data on the latter. We determined that many common species, such as red-tailed hawks, loggerhead shrikes, and especially common ravens, are associated with human development and likely subsidized by human activity. Species-specific and combined-species models of resight probability performed similarly, although the former model type provided higher quality information. Comparing abundance estimates with past surveys in the Mojave Desert suggests numbers of predatory birds associated with human development have increased while other sensitive species not associated with development have decreased. This approach gave us information beyond what we would have collected by focusing either on common or rare species, thus it provides a low-cost framework for others conducting surveys in similar desert environments outside of California.

  16. A long-term vegetation history of the Mojave-Colorado Desert ecotone at Joshua Tree National Park

    Science.gov (United States)

    Holmgren, Camille A.; Betancourt, Julio L.; Rylander, Kate A.

    2010-01-01

    Thirty-eight dated packrat middens were collected from upper desert (930–1357 m) elevations within Joshua Tree National Park near the ecotone between the Mojave Desert and Colorado Desert, providing a 30 ka record of vegetation change with remarkably even coverage for the last 15 ka. This record indicates that vegetation was relatively stable, which may reflect the lack of invasion by extralocal species during the late glacial and the early establishment and persistence of many desert scrub elements. Many of the species found in the modern vegetation assemblages were present by the early Holocene, as indicated by increasing Sørenson's Similarity Index values. C4 grasses and summer-flowering annuals arrived later at Joshua Tree National Park in the early Holocene, suggesting a delayed onset of warm-season monsoonal precipitation compared to other Sonoran Desert and Chihuahuan Desert localities to the east, where summer rains and C4 grasses persisted through the last glacial–interglacial cycle. This would suggest that contemporary flow of monsoonal moisture into eastern California is secondary to the core processes of the North American Monsoon, which remained intact throughout the late Quaternary. In the Holocene, northward displacement of the jet stream, in both summer and winter, allowed migration of the subtropical ridge as far north as southern Idaho and the advection of monsoonal moisture both westward into eastern California and northward into the southern Great Basin and Colorado Plateau.

  17. Phylogeography of the Cactophilic Drosophila and Other Arthropods Associated with Cactus Necroses in the Sonoran Desert

    Directory of Open Access Journals (Sweden)

    Therese A. Markow

    2011-05-01

    Full Text Available Studies on the population genetics, phylogenetic relationships, systematics and evolution of arthropods that inhabit necrotic tissue of cacti in the Sonoran Desert of North America are reviewed. These studies have focused upon several species of insects (orders Diptera and Coleoptera and arachnids (order Pseudoscorpiones. For most taxa studied, little genetic structure and high dispersal ability are found in populations inhabiting the mainland and Baja California peninsula regions of the Sonoran Desert, consistent with the availability of the rotting cactus microhabitat which is patchily distributed and ephemeral. There is evidence, however, that the Gulf of California, which bisects the Sonoran Desert, has played a role in limiting gene flow and promoting speciation in several taxa, including histerid beetles, whereas other taxa, especially Drosophila nigrospiracula and D. mettleri, apparently are able to freely cross the Gulf, probably by taking advantage of the Midriff Islands in the northern Gulf as dispersal “stepping stones”. Genetic evidence has also been found for historical population expansions dating to the Pleistocene and late Pliocene in several taxa. Overall, these studies have provided important insights into how arthropods with different life history traits, but generally restricted to a necrotic cactus microhabitat, have evolved in an environmentally harsh and tectonically active region. In addition, they suggest some taxa for further, and more detailed, hypothesis driven studies of speciation.

  18. The Tenebrionidae of California: A Time Sensitive Snapshot Assessment

    Directory of Open Access Journals (Sweden)

    Rolf Aalbu

    2014-06-01

    Full Text Available Due to a diversity of habitats and its geologic history, the US state of California hosts a spectacular assemblage of darkling beetle species (Coleoptera: Tenebrionidae. In addition to being part of the California Floristic Province, one of 34 global biodiversity hotspots identified by Conservation International, California also has additional areas which are parts of the Great Basin, Mojave, and Sonoran deserts. California is divided into nine floristic regions. Each region is assessed in terms of faunal composition and endemism. A “snapshot” of our present knowledge of the Tenebrionidae indicates that 447 currently recognized species, representing 108 genera, occur in California of which one hundred and ninety are endemic. California is compared to other nearby regions in diversity and endemism. An analysis of currently valid species vs a more realistic species account based on unpublished records of likely synonyms and known species yet to be described in the scientific literature is presented. The California Floristic Region, rather than other more arid parts of California, has the highest number of total and endemic species. Because of their high diversity and endemism, tenebrionids could potentially provide a valuable tool for monitoring the environment for conservation purposes.

  19. The tenebrionidae of california: a time sensitive snapshot assessment.

    Science.gov (United States)

    Aalbu, Rolf L; Smith, Aaron D

    2014-01-01

    DUE TO A DIVERSITY OF HABITATS AND ITS GEOLOGIC HISTORY, THE US STATE OF CALIFORNIA HOSTS A SPECTACULAR ASSEMBLAGE OF DARKLING BEETLE SPECIES (COLEOPTERA: Tenebrionidae). In addition to being part of the California Floristic Province, one of 34 global biodiversity hotspots identified by Conservation International, California also has additional areas which are parts of the Great Basin, Mojave, and Sonoran deserts. California is divided into nine floristic regions. Each region is assessed in terms of faunal composition and endemism. A "snapshot" of our present knowledge of the Tenebrionidae indicates that 447 currently recognized species, representing 108 genera, occur in California of which one hundred and ninety are endemic. California is compared to other nearby regions in diversity and endemism. An analysis of currently valid species vs a more realistic species account based on unpublished records of likely synonyms and known species yet to be described in the scientific literature is presented. The California Floristic Region, rather than other more arid parts of California, has the highest number of total and endemic species. Because of their high diversity and endemism, tenebrionids could potentially provide a valuable tool for monitoring the environment for conservation purposes.

  20. 77 FR 12495 - Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management...

    Science.gov (United States)

    2012-03-01

    ... the California State Implementation Plan, Antelope Valley Air Quality Management District and Mojave Desert Quality Management District AGENCY: Environmental Protection Agency (EPA). ACTION: Direct final... Quality Management District (AVAQMD) and Mojave Desert Air Quality Management District (MDAQMD) portion of...

  1. Geochemical conditions and the occurrence of selected trace elements in groundwater basins used for public drinking-water supply, Desert and Basin and Range hydrogeologic provinces, 2006-11: California GAMA Priority Basin Project

    Science.gov (United States)

    Wright, Michael T.; Fram, Miranda S.; Belitz, Kenneth

    2015-01-01

    The geochemical conditions, occurrence of selected trace elements, and processes controlling the occurrence of selected trace elements in groundwater were investigated in groundwater basins of the Desert and Basin and Range (DBR) hydrogeologic provinces in southeastern California as part of the Priority Basin Project (PBP) of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA PBP is designed to provide an assessment of the quality of untreated (raw) groundwater in the aquifer systems that are used for public drinking-water supply. The GAMA PBP is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey and the Lawrence Livermore National Laboratory.

  2. Geochemical evidence for airborne dust additions to soils in Channel Islands National Park, California

    Science.gov (United States)

    Muhs, D.R.; Budahn, J.R.; Johnson, D.L.; Reheis, M.; Beann, J.; Skipp, G.; Fisher, E.; Jones, J.A.

    2008-01-01

    There is an increasing awareness that dust plays important roles in climate change, biogeochemical cycles, nutrient supply to ecosystems, and soil formation. In Channel Islands National Park, California, soils are clay-rich Vertisols or Alfisols and Mollisols with vertic properties. The soils are overlain by silt-rich mantles that contrast sharply with the underlying clay-rich horizons. Silt mantles contain minerals that are rare or absent in the volcanic rocks that dominate these islands. Immobile trace elements (Sc-Th-La and Ta-Nd-Cr) and rare-earth elements show that the basalt and andesite on the islands have a composition intermediate between upper-continental crust and oceanic crust. In contrast, the silt fractions and, to a lesser extent, clay fractions of the silt mantle have compositions closer to average upper-continental crust and very similar to Mojave Desert dust. Island shelves, exposed during the last glacial period, could have provided a source of eolian sediment for the silt mantles, but this is not supported by mineralogical data. We hypothesize that a more likely source for the silt-rich mantles is airborne dust from mainland California and Baja California, either from the Mojave Desert or from the continental shelf during glacial low stands of sea. Although average winds are from the northwest in coastal California, easterly winds occur numerous times of the year when "Santa Ana" conditions prevail, caused by a high-pressure cell centered over the Great Basin. The eolian silt mantles constitute an important medium of plant growth and provide evidence that abundant eolian silt and clay may be delivered to the eastern Pacific Ocean from inland desert sources. ?? 2007 Geological Society of America.

  3. High-temperature sensitivity and its acclimation for photosynthetic electron reactions of desert succulents

    Energy Technology Data Exchange (ETDEWEB)

    Chetti, M.B.; Nobel, P.S. (Univ. of California, Los Angeles (USA))

    1987-08-01

    Photosynthetic electron reactions of succulent plants from hot deserts are able to tolerate extremely high temperatures and to acclimate to seasonal increase in temperature. In this study, we report the influence of relatively long, in vivo, high-temperature treatments on electron transport reactions for two desert succulents, Agave deserti and Opuntia ficus-indica, species which can tolerate 60{degree}C. Whole chain electron transport averaged 3{degree}C more sensitive to a 1-hour high-temperature treatment than did PSII (Photosystem II) which in turn averaged 3{degree}C more sensitive than did PSI. For plants maintained at day/night air temperatures of 30{degree}C/20{degree}C, treatment at 50{degree}C cause these reactions to be inhibited an average of 39% during the first hour, an additional 31% during the next 4 hours, and 100% by 12 hours. Upon shifting the plants from 30{degree}C/20{degree}C to 45{degree}C/35{degree}C, the high temperatures where activity was inhibited 50% increased 3{degree}C to 8{degree}C for the three electron transport reactions, the half-times for acclimation averaging 5 days for A. deserti and 4 days for O. ficus-indica. For the 45{degree}C/35{degree}C plants treated at 60{degree}C for 1 hour, PSI activity was reduced by 54% for A. deserti and 36% for O. ficus-indica. Acclimation leads to a toleration of very high temperatures without substantial disruption of electron transport for these desert succulents, facilitating their survival in hot deserts. Indeed, the electron transport reactions of these species tolerate longer periods at higher temperatures than any other vascular plants so far reported.

  4. California statewide model for high-speed rail

    OpenAIRE

    Outwater, Maren; Tierney, Kevin; Bradley, Mark; Sall, Elizabeth; Kuppam, Arun; Modugala, Vamsee

    2010-01-01

    The California High Speed Rail Authority (CHSRA) and the Metropolitan Transportation Commission (MTC) have developed a new statewide model to support evaluation of high-speed rail alternatives in the State of California. This statewide model will also support future planning activities of the California Department of Transportation (Caltrans). The approach to this statewide model explicitly recognizes the unique characteristics of intraregional travel demand and interregional travel demand. A...

  5. Transport aloft drives peak ozone in the Mojave Desert

    Science.gov (United States)

    VanCuren, Richard

    2015-05-01

    Transport of anthropogenic pollution eastward out of the Los Angeles megacity region in California has been periodically observed to reach the Colorado River and the Colorado Plateau region beyond. In the 1980s, anthropogenic halocarbon tracers measured in and near the Las Angeles urban area and at a mountain-top site near the Colorado River, 400 km downwind, were shown to have a correlated seven-day cycle explainable by transport from the urban area with a time lag of 1-2 days. Recent short term springtime intensive studies using aircraft observations and regional modeling of long range transport of ozone from the Southern California megacity region showed frequent and persistent ozone impacts at surface sites across the Colorado Plateau and Southern Rocky Mountain region, at distances up to 1500 km, also with time lags of 1-2 days. However, the timing of ozone peaks at low altitude monitoring sites within the Mojave Desert, at distances from 100 to 400 km from the South Coast and San Joaquin Valley ozone source regions, does not show the expected time-lag behavior seen in the larger transport studies. This discrepancy is explained by recognizing ozone transport across the Mojave Desert to occur in a persistent layer of polluted air in the lower free troposphere with a base level at approximately 1 km MSL. This layer impacts elevated downwind sites directly, but only influences low altitude surface ozone maxima through deep afternoon mixing. Pollutants in this elevated layer derive from California source regions (the Los Angeles megacity region and the intensive agricultural region of the San Joaquin Valley), from long-range transport from Asia, and stratospheric down-mixing. Recognition of the role of afternoon mixing during spring and summer over the Mojave explains and expands the significance of previously published reports of ozone and other pollutants observed in and over the Mojave Desert, and resolves an apparent paradox in the timing of ozone peaks due to

  6. Assessing the geologic and climatic forcing of biodiversity and evolution surrounding the Gulf of California

    Science.gov (United States)

    Dolby, Greer; Bennett, Scott E. K.; Lira-Noriega, Andres; Wilder, Benjamin T.; Munguia-Vega, Adrian

    2015-01-01

    For almost a century the Baja California peninsula (Peninsula), Gulf of California (Gulf), and broader Sonoran Desert region (figure 1) have drawn geologists and biologists alike to study its unique physical and evolutionary processes (e.g., Wittich 1920; Darton 1921; Nelson 1921; Johnston 1924; Beal 1948; Durham and Allison 1960). The challenge remains to untangle the long, intricate, and at times enigmatic geological and climatological histories that have shaped the high levels of endemism and biodiversity observed in the region today (Van Devender 1990; Grismer 2000; Riddle et al. 2000).

  7. Mobile Fruit and Vegetable Vendors’ Impact on Food Deserts

    Centers for Disease Control (CDC) Podcasts

    Kathleen Y. L, BS, winner of PCD’s 2014 Student Research Paper Contest and medical student at the University of California, San Francisco, discusses her winning paper on the evaluation and placement of mobile fruit and vegetables vendors and their ability to alleviate food deserts in New York City.

  8. Siting a low-level radioactive waste disposal facility in California

    International Nuclear Information System (INIS)

    Romano, S.A.; Gaynor, R.K.

    1991-01-01

    US Ecology is the State of California's designee to site, develop and operate a low-level radioactive waste disposal facility. In March 1988, a site in the Ward Valley of California's Mojave Desert was chosen for development. Strong local community support has been expressed for the site. US Ecology anticipates licensing and constructing a facility to receive waste by early 1991. This schedule places California well ahead of the siting milestones identified in Federal law. (author) 1 fig., 2 refs

  9. Implications of Deployed and Nondeployed Fathers on Seventh Graders' California Achievement Test Scores during a Military Crisis.

    Science.gov (United States)

    Pisano, Mark C.

    The differences in California Achievement Test (CAT) scores from 1990 to 1991 in seventh graders, currently enrolled in Albritton Junior High School in the Fort Bragg Schools, of deployed and nondeployed fathers were analyzed. CAT percentile scores from 1990 and 1991 (1991 being the year of "Desert Storm") were obtained in reading, math…

  10. License application approach for the California LLRW disposal facility

    International Nuclear Information System (INIS)

    Gaynor, R.K.; Romano, S.A.; Hanrahan, T.P.

    1990-01-01

    US Ecology, Inc. is the State of California's license designee to site, develop and operate a low-level radioactive waste (LLRW) disposal facility to serve member states of the Southwestern Compact. US Ecology identified a proposed site in the Ward Valley of southeastern California in March 1988. Following proposed site selection, US Ecology undertook studies required to prepare a license application. US Ecology's license application for this desert site was deemed complete for detailed regulatory review by the California Department of Health Services (DHS) in December 1989. By mutual agreement, disposal of mixed waste is not proposed pending the State of California's decision on appropriate management of this small LLRW subset

  11. Reference intervals and physiologic alterations in hematologic and biochemical values of free-ranging desert tortoises in the Mojave Desert

    Science.gov (United States)

    Christopher, Mary M.; Berry, Kristin H.; Wallis, I.R.; Nagy, K.A.; Henen, B.T.; Peterson, C.C.

    1999-01-01

    Desert tortoise (Gopherus agassizii) populations have experienced precipitous declines resulting from the cumulative impact of habitat loss, and human and disease-related mortality. Evaluation of hematologic and biochemical responses of desert tortoises to physiologic and environmental factors can facilitate the assessment of stress and disease in tortoises and contribute to management decisions and population recovery. The goal of this study was to obtain and analyze clinical laboratory data from free-ranging desert tortoises at three sites in the Mojave Desert (California, USA) between October 1990 and October 1995, to establish reference intervals, and to develop guidelines for the interpretation of laboratory data under a variety of environmental and physiologic conditions. Body weight, carapace length, and venous blood samples for a complete blood count and clinical chemistry profile were obtained from 98 clinically healthy adult desert tortoises of both sexes at the Desert Tortoise Research Natural area (western Mojave), Goffs (eastern Mojave) and Ivanpah Valley (northeastern Mojave). Samples were obtained four times per year, in winter (February/March), spring (May/June), summer (July/August), and fall (October). Years of near-, above- and below-average rainfall were represented in the 5 yr period. Minimum, maximum and median values, and central 95 percentiles were used as reference intervals and measures of central tendency for tortoises at each site and/or season. Data were analyzed using repeated measures analysis of variance for significant (P < 0.01) variation on the basis of sex, site, season, and interactions between these variables. Significant sex differences were observed for packed cell volume, hemoglobin concentration, aspartate transaminase activity, and cholesterol, triglyceride, calcium, and phosphorus concentrations. Marked seasonal variation was observed in most parameters in conjunction with reproductive cycle, hibernation, or seasonal

  12. LLWPA: Implementation in California

    International Nuclear Information System (INIS)

    Gaynor, R.K.; Romano, S.A.

    1987-01-01

    US Ecology has been designated by the State of California to locate, develop and operate a low-level radioactive waste disposal facility. In early 1986, the firm identified eighteen desert basins in southeastern California for siting considerations. Three candidate sites were selected for detailed field characterization work in February, 1987. A preferred site for licensing purposes will be identified in late 1987. California is currently ahead of the siting milestone schedule mandated by the Low-Level Radioactive Waste Policy Amendments Act. It is likely that a license application will be filed in mid-1988, well before the 1990 milestone date. It is anticipated that the site will be constructed around that milestone date. This paper describes the process undertaken by US Ecology to identify three candidate sites for characterization, and the public involvement program supporting this decision. Future activities leading to a final site development are also described

  13. Factors controlling As and U in shallow ground water, southern Carson Desert, Nevada

    Science.gov (United States)

    Welch, A.H.; Lico, M.S.

    1998-01-01

    Unusually high As and U concentrations (> 100 ??g/L) are widespread in shallow ground water beneath the southern Carson Desert. The high concentrations, which locally exceed 1000 ??g/L, are of concern from a human health standpoint because the shallow ground water is used for domestic supply. Possible affects on wildlife are also of concern because the ground water flows into shallow lakes and marshes within wildlife refuges. Arsenic and U concentrations in ground water of the southern Carson Desert appear to be affected by evaporative concentration, redox reactions, and adsorption. The relation of these elements with Cl suggest that most of the high concentrations can be attributed to evaporative concentration of Carson River water, the primary source of recharge. Some ground water contains higher As and U concentrations that cannot be explained by evaporative concentration alone. Oxidation-reduction reactions, involving metal oxides and sedimentary-organic matter, appear to contribute As, U, inorganic C, Fe and Mn to the ground water. Arsenic in Fe-oxide was confirmed by chemical extraction and is consistent with laboratory adsorption studies. Uranium in both sedimentary-organic C and Fe-oxide coatings has been confirmed by fission tracks and petrographic examination. Arsenic concentrations in the ground water and chemical extracts of aquifer sediments are broadly consistent with adsorption as a control on some dissolved As concentrations. An apparent loss of As from some ground water as evaporative concentration proceeds is consistent with adsorption as a control on As. However, evidence for adsorption should be viewed with caution, because the adsorption model used values for the adsorbent that have not been shown to be valid for the aquifer sediments throughout the southern Carson Desert. Hydrologic and geochemical conditions in the Carson Desert are similar to other areas with high As and U concentrations in ground water, including the Salton Sea basin and

  14. Desert pioneers go high tech in uranium project

    International Nuclear Information System (INIS)

    1988-01-01

    The Kintyre uranium deposit discovered in 1985 in Western Australia's Great Sandy Desert by CRA Exploration is a highly competitive, easy to mine deposit, estimated at 35,000 tonnes of uranium oxide. Since its discovery CRA has spent $20 million on evaluation drilling and exploration and will spend another $10 million in 1988. Despite its remoteness the latest technology is being used, with sophisticated computer and assaying facilities, including an automatic X-ray fluorescence spectrometer, being established on site. A CRA-built radiometric ore sorter is being tested there which could cut ore processing costs

  15. Aircraft and satellite remote sensing of desert soils and landscapes

    Science.gov (United States)

    Petersen, G. W.; Connors, K. F.; Miller, D. A.; Day, R. L.; Gardner, T. W.

    1987-01-01

    Remote sensing data on desert soils and landscapes, obtained by the Landsat TM, Heat Capacity Mapping Mission (HCMM), Simulated SPOT, and Thermal IR Multispectral Scanner (TIMS) aboard an aircraft, are discussed together with the analytical techniques used in the studies. The TM data for southwestern Nevada were used to discriminate among the alluvial fan deposits with different degrees of desert pavement and varnish, and different vegetation cover. Thermal-IR data acquired from the HCMM satellite were used to map the spatial distribution of diurnal surface temperatures and to estimate mean annual soil temperatures in central Utah. Simulated SPOT data for northwestern New Mexico identified geomorphic features, such as differences in eolian sand cover and fluvial incision, while the TIMS data depicted surface geologic features of the Saline Valley in California.

  16. A potential predator-prey interaction of an American badger and an Agassiz's desert tortoise with a review of badger predation on turtles

    Science.gov (United States)

    Smith, Amanda L.; Puffer, Shellie R.; Lovich, Jeffrey E.; Tennant, Laura A.; Arundel, Terry; Vamstad, Michael S.; Brundige, Kathleen D.

    2016-01-01

    The federally threatened Agassiz’s desert tortoise (Gopherus agassizii) was listed under the U.S. Endangered Species Act in 1990, but thus far, recovery efforts have been unsuccessful (U.S. Fish and Wildlife Service [USFWS] 2015). Predation has been identified as a contributing factor to declining G. agassizii populations range-wide (e.g., Esque et al. 2010, Lovich et al. 2014). Understanding and managing for predator-prey dynamics is thus an important part of the recovery and conservation of this threatened species (USFWS 2011). Desert tortoises have a host of predators at all stages of their life cycle. Over 20 species of birds, mammals, and reptiles have been recorded as known or suspected predators (Woodbury and Hardy 1948, Luckenbach 1982, Ernst and Lovich 2009). American badgers (Taxidea taxus, family: Mustelidae) are confirmed excavators of desert tortoise nests (Turner and Berry 1984). They are also suspected predators of adult desert tortoises, a possibility which has been presented in some studies but without empirical verification (Luckenbach 1982, Turner and Berry 1984). Active mostly at night, badgers are solitary, secretive predators (Lindzey 1978, 1982; Armitage 2004) that are extremely difficult to observe in predatory encounters. Recently, strong circumstantial evidence presented by Emblidge et al. (2015) suggests that badgers do prey on adult Agassiz’s desert tortoises based on observations of more than two dozen dead tortoises in the Western Mojave Desert of California. In this note, we present another case of potential badger predation on a large adult desert tortoise in the Sonoran Desert of California. Collectively, these recent two cases potentially indicate that badger predation may be more common and widespread than previously thought. In addition, we review the worldwide literature of badger predation on turtles in general and summarize reported badger observations in Joshua Tree National Park, where our observation occurred, over a

  17. Factors controlling As and U in shallow ground water, southern Carson Desert, Nevada

    International Nuclear Information System (INIS)

    Lico, M.S.; Welch, A.H.

    1998-01-01

    100 μg/L) are widespread in shallow ground water beneath the southern Carson Desert. The high concentrations, which locally exceed 1000 μg/L, are of concern from a human health standpoint because the shallow ground water is used for domestic supply. Possible affects on wildlife are also of concern because the ground water flows into shallow lakes and marshes within wildlife refuges. Arsenic and U concentrations in ground water of the southern Carson Desert appear to be affected by evaporative concentration, redox reactions, and adsorption. The relation of these elements with Cl suggest that most of the high concentrations can be attributed to evaporative concentration of Carson River water, the primary source of recharge.Some ground water contains higher As and U concentrations that cannot be explained by evaporative concentration alone. Oxidation-reduction reactions, involving metal oxides and sedimentary-organic matter, appear to contribute As, U, inorganic C, Fe and Mn to the ground water. Arsenic in Fe-oxide was confirmed by chemical extraction and is consistent with laboratory adsorption studies. Uranium in both sedimentary-organic C and Fe-oxide coatings has been confirmed by fission tracks and petrographic examination.Arsenic concentrations in the ground water and chemical extracts of aquifer sediments are broadly consistent with adsorption as a control on some dissolved As concentrations. An apparent loss of As from some ground water as evaporative concentration proceeds is consistent with adsorption as a control on As. However, evidence for adsorption should be viewed with caution, because the adsorption model used values for the adsorbent that have not been shown to be valid for the aquifer sediments throughout the southern Carson Desert.Hydrologic and geochemical conditions in the Carson Desert are similar to other areas with high As and U concentrations in ground water, including the Salton Sea basin and southern San Joaquin Valley of California

  18. The Mystery of the Gun Turret in the Desert

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, R. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-11-30

    The mystery of the gun turret in the desert began with an ingenious idea: to develop a reusable open-air line of sight diagnostic device to support LLNL’s early nuclear weapons development efforts. Obtained from the Mare Island Navy Shipyard (MINS) in January 1957, the gun turret traveled by ship to the Naval Construction Battalion base at Port Hueneme, California, and then by truck to Area 2 in the Yucca Flats valley at the Nevada Nuclear Security Site (NNSS).

  19. Pneumocystosis in wild small mammals from California

    Science.gov (United States)

    Laakkonen, Juha; Fisher, Robert N.; Case, Ted J.

    2001-01-01

    Cyst forms of the opportunistic fungal parasite Pneumocystis carinii were found in the lungs of 34% of the desert shrew, Notiosorex crawfordi (n = 59), 13% of the ornate shrew, Sorex ornatus (n = 55), 6% of the dusky-footed wood rat, Neotoma fuscipes (n = 16), 2.5% of the California meadow vole,Microtus californicus (n = 40), and 50% of the California pocket mouse, Chaetodipus californicus (n= 2) caught from southern California between February 1998 and February 2000. Cysts were not found in any of the harvest mouse, Reithrodontomys megalotis (n = 21), California mouse,Peromyscus californicus (n = 20), brush mouse, Peromyscus boylii (n = 7) or deer mouse, Peromyscus maniculatus (n = 4) examined. All infections were mild; extrapulmonary infections were not observed. Other lung parasites detected were Hepatozoon sp./spp. from M. californicus andNotiosorex crawfordi, Chrysosporium sp. (Emmonsia) from M. californicus, and a nematode from S. ornatus.

  20. Effects of high fire frequency in creosote bush scrub vegetation of the Mojave Desert

    Science.gov (United States)

    Brooks, M.L.

    2012-01-01

    Plant invasions can increase fire frequency in desert ecosystems where fires were historically infrequent. Although there are many resource management concerns associated with high frequency fire in deserts, fundamental effects on plant community characteristics remain largely unstudied. Here I describe the effects of fire frequency on creosote bush scrub vegetation in the Mojave Desert, USA. Biomass of the invasive annual grass Bromus rubens L. increased following fire, but did not increase further with additional fires. In contrast, density, cover and species richness of native perennial plants each decreased following fire and continued to decrease with subsequent fires, although not as dramatically as after the initial fire. Responses were similar 5 and 14 years post-fire, except that cover of Hymenoclea salsola Torr. & A. Gray and Achnatherum speciosa Trin. & Rupr. both increased in areas burnt once. These results suggest that control of B. rubens may be equally warranted after one, two or three fires, but revegetation of native perennial plants is most warranted following multiple fires. These results are valid within the scope of this study, which is defined as relatively short term vegetation responses (???14 years) to short fire return intervals (6.3 and 7.3 years for the two and three fire frequency levels) within creosote bush scrub of the Mojave Desert. ?? 2012 IAWF.

  1. Fog water chemistry in the Namib desert, Namibia

    Science.gov (United States)

    Eckardt, Frank D.; Schemenauer, Robert S.

    This study documents the ion concentrations and ion enrichment relative to sea water, in Namib Desert fog water, with the purpose of establishing its suitability for future fogwater collection schemes, while also examining claims that Namib Desert fog water carries exceptionally high concentrations of sulphate, which may be responsible for the formation of gypsum deposits in the desert. The work suggests that Namibian fog water is at least as clean as has been reported from other coastal deserts in South America and Arabia, and provides a source of very clean water for the coastal desert region of south-western Africa. It does not appear that fog is an efficient sulphur source for the formation of the gypsum deposits, unless rare events with high concentrations of marine sulphur compounds occur.

  2. Minerals in deserts

    International Nuclear Information System (INIS)

    Smith, G.I.

    1982-01-01

    Almost any kind of mineral deposit can occur in desert areas, and the lack of vegetation and soil cover makes finding them easier. Some kinds of deposits, though, are more likely to occur in deserts than elsewhere. Some of these result from processes genetically related to the present desert climate that improved lower grade deposits of ore. One such process, termed secondary enrichment, is most effective in areas with deep water tables, and many low-grade copper, silver, and uranium deposits have been converted into mineable ore by the downward migration and redeposition of soluble metals. In a desert terrane, placer processes are effective whenever running water flowing over steep slopes erodes outcropping ore bodies and transports and concentrates the heavier ore minerals at lower levels, thus converting low-grade or hard-to-mine bedrock deposits into economically workable concentrations. Other kinds of deposits are better preserved in deserts because the lower rainfall at the surface, and the lower volume of flow and the greater depths to groundwater, result in less destruction of soluble ores; deposits of salines and phosphates are the most notable ores affected by these factors. Still other ore deposits are created as a consequence of the arid climate, mostly because the high evaporation rates operating on standing bodies of water produce brines that can lead directly to concentrations of salts and indirectly to secondary minerals, such as zeolites, that are produced by reaction of silicate minerals with saline waters

  3. Desert Pavement Studies

    National Research Council Canada - National Science Library

    Haff, Peter

    2003-01-01

    Combining plan view information from aerial photography showing details of stream channels on desert pavement surfaces with process-based erosion models, a high-resolution, synthetic topography DEM...

  4. Desert Pavement Studies

    National Research Council Canada - National Science Library

    Haff, P

    2003-01-01

    Combining plan view information from aerial photography showing details of stream channels on desert pavement surfaces with process-based erosion models, a high-resolution, "synthetic topography" DEM...

  5. Hybrid engineered materials with high water-collecting efficiency inspired by Namib Desert beetles.

    Science.gov (United States)

    Zhu, Hai; Guo, Zhiguang

    2016-05-21

    Inspired by Namib Desert beetles, a hybrid superhydrophobic surface was fabricated, showing highly efficient fog harvesting with a water collection rate (WCR) of 1309.9 mg h(-1) cm(-2). And, the surface possessed an excellent robustness and self-cleaning property.

  6. Biological Communities in Desert Varnish and Potential Implications for Varnish Formation Mechanisms

    Science.gov (United States)

    Lang-Yona, Naama; Maier, Stefanie; Macholdt, Dorothea; Rodriguez-Caballero, Emilio; Müller-Germann, Isabell; Yordanova, Petya; Jochum, Klaus-Peter; Andreae, Meinrat O.; Pöschl, Ulrich; Weber, Bettina; Fröhlich-Nowoisky, Janine

    2017-04-01

    Desert varnishes are thin, orange to black coatings found on rocks in arid and semi-arid environments on Earth. The formation mechanisms of rock varnish are still under debate and the involvement of microorganisms in this process remains unclear. In this work we aimed to identify the microbial community occurring in rock varnish to potentially gain insights into the varnish formation mechanism. For this purpose, rocks coated with desert varnish were collected from the Anza-Borrego Desert, California, USA, as well as soils from underneath the rocks. DNA from both varnish coatings and soil samples was extracted and subsequently used for metagenomic analysis, as well as for q-PCR analyses for specific species quantification. The element composition of the varnish coatings was analyzed and compared to the soil samples. Rock varnish shows similar depleted elements, compared to soil, but Mn and Pb are 50-60 times enriched compared to the soil samples, and about 100 times enriched compared to the upper continental crust. Our genomic analyses suggest unique populations and different protein functional groups occurring in the varnish compared to soil samples. We discuss these differences and try to shed light on the mechanism of Mn oxyhydroxide production in desert varnish formation.

  7. Climate change impacts on high-elevation hydroelectricity in California

    Science.gov (United States)

    Madani, Kaveh; Guégan, Marion; Uvo, Cintia B.

    2014-03-01

    While only about 30% of California's usable water storage capacity lies at higher elevations, high-elevation (above 300 m) hydropower units generate, on average, 74% of California's in-state hydroelectricity. In general, high-elevation plants have small man-made reservoirs and rely mainly on snowpack. Their low built-in storage capacity is a concern with regard to climate warming. Snowmelt is expected to shift to earlier in the year, and the system may not be able to store sufficient water for release in high-demand periods. Previous studies have explored the climate warming effects on California's high-elevation hydropower by focusing on the supply side (exploring the effects of hydrological changes on generation and revenues) ignoring the warming effects on hydroelectricity demand and pricing. This study extends the previous work by simultaneous consideration of climate change effects on high-elevation hydropower supply and pricing in California. The California's Energy-Based Hydropower Optimization Model (EBHOM 2.0) is applied to evaluate the adaptability of California's high-elevation hydropower system to climate warming, considering the warming effects on hydroelectricity supply and pricing. The model's results relative to energy generation, energy spills, reservoir energy storage, and average shadow prices of energy generation and storage capacity expansion are examined and discussed. These results are compared with previous studies to emphasize the need to consider climate change effects on hydroelectricity demand and pricing when exploring the effects of climate change on hydropower operations.

  8. Effectiveness of cuticular transpiration barriers in a desert plant at controlling water loss at high temperatures.

    Science.gov (United States)

    Schuster, Ann-Christin; Burghardt, Markus; Alfarhan, Ahmed; Bueno, Amauri; Hedrich, Rainer; Leide, Jana; Thomas, Jacob; Riederer, Markus

    2016-01-01

    Maintaining the integrity of the cuticular transpiration barrier even at elevated temperatures is of vital importance especially for hot-desert plants. Currently, the temperature dependence of the leaf cuticular water permeability and its relationship with the chemistry of the cuticles are not known for a single desert plant. This study investigates whether (i) the cuticular permeability of a desert plant is lower than that of species from non-desert habitats, (ii) the temperature-dependent increase of permeability is less pronounced than in those species and (iii) whether the susceptibility of the cuticular permeability barrier to high temperatures is related to the amounts or properties of the cutin or the cuticular waxes. We test these questions with Rhazya stricta using the minimum leaf water vapour conductance (gmin) as a proxy for cuticular water permeability. gmin of R. stricta (5.41 × 10(-5) m s(-1) at 25 °C) is in the upper range of all existing data for woody species from various non-desert habitats. At the same time, in R. stricta, the effect of temperature (15-50 °C) on gmin (2.4-fold) is lower than in all other species (up to 12-fold). Rhazya stricta is also special since the temperature dependence of gmin does not become steeper above a certain transition temperature. For identifying the chemical and physical foundation of this phenomenon, the amounts and the compositions of cuticular waxes and cutin were determined. The leaf cuticular wax (251.4 μg cm(-2)) is mainly composed of pentacyclic triterpenoids (85.2% of total wax) while long-chain aliphatics contribute only 3.4%. In comparison with many other species, the triterpenoid-to-cutin ratio of R. stricta (0.63) is high. We propose that the triterpenoids deposited within the cutin matrix restrict the thermal expansion of the polymer and, thus, prevent thermal damage to the highly ordered aliphatic wax barrier even at high temperatures. Published by Oxford University Press on behalf of the

  9. Late Holocene Hydrologic Variability in the southeast Mojave Desert using sediments from Ford Lake, California

    Science.gov (United States)

    Leidelmeijer, J.; Kirby, M.; Anderson, W. T., Jr.; Mayer, S. A.; Palermo, J. A.; Stout, C.; Shellhorn, A.; Weisberg, G.; Rangel, H.; Hess, B.

    2017-12-01

    Most published lacustrine studies located in the Mojave Desert focus on lakes that receive the majority of their water from the Mojave River (e.g., Silver Lake, Cronese Lakes, Soda Lake, etc). Consequently, these Mojave River-fed lake sites record coastal hydroclimatic signals rather than a solely Mojave-only signal. The reason for this signal-disconnect is that the Mojave River is sourced in the San Bernardino Mountains, where annual precipitation is dictated by coastal hydroclimates. Therefore, much remains unknown about how the Mojave Desert changed during the Holocene at sub-millennial time scales. To address this problem and fill in an important geographical gap, we focus on Ford Lake in the southeastern Mojave Desert. Ford Lake is an internally drained, closed basin, and it is completely disconnected from the Mojave River. As a result, it represents one of the first lakes studied in the Mojave Desert with a climate signal that is 100% Mojave. Sediments from Ford Lake provide valuable context for understanding hydroclimatic variability exclusive to the Mojave Desert. To date, two hand-dug 1.5 m trenches (depocenter and littoral zone) and 3 overlapping sediments cores from the lake's depocenter have been sampled. The total core length is 3.55 m and bottomed in coarse alluvium, suggesting we captured the complete lacustrine sediment package. Initial results by Mayer (2016) focused on the most recent 1200 calendar years before present, or the upper 2.16 m. Mayer (2016) found evidence for increased run-off (wetter climate) during the Little Ice Age and reduced run-off (drier climate) during the Medieval Climatic Anomaly. Here, we complete the study, improving age control using sediment charcoal. Grain size, magnetic susceptibility, percent total organic matter, percent total carbonate content, C:N ratios and C and N isotopic analyses are (will be) measured at 1 cm contiguous intervals. The Ford Lake record has been (will be) compared to pre-existing regional

  10. Effects of an invasive plant on a desert sand dune landscape

    Science.gov (United States)

    Barrows, C.W.; Allen, E.B.; Brooks, M.L.; Allen, M.F.

    2009-01-01

    Given the abundance of non-native species invading wildland habitats, managers need to employ informed triage to focus control efforts on weeds with the greatest potential for negative impacts. Our objective here was to determine the level of threat Sahara mustard, Brassica tournefortii, represents to meeting regional goals for protecting biodiversity. Sahara mustard has spread throughout much of the Mojave and lower Sonoran Deserts. It has occurred in southern California's Coachella Valley for nearly 80 years, punctuated by years of extremely high abundance following high rainfall. In those years the mustard has clear negative impacts on the native flora. Using mustard removal experiments we identified reductions in native plant reproduction, shifting composition increasingly toward Sahara mustard while decreasing the fraction of native species. High between-year variance in precipitation may be a key to maintaining biodiversity as the mustard is less abundant in drier years. Sahara mustard impacts to the native fauna were much less evident. Of the animal species evaluated, only the Coachella Valley fringe-toed lizard, Uma inornata, demonstrated a negative response to mustard abundance; however the impacts were short-lived, lasting no more than a year after the mustard's dominance waned. Without control measures the long-term impacts to desert biodiversity may rest on the changing climate. Wetter conditions or increased periodicity of high rainfall years will favor Sahara mustard and result in reduced biodiversity, especially of native annual plants. Drier conditions will keep the mustard from becoming dominant but may have other negative consequences on the native flora and fauna. ?? 2008 Springer Science+Business Media B.V.

  11. Savage Desert, American Garden: citrus labels and the selling of California, 1877-1929

    OpenAIRE

    Knight Lozano, Henry

    2008-01-01

    In 1877, a year after the railroad reached Southern California, the first shipment of California oranges left the Los Angeles groves of William Wolfskill, bound for St. Louis, Missouri. The box-ends were branded ‘Wolfskill California Oranges’, ensuring that the geographical origins of the fruit were emphasised from the very beginning of their exportation to the Midwest and East. During the 1880s, the innovations of irrigation and refrigerated cars combined with new railroads, massive in-migra...

  12. Preliminary study of the uranium favorability of Mesozoic intrusive and Tertiary volcanic and sedimentary rocks of the Central Mojave Desert, Kern and San Bernardino counties, California

    International Nuclear Information System (INIS)

    Leedom, S.H.; Kiloh, K.D.

    1978-02-01

    Numerous, small, low-grade, supergene uranium deposits are found in Tertiary volcanic and sedimentary rocks in the central Mojave Desert of southern California. Large thorium-to-uranium ratios in samples of Mesozoic intrusive rocks exposed in the area indicate that these rocks have been extensively weathered, eroded, and subsequently leached by ground waters, and that they may have been the primary source of uranium for the deposits. The uranium content of samples of volcanic intrusive and extrusive rocks is average for intermediate to silicic rocks, but samples of basalt flows in the area contain six times the average uranium content of mafic igneous rocks. Devitrified tuffs and tuffaceous sedimentary rocks, interbedded with calcareous units, are additional sources of uranium for supergene uranium deposits found in calcareous units. Uranium is also found in accessory minerals in a few Mesozoic quartz-rich pegmatite dikes. Uranium deposits in the central Mojave Desert have been formed by enrichment during diagenetic replacement of Tertiary carbonate rocks; by supergene enrichment along fractures, joints, and bedding planes in Tertiary volcanic and sedimentary rocks; during formation of Holocene caliche; and by deposition within hydrothermally altered shear zones. Within the area, the diagenetic replacement type of deposit has the greatest potential for large, low-grade uranium occurrences. The other type of uranium deposits are small, erratically distributed, and extensively covered by alluvium

  13. Mobile Fruit and Vegetable Vendors’ Impact on Food Deserts

    Centers for Disease Control (CDC) Podcasts

    2014-09-10

    Kathleen Y. L, BS, winner of PCD’s 2014 Student Research Paper Contest and medical student at the University of California, San Francisco, discusses her winning paper on the evaluation and placement of mobile fruit and vegetables vendors and their ability to alleviate food deserts in New York City.  Created: 9/10/2014 by Preventing Chronic Disease (PCD), National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP).   Date Released: 9/10/2014.

  14. X-36 in Flight over Mojave Desert

    Science.gov (United States)

    1997-01-01

    The unusual lines of the X-36 technology demonstrator contrast sharply with the desert floor as the remotely piloted aircraft scoots across the California desert at low altitude during a research flight on October 30, 1997. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with

  15. 77 FR 12526 - Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management...

    Science.gov (United States)

    2012-03-01

    ... the California State Implementation Plan, Antelope Valley Air Quality Management District and Mojave Desert Quality Management District AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing to approve revisions to the Antelope Valley Air Quality Management District...

  16. REVIEW OF THE FISHERIES OF THE SALTON SEA, CALIFORNIA, USA: PAST, PRESENT, FUTURE. (R826552)

    Science.gov (United States)

    The Salton Sea is an endorheic, 980-km2 salt lake in the Sonoran Desert of southern California. The historical fish community switched from freshwater to marine species as salinity increased due to evaporation and brackish water inflows. Three species, bairdiella (<...

  17. Groundwater-quality data in the Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts study unit, 2008-2010--Results from the California GAMA Program

    Science.gov (United States)

    Mathany, Timothy M.; Wright, Michael T.; Beuttel, Brandon S.; Belitz, Kenneth

    2012-01-01

    Groundwater quality in the 12,103-square-mile Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts (CLUB) study unit was investigated by the U.S. Geological Survey (USGS) from December 2008 to March 2010, as part of the California State Water Resources Control Board (SWRCB) Groundwater Ambient Monitoring and Assessment (GAMA) Program's Priority Basin Project (PBP). The GAMA-PBP was developed in response to the California Groundwater Quality Monitoring Act of 2001 and is being conducted in collaboration with the SWRCB and Lawrence Livermore National Laboratory (LLNL). The CLUB study unit was the twenty-eighth study unit to be sampled as part of the GAMA-PBP. The GAMA CLUB study was designed to provide a spatially unbiased assessment of untreated-groundwater quality in the primary aquifer systems, and to facilitate statistically consistent comparisons of untreated-groundwater quality throughout California. The primary aquifer systems (hereinafter referred to as primary aquifers) are defined as parts of aquifers corresponding to the perforation intervals of wells listed in the California Department of Public Health (CDPH) database for the CLUB study unit. The quality of groundwater in shallow or deep water-bearing zones may differ from the quality of groundwater in the primary aquifers; shallow groundwater may be more vulnerable to surficial contamination. In the CLUB study unit, groundwater samples were collected from 52 wells in 3 study areas (Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts) in San Bernardino, Riverside, Kern, San Diego, and Imperial Counties. Forty-nine of the wells were selected by using a spatially distributed, randomized grid-based method to provide statistical representation of the study unit (grid wells), and three wells were selected to aid in evaluation of water-quality issues (understanding wells). The groundwater samples were analyzed for organic constituents (volatile

  18. Water quality monitoring for high-priority water bodies in the Sonoran Desert network

    Science.gov (United States)

    Terry W. Sprouse; Robert M. Emanuel; Sara A. Strorrer

    2005-01-01

    This paper describes a network monitoring program for “high priority” water bodies in the Sonoran Desert Network of the National Park Service. Protocols were developed for monitoring selected waters for ten of the eleven parks in the Network. Park and network staff assisted in identifying potential locations of testing sites, local priorities, and how water quality...

  19. California LLW disposal site development update: Ahead of milestone schedule

    International Nuclear Information System (INIS)

    Romano, S.A.; Gaynor, R.K.

    1987-01-01

    US Ecology has been designated by the State of California to locate, develop and operate a low-level radioactive waste disposal facility. In early 1986, the firm identified eighteen desert basins in southeastern California for siting consideration. Three candidate sites were selected for detailed field characterization work in February, 1987. A preferred site for licensing purposes will be identified in early 1988. California is currently ahead of the siting milestone schedule mandated by the Low-Level Radioactive Waste Policy Amendments Act. It is likely that a license application will be filed before the 1990 milestone date. This paper describes the process undertaken by US Ecology to identify three candidates sites for characterization, and the public involvement program supporting this decision. Future activities leading to final site development are also described

  20. How desert varnish forms?

    Science.gov (United States)

    Perry, Randall S.; Kolb, Vera M.; Lynne, Bridget Y.; Sephton, Mark A.; Mcloughlin, Nicola; Engel, Michael H.; Olendzenski, Lorraine; Brasier, Martin; Staley, James T., Jr.

    2005-09-01

    Desert varnish is a black, manganese-rich rock coating that is widespread on Earth. The mechanism underlying its formation, however, has remained unresolved. We present here new data and an associated model for how desert varnish forms, which substantively challenges previously accepted models. We tested both inorganic processes (e.g. clays and oxides cementing coatings) and microbial methods of formation. Techniques used in this preliminary study include SEM-EDAX with backscatter, HRTEM of focused ion beam prepared (FIB) wafers and several other methods including XRPD, Raman spectroscopy, XPS and Tof-SIMS. The only hypothesis capable of explaining a high water content, the presence of organic compounds, an amorphous silica phase (opal-A) and lesser quantities of clays than previously reported, is a mechanism involving the mobilization and redistribution of silica. The discovery of silica in desert varnish suggests labile organics are preserved by interaction with condensing silicic acid. Organisms are not needed for desert varnish formation but Bacteria, Archaea, Eukarya, and other organic compounds are passively incorporated and preserved as organominerals. The rock coatings thus provide useful records of past environments on Earth and possibly other planets. Additionally this model also helps to explain the origin of key varnish and rock glaze features, including their hardness, the nature of the "glue" that binds heterogeneous components together, its layered botryoidal morphology, and its slow rate of formation.

  1. Effects of desert wildfires on desert tortoise (Gopherus agassizii) and other small vertebrates

    Science.gov (United States)

    Esque, T.C.; Schwalbe, C.R.; DeFalco, L.A.; Duncan, R.B.; Hughes, T.J.

    2003-01-01

    We report the results of standardized surveys to determine the effects of wildfires on desert tortoises (Gopherus agassizii) and their habitats in the northeastern Mojave Desert and northeastern Sonoran Desert. Portions of 6 burned areas (118 to 1,750 ha) were examined for signs of mortality of vertebrates. Direct effects of fire in desert habitats included animal mortality and loss of vegetation cover. A range of 0 to 7 tortoises was encountered during surveys, and live tortoises were found on all transects. In addition to desert tortoises, only small (reptiles (11 taxa) were found dead on the study areas. We hypothesize that indirect effects of fire on desert habitats might result in changes in the composition of diets and loss of vegetation cover, resulting in an increase in predation and loss of protection from temperature extremes. These changes in habitat also might cause changes in vertebrate communities in burned areas.

  2. Airborne dust transport to the eastern Pacific Ocean off southern California: Evidence from San Clemente Island

    Science.gov (United States)

    Muhs, D.R.; Budahn, J.; Reheis, M.; Beann, J.; Skipp, G.; Fisher, E.

    2007-01-01

    Islands are natural dust traps, and San Clemente Island, California, is a good example. Soils on marine terraces cut into Miocene andesite on this island are clay-rich Vertisols or Alfisols with vertic properties. These soils are overlain by silt-rich mantles, 5-20 cm thick, that contrast sharply with the underlying clay-rich subsoils. The silt mantles have a mineralogy that is distinct from the island bedrock. Silt mantles are rich in quartz, which is rare in the island andesite. The clay fraction of the silt mantles is dominated by mica, also absent from local andesite, and contrasts with the subsoils, dominated by smectite. Ternary plots of immobile trace elements (Sc-Th-La and Ta-Nd-Cr) show that the island andesite has a composition intermediate between average upper continental crust and average oceanic crust. In contrast, the silt and, to a lesser extent, clay fractions of the silt mantles have compositions closer to average upper continental crust. The silt mantles have particle size distributions similar to loess and Mojave Desert dust, but are coarser than long-range-transported Asian dust. We infer from these observations that the silt mantles are derived from airborne dust from the North American mainland, probably river valleys in the coastal mountains of southern California and/or the Mojave Desert. Although average winds are from the northwest in coastal California, easterly winds occur numerous times of the year when "Santa Ana" conditions prevail, caused by a high-pressure cell centered over the Great Basin. Examination of satellite imagery shows that easterly Santa Ana winds carry abundant dust to the eastern Pacific Ocean and the California Channel Islands. Airborne dust from mainland North America may be an important component of the offshore sediment budget in the easternmost Pacific Ocean, a finding of potential biogeochemical and climatic significance.

  3. The Ocean deserts:salt budgets of northern subtropical oceans and their

    KAUST Repository

    Carton, Jim

    2011-04-09

    The Ocean deserts: salt budgets of northern subtropical oceans and their relationship to climate variability The high salinity near surface pools of the subtropical oceans are the oceanic deserts, with high levels of evaporation and low levels of precip

  4. Ploidy race distributions since the Last Glacial Maximum in the North American desert shrub, Larrea tridentata

    Science.gov (United States)

    Hunter, K.L.; Betancourt, J.L.; Riddle, B.R.; Van Devender, T. R.; Cole, K.L.; Geoffrey, Spaulding W.

    2000-01-01

    1 A classic biogeographic pattern is the alignment of diploid, tetraploid and hexaploid races of creosote bush (Larrea tridentata) across the Chihuahuan, Sonoran and Mohave Deserts of western North America. We used statistically robust differences in guard cell size of modern plants and fossil leaves from packrat middens to map current and past distributions of these ploidy races since the Last Glacial Maximum (LGM). 2 Glacial/early Holocene (26-10 14C kyr BP or thousands of radiocarbon years before present) populations included diploids along the lower Rio Grande of west Texas, 650 km removed from sympatric diploids and tetraploids in the lower Colorado River Basin of south-eastern California/south-western Arizona. Diploids migrated slowly from lower Rio Grande refugia with expansion into the northern Chihuahuan Desert sites forestalled until after ???4.0 14C kyr BP. Tetraploids expanded from the lower Colorado River Basin into the northern limits of the Sonoran Desert in central Arizona by 6.4 14C kyr BP. Hexaploids appeared by 8.5 14C kyr BP in the lower Colorado River Basin, reaching their northernmost limits (???37??N) in the Mohave Desert between 5.6 and 3.9 14C kyr BP. 3 Modern diploid isolates may have resulted from both vicariant and dispersal events. In central Baja California and the lower Colorado River Basin, modern diploids probably originated from relict populations near glacial refugia. Founder events in the middle and late Holocene established diploid outposts on isolated limestone outcrops in areas of central and southern Arizona dominated by tetraploid populations. 4 Geographic alignment of the three ploidy races along the modern gradient of increasingly drier and hotter summers is clearly a postglacial phenomenon, but evolution of both higher ploidy races must have happened before the Holocene. The exact timing and mechanism of polyploidy evolution in creosote bush remains a matter of conjecture. ?? 2001 Blackwell Science Ltd.

  5. Lut Desert, Iran

    Science.gov (United States)

    1981-01-01

    Iran is a large country with several desert regions. In the Dasht-E-Lut (Lut Desert) (30.5N, 58.5E) an area known as Namak-Zar, about 100 miles east of the city of Kerman, is at the center of this photograph. Some of the world's most prominent Yardangs (very long, parallel ridges and depressions) have been wind eroded in these desert dry lake bed sediments. At the left of the photo is a large field of sand dunes at right angles to the wind.

  6. Livestock grazing and the desert tortoise in the Mojave Desert

    Science.gov (United States)

    Oldemeyer, John L.

    1994-01-01

    A large part of the Mojave Desert is not in pristine condition, and some current conditions can be related to past grazing-management practices. No information could be found on densities of the desert tortoise (Gopherus agassizii) or on vegetative conditions of areas that had not been grazed to allow managers a comparison of range conditions with data on tortoises. Experimental information to assess the effect of livestock grazing on tortoises is lacking, and researchers have not yet examined whether the forage that remains after grazing is sufficient to meet the nutritional needs of desert tortoises.

  7. The roles of microbial selenate reduction and selenium sorption on selenium immobilization in littoral sediment from the hypersaline Salton Sea, California

    OpenAIRE

    Villa-Romero, Juan Fernando

    2015-01-01

    The Salton Sea in California was formed between 1905-1907 by an accident that diverted Colorado River water to the Salton Sea Basin of the Colorado desert. Since 1924 the Salton Sea serves as an agricultural drainage reservoir maintained by agricultural and municipal wastewater inputs from the Coachella and Imperial Valleys in California and the Mexicali Valley in Mexico. Today, the Salton Sea is California's largest lake by area (975 km2) and constitutes a vital habitat for more than a milli...

  8. Temperature and Heat-Related Mortality Trends in the Sonoran and Mojave Desert Region

    Directory of Open Access Journals (Sweden)

    Polioptro F. Martinez-Austria

    2017-03-01

    Full Text Available Extreme temperatures and heat wave trends in five cities within the Sonoran Desert region (e.g., Tucson and Phoenix, Arizona, in the United States and Ciudad Obregon and San Luis Rio Colorado, Sonora; and Mexicali, Baja California, in Mexico and one city within the Mojave Desert region (e.g., Las Vegas, Nevada were assessed using field data collected from 1950 to 2014. Instead of being selected by watershed, the cities were selected because they are part of the same arid climatic region. The data were analyzed for maximum temperature increases and the trends were confirmed statistically using Spearman’s nonparametric test. Temperature trends were correlated with the mortality information related with extreme heat events in the region. The results showed a clear trend of increasing maximum temperatures during the months of June, July, and August for five of the six cities and statically confirmed using Spearman’s rho values. Las Vegas was the only city where the temperature increase was not confirmed using Spearman’s test, probably because it is geographically located outside of the Sonoran Desert or because of its proximity to the Hoover Dam. The relationship between mortality and temperature was analyzed for the cities of Mexicali, Mexico and Phoenix. Arizona.

  9. Camelid genomes reveal evolution and adaptation to desert environments.

    Science.gov (United States)

    Wu, Huiguang; Guang, Xuanmin; Al-Fageeh, Mohamed B; Cao, Junwei; Pan, Shengkai; Zhou, Huanmin; Zhang, Li; Abutarboush, Mohammed H; Xing, Yanping; Xie, Zhiyuan; Alshanqeeti, Ali S; Zhang, Yanru; Yao, Qiulin; Al-Shomrani, Badr M; Zhang, Dong; Li, Jiang; Manee, Manee M; Yang, Zili; Yang, Linfeng; Liu, Yiyi; Zhang, Jilin; Altammami, Musaad A; Wang, Shenyuan; Yu, Lili; Zhang, Wenbin; Liu, Sanyang; Ba, La; Liu, Chunxia; Yang, Xukui; Meng, Fanhua; Wang, Shaowei; Li, Lu; Li, Erli; Li, Xueqiong; Wu, Kaifeng; Zhang, Shu; Wang, Junyi; Yin, Ye; Yang, Huanming; Al-Swailem, Abdulaziz M; Wang, Jun

    2014-10-21

    Bactrian camel (Camelus bactrianus), dromedary (Camelus dromedarius) and alpaca (Vicugna pacos) are economically important livestock. Although the Bactrian camel and dromedary are large, typically arid-desert-adapted mammals, alpacas are adapted to plateaus. Here we present high-quality genome sequences of these three species. Our analysis reveals the demographic history of these species since the Tortonian Stage of the Miocene and uncovers a striking correlation between large fluctuations in population size and geological time boundaries. Comparative genomic analysis reveals complex features related to desert adaptations, including fat and water metabolism, stress responses to heat, aridity, intense ultraviolet radiation and choking dust. Transcriptomic analysis of Bactrian camels further reveals unique osmoregulation, osmoprotection and compensatory mechanisms for water reservation underpinned by high blood glucose levels. We hypothesize that these physiological mechanisms represent kidney evolutionary adaptations to the desert environment. This study advances our understanding of camelid evolution and the adaptation of camels to arid-desert environments.

  10. Data measured on water collected from eastern Mojave Desert, California

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Tim P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-17

    In March of 2000 field collection of water from the Eastern Mojave Desert resulted in the measurement of stable isotope, radiocarbon, tritium, and limited dissolved noble gases. This work was follow-on to previous studies on similar systems in southern Nevada associated with the Nevada Test Site (Davisson et al., 1999; Rose and Davisson, 2003). The data for groundwater from wells and springs was never formally published and is therefore tabulated in Table 1 in order to be recorded in public record. In addition 4 years of remote precipitation data was collected for stable isotopes and is included in Table 2. These studies, along with many parallel and subsequent ones using isotopes and elemental concentrations, are all related to the general research area of tracing sources and quantifying transport times of natural and man-made materials in the environment. This type of research has direct relevance in characterizing environmental contamination, understanding resource development and protection, designing early detection in WMD related terrorism, and application in forensics analysis.

  11. Shrubs of California's chaparral, timberland, and wood land: area, ownership, and stand characteristics.

    Science.gov (United States)

    Charles L. Boisinger

    1988-01-01

    A statewide inventory of shrubs in chaparral and on timberland and woodland in California is presented, and the relevance of shrubs to resource management is discussed. Shrub types (excluding coastal sage and Great Basin and desert shrubs) cover about 10 million acres, 73 percent of which is chaparral. Chamise is the most widespread type in chaparral (51 percent of...

  12. Multiple factors affect a population of Agassiz's desert tortoise (Gopherus agassizii) in the Northwestern Mojave Desert

    Science.gov (United States)

    Berry, Kristin H.; Yee, Julie L.; Coble, Ashley A.; Perry, William M.; Shields, Timothy A.

    2013-01-01

    Numerous factors have contributed to declines in populations of the federally threatened Agassiz's Desert Tortoise (Gopherus agassizii) and continue to limit recovery. In 2010, we surveyed a low-density population on a military test facility in the northwestern Mojave Desert of California, USA, to evaluate population status and identify potential factors contributing to distribution and low densities. Estimated densities of live tortoises ranged spatially from 1.2/km2 to 15.1/km2. Although only one death of a breeding-age tortoise was recorded for the 4-yr period prior to the survey, remains of 16 juvenile and immature tortoises were found, and most showed signs of predation by Common Ravens (Corvus corax) and mammals. Predation may have limited recruitment of young tortoises into the adult size classes. To evaluate the relative importance of different types of impacts to tortoises, we developed predictive models for spatially explicit densities of tortoise sign and live tortoises using topography (i.e., slope), predators (Common Raven, signs of mammalian predators), and anthropogenic impacts (distances from paved road and denuded areas, density of ordnance fragments) as covariates. Models suggest that densities of tortoise sign increased with slope and signs of mammalian predators and decreased with Common Ravens, while also varying based on interaction effects involving these predictors as well as distances from paved roads, denuded areas, and ordnance. Similarly, densities of live tortoises varied by interaction effects among distances to denuded areas and paved roads, density of ordnance fragments, and slope. Thus multiple factors predict the densities and distribution of this population.

  13. Palynology in a polar desert, eastern North Greenland

    DEFF Research Database (Denmark)

    Funder, Svend Visby; Abrahamsen, Niels

    1988-01-01

    history back to c. 7,000 years calBP (6,000 years convBP) in this·extreme environment, which presents the coldest thermal regime where vascular plants can grow. The diagram shows that polar desert developed from sparse high arctic tundra at c. 4,300 years calBP (3,900 years convBP), owing...... to reduced summer heat. Also adjacent parts of high arctic Greenland, Canada and Svalbard suffered environmental decline, and polar deserts- presently restricted to a narrow fringe of land at the shores of the Arctic Ocean-were even more restricted before this time. Like other arctic vegetation types, polar...... desert is highly sensitive to summer temperatures, and its southern limit coincides with the isotherm for mean July temperatures of 3.5'C, A comparison with the Northwest European ice-age pollen record shows no evidence of summers as cold as those now prevailing in the extreme north, and the results...

  14. Deficit irrigation of a landscape halophyte for reuse of saline waste water in a desert city

    Science.gov (United States)

    Glenn, E.P.; Mckeon, C.; Gerhart, V.; Nagler, P.L.; Jordan, F.; Artiola, J.

    2009-01-01

    Saline waste waters from industrial and water treatment processes are an under-utilized resource in desert urban environments. Management practices to safely use these water sources are still in development. We used a deeprooted native halophyte, Atriplex lentiformis (quailbush), to absorb mildly saline effluent (1800 mg l-1 total dissolved solids, mainly sodium sulfate) from a water treatment plant in the desert community of Twentynine Palms, California. We developed a deficit irrigation strategy to avoid discharging water past the root zone to the aquifer. The plants were irrigated at about one-third the rate of reference evapotranspiration (ETo) calculated from meteorological data over five years and soil moisture levels were monitored to a soil depth of 4.7 m at monthly intervals with a neutron hydroprobe. The deficit irrigation schedule maintained the soil below field capacity throughout the study. Water was presented on a more or less constant schedule, so that the application rates were less than ETo in summer and equal to or slightly greater than ETo in winter, but the plants were able to consume water stored in the profile in winter to support summer ET. Sodium salts gradually increased in the soil profile over the study but sulfate levels remained low, due to formation of gypsum in the calcic soil. The high salt tolerance, deep roots, and drought tolerance of desert halophytes such as A. lentiformis lend these plants to use as deficit-irrigated landscape plants for disposal of effluents in urban setting when protection of the aquifer is important. ?? 2008 Elsevier B.V.

  15. Water-resources and land-surface deformation evaluation studies at Fort Irwin National Training Center, Mojave Desert, California

    Science.gov (United States)

    Densmore-Judy, Jill; Dishart, Justine E.; Miller, David; Buesch, David C.; Ball, Lyndsay B.; Bedrosian, Paul A.; Woolfenden, Linda R.; Cromwell, Geoffrey; Burgess, Matthew K.; Nawikas, Joseph; O'Leary, David; Kjos, Adam; Sneed, Michelle; Brandt, Justin

    2017-01-01

    The U.S. Army Fort Irwin National Training Center (NTC), in the Mojave Desert, obtains all of its potable water supply from three groundwater basins (Irwin, Langford, and Bicycle) within the NTC boundaries (fig. 1; California Department of Water Resources, 2003). Because of increasing water demands at the NTC, the U.S. Geological Survey (USGS), in cooperation with the U.S. Army, completed several studies to evaluate water resources in the developed and undeveloped groundwater basins underlying the NTC. In all of the developed basins, groundwater withdrawals exceed natural recharge, resulting in water-level declines. However, artificial recharge of treated wastewater has had some success in offsetting water-level declines in Irwin Basin. Additionally, localized water-quality changes have occurred in some parts of Irwin Basin as a result of human activities (i.e., wastewater disposal practices, landscape irrigation, and/or leaking pipes). As part of the multi-faceted NTC-wide studies, traditional datacollection methods were used and include lithological and geophysical logging at newly drilled boreholes, hydrologic data collection (i.e. water-level, water-quality, aquifer tests, wellbore flow). Because these data cover a small portion of the 1,177 square-mile (mi2 ) NTC, regional mapping, including geologic, gravity, aeromagnetic, and InSAR, also were done. In addition, ground and airborne electromagnetic surveys were completed and analyzed to provide more detailed subsurface information on a regional, base-wide scale. The traditional and regional ground and airborne data are being analyzed and will be used to help develop preliminary hydrogeologic framework and groundwater-flow models in all basins. This report is intended to provide an overview of recent water-resources and land-surface deformation studies at the NTC.

  16. Russian deserters of World War I

    OpenAIRE

    Os'kin Maksim

    2014-01-01

    Desertion is one of the most active forms of ordinary resistance of the people to the state pressure during the low-popular war which is conducting for the purposes unclear for the people. At the same time, mass desertion is a manifestation of «total» war in the world conflicts of the XX century. During World War I in all armies of the world there was the desertion often accepting mass character. In the Russian army, as well as in other, deserters appeared from the war beginning. Desertion sca...

  17. Large-scale gravity sliding in the Miocene Shadow Valley Supradetachment Basin, Eastern Mojave Desert, California

    Science.gov (United States)

    Davis, G. A.; Friedmann, S. J.

    2005-12-01

    The Miocene Shadow Valley basin in the eastern Mojave Desert of California developed above the active west-dipping Kingston Range-Halloran Hills extensional detachment fault system between 13.5 and ca. 7 mybp. Although mass-wasting processes are common phenomena in supradetachment basins, the Shadow Valley basin is an exceptional locale for the study of such processes, especially rock-avalanches and gravity sliding. A score of megabreccias, interpreted as rock-avalanche deposits, and half that number of very large (> 1 km 2, up to 200 m thick), internally intact gravity-driven slide sheets are interbedded with various sedimentary facies. The slide sheets, variably composed of Proterozoic crystalline rocks and Proterozoic, Paleozoic, and Tertiary sedimentary strata, moved across both depositional and erosional surfaces in the basin. Although the majority consist of Paleozoic carbonate rocks, the largest slide sheet, the Eastern Star crystalline allochthon, contains Proterozoic gneisses and their sedimentary cover and is now preserved as klippen atop Miocene lacustrine and alluvial fan deposits over an area > 40 km 2. Estimates of slide sheet runouts into the basin from higher eastern and northern source terranes range from approximately a few km to > 10 km; in most cases the exact provenances of the slide blocks are not known. The basal contacts of Shadow Valley slide sheets are characteristically knife sharp, show few signs of lithologic mixing of upper- and lower-plate rocks, and locally exhibit slickensided and striated, planar fault-like bases. Pronounced folding of overridden Miocene lacustrine and fan deposits beneath the Eastern Star allochthon extends to depths up to 40 m at widely scattered localities. We conclude that this slow moving slide sheet encountered isolated topographic asperities (hills) and that stress transfer across the basal slide surface produced folding of footwall strata. Synkinematic gypsum veins in footwall playa sediments, with fibers

  18. Monitoring Springs in the Mojave Desert Using Landsat Time Series Analysis

    Science.gov (United States)

    Potter, Christopher S.

    2018-01-01

    The purpose of this study, based on Landsat satellite data was to characterize variations and trends over 30 consecutive years (1985-2016) in perennial vegetation green cover at over 400 confirmed Mojave Desert spring locations. These springs were surveyed between in 2015 and 2016 on lands managed in California by the U.S. Bureau of Land Management (BLM) and on several land trusts within the Barstow, Needles, and Ridgecrest BLM Field Offices. The normalized difference vegetation index (NDVI) from July Landsat images was computed at each spring location and a trend model was first fit to the multi-year NDVI time series using least squares linear regression.Â

  19. The California Valley grassland

    Science.gov (United States)

    Keeley, J.E.; Schoenherr, Allan A.

    1990-01-01

    Grasslands are distributed throughout California from Oregon to Baja California Norte and from the coast to the desert (Brown 1982) (Figure 1). This review will focus on the dominant formation in cismontane California, a community referred to as Valley Grassland (Munz 1959). Today, Valley Grassland is dominated by non-native annual grasses in genera such as Avena (wild oat), Bromus (brome grass), and Hordeum (barley), and is often referred to as the California annual grassland. On localized sites, native perennial bunchgrasses such as Stipa pultra (purple needle grass) may dominate and such sites are interpreted to be remnants of the pristine valley grassland. In northwestern California a floristically distinct formation of the Valley Grassland, known as Coast Prairie (Munz 1959) or Northern Coastal Grassland (Holland and Keil 1989) is recognized. The dominant grasses include many native perennial bunchgrasses in genera such as Agrostis, Calamagrostis, Danthonia, Deschampsia, Festuca, Koeleria and Poa (Heady et al. 1977). Non-native annuals do not dominate, but on some sites non-native perennials like Anthoxanthum odoratum may colonize the native grassland (Foin and Hektner 1986). Elevationally, California's grasslands extend from sea level to at leas 1500 m. The upper boundary is vague because montane grassland formations are commonly referred to as meadows; a community which Munz (1959) does not recognize. Holland and Keil (1989) describe the montane meadow as an azonal community; that is, a community restricted not so much to a particular climatic zone but rather controlled by substrate characteristics. They consider poor soil-drainage an over-riding factor in the development of montane meadows and, in contrast to grasslands, meadows often remain green through the summer drought. Floristically, meadows are composed of graminoids; Cyperaceae, Juncaceae, and rhizomatous grasses such as Agropyron (wheat grass). Some bunchgrasses, such as Muhlenbergia rigens, are

  20. Russian deserters of World War I

    Directory of Open Access Journals (Sweden)

    Os'kin Maksim

    2014-10-01

    Full Text Available Desertion is one of the most active forms of ordinary resistance of the people to the state pressure during the low-popular war which is conducting for the purposes unclear for the people. At the same time, mass desertion is a manifestation of «total» war in the world conflicts of the XX century. During World War I in all armies of the world there was the desertion often accepting mass character. In the Russian army, as well as in other, deserters appeared from the war beginning. Desertion scales in the Russian army explained as objective factors - diffi cult fights, shortage of supply, defeat at the front, and subjective - unwillingness to participate in war, melancholy for the house, desire to help a family the work. Desertion in different years of war had various forms. If at the beginning of war there were mainly «self-arrows», in 1915, during defeats at the front - evasion from entrenchments. By the end of 1916, because of the general fatigue from war, desertion takes the real form - flight from the front to the back. After February revolution desertion becomes mass in which hundreds thousands military personnel take part already. Disorder of army and development of revolutionary process extremely strengthen desertion scales that is explained by the actual lack of punishment for this crime. Destruction of the Russian state during revolution became the main reason of coming to power of Bolsheviks, an exit of Russia from war and the army demobilization which essential part in 1917 already deserted from the front.

  1. Serologic survey for brucellosis in feral swine, wild ruminants, and black bear of California, 1977 to 1989.

    Science.gov (United States)

    Drew, M L; Jessup, D A; Burr, A A; Franti, C E

    1992-07-01

    A retrospective analysis of brucellosis serologic testing results in eight wildlife species in California from 1977 to 1989 was done. Samples were collected from 5,398 live-captured or hunter-killed animals and tested by combinations of up to six serologic tests for antibodies to Brucella spp. Twenty-three of 611 (3.8%) feral swine (Sus scrofa), one of 180 (0.6%) black bear (Ursus americanus), one of 355 (0.3%) California mule deer (Odocoileus hemionus californicus), and one of 1,613 (0.06%) blacktail deer (Odocoileus hemionus columbianus) samples were considered reactors. Suspect serologic reactions occurred in three of 619 (0.5%) desert bighorn sheep (Ovis canadensis nelsoni) and one of 355 (0.3%) California mule deer samples. Brucellosis is not considered an important wildlife health problem in California except in feral swine.

  2. Condition-dependent clutch desertion in Great Tit (Parus major) females subjected to human disturbance

    OpenAIRE

    2011-01-01

    Abstract Nest desertion behaviour in relation to body condition and timing of breeding was studied in Great Tit (Parus major) females during two breeding seasons. Desertion, most likely unintentionally provoked by catching females during the incubation period, occurred at a very high rate with 41.2 and 25.6% of deserted first clutches in the two study years. The association between desertion probability, body condition (index calculated as residuals from the regression of body mass...

  3. Wind to Hydrogen in California: Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Antonia, O.; Saur, G.

    2012-08-01

    This analysis presents a case study in California for a large scale, standalone wind electrolysis site. This is a techno-economic analysis of the 40,000 kg/day renewable production of hydrogen and subsequent delivery by truck to a fueling station in the Los Angeles area. This quantity of hydrogen represents about 1% vehicle market penetration for a city such as Los Angeles (assuming 0.62 kg/day/vehicle and 0.69 vehicles/person) [8]. A wind site near the Mojave Desert was selected for proximity to the LA area where hydrogen refueling stations are already built.

  4. Cytogeography of Larrea tridentata at the Chihuahuan-Sonoran Desert ecotone

    Science.gov (United States)

    Robert G. Laport; Robert L.. Minckley

    2013-01-01

    The long separation of the Chihuahuan and Sonoran Deserts is reflected in the high species richness and endemism of their floras. Although many endemic species from both deserts reach their distributional limits where the Sierra Madre Occidental massif fragments into smaller mountain complexes in northern Mexico and adjoining areas of the United States, indicator...

  5. Respondence and feedback of modern sand deserts to climate change--A case study in Gurbantunggut Desert

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The research on the respondence and feedback of modern sand deserts to the climate change is an important component part in the studies on the global climate change. Deserts respond to the climate change, meanwhile, they affect the climate with their feedback of peculiar environment during the respondence. Many researches on desert climate have been carried out at home and abroad. However, there is little research on the respondence and feedback of modern fixed, semi-fixed and mobile deserts in arid areas to the climate change, in which the factor analysis as well as the parameter changing effects is especially the difficult problem all along. In this note, the parameters of the respondence and feedback of Gurbantunggut Desert to the climate change are measured and analyzed, some variable parameters of water-heat exchange are obtained, and a numerical model of desertification is developed according to a series of climate change of about 40 years and the variable relations of meteorological and physical features of the sand surface in Gurbantunggut Desert.

  6. Influence of surface roughness of a desert

    Science.gov (United States)

    Sud, Y. C.; Smith, W. E.

    1984-01-01

    A numerical simulation study, using the current GLAS climate GCM, was carried out to examine the influence of low bulk aerodynamic drag parameter in the deserts. The results illustrate the importance of yet another feedback effect of a desert on itself, that is produced by the reduction in surface roughness height of land once the vegetation dies and desert forms. Apart from affecting the moisture convergence, low bulk transport coefficients of a desert lead to enhanced longwave cooling and sinking which together reduce precipitation by Charney's (1975) mechanism. Thus, this effect, together with albedo and soil moisture influence, perpetuate a desert condition through its geophysical feedback effect. The study further suggests that man made deserts is a viable hypothesis.

  7. Liquid Water Restricts Habitability in Extreme Deserts.

    Science.gov (United States)

    Cockell, Charles S; Brown, Sarah; Landenmark, Hanna; Samuels, Toby; Siddall, Rebecca; Wadsworth, Jennifer

    2017-04-01

    Liquid water is a requirement for biochemistry, yet under some circumstances it is deleterious to life. Here, we show that liquid water reduces the upper temperature survival limit for two extremophilic photosynthetic microorganisms (Gloeocapsa and Chroococcidiopsis spp.) by greater than 40°C under hydrated conditions compared to desiccated conditions. Under hydrated conditions, thermal stress causes protein inactivation as shown by the fluorescein diacetate assay. The presence of water was also found to enhance the deleterious effects of freeze-thaw in Chroococcidiopsis sp. In the presence of water, short-wavelength UV radiation more effectively kills Gloeocapsa sp. colonies, which we hypothesize is caused by factors including the greater penetration of UV radiation into hydrated colonies compared to desiccated colonies. The data predict that deserts where maximum thermal stress or irradiation occurs in conjunction with the presence of liquid water may be less habitable to some organisms than more extreme arid deserts where organisms can dehydrate prior to being exposed to these extremes, thus minimizing thermal and radiation damage. Life in extreme deserts is poised between the deleterious effects of the presence and the lack of liquid water. Key Words: Deserts-Extremophiles-Stress-High temperatures-UV radiation-Desiccation. Astrobiology 17, 309-318.

  8. Problems with sampling desert tortoises: A simulation analysis based on field data

    Science.gov (United States)

    Freilich, J.E.; Camp, R.J.; Duda, J.J.; Karl, A.E.

    2005-01-01

    The desert tortoise (Gopherus agassizii) was listed as a U.S. threatened species in 1990 based largely on population declines inferred from mark-recapture surveys of 2.59-km2 (1-mi2) plots. Since then, several census methods have been proposed and tested, but all methods still pose logistical or statistical difficulties. We conducted computer simulations using actual tortoise location data from 2 1-mi2 plot surveys in southern California, USA, to identify strengths and weaknesses of current sampling strategies. We considered tortoise population estimates based on these plots as "truth" and then tested various sampling methods based on sampling smaller plots or transect lines passing through the mile squares. Data were analyzed using Schnabel's mark-recapture estimate and program CAPTURE. Experimental subsampling with replacement of the 1-mi2 data using 1-km2 and 0.25-km2 plot boundaries produced data sets of smaller plot sizes, which we compared to estimates from the 1-mi 2 plots. We also tested distance sampling by saturating a 1-mi 2 site with computer simulated transect lines, once again evaluating bias in density estimates. Subsampling estimates from 1-km2 plots did not differ significantly from the estimates derived at 1-mi2. The 0.25-km2 subsamples significantly overestimated population sizes, chiefly because too few recaptures were made. Distance sampling simulations were biased 80% of the time and had high coefficient of variation to density ratios. Furthermore, a prospective power analysis suggested limited ability to detect population declines as high as 50%. We concluded that poor performance and bias of both sampling procedures was driven by insufficient sample size, suggesting that all efforts must be directed to increasing numbers found in order to produce reliable results. Our results suggest that present methods may not be capable of accurately estimating desert tortoise populations.

  9. Human responses to Middle Holocene climate change on California's Channel Islands

    Science.gov (United States)

    Kennett, Douglas J.; Kennett, James P.; Erlandson, Jon M.; Cannariato, Kevin G.

    2007-02-01

    High-resolution archaeological and paleoenvironmental records from California's Channel Islands provide a unique opportunity to examine potential relationships between climatically induced environmental changes and prehistoric human behavioral responses. Available climate records in western North America (7-3.8 ka) indicate a severe dry interval between 6.3 and 4.8 ka embedded within a generally warm and dry Middle Holocene. Very dry conditions in western North America between 6.3 and 4.8 ka correlate with cold to moderate sea-surface temperatures (SST) along the southern California Coast evident in Ocean Drilling Program (ODP) Core 893A/B (Santa Barbara Basin). An episode of inferred high marine productivity between 6.3 and 5.8 ka corresponds with the coldest estimated SSTs of the Middle Holocene, otherwise marked by warm/low productivity marine conditions (7.5-3.8 ka). The impact of this severe aridity on humans was different between the northern and southern Channel Islands, apparently related to degree of island isolation, size and productivity of islands relative to population, fresh water availability, and on-going social relationships between island and continental populations. Northern Channel Islanders seem to have been largely unaffected by this severe arid phase. In contrast, cultural changes on the southern Channel Islands were likely influenced by the climatically induced environmental changes. We suggest that productive marine conditions coupled with a dry terrestrial climate between 6.3 and 5.8 ka stimulated early village development and intensified fishing on the more remote southern islands. Contact with people on the adjacent southern California Coast increased during this time with increased participation in a down-the-line trade network extending into the western Great Basin and central Oregon. Genetic similarities between Middle Holocene burial populations on the southern Channel Islands and modern California Uto-Aztecan populations suggest

  10. Turtles and culverts, and alternative energy development: an unreported but potentially significant mortality threat to the desert tortoise (Gopherus agassizii)

    Science.gov (United States)

    Lovich, J.E.; Ennen, J.R.; Madrak, S.; Grover, B.

    2011-01-01

    Culverts are often used to increase the permeability of roaded landscapes for wildlife, including turtles. Although the benefits of culverts as safe passages for turtles are well documented, under some conditions culverts can entrap them and cause mortality. Here we report a culvert-related mortality in the federally threatened desert tortoise (Gopherus agassizii) at a wind energy facility in California and offer simple recommendations to mitigate the negative effects of culverts for wildlife in general.

  11. Bringing Produce to the People: Implementing a social marketing food access intervention in rural food deserts

    Science.gov (United States)

    Ramirez, A. Susana; Diaz Rios, Lillian K.; Valdez, Zulema; Estrada, Erendira; Ruiz, Ariana

    2017-01-01

    To describe and evaluate the process of implementation of a social marketing food access intervention for food desert communities in rural California. Case study approach used mixed-methods data from nationwide market comparisons, environmental assessment, and community informants. Lessons learned demonstrate room for improvement in the implementation of such strategies and underscore the importance of community involvement in decision-making; the strategic importance of operational decisions relating to intervention design, site and product selection, and distribution models; and a reconsideration of the problem of “access” in rural areas. PMID:27956000

  12. Tree planting in deserts and utilization of atomic energy

    International Nuclear Information System (INIS)

    Hattori, Sadao; Minato, Akio; Hashizume, Kenichi; Handa, Norihiko.

    1991-01-01

    Global environment problems are discussed actively, concretely, those are the warming of the earth, the advance of desertification, the damage due to acid rain, the decrease of tropical forests, the pollution of sea, the depletion of ozone layer and so on. Most of these phenomena advance gradually. However, the advance of desertification is different from other phenomena in that the people in the areas concerned are deprived of their living space and even their lives are threatened at this moment. Desertification is advancing on global scale, and its rate is estimated to be 60,000 km 2 yearly. Especially the area where the advance is remarkable is the southern edge of Sahara Desert, which advances southward at 10-30 km in one year. Recently also in Japan, the interest in the prevention of desertification has become high, and the experiment on tree planting in a desert using a huge desert dome of the Institute of Physical and Chemical Research, 'Desert Aquanet concept' of Shimizu Construction Co., Ltd., 'Sahara green belt project' of the Ministry of International Trade and Industry and so on were published. Water and energy for tree planting in deserts, utilization of atomic energy for seawater desalination and the technical fields to which Japan can contribute are reported. (K.I.)

  13. Tree planting in deserts and utilization of atomic energy

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, Sadao; Minato, Akio [Central Research Inst. of Electric Power Industry, Tokyo (Japan); Hashizume, Kenichi; Handa, Norihiko

    1991-06-01

    Global environment problems are discussed actively, concretely, those are the warming of the earth, the advance of desertification, the damage due to acid rain, the decrease of tropical forests, the pollution of sea, the depletion of ozone layer and so on. Most of these phenomena advance gradually. However, the advance of desertification is different from other phenomena in that the people in the areas concerned are deprived of their living space and even their lives are threatened at this moment. Desertification is advancing on global scale, and its rate is estimated to be 60,000 km{sup 2} yearly. Especially the area where the advance is remarkable is the southern edge of Sahara Desert, which advances southward at 10-30 km in one year. Recently also in Japan, the interest in the prevention of desertification has become high, and the experiment on tree planting in a desert using a huge desert dome of the Institute of Physical and Chemical Research, 'Desert Aquanet concept' of Shimizu Construction Co., Ltd., 'Sahara green belt project' of the Ministry of International Trade and Industry and so on were published. Water and energy for tree planting in deserts, utilization of atomic energy for seawater desalination and the technical fields to which Japan can contribute are reported. (K.I.).

  14. Desertions in nineteenth-century shipping: modelling quit behaviour

    OpenAIRE

    Jari Ojala; Jaakko Pehkonen; Jari Eloranta

    2013-01-01

    Ship jumping in foreign ports was widespread throughout the age of sail. Desertion by seamen was illegal, it occurred abroad, and men who deserted only seldom returned home. We analyse desertion quantitatively and link it to the broader question of quit behaviour and labour turnover. Though the better wages paid at the foreign ports were the main reason for desertion, the regression model of the determinants of desertion indicates that outside opportunities, such as migration, and monetary in...

  15. Path Not Found: Disparities in Access to Computer Science Courses in California High Schools

    Science.gov (United States)

    Martin, Alexis; McAlear, Frieda; Scott, Allison

    2015-01-01

    "Path Not Found: Disparities in Access to Computer Science Courses in California High Schools" exposes one of the foundational causes of underrepresentation in computing: disparities in access to computer science courses in California's public high schools. This report provides new, detailed data on these disparities by student body…

  16. Rural childhoods in Egypt's desert lands

    DEFF Research Database (Denmark)

    Adriansen, Hanne Kirstine

    Based on fieldwork in Egypt’s desert lands, this paper discusses rural childhoods in an area experiencing rapid social and cultural change. Since 1987, the Egyptian Government has made new villages in the desert as a means to increase agricultural production and solving problems of unemployment....... Many settlers move to the Mubarak villages in order to give their children a good start in life. The desert villages are associated with a type of ‘rural idyll’. The process of settling in the desert impacts upon the children’s possible pathways to adulthood and their identities and social......’s new roles impact upon the children’s lives. The social contexts shaping the desert childhoods are in some ways more similar to contexts in ‘developed’ countries than in other parts of rural Egypt. The paper ends up by contrasting ideas of rural childhoods in Egypt with those found in ‘developed...

  17. Desert tortoise use of burned habitat in the Eastern Mojave desert

    Science.gov (United States)

    Drake, Karla K.; Esque, Todd C.; Nussear, Kenneth E.; DeFalco, Lesley; Scoles, Sara; Modlin, Andrew T.; Medica, Philip A.

    2015-01-01

    Wildfires burned 24,254 ha of critical habitat designated for the recovery of the threatened Mojave desert tortoise (Gopherus agassizii) in southern Nevada during 2005. The proliferation of non-native annual grasses has increased wildfire frequency and extent in recent decades and continues to accelerate the conversion of tortoise habitat across the Mojave Desert. Immediate changes to vegetation are expected to reduce quality of critical habitat, yet whether tortoises will use burned and recovering habitat differently from intact unburned habitat is unknown. We compared movement patterns, home-range size, behavior, microhabitat use, reproduction, and survival for adult desert tortoises located in, and adjacent to, burned habitat to understand how tortoises respond to recovering burned habitat. Approximately 45% of home ranges in the post-fire environment contained burned habitat, and numerous observations (n = 12,223) corroborated tortoise use of both habitat types (52% unburned, 48% burned). Tortoises moved progressively deeper into burned habitat during the first 5 years following the fire, frequently foraging in burned habitats that had abundant annual plants, and returning to adjacent unburned habitat for cover provided by intact perennial vegetation. However, by years 6 and 7, the live cover of the short-lived herbaceous perennial desert globemallow (Sphaeralcea ambigua) that typically re-colonizes burned areas declined, resulting in a contraction of tortoise movements from the burned areas. Health and egg production were similar between burned and unburned areas indicating that tortoises were able to acquire necessary resources using both areas. This study documents that adult Mojave desert tortoises continue to use habitat burned once by wildfire. Thus, continued management of this burned habitat may contribute toward the recovery of the species in the face of many sources of habitat loss.

  18. Geology and geochemistry of the Atacama Desert.

    Science.gov (United States)

    Tapia, J; González, R; Townley, B; Oliveros, V; Álvarez, F; Aguilar, G; Menzies, A; Calderón, M

    2018-02-14

    The Atacama Desert, the driest of its kind on Earth, hosts a number of unique geological and geochemical features that make it unlike any other environment on the planet. Considering its location on the western border of South America, between 17 and 28 °S, its climate has been characterized as arid to hyperarid for at least the past 10 million years. Notably dry climatic conditions of the Atacama Desert have been related to uplift of the Andes and are believed to have played an important role in the development of the most distinctive features of this desert, including: (i) nitrates and iodine deposits in the Central Depression, (ii) secondary enrichment in porphyry copper deposits in the Precordillera, (iii) Li enrichment in salt flats of the Altiplano, and (iv) life in extreme habitats. The geology and physiography of the Atacama Desert have been largely shaped by the convergent margin present since the Mesozoic era. The geochemistry of surface materials is related to rock geochemistry (Co, Cr, Fe, Mn, V, and Zn), salt flats, and evaporite compositions in endorheic basins (As, B, and Li), in addition to anthropogenic activities (Cu, Mo, and Pb). The composition of surface water is highly variable, nonetheless in general it presents a circumneutral pH with higher conductivity and total dissolved solids in brines. Major water constituents, with the exception of HCO 3 - , are generally related to the increase of salinity, and despite the fact that trace elements are not well-documented, surface waters of the Atacama Desert are enriched in As, B, and Li when compared to the average respective concentrations in rivers worldwide.

  19. Relationships between annual plant productivity, nitrogen deposition and fire size in low-elevation California desert scrub

    Science.gov (United States)

    Rao, Leela E.; Matchett, John R.; Brooks, Matthew L.; Johns, Robert; Minnich, Richard A.; Allen, Edith B.

    2014-01-01

    Although precipitation is correlated with fire size in desert ecosystems and is typically used as an indirect surrogate for fine fuel load, a direct link between fine fuel biomass and fire size has not been established. In addition, nitrogen (N) deposition can affect fire risk through its fertilisation effect on fine fuel production. In this study, we examine the relationships between fire size and precipitation, N deposition and biomass with emphasis on identifying biomass and N deposition thresholds associated with fire spreading across the landscape. We used a 28-year fire record of 582 burns from low-elevation desert scrub to evaluate the relationship of precipitation, N deposition and biomass with the distribution of fire sizes using quantile regression. We found that models using annual biomass have similar predictive ability to those using precipitation and N deposition at the lower to intermediate portions of the fire size distribution. No distinct biomass threshold was found, although within the 99th percentile of the distribution fire size increased with greater than 125 g m–2 of winter fine fuel production. The study did not produce an N deposition threshold, but did validate the value of 125 g m–2 of fine fuel for spread of fires.

  20. How fault evolution changes strain partitioning and fault slip rates in Southern California: Results from geodynamic modeling

    Science.gov (United States)

    Ye, Jiyang; Liu, Mian

    2017-08-01

    In Southern California, the Pacific-North America relative plate motion is accommodated by the complex southern San Andreas Fault system that includes many young faults (faults and their impact on strain partitioning and fault slip rates are important for understanding the evolution of this plate boundary zone and assessing earthquake hazard in Southern California. Using a three-dimensional viscoelastoplastic finite element model, we have investigated how this plate boundary fault system has evolved to accommodate the relative plate motion in Southern California. Our results show that when the plate boundary faults are not optimally configured to accommodate the relative plate motion, strain is localized in places where new faults would initiate to improve the mechanical efficiency of the fault system. In particular, the Eastern California Shear Zone, the San Jacinto Fault, the Elsinore Fault, and the offshore dextral faults all developed in places of highly localized strain. These younger faults compensate for the reduced fault slip on the San Andreas Fault proper because of the Big Bend, a major restraining bend. The evolution of the fault system changes the apportionment of fault slip rates over time, which may explain some of the slip rate discrepancy between geological and geodetic measurements in Southern California. For the present fault configuration, our model predicts localized strain in western Transverse Ranges and along the dextral faults across the Mojave Desert, where numerous damaging earthquakes occurred in recent years.

  1. Cost estimates for Operation Desert Shield/Desert Storm: a budgetary analysis

    OpenAIRE

    Johnson, J. Andrew.

    1991-01-01

    Operation Desert Shield/Desert Storm (DS/DS) presented unique challenges for estimating the cost of that conflict. This analysis reviews the cost estimates and methodologies developed for that purpose by DoD, CBO and GAO. It considers the budget climate and the role of foreign cash and in-kind contributions. Finally, it reviews the budgeting innovations used to provide and monitor DS/DS defense spending. At the outset of the crisis, costs were estimated to determine the defense funding requir...

  2. Clean power from deserts. The DESERTEC concept for energy, water and climate security

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    The main challenge for the future is to reclaim energy from renewable and clean sources in environmentally compatible ways. Here the deserts of the earth can play a key role. They receive about 700 times more energy from the sun than humankind consumes by burning fossil fuels, day by day. Deserts are the places with the best solar radiation conditions and with the least possible impact of collector deployment onto the biosphere on earth. In deserts, clean power can be produced by solar thermal power plants (CSP) in a truly sustainable way and at any volume of conceivable demand. Power can be transmitted with low losses by high voltage direct current (HVDC) lines to more than 90% of the world's population. This gives the deserts a new role: Together with the many other forms of accessible renewable energy the newly utilized desert would enable us to replace fossil fuels and thus end the ongoing destruction of our natural living conditions. To put this into practice, countries with deserts, countries with high energy demand and countries with technology competence must cooperate. This is an opportunity for the Mediterranean riparian regions of Europe, the Middle East and North Africa (EUMENA) to form a community for energy, water and climate security. With the political will, EUMENA countries could now launch 'EUMENA-DESERTEC' Program, to bring humankind back into balance with its environment, by putting deserts and technology into service for energy, water and climate security. This would be an important step towards creating a truly sustainable civilization.

  3. Implications of high altitude desert dust transport from Western Sahara to Nile Delta during biomass burning season

    International Nuclear Information System (INIS)

    Prasad, Anup K.; El-Askary, Hesham; Kafatos, Menas

    2010-01-01

    The air over major cities and rural regions of the Nile Delta is highly polluted during autumn which is the biomass burning season, locally known as black cloud. Previous studies have attributed the increased pollution levels during the black cloud season to the biomass or open burning of agricultural waste, vehicular, industrial emissions, and secondary aerosols. However, new multi-sensor observations (column and vertical profiles) from satellites, dust transport models and associated meteorology present a different picture of the autumn pollution. Here we show, for the first time, the evidence of long range transport of dust at high altitude (2.5-6 km) from Western Sahara and its deposition over the Nile Delta region unlike current Models. The desert dust is found to be a major contributor to the local air quality which was previously considered to be due to pollution from biomass burning enhanced by the dominant northerly winds coming from Europe. - New evidence of desert dust transport from Western Sahara to Nile Delta during black cloud season and its significance for regional aerosols, dust models, and potential impact on the regional climate.

  4. Implications of high altitude desert dust transport from Western Sahara to Nile Delta during biomass burning season

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Anup K., E-mail: aprasad@chapman.ed [School of Earth and Environmental Sciences, Schmid College of Science, Chapman University, Orange, CA 92866 (United States); Center of Excellence in Earth Observing, Chapman University, Orange, CA 92866 (United States); El-Askary, Hesham [School of Earth and Environmental Sciences, Schmid College of Science, Chapman University, Orange, CA 92866 (United States); Center of Excellence in Earth Observing, Chapman University, Orange, CA 92866 (United States); Department of Environmental Sciences, Faculty of Science, Alexandria University, Moharem Bek, Alexandria 21522 (Egypt); National Authority for Remote Sensing and Space Science (NARSS), Cairo (Egypt); Kafatos, Menas [School of Earth and Environmental Sciences, Schmid College of Science, Chapman University, Orange, CA 92866 (United States); Center of Excellence in Earth Observing, Chapman University, Orange, CA 92866 (United States)

    2010-11-15

    The air over major cities and rural regions of the Nile Delta is highly polluted during autumn which is the biomass burning season, locally known as black cloud. Previous studies have attributed the increased pollution levels during the black cloud season to the biomass or open burning of agricultural waste, vehicular, industrial emissions, and secondary aerosols. However, new multi-sensor observations (column and vertical profiles) from satellites, dust transport models and associated meteorology present a different picture of the autumn pollution. Here we show, for the first time, the evidence of long range transport of dust at high altitude (2.5-6 km) from Western Sahara and its deposition over the Nile Delta region unlike current Models. The desert dust is found to be a major contributor to the local air quality which was previously considered to be due to pollution from biomass burning enhanced by the dominant northerly winds coming from Europe. - New evidence of desert dust transport from Western Sahara to Nile Delta during black cloud season and its significance for regional aerosols, dust models, and potential impact on the regional climate.

  5. 75 FR 36438 - Notice of Interim Final Supplementary Rules for Public Lands Managed by the California Desert...

    Science.gov (United States)

    2010-06-25

    ... and areas that contain structures or capital improvements primarily used by the public for recreation... Office, 22835 Calle San Juan De Los Lagos, Moreno Valley, California 92553. FOR FURTHER INFORMATION..., 22835 Calle San Juan De Los Lagos, Moreno Valley, California 92553, phone: (951) 697-5233, or e-mail...

  6. Raising the Bar: Standards and Tests in California's High Schools. A Town Hall Meeting.

    Science.gov (United States)

    Arnstine, Barbara; Futernick, Ken; Hodson, Timothy A.; Ostgaard, Kolleen

    In 1999, the LegiSchool Project planned to conduct the 12th in its series of televised Town Hall Meetings to provide a forum in which California high school students, educators, and legislators can engage in face-to-face dialogue about problems of mutual interest. For 1999, the topic is standards and tests in California high schools. This guide…

  7. Family Influences on Dropout Behavior in One California High School.

    Science.gov (United States)

    Rumberger, Russell W.; And Others

    1990-01-01

    Investigated how family processes influence high school student dropout behavior. Used a sample of 114 dropouts from 1 California high school, 48 of whom were matched to similarly profiled continuing students. Identified factors that explain students' dropout decisions: permissive parenting, negative parental reactions to grades, excessive…

  8. 78 FR 18625 - Call for Nominations for the California Desert District Advisory Council

    Science.gov (United States)

    2013-03-27

    ... million acres of public land in Southern California. The Council meets in formal session three to four.... Any group or individual may nominate a qualified person, based upon education, training, and knowledge... individuals who are currently federally registered lobbyists to serve on all FACA and non- FACA boards...

  9. Isolation of 18 Microsatellite Loci in the Desert Mistletoe Phoradendron californicum (Santalaceae Via 454 Pyrosequencing

    Directory of Open Access Journals (Sweden)

    Juan M. Arroyo

    2013-12-01

    Full Text Available Premise of the study: Microsatellite primers were developed for the parasitic mistletoe Phoradendron californicum to investigate to what extent population genetic structure depends on host tree distribution within a highly fragmented landscape. Methods and Results: Fourteen unlinked polymorphic and four monomorphic nuclear microsatellite markers were developed using a genomic shotgun pyrosequencing method. A total of 187 alleles plus four monomorphic loci alleles were found in 98 individuals sampled in three populations from the Sonoran Desert in the Baja California peninsula (Mexico. Loci averaged 13.3 alleles per locus (range 4–28, and observed and expected heterozygosities within populations varied from 0.167–0.879 and 0.364–0.932, respectively. Conclusions: Levels of polymorphism of the reported markers are adequate for studies of diversity and fragmentation in natural populations of this parasitic plant. Cross-species amplifications in P. juniperinum and P. diguetianum only showed four markers that could be useful in P. diguetianum.

  10. Physiological adaptation in desert birds

    NARCIS (Netherlands)

    Williams, JB; Tieleman, BI; Williams, Joseph B.

    We call into question the idea that birds have not evolved unique physiological adaptations to desert environments. The rate at which desert larks metabolize energy is lower than in mesic species within the same family, and this lower rate of living translates into a lower overall energy requirement

  11. Triggered surface slips in southern California associated with the 2010 El Mayor-Cucapah, Baja California, Mexico, earthquake

    Science.gov (United States)

    Rymer, Michael J.; Treiman, Jerome A.; Kendrick, Katherine J.; Lienkaemper, James J.; Weldon, Ray J.; Bilham, Roger; Wei, Meng; Fielding, Eric J.; Hernandez, Janis L.; Olson, Brian P.E.; Irvine, Pamela J.; Knepprath, Nichole; Sickler, Robert R.; Tong, Xiaopeng; Siem, Martin E.

    2011-01-01

    The April 4, 2010 (Mw7.2), El Mayor-Cucapah, Baja California, Mexico, earthquake is the strongest earthquake to shake the Salton Trough area since the 1992 (Mw7.3) Landers earthquake. Similar to the Landers event, ground-surface fracturing occurred on multiple faults in the trough. However, the 2010 event triggered surface slip on more faults in the central Salton Trough than previous earthquakes, including multiple faults in the Yuha Desert area, the southwestern section of the Salton Trough. In the central Salton Trough, surface fracturing occurred along the southern San Andreas, Coyote Creek, Superstition Hills, Wienert, Kalin, and Imperial Faults and along the Brawley Fault Zone, all of which are known to have slipped in historical time, either in primary (tectonic) slip and/or in triggered slip. Surface slip in association with the El Mayor-Cucapah earthquake is at least the eighth time in the past 42 years that a local or regional earthquake has triggered slip along faults in the central Salton Trough. In the southwestern part of the Salton Trough, surface fractures (triggered slip) occurred in a broad area of the Yuha Desert. This is the first time that triggered slip has been observed in the southwestern Salton Trough.

  12. Tracing the Atmospheric Source of Desert Nitrates Using Δ 17O

    Science.gov (United States)

    Michalski, G. M.; Holve, M.; Feldmeier, J.; Bao, H.; Reheis, M.; Bockheim, J. G.; Thiemens, M. H.

    2001-05-01

    Mineral, caliche, and soil nitrates are found throughout the worlds deserts, including the cold dry Wright Valley of Antarctica, the Atacama desert in Chile and the Mojave desert in the southwest United States. Several authors have suggested biologic sources of these nitrates while others have postulated atmospheric deposition. A recent study utilizing 18O indicated that 30%, and perhaps 100%, of nitrates found in the Atacama and Mojave were of atmospheric origin [1]. A more quantitative assessment of the source strength of atmospheric nitrates was impossible because of the high variability of δ 18 18O of atmospheric nitrates and uncertainties in conditions of biologic production. Mass independently fractionated (MIF) processes are defined and quantified by the equation Δ 17O = δ 17O - .52x δ 18O. MIF processes are associated with the photochemistry of trace gases in the atmosphere and have been found in O3, N2O, CO, and sulfate aerosols . A large MIF (Δ 17O ~ 28 ‰ ) in nitrate aerosols collected in polluted regions was recently reported [2]. Here we extend measurements of MIF in nitrate to the dry deposition of nitrate in less polluted areas (Mojave desert). In addition we trace the MIF signal as it accumulates in the regolith as nitrate salts and minerals and is mixed with biologically produced nitrate (nitrification). Also examined were the isotopic composition of soil nitrates from Antarctic dry valleys. Dust samples were collected as part of the NADP program and soils were collected throughout the Mojave and Death Valley regions of California. Isotope analysis was done in addition to soluble ion content (Cl, NO3, SO4). Dust samples collected by dry deposition samplers showed a large MIF > 20‰ approaching values measured in urban nitrate aerosol. Soils collected throughout the region showed large variations in Δ 17O from ~ 0 to 18 ‰ . The low Δ 17O values are nitrates dominated by biologic nitrification and higher values are nitrates derived by

  13. Windblown sediment transport and loss in a desert-oasis ecotone in the Tarim Basin.

    Science.gov (United States)

    Pi, Huawei; Sharratt, Brenton; Lei, Jiaqiang

    2017-08-10

    The Tarim Basin is regarded as one of the most highly erodible areas in China. Desert comprises 64% of the land use in the Basin, but the desert-oasis ecotone plays a prominent role in maintaining oasis ecological security and stability. Yet, little is known concerning the magnitude of windblown sediment transport in a desert-oasis ecotone. Therefore, aeolian sediment transport and loss was assessed from a desert-oasis experimental site located near Alaer City in the northwestern Tarim Basin. Sediment transport and factors governing transport were measured during three high wind events in 2012 and four events in 2013. Sediment transport was measured to a height of 10 m using passive aeolian airborne sediment samplers. The mass flux profile over the eroding surface was well represented by the power-law (R 2  > 0.77). Sediment loss from the site ranged from 118 g m -2 for the 20-24Apr 2012 wind event to 2925 g m -2 for the 31Mar-11Apr 2012 event. Suspension accounted for 67.4 to 84.8% of sediment loss across all high wind events. Our results indicate the severity of wind erosion in a desert-oasis ecotone and thus encourage adoption of management practices that will enhance oasis ecological security.

  14. Cr(VI) occurrence and geochemistry in water from public-supply wells in California

    Science.gov (United States)

    Izbicki, John; Wright, Michael; Seymour, Whitney A.; McCleskey, R. Blaine; Fram, Miranda S.; Belitz, Kenneth; Esser, Bradley K.

    2015-01-01

    Hexavalent chromium, Cr(VI), in 918 wells sampled throughout California between 2004 and 2012 by the Groundwater Ambient Monitoring and Assessment-Priority Basin Project (GAMA-PBP) ranged from less than the study reporting limit of 1 microgram per liter (μg/L) to 32 μg/L. Statewide, Cr(VI) was reported in 31 percent of wells and equaled or exceeded the recently established (2014) California Maximum Contaminant Level (MCL) for Cr(VI) of 10 μg/L in 4 percent of wells. Cr(VI) data collected for regulatory purposes overestimated Cr(VI) occurrence compared to spatially-distributed GAMA-PBP data. Ninety percent of chromium was present as Cr(VI), which was detected more frequently and at higher concentrations in alkaline (pH ≥ 8), oxic water; and more frequently in agricultural and urban land uses compared to native land uses. Chemical, isotopic (tritium and carbon-14), and noble-gas data show high Cr(VI) in water from wells in alluvial aquifers in the southern California deserts result from long groundwater-residence times and geochemical reactions such as silicate weathering that increase pH, while oxic conditions persist. High Cr(VI) in water from wells in alluvial aquifers along the west-side of the Central Valley results from high-chromium in source rock eroded to form those aquifers, and areal recharge processes (including irrigation return) that can mobilize chromium from the unsaturated zone. Cr(VI) co-occurred with oxyanions having similar chemistry, including vanadium, selenium, and uranium. Cr(VI) was positively correlated with nitrate, consistent with increased concentrations in areas of agricultural land use and mobilization of chromium from the unsaturated zone by irrigation return.

  15. Bringing Produce to the People: Implementing a Social Marketing Food Access Intervention in Rural Food Deserts.

    Science.gov (United States)

    Ramirez, A Susana; Diaz Rios, Lillian K; Valdez, Zulema; Estrada, Erendira; Ruiz, Ariana

    2017-02-01

    This study describes and evaluates the process of implementing a social marketing food access intervention for food desert communities in rural California. A case study approach used mixed-methods data from nationwide market comparisons, environmental assessment, and community informants. Lessons learned demonstrate room for improvement in implementing such strategies and underscore the importance of involving community in decision making; the strategic importance of operational decisions relating to intervention design, site and product selection, and distribution models; and the need to reconsider the problem of access in rural areas. Copyright © 2016 Society for Nutrition Education and Behavior. All rights reserved.

  16. Climate change and climate systems influence and control the atmospheric dispersion of desert dust: implications for human health

    Science.gov (United States)

    Griffin, Dale W.; Ragaini, Richard C.

    2010-01-01

    The global dispersion of desert dust through Earth’s atmosphere is greatly influenced by temperature. Temporal analyses of ice core data have demonstrated that enhanced dust dispersion occurs during glacial events. This is due to an increase in ice cover, which results in an increase in drier terrestrial cover. A shorter temporal analysis of dust dispersion data over the last 40 years has demonstrated an increase in dust transport. Climate systems or events such as the North Atlantic Oscillation, the Indian Ocean subtropical High, Pacific Decadal Oscillation, and El Nino-Sothern Oscillation are known to influence global short-term dust dispersion occurrence and transport routes. Anthropogenic influences on dust transport include deforestation, harmful use of topsoil for agriculture as observed during the American Dust Bowl period, and the creation of dry seas (Aral Sea) and lakes (Lake Owens in California and Lake Chad in North Africa) through the diversion of source waters (for irrigation and drinking water supplies). Constituents of desert dust both from source regions (pathogenic microorganisms, organic and inorganic toxins) and those scavenged through atmospheric transport (i.e., industrial and agricultural emissions) are known to directly impact human and ecosystem health. This presentation will present a review of global scale dust storms and how these events can be both a detriment and benefit to various organisms in downwind environments.

  17. Biparentally deserted offspring are viable in a species with intense sexual conflict over care.

    Science.gov (United States)

    Pogány, Ákos; Kosztolányi, András; Miklósi, Ádám; Komdeur, Jan; Székely, Tamás

    2015-07-01

    Desertion of clutch (or brood) by both parents often leads to breeding failure, since in vast majority of birds care by at least one parent is required for any young to fledge. Recent works in a highly polygamous passerine bird, the Eurasian penduline tit (Remiz pendulinus), suggest that biparental clutch desertion is due to intense sexual conflict over care. However, an alternative yet untested hypothesis for biparental desertion is low offspring viability so that the parents abandon the offspring that have poor prospect for survival. Here we test the latter hypothesis in a common garden experiment by comparing the viability of deserted and cared for eggs. We show that embryonic development does not differ between deserted and cared for eggs. Therefore, sexual conflict over care remains the best supported hypothesis for biparental clutch desertion in penduline tits. Our work points out that conflict over care is a potential - yet rarely considered - cause of biparental nest desertion, and a strong alternative for the traditional explanations of low offspring viability, human disturbance or deteriorating ambient environment. Apart from a handful of species, the intensity of sexual conflict has not been quantified, and we call for further studies to consider sexual conflict as a cause of nest desertion. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. A case study of high Arctic anthropogenic disturbance to polar desert permafrost and ecosystems

    Science.gov (United States)

    Becker, M. S.; Pollard, W. H.

    2013-12-01

    One of the indirect impacts of climate change on Arctic ecosystems is the expected increase of industrial development in high latitudes. The scale of terrestrial impacts cannot be known ahead of time, particularly due to a lack of long-term impact studies in this region. With one of the slowest community recovery rates of any ecosystem, the high Artic biome will be under a considerable threat that is exacerbated by a high susceptibility to change in the permafrost thermal balance. One such area that provides a suitable location for study is an old airstrip near Eureka, Ellesmere Island, Nunavut (80.0175°N, 85.7340°W). While primarily used as an ice-runway for winter transport, the airstrip endured a yearly summer removal of vegetation that continued from 1947 until its abandonment in 1951. Since then, significant vegetative and geomorphic differences between disturbed and undisturbed areas have been noted in the literature throughout the decades (Bruggemann, 1953; Beschel, 1963; Couture and Pollard, 2007), but no system wide assessment of both the ecosystem and near-surface permafrost has been conducted. Key to our study is that the greatest apparent geomorphic and vegetative changes have occurred and persisted in areas where underlying ice-wedges have been disturbed. This suggests that the colonizing communities rapidly filled new available thermokarst niches and have produced an alternative ice-wedge stable state than the surrounding polar desert. We hypothesize that disturbed areas will currently have greater depths of thaw (deeper active layers) and degraded ice-wedges, with decreased vegetation diversity but higher abundance due to a changed hydrological balance. To test this a comprehensive set of near-surface active layer and ecosystem measurements were conducted. Permafrost dynamics were characterized using probing and high-frequency Ground Penetrating Radar (500 MHz) to map the near-surface details of ice-wedges and active layer. Vegetation was measured

  19. Genomic characterization of Ensifer aridi, a proposed new species of nitrogen-fixing rhizobium recovered from Asian, African and American deserts.

    Science.gov (United States)

    Le Quéré, Antoine; Tak, Nisha; Gehlot, Hukam Singh; Lavire, Celine; Meyer, Thibault; Chapulliot, David; Rathi, Sonam; Sakrouhi, Ilham; Rocha, Guadalupe; Rohmer, Marine; Severac, Dany; Filali-Maltouf, Abdelkarim; Munive, Jose-Antonio

    2017-01-14

    Nitrogen fixing bacteria isolated from hot arid areas in Asia, Africa and America but from diverse leguminous plants have been recently identified as belonging to a possible new species of Ensifer (Sinorhizobium). In this study, 6 strains belonging to this new clade were compared with Ensifer species at the genome-wide level. Their capacities to utilize various carbon sources and to establish a symbiotic interaction with several leguminous plants were examined. Draft genomes of selected strains isolated from Morocco (Merzouga desert), Mexico (Baja California) as well as from India (Thar desert) were produced. Genome based species delineation tools demonstrated that they belong to a new species of Ensifer. Comparison of its core genome with those of E. meliloti, E. medicae and E. fredii enabled the identification of a species conserved gene set. Predicted functions of associated proteins and pathway reconstruction revealed notably the presence of transport systems for octopine/nopaline and inositol phosphates. Phenotypic characterization of this new desert rhizobium species showed that it was capable to utilize malonate, to grow at 48 °C or under high pH while NaCl tolerance levels were comparable to other Ensifer species. Analysis of accessory genomes and plasmid profiling demonstrated the presence of large plasmids that varied in size from strain to strain. As symbiotic functions were found in the accessory genomes, the differences in symbiotic interactions between strains may be well related to the difference in plasmid content that could explain the different legumes with which they can develop the symbiosis. The genomic analysis performed here confirms that the selected rhizobial strains isolated from desert regions in three continents belong to a new species. As until now only recovered from such harsh environment, we propose to name it Ensifer aridi. The presented genomic data offers a good basis to explore adaptations and functionalities that enable them

  20. Home in the heat: Dramatic seasonal variation in home range of desert golden eagles informs management for renewable energy development

    Science.gov (United States)

    Braham, Melissa A.; Miller, Tricia A.; Duerr, Adam E.; Lanzone, Michael J.; Fesnock, Amy; LaPre, Larry; Driscoll, Daniel; Katzner, Todd E.

    2015-01-01

    Renewable energy is expanding quickly with sometimes dramatic impacts to species and ecosystems. To understand the degree to which sensitive species may be impacted by renewable energy projects, it is informative to know how much space individuals use and how that space may overlap with planned development. We used global positioning system–global system for mobile communications (GPS-GSM) telemetry to measure year-round movements of golden eagles (Aquila chrysaetos) from the Mojave Desert of California, USA. We estimated monthly space use with adaptive local convex hulls to identify the temporal and spatial scales at which eagles may encounter renewable energy projects in the Desert Renewable Energy Conservation Plan area. Mean size of home ranges was lowest and least variable from November through January and greatest in February–March and May–August. These monthly home range patterns coincided with seasonal variation in breeding ecology, habitat associations, and temperature. The expanded home ranges in hot summer months included movements to cooler, prey-dense, mountainous areas characterized by forest, grasslands, and scrublands. Breeding-season home ranges (October–May) included more lowland semi-desert and rock vegetation. Overlap of eagle home ranges and focus areas for renewable energy development was greatest when eagle home ranges were smallest, during the breeding season. Golden eagles in the Mojave Desert used more space and a wider range of habitat types than expected and renewable energy projects could affect a larger section of the regional population than was previously thought.

  1. Biotechnological Applications Derived from Microorganisms of the Atacama Desert

    Directory of Open Access Journals (Sweden)

    Armando Azua-Bustos

    2014-01-01

    Full Text Available The Atacama Desert in Chile is well known for being the driest and oldest desert on Earth. For these same reasons, it is also considered a good analog model of the planet Mars. Only a few decades ago, it was thought that this was a sterile place, but in the past years fascinating adaptations have been reported in the members of the three domains of life: low water availability, high UV radiation, high salinity, and other environmental stresses. However, the biotechnological applications derived from the basic understanding and characterization of these species, with the notable exception of copper bioleaching, are still in its infancy, thus offering an immense potential for future development.

  2. California's disposal plan goes nowhere fast

    International Nuclear Information System (INIS)

    Cohen, J.

    1994-01-01

    California desperately needs a place to store as much as 5.5 million cubic feet of low-level radioactive waste over the next 30 years. Ward Valley, a barren stretch of the Mojave Desert located some 250 miles east of Los Angeles, was supposed to be that place. Last year, trenches dug in the arid, seismically stable valley were supposed to be that place. Last year, trenches dug in the arid, seismically stable valley were supposed to begin holding wastes like the gadolinium-153 used to detect osteoporosis and the selenium-75 used to study proteins, as well as wastes from nuclear power plants. But construction crews haven't even begun to dig, because Ward Valley has become ground zero in the fierce national debate over radioactive waste disposal. Lawsuits filed by opponents, who fear the waste will contaminate the environment, and the intervention of influential politicians such as Sen. Barbara Boxer (D-CA) have blocked the Interior Department from selling the federally owned Ward Valley land to California to begin construction. As a result, universities, biotechnology companies, and hospitals may be stuck with wastes piling up at their institutions, which could have repercussions

  3. Surveys for desert tortoise on the proposed site of a high-level nuclear waste repository at the Nevada Test Site

    International Nuclear Information System (INIS)

    Collins, E.; Sauls, M.L.; O'Farrell, T.P.

    1983-01-01

    The National Waste Terminal Storage Program is a national search for suitable sites to isolate commercial spent nuclear fuel or high-level radioactive waste. The Nevada Nuclear Waste Storage Investigation (NNWSI) managed by the U.S. Department of Energy (DOE), Nevada Operations Office, was initiated to study the suitability of a portion of Yucca Mountain on the DOE's Nevada Test Site (NTS) as a location for such a repository. EG and G was contracted to provide information concerning the ecosystems encountered on the site. A comprehensive literature survey was conducted to evaluate the status and completeness of the existing biological information for the previously undisturbed area. Site specific studies were begun in 1981 when preliminary field surveys confirmed the presence of the desert tortoise (Gopherus agassizi) within the project area FY82 studies were designed to determine the overall distribution and abundance of the tortoise within the area likely to be impacted by NNWSI activities. The Yucca Mountain area of the Nevada Test Site is situated close to the northern range limit of the desert tortoise. Prior to the 1982 surveys, the desert tortoise was reported from only nine locations on NTS. A known population had been under study in Rock Valley about 25 miles southeast of the project area. However, the distribution and population densities of tortoise in the southwest portion of NTS were virtually unknown. Results of our surveys indicate that desert tortoise can be expected, albeit in small numbers, in a wide range of Mojavean and Transitional habitats

  4. Systemic adenovirus infection associated with high mortality in mule deer (Odocoileus hemionus) in California

    NARCIS (Netherlands)

    Horzinek, M.C.; Woods, L.W.; Swift, P.K.; Barr, B.C.; Nordhausen, R.W.; Stillian, M.H.; Patton, J.F.; Oliver, M.N.; Jones, K.R.; Maclachlan, N.J.

    1996-01-01

    Seventeen counties in northern California experienced epizootics of high mortality in the mule deer (Odocoileus hemionus) population during the latter half of 1993. Thirteen deer submitted to the California Veterinary Diagnostic Laboratory System as part of this natural die-off had systemic

  5. Structural and Tectonic Map Along the Pacific-North America Plate Boundary in Northern Gulf of California, Sonora Desert and Valle de Mexicali, Mexico, from Seismic Reflection Evidence

    Science.gov (United States)

    Gonzalez-Escobar, M.; Suarez-Vidal, F.; Mendoza-Borunda, R.; Martin Barajas, A.; Pacheco-Romero, M.; Arregui-Estrada, S.; Gallardo-Mata, C.; Sanchez-Garcia, C.; Chanes-Martinez, J.

    2012-12-01

    Between 1978 and 1983, Petróleos Mexicanos (PEMEX) carried on an intense exploration program in the northern Gulf of California, the Sonora Desert and the southern part of the Mexicali Valley. This program was supported by a seismic reflection field operation. The collected seismic data was 2D, with travel time of 6 s recording, in 48 channels, and the source energy was: dynamite, vibroseis and air guns. Since 2007 to present time, the existing seismic data has been re-processing and ire-interpreting as part of a collaboration project between the PEMEX's Subdirección de Exploración (PEMEX) and CICESE. The study area is located along a large portion of the Pacific-North America plate boundary in the northern Gulf of California and the Southern part of the Salton Trough tectonic province (Mexicali Valley). We present the result of the processes reflection seismic lines. Many of the previous reported known faults were identify along with the first time described located within the study region. We identified regions with different degree of tectonic activity. In structural map it can see the location of many of these known active faults and their associated seismic activity, as well as other structures with no associated seismicity. Where some faults are mist placed they were deleted or relocated based on new information. We included historical seismicity for the region. We present six reflection lines that cross the aftershocks zone of the El Mayor-Cucapah earthquake of April 4, 2010 (Mw7.2). The epicenter of this earthquake and most of the aftershocks are located in a region where pervious to this earthquake no major earthquakes are been reported. A major result of this study is to demonstrate that there are many buried faults that increase the seismic hazard.

  6. Local Extinction and Unintentional Rewilding of Bighorn Sheep (Ovis canadensis) on a Desert Island

    Science.gov (United States)

    Wilder, Benjamin T.; Betancourt, Julio L.; Epps, Clinton W.; Crowhurst, Rachel S.; Mead, Jim I.; Ezcurra, Exequiel

    2014-01-01

    Bighorn sheep (Ovis canadensis) were not known to live on Tiburón Island, the largest island in the Gulf of California and Mexico, prior to the surprisingly successful introduction of 20 individuals as a conservation measure in 1975. Today, a stable island population of ∼500 sheep supports limited big game hunting and restocking of depleted areas on the Mexican mainland. We discovered fossil dung morphologically similar to that of bighorn sheep in a dung mat deposit from Mojet Cave, in the mountains of Tiburón Island. To determine the origin of this cave deposit we compared pellet shape to fecal pellets of other large mammals, and extracted DNA to sequence mitochondrial DNA fragments at the 12S ribosomal RNA and control regions. The fossil dung was 14C-dated to 1476–1632 calendar years before present and was confirmed as bighorn sheep by morphological and ancient DNA (aDNA) analysis. 12S sequences closely or exactly matched known bighorn sheep sequences; control region sequences exactly matched a haplotype described in desert bighorn sheep populations in southwest Arizona and southern California and showed subtle differentiation from the extant Tiburón population. Native desert bighorn sheep previously colonized this land-bridge island, most likely during the Pleistocene, when lower sea levels connected Tiburón to the mainland. They were extirpated sometime in the last ∼1500 years, probably due to inherent dynamics of isolated populations, prolonged drought, and (or) human overkill. The reintroduced population is vulnerable to similar extinction risks. The discovery presented here refutes conventional wisdom that bighorn sheep are not native to Tiburón Island, and establishes its recent introduction as an example of unintentional rewilding, defined here as the introduction of a species without knowledge that it was once native and has since gone locally extinct. PMID:24646515

  7. Local extinction and unintentional rewilding of bighorn sheep (Ovis canadensis on a desert island.

    Directory of Open Access Journals (Sweden)

    Benjamin T Wilder

    Full Text Available Bighorn sheep (Ovis canadensis were not known to live on Tiburón Island, the largest island in the Gulf of California and Mexico, prior to the surprisingly successful introduction of 20 individuals as a conservation measure in 1975. Today, a stable island population of ∼500 sheep supports limited big game hunting and restocking of depleted areas on the Mexican mainland. We discovered fossil dung morphologically similar to that of bighorn sheep in a dung mat deposit from Mojet Cave, in the mountains of Tiburón Island. To determine the origin of this cave deposit we compared pellet shape to fecal pellets of other large mammals, and extracted DNA to sequence mitochondrial DNA fragments at the 12S ribosomal RNA and control regions. The fossil dung was 14C-dated to 1476-1632 calendar years before present and was confirmed as bighorn sheep by morphological and ancient DNA (aDNA analysis. 12S sequences closely or exactly matched known bighorn sheep sequences; control region sequences exactly matched a haplotype described in desert bighorn sheep populations in southwest Arizona and southern California and showed subtle differentiation from the extant Tiburón population. Native desert bighorn sheep previously colonized this land-bridge island, most likely during the Pleistocene, when lower sea levels connected Tiburón to the mainland. They were extirpated sometime in the last ∼1500 years, probably due to inherent dynamics of isolated populations, prolonged drought, and (or human overkill. The reintroduced population is vulnerable to similar extinction risks. The discovery presented here refutes conventional wisdom that bighorn sheep are not native to Tiburón Island, and establishes its recent introduction as an example of unintentional rewilding, defined here as the introduction of a species without knowledge that it was once native and has since gone locally extinct.

  8. Local extinction and unintentional rewilding of bighorn sheep (Ovis canadensis) on a desert island

    Science.gov (United States)

    Wilder, Benjamin T.; Betancourt, Julio L.; Epps, Clinton W.; Crowhurst, Rachel S.; Mead, Jim I.; Ezcurra, Exequiel

    2014-01-01

    Bighorn sheep (Ovis canadensis) were not known to live on Tiburón Island, the largest island in the Gulf of California and Mexico, prior to the surprisingly successful introduction of 20 individuals as a conservation measure in 1975. Today, a stable island population of ~500 sheep supports limited big game hunting and restocking of depleted areas on the Mexican mainland. We discovered fossil dung morphologically similar to that of bighorn sheep in a dung mat deposit from Mojet Cave, in the mountains of Tiburón Island. To determine the origin of this cave deposit we compared pellet shape to fecal pellets of other large mammals, and extracted DNA to sequence mitochondrial DNA fragments at the 12S ribosomal RNA and control regions. The fossil dung was 14C-dated to 1476–1632 calendar years before present and was confirmed as bighorn sheep by morphological and ancient DNA (aDNA) analysis. 12S sequences closely or exactly matched known bighorn sheep sequences; control region sequences exactly matched a haplotype described in desert bighorn sheep populations in southwest Arizona and southern California and showed subtle differentiation from the extant Tiburón population. Native desert bighorn sheep previously colonized this land-bridge island, most likely during the Pleistocene, when lower sea levels connected Tiburón to the mainland. They were extirpated sometime in the last ~1500 years, probably due to inherent dynamics of isolated populations, prolonged drought, and (or) human overkill. The reintroduced population is vulnerable to similar extinction risks. The discovery presented here refutes conventional wisdom that bighorn sheep are not native to Tiburón Island, and establishes its recent introduction as an example of unintentional rewilding, defined here as the introduction of a species without knowledge that it was once native and has since gone locally extinct.

  9. Resource pulses in desert river habitats: productivity-biodiversity hotspots, or mirages?

    Science.gov (United States)

    Free, Carissa L; Baxter, Greg S; Dickman, Christopher R; Leung, Luke K P

    2013-01-01

    Resource pulses in the world's hot deserts are driven largely by rainfall and are highly variable in both time and space. However, run-on areas and drainage lines in arid regions receive more water more often than adjacent habitats, and frequently sustain relatively high levels of primary productivity. These landscape features therefore may support higher biotic diversity than other habitats, and potentially act as refuges for desert vertebrates and other biota during droughts. We used the ephemeral Field River in the Simpson Desert, central Australia, as a case study to quantify how resources and habitat characteristics vary spatially and temporally along the riparian corridor. Levels of moisture and nutrients were greater in the clay-dominated soils of the riverine corridor than in the surrounding sand dunes, as were cover values of trees, annual grasses, other annual plants and litter; these resources and habitat features were also greater near the main catchment area than in the distal reaches where the river channel runs out into extensive dune fields. These observations confirm that the riverine corridor is more productive than the surrounding desert, and support the idea that it may act as a refuge or as a channel for the ingress of peri-desert species. However, the work also demonstrates that species diversity of invertebrates and plants is not higher within the river corridor; rather, it is driven by rainfall and the accompanying increase in annual plants following a rain event. Further research is required to identify the biota that depend upon these resource pulses.

  10. Resource Pulses in Desert River Habitats: Productivity-Biodiversity Hotspots, or Mirages?

    Science.gov (United States)

    Free, Carissa L.; Baxter, Greg S.; Dickman, Christopher R.; Leung, Luke K. P.

    2013-01-01

    Resource pulses in the world's hot deserts are driven largely by rainfall and are highly variable in both time and space. However, run-on areas and drainage lines in arid regions receive more water more often than adjacent habitats, and frequently sustain relatively high levels of primary productivity. These landscape features therefore may support higher biotic diversity than other habitats, and potentially act as refuges for desert vertebrates and other biota during droughts. We used the ephemeral Field River in the Simpson Desert, central Australia, as a case study to quantify how resources and habitat characteristics vary spatially and temporally along the riparian corridor. Levels of moisture and nutrients were greater in the clay-dominated soils of the riverine corridor than in the surrounding sand dunes, as were cover values of trees, annual grasses, other annual plants and litter; these resources and habitat features were also greater near the main catchment area than in the distal reaches where the river channel runs out into extensive dune fields. These observations confirm that the riverine corridor is more productive than the surrounding desert, and support the idea that it may act as a refuge or as a channel for the ingress of peri-desert species. However, the work also demonstrates that species diversity of invertebrates and plants is not higher within the river corridor; rather, it is driven by rainfall and the accompanying increase in annual plants following a rain event. Further research is required to identify the biota that depend upon these resource pulses. PMID:24124446

  11. [Spatial change of the grain-size of aeolian sediments in Qira oasis-desert ecotone, Northwest China].

    Science.gov (United States)

    Lin, Yong Chong; Xu, Li Shuai

    2017-04-18

    In order to understand the environmental influence of oasis-desert ecotone to oasis ecological system, we comparatively analyzed the grain size characteristics of various aeolian sediments, including the sediments in oasis-desert ecotone, shelterbelt and the inside oasis and in Qira River valley. The results showed that the grain size characteristics (including grain-size distribution curve, grain size parameters, and content of different size classes) of sediments in the oasis-desert ecotone were consistent along the prevailing wind direction with a grain-size range of 0.3-200 μm and modal size of 67 μm. All of the sediments were good sorting and mainly composed of suspension components and saltation components, but not denatured saltation and creeping components (>200 μm). They were typically aeolian deposits being short-range transported. The grain sizes of sediments in oasis-desert ecotone were smaller than that in the material sources of Qira River valley and desert (0.3-800 μm), but very similar to those of the modern aeolian deposits in oasis-desert ecotone, shelterbelt and the inside oasis. The denatured saltation and creep components (>200 μm) were suppressed to transport into oasis-desert ecotone because of the high vegetation cover in oasis-desert ecotone. Therefore, like the shelterbelts, the oasis-desert ecotone could also block the invasion of desert. They safeguarded the oasis ecological environment together.

  12. Climatic variation and tortoise survival: has a desert species met its match?

    Science.gov (United States)

    Lovich, Jeffrey E.; Yackulic, Charles B.; Freilich, Jerry; Agha, Mickey; Austin, Meaghan; Meyer, Katherine P.; Arundel, Terence R.; Hansen, Jered; Vamstad, Michael S.; Root, Stephanie A.

    2014-01-01

    While demographic changes in short-lived species may be observed relatively quickly in response to climate changes, measuring population responses of long-lived species requires long-term studies that are not always available. We analyzed data from a population of threatened Agassiz’s desert tortoises (Gopherus agassizii) at a 2.59 km2 study plot in the Sonoran Desert ecosystem of Joshua Tree National Park, California, USA from 1978 to 2012 to examine variation in apparent survival and demography in this long-lived species. Transect-based, mark-recapture surveys were conducted in 10 of those years to locate living and dead tortoises. Previous modeling suggested that this area would become unsuitable as tortoise habitat under a warming and drying climate scenario. Estimated adult population size declined greatly from 1996 to 2012. The population appeared to have high apparent survival from 1978 to 1996 but apparent survival decreased from 1997 to 2002, concurrent with persistent drought. The best model relating apparent survivorship of tortoises ≥18 cm over time was based on a three year moving average of estimated winter precipitation. The postures and positions of a majority of dead tortoises found in 2012 were consistent with death by dehydration and starvation. Some live and many dead tortoises found in 2012 showed signs of predation or scavenging by mammalian carnivores. Coyote (Canis latrans) scats and other evidence from the site confirmed their role as tortoise predators and scavengers. Predation rates may be exacerbated by drought if carnivores switch from preferred mammalian prey to tortoises during dry years. Climate modeling suggests that the region will be subjected to even longer duration droughts in the future and that the plot may become unsuitable for continued tortoise survival. Our results showing wide fluctuations in apparent survival and decreasing tortoise density over time may be early signals of that possible outcome.

  13. Distance to human populations influences epidemiology of respiratory disease in desert tortoises

    Science.gov (United States)

    Berry, Kristin H.; Ashley A. Coble (formerly Emerson), no longer USGS; Yee, Julie L.; Mack, Jeremy S.; Perry, William M.; Anderson, Kemp M.; Brown, Mary B.

    2014-01-01

    We explored variables likely to affect health of Agassiz's desert tortoises (Gopherus agassizii) in a 1,183-km2 study area in the central Mojave Desert of California between 2005 and 2008. We evaluated 1,004 tortoises for prevalence and spatial distribution of 2 pathogens, Mycoplasma agassizii and M. testudineum, that cause upper respiratory tract disease. We defined tortoises as test-positive if they were positive by culture and/or DNA identification or positive or suspect for specific antibody for either of the two pathogens. We used covariates of habitat (vegetation, elevation, slope, and aspect), tortoise size and sex, distance from another test-positive tortoise, and anthropogenic variables (distances to roads, agricultural areas, playas, urban areas, and centroids of human-populated census blocks). We used both logistic regression models and regression trees to evaluate the 2 species of Mycoplasma separately. The prevalence of test-positive tortoises was low: 1.49% (15/1,004) for M. agassizii and 2.89% (29/1,004) for M. testudineum. The spatial distributions of test-positive tortoises for the 2 Mycoplasma species showed little overlap; only 2 tortoises were test-positive for both diseases. However, the spatial distributions did not differ statistically between the 2 species. We consistently found higher prevalence of test-positive tortoises with shorter distances to centroids of human-populated census blocks. The relationship between distance to human-populated census blocks and tortoises that are test-positive for M. agassizii and potentially M. testudineum may be related to release or escape of captive tortoises because the prevalence of M. agassizii in captive tortoises is high. Our findings have application to other species of chelonians where both domestic captive and wild populations exist. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  14. Late Quaternary history of the Atacama Desert

    Science.gov (United States)

    Latorre, Claudio; Betancourt, Julio L.; Rech, Jason A.; Quade, Jay; Holmgren, Camille; Placzek, Christa; Maldonado, Antonio; Vuille, Mathias; Rylander, Kate A.; Smith, Mike; Hesse, Paul

    2005-01-01

    Of the major subtropical deserts found in the Southern Hemisphere, the Atacama Desert is the driest. Throughout the Quaternary, the most pervasive climatic influence on the desert has been millennial-scale changes in the frequency and seasonality of the scant rainfall, and associated shifts in plant and animal distributions with elevation along the eastern margin of the desert. Over the past six years, we have mapped modern vegetation gradients and developed a number of palaeoenvironmental records, including vegetation histories from fossil rodent middens, groundwater levels from wetland (spring) deposits, and lake levels from shoreline evidence, along a 1200-kilometre transect (16–26°S) in the Atacama Desert. A strength of this palaeoclimate transect has been the ability to apply the same methodologies across broad elevational, latitudinal, climatic, vegetation and hydrological gradients. We are using this transect to reconstruct the histories of key components of the South American tropical (summer) and extratropical (winter) rainfall belts, precisely at those elevations where average annual rainfall wanes to zero. The focus has been on the transition from sparse, shrubby vegetation (known as the prepuna) into absolute desert, an expansive hyperarid terrain that extends from just above the coastal fog zone (approximately 800 metres) to more than 3500 metres in the most arid sectors in the southern Atacama.

  15. Wildfires alter rodent community structure across four vegetation types in southern California, USA

    Science.gov (United States)

    Brehme, Cheryl S.; Clark, Denise R.; Rochester, Carlton J.; Fisher, Robert N.

    2011-01-01

    We surveyed burned and unburned plots across four habitat reserves in San Diego County, California, USA, in 2005 and 2006, to assess the effects of the 2003 wildfires on the community structure and relative abundance of rodent species. The reserves each contained multiple vegetation types (coastal sage scrub, chaparral, woodland, and grassland) and spanned from 250 m to 1078 m in elevation. Multivariate analyses revealed a more simplified rodent community structure in all burned habitats in comparison to unburned habitats. Reduction in shrub and tree cover was highly predictive of changes in post-fire rodent community structure in the burned coastal sage scrub and chaparral habitats. Reduction in cover was not predictive for the less substantially burned woodlands and grasslands, for which we hypothesized that interspecific competition played a greater role in post-fire community structure. Across vegetation types, generalists and open habitat specialists typically increased in relative abundance, whereas closed habitat specialists decreased. We documented significant increases in relative abundance of the deer mouse (Peromyscus maniculatus Wagner) and Dulzura kangaroo rat (Dipodomys simulans Merriam). In contrast, we found significant decreases in relative abundance for the California mouse (Peromyscus californicus Gambel), San Diego pocket mouse (Chaetodipus fallax Merriam), desert woodrat (Neotoma lepida Thomas), and brush mouse (Peromyscus boylii Baird). Currently, our research program involves assessment of whether habitat conservation plans (HCPs) in southern California provide long-term protection to HCP covered species, as well as preserve ecosystem function. The scenario of increased wildfires needs to be incorporated into this assessment. We discuss our results in relation to management and conservation planning under a future scenario of larger and more frequent wildfires in southern California.

  16. Butterflies of the high altitude Atacama Desert: habitat use and conservation

    Directory of Open Access Journals (Sweden)

    Emma eDespland

    2014-09-01

    Full Text Available The butterfly fauna of the high-altitude desert of Northern Chile, though depauperate, shows high endemism, is poorly known and is of considerable conservation concern. This study surveys butterflies along the Andean slope between 2400 and 500 m asl (prepuna, puna and Andean steppe habitats as well as in high and low altitude wetlands and in the neoriparian vegetation of agricultural sites. We also include historical sightings from museum records. We compare abundances between altitudes, between natural and impacted sites, as well as between two sampling years with different precipitation regimes. The results confirm high altitudinal turnover and show greatest similarity between wetland and slope faunas at similar altitudes. Results also underscore vulnerability to weather fluctuations, particularly in the more arid low-altitude sites, where abundances were much lower in the low precipitation sampling season and several species were not observed at all. Finally, we show that some species have shifted to the neoriparian vegetation of the agricultural landscape, whereas others were only observed in less impacted habitats dominated by native plants. These results suggest that acclimation to novel habitats depends on larval host plant use. The traditional agricultural environment can provide habitat for many, but not all, native butterfly species, but an estimation of the value of these habitats requires better understanding of butterfly life-history strategies and relationships with host plants.

  17. Nationwide desert highway assessment: a case study in China.

    Science.gov (United States)

    Mao, Xuesong; Wang, Fuchun; Wang, Binggang

    2011-07-01

    The natural environment affects the construction of desert highways. Conversely, highway construction affects the natural environment and puts the ecological environment at a disadvantage. To satisfy the variety and hierarchy of desert highway construction and discover the spatio-temporal distribution of the natural environment and its effect on highway construction engineering, an assessment of the natural regional divisions of desert highways in China is carried out for the first time. Based on the general principles and method for the natural region division, the principles, method and index system for desert highway assessment is put forward by combining the desert highway construction features and the azonal differentiation law. The index system combines the dominant indicator and four auxiliary indicators. The dominant indicator is defined by the desert's comprehensive state index and the auxiliary indicators include the sand dune height, the blown sand strength, the vegetation coverage ratio and the annual average temperature difference. First the region is divided according to the dominant indicator. Then the region boundaries are amended according to the four auxiliary indicators. Finally the natural region division map for desert highway assessment is presented. The Chinese desert highways can be divided into three sections: the east medium effect region, the middle medium-severe effect region, and the west slight-medium effect region. The natural region division map effectively paves the way for the route planning, design, construction, maintenance and ongoing management of desert highways, and further helps environmental protection.

  18. Hydrogeologic data and water-quality data from a thick unsaturated zone at a proposed wastewater-treatment facility site, Yucca Valley, San Bernardino County, California, 2008-11

    Science.gov (United States)

    O'Leary, David; Clark, Dennis A.; Izbicki, John A.

    2015-01-01

    The Hi-Desert Water District, in the community of Yucca Valley, California, is considering constructing a wastewater-treatment facility and using the reclaimed water to recharge the aquifer system through surface spreading. The Hi-Desert Water District is concerned with possible effects of this recharge on water quality in the underlying groundwater system; therefore, an unsaturated-zone monitoring site was constructed by the U.S. Geological Survey (USGS) to characterize the unsaturated zone, monitor a pilot-scale recharge test, and, ultimately, to monitor the flow of reclaimed water to the water table once the treatment facility is constructed.

  19. Neotectonics of the southern Amargosa Desert, Nye County, Nevada and Inyo County, California

    International Nuclear Information System (INIS)

    Donovan, D.E.

    1991-05-01

    A complex pattern of active faults occurs in the southern Amargosa Desert, southern Nye, County, Nevada. These faults can be grouped into three main fault systems: (1) a NE-striking zone of faults that forms the southwest extension of the left-lateral Rock Valley fault zone, in the much larger Spotted Range-Mine Mountain structural zone, (2) a N-striking fault zone coinciding with a NNW-trending alignment of springs that is either a northward continuation of a fault along the west side of the Resting Spring Range or a N-striking branch fault of the Pahrump fault system, and (3) a NW-striking fault zone which is parallel to the Pahrump fault system, but is offset approximately 5 km with a left step in southern Ash Meadows. These three fault zones suggest extension is occurring in an E-W direction, which is compatible with the ∼N10W structural grain prevalent in the Death Valley extensional region to the west

  20. Hydrogeochemical and stream-sediment survey (NURE). Preliminary report on the Smoke Creek Desert Basin pilot study (Nevada)

    International Nuclear Information System (INIS)

    1976-01-01

    The Lawrence Livermore Laboratory (LLL) is conducting a hydrogeochemical and stream-sediment survey in the seven western states as part of ERDA's National Uranium Resources Evaluation (NURE) Program. The objective of this survey is to develop a geochemical data base for use by the private sector to locate regions of anomalous uranium content. Prior to wide area coverage, several pilot studies are being undertaken to develop and evaluate sampling and analytical techniques. The second through fifth of these studies were conducted in four playa basins in Nevada, selected to represent different regional geology and uranium occurrence. This study in the Smoke Creek Desert Basin, characterizes igneous surface geology with known uranium occurrences. The Smoke Creek Desert Basin is the largest of the four playa basins and contains an areaof about 2700 square kilometers (1003 square miles). The basin is bordered on the east by the Fox Hills and on the north and east by the Granite Ranges which are characterized by granite, pegmatites, and Tertiary rocks very similar to the lithology of the Winnemucca Basin boundary ranges (study UCID-16911-P-2). On the west the Desert is bordered by an area of extensive basalt flow. There is no known uranium occurrence in the area, and metallization of any kind is scarce. This study is applicable to the western igneous portion of the Basin and Range Province which includes southeastern Oregon, western Nevada, and southeastern California. This report contains only analytical data and sample locations

  1. Monitoring of desert dune topography by multi angle sensors

    Science.gov (United States)

    Yun, J.; Kim, J.; Choi, Y.; Yun, H.

    2011-12-01

    examined and showed a correlation between the intensities sand dune activities and the surface wind conditions. In conclusion, we proved that the trace of the sandy desert boundaries for long observation period is feasible with the multi angle orbital sensor observation by investigating the expanded NDAIs from various sample sand dune fields. However, it is quite uncertain whether the consistency of MISR NDAIs over sandy deserts originated from the aeolian micro structures, the reflectance of sand or the aspect angle of dune morphology. Therefore, in the next stage, the local roughness properties extracted from MISR data analysis will be compared with the topographic information from high resolution stereo satellite imagery such as ALOS PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping). Consequently it will correctly evaluate the suitability of multi angle observation parameters as a dune activity indicator.

  2. Remote Sensing Field Guide - Desert

    Science.gov (United States)

    1991-09-01

    experienced boatmen. Most river water, even in deserts, contains Giardia micro -organisms that can cause serious diarrhea. Sich water should be boiled...water. The solutes and suspended micro -matter can be moved up and down by an oscillating water table and redeposited or precipitated at differ- ent...McCauley, U.S. Geological Survey, Desert Studies Group, Flagstaff, AZ, Nov 1973. B. Servicio Aerofotografia Nacional del Peru (on back). / ...... CONN:MFI

  3. Plant responses to an edaphic gradient across an active sand dune/desert boundary in the great basin desert.

    NARCIS (Netherlands)

    Rosenthal, D.M.; Ludwig, F.; Donovan, L.A.

    2005-01-01

    In arid ecosystems, variation in precipitation causes broad-scale spatial heterogeneity in soil moisture, but differences in soil texture, development, and plant cover can also create substantial local soil moisture heterogeneity. The boundary between inland desert sand dunes and adjacent desert

  4. Baseline studies in the desert ecosystem at East Mesa Geothermal Test Site, Imperial Valley, California

    Energy Technology Data Exchange (ETDEWEB)

    Romney, E.M.; Wallace, A.; Lunt, O.R.; Ackerman, T.A.; Kinnear, J.E.

    1977-09-01

    Baseline data reported herein for soil, vegetation, and small mammal components of the East Mesa desert ecosystem represent a collection period from October 1975 to September 1977. Inasmuch as changes in salt balance from geothermal brine sources are of potential impact upon the ecosystem, considerable analytical effort was given to the determination of element constituents in soil, plant, and animal samples. A preliminary synthesis of data was done to investigate the heterogeneity of element constituents among the sampled population and to summarize results. Findings indicate that periodic sampling and chemical analysis of vegetation around an industrialized geothermal energy source is probably the best way to monitor the surrounding ecosystem for assuring containment of any resource pollutants.

  5. Evolutionary hotspots in the Mojave Desert

    Science.gov (United States)

    Vandergast, Amy G.; Inman, Richard D.; Barr, Kelly R.; Nussear, Kenneth E.; Esque, Todd C.; Hathaway, Stacie A.; Wood, Dustin A.; Medica, Philip A.; Breinholt, Jesse W.; Stephen, Catherine L.; Gottscho, Andrew D.; Marks, Sharyn B.; Jennings, W. Bryan; Fisher, Robert N.

    2013-01-01

    Genetic diversity within species provides the raw material for adaptation and evolution. Just as regions of high species diversity are conservation targets, identifying regions containing high genetic diversity and divergence within and among populations may be important to protect future evolutionary potential. When multiple co-distributed species show spatial overlap in high genetic diversity and divergence, these regions can be considered evolutionary hotspots. We mapped spatial population genetic structure for 17 animal species across the Mojave Desert, USA. We analyzed these in concurrence and located 10 regions of high genetic diversity, divergence or both among species. These were mainly concentrated along the western and southern boundaries where ecotones between mountain, grassland and desert habitat are prevalent, and along the Colorado River. We evaluated the extent to which these hotspots overlapped protected lands and utility-scale renewable energy development projects of the Bureau of Land Management. While 30–40% of the total hotspot area was categorized as protected, between 3–7% overlapped with proposed renewable energy project footprints, and up to 17% overlapped with project footprints combined with transmission corridors. Overlap of evolutionary hotspots with renewable energy development mainly occurred in 6 of the 10 identified hotspots. Resulting GIS-based maps can be incorporated into ongoing landscape planning efforts and highlight specific regions where further investigation of impacts to population persistence and genetic connectivity may be warranted.

  6. Silviculture-ecology of three native California hardwoods on high sites in north central California

    Science.gov (United States)

    Philip M. McDonald

    1978-01-01

    Pacific madrone, tanoak, and California black oak are the most economically promising native California hardwoods. Volume and value data indicate upward trends in growing stock levels and prices received for their products. These trends are likely to continue. They suggest research is particularly needed for: (1) seed fall and regeneration, (2) sprout growth and...

  7. Implementing California's School Funding Formula: Will High-Need Students Benefit? Technical Appendix

    Science.gov (United States)

    Hill, Laura; Ugo, Iwunze

    2015-01-01

    Intended to accompany "Implementing California's School Funding Formula: Will High-Need Students Benefit?," this appendix examines the extent to which school shares of high-need students vary relative to their district concentrations by grouping approximately 950 school districts by their share of high-need students, arraying them into…

  8. Preliminary Surficial Geology of the Dove Spring Off-Highway Vehicle Open Area, Mojave Desert, California

    Science.gov (United States)

    Miller, David M.; Amoroso, Lee

    2007-01-01

    Introduction As part of a U.S. Geological Survey (USGS) monitoring plan to evaluate the environmental impact of off-highway vehicle (OHV) use on Bureau of Land Management (BLM) land in California, this report presents results of geologic studies in the Dove Spring OHV Open Area. This study produced baseline data, which when combined with historic and current patterns of land use, forms the basis for vegetation and wildlife monitoring designed to address the following questions: 1. Is the density and length of OHV routes increasing? 2. Are there cumulative effects of past and current OHV use associated with changes in the environmental integrity of soils, plants, and wildlife? 3. Is the spread of invasive species associated with levels of OHV use? 4. Is there a threshold of OHV impact that might be translated to management action by the BLM? The monitoring studies will be used to collect baseline environmental information to determine levels of environmental impact of OHV use. This approach will use a low-impact area as a proxy for pre-impact conditions (substituting space for time) to determine thresholds of OHV impacts beyond which environmental integrity is affected. Indicators of environmental integrity will emphasize factors that are fundamental to ecosystem structure and function and likely to be sensitive to OHV impacts. Surficial geology is studied because material properties such as texture and chemistry strongly control soil moisture and nutrient availability and therefore affect plant growth and distribution. An understanding of surficial geology can be used to predict and extrapolate soil properties and improve understanding of vegetation assemblages and their distribution. In the present study, vegetation associations may be examined as a function of surficial geology as well as other environmental variables such as slope, aspect, NRCS (National Resources Conservation Service) soil classification, elevation, and land-use history. Ground measurements of

  9. The impact of desert solar power utilization on sustainable development

    International Nuclear Information System (INIS)

    Sadiq Ali Shah; Yang Zhang

    2011-01-01

    This paper evaluates the prospects of developing a solar based desert economy in the deserts of solar-rich countries. The potential deserts are analysed to study their positive impact on the sustainable development processes in these regions. The sustainability of the processes is established on the basis of self-contained nature of energy generation, environmental emission reduction and desert land reclamation. (authors)

  10. The Riparianness of a Desert Herpetofauna

    Science.gov (United States)

    Charles H. Lowe

    1989-01-01

    Within the Mojave, Sonoran, and Chihuahuan Desert subdivisions of the North American Desert in the U.S., more than half of 143 total amphibian and reptilian species perform as riparian and/or wetland taxa. For the reptiles, but not the amphibians, there is a significant inverse relationship between riparianness (obligate through preferential and facultative to...

  11. Water relations and photosynthesis in the cryptoendolithic microbial habitat of hot and cold deserts

    Science.gov (United States)

    Palmer, R. J. Jr; Friedmann, E. I.

    1990-01-01

    Two cryptoendolithic microbial communities, lichens in the Ross Desert of Antarctica and cyanobacteria in the Negev Desert, inhabit porous sandstone rocks of similar physical structure. Both rock types adsorb water vapor by physical mechanisms unrelated to biological processes. Yet the two microbial communities respond differently to water stress: cryptoendolithic lichens begin to photosynthesize at a matric water potential of -46.4 megaPascals (MPa) [70% relative humidity (RH) at 8 degrees C], resembling thallose desert lichens. Cryptoendolithic cyanobacteria, like other prokaryotes, photosynthesize only at very high matric water potentials [> -6.9 MPa, 90% RH at 20 degrees C].

  12. Microbial ecology of hot desert edaphic systems.

    Science.gov (United States)

    Makhalanyane, Thulani P; Valverde, Angel; Gunnigle, Eoin; Frossard, Aline; Ramond, Jean-Baptiste; Cowan, Don A

    2015-03-01

    A significant proportion of the Earth's surface is desert or in the process of desertification. The extreme environmental conditions that characterize these areas result in a surface that is essentially barren, with a limited range of higher plants and animals. Microbial communities are probably the dominant drivers of these systems, mediating key ecosystem processes. In this review, we examine the microbial communities of hot desert terrestrial biotopes (including soils, cryptic and refuge niches and plant-root-associated microbes) and the processes that govern their assembly. We also assess the possible effects of global climate change on hot desert microbial communities and the resulting feedback mechanisms. We conclude by discussing current gaps in our understanding of the microbiology of hot deserts and suggest fruitful avenues for future research. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Case Study of Leadership Practices and School-Community Interrelationships in High-Performing, High-Poverty, Rural California High Schools

    Science.gov (United States)

    Masumoto, Marcia; Brown-Welty, Sharon

    2009-01-01

    Many rural California high schools are impacted by the disadvantages of poverty, non-English speaking students, limited resources, changing demographics, and challenges of the rural context. Focusing on contemporary leadership theories and school-community interrelationships, this qualitative study examines the practices of educational leaders in…

  14. California Workforce: California Faces a Skills Gap

    Science.gov (United States)

    Public Policy Institute of California, 2011

    2011-01-01

    California's education system is not keeping up with the changing demands of the state's economy--soon, California will face a shortage of skilled workers. Projections to 2025 suggest that the economy will continue to need more and more highly educated workers, but that the state will not be able to meet that demand. If current trends persist,…

  15. Loess deposits since early Pleistocene in northeast China and implications for desert evolution in east China

    Science.gov (United States)

    Sun, Miao; Zhang, Xujiao; Tian, Mingzhong; Liu, Ru; He, Zexin; Qi, Lin; Qiao, Yansong

    2018-04-01

    Loess deposits and deserts are regarded as coupled geological systems and loess deposits on the periphery of deserts can often be used to reconstruct desert evolution. Previous studies of desert evolution in Asia are mainly concentrated in northwest China and the China Loess Plateau, and little is known about long-term desert evolution in east China. In this study, we selected the Sishijiazi loess section in the Chifeng area in northeast China to study the long-term evolution of the desert in east China. A high-resolution magnetostratigraphy combined with optically stimulated luminescence dating indicated that the age of the section base is approximately 1.02 Ma. The Brunhes-Matuyama boundary is at the depth of 39.8 m in loess unit L8, and the upper boundary of the Jaramillo Subchron is at the depth of 60.8 m in paleosol S10. The results of grain-size analysis indicate a coarsening grain-size trend in the past 1.0 Ma. In addition, based on grain-size variations, the desert evolution in east China since ∼1.0 Ma can be divided into three stages: stability from 1.0 to 0.8 Ma, desert recession from 0.8 to 0.5 Ma, and gradual expansion since 0.5 Ma. Our results further indicate that the evolution of desert in east China was mainly controlled by changes in global ice volume, and that the uplift of the Tibetan Plateau may have had an additional effect.

  16. Carbon isotopic composition of legumes with photosynthetic stems from Mediterranean and desert habitats

    International Nuclear Information System (INIS)

    Nilsen, E.T.; Sharifi, M.R.

    1997-01-01

    The carbon isotopic compositions of leaves and stems of woody legumes growing in coastal mediterranean and inland desert sites in California were compared. The overall goal was to determine what factors were most associated with the carbon isotope composition of photosynthetic stems in these habitats. The carbon isotope signature (delta 13C) of photosynthetic stems was less negative than that of leaves on the same plants by an average of 1.51 +/- 0.42 per thousand. The delta 13C of bark (cortical chlorenchyma and epidermis) was more negative than that of wood (vascular tissue and pith) from the same plant for all species studied on all dates. Desert woody legumes had a higher delta 13C (less negative) and a lower intercellular CO2 concentration (Ci) (for both photosynthetic tissues) than that of woody legumes from mediterranean climate sites. Differences in the delta 13C of stems among sites could be entirely accounted for by differences among site air temperatures. Thus, the delta 13C composition of stems did not indicate a difference in whole-plant integrated water use efficiency (WUE) among sites. In contrast, stems on all plants had a lower stem Ci and a higher delta 13C than leaves on the same plant, indicating that photosynthetic stems improve long-term, whole-plant water use efficiency in a diversity of species

  17. [Analysis of spectral features based on water content of desert vegetation].

    Science.gov (United States)

    Zhao, Zhao; Li, Xia; Yin, Ye-biao; Tang, Jin; Zhou, Sheng-bin

    2010-09-01

    By using HR-768 field-portable spectroradiometer made by the Spectra Vista Corporation (SVC) of America, the hyper-spectral data of nine types of desert plants were measured, and the water content of corresponding vegetation was determined by roasting in lab. The continuum of measured hyperspectral data was removed by using ENVI, and the relationship between the water content of vegetation and the reflectance spectrum was analyzed by using correlation coefficient method. The result shows that the correlation between the bands from 978 to 1030 nm and water content of vegetation is weak while it is better for the bands from 1133 to 1266 nm. The bands from 1374 to 1534 nm are the characteristic bands because of the correlation between them and water content is the best. By using cluster analysis and according to the water content, the vegetation could be marked off into three grades: high (>70%), medium (50%-70%) and low (<50%). The research reveals the relationship between water content of desert vegetation and hyperspectral data, and provides basis for the analysis of area in desert and the monitoring of desert vegetation by using remote sensing data.

  18. Enhancing and restoring habitat for the desert tortoise

    Science.gov (United States)

    Abella, Scott R.; Berry, Kristin H.

    2016-01-01

    Habitat has changed unfavorably during the past 150 y for the desert tortoise Gopherus agassizii, a federally threatened species with declining populations in the Mojave Desert and western Sonoran Desert. To support recovery efforts, we synthesized published information on relationships of desert tortoises with three habitat features (cover sites, forage, and soil) and candidate management practices for improving these features for tortoises. In addition to their role in soil health and facilitating recruitment of annual forage plants, shrubs are used by desert tortoises for cover and as sites for burrows. Outplanting greenhouse-grown seedlings, protected from herbivory, has successfully restored (>50% survival) a variety of shrubs on disturbed desert soils. Additionally, salvaging and reapplying topsoil using effective techniques is among the more ecologically beneficial ways to initiate plant recovery after severe disturbance. Through differences in biochemical composition and digestibility, some plant species provide better-quality forage than others. Desert tortoises selectively forage on particular annual and herbaceous perennial species (e.g., legumes), and forage selection shifts during the year as different plants grow or mature. Nonnative grasses provide low-quality forage and contribute fuel to spreading wildfires, which damage or kill shrubs that tortoises use for cover. Maintaining a diverse “menu” of native annual forbs and decreasing nonnative grasses are priorities for restoring most desert tortoise habitats. Reducing herbivory by nonnative animals, carefully timing herbicide applications, and strategically augmenting annual forage plants via seeding show promise for improving tortoise forage quality. Roads, another disturbance, negatively affect habitat in numerous ways (e.g., compacting soil, altering hydrology). Techniques such as recontouring road berms to reestablish drainage patterns, vertical mulching (“planting” dead plant material

  19. [Risk factors for students desertion from the UASLP School of Medicine, México].

    Science.gov (United States)

    Hernández-Mata, José María; Hernández-Castro, Rodrigo; Nieto-Caraveo, Amado; Hernández-Sierra, Juan Francisco

    2005-01-01

    To obtain the profile of students that deserted from the Faculty of Medicine of the Autonomous University of San Luis Potosi, México. Cases and controls nested in a cohort. All students that voluntarily deserted between 1992 and 2002 were consulted. Each student was compared in an aleatory form with a regular student and a proper questionnaire was applied. The significantly associated factors to abandon the Faculty of Medicine were: high school of origin (OR=2.43), extra-ordinary exam (OR=3.13), and lack of vocation (OR=2.41). The subjacent factors for not deserting from the Faculty of Medicine were: study habits, capacity for sustained effort, and tolerance to frustration.

  20. Disturbance to desert soil ecosystems contributes to dust-mediated impacts at regional scales

    Science.gov (United States)

    Pointing, Stephen B.; Belnap, Jayne

    2014-01-01

    This review considers the regional scale of impacts arising from disturbance to desert soil ecosystems. Deserts occupy over one-third of the Earth’s terrestrial surface, and biological soil covers are critical to stabilization of desert soils. Disturbance to these can contribute to massive destabilization and mobilization of dust. This results in dust storms that are transported across inter-continental distances where they have profound negative impacts. Dust deposition at high altitudes causes radiative forcing of snowpack that leads directly to altered hydrological regimes and changes to freshwater biogeochemistry. In marine environments dust deposition impacts phytoplankton diazotrophy, and causes coral reef senescence. Increasingly dust is also recognized as a threat to human health.

  1. Chemical constituents of Cenchrus ciliaris L. from the Cholistan desert, Pakistan

    OpenAIRE

    Ashraf Muhammad Aqeel; Mahmood Karamat; Yusoff Ismail; Qureshi Ahmad Kaleem

    2013-01-01

    The Cholistan Desert is an extension of the Great Indian Desert, covering an area of 26,330 km2. The desert can be divided into two main geomorphic regions: the northern region, known as Lesser Cholistan, constituting the desert margin and consisting of a series of saline alluvial flats alternating with low sand ridges/dunes; and the southern region, known as Greater Cholistan, a wind-resorted sandy desert comprised of a number of old Hakra River terraces w...

  2. Ground-water quality and geochemistry, Carson Desert, western Nevada

    Science.gov (United States)

    Lico, Michael S.; Seiler, R.L.

    1994-01-01

    Aquifers in the Carson Desert are the primary source of drinking water, which is highly variable in chemical composition. In the shallow basin-fill aquifers, water chemistyr varies from a dilute calcium bicarbonate-dominated water beneath the irrigated areas to a saline sodium chloride- dominated water beneath unirrigated areas. Water samples from the shallow aquifers commonly have dissolved solids, chloride, magnesium, sulfate, arsenic, and manganese concentrations that exceed State of Nevada drinking-water standards. Water in the intermediante basin-fill aquifers is a dilute sodium bicarbonate type in the Fallon area and a distinctly more saline sodium chloride type in the Soda Lake-Upsal Hogback area. Dissolved solids, chloride, arsenic, fluoride, and manganese concen- trations commonly exceed drinking-water standards. The basalt aquifer contains a dilute sodium bicarbonate chloride water. Arsenic concentrations exceed standards in all sampled wells. The concen- trations of major constituents in ground water beneath the southern Carson Desert are the result of evapotranspiration and natural geochemical reactions with minerals derived mostly from igneous rocks. Water with higher concentrations of iron and manganese is near thermodynamic equilibrium with siderite and rhodochrosite and indicates that these elements may be limited by the solubility of their respective carbonate minerals. Naturally occurring radionuclides (uranium and radon-222) are present in ground water from the Carson Desert in concen- tratons higher than proposed drinking-water standards. High uranium concentrations in the shallow aquifers may be caused by evaporative concentration and the release of uranium during dissolution of iron and manganese oxides or the oxidation of sedimentary organic matter that typically has elevated uranium concentrations. Ground water in the Carson Desert does not appear to have be contaminated by synthetic organic chemicals.

  3. Growth responses of five desert plants as influenced by biological soil crusts from a temperate desert, China

    Science.gov (United States)

    Zhang, Yuanming; Belnap, Jayne

    2015-01-01

    In almost all dryland systems, biological soil crusts (biocrusts) coexist alongside herbaceous and woody vegetation, creating landscape mosaics of vegetated and biocrusted patches. Results from past studies on the interaction between biocrusts and vascular plants have been contradictory. In the Gurbantunggut desert, a large temperate desert in northwestern China, well-developed lichen-dominated crusts dominate the areas at the base and between the sand dunes. We examined the influence of these lichen-dominated biocrusts on the germination, growth, biomass accumulation, and elemental content of five common plants in this desert: two shrubs (Haloxylon persicum, Ephedra distachya) and three herbaceous plants (Ceratocarpus arenarius, Malcolmia africana and Lappula semiglabra) under greenhouse conditions. The influence of biocrusts on seed germination was species-specific. Biocrusts did not affect percent germination in plants with smooth seeds, but inhibited germination of seeds with appendages that reduced or eliminated contact with the soil surface or prevented seeds from slipping into soil cracks. Once seeds had germinated, biocrusts had different influences on growth of shrub and herbaceous plants. The presence of biocrusts increased concentrations of nitrogen but did not affect phosphorus or potassium in tissue of all tested species, while the uptake of the other tested nutrients was species-specific. Our study showed that biocrusts can serve as a biological filter during seed germination and also can influence growth and elemental uptake. Therefore, they may be an important trigger for determining desert plant diversity and community composition in deserts.

  4. Fire Impacts on the Mojave Desert Ecosystem: Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Fenstermaker Lynn

    2012-01-01

    The Nevada National Security Site (NNSS) is located within the Mojave Desert, which is the driest region in North America. Precipitation on the NNSS varies from an annual average of 130 millimeters (mm; 5.1 inches) with a minimum of 47 mm (1.9 inches) and maximum of 328 mm (12.9 inches) over the past 15 year period to an annual average of 205 mm (8.1 inches) with an annual minimum of 89 mm (3.5 inches) and maximum of 391 mm (15.4 inches) for the same time period; for a Frenchman Flat location at 970 meters (m; 3182 feet) and a Pahute Mesa location at 1986 m (6516 feet), respectively. The combination of aridity and temperature extremes has resulted in sparsely vegetated basins (desert shrub plant communities) to moderately vegetated mountains (mixed coniferous forest plant communities); both plant density and precipitation increase with increasing elevation. Whereas some plant communities have evolved under fire regimes and are dependent upon fire for seed germination, plant communities within the Mojave Desert are not dependent on a fire regime and therefore are highly impacted by fire (Brown and Minnich, 1986; Brooks, 1999). As noted by Johansen (2003) natural range fires are not prevalent in the Mojave and Sonoran Deserts because there is not enough vegetation present (too many shrub interspaces) to sustain a fire. Fire research and hence publications addressing fires in the Southwestern United States (U.S.) have therefore focused on forest, shrub-steppe and grassland fires caused by both natural and anthropogenic ignition sources. In the last few decades, however, invasion of mid-elevation shrublands by non-native Bromus madritensis ssp. rubens and Bromus tectorum (Hunter, 1991) have been highly correlated with increased fire frequency (Brooks and Berry, 2006; Brooks and Matchett, 2006). Coupled with the impact of climate change, which has already been shown to be playing a role in increased forest fires (Westerling et al., 2006), it is likely that the fire

  5. The Use of Water During the Crew 144, Mars Desert Research Station, Utah Desert

    Science.gov (United States)

    De Morais Mendonca Teles, Antonio

    2016-07-01

    Well. from November 29th to December 14th, 2014, the author conducted astrobiological and geological surveys, as analog astronaut member of the international Crew 144, at the site of the Mars Society's Mars Desert Research Station, located at a remote location in the Utah desert, United States. The use of water for drinking, bathing, cleaning, etc., in the crew was a major issue for consideration for a human expedition to the planet Mars in the future. The author would like to tell about the factors of the rationalized use of water.

  6. [Estimation of desert vegetation coverage based on multi-source remote sensing data].

    Science.gov (United States)

    Wan, Hong-Mei; Li, Xia; Dong, Dao-Rui

    2012-12-01

    Taking the lower reaches of Tarim River in Xinjiang of Northwest China as study areaAbstract: Taking the lower reaches of Tarim River in Xinjiang of Northwest China as study area and based on the ground investigation and the multi-source remote sensing data of different resolutions, the estimation models for desert vegetation coverage were built, with the precisions of different estimation methods and models compared. The results showed that with the increasing spatial resolution of remote sensing data, the precisions of the estimation models increased. The estimation precision of the models based on the high, middle-high, and middle-low resolution remote sensing data was 89.5%, 87.0%, and 84.56%, respectively, and the precisions of the remote sensing models were higher than that of vegetation index method. This study revealed the change patterns of the estimation precision of desert vegetation coverage based on different spatial resolution remote sensing data, and realized the quantitative conversion of the parameters and scales among the high, middle, and low spatial resolution remote sensing data of desert vegetation coverage, which would provide direct evidence for establishing and implementing comprehensive remote sensing monitoring scheme for the ecological restoration in the study area.

  7. The corrosive well waters of Egypt's western desert

    Science.gov (United States)

    Clarke, Frank Eldridge

    1979-01-01

    The discovery that ground waters of Egypt's Western Desert are highly corrosive is lost in antiquity. Inhabitants of the oases have been aware of the troublesome property for many decades and early investigators mention it in their reports concerning the area. Introduction of modern well-drilling techniques and replacements of native wood casing with steel during the 20th century increased corrosion problems and, in what is called the New Valley Project, led to an intense search for causes and corrective treatments. This revealed that extreme corrosiveness results from combined effects of relatively acidic waters with significant concentrations of destructive sulfide ion; unfavorable ratios of sulfate and chloride to less aggressive ions; mineral equilibria and electrode potential which hinder formation of protective films; relative high chemical reaction rates because of abnormal temperatures, and high surface velocities related to well design. There is general agreement among investigators that conventional corrosion control methods such as coating metal surfaces, chemical treatment of the water, and electrolytic protection with impressed current and sacrificial electrodes are ineffective or impracticable for wells in the Western Desert's New Valley. Thus, control must be sought through the use of materials more resistant to corrosion than plain carbon steel wherever well screens and casings are necessary. Of the alternatives considered, stainless steel appears to. be the most promising where high strength and long-term services are required and the alloy's relatively high cost is acceptable. Epoxy resin-bonded fiberglass and wood appear to be practicable, relatively inexpensive alternatives for installations which do. not exceed their strength limitations. Other materials such as high strength aluminum and Monel Metal have shown sufficient promise to. merit their consideration in particular locations and uses. The limited experience with pumping in these desert

  8. Soil Nematodes and Their Prokaryotic Prey Along an Elevation Gradient in The Mojave Desert (Death Valley National Park, California, USA

    Directory of Open Access Journals (Sweden)

    Alyxandra Pikus

    2012-10-01

    Full Text Available We characterized soil communities in the Mojave Desert across an elevation gradient. Our goal was to test the hypothesis that as soil quality improved with increasing elevation (due to increased productivity, the diversity of soil prokaryotes and nematodes would also increase. Soil organic matter and soil moisture content increased with elevation as predicted. Soil salinity did not correlate to elevation, but was highest at a mid-gradient, alluvial site. Soil nematode density, community trophic structure, and diversity did not show patterns related to elevation. Similar results were obtained for diversity of bacteria and archaea. Relationships between soil properties, nematode communities, and prokaryotic diversity were site-specific. For example, at the lowest elevation site, nematode communities contained a high proportion of fungal-feeding species and diversity of bacteria was lowest. At a high-salinity site, nematode density was highest, and overall, nematode density showed an unexpected, positive correlation to salinity. At the highest elevation site, nematode density and species richness were attenuated, despite relatively high moisture and organic matter content for the soils. Our results support emerging evidence for the lack of a relationship between productivity and the diversity of soil nematodes and prokaryotes.

  9. Metabolic rate, evaporative water loss and thermoregulatory state in four species of bats in the Negev desert.

    Science.gov (United States)

    Muñoz-Garcia, Agustí; Larraín, Paloma; Ben-Hamo, Miriam; Cruz-Neto, Ariovaldo; Williams, Joseph B; Pinshow, Berry; Korine, Carmi

    2016-01-01

    Life in deserts is challenging for bats because of their relatively high energy and water requirements; nevertheless bats thrive in desert environments. We postulated that bats from desert environments have lower metabolic rates (MR) and total evaporative water loss (TEWL) than their mesic counterparts. To test this idea, we measured MR and TEWL of four species of bats, which inhabit the Negev desert in Israel, one species mainly restricted to hyper-arid deserts (Otonycteris hemprichii), two species from semi-desert areas (Eptesicus bottae and Plecotus christii), and one widespread species (Pipistrellus kuhlii). We also measured separately, in the same individuals, the two components of TEWL, respiratory water loss (RWL) and cutaneous evaporative water loss (CEWL), using a mask. In all the species, MR and TEWL were significantly reduced during torpor, the latter being a consequence of reductions in both RWL and CEWL. Then, we evaluated whether MR and TEWL in bats differ according to their geographic distributions, and whether those rates change with Ta and the use of torpor. We did not find significant differences in MR among species, but we found that TEWL was lowest in the species restricted to desert habitats, intermediate in the semi-desert dwelling species, and highest in the widespread species, perhaps a consequence of adaptation to life in deserts. Our results were supported by a subsequent analysis of data collected from the literature on rates of TEWL for 35 bat species from desert and mesic habitats. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Field Performance of Photovoltaic Systems in the Tucson Desert

    Science.gov (United States)

    Orsburn, Sean; Brooks, Adria; Cormode, Daniel; Greenberg, James; Hardesty, Garrett; Lonij, Vincent; Salhab, Anas; St. Germaine, Tyler; Torres, Gabe; Cronin, Alexander

    2011-10-01

    At the Tucson Electric Power (TEP) solar test yard, over 20 different grid-connected photovoltaic (PV) systems are being tested. The goal at the TEP solar test yard is to measure and model real-world performance of PV systems and to benchmark new technologies such as holographic concentrators. By studying voltage and current produced by the PV systems as a function of incident irradiance, and module temperature, we can compare our measurements of field-performance (in a harsh desert environment) to manufacturer specifications (determined under laboratory conditions). In order to measure high-voltage and high-current signals, we designed and built reliable, accurate sensors that can handle extreme desert temperatures. We will present several benchmarks of sensors in a controlled environment, including shunt resistors and Hall-effect current sensors, to determine temperature drift and accuracy. Finally we will present preliminary field measurements of PV performance for several different PV technologies.

  11. X-36 in Flight over Mojave Desert during 5th Flight

    Science.gov (United States)

    1997-01-01

    The unusual lines of the X-36 Tailless Fighter Agility Research Aircraft contrast sharply with the desert floor as the remotely-piloted aircraft flies over the Mojave Desert on a June 1997 research flight. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of

  12. Water quality and hydrology of the Lac Vieux Desert watershed, Gogebic County, Michigan, and Vilas County, Wisconsin, 2002-04

    Science.gov (United States)

    Weaver, T.L.; Neff, B.P.; Ellis, J.M.

    2005-01-01

    Lac Vieux Desert is a prominent 6.6 square-mile lake that straddles the Michigan-Wisconsin border and forms the headwaters of the Wisconsin River. For generations, the Lac Vieux Desert Band of Lake Superior Chippewa Indians have used Lac Vieux Desert and the surrounding area for growing and harvesting wild rice, and hunting and fishing. The Lac Vieux Desert Band is concerned about the impact of lake-stage regulation on hydrology and ecology, and the impact on water quality of development along and near the shore, and recreational watercraft use and sport fishing. In 2005, the U.S. Geological Survey completed a water-resources investigation of the Lac Vieux Desert watershed in cooperation with the Lac Vieux Desert Band of Lake Superior Chippewa Indians.Water quality of Lac Vieux Desert is typical of many lakes in the northern United States. Trophic State Index calculations classify Lac Vieux Desert as a highly productive eutrophic lake. The pH of water in Lac Vieux Desert ranged from 6.5 to 9.5, and specific conductance ranged from 62 to 114 µs/cm. Chloride concentration was less than 1.5 mg/L, indicating little effect from septic-tank or road-salt input. Results indicate that the water can be classified as soft, with hardness concentrations reported as calcium carbonate ranging from 29 to 49 mg/L. Concentrations of calcium, magnesium, chloride, and other dissolved solids ranged from 47 to 77 mg/L. Alkalinity of Lac Vieux Desert ranged from 27 to 38 mg/L.Pervasive aquatic blooms, including a bloom noted during the September 2003 sampling, are apparently common in late summer. Biological productivity at Lac Vieux Desert does not appear to have changed appreciably between 1973 and 2004. In the current study, total phosphorus concentrations ranged from 0.01 to 0.064 mg/L and dissolved nitrite plus nitrate nitrogen concentrations ranged from at, or below detection limit to 0.052 mg/L. Overabundance of nutrients in Lac Vieux Desert, particularly nitrogen and phosphorus

  13. Analytical results and sample locality map for rock, stream-sediment, and soil samples, Northern and Eastern Coloado Desert BLM Resource Area, Imperial, Riverside, and San Bernardino Counties, California

    Science.gov (United States)

    King, Harley D.; Chaffee, Maurice A.

    2000-01-01

    INTRODUCTION In 1996-1998 the U.S. Geological Survey (USGS) conducted a geochemical study of the Bureau of Land Management's (BLM) 5.5 million-acre Northern and Eastern Colorado Desert Resource Area (usually referred to as the NECD in this report), Imperial, Riverside, and San Bernardino Counties, southeastern California (figure 1). This study was done in support of the BLM's Coordinated Management Plan for the area. This report presents analytical data from this study. To provide comprehensive coverage of the NECD, we compiled and examined all available geochemical data, in digital form, from previous studies in the area, and made sample-site plots to aid in determining where sample-site coverage and analyses were sufficient, which samples should be re-analyzed, and where additional sampling was needed. Previous investigations conducted in parts of the current study area included the National Uranium Resource Evaluation (NURE) program studies of the Needles and Salton Sea 1? x 2? quadrangles; USGS studies of 12 BLM Wilderness Study Areas (WSAs) (Big Maria Mountains, Chemehuevi Mountains, Chuckwalla Mountains, Coxcomb Mountains, Mecca Hills, Orocopia Mountains, Palen-McCoy, Picacho Peak, Riverside Mountains, Sheephole Valley (also known as Sheep Hole/Cadiz), Turtle Mountains, and Whipple Mountains); and USGS studies in the Needles and El Centro 1? x 2? quadrangles done during the early 1990s as part of a project to identify the regional geochemistry of southern California. Areas where we did new sampling of rocks and stream sediments are mainly in the Chocolate Mountain Aerial Gunnery Range and in Joshua Tree National Park, which extends into the west-central part of the NECD, as shown in figure 1 and figure 2. This report contains analytical data for 132 rock samples and 1,245 stream-sediment samples collected by the USGS, and 362 stream-sediment samples and 189 soil samples collected during the NURE program. All samples are from the Northern and Eastern Colorado

  14. Impact of highly saline wetland ecosystem on floral diversity of the Cholistan desert

    International Nuclear Information System (INIS)

    Gill, A.H.; Ahmad, K.S.; Habib, S.; Ahmad, S.A.; Nawaz, T.; Ahmad, F.

    2012-01-01

    The impact of highly saline wetland ecosystem created under Salinity Control and Reclamation Project (SCARP) on floral diversity was investigated in the arid environments of Cholistan Desert. Species richness, diversity indices and evenness indices were worked out to look at the distance at which the salt water has altered the native vegetation. Four sites including SCARP ponds of different ages (S1, S2, S3 and S4), and a reference site (SR) were selected for vegetation studies and data were recorded by 1 x 1 m quadrats, which were laid on permanent transect lines. Salt water showed great influence on ecological parameters of the native vegetation up to 40 m. Multivariate (cluster) analysis showed close clustering of highly salt tolerant species, Aeluropus lagopoides, Tamarix dioica and Suaeda fruticosa in one group, and relatively less tolerant Crotalaria burhia, Cyperus conglomeratus, Indigofera argentea, Haloxylon salicornicum, Haloxylon stocksii, Neurada procumbens and Salsola baryosma in second group. Moderately salt tolerant Aristida adscensionis, Lasiurus scindicus and Sporobolus iocladus were clustered in a separate group. (author)

  15. The influence of vegetation, mesoclimate and meteorology on urban atmospheric microclimates across a coastal to desert climate gradient.

    Science.gov (United States)

    Crum, Steven M; Shiflett, Sheri A; Jenerette, G Darrel

    2017-09-15

    Many cities are increasing vegetation in part due to the potential for microclimate cooling. However, the magnitude of vegetation cooling and sensitivity to mesoclimate and meteorology are uncertain. To improve understanding of the variation in vegetation's influence on urban microclimates we asked: how do meso- and regional-scale drivers influence the magnitude and timing of vegetation-based moderation on summertime air temperature (T a ), relative humidity (RH) and heat index (HI) across dryland cities? To answer this question we deployed a network of 180 temperature sensors in summer 2015 over 30 high- and 30 low-vegetated plots in three cities across a coastal to inland to desert climate gradient in southern California, USA. In a followup study, we deployed a network of temperature and humidity sensors in the inland city. We found negative T a and HI and positive RH correlations with vegetation intensity. Furthermore, vegetation effects were highest in evening hours, increasing across the climate gradient, with reductions in T a and increases in RH in low-vegetated plots. Vegetation increased temporal variability of T a , which corresponds with increased nighttime cooling. Increasing mean T a was associated with higher spatial variation in T a in coastal cities and lower variation in inland and desert cities, suggesting a climate dependent switch in vegetation sensitivity. These results show that urban vegetation increases spatiotemporal patterns of microclimate with greater cooling in warmer environments and during nighttime hours. Understanding urban microclimate variation will help city planners identify potential risk reductions associated with vegetation and develop effective strategies ameliorating urban microclimate. Published by Elsevier Ltd.

  16. A highly diverse, desert-like microbial biocenosis on solar panels in a Mediterranean city.

    Science.gov (United States)

    Dorado-Morales, Pedro; Vilanova, Cristina; Peretó, Juli; Codoñer, Francisco M; Ramón, Daniel; Porcar, Manuel

    2016-07-05

    Microorganisms colonize a wide range of natural and artificial environments although there are hardly any data on the microbial ecology of one the most widespread man-made extreme structures: solar panels. Here we show that solar panels in a Mediterranean city (Valencia, Spain) harbor a highly diverse microbial community with more than 500 different species per panel, most of which belong to drought-, heat- and radiation-adapted bacterial genera, and sun-irradiation adapted epiphytic fungi. The taxonomic and functional profiles of this microbial community and the characterization of selected culturable bacteria reveal the existence of a diverse mesophilic microbial community on the panels' surface. This biocenosis proved to be more similar to the ones inhabiting deserts than to any human or urban microbial ecosystem. This unique microbial community shows different day/night proteomic profiles; it is dominated by reddish pigment- and sphingolipid-producers, and is adapted to withstand circadian cycles of high temperatures, desiccation and solar radiation.

  17. Lithium abundance patterns of late-F stars: an in-depth analysis of the lithium desert

    Science.gov (United States)

    Aguilera-Gómez, Claudia; Ramírez, Iván; Chanamé, Julio

    2018-06-01

    Aims: We address the existence and origin of the lithium (Li) desert, a region in the Li-Teff plane sparsely populated by stars. Here we analyze some of the explanations that have been suggested for this region, including mixing in the late main sequence, a Li dip origin for stars with low Li abundances in the region, and a possible relation with the presence of planets. Methods: To study the Li desert, we measured the atmospheric parameters and Li abundance of 227 late-F dwarfs and subgiants, chosen to be in the Teff range of the desert and without previous Li abundance measurements. Subsequently, we complemented those with literature data to obtain a homogeneous catalog of 2318 stars, for which we compute masses and ages. We characterize stars surrounding the region of the Li desert. Results: We conclude that stars with low Li abundances below the desert are more massive and more evolved than stars above the desert. Given the unexpected presence of low Li abundance stars in this effective temperature range, we concentrate on finding their origin. We conclude that these stars with low Li abundance do not evolve from stars above the desert: at a given mass, stars with low Li (i.e., below the desert) are more metal-poor. Conclusions: Instead, we suggest that stars below the Li desert are consistent with having evolved from the Li dip, discarding the need to invoke additional mixing to explain this feature. Thus, stars below the Li desert are not peculiar and are only distinguished from other subgiants evolved from the Li dip in that their combination of atmospheric parameters locates them in a range of effective temperatures where otherwise only high Li abundance stars would be found (i.e., stars above the desert). Full Tables 1 and 3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/614/A55This paper includes observations collected at The McDonald Observatory and

  18. A Proposal for Desert House Design in Egypt Using Passive Ground Cooling Techniques

    Directory of Open Access Journals (Sweden)

    Mohamed Medhat Dorra

    2018-06-01

    Full Text Available An area less than 5.5% of Egyptian territory is where most of Egypt‘s population lives in. A narrow strip of land forms the Nile Valley and Delta sector.The National Project for Desert Hinterlands is one of the urban projects targeting rehabilitation of the poor in alternative villages in the near desert to stop urban sprawl over agricultural land and decrease the congestion in the old habitats. Low cost energy efficient houses are the aim of the architect in similar projects taking in consideration the high electricity consumption of Egypt’s residential sector. Based on a literature review, this paper presents a proposal for designing desert dwellings   that accommodates the hot dry climate by incorporating passive elements and using stabilized earth blocks as a local building material. Furthermore, simulation is used to test alternative proposals. The results show that an underground constructed house with a sunken courtyard incorporating an Earth to Air Heat Exchanger System (EAHE can reduce between 42-72% of energy consumption used to achieve thermal comfort compared to contemporary desert housing projects.

  19. Oxalosis in wild desert tortoises, Gopherus agassizii

    Science.gov (United States)

    Jacobson, Elliott R.; Berry, Kristin H.; Stacy, Brian; Huzella, Louis M.; Kalasinsky, Victor F.; Fleetwood, Michelle L.; Mense, Mark G.

    2009-01-01

    We necropsied a moribund, wild adult male desert tortoise (Gopherus agassizii) with clinical signs of respiratory disease and elevated plasma biochemical analytes indicative of renal disease (blood urea nitrogen [415 mg/dl], uric acid [11.8 mg/dl], sodium >180 mmol/l] and chloride [139 mmol/l]). Moderate numbers of birefringent oxalate crystals, based on infrared and electron microscopy, were present within renal tubules; small numbers were seen in colloid within thyroid follicles. A retrospective analysis of 66 additional cases of wild desert tortoises was conducted to determine whether similar crystals were present in thyroid and kidney. The tortoises, from the Mojave and Sonoran deserts, were necropsied between 1992 and 2003 and included juveniles and adults. Tortoises were classified as healthy (those that died due to trauma and where no disease was identified after necropsy and evaluation by standard laboratory tests used for other tortoises) or not healthy (having one or more diseases or lesions). For all 67 necropsied tortoises, small numbers of crystals of similar appearance were present in thyroid glands from 44 of 54 cases (81%) and in kidneys from three of 65 cases (5%). Presence of oxalates did not differ significantly between healthy and unhealthy tortoises, between age classes, or between desert region, and their presence was considered an incidental finding. Small numbers of oxalate crystals seen within the kidney of two additional tortoises also were considered an incidental finding. Although the source of the calcium oxalate could not be determined, desert tortoises are herbivores, and a plant origin seems most likely. Studies are needed to evaluate the oxalate content of plants consumed by desert tortoises, and particularly those in the area where the tortoise in renal failure was found.

  20. Long-Term Observations of Dust Storms in Sandy Desert Environments

    Science.gov (United States)

    Yun, Hye-Won; Kim, Jung-Rack; Choi, Yun-Soo

    2015-04-01

    Mineral dust occupies the largest portion of atmospheric aerosol. Considering the numerous risks that dust poses for socioeconomic and anthropogenic activities, it is crucial to understand sandy desert environments, which frequently generate dust storms and act as a primary source of atmospheric aerosol. To identify mineral aerosol mechanisms, it is essential to monitor desert environmental factors involving dust storm generation in the long term. In this study, we focused on two major environmental factors: local surface roughness and soil moisture. Since installments of ground observation networks in sandy deserts are unfeasible, remote sensing techniques for mining desert environmental factors were employed. The test area was established within the Badain Jaran and Kubuqi Deserts in Inner Mongolia, China, where significant seasonal aeolian processes emit mineral dust that influences all of East Asia. To trace local surface roughness, we employed a multi-angle imaging spectroradiometer (MISR) image sequence to extract multi-angle viewing (MAV) topographic parameters such as normalized difference angular index, which represents characteristics of the target desert topography. The backscattering coefficient from various space-borne SAR and stereotopography were compared with MAV observations to determine calibrated local surface roughness. Soil moisture extraction techniques from InSAR-phase coherence stacks were developed and compiled with advanced scatterometer (ASCAT) soil moisture data. Combined with metrological information such as the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA interim, correlations between intensity of sand dune activity as a proxy of aeolian processes in desert environments, surface wind conditions, and surface soil moisture were traced. Overall, we have confirmed that tracking sandy desert aeolian environments for long-term observations is feasible with space-borne, multi-sensor observations when combined with

  1. Goods and services provided by native plants in desert ecosystems: Examples from the northwestern coastal desert of Egypt

    Directory of Open Access Journals (Sweden)

    Laila M. Bidak

    2015-01-01

    Full Text Available About one third of the earth’s land surface is covered by deserts that have low and variable rainfall, nutrient-poor soils, and little vegetation cover. Here, we focus on the goods and services offered by desert ecosystems using the northwestern coastal desert of Egypt extending from Burg El-Arab to El-Salloum as an example. We conducted field surveys and collected other data to identify the goods services and provided by native plant species. A total of 322 native plant species were compiled. The direct services provided by these native plants included sources of food, medicine, and energy; indirect vegetation services included promotion of biodiversity, water storage, and soil fertility. The plant diversity in this ecosystem provided economic service benefits, such as sources of fodder, fuel-wood, and traditional medicinal plants. Changes in land use and recent ill-managed human activities may influence the availability of these services and strongly impact biodiversity and habitat availability. Although deserts are fragile and support low levels of productivity, they provide a variety of goods and services whose continuing availability is contingent upon the adoption of rational land management practices.

  2. Medicinal flora of the Cholistan desert: a review

    International Nuclear Information System (INIS)

    Hmeed, M.; Ashraf, M.; Nawaz, T.; Naz, N.; Ahmad, M.S.A.; Al-Quriany, F.; Younis, A.

    2011-01-01

    highly priced and out of reach for many of the desert inhabitants. Herbal medicines are preferentially used by local people because they are cheaper than allopathic medicines and have relatively few side effects. Therefore, it is imperative to devise strategies to meet the increasing demand for medicinal plants, not only for the local inhabitants but also for international markets. Institutional support, therefore, can play a decisive role in improving the medicinal plant sector while providing financial support, cultivation and conservation of some important medicinal plants and promoting the domestic and international market systems. (author)

  3. Partitioning of evapotranspiration using a stable isotope technique in an arid and high temperature agricultural production system

    KAUST Repository

    Lu, Xuefei; Liang, Liyin L.; Wang, Lixin; Jenerette, G. Darrel; McCabe, Matthew; Grantz, David A.

    2016-01-01

    Agricultural production in the hot and arid low desert systems of southern California relies heavily on irrigation. A better understanding of how much and to what extent irrigated water is transpired by crops relative to being lost through

  4. A New Infrared Desert Dust Index over French Guyana Rain forest: First results

    Science.gov (United States)

    Molinie, J.; Barnacin, E.; Henry, J. L.; Gobinddass, M. L.; Panechou-Pulcherie, K.; Feuillard, T.; Nagau, J.

    2017-12-01

    Recently a NASA researcher showed the role of desert dust contribution for the Amazonian rain forest. In another hand, desert dust impact population health when PM 10 level reached values around and upper the PM 10 threshold of the 50 µg m-3, established by the World Health Organization (WHO). Infrared Desert Dust Index (IDDI) developed by Legrand with Meteosat infrared images, allow the following of desert dust plumes over semi-arid land. In French Guiana the WHO threshold is currently overpass in measurements done by ORA air quality network, in the two main towns located close to the coast. For inland population, it is very difficult to have continuous dust measures due to the low infrastructure supplies. We need to develop a tools in order to follow the crossing of desert dust over the French Guyana rain forest, from the coast to inland villages. Following the IDDI concept and comparing with VIIRS AOT EDR result over the same area, a modified IDDI for Amazonian region (IDDI_A) has been proposed to identify the dusty pixels over the forest. Despite of high cloud presence, a good correlation between AOT EDR and IDDI_A was obtained. The IDDI_A calculation has been applied over French Guiana area for different PM 10 level at Cayenne, a town along the coast.

  5. Aborigines of the nuclear desert

    International Nuclear Information System (INIS)

    Rujula, A. de

    1985-01-01

    The chart of 'stable nuclides' extends from Hydrogen, to Z proportional 98, A proportional 263. It contains another island of stability - neutron stars - in a narrow range around Z proportional 10 56 , A proportional 10 57 . In between lies a supposedly barren region encompassing more than 50 orders of magnitude. This desert may be populated by strange quark balls: Stable single bags containing similar proportions of u, d and s quarks. These balls are candidates for the constituency of the 'dark mass' in galaxies and in the Universe. We describe seven ways to search for these possible inhabitants of the nuclear desert. (orig.)

  6. Spatial and temporal patterns across an ecological boundary: Allochthonous effects of a young saltwater lake on a desert ecosystem

    Science.gov (United States)

    Brehme, C.S.; Boarman, W.I.; Hathaway, S.A.; Herring, A.; Lyren, L.; Mendelsohn, M.; Pease, K.; Rahn, M.; Rochester, C.; Stokes, D.; Turschak, G.; Fisher, R.N.

    2009-01-01

    We documented changes in the abundance and composition of terrestrial flora and fauna with respect to distance from the sea edge and timing of large allochthonous inputs from the Salton Sea, California. We found significant effects that were most pronounced within 300 m of the shore, but extended 3 km inland via coyote scat deposition. The zone within 300 m of the sea had a higher density of vegetation with a distinctly different plant composition. The denser vegetation supported higher abundances of birds and reptiles. Coyotes exhibited spatial and temporal responses to marine subsidies of fish, while birds were likely subsidized by aquatic aerial insects. Top-down control, as well as dietary and habitat preferences, may have resulted in reduced number of ants, beetles, and small mammals near the sea. Species responses to the habitat edge appeared to be associated with life history, as the near shore habitat favored habitat generalists and shore specialists, while inland desert habitat favored many sand and open desert specialists. Ecosystem responses support current theories of allochthonous spatial subsidies and consumer-resource dynamics but were limited in scope, magnitude, and distance.

  7. Nest site characteristics, nesting movements, and lack of long-term nest site fidelity in Agassiz's desert tortoises at a wind energy facility in southern California

    Science.gov (United States)

    Lovich, Jeffrey E.; Agha, Mickey; Yackulic, Charles B.; Meyer-Wilkins, Kathie; Bjurlin, Curtis; Ennen, Joshua R.; Arundel, Terry R.; Austin, Meaghan

    2014-01-01

    Nest site selection has important consequences for maternal and offspring survival and fitness. Females of some species return to the same nesting areas year after year. We studied nest site characteristics, fidelity, and daily pre-nesting movements in a population of Agassiz’s desert tortoises (Gopherus agassizii) at a wind energy facility in southern California during two field seasons separated by over a decade. No females returned to the same exact nest site within or between years but several nested in the same general area. However, distances between first and second clutches within a year (2000) were not significantly different from distances between nests among years (2000 and 2011) for a small sample of females, suggesting some degree of fidelity within their normal activity areas. Environmental attributes of nest sites did not differ significantly among females but did among years due largely to changes in perennial plant structure as a result of multiple fires. Daily pre-nesting distances moved by females decreased consistently from the time shelled eggs were first visible in X-radiographs until oviposition, again suggesting some degree of nest site selection. Tortoises appear to select nest sites that are within their long-term activity areas, inside the climate-moderated confines of one of their self-constructed burrows, and specifically, at a depth in the burrow that minimizes exposure of eggs and embryos to lethal incubation temperatures. Nesting in “climate-controlled” burrows and nest guarding by females relaxes some of the constraints that drive nest site selection in other oviparous species.

  8. Precipitation, density, and population dynamics of desert bighorn sheep on San Andres National Wildlife Refuge, New Mexico

    Science.gov (United States)

    Bender, L.C.; Weisenberger, M.E.

    2005-01-01

    Understanding the determinants of population size and performance for desert bighorn sheep (Ovis canadensis mexicana) is critical to develop effective recovery and management strategies. In arid environments, plant communities and consequently herbivore populations are strongly dependent upon precipitation, which is highly variable seasonally and annually. We conducted a retrospective exploratory analysis of desert bighorn sheep population dynamics on San Andres National Wildlife Refuge (SANWR), New Mexico, 1941-1976, by modeling sheep population size as a function of previous population sizes and precipitation. Population size and trend of desert bighorn were best and well described (R 2=0.89) by a model that included only total annual precipitation as a covariate. Models incorporating density-dependence, delayed density-dependence, and combinations of density and precipitation were less informative than the model containing precipitation alone (??AlCc=8.5-22.5). Lamb:female ratios were positively related to precipitation (current year: F1,34=7.09, P=0.012; previous year: F1,33=3.37, P=0.075) but were unrelated to population size (current year. F1,34=0.04, P=0.843; previous year: F1,33 =0.14, P=0.715). Instantaneous population rate of increase (r) was related to population size (F1,33=5.55; P=0.025). Precipitation limited populations of desert bighorn sheep on SANWR primarily in a density-independent manner by affecting production or survival of lambs, likely through influences on forage quantity and quality. Habitat evaluations and recovery plans for desert bighorn sheep need to consider fundamental influences on desert bighorn populations such as precipitation and food, rather than focus solely on proximate issues such as security cover, predation, and disease. Moreover, the concept of carrying capacity for desert bighorn sheep may need re-evaluation in respect to highly variable (CV =35.6%) localized precipitation patterns. On SANWR carrying capacity for desert

  9. Radiotelemetry Study of a Desert Tortoise Population: Sand Hill Training Mea, Marine Corps Air Ground Combat Center, Twentynine Palms, California

    Science.gov (United States)

    1998-05-01

    shallow caliche burrows. Mojave populations differ genetically ( Lamb et al. 1989), morphologically (Weinstein and Berry 1987), in burrow construction...34 Abstract in The Desert Tortoise Council Symposium (1995d), p 92. Lamb , T., J.C. Avise, and J.W. Gibbons, "Phylogeographic Patterns in Mitochondrial...ATTN: STEWS -EL US Army Envr Hygiene Agency ATTN:HSHB-ME 21010 US Army Environmental Center ATTN: SFIM-AEC 21010-5401 Defense Tech Info Center

  10. Lizard burrows provide thermal refugia for larks in the Arabian desert

    NARCIS (Netherlands)

    Williams, JB; Tieleman, BI; Shobrak, M

    A common perception is that desert birds experience greater extremes of heat and aridity than their mammalian counterparts, in part, because birds do not use burrows as a refuge from the desert environment. We report observations of Dunn's Larks (Eremalauda dunni), Bar-tailed Desert Larks (Ammomanes

  11. Genetic diversity in the desert warthog (Phacochoerus aethiopicus delameri) population of eastern Africa

    DEFF Research Database (Denmark)

    Muwanika, Vincent B.; Kock, Richard; Masembe, Charles

    2012-01-01

    in a population of the desert warthog (Phacochoerus aethiopicus) sampled from 12 localities in its natural range in eastern Africa. From the total sample (30 individuals), at the six microsatellite loci that were analysed, a total of 43 alleles was observed averaging seven alleles per locus. Expected...... heterozygosity (HE) per locus was high, ranging from 0.53 to 0.87. At the mitochondrial loci, nucleotide diversity was low (p = 0.12%) with two unique haplotypes observed from the 19 individuals that amplified successfully. The diversity indices observed in the desert warthog are comparable to those previously...... reported for the closely related but widespread species, the common warthog (Phacochoerus africanus). These results suggest that the desert warthog is not genetically depauperate despite the rinderpest epidemic of the 1880s that eliminated it from most of its natural range....

  12. Potential for deserts to supply reliable renewable electric power

    Science.gov (United States)

    Labordena, Mercè; Lilliestam, Johan

    2015-04-01

    To avoid dangerous climate change, the electricity systems must be decarbonized by mid-century. The world has sufficient renewable electricity resources for complete power sector decarbonization, but an expansion of renewables poses several challenges for the electricity systems. First, wind and solar PV power are intermittent and supply-controlled, making it difficult to securely integrate this fluctuating generation into the power systems. Consequently, power sources that are both renewable and dispatchable, such as biomass, hydro and concentrating solar power (CSP), are particularly important. Second, renewable power has a low power density and needs vast areas of land, which is problematic both due to cost reasons and due to land-use conflicts, in particular with agriculture. Renewable and dispatchable technologies that can be built in sparsely inhabited regions or on land with low competition with agriculture would therefore be especially valuable; this land-use competition greatly limits the potential for hydro and biomass electricity. Deserts, however, are precisely such low-competition land, and are at the same time the most suited places for CSP generation, but this option would necessitate long transmission lines from remote places in the deserts to the demand centers such as big cities. We therefore study the potential for fleets of CSP plants in the large deserts of the world to produce reliable and reasonable-cost renewable electricity for regions with high and/or rapidly increasing electricity demand and with a desert within or close to its borders. The regions in focus here are the European Union, North Africa and the Middle East, China and Australia. We conduct the analysis in three steps. First, we identify the best solar generation areas in the selected deserts using geographic information systems (GIS), and applying restrictions to minimize impact on biodiversity, soils, human heath, and land-use and land-cover change. Second, we identify

  13. Geology and mammalian paleontology of the Horned Toad Hills, Mojave Desert, California, USA

    Science.gov (United States)

    May, S.R.; Woodburne, M.O.; Lindsay, E.H.; Albright, L.B.; Sarna-Wojcicki, A.; Wan, E.; Wahl, D.B.

    2011-01-01

    The Horned Toad Formation includes five lithostratigraphic members that record alluvial fan, fluvial, lake margin, and lacustrine deposition within a relatively small basin just south of the active Garlock fault during the late Miocene to early Pliocene. These sediments experienced northwest-southeast contractional deformation during the Pliocene-Pleistocene associated with basement-involved reverse faults. Member Two of the Horned Toad Formation has yielded 24 taxa of fossil mammals, referred to as the Warren Local Fauna, including Cryptotis sp., cf. Scapanus, Hypolagus vetus, Hypolagus edensis,? Spermophilus sp., Prothomomys warrenensis n. gen., n. sp., Perognathus sp., Repomys gustelyi, Postcopemys valensis, Peromyscus sp. A, Peromyscus sp. B, Jacobsomys dailyi n. sp., Borophagus cf. B. secundus, cf. Agriotherium, Machairodus sp. cf. M. coloradensis, Rhynchotherium sp. cf. R. edensis, Pliomastodon vexillarius, Dinohippus edensis, Teleoceras sp. cf. T. fossiger, cf. Prosthennops, Megatylopus sp. cf. M. matthewi, Hemiauchenia vera, Camelidae gen. et. sp. indet., and the antilocaprid cf. Sphenophalos. The majority of fossil localities are confined to a 20 m thick stratigraphic interval within a reversed polarity magnetozone. The fauna demonstrates affinity with other late Hemphillian faunas from California, Nevada, Nebraska, Texas, and Mexico. The Lawlor Tuff, dated elsewhere in California at 4.83 ?? 0.04 Ma and geochemically identified in the Horned Toad Formation, overlies most of the fossil mammal localities. Magnetic polarity data are correlated with Chrons 3n.3r, 3n.3n, and 3n.2r, suggesting an age of approximately 5.0 - 4.6 Ma. These constraints indicate an age for the late Hemphillian Warren Local Fauna of 4.85 - 5.0 Ma. ?? Society of Vertebrate Paleontology November 2011.

  14. Community adaptations to an impending food desert in rural Appalachia, USA.

    Science.gov (United States)

    Miller, Wayne C; Rogalla, Denver; Spencer, Dustin; Zia, Nida; Griffith, Brian N; Heinsberg, Haylee B

    2016-01-01

    The United States Department of Agriculture (USDA) describes a food desert as an urban neighborhood or rural town without ready access to fresh, healthy, and affordable food. An estimated 2.3 million rural Americans live in food deserts. One goal of the USDA is to eliminate food deserts. However, at a time when some food deserts are being eliminated, hundreds of grocery stores are closing, causing other food deserts to arise. The literature is scarce on how a community adapts to an impending food desert. Alderson, West Virginia, USA (population 1184) rallied to face an impending food desert when the only grocery store in town closed in December 2014. This study investigated how this small rural community adapted to its oncoming food desert. A community member survey was administered to 155 Alderson families (49%) to determine how the new food desert affected family food acquisition and storage behaviors. A restaurant survey was given to the town's four restaurants to determine how the food desert affected their businesses. Sales data for a new food hub (Green Grocer) was obtained to see if this new initiative offset the negative effects of the food desert. ANOVA and t-tests were used to compare group numerical data. Two group response rates were compared by testing the equality of two proportions. Categorical data were analyzed with the χ2 or frequency distribution analysis. Group averages are reported as mean ± standard error of the mean. Significance for all analyses was set at pp=0.16) from the number before the food desert (2.8±0.3). Price comparisons among the Green Grocer and three distant supermarkets showed a 30% savings by traveling to distant supermarkets. Frequency of monthly restaurant visits did not change after the emergence of the food desert (2.98±0.54 vs 3.05±0.51, p=0.85). However, restaurant patrons requested to buy fresh produce and dairy from the restaurants to use for their own home cooking. Food pantry use increased by 43%, with

  15. Two millennia of soil dynamics derived from ancient desert terraces using high resolution 3-D data

    Science.gov (United States)

    Filin, Sagi; Arav, Reuma; Avni, Yoav

    2017-04-01

    Large areas in the arid southern Levant are dotted with ancient terrace-based agriculture systems which were irrigated by runoff harvesting techniques. They were constructed and maintained between the 3rd - 9th centuries AD and abandoned in the 10th century AD. During their 600 years of cultivation, these terraces documented the gradual aggradation of alluvial soils, erosion processes within the drainage basins, as well as flashflood damage. From their abandonment and onwards, they documented 1000 years and more of land degradation and soil erosion processes. Examination of these installations presents an opportunity to study natural and anthropogenic induced changes over almost two millennia. On a global scale, such an analysis is unique as it is rare to find intact manifestations of anthropogenic influences over such time-scales because of landscape dynamics. It is also rare to find a near millennia documentation of soil erosion processes. We study in this paper the aggradation processes within intact agriculture plots in the region surrounding the world heritage Roman-Byzantine ancient city of Avdat, Negev Highlands. We follow the complete cycle of the historical desert agriculture, from the configuration pre-dating the first anthropogenic intervention, through the centuries of cultivation, and up to the present erosion phase, which spans over more than a millennium. We use high resolution 3-D laser scans to document the erosion and the environmental dynamics during these two millennia. The high-resolution data is then utilized to compute siltation rates as well as erosion rates. The long-term measures of soil erosion and land degradation we present here significantly improve our understanding of the mechanism of long-term environmental change acting in arid environments. For sustainable desert inhabitation, the study offers insights into better planning of modern agriculture in similar zones as well as insights on strategies needed to protect such historical

  16. 75 FR 51479 - Notice of Availability of the Final Environmental Impact Statement for the Chevron Energy...

    Science.gov (United States)

    2010-08-20

    ... Solutions/Solar Millennium Blythe Solar Power Plant and Proposed California Desert Conservation Area Plan... Proposed California Desert Conservation Area (CDCA) Plan Amendment/Final Environmental Impact Statement... impacts of the project on air quality, biological resources, cultural resources, water resources...

  17. Southern California Edison High Penetration Photovoltaic Project - Year 1

    Energy Technology Data Exchange (ETDEWEB)

    Mather, B.; Kroposki, B.; Neal, R.; Katiraei, F.; Yazdani, A.; Aguero, J. R.; Hoff, T. E.; Norris, B. L.; Parkins, A.; Seguin, R.; Schauder, C.

    2011-06-01

    This report discusses research efforts from the first year of a project analyzing the impacts of high penetration levels of photovoltaic (PV) resources interconnected onto Southern California Edison's (SCE's) distribution system. SCE will be interconnecting a total of 500 MW of commercial scale PV within their service territory by 2015. This Year 1 report describes the need for investigating high-penetration PV scenarios on the SCE distribution system; discusses the necessary PV system modeling and distribution system simulation advances; describes the available distribution circuit data for the two distribution circuits identified in the study; and discusses the additional inverter functionality that could be implemented in order to specifically mitigate some of the undesirable distribution system impacts caused by high-penetration PV installations.

  18. Population, desert expanding.

    Science.gov (United States)

    1992-01-01

    The conditions of desert expansion in the Sahara are highlighted. On the southern border the desert is growing at a rate of 3-6 miles/year. This growth is encroaching on arable land in Ethiopia and Mauritania. The region loses up to 28,000 sq miles/year of farmland. 33% of Africa's fertile land is threatened. Land-use patterns are responsible for the deterioration of the soil. Traditional practices are not effective because the practices are not suitable for permanent farming. Farmers also have stopped environmentally sound practices such as letting the fields remain fallow in order to renew soil fertility. Nomads overgraze areas before moving on. A recent study by the World Bank's Africa Region Office was released; the report details some of the links between rapid population growth, poor agricultural performance, and environmental degradation. Soil conditions are such that valuable topsoil is blow away by the wind because the layer is too thin. Vegetation at the desert's edge is used for cooking purposes or for heating fuel. Tropical and savannah areas are depleted when tree replacement is inadequate. Only 9 trees are planted for every 100 removed. The report emphasized the role of women and children in contributing to population pressure by increased fertility. Women's work load is heavy and children are a help in alleviating some of the burden of domestic and agricultural work. There is hope in meeting demographic, agricultural, food security, and environmental objectives over the next 30 years if the needs of women are met. The needs include access to education for young women, lessening the work loads of women, and decreasing child mortality through improved health care and access to safe water.

  19. Airborne particle accumulation and composition at different locations in the northern Negev desert.

    NARCIS (Netherlands)

    Offer, Z.Y.; Goossens, D.

    2001-01-01

    Atmospheric desert dust was collected over 36 months in ground-level collectors at four stations in the northern Negev desert, Israel. Three stations (Shivta, Sede Boqer and Avdat) are located in the desert itself whereas the fourth station (Sayeret Shaked) is situated at the desert fringe, in the

  20. The politics of accessing desert land in Jordan

    NARCIS (Netherlands)

    Naber, Al Majd; Molle, Francois

    2016-01-01

    With the dramatic increase of the population in Jordan, the value of land has rocketed up. Urban sprawl into semi-desert or desert areas, initially not surveyed or settled by the British and considered as state land, has brought to the surface the problematic status of those lands. Likewise, the

  1. Migrating Seals on Shifting Sands: Testing Alternate Hypotheses for Holocene Ecological and Cultural Change on the California Coast

    Science.gov (United States)

    Koch, P. L.; Newsome, S. D.; Gifford-Gonzalez, D.

    2001-12-01

    The coast of California presented Holocene humans with a diverse set of ecosystems and geomorphic features, from large islands off a semi-desert mainland in the south, to a mix of sandy and rocky beaches abutting grassland and oak forest in central California, to a rocky coast hugged by dense coniferous forest in the north. Theories explaining trends in human resource use, settlement patterns, and demography are equally diverse, but can be categorized as 1) driven by diffusion of technological innovations from outside the region, 2) driven by population growth leading to more intensive extraction of resources, or 3) driven by climatic factors that affect the resource base. With respect to climatic shifts, attention has focused on a possible regime shift ca. 5500 BP, following peak Holocene warming, and on evidence for massive droughts and a drop in marine productivity ca. 1000 BP. While evidence for a coincidence between climatic, cultural, and ecological change is present, albeit complex, in southern California, similar data are largely lacking from central and northern California. We are using isotopic and archaeofaunal analysis to test ideas for ecological and cultural change in central California. Three features of the archaeological record are relevant. First, overall use of marine resources by coastal communities declined after 1000 BP. Second, northern fur seals, which are common in earlier sites, drop in abundance relative to remaining marine animals. We have previously established that Holocene humans in central California were hunting gregariously-breeding northern fur seals from mainland rookeries. These seals breed exclusively on offshore islands today, typically at high latitudes. Their restriction to these isolated sites today may be a response to human overexploitation of their mainland rookeries prehistorically. Finally, collection of oxygen and carbon isotope data from mussels at the archaeological sites, while still in a preliminary phase, has

  2. An Integrated Multi-Sensor Approach to Monitor Desert Environments by UAV and Satellite Sensors: Case Study Kubuqi Desert, China

    Science.gov (United States)

    Kim, J.; Lin, C. W.; vanGasselt, S.; Lin, S.; Lan, C. W.

    2017-12-01

    Expanding deserts have been causing significant socio-economical threats by, e.g., hampering anthropogenic activities or causing decline of agricultural productivity. Countries in the Asian-Pacific regions in particular have been suffering from dust storms originating in the arid deserts of China, Mongolia and central Asia. In order to mitigate such environmental interferences by means of, e.g. combat desertification activities and early warning systems, the establishment of reliable desert monitoring schemes is needed. In this study, we report on a remote sensing data fusion approach to constantly and precisely monitor desert environments. We have applied this approach over a test site located in the Kubuqi desert located in Northeast China and which is considered to be a major contributor of dust storms today. In order to understand spatial and temporal trends of desertification, the planimetric distribution and 3D shape and size of sand dunes were reconstructed using Digital Terrain Models (DTM) derived from stereo observations made by Unmanned Aerial Vehicles (UAV). Based on this, the volumetric change of sand dunes was directly estimated through co-registered DTMs. We furthermore derived and investigated topographic parameters, such as the aerodynamic roughness length, the protrusion coefficient, the Normalized Difference Angular Index, and the phase coherence derived from spaceborne optical/synthetic aperture radar (SAR) remote sensing assets with the calibration index from UAV observation. Throughout such a multi-data approach, temporal changes of a target's environmental parameters can be traced, analyzed and correlated with weather conditions. An improved understanding of aeolian processes in sand deserts will be a valuable contribution for desertification combat activities and early warning systems for dust storm generation. Future research needs to be conducted over more extensive spatial and temporal domains, also by combining investigations on the

  3. Algae-production in the desert

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrand, H.

    1988-11-01

    The company Koor Food Ltd. (Israel) developed in co-operation with the Weizmann-Institute (Israel) a production-plant for the industrial cultivation of algae in the desert area of Elat. For almost a year now, they succeed in harvesting large amounts of algae material with the help of the intensive sun and the Red Sea water. The alga Dunaliella with the natural US -carotine, as well as the alga Spirulina with the high content of protein find their market in the food-, cosmetic- and pharma-industry. This article will give a survey of a yet here unusual project.

  4. Effects of altered temperature and precipitation on desert protozoa associated with biological soil crusts.

    Science.gov (United States)

    Darby, Brian J; Housman, David C; Zaki, Amr M; Shamout, Yassein; Adl, Sina M; Belnap, Jayne; Neher, Deborah A

    2006-01-01

    Biological soil crusts are diverse assemblages of bacteria, cyanobacteria, algae, fungi, lichens, and mosses that cover much of arid land soils. The objective of this study was to quantify protozoa associated with biological soil crusts and test the response of protozoa to increased temperature and precipitation as is predicted by some global climate models. Protozoa were more abundant when associated with cyanobacteria/lichen crusts than with cyanobacteria crusts alone. Amoebae, flagellates, and ciliates originating from the Colorado Plateau desert (cool desert, primarily winter precipitation) declined 50-, 10-, and 100-fold, respectively, when moved in field mesocosms to the Chihuahuan Desert (hot desert, primarily summer rain). However, this was not observed in protozoa collected from the Chihuahuan Desert and moved to the Sonoran desert (hot desert, also summer rain, but warmer than Chihuahuan Desert). Protozoa in culture began to encyst at 37 degrees C. Cysts survived the upper end of daily temperatures (37-55 degrees C), and could be stimulated to excyst if temperatures were reduced to 15 degrees C or lower. Results from this study suggest that cool desert protozoa are influenced negatively by increased summer precipitation during excessive summer temperatures, and that desert protozoa may be adapted to a specific desert's temperature and precipitation regime.

  5. Geological literature on the San Joaquin Valley of California

    Science.gov (United States)

    Maher, J.C.; Trollman, W.M.; Denman, J.M.

    1973-01-01

    The following list of references includes most of the geological literature on the San Joaquin Valley and vicinity in central California (see figure 1) published prior to January 1, 1973. The San Joaquin Valley comprises all or parts of 11 counties -- Alameda, Calaveras, Contra Costa, Fresno, Kern, Kings, Madera, Merced, San Joaquin, Stanislaus, and Tulare (figure 2). As a matter of convenient geographical classification the boundaries of the report area have been drawn along county lines, and to include San Benito and Santa Clara Counties on the west and Mariposa and Tuolumne Counties on the east. Therefore, this list of geological literature includes some publications on the Diablo and Temblor Ranges on the west, the Tehachapi Mountains and Mojave Desert on the south, and the Sierra Nevada Foothills and Mountains on the east.

  6. Evaluation of great deserts of the world for perpetual radiowaste storage

    International Nuclear Information System (INIS)

    Libby, L.M.; Wurtele, M.G.; Whipple, C.G.

    1982-01-01

    Desert sites with a history of seismic stability were studied for storage of radioactive wastes because of the attractive meteorology, proven longterm geological stability, and distance from human population centers. Specific deserts were to be representative of various kinds of world deserts, if substantial information about each desert was available, to examine with respect to transporting, handling, storing, and cooling the radioactive waste, and the site suitability as to geological conditions, water availability, alternative land use, airborne emissions of heat, accidental radioactive emission, and possible socioeonomic impacts. No significant technical obstacles to the use of the world deserts as sites for a retrievable storage facility for 500 years were found. However, given the relatively low level of effort that was allocated between the many technical issues listed above, this study is neither a full risk assessment nor a full environmental impact analysis of such a facility. Assessments for siting the facility were made for five deserts, chosen to be representative of Old World, New World, Australian, interior, coastal, foggy, hot and cold: the Nullarbor Plain of Australia, the Namib in Africa, the Great Basin of the United States represented by the Nevada Test Site, the North Slope of Alaska and Canada, and the Egyptian desert

  7. Water use sources of desert riparian Populus euphratica forests.

    Science.gov (United States)

    Si, Jianhua; Feng, Qi; Cao, Shengkui; Yu, Tengfei; Zhao, Chunyan

    2014-09-01

    Desert riparian forests are the main body of natural oases in the lower reaches of inland rivers; its growth and distribution are closely related to water use sources. However, how does the desert riparian forest obtains a stable water source and which water sources it uses to effectively avoid or overcome water stress to survive? This paper describes an analysis of the water sources, using the stable oxygen isotope technique and the linear mixed model of the isotopic values and of desert riparian Populus euphratica forests growing at sites with different groundwater depths and conditions. The results showed that the main water source of Populus euphratica changes from water in a single soil layer or groundwater to deep subsoil water and groundwater as the depth of groundwater increases. This appears to be an adaptive selection to arid and water-deficient conditions and is a primary reason for the long-term survival of P. euphratica in the desert riparian forest of an extremely arid region. Water contributions from the various soil layers and from groundwater differed and the desert riparian P. euphratica forests in different habitats had dissimilar water use strategies.

  8. Pre-treating Seed to Enhance Germination of Desert Shrubs

    Energy Technology Data Exchange (ETDEWEB)

    W. K. Ostler; D. C. Anderson; D. J. Hansen

    2002-06-01

    Creosotebush [Larrea tridentata (D.C.) Cav.] and white bursage [Ambrosia dumosa (A. Gray) W.W. Payne] seeds were subjected to pre-treatments of rinsing and soaking in water and thiourea to enhance germination in laboratory experiments. The effects of darkness, temperature, seed source, and soil moisture were also evaluated in the laboratory. The best pre-treatment from the laboratory experiments, rinsing with water for 36 hours followed by drying, was field-tested at Fort Irwin, California. Two sites and two seeding dates (early March and mid April) were determined for each site. Five mulch treatments (no mulch, straw, gravel, chemical stabilizer, and plastic) were evaluated in combination with the seed pre-treatments. Field emergence was greatly enhanced with the seed pre-treatment for white bursage during the March (18-42% increase in germination) and April seedings (16-23% increase in germination). Creosotebush showed poor germination during March (2-5%) when soil temperatures averaged 15 C, but germination increased during the April trials (6-43%) when soil temperatures averaged 23 C. The seed pre-treatment during the April trials increased germination from 16-23%. The plastic mulch treatment increased germination dramatically during both the March and April trials. The plastic mulch increased soil temperatures (8-10 C)and maintained high humidity during germination. Both the chemical stabilizer and the gravel mulches improved germination over the control while the straw mulch decreased germination. These results suggest that seed pre-treatments combined with irrigation and mulch are effective techniques to establish these two dominant Mojave Desert species from seed.

  9. California State Waters Map Series: offshore of Pacifica, California

    Science.gov (United States)

    Edwards, Brian D.; Phillips, Eleyne L.; Dartnell, Peter; Greene, H. Gary; Bretz, Carrie K.; Kvitek, Rikk G.; Hartwell, Stephen R.; Johnson, Samuel Y.; Cochrane, Guy R.; Dieter, Bryan E.; Sliter, Ray W.; Ross, Stephanie L.; Golden, Nadine E.; Watt, Janet Tilden; Chinn, John L.; Erdey, Mercedes D.; Krigsman, Lisa M.; Manson, Michael W.; Endris, Charles A.; Cochran, Susan A.; Edwards, Brian D.

    2015-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. 

  10. Characterization of the Sonoran desert as a radiometric calibration target for Earth observing sensors

    Science.gov (United States)

    Angal, Amit; Chander, Gyanesh; Xiong, Xiaoxiong; Choi, Tae-young; Wu, Aisheng

    2011-01-01

    To provide highly accurate quantitative measurements of the Earth's surface, a comprehensive calibration and validation of the satellite sensors is required. The NASA Moderate Resolution Imaging Spectroradiometer (MODIS) Characterization Support Team, in collaboration with United States Geological Survey, Earth Resources Observation and Science Center, has previously demonstrated the use of African desert sites to monitor the long-term calibration stability of Terra MODIS and Landsat 7 (L7) Enhanced Thematic Mapper plus (ETM+). The current study focuses on evaluating the suitability of the Sonoran Desert test site for post-launch long-term radiometric calibration as well as cross-calibration purposes. Due to the lack of historical and on-going in situ ground measurements, the Sonoran Desert is not usually used for absolute calibration. An in-depth evaluation (spatial, temporal, and spectral stability) of this site using well calibrated L7 ETM+ measurements and local climatology data has been performed. The Sonoran Desert site produced spatial variability of about 3 to 5% in the reflective solar regions, and the temporal variations of the site after correction for view-geometry impacts were generally around 3%. The results demonstrate that, barring the impacts due to occasional precipitation, the Sonoran Desert site can be effectively used for cross-calibration and long-term stability monitoring of satellite sensors, thus, providing a good test site in the western hemisphere.

  11. California Conference on High Blood Pressure Control in the Spanish-Speaking Community (Los Angeles, California, April 1-2, 1978). Summary Report.

    Science.gov (United States)

    National Institutes of Health (DHEW), Bethesda, MD. High Blood Pressure Information Center.

    As part of the National High Blood Pressure Education Program effort, the conference explored the implications and impact of the prevalence of hypertension in Spanish-speaking populations in California. Approximately 150 experts in health fields, representing all levels of government, public and private health care providers, consumers, and health…

  12. Stable Isotopic Analysis on Water Utilization of Two Xerophytic Shrubs in a Revegetated Desert Area: Tengger Desert, China

    OpenAIRE

    Lei Huang; Zhishan Zhang

    2015-01-01

    Stable isotope studies on stable isotope ratios of hydrogen and oxygen in water within plants provide new information on water sources and water use patterns under natural conditions. In this study, the sources of water uptake for two typical xerophytic shrubs, Caragana korshinskii and Artemisia ordosica, were determined at four different-aged revegetated sites (1956, 1964, 1981, and 1987) in the Tengger Desert, a revegetated desert area in China. Samples from precipitation, soil water at dif...

  13. 75 FR 7515 - Notice of Availability of the Draft Environmental Impact Statement/Staff Assessment for the...

    Science.gov (United States)

    2010-02-19

    ... Stirling Energy Systems Solar Two Project and Possible California Desert Conservation Area Plan Amendment... Commission (CEC) have prepared a Draft Environmental Impact Statement (EIS), Draft California Desert... impacts of the proposed Solar Two Project on air quality, biological resources, cultural resources, water...

  14. 75 FR 62853 - Notice of Availability of the Record of Decision for the Imperial Valley Solar Project and...

    Science.gov (United States)

    2010-10-13

    ... Management Plan (RMP) for the project site and the surrounding areas) located in the California Desert... Associated Amendment to the California Desert Conservation Area Resource Management Plan-Amendment, Imperial... the proprietary SunCatcher technology and facilities. The IVS project site is proposed on...

  15. Water/Pasture Assessment of Registan Desert (Kandahar and Helmand Provinces)

    OpenAIRE

    Toderich, Kristina; Tsukatani, Tsuneo

    2005-01-01

    The desolate desert in Afghanistan's Kandahar and Helmand Provinces was previously populated by thousands of pastoralists until a devastating drought decimated animal herds and forced them to live as IDPs (Internally Displaced Persons) on land bordering the desert. Through funding from UNAMA (United Nations Assistance Mission in Afghanistan), this report assesses conditions in the Registan Desert and border regions to devise solutions to the problems facing Registan Kuchi nomads. A work plan ...

  16. California State Waters Map Series: offshore of Refugio Beach, California

    Science.gov (United States)

    Johnson, Samuel Y.; Dartnell, Peter; Cochrane, Guy R.; Golden, Nadine E.; Phillips, Eleyne L.; Ritchie, Andrew C.; Krigsman, Lisa M.; Dieter, Bryan E.; Conrad, James E.; Greene, H. Gary; Seitz, Gordon G.; Endris, Charles A.; Sliter, Ray W.; Wong, Florence L.; Erdey, Mercedes D.; Gutierrez, Carlos I.; Yoklavich, Mary M.; East, Amy E.; Hart, Patrick E.; Johnson, Samuel Y.; Cochran, Susan A.

    2015-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology.

  17. California State Waters Map Series: offshore of San Francisco, California

    Science.gov (United States)

    Cochrane, Guy R.; Johnson, Samuel Y.; Dartnell, Peter; Greene, H. Gary; Erdey, Mercedes D.; Golden, Nadine E.; Hartwell, Stephen R.; Endris, Charles A.; Manson, Michael W.; Sliter, Ray W.; Kvitek, Rikk G.; Watt, Janet Tilden; Ross, Stephanie L.; Bruns, Terry R.; Cochrane, Guy R.; Cochran, Susan A.

    2015-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology.

  18. Strategy for the development and management of deserts

    Energy Technology Data Exchange (ETDEWEB)

    1978-02-01

    Recommendations from the June 1977 Conference on Alternative Strategies for Desert Development and Management apply primarily to arid lands, although some can be applied to true desert with no vegetation as well. The causes of desertification are reviewed and corrective measures suggested for both developed and developing countries. A range of strategies is proposed, but all are based on the efficient use of water and most are concerned with water used for agricultural purposes. The conference papers also addressed water management, agricultural development, field crops versus animal husbandry, grazing, land use and allocation, wild life resources, industry coastal resources, tourism, energy and minerals, and establishing the infrastructure needed to improve and retain desert health.

  19. The provenance of Taklamakan desert sand

    Science.gov (United States)

    Rittner, Martin; Vermeesch, Pieter; Carter, Andrew; Bird, Anna; Stevens, Thomas; Garzanti, Eduardo; Andò, Sergio; Vezzoli, Giovanni; Dutt, Ripul; Xu, Zhiwei; Lu, Huayu

    2016-03-01

    Sand migration in the vast Taklamakan desert within the Tarim Basin (Xinjiang Uyghur Autonomous region, PR China) is governed by two competing transport agents: wind and water, which work in diametrically opposed directions. Net aeolian transport is from northeast to south, while fluvial transport occurs from the south to the north and then west to east at the northern rim, due to a gradual northward slope of the underlying topography. We here present the first comprehensive provenance study of Taklamakan desert sand with the aim to characterise the interplay of these two transport mechanisms and their roles in the formation of the sand sea, and to consider the potential of the Tarim Basin as a contributing source to the Chinese Loess Plateau (CLP). Our dataset comprises 39 aeolian and fluvial samples, which were characterised by detrital-zircon U-Pb geochronology, heavy-mineral, and bulk-petrography analyses. Although the inter-sample differences of all three datasets are subtle, a multivariate statistical analysis using multidimensional scaling (MDS) clearly shows that Tarim desert sand is most similar in composition to rivers draining the Kunlun Shan (south) and the Pamirs (west), and is distinctly different from sediment sources in the Tian Shan (north). A small set of samples from the Junggar Basin (north of the Tian Shan) yields different detrital compositions and age spectra than anywhere in the Tarim Basin, indicating that aeolian sediment exchange between the two basins is minimal. Although river transport dominates delivery of sand into the Tarim Basin, wind remobilises and reworks the sediment in the central sand sea. Characteristic signatures of main rivers can be traced from entrance into the basin to the terminus of the Tarim River, and those crossing the desert from the south to north can seasonally bypass sediment through the sand sea. Smaller ephemeral rivers from the Kunlun Shan end in the desert and discharge their sediment there. Both river run

  20. From Fireproof Desert to Flammable Grassland: Buffelgrass Invasion in the Sonoran Desert

    Science.gov (United States)

    Betancourt, J. L.

    2007-12-01

    Only a few decades ago, the Sonoran Desert of northwestern Mexico and southern Arizona was considered mostly fireproof, a case of not enough fine fuel to connect the dominant shrubs and cacti. This has changed with invasions by non-native, winter annual and summer-flower perennial grasses that are rapidly transforming fireproof desert into flammable grassland. Of particular concern is buffelgrass, Pennisetum ciliare, a fire-prone and invasive African perennial grass that has already converted millions of hectares across Sonora since the mid-1960s and has made quick headway in southern and central Arizona beginning in the 1980s. Near Tucson and Phoenix, AZ, buffelgrass invasion is proceeding exponentially, with population expansion (and the costs of mitigation) more than doubling every year. As this conversion progresses, there will be increased fire risks, lost tourist revenue, diminished property values, insurmountable setbacks to conservation efforts, and the threat of large ignition fronts in desert valleys routinely spreading into the mountains. Although somewhat belated, an integrated, multi-jurisdictional effort is being organized to reduce ecological and economic impacts. My presentation will summarize the history and context of buffelgrass introduction and invasion, the disconnect in attitudes and policies across state and international boundaries, ongoing management efforts, the role of science and responsibilities of scientists, accelerated spread with changing climate, and impacts to regional ecosystems and economies. This narrative may serve as a template for other semi-arid lands where buffelgrass and similar grasses have become invasive, including Australia, South America, and many islands in the Pacific Ocean (including Hawaii), Indian Ocean, and Caribbean Sea.

  1. The western pond turtle (Clemmys marmorata) in the Mojave River, California, USA: Highly adapted survivor or tenuous relict?

    Science.gov (United States)

    Lovich, J.; Meyer, K.

    2002-01-01

    Aspects of the ecology of populations of the western pond turtle Clemmys marmorata were investigated in the Mojave River of the central Mojave Desert, California, U.S.A. One population occupied man-made ponds and the other occurred in natural ponds in the flood plain of the Mojave River. Both habitats are severely degraded as a result of ground water depletion from human activities along the river and one is infested with the exotic shrub saltcedar Tamarix ramosissima. Mean female carapace length (CL) was significantly greater (14.4 cm) than that of males (13.7 cm). Live juveniles were not detected during the period of study. Shelled eggs were visible in X-radiographs from 26 May to 14 July. Mean clutch size was 4.46 and ranged from 3 to 6 eggs. Clutch size did not vary between 1998 and 1999 but was significantly correlated with CL for both years combined, increasing at the rate of 0.548 eggs/cm CL. Gravid female CL ranged from 13.3-16.0 cm. Some females nested in both years. Mean X-ray egg width (21.8 mm) was not significantly correlated with CL or clutch size. X-ray egg width differed more among clutches than within, whether including CL as a co-variate or not. Nesting migrations occurred from 6 June to 8 July with minimum round trip distances ranging from 17.5-585 m with a mean of 195 m. Mean estimated time of departure as measured at the drift fence was 18:13. Most females returned to the ponds in the early morning. Nesting migrations required females to be out of the water for estimated periods of 0.83 to 86 h. The destination of nesting females was typically fluvial sand bars in the channel of the dry riverbed. Overall, the ecology of C. marmorata in the Mojave River is very similar to that reported for populations in less severe habitats along the west coast of the United States. Notable exceptions include long nesting migrations to sandbars in the dry river channel, a possible result of human modifications to the environment, and an apparent lack of

  2. Global Warming: The Instability of Desert Climate is Enhancing in the Northwest Area in China: A Case Study in the Desert Area in Northwestern China

    OpenAIRE

    Zhao-Feng Chang; Shu-Juan Zhu; Fu-Gui Han; Sheng-Nnian Zhong; Qiang-Qiang Wang; Jian-Hui Zhang

    2013-01-01

    To disclose the relation between the sandstorms change and the temperature changes, a case study in the desert area in northwestern china is investigated. The results showed that: the instability of climate in Minqin desert area is enhancing in the arid desert region in northwest China. Mainly as follows: Variation the annual extreme maximum temperature increasing. Variation of extreme minimum temperature also an increasing trend. Average visibility of sandstorms significantly reduced and the...

  3. OSL and IRSL characteristics of quartz and feldspar from southern California, USA

    International Nuclear Information System (INIS)

    Lawson, Michael J.; Roder, Belinda J.; Stang, Dallon M.; Rhodes, Edward J.

    2012-01-01

    Southern California comprises of a wide range of diverse landscapes and environments, from high mountains with glacial and periglacial sediments to deserts with large sand dunes, extensive alluvial fans and ephemeral playas. Highly active tectonic processes has exposed ancient (c. 2 Ga) plutonic and metamorphic basement from deep within the crust, while similar Palaeozoic, Mesozoic and Cenozoic rocks are also common. A rich array of volcanic lithologies extending into the late Quaternary complement many thick sedimentary sequences that formed in equally diverse ancient environments typical of an accreting active continental margin. In some locations, notably in the Coachella Valley close to Palm Springs and the Salton Sea, low OSL sensitivity and poor characteristics restrict the application of the quartz SAR protocol to date late Pleistocene and Holocene fluvial sediments. In other locations such as the Malibu coastline, high sensitivity of the quartz OSL signal is observed, despite local source rocks being dominated by volcanic lithologies. Problems of poor quartz characteristics, along with uncertainty in predicting quartz OSL behavior for future dating campaigns poses a significant problem for projects, in particular for neotectonic contexts. While K-feldspar has been used extensively to date eolian and fluvial sediments in southern California, little information regarding signal stability is available. We explore the characteristics of both quartz and feldspar sub-samples from eolian, fluvial, lacustrine environments, in order to help develop mineral selection criteria for optical dating applications and clarify these issues. The importance of radiation quenching in quartz grains recently eroded from bedrock and the role of fires in enhancing OSL sensitivity are considered. The relative bleachability of quartz and feldspar fractions, along with thermal stability considerations is discussed. A simple test for quartz OSL signal contamination based on thermal

  4. Indoor Air Quality in 24 California Residences Designed as High-Performance Homes

    Energy Technology Data Exchange (ETDEWEB)

    Less, Brennan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mullen, Nasim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Singer, Brett [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-07-01

    Today’s high performance green homes are reaching previously unheard of levels of airtightness and are using new materials, technologies and strategies, whose impacts on Indoor Air Quality (IAQ) cannot be fully anticipated from prior studies. This research study used pollutant measurements, home inspections, diagnostic testing and occupant surveys to assess IAQ in 24 new or deeply retrofitted homes designed to be high performance green buildings in California.

  5. College Readiness in California: A Look at Rigorous High School Course-Taking

    Science.gov (United States)

    Gao, Niu

    2016-01-01

    Recognizing the educational and economic benefits of a college degree, education policymakers at the federal, state, and local levels have made college preparation a priority. There are many ways to measure college readiness, but one key component is rigorous high school coursework. California has not yet adopted a statewide college readiness…

  6. Unravelling the secret of the resistance of desert strains of Chroococcidiopsis to desiccation and radiation

    OpenAIRE

    Billi, Daniela; Fagliarone; Verseux, Cyprien; Mosca, Claudia; Baqué, Mickael; Wilmotte, Annick

    2017-01-01

    Chroococcidiopsis is a unicellular cyanobacterial genus that is growing in extreme dry conditions, either in low or high temperatures. At the lower end of the spectrum, they live as cryptoendoliths in rocks of the Mc Murdo Dry Valleys in Antarctica where they were discovered by Imre Friedmann, while at the higher end, they grow as hypoliths/endoliths in hot deserts, e.g. Negev, Gobi, Atacama (Friedman, 1980). The capacity of desert strains of Chroococcidiopsis to stabilize their sub-cellul...

  7. 78 FR 71640 - Notice of Availability of the Draft Joint Environmental Impact Statement and Environmental Impact...

    Science.gov (United States)

    2013-11-29

    ... County, California. The Project would utilize solar panels and would be built in several phases. The... and California Desert Conservation Area Plan Amendment for the Proposed Soda Mountain Solar Project... Desert Conservation Area (CDCA) Plan Amendment for the Soda Mountain Solar Project (Project), San...

  8. 77 FR 55224 - Notice of Availability of the Proposed Imperial Sand Dunes Recreation Area Management Plan and...

    Science.gov (United States)

    2012-09-07

    ... Availability of the Proposed Imperial Sand Dunes Recreation Area Management Plan and California Desert... California Desert Conservation Area (CDCA) Plan Amendment/Final Environmental Impact Statement (EIS), for the.... District Court in September 2006. Portions of the biological opinion for the Peirson's milkvetch were also...

  9. 75 FR 18204 - Environmental Impact Statements; Notice of Availability

    Science.gov (United States)

    2010-04-09

    ... EIS, USFS, CO, Rio de los Pinos Vegetation Management Project, Proposes to Salvage Engelmann Spruce... Right-of-Way Grant, California Desert Conservation Area Plan Amendment, Kern County, CA, Comment Period... Decommission a Solar Thermal Facility on Public Lands, California Desert Conservation Area Plan, Riverside...

  10. California State Waters Map Series: offshore of San Gregorio, California

    Science.gov (United States)

    Cochrane, Guy R.; Dartnell, Peter; Greene, H. Gary; Watt, Janet T.; Golden, Nadine E.; Endris, Charles A.; Phillips, Eleyne L.; Hartwell, Stephen R.; Johnson, Samuel Y.; Kvitek, Rikk G.; Erdey, Mercedes D.; Bretz, Carrie K.; Manson, Michael W.; Sliter, Ray W.; Ross, Stephanie L.; Dieter, Bryan E.; Chin, John L.; Cochran, Susan A.; Cochrane, Guy R.; Cochran, Susan A.

    2014-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California's State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Offshore of San Gregorio map area is located in northern California, on the Pacific coast of the San Francisco Peninsula about 50 kilometers south of the Golden Gate. The map area lies offshore of the Santa Cruz Mountains, part of the northwest-trending Coast Ranges that run roughly parallel to the San Andreas Fault Zone. The Santa Cruz Mountains lie between the San Andreas Fault Zone and the San Gregorio Fault system. The nearest significant onshore cultural centers in the map area are San Gregorio and Pescadero, both unincorporated communities with populations well under 1,000. Both communities are situated inland of state beaches that share their names. No harbor facilities are within the Offshore of San Gregorio map area. The hilly coastal area is virtually undeveloped grazing land for sheep and cattle. The coastal geomorphology is controlled by late Pleistocene and Holocene slip in the San Gregorio Fault system. A westward bend in the San Andreas Fault Zone, southeast of the map area, coupled with right-lateral movement along the San Gregorio Fault system have caused regional folding and uplift. The coastal area consists of high coastal bluffs and vertical sea cliffs. Coastal promontories in

  11. Birds and conservation significance of the Namib Desert's least ...

    African Journals Online (AJOL)

    -long Namib Desert and it remains the least known coastal wetland on a desert coast rich in shorebirds. Two surveys of the Baia dos Tigres region in 1999 and 2001 indicated a rich wetland bird diversity consisting of 25 species, with a total of ...

  12. Bacterial diversity of surface sand samples from the Gobi and Taklamaken deserts.

    Science.gov (United States)

    An, Shu; Couteau, Cécile; Luo, Fan; Neveu, Julie; DuBow, Michael S

    2013-11-01

    Arid regions represent nearly 30 % of the Earth's terrestrial surface, but their microbial biodiversity is not yet well characterized. The surface sands of deserts, a subset of arid regions, are generally subjected to large temperature fluctuations plus high UV light exposure and are low in organic matter. We examined surface sand samples from the Taklamaken (China, three samples) and Gobi (Mongolia, two samples) deserts, using pyrosequencing of PCR-amplified 16S V1/V2 rDNA sequences from total extracted DNA in order to gain an assessment of the bacterial population diversity. In total, 4,088 OTUs (using ≥97 % sequence similarity levels), with Chao1 estimates varying from 1,172 to 2,425 OTUs per sample, were discernable. These could be grouped into 102 families belonging to 15 phyla, with OTUs belonging to the Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria phyla being the most abundant. The bacterial population composition was statistically different among the samples, though members from 30 genera were found to be common among the five samples. An increase in phylotype numbers with increasing C/N ratio was noted, suggesting a possible role in the bacterial richness of these desert sand environments. Our results imply an unexpectedly large bacterial diversity residing in the harsh environment of these two Asian deserts, worthy of further investigation.

  13. Physiological conjunction of allelochemicals and desert plants.

    Science.gov (United States)

    Yosef Friedjung, Avital; Choudhary, Sikander Pal; Dudai, Nativ; Rachmilevitch, Shimon

    2013-01-01

    Plants exchange signals with other physical and biological entities in their habitat, a form of communication termed allelopathy. The underlying principles of allelopathy and secondary-metabolite production are still poorly understood, especially in desert plants. The coordination and role of secondary metabolites were examined as a cause of allelopathy in plants thriving under arid and semiarid soil conditions. Desert plant species, Origanum dayi, Artemisia sieberi and Artemisia judaica from two different sources (cultivar cuttings and wild seeds) were studied in their natural habitats. Growth rate, relative water content, osmotic potential, photochemical efficiency, volatile composition and vital factors of allelopathy were analyzed at regular intervals along four seasons with winter showing optimum soil water content and summer showing water deficit conditions. A comprehensive analysis of the volatile composition of the leaves, ambient air and soil in the biological niche of the plants under study was carried out to determine the effects of soil water conditions and sample plants on the surrounding flora. Significant morpho-physiological changes were observed across the seasons and along different soil water content. Metabolic analysis showed that water deficit was the key for driving selective metabolomic shifts. A. judaica showed the least metabolic shifts, while A. sieberi showed the highest shifts. All the species exhibited high allelopathic effects; A. judaica displayed relatively higher growth-inhibition effects, while O. dayi showed comparatively higher germination-inhibition effects in germination assays. The current study may help in understanding plant behavior, mechanisms underlying secondary-metabolite production in water deficit conditions and metabolite-physiological interrelationship with allelopathy in desert plants, and can help cull economic benefits from the produced volatiles.

  14. Physiological conjunction of allelochemicals and desert plants.

    Directory of Open Access Journals (Sweden)

    Avital Yosef Friedjung

    Full Text Available Plants exchange signals with other physical and biological entities in their habitat, a form of communication termed allelopathy. The underlying principles of allelopathy and secondary-metabolite production are still poorly understood, especially in desert plants. The coordination and role of secondary metabolites were examined as a cause of allelopathy in plants thriving under arid and semiarid soil conditions. Desert plant species, Origanum dayi, Artemisia sieberi and Artemisia judaica from two different sources (cultivar cuttings and wild seeds were studied in their natural habitats. Growth rate, relative water content, osmotic potential, photochemical efficiency, volatile composition and vital factors of allelopathy were analyzed at regular intervals along four seasons with winter showing optimum soil water content and summer showing water deficit conditions. A comprehensive analysis of the volatile composition of the leaves, ambient air and soil in the biological niche of the plants under study was carried out to determine the effects of soil water conditions and sample plants on the surrounding flora. Significant morpho-physiological changes were observed across the seasons and along different soil water content. Metabolic analysis showed that water deficit was the key for driving selective metabolomic shifts. A. judaica showed the least metabolic shifts, while A. sieberi showed the highest shifts. All the species exhibited high allelopathic effects; A. judaica displayed relatively higher growth-inhibition effects, while O. dayi showed comparatively higher germination-inhibition effects in germination assays. The current study may help in understanding plant behavior, mechanisms underlying secondary-metabolite production in water deficit conditions and metabolite-physiological interrelationship with allelopathy in desert plants, and can help cull economic benefits from the produced volatiles.

  15. In vitro germination of desert rose varieties(

    OpenAIRE

    Tatiane Lemos Varella; Gizelly Mendes Silva; Kaliane Zaira Camacho Maximiliano da Cruz; Andréia Izabel Mikovski; Josué Ribeiro da Silva Nunes; Ilio Fealho Carvalho; Maurecilne Lemes Silva

    2015-01-01

    The drought stress resistance is a characteristic of the desert rose and its estimable beauty flowers, which gave it great relevance in the ornamental market. However, the desert rose production and germination is hampered by possible sterility of their male and female flowers and frequent problems in pollination, so the tissue culture is a promising alternative to the propagation of these plants. This study aimed to evaluate the effect of gibberellic acid on four commercial varieties of dese...

  16. An easily reversible structural change underlies mechanisms enabling desert crust cyanobacteria to survive desiccation.

    Science.gov (United States)

    Bar-Eyal, Leeat; Eisenberg, Ido; Faust, Adam; Raanan, Hagai; Nevo, Reinat; Rappaport, Fabrice; Krieger-Liszkay, Anja; Sétif, Pierre; Thurotte, Adrien; Reich, Ziv; Kaplan, Aaron; Ohad, Itzhak; Paltiel, Yossi; Keren, Nir

    2015-10-01

    Biological desert sand crusts are the foundation of desert ecosystems, stabilizing the sands and allowing colonization by higher order organisms. The first colonizers of the desert sands are cyanobacteria. Facing the harsh conditions of the desert, these organisms must withstand frequent desiccation-hydration cycles, combined with high light intensities. Here, we characterize structural and functional modifications to the photosynthetic apparatus that enable a cyanobacterium, Leptolyngbya sp., to thrive under these conditions. Using multiple in vivo spectroscopic and imaging techniques, we identified two complementary mechanisms for dissipating absorbed energy in the desiccated state. The first mechanism involves the reorganization of the phycobilisome antenna system, increasing excitonic coupling between antenna components. This provides better energy dissipation in the antenna rather than directed exciton transfer to the reaction center. The second mechanism is driven by constriction of the thylakoid lumen which limits diffusion of plastocyanin to P700. The accumulation of P700(+) not only prevents light-induced charge separation but also efficiently quenches excitation energy. These protection mechanisms employ existing components of the photosynthetic apparatus, forming two distinct functional modes. Small changes in the structure of the thylakoid membranes are sufficient for quenching of all absorbed energy in the desiccated state, protecting the photosynthetic apparatus from photoinhibitory damage. These changes can be easily reversed upon rehydration, returning the system to its high photosynthetic quantum efficiency. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Screening the Egyptian desert actinomycetes as candidates for new ...

    African Journals Online (AJOL)

    In a screening program to study the antimicrobial activities of desert actinomycetes as potential producers of active metabolites, 75 actinomycete strains were isolated from the Egyptian desert habitats and tested. Out of the isolated 75 organisms, 32 (42.67%) showed activity against the used test organisms.

  18. Jojoba could stop the desert creep

    Energy Technology Data Exchange (ETDEWEB)

    1982-03-25

    The Sahara desert is estimated to be expanding at a rate of 5km a year. The Sudanese government is experimenting with jojoba in six different regions as the bush has the potential to stop this ''desert creep''. The plant, a native to Mexico, is long known for its resistance to drought and for the versatile liquid wax that can be extracted from its seeds. It is estimated that one hectare of mature plants could produce 3000 kg of oil, currently selling at $50 per litre, and so earn valuable foreign currency.

  19. Responses of Plant Community Composition to Long-term Changes in Snow Depth at the Great Basin Desert - Sierra Nevada ecotone.

    Science.gov (United States)

    Loik, M. E.

    2015-12-01

    Snowfall is the dominant hydrologic input for many high-elevation ecosystems of the western United States. Many climate models envision changes in California's Sierra Nevada snow pack characteristics, which would severely impact the storage and release of water for one of the world's largest economies. Given the importance of snowfall for future carbon cycling in high elevation ecosystems, how will these changes affect seedling recruitment, plant mortality, and community composition? To address this question, experiments utilize snow fences to manipulate snow depth and melt timing at a desert-montane ecotone in eastern California, USA. Long-term April 1 snow pack depth averages 1344 mm (1928-2015) but is highly variable from year to year. Snow fences increased equilibrium drift snow depth by 100%. Long-term changes in snow depth and melt timing are associated with s shift from shurbs to graminoids where snow depth was increased for >50 years. Changes in snow have impacted growth for only three plant species. Moreover, annual growth ring increments of the conifers Pinus jeffreyi and Pi. contorta were not equally sensitive to snow depth. There were over 8000 seedlings of the shrubs Artemisia tridentata and Purshia tridentata found in 6300 m2 in summer 2009, following about 1400 mm of winter snow and spring rain. The frequency of seedlings of A. tridentata and P. tridentata were much lower on increased-depth plots compared to ambient-depth, and reduced-depth plots. Survival of the first year was lowest for A. tridentata. Survival of seedlings from the 2008 cohort was much higher for P. tridentata than A. tridentata during the 2011-2015 drought. Results indicate complex interactions between snow depth and plant community characteristics, and that responses of plants at this ecotone may not respond similarly to increases vs. decreases in snow depth. These changes portend altered carbon uptake in this region under future snowfall scenarios.

  20. Closed bioregenerative life support systems: Applicability to hot deserts

    Science.gov (United States)

    Polyakov, Yuriy S.; Musaev, Ibrahim; Polyakov, Sergey V.

    2010-09-01

    Water scarcity in hot deserts, which cover about one-fifth of the Earth's land area, along with rapid expansion of hot deserts into arable lands is one of the key global environmental problems. As hot deserts are extreme habitats characterized by the availability of solar energy with a nearly complete absence of organic life and water, space technology achievements in designing closed ecological systems may be applicable to the design of sustainable settlements in the deserts. This review discusses the key space technology findings for closed biogenerative life support systems (CBLSS), which can simultaneously produce food, water, nutrients, fertilizers, process wastes, and revitalize air, that can be applied to hot deserts. Among them are the closed cycle of water and the acceleration of the cycling times of carbon, biogenic compounds, and nutrients by adjusting the levels of light intensity, temperature, carbon dioxide, and air velocity over plant canopies. Enhanced growth of algae and duckweed at higher levels of carbon dioxide and light intensity can be important to provide complete water recycling and augment biomass production. The production of fertilizers and nutrients can be enhanced by applying the subsurface flow wetland technology and hyper-thermophilic aerobic bacteria for treating liquid and solid wastes. The mathematical models, optimization techniques, and non-invasive measuring techniques developed for CBLSS make it possible to monitor and optimize the performance of such closed ecological systems. The results of long-duration experiments performed in BIOS-3, Biosphere 2, Laboratory Biosphere, and other ground-based closed test facilities suggest that closed water cycle can be achieved in hot-desert bioregenerative systems using the pathways of evapotranspiration, condensation, and biological wastewater treatment technologies. We suggest that the state of the art in the CBLSS design along with the possibility of using direct sunlight for

  1. Sediment grain-size characteristics and relevant correlations to the aeolian environment in China's eastern desert region.

    Science.gov (United States)

    Zhang, Chunlai; Shen, Yaping; Li, Qing; Jia, Wenru; Li, Jiao; Wang, Xuesong

    2018-06-15

    To identify characteristics of aeolian activity and the aeolian environment in China's eastern desert region, this study collected surface sediment samples from the main desert and sandy lands in this region: the Hobq Desert and the Mu Us, Otindag, Horqin, and Hulunbuir sandy lands. We analyzed the grain-size characteristics and their relationships to three key environmental indicators: drift potential, the dune mobility index, and vegetation cover. The main sediment components are fine to medium sands, with poor (Hulunbuir) to moderate (all other areas) sorting, of unimodal to bimodal distribution. This suggests that improved sorting is accomplished by the loss of both relatively coarser and finer grains. Since 2000, China's eastern desert region has generally experienced low wind energy environmental conditions, resulting in decreased dune activity. In the Hobq Desert, however, the dry climate and sparse vegetation, in conjunction with the most widely distributed mobile dune area in the eastern desert region, have led to frequent and intense aeolian activity, including wind erosion, sand transport, and deposition, resulting in conditions for good sediment sorting. In the Mu Us, Otindag, and Horqin sandy lands, mosaic distribution has resulted from wind erosion-dominated and deposition-dominated aeolian environments. In the Hulunbuir Sandy Land, high precipitation, low temperatures, and steppe vegetation have resulted in well-developed soils; however, strong winds and flat terrain have created an aeolian environment dominated by wind erosion. Copyright © 2018. Published by Elsevier B.V.

  2. Investigating water resources of the desert: How isotopes can help

    International Nuclear Information System (INIS)

    Gonfiantini, R.

    1992-01-01

    Newspapers and magazines from time to time write about the enormous reserves of water stored underground in the Sahara, whose rational exploitation would allow the agricultural development of the desert. Although the practical implementation of such projects is rather problematic, it is true that groundwater is relatively abundant under most of the Sahara (as well as in other deserts in the world), but it is seldom easily accessible. What do we really know about these resources of groundwater and how they have accumulated in areas where rainfall is so scarce. What do we know of the hydrological history of the desert. These problems are important for the correct evaluation and use of the groundwater in the desert. Isotope techniques help in their solution, and are described in this document. 6 figs

  3. Investigating water resources of the desert: how isotopes can help

    International Nuclear Information System (INIS)

    Gonfiantini, R.

    1981-01-01

    Newspapers and magazines from time to time write about the enormous reserves of water stored underground in the Sahara, whose rational exploitation would allow the agricultural development of the desert. Although the practical implementation of such projects is rather problematic, it is true that groundwater is relatively abundant under most of the Sahara (as well as in other deserts in the world), but it is seldom easily accessible. What do we really know about these resources of groundwater and how they have accumulated in areas where rainfall is so scarce. What do we know of the hydrological history of the desert. These problems are important for the correct evaluation and use of the groundwater in the desert. Isotope techniques help in their solution, and are described in this document

  4. Colonization patterns of soil microbial communities in the Atacama Desert.

    Science.gov (United States)

    Crits-Christoph, Alexander; Robinson, Courtney K; Barnum, Tyler; Fricke, W Florian; Davila, Alfonso F; Jedynak, Bruno; McKay, Christopher P; Diruggiero, Jocelyne

    2013-11-20

    The Atacama Desert is one of the driest deserts in the world and its soil, with extremely low moisture, organic carbon content, and oxidizing conditions, is considered to be at the dry limit for life. Analyses of high throughput DNA sequence data revealed that bacterial communities from six geographic locations in the hyper-arid core and along a North-South moisture gradient were structurally and phylogenetically distinct (ANOVA test for observed operating taxonomic units at 97% similarity (OTU0.03), P microbial communities' diversity metrics (least squares linear regression for observed OTU0.03 and air RH and soil conductivity, P PCoA Spearman's correlation for air RH and soil conductivity, P <0.0001), indicating that water availability and salt content are key factors in shaping the Atacama soil microbiome. Mineralization studies showed communities actively metabolizing in all soil samples, with increased rates in soils from the southern locations. Our results suggest that microorganisms in the driest soils of the Atacama Desert are in a state of stasis for most of the time, but can potentially metabolize if presented with liquid water for a sufficient duration. Over geological time, rare rain events and physicochemical factors potentially played a major role in selecting micro-organisms that are most adapted to extreme desiccating conditions.

  5. California State Waters Map Series: offshore of Tomales Point, California

    Science.gov (United States)

    Johnson, Samuel Y.; Dartnell, Peter; Golden, Nadine E.; Hartwell, Stephen R.; Greene, H. Gary; Erdey, Mercedes D.; Cochrane, Guy R.; Watt, Janet Tilden; Kvitek, Rikk G.; Manson, Michael W.; Endris, Charles A.; Dieter, Bryan E.; Krigsman, Lisa M.; Sliter, Ray W.; Lowe, Erik N.; Chinn, John L.; Johnson, Samuel Y.; Cochran, Susan A.

    2015-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 200 m) subsurface geology.

  6. Reclaiming freshwater sustainability in the Cadillac Desert

    Science.gov (United States)

    Sabo, John L.; Sinha, Tushar; Bowling, Laura C.; Schoups, Gerrit H.W.; Wallender, Wesley W.; Campana, Michael E.; Cherkauer, Keith A.; Fuller, Pam L.; Graf, William L.; Hopmans, Jan W.; Kominoski, John S.; Taylor, Carissa; Trimble, Stanley W.; Webb, Robert H.; Wohl, Ellen E.

    2010-01-01

    Increasing human appropriation of freshwater resources presents a tangible limit to the sustainability of cities, agriculture, and ecosystems in the western United States. Marc Reisner tackles this theme in his 1986 classic Cadillac Desert: The American West and Its Disappearing Water. Reisner's analysis paints a portrait of region-wide hydrologic dysfunction in the western United States, suggesting that the storage capacity of reservoirs will be impaired by sediment infilling, croplands will be rendered infertile by salt, and water scarcity will pit growing desert cities against agribusiness in the face of dwindling water resources. Here we evaluate these claims using the best available data and scientific tools. Our analysis provides strong scientific support for many of Reisner's claims, except the notion that reservoir storage is imminently threatened by sediment. More broadly, we estimate that the equivalent of nearly 76% of streamflow in the Cadillac Desert region is currently appropriated by humans, and this figure could rise to nearly 86% under a doubling of the region's population. Thus, Reisner's incisive journalism led him to the same conclusions as those rendered by copious data, modern scientific tools, and the application of a more genuine scientific method. We close with a prospectus for reclaiming freshwater sustainability in the Cadillac Desert, including a suite of recommendations for reducing region-wide human appropriation of streamflow to a target level of 60%.

  7. The Desert and the Sown Project in Northern Jordan

    DEFF Research Database (Denmark)

    Kerner, Susanne

    2014-01-01

    The desert and sown project, which started in 1999 and continued in 2008-2009, studied the region between the settled areas east of Irbid and Ramtha and the surrounding desert at Mafraq (northern Jordan). Large parts of the material comes from the Palaeolithic period, while some smaller tells date...

  8. Observed 20th Century Desert Dust Variability: Impact on Climate and Biogeochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Mahowald, Natalie [Cornell University; Kloster, Silvia [Cornell University; Engelstaedter, S. [Cornell University; Moore, Jefferson Keith [University of California, Irvine; Mukhopadhyay, S. [Harvard University; McConnell, J. R. [Desert Research Institute, Reno, NV; Albani, S. [Cornell University; Doney, Scott C. [Woods Hole Oceanographic Institution (WHOI), Woods Hole, MA; Bhattacharya, A. [Harvard University; Curran, M. A. J. [Antarctic Climate and Ecosystems Cooperative Research Centre; Flanner, Mark G. [University of Michigan; Hoffman, Forrest M [ORNL; Lawrence, David M. [National Center for Atmospheric Research (NCAR); Lindsay, Keith [National Center for Atmospheric Research (NCAR); Mayewski, P. A. [University of Maine; Neff, Jason [University of Colorado, Boulder; Rothenberg, D. [Cornell University; Thomas, E. [British Antarctic Survey, Cambridge, UK; Thornton, Peter E [ORNL; Zender, Charlie S. [University of California, Irvine

    2010-01-01

    Desert dust perturbs climate by directly and indirectly interacting with incoming solar and outgoing long wave radiation, thereby changing precipitation and temperature, in addition to modifying ocean and land biogeochemistry. While we know that desert dust is sensitive to perturbations in climate and human land use, previous studies have been unable to determine whether humans were increasing or decreasing desert dust in the global average. Here we present observational estimates of desert dust based on paleodata proxies showing a doubling of desert dust during the 20th century over much, but not all the globe. Large uncertainties remain in estimates of desert dust variability over 20th century due to limited data. Using these observational estimates of desert dust change in combination with ocean, atmosphere and land models, we calculate the net radiative effect of these observed changes (top of atmosphere) over the 20th century to be -0.14 {+-} 0.11 W/m{sup 2} (1990-1999 vs. 1905-1914). The estimated radiative change due to dust is especially strong between the heavily loaded 1980-1989 and the less heavily loaded 1955-1964 time periods (-0.57 {+-} 0.46 W/m{sup 2}), which model simulations suggest may have reduced the rate of temperature increase between these time periods by 0.11 C. Model simulations also indicate strong regional shifts in precipitation and temperature from desert dust changes, causing 6 ppm (12 PgC) reduction in model carbon uptake by the terrestrial biosphere over the 20th century. Desert dust carries iron, an important micronutrient for ocean biogeochemistry that can modulate ocean carbon storage; here we show that dust deposition trends increase ocean productivity by an estimated 6% over the 20th century, drawing down an additional 4 ppm (8 PgC) of carbon dioxide into the oceans. Thus, perturbations to desert dust over the 20th century inferred from observations are potentially important for climate and biogeochemistry, and our understanding

  9. Temporal patterns in Homalodisca spp. (Hemiptera: Cicadellidae) oviposition on southern California citrus and jojoba.

    Science.gov (United States)

    Al-Wahaibi, Ali K; Morse, Joseph G

    2010-02-01

    A detailed study of the distribution of egg masses of Homalodisca vitripennis (Germar) and H. liturata Ball was done across a 2-yr period (2001-2003) on six host plants in southern California (Marsh grapefruit, Lisbon lemon, Washington navel, Dancy tangerine, rough lemon, and jojoba in Riverside; jojoba in Desert Center). The majority of egg masses in Riverside belonged to H. vitripennis (84-100%), whereas in Desert Center, all Homalodisca egg masses were H. liturata. Oviposition in Riverside occurred in two discrete periods, a late winter and spring period (mid-February to late May), followed by a short interval of very low oviposition during most of June, and then a summer period (late June to late September) followed by a relatively long period of very low oviposition in fall and early winter (October to mid-February). Levels of oviposition during the late winter-spring period were similar to those during the summer despite an observed larger population of adults during the latter period. Moreover, egg clutch size for H. vitripennis was generally greater in spring than during summer and was generally higher than that for H. liturata, especially on Riverside jojoba. Larger egg clutch size was seen on grapefruit than on lemon, navel, and tangerine during summer. There appeared to be temporal host shifts in oviposition; most evident was the shift from relatively high rates of oviposition on lemon and tangerine in late winter-early spring to relatively higher rates of oviposition on grapefruit and navel during summer.

  10. Pastoralist rock art in the Black Desert of Jordan

    NARCIS (Netherlands)

    Brusgaard, N.O.

    2015-01-01

    This paper discusses the current problems that exist with the rock art research of the Black Desert in Jordan and presents some preliminary field results of the author’s research on the petroglyphs. It also explore the possibilities that the rock art affords to learn more about the elusive desert

  11. Desert Rats 2010 Operations Tests: Insights from the Geology Crew Members

    Science.gov (United States)

    Bleacher, J. E.; Hurtado, J. M., Jr.; Young, K. E.; Rice, J.; Garry, W. B.; Eppler, D.

    2011-01-01

    Desert Research and Technology Studies (Desert RATS) is a multi-year series of tests of NASA hardware and operations deployed in the high desert of Arizona. Conducted annually since 1997, these activities exercise planetary surface hardware and operations in relatively harsh conditions where long-distance, multi-day roving is achievable. Such activities not only test vehicle subsystems, they also stress communications and operations systems and enable testing of science operations approaches that advance human and robotic surface exploration capabilities. Desert RATS 2010 tested two crewed rovers designed as first-generation prototypes of small pressurized vehicles, consistent with exploration architecture designs. Each rover provided the internal volume necessary for crewmembers to live and work for periods up to 14 days, as well as allowing for extravehicular activities (EVAs) through the use of rear-mounted suit ports. The 2010 test was designed to simulate geologic science traverses over a 14-day period through a volcanic field that is analogous to volcanic terrains observed throughout the Solar System. The test was conducted between 31 August and 13 September 2010. Two crewmembers lived in and operated each rover for a week with a "shift change" on day 7, resulting in a total of eight test subjects for the two-week period. Each crew consisted of an engineer/commander and an experienced field geologist. Three of the engineer/commanders were experienced astronauts with at least one Space Shuttle flight. The field geologists were drawn from the scientific community, based on funded and published field expertise.

  12. 76 FR 8730 - Desert Southwest Customer Service Region-Rate Order No. WAPA-151

    Science.gov (United States)

    2011-02-15

    ... DEPARTMENT OF ENERGY Western Area Power Administration Desert Southwest Customer Service Region.... Jack Murray, Rates Manager, Desert Southwest Customer Service Region, Western Area Power Administration... ancillary service rates for the Desert Southwest Customer Service Region in accordance with section 302 of...

  13. Production of desert rose seedlings in different potting media

    Directory of Open Access Journals (Sweden)

    Ronan Carlos Colombo

    2017-09-01

    Full Text Available Over the past decade the desert rose received fame in the flower market due to its striking and sculptural forms; however, the commercial production of these species is quite recent and little is known about its crop management, including substrates recommendation. The objectives of this study were to investigate the effect of different substrates on desert rose seed germination and production of its seedlings. Experiment I: freshly harvested seeds of desert rose were sown in different substrates e.g. sand, coconut fiber, semi-composted pine bark, sand + coconut fiber, semi-composted pine bark + sand and coconut fiber + semicomposted pine bark. These substrates were evaluated to study the emergence percentage of seeds, initial growth of seedlings and seedling emergence speed index (ESI. Experiment II: desert rose from the experiment I were transferred to plastic pots filled with the same substrates as in experiment I. The pH and electrical conductivity (EC of the substrates were noted every 30 days while the growth parameters of seedlings were recorded after 240 days. Results from experiment I showed higher germination rate and seedling growth in substrates containing semi-composted pine bark. Similarly, in experiment II, better quality seedlings were observed in substrates containing semi-composted pine bark. Thus, for desert rose seed germination and seedling growth, it is recommended to use substrates containing semi-composted pine bark.

  14. Pollen spectrum, a cornerstone for tracing the evolution of the eastern Central Asian desert

    Science.gov (United States)

    Lu, Kai-Qing; Xie, Gan; Li, Min; Li, Jin-Feng; Trivedi, Anjali; Ferguson, David K.; Yao, Yi-Feng; Wang, Yu-Fei

    2018-04-01

    The temperate desert in arid Central Asia (ACA) has acted as a thoroughfare for the ancient Silk Road and today's Belt and Road, linking economic and cultural exchanges between East and West. The interaction between human sustainable development and the dynamic change in the desert ecosystem in this region is an area of concern for governments and scientific communities. Nevertheless, the lack of a pollen spectrum of the dominant taxa within the temperate desert vegetation and a corresponding relation between pollen assemblages and specific desert vegetation types is an obstacle to further understanding the formation and maintenance of this desert ecosystem. In this work, we link pollen assemblages to specific desert vegetation types with a new pollen spectrum with specific pollen grains, specific plant taxa and related habitats, providing a solid foundation for further tracing the evolution of the desert ecosystem in eastern arid Central Asia.

  15. Ecosystem responses to warming and watering in typical and desert steppes

    Science.gov (United States)

    Xu, Zhenzhu; Hou, Yanhui; Zhang, Lihua; Liu, Tao; Zhou, Guangsheng

    2016-10-01

    Global warming is projected to continue, leading to intense fluctuations in precipitation and heat waves and thereby affecting the productivity and the relevant biological processes of grassland ecosystems. Here, we determined the functional responses to warming and altered precipitation in both typical and desert steppes. The results showed that watering markedly increased the aboveground net primary productivity (ANPP) in a typical steppe during a drier year and in a desert steppe over two years, whereas warming manipulation had no significant effect. The soil microbial biomass carbon (MBC) and the soil respiration (SR) were increased by watering in both steppes, but the SR was significantly decreased by warming in the desert steppe only. The inorganic nitrogen components varied irregularly, with generally lower levels in the desert steppe. The belowground traits of soil total organic carbon (TOC) and the MBC were more closely associated with the ANPP in the desert than in the typical steppes. The results showed that the desert steppe with lower productivity may respond strongly to precipitation changes, particularly with warming, highlighting the positive effect of adding water with warming. Our study implies that the habitat- and year-specific responses to warming and watering should be considered when predicting an ecosystem’s functional responses under climate change scenarios.

  16. Desert wetlands in the geologic record

    Science.gov (United States)

    Pigati, Jeff S.; Rech, Jason A.; Quade, Jay; Bright, Jordon; Edwards, L.; Springer, A.

    2014-01-01

    Desert wetlands support flora and fauna in a variety of hydrologic settings, including seeps, springs, marshes, wet meadows, ponds, and spring pools. Over time, eolian, alluvial, and fluvial sediments become trapped in these settings by a combination of wet ground conditions and dense plant cover. The result is a unique combination of clastic sediments, chemical precipitates, and organic matter that is preserved in the geologic record as ground-water discharge (GWD) deposits. GWD deposits contain information on the timing and magnitude of past changes in water-table levels and, therefore, are a potential source of paleohydrologic and paleoclimatic information. In addition, they can be important archeological and paleontological archives because desert wetlands provide reliable sources of fresh water, and thus act as focal points for human and faunal activities, in some of the world's harshest and driest lands. Here, we review some of the physical, sedimentological, and geochemical characteristics common to GWD deposits, and provide a contextual framework that researchers can use to identify and interpret geologic deposits associated with desert wetlands. We discuss several lines of evidence used to differentiate GWD deposits from lake deposits (they are commonly confused), and examine how various types of microbiota and depositional facies aid in reconstructing past environmental and hydrologic conditions. We also review how late Quaternary GWD deposits are dated, as well as methods used to investigate desert wetlands deeper in geologic time. We end by evaluating the strengths and limitations of hydrologic and climatic records derived from GWD deposits, and suggest several avenues of potential future research to further develop and utilize these unique and complex systems.

  17. Long-distance flights and high-risk breeding by nomadic waterbirds on desert salt lakes.

    Science.gov (United States)

    Pedler, Reece D; Ribot, Raoul F H; Bennett, Andrew T D

    2018-02-01

    Understanding and conserving mobile species presents complex challenges, especially for animals in stochastic or changing environments. Nomadic waterbirds must locate temporary water in arid biomes where rainfall is highly unpredictable in space and time. To achieve this they need to travel over vast spatial scales and time arrival to exploit pulses in food resources. How they achieve this is an enduring mystery.  We investigated these challenges in the colonial-nesting Banded Stilt (Cladorhynchus leucocephalus), a nomadic shorebird of conservation concern. Hitherto, Banded Stilts were hypothesized to have only 1-2 chances to breed during their long lifetime, when flooding rain fills desert salt lakes, triggering mass-hatching of brine shrimp. Over 6 years, we satellite tagged 57 individuals, conducted 21 aerial surveys to detect nesting colonies on 14 Australian desert salt lakes, and analyzed 3 decades of Landsat and MODIS satellite imagery to quantify salt-lake flood frequency and extent. Within days of distant inland rainfall, Banded Stilts flew 1,000-2,000 km to reach flooded salt lakes. On arrival, females laid over half their body weight in eggs. We detected nesting episodes across the species' range at 7 times the frequency reported during the previous 80 years. Nesting colonies of thousands formed following minor floods, yet most were subsequently abandoned when the water rapidly evaporated prior to egg hatching. Satellite imagery revealed twice as many flood events sufficient for breeding-colony initiation as recorded colonies, suggesting that nesting at remote sites has been underdetected. Individuals took risk on uncertain breeding opportunities by responding to frequent minor flood events between infrequent extensive flooding, exemplifying the extreme adaptability and trade-offs of species exploiting unstable environments. The conservation challenges of nest predation by overabundant native gulls and anthropogenic modifications to salt lakes filling

  18. Ecoregions of California

    Science.gov (United States)

    Griffith, Glenn E.; Omernik, James M.; Smith, David W.; Cook, Terry D.; Tallyn, Ed; Moseley, Kendra; Johnson, Colleen B.

    2016-02-23

    (2000), and Omernik and Griffith (2014).California has great ecological and biological diversity. The State contains offshore islands and coastal lowlands, large alluvial valleys, forested mountain ranges, deserts, and various aquatic habitats. There are 13 level III ecoregions and 177 level IV ecoregions in California and most continue into ecologically similar parts of adjacent States of the United States or Mexico (Bryce and others, 2003; Thorson and others, 2003; Griffith and others, 2014).The California ecoregion map was compiled at a scale of 1:250,000. It revises and subdivides an earlier national ecoregion map that was originally compiled at a smaller scale (Omernik, 1987; U.S. Environmental Protection Agency, 2013). This poster is the result of a collaborative project primarily between U.S. Environmental Protection Agency (USEPA) Region IX, USEPA National Health and Environmental Effects Research Laboratory (Corvallis, Oregon), California Department of Fish and Wildlife (DFW), U.S. Department of Agriculture (USDA)–Natural Resources Conservation Service (NRCS), U.S. Department of the Interior–Geological Survey (USGS), and other State of California agencies and universities.The project is associated with interagency efforts to develop a common framework of ecological regions (McMahon and others, 2001). Reaching that objective requires recognition of the differences in the conceptual approaches and mapping methodologies applied to develop the most common ecoregion-type frameworks, including those developed by the USDA–Forest Service (Bailey and others, 1994; Miles and Goudy, 1997; Cleland and others, 2007), the USEPA (Omernik 1987, 1995), and the NRCS (U.S. Department of Agriculture–Soil Conservation Service, 1981; U.S. Department of Agriculture–Natural Resources Conservation Service, 2006). As each of these frameworks is further refined, their differences are becoming less discernible. Regional collaborative projects such as this one in California

  19. CAMEL REARING IN CHOLISTAN DESERT OF PAKISTAN

    OpenAIRE

    I. ALI, M. SHAFIQ CHAUDHRY1 AND U. FAROOQ

    2009-01-01

    The camel is one of the typical and the best adopted animals of the desert, capable of enduring thirst and hunger for days and is the most patient of land animals. For desert nomads of Pakistani Cholistan, it is a beloved companion, a source of milk and meat, transport facility provider and a racing/dancing animal, thus, playing an important role in the socioeconomic uplift of the local community. Camels of Marrecha or Mahra breed are mainly used for riding and load carrying but may be traine...

  20. Geochronology and paleoenvironment of pluvial Harper Lake, Mojave Desert, California, USA

    Science.gov (United States)

    Garcia, Anna L.; Knott, Jeffrey R.; Mahan, Shannon; Bright, Jordan

    2014-01-01

    Accurate reconstruction of the paleo-Mojave River and pluvial lake (Harper, Manix, Cronese, and Mojave) system of southern California is critical to understanding paleoclimate and the North American polar jet stream position over the last 500 ka. Previous studies inferred a polar jet stream south of 35°N at 18 ka and at ~ 40°N at 17–14 ka. Highstand sediments of Harper Lake, the upstream-most pluvial lake along the Mojave River, have yielded uncalibrated radiocarbon ages ranging from 24,000 to > 30,000 14C yr BP. Based on geologic mapping, radiocarbon and optically stimulated luminescence dating, we infer a ~ 45–40 ka age for the Harper Lake highstand sediments. Combining the Harper Lake highstand with other Great Basin pluvial lake/spring and marine climate records, we infer that the North American polar jet stream was south of 35°N about 45–40 ka, but shifted to 40°N by ~ 35 ka. Ostracodes (Limnocythere ceriotuberosa) from Harper Lake highstand sediments are consistent with an alkaline lake environment that received seasonal inflow from the Mojave River, thus confirming the lake was fed by the Mojave River. The ~ 45–40 ka highstand at Harper Lake coincides with a shallowing interval at downstream Lake Manix.

  1. The evolution of deserts with climatic changes in China since 150 ka B.P.

    Institute of Scientific and Technical Information of China (English)

    董光荣; 陈惠忠; 王贵勇; 李孝泽; 邵亚军; 金炯

    1997-01-01

    According to the bioclimatic zones, dune mobility and the fabric characteristics of stratigraphic sedimentary facies, the deserts in China are divided into Eastern, Western, Central and Northwestern deserts. Based on the records of stratigraphical facies, climatic proxies, historical data, etc. in each desert region, the evolution of deserts with climatic changes in time and space since 150 ka B. P. in China are dealt with; then the evolution of deserts in relation to the glacial climatic fluctuations caused by solar radiation changes, underlying surface variation and their feedback mechanism is discussed through comparison with global records; finally, in consideration of global wanning due to increasing of greenhouse gases such as CO2, the possible tendency of the evolution of deserts and the climatic changes is discussed.

  2. Aeromycobiota of Western Desert of Egypt | Ismail | African Journal ...

    African Journals Online (AJOL)

    The prevalence of airborne mycobiota at six different regions of Western desert (5 regions) and Eastern desert (1) of Egypt was determined using the exposed-plate method. A total of 44 genera, 102 species and one variety in addition to some unidentified yeasts and dark sterile mycelia were collected. Of the above, only 5 ...

  3. Cutaneous water loss and sphingolipids in the stratum corneum of house sparrows, Passer domesticus L., from desert and mesic environments as determined by reversed phase high-performance liquid chromatography coupled with atmospheric pressure photospray ionization mass spectrometry.

    Science.gov (United States)

    Muñoz-Garcia, Agustí; Ro, Jennifer; Brown, Johnie C; Williams, Joseph B

    2008-02-01

    Because cutaneous water loss (CWL) represents half of total water loss in birds, selection to reduce CWL may be strong in desert birds. We previously found that CWL of house sparrows from a desert population was about 25% lower than that of individuals from a mesic environment. The stratum corneum (SC), the outer layer of the epidermis, serves as the primary barrier to water vapor diffusion through the skin. The avian SC is formed by layers of corneocytes embedded in a lipid matrix consisting of cholesterol, free fatty acids and two classes of sphingolipids, ceramides and cerebrosides. The SC of birds also serves a thermoregulatory function; high rates of CWL keep body temperatures under lethal limits in episodes of heat stress. In this study, we used high-performance liquid chromatography coupled with atmospheric pressure photoionization-mass spectrometry (HPLC/APPI-MS) to identify and quantify over 200 sphingolipids in the SC of house sparrows from desert and mesic populations. Principal components analysis (PCA) led to the hypotheses that sphingolipids in the SC of desert sparrows have longer carbon chains in the fatty acid moiety and are more polar than those found in mesic sparrows. We also tested the association between principal components and CWL in both populations. Our study suggested that a reduction in CWL found in desert sparrows was, in part, the result of modifications in chain length and polarity of the sphingolipids, changes that apparently determine the interactions of the lipid molecules within the SC.

  4. Life-cycle assessment of high-speed rail: the case of California

    International Nuclear Information System (INIS)

    Chester, Mikhail; Horvath, Arpad

    2010-01-01

    The state of California is expected to have significant population growth in the next half-century resulting in additional passenger transportation demand. Planning for a high-speed rail system connecting San Diego, Los Angeles, San Francisco, and Sacramento as well as many population centers between is now underway. The considerable investment in California high-speed rail has been debated for some time and now includes the energy and environmental tradeoffs. The per-trip energy consumption, greenhouse gas emissions, and other emissions are often compared against the alternatives (automobiles, heavy rail, and aircraft), but typically only considering vehicle operation. An environmental life-cycle assessment of the four modes was created to compare both direct effects of vehicle operation and indirect effects from vehicle, infrastructure, and fuel components. Energy consumption, greenhouse gas emissions, and SO 2 , CO, NO X , VOC, and PM 10 emissions were evaluated. The energy and emission intensities of each mode were normalized per passenger kilometer traveled by using high and low occupancies to illustrate the range in modal environmental performance at potential ridership levels. While high-speed rail has the potential to be the lowest energy consumer and greenhouse gas emitter, appropriate planning and continued investment would be needed to ensure sustained high occupancy. The time to environmental payback is discussed highlighting the ridership conditions where high-speed rail will or will not produce fewer environmental burdens than existing modes. Furthermore, environmental tradeoffs may occur. High-speed rail may lower energy consumption and greenhouse gas emissions per trip but can create more SO 2 emissions (given the current electricity mix) leading to environmental acidification and human health issues. The significance of life-cycle inventorying is discussed as well as the potential of increasing occupancy on mass transit modes.

  5. [Academic stress, desertion, and retention strategies for students in higher education].

    Science.gov (United States)

    Suárez-Montes, Nancy; Díaz-Subieta, Luz B

    2015-04-01

    A systematic review was performed to specify the characteristics of academic stress that affect the mental health of the university population. To do this, recent publications regarding academic stress, student desertion, and retention strategies were examined. Throughout this text, we present the results of the review in terms of the definitions of academic stress, student desertion, and retention strategies. In the same way, we examine the interpretative models with regard to student desertion and approach retention strategies in higher education. We also review retention experiences of several other countries. In terms of Colombia, we present aspects related to student desertion and retention programs from the point of view of the National Ministry of Education and from the experience of some universities with consolidated programs.

  6. Female offspring desertion and male-only care increase with natural and experimental increase in food abundance.

    Science.gov (United States)

    Eldegard, Katrine; Sonerud, Geir A

    2009-05-07

    In species with biparental care, one parent may escape the costs of parental care by deserting and leaving the partner to care for the offspring alone. A number of theoretical papers have suggested a link between uniparental offspring desertion and ecological factors, but empirical evidence is scarce. We investigated the relationship between uniparental desertion and food abundance in a natural population of Tengmalm's owl Aegolius funereus, both by means of a 5-year observational study and a 1-year experimental study. Parents and offspring were fitted with radio-transmitters in order to reveal the parental care strategy (i.e. care or desert) of individual parents, and to keep track of the broods post-fledging. We found that 70 per cent of the females from non-experimental nests deserted, while their partner continued to care for their joint offspring alone. Desertion rate was positively related to natural prey population densities and body reserves of the male partner. In response to food supplementation, a larger proportion of the females deserted, and females deserted the offspring at an earlier age. Offspring survival during the post-fledging period tended to be lower in deserted than in non-deserted broods. We argue that the most important benefit of deserting may be remating (sequential polyandry).

  7. Observed 20th century desert dust variability: impact on climate and biogeochemistry

    Directory of Open Access Journals (Sweden)

    N. M. Mahowald

    2010-11-01

    Full Text Available Desert dust perturbs climate by directly and indirectly interacting with incoming solar and outgoing long wave radiation, thereby changing precipitation and temperature, in addition to modifying ocean and land biogeochemistry. While we know that desert dust is sensitive to perturbations in climate and human land use, previous studies have been unable to determine whether humans were increasing or decreasing desert dust in the global average. Here we present observational estimates of desert dust based on paleodata proxies showing a doubling of desert dust during the 20th century over much, but not all the globe. Large uncertainties remain in estimates of desert dust variability over 20th century due to limited data. Using these observational estimates of desert dust change in combination with ocean, atmosphere and land models, we calculate the net radiative effect of these observed changes (top of atmosphere over the 20th century to be −0.14 ± 0.11 W/m2 (1990–1999 vs. 1905–1914. The estimated radiative change due to dust is especially strong between the heavily loaded 1980–1989 and the less heavily loaded 1955–1964 time periods (−0.57 ± 0.46 W/m2, which model simulations suggest may have reduced the rate of temperature increase between these time periods by 0.11 °C. Model simulations also indicate strong regional shifts in precipitation and temperature from desert dust changes, causing 6 ppm (12 PgC reduction in model carbon uptake by the terrestrial biosphere over the 20th century. Desert dust carries iron, an important micronutrient for ocean biogeochemistry that can modulate ocean carbon storage; here we show that dust deposition trends increase ocean productivity by an estimated 6% over the 20th century, drawing down an additional 4 ppm (8 PgC of carbon dioxide into the oceans. Thus, perturbations to desert dust over the 20th century inferred from observations are potentially important for climate and

  8. Trace-element evidence for the origin of desert varnish by direct aqueous atmospheric deposition

    Science.gov (United States)

    Thiagarajan, Nivedita; Aeolus Lee, Cin-Ty

    2004-07-01

    Smooth rock surfaces in arid environments are often covered with a thin coating of Fe-Mn oxyhydroxides known as desert varnish. It is debated whether such varnish is formed (a) by slow diagenesis of dust particles deposited on rock surfaces, (b) by leaching from the underlying rock substrate, or (c) by direct deposition of dissolved constituents in the atmosphere. Varnishes collected from smooth rock surfaces in the Mojave Desert and Death Valley, California are shown here to have highly enriched and fractionated trace-element abundances relative to upper continental crust (UCC). They are highly enriched in Co, Ni, Pb and the rare-earth elements (REEs). In particular, they have anomalously high Ce/La and low Y/Ho ratios. These features can only be explained by preferential scavenging of Co, Ni, Pb and the REEs by Fe-Mn oxyhydroxides in an aqueous environment. High field strength elements (HFSEs: Zr, Hf, Ta, Nb, Th), however, show only small enrichments despite the fact that these elements should also be strongly scavenged by Fe-Mn oxyhydroxides. This suggests that their lack of enrichment is a feature inherited from a solution initially poor in HFSEs. The first two scenarios for varnish formation can be ruled out as follows. The high enrichment factors of Fe, Mn and many trace elements cannot be generated by mass loss associated with post-depositional diagenesis of dust particles because such a process predicts only a small increase in concentration. In addition, the highly fractionated abundance patterns of particle reactive element pairs (e.g., Ce/La and Y/Ho) rules out leaching of the rock substrate. This is because if leaching were to occur, varnishes would grow from the inside to the outside, and thus any particle-reactive trace element leached from the substrate would be quantitatively sequestered in the Fe-Mn oxyhydroxide layers, prohibiting any significant elemental fractionations. One remaining possibility is that the Fe, Mn and trace metals in varnish are

  9. The Plate Boundary Observatory Student Field Assistant Program in Southern California

    Science.gov (United States)

    Seider, E. L.

    2007-12-01

    Each summer, UNAVCO hires students as part of the Plate Boundary Observatory (PBO) Student Field Assistant Program. PBO, the geodetic component of the NSF-funded EarthScope project, involves the reconnaissance, permitting, installation, documentation, and maintenance of 880 permanent GPS stations in five years. During the summer 2007, nine students from around the US and Puerto Rico were hired to assist PBO engineers during the busy summer field season. From June to September, students worked closely with PBO field engineers to install and maintain permanent GPS stations in all regions of PBO, including Alaska. The PBO Student Field Assistant Program provides students with professional hands-on field experience as well as continuing education in the geosciences. It also gives students a glimpse into the increasing technologies available to the science community, the scope of geophysical research utilizing these technologies, and the field techniques necessary to complete this research. Students in the PBO Field Assistant Program are involved in all aspects of GPS support, including in-warehouse preparation and in-field installations and maintenance. Students are taught practical skills such as drilling, wiring, welding, hardware configuration, documentation, and proper field safety procedures needed to construct permanent GPS stations. These real world experiences provide the students with technical and professional skills that are not always available to them in a classroom, and will benefit them greatly in their future studies and careers. The 2007 summer field season in Southern California consisted of over 35 GPS permanent station installations. To date, the Southern California region of PBO has installed over 190 GPS stations. This poster presentation will highlight the experiences gained by the Southern California student field assistants, while supporting PBO- Southern California GPS installations in the Mohave Desert and the Inyo National Forest.

  10. Health effects of particulate air pollution and airborne desert dust

    Science.gov (United States)

    Lelieveld, J.; Pozzer, A.; Giannadaki, D.; Fnais, M.

    2013-12-01

    Air pollution by fine particulate matter (PM2.5) has increased strongly with industrialization and urbanization. In the past decades this increase has taken place at a particularly high pace in South and East Asia. We estimate the premature mortality and the years of human life lost (YLL) caused by anthropogenic PM2.5 and airborne desert dust (DU2.5) on regional and national scales (Giannadaki et al., 2013; Lelieveld et al., 2013). This is based on high-resolution global model calculations that resolve urban and industrial regions in relatively great detail. We apply an epidemiological health impact function and find that especially in large countries with extensive suburban and rural populations, air pollution-induced mortality rates have been underestimated given that previous studies largely focused on the urban environment. We calculate a global premature mortality by anthropogenic aerosols of 2.2 million/year (YLL ≈ 16 million/year) due to lung cancer and cardiopulmonary disease. High mortality rates by PM2.5 are found in China, India, Bangladesh, Pakistan and Indonesia. Desert dust DU2.5 aerosols add about 0.4 million/year (YLL ≈ 3.6 million/year). Particularly significant mortality rates by DU2.5 occur in Pakistan, China and India. The estimated global mean per capita mortality caused by airborne particulates is about 0.1%/year (about two thirds of that caused by tobacco smoking). We show that the highest premature mortality rates are found in the Southeast Asia and Western Pacific regions (about 25% and 46% of the global rate, respectively) where more than a dozen of the most highly polluted megacities are located. References: Giannadaki, D., A. Pozzer, and J. Lelieveld, Modeled global effects of airborne desert dust on air quality and premature mortality, Atmos. Chem. Phys. Discuss. (submitted), 2013. Lelieveld, J., C. Barlas, D. Giannadaki, and A. Pozzer, Model calculated global, regional and megacity premature mortality due to air pollution by ozone

  11. Hydrologic data for the Walker River Basin, Nevada and California, water years 2010–14

    Science.gov (United States)

    Pavelko, Michael T.; Orozco, Erin L.

    2015-12-10

    Walker Lake is a threatened and federally protected desert terminal lake in western Nevada. To help protect the desert terminal lake and the surrounding watershed, the Bureau of Reclamation and U.S. Geological Survey have been studying the hydrology of the Walker River Basin in Nevada and California since 2004. Hydrologic data collected for this study during water years 2010 through 2014 included groundwater levels, surface-water discharge, water chemistry, and meteorological data. Groundwater levels were measured in wells, and surface-water discharge was measured in streams, canals, and ditches. Water samples for chemical analyses were collected from wells, streams, springs, and Walker Lake. Chemical analyses included determining physical properties; the concentrations of major ions, nutrients, trace metals, dissolved gases, and radionuclides; and ratios of the stable isotopes of hydrogen and oxygen. Walker Lake water properties and meteorological parameters were monitored from a floating platform on the lake. Data collection methods followed established U.S. Geological Survey guidelines, and all data are stored in the National Water Information System database. All of the data are presented in this report and accessible on the internet, except multiple-depth Walker Lake water-chemistry data, which are available only in this report.

  12. Observation of water and heat fluxes in the Badain Jaran desert, China

    NARCIS (Netherlands)

    Zhang, T.; Wen, J.; Su, Z.; Tian, H.; Zeng, Y.

    Badain Jaran Desert lie in the northwest of the Alashan plateau in western Inner Mongolia of China, between39o20'N to 41o30'N and 100oE to 104oE. It is the 4th largest desert in the world and the second largest desert in China, with an area of 49000 square kilometers and an altitude between 900 and

  13. Remote sensing of Sonoran Desert vegetation structure and phenology with ground-based LiDAR

    Science.gov (United States)

    Sankey, Joel B.; Munson, Seth M.; Webb, Robert H.; Wallace, Cynthia S.A.; Duran, Cesar M.

    2015-01-01

    Long-term vegetation monitoring efforts have become increasingly important for understanding ecosystem response to global change. Many traditional methods for monitoring can be infrequent and limited in scope. Ground-based LiDAR is one remote sensing method that offers a clear advancement to monitor vegetation dynamics at high spatial and temporal resolution. We determined the effectiveness of LiDAR to detect intra-annual variability in vegetation structure at a long-term Sonoran Desert monitoring plot dominated by cacti, deciduous and evergreen shrubs. Monthly repeat LiDAR scans of perennial plant canopies over the course of one year had high precision. LiDAR measurements of canopy height and area were accurate with respect to total station survey measurements of individual plants. We found an increase in the number of LiDAR vegetation returns following the wet North American Monsoon season. This intra-annual variability in vegetation structure detected by LiDAR was attributable to a drought deciduous shrub Ambrosia deltoidea, whereas the evergreen shrub Larrea tridentata and cactus Opuntia engelmannii had low variability. Benefits of using LiDAR over traditional methods to census desert plants are more rapid, consistent, and cost-effective data acquisition in a high-resolution, 3-dimensional context. We conclude that repeat LiDAR measurements can be an effective method for documenting ecosystem response to desert climatology and drought over short time intervals and at detailed-local spatial scale.

  14. Space Technology for Reduction of Desert Areas on Earth and Weather Control

    Directory of Open Access Journals (Sweden)

    Constantin SANDU

    2018-03-01

    Full Text Available In precedent papers the authors presented the idea of a space system composed of two opposite parabolic mirrors (large and small having the same focal point. This system is able to concentrate solar power in a strong light beam having irradiance of hundreds or thousands of times stronger than the solar irradiance on Earth's orbit. The system can be placed on a Sun synchronous orbit around the Earth or on the Earth’s orbit around the Sun at a distance of several hundred km from ground. When the concentrated light beam is directed toward the Earth surface it can locally melt, vaporize or decomposes tones of ground in its elements. This is happening because when the ground is hit by the light beam, ground temperature can reach thousands of degrees Celsius. At such temperatures the matter is decomposed into constitutive elements. For example, the silicate oxides which are frequently found in the composition of desert ground are decomposed into oxygen and silicon. Similarly, other oxides release oxygen and other type of oxides or constitutive elements. A network of deep and large channels can be dug in this way in hot deserts as Sahara. When these channels are connected with the seas & oceans, a network of water channels is created in those deserts. In this way, the local climate of deserts will change because channel water is vaporized during daytime when air temperature reaches 50ºC and condenses during nighttime when air temperature is around 0ºC. Presence of clouds over the hot deserts can lead to a reduction of ground temperature and rain follows. The channel water can be desalinized for producing drinking water and for irrigation using simple equipment. In addition to these advantages, channel deserts can be a solution for melting of polar ice calottes and flooding of seaside areas that are inhabited areas. On the other hand, the system composed of two opposite mirrors can be used for strength decreasing or deviation of hurricanes and

  15. CAMEL REARING IN CHOLISTAN DESERT OF PAKISTAN

    Directory of Open Access Journals (Sweden)

    I. ALI, M. SHAFIQ CHAUDHRY1 AND U. FAROOQ

    2009-05-01

    Full Text Available The camel is one of the typical and the best adopted animals of the desert, capable of enduring thirst and hunger for days and is the most patient of land animals. For desert nomads of Pakistani Cholistan, it is a beloved companion, a source of milk and meat, transport facility provider and a racing/dancing animal, thus, playing an important role in the socioeconomic uplift of the local community. Camels of Marrecha or Mahra breed are mainly used for riding and load carrying but may be trained for dancing or racing. Berella is another heavy and milch breed of camel famous for milk production and can produce upto 10-15 liters of milk per day. This breed is also suitable for draught purpose, though comparatively slow due to heavy body. The present paper also describes the traditional camel rearing system used by nomads of Cholistan desert. Some aspects of camel health, production, feeding, socio-economic values, marketing and some constraints and suggestions are also given so that the policy makers may consider them for the welfare of this animal.

  16. Pastoralist rock art in the Black Desert of Jordan

    OpenAIRE

    Brusgaard, N.O.

    2015-01-01

    This paper discusses the current problems that exist with the rock art research of the Black Desert in Jordan and presents some preliminary field results of the author’s research on the petroglyphs. It also explore the possibilities that the rock art affords to learn more about the elusive desert societies and the limitations about studying rock art in archaeologically unfamiliar territories.

  17. A study of the depth of weathering and its relationship to the mechanical properties of near-surface rocks in the Mojave Desert

    Science.gov (United States)

    Stierman, D.J.; Healy, J.H.

    1985-01-01

    Weathered granite extends 70 m deep at Hi Vista in the arid central Mojave Desert of southern California. The low strength of this granite is due to the alteration of biotite and chlorite montmorillonite. Deep weathering probably occurs in most granites, although we cannot rule out some anomalous mechanisms at Hi Vista. Geophysical instruments set in these slightly altered rocks are limited by the unstable behavior of the rocks. Thus, tectonic signals from instruments placed in shallow boreholes give vague results. Geophysical measurements of these weathered rocks resemble measurements of granitic rocks near major faults. The rheology of the rocks in which instruments are placed limits the useful sensitivity of the instruments. ?? 1985 Birkha??user Verlag.

  18. Hydrological indications of aeolian salts in mid-latitude deserts of ...

    Indian Academy of Sciences (India)

    Hydrological indications of aeolian salts in mid-latitude deserts of northwestern China. B Q Zhu. Supplementary data. Figure S1. Photograph views of Quaternary and modern sediments of aeolian and lacustrine/fluvial facies that consisted of clay and sand/silt sand alternations in the Taklamakan and Badanjilin Deserts.

  19. Mineral compositions and sources of the riverbed sediment in the desert channel of Yellow River.

    Science.gov (United States)

    Jia, Xiaopeng; Wang, Haibing

    2011-02-01

    The Yellow River flows through an extensive, aeolian desert area and extends from Xiaheyan, Ningxia Province, to Toudaoguai, Inner Mongolia Province, with a total length of 1,000 km. Due to the construction and operation of large reservoirs in the upstream of the Yellow River, most water and sediment from upstream were stored in these reservoirs, which leads to the declining flow in the desert channel that has no capability to scour large amount of input of desert sands from the desert regions. By analyzing and comparing the spatial distribution of weight percent of mineral compositions between sediment sources and riverbed sediment of the main tributaries and the desert channel of the Yellow River, we concluded that the coarse sediment deposited in the desert channel of the Yellow River were mostly controlled by the local sediment sources. The analyzed results of the Quartz-Feldspar-Mica (QFM) triangular diagram and the R-factor models of the coarse sediment in the Gansu reach and the desert channel of the Yellow River further confirm that the Ningxia Hedong desert and the Inner Mongolian Wulanbuhe and Kubuqi deserts are the main provenances of the coarse sediment in the desert channel of the Yellow River. Due to the higher fluidity of the fine sediment, they are mainly contributed by the local sediment sources and the tributaries that originated from the loess area of the upper reach of the Yellow River.

  20. Indoor Air Quality in 24 California Residences Designed as High Performance Green Homes

    OpenAIRE

    Less, Brennan

    2012-01-01

    Today’s high performance green homes are reaching previously unheard of levels of airtightness and are using new materials, technologies and strategies, whose impacts on IAQ cannot be fully determined by past efforts.  This research assessed IAQ in 24 new or deeply retrofitted homes designed to be high performance green buildings in California using pollutant measurements, home inspections, diagnostic testing and occupant surveys.  Measurements included six-day passive samples of nitrogen oxi...

  1. Radiatively-driven processes in forest fire and desert dust plumes

    Energy Technology Data Exchange (ETDEWEB)

    Weinzierl, Bernadett Barbara

    2008-07-01

    plume lifetime. This study combines experimental data, modelling of optical parameters and calculated heating rates to assess the role of forest fire and desert dust plumes. The microphysical, optical and chemical properties of forest fire and desert dust aerosol, and their vertical distribution, were measured with multiple instruments on the DLR Falcon 20-E5 research aircraft during ITOP and SAMUM. Aerosol size information and absorption data were analysed with respect to the aerosol mixing state, effective diameter and parameterisation of forest fire and dust size distributions. Altogether, about 90 size distributions for particles from different sources were extracted from multiple instruments and parameterised with multimodal log-normal distributions. Subsequently, the optical properties were calculated for the different aerosol layers and compared with other independent measurements of the optical properties like the extinction coefficient determined with a High Spectral Resolution Lidar. The aerosol optical properties serve as the basis for the radiative transfer calculations with libRadtran (library for radiative transfer). Finally, the aerosol microphysical and optical properties, the meteorological data and the heating rates are examined to investigate the proposed self-stabilising and sealed ageing effects. The investigation of numerous forest fire and desert dust plumes in this study revealed characteristic aerosol properties: the aged (age: 4-13 days) forest fire aerosol is characterised by the absence of a nucleation mode, a depleted Aitken mode and an enhanced accumulation mode. In addition, more than 80% of the particles in the Aitken mode and nearly all particles in the accumulation mode of the forest fire plumes are internally mixed with a solid core. The desert dust aerosol exhibits two size regimes of different mixing states: below 0.5 {mu}m, particles have a non-volatile core and a volatile coating; larger particles above 0.5 {mu}m consist of non

  2. A demographic approach to study effects of climate change in desert plants

    Science.gov (United States)

    Salguero-Gómez, Roberto; Siewert, Wolfgang; Casper, Brenda B.; Tielbörger, Katja

    2012-01-01

    Desert species respond strongly to infrequent, intense pulses of precipitation. Consequently, indigenous flora has developed a rich repertoire of life-history strategies to deal with fluctuations in resource availability. Examinations of how future climate change will affect the biota often forecast negative impacts, but these—usually correlative—approaches overlook precipitation variation because they are based on averages. Here, we provide an overview of how variable precipitation affects perennial and annual desert plants, and then implement an innovative, mechanistic approach to examine the effects of precipitation on populations of two desert plant species. This approach couples robust climatic projections, including variable precipitation, with stochastic, stage-structured models constructed from long-term demographic datasets of the short-lived Cryptantha flava in the Colorado Plateau Desert (USA) and the annual Carrichtera annua in the Negev Desert (Israel). Our results highlight these populations' potential to buffer future stochastic precipitation. Population growth rates in both species increased under future conditions: wetter, longer growing seasons for Cryptantha and drier years for Carrichtera. We determined that such changes are primarily due to survival and size changes for Cryptantha and the role of seed bank for Carrichtera. Our work suggests that desert plants, and thus the resources they provide, might be more resilient to climate change than previously thought. PMID:23045708

  3. Biotic Processes Regulating the Carbon Balance of Desert Ecosystems - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, Robert S [UNR; Smith, Stanley D [UNLV; Evans, Dave [WSU; Ogle, Kiona [ASU; Fenstermaker, Lynn [DRI

    2012-12-13

    Our results from the 10-year elevated atmospheric CO{sub 2} concentration study at the Nevada Desert FACE (Free-air CO{sub 2} Enrichment) Facility (NDFF) indicate that the Mojave Desert is a dynamic ecosystem with the capacity to respond quickly to environmental changes. The Mojave Desert ecosystem is accumulating carbon (C), and over the 10-year experiment, C accumulation was significantly greater under elevated [CO{sub 2}] than under ambient, despite great fluctuations in C inputs from year to year and even apparent reversals in which [CO{sub 2}] treatment had greater C accumulations.

  4. Mapping of Grocery Stores in Slovak Countryside in Context of Food Deserts

    Directory of Open Access Journals (Sweden)

    Kristína Bilková

    2015-01-01

    Full Text Available The paper is focused on mapping grocery stores in the Slovak countryside with an emphasis on identifying potential food deserts in rural areas. Grocery stores are analyzed in the time period 2001–2011. Food deserts in rural areas are identified by two accessibility measures. The results show the development of food retailing in the Slovak countryside and in potentially threatened localities which can be defined as food deserts.

  5. Soil seed bank in different habitats of the Eastern Desert of Egypt.

    Science.gov (United States)

    Gomaa, Nasr H

    2012-04-01

    The floristic composition and species diversity of the germinable soil seed bank were studied in three different habitats (desert salinized land, desert wadi, and reclaimed land) in the Eastern Desert of Egypt. Moreover, the degree of similarity between the seed bank and the above-ground vegetation was determined. The seed bank was studied in 40 stands representing the three habitats. Ten soil samples (each 25 × 20 cm and 5 cm depth) were randomly taken per stand. The seed bank was investigated by the seedling emergence method. Some 61 species belonging to 21 families and 54 genera were identified in the germinable seed bank. The recorded species include 43 annuals and 18 perennials. Ordination of stands by Detrended Correspondence Analysis (DCA) indicates that the stands of the three habitats are markedly distinguishable and show a clear pattern of segregation on the ordination planes. This indicates variations in the species composition among habitats. The results also demonstrate significant associations between the floristic composition of the seed bank and edaphic factors such as CaCO3, electrical conductivity, organic carbon and soil texture. The reclaimed land has the highest values of species richness, Shannon-index of diversity and the density of the germinable seed bank followed by the habitats of desert wadi and desert salinized land. Motyka's similarity index between the seed bank and the above-ground vegetation is significantly higher in reclaimed land (75.1%) compared to desert wadi (38.4%) and desert salinized land (36.5%).

  6. Precipitation regime classification for the Mojave Desert: Implications for fire occurrence

    Science.gov (United States)

    Tagestad, Jerry; Brooks, Matthew L.; Cullinan, Valerie; Downs, Janelle; McKinley, Randy

    2016-01-01

    Long periods of drought or above-average precipitation affect Mojave Desert vegetation condition, biomass and susceptibility to fire. Changes in the seasonality of precipitation alter the likelihood of lightning, a key ignition source for fires. The objectives of this study were to characterize the relationship between recent, historic, and future precipitation patterns and fire. Classifying monthly precipitation data from 1971 to 2010 reveals four precipitation regimes: low winter/low summer, moderate winter/moderate summer, high winter/low summer and high winter/high summer. Two regimes with summer monsoonal precipitation covered only 40% of the Mojave Desert ecoregion but contain 88% of the area burned and 95% of the repeat burn area. Classifying historic precipitation for early-century (wet) and mid-century (drought) periods reveals distinct shifts in regime boundaries. Early-century results are similar to current, while the mid-century results show a sizeable reduction in area of regimes with a strong monsoonal component. Such a shift would suggest that fires during the mid-century period would be minimal and anecdotal records confirm this. Predicted precipitation patterns from downscaled global climate models indicate numerous epochs of high winter precipitation, inferring higher fire potential for many multi-decade periods during the next century.

  7. A comprehensive analysis of high-magnitude streamflow and trends in the Central Valley, California

    Science.gov (United States)

    Kocis, T. N.; Dahlke, H. E.

    2017-12-01

    California's climate is characterized by the largest precipitation and streamflow variability observed within the conterminous US. This, combined with chronic groundwater overdraft of 0.6-3.5 km3 yr-1, creates the need to identify additional surface water sources available for groundwater recharge using methods such as agricultural groundwater banking, aquifer storage and recovery, and spreading basins. High-magnitude streamflow, i.e. flow above the 90th percentile, that exceeds environmental flow requirements and current surface water allocations under California water rights, could be a viable source of surface water for groundwater banking. Here, we present a comprehensive analysis of the magnitude, frequency, duration and timing of high-magnitude streamflow (HMF "metrics") over multiple time periods for 93 stream gauges covering the Sacramento, San Joaquin and Tulare basins in California. In addition, we present trend analyses conducted on the same dataset and all HMF metrics using generalized additive models, the Mann-Kendall trend test, and the Signal to Noise Ratio test. The results of the comprehensive analysis show, in short, that in an average year with HMF approximately 3.2 km3 of high-magnitude flow is exported from the entire Central Valley to the Sacramento-San Joaquin Delta, often at times when environmental flow requirements of the Delta and major rivers are exceeded. High-magnitude flow occurs, on average, during 7 and 4.7 out of 10 years in the Sacramento River and the San Joaquin-Tulare Basins, respectively, from just a few storm events (5-7 1-day peak events) lasting for a total of 25-30 days between November and April. Preliminary trend tests suggest that all HMF metrics show limited change over the last 50 years. As a whole, the results suggest that there is sufficient unmanaged surface water physically available to mitigate long-term groundwater overdraft in the Central Valley.

  8. Molluscs as evidence for a late Pleistocene and early Holocene humid period in the southern coastal desert of Peru (14.5°S)

    Science.gov (United States)

    Mächtle, Bertil; Unkel, Ingmar; Eitel, Bernhard; Kromer, Bernd; Schiegl, Solveig

    2010-01-01

    The southern Peruvian coastal desert around Palpa, southern Peru (14.5°S) is currently characterized by hyper-arid conditions. However, the presence of two species of molluscs ( Scutalus, Pupoides) and desert-loess deposits indicates the past development of semi-desert and grassland ecosystems caused by a displacement of the eastern desert margin due to hydrological changes. Radiocarbon dating shows that the transition to a semi-arid climate in the southern Peruvian coastal desert took place during the Greenland interstadial 1, ˜ 13.5 cal ka BP. At the beginning of the Holocene, the mollusc fauna vanished due to increasing humidity and the development of grasslands. Dust particles were fixed by the grasses, as indicated by abundant Poaceae phytoliths, and desert loess was formed. The humid period we observe here is out of phase with the palaeoenvironmental records from the Titicaca region, which indicates dry conditions at that time. This paper offers a new idea for this contradiction: an orbitally driven meridional shift of the Bolivian high might have altered the moisture supply across the Andes.

  9. Desert farming benefits from microbial potential in arid soils and promotes diversity and plant health.

    Directory of Open Access Journals (Sweden)

    Martina Köberl

    Full Text Available BACKGROUND: To convert deserts into arable, green landscapes is a global vision, and desert farming is a strong growing area of agriculture world-wide. However, its effect on diversity of soil microbial communities, which are responsible for important ecosystem services like plant health, is still not known. METHODOLOGY/PRINCIPAL FINDINGS: We studied the impact of long-term agriculture on desert soil in one of the most prominent examples for organic desert farming in Sekem (Egypt. Using a polyphasic methodological approach to analyse microbial communities in soil as well as associated with cultivated plants, drastic effects caused by 30 years of agriculture were detected. Analysing bacterial fingerprints, we found statistically significant differences between agricultural and native desert soil of about 60%. A pyrosequencing-based analysis of the 16S rRNA gene regions showed higher diversity in agricultural than in desert soil (Shannon diversity indices: 11.21/7.90, and displayed structural differences. The proportion of Firmicutes in field soil was significantly higher (37% than in the desert (11%. Bacillus and Paenibacillus play the key role: they represented 96% of the antagonists towards phytopathogens, and identical 16S rRNA sequences in the amplicon library and for isolates were detected. The proportion of antagonistic strains was doubled in field in comparison to desert soil (21.6%/12.4%; disease-suppressive bacteria were especially enriched in plant roots. On the opposite, several extremophilic bacterial groups, e.g., Acidimicrobium, Rubellimicrobium and Deinococcus-Thermus, disappeared from soil after agricultural use. The N-fixing Herbaspirillum group only occurred in desert soil. Soil bacterial communities were strongly driven by the a-biotic factors water supply and pH. CONCLUSIONS/SIGNIFICANCE: After long-term farming, a drastic shift in the bacterial communities in desert soil was observed. Bacterial communities in agricultural

  10. Desert Net-Structure and Aims of an International Network for Desertification Research

    International Nuclear Information System (INIS)

    Akhtar-Schuster, M.; San Juan Mesonada, C.

    2009-01-01

    Desert Net://www.european-desert net.eu) is an interdisciplinary scientific network which was established in October 2006 at the UN premises in Bonn, Germany, by a group of international scientists. The network strives to generate and enhance scientific knowledge and understanding of the biophysical and socio-economic processes of desertification. This international scientific network provides an international platform for scientifically based discussions and exchange of ideas, addressing knowledge gaps, and identifying research areas. Desert Net is also a think tank community which identifies issues and priorities for the sustainable development of dry lands. the paper outlines the current role of Desert Net in the international scientific community and it delineates its role to strengthen the Science/Policy Interface. (Author) 2 refs.

  11. Overview about polluted sites management by mining activities in coastal-desertic zones

    Science.gov (United States)

    Reyes, Arturo; Letelier, María Victoria; Arenas, Franko; Cuevas, Jacqueline; Fuentes, Bárbara

    2016-04-01

    In Chile the main mining operations as well as artisanal and small-scale mining (copper, gold and silver) are located in desert areas. A large number of abandoned polluted sites with heavy metals and metalloids (Hg, Pb, Cu, Sb, As) remain in coastal areas close to human centers. The aim of this work was to identify the best remediation alternatives considering the physic-chemical characteristics of the coastal-desertic soils. The concentrations of above mentioned pollutants as well as soil properties were determined. The results showed variable concentration of the pollutants, highest detected values were: Hg (46.5 mg kg-1), Pb (84.7 mg kg-1), Cu (283.0 mg kg-1), Sb (90 mg kg-1), As (2,691 mg kg-1). The soils characteristic were: high alkalinity with pH: 7.75-9.66, high electric conductivity (EC: 1.94-118 mScm-1), sodium adsorption ratio (SAR: 5.07-8.22) and low permeability of the soils. Coastal-desertic sites are potential sources of pollution for population, and for terrestrial and marine ecosystems. Exposure routes of pollution for the population include: primary, by incidental ingestion and inhalation of soil and dust and secondary, by the ingestion of marine sediments, sea food and seawater. Rehabilitation of coastal-desertic sites, by using techniques like soil washing in situ, chemical stabilization, or phytostabilization, is conditioned by physic-chemical properties of the soils. In these cases the recommendation for an appropriate management, remediation and use of the sites includes: 1) physic chemical characterization of the soils, 2) evaluation of environmental risk, 3) education of the population and 3) application of a remediation technology according to soil characteristic and the planned use of the sites. Acknowledgments: Funding for this study was supported by the Regional Council of Antofagasta under Project Estudio de ingeniería para la remediación de sitios abandonados con potencial presencia de contaminantes identificados en la comuna de

  12. MX Siting Investigation. Gravity Survey - Sevier Desert Valley, Utah.

    Science.gov (United States)

    1981-01-24

    Cheyenne, Wyoming. DMAHTC reduces the data to Simple Bouguer Anomaly (see Section A1.4, Appendix Al.0). The Defense Mapping Agency Aerospace Center...Desert Valley, Utah ......... 2 2 Topographic Setting - Sevier Desert Valley, Utah . 3 LIST OF DRAWINGS Drawing Number 1 Complete Bouguer Anomaly...gravity stations were distributed throughout the valley at an approxi- mate interval of 1.4 miles (2.3 km). Drawing 1 is a Complete Bouguer Anomaly

  13. Niche Filtering of Bacteria in Soil and Rock Habitats of the Colorado Plateau Desert, Utah, USA.

    Science.gov (United States)

    Lee, Kevin C; Archer, Stephen D J; Boyle, Rachel H; Lacap-Bugler, Donnabella C; Belnap, Jayne; Pointing, Stephen B

    2016-01-01

    A common feature of microbial colonization in deserts is biological soil crusts (BSCs), and these comprise a complex community dominated by Cyanobacteria. Rock substrates, particularly sandstone, are also colonized by microbial communities. These are separated by bare sandy soil that also supports microbial colonization. Here we report a high-throughput sequencing study of BSC and cryptoendolith plus adjacent bare soil communities in the Colorado Plateau Desert, Utah, USA. Bare soils supported a community with low levels of recoverable DNA and high evenness, whilst BSC yielded relatively high recoverable DNA, and reduced evenness compared to bare soil due to specialized crust taxa. The cryptoendolithic community displayed the greatest evenness but the lowest diversity, reflecting the highly specialized nature of these communities. A strong substrate-dependent pattern of community assembly was observed, and in particular cyanobacterial taxa were distinct. Soils were virtually devoid of photoautotrophic signatures, BSC was dominated by a closely related group of Microcoleus/Phormidium taxa, whilst cryptoendolithic colonization in sandstone supported almost exclusively a single genus, Chroococcidiopsis . We interpret this as strong evidence for niche filtering of taxa in communities. Local inter-niche recruitment of photoautotrophs may therefore be limited and so communities likely depend significantly on cyanobacterial recruitment from distant sources of similar substrate. We discuss the implication of this finding in terms of conservation and management of desert microbiota.

  14. Reestablishing healthy food retail: changing the landscape of food deserts.

    Science.gov (United States)

    Karpyn, Allison; Young, Candace; Weiss, Stephanie

    2012-02-01

    The term "food desert" was formally introduced into the lexicon in 1995 and has come to describe areas with limited access to affordable nutritious foods, particularly areas in lower-income neighborhoods. The definition has led to the development of national and regional maps that focus efforts on equity in food access. Recognition of food deserts also marks a strategic change in public health's approach to obesity prevention. Today's emphasis on prevention has shifted away from individual responsibility to the role of the environment in health promotion. A number of solutions are underway to address food deserts, including public–private financing programs, industry commitments, as well as local and regional efforts to put healthy food within reach. The promise of financing programs to facilitate development of healthy food markets in underserved communities is rooted in their potential to alleviate the grocery gap and address underlying environmental contributors to obesity and diet-related diseases, such as obesity and diabetes. As food desert mapping and related interventions expand, there remains a need for ongoing investigation of impacts and the mechanisms by which impacts are achieved.

  15. Negative impacts of invasive plants on conservation of sensitive desert wildlife

    Science.gov (United States)

    Drake, K. Kristina; Bowen, Lizabeth; Nussear, Kenneth E.; Esque, Todd C.; Berger, Andrew J.; Custer, Nathan; Waters, Shannon C.; Johnson, Jay D.; Miles, A. Keith; Lewison, Rebecca L.

    2016-01-01

    Habitat disturbance from development, resource extraction, off-road vehicle use, and energy development ranks highly among threats to desert systems worldwide. In the Mojave Desert, United States, these disturbances have promoted the establishment of nonnative plants, so that native grasses and forbs are now intermixed with, or have been replaced by invasive, nonnative Mediterranean grasses. This shift in plant composition has altered food availability for Mojave Desert tortoises (Gopherus agassizii), a federally listed species. We hypothesized that this change in forage would negatively influence the physiological ecology, immune competence, and health of neonatal and yearling tortoises. To test this, we monitored the effects of diet on growth, body condition, immunological responses (measured by gene transcription), and survival for 100 captive Mojave tortoises. Tortoises were assigned to one of five diets: native forbs, native grass, invasive grass, and native forbs combined with either the native or invasive grass. Tortoises eating native forbs had better body condition and immune functions, grew more, and had higher survival rates (>95%) than tortoises consuming any other diet. At the end of the experiment, 32% of individuals fed only native grass and 37% fed only invasive grass were found dead or removed from the experiment due to poor body conditions. In contrast, all tortoises fed either the native forb or combined native forb and native grass diets survived and were in good condition. Health and body condition quickly declined for tortoises fed only the native grass (Festuca octoflora) or invasive grass (Bromus rubens) with notable loss of fat and muscle mass and increased muscular atrophy. Bromus rubens seeds were found embedded in the oral mucosa and tongue in most individuals eating that diet, which led to mucosal inflammation. Genes indicative of physiological, immune, and metabolic functions were transcribed at lower levels for individuals fed B

  16. Isotopic Tracers to Identify Far-traveled Pollutant and Mineral Aerosols in Northern California (Invited)

    Science.gov (United States)

    Depaolo, D. J.; Christensen, J. N.; Ewing, S. A.; Cliff, S. S.; Brown, S. T.; Vancuren, R. A.

    2009-12-01

    Mineral dust and pollutant aerosols can be lofted into the atmosphere and transported 1000s of kilometers, facilitating intercontinental communication of soil components, biological material (bacteria, viruses) and anthropogenic particulates. Far-traveled aerosols also affect air quality, atmospheric radiation balance and cloud formation. Understanding the sources of aerosols, and how they evolve with climate change, land use changes, and emerging industrial activity, is important for assessing air quality and climate processes in California. A particular concern for California is trans-Pacific transport of mineral aerosols from Asian deserts, and the possibility that industrial and other pollutants accompany them. The geographic sources of mineral and pollutant aerosols can in many cases be determined from their isotopic composition, using for example some combination of elements such as Pb, Sr, Nd, Hf, Zn, N, S, C, O, U, B, and Li. With systematic sample collection and analysis, isotopes can provide quantification of the changing proportions of local versus distant sources. Where the far-traveled components can be identified, comparisons can be made to meteorological data to better understand the factors controlling the efficiency of long-range transport. With heavy dust storms, such as those that arise in the Sahel/Sahara or the deserts of Asia, aerosols can be tracked in satellite imagery and other approaches may not be necessary. During more common periods of lesser aerosol loading, and where greater transport distances are involved, ground-based methods such as chemical analysis of a time-series of collected PM2.5 are needed to evaluate sources. Pollutants may or may not accompany mineral dust, and may be added along the transport path. Although chemical analysis is useful, relatively fast and inexpensive, more information, and in some cases more definitive conclusions, can be obtained by adding isotopic measurements. By combining multiple isotopic systems (e

  17. Liquid Water Restricts Habitability in Extreme Deserts

    Science.gov (United States)

    Cockell, Charles S.; Brown, Sarah; Landenmark, Hanna; Samuels, Toby; Siddall, Rebecca; Wadsworth, Jennifer

    2017-04-01

    Liquid water is a requirement for biochemistry, yet under some circumstances it is deleterious to life. Here, we show that liquid water reduces the upper temperature survival limit for two extremophilic photosynthetic microorganisms (Gloeocapsa and Chroococcidiopsis spp.) by greater than 40°C under hydrated conditions compared to desiccated conditions. Under hydrated conditions, thermal stress causes protein inactivation as shown by the fluorescein diacetate assay. The presence of water was also found to enhance the deleterious effects of freeze-thaw in Chroococcidiopsis sp. In the presence of water, short-wavelength UV radiation more effectively kills Gloeocapsa sp. colonies, which we hypothesize is caused by factors including the greater penetration of UV radiation into hydrated colonies compared to desiccated colonies. The data predict that deserts where maximum thermal stress or irradiation occurs in conjunction with the presence of liquid water may be less habitable to some organisms than more extreme arid deserts where organisms can dehydrate prior to being exposed to these extremes, thus minimizing thermal and radiation damage. Life in extreme deserts is poised between the deleterious effects of the presence and the lack of liquid water.

  18. The physicochemical characterization of cave paintings of Baja California

    International Nuclear Information System (INIS)

    Valdez, B.; Cobo, J.; Schorr, M.; Cota, L.; Oviedo, F.

    2006-01-01

    The Palaeolithic paintings of Baja California constitute an important contribution to the national, historic and cultural patrimony of Mexico. The aim of this investigation was to determine the physicochemical characteristics, the microstructure and texture of these polychrome paintings, painted on rocks encountered in the mountainous, desert/arid zones of Baja California and Baja California South. The first stage of this work was devoted to the examination and recording of the cave paintings of 'El Vallecito', a narrow fluvial valley displaying large granitic rocks emerging from the sandy soil. Tiny painting samples were collected and analyzed by SEM, EDS and FTIR techniques. The painters used four main colours: red, black, yellow and white. The paint raw materials are mineral pigments: white (kaolin, calcite, and gypsum), red (hematite), yellow (ochre, limonite), black (charcoal from burnt wood or calcined bones) and water as a diluent and/or a binder, all encountered in the painters habitat. The minerals were collected, ground and sometimes heated to change their tone. By mixing with water, a spreadable paste or a thick slurry was produced, which was applied with the fingers for lines or a piece of animal skin for figures, respectively. The 100% solids, dry paint converts into a dense, hard layer, incrusted into the grainy, rough, hollow granite rock surface. This paint might be called s tone on stone , explaining its permanence for centuries enduring heat, wind and weather. A simulation of the painting technique was done at the Materials and Corrosion Laboratory, UABC by collecting mineral pigments, preparing the paint as a paste or slurry and applying it on a granitic rock. Knowing the paint composition, production and application techniques will be useful in e conservation and restoration of cave paintings and stone-built, ancient structures such as pyramids, cathedrals and monuments. (Author)

  19. The Toshka mirage in the Egyptian desert - river diversion as political diversion

    NARCIS (Netherlands)

    Warner, J.F.

    2013-01-01

    Egypt's geography renders it vulnerable to water scarcity, but also enables it to control its inflow. After a run of high influx years from the Nile, Egypt embarked on a project to utilise the surplus water by planning a gigantic desert development project, Toshka, in the late 1990s. The present

  20. Groundwater quality in the Antelope Valley, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Antelope Valley is one of the study areas being evaluated. The Antelope study area is approximately 1,600 square miles (4,144 square kilometers) and includes the Antelope Valley groundwater basin (California Department of Water Resources, 2003). Antelope Valley has an arid climate and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). The study area has internal drainage, with runoff from the surrounding mountains draining towards dry lakebeds in the lower parts of the valley. Land use in the study area is approximately 68 percent (%) natural (mostly shrubland and grassland), 24% agricultural, and 8% urban. The primary crops are pasture and hay. The largest urban areas are the cities of Palmdale and Lancaster (2010 populations of 152,000 and 156,000, respectively). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in Antelope Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in Antelope Valley are completed to depths between 360 and 700 feet (110 to 213 meters), consist of solid casing from the land surface to a depth of 180 to 350 feet (55 to 107 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the surrounding mountains, and by direct infiltration of irrigation and sewer and septic

  1. Groundwater quality in the Mojave area, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Four groundwater basins along the Mojave River make up one of the study areas being evaluated. The Mojave study area is approximately 1,500 square miles (3,885 square kilometers) and includes four contiguous groundwater basins: Upper, Middle, and Lower Mojave River Groundwater Basins, and the El Mirage Valley (California Department of Water Resources, 2003). The Mojave study area has an arid climate, and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). Land use in the study area is approximately 82 percent (%) natural (mostly shrubland), 4% agricultural, and 14% urban. The primary crops are pasture and hay. The largest urban areas are the cities of Victorville, Hesperia, and Apple Valley (2010 populations of 116,000, 90,000 and 69,000, respectively). Groundwater in these basins is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in the Mojave study area are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in the Mojave study area are completed to depths between 200 and 600 feet (18 to 61 meters), consist of solid casing from the land surface to a depth of 130 to 420 feet (40 to 128 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the mountains to the south, mostly through the Mojave River channel. The primary sources

  2. Vegetation and climate history during the last millennium derived from Anggertu Lake, Tengger Desert

    Science.gov (United States)

    Duan, F.; An, C.; Zhao, Y.; Wang, W.; Cao, Z.

    2017-12-01

    Studying the climate changes during the last millennium can help us to understand current relationship between human-social activities and natural environment changes, and improve projections of future climate. Pollen assemblages, loss-on-ignition (LOIorg at 550 °C) and grain size data collected from sediment core (AGE15A) from the center of Anggertu lake (eastern Tengger Desert, Inner Mongolia) are presented to reconstruct regional vegetation and climate history during the last millennium. Results show that: 1) desert or desert steppe dominated by Artemisia and Amaranthaceae expanded around this region during the period of 988 1437 A.D., indicating a generally dry climate condition with two short humid periods (1003 1082 A.D. and 1388 1437 A.D). These two wet periods are characterized by relatively high vegetation cover and bio-productivity, reflected by high pollen concentrations and LOIorg. Increase in the steppe or meadow vegetation communities (Poaceae, Cyperaceae) and vegetation cover during the period of 1437 2015 A.D. suggest a wetting trend, as also indicated by gradually finer grain size. The relatively high LOI indicate a high bio-productivity during this interval. And then unstable lacustrine environment was found with frequent fluctuations in pollen concentration and grain size since 1842 A.D.. 2) This study recorded a relatively dry Medieval Warm Period (MWP; 1082 1388 A.D.) and a wet Little Ice Age (LIA; 1437 1842 A.D.), which is generally consistent with climate characteristics in arid central Asia (ACA). 3) Increased Amaranthaceae and high abundance of Poaceae were related to overgrazing and agricultural activities at that time to some extent. Thus vegetation evolution of the lake region was influenced by human activities and climate changes.

  3. Nine-year spatial and temporal evolution of desert dust aerosols over South and East Asia as revealed by CALIOP

    Directory of Open Access Journals (Sweden)

    E. Proestakis

    2018-02-01

    Full Text Available We present a 3-D climatology of the desert dust distribution over South and East Asia derived using CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation data. To distinguish desert dust from total aerosol load we apply a methodology developed in the framework of EARLINET (European Aerosol Research Lidar Network. The method involves the use of the particle linear depolarization ratio and updated lidar ratio values suitable for Asian dust, applied to multiyear CALIPSO observations (January 2007–December 2015. The resulting dust product provides information on the horizontal and vertical distribution of dust aerosols over South and East Asia along with the seasonal transition of dust transport pathways. Persistent high D_AOD (dust aerosol optical depth values at 532 nm, of the order of 0.6, are present over the arid and semi-arid desert regions. Dust aerosol transport (range, height and intensity is subject to high seasonality, with the highest values observed during spring for northern China (Taklimakan and Gobi deserts and during summer over the Indian subcontinent (Thar Desert. Additionally, we decompose the CALIPSO AOD (aerosol optical depth into dust and non-dust aerosol components to reveal the non-dust AOD over the highly industrialized and densely populated regions of South and East Asia, where the non-dust aerosols yield AOD values of the order of 0.5. Furthermore, the CALIPSO-based short-term AOD and D_AOD time series and trends between January 2007 and December 2015 are calculated over South and East Asia and over selected subregions. Positive trends are observed over northwest and east China and the Indian subcontinent, whereas over southeast China trends are mostly negative. The calculated AOD trends agree well with the trends derived from Aqua MODIS (Moderate Resolution Imaging Spectroradiometer, although significant differences are observed over specific regions.

  4. In situ metabolism in halite endolithic microbial communities of the hyperarid Atacama Desert

    Directory of Open Access Journals (Sweden)

    Alfonso F Davila

    2015-10-01

    Full Text Available The Atacama Desert of northern Chile is one of the driest regions on Earth, with areas that exclude plants and where soils have extremely low microbial biomass. However, in the driest parts of the desert there are microorganisms that colonize the interior of halite nodules in fossil continental evaporites, where they are sustained by condensation of atmospheric water triggered by the salt substrate. Using a combination of in situ observations of variable chlorophyll fluorescence and controlled laboratory experiments, we show that this endolithic community is capable of carbon fixation both through oxygenic photosynthesis and potentially ammonia oxidation. We also present evidence that photosynthetic activity is finely tuned to moisture availability and solar insolation and can be sustained for days, and perhaps longer, after a wetting event. This is the first demonstration of in situ active metabolism in the hyperarid core of the Atacama Desert, and it provides the basis for proposing a self-contained, endolithic community that relies exclusively on non-rainfall sources of water. Our results contribute to an increasing body of evidence that even in hyperarid environments active metabolism, adaptation and growth can occur in highly specialized microhabitats.

  5. Gopherus Agassizii (Desert Tortoise). Predation/Mountain Lions (Pre-Print)

    Energy Technology Data Exchange (ETDEWEB)

    Paul D. Greger and Philip A. Medica

    2009-01-01

    During a long-term study on tortoise growth within 3 fenced 9-ha enclosures in Rock Valley, Nevada Test Site (NTS), Nye County, Nevada, USA, tortoises have been captured annually since 1964 (Medica et al. 1975. Copeia 1975:630-643; Turner et al. 1987. Copeia 1987:974-979). Between early August and mid October 2003 we observed a significant mortality event. The Rock Valley enclosures were constructed of 6 x 6 mm mesh 1.2 m wide hardware cloth, buried 0.3 m in the soil with deflective flashing on both sides on the top to restrict the movement of small mammals and lizards from entering or leaving the enclosures (Rundel and Gibson 1996, Ecological communities and process in a Mojave Desert ecosystem: Rock Valley, Nevada, Cambridge University Press, Great Britain. 369 pp.). On August 6, 2003, the carcass of an adult female Desert Tortoise No.1411 (carapace length 234 mm when alive) was collected while adult male tortoise No.4414 (carapace length 269 mm) was observed alive and in good health on the same day. Subsequently the carcass of No.4414 was found on October 16, 2003. Between October 16-17, 2003, the remains of 6 (5 adult and 1 juvenile) Desert Tortoises were found, some within each of the 3 enclosures in Rock Valley. A seventh adult tortoise was found on September 26, 2006, its death also attributed to the 2003 mortality event based upon the forensic evidence. Each of the 7 adult Desert Tortoises had the central portion of their carapace broken open approximately to the dorsal portion of the marginal scutes while the plastron was still intact (Figure 1A). Adjacent to 7 of the 8 remains we located numerous bone fragments including parts of the carapace and limbs as well as dried intestines in a nearby Range Rhatany (Krameria parvifolia) shrub. The significance of the frequent use of this shrub is puzzling. Three of the Desert Tortoise shell remains possessed distinctive intercanine punctures measuring 55-60 mm center to center indicating that this was an adult

  6. The economics of hybrid power systems for sustainable desert agriculture in Egypt

    DEFF Research Database (Denmark)

    Kamel, S.M.; Dahl, C.

    2005-01-01

    Egypt has embarked on an ambitious desert land reclamation program in order to increase total food production. Energy planners for these desert agriculture locations have chosen diesel generation power technology because minimization of the initial capital cost of a power supply system is their top...... priority. This heavy reliance on diesel generation has negative effects on the surrounding environment including soil, groundwater, and air pollution. Although good solar and wind resource prospects exist for the use of cleaner hybrid power systems in certain desert locations, little research has been done...... to investigate the economic potential of such systems in Egypt’s desert agriculture sector. Using optimization software, we assess the economics of hybrid power systems versus the present diesel generation technology in a remote agricultural development area. We also consider the emission reduction advantages...

  7. Anthropogenic water sources and the effects on Sonoran Desert small mammal communities.

    Science.gov (United States)

    Switalski, Aaron B; Bateman, Heather L

    2017-01-01

    Anthropogenic water sources (AWS) are developed water sources used as a management tool for desert wildlife species. Studies documenting the effects of AWS are often focused on game species; whereas, the effects on non-target wildlife are less understood. We used live trapping techniques to investigate rodent abundance, biomass, and diversity metrics near AWS and paired control sites; we sampled vegetation to determine rodent-habitat associations in the Sauceda Mountains of the Sonoran Desert in Arizona. A total of 370 individual mammals representing three genera and eight species were captured in 4,800 trap nights from winter 2011 to spring 2012. A multi-response permutation procedure was used to identify differences in small mammal community abundance and biomass by season and treatment. Rodent abundance, biomass, and richness were greater at AWS compared to control sites. Patterns of abundance and biomass were driven by the desert pocket mouse ( Chaetodipus penicillatus ) which was the most common capture and two times more numerous at AWS compared to controls. Vegetation characteristics, explored using principal components analysis, were similar between AWS and controls. Two species that prefer vegetation structure, Bailey's pocket mouse ( C. baileyi ) and white-throated woodrat ( Neotoma albigula) , had greater abundances and biomass near AWS and were associated with habitat having high cactus density. Although small mammals do not drink free-water, perhaps higher abundances of some species of desert rodents at AWS could be related to artificial structure associated with construction or other resources. Compared to the 30-year average of precipitation for the area, the period of our study occurred during a dry winter. During dry periods, perhaps AWS provide resources to rodents related to moisture.

  8. Anthropogenic water sources and the effects on Sonoran Desert small mammal communities

    Directory of Open Access Journals (Sweden)

    Aaron B. Switalski

    2017-11-01

    Full Text Available Anthropogenic water sources (AWS are developed water sources used as a management tool for desert wildlife species. Studies documenting the effects of AWS are often focused on game species; whereas, the effects on non-target wildlife are less understood. We used live trapping techniques to investigate rodent abundance, biomass, and diversity metrics near AWS and paired control sites; we sampled vegetation to determine rodent-habitat associations in the Sauceda Mountains of the Sonoran Desert in Arizona. A total of 370 individual mammals representing three genera and eight species were captured in 4,800 trap nights from winter 2011 to spring 2012. A multi-response permutation procedure was used to identify differences in small mammal community abundance and biomass by season and treatment. Rodent abundance, biomass, and richness were greater at AWS compared to control sites. Patterns of abundance and biomass were driven by the desert pocket mouse (Chaetodipus penicillatus which was the most common capture and two times more numerous at AWS compared to controls. Vegetation characteristics, explored using principal components analysis, were similar between AWS and controls. Two species that prefer vegetation structure, Bailey’s pocket mouse (C. baileyi and white-throated woodrat (Neotoma albigula, had greater abundances and biomass near AWS and were associated with habitat having high cactus density. Although small mammals do not drink free-water, perhaps higher abundances of some species of desert rodents at AWS could be related to artificial structure associated with construction or other resources. Compared to the 30-year average of precipitation for the area, the period of our study occurred during a dry winter. During dry periods, perhaps AWS provide resources to rodents related to moisture.

  9. Detecting short-term responses to weekend recreation activity: desert bighorn sheep avoidance of hiking trails

    Science.gov (United States)

    Longshore, Kathleen M.; Lowrey, Chris; Thompson, Daniel B.

    2013-01-01

    To study potential effects of recreation activity on habitat use of desert bighorn sheep (Ovis canadensis nelsoni), we placed Global Positioning System collars on 10 female bighorn sheep within the Wonderland of Rocks–Queen Mountain region of Joshua Tree National Park (JOTR), California, USA, from 2002 to 2004. Recreation use was highest from March to April and during weekends throughout the year. Daily use of recreation trails was highest during midday. By comparing habitat use (slope, ruggedness, distance to water, and distance to recreation trails) of female bighorn sheep on weekdays versus weekends, we were able to detect short-term shifts in behavior in response to recreation. In a logistic regression of bighorn sheep locations versus random locations for March and April, female locations at midday (1200 hours) were significantly more distant from recreation trails on weekends compared with weekdays. Our results indicate that within this region of JOTR, moderate to high levels of human recreation activity may temporarily exclude bighorn females from their preferred habitat. However, the relative proximity of females to recreation trails during the weekdays before and after such habitat shifts indicates that these anthropogenic impacts were short-lived. Our results have implications for management of wildlife on public lands where the co-existence of wildlife and recreational use is a major goal.

  10. Winter precipitation and fire in the Sonoran Desert

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, G.F.; Vint, M.K.

    1987-01-01

    Historical fire and climate records from the Arizona Upland portion of the Tonto National forest were used to test the hypothesis that fires burn larger areas in the Sonoran Desert after two wet winters than after one. We found that many more hectares burn in years following two winters that are wetter than normal, than during any other years. We agree with other ecologists, that desert fire occurrence is probably related to increased production of winter annual plants, and we suggest ways that the relationship may be clarified.

  11. Naturalisation, Desert, and the Symbolic Meaning of Citizenship

    DEFF Research Database (Denmark)

    Lægaard, Sune

    2012-01-01

    of naturalisation requirements as involving notions of desert and asks what these developments imply about the meaning of citizenship. Naturalisation marks the boundary of society understood as a political community, i.e. a civic rather than territorial boundary. How this boundary is policed and on the basis...... that the introduction of naturalisation tests and other desert-based naturalisation requirements imply that citizenship comes to have different symbolic meanings for native born citizens and naturalised citizens because such requirements distinguish between volitional or ‘earned’ and ascriptive or ‘natural’ citizenship...

  12. A School-Based Multilevel Study of Adolescent Suicide Ideation in California High Schools.

    Science.gov (United States)

    Benbenishty, Rami; Astor, Ron Avi; Roziner, Ilan

    2018-05-01

    To assess the between-school variation in suicide ideation and to estimate the contribution of school-level attributes, student-level characteristics, and 2 cross-level interactions (school by student) to student suicide ideation. A secondary analysis of the California Healthy Kids Survey in 2 large and representative samples of California high schools and students: 2009-2011 and 2011-2013. This is a population sample of all public high school students (grades 9 and 11) in California. Analyses were first conducted on surveys administered in the 2011-2013 academic years to 790 schools with 345 203 students and replicated on surveys administered in 2009-2011 to 860 schools with 406 313 students. School-level suicide ideation rates ranged between 4% and 67%, with a median of 19.3% and mean of 20.0% (SD, 5.7%). Student suicide ideation was explained by student-level characteristics (R 2  = .20) and to a larger extent by school-level attributes (R 2  = .55). Student-level characteristics predictive of suicide ideation included, sex, ethnic and racial affiliation, victimization, and perceptions of school climate. In both samples, school size and average level of academic achievement were not associated with rates of school suicide ideation. Schools with a larger number of girls and higher levels of victimization had higher rates of suicide ideation in both samples. The hypotheses regarding cross-level interactions were not confirmed. Differences among schools in student suicide ideation are meaningful. The findings suggest an emphasis on the role of schools in prevention programs, public health campaigns to reduce suicide, multilevel research, and theory development. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. The diversity and abundance of bacteria and oxygenic phototrophs in saline biological desert crusts in Xinjiang, northwest China.

    Science.gov (United States)

    Li, Ke; Liu, Ruyin; Zhang, Hongxun; Yun, Juanli

    2013-07-01

    Although microorganisms, particularly oxygenic phototrophs, are known as the major players in the biogeochemical cycles of elements in desert soil ecosystems and have received extensive attention, still little is known about the effects of salinity on the composition and abundances of microbial community in desert soils. In this study, the diversity and abundance of bacteria and oxygenic phototrophs in biological desert crusts from Xinjiang province, which were under different salinity conditions, were investigated by using clone library and quantitative PCR (qPCR). The 16S rRNA gene phylogenetic analysis showed that cyanobacteria, mainly Microcoleus vagnitus of the order Oscillatoriales, were predominant in the low saline crusts, while other phototrophs, such as diatom, were the main microorganism group responsible for the oxygenic photosynthesis in the high saline crusts. Furthermore, the higher salt content in crusts may stimulate the growth of other bacteria, including Deinococcus-Thermus, Bacteroidetes, and some subdivisions of Proteobacteria (β-, γ-, and δ-Proteobacteria). The cpcBA-IGS gene analysis revealed the existence of novel M. vagnitus strains in this area. The qPCR results showed that the abundance of oxygenic phototrophs was significantly higher under lower saline condition than that in the higher saline crusts, suggesting that the higher salinity in desert crusts could suppress the numbers of total bacteria and phototrophic bacteria but did highly improve the diversity of salt-tolerant bacteria.

  14. California State Waters Map Series—Offshore of Santa Cruz, California

    Science.gov (United States)

    Cochrane, Guy R.; Dartnell, Peter; Johnson, Samuel Y.; Erdey, Mercedes D.; Golden, Nadine E.; Greene, H. Gary; Dieter, Bryan E.; Hartwell, Stephen R.; Ritchie, Andrew C.; Finlayson, David P.; Endris, Charles A.; Watt, Janet T.; Davenport, Clifton W.; Sliter, Ray W.; Maier, Katherine L.; Krigsman, Lisa M.; Cochrane, Guy R.; Cochran, Susan A.

    2016-03-24

    IntroductionIn 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow subsurface geology.The Offshore of Santa Cruz map area is located in central California, on the Pacific Coast about 98 km south of San Francisco. The city of Santa Cruz (population, about 63,000), the largest incorporated city in the map area and the county seat of Santa Cruz County, lies on uplifted marine terraces between the shoreline and the northwest-trending Santa Cruz Mountains, part of California’s Coast Ranges. All of California’s State Waters in the map area is part of the Monterey Bay National Marine Sanctuary.The map area is cut by an offshore section of the San Gregorio Fault Zone, and it lies about 20 kilometers southwest of the San Andreas Fault Zone. Regional folding and uplift along the coast has been attributed to a westward bend in the San Andreas Fault Zone and to right-lateral movement along the San Gregorio Fault Zone. Most of the coastal zone is characterized by low, rocky cliffs and sparse, small pocket beaches backed by low, terraced hills. Point Santa Cruz, which forms the north edge of Monterey Bay, provides protection for the beaches in the easternmost part of the map area by sheltering them from the predominantly northwesterly waves.The shelf in the map area is underlain by variable amounts (0 to 25 m) of

  15. Reproductive allocation strategies in desert and Mediterranean populations of annual plants grown with and without water stress.

    Science.gov (United States)

    Aronson, J; Kigel, J; Shmida, A

    1993-03-01

    Reproductive effort (relative allocation of biomass to diaspore production) was compared in matched pairs of Mediterranean and desert populations of three unrelated annual species, Erucaria hispanica (L.) Druce, Bromus fasciculatus C. Presl. and Brachypodium distachyon (L.) Beauv., grown under high and low levels of water availability in a common-environment experiment. Desert populations in all three species showed higher reproductive effort than corresponding Mediterranean populations, as expressed by both a reproductive index (RI= reproductive biomass/vegetative biomass), and a reproductive efficiency index (REI=number of diaspores/total plant biomass). Moreover, in E. hispanica and Brachypodium distachyon, inter-populational differences in reproductive effort were greater under water stress, the main limiting factor for plant growth in the desert. These results indicate that variability in reproductive effort in response to drought is a critical and dynamic component of life history strategies in annual species in heterogeneous, unpredictable xeric environments. When subjected to water stress the Mediterranean populations of E. hispanica and B. distachyon showed greater plasticity (e.g. had a greater reduction) in reproductive effort than the desert populations, while in Bromus fasciculatus both populations showed similar amounts of plasticity.

  16. Microenvironments and microscale productivity of cyanobacterial desert crusts

    Science.gov (United States)

    Garcia-Pichel, F.; Belnap, Jayne

    1996-01-01

    We used microsensors to characterize physicochemical microenvironments and photosynthesis occurring immediately after water saturation in two desert soil crusts from southeastern Utah, which were formed by the cyanobacteria Microcoleus vaginatus Gomont, Nostoc spp., and Scytonema sp. The light fields within the crusts presented steep vertical gradients in magnitude and spectral composition. Near-surface light-trapping zones were formed due to the scattering nature of the sand particles, but strong light attenuation resulted in euphotic zones only ca. 1 mm deep, which were progressively enriched in longer wavelengths with depth. Rates of gross photosynthesis (3.4a??9.4 mmol O2A?ma??2A?ha??1) and dark respiration (0.81a??3.1 mmol Oa??2A?ma??2A?ha??1) occurring within 1 to several mm from the surface were high enough to drive the formation of marked oxygen microenvironments that ranged from oxygen supersaturation to anoxia. The photosynthetic activity also resulted in localized pH values in excess of 10, 2a??3 units above the soil pH. Differences in metabolic parameters and community structure between two types of crusts were consistent with a successional pattern, which could be partially explained on the basis of the microenvironments. We discuss the significance of high metabolic rates and the formation of microenvironments for the ecology of desert crusts, as well as the advantages and limitations of microsensor-based methods for crust investigation.

  17. The water economy of South American desert rodents: from integrative to molecular physiological ecology.

    Science.gov (United States)

    Bozinovic, Francisco; Gallardo, Pedro

    2006-01-01

    Rodents from arid and semi-arid habitats live under conditions where the spatial and temporal availability of free water is limited, or scarce, thus forcing these rodents to deal with the problem of water conservation. The response of rodents to unproductive desert environments and water deficits has been intensively investigated in many deserts of the world. However, current understanding of the cellular, systemic and organismal physiology of water economy relies heavily on short-term, laboratory-oriented experiments, which usually focus on responses at isolated levels of biological organization. In addition, studies in small South American mammals are scarce. Indeed xeric habitats have existed in South America for a long time and it is intriguing why present day South American desert rodents do not show the wide array of adaptive traits to desert life observed for rodents on other continents. Several authors have pointed out that South American desert rodents lack physiological and energetic specialization for energy and water conservation, hypothesizing that their success is based more on behavioral and ecological strategies. We review phenotypic flexibility and physiological diversity in water flux rate, urine osmolality, and expression of water channels in South American desert-dwelling rodents. As far as we know, this is the first review of integrative studies at cellular, systemic and organismal levels. Our main conclusion is that South American desert rodents possess structural as well as physiological systems for water conservation, which are as remarkable as those found in "classical" rodents inhabiting other desert areas of the world.

  18. Factors Inhibiting ESL Learners from Passing California High School Exit Examination: A Narrative Inquiry

    Science.gov (United States)

    Puente, Belinda

    2017-01-01

    The problem was that Hispanic English Second Language (ESL) students enrolled in the ESL program had consistently failed the California High School Exit Examination (CASHEE) in greater numbers than their cohorts. The purpose of this qualitative narrative inquiry was to explore the life stories of Hispanic ESL students in identifying the factors…

  19. VEGETATIVE GROWTH AND EARLY PRODUCTION OF SIX OLIVE CULTIVARS, IN SOUTHERN ATACAMA DESERT, CHILE

    Directory of Open Access Journals (Sweden)

    Freddy MORA

    2007-12-01

    Full Text Available Tree survival, early fruit production, vegetative growth and alternate bearing were examined in six different olive cultivars (Barnea, Biancolilla, Coratina, Empeltre, Koroneiki and Leccino under intensive agronomic conditions i southern Atacama Desert, in the Coquimbo Region of Chile. The cultivars were evaluated over four successive years and had a high survival rate (93% confi rming their potential for these dry-lands. Fruit production (recorded over the growing seasons 2002-2003, vegetative growth (2000-2003 and alternate bearing differed signifi cantly among cultivars. Olive selection in intensively managed planting at the southern part of the Atacama Desert depends on matching specifi c cultivars to sites on which they perform the best.

  20. Are Wildlife Detector Dogs or People Better at Finding Desert Tortoises (Gopherus Agassizii)?

    National Research Council Canada - National Science Library

    Nussear, Kenneth E; Esque, Todd C; Heaton, Jill S; Cablk, Mary E; Drake, Kristina K; Valentin, Cindee; Yee, Julie L; Medica, Philip A

    2008-01-01

    .... Recent studies highlight the effectiveness of trained detector dogs to locate wildlife during field surveys, including Desert Tortoises in a semi-natural setting. Desert Tortoises (Gopherus agassizii...

  1. Finding the team for Mars: a psychological and human factors analysis of a Mars Desert Research Station crew.

    Science.gov (United States)

    Sawyer, Benjamin D; Hancock, P A; Deaton, John; Suedfeld, Peter

    2012-01-01

    A two-week mission in March and April of 2011 sent six team members to the Mars Desert Research Station (MDRS). MDRS, a research facility in the high Utah desert, provides an analogue for the harsh and unusual working conditions that will be faced by men and women who one day explore Mars. During the mission a selection of quantitative and qualitative psychological tests were administered to the international, multidisciplinary team. A selection of the results are presented along with discussion.

  2. Are wildlife detector dogs or people better at finding Desert Tortoises (Gopherus agassizii)?

    Science.gov (United States)

    Nussear, K.E.; Esque, T.C.; Heaton, J.S.; Cablk, Mary E.; Drake, K.K.; Valentin, C.; Yee, J.L.; Medica, P.A.

    2008-01-01

    Our ability to study threatened and endangered species depends on locating them readily in the field. Recent studies highlight the effectiveness of trained detector dogs to locate wildlife during field surveys, including Desert Tortoises in a semi-natural setting. Desert Tortoises (Gopherus agassizii) are cryptic and difficult to detect during surveys, especially the smaller size classes. We conducted comparative surveys to determine whether human or detector dog teams were more effective at locating Desert Tortoises in the wild. We compared detectability of Desert Tortoises and the costs to deploy human and dog search teams. Detectability of tortoises was not statistically different for either team, and was estimated to be approximately 70% (SE = 5%). Dogs found a greater proportion of tortoises located in vegetation than did humans. The dog teams finished surveys 2.5 hours faster than the humans on average each day. The human team cost was approximately $3,000 less per square kilometer sampled. Dog teams provided a quick and effective method for surveying for adult Desert Tortoises; however, we were unable to determine-their effectiveness at locating smaller size classes. Detection of smaller size classes during surveys would improve management of the species and should be addressed by future research using Desert Tortoise detector dogs.

  3. The effects of drying following heat shock exposure of the desert moss Syntrichia caninervis.

    Science.gov (United States)

    Xu, Shu-Jun; Liu, Chun-Jiang; Jiang, Ping-An; Cai, Wei-Min; Wang, Yan

    2009-03-15

    Desert mosses are components of biological soil crusts (BSCs) and their ecological functions make assessment and protection of these mosses a high-ranking management priority in desert regions. Drying is thought to be useful for desert mosses surviving heat shock. In this study, we investigated the role of drying by monitoring the responses of physiological characters and asexual reproduction in the typical desert moss Syntrichia caninervis. Heat significantly decreased chlorophyll content and weakened rapid recovery of photochemical activity, and increased carotenoid content and membrane permeability. Lethal temperatures significantly destroyed shoot regeneration potential. In comparison with heat alone, drying significantly increased protonema emergence time and depressed protonema emergence area. Drying combined with heat accelerated water loss, followed by a decrease of photosynthetic activity. Drying had different influences on membrane permeability at different temperatures. When moss leaves were subjected to a combined stress of drying and heat shock, photosynthesis was maintained mainly due to the effects of drying on physiological activity although the cellular morphological integrity was affected. Drying caused opposing effects on moss physiological and reproductive characteristics. On the one hand, drying caused a positive synergistic effect with heat shock when the temperature was below 40 degrees C. On the other hand, drying showed antagonism with heat shock when the moss was subjected to temperatures higher than 40 degrees C. These findings may help in understanding the survival mechanism of dessert mosses under heat shock stress which will be helpful for the artificial reconstruction of BSCs.

  4. The effects of drying following heat shock exposure of the desert moss Syntrichia caninervis

    International Nuclear Information System (INIS)

    Xu Shujun; Liu Chunjiang; Jiang Pingan; Cai Weimin; Wang Yan

    2009-01-01

    Desert mosses are components of biological soil crusts (BSCs) and their ecological functions make assessment and protection of these mosses a high-ranking management priority in desert regions. Drying is thought to be useful for desert mosses surviving heat shock. In this study, we investigated the role of drying by monitoring the responses of physiological characters and asexual reproduction in the typical desert moss Syntrichia caninervis. Heat significantly decreased chlorophyll content and weakened rapid recovery of photochemical activity, and increased carotenoid content and membrane permeability. Lethal temperatures significantly destroyed shoot regeneration potential. In comparison with heat alone, drying significantly increased protonema emergence time and depressed protonema emergence area. Drying combined with heat accelerated water loss, followed by a decrease of photosynthetic activity. Drying had different influences on membrane permeability at different temperatures. When moss leaves were subjected to a combined stress of drying and heat shock, photosynthesis was maintained mainly due to the effects of drying on physiological activity although the cellular morphological integrity was affected. Drying caused opposing effects on moss physiological and reproductive characteristics. On the one hand, drying caused a positive synergistic effect with heat shock when the temperature was below 40 deg. C. On the other hand, drying showed antagonism with heat shock when the moss was subjected to temperatures higher than 40 deg. C. These findings may help in understanding the survival mechanism of dessert mosses under heat shock stress which will be helpful for the artificial reconstruction of BSCs

  5. Concentration of plutonium in desert plants from contaminated area

    International Nuclear Information System (INIS)

    Xu Hui; Jin Yuren; Tian Mei; Li Weiping; Zeng Ke; Wang Yaoqin; Wang Yu

    2012-01-01

    The investigation of plutonium in desert plants from contaminated sites contributes to the evaluation of its pollution situation and to the survey of plutonium hyper accumulator. The concentration of 239 Pu in desert plants collected from a contaminated site was determined, and the influence factors were studied. The concentration of 239 Pu in plants was (1.8±4.9) Bq/kg in dry weight, and it means that the plants were contaminated, moreover, the resuspension results in dramatic plutonium pollution of plant surface. The concentration of plutonium in plants depends on species, live stages and the content of plutonium in the rhizosphere soil. The concentration of plutonium in herbage is higher than that in woody plant, and for the seven species of desert plants investigated, it decreases in the order of Hexinia polydichotoma, Phragmites australis, Halostashys caspica, Halogeton arachnoideus, Lycium ruthenicum, Tamarix hispida and Calligonum aphyllum. (authors)

  6. Water Sources for Cyanobacteria Below Desert Rocks in the Negev Desert Determined by Conductivity

    Science.gov (United States)

    McKay, Christopher P.

    2016-01-01

    We present year round meteorological and conductivity measurements of colonized hypolithic rocks in the Arava Valley, Negev Desert, Israel. The data indicate that while dew is common in the Negev it is not an important source of moisture for hypolithic organisms at this site. The dominance of cyanobacteria in the hypolithic community are consistent with predictions that cyanobacteria are confined to habitats supplied by rain. To monitor the presence of liquid water under the small Negev rocks we developed and tested a simple field conductivity system based on two wires placed about 0.5 cm apart. Based on 21 replicates recorded for one year in the Negev we conclude that in natural rains (0.25 mm to 6 mm) the variability between sensor readings is between 20 and 60% decreasing with increasing rain amount. We conclude that the simple small electrical conductivity system described here can be used effectively to monitor liquid water levels in lithic habitats. However, the natural variability of these sensors indicates that several replicates should be deployed. The results and method presented have use in arid desert reclamation programs.

  7. Thermal design of a modern, two floor, zero energy house in a desert compound

    KAUST Repository

    Serag-Eldin, M. A.

    2010-01-01

    The paper presents a thermal analysis and design of a fully equipped, air-conditioned, zero energy house located in a desert compound at 24.5° latitude. Unlike previous designs the home is two floors high, which makes the balancing of energy supply

  8. High water-use efficiency and growth contribute to success of non-native Erodium cicutarium in a Sonoran Desert winter annual community.

    Science.gov (United States)

    Kimball, Sarah; Gremer, Jennifer R; Barron-Gafford, Greg A; Angert, Amy L; Huxman, Travis E; Venable, D Lawrence

    2014-01-01

    The success of non-native, invasive species may be due to release from natural enemies, superior competitive abilities, or both. In the Sonoran Desert, Erodium cicutarium has increased in abundance over the last 30 years. While native species in this flora exhibit a strong among-species trade-off between relative growth rate and water-use efficiency, E. cicutarium seems to have a higher relative growth rate for its water-use efficiency value relative to the pattern across native species. This novel trait combination could provide the non-native species with a competitive advantage in this water-limited environment. To test the hypothesis that E. cicutarium is able to achieve high growth rates due to release from native herbivores, we compared the effects of herbivory on E. cicutarium and its native congener, Erodium texanum. We also compared these two species across a range of environmental conditions, both in a common garden and in two distinct seasons in the field, using growth analysis, isotopic compositions and leaf-level gas exchange. Additionally, we compared the competitive abilities of the two Erodium species in a greenhouse experiment. We found no evidence of herbivory to either species. Physiological measurements in a common environment revealed that E. cicutarium was able to achieve high growth rates while simultaneously controlling leaf-level water loss. Non-native E. cicutarium responded to favourable conditions in the field with greater specific leaf area and leaf area ratio than native E. texanum. The non-native Erodium was a stronger competitor than its native congener in a greenhouse competition experiment. The ability to maintain relatively higher values of water-use efficiency:relative growth rate in comparison to the native flora may be what enables E. cictarium to outcompete native species in both wet and dry years, resulting in an increase in abundance in the highly variable Sonoran Desert.

  9. Short-Term Space-Use Patterns of Translocated Mojave Desert Tortoise in Southern California.

    Directory of Open Access Journals (Sweden)

    Matthew L Farnsworth

    Full Text Available Increasingly, renewable energy comprises a larger share of global energy production. Across the western United States, public lands are being developed to support renewable energy production. Where there are conflicts with threatened or endangered species, translocation can be used in an attempt to mitigate negative effects. For the threatened Mojave desert tortoise (Gopherus agassizii, we sought to compare habitat- and space-use patterns between short-distance translocated, resident, and control groups. We tested for differences in home range size based on utilization distributions and used linear mixed-effects models to compare space-use intensity, while controlling for demographic and environmental variables. In addition, we examined mean movement distances as well as home range overlap between years and for male and female tortoises in each study group. During the first active season post-translocation, home range size was greater and space-use intensity was lower for translocated tortoises than resident and control groups. These patterns were not present in the second season. In both years, there was no difference in home range size or space-use intensity between control and resident groups. Translocation typically resulted in one active season of questing followed by a second active season characterized by space-use patterns that were indistinguishable from control tortoises. Across both years, the number of times a tortoise was found in a burrow was positively related to greater space-use intensity. Minimizing the time required for translocated tortoises to exhibit patterns similar to non-translocated individuals may have strong implications for conservation by reducing exposure to adverse environmental conditions and predation. With ongoing development, our results can be used to guide future efforts aimed at understanding how translocation strategies influence patterns of animal space use.

  10. ON PHYTOCOENOTICAL MAPPING OF CASPIAN DESERT REGION

    Directory of Open Access Journals (Sweden)

    I. SAFRONOVA

    2004-05-01

    Full Text Available The phytoecological map (l :2.500.000 for Desert Region, including the Caspian Lowland and the Mangyshlak. has been compiled. It gives an idea of latitudinal differentiation cf vegetation. Edaphic variants and lithological composition in low mountains. The legend has been constructed according to zonal-typological principle e using an ecological-phytocoenotic classification. Heterogeneity of vegetation is reflected by means of territoria1 units (complex, series, combination and additional marks above the vegetation background. In the northern subzone vegetation is fairly monotonous and characterized by prevalence of wormwood communities (Artemisia of subgenus Seriphidium, joined in three formations: Artemisia lerchiana, A. arenaria. A. pauciflora. Small areas are occupied by shrub deserts of Calligollum aphyllum and Tamarix ramosissima. To southward of 47° N in the middle subzone on the Caspian Lowland the communities of halophyte perennial saltworts essential1y dominate, and to less extent-wormwood communities of hemipsammophytic Artemisia terrae-albae and psammophytic Artemisia arenaria and A. lerchiana. Deserts of Mangyshlak are much diverse. Dwarf semishrubs are presented by species of perennial saltworts (Anabasis salsa, Nanophyton erinaceum,Arthrophytum lehnwnianum, Salsola orientaUs and wonnwood (Artemisia terrae-albae, A. gurganica. A. santolina. To southward of 43° N in the southern subzone dwarf semishrub Salsola gemmascens and Artemisia kemrudica corrnnunities prevail.

  11. ON PHYTOCOENOTICAL MAPPING OF CASPIAN DESERT REGION

    Directory of Open Access Journals (Sweden)

    I. SAFRONOVA

    2004-01-01

    Full Text Available The phytoecological map (l :2.500.000 for Desert Region, including the Caspian Lowland and the Mangyshlak. has been compiled. It gives an idea of latitudinal differentiation cf vegetation. Edaphic variants and lithological composition in low mountains. The legend has been constructed according to zonal-typological principle e using an ecological-phytocoenotic classification. Heterogeneity of vegetation is reflected by means of territoria1 units (complex, series, combination and additional marks above the vegetation background. In the northern subzone vegetation is fairly monotonous and characterized by prevalence of wormwood communities (Artemisia of subgenus Seriphidium, joined in three formations: Artemisia lerchiana, A. arenaria. A. pauciflora. Small areas are occupied by shrub deserts of Calligollum aphyllum and Tamarix ramosissima. To southward of 47° N in the middle subzone on the Caspian Lowland the communities of halophyte perennial saltworts essential1y dominate, and to less extent-wormwood communities of hemipsammophytic Artemisia terrae-albae and psammophytic Artemisia arenaria and A. lerchiana. Deserts of Mangyshlak are much diverse. Dwarf semishrubs are presented by species of perennial saltworts (Anabasis salsa, Nanophyton erinaceum,Arthrophytum lehnwnianum, Salsola orientaUs and wonnwood (Artemisia terrae-albae, A. gurganica. A. santolina. To southward of 43° N in the southern subzone dwarf semishrub Salsola gemmascens and Artemisia kemrudica corrnnunities prevail.

  12. The Palm Desert renewable [hydrogen] transportation system

    Energy Technology Data Exchange (ETDEWEB)

    Chamberlin, C.E.; Lehman, P. [Humboldt State Univ., Arcata, CA (United States). Schatz Energy Research Center

    1998-08-01

    This paper describes the Schatz Energy Research Center (SERC) progress on the Palm Desert Renewable Hydrogen Transportation System Project for the period June 1997 through May 1998. The project began in March 1996. The goal of the Palm Desert Project is to develop a clean and sustainable transportation system for a community. The project demonstrates the practical utility of hydrogen as a transportation fuel and the proton exchange membrane (PEM) fuel cell as a vehicle power system. The project includes designing and building 4 fuel cell powered vehicles, a solar hydrogen generating and refueling station, and a fuel cell vehicle diagnostic center. Over this last year, SERC has built a fuel cell powered neighborhood electric vehicle and delivered it to the City of Palm Desert. The design of the hydrogen refueling station is near completion and it is anticipated that construction will be complete in the fall of 1998. The vehicles are currently being refueled at a temporary refueling station. The diagnostic center is being designed and maintenance procedures as well as computer diagnostic programs for the fuel cell vehicles are being developed. City employees are driving the vehicles daily and monitoring data are being collected. The drivers are pleased with the performance of the vehicles.

  13. Availability of high-magnitude streamflow for groundwater banking in the Central Valley, California

    Science.gov (United States)

    Kocis, Tiffany N.; Dahlke, Helen E.

    2017-08-01

    California’s climate is characterized by the largest precipitation and streamflow variability observed within the conterminous US This, combined with chronic groundwater overdraft of 0.6-3.5 km3 yr-1, creates the need to identify additional surface water sources available for groundwater recharge using methods such as agricultural groundwater banking, aquifer storage and recovery, and spreading basins. High-magnitude streamflow, i.e. flow above the 90th percentile, that exceeds environmental flow requirements and current surface water allocations under California water rights, could be a viable source of surface water for groundwater banking. Here, we present a comprehensive analysis of the magnitude, frequency, duration and timing of high-magnitude streamflow (HMF) for 93 stream gauges covering the Sacramento, San Joaquin and Tulare basins in California. The results show that in an average year with HMF approximately 3.2 km3 of high-magnitude flow is exported from the entire Central Valley to the Sacramento-San Joaquin Delta often at times when environmental flow requirements of the Delta and major rivers are exceeded. High-magnitude flow occurs, on average, during 7 and 4.7 out of 10 years in the Sacramento River and the San Joaquin-Tulare Basins, respectively, from just a few storm events (5-7 1-day peak events) lasting for 25-30 days between November and April. The results suggest that there is sufficient unmanaged surface water physically available to mitigate long-term groundwater overdraft in the Central Valley.

  14. Use of space photographs in deciphering the origin and evolution of the desert

    International Nuclear Information System (INIS)

    El-Baz, F.

    1989-01-01

    Space photographs provide a very useful tool to study deserts and semiarid land because of their coverage and the amount of data they portray about vegetation-free terrain. This is a welcome contribution because we do not understand the desert as we do other types of terrain. Results of wind action, erosion and deposition are clearly portrayed in images obtained from spacecraft. They are indications of the state of the environment and should be studied well in all cases where economic development projects are instituted in deserts and semiarid lands. Furthermore, the history of evolution of the arid landscape in space and time must be considered in order to be able to use more of the desert for the benefit of mankind. (author). 33 refs, 14 figs

  15. California Institute for Water Resources - California Institute for Water

    Science.gov (United States)

    Resources Skip to Content Menu California Institute for Water Resources Share Print Site Map Resources Publications Keep in Touch QUICK LINKS Our Blog: The Confluence Drought & Water Information University of California California Institute for Water Resources California Institute for Water Resources

  16. Remote Sensing of Sonoran Desert Vegetation Structure and Phenology with Ground-Based LiDAR

    Directory of Open Access Journals (Sweden)

    Joel B. Sankey

    2014-12-01

    Full Text Available Long-term vegetation monitoring efforts have become increasingly important for understanding ecosystem response to global change. Many traditional methods for monitoring can be infrequent and limited in scope. Ground-based LiDAR is one remote sensing method that offers a clear advancement to monitor vegetation dynamics at high spatial and temporal resolution. We determined the effectiveness of LiDAR to detect intra-annual variability in vegetation structure at a long-term Sonoran Desert monitoring plot dominated by cacti, deciduous and evergreen shrubs. Monthly repeat LiDAR scans of perennial plant canopies over the course of one year had high precision. LiDAR measurements of canopy height and area were accurate with respect to total station survey measurements of individual plants. We found an increase in the number of LiDAR vegetation returns following the wet North American Monsoon season. This intra-annual variability in vegetation structure detected by LiDAR was attributable to a drought deciduous shrub Ambrosia deltoidea, whereas the evergreen shrub Larrea tridentata and cactus Opuntia engelmannii had low variability. Benefits of using LiDAR over traditional methods to census desert plants are more rapid, consistent, and cost-effective data acquisition in a high-resolution, 3-dimensional context. We conclude that repeat LiDAR measurements can be an effective method for documenting ecosystem response to desert climatology and drought over short time intervals and at detailed-local spatial scale.

  17. Temporal 222Rn distributions to reveal groundwater discharge into desert lakes: Implication of water balance in the Badain Jaran Desert, China

    Science.gov (United States)

    Luo, Xin; Jiao, Jiu Jimmy; Wang, Xu-sheng; Liu, Kun

    2016-03-01

    How lake systems are maintained and water is balanced in the lake areas in the Badain Jaran Desert (BJD), northeast of China have been debated for about a decade. In this study, continuous 222Rn measurement is used to quantify groundwater discharge into two representative fresh and brine water lakes in the desert using a steady-state mass-balance model. Two empirical equations are used to calculate atmospheric evasion loss crossing the water-air interface of the lakes. Groundwater discharge rates yielded from the radon mass balance model based on the two empirical equations are well correlated and of almost the same values, confirming the validity of the model. The fresh water and brine lakes have a daily averaged groundwater discharge rate of 7.6 ± 1.7 mm d-1 and 6.4 ± 1.8 mm d-1, respectively. The temporal fluctuations of groundwater discharge show similar patterns to those of the lake water level, suggesting that the lakes are recharged from nearby groundwater. Assuming that all the lakes have the same discharge rate as the two studied lakes, total groundwater discharge into all the lakes in the desert is estimated to be 1.59 × 105 m3 d-1. A conceptual model of water balance within a desert lake catchment is proposed to characterize water behaviors within the catchment. This study sheds lights on the water balance in the BJD and is of significance in sustainable regional water resource utilization in such an ecologically fragile area.

  18. Atmospheric Surface Layer Characterization: Preliminary Desert Lapse Rate Study 22-25 August 2000

    National Research Council Canada - National Science Library

    Elliott, Doyle

    2003-01-01

    Results of the August 2000 Desert Lapse Rate (DLR) Experiment are presented. The DLR Experiment was performed to document the night-to-day transition effects on the desert Atmospheric Surface Layer (ASL...

  19. Soil stabilization by a prokaryotic desert crust - Implications for Precambrian land biota

    Science.gov (United States)

    Campbell, S. E.

    1979-01-01

    The ecology of the cyanophyte-dominated stromatolitic mat forming the ground cover over desert areas of Utah and Colorado is investigated and implications for the formation of mature Precambrian soils are discussed. The activation of the growth of the two species of filamentous cyanophyte identified and the mobility of their multiple trichromes upon wetting are observed, accompanied by the production and deposition of a sheath capable of accreting and stabilizing sand and clay particles. The formation of calcium carbonate precipitates upon the repeated wetting and drying of desert crust is noted, and it is suggested that the desert crust community may appear in fossil calcrete deposits as lithified microscopic tubes and cellular remains of algal trichromes. The invasion of dry land by both marine and freshwater algae on the model of the desert crust is proposed to be responsible for the accumulation, stabilization and biogenic modification of mature Precambrian soils.

  20. Epifluorescent direct counts of bacteria and viruses from topsoil of various desert dust storm regions

    Science.gov (United States)

    Gonzalez-Martin, Cristina; Teigell-Perez, Nuria; Lyles, Mark; Valladares, Basilio; Griffin, Dale W.

    2013-01-01

    Topsoil from arid regions is the main source of dust clouds that move through the earth's atmosphere, and microbial communities within these soils can survive long-range dispersion. Microbial abundance and chemical composition were analyzed in topsoil from various desert regions. Statistical analyses showed that microbial direct counts were strongly positively correlated with calcium concentrations and negatively correlated with silicon concentrations. While variance between deserts was expected, it was interesting to note differences between sample sites within a given desert region, illustrating the 'patchy' nature of microbial communities in desert environments.

  1. Bacterial Rhizosphere Biodiversity from Several Pioneer Desert Sand Plants Near Jizan, Saudi Arabia

    KAUST Repository

    Osman, Jorge R.; Zelicourt, Axel de; Bisseling, Ton; Geurts, Rene; Hirt, Heribert; DuBow, Michael S.

    2016-01-01

    Life in arid regions and, in particular, hot deserts is often limited due to their harsh environmental conditions, such as large temperature fluctuations and low amounts of water. These extreme environments can influence the microbial community present on the surface sands and any rhizosphere members surrounding desert plant roots. The Jizan desert area, located in Saudi Arabia, supports particular vegetation that grows in the large sandy flat terrain. We examined five different samples, four from the rhizosphere of pioneer plants plus a surface sand sample, and used pyrosequencing of PCR-amplified V1-V3 regions of 16S rDNA genes from total extracted DNA to reveal and compare the bacterial population diversity of the samples. The results showed a total of 3,530 OTUs in the five samples, calculated using ≥ 97% sequence similarity levels. The Chao1 estimation of the bacterial diversity fluctuated from 637 to 2,026 OTUs for a given sample. The most abundant members found in the samples belong to the Bacteroidetes, Firmicutes and Proteobacteria phyla. This work shows that the Jizan desert area of Saudi Arabia can contain a diverse bacterial community on the sand and surrounding the roots of pioneer desert plants. It also shows that desert sand microbiomes can vary depending on conditions, with broad implications for sandstone monument bacterial communities

  2. Bacterial Rhizosphere Biodiversity from Several Pioneer Desert Sand Plants Near Jizan, Saudi Arabia

    KAUST Repository

    Osman, Jorge R.

    2016-04-08

    Life in arid regions and, in particular, hot deserts is often limited due to their harsh environmental conditions, such as large temperature fluctuations and low amounts of water. These extreme environments can influence the microbial community present on the surface sands and any rhizosphere members surrounding desert plant roots. The Jizan desert area, located in Saudi Arabia, supports particular vegetation that grows in the large sandy flat terrain. We examined five different samples, four from the rhizosphere of pioneer plants plus a surface sand sample, and used pyrosequencing of PCR-amplified V1-V3 regions of 16S rDNA genes from total extracted DNA to reveal and compare the bacterial population diversity of the samples. The results showed a total of 3,530 OTUs in the five samples, calculated using ≥ 97% sequence similarity levels. The Chao1 estimation of the bacterial diversity fluctuated from 637 to 2,026 OTUs for a given sample. The most abundant members found in the samples belong to the Bacteroidetes, Firmicutes and Proteobacteria phyla. This work shows that the Jizan desert area of Saudi Arabia can contain a diverse bacterial community on the sand and surrounding the roots of pioneer desert plants. It also shows that desert sand microbiomes can vary depending on conditions, with broad implications for sandstone monument bacterial communities

  3. Direct use applications of geothermal resources at Desert Hot Springs, California. Final report, May 23, 1977--July 31, 1978. Volume II: appendixes

    Energy Technology Data Exchange (ETDEWEB)

    Christiansen, C.C.

    1978-07-01

    The following appendixes are included: Desert Hot Springs (DHS) Geothermal Project Advisory Board, Geothermal Citizens Advisory Committee, community needs assessment, geothermal resource characterization, a detailed discussion of the geothermal applications considered for DHS, space/water heating, agricultural operations, detailed analysis of a geothermal aquaculture facility, detailed discussion of proposed energy cascading systems for DHS, regulatory requirements, environmental impact assessment, resource management plan, and geothermal resources property rights and powers of cities to regulate indigenous geothermal resources and to finance construction of facilities for utilization of such resources. (MHR)

  4. Biological Soil Crusts: Webs of Life in the Desert

    Science.gov (United States)

    Belnap, Jayne

    2001-01-01

    Although the soil surface may look like dirt to you, it is full of living organisms that are a vital part of desert ecosystems. This veneer of life is called a biological soil crust. These crusts are found throughout the world, from hot deserts to polar regions. Crusts generally cover all soil spaces not occupied by green plants. In many areas, they comprise over 70% of the living ground cover and are key in reducing erosion, increasing water retention, and increasing soil fertility. In most dry regions, these crusts are dominated by cyanobacteria (previously called blue-green algae), which are one of the oldest known life forms. Communities of soil crusts also include lichens, mosses, microfungi, bacteria, and green algae. These living organisms and their by-products create a continuous crust on the soil surface. The general color, surface appearance, and amount of coverage of these crusts vary depending on climate and disturbance patterns. Immature crusts are generally flat and the color of the soil, which makes them difficult to distinguish from bare ground. Mature crusts, in contrast, are usually bumpy and dark-colored due to the presence of lichens, mosses, and high densities of cyanobacteria and other organisms.

  5. Identification of high risk areas for avian influenza outbreaks in California using disease distribution models.

    Directory of Open Access Journals (Sweden)

    Jaber Belkhiria

    Full Text Available The coexistence of different types of poultry operations such as free range and backyard flocks, large commercial indoor farms and live bird markets, as well as the presence of many areas where wild and domestic birds co-exist, make California susceptible to avian influenza outbreaks. The 2014-2015 highly pathogenic Avian Influenza (HPAI outbreaks affecting California and other states in the United States have underscored the need for solutions to protect the US poultry industry against this devastating disease. We applied disease distribution models to predict where Avian influenza is likely to occur and the risk for HPAI outbreaks is highest. We used observations on the presence of Low Pathogenic Avian influenza virus (LPAI in waterfowl or water samples at 355 locations throughout the state and environmental variables relevant to the disease epidemiology. We used two algorithms, Random Forest and MaxEnt, and two data-sets Presence-Background and Presence-Absence data. The models performed well (AUCc > 0.7 for testing data, particularly those using Presence-Background data (AUCc > 0.85. Spatial predictions were similar between algorithms, but there were large differences between the predictions with Presence-Absence and Presence-Background data. Overall, predictors that contributed most to the models included land cover, distance to coast, and broiler farm density. Models successfully identified several counties as high-to-intermediate risk out of the 8 counties with observed outbreaks during the 2014-2015 HPAI epizootics. This study provides further insights into the spatial epidemiology of AI in California, and the high spatial resolution maps may be useful to guide risk-based surveillance and outreach efforts.

  6. Factors affecting the thermal environment of Agassiz’s Desert Tortoise (Gopherus agassizii) cover sites in the Central Mojave Desert during periods of temperature extremes

    Science.gov (United States)

    Mack, Jeremy S.; Berry, Kristin H.; Miller, David; Carlson, Andrea S.

    2015-01-01

    Agassiz's Desert Tortoises (Gopherus agassizii) spend >95% of their lives underground in cover sites that serve as thermal buffers from temperatures, which can fluctuate >40°C on a daily and seasonal basis. We monitored temperatures at 30 active tortoise cover sites within the Soda Mountains, San Bernardino County, California, from February 2004 to September 2006. Cover sites varied in type and structural characteristics, including opening height and width, soil cover depth over the opening, aspect, tunnel length, and surficial geology. We focused our analyses on periods of extreme temperature: in summer, between July 1 and September 1, and winter, between November 1 and February 15. With the use of multivariate regression tree analyses, we found cover-site temperatures were influenced largely by tunnel length and subsequently opening width and soil cover. Linear regression models further showed that increasing tunnel length increased temperature stability and dampened seasonal temperature extremes. Climate change models predict increased warming for southwestern North America. Cover sites that buffer temperature extremes and fluctuations will become increasingly important for survival of tortoises. In planning future translocation projects and conservation efforts, decision makers should consider habitats with terrain and underlying substrate that sustain cover sites with long tunnels and expanded openings for tortoises living under temperature extremes similar to those described here or as projected in the future.

  7. Distribution of high-temperature (>150 °C) geothermal resources in California

    Science.gov (United States)

    Sass, John H.; Priest, Susan S.

    2002-01-01

    California contains, by far, the greatest geothermal generating capacity in the United States, and with the possible exception of Alaska, the greatest potential for the development of additional resources. California has nearly 2/3 of the US geothermal electrical installed capacity of over 3,000 MW. Depending on assumptions regarding reservoir characteristics and future market conditions, additional resources of between 2,000 and 10,000 MWe might be developed (see e.g., Muffler, 1979).

  8. Food deserts in Winnipeg, Canada: a novel method for measuring a complex and contested construct

    Directory of Open Access Journals (Sweden)

    Joyce Slater

    2017-10-01

    Full Text Available Introduction: "Food deserts" have emerged over the past 20 years as spaces of concern for communities, public health authorities and researchers because of their potential negative impact on dietary quality and subsequent health outcomes. Food deserts are residential geographic spaces, typically in urban settings, where low-income residents have limited or no access to retail food establishments with sufficient variety at affordable cost. Research on food deserts presents methodological challenges including retail food store identification and classification, identification of low-income populations, and transportation and proximity metrics. Furthermore, the complex methods often used in food desert research can be difficult to reproduce and communicate to key stakeholders. To address these challenges, this study sought to demonstrate the feasibility of implementing a simple and reproducible method of identifying food deserts using data easily available in the Canadian context. Methods: This study was conducted in Winnipeg, Canada in 2014. Food retail establishments were identified from Yellow Pages and verified by public health dietitians. We calculated two scenarios of food deserts based on location of the lowest-income quintile population: (a living ≥ 500 m from a national chain grocery store, or (b living ≥ 500 m from a national chain grocery store or a full-service grocery store. Results: The number of low-income residents living in a food desert ranged from 64 574 to 104 335, depending on the scenario used. Conclusion: This study shows that food deserts affect a significant proportion of the Winnipeg population, and while concentrated in the urban core, exist in suburban neighbourhoods also. The methods utilized represent an accessible and transparent, reproducible process for identifying food deserts. These methods can be used for costeffective, periodic surveillance and meaningful engagement with communities, retailers and policy

  9. A High-Mass Cold Core in the Auriga-California Giant Molecular Cloud

    Science.gov (United States)

    Magnus McGehee, Peregrine; Paladini, Roberta; Pelkonen, Veli-Matti; Toth, Viktor; Sayers, Jack

    2015-08-01

    The Auriga-California Giant Molecular Cloud is noted for its relatively low star formation rate, especially at the high-mass end of the Initial Mass Function. We combine maps acquired by the Caltech Submillimeter Observatory's Multiwavelength Submillimeter Inductance Camera [MUSIC] in the wavelength range 0.86 to 2.00 millimeters with Planck and publicly-available Herschel PACS and SPIRE data in order to characterize the mass, dust properties, and environment of the bright core PGCC G163.32-8.41.

  10. Does a decade of elevated [CO2] affect a desert perennial plant community?

    Science.gov (United States)

    Newingham, Beth A; Vanier, Cheryl H; Kelly, Lauren J; Charlet, Therese N; Smith, Stanley D

    2014-01-01

    Understanding the effects of elevated [CO2 ] on plant community structure is crucial to predicting ecosystem responses to global change. Early predictions suggested that productivity in deserts would increase via enhanced water-use efficiency under elevated [CO2], but the response of intact arid plant communities to elevated [CO2 ] is largely unknown. We measured changes in perennial plant community characteristics (cover, species richness and diversity) after 10 yr of elevated [CO2] exposure in an intact Mojave Desert community at the Nevada Desert Free-Air CO2 Enrichment (FACE) Facility. Contrary to expectations, total cover, species richness, and diversity were not affected by elevated [CO2]. Over the course of the experiment, elevated [CO2] had no effect on changes in cover of the evergreen C3 shrub, Larrea tridentata; alleviated decreases in cover of the C4 bunchgrass, Pleuraphis rigida; and slightly reduced the cover of C3 drought-deciduous shrubs. Thus, we generally found no effect of elevated [CO2] on plant communities in this arid ecosystem. Extended drought, slow plant growth rates, and highly episodic germination and recruitment of new individuals explain the lack of strong perennial plant community shifts after a decade of elevated [CO2]. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  11. Introduction and domestication of woody plants for sustainable agriculture in desert areas

    Science.gov (United States)

    Shelef, Oren; Soloway, Elaine; Rachmilevitch, Shimon

    2014-05-01

    High radiation in hot deserts results in high salinity, especially in irrigated fields. Whenever not treated properly, this salinization may harm crops and eventually bring to soil destruction, field abandonment, or literally desertification. Furthermore, the range of crops that can be grown commercially in hot deserts is limited (Nerd et al. 1990). With the globalization of the last century, Introduction of exotic species for commercial use became more accessible. However, these attempts may involve extreme land changes including establishment of potential invasive species. Therefore domestication of native species should be preferred rather than introduction of exotics. In the last six years we did first steps of domesticating several native species, searching for commercial potential (pharmaceutics, food, biomass for energy and desalination of constructed wetlands). We studied aspects of desert plant physiology in drought and saline conditions. We wish to share the knowledge we gained regarding the physiology and commercial potential of the following desert plant species: 1) Bassia indica is an annual halophyte. We proposed to use it for salt phytoremediation in constructed wetlands for wastewater treatment and as feed for livestock; 2) Commiphora gileadensis is considered as the balm tree of Judea, praised for its use as holy oil and in perfumes but also considered as a cure for many diseases. C. gileadensis today grows naturally in southwest Arabia and Somaliland. We found anti-proliferative and apoptotic effect of C. gileadensis extracts on several human cancer cells. Ben Gurion University of the Negev has patented these findings. 3) Artemisia sieberi and A. judaica are both known for various therapeutic traits. While studying effects of irrigation intensity on these traits, some allopathic characters were discovered. 4) Fichus palmate disappeared from Israel, but remind in neighbouring Jordan and Egypt. This tree may serve as a robust stand for fig

  12. Soil texture drives responses of soil respiration to precipitation pulses in the sonoran desert: Implications for climate change

    Science.gov (United States)

    Cable, J.M.; Ogle, K.; Williams, D.G.; Weltzin, J.F.; Huxman, T. E.

    2008-01-01

    Climate change predictions for the desert southwestern U.S. are for shifts in precipitation patterns. The impacts of climate change may be significant, because desert soil processes are strongly controlled by precipitation inputs ('pulses') via their effect on soil water availability. This study examined the response of soil respiration-an important biological process that affects soil carbon (C) storage-to variation in pulses representative of climate change scenarios for the Sonoran Desert. Because deserts are mosaics of different plant cover types and soil textures-which create patchiness in soil respiration-we examined how these landscape characteristics interact to affect the response of soil respiration to pulses. Pulses were applied to experimental plots of bare and vegetated soil on contrasting soil textures typical of Sonoran Desert grasslands. The data were analyzed within a Bayesian framework to: (1) determine pulse size and antecedent moisture (soil moisture prior to the pulse) effects on soil respiration, (2) quantify soil texture (coarse vs. fine) and cover type (bare vs. vegetated) effects on the response of soil respiration and its components (plant vs. microbial) to pulses, and (3) explore the relationship between long-term variation in pulse regimes and seasonal soil respiration. Regarding objective (1), larger pulses resulted in higher respiration rates, particularly from vegetated fine-textured soil, and dry antecedent conditions amplified respiration responses to pulses (wet antecedent conditions dampened the pulse response). Regarding (2), autotrophic (plant) activity was a significant source (???60%) of respiration and was more sensitive to pulses on coarse- versus fine-textured soils. The sensitivity of heterotrophic (microbial) respiration to pulses was highly dependent on antecedent soil water. Regarding (3), seasonal soil respiration was predicted to increase with both growing season precipitation and mean pulse size (but only for pulses

  13. Element Geochemical Analysis of the Contribution of Aeolian Sand to Suspended Sediment in Desert Stream Flash Floods

    Directory of Open Access Journals (Sweden)

    Xiaopeng Jia

    2014-01-01

    Full Text Available The interaction of wind and water in semiarid and arid areas usually leads to low-frequency flash flood events in desert rivers, which have adverse effects on river systems and ecology. In arid zones, many aeolian dune-fields terminate in stream channels and deliver aeolian sand to the channels. Although aeolian processes are common to many desert rivers, whether the aeolian processes contribute to fluvial sediment loss is still unknown. Here, we identified the aeolian-fluvial cycling process responsible for the high rate of suspended sediment transport in the Sudalaer desert stream in the Ordos plateau of China. On the basis of element geochemistry data analysis, we found that aeolian sand was similar to suspended sediment in element composition, which suggests that aeolian sand contributes to suspended sediment in flash floods. Scatter plots of some elements further confirm that aeolian sand is the major source of the suspended sediment. Factor analysis and the relation between some elements and suspended sediment concentration prove that the greater the aeolian process, the higher the suspended sediment concentration and the greater the contribution of aeolian sand to suspended sediment yield. We conclude that aeolian sand is the greatest contributor to flash floods in the Sudalaer desert stream.

  14. Element geochemical analysis of the contribution of aeolian sand to suspended sediment in desert stream flash floods.

    Science.gov (United States)

    Jia, Xiaopeng; Wang, Haibing

    2014-01-01

    The interaction of wind and water in semiarid and arid areas usually leads to low-frequency flash flood events in desert rivers, which have adverse effects on river systems and ecology. In arid zones, many aeolian dune-fields terminate in stream channels and deliver aeolian sand to the channels. Although aeolian processes are common to many desert rivers, whether the aeolian processes contribute to fluvial sediment loss is still unknown. Here, we identified the aeolian-fluvial cycling process responsible for the high rate of suspended sediment transport in the Sudalaer desert stream in the Ordos plateau of China. On the basis of element geochemistry data analysis, we found that aeolian sand was similar to suspended sediment in element composition, which suggests that aeolian sand contributes to suspended sediment in flash floods. Scatter plots of some elements further confirm that aeolian sand is the major source of the suspended sediment. Factor analysis and the relation between some elements and suspended sediment concentration prove that the greater the aeolian process, the higher the suspended sediment concentration and the greater the contribution of aeolian sand to suspended sediment yield. We conclude that aeolian sand is the greatest contributor to flash floods in the Sudalaer desert stream.

  15. Groundwater-flow and land-subsidence model of Antelope Valley, California

    Science.gov (United States)

    Siade, Adam J.; Nishikawa, Tracy; Rewis, Diane L.; Martin, Peter; Phillips, Steven P.

    2014-01-01

    Antelope Valley, California, is a topographically closed basin in the western part of the Mojave Desert, about 50 miles northeast of Los Angeles. The Antelope Valley groundwater basin is about 940 square miles and is separated from the northern part of Antelope Valley by faults and low-lying hills. Prior to 1972, groundwater provided more than 90 percent of the total water supply in the valley; since 1972, it has provided between 50 and 90 percent. Most groundwater pumping in the valley occurs in the Antelope Valley groundwater basin, which includes the rapidly growing cities of Lancaster and Palmdale. Groundwater-level declines of more than 270 feet in some parts of the groundwater basin have resulted in an increase in pumping lifts, reduced well efficiency, and land subsidence of more than 6 feet in some areas. Future urban growth and limits on the supply of imported water may increase reliance on groundwater.

  16. Desert potholes: Ephemeral aquatic microsystems

    Science.gov (United States)

    Chan, M.A.; Moser, K.; Davis, J.M.; Southam, G.; Hughes, K.; Graham, T.

    2005-01-01

    An enigma of the Colorado Plateau high desert is the "pothole", which ranges from shallow ephemeral puddles to deeply carved pools. The existence of prokaryotic to eukaryotic organisms within these pools is largely controlled by the presence of collected rainwater. Multivariate statistical analysis of physical and chemical limnologic data variables measured from potholes indicates spatial and temporal variations, particularly in water depth, manganese, iron, nitrate and sulfate concentrations and salinity. Variation in water depth and salinity are likely related to the amount of time since the last precipitation, whereas the other variables may be related to redox potential. The spatial and temporal variations in water chemistry affect the distribution of organisms, which must adapt to daily and seasonal extremes of fluctuating temperature (0-60 ??C), pH changes of as much as 5 units over 12 days, and desiccation. For example, many species become dormant when potholes dry, in order to endure intense heat, UV radiation, desiccation and freezing, only to flourish again upon rehydration. But the pothole organisms also have a profound impact on the potholes. Through photosynthesis and respiration, pothole organisms affect redox potential, and indirectly alter the water chemistry. Laboratory examination of dried biofilm from the potholes revealed that within 2 weeks of hydration, the surface of the desiccated, black biofilm became green from cyanobacterial growth, which supported significant growth in heterotrophic bacterial populations. This complex biofilm is persumably responsible for dissolving the cement between the sandstone grains, allowing the potholes to enlarge, and for sealing the potholes, enabling them to retain water longer than the surrounding sandstone. Despite the remarkable ability of life in potholes to persist, desert potholes may be extremely sensitive to anthropogenic effects. The unique limnology and ecology of Utah potholes holds great scientific

  17. Trace elements assessment in agricultural and desert soils of Aswan area, south Egypt: Geochemical characteristics and environmental impacts

    Science.gov (United States)

    Darwish, Mohamed Abdallah Gad; Pöllmann, Hebert

    2015-12-01

    Determination of chemical elements, Al, Cd, Co, Cr, Cu, Fe, Li, Mn, Mo, Ni, P, Pb, Sc, Sr, Ti, Y, and Zn have been performed in agricultural and desert soils and alfalfa (Medicago sativa) at Aswan area. Consequently, the pollution indices, univariate and multivariate statistical methods have been applied, in order to assess the geochemical characteristics of these elements and their impact on soil environmental quality and plant, and to reach for their potential input sources. The investigation revealed that the mean and range values of all element concentrations in agricultural soil are higher than those in desert soil. Furthermore, the agricultural soil displayed various degrees of enrichment and pollution of Cd, Zn, Mo, Co, P, Ti, Pb. The geochemical pattern of integrated pollution indices gave a clear image of extreme and strong pollution in the agricultural soil stations, their poor quality with high risk to human health and considered as a tocsin for an alert. In contrast, the desert soil is the good environmental quality and safe for plant, animal and human health. Alfalfa is tolerant plant and considered as a biomarker for P and Mo in polluted agricultural soil. Four geochemical associations of analyzing elements in agricultural soil and three ones in desert soil have been generated, and their enhancements were essentially caused by various anthropogenic activities and geogenic sources. The investigation also revealed that the broad extended desert soil is fruitful and promising as cultivable lands for agricultural processes in the futures.

  18. Delta Chromium-53/52 isotopic composition of native and contaminated groundwater, Mojave Desert, USA

    Science.gov (United States)

    Izbicki, John A.; Bullen, Thomas D.; Martin, Peter; Schroth, Brian

    2012-01-01

    Chromium(VI) concentrations in groundwater sampled from three contaminant plumes in aquifers in the Mojave Desert near Hinkley, Topock and El Mirage, California, USA, were as high as 2600, 5800 and 330 μg/L, respectively. δ53/52Cr compositions from more than 50 samples collected within these plumes ranged from near 0‰ to almost 4‰ near the plume margins. Assuming only reductive fractionation of Cr(VI) to Cr(III) within the plume, apparent fractionation factors for δ53/52Cr isotopes ranged from εapp = 0.3 to 0.4 within the Hinkley and Topock plumes, respectively, and only the El Mirage plume had a fractionation factor similar to the laboratory derived value of ε = 3.5. One possible explanation for the difference between field and laboratory fractionation factors at the Hinkley and Topock sites is localized reductive fractionation of Cr(VI) to Cr(III), with subsequent advective mixing of native and contaminated water near the plume margin. Chromium(VI) concentrations and δ53/52Cr isotopic compositions did not uniquely define the source of Cr near the plume margin, or the extent of reductive fractionation within the plume. However, Cr(VI) and δ53/52Cr data contribute to understanding of the interaction between reductive and mixing processes that occur within and near the margins of Cr contamination plumes. Reductive fractionation of Cr(VI) predominates in plumes having higher εapp, these plumes may be suitable for monitored natural attenuation. In contrast, advective mixing predominates in plumes having lower εapp, the highly dispersed margins of these plumes may be difficult to define and manage.

  19. Preliminary design of four aircraft to service the California Corridor in the year 2010: The California Condor, California Sky-Hopper, high capacity short range transport tilt rotor aircraft needed to simplify intercity transportation

    Science.gov (United States)

    1989-01-01

    The major objective of this project was to design an aircraft for use in the California Corridor in the year 2010. The design process, completed by students in a senior design class at California Polytechnic State University, San Luis Obispo, used a Class 1 airplane design analysis from Jan Roskam's Airplane Design. The California Condor (CC-38), a 38 passenger, 400 mph aircraft, was designed to meet the needs of tomorrow's passengers while conforming to the California Corridor's restrictions. Assumptions were made using today's technology with forecasts into 21st Century technology. Doubling today's commuter aircraft passenger capacity, travelling at Mach .57 with improved cruise efficiencies of over 10 percent, with the ability to land within field lengths of 4000 feet, are the CC-38's strongest points. The California Condor has a very promising future in helping to relieve the air traffic and airport congestion in the 21st Century.

  20. Incipient Evolution of the Eastern California Shear Zone through a Transpressional Zone along the San Andreas Fault in the San Bernardino Mountains, California

    Science.gov (United States)

    Cochran, W. J.; Spotila, J. A.

    2017-12-01

    Measuring long-term accumulation of strike-slip displacements and transpressional uplift is difficult where strain is accommodated across wide shear zones, as opposed to a single major fault. The Eastern California Shear Zone (ECSZ) in southern California accommodates dextral shear across several strike-slip faults, and is potentially migrating and cutting through a formerly convergent zone of the San Bernardino Mountains (SBM). The advection of crust along the San Andreas fault to the SE has forced these two tectonic regimes into creating a nexus of interacting strike-slip faults north of San Gorgonio Pass. These elements make this region ideal for studying complex fault interactions, evolving fault geometries, and deformational overprinting within a wide shear zone. Using high-resolution topography and field mapping, this study aims to test whether diffuse, poorly formed strike-slip faults within the uplifted SBM block are nascent elements of the ECSZ. Topographic resolution of ≤ 1m was achieved using both lidar and UAV surveys along two Quaternary strike-slip faults, namely the Lake Peak fault and Lone Valley faults. Although the Lone Valley fault cuts across Quaternary alluvium, the geomorphic expression is obscured, and may be the result of slow slip rates. In contrast, the Lake Peak fault is located high elevations north of San Gorgonio Peak in the SBM, and displaces Quaternary glacial deposits. The deposition of large boulders along the escarpment also obscures the apparent magnitude of slip along the fault. Although determining fault offset is difficult, the Lake Peak fault does display evidence for minor right-lateral displacement, where the magnitude of slip would be consistent with individual faults within the ECSZ (i.e. ≤ 1 mm/yr). Compared to the preservation of displacement along strike-slip faults located within the Mojave Desert, the upland region of the SBM adds complexity for measuring fault offset. The distribution of strain across the entire

  1. Who Needs Religion When You Have The Desert?

    DEFF Research Database (Denmark)

    Sørensen, Bent

    In my paper I propose to read so-called ‘post-ironic’ texts by authors associated with the Blank Generation and Generation X (including Bret Easton Ellis and Douglas Coupland, as well as less well-known authors such as K.S. Haddock) and examine their use of the desert as a trope for identity...... testing and summation. Perhaps surprisingly, one finds in novels such as Ellis’ Less Than Zero (1984) and Coupland’s Generation X (1991) a reliance on desert locations to provide an alternative to the numerous non-places (in Marc Augé’s sense of the term) that otherwise make up the setting of these works....

  2. Mid-to-Late Holocene Hydrologic Variability in the Southeastern Mojave Desert Using Sediments from Ford Lake

    Science.gov (United States)

    Mayer, S. A.; Kirby, M. E.; Anderson, W. T., Jr.; Stout, C.; Palermo, J. A.

    2015-12-01

    The focal point of most lacustrine studies in the Mojave National Preserve (MNP) to date has been on lakes fed by the Mojave River. The source of the Mojave River is found on the northern flank of the San Bernardino Mountains. Consequently, the lakes that receive these waters are predominantly responding to the winter-only coastal southwest United States climate (e.g., Kirby et al., 2015 - Silver Lake); to a lesser degree, these lakes are also influenced by the Mojave's bimodal winter/summer climate. Ford Lake, located in the southeastern Mojave Desert is a small closed basin lake with its drainage basin located exclusively within the Mojave Desert. Therefore, sediment collected from Ford Lake contains a 100% Mojave-only climate signal. A 2.18 m sediment core was collected from the lake's depocenter in May 2015. Sediment analyses at 1 cm contiguous intervals include: magnetic susceptibility (MS), percent total organic matter, percent total carbonate content, and grain size analysis; C:N ratios, C and N isotope (δ13C and δ15N) analyses, and macrofossil counts are determined at 2 cm intervals. The site's age model is based on accelerator mass spectrometry (AMS) radiocarbon ages from discrete organic macrofossils or bulk organic carbon. To deconvolve the coastal climate, winter-only signal from the Mojave-only climate signal the data from Ford Lake will be compared to one Mojave River fed lake (Silver) and several southern California lakes (Lower Bear, Lake Elsinore, Dry Lake, and Zaca Lake). Our results will be analyzed in the context of climate forcings such as insolation and ocean - atmosphere dynamics.

  3. California Bioregions

    Data.gov (United States)

    California Natural Resource Agency — California regions developed by the Inter-agency Natural Areas Coordinating Committee (INACC) were digitized from a 1:1,200,000 California Department of Fish and...

  4. Desert bighorn sheep lambing habitat: Parturition, nursery, and predation sites

    Science.gov (United States)

    Karsch, Rebekah C.; Cain, James W.; Rominger, Eric M.; Goldstein, Elise J.

    2016-01-01

    Fitness of female ungulates is determined by neonate survival and lifetime reproductive success. Therefore, adult female ungulates should adopt behaviors and habitat selection patterns that enhance survival of neonates during parturition and lactation. Parturition site location may play an important role in neonatal mortality of desert bighorn sheep (Ovis canadensis mexicana) when lambs are especially vulnerable to predation, but parturition sites are rarely documented for this species. Our objectives were to assess environmental characteristics at desert bighorn parturition, lamb nursery, and predation sites and to assess differences in habitat characteristics between parturition sites and nursery group sites, and predation sites and nursery group sites. We used vaginal implant transmitters (VITs) to identify parturition sites and capture neonates. We then compared elevation, slope, terrain ruggedness, and visibility at parturition, nursery, and lamb predation sites with paired random sites and compared characteristics of parturition sites and lamb predation sites to those of nursery sites. When compared to random sites, odds of a site being a parturition site were highest at intermediate slopes and decreased with increasing female visibility. Odds of a site being a predation site increased with decreasing visibility. When compared to nursery group sites, odds of a site being a parturition site had a quadratic relationship with elevation and slope, with odds being highest at intermediate elevations and intermediate slopes. When we compared predation sites to nursery sites, odds of a site being a predation were highest at low elevation areas with high visibility and high elevation areas with low visibility likely because of differences in hunting strategies of coyote (Canis latrans) and puma (Puma concolor). Parturition sites were lower in elevation and slope than nursery sites. Understanding selection of parturition sites by adult females and how habitat

  5. Recovery of compacted soils in Mojave Desert ghost towns.

    Science.gov (United States)

    Webb, R.H.; Steiger, J.W.; Wilshire, H.G.

    1986-01-01

    Residual compaction of soils was measured at seven sites in five Mojave Desert ghost towns. Soils in these Death Valley National Monument townsites were compacted by vehicles, animals, and human trampling, and the townsites had been completely abandoned and the buildings removed for 64 to 75 yr. Recovery times extrapolated using a linear recovery model ranged from 80 to 140 yr and averaged 100 yr. The recovery times were related to elevation, suggesting freeze-thaw loosening as an important factor in ameliorating soil compaction in the Mojave Desert. -from Authors

  6. Natural product diversity of actinobacteria in the Atacama Desert.

    Science.gov (United States)

    Rateb, Mostafa E; Ebel, Rainer; Jaspars, Marcel

    2018-02-14

    The Atacama Desert of northern Chile is considered one of the most arid and extreme environment on Earth. Its core region was described as featuring "Mars-like" soils that were at one point deemed too extreme for life to exist. However, recent investigations confirmed the presence of diverse culturable actinobacteria. In the current review, we discuss a total of 46 natural products isolated to date representing diverse chemical classes characterized from different actinobacteria isolated from various locations in the Atacama Desert. Their reported biological activities are also discussed.

  7. High bacterial diversity of biological soil crusts in water tracks over permafrost in the high arctic polar desert.

    Science.gov (United States)

    Steven, Blaire; Lionard, Marie; Kuske, Cheryl R; Vincent, Warwick F

    2013-01-01

    In this study we report the bacterial diversity of biological soil crusts (biocrusts) inhabiting polar desert soils at the northern land limit of the Arctic polar region (83° 05 N). Employing pyrosequencing of bacterial 16S rRNA genes this study demonstrated that these biocrusts harbor diverse bacterial communities, often as diverse as temperate latitude communities. The effect of wetting pulses on the composition of communities was also determined by collecting samples from soils outside and inside of permafrost water tracks, hill slope flow paths that drain permafrost-affected soils. The intermittent flow regime in the water tracks was correlated with altered relative abundance of phylum level taxonomic bins in the bacterial communities, but the alterations varied between individual sampling sites. Bacteria related to the Cyanobacteria and Acidobacteria demonstrated shifts in relative abundance based on their location either inside or outside of the water tracks. Among cyanobacterial sequences, the proportion of sequences belonging to the family Oscillatoriales consistently increased in relative abundance in the samples from inside the water tracks compared to those outside. Acidobacteria showed responses to wetting pulses in the water tracks, increasing in abundance at one site and decreasing at the other two sites. Subdivision 4 acidobacterial sequences tended to follow the trends in the total Acidobacteria relative abundance, suggesting these organisms were largely responsible for the changes observed in the Acidobacteria. Taken together, these data suggest that the bacterial communities of these high latitude polar biocrusts are diverse but do not show a consensus response to intermittent flow in water tracks over high Arctic permafrost.

  8. Water sources for cyanobacteria below desert rocks in the Negev Desert determined by conductivity

    Directory of Open Access Journals (Sweden)

    Christopher P. McKay

    2016-04-01

    Full Text Available We present year round meteorological and conductivity measurements of colonized hypolithic rocks in the Arava Valley, Negev Desert, Israel. The data indicate that while dew is common in the Negev it is not an important source of moisture for hypolithic organisms at this site. The dominance of cyanobacteria in the hypolithic community is consistent with predictions that cyanobacteria are confined to habitats supplied by rain. To monitor the presence of liquid water under the small Negev rocks we developed and tested a simple field conductivity system based on two wires placed about 0.5 cm apart. Based on 21 replicates recorded for one year in the Negev we conclude that in natural rains (0.25 mm to 6 mm the variability between sensor readings is between 20 and 60% decreasing with increasing rain amount. We conclude that the simple small electrical conductivity system described here can be used effectively to monitor liquid water levels in lithic habitats. However, the natural variability of these sensors indicates that several replicates should be deployed. The results and method presented have use in arid desert reclamation programs.

  9. CO2 EFFECTS ON MOJAVE DESERT PLANT INTERACTIONS

    Energy Technology Data Exchange (ETDEWEB)

    L. A. DEFALCO; G. C. FERNANDEZ; S. D. SMITH; R. S. NOWAK

    2004-01-01

    Seasonal and interannual droughts characteristic of deserts have the potential to modify plant interactions as atmospheric CO{sub 2} concentrations continue to rise. At the Nevada Desert FACE (free-air CO{sub 2} enrichment) facility in the northern Mojave Desert, the effects of elevated atmospheric C02 (550 vs. ambient {approx}360 {micro}mol mol{sup -1}) on plant interactions were examined during two years of high and low rainfall. Results suggest that CO{sub 2} effects on the interaction between native species and their understory herbs are dependent on the strength of competition when rainfall is plentiful, but are unimportant during annual drought. Seasonal rainfall for 1999 was 23% the long-term average for the area, and neither elevated CO{sub 2} nor the low production of herbaceous neighbors had an effect on relative growth rate (RGR, d{sup -1}) and reproductive effort (RE, number of flowers g{sup -1}) for Achnatherum hymenoides (early season perennial C{sub 3} grass), Pleuraphis rigida (late season perennial C{sub 4} grass), and Larrea tridentata (evergreen C{sub 3} shrub). In contrast, 1998 received 213% the average rainfall. Consequently, the decrease in RGR and increase in RE for Achnatherum, whose period of growth overlaps directly with that of its neighbors, was exaggerated at elevated CO{sub 2}. However, competitive effects of neighbors on Eriogonum trichopes (a winter annual growing in shrub interspaces), Pleuraphis and Larrea were not affected by elevated CO{sub 2}, and possible explanations are discussed. Contrary to expectations, the invasive annual neighbor Bromus madritensis ssp. rubens had little influence on target plant responses because densities in 1998 and 1999 at this site were well below those found in other studies where it has negatively affected perennial plant growth. The extent that elevated CO{sub 2} reduces the performance of Achnatherum in successive years to cause its loss from the plant community depends more on future pressure

  10. Biparentally deserted offspring are viable in a species with intense sexual conflict over care

    NARCIS (Netherlands)

    Pogány, Ákos; Kosztolányi, András; Miklósi, Ádám; Komdeur, Jan; Székely, Tamás

    2015-01-01

    Desertion of clutch (or brood) by both parents often leads to breeding failure, since in vast majority of birds care by at least one parent is required for any young to fledge. Recent works in a highly polygamous passerine bird, the Eurasian penduline tit (Remiz pendulinus), suggest that biparental

  11. Variation of Desert Soil Hydraulic Properties with Pedogenic Maturity

    Science.gov (United States)

    Nimmo, J. R.; Perkins, K. S.; Mirus, B. B.; Schmidt, K. M.; Miller, D. M.; Stock, J. D.; Singha, K.

    2006-12-01

    Older alluvial desert soils exhibit greater pedogenic maturity, having more distinct desert pavements, vesicular (Av) horizons, and more pronounced stratification from processes such as illuviation and salt accumulation. These and related effects strongly influence the soil hydraulic properties. Older soils have been observed to have lower saturated hydraulic conductivity, and possibly greater capacity to retain water, but the quantitative effect of specific pedogenic features on the soil water retention or unsaturated hydraulic conductivity (K) curves is poorly known. With field infiltration/redistribution experiments on three different-aged soils developed within alluvial wash deposits in the Mojave National Preserve, we evaluated effective hydraulic properties over a scale of several m horizontally and to 1.5 m depth. We then correlated these properties with pedogenic features. The selected soils are (1) recently deposited sediments, (2) a soil of early Holocene age, and (3) a highly developed soil of late Pleistocene age. In each experiment we ponded water in a 1-m-diameter infiltration ring for 2.3 hr. For several weeks we monitored subsurface water content and matric pressure using surface electrical resistance imaging, dielectric-constant probes, heat-dissipation probes, and tensiometers. Analysis of these data using an inverse modeling technique gives the water retention and K properties needed for predictive modeling. Some properties show a consistent trend with soil age. Progressively more developed surface and near-surface features such as desert pavement and Av horizons are the likely cause of an observed consistent decline of infiltration capacity with soil age. Other properties, such as vertical flow retardation by layer contrasts, appear to have a more complicated soil-age dependence. The wash deposits display distinct depositional layering that has a retarding effect on vertical flow, an effect that may be less pronounced in the older Holocene soil

  12. Giant desiccation fissures on the Black Rock and Smoke Creek Deserts, Nevada

    Science.gov (United States)

    Willden, R.; Mabey, D.R.

    1961-01-01

    Open fissures, from 100 to several hundred feet apart, that have produced polygonal patterns on the Black Rock Desert, Nevada, are believed to be giant desiccation cracks resulting from a secular trend toward aridity in the last few decades. Similar features on the Smoke Creek Desert probably have the same origin.

  13. Rocks, climate and the survival of human societies in hyper-arid and arid environments - Are the human civilization in deserts at a permanent risk of collapse?

    Science.gov (United States)

    Yoav, Avni; Noa, Avriel-Avni

    2017-04-01

    The great challenges of living in the arid and hyper arid regions worldwide are the shortage of water, limited resources and the permanent uncertainty of the desert climate. These challenges are known as the main weaknesses of desert societies that are prone, according to the existing paradigm, to a permanent risk of collapse. However, in the Middle East deserts, human societies are known since prehistoric times and during the entire hyper-dry Holocene. This hints that the simple paradigm of desert societies' high vulnerability to harsh desert environments needs to be better examined. In this context we examine three case studies: 1. The Southern Sinai region in Egypt: In this region, the annual precipitation fluctuates between 20-50 mm/y. However, in this highly mountainous area, desert agriculture plots including orchards were constructed, located mainly around the byzantine monastery of Santa Katerina. During the last 1500 years, much of the water supply needed for humans and agriculture was generated from runoff developed on exposed granite rocks. 2. The southern Jordan region south of Petra: Much of this wide area connecting the deserts of the Arabian Peninsula and southern Jordan receive only 20-30 mm/y. However, the main caravan route established by the Arabian tribes during the first millennia BC managed to cross this land, supplying the water needs of many camels. Most of this water was stored in large cisterns dug into the sandstone rock formations exposed along the route, especially within the Disi Formation. 3. The Negev Highlands of southern Israel: This region is divided between the hyper arid region to the south, receiving 70-80 mm/y, and the arid region to the north receiving 90-130 mm/y. During the last two millennia, the hyper arid area was used for camel grazing and goats herds, while the northern sector was used for the construction of agriculture plots, agriculture farms and even desert towns. All these activities were sustained by runoff

  14. Desert rose: building material of cupolas in the Souf in Algeria

    Science.gov (United States)

    Azil, C.; Djebri, B.; Rovero, L.

    2018-05-01

    In the Souf of Algeria, the roofs of all constructions are arranged like corbelled domes, built with local particular material to this region, which is the desert rose. These cupolas describe a unique landscape of historic centres. Such constructions include a widespread and precious heritage that deserves protection to save this urban landscape which constitutes an element of identity of heritage built upon the material as well as the immaterial of the local know-how. Unfortunately, these architectural elements have undergone alterations that devalue the urban landscape and destabilize the buildings. However, the structural system that provides stability and endurance to this day remains an open question. In this, paper, we describe the role of desert rose cupolas in the construction of a single urban landscape and we contribute to this knowledge. Then, we explain the role of the availability of the materials locals (desert rose and tafza) to appearance ad emergence of construction with cupolas typology. In addition, we describe these materials locals, and the method to them usage. In the end, we have traced the process of construction of these cupolas by corbelling which is mounted by successive courses of the desert rose and the plaster mortar.

  15. Reconstructing the origin of Helianthus deserticola: Survival and selection on the desert floor

    NARCIS (Netherlands)

    Gross, B.L.; Kane, D.L.; Lexer, C.; Ludwig, F.; Rosenthal, D.R.; Donovan, L.A.; Rieseberg, L.H.

    2004-01-01

    The diploid hybrid species Helianthus deserticola inhabits the desert floor, an extreme environment relative to its parental species Helianthus annuus and Helianthus petiolaris. Adaptation to the desert floor may have occurred via selection acting on transgressive, or extreme, traits in early

  16. Multi-scale forcing and the formation of subtropical desert and monsoon

    Directory of Open Access Journals (Sweden)

    G. X. Wu

    2009-09-01

    parts of their respective continents, and orography-induced ascent is separated from ascent due to continental-scale forcing. Accordingly, the deserts and monsoon climate over these continents are not as strongly developed as those over the Eurasian Continent. A new mechanism of positive feedback between diabatic heating and vorticity generation, which occurs via meridional transfer of heat and planetary vorticity, is proposed as a means of explaining the formation of subtropical desert and monsoon. Strong low-level longwave radiative cooling over eastern parts of oceans and strong surface sensible heating on western parts of continents generate negative vorticity that is balanced by positive planetary vorticity advection from high latitudes. The equatorward flow generated over eastern parts of oceans produces cold sea-surface temperature and stable stratification, leading in turn to the formation of low stratus clouds and the maintenance of strong in situ longwave radiative cooling. The equatorward flow over western parts of continents carries cold, dry air, thereby enhancing local sensible heating as well as moisture release from the underlying soil. These factors result in a dry desert climate. Over the eastern parts of continents, condensation heating generates positive vorticity in the lower troposphere, which is balanced by negative planetary vorticity advection of the meridional flow from low latitudes. The flow brings warm and moist air, thereby enhancing local convective instability and condensation heating associated with rainfall. These factors produce a wet monsoonal climate. Overall, our results demonstrate that subtropical desert and monsoon coexist as a consequence of multi-scale forcing along the subtropics.

  17. Multi-scale forcing and the formation of subtropical desert and monsoon

    Directory of Open Access Journals (Sweden)

    G. X. Wu

    2009-09-01

    located over the western parts of their respective continents, and orography-induced ascent is separated from ascent due to continental-scale forcing. Accordingly, the deserts and monsoon climate over these continents are not as strongly developed as those over the Eurasian Continent.

    A new mechanism of positive feedback between diabatic heating and vorticity generation, which occurs via meridional transfer of heat and planetary vorticity, is proposed as a means of explaining the formation of subtropical desert and monsoon. Strong low-level longwave radiative cooling over eastern parts of oceans and strong surface sensible heating on western parts of continents generate negative vorticity that is balanced by positive planetary vorticity advection from high latitudes. The equatorward flow generated over eastern parts of oceans produces cold sea-surface temperature and stable stratification, leading in turn to the formation of low stratus clouds and the maintenance of strong in situ longwave radiative cooling. The equatorward flow over western parts of continents carries cold, dry air, thereby enhancing local sensible heating as well as moisture release from the underlying soil. These factors result in a dry desert climate. Over the eastern parts of continents, condensation heating generates positive vorticity in the lower troposphere, which is balanced by negative planetary vorticity advection of the meridional flow from low latitudes. The flow brings warm and moist air, thereby enhancing local convective instability and condensation heating associated with rainfall. These factors produce a wet monsoonal climate. Overall, our results demonstrate that subtropical desert and monsoon coexist as a consequence of multi-scale forcing along the subtropics.

  18. Chihuahuan Deserts Ecoregion: Chapter 27 in Status and trends of land change in the Western United States--1973 to 2000

    Science.gov (United States)

    Ruhlman, Jana; Gass, Leila; Middleton, Barry

    2012-01-01

    The Chihuahuan Desert is the largest of the North American deserts, extending from southern New Mexico and Texas deep into Mexico, with approximately 90 percent of its area falling south of the United States–Mexico border (Lowe, 1964, p. 24). The Chihuahuan Deserts Ecoregion covers approximately 174,472 km2 (67,364 mi2) within the United States, including much of west Texas, southern New Mexico, and a small portion of southeastern Arizona (Omernik, 1987; U.S. Environmental Protection Agency, 1997). The ecoregion is generally oriented from northwest to southeast, with the Madrean Archipelago Ecoregion to the west; the Arizona/New Mexico Mountains, Arizona/New Mexico Plateau, Southwestern Tablelands, and Western High Plains Ecoregions to the north; and the Edwards Plateau and Southern Texas Plains Ecoregions to the east (fig. 1).

  19. Biological soil crusts as an integral component of desert environments

    Science.gov (United States)

    Belnap, Jayne; Weber, Bettina

    2013-01-01

    The biology and ecology of biological soil crusts, a soil surface community of mosses, lichens, cyanobacteria, green algae, fungi, and bacteria, have only recently been a topic of research. Most efforts began in the western U.S. (Cameron, Harper, Rushforth, and St. Clair), Australia (Rogers), and Israel (Friedmann, Evenari, and Lange) in the late 1960s and 1970s (e.g., Friedmann et al. 1967; Evenari 1985reviewed in Harper and Marble 1988). However, these groups worked independently of each other and, in fact, were often not aware of each other’s work. In addition, biological soil crust communities were seen as more a novelty than a critical component of dryland ecosystems. Since then, researchers have investigated many different aspects of these communities and have shown that although small to microscopic, biological soil crusts are critical in many ecological processes of deserts. They often cover most of desert soil surfaces and substantially mediate inputs and outputs from desert soils (Belnap et al. 2003). They can be a large source of biodiversity for deserts, as they can contain more species than the surrounding vascular plant community (Rosentreter 1986). These communities are important in reducing soil erosion and increasing soil fertility through the capture of dust and the fixation of atmospheric nitrogen and carbon into forms available to other life forms (Elbert et al. 2012). Because of their many effects on soil characteristics, such as external and internal morphological characteristics, aggregate stability, soil moisture, and permeability, they also affect seed germination and establishment and local hydrological cycles. Covering up to 70% of the surface area in many arid and semi-arid regions around the world (Belnap and Lange 2003), biological soil crusts are a key component within desert environments.

  20. High abundance and diversity of consumers associated with eutrophic areas in a semi-desert macrotidal coastal ecosystem in Patagonia, Argentina

    Science.gov (United States)

    Martinetto, Paulina; Daleo, Pedro; Escapa, Mauricio; Alberti, Juan; Isacch, Juan Pablo; Fanjul, Eugenia; Botto, Florencia; Piriz, Maria Luz; Ponce, Gabriela; Casas, Graciela; Iribarne, Oscar

    2010-07-01

    Here we evaluated the response to eutrophication in terms of abundance and diversity of flora and fauna in a semi-desert macrotidal coastal system (San Antonio bay, Patagonia, Argentina, 40° 48' S) where signs of eutrophication (high nutrient concentration, seaweed blooms, high growth rate of macroalgae) have been reported. We compared abundances and species composition of macroalgae, small infaunal and epifaunal invertebrates, and birds associated with tidal channels of the San Antonio Bay subject to contrasting anthropogenic influence. Macroalgae were more abundant and diverse in the channel closer to human activity where nutrient concentrations were also higher. In contrast to what others have observed in eutrophic sites, small invertebrates and birds were also more abundant and diverse in the channel with macroalgal blooms and high nutrient concentration. The large water flushing during the tidal cycle could prevent anoxic or hypoxic events, making the environment suitable for consumers. Thus, this could be a case in which eutrophication supports high densities of consumers by increasing food availability, rather than negatively affecting the survival of organisms.

  1. Fundamental drivers for endolithic microbial community assemblies in the hyperarid Atacama Desert.

    Science.gov (United States)

    Meslier, Victoria; Casero, M Cristina; Dailey, Micah; Wierzchos, Jacek; Ascaso, Carmen; Artieda, Octavio; McCullough, P R; DiRuggiero, Jocelyne

    2018-03-24

    In hyperarid deserts, endolithic microbial communities colonize the rocks' interior as a survival strategy. Yet, the composition of these communities and the drivers promoting their assembly are still poorly understood. We analysed the diversity and community composition of endoliths from four different lithic substrates - calcite, gypsum, ignimbrite and granite - collected in the hyperarid zone of the Atacama Desert, Chile. By combining microscopy, mineralogy, spectroscopy and high throughput sequencing, we found these communities to be highly specific to their lithic substrate, although they were all dominated by the same four main phyla, Cyanobacteria, Actinobacteria, Chloroflexi and Proteobacteria. Our finding indicates a fine scale diversification of the microbial reservoir driven by substrate properties. The data suggest that the overall rock chemistry and the light transmission properties of the substrates are not essential drivers of community structure and composition. Instead, we propose that the architecture of the rock, i.e., the space available for colonization and its physical structure, linked to water retention capabilities, is ultimately the driver of community diversity and composition at the dry limit of life. © 2018 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Food Swamps Predict Obesity Rates Better Than Food Deserts in the United States

    OpenAIRE

    Cooksey-Stowers, Kristen; Schwartz, Marlene B.; Brownell, Kelly D.

    2017-01-01

    This paper investigates the effect of food environments, characterized as food swamps, on adult obesity rates. Food swamps have been described as areas with a high-density of establishments selling high-calorie fast food and junk food, relative to healthier food options. This study examines multiple ways of categorizing food environments as food swamps and food deserts, including alternate versions of the Retail Food Environment Index. We merged food outlet, sociodemographic and obesity data ...

  3. Atmospheric dry deposition in the vicinity of the Salton Sea, California - I: Air pollution and deposition in a desert environment

    Science.gov (United States)

    Alonso, R.; Bytnerowicz, A.; Boarman, W.I.

    2005-01-01

    Air pollutant concentrations and atmospheric dry deposition were monitored seasonally at the Salton Sea, southern California. Measurements of ozone (O 3), nitric acid vapor (HNO3), ammonia (NH3), nitric oxide (NO), nitrogen dioxide (NO2) and sulfur dioxide (SO 2) were performed using passive samplers. Deposition rates of NO 3-, NH4+, Cl-, SO 42-, Na+, K+ and Ca2+ to creosote bush branches and nylon filters as surrogate surfaces were determined for one-week long exposure periods. Maximum O3 values were recorded in spring with 24-h average values of 108.8 ??g m-3. Concentrations of NO and NO2 were low and within ranges of the non-urban areas in California (0.4-5.6 and 3.3-16.2 ??g m-3 ranges, respectively). Concentrations of HNO3 (2.0-6.7 ??g m-3) and NH 3 (6.4-15.7 ??g m-3) were elevated and above the levels typical for remote locations in California. Deposition rates of Cl-, SO42-, Na+, K+ and Ca2+ were related to the influence of sea spray or to suspended soil particles, and no strong enrichments caused by ions originated by human activities were detected. Dry deposition rates of NO3- and NH4+ were similar to values registered in areas where symptoms of nitrogen saturation and changes in species composition have been described. Deposition of nitrogenous compounds might be contributing to eutrophication processes at the Salton Sea. ?? 2005 Elsevier Ltd. All rights reserved.

  4. 76 FR 28767 - Desert Southwest Customer Service Region-Rate Order No. WAPA-152

    Science.gov (United States)

    2011-05-18

    ... DEPARTMENT OF ENERGY Western Area Power Administration Desert Southwest Customer Service Region..., Desert Southwest Customer Service Region, Western Area Power Administration, P.O. Box 6457, Phoenix, AZ... Customer Service Region, Western Area Power Administration, P.O. Box 6457, Phoenix, AZ 85005-6457, (602...

  5. Temporal patterns in species flowering in Sky Islands of the Sonoran Desert ecoregion

    Science.gov (United States)

    Theresa M. Crimmins; Michael A. Crimmins; C. David. Bertelsen

    2013-01-01

    Highly variable moisture conditions in the Sonoran Desert play a significant role in shaping the composition and phenology of plants in this water-limited region. The flowering patterns of plants of the Finger Rock trail, located in the Santa Catalina Mountains of southern Arizona, have been very carefully documented on approximately a weekly basis for nearly three...

  6. 76 FR 49464 - Combined Notice of Filings #1

    Science.gov (United States)

    2011-08-10

    ... Peaker Plant, LLC, California Electric Marketing, LLC, Crete Energy Venture, LLC, High Desert Power... Energy, LLC. Description: Quarterly Land Acquisition Report of Alabama Electric Marketing, LLC, et al..., LLC, FPL Energy Hancock County Wind, LLC, FPL Energy Illinois Wind, LLC, FPL Energy Maine Hydro LLC...

  7. Urban particle size distributions during two contrasting dust events originating from Taklimakan and Gobi Deserts

    International Nuclear Information System (INIS)

    Zhao, Suping; Yu, Ye; Xia, Dunsheng; Yin, Daiying; He, Jianjun; Liu, Na; Li, Fang

    2015-01-01

    The dust origins of the two events were identified using HYSPLIT trajectory model and MODIS and CALIPSO satellite data to understand the particle size distribution during two contrasting dust events originated from Taklimakan and Gobi deserts. The supermicron particles significantly increased during the dust events. The dust event from Gobi desert affected significantly on the particles larger than 2.5 μm, while that from Taklimakan desert impacted obviously on the particles in 1.0–2.5 μm. It is found that the particle size distributions and their modal parameters such as VMD (volume median diameter) have significant difference for varying dust origins. The dust from Taklimakan desert was finer than that from Gobi desert also probably due to other influencing factors such as mixing between dust and urban emissions. Our findings illustrated the capacity of combining in situ, satellite data and trajectory model to characterize large-scale dust plumes with a variety of aerosol parameters. - Highlights: • Dust particle size distributions had large differences for varying origins. • Dust originating from Taklimakan Desert was finer than that from Gobi Desert. • Effect of dust on the supermicron particles was obvious. • PM_1_0 concentrations increased by a factor of 3.4–25.6 during the dust event. - Dust particle size distributions had large differences for varying origins, which may be also related to other factors such as mixing between dust and urban emissions.

  8. The vascular flora and floristic relationships of the Sierra de La Giganta in Baja California Sur, Mexico La flora vascular y las relaciones florísticas de la sierra de La Giganta de Baja California Sur, México

    Directory of Open Access Journals (Sweden)

    José Luis León de la Luz

    2008-06-01

    Full Text Available The Sierra de La Giganta is a semi-arid region in the southern part of the Baja California peninsula of Mexico. Traditionally, this area has been excluded as a sector of the Sonoran Desert and has been more often lumped with the dry-tropical Cape Region of southern Baja California peninsula, but this classical concept of the vegetation has not previously been analyzed using formal documentation. In the middle of the last century, Annetta Carter, a botanist from the University of California, began explorations in the Sierra de La Giganta that lasted 24 years, she collected 1 550 specimens and described several new species from this area, but she never published an integrated study of the flora. Our objectives, having developed extensive collections in the same area over the past years, are to provide a comprehensive species list and description of the vegetation of this mountain range. We found a flora of 729 taxa, poorly represented in tree life-forms (3.1%, a moderate level (4.4% of endemism, and the dominance of plants in the sampling plots is composed mainly for legume trees and shrubs. Additionally, using a biogeographical approach, we compare our list with other known lists of plants from 5 areas, 3 in the Cape Region, 1 in the Sonoran Desert, and other in the thornscrub area of NW Mexico. We conclude that the La Giganta flora has a mixed composition, primarily made up of plants shared with the lowlands of the southern Cape Region, but also share an important proportion of the flora with the desert mountains of the central peninsula and some with the Sonoran desertscrub of mainland Mexico. Consequently we support that the La Giganta flora is part of a floristic continuum along the volcanic mountains of the southern peninsula that eventually could be considered a new eco-region in the same peninsular land.La sierra de La Giganta se localiza en el estado de Baja California Sur, México, en una región semi-árida. Tradicionalmente, esta

  9. Liquid desiccant dehumidification and regeneration process to meet cooling and freshwater needs of desert greenhouses

    KAUST Repository

    Lefers, Ryan

    2016-04-19

    Agriculture accounts for ~70% of freshwater usage worldwide. Seawater desalination alone cannot meet the growing needs for irrigation and food production, particularly in hot, desert environments. Greenhouse cultivation of high-value crops uses just a fraction of freshwater per unit of food produced when compared with open field cultivation. However, desert greenhouse producers face three main challenges: freshwater supply, plant nutrient supply, and cooling of the greenhouse. The common practice of evaporative cooling for greenhouses consumes large amounts of fresh water. In Saudi Arabia, the most common greenhouse cooling schemes are fresh water-based evaporative cooling, often using fossil groundwater or energy-intensive desalinated water, and traditional refrigeration-based direct expansion cooling, largely powered by the burning of fossil fuels. The coastal deserts have ambient conditions that are seasonally too humid to support adequate evaporative cooling, necessitating additional energy consumption in the dehumidification process of refrigeration-based cooling. This project evaluates the use of a combined-system liquid desiccant dehumidifier and membrane distillation unit that can meet the dual needs of cooling and freshwater supply for a greenhouse in a hot and humid environment. © 2016 Balaban Desalination Publications. All rights reserved.

  10. Prediabetes in California: Nearly Half of California Adults on Path to Diabetes.

    Science.gov (United States)

    Babey, Susan H; Wolstein, Joelle; Diamant, Allison L; Goldstein, Harold

    2016-03-01

    In California, more than 13 million adults (46 percent of all adults in the state) are estimated to have prediabetes or undiagnosed diabetes. An additional 2.5 million adults have diagnosed diabetes. Altogether, 15.5 million adults (55 percent of all California adults) have prediabetes or diabetes. Although rates of prediabetes increase with age, rates are also high among young adults, with one-third of those ages 18-39 having prediabetes. In addition, rates of prediabetes are disproportionately high among young adults of color, with more than one-third of Latino, Pacific Islander, American Indian, African-American, and multiracial Californians ages 18-39 estimated to have prediabetes. Policy efforts should focus on reducing the burden of prediabetes and diabetes through support for prevention and treatment.

  11. The Plant Genetic Engineering Laboratory For Desert Adaptation

    Science.gov (United States)

    Kemp, John D.; Phillips, Gregory C.

    1985-11-01

    The Plant Genetic Engineering Laboratory for Desert Adaptation (PGEL) is one of five Centers of Technical Excellence established as a part of the state of New Mexico's Rio Grande Research Corridor (RGRC). The scientific mission of PGEL is to bring innovative advances in plant biotechnology to bear on agricultural productivity in arid and semi-arid regions. Research activities focus on molecular and cellular genetics technology development in model systems, but also include stress physiology investigations and development of desert plant resources. PGEL interacts with the Los Alamos National Laboratory (LANL), a national laboratory participating in the RGRC. PGEL also has an economic development mission, which is being pursued through technology transfer activities to private companies and public agencies.

  12. The stage of soil development modulates rhizosphere effect along a High Arctic desert chronosequence.

    Science.gov (United States)

    Mapelli, Francesca; Marasco, Ramona; Fusi, Marco; Scaglia, Barbara; Tsiamis, George; Rolli, Eleonora; Fodelianakis, Stilianos; Bourtzis, Kostas; Ventura, Stefano; Tambone, Fulvia; Adani, Fabrizio; Borin, Sara; Daffonchio, Daniele

    2018-05-01

    In mature soils, plant species and soil type determine the selection of root microbiota. Which of these two factors drives rhizosphere selection in barren substrates of developing desert soils has, however, not yet been established. Chronosequences of glacier forelands provide ideal natural environments to identify primary rhizosphere selection factors along the changing edaphic conditions of a developing soil. Here, we analyze changes in bacterial diversity in bulk soils and rhizospheres of a pioneer plant across a High Arctic glacier chronosequence. We show that the developmental stage of soil strongly modulates rhizosphere community assembly, even though plant-induced selection buffers the effect of changing edaphic factors. Bulk and rhizosphere soils host distinct bacterial communities that differentially vary along the chronosequence. Cation exchange capacity, exchangeable potassium, and metabolite concentration in the soil account for the rhizosphere bacterial diversity. Although the soil fraction (bulk soil and rhizosphere) explains up to 17.2% of the variation in bacterial microbiota, the soil developmental stage explains up to 47.7% of this variation. In addition, the operational taxonomic unit (OTU) co-occurrence network of the rhizosphere, whose complexity increases along the chronosequence, is loosely structured in barren compared with mature soils, corroborating our hypothesis that soil development tunes the rhizosphere effect.

  13. The stage of soil development modulates rhizosphere effect along a High Arctic desert chronosequence

    KAUST Repository

    Mapelli, Francesca; Marasco, Ramona; Fusi, Marco; Scaglia, Barbara; Tsiamis, George; Rolli, Eleonora; Fodelianakis, Stylianos; Bourtzis, Kostas; Ventura, Stefano; Tambone, Fulvia; Adani, Fabrizio; Borin, Sara; Daffonchio, Daniele

    2018-01-01

    In mature soils, plant species and soil type determine the selection of root microbiota. Which of these two factors drives rhizosphere selection in barren substrates of developing desert soils has, however, not yet been established. Chronosequences of glacier forelands provide ideal natural environments to identify primary rhizosphere selection factors along the changing edaphic conditions of a developing soil. Here, we analyze changes in bacterial diversity in bulk soils and rhizospheres of a pioneer plant across a High Arctic glacier chronosequence. We show that the developmental stage of soil strongly modulates rhizosphere community assembly, even though plant-induced selection buffers the effect of changing edaphic factors. Bulk and rhizosphere soils host distinct bacterial communities that differentially vary along the chronosequence. Cation exchange capacity, exchangeable potassium, and metabolite concentration in the soil account for the rhizosphere bacterial diversity. Although the soil fraction (bulk soil and rhizosphere) explains up to 17.2% of the variation in bacterial microbiota, the soil developmental stage explains up to 47.7% of this variation. In addition, the operational taxonomic unit (OTU) co-occurrence network of the rhizosphere, whose complexity increases along the chronosequence, is loosely structured in barren compared with mature soils, corroborating our hypothesis that soil development tunes the rhizosphere effect.

  14. The stage of soil development modulates rhizosphere effect along a High Arctic desert chronosequence

    KAUST Repository

    Mapelli, Francesca

    2018-01-09

    In mature soils, plant species and soil type determine the selection of root microbiota. Which of these two factors drives rhizosphere selection in barren substrates of developing desert soils has, however, not yet been established. Chronosequences of glacier forelands provide ideal natural environments to identify primary rhizosphere selection factors along the changing edaphic conditions of a developing soil. Here, we analyze changes in bacterial diversity in bulk soils and rhizospheres of a pioneer plant across a High Arctic glacier chronosequence. We show that the developmental stage of soil strongly modulates rhizosphere community assembly, even though plant-induced selection buffers the effect of changing edaphic factors. Bulk and rhizosphere soils host distinct bacterial communities that differentially vary along the chronosequence. Cation exchange capacity, exchangeable potassium, and metabolite concentration in the soil account for the rhizosphere bacterial diversity. Although the soil fraction (bulk soil and rhizosphere) explains up to 17.2% of the variation in bacterial microbiota, the soil developmental stage explains up to 47.7% of this variation. In addition, the operational taxonomic unit (OTU) co-occurrence network of the rhizosphere, whose complexity increases along the chronosequence, is loosely structured in barren compared with mature soils, corroborating our hypothesis that soil development tunes the rhizosphere effect.

  15. The Story of California = La Historia de California.

    Science.gov (United States)

    Bartel, Nick

    "The Story of California" is a history and geography of the state of California, intended for classroom use by limited-English-proficient, native Spanish-speaking students in California's urban middle schools. The book is designed with the left page in English and the right page in Spanish to facilitate student transition into…

  16. Spatial probability models of fire in the desert grasslands of the southwestern USA

    Science.gov (United States)

    Fire is an important driver of ecological processes in semiarid environments; however, the role of fire in desert grasslands of the Southwestern US is controversial and the regional fire distribution is largely unknown. We characterized the spatial distribution of fire in the desert grassland region...

  17. Site selection and directional models of deserts used for ERBE validation targets

    Science.gov (United States)

    Staylor, W. F.

    1986-01-01

    Broadband shortwave and longwave radiance measurements obtained from the Nimbus 7 Earth Radiation Budget scanner were used to develop reflectance and emittance models for the Sahara, Gibson, and Saudi Deserts. These deserts will serve as in-flight validation targets for the Earth Radiation Budget Experiment being flown on the Earth Radiation Budget Satellite and two National Oceanic and Atmospheric Administration polar satellites. The directional reflectance model derived for the deserts was a function of the sum and product of the cosines of the solar and viewing zenith angles, and thus reciprocity existed between these zenith angles. The emittance model was related by a power law of the cosine of the viewing zenith angle.

  18. The Impact of Desert Dust Aerosol Radiative Forcing on Global and West African Precipitation

    Science.gov (United States)

    Jordan, A.; Zaitchik, B. F.; Gnanadesikan, A.; Dezfuli, A. K.

    2015-12-01

    Desert dust aerosols exert a radiative forcing on the atmosphere, influencing atmospheric temperature structure and modifying radiative fluxes at the top of the atmosphere (TOA) and surface. As dust aerosols perturb radiative fluxes, the atmosphere responds by altering both energy and moisture dynamics, with potentially significant impacts on regional and global precipitation. Global Climate Model (GCM) experiments designed to characterize these processes have yielded a wide range of results, owing to both the complex nature of the system and diverse differences across models. Most model results show a general decrease in global precipitation, but regional results vary. Here, we compare simulations from GFDL's CM2Mc GCM with multiple other model experiments from the literature in order to investigate mechanisms of radiative impact and reasons for GCM differences on a global and regional scale. We focus on West Africa, a region of high interannual rainfall variability that is a source of dust and that neighbors major Sahara Desert dust sources. As such, changes in West African climate due to radiative forcing of desert dust aerosol have serious implications for desertification feedbacks. Our CM2Mc results show net cooling of the planet at TOA and surface, net warming of the atmosphere, and significant increases in precipitation over West Africa during the summer rainy season. These results differ from some previous GCM studies, prompting comparative analysis of desert dust parameters across models. This presentation will offer quantitative analysis of differences in dust aerosol parameters, aerosol optical properties, and overall particle burden across GCMs, and will characterize the contribution of model differences to the uncertainty of forcing and climate response affecting West Africa.

  19. The importance of Acacia trees for insectivorous bats and arthropods in the Arava desert.

    Directory of Open Access Journals (Sweden)

    Talya D Hackett

    Full Text Available Anthropogenic habitat modification often has a profound negative impact on the flora and fauna of an ecosystem. In parts of the Middle East, ephemeral rivers (wadis are characterised by stands of acacia trees. Green, flourishing assemblages of these trees are in decline in several countries, most likely due to human-induced water stress and habitat changes. We examined the importance of healthy acacia stands for bats and their arthropod prey in comparison to other natural and artificial habitats available in the Arava desert of Israel. We assessed bat activity and species richness through acoustic monitoring for entire nights and concurrently collected arthropods using light and pit traps. Dense green stands of acacia trees were the most important natural desert habitat for insectivorous bats. Irrigated gardens and parks in villages and fields of date palms had high arthropod levels but only village sites rivalled acacia trees in bat activity level. We confirmed up to 13 bat species around a single patch of acacia trees; one of the richest sites in any natural desert habitat in Israel. Some bat species utilised artificial sites; others were found almost exclusively in natural habitats. Two rare species (Barbastella leucomelas and Nycteris thebaica were identified solely around acacia trees. We provide strong evidence that acacia trees are of unique importance to the community of insectivorous desert-dwelling bats, and that the health of the trees is crucial to their value as a foraging resource. Consequently, conservation efforts for acacia habitats, and in particular for the green more densely packed stands of trees, need to increase to protect this vital habitat for an entire community of protected bats.

  20. The Importance of Acacia Trees for Insectivorous Bats and Arthropods in the Arava Desert

    Science.gov (United States)

    Hackett, Talya D.; Korine, Carmi; Holderied, Marc W.

    2013-01-01

    Anthropogenic habitat modification often has a profound negative impact on the flora and fauna of an ecosystem. In parts of the Middle East, ephemeral rivers (wadis) are characterised by stands of acacia trees. Green, flourishing assemblages of these trees are in decline in several countries, most likely due to human-induced water stress and habitat changes. We examined the importance of healthy acacia stands for bats and their arthropod prey in comparison to other natural and artificial habitats available in the Arava desert of Israel. We assessed bat activity and species richness through acoustic monitoring for entire nights and concurrently collected arthropods using light and pit traps. Dense green stands of acacia trees were the most important natural desert habitat for insectivorous bats. Irrigated gardens and parks in villages and fields of date palms had high arthropod levels but only village sites rivalled acacia trees in bat activity level. We confirmed up to 13 bat species around a single patch of acacia trees; one of the richest sites in any natural desert habitat in Israel. Some bat species utilised artificial sites; others were found almost exclusively in natural habitats. Two rare species (Barbastella leucomelas and Nycteris thebaica) were identified solely around acacia trees. We provide strong evidence that acacia trees are of unique importance to the community of insectivorous desert-dwelling bats, and that the health of the trees is crucial to their value as a foraging resource. Consequently, conservation efforts for acacia habitats, and in particular for the green more densely packed stands of trees, need to increase to protect this vital habitat for an entire community of protected bats. PMID:23441145

  1. Exploring the Limits to Photosynthetic Life in the Hyperarid Atacama (Chile) and Taklimakan (China) Deserts

    Science.gov (United States)

    Warren-Rhodes, K.; Ewing, S.; McKay, C. P.; Rhodes, K. L.

    2003-12-01

    Photosynthetic microbes inhabiting the cracks or fissures (chasmoendoliths) and undersides (hypoliths) of translucent stones function as the sole primary producers in the world's driest deserts. This poster reports on our studies of the distribution and survival of these microorganisms in the hyperarid core of the Atacama Desert--an extreme environment previously considered too dry to support photosynthetic life--and the Taklimakan Desert in China--one of the oldest and driest deserts on the Earth. In both deserts, we measured colonization rates and microclimate variables across natural precipitation gradients in order to investigate the role of moisture in the ecology and survival of hypolithic and chasmoendolithic microorganisms. Our results show 1000-fold variations in colonization rates--from 12% in the wettest portions of the Taklimakan Desert to 3000 y. At slightly wetter sites in the Atacama, Δ 14C of hypolith soils was progressively more enriched in proportion to increased MAP, with corresponding turnover times of >600 y (Δ 14C = -73 ‰ at sites with ˜5-10 mm MAP and ˜1 y Δ 14C = +12 ‰ ) as annual rainfall increased to ˜25 mm. At all sites, Δ 14C signatures of non-hypolith soils corresponded to turnover times that were longer by an order of magnitude, indicating significantly slower OC cycling by non-hypoliths. In the hyperarid core of the Atacama Desert, the prolonged lack of rainfall (decadal scales of a few millimeters) is responsible for possibly the lowest hypolithic and chasmoendolithic colonization rates observed in deserts on the Earth. Microclimate data for rock and soil surface moisture from rainfall, dew and frost suggest the particular form of moisture and its frequency may also explain observed differences in hypolithic versus chasmoendolithic colonization modes. These results hold theoretical and practical considerations for both terrestrial ecology and as analogs for possible life on Mars.

  2. National uranium resource evaluation, Las Vegas Quadrangle, Nevada, Arizona, and California

    International Nuclear Information System (INIS)

    Johnson, C.; Glynn, J.

    1982-03-01

    The Las Vegas 1 0 x 2 0 quadrangle, Nevada, Arizona, and California, contains rocks and structures from Precambrian through Holocene in age. It lies within the Basin and Range physiographic province adjacent to the westernmost portion of the Colorado Plateau. Miocene nonmarine sedimentary rocks of the Horse Spring Formation contain in excess of 100 tons U 3 O 8 in deposits at a grade of 0.01% or greater, and therefore meet National Uranium Resource Evaluation base criteria for uranium favorability. One favorable area lies in the South Virgin Mountains at the type locality of the Horse Spring Formation, although the favorable environment extends into the unevaluated Lake Mead National Recreation Area and Desert National Wildlife Range. Environments within the Las Vegas Quadrangle considered unfavorable for uranium include the Shinarump Conglomerate member of the Triassic Chinle Formation, Mesozoic sediments of the Glen Canyon Group, Precambrian pegmatites, Pliocene and Quaternary calcrete, Laramide thrust faults, and a late Precambrian unconformity

  3. Supersymmetry without the Desert

    International Nuclear Information System (INIS)

    Nomura, Yasunori; Poland, David

    2006-01-01

    Naturalness of electroweak symmetry breaking in weak scale supersymmetric theories may suggest the absence of the conventional supersymmetric desert. We present a simple, realistic framework for supersymmetry in which (most of) the virtues of the supersymmetric desert are naturally reproduced without having a large energy interval above the weak scale. The successful supersymmetric prediction for the low-energy gauge couplings is reproduced due to a gauged R symmetry present in the effective theory at the weak scale. The observable sector superpotential naturally takes the form of the next-to-minimal supersymmetric standard model, but without being subject to the Landau pole constraints up to the conventional unification scale. Supersymmetry breaking masses are generated by the F-term and D-term VEVs of singlet and U(1) R gauge fields, as well as by anomaly mediation, at a scale not far above the weak scale. We study the resulting pattern of supersymmetry breaking masses in detail, and find that it can be quite distinct. We construct classes of explicit models within this framework, based on higher dimensional unified theories with TeV-sized extra dimensions. A similar model based on a non-R symmetry is also presented. These models have a rich phenomenology at the TeV scale, and allow for detailed analyses of, e.g., electroweak symmetry breaking

  4. Preliminary survey of bee (Hymenoptera: Anthophila) richness in the northwestern Chihuahuan Desert

    Science.gov (United States)

    Robert L. Minckley; John S. Ascher

    2013-01-01

    Museum records indicate that the peak number of bee species occurs around the Mediterranean Sea and in the warm desert areas of North America, whereas flowering plants are most diverse in the tropics. We examine this biogeographic pattern for the bee species known from a limited area of northeastern Chihuahuan Desert, Mexico/United States. This topographically complex...

  5. Radiative forcing of the desert aerosol at Ouarzazate (Morocco)

    Science.gov (United States)

    Tahiri, Abdelouahid; Diouri, Mohamed

    2018-05-01

    The atmospheric aerosol contributes to the definition of the climate with direct effect, the diffusion and absorption of solar and terrestrial radiations, and indirect, the cloud formation process where aerosols behave as condensation nuclei and alter the optical properties. Satellites and ground-based networks (solar photometers) allow the terrestrial aerosol observation and the determination of impact. Desert aerosol considered among the main types of tropospheric aerosols whose optical property uncertainties are still quite important. The analysis concerns the optical parameters recorded in 2015 at Ouarzazate solar photometric station (AERONET/PHOTONS network, http://aeronet.gsfc.nasa.gov/) close to Saharan zone. The daily average aerosol optical depthτaer at 0.5μm, are relatively high in summer and less degree in spring (from 0.01 to 1.82). Daily average of the Angstrom coefficients α vary between 0.01 and 1.55. The daily average of aerosol radiative forcing at the surface range between -150W/m2 and -10 W/m2 with peaks recorded in summer, characterized locally by large loads of desert aerosol in agreement with the advections of the Southeast of Morocco. Those recorded at the Top of the atmosphere show a variation from -74 W/m2 to +24 W/m2

  6. To what extent have high schools in California been able to implement state-mandated nutrition standards?

    Science.gov (United States)

    Samuels, Sarah E; Bullock, Sally Lawrence; Woodward-Lopez, Gail; Clark, Sarah E; Kao, Janice; Craypo, Lisa; Barry, Jay; Crawford, Patricia B

    2009-09-01

    To determine extent and factors associated with implementation of California's school nutrition standards 1 year after standards became active. Information on competitive foods and beverages available in schools was collected from a representative sample of 56 public high schools in California. Adherence to nutrition standards was calculated for each item and summarized for each school by venue. The association between schools' sociodemographic characteristics and adherence to standards was determined by multivariate analysis. The majority of schools were adhering to the required beverage standards. None of the schools selling competitive foods were 100% adherent to the food standards. Adherence to both standards tended to be highest in food service venues. In univariate analyses, percent nonwhite enrollment, population density, percent free/reduced-price (FRP) meal eligibility, and school size were significantly correlated with the beverage adherence rate. Percent nonwhite enrollment and population density remained significant in the multivariate regression model. Percent nonwhite enrollment and percent FRP meal eligibility were significantly correlated with the food adherence rate in univariate analysis, but neither remained significant in the multiple regression model. California high schools are making progress toward implementation of the state nutrition standards. Beverage standards appear easier to achieve than nutrient-based food standards. Additional support is needed to provide schools with resources to implement and monitor these policies. Simpler standards and/or a reduction in the foods and beverages sold could better enable schools to achieve and monitor adherence.

  7. Total vertical sediment flux and PM10 emissions from disturbed Chihuahuan Desert Surfaces

    Science.gov (United States)

    Desert surfaces are typically stable and represent some of the oldest landforms on Earth. For surfaces without vegetation, the evolution of a desert pavements of gravel protects the surface from erosive forces and vegetation further protects the surface in arid and semi-arid rangelands. The suscep...

  8. Uncinariasis in northern fur seal and California sea lion pups from California.

    Science.gov (United States)

    Lyons, E T; DeLong, R L; Melin, S R; Tolliver, S C

    1997-10-01

    Northern fur seal (Callorhinus ursinus) (n = 25) and California sea lion (Zalophus californianus) (n = 53) pups, found dead on rookeries on San Miguel Island (California, USA), were examined for adult Uncinaria spp. Prevalence of these nematodes was 96% in fur seal pups and 100% in sea lion pups. Mean intensity of Uncinaria spp. per infected pup was 643 in fur seals and 1,284 in sea lions. Eggs of Uncinaria spp. from dead sea lion pups underwent embryonation in an incubator; development to the free-living third stage larva occurred within the egg. This study provided some specific information on hookworm infections in northern fur seal and California sea lion pups on San Miguel Island. High prevalence rate of Uncinaria spp. in both species of pinnipeds was documented and much higher numbers (2X) of hookworms were present in sea lion than fur seal pups.

  9. Spatial and temporal changes in desertification in the southern region of the Tengger Desert from 1973 to 2009

    Science.gov (United States)

    Guan, Qingyu; Guan, Wenqian; Yang, Jing; Zhao, Shilei; Pan, Baotian; Wang, Lei; Song, Na; Lu, Min; Li, Fuchun

    2017-07-01

    The sandy land in the southern region of the Tengger Desert is adjacent to cities and towns, and land desertification poses a threat to the livelihood and production of local residents. To determine dynamic changes in local desertification, five periods (1973, 1987, 1992, 2001, and 2009) of remote sensing data are studied by remote sensing (RS) and geographic information system (GIS). The desert contraction area is primarily centered around three units (Wuwei, Gulang, and Jingtai) and nearby regions of Zhongwei City. The primary desert expansion areas include the west side of Helan Mountain (WSHM), the Central Mountainous Area (CMA), and the eastern and western Zhongwei units far from towns. From 1973 to 2009, the degree of change in the contracting part of the primary desert expansion unit showed an increasing trend; in brief, most of the desert (especially after 2001) has been developing in a direction in which desertification has been gradually controlled. The primary desert expansion areas are less affected by human activity, but they are primarily controlled by natural factors (especially wind and terrain). The desert contraction areas occur around the towns and nearby regions with frequent human activity; desertification is primarily controlled by human factors. With rapid economic development (especially after 2000), the scale of the cultivated area, town, and ecological protection engineering has gradually expanded, and the latter two are primarily built on a previous desert, which is the root cause of the reduction in the desert areas around the towns and the shrinkage toward north of border. Therefore, reasonable and effective human activity in the southern region of the Tengger Desert is playing a crucial role in preventing desertification.

  10. Water consumption in artificial desert oasis based on net primary productivity

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Analysis of the water consumption is the basis for water allocation in oasis. However, the method of estimating oasis water consumption remains a great challenge. Based on net primary productivity (NPP) and the transpiration coefficient, a vegetation water consumption model was developed to estimate the water consumption in desert oasis in ERDAS environment. Our results demonstrated that the ecosystem in the middle reaches of the Heihe oasis consumed water of 18.41×108-21.9×108 m3 for irrigation. Without taking precipitation into account, the water consumption in farmland accounted for 77.1%-77.8% (or about 13.97×108-16.84×108 m3) of the oasis vegetation water consumption and in the farmland protection system accounting for 22%. The growing period precipitation in desert environments is about 7.02×108 m3, and the total annual precipitation is about 8.29×108 m3. The modeled water consumption of desert vegetation, however, is about 4.57×108 m3, equivalent to only 65% of the growing period precipitation or 55% of the total annual precipitation. The modeled value equals to the cumulative precipitation of greater than 5 mm, which is defined as the effective precipitation in arid desert.

  11. Methanogens at the top of the world: occurrence and potential activity of methanogens in newly deglaciated soils in high-altitude cold deserts in the Western Himalayas

    Directory of Open Access Journals (Sweden)

    Katrin eAschenbach

    2013-12-01

    Full Text Available Methanogens typically occur in reduced anoxic environments. However, in recent studies it has been shown that many aerated upland soils, including desert soils also host active methanogens. Here we show that soil samples from high–altitude cold deserts in the western Himalayas (Ladakh, India produce CH4 after incubation as slurry under anoxic conditions at rates comparable to those of hot desert soils. Samples of matured soil from three different vegetation belts (arid, steppe, and subnival were compared with younger soils originating from frontal and lateral moraines of receding glaciers. While methanogenic rates were higher in the samples from matured soils, CH4 was also produced in the samples from the recently deglaciated moraines. In both young and matured soils, those covered by a biological soil crust (biocrust were more active than their bare counterparts. Isotopic analysis showed that in both cases CH4 was initially produced from H2/CO2 but later mostly from acetate. Analysis of the archaeal community in the in situ soil samples revealed a clear dominance of sequences related to Thaumarchaeota, while the methanogenic community comprised only a minor fraction of the archaeal community. Similar to other aerated soils, the methanogenic community was comprised almost solely of the genera Methanosarcina and Methanocella, and possibly also Methanobacterium in some cases. Nevertheless, approximately 103 gdw-1 soil methanogens were already present in the young moraine soil together with cyanobacteria. Our results demonstrate that Methanosarcina and Methanocella not only tolerate atmospheric oxygen but are also able to survive in these harsh cold environments. Their occurrence in newly deglaciated soils shows that they are early colonisers of desert soils, similar to cyanobacteria, and may play a role in the development of desert biocrusts.

  12. Validation of SWEEP for creep, saltation, and suspension in a desert-oasis ecotone

    Science.gov (United States)

    Wind erosion in the desert-oasis ecotone can accelerate desertification and thus impacts oasis ecological security. Little is known about the susceptibility of the desert-oasis ecotone to wind erosion in the Tarim Basin even though the ecotone is a major source of windblown dust in China. The object...

  13. Targeted advertising, promotion, and price for menthol cigarettes in California high school neighborhoods.

    Science.gov (United States)

    Henriksen, Lisa; Schleicher, Nina C; Dauphinee, Amanda L; Fortmann, Stephen P

    2012-01-01

    To describe advertising, promotions, and pack prices for the leading brands of menthol and nonmenthol cigarettes near California high schools and to examine their associations with school and neighborhood demographics. In stores (n = 407) within walking distance (0.8 km [1/2 mile]) of California high schools (n = 91), trained observers counted ads for menthol and nonmenthol cigarettes and collected data about promotions and prices for Newport and Marlboro, the leading brand in each category. Multilevel modeling examined the proportion of all cigarette advertising for any menthol brand, the proportion of stores with sales promotions, and the lowest advertised pack price in relation to store types and school/neighborhood demographics. For each 10 percentage point increase in the proportion of Black students, the proportion of menthol advertising increased by 5.9 percentage points (e.g., from an average of 25.7%-31.6%), the odds of a Newport promotion were 50% higher (95% CI = 1.01, 2.22), and the cost of Newport was 12 cents lower (95% CI = -0.18, -0.06). By comparison, the odds of a promotion and the price for Marlboro, the leading brand of nonmenthol cigarettes, were unrelated to any school or neighborhood demographics. In high school neighborhoods, targeted advertising exposes Blacks to more promotions and lower prices for the leading brand of menthol cigarettes. This evidence contradicts the manufacturer's claims that the availability of its promotions is not based on race/ethnicity. It also highlights the need for tobacco control policies that would limit disparities in exposure to retail marketing for cigarettes.

  14. Diversity and Community Composition of Vertebrates in Desert River Habitats

    Science.gov (United States)

    Free, C. L.; Baxter, G. S.; Dickman, C. R.; Lisle, A.; Leung, L. K.-P.

    2015-01-01

    Animal species are seldom distributed evenly at either local or larger spatial scales, and instead tend to aggregate in sites that meet their resource requirements and maximise fitness. This tendency is likely to be especially marked in arid regions where species could be expected to concentrate at resource-rich oases. In this study, we first test the hypothesis that productive riparian sites in arid Australia support higher vertebrate diversity than other desert habitats, and then elucidate the habitats selected by different species. We addressed the first aim by examining the diversity and composition of vertebrate assemblages inhabiting the Field River and adjacent sand dunes in the Simpson Desert, western Queensland, over a period of two and a half years. The second aim was addressed by examining species composition in riparian and sand dune habitats in dry and wet years. Vertebrate species richness was estimated to be highest (54 species) in the riverine habitats and lowest on the surrounding dune habitats (45 species). The riverine habitats had different species pools compared to the dune habitats. Several species, including the agamid Gowidon longirostris and tree frog Litoria rubella, inhabited the riverine habitats exclusively, while others such as the skinks Ctenotus ariadnae and C. dux were captured only in the dune habitats. The results suggest that, on a local scale, diversity is higher along riparian corridors and that riparian woodland is important for tree-dependent species. Further, the distribution of some species, such as Mus musculus, may be governed by environmental variables (e.g. soil moisture) associated with riparian corridors that are not available in the surrounding desert environment. We conclude that inland river systems may be often of high conservation value, and that management should be initiated where possible to alleviate threats to their continued functioning. PMID:26637127

  15. Ecosystem responses to warming and watering in typical and desert steppes

    OpenAIRE

    Zhenzhu Xu; Yanhui Hou; Lihua Zhang; Tao Liu; Guangsheng Zhou

    2016-01-01

    Global warming is projected to continue, leading to intense fluctuations in precipitation and heat waves and thereby affecting the productivity and the relevant biological processes of grassland ecosystems. Here, we determined the functional responses to warming and altered precipitation in both typical and desert steppes. The results showed that watering markedly increased the aboveground net primary productivity (ANPP) in a typical steppe during a drier year and in a desert steppe over two ...

  16. Hydrogeologic inferences from drillers' logs and from gravity and resistivity surveys in the Amargosa Desert, southern Nevada

    International Nuclear Information System (INIS)

    Oatfield, W.J.; Czarnecki, J.B.

    1989-01-01

    The Amargosa Desert of southern Nevada, in the Basin and Range province, is hydraulically downgradient from Yucca Mountain, the potential site of a repository for high-level nuclear waste. Ground-water flow paths and flow rates beneath the Amargosa Desert are controlled in part by the total saturated thickness and the hydraulic properties of basin-fill alluvial sediments. Drillers' logs of water wells completed in alluvium were analyzed to help characterize the hydrogeologic framework underlying the Amargosa Desert. Fractions of coarse-grained sediments, calculated from each of these logs, were contoured using a universal-kriging routine to interpolate values. Results from a previous electrical sounding survey also were contoured, including the estimated depth to Paleozoic basement rocks. The vertical electric sounding results were obtained from individual depth-to-resistivity profiles, from which the average resistivity of the total profile and the resistivity of the upper 75 meters were calculated. the distribution and variations in average resistivity of the total depth correlated reasonably well with the distribution of variations in regional gravity. 24 refs., 17 figs

  17. Sonoran Desert winter annuals affected by density of red brome and soil nitrogen

    Science.gov (United States)

    Salo, L.F.; McPherson, G.R.; Williams, D.G.

    2005-01-01

    Red brome [Bromus madritensis subsp. rubens (L.) Husn.] is a Mediterranean winter annual grass that has invaded Southwestern USA deserts. This study evaluated interactions among 13 Sonoran Desert annual species at four densities of red brome from 0 to the equivalent of 1200 plants ma??2. We examined these interactions at low (3 I?g) and high (537 I?g NO3a?? g soila??1) nitrogen (N) to evaluate the relative effects of soil N level on survival and growth of native annuals and red brome. Red brome did not affect emergence or survival of native annuals, but significantly reduced growth of natives, raising concerns about effects of this exotic grass on the fecundity of these species. Differences in growth of red brome and of the three dominant non nitrogen-fixing native annuals at the two levels of soil N were similar. Total species biomass of red brome was reduced by 83% at low, compared to high, N levels, whereas that of the three native species was reduced by from 42 to 95%. Mean individual biomass of red brome was reduced by 87% at low, compared to high, N levels, whereas that of the three native species was reduced by from 72 to 89%.

  18. Resistance to invasion and resilience to fire in desert shrublands of North America

    Science.gov (United States)

    Matthew L. Brooks; Jeanne C. Chambers

    2011-01-01

    Settlement by Anglo-Americans in the desert shrublands of North America resulted in the introduction and subsequent invasion of multiple nonnative grass species. These invasions have altered presettlement fire regimes, resulted in conversion of native perennial shrublands to nonnative annual grasslands, and placed many native desert species at risk. Effective...

  19. Seeing desert as wilderness and as landscape—an exercise in visual thinking approaches

    Science.gov (United States)

    John Opie

    1979-01-01

    Based on the components and program of VRVA (Visual Resources Values Assessment), a behavioral history of the visitor's perception of the American desert is examined. Emphasis is placed upon contrasts between traditional eastern "garden-park" viewpoints and contemporary desert scenery experiences. Special attention is given to the influence of John...

  20. Geospatial techniques to Identify the Location of Farmers Markets and Community Gardens within Food Deserts in Virginia

    Science.gov (United States)

    Sriharan, S.; Meekins, D.; Comar, M.; Bradshaw, S.; Jackson, L.

    2017-12-01

    Specifically, a food desert is defined as an area where populations live more than one mile from a supermarket or large grocery store if in an urban area or more than 10 miles from a supermarket or large grocery store if in a rural area (Ver Ploeg et al. 2012). According to the U.S. Department of Agriculture, a food desert is "an area in the United States with limited access to affordable and nutritious food, particularly such an area composed of predominately lower-income neighborhoods and communities" (110th Congress 2008). Three fourths of these food deserts are urban. In the Commonwealth of Virginia, Petersburg City is among the eight primary localities, where its population is living in a food desert. This project will compare those identified food deserts in Virginia (areas around Virginia State University) with focus to where farmers markets and community gardens are being established. The hypothesis of this study is that these minority groups do not get healthy food due to limited access to grocery stores and superstores. To address this problem, the community development activities should focus on partnering local Petersburg convenience stores with farmers and community gardeners to sell fresh produce. Existing data was collected on convenient stores and community gardens in Petersburg City and Chesterfield County. Rare data was generated for Emporia, Lynchburg and Hopewell. The data was compiled through field work and mapping with ArcGIS where markets and gardens are being established, and create a spatial analysis of their location We have localities that reflect both rural and urban areas. The project provides educational support for students who will find solution to community problems by developing activities to: (a) define and examine characteristics of food deserts, (b) identify causes and consequences of food deserts and determine if their community is a food desert, (c) research closest food desert to their school, and (d) design solutions to help

  1. Thermal design of a fully equipped solar-powered desert home

    KAUST Repository

    Serag-Eldin, M.A.

    2010-03-01

    The paper presents a conceptual design and thermodynamic analysis of a solar-powered desert home. The home is airconditioned and provides all modern comforts and facilities. Electrical power, which drives the entire energy system, is generated by roof mounted photovoltaic modules. A detailed dynamic heat transfer analysis is conducted for the building envelope, coupled with a solar radiation model. A dynamic heat balance for a typical Middle-Eastern desert site, reveals that indeed such a design is feasible with present day technology; and should be even more attractive with future advances in technology.

  2. Characterizing dust aerosols in the atmospheric boundary layer over the deserts in Northwest China: monitoring network and field observation

    Science.gov (United States)

    He, Q.; Matimin, A.; Yang, X.

    2016-12-01

    TheTaklimakan, Gurbantunggut and BadainJaran Deserts with the total area of 43.8×104 km2 in Northwest China are the major dust emission sources in Central Asia. Understanding Central Asian dust emissions and the interaction with the atmospheric boundary layer has an important implication for regional and global climate and environment changes. In order to explore these scientific issues, a monitoring network of 63 sites was established over the vast deserts (Taklimakan Desert, Gurbantunggut Desert and Badain Jaran Desert) in Northwest China for the comprehensive measurements of dust aerosol emission, transport and deposition as well as the atmospheric boundary layer including the meteorological parameters of boundary layer, surface radiation, surface heat fluxes, soil parameters, dust aerosol properties, water vapor profiles, and dust emission. Based on the monitoring network, the field experiments have been conducted to characterize dust aerosols and the atmospheric boundary layer over the deserts. The experiment observation indicated that depth of the convective boundary layer can reach 5000m on summer afternoons. In desert regions, the diurnal mean net radiation was effected significantly by dust weather, and sensible heat was much greater than latent heat accounting about 40-50% in the heat balance of desert. The surface soil and dust size distributions of Northwest China Deserts were obtained through widely collecting samples, results showed that the dominant dust particle size was PM100within 80m height, on average accounting for 60-80% of the samples, with 0.9-2.5% for PM0-2.5, 3.5-7.0% for PM0-10 and 5.0-14.0% for PM0-20. The time dust emission of Taklimakan Desert, Gurbantunggut Desert and Badain Jaran Desert accounted for 0.48%, 7.3%×10-5and 1.9% of the total time within a year, and the threshold friction velocity for dust emission were 0.22-1.06m/s, 0.29-1.5m/s and 0.21-0.59m/s, respectively.

  3. Profile Changes in the Soil Microbial Community When Desert Becomes Oasis.

    Directory of Open Access Journals (Sweden)

    Chen-hua Li

    Full Text Available The conversion of virgin desert into oasis farmland creates two contrasting types of land-cover. During oasis formation with irrigation and fertilizer application, however, the changes in the soil microbial population, which play critical roles in the ecosystem, remain poorly understood. We applied high-throughput pyrosequencing to investigate bacterial and archaeal communities throughout the profile (0-3 m in an experimental field, where irrigation and fertilization began in 1990 and cropped with winter wheat since then. To assess the effects of cultivation, the following treatments were compared with the virgin desert: CK (no fertilizer, PK, NK, NP, NPK, NPKR, and NPKM (R: straw residue; M: manure fertilizer. Irrigation had a greater impact on the overall microbial community than fertilizer application. The greatest impact occurred in topsoil (0-0.2 m, e.g., Cyanobacteria (25% total abundance were most abundant in desert soil, while Actinobacteria (26% were most abundant in oasis soil. The proportions of extremophilic and photosynthetic groups (e.g., Deinococcus-Thermus and Cyanobacteria decreased, while the proportions of R-strategy (e.g., Gammaproteobacteria including Xanthomonadales, nitrifying (e.g., Nitrospirae, and anaerobic bacteria (e.g., Anaerolineae increased throughout the oasis profile. Archaea occurred only in oasis soil. The impact of fertilizer application was mainly reflected in the non-dominant communities or finer taxonomic divisions. Oasis formation led to a dramatic shift in microbial community and enhanced soil enzyme activities. The rapidly increased soil moisture and decreased salt caused by irrigation were responsible for this shift. Furthermore, difference in fertilization and crop growth altered the organic carbon contents in the soil, which resulted in differences of microbial communities within oasis.

  4. Role of biological soil crusts in desert hydrology and geomorphology: Implications for military training operations

    Science.gov (United States)

    Steven D. Warren

    2014-01-01

    Biological soil crusts, composed of soil surfaces stabilized by a consortium of cyanobacteria, algae, fungi, lichens, and/or bryophytes, are common in most deserts and perform functions of primary productivity, nitrogen fixation, nutrient cycling, water redistribution, and soil stabilization. The crusts are highly susceptible to disturbance. The degree of perturbation...

  5. Translocation as a conservation tool for Agassiz's desert tortoises: Survivorship, reproduction, and movements

    Science.gov (United States)

    K. E. Nussear; C. R. Tracy; P. A. Medica; D. S. Wilson; R. W. Marlow; P. S. Corn

    2012-01-01

    We translocated 120 Agassiz's desert tortoises to 5 sites in Nevada and Utah to evaluate the effects of translocation on tortoise survivorship, reproduction, and habitat use. Translocation sites included several elevations, and extended to sites with vegetation assemblages not typically associated with desert tortoises in order to explore the possibility of moving...

  6. 78 FR 143 - Desert Mining, Inc., Eagle Broadband, Inc., Endovasc, Inc., Environmental Oil Processing...

    Science.gov (United States)

    2013-01-02

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] Desert Mining, Inc., Eagle Broadband, Inc., Endovasc, Inc., Environmental Oil Processing Technology Corp., Falcon Ridge Development, Inc., Fellows... that there is a lack of current and accurate information concerning the securities of Desert Mining...

  7. Influence of shrubs on soil chemical properties in Alxa desert steppe, China

    Science.gov (United States)

    Hua Fu; Shifang Pei; Yaming Chen; Changgui Wan

    2007-01-01

    Alxa desert steppe is one of severely the degraded rangelands in the Northwest China. Shrubs, as the dominant life form in the desert steppe, play an important role in protecting this region from further desertification. Chemical properties of three soil layers (0 to 10, 10 to 20 and 20 to 30 cm) at three locations (the clump center [A], in the periphery of shrub...

  8. Should I stay or should I go? Female brood desertion and male counterstrategy in rock sparrows

    DEFF Research Database (Denmark)

    Griggio, Matteo; Matessi, Giuliano; Pilastro, Andrea

    2005-01-01

    petronia), a species in which females can desert their first brood before the nestlings from the first brood leave the nest. We predicted that the male would either desert the brood first or stay even if this implied the risk of caring for the brood alone. We found that males mated to loaded females did...... not leave but stayed and significantly increased their courtship rate and mate guarding. Unexpectedly, they also increased their food provisioning to the nestlings, even though loaded females did not reduce their nestling-feeding rate. The increase in male feeding rate may be explained as a way for the male...... to reduce the female's propensity to switch mate and desert or to increase her propensity to copulate with the male to obtain paternity in her next brood. Altogether, our results demonstrate that the perception of the risk of being deserted by the female does not necessarily induce males to desert first...

  9. A Study to Determine the Mental Models in Preschool Children’s Conceptualization of a Desert Environment

    Directory of Open Access Journals (Sweden)

    Berat AHİ

    2016-03-01

    Full Text Available This study aimed to determine mental models and identify codes (schemes used in conceptualizing a desert environment. The sample for this study consisted of 184 – out of a total population of 3,630 - children in preschool education in the central district of Kastamonu, Turkey. Within the scope of this study, the children were initially asked to draw a desert-themed picture, followed by a semi-structured interview to seek their opinions about the drawing and clarify what a desert environment meant to them. According to the findings, the children referred to 38 different codes relevant to the conceptualization of a desert environment; the most frequently used were the sun (f= 160, 86.9%, sand (f= 100, 54.3%, cacti (f= 74, 35.3% and camels (f= 52, 28.6%. During the interview phase, 33 children described a desert as a place where there is no life, although a significant number of the children (f= 65, 39.1% did describe a desert as a place where plants and animals live. Moreover, the sun and its rays were disproportionately bigger in size, in order to emphasize the excessive heat associated with the specific ecosystem found in a desert environment; to reinforce this, humans drenched in sweat, the absence of trees and the prevalence of cacti and exotic wildlife, including camels, scorpions and lizards, were all features of the children’s drawings. Based on these findings, it was inferred that the mental models in some of the children (f= 72, 39.1% were scientifically informed, with a degree of accuracy, about a desert environment. On the basis of the findings, it is considered that determining mental models in children in relation to different ecological concepts can be beneficial to teachers and curriculum programmers involved in environmental education.

  10. A study to determine the mental models in preschool children’s conceptualization of a desert environment

    Directory of Open Access Journals (Sweden)

    Berat Ahi

    2016-03-01

    Full Text Available This study aimed to determine mental models and identify codes (schemes used in conceptualizing a desert environment. The sample for this study consisted of 184 – out of a total population of 3,630 - children in preschool education in the central district of Kastamonu, Turkey. Within the scope of this study, the children were initially asked to draw a desert-themed picture, followed by a semi-structured interview to seek their opinions about the drawing and clarify what a desert environment meant to them. According to the findings, the children referred to 38 different codes relevant to the conceptualization of a desert environment; the most frequently used were the sun (f= 160, 86.9%, sand (f= 100, 54.3%, cacti (f= 74, 35.3% and camels (f= 52, 28.6%. During the interview phase, 33 children described a desert as a place where there is no life, although a significant number of the children (f= 65, 39.1% did describe a desert as a place where plants and animals live. Moreover, the sun and its rays were disproportionately bigger in size, in order to emphasize the excessive heat associated with the specific ecosystem found in a desert environment; to reinforce this, humans drenched in sweat, the absence of trees and the prevalence of cacti and exotic wildlife, including camels, scorpions and lizards, were all features of the children’s drawings. Based on these findings, it was inferred that the mental models in some of the children (f= 72, 39.1% were scientifically informed, with a degree of accuracy, about a desert environment. On the basis of the findings, it is considered that determining mental models in children in relation to different ecological concepts can be beneficial to teachers and curriculum programmers involved in environmental education.

  11. California State Waters Map Series: offshore of Half Moon Bay, California

    Science.gov (United States)

    Cochrane, Guy R.; Dartnell, Peter; Greene, H. Gary; Johnson, Samuel Y.; Golden, Nadine E.; Hartwell, Stephen R.; Dieter, Bryan E.; Manson, Michael W.; Sliter, Ray W.; Ross, Stephanie L.; Watt, Janet T.; Endris, Charles A.; Kvitek, Rikk G.; Phillips, Eleyne L.; Erdey, Mercedes D.; Chin, John L.; Bretz, Carrie K.

    2014-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Offshore of Half Moon Bay map area is located in northern California, on the Pacific coast of the San Francisco Peninsula about 40 kilometers south of the Golden Gate. The city of Half Moon Bay, which is situated on the east side of the Half Moon Bay embayment, is the nearest significant onshore cultural center in the map area, with a population of about 11,000. The Pillar Point Harbor at the north edge of Half Moon Bay offers a protected landing for boats and provides other marine infrastructure. The map area lies offshore of the Santa Cruz Mountains, part of the northwest-trending Coast Ranges that run roughly parallel to the San Andreas Fault Zone. The Santa Cruz Mountains lie between the San Andreas Fault Zone and the San Gregorio Fault system. The flat coastal area, which is the most recent of numerous marine terraces, was formed by wave erosion about 105 thousand years ago. The higher elevation of this same terrace west of the Half Moon Bay Airport is caused by uplift on the Seal Cove Fault, a splay of the San Gregorio Fault Zone. Although originally incised into the rising terrain horizontally, the ancient terrace surface has been gently folded into a northwest-plunging syncline by

  12. Declines in a ground-dwelling arthropod community during an invasion by Sahara mustard (Brassica tournefortii) in aeolian sand habitats

    Science.gov (United States)

    Heather L. Hulton VanTassel; Anne M. Hansen; Cameron W. Barrows; Quresh Latif; Margaret W. Simon; Kurt E. Anderson

    2014-01-01

    Sahara Mustard (Brassica tournefortii; hereafter mustard), an exotic plant species, has invaded habitats throughout the arid southwestern United States. Mustard has reached high densities across aeolian sand habitats of southwestern deserts, including five distinct sand habitats in the eastern Coachella Valley, California. We examined trends in ground-dwelling...

  13. The desert environmental effect on the photovoltaic performance analyzing

    International Nuclear Information System (INIS)

    Al Khuffash, K.; Lamont, L.A.; El Chaar, L.

    2014-01-01

    Solar power is commonly accepted to have the highest potential among other renewable energy sources. As a photovoltaic (PV) panel directly converts light into electricity it is preferred over concentrated solar power. However, PV modules are affected by the surrounding climate and implementing it in a desert location may cause an undesired effect. Therefore, this research studies the effect of different weather aspects on the performance of the PV panels, by obtaining a relation between each weather aspect and the performance of the panel. In addition, coating is tested in order to evaluate its effectiveness as a feasible solution for locations which have high dust accumulation. The results showed that coating can be a solution for dust accumulation at high irradiation levels. (author)

  14. 76 FR 50493 - Notice of Availability of the Record of Decision for the Desert Sunlight Holdings, LLC, Desert...

    Science.gov (United States)

    2011-08-15

    ... DEPARTMENT OF THE INTERIOR Bureau of Land Management [CACA-48649, LLCAD06000 L51010000 ER0000... right-of-way (ROW) application CACA-48649 for the Desert Sunlight Solar Farm Project (DSSF). The DSSF is... (CACA-052682) where the project would interconnect with the SCE regional transmission system. The DSSF...

  15. California Political Districts

    Data.gov (United States)

    California Natural Resource Agency — This is a series of district layers pertaining to California'spolitical districts, that are derived from the California State Senateand State Assembly information....

  16. Mapping Palaeohydrography in Deserts: Contribution from Space-Borne Imaging Radar

    Directory of Open Access Journals (Sweden)

    Philippe Paillou

    2017-03-01

    Full Text Available Space-borne Synthetic Aperture Radar (SAR has the capability to image subsurface features down to several meters in arid regions. A first demonstration of this capability was performed in the Egyptian desert during the early eighties, thanks to the first Shuttle Imaging Radar mission. Global coverage provided by recent SARs, such as the Japanese ALOS/PALSAR sensor, allowed the mapping of vast ancient hydrographic systems in Northern Africa. We present a summary of palaeohydrography results obtained using PALSAR data over large deserts such as the Sahara and the Gobi. An ancient river system was discovered in eastern Lybia, connecting in the past the Kufrah oasis to the Mediterranean Sea, and the terminal part of the Tamanrasett river was mapped in western Mauritania, ending with a large submarine canyon. In southern Mongolia, PALSAR images combined with topography analysis allowed the mapping of the ancient Ulaan Nuur lake. We finally show the potentials of future low frequency SAR sensors by comparing L-band (1.25 GHz and P-band (435 MHz airborne SAR acquisitions over a desert site in southern Tunisia.

  17. Industrial Physics---Southern California Style

    Science.gov (United States)

    Leslie, Stuart

    2013-03-01

    Only in Southern California did space-age style really come into its own as a unique expression of Cold War scientific culture. The corporate campuses of General Atomic in San Diego and North American Aviation in Los Angeles perfectly expressed the exhilarating spirit of Southern California's aerospace era, scaling up the residential version of California modernism to industrial proportion. Architects William Pereira and A.C. Martin Jr., in collaboration with their scientific counterparts, fashioned military-industrial `dream factories' for industrial physics that embodied the secret side of the space-age zeitgeist, one the public could only glimpse of in photographs, advertisements, and carefully staged open houses. These laboratories served up archetypes of the California dream for a select audience of scientists, engineers, and military officers, live-action commercials for a lifestyle intended to lure the best and brightest to Southern California. Paradoxically, they hid in plain sight, in the midst of aerospace suburbs, an open secret, at once visible and opaque, the public face of an otherwise invisible empire. Now, at the end of the aerospace era, these places have become an endangered species, difficult to repurpose, on valuable if sometimes highly polluted land. Yet they offer an important reminder of a more confident time when many physicists set their sights on the stars.

  18. Preventing desert locust plagues: optimizing management interventions

    NARCIS (Netherlands)

    Huis, van A.; Cressman, K.; Magor, J.I.

    2007-01-01

    Solitarious desert locusts, Schistocerca gregaria (Forskål) (Orthoptera: Acrididae), inhabit the central, arid, and semi-arid parts of the species¿ invasion area in Africa, the Middle East, and South-West Asia. Their annual migration circuit takes them downwind to breed sequentially where winter,

  19. Divining Jordan's desert waters | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    ... in the area have a long history of being water-conservers, and the idea of using the ... Dr Abu-Jaber examined is covered by an ancient, volcanic rock called basalt. ... When a desert cloudburst drops rain on the area, the raindrops quickly roll ...

  20. Difference in luminescence sensitivity of coarse-grained quartz from deserts of northern China

    International Nuclear Information System (INIS)

    Zheng, C.X.; Zhou, L.P.; Qin, J.T.

    2009-01-01

    The luminescence sensitivity of coarse quartz extracted from desert sands in northern China was investigated. In general, the western deserts' samples are shown to be less sensitive than samples from the eastern deserts with respect to both OSL and the 110 deg. C TL peak. However, internal scatter among different aliquots of the same sample is observed for these two signals, which have already been normalized by weight. Laboratory dosing/bleach experiments indicate that earth surface processes, such as repeated burial and transportation can cause the sensitivity change and suggest that they may be responsible for the internal scatter. An intrinsic property of quartz was explored via the luminescence response to thermal activation to a maximum temperature of 700 deg. C. The thermal activation curves obtained with quartz from western and central deserts are similar, except one sample from Gurbantungut, which follows the pattern of eastern samples. The differences in quartz luminescence sensitivity exhibited by OSL/110 deg. C TL sensitivity and response to thermal activation are in accordance with the published results of geochemical studies.

  1. Water sources for cyanobacteria below desert rocks in the Negev Desert determined by conductivity

    OpenAIRE

    McKay, Christopher P.

    2016-01-01

    We present year round meteorological and conductivity measurements of colonized hypolithic rocks in the Arava Valley, Negev Desert, Israel. The data indicate that while dew is common in the Negev it is not an important source of moisture for hypolithic organisms at this site. The dominance of cyanobacteria in the hypolithic community is consistent with predictions that cyanobacteria are confined to habitats supplied by rain. To monitor the presence of liquid water under the small Negev rocks ...

  2. Optical characteristics of desert dust over the East Mediterranean during summer: a case study

    Directory of Open Access Journals (Sweden)

    D. Balis

    2006-05-01

    Full Text Available High aerosol optical depth (AOD values, larger than 0.6, are systematically observed in the Ultraviolet (UV region both by sunphotometers and lidar systems over Greece during summertime. To study in more detail the characteristics and the origin of these high AOD values, a campaign took place in Greece in the frame of the PHOENICS (Particles of Human Origin Extinguishing Natural solar radiation In Climate Systems and EARLINET (European Aerosol Lidar Network projects during August–September of 2003, which included simultaneous sunphotometric and lidar measurements at three sites covering the north-south axis of Greece: Thessaloniki, Athens and Finokalia, Crete. Several events with high AOD values have been observed over the measuring sites during the campaign period, many of them corresponding to Saharan dust. In this paper we focused on the event of 30 and 31 August 2003, when a dust layer in the height range of 2000-5000 m, progressively affected all three stations. This layer showed a complex behavior concerning its spatial evolution and allowed us to study the changes in the optical properties of the desert dust particles along their transport due to aging and mixing with other types of aerosol. The extinction-to-backscatter ratio determined on the 30 August 2003 at Thessaloniki was approximately 50 sr, characteristic for rather spherical mineral particles, and the measured color index of 0.4 was within the typical range of values for desert dust. Mixing of the desert dust with other sources of aerosols resulted the next day in overall smaller and less absorbing population of particles with a lidar ratio of 20 sr. Mixing of polluted air-masses originating from Northern Greece and Crete and Saharan dust result in very high aerosol backscatter values reaching 7 Mm-1 sr-1 over Finokalia. The Saharan dust observed over Athens followed a different spatial evolution and was not mixed with the boundary layer aerosols mainly originating from

  3. Desert Peak East Enhanced Geothermal Systems (EGS) Project

    Energy Technology Data Exchange (ETDEWEB)

    Zemach, Ezra [Ormat Technologies Inc., Reno, NV (United States); Drakos, Peter [Ormat Technologies Inc., Reno, NV (United States); Spielman, Paul [Ormat Technologies Inc., Reno, NV (United States); Akerley, John [Ormat Technologies Inc., Reno, NV (United States)

    2013-09-30

    This manuscript is a draft to replaced with a final version at a later date TBD. A summary of activities pertaining to the Desert Peak EGS project including the planning and resulting stimulation activities.

  4. California Geothermal Forum: A Path to Increasing Geothermal Development in California

    Energy Technology Data Exchange (ETDEWEB)

    Young, Katherine R. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-01-01

    The genesis of this report was a 2016 forum in Sacramento, California, titled 'California Geothermal Forum: A Path to Increasing Geothermal Development in California.' The forum was held at the California Energy Commission's (CEC) headquarters in Sacramento, California with the primary goal being to advance the dialogues for the U.S. Department of Energy's Geothermal Technologies Office (GTO) and CEC technical research and development (R&D) focuses for future consideration. The forum convened a diverse group of stakeholders from government, industry, and research to lay out pathways for new geothermal development in California while remaining consistent with critical Federal and State conservation planning efforts, particularly at the Salton Sea.

  5. Groundwater quality in the Colorado River basins, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Four groundwater basins along the Colorado River make up one of the study areas being evaluated. The Colorado River study area is approximately 884 square miles (2,290 square kilometers) and includes the Needles, Palo Verde Mesa, Palo Verde Valley, and Yuma groundwater basins (California Department of Water Resources, 2003). The Colorado River study area has an arid climate and is part of the Sonoran Desert. Average annual rainfall is about 3 inches (8 centimeters). Land use in the study area is approximately 47 percent (%) natural (mostly shrubland), 47% agricultural, and 6% urban. The primary crops are pasture and hay. The largest urban area is the city of Blythe (2010 population of 21,000). Groundwater in these basins is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay deposited by the Colorado River or derived from surrounding mountains. The primary aquifers in the Colorado River study area are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in the Colorado River basins are completed to depths between 230 and 460 feet (70 to 140 meters), consist of solid casing from the land surface to a depth of 130 of 390 feet (39 to 119 meters), and are screened or perforated below the solid casing. The main source of recharge to the groundwater systems in the Needles, Palo Verde Mesa, and Palo Verde Valley basins is the Colorado River; in the Yuma basin, the main source of recharge is from

  6. Groundwater quality in the Indian Wells Valley, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Indian Wells Valley is one of the study areas being evaluated. The Indian Wells study area is approximately 600 square miles (1,554 square kilometers) and includes the Indian Wells Valley groundwater basin (California Department of Water Resources, 2003). Indian Wells Valley has an arid climate and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). The study area has internal drainage, with runoff from the surrounding mountains draining towards dry lake beds in the lower parts of the valley. Land use in the study area is approximately 97.0 percent (%) natural, 0.4% agricultural, and 2.6% urban. The primary natural land cover is shrubland. The largest urban area is the city of Ridgecrest (2010 population of 28,000). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from the Sierra Nevada to the west and from the other surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada and to the west and from the other surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada and direct infiltration from irrigation and septic systems. The primary sources of discharge are pumping wells and evapotranspiration near the dry lakebeds. The primary aquifers in the Indian Wells study area are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in

  7. Response surfaces of vulnerability to climate change: The Colorado River Basin, the High Plains, and California

    Science.gov (United States)

    Romano Foti; Jorge A. Ramirez; Thomas C. Brown

    2014-01-01

    We quantify the vulnerability of water supply to shortage for the Colorado River Basin and basins of the High Plains and California and assess the sensitivity of their water supply system to future changes in the statistical variability of supply and demand. We do so for current conditions and future socio-economic scenarios within a probabilistic framework that...

  8. Sensitivity of Sahelian Precipitation to Desert Dust under ENSO variability: a regional modeling study

    Science.gov (United States)

    Jordan, A.; Zaitchik, B. F.; Gnanadesikan, A.

    2016-12-01

    Mineral dust is estimated to comprise over half the total global aerosol burden, with a majority coming from the Sahara and Sahel region. Bounded by the Sahara Desert to the north and the Sahelian Savannah to the south, the Sahel experiences high interannual rainfall variability and a short rainy season during the boreal summer months. Observation-based data for the past three decades indicates a reduced dust emission trend, together with an increase in greening and surface roughness within the Sahel. Climate models used to study regional precipitation changes due to Saharan dust yield varied results, both in sign convention and magnitude. Inconsistency of model estimates drives future climate projections for the region that are highly varied and uncertain. We use the NASA-Unified Weather Research and Forecasting (NU-WRF) model to quantify the interaction and feedback between desert dust aerosol and Sahelian precipitation. Using nested domains at fine spatial resolution we resolve changes to mesoscale atmospheric circulation patterns due to dust, for representative phases of El Niño-Southern Oscillation (ENSO). The NU-WRF regional earth system model offers both advanced land surface data and resolvable detail of the mechanisms of the impact of Saharan dust. Results are compared to our previous work assessed over the Western Sahel using the Geophysical Fluid Dynamics Laboratory (GFDL) CM2Mc global climate model, and to other previous regional climate model studies. This prompts further research to help explain the dust-precipitation relationship and recent North African dust emission trends. This presentation will offer a quantitative analysis of differences in radiation budget, energy and moisture fluxes, and atmospheric dynamics due to desert dust aerosol over the Sahel.

  9. The draft genome sequence and annotation of the desert woodrat Neotoma lepida

    Directory of Open Access Journals (Sweden)

    Michael Campbell

    2016-09-01

    Full Text Available We present the de novo draft genome sequence for a vertebrate mammalian herbivore, the desert woodrat (Neotoma lepida. This species is of ecological and evolutionary interest with respect to ingestion, microbial detoxification and hepatic metabolism of toxic plant secondary compounds from the highly toxic creosote bush (Larrea tridentata and the juniper shrub (Juniperus monosperma. The draft genome sequence and annotation have been deposited at GenBank under the accession LZPO01000000.

  10. Molecular mechanisms of foliar water uptake in a desert tree.

    Science.gov (United States)

    Yan, Xia; Zhou, Maoxian; Dong, Xicun; Zou, Songbing; Xiao, Honglang; Ma, Xiao-Fei

    2015-11-12

    Water deficits severely affect growth, particularly for the plants in arid and semiarid regions of the world. In addition to precipitation, other subsidiary water, such as dew, fog, clouds and small rain showers, may also be absorbed by leaves in a process known as foliar water uptake. With the severe scarcity of water in desert regions, this process is increasingly becoming a necessity. Studies have reported on physical and physiological processes of foliar water uptake. However, the molecular mechanisms remain less understood. As major channels for water regulation and transport, aquaporins (AQPs) are involved in this process. However, due to the regulatory complexity and functional diversity of AQPs, their molecular mechanism for foliar water uptake remains unclear. In this study, Tamarix ramosissima, a tree species widely distributed in desert regions, was investigated for gene expression patterns of AQPs and for sap flow velocity. Our results suggest that the foliar water uptake of T. ramosissima occurs in natural fields at night when the humidity is over a threshold of 85 %. The diurnal gene expression pattern of AQPs suggests that most AQP gene expressions display a circadian rhythm, and this could affect both photosynthesis and transpiration. At night, the PIP2-1 gene is also upregulated with increased relative air humidity. This gene expression pattern may allow desert plants to regulate foliar water uptake to adapt to extreme drought. This study suggests a molecular basis of foliar water uptake in desert plants. Published by Oxford University Press on behalf of the Annals of Botany Company.

  11. Colorado Desert Vegetation

    Data.gov (United States)

    California Natural Resource Agency — CDF-FRAP compiled the 'best available' land cover data into a single data layer, to support the various analyses required for the 2002 Forest and Range Assessment....

  12. Private Schools, California, 2009, California Department of Education

    Data.gov (United States)

    U.S. Environmental Protection Agency — California law (California Education Code Section 33190) requires private schools offering or conducting a full-time elementary or secondary level day school for...

  13. Out of the Desert: My Journey from Nomadic Bedouin to the Heart of Global Oil

    KAUST Repository

    Al-Naimi, Ali Ibrahim

    2017-01-01

    Arabian deserts. From his first job as a shepherd boy to his appointment to one of the most powerful political and economic jobs in the world, Out of the Desert charts Al-Naimi's extraordinary rise to power.

  14. Targeted Advertising, Promotion, and Price For Menthol Cigarettes in California High School Neighborhoods

    Science.gov (United States)

    Schleicher, Nina C.; Dauphinee, Amanda L.; Fortmann, Stephen P.

    2012-01-01

    Objectives: To describe advertising, promotions, and pack prices for the leading brands of menthol and nonmenthol cigarettes near California high schools and to examine their associations with school and neighborhood demographics. Methods: In stores (n = 407) within walking distance (0.8 km [1/2 mile]) of California high schools (n = 91), trained observers counted ads for menthol and nonmenthol cigarettes and collected data about promotions and prices for Newport and Marlboro, the leading brand in each category. Multilevel modeling examined the proportion of all cigarette advertising for any menthol brand, the proportion of stores with sales promotions, and the lowest advertised pack price in relation to store types and school/neighborhood demographics. Results: For each 10 percentage point increase in the proportion of Black students, the proportion of menthol advertising increased by 5.9 percentage points (e.g., from an average of 25.7%–31.6%), the odds of a Newport promotion were 50% higher (95% CI = 1.01, 2.22), and the cost of Newport was 12 cents lower (95% CI = −0.18, −0.06). By comparison, the odds of a promotion and the price for Marlboro, the leading brand of nonmenthol cigarettes, were unrelated to any school or neighborhood demographics. Conclusions: In high school neighborhoods, targeted advertising exposes Blacks to more promotions and lower prices for the leading brand of menthol cigarettes. This evidence contradicts the manufacturer’s claims that the availability of its promotions is not based on race/ethnicity. It also highlights the need for tobacco control policies that would limit disparities in exposure to retail marketing for cigarettes. PMID:21705460

  15. Temporal dynamics of hot desert microbial communities reveal structural and functional responses to water input.

    Science.gov (United States)

    Armstrong, Alacia; Valverde, Angel; Ramond, Jean-Baptiste; Makhalanyane, Thulani P; Jansson, Janet K; Hopkins, David W; Aspray, Thomas J; Seely, Mary; Trindade, Marla I; Cowan, Don A

    2016-09-29

    The temporal dynamics of desert soil microbial communities are poorly understood. Given the implications for ecosystem functioning under a global change scenario, a better understanding of desert microbial community stability is crucial. Here, we sampled soils in the central Namib Desert on sixteen different occasions over a one-year period. Using Illumina-based amplicon sequencing of the 16S rRNA gene, we found that α-diversity (richness) was more variable at a given sampling date (spatial variability) than over the course of one year (temporal variability). Community composition remained essentially unchanged across the first 10 months, indicating that spatial sampling might be more important than temporal sampling when assessing β-diversity patterns in desert soils. However, a major shift in microbial community composition was found following a single precipitation event. This shift in composition was associated with a rapid increase in CO 2 respiration and productivity, supporting the view that desert soil microbial communities respond rapidly to re-wetting and that this response may be the result of both taxon-specific selection and changes in the availability or accessibility of organic substrates. Recovery to quasi pre-disturbance community composition was achieved within one month after rainfall.

  16. Temporal dynamics of hot desert microbial communities reveal structural and functional responses to water input

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Alacia; Valverde, Angel; Ramond, Jean-Baptiste; Makhalanyane, Thulani P.; Jansson, Janet K.; Hopkins, David W.; Aspray, Thomas J.; Seely, Mary; Trindade, Marla I.; Cowan, Don A.

    2016-09-29

    The temporal dynamics of desert soil microbial communities are poorly understood. Given the implications for ecosystem functioning under a global change scenario, a better understanding of desert microbial community stability is crucial. Here, we sampled soils in the central Namib Desert on sixteen different occasions over a one-year period. Using Illumina-based amplicon sequencing of the 16S rRNA gene, we found that α-diversity (richness) was more variable at a given sampling date (spatial variability) than over the course of one year (temporal variability). Community composition remained essentially unchanged across the first 10 months, indicating that spatial sampling might be more important than temporal sampling when assessing β-diversity patterns in desert soils. However, a major shift in microbial community composition was found following a single precipitation event. This shift in composition was associated with a rapid increase in CO2 respiration and productivity, supporting the view that desert soil microbial communities respond rapidly to re-wetting and that this response may be the result of both taxon-specific selection and changes in the availability or accessibility of organic substrates. Recovery to quasi pre-disturbance community composition was achieved within one month after rainfall.

  17. Reclaiming agricultural drainage water with nanofiltration membranes: Imperial Valley, California, USA

    Science.gov (United States)

    Kharaka, Y.K.; Schroeder, R.A.; Setmire, J.G.; ,

    2003-01-01

    We conducted pilot-scale field experiments using nanofiltration membranes to lower the salinity and remove Se, As and other toxic contaminants from saline agricultural wastewater in the Imperial Valley, California, USA. Farmlands in the desert climate (rainfall - 7.4 cm/a) of Imperial Valley cover -200,000 ha that are irrigated with water (-1.7 km3 annually) imported from the Colorado River. The salinity (-850 mg/L) and concentration of Se (-2.5 ??g/L) in the Colorado River water are high and evapotranpiration further concentrates salts in irrigation drainage water, reaching salinities of 3,000-15,000 mg/L TDS and a median Se value of -30 ??g/L. Experiments were conducted with two commercially available nanofiltration membranes, using drainage water of varying composition, and with or without the addition of organic precipitation inhibitors. Results show that these membranes selectively remove more than 95% of Se, SO4, Mo, U and DOC, and -30% of As from this wastewater. Low percentages of Cl, NO3 and HCO3, with enough cations to maintain electrical neutrality also were removed. The product water treated by these membranes comprised more than 90% of the wastewater tested. Results indicate that the treated product water from the Alamo River likely will have less than 0.2 ??g/L Se, salinity of 300-500 mg/L TDS and other chemical concentrations that meet the water quality criteria for irrigation and potable use. Because acceptability is a major issue for providing treated wastewater to urban centers, it may be prudent to use the reclaimed water for irrigation and creation of lower salinity wetlands near the Salton Sea; an equivalent volume of Colorado River water can then be diverted for the use of increasing populations of San Diego and other urban centers in southern California. Nanofiltration membranes yield greater reclaimed-water output and require lower pressure and less pretreatment, and therefore are generally more cost effective than traditional reverse

  18. Landscape-scale distribution and density of raptor populations wintering in anthropogenic-dominated desert landscapes

    Science.gov (United States)

    Adam E. Duerr; Tricia A. Miller; Kerri L. Cornell Duerr; Michael J. Lanzone; Amy Fesnock; Todd E. Katzner

    2015-01-01

    Anthropogenic development has great potential to affect fragile desert environments. Large-scale development of renewable energy infrastructure is planned for many desert ecosystems. Development plans should account for anthropogenic effects to distributions and abundance of rare or sensitive wildlife; however, baseline data on abundance and distribution of such...

  19. Origins and ecological consequences of pollen specialization among desert bees.

    Science.gov (United States)

    Minckley, R L; Cane, J H; Kervin, L

    2000-02-07

    An understanding of the evolutionary origins of insect foraging specialization is often hindered by a poor biogeographical and palaeoecological record. The historical biogeography (20,000 years before present to the present) of the desert-limited plant, creosote bush (Larrea tridentata), is remarkably complete. This history coupled with the distribution pattern of its bee fauna suggests pollen specialization for creosote bush pollen has evolved repeatedly among bees in the Lower Sonoran and Mojave deserts. In these highly xeric, floristically depauperate environments, species of specialist bees surpass generalist bees in diversity, biomass and abundance. The ability of specialist bees to facultatively remain in diapause through resource-poor years and to emerge synchronously with host plant bloom in resource-rich years probably explains their ecological dominance and persistence in these areas. Repeated origins of pollen specialization to one host plant where bloom occurs least predictably is a counter-example to prevailing theories that postulate such traits originate where the plant grows best and blooms most reliably Host-plant synchronization, a paucity of alternative floral hosts, or flowering attributes of creosote bush alone or in concert may account for the diversity of bee specialists that depend on this plant instead of nutritional factors or chemical coevolution between floral rewards and the pollinators they have evolved to attract.

  20. Ground-water recharge from small intermittent streams in the western Mojave Desert, California: Chapter G in Ground-water recharge in the arid and semiarid southwestern United States (Professional Paper 1703)

    Science.gov (United States)

    Izbicki, John A.; Johnson, Russell U.; Kulongoski, Justin T.; Predmore, Steven; Stonestrom, David A.; Constantz, Jim; Ferré, Ty P.A.; Leake, Stanley A.

    2007-01-01

    Population growth has impacted ground-water resources in the western Mojave Desert, where declining water levels suggest that recharge rates have not kept pace with withdrawals. Recharge from the Mojave River, the largest hydrographic feature in the study area, is relatively well characterized. In contrast, recharge from numerous smaller streams that convey runoff from the bounding mountains is poorly characterized. The current study examined four representative streams to assess recharge from these intermittent sources. Hydraulic, thermal, geomorphic, chemical, and isotopic data were used to study recharge processes, from streamflow generation and infiltration to percolation through the unsaturated zone. Ground-water movement away from recharge areas was also assessed.Infiltration in amounts sufficient to have a measurable effect on subsurface temperature profiles did not occur in every year in instrumented study reaches. In addition to streamflow availability, results showed the importance of sediment texture in controlling infiltration and eventual recharge. Infiltration amounts of about 0.7 meters per year were an approximate threshold for the occurrence of ground-water recharge. Estimated travel times through the thick unsaturated zones underlying channels reached several hundred years. Recharging fluxes were influenced by stratigraphic complexity and depositional dynamics. Because of channel meandering, not all water that penetrates beneath the root zone can be assumed to become recharge on active alluvial fans.Away from study washes, elevated chloride concentrations and highly negative water potentials beneath the root zone indicated negligible recharge from direct infiltration of precipitation under current climatic conditions. In upstream portions of washes, generally low subsurface chloride concentrations and near-zero water potentials indicated downward movement of water toward the water table, driven primarily by gravity. Recharging conditions did not