WorldWideScience

Sample records for high depth resolution

  1. Depth of interaction resolution measurements for a high resolution PET detector using position sensitive avalanche photodiodes.

    Science.gov (United States)

    Yang, Yongfeng; Dokhale, Purushottam A; Silverman, Robert W; Shah, Kanai S; McClish, Mickel A; Farrell, Richard; Entine, Gerald; Cherry, Simon R

    2006-05-07

    We explore dual-ended read out of LSO arrays with two position sensitive avalanche photodiodes (PSAPDs) as a high resolution, high efficiency depth-encoding detector for PET applications. Flood histograms, energy resolution and depth of interaction (DOI) resolution were measured for unpolished LSO arrays with individual crystal sizes of 1.0, 1.3 and 1.5 mm, and for a polished LSO array with 1.3 mm pixels. The thickness of the crystal arrays was 20 mm. Good flood histograms were obtained for all four arrays, and crystals in all four arrays can be clearly resolved. Although the amplitude of each PSAPD signal decreases as the interaction depth moves further from the PSAPD, the sum of the two PSAPD signals is essentially constant with irradiation depth for all four arrays. The energy resolutions were similar for all four arrays, ranging from 14.7% to 15.4%. A DOI resolution of 3-4 mm (including the width of the irradiation band which is approximately 2 mm) was obtained for all the unpolished arrays. The best DOI resolution was achieved with the unpolished 1 mm array (average 3.5 mm). The DOI resolution for the 1.3 mm and 1.5 mm unpolished arrays was 3.7 and 4.0 mm respectively. For the polished array, the DOI resolution was only 16.5 mm. Summing the DOI profiles across all crystals for the 1 mm array only degraded the DOI resolution from 3.5 mm to 3.9 mm, indicating that it may not be necessary to calibrate the DOI response separately for each crystal within an array. The DOI response of individual crystals in the array confirms this finding. These results provide a detailed characterization of the DOI response of these PSAPD-based PET detectors which will be important in the design and calibration of a PET scanner making use of this detector approach.

  2. High Resolution Multispectral Flow Imaging of Cells with Extended Depth of Field Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Proposed is the development the extended depth of field (EDF) or confocal like imaging capabilities of a breakthrough multispectral high resolution imaging flow...

  3. High Resolution Multispectral Flow Imaging of Cells with Extended Depth of Field Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Proposed is the development the extended depth of field (EDF) or confocal like imaging capabilities of a breakthrough multispectral high resolution imaging flow...

  4. Estimated Depth Maps of the Northwestern Hawaiian Islands Derived from High Resolution IKONOS Satellite Imagery (Draft)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Estimated shallow-water, depth maps were produced using rule-based, semi-automated image analysis of high-resolution satellite imagery for nine locations in the...

  5. Estimated Depth Maps of the Northwestern Hawaiian Islands Derived from High Resolution IKONOS Satellite Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Estimated shallow-water, depth maps were produced using rule-based, semi-automated image analysis of high-resolution satellite imagery for nine locations in the...

  6. A High Spatial Resolution Depth Sensing Method Based on Binocular Structured Light.

    Science.gov (United States)

    Yao, Huimin; Ge, Chenyang; Xue, Jianru; Zheng, Nanning

    2017-04-08

    Depth information has been used in many fields because of its low cost and easy availability, since the Microsoft Kinect was released. However, the Kinect and Kinect-like RGB-D sensors show limited performance in certain applications and place high demands on accuracy and robustness of depth information. In this paper, we propose a depth sensing system that contains a laser projector similar to that used in the Kinect, and two infrared cameras located on both sides of the laser projector, to obtain higher spatial resolution depth information. We apply the block-matching algorithm to estimate the disparity. To improve the spatial resolution, we reduce the size of matching blocks, but smaller matching blocks generate lower matching precision. To address this problem, we combine two matching modes (binocular mode and monocular mode) in the disparity estimation process. Experimental results show that our method can obtain higher spatial resolution depth without loss of the quality of the range image, compared with the Kinect. Furthermore, our algorithm is implemented on a low-cost hardware platform, and the system can support the resolution of 1280 × 960, and up to a speed of 60 frames per second, for depth image sequences.

  7. Oxygen depth profiling with subnanometre depth resolution

    Energy Technology Data Exchange (ETDEWEB)

    Kosmata, Marcel [Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 510119, D-01314 Dresden (Germany); Munnik, Frans, E-mail: f.munnik@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 510119, D-01314 Dresden (Germany); Hanf, Daniel; Grötzschel, Rainer [Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 510119, D-01314 Dresden (Germany); Crocoll, Sonja [X-FAB Dresden GmbH and Co. KG, Grenzstraße 28, D-01109 Dresden (Germany); Möller, Wolfhard [Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 510119, D-01314 Dresden (Germany)

    2014-10-15

    A High-depth Resolution Elastic Recoil Detection (HR-ERD) set-up using a magnetic spectrometer has been taken into operation at the Helmholtz-Zentrum Dresden-Rossendorf for the first time. This instrument allows the investigation of light elements in ultra-thin layers and their interfaces with a depth resolution of less than 1 nm near the surface. As the depth resolution is highly influenced by the experimental measurement parameters, sophisticated optimisation procedures have been implemented. Effects of surface roughness and sample damage caused by high fluences need to be quantified for each kind of material. Also corrections are essential for non-equilibrium charge state distributions that exist very close to the surface. Using the example of a high-k multilayer SiO{sub 2}/Si{sub 3}N{sub 4}O{sub x}/SiO{sub 2}/Si it is demonstrated that oxygen in ultra-thin films of a few nanometres thickness can be investigated by HR-ERD.

  8. High Resolution Depth-Resolved Imaging From Multi-Focal Images for Medical Ultrasound

    DEFF Research Database (Denmark)

    Diamantis, Konstantinos; Dalgarno, Paul A.; Greenaway, Alan H.

    2015-01-01

    An ultrasound imaging technique providing subdiffraction limit axial resolution for point sources is proposed. It is based on simultaneously acquired multi-focal images of the same object, and on the image metric of sharpness. The sharpness is extracted by image data and presents higher values...... for in-focus images. The technique is derived from biological microscopy and is validated here with simulated ultrasound data. A linear array probe is used to scan a point scatterer phantom that moves in depth with a controlled step. From the beamformed responses of each scatterer position the image...... calibration curves combined with the use of a maximum-likelihood algorithm is then able to estimate, with high precision, the depth location of any emitter fron each single image. Estimated values are compared with the ground truth demonstrating that an accuracy of 28.6 µm (0.13λ) is achieved for a 4 mm depth...

  9. A pilot evaluation study of high resolution digital thermal imaging in the assessment of burn depth.

    Science.gov (United States)

    Hardwicke, Joseph; Thomson, Richard; Bamford, Amy; Moiemen, Naiem

    2013-02-01

    Thermal imaging is a tool that can be used to determine burn depth. We have revisited the use of this technology in the assessment of burns and aim to establish if high resolution, real-time technology can be practically used in conjunction with clinical examination to determine burn depth. 11 patients with burns affecting upper and lower limbs and the anterior and posterior trunk were included in this study. Digital and thermal images were recorded at between 42 h and 5 days post burn. When compared to skin temperature, full thickness burns were significantly cooler (pburns (pburns were not significantly different in temperature than non-burnt skin (p>0.05). Typically, full thickness burns were 2.3°C cooler than non-burnt skin; deep partial thickness burns were 1.2°C cooler than non-burnt skin; whilst superficial burns were only 0.1°C cooler. Thermal imaging can correctly determine difference in burn depth. The thermal camera produces images of high resolution and is quick and easy to use. Copyright © 2012 Elsevier Ltd and ISBI. All rights reserved.

  10. High Resolution Aerosol Optical Depth Retrieval Using Gaofen-1 WFV Camera Data

    Directory of Open Access Journals (Sweden)

    Kun Sun

    2017-01-01

    Full Text Available Aerosol Optical Depth (AOD is crucial for urban air quality assessment. However, the frequently used moderate-resolution imaging spectroradiometer (MODIS AOD product at 10 km resolution is too coarse to be applied in a regional-scale study. Gaofen-1 (GF-1 wide-field-of-view (WFV camera data, with high spatial and temporal resolution, has great potential in estimation of AOD. Due to the lack of shortwave infrared (SWIR band and complex surface reflectivity brought from high spatial resolution, it is difficult to retrieve AOD from GF-1 WFV data with traditional methods. In this paper, we propose an improved AOD retrieval algorithm for GF-1 WFV data. The retrieved AOD has a spatial resolution of 160 m and covers all land surface types. Significant improvements in the algorithm include: (1 adopting an improved clear sky composite method by using the MODIS AOD product to identify the clearest days and correct the background atmospheric effect; and (2 obtaining local aerosol models from long-term CIMEL sun-photometer measurements. Validation against MODIS AOD and ground measurements showed that the GF-1 WFV AOD has a good relationship with MODIS AOD (R2 = 0.66; RMSE = 0.27 and ground measurements (R2 = 0.80; RMSE = 0.25. Nevertheless, the proposed algorithm was found to overestimate AOD in some cases, which will need to be improved upon in future research.

  11. Development of high-resolution detector module with depth of interaction identification for positron emission tomography

    Science.gov (United States)

    Niknejad, Tahereh; Pizzichemi, Marco; Stringhini, Gianluca; Auffray, Etiennette; Bugalho, Ricardo; Da Silva, Jose Carlos; Di Francesco, Agostino; Ferramacho, Luis; Lecoq, Paul; Leong, Carlos; Paganoni, Marco; Rolo, Manuel; Silva, Rui; Silveira, Miguel; Tavernier, Stefaan; Varela, Joao; Zorraquino, Carlos

    2017-02-01

    We have developed a Time-of-flight high resolution and commercially viable detector module for the application in small PET scanners. A new approach to depth of interaction (DOI) encoding with low complexity for a pixelated crystal array using a single side readout and 4-to-1 coupling between scintillators and photodetectors was investigated. In this method the DOI information is estimated using the light sharing technique. The detector module is a 1.53×1.53×15 mm3 matrix of 8×8 LYSO scintillator with lateral surfaces optically depolished separated by reflective foils. The crystal array is optically coupled to 4×4 silicon photomultipliers (SiPM) array and readout by a high performance front-end ASIC with TDC capability (50 ps time binning). The results show an excellent crystal identification for all the scintillators in the matrix, a timing resolution of 530 ps, an average DOI resolution of 5.17 mm FWHM and an average energy resolution of 18.29% FWHM.

  12. Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection

    NARCIS (Netherlands)

    McCarthy, A.; Krichel, N.J.; Gemmell, N.R.; Ren, X.; Tanner, M.G.; Dorenbos, S.N.; Zwiller, V.; Hadfield, R.H.; Buller, G.S.

    2013-01-01

    This paper highlights a significant advance in time-of-flight depth imaging: by using a scanning transceiver which incorporated a free-running, low noise superconducting nanowire single-photon detector, we were able to obtain centimeter resolution depth images of low-signature objects in daylight at

  13. High-resolution in-depth imaging of optically cleared thick samples using an adaptive SPIM

    Science.gov (United States)

    Masson, Aurore; Escande, Paul; Frongia, Céline; Clouvel, Grégory; Ducommun, Bernard; Lorenzo, Corinne

    2015-11-01

    Today, Light Sheet Fluorescence Microscopy (LSFM) makes it possible to image fluorescent samples through depths of several hundreds of microns. However, LSFM also suffers from scattering, absorption and optical aberrations. Spatial variations in the refractive index inside the samples cause major changes to the light path resulting in loss of signal and contrast in the deepest regions, thus impairing in-depth imaging capability. These effects are particularly marked when inhomogeneous, complex biological samples are under study. Recently, chemical treatments have been developed to render a sample transparent by homogenizing its refractive index (RI), consequently enabling a reduction of scattering phenomena and a simplification of optical aberration patterns. One drawback of these methods is that the resulting RI of cleared samples does not match the working RI medium generally used for LSFM lenses. This RI mismatch leads to the presence of low-order aberrations and therefore to a significant degradation of image quality. In this paper, we introduce an original optical-chemical combined method based on an adaptive SPIM and a water-based clearing protocol enabling compensation for aberrations arising from RI mismatches induced by optical clearing methods and acquisition of high-resolution in-depth images of optically cleared complex thick samples such as Multi-Cellular Tumour Spheroids.

  14. A high-resolution time-depth view of dimethylsulphide cycling in the surface sea

    Science.gov (United States)

    Royer, S.-J.; Galí, M.; Mahajan, A. S.; Ross, O. N.; Pérez, G. L.; Saltzman, E. S.; Simó, R.

    2016-08-01

    Emission of the trace gas dimethylsulphide (DMS) from the ocean influences the chemical and optical properties of the atmosphere, and the olfactory landscape for foraging marine birds, turtles and mammals. DMS concentration has been seen to vary across seasons and latitudes with plankton taxonomy and activity, and following the seascape of ocean’s physics. However, whether and how does it vary at the time scales of meteorology and day-night cycles is largely unknown. Here we used high-resolution measurements over time and depth within coherent water patches in the open sea to show that DMS concentration responded rapidly but resiliently to mesoscale meteorological perturbation. Further, it varied over diel cycles in conjunction with rhythmic photobiological indicators in phytoplankton. Combining data and modelling, we show that sunlight switches and tunes the balance between net biological production and abiotic losses. This is an outstanding example of how biological diel rhythms affect biogeochemical processes.

  15. Optics optimization in high-resolution imaging module with extended depth of field

    Science.gov (United States)

    Chen, Xi; Bakin, Dmitry; Liu, Changmeng; George, Nicholas

    2008-08-01

    The standard imaging lens for a high resolution sensor was modified to achieve the extended depth of field (EDoF) from 300 mm to infinity. In the module the raw sensor outputs are digitally processed to obtain high contrast images. The overall module is considered as an integrated computational imaging system (ICIS). The simulation results for illustrative designs with different amount of spherical aberrations are provided and compared. Based on the results of simulations we introduced the limiting value of the PSF Strehl ratio as the integral threshold criteria to be used during EDoF lens optimization. A four-element standard lens was modified within the design constraints to achieve the EDoF performance. Two EDoF designs created with different design methods are presented. The imaging modules were compared in terms of Strehl ratios, limiting resolution, modulation frequencies at 50% contrast, and SNR. The output images were simulated for EDoF modules, passed through the image processing pipeline, and compared against the images obtained with the standard lens module.

  16. Upsampling range camera depth maps using high-resolution vision camera and pixel-level confidence classification

    Science.gov (United States)

    Tian, Chao; Vaishampayan, Vinay; Zhang, Yifu

    2011-03-01

    We consider the problem of upsampling a low-resolution depth map generated by a range camera, by using information from one or more additional high-resolution vision cameras. The goal is to provide an accurate high resolution depth map from the viewpoint of one of the vision cameras. We propose an algorithm that first converts the low resolution depth map into a depth/disparity map through coordinate mappings into the coordinate frame of one vision camera, then classifies the pixels into regions according to whether the range camera depth map is trustworthy, and finally refine the depth values for the pixels in the untrustworthy regions. For the last refinement step, both a method based on graph cut optimization and that based on bilateral filtering are examined. Experimental results show that the proposed methods using classification are able to upsample the depth map by a factor of 10 x 10 with much improved depth details, with significantly better accuracy comparing to those without the classification. The improvements are visually perceptible on a 3D auto-stereoscopic display.

  17. Laminar Python: tools for cortical depth-resolved analysis of high-resolution brain imaging data in Python

    Directory of Open Access Journals (Sweden)

    Julia Huntenburg

    2017-02-01

    Full Text Available Increasingly available high-resolution brain imaging data require specialized processing tools that can leverage their anatomical detail and handle their size. Here, we present user-friendly Python tools for cortical depth resolved analysis in such data. Our implementation is based on the CBS High-Res Brain Processing framework, and aims to make high-resolution data processing tools available to the broader community.

  18. Depth Probing Soft X-ray Microprobe (DPSXRM) for High Resolution Probing of Earth's Microstructural Samples

    Science.gov (United States)

    Dikedi, P. N.

    2015-12-01

    The Cambrian explosion; occurrence of landslides in very dry weather conditions; rockslides; dead, shriveled-up and crumbled leaves possessing fossil records with the semblance of well preserved, flat leaves; abundance of trilobite tracks in lower and higher rock layers; and sailing stones are enigmas demanding demystifications. These enigmas could be elucidated when data on soil structure, texture and strength are provided by some device with submicrometre accuracy; for these and other reasons, the design of a Depth Probing Soft X-ray Microprobe (DPSXRM), is being proposed; it is expected to deliver soft X-rays, at spatial resolution, ϛ≥600nm and to probe at the depth of 0.5m in 17s. The microprobe is portable compared to a synchrotron radiation facility (Diamond Light Source has land size of 43,300m2); spatial resolution,ϛ , of the DPSXRM surpasses those of the X-ray Fluorescence microanalysis (10µm), electron microprobe (1-3µm) and ion microprobe (5->30µm); the DPSXRM has allowance for multiple targets. Vanadium and Manganese membranes are proposed owing to respective 4.952KeV VKα1 and 5.899KeV MnKα1 X-rays emitted, which best suits micro-probing of Earth's microstructural samples. Compound systems like the Kirk-Patrick and Baez and Wolter optics, aspheric mirrors like elliptical and parabolic optics, small apertures and Abbe sine condition are employed to reduce or remove astigmatism, obliquity, comatic and spherical aberrations—leading to good image quality. Results show that 5.899KeV MnKα1 and 4.952KeV VKα1 soft X-rays will travel a distance of 2.75mm to form circular patches of radii 2.2mm and 2.95mm respectively. Zone plate with nth zone radius of 1.5mm must be positioned 1.5mm and 2mm from the electron gun if circular patches must be formed from 4.952KeV VKα1 and 5.899KeV MnKα1 soft X-rays respectively. The focal lengths of 0.25μm≤ƒ≤1.50μm and 0.04μm≤ƒ≤0.2μm covered by 4.952KeV VKα1 and 5.899KeV Mn Kα1 soft X-Rays, will

  19. Multimodal adaptive optics for depth-enhanced high-resolution ophthalmic imaging

    Science.gov (United States)

    Hammer, Daniel X.; Mujat, Mircea; Iftimia, Nicusor V.; Lue, Niyom; Ferguson, R. Daniel

    2010-02-01

    We developed a multimodal adaptive optics (AO) retinal imager for diagnosis of retinal diseases, including glaucoma, diabetic retinopathy (DR), age-related macular degeneration (AMD), and retinitis pigmentosa (RP). The development represents the first ever high performance AO system constructed that combines AO-corrected scanning laser ophthalmoscopy (SLO) and swept source Fourier domain optical coherence tomography (SSOCT) imaging modes in a single compact clinical prototype platform. The SSOCT channel operates at a wavelength of 1 μm for increased penetration and visualization of the choriocapillaris and choroid, sites of major disease activity for DR and wet AMD. The system is designed to operate on a broad clinical population with a dual deformable mirror (DM) configuration that allows simultaneous low- and high-order aberration correction. The system also includes a wide field line scanning ophthalmoscope (LSO) for initial screening, target identification, and global orientation; an integrated retinal tracker (RT) to stabilize the SLO, OCT, and LSO imaging fields in the presence of rotational eye motion; and a high-resolution LCD-based fixation target for presentation to the subject of stimuli and other visual cues. The system was tested in a limited number of human subjects without retinal disease for performance optimization and validation. The system was able to resolve and quantify cone photoreceptors across the macula to within ~0.5 deg (~100-150 μm) of the fovea, image and delineate ten retinal layers, and penetrate to resolve targets deep into the choroid. In addition to instrument hardware development, analysis algorithms were developed for efficient information extraction from clinical imaging sessions, with functionality including automated image registration, photoreceptor counting, strip and montage stitching, and segmentation. The system provides clinicians and researchers with high-resolution, high performance adaptive optics imaging to help

  20. Fine Particulate Matter Predictions Using High Resolution Aerosol Optical Depth (AOD) Retrievals

    Science.gov (United States)

    Chudnovsky, Alexandra A.; Koutrakis, Petros; Kloog, Itai; Melly, Steven; Nordio, Francesco; Lyapustin, Alexei; Wang, Jujie; Schwartz, Joel

    2014-01-01

    To date, spatial-temporal patterns of particulate matter (PM) within urban areas have primarily been examined using models. On the other hand, satellites extend spatial coverage but their spatial resolution is too coarse. In order to address this issue, here we report on spatial variability in PM levels derived from high 1 km resolution AOD product of Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm developed for MODIS satellite. We apply day-specific calibrations of AOD data to predict PM(sub 2.5) concentrations within the New England area of the United States. To improve the accuracy of our model, land use and meteorological variables were incorporated. We used inverse probability weighting (IPW) to account for nonrandom missingness of AOD and nested regions within days to capture spatial variation. With this approach we can control for the inherent day-to-day variability in the AOD-PM(sub 2.5) relationship, which depends on time-varying parameters such as particle optical properties, vertical and diurnal concentration profiles and ground surface reflectance among others. Out-of-sample "ten-fold" cross-validation was used to quantify the accuracy of model predictions. Our results show that the model-predicted PM(sub 2.5) mass concentrations are highly correlated with the actual observations, with out-of- sample R(sub 2) of 0.89. Furthermore, our study shows that the model captures the pollution levels along highways and many urban locations thereby extending our ability to investigate the spatial patterns of urban air quality, such as examining exposures in areas with high traffic. Our results also show high accuracy within the cities of Boston and New Haven thereby indicating that MAIAC data can be used to examine intra-urban exposure contrasts in PM(sub 2.5) levels.

  1. Very high resolution measurement of the penetration depth of superconductors by a novel single-coil inductance technique

    Science.gov (United States)

    Gauzzi, A.; Le Cochec, J.; Lamura, G.; Jönsson, B. J.; Gasparov, V. A.; Ladan, F. R.; Plaçais, B.; Probst, P. A.; Pavuna, D.; Bok, J.

    2000-05-01

    We describe a novel single-coil mutual inductance technique for measuring the magnetic penetration depth λ of superconductors at 2-4 MHz as a function of temperature in the 4-100 K range. We combine a single-coil configuration with a high-stability marginal oscillator; this enables us to measure the absolute value of λ on both bulk samples and thin films with very high resolution (δλ=10 pm) and a precision of 30 nm. As example of application, we report measurements on NbTi bulk samples and Nb films. This contactless technique is suited for probing the superconducting properties of samples over large surfaces.

  2. In-depth glycoproteomic characterization of γ-conglutin by high-resolution accurate mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Silvia Schiarea

    Full Text Available The molecular characterization of bioactive food components is necessary for understanding the mechanisms of their beneficial or detrimental effects on human health. This study focused on γ-conglutin, a well-known lupin seed N-glycoprotein with health-promoting properties and controversial allergenic potential. Given the importance of N-glycosylation for the functional and structural characteristics of proteins, we studied the purified protein by a mass spectrometry-based glycoproteomic approach able to identify the structure, micro-heterogeneity and attachment site of the bound N-glycan(s, and to provide extensive coverage of the protein sequence. The peptide/N-glycopeptide mixtures generated by enzymatic digestion (with or without N-deglycosylation were analyzed by high-resolution accurate mass liquid chromatography-multi-stage mass spectrometry. The four main micro-heterogeneous variants of the single N-glycan bound to γ-conglutin were identified as Man2(Xyl (Fuc GlcNAc2, Man3(Xyl (Fuc GlcNAc2, GlcNAcMan3(Xyl (Fuc GlcNAc2 and GlcNAc 2Man3(Xyl (Fuc GlcNAc2. These carry both core β1,2-xylose and core α1-3-fucose (well known Cross-Reactive Carbohydrate Determinants, but corresponding fucose-free variants were also identified as minor components. The N-glycan was proven to reside on Asn131, one of the two potential N-glycosylation sites. The extensive coverage of the γ-conglutin amino acid sequence suggested three alternative N-termini of the small subunit, that were later confirmed by direct-infusion Orbitrap mass spectrometry analysis of the intact subunit.

  3. In-Depth Glycoproteomic Characterization of γ-Conglutin by High-Resolution Accurate Mass Spectrometry

    Science.gov (United States)

    Schiarea, Silvia; Arnoldi, Lolita; Fanelli, Roberto; De Combarieu, Eric; Chiabrando, Chiara

    2013-01-01

    The molecular characterization of bioactive food components is necessary for understanding the mechanisms of their beneficial or detrimental effects on human health. This study focused on γ-conglutin, a well-known lupin seed N-glycoprotein with health-promoting properties and controversial allergenic potential. Given the importance of N-glycosylation for the functional and structural characteristics of proteins, we studied the purified protein by a mass spectrometry-based glycoproteomic approach able to identify the structure, micro-heterogeneity and attachment site of the bound N-glycan(s), and to provide extensive coverage of the protein sequence. The peptide/N-glycopeptide mixtures generated by enzymatic digestion (with or without N-deglycosylation) were analyzed by high-resolution accurate mass liquid chromatography–multi-stage mass spectrometry. The four main micro-heterogeneous variants of the single N-glycan bound to γ-conglutin were identified as Man2(Xyl) (Fuc) GlcNAc2, Man3(Xyl) (Fuc) GlcNAc2, GlcNAcMan3(Xyl) (Fuc) GlcNAc2 and GlcNAc 2Man3(Xyl) (Fuc) GlcNAc2. These carry both core β1,2-xylose and core α1-3-fucose (well known Cross-Reactive Carbohydrate Determinants), but corresponding fucose-free variants were also identified as minor components. The N-glycan was proven to reside on Asn131, one of the two potential N-glycosylation sites. The extensive coverage of the γ-conglutin amino acid sequence suggested three alternative N-termini of the small subunit, that were later confirmed by direct-infusion Orbitrap mass spectrometry analysis of the intact subunit. PMID:24069245

  4. Relationship between vessel diameter and depth measurements within the limbus using ultra-high resolution optical coherence tomography.

    Science.gov (United States)

    Alabi, Emmanuel; Hutchings, Natalie; Bizheva, Kostadinka; Simpson, Trefford

    2017-06-16

    To establish a relationship between the diameter and depth position of vessels in the superior and inferior corneo-scleral limbus using ultra-high resolution optical coherence tomography (UHR-OCT). Volumetric OCT images of the superior and inferior limbus were acquired from 14 healthy subjects with a research-grade UHR-OCT system. Differences in vessel diameter and depth between superior and inferior limbus were analyzed using repeated measured ANOVA in SPSS and R. The mean (± SD) superior and inferior diameters were 29±18μm and 24±18μm respectively, and the mean (± SD) superior and inferior depths were 177±109μm and 207±132μm respectively. The superior limbal vessels were larger than the inferior ones (RM-ANOVA, p=0.004), and the inferior limbal vessels were deeper than the superior vessels (RM-ANOVA, p=0.041). There was a positive linear association between limbal vessel depth and size within the superior and inferior limbus with Pearson correlation coefficients of 0.803 and 0.754, respectively. This study demonstrated that the UHR-OCT was capable of imaging morphometric characteristics such as the size and depth of vessels in the limbus. The results of this study suggest a difference in the size and depth of vessels across different positions of the limbus, which may be indicative of adaptations to chronic hypoxia caused by the covering of the superior limbus by the upper eyelid. UHR-OCT may be a useful tool to evaluate the effect of contact lenses on the microvascular properties within the limbus. Copyright © 2017 Spanish General Council of Optometry. All rights reserved.

  5. Testing peatland water-table depth transfer functions using high-resolution hydrological monitoring data

    Science.gov (United States)

    Swindles, Graeme T.; Holden, Joseph; Raby, Cassandra L.; Turner, T. Edward; Blundell, Antony; Charman, Dan J.; Menberu, Meseret Walle; Kløve, Bjørn

    2015-07-01

    Transfer functions are now commonly used to reconstruct past environmental variability from palaeoecological data. However, such approaches need to be critically appraised. Testate amoeba-based transfer functions are an established method for the quantitative reconstruction of past water-table variations in peatlands, and have been applied to research questions in palaeoclimatology, peatland ecohydrology and archaeology. We analysed automatically-logged peatland water-table data from dipwells located in England, Wales and Finland and a suite of three year, one year and summer water-table statistics were calculated from each location. Surface moss samples were extracted from beside each dipwell and the testate amoebae community composition was determined. Two published transfer functions were applied to the testate-amoeba data for prediction of water-table depth (England and Europe). Our results show that estimated water-table depths based on the testate amoeba community reflect directional changes, but that they are poor representations of the real mean or median water-table magnitudes for the study sites. We suggest that although testate amoeba-based reconstructions can be used to identify past shifts in peat hydrology, they cannot currently be used to establish precise hydrological baselines such as those needed to inform management and restoration of peatlands. One approach to avoid confusion with contemporary water-table determinations is to use residuals or standardised values for peatland water-table reconstructions. We contend that our test of transfer functions against independent instrumental data sets may be more powerful than relying on statistical testing alone.

  6. High Resolution Aerosol Optical Depth Mapping of Beijing Using LANSAT8 Imagery

    Science.gov (United States)

    Li, Yan; Liu, Yuanliang; Wu, Jianliang

    2016-06-01

    Aerosol Optical Depth (AOD) is one of the most important parameters in the atmospheric correction of remote sensing images. We present a new method of per pixel AOD retrieval using the imagery of Landsat8. It is based on Second Simulation of the Satellite Signal in the Solar Spectrum (6S). General dark target method takes dense vegetation pixels as dark targets and derives their 550nm AODs directly from the LUT, and interpolates the AODs of other pixels according to spatial neighbourhood using those of dark target pixels. This method will down estimate the AOD levels for urban areas. We propose an innovative method to retrieval the AODs using multiple temporal data. For a pixel which has nothing change between the associated time, there must exists an intersection of surface albedo. When there are enough data to find the intersection it ought to be a value that meet the error tolerance. In this paper, we present an example of using three temporal Landsat ETM+ image to retrieve AOD taking Beijing as the testing area. The result is compared to the commonly employed dark target algorithm to show the effectiveness of the methods.

  7. Experimental validation of a 2D overland flow model using high resolution water depth and velocity data

    Science.gov (United States)

    Cea, L.; Legout, C.; Darboux, F.; Esteves, M.; Nord, G.

    2014-05-01

    This paper presents a validation of a two-dimensional overland flow model using empirical laboratory data. Unlike previous publications in which model performance is evaluated as the ability to predict an outlet hydrograph, we use high resolution 2D water depth and velocity data to analyze to what degree the model is able to reproduce the spatial distribution of these variables. Several overland flow conditions over two impervious surfaces of the order of one square meter with different micro and macro-roughness characteristics are studied. The first surface is a simplified representation of a sinusoidal terrain with three crests and furrows, while the second one is a mould of a real agricultural seedbed terrain. We analyze four different bed friction parameterizations and we show that the performance of formulations which consider the transition between laminar, smooth turbulent and rough turbulent flow do not improve the results obtained with Manning or Keulegan formulas for rough turbulent flow. The simulations performed show that using Keulegan formula with a physically-based definition of the bed roughness coefficient, a two-dimensional shallow water model is able to reproduce satisfactorily the flow hydrodynamics. It is shown that, even if the resolution of the topography data and numerical mesh are high enough to include all the small scale features of the bed surface, the roughness coefficient must account for the macro-roughness characteristics of the terrain in order to correctly reproduce the flow hydrodynamics.

  8. Using high resolution data to reveal depth-dependent mechanisms that drive land subsidence: The Venice coast, Italy

    Science.gov (United States)

    Tosi, L.; Teatini, P.; Carbognin, L.; Brancolini, G.

    2009-09-01

    Recent research has provided a high-resolution map that depicts the effect of land subsidence on the Venice coastal plain of Italy. The map, which covers the decade of 1992 to 2002, was obtained by an innovative "Subsidence Integrated Monitoring System" (SIMS), which efficiently merges the different displacement measurements obtained by high precision-leveling, differential and continuous Global Positing System data (GPS), and Synthetic Aperture Radar (SAR)-based interferometry. The displacement rates exhibit significant spatial variability, ranging from a slight 1 to 2 mm/yr uplift, to a serious subsidence of more than 10 mm/yr. This paper aims to describe the many natural and anthropogenic mechanisms that drive the pattern of the ground displacement. The movement sources are presented based on their depth of occurrence. Deep causes act at depths generally greater than 400 m below m.s.l. (mean sea level), and are recognizable in the movement of the pre-Quaternary basement. Medium causes act at depths between 400 and 50 m below m.s.l., and include geological features, such as a major presence of compressible clay layers in the southern and northern portions of the study area and groundwater withdrawals, mainly in the north-eastern coastland and western mainland. Shallow causes, i.e. those occurring from a depth of 50 m up to the ground surface, are related to the architecture and geomechanical properties of the Pleistocene and Holocene deposits, which are more thick and compressible approaching the littoral belt; geochemical compaction, due to the increasing salt concentration in the clayey sediments; and oxidation of the outcropping organic soils drained by land reclamation. These two latter factors primarily involve the southern portion of the Venice coast. The building loads in newly developed areas also cause local compaction of shallow deposits. We conclude that the consolidation of Holocene deposits and anthropogenic activities (groundwater withdrawal, land

  9. Thin film MRI-high resolution depth imaging with a local surface coil and spin echo SPI.

    Science.gov (United States)

    Ouriadov, Alexei V; MacGregor, Rodney P; Balcom, Bruce J

    2004-07-01

    A multiple echo, single point imaging technique, employing a local surface coil probe, is presented for examination of thin film samples. Depth images with a nominal resolution of 5 microm were acquired with acquisition times on the order of 10 min. The method may be used to observe dynamic phenomenon such as polymerization, wetting, and drying in thin film samples. It is readily adapted to spatially resolved diffusion coefficient and T2 relaxation time mapping.

  10. High-resolution monitoring of the hole depth during ultrafast laser ablation drilling by diode laser self-mixing interferometry.

    Science.gov (United States)

    Mezzapesa, Francesco P; Ancona, Antonio; Sibillano, Teresa; De Lucia, Francesco; Dabbicco, Maurizio; Lugarà, Pietro Mario; Scamarcio, Gaetano

    2011-03-15

    We demonstrate that diode laser self-mixing interferometry can be exploited to instantaneously measure the ablation front displacement and the laser ablation rate during ultrafast microdrilling of metals. The proof of concept was obtained using a 50-μm-thick stainless steel plate as the target, a 120 ps/110 kHz microchip fiber laser as the machining source, and an 823 nm diode laser with an integrated photodiode as the probe. The time dependence of the hole penetration depth was measured with a 0.41 µm resolution.

  11. Breaking the Crowther limit: Combining depth-sectioning and tilt tomography for high-resolution, wide-field 3D reconstructions

    Energy Technology Data Exchange (ETDEWEB)

    Hovden, Robert, E-mail: rmh244@cornell.edu [School of Applied and Engineering Physics and Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853 (United States); Ercius, Peter [National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Jiang, Yi [Department of Physics, Cornell University, Ithaca, NY 14853 (United States); Wang, Deli; Yu, Yingchao; Abruña, Héctor D. [Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853 (United States); Elser, Veit [Department of Physics, Cornell University, Ithaca, NY 14853 (United States); Muller, David A. [School of Applied and Engineering Physics and Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853 (United States)

    2014-05-01

    To date, high-resolution (<1 nm) imaging of extended objects in three-dimensions (3D) has not been possible. A restriction known as the Crowther criterion forces a tradeoff between object size and resolution for 3D reconstructions by tomography. Further, the sub-Angstrom resolution of aberration-corrected electron microscopes is accompanied by a greatly diminished depth of field, causing regions of larger specimens (>6 nm) to appear blurred or missing. Here we demonstrate a three-dimensional imaging method that overcomes both these limits by combining through-focal depth sectioning and traditional tilt-series tomography to reconstruct extended objects, with high-resolution, in all three dimensions. The large convergence angle in aberration corrected instruments now becomes a benefit and not a hindrance to higher quality reconstructions. A through-focal reconstruction over a 390 nm 3D carbon support containing over 100 dealloyed and nanoporous PtCu catalyst particles revealed with sub-nanometer detail the extensive and connected interior pore structure that is created by the dealloying instability. - Highlights: • Develop tomography technique for high-resolution and large field of view. • We combine depth sectioning with traditional tilt tomography. • Through-focal tomography reduces tilts and improves resolution. • Through-focal tomography overcomes the fundamental Crowther limit. • Aberration-corrected becomes a benefit and not a hindrance for tomography.

  12. Soil depth map definition on a terraced slope for a following distributed, high resolution, numerical modelling analysis

    Science.gov (United States)

    Camera, C.; Apuani, T.; Mele, M.; Kuriakose, S. L.; Giudici, M.

    2012-04-01

    The soil thickness represents a key data for every environmental analysis involving soil, but its determination is not always simple. In this particular case, the study area is represented by a small terraced slope (0.6 km2) of Valtellina (Northern Italy), and the soil depth map is necessary for a coupled hydrogeological-stability analysis in a raster environment. During this work geometrical/morphological and geostatistical interpolation techniques were tested to obtain a satisfying soil depth map. At the end, the final product has been validated with geo-electrical resistivity inverse models. In this particular context, the presence of dry-stone retaining walls is of primary importance, since they have an influence on the morphology of the entire area as well as on the physical processes of water infiltration and slope stability. In order to consider the dry-stone walls in the analysis, it is necessary to have base maps with an adequate resolution (cells 1 m x 1 m). Assuming that the walls might be founded on bedrock or in its proximity, it was decided to use the heights of walls and the distribution of rock outcrops as soil depth input data. It was impossible to obtain direct measures with the knocking pole method, being pebbles frequently presents in the backfill soil . Except zero depth values, 682 measures were performed. The initial data set was divided into two subsets in order to use one as training points (76 % of the total) and the second as test points (24 %). Various techniques were tested, from linear multiple regressions with environmental predictors, to ordinary kriging, regression kriging with the same environmental variables, and Gaussian stochastic simulations. At the end, the best result was obtained with co-kriging, using a soil depth class map drawn from the field measures as co-variable. The result is a little bit guided but it was the only solution to obtain a map that partially takes into account the morphology of the slope. To verify the

  13. Optimization of the depth resolution for deuterium depth profiling up to large depths

    Science.gov (United States)

    Wielunska, B.; Mayer, M.; Schwarz-Selinger, T.

    2016-11-01

    The depth resolution of deuterium depth profiling by the nuclear reaction D(3He,p)α is studied theoretically and experimentally. General kinematic considerations are presented which show that the depth resolution for deuterium depth profiling using the nuclear reaction D(3He,p)α is best at reaction angles of 0° and 180° at all incident energies below 9 MeV and for all depths and materials. In order to confirm this theoretical prediction the depth resolution was determined experimentally with a conventional detector at 135° and an annular detector at 175.9°. Deuterium containing thin films buried under different metal cover layers of aluminum, molybdenum and tungsten with thicknesses in the range of 0.5-11 μm served as samples. For all materials and depths an improvement of the depth resolution with the detector at 175.9° is achieved. For tungsten as cover layer a better depth resolution up to a factor of 18 was determined. Good agreement between the experimental results and the simulations for the depth resolution is demonstrated.

  14. An in situ method for the high resolution mapping of (137)Cs and estimation of vertical depth penetration in a highly contaminated environment.

    Science.gov (United States)

    Varley, Adam; Tyler, Andrew; Dowdall, Mark; Bondar, Yuri; Zabrotski, Viachaslau

    2017-12-15

    The Chernobyl nuclear power plant meltdown has to date been the single largest release of radioactivity into the environment. As a result, radioactive contamination that poses a significant threat to human health still persists across much of Europe with the highest concentrations associated with Belarus, Ukraine, and western Russia. Of the radionuclides still prevalent with these territories (137)Cs presents one of the most problematic remediation challenges. Principally, this is due to the localised spatial and vertical heterogeneity of contamination within the soil (~10's of meters), thus making it difficult to accurately characterise through conventional measurement techniques such as static in situ gamma-ray spectrometry or soil cores. Here, a practical solution has been explored, which utilises a large number of short-count time spectral measurements made using relatively inexpensive, lightweight, scintillators (sodium iodide and lanthanum bromide). This approach offers the added advantage of being able to estimate activity and burial depth of (137)Cs contamination in much higher spatial resolution compared to traditional approaches. During the course of this work, detectors were calibrated using the Monte Carlo Simulations and depth distribution was estimated using the peak-to-valley ratio. Activity and depth estimates were then compared to five reference sites characterised using soil cores. Estimates were in good agreement with the reference sites, differences of ~25% and ~50% in total inventory were found for the three higher and two lower activity sites, respectively. It was concluded that slightly longer count times would be required for the lower activity (<1MBqm(-2)) sites. Modelling and reference site results suggest little advantage would be gained through the use of the substantially more expensive lanthanum bromide detector over the sodium iodide detector. Finally, the potential of the approach was demonstrated by mapping one of the sites and its

  15. Structural-depth analysis of the Yola Arm of the Upper Benue Trough of Nigeria using high resolution aeromagnetic data

    Science.gov (United States)

    Ogunmola, J. K.; Ayolabi, E. A.; Olobaniyi, S. B.

    2016-12-01

    The Yola Arm is the east-west trending part of the Upper Benue Trough made up of Cretaceous sediments that are Albian to Maastrichtian in age. This work involves interpreting satellite imagery and aeromagnetic data to map out structures within the basin and estimate the depth to the magnetic basement which could be an aid to further exploratory work in the basin. The SPOT 5 imagery covering the basin was processed and interpreted and lineaments extracted from it. The digital elevation model (DEM) of the area was also used to extract the drainage pattern of the area and as an aid in mapping the lineaments that are visible on the surface. The geomagnetic field of the earth was removed from the aeromagnetic data using the IGRF-12 model. The vertical derivative (VDR) enhanced the high frequency and short wavelength components of the data which could be volcanics. The source parameter imaging (SPI) technique which works well at all magnetic latitudes and the spectral analysis were applied to the data to estimate the sediment thickness within the basin. A low pass filter with a cut-off wavelength of 1000 m was applied to the data to remove the high frequency short wavelength component of the data after which the tilt derivative (TDR) was computed to enhance anomalies that may be faults on the underlying basement. The lineaments from the SPOT 5 data show a predominant NNE-SSW, NE-SW followed by the NNW-SSE with a few N-S and E-W trends and the TDR of the aeromagnetic data show a predominantly NE-SW trend which is the predominant trend in the Benue Trough while a few strike in the N-S,NW-SE, and WNW-ESE direction. This suggests that the basin was subjected to several stress regimes. Differential uplift of the basement fault blocks may have given rise to drape folds observed in the overlying sediments. The depths to the magnetic basement range from about 1 km to about 4.3 km with the deepest part in the eastern part of the Basin. The depth analysis indicates that the

  16. Higher resolution stimulus facilitates depth perception: MT+ plays a significant role in monocular depth perception.

    Science.gov (United States)

    Tsushima, Yoshiaki; Komine, Kazuteru; Sawahata, Yasuhito; Hiruma, Nobuyuki

    2014-10-20

    Today, we human beings are facing with high-quality virtual world of a completely new nature. For example, we have a digital display consisting of a high enough resolution that we cannot distinguish from the real world. However, little is known how such high-quality representation contributes to the sense of realness, especially to depth perception. What is the neural mechanism of processing such fine but virtual representation? Here, we psychophysically and physiologically examined the relationship between stimulus resolution and depth perception, with using luminance-contrast (shading) as a monocular depth cue. As a result, we found that a higher resolution stimulus facilitates depth perception even when the stimulus resolution difference is undetectable. This finding is against the traditional cognitive hierarchy of visual information processing that visual input is processed continuously in a bottom-up cascade of cortical regions that analyze increasingly complex information such as depth information. In addition, functional magnetic resonance imaging (fMRI) results reveal that the human middle temporal (MT+) plays a significant role in monocular depth perception. These results might provide us with not only the new insight of our neural mechanism of depth perception but also the future progress of our neural system accompanied by state-of- the-art technologies.

  17. A PET detector module with monolithic crystal, single end readout, SiPM array and high depth-of-interaction resolution

    Science.gov (United States)

    Zhang, H.; Zhou, R.; Yang, C.

    2016-08-01

    Depth of interaction (DOI) technology can improve the spatial resolution of nuclear medicine imaging system which uses scintillation detectors such as Positron Emission Tomography (PET). In this paper, a prototype detector module with DOI capability is established to make complementary characteristic tests on an existing method and to improve the experimental performance using the same method. We investigate the gamma incident surface and incident angle effects on the positioning method with our model in simulations and evaluate its 3-D positioning results in experiment. It shows that the positioning results are highly affected by the gamma incident surface and incident angle. The 137Cs energy resolution is 12.1% and the DOI resolution is estimated at 2.26 mm in average by our detector in experiment.

  18. High-resolution Time-Of-Flight PET with Depth-Of-Interaction becomes feasible: a proof of principle

    CERN Document Server

    Cosentino, Luigi; Pappalardo, Alfio; Garibaldi, Franco

    2012-01-01

    In this paper we prove that the choice of a suitable treatment of the scintillator surfaces, along with suitable photodetectors electronics and specific algorithms for raw data analysis, allow to achieve an optimal tradeoff between energy, time and DOI resolution, thus strongly supporting the feasibility of a prostate TOF- PET probe, MRI compatible, with the required features and performance. In numbers this means a detector element of 1.5mm x 1.5mm x 10mm, achieving at the same time energy resolution around 11.5%, time-of- flight resolution around 150 ps and DOI resolution even below 1 mm. We stress that such a time resolution allows to increase significantly the Noise Equivalent Counting Rate, and consequently improve the image quality and the lesion detection capability. These individual values correspond to the best obtained so far by other groups, but we got all of them simultaneously. In our opinion this proof of principle paves the way to the feasibility of a TOF-PET MRI compatible probe with unprecede...

  19. Toward improved prediction of the bedrock depth underneath hillslopes: Bayesian inference of the bottom-up control hypothesis using high-resolution topographic data

    Science.gov (United States)

    Gomes, Guilherme J. C.; Vrugt, Jasper A.; Vargas, Eurípedes A.

    2016-04-01

    The depth to bedrock controls a myriad of processes by influencing subsurface flow paths, erosion rates, soil moisture, and water uptake by plant roots. As hillslope interiors are very difficult and costly to illuminate and access, the topography of the bedrock surface is largely unknown. This essay is concerned with the prediction of spatial patterns in the depth to bedrock (DTB) using high-resolution topographic data, numerical modeling, and Bayesian analysis. Our DTB model builds on the bottom-up control on fresh-bedrock topography hypothesis of Rempe and Dietrich (2014) and includes a mass movement and bedrock-valley morphology term to extent the usefulness and general applicability of the model. We reconcile the DTB model with field observations using Bayesian analysis with the DREAM algorithm. We investigate explicitly the benefits of using spatially distributed parameter values to account implicitly, and in a relatively simple way, for rock mass heterogeneities that are very difficult, if not impossible, to characterize adequately in the field. We illustrate our method using an artificial data set of bedrock depth observations and then evaluate our DTB model with real-world data collected at the Papagaio river basin in Rio de Janeiro, Brazil. Our results demonstrate that the DTB model predicts accurately the observed bedrock depth data. The posterior mean DTB simulation is shown to be in good agreement with the measured data. The posterior prediction uncertainty of the DTB model can be propagated forward through hydromechanical models to derive probabilistic estimates of factors of safety.

  20. A New Hybrid Spatio-temporal Model for Estimating Daily Multi-year PM2.5 Concentrations Across Northeastern USA Using High Resolution Aerosol Optical Depth Data

    Science.gov (United States)

    Kloog, Itai; Chudnovsky, Alexandra A.; Just, Allan C.; Nordio, Francesco; Koutrakis, Petros; Coull, Brent A.; Lyapustin, Alexei; Wang, Yujie; Schwartz, Joel

    2014-01-01

    The use of satellite-based aerosol optical depth (AOD) to estimate fine particulate matter PM(sub 2.5) for epidemiology studies has increased substantially over the past few years. These recent studies often report moderate predictive power, which can generate downward bias in effect estimates. In addition, AOD measurements have only moderate spatial resolution, and have substantial missing data. We make use of recent advances in MODIS satellite data processing algorithms (Multi-Angle Implementation of Atmospheric Correction (MAIAC), which allow us to use 1 km (versus currently available 10 km) resolution AOD data.We developed and cross validated models to predict daily PM(sub 2.5) at a 1X 1 km resolution across the northeastern USA (New England, New York and New Jersey) for the years 2003-2011, allowing us to better differentiate daily and long term exposure between urban, suburban, and rural areas. Additionally, we developed an approach that allows us to generate daily high-resolution 200 m localized predictions representing deviations from the area 1 X 1 km grid predictions. We used mixed models regressing PM(sub 2.5) measurements against day-specific random intercepts, and fixed and random AOD and temperature slopes. We then use generalized additive mixed models with spatial smoothing to generate grid cell predictions when AOD was missing. Finally, to get 200 m localized predictions, we regressed the residuals from the final model for each monitor against the local spatial and temporal variables at each monitoring site. Our model performance was excellent (mean out-of-sample R(sup 2) = 0.88). The spatial and temporal components of the out-of-sample results also presented very good fits to the withheld data (R(sup 2) = 0.87, R(sup)2 = 0.87). In addition, our results revealed very little bias in the predicted concentrations (Slope of predictions versus withheld observations = 0.99). Our daily model results show high predictive accuracy at high spatial resolutions

  1. Improved mapping of flood extent and flood depth using space based SAR data in combination with very high resolution digital elevation data

    Science.gov (United States)

    Zwenzner, H.

    2009-04-01

    Due to their capability to present a synoptic view of the spatial extent of floods, remote sensing technology, and especially synthetic aperture radar (SAR) systems, have been successfully applied for flood mapping and monitoring applications during the past decades. However, the quality and accuracy of the flood masks and derived flood parameters highly depend on the geometric precision of the satellite data as well as on the classification accuracy of the derived water mask. The incorporation of high resolution elevation data from LiDAR measurements for example can help to improve the plausibility and reliability of the flood masks. On the basis of the improved flood masks more sophisticated parameters such as inundation depth can be derived. A cross section approach is presented that allows the dynamic fitting of the position of the flood mask profiles according to the underlying terrain information from the DEM. The method was tested on the River Severn (UK), for which TerraSAR-X stripmap data with 3 meters pixel spacing acquired during the 2007 summer flood are used in combination with a LiDAR DEM of 2 meters pixel size. Initially, the cross sections were established perpendicularly to the major flow direction along the 7 km reach of the River Severn. The profile spacing was set to 50 meters. For each cross section profile the water level was extracted at the position of the left and the right border of the flood. On the basis of the longitudinal profile, which contains the sequence of all cross section profiles, a moving average was applied on the water levels in order to get a smooth water surface and to reduce single outliers. However, in case of obvious irregularities in the water levels illustrated in the longitudinal profile and caused by misclassification the respective cross-sections had to be excluded from further analysis. It must be taken into account, that the approach is mainly affected by possible classification errors in the dimension of more

  2. Undetectable Changes in Image Resolution of Luminance-Contrast Gradients Affect Depth Perception.

    Science.gov (United States)

    Tsushima, Yoshiaki; Komine, Kazuteru; Sawahata, Yasuhito; Morita, Toshiya

    2016-01-01

    A great number of studies have suggested a variety of ways to get depth information from two dimensional images such as binocular disparity, shape-from-shading, size gradient/foreshortening, aerial perspective, and so on. Are there any other new factors affecting depth perception? A recent psychophysical study has investigated the correlation between image resolution and depth sensation of Cylinder images (A rectangle contains gradual luminance-contrast changes.). It was reported that higher resolution images facilitate depth perception. However, it is still not clear whether or not the finding generalizes to other kinds of visual stimuli, because there are more appropriate visual stimuli for exploration of depth perception of luminance-contrast changes, such as Gabor patch. Here, we further examined the relationship between image resolution and depth perception by conducting a series of psychophysical experiments with not only Cylinders but also Gabor patches having smoother luminance-contrast gradients. As a result, higher resolution images produced stronger depth sensation with both images. This finding suggests that image resolution affects depth perception of simple luminance-contrast differences (Gabor patch) as well as shape-from-shading (Cylinder). In addition, this phenomenon was found even when the resolution difference was undetectable. This indicates the existence of consciously available and unavailable information in our visual system. These findings further support the view that image resolution is a cue for depth perception that was previously ignored. It partially explains the unparalleled viewing experience of novel high resolution displays.

  3. Glider and satellite high resolution monitoring of a mesoscale eddy in the Algerian basin: effects on the mixed layer depth and biochemistry

    Science.gov (United States)

    Cotroneo, Yuri; Aulicino, Giuseppe; Ruiz, Simón; Pascual, Ananda; Budillon, Giorgio; Fusco, Giannetta; Tintoré, Joaquin

    2016-04-01

    Despite of the extensive bibliography about the circulation of the Mediterranean Sea and its sub-basins, the debate on mesoscale dynamics and its impacts on biochemical processes is still open because of their intrinsic time scales and of the difficulties in sampling. In order to clarify some of these processes, the "Algerian BAsin Circulation Unmanned Survey - ABACUS" project was proposed and realized through access to JERICO Trans National Access (TNA) infrastructures between September and December 2014. In this framework, a deep glider cruise was carried out in the area between Balearic Islands and Algerian coasts to establish an endurance line for monitoring the basin circulation. During the mission, a mesoscale eddy, identified on satellite altimetry maps, was sampled at high-spatial horizontal resolution (4 km) along its main axes and from surface to 1000 m depth. Data were collected by a Slocum glider equipped with a pumped CTD and biochemical sensors that collected about 100 complete casts inside the eddy. In order to describe the structure of the eddy, in situ data were merged with new generation remotely sensed data as daily synoptic sea surface temperature (SST) and chlorophyll concentration (Chl-a) images from MODIS satellites as well as sea surface height and geostrophic velocities from AVISO. From its origin along the Algerian coast in the eastern part of the basin, the eddy propagated to north-west at a mean speed of about 4 km/day with a mean diameter of 112/130 km, a mean elevation of 15.7 cm and clearly distinguished by the surrounding waters thanks to its higher SST and Chl-a values. Temperature and salinity values along the water column confirm the origin of the eddy from the AC showing the presence of recent Atlantic water in the surface layer and Levantine Intermediate Water (LIW) in the deeper layer. Eddy footprint is clearly evident in the multiparametric vertical sections conducted along its main axes. Deepening of temperature, salinity and

  4. High-resolution delineation of chlorinated volatile organic compounds in a dipping, fractured mudstone: Depth- and strata-dependent spatial variability from rock-core sampling.

    Science.gov (United States)

    Goode, Daniel J; Imbrigiotta, Thomas E; Lacombe, Pierre J

    2014-12-15

    Synthesis of rock-core sampling and chlorinated volatile organic compound (CVOC) analysis at five coreholes, with hydraulic and water-quality monitoring and a detailed hydrogeologic framework, was used to characterize the fine-scale distribution of CVOCs in dipping, fractured mudstones of the Lockatong Formation of Triassic age, of the Newark Basin in West Trenton, New Jersey. From these results, a refined conceptual model for more than 55years of migration of CVOCs and depth- and strata-dependent rock-matrix contamination was developed. Industrial use of trichloroethene (TCE) at the former Naval Air Warfare Center (NAWC) from 1953 to 1995 resulted in dense non-aqueous phase liquid (DNAPL) TCE and dissolved TCE and related breakdown products, including other CVOCs, in underlying mudstones. Shallow highly weathered and fractured strata overlie unweathered, gently dipping, fractured strata that become progressively less fractured with depth. The unweathered lithology includes black highly fractured (fissile) carbon-rich strata, gray mildly fractured thinly layered (laminated) strata, and light-gray weakly fractured massive strata. CVOC concentrations in water samples pumped from the shallow weathered and highly fractured strata remain elevated near residual DNAPL TCE, but dilution by uncontaminated recharge, and other natural and engineered attenuation processes, have substantially reduced concentrations along flow paths removed from sources and residual DNAPL. CVOCs also were detected in most rock-core samples in source areas in shallow wells. In many locations, lower aqueous concentrations, compared to rock core concentrations, suggest that CVOCs are presently back-diffusing from the rock matrix. Below the weathered and highly fractured strata, and to depths of at least 50 meters (m), groundwater flow and contaminant transport is primarily in bedding-plane-oriented fractures in thin fissile high-carbon strata, and in fractured, laminated strata of the gently

  5. High-resolution delineation of chlorinated volatile organic compounds in a dipping, fractured mudstone: depth- and strata-dependent spatial variability from rock-core sampling

    Science.gov (United States)

    Goode, Daniel J.; Imbrigiotta, Thomas E.; Lacombe, Pierre J.

    2014-01-01

    Synthesis of rock-core sampling and chlorinated volatile organic compound (CVOC) analysis at five coreholes, with hydraulic and water-quality monitoring and a detailed hydrogeologic framework, was used to characterize the fine-scale distribution of CVOCs in dipping, fractured mudstones of the Lockatong Formation of Triassic age, of the Newark Basin in West Trenton, New Jersey. From these results, a refined conceptual model for more than 55 years of migration of CVOCs and depth- and strata-dependent rock-matrix contamination was developed. Industrial use of trichloroethene (TCE) at the former Naval Air Warfare Center (NAWC) from 1953 to 1995 resulted in dense non-aqueous phase liquid (DNAPL) TCE and dissolved TCE and related breakdown products, including other CVOCs, in underlying mudstones. Shallow highly weathered and fractured strata overlie unweathered, gently dipping, fractured strata that become progressively less fractured with depth. The unweathered lithology includes black highly fractured (fissile) carbon-rich strata, gray mildly fractured thinly layered (laminated) strata, and light-gray weakly fractured massive strata. CVOC concentrations in water samples pumped from the shallow weathered and highly fractured strata remain elevated near residual DNAPL TCE, but dilution by uncontaminated recharge, and other natural and engineered attenuation processes, have substantially reduced concentrations along flow paths removed from sources and residual DNAPL. CVOCs also were detected in most rock-core samples in source areas in shallow wells. In many locations, lower aqueous concentrations, compared to rock core concentrations, suggest that CVOCs are presently back-diffusing from the rock matrix. Below the weathered and highly fractured strata, and to depths of at least 50 meters (m), groundwater flow and contaminant transport is primarily in bedding-plane-oriented fractures in thin fissile high-carbon strata, and in fractured, laminated strata of the gently

  6. Sampling Depths, Depth Shifts, and Depth Resolutions for Bi(n)(+) Ion Analysis in Argon Gas Cluster Depth Profiles.

    Science.gov (United States)

    Havelund, R; Seah, M P; Gilmore, I S

    2016-03-10

    Gas cluster sputter depth profiling is increasingly used for the spatially resolved chemical analysis and imaging of organic materials. Here, a study is reported of the sampling depth in secondary ion mass spectrometry depth profiling. It is shown that effects of the sampling depth leads to apparent shifts in depth profiles of Irganox 3114 delta layers in Irganox 1010 sputtered, in the dual beam mode, using 5 keV Ar₂₀₀₀⁺ ions and analyzed with Bi(q+), Bi₃(q+) and Bi₅(q+) ions (q = 1 or 2) with energies between 13 and 50 keV. The profiles show sharp delta layers, broadened from their intrinsic 1 nm thickness to full widths at half-maxima (fwhm's) of 8-12 nm. For different secondary ions, the centroids of the measured delta layers are shifted deeper or shallower by up to 3 nm from the position measured for the large, 564.36 Da (C₃₃H₄₆N₃O₅⁻) characteristic ion for Irganox 3114 used to define a reference position. The shifts are linear with the Bi(n)(q+) beam energy and are greatest for Bi₃(q+), slightly less for Bi₅(q+) with its wider or less deep craters, and significantly less for Bi(q+) where the sputtering yield is very low and the primary ion penetrates more deeply. The shifts increase the fwhm’s of the delta layers in a manner consistent with a linearly falling generation and escape depth distribution function (GEDDF) for the emitted secondary ions, relevant for a paraboloid shaped crater. The total depth of this GEDDF is 3.7 times the delta layer shifts. The greatest effect is for the peaks with the greatest shifts, i.e. Bi₃(q+) at the highest energy, and for the smaller fragments. It is recommended that low energies be used for the analysis beam and that carefully selected, large, secondary ion fragments are used for measuring depth distributions, or that the analysis be made in the single beam mode using the sputtering Ar cluster ions also for analysis.

  7. High resolution depth distribution of Bacteria, Archaea, methanotrophs, and methanogens in the bulk and rhizosphere soils of a flooded rice paddy

    Directory of Open Access Journals (Sweden)

    Hyo Jung eLee

    2015-06-01

    Full Text Available The communities and abundances of methanotrophs and methanogens, along with the oxygen, methane, and total organic carbon (TOC concentrations, were investigated along a depth gradient in a flooded rice paddy. Broad patterns in vertical profiles of oxygen, methane, TOC, and microbial abundances were similar in the bulk and rhizosphere soils, though methane and TOC concentrations and 16S rRNA gene copies were clearly higher in the rhizosphere soil than in the bulk soil. Oxygen concentrations decreased sharply to below detection limits at the 8 mm depth. Pyrosequencing of 16S rRNA genes showed that bacterial and archaeal communities varied according to the oxic, oxic-anoxic, and anoxic zones, indicating that oxygen is a determining factor for the distribution of bacterial and archaeal communities. Aerobic methanotrophs were maximally observed near the oxic-anoxic interface, while methane, TOC, and methanogens were highest in the rhizosphere soil at 30–200 mm depth, suggesting that methane is produced mainly from organic carbon derived from rice plants and is metabolized aerobically. The relative abundances of type I methanotrophs such as Methylococcus, Methylomonas, and Methylocaldum decreased more drastically than those of type II methanotrophs (such as Methylocystis and Methylosinus with increasing depth. Methanosaeta and Methanoregula were predominant methanogens at all depths, and the relative abundances of Methanosaeta, Methanoregula, and Methanosphaerula, and GOM_Arc_I increased with increasing depth. Based on contrasts between absolute abundances of methanogens and methanotrophs at depths sampled across rhizosphere and bulk soils (especially millimeter-scale slices at the surface, we have identified populations of methanogens (Methanosaeta, Methanoregula, Methanocella, Methanobacterium, and Methanosphaerula and methanotrophs (Methylosarcina, Methylococcus, Methylosinus, and unclassified Methylocystaceae that are likely physiologically

  8. High Resolution Elevation Contours

    Data.gov (United States)

    Minnesota Department of Natural Resources — This dataset contains contours generated from high resolution data sources such as LiDAR. Generally speaking this data is 2 foot or less contour interval.

  9. Depth map resolution enhancement for 2D/3D imaging system via compressive sensing

    Science.gov (United States)

    Han, Juanjuan; Loffeld, Otmar; Hartmann, Klaus

    2011-08-01

    This paper introduces a novel approach for post-processing of depth map which enhances the depth map resolution in order to achieve visually pleasing 3D models from a new monocular 2D/3D imaging system consists of a Photonic mixer device (PMD) range camera and a standard color camera. The proposed method adopts the revolutionary inversion theory framework called Compressive Sensing (CS). The depth map of low resolution is considered as the result of applying blurring and down-sampling techniques to that of high-resolution. Based on the underlying assumption that the high-resolution depth map is compressible in frequency domain and recent theoretical work on CS, the high-resolution version can be estimated and furthermore reconstructed via solving non-linear optimization problem. And therefore the improved depth map reconstruction provides a useful help to build an improved 3D model of a scene. The experimental results on the real data are presented. In the meanwhile the proposed scheme opens new possibilities to apply CS to a multitude of potential applications on various multimodal data analysis and processing.

  10. Ultra high resolution tomography

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, W.S.

    1994-11-15

    Recent work and results on ultra high resolution three dimensional imaging with soft x-rays will be presented. This work is aimed at determining microscopic three dimensional structure of biological and material specimens. Three dimensional reconstructed images of a microscopic test object will be presented; the reconstruction has a resolution on the order of 1000 A in all three dimensions. Preliminary work with biological samples will also be shown, and the experimental and numerical methods used will be discussed.

  11. High-resolution headlamp

    Science.gov (United States)

    Gut, Carsten; Cristea, Iulia; Neumann, Cornelius

    2016-04-01

    The following article shall describe how human vision by night can be influenced. At first, front lighting systems that are already available on the market will be described, followed by their analysis with respect to the positive effects on traffic safety. Furthermore, how traffic safety by night can be increased since the introduction of high resolution headlamps shall be discussed.

  12. Glider and satellite high resolution monitoring of a mesoscale eddy in the algerian basin: Effects on the mixed layer depth and biochemistry

    Science.gov (United States)

    Cotroneo, Yuri; Aulicino, Giuseppe; Ruiz, Simón; Pascual, Ananda; Budillon, Giorgio; Fusco, Giannetta; Tintoré, Joaqun

    2016-10-01

    Deepening of temperature, salinity and density isolines at the center of the eddy is associated with variations in Chl-a, oxygen concentration and turbidity patterns. In particular, at 50 m depth along the eddy borders, Chl-a values are higher (1.1-5.2 μg/l) in comparison with the eddy center (0.5-0.7 μg/l) with maximum values found in the southeastern sector of the eddy. Calculation of geostrophic velocities along transects and vertical quasi-geostrophic velocities (QG-w) over a regular 5 km grid from the glider data helped to describe the mechanisms and functioning of the eddy. QG-w presents an asymmetric pattern, with relatively strong downwelling in the western part of the eddy and upwelling in the southeastern part. This asymmetry in the vertical velocity pattern, which brings LIW into the euphotic layer as well as advection from the northeastern sector of the eddy, may explain the observed increases in Chl-a values.

  13. Scanning Auger microscopy for high lateral and depth elemental sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, E., E-mail: eugenie.martinez@cea.fr [CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Yadav, P. [CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Bouttemy, M. [Institut Lavoisier de Versailles, 45 av. des Etats-Unis, 78035 Versailles Cedex (France); Renault, O.; Borowik, Ł.; Bertin, F. [CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Etcheberry, A. [Institut Lavoisier de Versailles, 45 av. des Etats-Unis, 78035 Versailles Cedex (France); Chabli, A. [CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France)

    2013-12-15

    Highlights: •SAM performances and limitations are illustrated on real practical cases such as the analysis of nanowires and nanodots. •High spatial elemental resolution is shown with the analysis of reference semiconducting Al{sub 0.7}Ga{sub 0.3}As/GaAs multilayers. •High in-depth elemental resolution is also illustrated. Auger depth profiling with low energy ion beams allows revealing ultra-thin layers (∼1 nm). •Analysis of cross-sectional samples is another effective approach to obtain in-depth elemental information. -- Abstract: Scanning Auger microscopy is currently gaining interest for investigating nanostructures or thin multilayers stacks developed for nanotechnologies. New generation Auger nanoprobes combine high lateral (∼10 nm), energy (0.1%) and depth (∼2 nm) resolutions thus offering the possibility to analyze the elemental composition as well as the chemical state, at the nanometre scale. We report here on the performances and limitations on practical examples from nanotechnology research. The spatial elemental sensitivity is illustrated with the analysis of Al{sub 0.7}Ga{sub 0.3}As/GaAs heterostructures, Si nanowires and SiC nanodots. Regarding the elemental in-depth composition, two effective approaches are presented: low energy depth profiling to reveal ultra-thin layers (∼1 nm) and analysis of cross-sectional samples.

  14. Depth profilometry via multiplexed optical high-coherence interferometry.

    Directory of Open Access Journals (Sweden)

    Farnoud Kazemzadeh

    Full Text Available Depth Profilometry involves the measurement of the depth profile of objects, and has significant potential for various industrial applications that benefit from non-destructive sub-surface profiling such as defect detection, corrosion assessment, and dental assessment to name a few. In this study, we investigate the feasibility of depth profilometry using an Multiplexed Optical High-coherence Interferometry MOHI instrument. The MOHI instrument utilizes the spatial coherence of a laser and the interferometric properties of light to probe the reflectivity as a function of depth of a sample. The axial and lateral resolutions, as well as imaging depth, are decoupled in the MOHI instrument. The MOHI instrument is capable of multiplexing interferometric measurements into 480 one-dimensional interferograms at a location on the sample and is built with axial and lateral resolutions of 40 μm at a maximum imaging depth of 700 μm. Preliminary results, where a piece of sand-blasted aluminum, an NBK7 glass piece, and an optical phantom were successfully probed using the MOHI instrument to produce depth profiles, demonstrate the feasibility of such an instrument for performing depth profilometry.

  15. High Resolution Acoustical Imaging

    Science.gov (United States)

    1989-05-01

    1028 (September 1982). 26 G. Arfken , Mathematical Methods for Physicists (Academic Press, New York, 1971), 2nd printing, pp.662-666. 27 W. R. Hahn...difference in the approach used by the two methods , as noted in the previous paragraph, forming a direct mathematical com- parison may be impossible...examines high resolution methods which use a linear array to locate stationary objects which have scattered the fressure waves. Several;- new methods

  16. High resolution differential thermometer

    Directory of Open Access Journals (Sweden)

    Gotra Z. Yu.

    2009-11-01

    Full Text Available Main schematic solutions of differential thermometers with measurement resolution about 0.001°C are considered. Differential temperature primary transducer realized on a transistor differential circuit in microampere mode. Analytic calculation and schematic mathematic simulation of primary transducer are fulfilled. Signal transducer is realized on a high precision Zero-Drift Single-Supply Rail-to-Rail operation amplifier AD8552 and 24-Bit S-D microconverter ADuC834.

  17. Saturn's rings - high resolution

    Science.gov (United States)

    1981-01-01

    Voyager 2 obtained this high-resolution picture of Saturn's rings Aug. 22, when the spacecraft was 4 million kilometers (2.5 million miles) away. Evident here are the numerous 'spoke' features, in the B-ring; their very sharp, narrow appearance suggests short formation times. Scientists think electromagnetic forces are responsible in some way for these features, but no detailed theory has been worked out. Pictures such as this and analyses of Voyager 2's spoke movies may reveal more clues about the origins of these complex structures. The Voyager project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, Calif.

  18. High Resolution Laboratory Spectroscopy

    CERN Document Server

    Brünken, Sandra

    2016-01-01

    In this short review we will highlight some of the recent advancements in the field of high-resolution laboratory spectroscopy that meet the needs dictated by the advent of highly sensitive and broadband telescopes like ALMA and SOFIA. Among these is the development of broadband techniques for the study of complex organic molecules, like fast scanning conventional absorption spectroscopy based on multiplier chains, chirped pulse instrumentation, or the use of synchrotron facilities. Of similar importance is the extension of the accessible frequency range to THz frequencies, where many light hydrides have their ground state rotational transitions. Another key experimental challenge is the production of sufficiently high number densities of refractory and transient species in the laboratory, where discharges have proven to be efficient sources that can also be coupled to molecular jets. For ionic molecular species sensitive action spectroscopic schemes have recently been developed to overcome some of the limita...

  19. High-resolution intravital microscopy.

    Directory of Open Access Journals (Sweden)

    Volker Andresen

    Full Text Available Cellular communication constitutes a fundamental mechanism of life, for instance by permitting transfer of information through synapses in the nervous system and by leading to activation of cells during the course of immune responses. Monitoring cell-cell interactions within living adult organisms is crucial in order to draw conclusions on their behavior with respect to the fate of cells, tissues and organs. Until now, there is no technology available that enables dynamic imaging deep within the tissue of living adult organisms at sub-cellular resolution, i.e. detection at the level of few protein molecules. Here we present a novel approach called multi-beam striped-illumination which applies for the first time the principle and advantages of structured-illumination, spatial modulation of the excitation pattern, to laser-scanning-microscopy. We use this approach in two-photon-microscopy--the most adequate optical deep-tissue imaging-technique. As compared to standard two-photon-microscopy, it achieves significant contrast enhancement and up to 3-fold improved axial resolution (optical sectioning while photobleaching, photodamage and acquisition speed are similar. Its imaging depth is comparable to multifocal two-photon-microscopy and only slightly less than in standard single-beam two-photon-microscopy. Precisely, our studies within mouse lymph nodes demonstrated 216% improved axial and 23% improved lateral resolutions at a depth of 80 µm below the surface. Thus, we are for the first time able to visualize the dynamic interactions between B cells and immune complex deposits on follicular dendritic cells within germinal centers (GCs of live mice. These interactions play a decisive role in the process of clonal selection, leading to affinity maturation of the humoral immune response. This novel high-resolution intravital microscopy method has a huge potential for numerous applications in neurosciences, immunology, cancer research and

  20. High Time Resolution Astrophysics

    CERN Document Server

    Phelan, Don; Shearer, Andrew

    2008-01-01

    High Time Resolution Astrophysics (HTRA) is an important new window to the universe and a vital tool in understanding a range of phenomena from diverse objects and radiative processes. This importance is demonstrated in this volume with the description of a number of topics in astrophysics, including quantum optics, cataclysmic variables, pulsars, X-ray binaries and stellar pulsations to name a few. Underlining this science foundation, technological developments in both instrumentation and detectors are described. These instruments and detectors combined cover a wide range of timescales and can measure fluxes, spectra and polarisation. These advances make it possible for HTRA to make a big contribution to our understanding of the Universe in the next decade.

  1. Inference of mantle viscosity for depth resolutions of GIA observations

    Science.gov (United States)

    Nakada, Masao; Okuno, Jun'ichi

    2016-11-01

    Inference of the mantle viscosity from observations for glacial isostatic adjustment (GIA) process has usually been conducted through the analyses based on the simple three-layer viscosity model characterized by lithospheric thickness, upper- and lower-mantle viscosities. Here, we examine the viscosity structures for the simple three-layer viscosity model and also for the two-layer lower-mantle viscosity model defined by viscosities of η670,D (670-D km depth) and ηD,2891 (D-2891 km depth) with D-values of 1191, 1691 and 2191 km. The upper-mantle rheological parameters for the two-layer lower-mantle viscosity model are the same as those for the simple three-layer one. For the simple three-layer viscosity model, rate of change of degree-two zonal harmonics of geopotential due to GIA process (GIA-induced J˙2) of -(6.0-6.5) × 10-11 yr-1 provides two permissible viscosity solutions for the lower mantle, (7-20) × 1021 and (5-9) × 1022 Pa s, and the analyses with observational constraints of the J˙2 and Last Glacial Maximum (LGM) sea levels at Barbados and Bonaparte Gulf indicate (5-9) × 1022 Pa s for the lower mantle. However, the analyses for the J˙2 based on the two-layer lower-mantle viscosity model only require a viscosity layer higher than (5-10) × 1021 Pa s for a depth above the core-mantle boundary (CMB), in which the value of (5-10) × 1021 Pa s corresponds to the solution of (7-20) × 1021 Pa s for the simple three-layer one. Moreover, the analyses with the J˙2 and LGM sea level constraints for the two-layer lower-mantle viscosity model indicate two viscosity solutions: η670,1191 > 3 × 1021 and η1191,2891 ˜ (5-10) × 1022 Pa s, and η670,1691 > 1022 and η1691,2891 ˜ (5-10) × 1022 Pa s. The inferred upper-mantle viscosity for such solutions is (1-4) × 1020 Pa s similar to the estimate for the simple three-layer viscosity model. That is, these analyses require a high viscosity layer of (5-10) × 1022 Pa s at least in the deep mantle, and suggest

  2. Improvement of depth resolution of ADF-SCEM by deconvolution: effects of electron energy loss and chromatic aberration on depth resolution.

    Science.gov (United States)

    Zhang, Xiaobin; Takeguchi, Masaki; Hashimoto, Ayako; Mitsuishi, Kazutaka; Tezuka, Meguru; Shimojo, Masayuki

    2012-06-01

    Scanning confocal electron microscopy (SCEM) is a new imaging technique that is capable of depth sectioning with nanometer-scale depth resolution. However, the depth resolution in the optical axis direction (Z) is worse than might be expected on the basis of the vertical electron probe size calculated with the existence of spherical aberration. To investigate the origin of the degradation, the effects of electron energy loss and chromatic aberration on the depth resolution of annular dark-field SCEM were studied through both experiments and computational simulations. The simulation results obtained by taking these two factors into consideration coincided well with those obtained by experiments, which proved that electron energy loss and chromatic aberration cause blurs at the overfocus sides of the Z-direction intensity profiles rather than degrade the depth resolution much. In addition, a deconvolution method using a simulated point spread function, which combined two Gaussian functions, was adopted to process the XZ-slice images obtained both from experiments and simulations. As a result, the blurs induced by energy loss and chromatic aberration were successfully removed, and there was also about 30% improvement in the depth resolution in deconvoluting the experimental XZ-slice image.

  3. High Resolution Formaldehyde Photochemistry

    Science.gov (United States)

    Ernest, C. T.; Bauer, D.; Hynes, A. J.

    2010-12-01

    Formaldehyde (HCHO) is the most abundant and most important organic carbonyl compound in the atmosphere. The sources of formaldehyde are the oxidation of methane, isoprene, acetone, and other volatile organic compounds (VOCs); fossil fuel combustion; and biomass burning. The dominant loss mechanism for formaldehyde is photolysis which occurs via two pathways: (R1) HCHO + hv → HCO + H (R2) HCHO + hv → H2 + CO The first pathway (R1) is referred to as the radical channel, while the second pathway (R2) is referred to as the molecular channel. The products of both pathways play a significant role in atmospheric chemistry. The CO that is produced in the molecular channel undergoes further oxidation to produce CO2. Under atmospheric conditions, the H atom and formyl radical that are produced in the radical channel undergo rapid reactions with O2 to produce the hydroperoxyl radical (HO2) via (R3) and (R4). (R3) HCO + O2 → HO2 + CO (R4) H + O2 → HO2 Thus, for every photon absorbed, the photolysis of formaldehyde can contribute one CO2 molecule to the global greenhouse budget or two HO2 radicals to the tropospheric HOx (OH + HO2) cycle. The HO2 radicals produced during formaldehyde photolysis have also been implicated in the formation of photochemical smog. The HO2 radicals act as radical chain carriers and convert NO to NO2, which ultimately results in the catalytic production of O3. Constraining the yield of HO2 produced via HCHO photolysis is essential for improving tropospheric chemistry models. In this study, both the absorption cross section and the quantum yield of the radical channel (R1) were measured at high resolution over the tropospherically relevant wavelength range 304-330 nm. For the cross section measurements a narrow linewidth Nd:YAG pumped dye laser was used with a multi-pass cell. Partial pressures of HCHO were kept below 0.3 torr. Simultaneous measurement of OH LIF in a flame allowed absolute calibration of the wavelength scale. Pressure

  4. A Computationally Efficient Tool for Assessing the Depth Resolution in Potential-Field Inversion

    DEFF Research Database (Denmark)

    Paoletti, V.; Hansen, Per Christian; Hansen, Mads Friis

    In potential-field inversion problems, it can be dicult to obtain reliable information about the source distribution with respect to depth. Moreover, spatial resolution of the reconstructions decreases with depth, and in fact the more ill-posed the problem - and the more noisy the data - the less...... a computational/visual analysis of how much the depth resolution in a computational potential-field inversion problem can be obtained from the given data. Through synthetic and real data examples we demonstrate that ApproxDRP, when used in combination with a plot of the approximate SVD quantities, may...... successfully show the limitations of depth resolution resulting from noise in the data. This allows a reliable analysis of the retrievable depth information and effectively guides the user in choosing the optimal number of iterations, for a given problem....

  5. Wavelength Shifting Phoswich Detectors for Superior Depth-of-Interaction Resolution

    Energy Technology Data Exchange (ETDEWEB)

    Melcher, Charles L; Eriksson, Lars

    2012-10-25

    In order to simultaneously achieve both high spatial resolution and high sensitivity in small Positron Emission Tomography (PET) systems, scintillation detectors must be long in the radial direction as well as able to provide depth-of-interaction (DOI) information. DOI information is typically provided by constructing detectors from two or more layers of scintillators that are identifiable due to their different decay times. This approach has worked well in tomographs such as the High Resolution Research Tomograph (HRRT, CTI PET Systems, Inc.) in which the emission and excitation bands of the scintillator layers do not overlap each other. However, many potentially important pairs of scintillator crystals exist in which the emission of one crystal is, in fact, absorbed and re-emitted by the second crystal, thus impacting the pulse shape discrimination process used to identify the scintillator layers. These potentially useful pairs of scintillators are unlikely to be implemented in phoswich detectors without a comprehensive understanding of the complex emission that results when the light of one crystal is absorbed by the second crystal and then reemitted. Our objective is to develop a fundamental understanding of the optical phenomena that occur in phoswich detectors and to exploit these phenomena to achieve improved spatial resolution in small high sensitivity PET scanners.

  6. Improvement of depth resolution in XPS analysis of fluorinated layer using C{sub 60} ion sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Nobuta, Takuya, E-mail: takuya_nobuta@gg.nitto.co.jp [Nitto Analytical Techno-Center Co., Ltd., 1-1-2, Shimohozumi, Ibaraki, Osaka 567-8680 (Japan); Ogawa, Toshio [Laboratory for Ecological Polymer Chemistry, Kanazawa Institute of Technology, 7-1, Ohgigaoka, Nonoichi, Ishikawa 921-8501 (Japan)

    2009-12-15

    Depth profile of C{sub 60} ion-used X-ray photoelectron spectroscopy (XPS) was studied on fluorinated organic layers with different thicknesses. We found that the depth resolution decreased, the sputtering rate went down and the surface turned rough as the layer thickness increased. This is because carbon-rich layer was formed on the surface by cross-linking reaction of the polymer and/or accumulation of degraded C{sub 60} through continuous sputtering. Surprisingly, the high sputtering rate drastically improved the resolution of the analysis. The rate over 48.7 nm/min did not show any deterioration on the depth resolution, the sputtering rate and surface smoothness.

  7. Two-photon instant structured illumination microscopy improves the depth penetration of super-resolution imaging in thick scattering samples.

    Science.gov (United States)

    Winter, Peter W; York, Andrew G; Nogare, Damian Dalle; Ingaramo, Maria; Christensen, Ryan; Chitnis, Ajay; Patterson, George H; Shroff, Hari

    2014-09-20

    Fluorescence imaging methods that achieve spatial resolution beyond the diffraction limit (super-resolution) are of great interest in biology. We describe a super-resolution method that combines two-photon excitation with structured illumination microscopy (SIM), enabling three-dimensional interrogation of live organisms with ~150 nm lateral and ~400 nm axial resolution, at frame rates of ~1 Hz. By performing optical rather than digital processing operations to improve resolution, our microscope permits super-resolution imaging with no additional cost in acquisition time or phototoxicity relative to the point-scanning two-photon microscope upon which it is based. Our method provides better depth penetration and inherent optical sectioning than all previously reported super-resolution SIM implementations, enabling super-resolution imaging at depths exceeding 100 μm from the coverslip surface. The capability of our system for interrogating thick live specimens at high resolution is demonstrated by imaging whole nematode embryos and larvae, and tissues and organs inside zebrafish embryos.

  8. High resolution digital delay timer

    Science.gov (United States)

    Martin, Albert D.

    1988-01-01

    Method and apparatus are provided for generating an output pulse following a trigger pulse at a time delay interval preset with a resolution which is high relative to a low resolution available from supplied clock pulses. A first lumped constant delay (20) provides a first output signal (24) at predetermined interpolation intervals corresponding to the desired high resolution time interval. Latching circuits (26, 28) latch the high resolution data (24) to form a first synchronizing data set (60). A selected time interval has been preset to internal counters (142, 146, 154) and corrected for circuit propagation delay times having the same order of magnitude as the desired high resolution. Internal system clock pulses (32, 34) count down the counters to generate an internal pulse delayed by an interval which is functionally related to the preset time interval. A second LCD (184) corrects the internal signal with the high resolution time delay. A second internal pulse is then applied to a third LCD (74) to generate a second set of synchronizing data (76) which is complementary with the first set of synchronizing data (60) for presentation to logic circuits (64). The logic circuits (64) further delay the internal output signal (72) to obtain a proper phase relationship of an output signal (80) with the internal pulses (32, 34). The final delayed output signal (80) thereafter enables the output pulse generator (82) to produce the desired output pulse (84) at the preset time delay interval following input of the trigger pulse (10, 12).

  9. Depth

    NARCIS (Netherlands)

    Koenderink, J.J.; Van Doorn, A.J.; Wagemans, J.

    2011-01-01

    Depth is the feeling of remoteness, or separateness, that accompanies awareness in human modalities like vision and audition. In specific cases depths can be graded on an ordinal scale, or even measured quantitatively on an interval scale. In the case of pictorial vision this is complicated by the f

  10. Depth

    NARCIS (Netherlands)

    Koenderink, J.J.; Van Doorn, A.J.; Wagemans, J.

    2011-01-01

    Depth is the feeling of remoteness, or separateness, that accompanies awareness in human modalities like vision and audition. In specific cases depths can be graded on an ordinal scale, or even measured quantitatively on an interval scale. In the case of pictorial vision this is complicated by the

  11. Depth resolution, angle dependence, and the sputtering yield of Irganox 1010 by coronene primary ions.

    Science.gov (United States)

    Seah, Martin P; Spencer, Steve J; Shard, Alex G

    2013-10-01

    A study is reported of the depth resolution and angle dependence of sputtering yields using the reference organic material, Irganox 1010, for a new coronene(+) depth profiling ion source at 8 and 16 keV beam energies. This source provides excellent depth profiles as shown by 8.5 nm marker layers of Irganox 3114. Damage occurs but may be ignored for angles of incidence above 70° from the surface normal, as shown by X-ray photoelectron spectroscopy (XPS) of the C 1s peak structure. Above 70°, XPS profiles of excellent depth resolution are obtained. The depth resolution, after removal of the thickness of the delta layers, shows a basic contribution of 5.7 nm together with a contribution of 0.043 times the depth sputtered. This is lower than generally reported for cluster sources. The coronene(+) source is thus found to be a useful and practical source for depth profiling organic materials. The angle dependencies of both the undamaged and damaged materials are described by a simple equation. The sputtering yields for the undamaged material are described by a universal equation and are consistent with those obtained for C60(+) sputtering. Comparison with the sputtering yields using an argon gas cluster ion source shows great similarities, but the yields for both the coronene(+) and C60(+) primary ion sources are slightly lower.

  12. Accuracy and Resolution of Kinect Depth Data for Indoor Mapping Applications

    Directory of Open Access Journals (Sweden)

    Sander Oude Elberink

    2012-02-01

    Full Text Available Consumer-grade range cameras such as the Kinect sensor have the potential to be used in mapping applications where accuracy requirements are less strict. To realize this potential insight into the geometric quality of the data acquired by the sensor is essential. In this paper we discuss the calibration of the Kinect sensor, and provide an analysis of the accuracy and resolution of its depth data. Based on a mathematical model of depth measurement from disparity a theoretical error analysis is presented, which provides an insight into the factors influencing the accuracy of the data. Experimental results show that the random error of depth measurement increases with increasing distance to the sensor, and ranges from a few millimeters up to about 4 cm at the maximum range of the sensor. The quality of the data is also found to be influenced by the low resolution of the depth measurements.

  13. Evaluation of the variable depth resolution of active dynamic thermography on human skin

    Science.gov (United States)

    Prindeze, Nicholas J.; Hoffman, Hilary A.; Carney, Bonnie C.; Moffatt, Lauren T.; Loew, Murray H.; Shupp, Jeffrey W.

    2015-06-01

    Active dynamic thermography (ADT) is an imaging technique capable of characterizing the non-homogenous thermal conductance of damaged tissues. The purpose of this study was to determine optimal stimulation parameters and quantify the optical resolution of ADT through various depths of human skin. Excised tissue from plastic surgery operations was collected immediately following excision. A total of 12 thin to thick split-thickness grafts were harvested from 3 patients. Grafts were placed on top of a 3D printed resolution chart and thermal stimulation was applied from a 300W halogen lamp array for between 0.5-10 seconds to determine optimal parameters. Video was captured with a thermal camera, and analysis was performed by reconstructing an image from thermal gradients. In this study ADT resolved 0.445+/-0 lp/mm at a depth of 0.010", 0.356+/-0.048 lp/mm at a depth of 0.015", 0.334+/-0.027 lp/mm at a depth of 0.020" and 0.265+/-0.022 lp/mm at a depth of 0.025". The stimulus energy required for maximum resolution at each depth was 3- 4s, 8s, 12s and 12s respectively. ADT is a sensitive technique for imaging dermal structure, capable of resolving detail as fine as 1124 μm, 1427 μm, 1502 μm and 1893 μm in thin to thick split-thickness skin grafts respectively. This study has characterized a correlation between stimulus input and maximal resolution at differing depths of skin. It has also defined the functional imaging depth of ADT to below the sub-cutis, well below conventional spectrophotometric techniques.

  14. High Resolution Orientation Imaging Microscopy

    Science.gov (United States)

    2012-05-02

    carbon distribution as it relates to the presence of Bainite phase (with small tetragonality) interspersed among the cubic ferrite. An example of the...preferentially segregate. The view offered by these high resolution methods differs from what has been considered before: grains thought to be Bainite

  15. High-Resolution Instrumentation Radar.

    Science.gov (United States)

    1986-09-30

    30 September 1986 Los Angeles Air Force Station 13. NUMBER OF PAGES Los Angeles, Calif. 90009-2960 36 74. MONITORING AGENCY NAME & ADDRESS(If...TREE PLMUT ",-20 -CUTLIASS DumpER SED AN... TREE TRUNK, -0 - MERC BUMPER f - 40 H!-I -50 iI Fig. 7. High-Resolution Instrumentation Radar View of

  16. Requirements on high resolution detectors

    Energy Technology Data Exchange (ETDEWEB)

    Koch, A. [European Synchrotron Radiation Facility, Grenoble (France)

    1997-02-01

    For a number of microtomography applications X-ray detectors with a spatial resolution of 1 {mu}m are required. This high spatial resolution will influence and degrade other parameters of secondary importance like detective quantum efficiency (DQE), dynamic range, linearity and frame rate. This note summarizes the most important arguments, for and against those detector systems which could be considered. This article discusses the mutual dependencies between the various figures which characterize a detector, and tries to give some ideas on how to proceed in order to improve present technology.

  17. High temporal resolution estimates of columnar aerosol microphysical parameters from spectrum of aerosol optical depth by linear estimation: application to long-term AERONET and star-photometry measurements

    Science.gov (United States)

    Perez-Ramirez, D.; Veselovskii, I.; Whiteman, D. N.; Suvorina, A.; Korenskiy, M.; Kolgotin, A.; Holben, B.; Dubovik, O.; Siniuk, A.; Alados-Arboledas, L.

    2015-08-01

    This work deals with the applicability of the linear estimation technique (LE) to invert spectral measurements of aerosol optical depth (AOD) provided by AERONET CIMEL sun photometers. The inversion of particle properties using only direct-sun AODs allows the evaluation of parameters such as effective radius (reff) and columnar volume aerosol content (V) with significantly better temporal resolution than the operational AERONET algorithm which requires both direct sun and sky radiance measurements. Sensitivity studies performed demonstrate that the constraints on the range of the inversion are very important to minimize the uncertainties, and therefore estimates of reff can be obtained with uncertainties less than 30 % and of V with uncertainties below 40 %. The LE technique is applied to data acquired at five AERONET sites influenced by different aerosol types and the retrievals are compared with the results of the operational AERONET code. Good agreement between the two techniques is obtained when the fine mode predominates, while for coarse mode cases the LE results systematically underestimate both reff and V. The highest differences are found for cases where no mode predominates. To minimize these biases, correction functions are developed using the multi-year database of observations at selected sites, where the AERONET retrieval is used as the reference. The derived corrections are tested using data from 18 other AERONET stations offering a range of aerosol types. After correction, the LE retrievals provide better agreement with AERONET for all the sites considered. Finally, the LE approach developed here is applied to AERONET and star-photometry measurements in the city of Granada (Spain) to obtain day-to-night time evolution of columnar aerosol microphysical properties.

  18. Correction of a Depth-Dependent Lateral Distortion in 3D Super-Resolution Imaging.

    Directory of Open Access Journals (Sweden)

    Lina Carlini

    Full Text Available Three-dimensional (3D localization-based super-resolution microscopy (SR requires correction of aberrations to accurately represent 3D structure. Here we show how a depth-dependent lateral shift in the apparent position of a fluorescent point source, which we term `wobble`, results in warped 3D SR images and provide a software tool to correct this distortion. This system-specific, lateral shift is typically > 80 nm across an axial range of ~ 1 μm. A theoretical analysis based on phase retrieval data from our microscope suggests that the wobble is caused by non-rotationally symmetric phase and amplitude aberrations in the microscope's pupil function. We then apply our correction to the bacterial cytoskeletal protein FtsZ in live bacteria and demonstrate that the corrected data more accurately represent the true shape of this vertically-oriented ring-like structure. We also include this correction method in a registration procedure for dual-color, 3D SR data and show that it improves target registration error (TRE at the axial limits over an imaging depth of 1 μm, yielding TRE values of < 20 nm. This work highlights the importance of correcting aberrations in 3D SR to achieve high fidelity between the measurements and the sample.

  19. Optimizing penetration depth, contrast, and resolution in 3D dermatologic OCT

    Science.gov (United States)

    Aneesh, Alex; Považay, Boris; Hofer, Bernd; Zhang, Edward Z.; Kendall, Catherine; Laufer, Jan; Popov, Sergei; Glittenberg, Carl; Binder, Susanne; Stone, Nicholas; Beard, Paul C.; Drexler, Wolfgang

    2010-02-01

    High speed, three-dimensional optical coherence tomography (3D OCT) at 800nm, 1060nm and 1300nm with approximately 4μm, 7μm and 6μm axial and less than 15μm transverse resolution is demonstrated to investigate the optimum wavelength region for in vivo human skin imaging in terms of contrast, dynamic range and penetration depth. 3D OCT at 1300nm provides deeper penetration, while images obtained at 800nm were better in terms of contrast and speckle noise. 1060nm region was a compromise between 800nm and 1300nm in terms of penetration depth and image contrast. Optimizing sensitivity, penetration and contrast enabled unprecedented visualization of micro-structural morphology underneath the glabrous skin, hairy skin and in scar tissue. Higher contrast obtained at 800 nm appears to be critical in the in vitro tumor study. A multimodal approach combining OCT and PA helped to obtain morphological as well as vascular information from deeper regions of skin.

  20. Improving resolution and depth of astronomical observations via modern mathematical methods for image analysis

    CERN Document Server

    Castellano, Marco; Fontana, Adriano; Merlin, Emiliano; Pilo, Stefano; Falcone, Maurizio

    2015-01-01

    In the past years modern mathematical methods for image analysis have led to a revolution in many fields, from computer vision to scientific imaging. However, some recently developed image processing techniques successfully exploited by other sectors have been rarely, if ever, experimented on astronomical observations. We present here tests of two classes of variational image enhancement techniques: "structure-texture decomposition" and "super-resolution" showing that they are effective in improving the quality of observations. Structure-texture decomposition allows to recover faint sources previously hidden by the background noise, effectively increasing the depth of available observations. Super-resolution yields an higher-resolution and a better sampled image out of a set of low resolution frames, thus mitigating problematics in data analysis arising from the difference in resolution/sampling between different instruments, as in the case of EUCLID VIS and NIR imagers.

  1. In-depth compositional analysis of water-soluble and -insoluble organic substances in fine (PM2.5) airborne particles using ultra-high-resolution 15T FT-ICR MS and GC×GC-TOFMS.

    Science.gov (United States)

    Choi, Jung Hoon; Ryu, Jijeong; Jeon, Sodam; Seo, Jungju; Yang, Yung-Hun; Pack, Seung Pil; Choung, Sungwook; Jang, Kyoung-Soon

    2017-03-05

    Airborne particulate matter consisting of ionic species, salts, heavy metals and carbonaceous material is one of the most serious environmental pollutants owing to its impacts on the environment and human health. Although elemental and organic carbon compounds are known to be major components of aerosols, information on the elemental composition of particulate matter remains limited because of the broad range of compounds involved and the limits of analytical instruments. In this study, we investigated water-soluble and -insoluble organic compounds in fine (PM2.5) airborne particles collected during winter in Korea to better understand the elemental compositions and distributions of these compounds. To collect ultra-high-resolution mass profiles, we analyzed water-soluble and -insoluble organic compounds, extracted with water and dichloromethane, respectively, using an ultra-high-resolution 15 T Fourier transform ion cyclotron resonance (15T FT-ICR) mass spectrometer in positive ion mode (via both electrospray ionization [ESI] and atmospheric pressure photoionization [APPI] for water-extracts and via APPI for dichloromethane-extracts). In conjunction with the FT-ICR mass spectrometry (MS) data, subsequent two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC-TOFMS) data were used to identify potentially hazardous organic components, such as polycyclic aromatic hydrocarbons. This analysis provided information on the sources of ambient particles collected during winter season and partial evidence of contributions to the acidity of organic content in PM2.5 particles. The compositional and structural features of water-soluble and -insoluble organic compounds from PM2.5 particles are important for understanding the potential impacts of aerosol-carried organic substances on human health and global ecosystems in future toxicological studies.

  2. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  3. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  4. HRSC: High resolution stereo camera

    Science.gov (United States)

    Neukum, G.; Jaumann, R.; Basilevsky, A.T.; Dumke, A.; Van Gasselt, S.; Giese, B.; Hauber, E.; Head, J. W.; Heipke, C.; Hoekzema, N.; Hoffmann, H.; Greeley, R.; Gwinner, K.; Kirk, R.; Markiewicz, W.; McCord, T.B.; Michael, G.; Muller, Jan-Peter; Murray, J.B.; Oberst, J.; Pinet, P.; Pischel, R.; Roatsch, T.; Scholten, F.; Willner, K.

    2009-01-01

    The High Resolution Stereo Camera (HRSC) on Mars Express has delivered a wealth of image data, amounting to over 2.5 TB from the start of the mapping phase in January 2004 to September 2008. In that time, more than a third of Mars was covered at a resolution of 10-20 m/pixel in stereo and colour. After five years in orbit, HRSC is still in excellent shape, and it could continue to operate for many more years. HRSC has proven its ability to close the gap between the low-resolution Viking image data and the high-resolution Mars Orbiter Camera images, leading to a global picture of the geological evolution of Mars that is now much clearer than ever before. Derived highest-resolution terrain model data have closed major gaps and provided an unprecedented insight into the shape of the surface, which is paramount not only for surface analysis and geological interpretation, but also for combination with and analysis of data from other instruments, as well as in planning for future missions. This chapter presents the scientific output from data analysis and highlevel data processing, complemented by a summary of how the experiment is conducted by the HRSC team members working in geoscience, atmospheric science, photogrammetry and spectrophotometry. Many of these contributions have been or will be published in peer-reviewed journals and special issues. They form a cross-section of the scientific output, either by summarising the new geoscientific picture of Mars provided by HRSC or by detailing some of the topics of data analysis concerning photogrammetry, cartography and spectral data analysis.

  5. Reaching 200-ps timing resolution in a time-of-flight and depth-of-interaction positron emission tomography detector using phosphor-coated crystals and high-density silicon photomultipliers.

    Science.gov (United States)

    Kwon, Sun Il; Ferri, Alessandro; Gola, Alberto; Berg, Eric; Piemonte, Claudio; Cherry, Simon R; Roncali, Emilie

    2016-10-01

    Current research in the field of positron emission tomography (PET) focuses on improving the sensitivity of the scanner with thicker detectors, extended axial field-of-view, and time-of-flight (TOF) capability. These create the need for depth-of-interaction (DOI) encoding to correct parallax errors. We have proposed a method to encode DOI using phosphor-coated crystals. Our initial work using photomultiplier tubes (PMTs) demonstrated the possibilities of the proposed method, however, a major limitation of PMTs for this application is poor quantum efficiency in yellow light, corresponding to the wavelengths of the converted light by the phosphor coating. In contrast, the red-green-blue-high-density (RGB-HD) silicon photomultipliers (SiPMs) have a high photon detection efficiency across the visible spectrum. Excellent coincidence resolving time (CRT; [Formula: see text]) was obtained by coupling RGB-HD SiPMs and [Formula: see text] lutetium fine silicate crystals coated on a third of one of their lateral sides. Events were classified in three DOI bins ([Formula: see text] width) with an average sensitivity of 83.1%. A CRT of [Formula: see text] combined with robust DOI encoding is a marked improvement in the phosphor-coated approach that we pioneered. For the first time, we read out these crystals with SiPMs and clearly demonstrated the potential of the RGB-HD SiPMs for this TOF-DOI PET detector.

  6. Wide-field, high-resolution Fourier ptychographic microscopy

    CERN Document Server

    Zheng, Guoan; Yang, Changhuei

    2014-01-01

    In this article, we report an imaging method, termed Fourier ptychographic microscopy (FPM), which iteratively stitches together a number of variably illuminated, low-resolution intensity images in Fourier space to produce a wide-field, high-resolution complex sample image. By adopting a wavefront correction strategy, the FPM method can also correct for aberrations and digitally extend a microscope's depth-of-focus beyond the physical limitations of its optics. As a demonstration, we built a microscope prototype with a resolution of 0.78 um, a field-of-view of ~120 mm2, and a resolution-invariant depth-of-focus of 0.3 mm (characterized at 632 nm). Gigapixel colour images of histology slides verify FPM's successful operation. The reported imaging procedure transforms the general challenge of high-throughput, high-resolution microscopy from one that is coupled to the physical limitations of the system's optics to one that is solvable through computation.

  7. Section on High Resolution Optical Imaging (HROI)

    Data.gov (United States)

    Federal Laboratory Consortium — The Section on High Resolution Optical Imaging (HROI) develops novel technologies for studying biological processes at unprecedented speed and resolution. Research...

  8. The impact from survey depth and resolution on the morphological classification of galaxies

    CERN Document Server

    Pović, M; Masegosa, J; Perea, J; del Olmo, A; Simpson, C; Aguerri, J A L; Ascaso, B; Jiménez-Teja, Y; López-Sanjuan, C; Molino, A; Pérez-García, A M; Viironen, K; Husillos, C; Cristóbal-Hornillos, D; Caldwell, C; Benítez, N; Alfaro, E; Aparicio-Villegas, T; Broadhurst, T; Cabrera-Caño, J; Castander, F J; Cepa, J; Cerviño, M; Fernández-Soto, A; Delgado, R M González; Infante, L; Martínez, V J; Moles, M; Prada, F; Quintana, J M

    2015-01-01

    We consistently analyse for the first time the impact of survey depth and spatial resolution on the most used morphological parameters for classifying galaxies through non-parametric methods: Abraham and Conselice-Bershady concentration indices, Gini, M20 moment of light, asymmetry, and smoothness. Three different non-local datasets are used, ALHAMBRA and SXDS (examples of deep ground-based surveys), and COSMOS (deep space-based survey). We used a sample of 3000 local, visually classified galaxies, measuring their morphological parameters at their real redshifts (z ~ 0). Then we simulated them to match the redshift and magnitude distributions of galaxies in the non-local surveys. The comparisons of the two sets allow to put constraints on the use of each parameter for morphological classification and evaluate the effectiveness of the commonly used morphological diagnostic diagrams. All analysed parameters suffer from biases related to spatial resolution and depth, the impact of the former being much stronger....

  9. High-resolution image analysis.

    Science.gov (United States)

    Preston, K

    1986-01-01

    In many departments of cytology, cytogenetics, hematology, and pathology, research projects using high-resolution computerized microscopy are now being mounted for computation of morphometric measurements on various structural components, as well as for determination of cellular DNA content. The majority of these measurements are made in a partially automated, computer-assisted mode, wherein there is strong interaction between the user and the computerized microscope. At the same time, full automation has been accomplished for both sample preparation and sample examination for clinical determination of the white blood cell differential count. At the time of writing, approximately 1,000 robot differential counting microscopes are in the field, analyzing images of human white blood cells, red blood cells, and platelets at the overall rate of about 100,000 slides per day. This mammoth through-put represents a major accomplishment in the application of machine vision to automated microscopy for hematology. In other areas of automated high-resolution microscopy, such as cytology and cytogenetics, no commercial instruments are available (although a few metaphase-finding machines are available and other new machines have been announced during the past year). This is a disappointing product, considering the nearly half century of research effort in these areas. This paper provides examples of the state of the art in automation of cell analysis for blood smears, cervical smears, and chromosome preparations. Also treated are new developments in multi-resolution automated microscopy, where images are now being generated and analyzed by a single machine over a range of 64:1 magnification and from 10,000 X 20,000 to 500 X 500 in total picture elements (pixels). Examples of images of human lymph node and liver tissue are presented. Semi-automated systems are not treated, although there is mention of recent research in the automation of tissue analysis.

  10. Depth Impact Control of an Electromagnetic Actuator for High Precision Engraving

    OpenAIRE

    2008-01-01

    This document presents both the mechanical elements and the motion control of a novel three–axis metal engraving machine. The aim of this work is to improve the conventional high resolution engraving techniques that commonly use expensive piezoelectric actuators with reduced impact depth. Also, it is presented the depth impact control in open loop for an electromagnetic actuator (solenoid). A conical tool is fixed on the mobile part of the solenoid that moves toward the work piece when the so...

  11. High-Resolution Mass Spectrometers

    Science.gov (United States)

    Marshall, Alan G.; Hendrickson, Christopher L.

    2008-07-01

    Over the past decade, mass spectrometry has been revolutionized by access to instruments of increasingly high mass-resolving power. For small molecules up to ˜400 Da (e.g., drugs, metabolites, and various natural organic mixtures ranging from foods to petroleum), it is possible to determine elemental compositions (CcHhNnOoSsPp…) of thousands of chemical components simultaneously from accurate mass measurements (the same can be done up to 1000 Da if additional information is included). At higher mass, it becomes possible to identify proteins (including posttranslational modifications) from proteolytic peptides, as well as lipids, glycoconjugates, and other biological components. At even higher mass (˜100,000 Da or higher), it is possible to characterize posttranslational modifications of intact proteins and to map the binding surfaces of large biomolecule complexes. Here we review the principles and techniques of the highest-resolution analytical mass spectrometers (time-of-flight and Fourier transform ion cyclotron resonance and orbitrap mass analyzers) and describe some representative high-resolution applications.

  12. Improving depth resolution of diffuse optical tomography with an exponential adjustment method based on maximum singular value of layered sensitivity

    Institute of Scientific and Technical Information of China (English)

    Haijing Niu; Ping Guo; Xiaodong Song; Tianzi Jiang

    2008-01-01

    The sensitivity of diffuse optical tomography (DOT) imaging exponentially decreases with the increase of photon penetration depth, which leads to a poor depth resolution for DOT. In this letter, an exponential adjustment method (EAM) based on maximum singular value of layered sensitivity is proposed. Optimal depth resolution can be achieved by compensating the reduced sensitivity in the deep medium. Simulations are performed using a semi-infinite model and the simulation results show that the EAM method can substantially improve the depth resolution of deeply embedded objects in the medium. Consequently, the image quality and the reconstruction accuracy for these objects have been largely improved.

  13. Ultra-high resolution AMOLED

    Science.gov (United States)

    Wacyk, Ihor; Prache, Olivier; Ghosh, Amal

    2011-06-01

    AMOLED microdisplays continue to show improvement in resolution and optical performance, enhancing their appeal for a broad range of near-eye applications such as night vision, simulation and training, situational awareness, augmented reality, medical imaging, and mobile video entertainment and gaming. eMagin's latest development of an HDTV+ resolution technology integrates an OLED pixel of 3.2 × 9.6 microns in size on a 0.18 micron CMOS backplane to deliver significant new functionality as well as the capability to implement a 1920×1200 microdisplay in a 0.86" diagonal area. In addition to the conventional matrix addressing circuitry, the HDTV+ display includes a very lowpower, low-voltage-differential-signaling (LVDS) serialized interface to minimize cable and connector size as well as electromagnetic emissions (EMI), an on-chip set of look-up-tables for digital gamma correction, and a novel pulsewidth- modulation (PWM) scheme that together with the standard analog control provides a total dimming range of 0.05cd/m2 to 2000cd/m2 in the monochrome version. The PWM function also enables an impulse drive mode of operation that significantly reduces motion artifacts in high speed scene changes. An internal 10-bit DAC ensures that a full 256 gamma-corrected gray levels are available across the entire dimming range, resulting in a measured dynamic range exceeding 20-bits. This device has been successfully tested for operation at frame rates ranging from 30Hz up to 85Hz. This paper describes the operational features and detailed optical and electrical test results for the new AMOLED WUXGA resolution microdisplay.

  14. High-resolution slug testing.

    Science.gov (United States)

    Zemansky, G M; McElwee, C D

    2005-01-01

    The hydraulic conductivity (K) variation has important ramifications for ground water flow and the transport of contaminants in ground water. The delineation of the nature of that variation can be critical to complete characterization of a site and the planning of effective and efficient remedial measures. Site-specific features (such as high-conductivity zones) need to be quantified. Our alluvial field site in the Kansas River valley exhibits spatial variability, very high conductivities, and nonlinear behavior for slug tests in the sand and gravel aquifer. High-resolution, multilevel slug tests have been performed in a number of wells that are fully screened. A general nonlinear model based on the Navier-Stokes equation, nonlinear frictional loss, non-Darcian flow, acceleration effects, radius changes in the wellbore, and a Hvorslev model for the aquifer has been used to analyze the data, employing an automated processing system that runs within the Excel spreadsheet program. It is concluded that slug tests can provide the necessary data to identify the nature of both horizontal and vertical K variation in an aquifer and that improved delineation or higher resolution of K structure is possible with shorter test intervals. The gradation into zones of higher conductivity is sharper than seen previously, and the maximum conductivity observed is greater than previously measured. However, data from this project indicate that well development, the presence of fines, and the antecedent history of the well are important interrelated factors in regard to slug-test response and can prevent obtaining consistent results in some cases.

  15. High-resolution land topography

    Science.gov (United States)

    Massonnet, Didier; Elachi, Charles

    2006-11-01

    After a description of the background, methods of production and some scientific uses of high-resolution land topography, we present the current status and the prospect of radar interferometry, regarded as one of the best techniques for obtaining the most global and the most accurate topographic maps. After introducing briefly the theoretical aspects of radar interferometry - principles, limits of operation and various capabilities -, we will focus on the topographic applications that resulted in an almost global topographic map of the earth: the SRTM map. After introducing the Interferometric Cartwheel system, we will build on its expected performances to discuss the scientific prospects of refining a global topographic map to sub-metric accuracy. We also show how other fields of sciences such as hydrology may benefit from the products generated by interferometric radar systems. To cite this article: D. Massonnet, C. Elachi, C. R. Geoscience 338 (2006).

  16. Depth profilometry via multiplexed optical high-coherence interferometry

    National Research Council Canada - National Science Library

    Kazemzadeh, Farnoud; Wong, Alexander; Behr, Bradford B; Hajian, Arsen R

    2015-01-01

    ... such as defect detection, corrosion assessment, and dental assessment to name a few. In this study, we investigate the feasibility of depth profilometry using an Multiplexed Optical High-coherence Interferometry MOHI instrument...

  17. SU-E-J-197: Investigation of Microsoft Kinect 2.0 Depth Resolution for Patient Motion Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Silverstein, E; Snyder, M [Wayne State University, Detroit, MI (United States)

    2015-06-15

    Purpose: Investigate the use of the Kinect 2.0 for patient motion tracking during radiotherapy by studying spatial and depth resolution capabilities. Methods: Using code written in C#, depth map data was abstracted from the Kinect to create an initial depth map template indicative of the initial position of an object to be compared to the depth map of the object over time. To test this process, simple setup was created in which two objects were imaged: a 40 cm × 40 cm board covered in non reflective material and a 15 cm × 26 cm textbook with a slightly reflective, glossy cover. Each object, imaged and measured separately, was placed on a movable platform with object to camera distance measured. The object was then moved a specified amount to ascertain whether the Kinect’s depth camera would visualize the difference in position of the object. Results: Initial investigations have shown the Kinect depth resolution is dependent on the object to camera distance. Measurements indicate that movements as small as 1 mm can be visualized for objects as close as 50 cm away. This depth resolution decreases linearly with object to camera distance. At 4 m, the depth resolution had decreased to observe a minimum movement of 1 cm. Conclusion: The improved resolution and advanced hardware of the Kinect 2.0 allows for increase of depth resolution over the Kinect 1.0. Although obvious that the depth resolution should decrease with increasing distance from an object given the decrease in number of pixels representing said object, the depth resolution at large distances indicates its usefulness in a clinical setting.

  18. High resolution emission tomography; Tomographie d`emission haute resolution

    Energy Technology Data Exchange (ETDEWEB)

    Charon, Y.; Laniece, P.; Mastrippolito, R.; Pinot, L.; Ploux, L.; Valda Ochoa, A.; Valentin, L. [Groupe I.P.B., Experimental Research Division, Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France)

    1999-11-01

    We have developed an original high resolution tomograph for in-vivo small animal imaging. A first prototype is under evaluation. Initial results of its characterisation are presented. (authors) 3 figs.

  19. High Spectral Resolution Lidar (HSRL) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Goldsmith, John [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2016-04-01

    High Spectral Resolution Lidar (HSRL) systems provide vertical profiles of optical depth, backscatter cross-section, depolarization, and backscatter phase function. All HSRL measurements are absolutely calibrated by reference to molecular scattering, which is measured at each point in the lidar profile. Like the Raman lidar but unlike simple backscatter lidars such as the micropulse lidar, the HSRL can measure backscatter cross-sections and optical depths without prior assumptions about the scattering properties of the atmosphere. The depolarization observations also allow robust discrimination between ice and water clouds. In addition, rigorous error estimates can be computed for all measurements. A very narrow, angular field of view reduces multiple scattering contributions. The small field of view, coupled with a narrow optical bandwidth, nearly eliminates noise due to scattered sunlight. There are two operational U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility HSRL systems, one at the Barrow North Slope of Alaska (NSA) site and the other in the second ARM Mobile Facility (AMF2) collection of instrumentation.

  20. VT Hydrography Dataset - High Resolution NHD

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The Vermont Hydrography Dataset (VHD) is compliant with the local resolution (also known as High Resolution) National Hydrography Dataset (NHD)...

  1. Multiple and double scattering contributions to depth resolution and low energy background in hydrogen elastic recoil detection

    Energy Technology Data Exchange (ETDEWEB)

    Wielunski, L.S. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics

    1996-12-31

    The sensitivity of hydrogen elastic recoil detection ( ERD ) is usually limited by the low energy background in the ERD spectrum. A number of 4.5 MeV He{sup ++} hydrogen ERD spectra from different hydrogen implanted samples are compared. The samples are chosen with different atomic numbers from low Z (carbon) to high Z (tungsten carbide) to observe the effects of multiple scattering and double scattering within the sample material. The experimental depth resolution and levels of the low energy background in ERD spectra are compared with theoretical predictions from multiple and double scattering. 10 refs., 2 tabs., 5 figs.

  2. A computationally efficient tool for assessing the depth resolution in large-scale potential-field inversion

    DEFF Research Database (Denmark)

    Paoletti, Valeria; Hansen, Per Christian; Hansen, Mads Friis;

    2014-01-01

    on memory and computing time. We used the ApproxDRP to study retrievable depth resolution in inversion of the gravity field of the Neapolitan Volcanic Area. Our main contribution is the combined use of the Lanczos bidiagonalization algorithm, established in the scientific computing community, and the depth......In potential-field inversion, careful management of singular value decomposition components is crucial for obtaining information about the source distribution with respect to depth. In principle, the depth-resolution plot provides a convenient visual tool for this analysis, but its computational...

  3. High-resolution infrared imaging

    Science.gov (United States)

    Falco, Charles M.

    2010-08-01

    The hands and mind of an artist are intimately involved in the creative process of image formation, intrinsically making paintings significantly more complex than photographs to analyze. In spite of this difficulty, several years ago the artist David Hockney and I identified optical evidence within a number of paintings that demonstrated artists began using optical projections as early as c1425 - nearly 175 years before Galileo - as aids for producing portions of their images. In the course of our work, Hockney and I developed insights that I have been applying to a new approach to computerized image analysis. Recently I developed and characterized a portable high resolution infrared for capturing additional information from paintings. Because many pigments are semi-transparent in the IR, in a number of cases IR photographs ("reflectograms") have revealed marks made by the artists that had been hidden under paint ever since they were made. I have used this IR camera to capture photographs ("reflectograms") of hundreds of paintings in over a dozen museums on three continents and, in some cases, these reflectograms have provided new insights into decisions the artists made in creating the final images that we see in the visible.

  4. Modification of closure depths by synchronisation of severe seas and high water levels

    Science.gov (United States)

    Soomere, Tarmo; Männikus, Rain; Pindsoo, Katri; Kudryavtseva, Nadezhda; Eelsalu, Maris

    2017-02-01

    The closure depth indicates the depth down to which storm waves maintain a universal shape of the coastal profile. It is thus a key parameter of the coastal zones for a variety of engineering and ecosystem applications. Its values are commonly estimated with respect to the long-term mean water level. The present study re-evaluates closure depths for microtidal water bodies where the wave loads are highly correlated with the course of the water level. The test area is the eastern Baltic Sea. The closure depth is calculated for the eastern Baltic Sea coast with a resolution of 5.5 km and the vicinity of Tallinn Bay with a resolution of 0.5 km. While the classic values of closure depth are extracted from statistics of the roughest seas, the present analysis is based on single values of a proxy of the instantaneous closure depth. These values are evaluated from numerically simulated time series of wave properties and water levels. The water level-adjusted closure depths are almost equal to the classic values at the coasts of Lithuania but are up to 10% smaller at the Baltic Proper coasts of Latvia and Estonia. The difference is up to 20% in bayheads of the Gulf of Finland.

  5. High-resolution noise radar using slow ADC

    Science.gov (United States)

    Lukin, Konstantin; Vyplavin, Pavlo; Zemlyanyi, Oleg; Lukin, Sergiy; Palamarchuk, Volodymyr

    2011-06-01

    Conventional digital signal processing scheme in noise radars has some limitations related to combination of high resolution and high dynamic range. Those limitations are caused by a tradeoff in performance of currently available ADCs: the faster is ADC the smaller is its depth (number of bits) available. Depth of the ADC determines relation between the smallest and highest observable signals and thus limits its dynamic range. In noise radar with conventional processing the sounding and reference signals are to be digitized at intermediate frequency band and to be processed digitally. The power spectrum bandwidth of noise signal which can be digitized with ADC depends on its sampling rate. The bandwidth of radar signal defines range resolution of any radar: the wider the spectrum the better the resolution. Actually this is the main bottleneck of high resolution Noise Radars: conventional processing doesn't enable to get both high range resolution and high dynamic range. In the paper we present a way to go around this drawback by changing signal processing ideology in noise radar. We present results of our consideration and design of high resolution Noise Radar which uses slow ADCs. The design is based upon generation of both probing and reference signals digitally and realization of their cross-correlation in an analog correlator. The output of the correlator is a narrowband signal that requires rather slow ADC to be sampled which nowadays may give up to 130 dB dynamic range.

  6. High-resolution neutron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Mikerov, V.I. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Zhitnik, I.A. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Ignat`ev, A.P. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Isakov, A.I. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Korneev, V.V. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Krutov, V.V. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Kuzin, S.V. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Oparin, S.N. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Pertsov, A.A. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Podolyak, E.R. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Sobel`man, I.I. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Tindo, I.P. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Tukarev, B.A. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation)

    1995-12-31

    A neutron tomography technique with a coordinate resolution of several tens of micrometers has been developed. Our results indicate that the technique resolves details with dimensions less than 100 {mu}m and measures a linear attenuation of less than {approx} 0.1 cm{sup -1}. Tomograms can be reconstructed using incomplete data. Limits on the resolution of the restored pattern are analyzed, and ways to improve the sensitivity of the technique are discussed. (orig.).

  7. High-dimensional camera shake removal with given depth map.

    Science.gov (United States)

    Yue, Tao; Suo, Jinli; Dai, Qionghai

    2014-06-01

    Camera motion blur is drastically nonuniform for large depth-range scenes, and the nonuniformity caused by camera translation is depth dependent but not the case for camera rotations. To restore the blurry images of large-depth-range scenes deteriorated by arbitrary camera motion, we build an image blur model considering 6-degrees of freedom (DoF) of camera motion with a given scene depth map. To make this 6D depth-aware model tractable, we propose a novel parametrization strategy to reduce the number of variables and an effective method to estimate high-dimensional camera motion as well. The number of variables is reduced by temporal sampling motion function, which describes the 6-DoF camera motion by sampling the camera trajectory uniformly in time domain. To effectively estimate the high-dimensional camera motion parameters, we construct the probabilistic motion density function (PMDF) to describe the probability distribution of camera poses during exposure, and apply it as a unified constraint to guide the convergence of the iterative deblurring algorithm. Specifically, PMDF is computed through a back projection from 2D local blur kernels to 6D camera motion parameter space and robust voting. We conduct a series of experiments on both synthetic and real captured data, and validate that our method achieves better performance than existing uniform methods and nonuniform methods on large-depth-range scenes.

  8. Spatially continuous mapping of snow depth in high alpine catchments using digital photogrammetry

    Directory of Open Access Journals (Sweden)

    Y. Bühler

    2014-06-01

    Full Text Available Information on snow depth and its spatial distribution is crucial for many applications in snow and avalanche research as well as in hydrology and ecology. Today snow depth distributions are usually estimated using point measurements performed by automated weather stations and observers in the field combined with interpolation algorithms. However, these methodologies are not able to capture the high spatial variability of the snow depth distribution present in alpine terrain. Continuous and accurate snow depth mapping has been done using laser scanning but this method can only cover limited areas and is expensive. We use the airborne ADS80 opto-electronic scanner with 0.25 m spatial resolution to derive digital surface models (DSMs of winter and summer terrains in the neighborhood of Davos, Switzerland. The DSMs are generated using photogrammetric image correlation techniques based on the multispectral nadir and backward looking sensor data. We compare these products with the following independent datasets acquired simultaneously: (a manually measured snow depth plots (b differential Global Navigation Satellite System (dGNSS points (c Terrestrial Laser Scanning (TLS and (d Ground Penetrating Radar (GPR datasets, to assess the accuracy of the photogrammetric products. The results of this investigation demonstrate the potential of optical scanners for wide-area, continuous and high spatial resolution snow-depth mapping over alpine catchments above tree line.

  9. High-resolution three-dimensional imaging with compress sensing

    Science.gov (United States)

    Wang, Jingyi; Ke, Jun

    2016-10-01

    LIDAR three-dimensional imaging technology have been used in many fields, such as military detection. However, LIDAR require extremely fast data acquisition speed. This makes the manufacture of detector array for LIDAR system is very difficult. To solve this problem, we consider using compress sensing which can greatly decrease the data acquisition and relax the requirement of a detection device. To use the compressive sensing idea, a spatial light modulator will be used to modulate the pulsed light source. Then a photodetector is used to receive the reflected light. A convex optimization problem is solved to reconstruct the 2D depth map of the object. To improve the resolution in transversal direction, we use multiframe image restoration technology. For each 2D piecewise-planar scene, we move the SLM half-pixel each time. Then the position where the modulated light illuminates will changed accordingly. We repeat moving the SLM to four different directions. Then we can get four low-resolution depth maps with different details of the same plane scene. If we use all of the measurements obtained by the subpixel movements, we can reconstruct a high-resolution depth map of the sense. A linear minimum-mean-square error algorithm is used for the reconstruction. By combining compress sensing and multiframe image restoration technology, we reduce the burden on data analyze and improve the efficiency of detection. More importantly, we obtain high-resolution depth maps of a 3D scene.

  10. Depth of interaction resolution of LuAP and LYSO crystals

    CERN Document Server

    Trummer, J; Lecoq, P

    2009-01-01

    The Crystal Clear Collaboration (CCC) has built a prototype of a novel positron emission tomograph dedicated to functional breast imaging, the ClearPEM. One aim of the ClearPEM is to be able to depict small tumours with a diameter of 2–3 mm in the breast and axilla region. To achieve such a spatial resolution one needs to know the position of the photon interaction in the crystal—the depth of interaction (DOI) with a precision of a least 2 mm. The main component of the detector are 20 mm long LYSO crystals read out at both ends with avalanche photo diodes (APD). The method to determine the DOI in the ClearPEM is via light sharing between the two end faces of the crystal. In this work 20 mm long LuAP and LYSO crystals were used to study the spatial resolution of the DOI in the crystal. The influence of the surface state (polished and unpolished) and wrapping on the DOI resolution and the light yield were also investigated.

  11. Snow depth mapping in high-alpine catchments using digital photogrammetry

    Science.gov (United States)

    Bühler, Y.; Marty, M.; Egli, L.; Veitinger, J.; Jonas, T.; Thee, P.; Ginzler, C.

    2015-02-01

    Information on snow depth and its spatial distribution is crucial for numerous applications in snow and avalanche research as well as in hydrology and ecology. Today, snow depth distributions are usually estimated using point measurements performed by automated weather stations and observers in the field combined with interpolation algorithms. However, these methodologies are not able to capture the high spatial variability of the snow depth distribution present in alpine terrain. Continuous and accurate snow depth mapping has been successfully performed using laser scanning but this method can only cover limited areas and is expensive. We use the airborne ADS80 optoelectronic scanner, acquiring stereo imagery with 0.25 m spatial resolution to derive digital surface models (DSMs) of winter and summer terrains in the neighborhood of Davos, Switzerland. The DSMs are generated using photogrammetric image correlation techniques based on the multispectral nadir and backward-looking sensor data. In order to assess the accuracy of the photogrammetric products, we compare these products with the following independent data sets acquired simultaneously: (a) manually measured snow depth plots; (b) differential Global Navigation Satellite System (dGNSS) points; (c) terrestrial laser scanning (TLS); and (d) ground-penetrating radar (GPR) data sets. We demonstrate that the method presented can be used to map snow depth at 2 m resolution with a vertical depth accuracy of ±30 cm (root mean square error) in the complex topography of the Alps. The snow depth maps presented have an average accuracy that is better than 15 % compared to the average snow depth of 2.2 m over the entire test site.

  12. Whole-animal imaging with high spatio-temporal resolution

    Science.gov (United States)

    Chhetri, Raghav; Amat, Fernando; Wan, Yinan; Höckendorf, Burkhard; Lemon, William C.; Keller, Philipp J.

    2016-03-01

    We developed isotropic multiview (IsoView) light-sheet microscopy in order to image fast cellular dynamics, such as cell movements in an entire developing embryo or neuronal activity throughput an entire brain or nervous system, with high resolution in all dimensions, high imaging speeds, good physical coverage and low photo-damage. To achieve high temporal resolution and high spatial resolution at the same time, IsoView microscopy rapidly images large specimens via simultaneous light-sheet illumination and fluorescence detection along four orthogonal directions. In a post-processing step, these four views are then combined by means of high-throughput multiview deconvolution to yield images with a system resolution of ≤ 450 nm in all three dimensions. Using IsoView microscopy, we performed whole-animal functional imaging of Drosophila embryos and larvae at a spatial resolution of 1.1-2.5 μm and at a temporal resolution of 2 Hz for up to 9 hours. We also performed whole-brain functional imaging in larval zebrafish and multicolor imaging of fast cellular dynamics across entire, gastrulating Drosophila embryos with isotropic, sub-cellular resolution. Compared with conventional (spatially anisotropic) light-sheet microscopy, IsoView microscopy improves spatial resolution at least sevenfold and decreases resolution anisotropy at least threefold. Compared with existing high-resolution light-sheet techniques, such as lattice lightsheet microscopy or diSPIM, IsoView microscopy effectively doubles the penetration depth and provides subsecond temporal resolution for specimens 400-fold larger than could previously be imaged.

  13. High-resolution electron microscopy

    CERN Document Server

    Spence, John C H

    2013-01-01

    This new fourth edition of the standard text on atomic-resolution transmission electron microscopy (TEM) retains previous material on the fundamentals of electron optics and aberration correction, linear imaging theory (including wave aberrations to fifth order) with partial coherence, and multiple-scattering theory. Also preserved are updated earlier sections on practical methods, with detailed step-by-step accounts of the procedures needed to obtain the highest quality images of atoms and molecules using a modern TEM or STEM electron microscope. Applications sections have been updated - these include the semiconductor industry, superconductor research, solid state chemistry and nanoscience, and metallurgy, mineralogy, condensed matter physics, materials science and material on cryo-electron microscopy for structural biology. New or expanded sections have been added on electron holography, aberration correction, field-emission guns, imaging filters, super-resolution methods, Ptychography, Ronchigrams, tomogr...

  14. DESIR high resolution separator at GANIL, France

    Directory of Open Access Journals (Sweden)

    Toprek Dragan

    2012-01-01

    Full Text Available A high-resolution separator for the SPIRAL2/DESIR project at GANIL has been designed. The extracted isotopes from SPIRAL2 will be transported to and cooled in a RFQ cooler yielding beams with very low transverse emittance and energy spread. These beams will then be accelerated to 60 keV and sent to a high-resolution mass separator where a specific isotope will be selected. The good beam properties extracted from the RFQ cooler will allow one to obtain a mass resolution of č26000 with the high-resolution mass separator.

  15. The impact from survey depth and resolution on the morphological classification of galaxies

    Science.gov (United States)

    Pović, M.; Márquez, I.; Masegosa, J.; Perea, J.; Olmo, A. del; Simpson, C.; Aguerri, J. A. L.; Ascaso, B.; Jiménez-Teja, Y.; López-Sanjuan, C.; Molino, A.; Pérez-García, A. M.; Viironen, K.; Husillos, C.; Cristóbal-Hornillos, D.; Caldwell, C.; Benítez, N.; Alfaro, E.; Aparicio-Villegas, T.; Broadhurst, T.; Cabrera-Caño, J.; Castander, F. J.; Cepa, J.; Cerviño, M.; Fernández-Soto, A.; Delgado, R. M. González; Infante, L.; Martínez, V. J.; Moles, M.; Prada, F.; Quintana, J. M.

    2015-10-01

    We consistently analyse for the first time the impact of survey depth and spatial resolution on the most used morphological parameters for classifying galaxies through non-parametric methods: Abraham and Conselice-Bershady concentration indices, Gini, M20 moment of light, asymmetry, and smoothness. Three different non-local data sets are used, Advanced Large Homogeneous Area Medium Band Redshift Astronomical (ALHAMBRA) and Subaru/XMM-Newton Deep Survey (SXDS, examples of deep ground-based surveys), and Cosmos Evolution Survey (COSMOS, deep space-based survey). We used a sample of 3000 local, visually classified galaxies, measuring their morphological parameters at their real redshifts (z ˜ 0). Then we simulated them to match the redshift and magnitude distributions of galaxies in the non-local surveys. The comparisons of the two sets allow us to put constraints on the use of each parameter for morphological classification and evaluate the effectiveness of the commonly used morphological diagnostic diagrams. All analysed parameters suffer from biases related to spatial resolution and depth, the impact of the former being much stronger. When including asymmetry and smoothness in classification diagrams, the noise effects must be taken into account carefully, especially for ground-based surveys. M20 is significantly affected, changing both the shape and range of its distribution at all brightness levels. We suggest that diagnostic diagrams based on 2-3 parameters should be avoided when classifying galaxies in ground-based surveys, independently of their brightness; for COSMOS they should be avoided for galaxies fainter than F814 = 23.0. These results can be applied directly to surveys similar to ALHAMBRA, SXDS and COSMOS, and also can serve as an upper/lower limit for shallower/deeper ones.

  16. NOTE: Gaussian prefiltering of 123I DAT SPECT images when using depth-independent resolution recovery

    Science.gov (United States)

    Larsson, Anne; Jakobson Mo, Susanna; Sundström, Torbjörn; Riklund, Katrine

    2007-09-01

    Previously we have investigated a depth-independent compensation for collimator detector response (CDR) included in the OSEM reconstruction, intended for SPECT images that have been corrected for scatter and septal penetration using convolution-based methods. In this work, the aim was to study how different filtering strategies affect contrast as a function of noise when using Gaussian smoothing filters in combination with the above-described CDR compensation. The evaluation was performed for 123I dopamine transporter (DAT) SPECT images. Prefiltering with 2D Gaussian filter kernels, where the deterioration in resolution is included in the depth-independent CDR compensation, was compared to conventional postfiltering with 3D Gaussian filter kernels. Images reconstructed without filtering are also included in the comparison. It was found that there is little benefit in noise reduction when using CDR compensation. However, this variant of prefiltering gives consistently higher contrasts as a function of noise compared with the postfiltering alternative, and that could be of interest when using other types of filters with contrast improving properties.

  17. Gaussian prefiltering of {sup 123}I DAT SPECT images when using depth-independent resolution recovery

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Anne [Department of Radiation Sciences, Radiation Physics, Umeaa University, SE-901 87 Umeaa (Sweden); Mo, Susanna Jakobson [Department of Radiation Sciences, Diagnostic Radiology, Umeaa University, SE-901 87 Umeaa (Sweden); Sundstroem, Torbjoern [Department of Radiation Sciences, Diagnostic Radiology, Umeaa University, SE-901 87 Umeaa (Sweden); Riklund, Katrine [Department of Radiation Sciences, Diagnostic Radiology, Umeaa University, SE-901 87 Umeaa (Sweden)

    2007-09-21

    Previously we have investigated a depth-independent compensation for collimator detector response (CDR) included in the OSEM reconstruction, intended for SPECT images that have been corrected for scatter and septal penetration using convolution-based methods. In this work, the aim was to study how different filtering strategies affect contrast as a function of noise when using Gaussian smoothing filters in combination with the above-described CDR compensation. The evaluation was performed for {sup 123}I dopamine transporter (DAT) SPECT images. Prefiltering with 2D Gaussian filter kernels, where the deterioration in resolution is included in the depth-independent CDR compensation, was compared to conventional postfiltering with 3D Gaussian filter kernels. Images reconstructed without filtering are also included in the comparison. It was found that there is little benefit in noise reduction when using CDR compensation. However, this variant of prefiltering gives consistently higher contrasts as a function of noise compared with the postfiltering alternative, and that could be of interest when using other types of filters with contrast improving properties. (note)

  18. Reliability of multiresolution deconvolution for improving depth resolution in SIMS analysis

    Science.gov (United States)

    Boulakroune, M.'Hamed

    2016-11-01

    This paper deals the effectiveness and reliability of multiresolution deconvolution algorithm for recovery Secondary Ions Mass Spectrometry, SIMS, profiles altered by the measurement. This new algorithm is characterized as a regularized wavelet transform. It combines ideas from Tikhonov Miller regularization, wavelet analysis and deconvolution algorithms in order to benefit from the advantages of each. The SIMS profiles were obtained by analysis of two structures of boron in a silicon matrix using a Cameca-Ims6f instrument at oblique incidence. The first structure is large consisting of two distant wide boxes and the second one is thin structure containing ten delta-layers in which the deconvolution by zone was applied. It is shown that this new multiresolution algorithm gives best results. In particular, local application of the regularization parameter of blurred and estimated solutions at each resolution level provided to smoothed signals without creating artifacts related to noise content in the profile. This led to a significant improvement in the depth resolution and peaks' maximums.

  19. The high spectral resolution (scanning) lidar (HSRL)

    Energy Technology Data Exchange (ETDEWEB)

    Eloranta, E. [Univ. of Wisconsin, Madison, WI (United States)

    1995-09-01

    Lidars enable the spatial resolution of optical depth variation in clouds. The optical depth must be inverted from the backscatter signal, a process which is complicated by the fact that both molecular and aerosol backscatter signals are present. The HSRL has the advantage of allowing these two signals to be separated. It has a huge dynamic range, allowing optical depth retrieval for t = 0.01 to 3. Depolarization is used to determine the nature of hydrometeors present. Experiments show that water clouds must almost always be taken into account during cirrus observations. An exciting new development is the possibility of measuring effective radius via diffraction peak width and variable field-of-view measurements. 2 figs.

  20. Holographic high-resolution endoscopic image recording

    Science.gov (United States)

    Bjelkhagen, Hans I.

    1991-03-01

    Endoscopic holography or endoholography combines the features of endoscopy and holography. The purpose of endoholographic imaging is to provide the physician with a unique means of extending diagnosis by providing a life-like record of tissue. Endoholographic recording will provide means for microscopic examination of tissue and in some cases may obviate the need to excise specimens for biopsy. In this method holograms which have the unique properties of three-dimensionality large focal depth and high resolution are made with a newly designed endoscope. The endoscope uses a single-mode optical fiber for illumination and single-beam reflection holograms are recorded in close contact with the tissue at the distal end of the endoscope. The holograms are viewed under a microscope. By using the proper combinations of dyes for staining specific tissue types with various wavelengths of laser illumination increased contrast on the cellular level can be obtained. Using dyes such as rose bengal in combination with the 514. 5 nm line of an argon ion laser and trypan blue or methylene blue with the 647. 1 nm line of a krypton ion laser holograms of the stained colon of a dog showed the architecture of the colon''s columnar epithelial cells. It is hoped through chronological study using this method in-vivo an increased understanding of the etiology and pathology of diseases such as Crohn''s diseases colitis proctitis and several different forms of cancer will help

  1. High-resolution imaging using endoscopic holography

    Science.gov (United States)

    Bjelkhagen, Hans I.

    1990-08-01

    Endoscopic holography or endoholography combines the features of endoscopy and holography. The purpose of endoholographic imaging is to provide the physician with a unique means of extending diagnosis by providing a life-like record of tissue. Endoholographic recording will provide means for microscopic examination of tissue and in some cases may obviate the need to excise specimens for biopsy. In this method holograms which have the unique properties of three-dimensionality large focal depth and high resolution are made with a newly designed endoscope. The endoscope uses a single-mode optical fiber for illumination and single-beam reflection holograms are recorded in close contact with the tissue at the distal end of the endoscope. The holograms are viewed under a microscope. By using the proper combinations of dyes for staining specific tissue types with various wavelengths of laser illumination increased contrast on the cellular level can be obtained. Using dyes such as rose bengal in combination with the 514. 5 nm line of an argon ion laser and trypan blue or methylene blue with the 647. 1 nm line of a krypton ion laser holograms of the stained colon of a dog showed the architecture of the colon''s columnar epithelial cells. It is hoped through chronological study using this method in-vivo an increased understanding of the etiology and pathology of diseases such as Crohn''s diseases colitis proctitis and several different forms of cancer will help to their control. 1.

  2. High Resolution Silicon Deformable Mirrors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes a plan to build a prototype small stroke, high precision deformable mirror suitable for space-based operation in systems for high-resolution...

  3. Depth Impact Control of an Electromagnetic Actuator for High Precision Engraving

    Directory of Open Access Journals (Sweden)

    E. Castillo–Castañeda

    2008-10-01

    Full Text Available This document presents both the mechanical elements and the motion control of a novel three–axis metal engraving machine. The aim of this work is to improve the conventional high resolution engraving techniques that commonly use expensive piezoelectric actuators with reduced impact depth. Also, it is presented the depth impact control in open loop for an electromagnetic actuator (solenoid. A conical tool is fixed on the mobile part of the solenoid that moves toward the work piece when the solenoid is energized. This novel machine performs micro–impacts of controlled depth on metallic flat surfaces and it can be also applied to high precision machining processes. The machine was experimentally tested on steel work pieces using scanned pictures.

  4. Potential High Resolution Dosimeters For MRT

    Science.gov (United States)

    Bräuer-Krisch, E.; Rosenfeld, A.; Lerch, M.; Petasecca, M.; Akselrod, M.; Sykora, J.; Bartz, J.; Ptaszkiewicz, M.; Olko, P.; Berg, A.; Wieland, M.; Doran, S.; Brochard, T.; Kamlowski, A.; Cellere, G.; Paccagnella, A.; Siegbahn, E. A.; Prezado, Y.; Martinez-Rovira, I.; Bravin, A.; Dusseau, L.; Berkvens, P.

    2010-07-01

    resolution and a dose range over several orders of magnitude. This paper will give an overview of all dosimeters tested in the past at the ESRF with their advantages and drawbacks. These detectors comprise: Ionization chambers, Alanine Dosimeters, MOSFET detectors, Gafchromic® films, Radiochromic polymers, TLDs, Polymer gels, Fluorescent Nuclear Track Detectors (Al2O3:C, Mg single crystal detectors), OSL detectors and Floating Gate-based dosimetry system. The aim of such a comparison shall help with a decision on which of these approaches is most suitable for high resolution dose measurements in MRT. The principle of these detectors will be presented including a comparison for some dosimeters exposed with the same irradiation geometry, namely a 1×1 cm5 field size with microbeam exposures at the surface, 0.1 cm and 1 cm in depth of a PMMA phantom. For these test exposures, the most relevant irradiation parameters for future clinical trials have been chosen: 50 micron FWHM and 400 micron c-t-c distance. The experimental data are compared with Monte Carlo calculations.

  5. Influence of relative abundance of isotopes on depth resolution for depth profiling of metal coatings by laser ablation inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Fariñas, Juan C; Coedo, Aurora G; Dorado, Teresa

    2010-04-15

    A systematic study on the influence of relative abundance of isotopes of elements in the coating (A(c)) and in the substrate (A(s)) on both shape of time-resolved signals and depth resolution (Delta z) was performed for depth profile analysis of metal coatings on metal substrates by ultraviolet (266 nm) nanosecond laser ablation inductively coupled plasma quadrupole mass spectrometry. Five coated samples with coating thicknesses of the same order of magnitude (20-30 microm) were tested: nickel coating on aluminium, chromium and copper, and steel coated with copper and zinc. A laser repetition rate of 1 Hz and a laser fluence of 21 J cm(-2) were used. Five different depth profile types were established, which showed a clear dependence on A(c)/A(s) ratio. In general, depth profiles obtained for ratios above 1-10 could not be used to determine Delta z. We found that Delta z increased non-linearly with A(c)/A(s) ratio. The best depth profile types, leading to highest depth resolution and reproducibility, were attained in all cases by using the isotopes with low/medium A(c) values and with the highest A(s) values. In these conditions, an improvement of up to 4 times in Delta z values was achieved. The average ablation rates were in the range from 0.55 microm pulse(-1) for copper coating on steel to 0.83 microm pulse(-1) for zinc coating on steel, and the Delta z values were between 2.74 microm for nickel coating on chromium and 5.91 microm for nickel coating on copper, with RSD values about 5-8%.

  6. High-Resolution Data for a Low-Resolution World

    Energy Technology Data Exchange (ETDEWEB)

    Brady, Brendan Williams [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-10

    In the past 15 years, the upper section of Cañon de Valle has been severely altered by wildfires and subsequent runoff events. Loss of root structures on high-angle slopes results in debris flow and sediment accumulation in the narrow canyon bottom. The original intent of the study described here was to better understand the changes occurring in watershed soil elevations over the course of several post-fire years. An elevation dataset from 5 years post-Cerro Grande fire was compared to high-resolution LiDAR data from 14 years post-Cerro Grande fire (also 3 years post-Las Conchas fire). The following analysis was motivated by a problematic comparison of these datasets of unlike resolution, and therefore focuses on what the data reveals of itself. The objective of this study is to highlight the effects vegetation can have on remote sensing data that intends to read ground surface elevation.

  7. High resolution temperature measurement technique for measuring marine heat flow

    Institute of Scientific and Technical Information of China (English)

    QIN; YangYang; YANG; XiaoQiu; WU; BaoZhen; SUN; ZhaoHua; SHI; XiaoBin

    2013-01-01

    High resolution temperature measurement technique is one of the key techniques for measuring marine heat flow. Basing on Pt1000 platinum resistance which has the characteristics of high accuracy and good stability, we designed a bridge reversal excitation circuit for high resolution temperature measurement. And the deep ocean floor in-situ test results show that: (1) temperature deviation and peak-to-peak resolution of the first version circuit board (V1) are 1.960-1.990 mK and 0.980-0.995 m Kat 1.2-2.7°C, respectively; and temperature deviation and peak-to-peak resolution of the second circuit board (V2) are 2.260mK and 1.130 mK at 1.2-1.3°C, respectively; (2) During the 2012NSFC-IndOcean cruise, seafloor geothermal gradient at Ind2012HF03,-07 and-12 stations (water depth ranges from 3841 to 4541 m) were successfully measured, the values are 59.1,75.1 and 71.6°C/km, respectively. And the measurement errors of geothermal gradient at these three stations are less than 3.0% in terms of the peak-to-peak resolution. These indicate that the high resolution temperature measurement technique based on Pt1000 platinum resistance in this paper can be applied to marine heat flow measurement to obtain high precision geothermal parameters.

  8. Depth strain profile with sub-nm resolution in a thin silicon film using medium energy ion scattering

    Energy Technology Data Exchange (ETDEWEB)

    Jalabert, D.; Rouviere, J.L. [CEA-INAC/UJF-Grenoble 1 UMR-E, SP2M, LEMMA, MINATEC Campus, Grenoble (France); Pelloux-Gervais, D.; Canut, B. [Institut des Nanotechnologies de Lyon, Universite de Lyon, INL-UMR5270, CNRS, INSA de Lyon, Villeurbanne 69621 (France); Beche, A. [CEA-INAC/UJF-Grenoble 1 UMR-E, SP2M, LEMMA, MINATEC Campus, Grenoble (France); FEI Company, Eindhoven (Netherlands); Hartmann, J.M.; Gergaud, P. [CEA-Leti, MINATEC, Grenoble (France)

    2012-02-15

    The depth strain profile in silicon from the Si(001) substrate to the surface of a 2 nm thick Si/12 nm thick SiGe/bulk Si heterostructure has been determined by medium energy ion scattering (MEIS). It shows with sub-nanometer resolution and high strain sensitivity that the thin Si cap presents residual compressive strain caused by Ge diffusion coming from the fully strained SiGe layer underneath. The strain state of the SiGe buffer have been checked by X-ray diffraction (XRD) and nano-beam electron diffraction (NBED) measurements. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. High resolution studies of massive primordial haloes

    CERN Document Server

    Latif, M A; Schmidt, W; Niemeyer, J

    2012-01-01

    Atomic cooling haloes with T_vir > 10^4 K are the most plausible sites for the formation of the first galaxies. In this article, we aim to study the implications of gravity driven turbulence in protogalactic haloes. By varying the resolution per Jeans length, we explore whether the turbulent cascade is resolved well enough to obtain converged results. We have performed high resolution cosmological simulations using the adaptive mesh refinement code Enzo including a subgrid-scale turbulence model to study the role of unresolved turbulence. We compared the results of three different Jeans resolutions from 16 to 64 cells. While radially averaged profiles roughly agree at different resolutions, differences in the morphology reveal that even the highest resolution employed provides no convergence. Moreover, taking into account unresolved turbulence significantly influences the morphology of a halo. We have quantified the properties of the high-density clumps in the halo. These clumps are gravitationally unbound wi...

  10. High Resolution Silicon Deformable Mirrors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal we describe a plan to build a deformable mirror suitable for space-based operation in systems for high-resolution imaging. The prototype DM will be...

  11. High range resolution micro-Doppler analysis

    Science.gov (United States)

    Cammenga, Zachary A.; Smith, Graeme E.; Baker, Christopher J.

    2015-05-01

    This paper addresses use of the micro-Doppler effect and the use of high range-resolution profiles to observe complex targets in complex target scenes. The combination of micro-Doppler and high range-resolution provides the ability to separate the motion of complex targets from one another. This ability leads to the differentiation of targets based on their micro-Doppler signatures. Without the high-range resolution, this would not be possible because the individual signatures would not be separable. This paper also addresses the use of the micro-Doppler information and high range-resolution profiles to generate an approximation of the scattering properties of a complex target. This approximation gives insight into the structure of the complex target and, critically, is created without using a pre-determined target model.

  12. Structure of high-resolution NMR spectra

    CERN Document Server

    Corio, PL

    2012-01-01

    Structure of High-Resolution NMR Spectra provides the principles, theories, and mathematical and physical concepts of high-resolution nuclear magnetic resonance spectra.The book presents the elementary theory of magnetic resonance; the quantum mechanical theory of angular momentum; the general theory of steady state spectra; and multiple quantum transitions, double resonance and spin echo experiments.Physicists, chemists, and researchers will find the book a valuable reference text.

  13. High resolution SAR applications and instrument design

    Science.gov (United States)

    Dionisio, C.; Torre, A.

    1993-01-01

    The Synthetic Aperture Radar (SAR) has viewed, in the last two years, a huge increment of interest from many preset and potential users. The good spatial resolution associated to the all weather capability lead to considering SAR not only a scientific instrument but a tool for verifying and controlling the daily human relationships with the Earth Environment. New missions were identified for SAR as spatial resolution became lower than three meters: disasters, pollution, ships traffic, volcanic eruptions, earthquake effect are only a few of the possible objects which can be effectively detected, controlled and monitored by SAR mounted on satellites. High resolution radar design constraints and dimensioning are discussed.

  14. Depth resolution at organic interfaces sputtered by argon gas cluster ions: the effect of energy, angle and cluster size.

    Science.gov (United States)

    Seah, M P; Spencer, S J; Havelund, R; Gilmore, I S; Shard, A G

    2015-10-07

    An analysis is presented of the effect of experimental parameters such as energy, angle and cluster size on the depth resolution in depth profiling organic materials using Ar gas cluster ions. The first results are presented of the incident ion angle dependence of the depth resolution, obtained at the Irganox 1010 to silicon interface, from profiles by X-ray photoelectron spectrometry (XPS). By analysis of all relevant published depth profile data, it is shown that such data, from delta layers in secondary ion mass spectrometry (SIMS), correlate with the XPS data from interfaces if it is assumed that the monolayers of the Irganox 1010 adjacent to the wafer substrate surface have an enhanced sputtering rate. SIMS data confirm this enhancement. These results show that the traditional relation for the depth resolution, FWHM = 2.1Y(1/3) or slightly better, FWHM = P(X)Y(1/3)/n(0.2), where n is the argon gas cluster size, and P(X) is a parameter for each material are valid both at the 45° incidence angle of the argon gas cluster sputtering ions used in most studies and at all angles from 0° to 80°. This implies that, for optimal depth profile resolution, 0° or >75° incidence may be significantly better than the 45° traditionally used, especially for the low energy per atom settings required for the best resolved profiles in organic materials. A detailed analysis, however, shows that the FWHM requires a constant contribution added in quadrature to the above such that there are minimal improvements at 0° or greater than 75°. A critical test at 75° confirms the presence of this constant contribution.

  15. 4MOST: the high-resolution spectrograph

    Science.gov (United States)

    Seifert, W.; Xu, W.; Buschkamp, P.; Feiz, C.; Saviauk, A.; Barden, S.; Quirrenbach, A.; Mandel, H.

    2016-08-01

    4MOST (4-meter Multi-Object Spectroscopic Telescope) is a wide-field, fiber-feed, high-multiplex spectroscopic survey facility to be installed on the 4-meter ESO telescope VISTA in Chile. It consists of two identical low resolution spectrographs and one high resolution spectrograph. The instrument is presently in the preliminary design phase and expected to get operational end of 2022. The high resolution spectrograph will afford simultaneous observations of up to 812 targets - over a hexagonal field of view of 4.1 sq.degrees on sky - with a spectral resolution R>18,000 covering a wavelength range from 393 to 679nm in three channels. In this paper we present the optical and mechanical design of the high resolution spectrograph (HRS) as prepared for the review at ESO, Garching. The expected performance including the highly multiplexed fiber slit concept is simulated and its impact on the optical performance given. We show the thermal and finite element analyses and the resulting stability of the spectrograph under operational conditions.

  16. High-Resolution PET Detector. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Karp, Joel

    2014-03-26

    The objective of this project was to develop an understanding of the limits of performance for a high resolution PET detector using an approach based on continuous scintillation crystals rather than pixelated crystals. The overall goal was to design a high-resolution detector, which requires both high spatial resolution and high sensitivity for 511 keV gammas. Continuous scintillation detectors (Anger cameras) have been used extensively for both single-photon and PET scanners, however, these instruments were based on NaI(Tl) scintillators using relatively large, individual photo-multipliers. In this project we investigated the potential of this type of detector technology to achieve higher spatial resolution through the use of improved scintillator materials and photo-sensors, and modification of the detector surface to optimize the light response function.We achieved an average spatial resolution of 3-mm for a 25-mm thick, LYSO continuous detector using a maximum likelihood position algorithm and shallow slots cut into the entrance surface.

  17. Single-pixel 3D imaging with time-based depth resolution

    CERN Document Server

    Sun, Ming-Jie; Gibson, Graham M; Sun, Baoqing; Radwell, Neal; Lamb, Robert; Padgett, Miles J

    2016-01-01

    Time-of-flight three dimensional imaging is an important tool for many applications, such as object recognition and remote sensing. Unlike conventional imaging approach using pixelated detector array, single-pixel imaging based on projected patterns, such as Hadamard patterns, utilises an alternative strategy to acquire information with sampling basis. Here we show a modified single-pixel camera using a pulsed illumination source and a high-speed photodiode, capable of reconstructing 128x128 pixel resolution 3D scenes to an accuracy of ~3 mm at a range of ~5 m. Furthermore, we demonstrate continuous real-time 3D video with a frame-rate up to 12 Hz. The simplicity of the system hardware could enable low-cost 3D imaging devices for precision ranging at wavelengths beyond the visible spectrum.

  18. A High Resolution Scale-of-four

    Science.gov (United States)

    Fitch, V.

    1949-08-25

    A high resolution scale-of-four has been developed to be used in conjunction with the nuclear particle detection devices in applications where the counting rate is unusually high. Specifically, it is intended to precede the commercially available medium resolution scaling circuits and so decrease the resolving time of the counting system. The circuit will function reliably on continuously recurring pulses separated by less than 0.1 microseconds. It will resolve two pulses (occurring at a moderate repetition rate) which are spaced at 0.04 microseconds. A five-volt input signal is sufficient to actuate the device.

  19. Single shot high resolution digital holography.

    Science.gov (United States)

    Khare, Kedar; Ali, P T Samsheer; Joseph, Joby

    2013-02-11

    We demonstrate a novel computational method for high resolution image recovery from a single digital hologram frame. The complex object field is obtained from the recorded hologram by solving a constrained optimization problem. This approach which is unlike the physical hologram replay process is shown to provide high quality image recovery even when the dc and the cross terms in the hologram overlap in the Fourier domain. Experimental results are shown for a Fresnel zone hologram of a resolution chart, intentionally recorded with a small off-axis reference beam angle. Excellent image recovery is observed without the presence of dc or twin image terms and with minimal speckle noise.

  20. High resolution multiplexed functional imaging in live embryos (Conference Presentation)

    Science.gov (United States)

    Xu, Dongli; Zhou, Weibin; Peng, Leilei

    2017-02-01

    Fourier multiplexed fluorescence lifetime imaging (FmFLIM) scanning laser optical tomography (FmFLIM-SLOT) combines FmFLIM and Scanning laser optical tomography (SLOT) to perform multiplexed 3D FLIM imaging of live embryos. The system had demonstrate multiplexed functional imaging of zebrafish embryos genetically express Foster Resonant Energy Transfer (FRET) sensors. However, previous system has a 20 micron resolution because the focused Gaussian beam diverges quickly from the focused plane, makes it difficult to achieve high resolution imaging over a long projection depth. Here, we present a high-resolution FmFLIM-SLOT system with achromatic Bessel beam, which achieves 3 micron resolution in 3D deep tissue imaging. In Bessel-FmFLIM-SLOT, multiple laser excitation lines are firstly intensity modulated by a Michelson interferometer with a spinning polygon mirror optical delay line, which enables Fourier multiplexed multi-channel lifetime measurements. Then, a spatial light modulator and a prism are used to transform the modulated Gaussian laser beam to an achromatic Bessel beam. The achromatic Bessel beam scans across the whole specimen with equal angular intervals as sample rotated. After tomography reconstruction and the frequency domain lifetime analysis method, both the 3D intensity and lifetime image of multiple excitation-emission can be obtained. Using Bessel-FmFLIM-SLOT system, we performed cellular-resolution FLIM tomography imaging of live zebrafish embryo. Genetically expressed FRET sensors in these embryo will allow non-invasive observation of multiple biochemical processes in vivo.

  1. Customized MFM probes with high lateral resolution

    Directory of Open Access Journals (Sweden)

    Óscar Iglesias-Freire

    2016-07-01

    Full Text Available Magnetic force microscopy (MFM is a widely used technique for magnetic imaging. Besides its advantages such as the high spatial resolution and the easy use in the characterization of relevant applied materials, the main handicaps of the technique are the lack of control over the tip stray field and poor lateral resolution when working under standard conditions. In this work, we present a convenient route to prepare high-performance MFM probes with sub-10 nm (sub-25 nm topographic (magnetic lateral resolution by following an easy and quick low-cost approach. This allows one to not only customize the tip stray field, avoiding tip-induced changes in the sample magnetization, but also to optimize MFM imaging in vacuum (or liquid media by choosing tips mounted on hard (or soft cantilevers, a technology that is currently not available on the market.

  2. High-resolution electrohydrodynamic jet printing

    Science.gov (United States)

    Park, Jang-Ung; Hardy, Matt; Kang, Seong Jun; Barton, Kira; Adair, Kurt; Mukhopadhyay, Deep Kishore; Lee, Chang Young; Strano, Michael S.; Alleyne, Andrew G.; Georgiadis, John G.; Ferreira, Placid M.; Rogers, John A.

    2007-10-01

    Efforts to adapt and extend graphic arts printing techniques for demanding device applications in electronics, biotechnology and microelectromechanical systems have grown rapidly in recent years. Here, we describe the use of electrohydrodynamically induced fluid flows through fine microcapillary nozzles for jet printing of patterns and functional devices with submicrometre resolution. Key aspects of the physics of this approach, which has some features in common with related but comparatively low-resolution techniques for graphic arts, are revealed through direct high-speed imaging of the droplet formation processes. Printing of complex patterns of inks, ranging from insulating and conducting polymers, to solution suspensions of silicon nanoparticles and rods, to single-walled carbon nanotubes, using integrated computer-controlled printer systems illustrates some of the capabilities. High-resolution printed metal interconnects, electrodes and probing pads for representative circuit patterns and functional transistors with critical dimensions as small as 1μm demonstrate potential applications in printed electronics.

  3. Smartphone microendoscopy for high resolution fluorescence imaging

    CERN Document Server

    Hong, Xiangqian; Mugler, Dale H; Yu, Bing

    2016-01-01

    High resolution optical endoscopes are increasingly used in diagnosis of various medical conditions of internal organs, such as the gastrointestinal tracts, but they are too expensive for use in resource-poor settings. On the other hand, smartphones with high resolution cameras and Internet access have become more affordable, enabling them to diffuse into most rural areas and developing countries in the past decade. In this letter we describe a smartphone microendoscope that can take fluorescence images with a spatial resolution of 3.1 {\\mu}m. Images collected from ex vivo, in vitro and in vivo samples using the device are also presented. The compact and cost-effective smartphone microendoscope may be envisaged as a powerful tool for detecting pre-cancerous lesions of internal organs in low and middle income countries.

  4. High Resolution Continuous Flow Analysis System for Polar Ice Cores

    Science.gov (United States)

    Dallmayr, Remi; Azuma, Kumiko; Yamada, Hironobu; Kjær, Helle Astrid; Vallelonga, Paul; Azuma, Nobuhiko; Takata, Morimasa

    2014-05-01

    In the last decades, Continuous Flow Analysis (CFA) technology for ice core analyses has been developed to reconstruct the past changes of the climate system 1), 2). Compared with traditional analyses of discrete samples, a CFA system offers much faster and higher depth resolution analyses. It also generates a decontaminated sample stream without time-consuming sample processing procedure by using the inner area of an ice-core sample.. The CFA system that we have been developing is currently able to continuously measure stable water isotopes 3) and electrolytic conductivity, as well as to collect discrete samples for the both inner and outer areas with variable depth resolutions. Chemistry analyses4) and methane-gas analysis 5) are planned to be added using the continuous water stream system 5). In order to optimize the resolution of the current system with minimal sample volumes necessary for different analyses, our CFA system typically melts an ice core at 1.6 cm/min. Instead of using a wire position encoder with typical 1mm positioning resolution 6), we decided to use a high-accuracy CCD Laser displacement sensor (LKG-G505, Keyence). At the 1.6 cm/min melt rate, the positioning resolution was increased to 0.27mm. Also, the mixing volume that occurs in our open split debubbler is regulated using its weight. The overflow pumping rate is smoothly PID controlled to maintain the weight as low as possible, while keeping a safety buffer of water to avoid air bubbles downstream. To evaluate the system's depth-resolution, we will present the preliminary data of electrolytic conductivity obtained by melting 12 bags of the North Greenland Eemian Ice Drilling (NEEM) ice core. The samples correspond to different climate intervals (Greenland Stadial 21, 22, Greenland Stadial 5, Greenland Interstadial 5, Greenland Interstadial 7, Greenland Stadial 8). We will present results for the Greenland Stadial -8, whose depths and ages are between 1723.7 and 1724.8 meters, and 35.520 to

  5. Persistent retrograde flow structures at high latitudes - extent in depth and time

    Science.gov (United States)

    Baldner, Charles; Bogart, Richard S.

    2017-08-01

    Medium resolution helioseismic studies of the near-surface layers of the Sun have revealed the existence of coherent retrograde flow structures that persist for multiple solar rotations (Bogart et al. 2015). Similar surface features have been detected and suggested to be related to giant cell convection (Hathaway et al. 2013). These structures seem to be confined to high latitudes (greater than 60°N/S) and are have magnitudes (relative to the mean solar flow) of less than 1 m s-1. In this work we extend our earlier analysis of these flow structures by studying their extent and structure in depth and their evolution in time. In particular, we attempt to determine the depth at which the anomalous flow structures are most significant, and to determine their migration relative to the Carrington coordinate frame.

  6. The future of high resolution electron microscopy

    Institute of Scientific and Technical Information of China (English)

    D Van Dyck

    2000-01-01

    The state of the art and the future in quantitative high resolution electron microscopy are discussed in the framework of parameter estimation. Reconstruction methods are then to be considered as direct methods to yield a starting structure for further refinement. With the increasing flexibility of the instruments, computer aided experimental strategy will become important.

  7. High resolution spectroscopy of planet bearing stars

    Directory of Open Access Journals (Sweden)

    M. C. Gálvez

    2007-01-01

    Full Text Available We present here the first steps of an extended spectroscopic survey in order to characterize the stellar hosts of extra-solar planets. We have selected several known stars with plan- ets and using high resolution spectroscopy, we have studied their properties.

  8. High-resolution seismic profiling on water

    OpenAIRE

    McGee, T.M.

    2000-01-01

    Herein is presented an overview of high-resolution seismic profiling on water. Included are basic concepts and terminology as well as discussions of types of sources and receivers, field practice, data recording and data processing. Emphasis is on digital single-channel profiling for engineering and environmental purposes.

  9. Compact high-resolution spectral phase shaper

    NARCIS (Netherlands)

    Postma, S.; Walle, van der P.; Offerhaus, H.L.; Hulst, van N.F.

    2005-01-01

    The design and operation of a high-resolution spectral phase shaper with a footprint of only 7×10 cm2 is presented. The liquid-crystal modulator has 4096 elements. More than 600 independent degrees of freedom can be positioned with a relative accuracy of 1 pixel. The spectral shaping of pulses fro

  10. A High-Resolution Stopwatch for Cents

    Science.gov (United States)

    Gingl, Z.; Kopasz, K.

    2011-01-01

    A very low-cost, easy-to-make stopwatch is presented to support various experiments in mechanics. The high-resolution stopwatch is based on two photodetectors connected directly to the microphone input of a sound card. Dedicated free open-source software has been developed and made available to download. The efficiency is demonstrated by a free…

  11. Compressive sensing for high resolution radar imaging

    NARCIS (Netherlands)

    Anitori, L.; Otten, M.P.G.; Hoogeboom, P.

    2010-01-01

    In this paper we present some preliminary results on the application of Compressive Sensing (CS) to high resolution radar imaging. CS is a recently developed theory which allows reconstruction of sparse signals with a number of measurements much lower than what is required by the Shannon sampling th

  12. High-resolution DEM Effects on Geophysical Flow Models

    Science.gov (United States)

    Williams, M. R.; Bursik, M. I.; Stefanescu, R. E. R.; Patra, A. K.

    2014-12-01

    Geophysical mass flow models are numerical models that approximate pyroclastic flow events and can be used to assess the volcanic hazards certain areas may face. One such model, TITAN2D, approximates granular-flow physics based on a depth-averaged analytical model using inputs of basal and internal friction, material volume at a coordinate point, and a GIS in the form of a digital elevation model (DEM). The volume of modeled material propagates over the DEM in a way that is governed by the slope and curvature of the DEM surface and the basal and internal friction angles. Results from TITAN2D are highly dependent upon the inputs to the model. Here we focus on a single input: the DEM, which can vary in resolution. High resolution DEMs are advantageous in that they contain more surface details than lower-resolution models, presumably allowing modeled flows to propagate in a way more true to the real surface. However, very high resolution DEMs can create undesirable artifacts in the slope and curvature that corrupt flow calculations. With high-resolution DEMs becoming more widely available and preferable for use, determining the point at which high resolution data is less advantageous compared to lower resolution data becomes important. We find that in cases of high resolution, integer-valued DEMs, very high-resolution is detrimental to good model outputs when moderate-to-low (<10-15°) slope angles are involved. At these slope angles, multiple adjacent DEM cell elevation values are equal due to the need for the DEM to approximate the low slope with a limited set of integer values for elevation. The first derivative of the elevation surface thus becomes zero. In these cases, flow propagation is inhibited by these spurious zero-slope conditions. Here we present evidence for this "terracing effect" from 1) a mathematically defined simulated elevation model, to demonstrate the terracing effects of integer valued data, and 2) a real-world DEM where terracing must be

  13. Towards high resolution soil property maps for Austria

    Science.gov (United States)

    Schürz, Christoph; Klotz, Daniel; Herrnegger, Mathew; Schulz, Karsten

    2015-04-01

    Soil hydraulic properties, such as soil texture, soil water retention characteristics, hydraulic conductivity, or soil depth are important inputs for hydrologic catchment modelling. However, the availability of such data in Austria is often insufficient to fulfill requirements of well-established hydrological models. Either, soil data is available in sufficient spatial resolution but only covers a small extent of the considered area, or the data is comprehensive but rather coarse in its spatial resolution. Furthermore, the level of detail and quality of the data differs between the available data sets. In order to generate a comprehensive soil data set for whole Austria that includes main soil physical properties, as well as soil depth and organic carbon content in a high spatial resolution (10x10 to 100x100m²) several available soil data bases are merged and harmonized. Starting point is a high resolution soil texture map that only covers agricultural areas and is available due to Austrian land appraisal. Soil physical properties for those areas are derived by applying pedotransfer functions (e.g. Saxton and Rawls, 2006) resulting in expectation values and quantiles of the respective property for each soil texture class. For agricultural areas where no texture information is available, the most likely soil texture is assigned applying a Bayesian network approach incorporating information such as elevation, soil slope, soil type, or hydro-geology at different spatial scales. Soil data for forested areas, that cover a large extent of the state territory, are rather sparse in Austria. For such areas a similar approach as for agricultural areas is applied by using a Bayesian network for prediction of the soil texture. Additionally, information to various soil parameters taken from literature is incorporated. For areas that are covered by land use different to agriculture or forestry, such as bare rock surfaces, or wetland areas, solely literature information is used

  14. Phase-only hologram generation based on integral imaging and its enhancement in depth resolution

    Institute of Scientific and Technical Information of China (English)

    Jiwoon Yeom; Jisoo Hong; Jae-Hyun Jung; Keehoon Hong; Jae-Hyeung Park; Byoungho Lee

    2011-01-01

    We introduce a phase-only hologram generation method based on an integral imaging,and propose an enhancement method in representable depth interval.The computational integral imaging reconstruction method is modified based on optical flow to obtain depth-slice images for the focused objects only.A phaseonly hologran for multiple plane images is generated using the iterative Fresnel transform algorithm.In addition,a division method in hologram plane is proposed for enhancement in the representable minimum depth interval.%We introduce a phase-only hologram generation method based on an integral imaging, and propose an enhancement method in representable depth interval. The computational integral imaging reconstruction method is modified based on optical flow to obtain depth-slice images for the focused objects only. A phase-only hologram for multiple plane images is generated using the iterative Fvesnel transform algorithm. In addition, a division method in hologram plane is proposed for enhancement in the representable minimum depth interval.

  15. Constructing a WISE High Resolution Galaxy Atlas

    Science.gov (United States)

    Jarrett, T. H.; Masci, F.; Tsai, C. W.; Petty, S.; Cluver, M.; Assef, Roberto J.; Benford, D.; Blain, A.; Bridge, C.; Donoso, E.; Eisenhardt, P.; Fowler, J.; Koribalski, B.; Lake, S.; Neill, James D.; Seibert, M.; Stanford, S.; Wright, E.

    2012-01-01

    After eight months of continuous observations, the Wide-field Infrared Survey Explorer (WISE) mapped the entire sky at 3.4 micron, 4.6 micron, 12 micron, and 22 micron. We have begun a dedicated WISE High Resolution Galaxy Atlas project to fully characterize large, nearby galaxies and produce a legacy image atlas and source catalog. Here we summarize the deconvolution techniques used to significantly improve the spatial resolution of WISE imaging, specifically designed to study the internal anatomy of nearby galaxies. As a case study, we present results for the galaxy NGC 1566, comparing the WISE enhanced-resolution image processing to that of Spitzer, Galaxy Evolution Explorer, and ground-based imaging. This is the first paper in a two-part series; results for a larger sample of nearby galaxies are presented in the second paper.

  16. High-resolution traction force microscopy.

    Science.gov (United States)

    Plotnikov, Sergey V; Sabass, Benedikt; Schwarz, Ulrich S; Waterman, Clare M

    2014-01-01

    Cellular forces generated by the actomyosin cytoskeleton and transmitted to the extracellular matrix (ECM) through discrete, integrin-based protein assemblies, that is, focal adhesions, are critical to developmental morphogenesis and tissue homeostasis, as well as disease progression in cancer. However, quantitative mapping of these forces has been difficult since there has been no experimental technique to visualize nanonewton forces at submicrometer spatial resolution. Here, we provide detailed protocols for measuring cellular forces exerted on two-dimensional elastic substrates with a high-resolution traction force microscopy (TFM) method. We describe fabrication of polyacrylamide substrates labeled with multiple colors of fiducial markers, functionalization of the substrates with ECM proteins, setting up the experiment, and imaging procedures. In addition, we provide the theoretical background of traction reconstruction and experimental considerations important to design a high-resolution TFM experiment. We describe the implementation of a new algorithm for processing of images of fiducial markers that are taken below the surface of the substrate, which significantly improves data quality. We demonstrate the application of the algorithm and explain how to choose a regularization parameter for suppression of the measurement error. A brief discussion of different ways to visualize and analyze the results serves to illustrate possible uses of high-resolution TFM in biomedical research. © 2014 Elsevier Inc. All rights reserved.

  17. Development of a high resolution and high dispersion Thomson parabola.

    Science.gov (United States)

    Jung, D; Hörlein, R; Kiefer, D; Letzring, S; Gautier, D C; Schramm, U; Hübsch, C; Öhm, R; Albright, B J; Fernandez, J C; Habs, D; Hegelich, B M

    2011-01-01

    Here, we report on the development of a novel high resolution and high dispersion Thomson parabola for simultaneously resolving protons and low-Z ions of more than 100 MeV/nucleon necessary to explore novel laser ion acceleration schemes. High electric and magnetic fields enable energy resolutions of ΔE∕E parabola for ion energies of more than 30 MeV/nucleon.

  18. Five Micron High Resolution MALDI Mass Spectrometry Imaging with Simple, Interchangeable, Multi-Resolution Optical System

    Science.gov (United States)

    Feenstra, Adam D.; Dueñas, Maria Emilia; Lee, Young Jin

    2017-01-01

    High-spatial resolution mass spectrometry imaging (MSI) is crucial for the mapping of chemical distributions at the cellular and subcellular level. In this work, we improved our previous laser optical system for matrix-assisted laser desorption ionization (MALDI)-MSI, from 9 μm practical laser spot size to a practical laser spot size of 4 μm, thereby allowing for 5 μm resolution imaging without oversampling. This is accomplished through a combination of spatial filtering, beam expansion, and reduction of the final focal length. Most importantly, the new laser optics system allows for simple modification of the spot size solely through the interchanging of the beam expander component. Using 10×, 5×, and no beam expander, we could routinely change between 4, 7, and 45 μm laser spot size, in less than 5 min. We applied this multi-resolution MALDI-MSI system to a single maize root tissue section with three different spatial resolutions of 5, 10, and 50 μm and compared the differences in imaging quality and signal sensitivity. We also demonstrated the difference in depth of focus between the optical systems with 10× and 5× beam expanders.

  19. Single-pixel three-dimensional imaging with time-based depth resolution

    Science.gov (United States)

    Sun, Ming-Jie; Edgar, Matthew P.; Gibson, Graham M.; Sun, Baoqing; Radwell, Neal; Lamb, Robert; Padgett, Miles J.

    2016-07-01

    Time-of-flight three-dimensional imaging is an important tool for applications such as object recognition and remote sensing. Conventional time-of-flight three-dimensional imaging systems frequently use a raster scanned laser to measure the range of each pixel in the scene sequentially. Here we show a modified time-of-flight three-dimensional imaging system, which can use compressed sensing techniques to reduce acquisition times, whilst distributing the optical illumination over the full field of view. Our system is based on a single-pixel camera using short-pulsed structured illumination and a high-speed photodiode, and is capable of reconstructing 128 × 128-pixel resolution three-dimensional scenes to an accuracy of ~3 mm at a range of ~5 m. Furthermore, by using a compressive sampling strategy, we demonstrate continuous real-time three-dimensional video with a frame-rate up to 12 Hz. The simplicity of the system hardware could enable low-cost three-dimensional imaging devices for precision ranging at wavelengths beyond the visible spectrum.

  20. High-resolution light field reconstruction using a hybrid imaging system.

    Science.gov (United States)

    Wang, Xiang; Li, Lin; Hou, GuangQi

    2016-04-01

    Recently, light field cameras have drawn much attraction for their innovative performance in photographic and scientific applications. However, narrow baselines and constrained spatial resolution of current light field cameras impose restrictions on their usability. Therefore, we design a hybrid imaging system containing a light field camera and a high-resolution digital single lens reflex camera, and these two kinds of cameras share the same optical path with a beam splitter so as to achieve the reconstruction of high-resolution light fields. The high-resolution 4D light fields are reconstructed with a phase-based perspective variation strategy. First, we apply complex steerable pyramid decomposition on the high-resolution image from the digital single lens reflex camera. Then, we perform phase-based perspective-shift processing with the disparity value, which is extracted from the upsampled light field depth map, to create high-resolution synthetic light field images. High-resolution digital refocused images and high-resolution depth maps can be generated in this way. Furthermore, controlling the magnitude of the perspective shift enables us to change the depth of field rendering in the digital refocused images. We show several experimental results to demonstrate the effectiveness of our approach.

  1. High resolution 3D nonlinear integrated inversion

    Institute of Scientific and Technical Information of China (English)

    Li Yong; Wang Xuben; Li Zhirong; Li Qiong; Li Zhengwen

    2009-01-01

    The high resolution 3D nonlinear integrated inversion method is based on nonlinear theory. Under layer control, the log data from several wells (or all wells) in the study area and seismic trace data adjacent to the wells are input to a network with multiple inputs and outputs and are integratedly trained to obtain an adaptive weight function of the entire study area. Integrated nonlinear mapping relationships are built and updated by the lateral and vertical geologic variations of the reservoirs. Therefore, the inversion process and its inversion results can be constrained and controlled and a stable seismic inversion section with high resolution with velocity inversion, impedance inversion, and density inversion sections, can be gained. Good geologic effects have been obtained in model computation tests and real data processing, which verified that this method has high precision, good practicality, and can be used for quantitative reservoir analysis.

  2. Progress toward high resolution EUV spectroscopy

    Science.gov (United States)

    Korendyke, C.; Doschek, G. A.; Warren, H.; Young, P. R.; Chua, D.; Hassler, D. M.; Landi, E.; Davila, J. M.; Klimchuck, J.; Tun, S.; DeForest, C.; Mariska, J. T.; Solar C Spectroscopy Working Group; LEMUR; EUVST Development Team

    2013-07-01

    HIgh resolution EUV spectroscopy is a critical instrumental technique to understand fundamental physical processes in the high temperature solar atmosphere. Spectroscopic observations are used to measure differential emission measure, line of sight and turbulent flows, plasma densities and emission measures. Spatially resolved, spectra of these emission lines with adequate cadence will provide the necessary clues linking small scale structures with large scale, energetic solar phenomena. The necessary observations to determine underlying physical processes and to provide comprehensive temperature coverage of the solar atmosphere above the chromosphere will be obtained by the proposed EUVST instrument for Solar C. This instrument and its design will be discussed in this paper. Progress on the VEry high Resolution Imaging Spectrograph (VERIS) sounding rocket instrument presently under development at the Naval Research Laboratory will also be discussed.

  3. Superconducting High Resolution Fast-Neutron Spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Hau, Ionel Dragos [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    Superconducting high resolution fast-neutron calorimetric spectrometers based on 6LiF and TiB{sub 2} absorbers have been developed. These novel cryogenic spectrometers measure the temperature rise produced in exothermal (n, α) reactions with fast neutrons in 6Li and 10B-loaded materials with heat capacity C operating at temperatures T close to 0.1 K. Temperature variations on the order of 0.5 mK are measured with a Mo/Cu thin film multilayer operated in the transition region between its superconducting and its normal state. The advantage of calorimetry for high resolution spectroscopy is due to the small phonon excitation energies kBT on the order of μeV that serve as signal carriers, resulting in an energy resolution ΔE ~ (kBT2C)1/2, which can be well below 10 keV. An energy resolution of 5.5 keV has been obtained with a Mo/Cu superconducting sensor and a TiB2 absorber using thermal neutrons from a 252Cf neutron source. This resolution is sufficient to observe the effect of recoil nuclei broadening in neutron spectra, which has been related to the lifetime of the first excited state in 7Li. Fast-neutron spectra obtained with a 6Li-enriched LiF absorber show an energy resolution of 16 keV FWHM, and a response in agreement with the 6Li(n, α)3H reaction cross section and Monte Carlo simulations for energies up to several MeV. The energy resolution of order of a few keV makes this novel instrument applicable to fast-neutron transmission spectroscopy based on the unique elemental signature provided by the neutron absorption and scattering resonances. The optimization of the energy resolution based on analytical and numerical models of the detector response is discussed in the context of these applications.

  4. High-Resolution US of Rheumatologic Diseases.

    Science.gov (United States)

    Taljanovic, Mihra S; Melville, David M; Gimber, Lana H; Scalcione, Luke R; Miller, Margaret D; Kwoh, C Kent; Klauser, Andrea S

    2015-01-01

    For the past 15 years, high-resolution ultrasonography (US) is being routinely and increasingly used for initial evaluation and treatment follow-up of rheumatologic diseases. This imaging technique is performed by using high-frequency linear transducers and has proved to be a powerful diagnostic tool in evaluation of articular erosions, simple and complex joint and bursal effusions, tendon sheath effusions, and synovitis, with results comparable to those of magnetic resonance imaging, excluding detection of bone marrow edema. Crystal deposition diseases including gouty arthropathy and calcium pyrophosphate deposition disease (CPPD) have characteristic appearances at US, enabling differentiation between these two diseases and from inflammatory arthropathies. Enthesopathy, which frequently accompanies psoriatic and reactive arthritis, also has a characteristic appearance at high-resolution US, distinguishing these two entities from other inflammatory and metabolic arthropathies. The presence of Doppler signal in examined joints, bursae, and tendon sheaths indicates active synovitis. Microbubble echo contrast agents augment detection of tissue vascularity and may act in the future as a drug delivery vehicle. Frequently, joint, tendon sheath, and bursal fluid aspirations and therapeutic injections are performed under US guidance. The authors describe the high-resolution US technique including gray-scale, color or power Doppler, and contrast agent-enhanced US that is used in evaluation of rheumatologic diseases of the wrist and hand and the ankle and foot in their routine clinical practice. This article demonstrates imaging findings of normal joints, rheumatoid arthritis, gouty arthritis, CPPD, psoriatic and reactive arthritis, and osteoarthritis.

  5. High-resolution flurescence spectroscopy in immunoanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Grubor, Nenad M.

    2005-05-01

    The work presented in this dissertation combines highly sensitive and selective fluorescence line-narrowing spectroscopy (FLNS) detection with various modes of immunoanalytical techniques. It has been shown that FLNS is capable of directly probing molecules immunocomplexed with antibodies, eliminating analytical ambiguities that may arise from interferences that accompany traditional immunochemical techniques. Moreover, the utilization of highly cross-reactive antibodies for highly specific analyte determination has been demonstrated. Finally, they demonstrate the first example of the spectral resolution of diastereomeric analytes based on their interaction with a cross-reactive antibody.

  6. High-resolution flurescence spectroscopy in immunoanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Grubor, Nenad M. [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    The work presented in this dissertation combines highly sensitive and selective fluorescence line-narrowing spectroscopy (FLNS) detection with various modes of immunoanalytical techniques. It has been shown that FLNS is capable of directly probing molecules immunocomplexed with antibodies, eliminating analytical ambiguities that may arise from interferences that accompany traditional immunochemical techniques. Moreover, the utilization of highly cross-reactive antibodies for highly specific analyte determination has been demonstrated. Finally, they demonstrate the first example of the spectral resolution of diastereomeric analytes based on their interaction with a cross-reactive antibody.

  7. High-resolution TOF with RPCs

    Energy Technology Data Exchange (ETDEWEB)

    Fonte, P. E-mail: fonte@lipc.fis.uc.pt; Peskov, V

    2002-01-21

    In this work, we describe some recent results concerning the application of Resistive Plate Chambers operated in avalanche mode at atmospheric pressure for high-resolution time-of-flight measurements. A combination of multiple, mechanically accurate, thin gas gaps and state-of-the-art electronics yielded an overall (detector plus electronics) timing accuracy better than 50 ps {sigma} with a detection efficiency up to 99% for MIPs. Single gap chambers were also tested in order to clarify experimentally several aspects of the mode of operation of these detectors. These results open perspectives of affordable and reliable high granularity large area TOF detectors, with an efficiency and time resolution comparable to the existing scintillator-based TOF technology but with a significantly, up to an order of magnitude, lower price per channel.

  8. Structural High-resolution Satellite Image Indexing

    OpenAIRE

    Xia, Gui-Song; YANG, WEN; Delon, Julie; Gousseau, Yann; Sun, Hong; Maître, Henri

    2010-01-01

    International audience; Satellite images with high spatial resolution raise many challenging issues in image understanding and pattern recognition. First, they allow measurement of small objects maybe up to 0.5 m, and both texture and geometrical structures emerge simultaneously. Second, objects in the same type of scenes might appear at different scales and orientations. Consequently, image indexing methods should combine the structure and texture information of images and comply with some i...

  9. Stellar Tools for High Resolution Population Synthesis

    Science.gov (United States)

    Chávez, M.; Bertone, E.; Rodríguez-Merino, L.; Buzzoni, A.

    2005-12-01

    We present preliminary results of the application of a new stellar library of high-resolution synthetic spectra (based upon ATLAS9 and SYNTHE codes developed by R. L. Kurucz) in the calculation of the ultraviolet-optical spectral energy distribution of simple stellar populations (SSPs). For this purpose, the library has been coupled with Buzzoni's population synthesis code. Part of this paper is also devoted to illustrate quantitatively the extent to which synthetic stellar libraries represent real stars.

  10. Petrous apex mucocele: high resolution CT

    Energy Technology Data Exchange (ETDEWEB)

    Memis, A. [Dept. of Radiology, Hospital of Ege Univ., Bornova, Izmir (Turkey); Memis, A. [Dept. of Radiology, Hospital of Ege Univ., Bornova, Izmir (Turkey); Alper, H. [Dept. of Radiology, Hospital of Ege Univ., Bornova, Izmir (Turkey); Calli, C. [Dept. of Radiology, Hospital of Ege Univ., Bornova, Izmir (Turkey); Ozer, H. [Dept. of Radiology, Hospital of Ege Univ., Bornova, Izmir (Turkey); Ozdamar, N. [Dept. of Neurosurgery, Hospital of Ege Univ., Bornova, Izmir (Turkey)

    1994-11-01

    Mucocele of the petrous apex is very rare, only three cases having been reported. Since this area is inaccessible to direct examination, imaging, preferably high resolution computed tomography (HR CT) is essential. We report a case showing an eroding, non enhancing mass with sharp, lobulated contours, within the petrous apex. The presence of a large air cell on the opposite side suggested a mucocele. (orig.)

  11. High resolution NMR theory and chemical applications

    CERN Document Server

    Becker, Edwin D

    1969-01-01

    High Resolution NMR: Theory and Chemical Applications focuses on the applications of nuclear magnetic resonance (NMR), as well as chemical shifts, lattices, and couplings. The book first offers information on the theory of NMR, including nuclear spin and magnetic moment, spin lattice relaxation, line widths, saturation, quantum mechanical description of NMR, and ringing. The text then ponders on instrumentation and techniques and chemical shifts. Discussions focus on the origin of chemical shifts, reference compounds, empirical correlations of chemical shifts, modulation and phase detection,

  12. High Speed and High Resolution Table-Top Nanoscale Imaging

    CERN Document Server

    Tadesse, G K; Demmler, S; HÄdrich, S; Wahyutama, I; Steinert, M; Spielmann, C; ZÜrch, M; TÜnnermann, A; Limpert, J; Rothhardt, J

    2016-01-01

    We present a table-top coherent diffraction imaging (CDI) experiment based on high-order harmonics generated at 18 nm by a high average power femtosecond fiber laser system. The high photon flux, narrow spectral bandwidth and high degree of spatial coherence allow for ultra-high sub-wavelength resolution imaging at a high numerical aperture. Our experiments demonstrate a half-pitch resolution of 13.6 nm, very close to the actual Abbe-limit of 12.4 nm, which is the highest resolution achieved from any table-top XUV or X-ray microscope. In addition, 20.5 nm resolution was achieved with only 3 sec of integration time bringing live diffraction imaging and 3D tomography on the nanoscale one step closer to reality. The current resolution is solely limited by the wavelength and the detector size. Thus, table-top nanoscopes with only a few-nm resolutions are in reach and will find applications in many areas of science and technology.

  13. High Sensitivity, High Frequency and High Time Resolution Decimetric Spectroscope

    Science.gov (United States)

    Sawant, H. S.; Rosa, R. R.

    1990-11-01

    RESUMEN. Se ha desarrollado el primer espectroscopio decimetrico latino americano operando en una banda de 100 MHz con alta resoluci6n de fre- cuencia (100 KHz) y tiempo (10 ms), alrededor de cualquier centro de frecuencia en el intervalo de 2000-200 MHz. El prop6sito de esta nota es describir investigaciones solares y no solares que se planean, progra ma de investigaci6n y la situaci6n actual de desarrollo de este espectroscopio. ABSTRACT. First Latin American Decimetric Spectroscope operating over a band of 100 MHz with high resolution in frequency (100 KHz) and time (10 ms), around any center frequency in the range of 2000-200 MHz is being developed. The purpose of this note is to describe planned solar, and non-solar, research programmes and present status of development of this spectroscope. Keq wo : INSTRUMENTS - SPECTROSCOPY

  14. High Resolution Measurement of the Glycolytic Rate

    Science.gov (United States)

    Bittner, Carla X.; Loaiza, Anitsi; Ruminot, Iván; Larenas, Valeria; Sotelo-Hitschfeld, Tamara; Gutiérrez, Robin; Córdova, Alex; Valdebenito, Rocío; Frommer, Wolf B.; Barros, L. Felipe

    2010-01-01

    The glycolytic rate is sensitive to physiological activity, hormones, stress, aging, and malignant transformation. Standard techniques to measure the glycolytic rate are based on radioactive isotopes, are not able to resolve single cells and have poor temporal resolution, limitations that hamper the study of energy metabolism in the brain and other organs. A new method is described in this article, which makes use of a recently developed FRET glucose nanosensor to measure the rate of glycolysis in single cells with high temporal resolution. Used in cultured astrocytes, the method showed for the first time that glycolysis can be activated within seconds by a combination of glutamate and K+, supporting a role for astrocytes in neurometabolic and neurovascular coupling in the brain. It was also possible to make a direct comparison of metabolism in neurons and astrocytes lying in close proximity, paving the way to a high-resolution characterization of brain energy metabolism. Single-cell glycolytic rates were also measured in fibroblasts, adipocytes, myoblasts, and tumor cells, showing higher rates for undifferentiated cells and significant metabolic heterogeneity within cell types. This method should facilitate the investigation of tissue metabolism at the single-cell level and is readily adaptable for high-throughput analysis. PMID:20890447

  15. High resolution measurement of the glycolytic rate

    Directory of Open Access Journals (Sweden)

    Carla X Bittner

    2010-09-01

    Full Text Available The glycolytic rate is sensitive to physiological activity, hormones, stress, aging and malignant transformation. Standard techniques to measure the glycolytic rate are based on radioactive isotopes, are not able to resolve single cells and have poor temporal resolution, limitations that hamper the study of energy metabolism in the brain and other organs. A new method is described in this article, which makes use of a recently-developed FRET glucose nanosensor to measure the rate of glycolysis in single cells with high temporal resolution. Used in cultured astrocytes, the method showed for the first time that glycolysis can be activated within seconds by a combination of glutamate and K+, supporting a role for astrocytes in neurometabolic and neurovascular coupling in the brain. It was also possible to make a direct comparison of metabolism in neurons and astrocytes lying in close proximity, paving the way to a high-resolution characterization of brain energy metabolism. Single-cell glycolytic rates were also measured in fibroblasts, adipocytes, myoblasts and tumor cells, showing higher rates for undifferentiated cells and significant metabolic heterogeneity within cell types. This method should facilitate the investigation of tissue metabolism at the single-cell level and is readily adaptable for high-throughput analysis.

  16. SPIRAL2/DESIR high resolution mass separator

    Energy Technology Data Exchange (ETDEWEB)

    Kurtukian-Nieto, T., E-mail: kurtukia@cenbg.in2p3.fr [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Baartman, R. [TRIUMF, 4004 Wesbrook Mall, Vancouver B.C., V6T 2A3 (Canada); Blank, B.; Chiron, T. [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Davids, C. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Delalee, F. [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Duval, M. [GANIL, CEA/DSM-CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); El Abbeir, S.; Fournier, A. [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Lunney, D. [CSNSM-IN2P3-CNRS, Université de Paris Sud, F-91405 Orsay (France); Méot, F. [BNL, Upton, Long Island, New York (United States); Serani, L. [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Stodel, M.-H.; Varenne, F. [GANIL, CEA/DSM-CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); and others

    2013-12-15

    DESIR is the low-energy part of the SPIRAL2 ISOL facility under construction at GANIL. DESIR includes a high-resolution mass separator (HRS) with a designed resolving power m/Δm of 31,000 for a 1 π-mm-mrad beam emittance, obtained using a high-intensity beam cooling device. The proposed design consists of two 90-degree magnetic dipoles, complemented by electrostatic quadrupoles, sextupoles, and a multipole, arranged in a symmetric configuration to minimize aberrations. A detailed description of the design and results of extensive simulations are given.

  17. Moderate resolution spectrophotometry of high redshift quasars

    Science.gov (United States)

    Schneider, Donald P.; Schmidt, Maarten; Gunn, James E.

    1991-01-01

    A uniform set of photometry and high signal-to-noise moderate resolution spectroscopy of 33 quasars with redshifts larger than 3.1 is presented. The sample consists of 17 newly discovered quasars (two with redshifts in excess of 4.4) and 16 sources drawn from the literature. The objects in this sample have r magnitudes between 17.4 and 21.4; their luminosities range from -28.8 to -24.9. Three of the 33 objects are broad absorption line quasars. A number of possible high redshift damped Ly-alpha systems were found.

  18. Radiation length imaging with high resolution telescopes

    CERN Document Server

    Stolzenberg, U; Schwenker, B; Wieduwilt, P; Marinas, C; Lütticke, F

    2016-01-01

    The construction of low mass vertex detectors with a high level of system integration is of great interest for next generation collider experiments. Radiation length images with a sufficient spatial resolution can be used to measure and disentangle complex radiation length $X$/$X_0$ profiles and contribute to the understanding of vertex detector systems. Test beam experiments with multi GeV particle beams and high-resolution tracking telescopes provide an opportunity to obtain precise 2D images of the radiation length of thin planar objects. At the heart of the $X$/$X_0$ imaging is a spatially resolved measurement of the scattering angles of particles traversing the object under study. The main challenges are the alignment of the reference telescope and the calibration of its angular resolution. In order to demonstrate the capabilities of $X$/$X_0$ imaging, a test beam experiment has been conducted. The devices under test were two mechanical prototype modules of the Belle II vertex detector. A data sample of ...

  19. High Resolution Bathymetry Estimation Improvement with Single ImageSuper Resolution Algorithm Super Resolution Forests

    Science.gov (United States)

    2017-01-26

    process of the SRF algorithm, we were able to further increase the mean PSNR score of the high resolution estimated data from previously used bicubic...This meant that implementing the edited variance before the bicubic estimates were created caused the mean PSNR to increase the most, and all...interpolation (by about 1 dB). Figure 7: PSNR comparison (with mean scores) between Bicubic Interpolation and SRF Figure 7 shows the comparison between

  20. High-time Resolution Astrophysics and Pulsars

    CERN Document Server

    Shearer, Andy

    2008-01-01

    The discovery of pulsars in 1968 heralded an era where the temporal characteristics of detectors had to be reassessed. Up to this point detector integration times would normally be measured in minutes rather seconds and definitely not on sub-second time scales. At the start of the 21st century pulsar observations are still pushing the limits of detector telescope capabilities. Flux variations on times scales less than 1 nsec have been observed during giant radio pulses. Pulsar studies over the next 10 to 20 years will require instruments with time resolutions down to microseconds and below, high-quantum quantum efficiency, reasonable energy resolution and sensitive to circular and linear polarisation of stochastic signals. This chapter is review of temporally resolved optical observations of pulsars. It concludes with estimates of the observability of pulsars with both existing telescopes and into the ELT era.

  1. Novel high-resolution VGA QWIP detector

    Science.gov (United States)

    Kataria, H.; Asplund, C.; Lindberg, A.; Smuk, S.; Alverbro, J.; Evans, D.; Sehlin, S.; Becanovic, S.; Tinghag, P.; Höglund, L.; Sjöström, F.; Costard, E.

    2017-02-01

    Continuing with its legacy of producing high performance infrared detectors, IRnova introduces its high resolution LWIR IDDCA (Integrated Detector Dewar Cooler assembly) based on QWIP (quantum well infrared photodetector) technology. The Focal Plane Array (FPA) has 640×512 pixels, with small (15μm) pixel pitch, and is based on the FLIRIndigo ISC0403 Readout Integrated Circuit (ROIC). The QWIP epitaxial structures are grown by metal-organic vapor phase epitaxy (MOVPE) at IRnova. Detector stability and response uniformity inherent to III/V based material will be demonstrated in terms of high performing detectors. Results showing low NETD at high frame rate will be presented. This makes it one of the first 15μm pitch QWIP based LWIR IDDCA commercially available on the market. High operability and stability of our other QWIP based products will also be shared.

  2. Development of a high resolution module for PET scanners

    Science.gov (United States)

    Stringhini, G.; Pizzichemi, M.; Ghezzi, A.; Stojkovic, A.; Tavernier, S.; Niknejad, T.; Varela, J.; Paganoni, M.; Auffray, E.

    2017-02-01

    Positron Emission Tomography (PET) scanners require high performances in term of spatial resolution and sensitivity to allow early detection of cancer masses. In small animal and organ dedicated PET scanners the Depth of Interaction (DOI) information has to be obtained to avoid parallax errors and to reconstruct high resolution images. In the whole body PET, the DOI information can be useful to correct for the time jitter of the optical photons along the main axis of the scintillator, improving the time performances. In this work we present the development of PET module designed to reach high performance as compared to the current scanners while keeping the complexity of the system reasonably low. The module presented is based on a 64 LYSO (Lutetium-yttrium oxyorthosilicate) crystals matrix and on a 4×4 MPPC (Multi Pixels Photon Counter) array as detector in a 4 to 1 coupling between the crystals and the detector and a single side readout. The lateral surfaces of the crystals are optically treated to be unpolished. The DOI and the energy resolution of the PET module are presented and a fast method to obtain the DOI calibration is discussed.

  3. High-Temporal-Resolution High-Spatial-Resolution Spaceborne SAR Based on Continuously Varying PRF.

    Science.gov (United States)

    Men, Zhirong; Wang, Pengbo; Li, Chunsheng; Chen, Jie; Liu, Wei; Fang, Yue

    2017-07-25

    Synthetic Aperture Radar (SAR) is a well-established and powerful imaging technique for acquiring high-spatial-resolution images of the Earth's surface. With the development of beam steering techniques, sliding spotlight and staring spotlight modes have been employed to support high-spatial-resolution applications. In addition to this strengthened high-spatial-resolution and wide-swath capability, high-temporal-resolution (short repeat-observation interval) represents a key capability for numerous applications. However, conventional SAR systems are limited in that the same patch can only be illuminated for several seconds within a single pass. This paper considers a novel high-squint-angle system intended to acquire high-spatial-resolution spaceborne SAR images with repeat-observation intervals varying from tens of seconds to several minutes within a single pass. However, an exponentially increased range cell migration would arise and lead to a conflict between the receive window and 'blind ranges'. An efficient data acquisition technique for high-temporal-resolution, high-spatial-resolution and high-squint-angle spaceborne SAR, in which the pulse repetition frequency (PRF) is continuously varied according to the changing slant range, is presented in this paper. This technique allows echo data to remain in the receive window instead of conflicting with the transmitted pulse or nadir echo. Considering the precision of hardware, a compromise and practical strategy is also proposed. Furthermore, a detailed performance analysis of range ambiguities is provided with respect to parameters of TerraSAR-X. For strong point-like targets, the range ambiguity of this technique would be better than that of uniform PRF technique. For this innovative technique, a resampling strategy and modified imaging algorithm have been developed to handle the non-uniformly sampled echo data. Simulations are performed to validate the efficiency of the proposed technique and the associated

  4. In-Depth Mathematical Analysis of Ordinary High School Problems

    Science.gov (United States)

    Stanley, Dick; Walukiewicz, Jolanta

    2004-01-01

    The mathematical depth that is potentially present, even in simple problems is illustrated. An extended analysis of a problem that is an analysis from a mature mathematical perspective with careful attention paid to mathematical reasoning and to using good mathematical habits of mind is used.

  5. In-Depth Mathematical Analysis of Ordinary High School Problems

    Science.gov (United States)

    Stanley, Dick; Walukiewicz, Jolanta

    2004-01-01

    The mathematical depth that is potentially present, even in simple problems is illustrated. An extended analysis of a problem that is an analysis from a mature mathematical perspective with careful attention paid to mathematical reasoning and to using good mathematical habits of mind is used.

  6. Ultra-deep Large Binocular Camera U-band Imaging of the GOODS-North Field: Depth vs. Resolution

    Science.gov (United States)

    Ashcraft, Teresa; Windhorst, Rogier A.; Jansen, Rolf A.; Cohen, Seth H.; Grazian, Andrea; Boutsia, Konstantina; Fontana, Adriano; Giallongo, Emanuele; O'Connell, Robert W.; Paris, Diego; Rutkowski, Michael J.; Scarlata, Claudia; Testa, Vincenzo

    2017-01-01

    We present a study of the trade-off between depth and resolution using a large number of U-band images in the GOODS-North field obtained with the Large Binocular Camera (LBC) on the Large Binocular Telescope (LBT). Having acquired over 30 hours of total exposure time (315 images, each 5-6 min), we generated multiple image mosaics, starting with the subset of images with the best (FWHM light-profiles to SB ~ 32 mag arcsec-2. This helps constrain how much flux can be missed in galaxy outskirts, which is important for studies of Extragalactic Background Light.In the future, we will expand our analysis of the GOODS-N field to ~26 hours of LBT/LBC R-band surface photometry to similar depths.

  7. Integrated High Resolution Monitoring of Mediterranean vegetation

    Science.gov (United States)

    Cesaraccio, Carla; Piga, Alessandra; Ventura, Andrea; Arca, Angelo; Duce, Pierpaolo; Mereu, Simone

    2017-04-01

    The study of the vegetation features in a complex and highly vulnerable ecosystems, such as Mediterranean maquis, leads to the need of using continuous monitoring systems at high spatial and temporal resolution, for a better interpretation of the mechanisms of phenological and eco-physiological processes. Near-surface remote sensing techniques are used to quantify, at high temporal resolution, and with a certain degree of spatial integration, the seasonal variations of the surface optical and radiometric properties. In recent decades, the design and implementation of global monitoring networks involved the use of non-destructive and/or cheaper approaches such as (i) continuous surface fluxes measurement stations, (ii) phenological observation networks, and (iii) measurement of temporal and spatial variations of the vegetation spectral properties. In this work preliminary results from the ECO-SCALE (Integrated High Resolution Monitoring of Mediterranean vegetation) project are reported. The project was manly aimed to develop an integrated system for environmental monitoring based on digital photography, hyperspectral radiometry , and micrometeorological techniques during three years of experimentation (2013-2016) in a Mediterranean site of Italy (Capo Caccia, Alghero). The main results concerned the analysis of chromatic coordinates indices from digital images, to characterized the phenological patterns for typical shrubland species, determining start and duration of the growing season, and the physiological status in relation to different environmental drought conditions; then the seasonal patterns of canopy phenology, was compared to NEE (Net Ecosystem Exchange) patterns, showing similarities. However, maximum values of NEE and ER (Ecosystem respiration), and short term variation, seemed mainly tuned by inter annual pattern of meteorological variables, in particular of temperature recorded in the months preceding the vegetation green-up. Finally, green signals

  8. High-resolution phylogenetic microbial community profiling

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Esther; Coleman-Derr, Devin; Bowman, Brett; Schwientek, Patrick; Clum, Alicia; Copeland, Alex; Ciobanu, Doina; Cheng, Jan-Fang; Gies, Esther; Hallam, Steve; Tringe, Susannah; Woyke, Tanja

    2014-03-17

    The representation of bacterial and archaeal genome sequences is strongly biased towards cultivated organisms, which belong to merely four phylogenetic groups. Functional information and inter-phylum level relationships are still largely underexplored for candidate phyla, which are often referred to as microbial dark matter. Furthermore, a large portion of the 16S rRNA gene records in the GenBank database are labeled as environmental samples and unclassified, which is in part due to low read accuracy, potential chimeric sequences produced during PCR amplifications and the low resolution of short amplicons. In order to improve the phylogenetic classification of novel species and advance our knowledge of the ecosystem function of uncultivated microorganisms, high-throughput full length 16S rRNA gene sequencing methodologies with reduced biases are needed. We evaluated the performance of PacBio single-molecule real-time (SMRT) sequencing in high-resolution phylogenetic microbial community profiling. For this purpose, we compared PacBio and Illumina metagenomic shotgun and 16S rRNA gene sequencing of a mock community as well as of an environmental sample from Sakinaw Lake, British Columbia. Sakinaw Lake is known to contain a large age of microbial species from candidate phyla. Sequencing results show that community structure based on PacBio shotgun and 16S rRNA gene sequences is highly similar in both the mock and the environmental communities. Resolution power and community representation accuracy from SMRT sequencing data appeared to be independent of GC content of microbial genomes and was higher when compared to Illumina-based metagenome shotgun and 16S rRNA gene (iTag) sequences, e.g. full-length sequencing resolved all 23 OTUs in the mock community, while iTags did not resolve closely related species. SMRT sequencing hence offers various potential benefits when characterizing uncharted microbial communities.

  9. Novel high resolution tactile robotic fingertips

    DEFF Research Database (Denmark)

    Drimus, Alin; Jankovics, Vince; Gorsic, Matija

    2014-01-01

    This paper describes a novel robotic fingertip based on piezoresistive rubber that can sense pressure tactile stimuli with a high spatial resolution over curved surfaces. The working principle is based on a three-layer sandwich structure (conductive electrodes on top and bottom and piezoresistive...... with specialized data acquisition electronics that acquire 500 frames per second provides rich information regarding contact force, shape and angle for bio- inspired robotic fingertips. Furthermore, a model of estimating the force of contact based on values of the cells is proposed....

  10. Fast Backprojection Techniques for High Resolution Tomography

    CERN Document Server

    Koshev, Nikolay; Miqueles, Eduardo X

    2016-01-01

    Fast image reconstruction techniques are becoming important with the increasing number of scientific cases in high resolution micro and nano tomography. The processing of the large scale three-dimensional data demands new mathematical tools for the tomographic reconstruction task because of the big computational complexity of most current algorithms as the sizes of tomographic data grow with the development of more powerful acquisition hardware and more refined scientific needs. In the present paper we propose a new fast back-projection operator for the processing of tomographic data and compare it against other fast reconstruction techniques.

  11. Operating mode of high pressure straws with high spatial resolution

    CERN Document Server

    Davkov, K I; Peshekhonov, V D; Cholakov, V D

    2013-01-01

    The article presents results of studying the operating mode of thin-walled drift tubes (straws) at flushing it with a high-pressure gas mixture, which allowed obtaining extremely high spatial resolution for straw detectors. The results of studying the radiation ageing of straws operating in this mode are also described.

  12. Motion-Adaptive Depth Superresolution.

    Science.gov (United States)

    Kamilov, Ulugbek S; Boufounos, Petros T

    2017-04-01

    Multi-modal sensing is increasingly becoming important in a number of applications, providing new capabilities and processing challenges. In this paper, we explore the benefit of combining a low-resolution depth sensor with a high-resolution optical video sensor, in order to provide a high-resolution depth map of the scene. We propose a new formulation that is able to incorporate temporal information and exploit the motion of objects in the video to significantly improve the results over existing methods. In particular, our approach exploits the space-time redundancy in the depth and intensity using motion-adaptive low-rank regularization. We provide experiments to validate our approach and confirm that the quality of the estimated high-resolution depth is improved substantially. Our approach can be a first component in systems using vision techniques that rely on high-resolution depth information.

  13. Digital interface for high-resolution displays

    Science.gov (United States)

    Hermann, David J.; Gorenflo, Ronald L.

    1999-08-01

    Commercial display interfaces are currently transitioning from analog to digital. Although this transition is in the very early stages, the military needs to begin planning their own transition to digital. There are many problems with the analog interface in high-resolution display systems that are solved by changing to a digital interface. Also, display system cost can be lower with a digital interface to a high resolution display. Battelle is under contract with DARPA to develop an advanced Display Interface (ADI) to replace the analog RGB interfaces currently used in high definition workstation displays. The goal is to create a standard digital display interface for military applications that is based on emerging commercial standards. Support for military application- specific functionality is addressed, including display test and control. The main challenges to implementing a digital display interface are described, along with approaches to address the problems. Conceptual ADI architectures are described and contrasted. The current and emerging commercial standards for digital display interfaces are reviewed in detail. Finally, the tasks required to complete the ADI effort are outlined and described.

  14. Full-sky, High-resolution Maps of Interstellar Dust

    Science.gov (United States)

    Meisner, Aaron Michael

    We present full-sky, high-resolution maps of interstellar dust based on data from the Wide-field Infrared Survey Explorer (WISE) and Planck missions. We describe our custom processing of the entire WISE 12 micron All-Sky imaging data set, and present the resulting 15 arcsecond resolution, full-sky map of diffuse Galactic dust emission, free of compact sources and other contaminating artifacts. Our derived 12 micron dust map offers angular resolution far superior to that of all other existing full-sky, infrared dust emission maps, revealing a wealth of small-scale filamentary structure. We also apply the Finkbeiner et al. (1999) two-component thermal dust emission model to the Planck HFI maps. We derive full-sky 6.1 arcminute resolution maps of dust optical depth and temperature by fitting this two-component model to Planck 217-857 GHz along with DIRBE/IRAS 100 micron data. In doing so, we obtain the first ever full-sky 100-3000 GHz Planck-based thermal dust emission model, as well as a dust temperature correction with ~10 times enhanced angular resolution relative to DIRBE-based temperature maps. Analyzing the joint Planck/DIRBE dust spectrum, we show that two-component models provide a better fit to the 100-3000 GHz emission than do single-MBB models, though by a lesser margin than found by Finkbeiner et al. (1999) based on FIRAS and DIRBE. We find that, in diffuse sky regions, our two-component 100-217 GHz predictions are on average accurate to within 2.2%, while extrapolating the Planck Collaboration (2013) single-MBB model systematically underpredicts emission by 18.8% at 100 GHz, 12.6% at 143 GHz and 7.9% at 217 GHz. We calibrate our two-component optical depth to reddening, and compare with reddening estimates based on stellar spectra. We find the dominant systematic problems in our temperature/reddening maps to be zodiacal light on large angular scales and the cosmic infrared background anisotropy on small angular scales. Future work will focus on combining

  15. Crusta: Visualizing High-resolution Global Data

    Science.gov (United States)

    Bernardin, T. S.; Kreylos, O.; Bowles, C. J.; Cowgill, E.; Hamann, B.; Kellogg, L. H.

    2009-12-01

    Virtual globes have become indispensable tools for visualizing, understanding and presenting data from Earth and other planetary bodies. The scientific community has invested much effort into exploiting existing globes to their fullest potential by refining and adapting their capabilities to better satisfy specific needs. For example, Google Earth provides users with the ability to view hillshade images derived from airborne LiDAR data such as the 2007 Northern California GeoEarthScope data. However, because most available globes were not designed with the specific needs of geoscientists in mind, shortcomings are becoming increasingly evident in geoscience applications such as terrain visualization. In particular, earth scientists struggle to visualize digital elevation models with both high spatial resolution (0.5 - 1 square meters per sample) and large extent (>2000 square kilometers), such as those obtained with airborne LiDAR. To address the specific earth science need of real-time terrain visualization of LiDAR data, we are developing Crusta as part of a close collaboration involving earth and computer scientists. Crusta is a new virtual globe that differs from widely used globes by both providing accurate global data representation and the ability to easily visualize custom topographic and image data. As a result, Crusta enables real-time, interactive visualization of high resolution digital elevation data spanning thousands of square kilometers, such as the complete 2007 Northern California GeoEarthScope airborne LiDAR data set. To implement an accurate data representation and avoid distortion of the display at the poles, where other projections have singularities, Crusta represents the globe as a thirty-sided polyhedron. Each side of this polyhedron can be subdivided to an arbitrarily fine grid on the surface of the globe, which allows Crusta to accommodate input data of arbitrary resolution ranging from global (e.g., Blue Marble) to local (e.g., a tripod

  16. In-depth study of single photon time resolution for the Philips digital silicon photomultiplier

    Science.gov (United States)

    Liu, Z.; Gundacker, S.; Pizzichemi, M.; Ghezzi, A.; Auffray, E.; Lecoq, P.; Paganoni, M.

    2016-06-01

    The digital silicon photomultiplier (SiPM) has been commercialised by Philips as an innovative technology compared to analog silicon photomultiplier devices. The Philips digital SiPM, has a pair of time to digital converters (TDCs) connected to 12800 single photon avalanche diodes (SPADs). Detailed measurements were performed to understand the low photon time response of the Philips digital SiPM. The single photon time resolution (SPTR) of every single SPAD in a pixel consisting of 3200 SPADs was measured and an average value of 85 ps full width at half maximum (FWHM) was observed. Each SPAD sends the signal to the TDC with different signal propagation time, resulting in a so called trigger network skew. This distribution of the trigger network skew for a pixel (3200 SPADs) has been measured and a variation of 50 ps FWHM was extracted. The SPTR of the whole pixel is the combination of SPAD jitter, trigger network skew, and the SPAD non-uniformity. The SPTR of a complete pixel was 103 ps FWHM at 3.3 V above breakdown voltage. Further, the effect of the crosstalk at a low photon level has been studied, with the two photon time resolution degrading if the events are a combination of detected (true) photons and crosstalk events. Finally, the time response to multiple photons was investigated.

  17. High-resolution noncontact atomic force microscopy.

    Science.gov (United States)

    Pérez, Rubén; García, Ricardo; Schwarz, Udo

    2009-07-01

    original papers authored by many of the leading groups in the field with the goal of providing a well-balanced overview on the state-of-the-art in this rapidly evolving field. These papers, many of which are based on notable presentations given during the Madrid conference, feature highlights such as (1) the development of sophisticated force spectroscopy procedures that are able to map the complete 3D tip-sample force field on different surfaces; (2) the considerable resolution improvement of Kelvin probe force microscopy (reaching, in some cases, the atomic scale), which is accompanied by a thorough, quantitative understanding of the contrast observed; (3) the perfecting of atomic resolution imaging on insulating substrates, which helps reshape our microscopic understanding of surface properties and chemical activity of these surfaces; (4) the description of instrumental and methodological developments that pave the way to the atomic-scale characterization of magnetic and electronic properties of nanostructures, and last but not least (5) the extension of dynamic imaging modes to high-resolution operation in liquids, ultimately achieving atomic resolution. The latter developments are already having a significant impact in the highly competitive field of biological imaging under physiological conditions. This special issue of Nanotechnology would not have been possible without the highly professional support from Nina Couzin, Amy Harvey, Alex Wotherspoon and the entire Nanotechnology team at IOP Publishing. We are thankful for their help in pushing this project forward. We also thank the authors who have contributed their excellent original articles to this issue, the referees whose comments have helped make the issue an accurate portrait of this rapidly moving field, and the entire NC-AFM community that continues to drive NC-AFM to new horizons.

  18. Principles of high resolution NMR in solids

    CERN Document Server

    Mehring, Michael

    1983-01-01

    The field of Nuclear Magnetic Resonance (NMR) has developed at a fascinating pace during the last decade. It always has been an extremely valuable tool to the organic chemist by supplying molecular "finger print" spectra at the atomic level. Unfortunately the high resolution achievable in liquid solutions could not be obtained in solids and physicists and physical chemists had to live with unresolved lines open to a wealth of curve fitting procedures and a vast amount of speculations. High resolution NMR in solids seemed to be a paradoxon. Broad structure­ less lines are usually encountered when dealing with NMR in solids. Only with the recent advent of mUltiple pulse, magic angle, cross-polarization, two-dimen­ sional and multiple-quantum spectroscopy and other techniques during the last decade it became possible to resolve finer details of nuclear spin interactions in solids. I have felt that graduate students, researchers and others beginning to get involved with these techniques needed a book which trea...

  19. Limiting liability via high resolution image processing

    Energy Technology Data Exchange (ETDEWEB)

    Greenwade, L.E.; Overlin, T.K.

    1996-12-31

    The utilization of high resolution image processing allows forensic analysts and visualization scientists to assist detectives by enhancing field photographs, and by providing the tools and training to increase the quality and usability of field photos. Through the use of digitized photographs and computerized enhancement software, field evidence can be obtained and processed as `evidence ready`, even in poor lighting and shadowed conditions or darkened rooms. These images, which are most often unusable when taken with standard camera equipment, can be shot in the worst of photographic condition and be processed as usable evidence. Visualization scientists have taken the use of digital photographic image processing and moved the process of crime scene photos into the technology age. The use of high resolution technology will assist law enforcement in making better use of crime scene photography and positive identification of prints. Valuable court room and investigation time can be saved and better served by this accurate, performance based process. Inconclusive evidence does not lead to convictions. Enhancement of the photographic capability helps solve one major problem with crime scene photos, that if taken with standard equipment and without the benefit of enhancement software would be inconclusive, thus allowing guilty parties to be set free due to lack of evidence.

  20. High-Resolution Scintimammography: A Pilot Study

    Energy Technology Data Exchange (ETDEWEB)

    Rachel F. Brem; Joelle M. Schoonjans; Douglas A. Kieper; Stan Majewski; Steven Goodman; Cahid Civelek

    2002-07-01

    This study evaluated a novel high-resolution breast-specific gamma camera (HRBGC) for the detection of suggestive breast lesions. Methods: Fifty patients (with 58 breast lesions) for whom a scintimammogram was clinically indicated were prospectively evaluated with a general-purpose gamma camera and a novel HRBGC prototype. The results of conventional and high-resolution nuclear studies were prospectively classified as negative (normal or benign) or positive (suggestive or malignant) by 2 radiologists who were unaware of the mammographic and histologic results. All of the included lesions were confirmed by pathology. Results: There were 30 benign and 28 malignant lesions. The sensitivity for detection of breast cancer was 64.3% (18/28) with the conventional camera and 78.6% (22/28) with the HRBGC. The specificity with both systems was 93.3% (28/30). For the 18 nonpalpable lesions, sensitivity was 55.5% (10/18) and 72.2% (13/18) with the general-purpose camera and the HRBGC, respectively. For lesions 1 cm, 7 of 15 were detected with the general-purpose camera and 10 of 15 with the HRBGC. Four lesions (median size, 8.5 mm) were detected only with the HRBGC and were missed by the conventional camera. Conclusion: Evaluation of indeterminate breast lesions with an HRBGC results in improved sensitivity for the detection of cancer, with greater improvement shown for nonpalpable and 1-cm lesions.

  1. High-resolution light microscopy of nanoforms

    Science.gov (United States)

    Vodyanoy, Vitaly; Pustovyy, Oleg; Vainrub, Arnold

    2007-09-01

    We developed a high resolution light imaging system. Diffraction gratings with 100 nm width lines as well as less than 100 nm size features of different-shaped objects are clearly visible on a calibrated microscope test slide (Vainrub et al., Optics Letters, 2006, 31, 2855). The two-point resolution increase results from a known narrowing of the central diffraction peak for the annular aperture. Better visibility and advanced contrast of the smallest features in the image are due to enhancement of high spatial frequencies in the optical transfer function. The imaging system is portable, low energy, and battery operated. It has been adapted to use in both transmitting and reflecting light. It is particularly applicable for motile nanoform systems where structure and functions can be depicted in real time. We have isolated micrometer and submicrometer particles, termed proteons, from human and animal blood. Proteons form by reversible seeded aggregation of proteins around proteon nucleating centers (PNCs). PNCs are comprised of 1-2nm metallic nanoclusters containing 40-300 atoms. Proteons are capable of spontaneous assembling into higher nanoform systems assuming structure of complicated topology. The arrangement of complex proteon system mimics the structure of a small biological cell. It has structures that imitate membrane and nucleolus or nuclei. Some of these nanoforms are motile. They interact and divide. Complex nanoform systems can spontaneously reduce to simple proteons. The physical properties of these nanoforms could shed some light on the properties of early life forms or forms at extreme conditions.

  2. Venus gravity - A high-resolution map

    Science.gov (United States)

    Reasenberg, R. D.; Goldberg, Z. M.; Macneil, P. E.; Shapiro, I. I.

    1981-01-01

    The Doppler data from the radio tracking of the Pioneer Venus Orbiter (PVO) have been used in a two-stage analysis to develop a high-resolution map of the gravitational potential of Venus, represented by a central mass and a surface mass density. The two-stage procedure invokes a Kalman filter-smoother to determine the orbit of the spacecraft, and a stabilized linear inverter to estimate the surface mass density. The resultant gravity map is highly correlated with the topographic map derived from the PVO radar altimeter data. However, the magnitudes of the gravity variations are smaller than would be expected if the topography were uncompensated, indicating that at least partial compensation has taken place.

  3. Ultra-high resolution computed tomography imaging

    Energy Technology Data Exchange (ETDEWEB)

    Paulus, Michael J. (Knoxville, TN); Sari-Sarraf, Hamed (Knoxville, TN); Tobin, Jr., Kenneth William (Harriman, TN); Gleason, Shaun S. (Knoxville, TN); Thomas, Jr., Clarence E. (Knoxville, TN)

    2002-01-01

    A method for ultra-high resolution computed tomography imaging, comprising the steps of: focusing a high energy particle beam, for example x-rays or gamma-rays, onto a target object; acquiring a 2-dimensional projection data set representative of the target object; generating a corrected projection data set by applying a deconvolution algorithm, having an experimentally determined a transfer function, to the 2-dimensional data set; storing the corrected projection data set; incrementally rotating the target object through an angle of approximately 180.degree., and after each the incremental rotation, repeating the radiating, acquiring, generating and storing steps; and, after the rotating step, applying a cone-beam algorithm, for example a modified tomographic reconstruction algorithm, to the corrected projection data sets to generate a 3-dimensional image. The size of the spot focus of the beam is reduced to not greater than approximately 1 micron, and even to not greater than approximately 0.5 microns.

  4. Concept for a new high resolution high intensity diffractometer

    Energy Technology Data Exchange (ETDEWEB)

    Stuhr, U. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    A concept of a new time-of-flight powder-diffractometer for a thermal neutral beam tube at SINQ is presented. The design of the instrument optimises the contradictory conditions of high intensity and high resolution. The high intensity is achieved by using many neutron pulses simultaneously. By analysing the time-angle-pattern of the detected neutrons an assignment of the neutrons to a single pulse is possible. (author) 3 figs., tab., refs.

  5. High-resolution colorimetric imaging of paintings

    Science.gov (United States)

    Martinez, Kirk; Cupitt, John; Saunders, David R.

    1993-05-01

    With the aim of providing a digital electronic replacement for conventional photography of paintings, a scanner has been constructed based on a 3000 X 2300 pel resolution camera which is moved precisely over a 1 meter square area. Successive patches are assembled to form a mosaic which covers the whole area at c. 20 pels/mm resolution, which is sufficient to resolve the surface textures, particularly craquelure. To provide high color accuracy, a set of seven broad-band interference filters are used to cover the visible spectrum. A calibration procedure based upon a least-mean-squares fit to the color of patches from a Macbeth Colorchecker chart yields an average color accuracy of better than 3 units in the CMC uniform color space. This work was mainly carried out as part of the VASARI project funded by the European Commission's ESPRIT program, involving companies and galleries from around Europe. The system is being used to record images for conservation research, for archival purposes and to assist in computer-aided learning in the field of art history. The paper will describe the overall system design, including the selection of the various hardware components and the design of controlling software. The theoretical basis for the color calibration methodology is described as well as the software for its practical implementation. The mosaic assembly procedure and some of the associated image processing routines developed are described. Preliminary results from the research will be presented.

  6. High resolution CT of temporal bone trauma

    Energy Technology Data Exchange (ETDEWEB)

    Youn, Eun Kyung [Korea General Hospital, Seoul (Korea, Republic of)

    1986-10-15

    Radiographic studies of the temporal bone following head trauma are indicated when there is cerebrospinal fluid otorrhea or rhinorrhoea, hearing loss, or facial nerve paralysis. Plain radiography displays only 17-30% of temporal bone fractures and pluridirectional tomography is both difficult to perform, particularly in the acutely ill patient, and less satisfactory for the demonstration of fine fractures. Consequently, high resolution CT is the imaging method of choice for the investigation of suspected temporal bone trauma and allows special resolution of fine bony detail comparable to that attainable by conventional tomography. Eight cases of temporal bone trauma examined at Korea General Hospital April 1985 through May 1986. The results were as follows: Seven patients (87%) suffered longitudinal fractures. In 6 patients who had purely conductive hearing loss, CT revealed various ossicular chain abnormality. In one patient who had neuro sensory hearing loss, CT demonstrated intract ossicular with a fracture nearing lateral wall of the lateral semicircular canal. In one patient who had mixed hearing loss, CT showed complex fracture.

  7. High Resolution Radar Measurements of Snow Avalanches

    Science.gov (United States)

    McElwaine, Jim; Sovilla, Betty; Vriend, Nathalie; Brennan, Paul; Ash, Matt; Keylock, Chris

    2013-04-01

    Geophysical mass flows, such as snow avalanches, are a major hazard in mountainous areas and have a significant impact on the infrastructure, economy and tourism of such regions. Obtaining a thorough understanding of the dynamics of snow avalanches is crucial for risk assessment and the design of defensive structures. However, because the underlying physics is poorly understood there are significant uncertainties concerning current models, which are poorly validated due to a lack of high resolution data. Direct observations of the denser core of a large avalanche are particularly difficult, since it is frequently obscured by the dilute powder cloud. We have developed and installed a phased array FMCW radar system that penetrates the powder cloud and directly images the dense core with a resolution of around 1 m at 50 Hz over the entire slope. We present data from recent avalanches at Vallee de la Sionne that show a wealth of internal structure and allow the tracking of individual fronts, roll waves and surges down the slope for the first time. We also show good agreement between the radar results and existing measurement systems that record data at particular points on the avalanche track.

  8. Pyramidal fractal dimension for high resolution images

    Science.gov (United States)

    Mayrhofer-Reinhartshuber, Michael; Ahammer, Helmut

    2016-07-01

    Fractal analysis (FA) should be able to yield reliable and fast results for high-resolution digital images to be applicable in fields that require immediate outcomes. Triggered by an efficient implementation of FA for binary images, we present three new approaches for fractal dimension (D) estimation of images that utilize image pyramids, namely, the pyramid triangular prism, the pyramid gradient, and the pyramid differences method (PTPM, PGM, PDM). We evaluated the performance of the three new and five standard techniques when applied to images with sizes up to 8192 × 8192 pixels. By using artificial fractal images created by three different generator models as ground truth, we determined the scale ranges with minimum deviations between estimation and theory. All pyramidal methods (PM) resulted in reasonable D values for images of all generator models. Especially, for images with sizes ≥1024 ×1024 pixels, the PMs are superior to the investigated standard approaches in terms of accuracy and computation time. A measure for the possibility to differentiate images with different intrinsic D values did show not only that the PMs are well suited for all investigated image sizes, and preferable to standard methods especially for larger images, but also that results of standard D estimation techniques are strongly influenced by the image size. Fastest results were obtained with the PDM and PGM, followed by the PTPM. In terms of absolute D values best performing standard methods were magnitudes slower than the PMs. Concluding, the new PMs yield high quality results in short computation times and are therefore eligible methods for fast FA of high-resolution images.

  9. Detection of proximal caries with high-resolution and standard resolution digital radiographic systems

    NARCIS (Netherlands)

    Berkhout, W.E.R.; Verheij, H.G.C.; Syriopoulos, K.; Li, G.; Sanderink, G.C.H.; van der Stelt, P.F.

    2007-01-01

    Aims: The aim of this study was to: (1) compare the diagnostic accuracy of the high-resolution and standard resolution settings of four digital imaging systems for caries diagnosis and (2) compare the effect on the diagnostic accuracy of reducing the high-resolution image sizes to the standard

  10. Improved methods for high resolution electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, J.R.

    1987-04-01

    Existing methods of making support films for high resolution transmission electron microscopy are investigated and novel methods are developed. Existing methods of fabricating fenestrated, metal reinforced specimen supports (microgrids) are evaluated for their potential to reduce beam induced movement of monolamellar crystals of C/sub 44/H/sub 90/ paraffin supported on thin carbon films. Improved methods of producing hydrophobic carbon films by vacuum evaporation, and improved methods of depositing well ordered monolamellar paraffin crystals on carbon films are developed. A novel technique for vacuum evaporation of metals is described which is used to reinforce microgrids. A technique is also developed to bond thin carbon films to microgrids with a polymer bonding agent. Unique biochemical methods are described to accomplish site specific covalent modification of membrane proteins. Protocols are given which covalently convert the carboxy terminus of papain cleaved bacteriorhodopsin to a free thiol. 53 refs., 19 figs., 1 tab.

  11. A new high-resolution TOF technology

    CERN Document Server

    Fonte, Paulo J R; Williams, M C S

    2000-01-01

    In the framework of the ALICE collaboration we have recently studied the performance of multigap Resistive Plate Chambers operated in avalanche mode and at atmospheric pressure for time-of-flight measurements. The detector provided an overall (detector plus electronics) timing accuracy of 120 ps sigma at an efficiency of 98% for MIPs. The chambers had 4 gas gaps of 0.3 mm, each limited by a metallised ceramic plate and a glass plate, with an active dimension of 4'4cm2. The gas mixture contained C2H2F4+5%isobutane+10%SF6. A few percent of streamer discharges, each releasing about 20 pC, was tolerated without any noticeable inconvenience. This detector opens perspectives of affordable and reliable high granularity large area TOF detectors, with an efficiency and a time resolution comparable to existing scintillator-based TOF technology but with significantly, up to an order of magnitude, lower price per channel.

  12. Capillary detectors for high resolution tracking

    CERN Document Server

    Annis, P

    1997-01-01

    We present a new tracking device based on glass capillary bundles or layers filled with highly purified liquid scintillator and read out at one end by means of image intensifiers and CCD devices. A large-volume prototype consisting of 5 × 105 capillaries with a diameter of 20 μm and a length of 180 cm and read out by a megapixel CCD has been tested with muon and neutrino beams at CERN. With this prototype a two track resolution of 33 μm was achieved with passing through muons. Images of neutrino interactions in a capillary bundle have also been acquired and analysed. Read-out chains based on Electron Bombarded CCD (EBCCD) and image pipeline devices are also investigated. Preliminary results obtained with a capillary bundle read out by an EBCCD are presented.

  13. Speleothems as high-resolution paleoflood archives

    Science.gov (United States)

    Denniston, Rhawn F.; Luetscher, Marc

    2017-08-01

    Over the last two decades, speleothems have become widely utilized records of past environmental variability, typically through their stable isotopic and trace elemental chemistry. Numerous speleothem researchers have identified evidence of flooding recorded by detrital layers trapped within speleothems, but few studies have developed paleoflood reconstructions from such samples. Because they can be precisely dated, are generally immune to post-depositional distortion or erosion, and can be tied to a fixed elevational baseline, speleothems hold enormous potential as high-resolution archives of cave floods, and thus as proxies for extreme rainfall or other hydrologic drivers of cave flooding. Here we review speleothem-based paleoflood reconstruction methods, identify potential biases and pitfalls, and suggest standard practices for future studies.

  14. High-resolution CT of otosclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Dewen, Yang; Kodama, Takao; Tono, Tetsuya; Ochiai, Reiji; Kiyomizu, Kensuke; Suzuki, Yukiko; Yano, Takanori; Watanabe, Katsushi [Miyazaki Medical Coll., Kiyotake (Japan)

    1997-11-01

    High-resolution CT (HRCT) scans of thirty-two patients (60 ears) with the clinical diagnosis of fenestral otosclerosis were evaluated retrospectively. HRCT was performed with 1-mm-thick targeted sections and 1-mm (36 ears) or 0.5-mm (10 ears) intervals in the semiaxial projection. Seven patients (14 ears) underwent helical scanning with a 1-mm slice thickness and 1-mm/sec table speed. Forty-five ears (75%) were found to have one or more otospongiotic or otosclerotic foci on HRCT. In most instances (30 ears), the otospongiotic foci were found in the region of the fissula ante fenestram. No significant correlations between CT findings and air conduction threshold were observed. We found a significant relationship between lesions of the labyrinthine capsule and sensorineural hearing loss. We conclude that HRCT is a valuable modality for diagnosing otosclerosis, especially when otospongiotic focus is detected. (author)

  15. High resolution imaging detectors and applications

    CERN Document Server

    Saha, Swapan K

    2015-01-01

    Interferometric observations need snapshots of very high time resolution of the order of (i) frame integration of about 100 Hz or (ii) photon-recording rates of several megahertz (MHz). Detectors play a key role in astronomical observations, and since the explanation of the photoelectric effect by Albert Einstein, the technology has evolved rather fast. The present-day technology has made it possible to develop large-format complementary metal oxide–semiconductor (CMOS) and charge-coupled device (CCD) array mosaics, orthogonal transfer CCDs, electron-multiplication CCDs, electron-avalanche photodiode arrays, and quantum-well infrared (IR) photon detectors. The requirements to develop artifact-free photon shot noise-limited images are higher sensitivity and quantum efficiency, reduced noise that includes dark current, read-out and amplifier noise, smaller point-spread functions, and higher spectral bandwidth. This book aims to address such systems, technologies and design, evaluation and calibration, control...

  16. GRANULOMETRIC MAPS FROM HIGH RESOLUTION SATELLITE IMAGES

    Directory of Open Access Journals (Sweden)

    Catherine Mering

    2011-05-01

    Full Text Available A new method of land cover mapping from satellite images using granulometric analysis is presented here. Discontinuous landscapes such as steppian bushes of semi arid regions and recently growing urban settlements are especially concerned by this study. Spatial organisations of the land cover are quantified by means of the size distribution analysis of the land cover units extracted from high resolution remotely sensed images. A granulometric map is built by automatic classification of every pixel of the image according to the granulometric density inside a sliding neighbourhood. Granulometric mapping brings some advantages over traditional thematic mapping by remote sensing by focusing on fine spatial events and small changes in one peculiar category of the landscape.

  17. High resolution CT of Meckel's cave.

    Science.gov (United States)

    Chui, M; Tucker, W; Hudson, A; Bayer, N

    1985-01-01

    High resolution CT of the parasellar region was carried out in 50 patients studied for suspected pituitary microadenoma, but who showed normal pituitary gland or microadenoma on CT. This control group of patients all showed an ellipsoid low-density area in the posterior parasellar region. Knowledge of the gross anatomy and correlation with metrizamide cisternography suggest that the low density region represents Meckel's cave, rather than just the trigeminal ganglion alone. Though there is considerable variation in the size of Meckel's cave in different patients as well as the two sides of the same patient, the rather constant ellipsoid configuration of the cave in normal subjects will aid in diagnosing small pathological lesions, thereby obviating more invasive cisternography via the transovale or lumbar route. Patients with "idiopathic" tic douloureux do not show a Meckel's cave significantly different from the control group.

  18. Georadar - high resolution geophysical electromagnetic device

    Directory of Open Access Journals (Sweden)

    Janez Stern

    1995-12-01

    Full Text Available Georadar is a high resolution geophysical electromagnetic device that was developed in the first part of the 1980's. In Slovenia it was first tested in 1991 on several objects of economicgeological, geotechnical and hydrogeologic nature.Here its usefulness in karst studied is presented. The first part of the paper deals with description of measurement procedure and methodological bases, and the second part with experience and results of case histories. Shown are radargrams from ornamental stone quarry Hotavlje, calcite mine Stahovica, Golobja jama karstcave near Divača and from highway construction site Razdrto-Čebulovica. All measurements were performed with the georadar instrument Pulse EKKO IV with a lOOMHz antenna according to the method of reflection profiling.

  19. High-Resolution Movement EEG Classification

    Directory of Open Access Journals (Sweden)

    Jakub Štastný

    2007-01-01

    Full Text Available The aim of the contribution is to analyze possibilities of high-resolution movement classification using human EEG. For this purpose, a database of the EEG recorded during right-thumb and little-finger fast flexion movements of the experimental subjects was created. The statistical analysis of the EEG was done on the subject's basis instead of the commonly used grand averaging. Statistically significant differences between the EEG accompanying movements of both fingers were found, extending the results of other so far published works. The classifier based on hidden Markov models was able to distinguish between movement and resting states (classification score of 94–100%, but it was unable to recognize the type of the movement. This is caused by the large fraction of other (nonmovement related EEG activities in the recorded signals. A classification method based on advanced EEG signal denoising is being currently developed to overcome this problem.

  20. Three-dimensional image cytometer based on widefield structured light microscopy and high-speed remote depth scanning.

    Science.gov (United States)

    Choi, Heejin; Wadduwage, Dushan N; Tu, Ting Yuan; Matsudaira, Paul; So, Peter T C

    2015-01-01

    A high throughput 3D image cytometer have been developed that improves imaging speed by an order of magnitude over current technologies. This imaging speed improvement was realized by combining several key components. First, a depth-resolved image can be rapidly generated using a structured light reconstruction algorithm that requires only two wide field images, one with uniform illumination and the other with structured illumination. Second, depth scanning is implemented using the high speed remote depth scanning. Finally, the large field of view, high NA objective lens and the high pixelation, high frame rate sCMOS camera enable high resolution, high sensitivity imaging of a large cell population. This system can image at 800 cell/sec in 3D at submicron resolution corresponding to imaging 1 million cells in 20 min. The statistical accuracy of this instrument is verified by quantitatively measuring rare cell populations with ratio ranging from 1:1 to 1:10(5) . © 2014 International Society for Advancement of Cytometry.

  1. High-resolution transcriptome of human macrophages.

    Directory of Open Access Journals (Sweden)

    Marc Beyer

    Full Text Available Macrophages are dynamic cells integrating signals from their microenvironment to develop specific functional responses. Although, microarray-based transcriptional profiling has established transcriptional reprogramming as an important mechanism for signal integration and cell function of macrophages, current knowledge on transcriptional regulation of human macrophages is far from complete. To discover novel marker genes, an area of great need particularly in human macrophage biology but also to generate a much more thorough transcriptome of human M1- and M1-like macrophages, we performed RNA sequencing (RNA-seq of human macrophages. Using this approach we can now provide a high-resolution transcriptome profile of human macrophages under classical (M1-like and alternative (M2-like polarization conditions and demonstrate a dynamic range exceeding observations obtained by previous technologies, resulting in a more comprehensive understanding of the transcriptome of human macrophages. Using this approach, we identify important gene clusters so far not appreciated by standard microarray techniques. In addition, we were able to detect differential promoter usage, alternative transcription start sites, and different coding sequences for 57 gene loci in human macrophages. Moreover, this approach led to the identification of novel M1-associated (CD120b, TLR2, SLAMF7 as well as M2-associated (CD1a, CD1b, CD93, CD226 cell surface markers. Taken together, these data support that high-resolution transcriptome profiling of human macrophages by RNA-seq leads to a better understanding of macrophage function and will form the basis for a better characterization of macrophages in human health and disease.

  2. Mapping snow-depth from manned-aircraft on landscape scales at centimeter resolution using Structure-from-Motion photogrammetry

    Science.gov (United States)

    Nolan, M.; Larsen, C. F.; Sturm, M.

    2015-01-01

    Airborne photogrammetry is undergoing a renaissance: lower-cost equipment, more powerful software, and simplified methods have significantly lowered the barriers-to-entry and now allow repeat-mapping of cryospheric dynamics at spatial resolutions and temporal frequencies that were previously too expensive to consider. Here we apply these techniques to the measurement of snow depth from manned aircraft. The main airborne hardware consists of a consumer-grade digital camera coupled to a dual-frequency GPS. The photogrammetric processing is done using a commercially-available implementation of the Structure from Motion (SfM) algorithm. The system hardware and software, exclusive of aircraft, costs less than USD 30 000. The technique creates directly-georeferenced maps without ground control, further reducing costs. To map snow depth, we made digital elevation models (DEMs) during snow-free and snow-covered conditions, then subtracted these to create difference DEMs (dDEMs). We assessed the accuracy (geolocation) and precision (repeatability) of our DEMs through comparisons to ground control points and to time-series of our own DEMs. We validated these assessments through comparisons to DEMs made by airborne lidar and by another photogrammetric system. We empirically determined an accuracy of ± 30 cm and a precision of ± 8 cm (both 95% confidence) for our methods. We then validated our dDEMs against more than 6000 hand-probed snow depth measurements at 3 test areas in Alaska covering a wide-variety of terrain and snow types. These areas ranged from 5 to 40 km2 and had ground sample distances of 6 to 20 cm. We found that depths produced from the dDEMs matched probe depths with a 10 cm standard deviation, and these depth distributions were statistically identical at 95% confidence. Due to the precision of this technique, other real changes on the ground such as frost heave, vegetative compaction by snow, and even footprints become sources of error in the measurement of

  3. Mapping snow-depth from manned-aircraft on landscape scales at centimeter resolution using Structure-from-Motion photogrammetry

    Directory of Open Access Journals (Sweden)

    M. Nolan

    2015-01-01

    Full Text Available Airborne photogrammetry is undergoing a renaissance: lower-cost equipment, more powerful software, and simplified methods have significantly lowered the barriers-to-entry and now allow repeat-mapping of cryospheric dynamics at spatial resolutions and temporal frequencies that were previously too expensive to consider. Here we apply these techniques to the measurement of snow depth from manned aircraft. The main airborne hardware consists of a consumer-grade digital camera coupled to a dual-frequency GPS. The photogrammetric processing is done using a commercially-available implementation of the Structure from Motion (SfM algorithm. The system hardware and software, exclusive of aircraft, costs less than USD 30 000. The technique creates directly-georeferenced maps without ground control, further reducing costs. To map snow depth, we made digital elevation models (DEMs during snow-free and snow-covered conditions, then subtracted these to create difference DEMs (dDEMs. We assessed the accuracy (geolocation and precision (repeatability of our DEMs through comparisons to ground control points and to time-series of our own DEMs. We validated these assessments through comparisons to DEMs made by airborne lidar and by another photogrammetric system. We empirically determined an accuracy of ± 30 cm and a precision of ± 8 cm (both 95% confidence for our methods. We then validated our dDEMs against more than 6000 hand-probed snow depth measurements at 3 test areas in Alaska covering a wide-variety of terrain and snow types. These areas ranged from 5 to 40 km2 and had ground sample distances of 6 to 20 cm. We found that depths produced from the dDEMs matched probe depths with a 10 cm standard deviation, and these depth distributions were statistically identical at 95% confidence. Due to the precision of this technique, other real changes on the ground such as frost heave, vegetative compaction by snow, and even footprints become sources of error in the

  4. An RPC-PET prototype with high spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, A. [LIP, Laboratorio de Instrumentacao e Fisica Experimental de Particulas, Dep-Fisica Univ. Coimbra, Coimbra 3004-516 (Portugal)]. E-mail: alberto@lipc.fis.uc.pt; Carolino, N. [LIP, Laboratorio de Instrumentacao e Fisica Experimental de Particulas, Dep-Fisica Univ. Coimbra, Coimbra 3004-516 (Portugal); Correia, C.M.B.A. [CEI, Centro de Electronica e Instrumentacao, Univ. Coimbra, Coimbra (Portugal); Ferreira Marques, R. [LIP, Laboratorio de Instrumentacao e Fisica Experimental de Particulas, Dep-Fisica Univ. Coimbra, Coimbra 3004-516 (Portugal); Departamento de Fisica, Univ. Coimbra, Coimbra (Portugal); Fonte, P. [LIP, Laboratorio de Instrumentacao e Fisica Experimental de Particulas, Dep-Fisica Univ. Coimbra, Coimbra 3004-516 (Portugal); ISEC, Instituto Superior de Engenharia de Coimbra, Coimbra (Portugal); Gonzalez-Diaz, D. [GENP, Grupo Experimental de Nucleos y Particulas, Fac. Fisica Univ. Santiago de Compostela, Santiago de Compostela (Spain); Lindote, A. [LIP, Laboratorio de Instrumentacao e Fisica Experimental de Particulas, Dep-Fisica Univ. Coimbra, Coimbra 3004-516 (Portugal); Lopes, M.I. [LIP, Laboratorio de Instrumentacao e Fisica Experimental de Particulas, Dep-Fisica Univ. Coimbra, Coimbra 3004-516 (Portugal); Departamento de Fisica, Univ. Coimbra, Coimbra (Portugal); Macedo, M.P. [CEI, Centro de Electronica e Instrumentacao, Univ. Coimbra, Coimbra (Portugal); ISEC, Instituto Superior de Engenharia de Coimbra, Coimbra (Portugal); Policarpo, A. [LIP, Laboratorio de Instrumentacao e Fisica Experimental de Particulas, Dep-Fisica Univ. Coimbra, Coimbra 3004-516 (Portugal); Departamento de Fisica, Univ. Coimbra, Coimbra (Portugal)

    2004-11-01

    A small positron emission tomography system, based on the timing RPC technology has been built and tested. This first prototype is aimed at validating the expectations, derived from simulations, of a very high spatial resolution, which could be of value for the imaging of small animals. The system is composed of two counting heads, able to measure the photon interaction point in two dimensions, the transaxial dimension and the Depth of Interaction. Each head is composed of 16 independent stacked RPCs made from copper and glass (anode) electrodes. Point-like {sup 22}Na sources were so far reconstructed, using the standard filtered back-projection algorithm, with a spatial accuracy of 0.6 mm FWHM, free of parallax error.

  5. High Resolution Image Correspondences for Video Post-Production

    Directory of Open Access Journals (Sweden)

    Marcus Magnor

    Full Text Available We present an algorithm for estimating dense image correspondences. Our versatile approach lends itself to various tasks typical for video post-processing, including image morphing, optical flow estimation, stereo rectification, disparity/depth reconstruction, and baseline adjustment. We incorporate recent advances in feature matching, energy minimization, stereo vision, and data clustering into our approach. At the core of our correspondence estimation we use Efficient Belief Propagation for energy minimization. While state-of-the-art algorithms only work on thumbnail-sized images, our novel feature downsampling scheme in combination with a simple, yet efficient data term compression, can cope with high-resolution data. The incorporation of SIFT (Scale-Invariant Feature Transform features into data term computation further resolves matching ambiguities, making long-range correspondence estimation possible. We detect occluded areas by evaluating the correspondence symmetry, we further apply Geodesic matting to automatically determine plausible values in these regions.

  6. High Resolution Image Correspondences for Video Post-Production

    Directory of Open Access Journals (Sweden)

    Marcus Magnor

    2012-12-01

    Full Text Available We present an algorithm for estimating dense image correspondences. Our versatile approach lends itself to various tasks typical for video post-processing, including image morphing, optical flow estimation, stereo rectification, disparity/depth reconstruction, and baseline adjustment. We incorporate recent advances in feature matching, energy minimization, stereo vision, and data clustering into our approach. At the core of our correspondence estimation we use Efficient Belief Propagation for energy minimization. While state-of-the-art algorithms only work on thumbnail-sized images, our novel feature downsampling scheme in combination with a simple, yet efficient data term compression, can cope with high-resolution data. The incorporation of SIFT (Scale-Invariant Feature Transform features into data term computation further resolves matching ambiguities, making long-range correspondence estimation possible. We detect occluded areas by evaluating the correspondence symmetry, we further apply Geodesic matting to automatically determine plausible values in these regions.

  7. Photometric correction of VIR high space resolution data of Ceres

    Science.gov (United States)

    Longobardo, Andrea; Palomba, Ernesto; De Sanctis, Maria Cristina; Ciarniello, Mauro; Tosi, Federico; Giacomo Carrozzo, Filippo; Capria, Maria Teresa; Zambon, Francesca; Raponi, Andrea; Ammannito, Eleonora; Zinzi, Angelo; Raymond, Carol; Russell, Christopher T.; VIR-Dawn Team

    2016-10-01

    NASA's Dawn spacecraft [1] has been orbiting Ceres since early 2015. The mission is divided into five stages, characterized by different spacecraft altitudes corresponding to different space resolutions, i.e. Approach (CSA), Rotational Characterization (CSR), Survey (CSS), High Altitude Mapping Orbit (HAMO), and Low Altitude Mapping Orbit (LAMO).Ceres is a dark body (i.e. average albedo at 1.2 um is 0.08 [2]), hence photometric correction is much more important than for brighter asteroids (e.g. S-type and achondritric). Indeed, the negligible role of multiple scattering increases the reflectance dependence on phase angle.A photometric correction of VIR data at low spatial resolution (i.e. CSA, CSR, CSS) has already been applied with different methodologies (e.g. [2], [3]), These techniques highlight a reflectance and band depths dependency on the phase angle which is homogeneous on the entire surface in agreement with C-type taxonomy.However, with increasing spatial resolution (i.e. HAMO and LAMO data), the retrieval of a unique set of parameters for the photometric correction is no longer sufficient to obtain reliable albedo/band depth maps. In this work, a new photometric correction is obtained and applied to all the high resolution VIR data of Ceres, taking into account the reflectance variations observed at small scales. The developed algorithm will be implemented on the MATISSE tool [4] in order to be visualized on the Ceres shape model.Finally, an interpretation of the obtained phase functions is given in terms of optical and physical properties of the Ceres regolith.AcknowledgementsVIR was funded and coordinated by the Italian Space Agency, and built by SELEX ES, with the scientific leadership of IAPS-INAF, Rome, Italy, and is operated by IAPS-INAF, Rome, Italy. Support of the Dawn Science, Instrument, and Operation Teams is gratefully acknowledged.References[1] Russell, C. T. et al., 2012, Science 336, 686[2] Longobardo A., et al., 2016, LPSC, 2239

  8. High-resolution downscaling for hydrological management

    Science.gov (United States)

    Ulbrich, Uwe; Rust, Henning; Meredith, Edmund; Kpogo-Nuwoklo, Komlan; Vagenas, Christos

    2017-04-01

    Hydrological modellers and water managers require high-resolution climate data to model regional hydrologies and how these may respond to future changes in the large-scale climate. The ability to successfully model such changes and, by extension, critical infrastructure planning is often impeded by a lack of suitable climate data. This typically takes the form of too-coarse data from climate models, which are not sufficiently detailed in either space or time to be able to support water management decisions and hydrological research. BINGO (Bringing INnovation in onGOing water management; ) aims to bridge the gap between the needs of hydrological modellers and planners, and the currently available range of climate data, with the overarching aim of providing adaptation strategies for climate change-related challenges. Producing the kilometre- and sub-daily-scale climate data needed by hydrologists through continuous simulations is generally computationally infeasible. To circumvent this hurdle, we adopt a two-pronged approach involving (1) selective dynamical downscaling and (2) conditional stochastic weather generators, with the former presented here. We take an event-based approach to downscaling in order to achieve the kilometre-scale input needed by hydrological modellers. Computational expenses are minimized by identifying extremal weather patterns for each BINGO research site in lower-resolution simulations and then only downscaling to the kilometre-scale (convection permitting) those events during which such patterns occur. Here we (1) outline the methodology behind the selection of the events, and (2) compare the modelled precipitation distribution and variability (preconditioned on the extremal weather patterns) with that found in observations.

  9. The high resolution neutrino calorimeter KARMEN

    Energy Technology Data Exchange (ETDEWEB)

    Drexlin, G.; Eberhard, V.; Gemmeke, H.; Giorginis, G.; Grandegger, W.; Gumbsheimer, R.; Hucker, H.; Husson, L.; Kleinfeller, J.; Maschuw, R.; Plischke, P.; Spohrer, G.; Schmidt, F.K.; Wochele, J.; Woelfle, S.; Zeitnitz, B. (Kernforschungszentrum Karlsruhe GmbH (Germany, F.R.). Inst. fuer Kernphysik 1 Karlsruhe Univ. (T.H.) (Germany, F.R.). Inst. fuer Experimentelle Kernphysik); Bodman, B.; Burtak, F.; Finckh, E.; Glombik, A.; Kretschmer, W.; Schilling, F.; Voetisch, D. (Erlangen-Nuernberg Univ., Erlangen (Germany, F.R.). Physikalisches Inst.); Edgington, J.A.; Gorringe, T.; Malik, A. (Queen Mary Coll., London (UK)); Booth, N.E. (Oxford Univ. (UK)); Dodd, A.; Payne, A.G.D. (Rutherford Appleton Lab., Chilton (UK))

    1990-04-15

    KARMEN is a 56 t scintillation calorimeter designed for beam dump neutrino experiments at the neutron spallation facility ISIS of the Rutherford Appleton Laboratory. The calorimetric properties are demonstrated by cosmic muons and laser calibration. The measured energy resolution of the detector is {sigma}{sub E}/E{approx equal}11.5%/{radical}E(MeV), the position resolution {sigma}{sub x}=5 cm and the timing resolution {sigma}{sub t}{approx equal}350 ps. (orig.).

  10. High resolution image reconstruction from projection of low resolution images differing in subpixel shifts

    Science.gov (United States)

    Mareboyana, Manohar; Le Moigne, Jacqueline; Bennett, Jerome

    2016-05-01

    In this paper, we demonstrate simple algorithms that project low resolution (LR) images differing in subpixel shifts on a high resolution (HR) also called super resolution (SR) grid. The algorithms are very effective in accuracy as well as time efficiency. A number of spatial interpolation techniques using nearest neighbor, inverse-distance weighted averages, Radial Basis Functions (RBF) etc. are used in projection. For best accuracy of reconstructing SR image by a factor of two requires four LR images differing in four independent subpixel shifts. The algorithm has two steps: i) registration of low resolution images and (ii) shifting the low resolution images to align with reference image and projecting them on high resolution grid based on the shifts of each low resolution image using different interpolation techniques. Experiments are conducted by simulating low resolution images by subpixel shifts and subsampling of original high resolution image and the reconstructing the high resolution images from the simulated low resolution images. The results of accuracy of reconstruction are compared by using mean squared error measure between original high resolution image and reconstructed image. The algorithm was tested on remote sensing images and found to outperform previously proposed techniques such as Iterative Back Projection algorithm (IBP), Maximum Likelihood (ML) algorithms. The algorithms are robust and are not overly sensitive to the registration inaccuracies.

  11. High Resolution Image Reconstruction from Projection of Low Resolution Images DIffering in Subpixel Shifts

    Science.gov (United States)

    Mareboyana, Manohar; Le Moigne-Stewart, Jacqueline; Bennett, Jerome

    2016-01-01

    In this paper, we demonstrate a simple algorithm that projects low resolution (LR) images differing in subpixel shifts on a high resolution (HR) also called super resolution (SR) grid. The algorithm is very effective in accuracy as well as time efficiency. A number of spatial interpolation techniques using nearest neighbor, inverse-distance weighted averages, Radial Basis Functions (RBF) etc. used in projection yield comparable results. For best accuracy of reconstructing SR image by a factor of two requires four LR images differing in four independent subpixel shifts. The algorithm has two steps: i) registration of low resolution images and (ii) shifting the low resolution images to align with reference image and projecting them on high resolution grid based on the shifts of each low resolution image using different interpolation techniques. Experiments are conducted by simulating low resolution images by subpixel shifts and subsampling of original high resolution image and the reconstructing the high resolution images from the simulated low resolution images. The results of accuracy of reconstruction are compared by using mean squared error measure between original high resolution image and reconstructed image. The algorithm was tested on remote sensing images and found to outperform previously proposed techniques such as Iterative Back Projection algorithm (IBP), Maximum Likelihood (ML), and Maximum a posterior (MAP) algorithms. The algorithm is robust and is not overly sensitive to the registration inaccuracies.

  12. Depth Map Super-Resolution Based on the Local Structural Features of Color Image%基于彩色图像局部结构特征的深度图超分辨率算法

    Institute of Scientific and Technical Information of China (English)

    杨宇翔; 汪增福

    2013-01-01

      运用飞行时间相机来获取场景深度图像非常方便,但由于硬件的限制,得到的深度图像分辨率非常低,无法满足实际的需要。文中结合同场景的高分辨率彩色图像来制定优化框架,将深度图超分辨率问题转化为最优化问题来求解。具体来说,将彩色图像和深度图像在局部小窗口内具有的近似线性关系通过拉普拉斯矩阵的方式融合到目标函数的正则约束项中,运用彩色图像的局部结构参数模型,将该参数模型融入到正则约束项中对深度图的局部边缘结构提供更进一步的约束,再通过最速下降法有效地求解该优化问题。实验表明文中算法较其它算法无论在视觉效果还是客观评价指标下都可得到更好的结果。%  It is convenient for time of flight camera to get the scene depth image, the resolution of depth image is very low due to limitations of the hardware, which can not meet the actual needs. In this paper, a method is proposed for solving depth map super-resolution problem. With a low resolution depth image as input, a high resolution depth map is recovered by using a registered and potentially high resolution camera image of the same scene. The depth map super-resolution problem is solved by developing an optimization framework. Specifically, the reconstruction constraint is applied to get the data term, and based on the fact that discontinuities in range and coloring tend to co-align, laplacian matrix and local structural features of high resolution camera images are used to construct the regularization term. The experimental results demonstrate that the proposed approach gets high resolution range image in terms of both its spatial resolution and depth precision.

  13. High Resolution Airborne Shallow Water Mapping

    Science.gov (United States)

    Steinbacher, F.; Pfennigbauer, M.; Aufleger, M.; Ullrich, A.

    2012-07-01

    In order to meet the requirements of the European Water Framework Directive (EU-WFD), authorities face the problem of repeatedly performing area-wide surveying of all kinds of inland waters. Especially for mid-sized or small rivers this is a considerable challenge imposing insurmountable logistical efforts and costs. It is therefore investigated if large-scale surveying of a river system on an operational basis is feasible by employing airborne hydrographic laser scanning. In cooperation with the Bavarian Water Authority (WWA Weilheim) a pilot project was initiated by the Unit of Hydraulic Engineering at the University of Innsbruck and RIEGL Laser Measurement Systems exploiting the possibilities of a new LIDAR measurement system with high spatial resolution and high measurement rate to capture about 70 km of riverbed and foreland for the river Loisach in Bavaria/Germany and the estuary and parts of the shoreline (about 40km in length) of lake Ammersee. The entire area surveyed was referenced to classic terrestrial cross-section surveys with the aim to derive products for the monitoring and managing needs of the inland water bodies forced by the EU-WFD. The survey was performed in July 2011 by helicopter and airplane and took 3 days in total. In addition, high resolution areal images were taken to provide an optical reference, offering a wide range of possibilities on further research, monitoring, and managing responsibilities. The operating altitude was about 500 m to maintain eye-safety, even for the aided eye, the airspeed was about 55 kts for the helicopter and 75 kts for the aircraft. The helicopter was used in the alpine regions while the fixed wing aircraft was used in the plains and the urban area, using appropriate scan rates to receive evenly distributed point clouds. The resulting point density ranged from 10 to 25 points per square meter. By carefully selecting days with optimum water quality, satisfactory penetration down to the river bed was achieved

  14. Logging Data High-Resolution Sequence Stratigraphy

    Institute of Scientific and Technical Information of China (English)

    Li Hongqi; Xie Yinfu; Sun Zhongchun; Luo Xingping

    2006-01-01

    The recognition and contrast of bed sets in parasequence is difficult in terrestrial basin high-resolution sequence stratigraphy. This study puts forward new methods for the boundary identification and contrast of bed sets on the basis of manifold logging data. The formation of calcareous interbeds, shale resistivity differences and the relation of reservoir resistivity to altitude are considered on the basis of log curve morphological characteristics, core observation, cast thin section, X-ray diffraction and scanning electron microscopy. The results show that the thickness of calcareous interbeds is between 0.5 m and 2 m, increasing on weathering crusts and faults. Calcareous interbeds occur at the bottom of Reservoir resistivity increases with altitude. Calcareous interbeds may be a symbol of recognition for the boundary of bed sets and isochronous contrast bed sets, and shale resistivity differences may confirm the stack relation and connectivity of bed sets. Based on this, a high-rcsolution chronostratigraphic framework of Xi-1 segment in Shinan area, Junggar basin is presented, and the connectivity of bed sets and oil-water contact is confirmed. In this chronostratigraphic framework, the growth order, stack mode and space shape of bed sets are qualitatively and quantitatively described.

  15. High resolution low frequency ultrasonic tomography.

    Science.gov (United States)

    Lasaygues, P; Lefebvre, J P; Mensah, S

    1997-10-01

    Ultrasonic reflection tomography results from a linearization of the inverse acoustic scattering problem, named the inverse Born approximation. The goal of ultrasonic reflection tomography is to obtain reflectivity images from backscattered measurements. This is a Fourier synthesis problem and the first step is to correctly cover the frequency space of the object. For this inverse problem, we use the classical algorithm of tomographic reconstruction by summation of filtered backprojections. In practice, only a limited number of views are available with our mechanical rig, typically 180, and the frequency bandwidth of the pulses is very limited, typically one octave. The resolving power of the system is them limited by the bandwidth of the pulse. Low and high frequencies can be restored by use of a deconvolution algorithm that enhances resolution. We used a deconvolution technique based on the Papoulis method. The advantage of this technique is conservation of the overall frequency information content of the signals. The enhancement procedure was tested by imaging a square aluminium rod with a cross-section less than the wavelength. In this application, the central frequency of the transducer was 250 kHz so that the central wavelength was 6 mm whereas the cross-section of the rod was 4 mm. Although the Born approximation was not theoretically valid in this case (high contrast), a good reconstruction was obtained.

  16. Automatic abundance analysis of high resolution spectra

    CERN Document Server

    Bonifacio, P; Bonifacio, Piercarlo; Caffau, Elisabetta

    2003-01-01

    We describe an automatic procedure for determining abundances from high resolution spectra. Such procedures are becoming increasingly important as large amounts of data are delivered from 8m telescopes and their high-multiplexing fiber facilities, such as FLAMES on ESO-VLT. The present procedure is specifically targeted for the analysis of spectra of giants in the Sgr dSph; however, the procedure may be, in principle, tailored to analyse stars of any type. Emphasis is placed on the algorithms and on the stability of the method; the external accuracy rests, ultimately, on the reliability of the theoretical models (model-atmospheres, synthetic spectra) used to interpret the data. Comparison of the results of the procedure with the results of a traditional analysis for 12 Sgr giants shows that abundances accurate at the level of 0.2 dex, comparable with that of traditional analysis of the same spectra, may be derived in a fast and efficient way. Such automatic procedures are not meant to replace the traditional ...

  17. Supporting observation campaigns with high resolution modeling

    Science.gov (United States)

    Klocke, Daniel; Brueck, Matthias; Voigt, Aiko

    2017-04-01

    High resolution simulation in support of measurement campaigns offers a promising and emerging way to create large-scale context for small-scale observations of clouds and precipitation processes. As these simulation include the coupling of measured small-scale processes with the circulation, they also help to integrate the research communities from modeling and observations and allow for detailed model evaluations against dedicated observations. In connection with the measurement campaign NARVAL (August 2016 and December 2013) simulations with a grid-spacing of 2.5 km for the tropical Atlantic region (9000x3300 km), with local refinement to 1.2 km for the western part of the domain, were performed using the icosahedral non-hydrostatic (ICON) general circulation model. These simulations are again used to drive large eddy resolving simulations with the same model for selected days in the high definition clouds and precipitation for advancing climate prediction (HD(CP)2) project. The simulations are presented with the focus on selected results showing the benefit for the scientific communities doing atmospheric measurements and numerical modeling of climate and weather. Additionally, an outlook will be given on how similar simulations will support the NAWDEX measurement campaign in the North Atlantic and AC3 measurement campaign in the Arctic.

  18. Mapping snow depth from manned aircraft on landscape scales at centimeter resolution using structure-from-motion photogrammetry

    Science.gov (United States)

    Nolan, M.; Larsen, C.; Sturm, M.

    2015-08-01

    Airborne photogrammetry is undergoing a renaissance: lower-cost equipment, more powerful software, and simplified methods have significantly lowered the barriers to entry and now allow repeat mapping of cryospheric dynamics at spatial resolutions and temporal frequencies that were previously too expensive to consider. Here we apply these advancements to the measurement of snow depth from manned aircraft. Our main airborne hardware consists of a consumer-grade digital camera directly coupled to a dual-frequency GPS; no inertial motion unit (IMU) or on-board computer is required, such that system hardware and software costs less than USD 30 000, exclusive of aircraft. The photogrammetric processing is done using a commercially available implementation of the structure from motion (SfM) algorithm. The system is simple enough that it can be operated by the pilot without additional assistance and the technique creates directly georeferenced maps without ground control, further reducing overall costs. To map snow depth, we made digital elevation models (DEMs) during snow-free and snow-covered conditions, then subtracted these to create difference DEMs (dDEMs). We assessed the accuracy (real-world geolocation) and precision (repeatability) of our DEMs through comparisons to ground control points and to time series of our own DEMs. We validated these assessments through comparisons to DEMs made by airborne lidar and by a similar photogrammetric system. We empirically determined that our DEMs have a geolocation accuracy of ±30 cm and a repeatability of ±8 cm (both 95 % confidence). We then validated our dDEMs against more than 6000 hand-probed snow depth measurements at 3 separate test areas in Alaska covering a wide-variety of terrain and snow types. These areas ranged from 5 to 40 km2 and had ground sample distances of 6 to 20 cm. We found that depths produced from the dDEMs matched probe depths with a 10 cm standard deviation, and were statistically identical at 95

  19. High resolution tomography of objects with access to a single side

    Energy Technology Data Exchange (ETDEWEB)

    Thoe, R.S.

    1993-03-24

    The author is developing a technique which will enable one to obtain high-contrast, high-spatial resolution, three-dimensional images in opaque objects. The only constraint will be the radiation source and detector(s) will be located on the same side of the object. The goal is to obtain images with a spatial resolution of {approximately}1 mm at depths of 10 mm and {approximately}3 mm at depths of 30 mm in materials of moderate density (brass, steel, etc.). The author`s technique uses a highly-collimated beam of monochromatic gamma rays and a slit collimated high-resolution, high-efficiency, coaxial germanium spectrometer. If the geometry is well known, the spectrum of Compton scattered radiation can be used to map out the density as a function of depth. By scanning the object in two dimensions, a full three-dimensional image of the electron density can be reconstructed. The resolution is dependent on the incident beam collimation and the energy resolution of the spectrometer. For his system, the author anticipates a resolution of about 1 mm{sup 3}. The apparatus, reconstruction algorithms and current data verifying his predictions are presented here. Also included are the details on how the system can be modified to increase the efficiency by over two orders of magnitude. This system will have several advantages over conventional transmission radiographic and tomographic systems: (1) It requires the use of a high specific intensity isotopic source of modest activity (< 100 mCi). (2) It requires only a single high-resolution spectrometer used in conjunction with an array of low-resolution detectors (all readily available). (3) It allows for the recording of three-dimensional images of object even though both detector and source are located on the same side of the object.

  20. Resolution enhancement of low quality videos using a high-resolution frame

    NARCIS (Netherlands)

    Pham, T.Q.; Van Vliet, L.J.; Schutte, K.

    2006-01-01

    This paper proposes an example-based Super-Resolution (SR) algorithm of compressed videos in the Discrete Cosine Transform (DCT) domain. Input to the system is a Low-Resolution (LR) compressed video together with a High-Resolution (HR) still image of similar content. Using a training set of correspo

  1. High resolution 3D imaging of synchrotron generated microbeams

    Energy Technology Data Exchange (ETDEWEB)

    Gagliardi, Frank M., E-mail: frank.gagliardi@wbrc.org.au [Alfred Health Radiation Oncology, The Alfred, Melbourne, Victoria 3004, Australia and School of Medical Sciences, RMIT University, Bundoora, Victoria 3083 (Australia); Cornelius, Iwan [Imaging and Medical Beamline, Australian Synchrotron, Clayton, Victoria 3168, Australia and Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales 2500 (Australia); Blencowe, Anton [Division of Health Sciences, School of Pharmacy and Medical Sciences, The University of South Australia, Adelaide, South Australia 5000, Australia and Division of Information Technology, Engineering and the Environment, Mawson Institute, University of South Australia, Mawson Lakes, South Australia 5095 (Australia); Franich, Rick D. [School of Applied Sciences and Health Innovations Research Institute, RMIT University, Melbourne, Victoria 3000 (Australia); Geso, Moshi [School of Medical Sciences, RMIT University, Bundoora, Victoria 3083 (Australia)

    2015-12-15

    Purpose: Microbeam radiation therapy (MRT) techniques are under investigation at synchrotrons worldwide. Favourable outcomes from animal and cell culture studies have proven the efficacy of MRT. The aim of MRT researchers currently is to progress to human clinical trials in the near future. The purpose of this study was to demonstrate the high resolution and 3D imaging of synchrotron generated microbeams in PRESAGE® dosimeters using laser fluorescence confocal microscopy. Methods: Water equivalent PRESAGE® dosimeters were fabricated and irradiated with microbeams on the Imaging and Medical Beamline at the Australian Synchrotron. Microbeam arrays comprised of microbeams 25–50 μm wide with 200 or 400 μm peak-to-peak spacing were delivered as single, cross-fire, multidirectional, and interspersed arrays. Imaging of the dosimeters was performed using a NIKON A1 laser fluorescence confocal microscope. Results: The spatial fractionation of the MRT beams was clearly visible in 2D and up to 9 mm in depth. Individual microbeams were easily resolved with the full width at half maximum of microbeams measured on images with resolutions of as low as 0.09 μm/pixel. Profiles obtained demonstrated the change of the peak-to-valley dose ratio for interspersed MRT microbeam arrays and subtle variations in the sample positioning by the sample stage goniometer were measured. Conclusions: Laser fluorescence confocal microscopy of MRT irradiated PRESAGE® dosimeters has been validated in this study as a high resolution imaging tool for the independent spatial and geometrical verification of MRT beam delivery.

  2. The High Time Resolution Radio Sky

    Science.gov (United States)

    Thornton, D.

    2013-11-01

    Pulsars are laboratories for extreme physics unachievable on Earth. As individual sources and possible orbital companions can be used to study magnetospheric, emission, and superfluid physics, general relativistic effects, and stellar and binary evolution. As populations they exhibit a wide range of sub-types, with parameters varying by many orders of magnitude signifying fundamental differences in their evolutionary history and potential uses. There are currently around 2200 known pulsars in the Milky Way, the Magellanic clouds, and globular clusters, most of which have been discovered with radio survey observations. These observations, as well as being suitable for detecting the repeating signals from pulsars, are well suited for identifying other transient astronomical radio bursts that last just a few milliseconds that either singular in nature, or rarely repeating. Prior to the work of this thesis non-repeating radio transients at extragalactic distances had possibly been discovered, however with just one example status a real astronomical sources was in doubt. Finding more of these sources was a vital to proving they were real and to open up the universe for millisecond-duration radio astronomy. The High Time Resolution Universe survey uses the multibeam receiver on the 64-m Parkes radio telescope to search the whole visible sky for pulsars and transients. The temporal and spectral resolution of the receiver and the digital back-end enable the detection of relatively faint, and distant radio sources. From the Parkes telescope a large portion of the Galactic plane can be seen, a rich hunting ground for radio pulsars of all types, while previously poorly surveyed regions away from the Galactic plane are also covered. I have made a number of pulsar discoveries in the survey, including some rare systems. These include PSR J1226-6208, a possible double neutron star system in a remarkably circular orbit, PSR J1431-471 which is being eclipsed by its companion with

  3. AIRBORNE HIGH-RESOLUTION DIGITAL IMAGING SYSTEM

    Directory of Open Access Journals (Sweden)

    Prado-Molina, J.

    2006-04-01

    Full Text Available A low-cost airborne digital imaging system capable to perform aerial surveys with small-format cameras isintroduced. The equipment is intended to obtain high-resolution multispectral digital photographs constituting so aviable alternative to conventional aerial photography and satellite imagery. Monitoring software handles all theprocedures involved in image acquisition, including flight planning, real-time graphics for aircraft position updatingin a mobile map, and supervises the main variables engaged in the imaging process. This software also creates fileswith the geographical position of the central point of every image, and the flight path followed by the aircraftduring the entire survey. The cameras are mounted on a three-axis stabilized platform. A set of inertial sensorsdetermines platform's deviations independently from the aircraft and an automatic control system keeps thecameras at a continuous nadir pointing and heading, with a precision better than ± 1 arc-degree in three-axis. Thecontrol system is also in charge of saving the platform’s orientation angles when the monitoring software triggersthe camera. These external orientation parameters, together with a procedure for camera calibration give theessential elements for image orthocorrection. Orthomosaics are constructed using commercial GIS software.This system demonstrates the feasibility of large area coverage in a practical and economical way using smallformatcameras. Monitoring and automatization reduce the work while increasing the quality and the amount ofuseful images.

  4. High spatial resolution probes for neurobiology applications

    Science.gov (United States)

    Gunning, D. E.; Kenney, C. J.; Litke, A. M.; Mathieson, K.

    2009-06-01

    Position-sensitive biological neural networks, such as the brain and the retina, require position-sensitive detection methods to identify, map and study their behavior. Traditionally, planar microelectrodes have been employed to record the cell's electrical activity with device limitations arising from the electrode's 2-D nature. Described here is the development and characterization of an array of electrically conductive micro-needles aimed at addressing the limitations of planar electrodes. The capability of this array to penetrate neural tissue improves the electrode-cell electrical interface and allows more complicated 3-D networks of neurons, such as those found in brain slices, to be studied. State-of-the-art semiconductor fabrication techniques were used to etch and passivate conformally the metal coat and fill high aspect ratio holes in silicon. These are subsequently transformed into needles with conductive tips. This process has enabled the fabrication of arrays of unprecedented dimensions: 61 hexagonally close-packed electrodes, ˜200 μm tall with 60 μm spacing. Electroplating the tungsten tips with platinum ensure suitable impedance values (˜600 kΩ at 1 kHz) for the recording of neuronal signals. Without compromising spatial resolution of the neuronal recordings, this array adds a new and exciting dimension to the study of biological neural networks.

  5. DUACS: Toward High Resolution Sea Level Products

    Science.gov (United States)

    Faugere, Y.; Gerald, D.; Ubelmann, C.; Claire, D.; Pujol, M. I.; Antoine, D.; Desjonqueres, J. D.; Picot, N.

    2016-12-01

    The DUACS system produces, as part of the CNES/SALP project, and the Copernicus Marine Environment and Monitoring Service, high quality multimission altimetry Sea Level products for oceanographic applications, climate forecasting centers, geophysic and biology communities... These products consist in directly usable and easy to manipulate Level 3 (along-track cross-calibrated SLA) and Level 4 products (multiple sensors merged as maps or time series) and are available in global and regional version (Mediterranean Sea, Arctic, European Shelves …).The quality of the products is today limited by the altimeter technology "Low Resolution Mode" (LRM), and the lack of available observations. The launch of 2 new satellites in 2016, Jason-3 and Sentinel-3A, opens new perspectives. Using the global Synthetic Aperture Radar mode (SARM) coverage of S3A and optimizing the LRM altimeter processing (retracking, editing, ...) will allow us to fully exploit the fine-scale content of the altimetric missions. Thanks to this increase of real time altimetry observations we will also be able to improve Level-4 products by combining these new Level-3 products and new mapping methodology, such as dynamic interpolation. Finally these improvements will benefit to downstream products : geostrophic currents, Lagrangian products, eddy atlas… Overcoming all these challenges will provide major upgrades of Sea Level products to better fulfill user needs.

  6. Laser wavelength comparison by high resolution interferometry.

    Science.gov (United States)

    Layer, H P; Deslattes, R D; Schweitzer, W G

    1976-03-01

    High resolution interferometry has been used to determine the wavelength ratio between two molecularly stabilized He-Ne lasers, one locked to a methane absorption at 3.39 microm and the other locked to the k peak of (129)I(2) at 633 nm. An optical beat frequency technique gave fractional orders while a microwave sideband method yielded the integer parts. Conventional (third derivative) peak seeking servoes stabilized both laser and cavity lengths. Reproducibility of the electronic control system and optics was a few parts in 10(12), while systematic errors associated with curvature of the cavity mirrors limited the accuracy of the wavelength ratio measurement to 2 parts in 10(10). The measured wavelength ratio of the methane stabilized He-Ne laser at 3.39 microm [P(7) line, nu(3) band] to the (129)I(2) (k peak) stabilized He-Ne laser at 633 nm was 5.359 049 260 6 (0.000 2 ppm). This ratio agrees with that calculated from the (lower accuracy) results of earlier wavelength measurements made relative to the (86)Kr standard. Its higher accuracy thus permits a provisional extension of the frequency scale based on the cesium oscillator into the visible spectrum.

  7. High-resolution harmonic motion imaging (HR-HMI) for tissue biomechanical property characterization.

    Science.gov (United States)

    Ma, Teng; Qian, Xuejun; Chiu, Chi Tat; Yu, Mingyue; Jung, Hayong; Tung, Yao-Sheng; Shung, K Kirk; Zhou, Qifa

    2015-02-01

    Elastography, capable of mapping the biomechanical properties of biological tissues, serves as a useful technique for clinicians to perform disease diagnosis and determine stages of many diseases. Many acoustic radiation force (ARF) based elastography, including acoustic radiation force impulse (ARFI) imaging and harmonic motion imaging (HMI), have been developed to remotely assess the elastic properties of tissues. However, due to the lower operating frequencies of these approaches, their spatial resolutions are insufficient for revealing stiffness distribution on small scale applications, such as cancerous tumor margin detection, atherosclerotic plaque composition analysis and ophthalmologic tissue characterization. Though recently developed ARF-based optical coherence elastography (OCE) methods open a new window for the high resolution elastography, shallow imaging depths significantly limit their usefulness in clinics. The aim of this study is to develop a high-resolution HMI method to assess the tissue biomechanical properties with acceptable field of view (FOV) using a 4 MHz ring transducer for efficient excitation and a 40 MHz needle transducer for accurate detection. Under precise alignment of two confocal transducers, the high-resolution HMI system has a lateral resolution of 314 µm and an axial resolution of 
147 µm with an effective FOV of 2 mm in depth. The performance of this high resolution imaging system was validated on the agar-based tissue mimicking phantoms with different stiffness distributions. These data demonstrated the imaging system's improved resolution and sensitivity on differentiating materials with varying stiffness. In addition, ex vivo imaging of a human atherosclerosis coronary artery demonstrated the capability of high resolution HMI in identifying layer-specific structures and characterizing atherosclerotic plaques based on their stiffness differences. All together high resolution HMI appears to be a promising ultrasound

  8. High-resolution ophthalmic imaging system

    Science.gov (United States)

    Olivier, Scot S.; Carrano, Carmen J.

    2007-12-04

    A system for providing an improved resolution retina image comprising an imaging camera for capturing a retina image and a computer system operatively connected to the imaging camera, the computer producing short exposures of the retina image and providing speckle processing of the short exposures to provide the improved resolution retina image. The system comprises the steps of capturing a retina image, producing short exposures of the retina image, and speckle processing the short exposures of the retina image to provide the improved resolution retina image.

  9. Elastic recoil atomic spectroscopy of light elements with sub-nanometer depth resolution; Elastische Rueckstossatomspektrometrie leichter Elemente mit Subnanometer-Tiefenaufloesung

    Energy Technology Data Exchange (ETDEWEB)

    Kosmata, Marcel

    2011-06-30

    In this thesis the QQDS magnetic spectrometer that is used for high resolution ion beam analysis (IBA) of light elements at the Helmholtz-Zentrum Dresden-Rossendorf is presented for the first time. In addition all parameters are investigated that influence the analysis. Methods and models are presented with which the effects can be minimised or calculated. There are five focal points of this thesis. The first point is the construction and commissioning of the QQDS magnetic spectrometer, the corresponding scattering chamber with all the peripherals and the detector, which is specially developed for high resolution elastic recoil detection. Both the reconstructed spectrometer and the detector were adapted to the specific experimental conditions needed for high-resolution Ion beam analysis of light elements and tested for routine practice. The detector consists of two components. At the back end of the detector a Bragg ionization chamber is mounted, which is used for the particle identification. At the front end, directly behind the entrance window a proportional counter is mounted. This proportional counter includes a highresistance anode. Thus, the position of the particles is determined in the detector. The following two points concern fundamental studies of ion-solid interaction. By using a magnetic spectrometer the charge state distribution of the particles scattered from the sample after a binary collision is both possible and necessary for the analysis. For this reason the charge states are measured and compared with existing models. In addition, a model is developed that takes into account the charge state dependent energy loss. It is shown that without the application of this model the depth profiles do not correspond with the quantitative measurements by conventional IBA methods and with the thickness obtained by transmission electron microscopy. The second fundamental ion-solid interaction is the damage and the modification of the sample that occurs during

  10. The High Resolution IRAS Galaxy Atlas

    CERN Document Server

    Cao, Y; Prince, T A; Beichman, C A; Cao, Yu; Terebey, Susan; Prince, Thomas A.; Beichman, Charles A.

    1997-01-01

    An atlas of the Galactic plane (-4.7 deg < b < 4.7 deg) plus the molecular clouds in Orion, Rho Oph, and Taurus-Auriga has been produced at 60 and 100 micron from IRAS data. The Atlas consists of resolution-enhanced coadded images having 1 arcmin -- 2 arcmin resolution as well as coadded images at the native IRAS resolution. The IRAS Galaxy Atlas, together with the DRAO HI line / 21 cm continuum and FCRAO CO (1-0) line Galactic plane surveys, both with similar (approx. 1 arcmin) resolution, provide a powerful venue for studying the interstellar medium, star formation and large scale structure in our Galaxy. This paper documents the production and characteristics of the Atlas.

  11. High resolution fire risk mapping in Italy

    Science.gov (United States)

    Fiorucci, Paolo; Biondi, Guido; Campo, Lorenzo; D'Andrea, Mirko

    2014-05-01

    extinguishing actions, leaving more resources to improve safety in areas at risk. With the availability of fire perimeters mapped over a period spanning from 5 to 10 years, depending by the region, a procedure was defined in order to assess areas at risk with high spatial resolution (900 m2) based on objective criteria by observing past fire events. The availability of fire perimeters combined with a detailed knowledge of topography and land cover allowed to understand which are the main features involved in forest fire occurrences and their behaviour. The seasonality of the fire regime was also considered, partitioning the analysis in two macro season (November- April and May- October). In addition, the total precipitation obtained from the interpolation of 30 years-long time series from 460 raingauges and the average air temperature obtained downscaling 30 years ERA-INTERIM data series were considered. About 48000 fire perimeters which burnt about 5500 km2 were considered in the analysis. The analysis has been carried out at 30 m spatial resolution. Some important considerations relating to climate and the territorial features that characterize the fire regime at national level contribute to better understand the forest fire phenomena. These results allow to define new strategies for forest fire prevention and management extensible to other geographical areas.

  12. Super-Resolution Reconstruction of High-Resolution Satellite ZY-3 TLC Images.

    Science.gov (United States)

    Li, Lin; Wang, Wei; Luo, Heng; Ying, Shen

    2017-05-07

    Super-resolution (SR) image reconstruction is a technique used to recover a high-resolution image using the cumulative information provided by several low-resolution images. With the help of SR techniques, satellite remotely sensed images can be combined to achieve a higher-resolution image, which is especially useful for a two- or three-line camera satellite, e.g., the ZY-3 high-resolution Three Line Camera (TLC) satellite. In this paper, we introduce the application of the SR reconstruction method, including motion estimation and the robust super-resolution technique, to ZY-3 TLC images. The results show that SR reconstruction can significantly improve both the resolution and image quality of ZY-3 TLC images.

  13. High-resolution ab initio Three-dimensional X-ray Diffraction Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, H N; Barty, A; Marchesini, S; Noy, A; Cui, C; Howells, M R; Rosen, R; He, H; Spence, J H; Weierstall, U; Beetz, T; Jacobsen, C; Shapiro, D

    2005-08-19

    Coherent X-ray diffraction microscopy is a method of imaging non-periodic isolated objects at resolutions only limited, in principle, by the largest scattering angles recorded. We demonstrate X-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the 3D diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a non-periodic object. We also construct 2D images of thick objects with infinite depth of focus (without loss of transverse spatial resolution). These methods can be used to image biological and materials science samples at high resolution using X-ray undulator radiation, and establishes the techniques to be used in atomic-resolution ultrafast imaging at X-ray free-electron laser sources.

  14. Large Scale, High Resolution, Mantle Dynamics Modeling

    Science.gov (United States)

    Geenen, T.; Berg, A. V.; Spakman, W.

    2007-12-01

    To model the geodynamic evolution of plate convergence, subduction and collision and to allow for a connection to various types of observational data, geophysical, geodetical and geological, we developed a 4D (space-time) numerical mantle convection code. The model is based on a spherical 3D Eulerian fem model, with quadratic elements, on top of which we constructed a 3D Lagrangian particle in cell(PIC) method. We use the PIC method to transport material properties and to incorporate a viscoelastic rheology. Since capturing small scale processes associated with localization phenomena require a high resolution, we spend a considerable effort on implementing solvers suitable to solve for models with over 100 million degrees of freedom. We implemented Additive Schwartz type ILU based methods in combination with a Krylov solver, GMRES. However we found that for problems with over 500 thousend degrees of freedom the convergence of the solver degraded severely. This observation is known from the literature [Saad, 2003] and results from the local character of the ILU preconditioner resulting in a poor approximation of the inverse of A for large A. The size of A for which ILU is no longer usable depends on the condition of A and on the amount of fill in allowed for the ILU preconditioner. We found that for our problems with over 5×105 degrees of freedom convergence became to slow to solve the system within an acceptable amount of walltime, one minute, even when allowing for considerable amount of fill in. We also implemented MUMPS and found good scaling results for problems up to 107 degrees of freedom for up to 32 CPU¡¯s. For problems with over 100 million degrees of freedom we implemented Algebraic Multigrid type methods (AMG) from the ML library [Sala, 2006]. Since multigrid methods are most effective for single parameter problems, we rebuild our model to use the SIMPLE method in the Stokes solver [Patankar, 1980]. We present scaling results from these solvers for 3D

  15. High Resolution Digital Elevation Models of Pristine Explosion Craters

    Science.gov (United States)

    Farr, T. G.; Krabill, W.; Garvin, J. B.

    2004-01-01

    In order to effectively capture a realistic terrain applicable to studies of cratering processes and landing hazards on Mars, we have obtained high resolution digital elevation models of several pristine explosion craters at the Nevada Test Site. We used the Airborne Terrain Mapper (ATM), operated by NASA's Wallops Flight Facility to obtain DEMs with 1 m spacing and 10 cm vertical errors of 4 main craters and many other craters and collapse pits. The main craters that were mapped are Sedan, Scooter, Schooner, and Danny Boy. The 370 m diameter Sedan crater, located on Yucca Flat, is the largest and freshest explosion crater on Earth that was formed under conditions similar to hypervelocity impact cratering. As such, it is effectively pristine, having been formed in 1962 as a result of a controlled detonation of a 100 kiloton thermonuclear device, buried at the appropriate equivalent depth of burst required to make a simple crater. Sedan was formed in alluvium of mixed lithology and subsequently studied using a variety of field-based methods. Nearby secondary craters were also formed at the time and were also mapped by ATM. Adjacent to Sedan and also in alluvium is Scooter, about 90 m in diameter and formed by a high-explosive event. Schooner (240 m) and Danny Boy (80 m) craters were also important targets for ATM as they were excavated in hard basalt and therefore have much rougher ejecta. This will allow study of ejecta patterns in hard rock as well as engineering tests of crater and rock avoidance and rover trafficability. In addition to the high resolution DEMs, crater geometric characteristics, RMS roughness maps, and other higher-order derived data products will be generated using these data. These will provide constraints for models of landing hazards on Mars and for rover trafficability. Other planned studies will include ejecta size-frequency distribution at the resolution of the DEM and at finer resolution through air photography and field measurements

  16. High Resolution Pulse Compression Imaging Using Super Resolution FM-Chirp Correlation Method (SCM)

    Science.gov (United States)

    Fujiwara, M.; Okubo, K.; Tagawa, N.

    This study addresses the issue of the super-resolution pulse compression technique (PCT) for ultrasound imaging. Time resolution of multiple ultrasonic echoes using the FM-Chirp PCT is limited by the bandwidth of the sweep-frequency. That is, the resolution depends on the sharpness of auto-correlation function. We propose the Super resolution FM-Chirp correlation Method (SCM) and evaluate its performance. This method is based on the multiple signal classification (MUSIC) algorithm. Our simulations were made for the model assuming multiple signals reflected from some scatterers. We confirmed that SCM detects time delay of complicated reflected signals successfully with high resolution.

  17. Optimization of high-resolution continuous flow analysis for transient climate signals in ice cores.

    Science.gov (United States)

    Bigler, Matthias; Svensson, Anders; Kettner, Ernesto; Vallelonga, Paul; Nielsen, Maibritt E; Steffensen, Jørgen Peder

    2011-05-15

    Over the past two decades, continuous flow analysis (CFA) systems have been refined and widely used to measure aerosol constituents in polar and alpine ice cores in very high-depth resolution. Here we present a newly designed system consisting of sodium, ammonium, dust particles, and electrolytic meltwater conductivity detection modules. The system is optimized for high-resolution determination of transient signals in thin layers of deep polar ice cores. Based on standard measurements and by comparing sections of early Holocene and glacial ice from Greenland, we find that the new system features a depth resolution in the ice of a few millimeters which is considerably better than other CFA systems. Thus, the new system can resolve ice strata down to 10 mm thickness and has the potential of identifying annual layers in both Greenland and Antarctic ice cores throughout the last glacial cycle.

  18. Nanometer-resolution depth-resolved measurement of florescence-yield soft x-ray absorption spectroscopy for FeCo thin film

    Science.gov (United States)

    Sakamaki, M.; Amemiya, K.

    2017-08-01

    We develop a fluorescence-yield depth-resolved soft x-ray absorption spectroscopy (XAS) technique, which is based on the principle that the probing depth is changed by the emission angle of the fluorescence soft x rays. Compared with the electron-yield depth-resolved XAS technique, which has been established in this decade, we can observe wider range in-depth XAS distribution up to several tens of nm. Applying this technique to a 30 ML (˜4.3 nm) FeCo thin film, we observe Fe L-edge XAS spectra at the probing depth of 0.3-6 nm and find that the film has 22 ML (˜3.1 nm) surface oxide layer while its inner layer shows metallic state. We thus successfully obtain nanometer-resolution depth-resolved XAS spectra and further expect that operando measurement under the electric and/or magnetic fields is possible.

  19. High-spectral-resolution lidar for ocean ecosystem studies

    Science.gov (United States)

    Liu, Dong; Zhou, Yudi; Yang, Yongying; Cheng, Zhongtao; Luo, Jing; Zhang, Yupeng; Shen, Yibing; Wang, Kaiwei; Liu, Chong; Bai, Jian

    2016-05-01

    The research and protection of the ocean ecosystem are key works to maintain the marine status and develop marine functions. However, human's knowledge about the ocean is greatly limited. Now, in situ, acoustic and remote sensing methods have been applied in the research to understand and explore the ocean. Especially, the lidar is one outstanding remote sensing method for its high spatial and temporal resolution as well as the ability of the vertical detection. Highspectral- resolution lidar (HSRL) employs an ultra-narrow spectral filter to distinguish scattering signals between particles and water molecules without assuming a lidar ratio and obtains optical properties of the ocean with a high accuracy. Nevertheless, the complexity of the seawater causes variable marine optical properties, which gives huge potentiality to develop a HSRL working at different wavelengths in order to promote the inversion accuracy and increase the detection depth. The field-widened Michelson interferometer (FWMI), whose central transmittance can be tuned to any wavelength and field of view is large, can be employed as the HSRL spectral filter and solves problems that the operating wavelength of the iodine filter is fixed and the field of view of Fabry-Perot interferometer is small. The principle of the HSRL based on the FWMI designing for the ocean remote sensing will be presented in detail. In addition, the availability of the application of the FWMI influenced by the disturbance of the states of Brillouin scattering is analyzed and the preliminary theory shows that the HSRL instrument basing on FWMI could be employed in the marine remote sensing with a high accuracy.

  20. High-level fusion of depth and intensity for pedestrian classification

    NARCIS (Netherlands)

    Rohrbach, M.; Enzweiler, M.; Gavrila, D.M.

    2009-01-01

    This paper presents a novel approach to pedestrian classification which involves a high-level fusion of depth and intensity cues. Instead of utilizing depth information only in a pre-processing step, we propose to extract discriminative spatial features (gradient orientation histograms and local

  1. Improving axial resolution in confocal microscopy with new high refractive index mounting media.

    Directory of Open Access Journals (Sweden)

    Coralie Fouquet

    Full Text Available Resolution, high signal intensity and elevated signal to noise ratio (SNR are key issues for biologists who aim at studying the localisation of biological structures at the cellular and subcellular levels using confocal microscopy. The resolution required to separate sub-cellular biological structures is often near to the resolving power of the microscope. When optimally used, confocal microscopes may reach resolutions of 180 nm laterally and 500 nm axially, however, axial resolution in depth is often impaired by spherical aberration that may occur due to refractive index mismatches. Spherical aberration results in broadening of the point-spread function (PSF, a decrease in peak signal intensity when imaging in depth and a focal shift that leads to the distortion of the image along the z-axis and thus in a scaling error. In this study, we use the novel mounting medium CFM3 (Citifluor Ltd., UK with a refractive index of 1.518 to minimize the effects of spherical aberration. This mounting medium is compatible with most common fluorochromes and fluorescent proteins. We compare its performance with established mounting media, harbouring refractive indices below 1.500, by estimating lateral and axial resolution with sub-resolution fluorescent beads. We show furthermore that the use of the high refractive index media renders the tissue transparent and improves considerably the axial resolution and imaging depth in immuno-labelled or fluorescent protein labelled fixed mouse brain tissue. We thus propose to use those novel high refractive index mounting media, whenever optimal axial resolution is required.

  2. High Resolution Surface Science at Mars

    Science.gov (United States)

    Bailey, Zachary J.; Tamppari, Leslie K.; Lock, Robert E.; Sturm, Erick J.

    2013-01-01

    The proposed mission would place a 2.4 m telescope in orbit around Mars with two focal plane instruments to obtain the highest resolution images and spectral maps of the surface to date (3-10x better than current). This investigation would make major contributions to all of the Mars Program Goals: life, climate, geology and preparation for human presence.

  3. High spatial resolution LWIR hyperspectral sensor

    Science.gov (United States)

    Roberts, Carson B.; Bodkin, Andrew; Daly, James T.; Meola, Joseph

    2015-06-01

    Presented is a new hyperspectral imager design based on multiple slit scanning. This represents an innovation in the classic trade-off between speed and resolution. This LWIR design has been able to produce data-cubes at 3 times the rate of conventional single slit scan devices. The instrument has a built-in radiometric and spectral calibrator.

  4. Improved stratigraphic dating at a low accumulation Alpine ice core through laser ablation trace element profiling at sub-mm depth resolution

    Science.gov (United States)

    Bohleber, Pascal; Spaulding, Nicole; Mayewski, Paul; Sneed, Sharon; Handley, Mike; Erhardt, Tobias; Wagenbach, Dietmar

    2015-04-01

    The small scale Colle Gnifetti glacier saddle (4450 m asl, Monte Rosa region) is the only ice core drilling site in the European Alps with a net accumulation low enough to offer multi-millennia climate records. However, a robust interpretation of such long term records (i.e. mineral dust, stable water isotopes) at the Colle Gnifetti (CG) multi core array is strongly challenged by depositional noise associated with a highly irregular annual layer stratigraphy. In combination with a relatively large vertical strain rate and rapid layer thinning, annual layer counting gets increasingly ambiguous as of approximately 100 years. In addition, this prevents clear attribution of likely volcanic horizons to historical eruption dates. To improve stratigraphic dating under such intricate conditions, we deployed laser ablation (LA) ICP-MS at sub-mm sample resolution. We present here the first LA impurity profiles from a new Colle Gnifetti ice core drilled 73 m to bedrock in 2013 at a site where the net snow accumulation is around 20 cm w.e. per year. We contrast the LA signal variability (including Ca, Fe, Na) to continuous flow analyses (CFA) records at cm-resolution (Ca, Na, melt water conductivity, micro- particle) recorded over the whole core length. Of special concern are the lower 28 m to bedrock, which have been continuously profiled in LA Ca, thus offering the direct comparison of Ca-signals between CFA and LA. By this means, we first validate at upper depths LA based annual layer identification through agreement with CFA based counting efforts before demonstrating the LA based counting still works at depths where CFA derived annual layers become spurious since embedded in strong, multi-year cycles. Finally, LA ice core profiling of our CG core has potential for not only dating improvement but also reveals benefits in resolving highly thinned basal ice sections including accounting for micro-structural features such as grain boundaries.

  5. High resolution modelling of extreme precipitation events in urban areas

    Science.gov (United States)

    Siemerink, Martijn; Volp, Nicolette; Schuurmans, Wytze; Deckers, Dave

    2015-04-01

    The present day society needs to adjust to the effects of climate change. More extreme weather conditions are expected, which can lead to longer periods of drought, but also to more extreme precipitation events. Urban water systems are not designed for such extreme events. Most sewer systems are not able to drain the excessive storm water, causing urban flooding. This leads to high economic damage. In order to take appropriate measures against extreme urban storms, detailed knowledge about the behaviour of the urban water system above and below the streets is required. To investigate the behaviour of urban water systems during extreme precipitation events new assessment tools are necessary. These tools should provide a detailed and integral description of the flow in the full domain of overland runoff, sewer flow, surface water flow and groundwater flow. We developed a new assessment tool, called 3Di, which provides detailed insight in the urban water system. This tool is based on a new numerical methodology that can accurately deal with the interaction between overland runoff, sewer flow and surface water flow. A one-dimensional model for the sewer system and open channel flow is fully coupled to a two-dimensional depth-averaged model that simulates the overland flow. The tool uses a subgrid-based approach in order to take high resolution information of the sewer system and of the terrain into account [1, 2]. The combination of using the high resolution information and the subgrid based approach results in an accurate and efficient modelling tool. It is now possible to simulate entire urban water systems using extreme high resolution (0.5m x 0.5m) terrain data in combination with a detailed sewer and surface water network representation. The new tool has been tested in several Dutch cities, such as Rotterdam, Amsterdam and The Hague. We will present the results of an extreme precipitation event in the city of Schiedam (The Netherlands). This city deals with

  6. Direct depth distribution measurement of deuterium in bulk tungsten exposed to high-flux plasma

    Science.gov (United States)

    Taylor, C. N.; Shimada, M.

    2017-05-01

    Understanding tritium retention and permeation in plasma-facing components is critical for fusion safety and fuel cycle control. Glow discharge optical emission spectroscopy (GD-OES) is shown to be an effective tool to reveal the depth profile of deuterium in tungsten. Results confirm the detection of deuterium. A ˜46 μm depth profile revealed that the deuterium content decreased precipitously in the first 7 μm, and detectable amounts were observed to depths in excess of 20 μm. The large probing depth of GD-OES (up to 100s of μm) enables studies not previously accessible to the more conventional techniques for investigating deuterium retention. Of particular applicability is the use of GD-OES to measure the depth profile for experiments where high deuterium concentration in the bulk material is expected: deuterium retention in neutron irradiated materials, and ultra-high deuterium fluences in burning plasma environment.

  7. High-speed photography of high-resolution moire patterns

    Science.gov (United States)

    Whitworth, Martin B.; Huntley, Jonathan M.; Field, John E.

    1991-04-01

    The techniques of high resolution moire photography and high speed photography have been combined to allow measurement of the in-plane components of a transient displacement field with microsecond time resolution. Specimen gratings are prepared as casts in a thin layer of epoxy resin on the surface of a specimen. These are illuminated with a flash tube and imaged onto a reference grating with a specially modified camera lens, which incorporates a slotted mask in the aperture plane. For specimen gratings of 75 lines mm1, this selects the +1 and -1 order diffracted beams, thus doubling the effective grating frequency to 150 lines mm1. The resulting real-time moire fringes are recorded with a Hadland 792 image converter camera (Imacon) at an inter-frame time of 2-5ts. The images are digitised and an automatic fringe analysis technique based on the 2-D Fourier transform method is used to extract the displacement information. The technique is illustrated by the results of an investigation into the transient deformation of composite disc specimens, impacted with rectangular metal sliders fired from a gas gun.

  8. Extended depth from focus reconstruction using NIH ImageJ plugins: quality and resolution of elevation maps.

    Science.gov (United States)

    Hein, Luis Rogerio De Oliveira; De Oliveira, José Alberto; De Campos, Kamila Amato; Caltabiano, Pietro Carelli Reis De Oliveira

    2012-11-01

    In this work, NIH ImageJ plugins for extended depth-from-focus reconstructions (EDFR) based on spatial domain operations were compared and tested for usage optimization. Also, some preprocessing solutions for light microscopy image stacks were evaluated, suggesting a general routine for the ImageJ user to get reliable elevation maps from grayscale image stacks. Two reflected light microscope image stacks were used to test the EDFR plugins: one bright-field image stack for the fracture of carbon-epoxy composite and its darkfield corresponding stack at same (x,y,z) spatial coordinates. Image quality analysis consisted of the comparison of signal-to-noise ratio and resolution parameters with the consistence of elevation maps, based on roughness and fractal measurements. Darkfield illumination contributed to enhance the homogeneity of images in stack and resulting height maps, reducing the influence of digital image processing choices on the dispersion of topographic measurements. The subtract background filter, as a preprocessing tool, contributed to produce sharper focused images. In general, the increasing of kernel size for EDFR spatial domain-based solutions will produce smooth height maps. Finally, this work has the main objective to establish suitable guidelines to generate elevation maps by light microscopy.

  9. Quantum interpolation for high-resolution sensing.

    Science.gov (United States)

    Ajoy, Ashok; Liu, Yi-Xiang; Saha, Kasturi; Marseglia, Luca; Jaskula, Jean-Christophe; Bissbort, Ulf; Cappellaro, Paola

    2017-02-28

    Recent advances in engineering and control of nanoscale quantum sensors have opened new paradigms in precision metrology. Unfortunately, hardware restrictions often limit the sensor performance. In nanoscale magnetic resonance probes, for instance, finite sampling times greatly limit the achievable sensitivity and spectral resolution. Here we introduce a technique for coherent quantum interpolation that can overcome these problems. Using a quantum sensor associated with the nitrogen vacancy center in diamond, we experimentally demonstrate that quantum interpolation can achieve spectroscopy of classical magnetic fields and individual quantum spins with orders of magnitude finer frequency resolution than conventionally possible. Not only is quantum interpolation an enabling technique to extract structural and chemical information from single biomolecules, but it can be directly applied to other quantum systems for superresolution quantum spectroscopy.

  10. High Resolution RPCs for Large TOF Systems

    CERN Document Server

    Ferreira-Marques, R; CERN. Geneva; Carolino, N; Policarpo, Armando; Fonte, P

    1999-01-01

    Here we report on a particular type of RPC that presents above 95% efficiency for minimum ionizing particles and a very sharp time resolution, below 80 ps sigma. Our 9cm2 cells, made with glass and metal electrodes that form accurately spaced gaps of a few hundred micrometers, are operated at atmospheric pressure in non-flammable gases and can be economically produced in large quantities, opening perspectives for the construction of large area timeof flight systems.

  11. Ultra-high resolution electron microscopy

    Science.gov (United States)

    Oxley, Mark P.; Lupini, Andrew R.; Pennycook, Stephen J.

    2017-02-01

    The last two decades have seen dramatic advances in the resolution of the electron microscope brought about by the successful correction of lens aberrations that previously limited resolution for most of its history. We briefly review these advances, the achievement of sub-Ångstrom resolution and the ability to identify individual atoms, their bonding configurations and even their dynamics and diffusion pathways. We then present a review of the basic physics of electron scattering, lens aberrations and their correction, and an approximate imaging theory for thin crystals which provides physical insight into the various different imaging modes. Then we proceed to describe a more exact imaging theory starting from Yoshioka’s formulation and covering full image simulation methods using Bloch waves, the multislice formulation and the frozen phonon/quantum excitation of phonons models. Delocalization of inelastic scattering has become an important limiting factor at atomic resolution. We therefore discuss this issue extensively, showing how the full-width-half-maximum is the appropriate measure for predicting image contrast, but the diameter containing 50% of the excitation is an important measure of the range of the interaction. These two measures can differ by a factor of 5, are not a simple function of binding energy, and full image simulations are required to match to experiment. The Z-dependence of annular dark field images is also discussed extensively, both for single atoms and for crystals, and we show that temporal incoherence must be included accurately if atomic species are to be identified through matching experimental intensities to simulations. Finally we mention a few promising directions for future investigation.

  12. High-quality multi-resolution volume rendering in medicine

    Institute of Scientific and Technical Information of China (English)

    XIE Kai; YANG Jie; LI Xiao-liang

    2007-01-01

    In order to perform a high-quality interactive rendering of large medical data sets on a single off-theshelf PC, a LOD selection algorithm for multi-resolution volume rendering using 3D texture mapping is presented, which uses an adaptive scheme that renders the volume in a region-of-interest at a high resolution and the volume away from this region at lower resolutions. The algorithm is based on several important criteria, and rendering is done adaptively by selecting high-resolution cells close to a center of attention and low-resolution cells away from this area. In addition, our hierarchical level-of-detail representation guarantees consistent interpolation between different resolution levels. Experiments have been applied to a number of large medical data and have produced high quality images at interactive frame rates using standard PC hardware.

  13. Depth to water in the High Plains Aquifer in Colorado, 2000.

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data are in support of report DS 456 (Arnold and others, 2009). This grid represents the depth to groundwater in the High Plains Aquifer in Colorado in 2000....

  14. Depth Profilometry via Multiplexed Optical High-Coherence Interferometry: e0121066

    National Research Council Canada - National Science Library

    Farnoud Kazemzadeh; Alexander Wong; Bradford B Behr; Arsen R Hajian

    2015-01-01

    ... such as defect detection, corrosion assessment, and dental assessment to name a few. In this study, we investigate the feasibility of depth profilometry using an Multiplexed Optical High-coherence Interferometry MOHI instrument...

  15. Three-dimensional surface reconstruction by combining a pico-digital projector for structured light illumination and an imaging system with high magnification and high depth of field

    Science.gov (United States)

    Leong-Hoï, A.; Serio, B.; Twardowski, P.; Montgomery, P.

    2014-05-01

    Based on a miniature digital light projector (pico-DLP), a prototype of a Structured Illumination Microscope (SIM) has been developed. The pico-DLP is used to project fringes onto a sample and applying the three-step phase shifting algorithm together with the absolute phase retrieval method, the 3D shape of the object surface is extracted. By using a specific optical system instead of a conventional microscope objective, the device allows 3D reconstructions of surfaces with both a 10× magnification and a high depth of field obtained thanks to a small numerical aperture of 0.06 offering an acceptable lateral resolution of 6.2 μm. An image processing algorithm has been developed to reduce the noise in the acquired images before applying the reconstruction algorithm and so optimize the reconstruction method. Compared with interference microscopy and confocal microscopy that have a shallower depth of field per XY image, the microscope developed achieves a depth of field about 700 μm and requires no vertical scanning, which greatly reduces the acquisition time. Although the system at this stage does not have the same resolution performance as interference microscopy, it is nonetheless faster and cheaper. One possible application of this SIM technique would be to first reconstruct in real-time parts of an object before performing higher resolution 3D measurements with interference microscopy. As with all classical optical instruments, the lateral resolution is limited by diffraction. Work is being carried out with the prototype SIM system to be able to exceed the lateral resolution limits and thus achieve super resolution.

  16. Using high-resolution displays for high-resolution cardiac data.

    Science.gov (United States)

    Goodyer, Christopher; Hodrien, John; Wood, Jason; Kohl, Peter; Brodlie, Ken

    2009-07-13

    The ability to perform fast, accurate, high-resolution visualization is fundamental to improving our understanding of anatomical data. As the volumes of data increase from improvements in scanning technology, the methods applied to visualization must evolve. In this paper, we address the interactive display of data from high-resolution magnetic resonance imaging scanning of a rabbit heart and subsequent histological imaging. We describe a visualization environment involving a tiled liquid crystal display panel display wall and associated software, which provides an interactive and intuitive user interface. The oView software is an OpenGL application that is written for the VR Juggler environment. This environment abstracts displays and devices away from the application itself, aiding portability between different systems, from desktop PCs to multi-tiled display walls. Portability between display walls has been demonstrated through its use on walls at the universities of both Leeds and Oxford. We discuss important factors to be considered for interactive two-dimensional display of large three-dimensional datasets, including the use of intuitive input devices and level of detail aspects.

  17. Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial resolution

    Science.gov (United States)

    Zhang, Delong; Li, Chen; Zhang, Chi; Slipchenko, Mikhail N.; Eakins, Gregory; Cheng, Ji-Xin

    2016-01-01

    Chemical contrast has long been sought for label-free visualization of biomolecules and materials in complex living systems. Although infrared spectroscopic imaging has come a long way in this direction, it is thus far only applicable to dried tissues because of the strong infrared absorption by water. It also suffers from low spatial resolution due to long wavelengths and lacks optical sectioning capabilities. We overcome these limitations through sensing vibrational absorption–induced photothermal effect by a visible laser beam. Our mid-infrared photothermal (MIP) approach reached 10 μM detection sensitivity and submicrometer lateral spatial resolution. This performance has exceeded the diffraction limit of infrared microscopy and allowed label-free three-dimensional chemical imaging of live cells and organisms. Distributions of endogenous lipid and exogenous drug inside single cells were visualized. We further demonstrated in vivo MIP imaging of lipids and proteins in Caenorhabditis elegans. The reported MIP imaging technology promises broad applications from monitoring metabolic activities to high-resolution mapping of drug molecules in living systems, which are beyond the reach of current infrared microscopy. PMID:27704043

  18. Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial resolution.

    Science.gov (United States)

    Zhang, Delong; Li, Chen; Zhang, Chi; Slipchenko, Mikhail N; Eakins, Gregory; Cheng, Ji-Xin

    2016-09-01

    Chemical contrast has long been sought for label-free visualization of biomolecules and materials in complex living systems. Although infrared spectroscopic imaging has come a long way in this direction, it is thus far only applicable to dried tissues because of the strong infrared absorption by water. It also suffers from low spatial resolution due to long wavelengths and lacks optical sectioning capabilities. We overcome these limitations through sensing vibrational absorption-induced photothermal effect by a visible laser beam. Our mid-infrared photothermal (MIP) approach reached 10 μM detection sensitivity and submicrometer lateral spatial resolution. This performance has exceeded the diffraction limit of infrared microscopy and allowed label-free three-dimensional chemical imaging of live cells and organisms. Distributions of endogenous lipid and exogenous drug inside single cells were visualized. We further demonstrated in vivo MIP imaging of lipids and proteins in Caenorhabditis elegans. The reported MIP imaging technology promises broad applications from monitoring metabolic activities to high-resolution mapping of drug molecules in living systems, which are beyond the reach of current infrared microscopy.

  19. Optimization of High-Resolution Continuous Flow Analysis for Transient Climate Signals in Ice Cores

    DEFF Research Database (Denmark)

    Bigler, Matthias; Svensson, Anders; Kettner, Ernesto

    2011-01-01

    Over the past two decades, continuous flow analysis (CFA) systems have been refined and widely used to measure aerosol constituents in polar and alpine ice cores in very high-depth resolution. Here we present a newly designed system consisting of sodium, ammonium, dust particles, and electrolytic...... meltwater conductivity detection modules. The system is optimized for high- resolution determination of transient signals in thin layers of deep polar ice cores. Based on standard measurements and by comparing sections of early Holocene and glacial ice from Greenland, we find that the new system features...

  20. High resolution multi-scalar drought indices for Iberia

    Science.gov (United States)

    Russo, Ana; Gouveia, Célia; Trigo, Ricardo; Jerez, Sonia

    2014-05-01

    The Iberian Peninsula has been recurrently affected by drought episodes and by adverse associated effects (Gouveia et al., 2009), ranging from severe water shortages to losses of hydroelectricity production, increasing risk of forest fires, forest decline and triggering processes of land degradation and desertification. Moreover, Iberia corresponds to one of the most sensitive areas to current and future climate change and is nowadays considered a hot spot of climate change with high probability for the increase of extreme events (Giorgi and Lionello, 2008). The spatial and temporal behavior of climatic droughts at different time scales was analyzed using spatially distributed time series of multi-scalar drought indicators, such as the Standardized Precipitation Evapotranspiration Index (SPEI) (Vicente-Serrano et al., 2010). This new climatic drought index is based on the simultaneous use of precipitation and temperature fields with the advantage of combining a multi-scalar character with the capacity to include the effects of temperature variability on drought assessment. Moreover, reanalysis data and the higher resolution hindcasted databases obtained from them are valuable surrogates of the sparse observations and widely used for in-depth characterizations of the present-day climate. Accordingly, this work aims to enhance the knowledge on high resolution drought patterns in Iberian Peninsula, taking advantage of high-resolution (10km) regional MM5 simulations of the recent past (1959-2007) over Iberia. It should be stressed that these high resolution meteorological fields (e.g. temperature, precipitation) have been validated for various purposes (Jerez et al., 2013). A detailed characterization of droughts since the 1960s using the 10 km resolution hidncasted simulation was performed with the aim to explore the conditions favoring drought onset, duration and ending, as well as the subsequent short, medium and long-term impacts affecting the environment and the

  1. Precision cosmology with time delay lenses: High resolution imaging requirements

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xiao -Lei [Beijing Normal Univ., Beijing (China); Univ. of California, Santa Barbara, CA (United States); Treu, Tommaso [Univ. of California, Santa Barbara, CA (United States); Univ. of California, Los Angeles, CA (United States); Agnello, Adriano [Univ. of California, Santa Barbara, CA (United States); Univ. of California, Los Angeles, CA (United States); Auger, Matthew W. [Univ. of Cambridge, Cambridge (United Kingdom); Liao, Kai [Beijing Normal Univ., Beijing (China); Univ. of California, Santa Barbara, CA (United States); Univ. of California, Los Angeles, CA (United States); Marshall, Philip J. [Stanford Univ., Stanford, CA (United States)

    2015-09-28

    Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as ``Einstein Rings'' in high resolution images. The distortion of these arcs and counter-arcs, as measured over a large number of pixels, provides tight constraints on the difference between the gravitational potential between the quasar image positions, and thus on cosmology in combination with the measured time delay. We carry out a systematic exploration of the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope γ' of the total mass density profile ρtot∝ r–γ' for the main deflector can be measured. Ideally, we require that the statistical error on γ' be less than 0.02, such that it is subdominant to other sources of random and systematic uncertainties. We find that survey data will likely have sufficient depth and resolution to meet the target only for the brighter gravitational lens systems, comparable to those discovered by the SDSS survey. For fainter systems, that will be discovered by current and future surveys, targeted follow-up will be required. Furthermore, the exposure time required with upcoming facilitites such as JWST, the Keck Next Generation Adaptive

  2. High-resolution three-dimensional holographic display using dense ray sampling from integral imaging.

    Science.gov (United States)

    Wakunami, Koki; Yamaguchi, Masahiro; Javidi, Bahram

    2012-12-15

    We present a high-resolution three-dimensional (3D) holographic display using a set of elemental images obtained by passive sensing integral imaging (II). Hologram calculations using a high-density ray-sampling plane are achieved from the elemental images captured by II. In II display, ray sampling by lenslet array and light diffraction limits the achievable resolution. Our approach can improve the resolution since target objects are captured in focus and then light-ray information is interpolated and resampled with higher density on ray-sampling plane located near the object to be converted into the wavefront. Numerical experimental results show that the 3D scene, composed of plural objects at different depths from the display, can be reconstructed with order of magnitude higher resolution by the proposed technique.

  3. High resolution RPC's for large TOF systems

    CERN Document Server

    Fonte, Paulo J R; Pinhão, J; Carolino, N; Policarpo, Armando

    2000-01-01

    Here we report on a particular type of RPC that presents up to 99% efficiency for minimum ionizing particles and a very good time resolution, below 50 ps s for the most optimized construction. Our 9 cm2 cells, made with glass and metal electrodes that form accurately spaced gaps of a few hundred micrometers, are operated at atmospheric pressure in non-flammable gases and can be economically produced in large quantities, opening perspectives for the construction of large area time of flight systems.

  4. High resolution IVEM tomography of biological specimens

    Energy Technology Data Exchange (ETDEWEB)

    Sedat, J.W.; Agard, D.A. [Univ. of California, San Francisco, CA (United States)

    1997-02-01

    Electron tomography is a powerful tool for elucidating the three-dimensional architecture of large biological complexes and subcellular organelles. The introduction of intermediate voltage electron microscopes further extended the technique by providing the means to examine very large and non-symmetrical subcellular organelles, at resolutions beyond what would be possible using light microscopy. Recent studies using electron tomography on a variety of cellular organelles and assemblies such as centrosomes, kinetochores, and chromatin have clearly demonstrated the power of this technique for obtaining 3D structural information on non-symmetric cell components. When combined with biochemical and molecular observations, these 3D reconstructions have provided significant new insights into biological function.

  5. DSCOVR High Time Resolution Solar Wind Measurements

    Science.gov (United States)

    Szabo, Adam

    2012-01-01

    The Deep Space Climate Observatory (DSCOVR), previously known as Triana, spacecraft is expected to be launched in late 2014. It will carry a fluxgate magnetometer, Faraday Cup solar wind detector and a top-hat electron electrostatic analyzer. The Faraday Cup will provide an unprecedented 10 vectors/sec time resolution measurement of the solar wind proton and alpha reduced distribution functions. Coupled with the 40 vector/sec vector magnetometer measurements, the identification of specific wave modes in the solar wind will be possible for the first time. The science objectives and data products of the mission will be discussed.

  6. Nanosecond microscopy with a high spectroscopic resolution

    CERN Document Server

    Heinrich, C; Ritsch-Marte, M; Bernet, Stefan; Heinrich, Christoph; Ritsch-Marte, Monika

    2005-01-01

    We demonstrate coherent anti-Stokes Raman scattering (CARS) microscopy in a wide-field setup with nanosecond laser pulse excitation. In contrast to confocal setups, the image of a sample can be recorded with a single pair of excitation pulses. For this purpose the excitation geometry is specially designed in order to satisfy the phase matching condition over the whole sample area. The spectral, temporal and spatial sensitivity of the method is demonstrated by imaging test samples, i.e. oil vesicles in sunflower seeds, on a nanosecond timescale. The method provides snapshot imaging in 3 nanoseconds with a spectral resolution of 25 wavenumbers (cm$^{-1}$).

  7. Achieving sensitive, high-resolution laser spectroscopy at CRIS

    Energy Technology Data Exchange (ETDEWEB)

    Groote, R. P. de [Instituut voor Kern- en Stralingsfysica, KU Leuven (Belgium); Lynch, K. M., E-mail: kara.marie.lynch@cern.ch [EP Department, CERN, ISOLDE (Switzerland); Wilkins, S. G. [The University of Manchester, School of Physics and Astronomy (United Kingdom); Collaboration: the CRIS collaboration

    2017-11-15

    The Collinear Resonance Ionization Spectroscopy (CRIS) experiment, located at the ISOLDE facility, has recently performed high-resolution laser spectroscopy, with linewidths down to 20 MHz. In this article, we present the modifications to the beam line and the newly-installed laser systems that have made sensitive, high-resolution measurements possible. Highlights of recent experimental campaigns are presented.

  8. Towards high resolution data assimilation and ensemble forecasting

    NARCIS (Netherlands)

    Stappers, R.J.J.

    2013-01-01

    Due the increase in computational power of supercomputers the grid resolution of high resolution numerical weather prediction models is now reaching the 1 km scale. As a result, mesoscale processes related to high impact weather (such as deep convection) can now explicitly be resolved by the models.

  9. High-resolution X-ray diffraction studies of multilayers

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Hornstrup, Allan; Schnopper, H. W.

    1988-01-01

    High-resolution X-ray diffraction studies of the perfection of state-of-the-art multilayers are presented. Data were obtained using a triple-axis perfect-crystal X-ray diffractometer. Measurements reveal large-scale figure errors in the substrate. A high-resolution triple-axis set up is required...

  10. High-Speed Smart Camera with High Resolution

    Directory of Open Access Journals (Sweden)

    J. Dubois

    2007-02-01

    Full Text Available High-speed video cameras are powerful tools for investigating for instance the biomechanics analysis or the movements of mechanical parts in manufacturing processes. In the past years, the use of CMOS sensors instead of CCDs has enabled the development of high-speed video cameras offering digital outputs, readout flexibility, and lower manufacturing costs. In this paper, we propose a high-speed smart camera based on a CMOS sensor with embedded processing. Two types of algorithms have been implemented. A compression algorithm, specific to high-speed imaging constraints, has been implemented. This implementation allows to reduce the large data flow (6.55 Gbps and to propose a transfer on a serial output link (USB 2.0. The second type of algorithm is dedicated to feature extraction such as edge detection, markers extraction, or image analysis, wavelet analysis, and object tracking. These image processing algorithms have been implemented into an FPGA embedded inside the camera. These implementations are low-cost in terms of hardware resources. This FPGA technology allows us to process in real time 500 images per second with a 1280×1024 resolution. This camera system is a reconfigurable platform, other image processing algorithms can be implemented.

  11. High-Speed Smart Camera with High Resolution

    Directory of Open Access Journals (Sweden)

    Mosqueron R

    2007-01-01

    Full Text Available High-speed video cameras are powerful tools for investigating for instance the biomechanics analysis or the movements of mechanical parts in manufacturing processes. In the past years, the use of CMOS sensors instead of CCDs has enabled the development of high-speed video cameras offering digital outputs, readout flexibility, and lower manufacturing costs. In this paper, we propose a high-speed smart camera based on a CMOS sensor with embedded processing. Two types of algorithms have been implemented. A compression algorithm, specific to high-speed imaging constraints, has been implemented. This implementation allows to reduce the large data flow (6.55 Gbps and to propose a transfer on a serial output link (USB 2.0. The second type of algorithm is dedicated to feature extraction such as edge detection, markers extraction, or image analysis, wavelet analysis, and object tracking. These image processing algorithms have been implemented into an FPGA embedded inside the camera. These implementations are low-cost in terms of hardware resources. This FPGA technology allows us to process in real time 500 images per second with a 1280×1024 resolution. This camera system is a reconfigurable platform, other image processing algorithms can be implemented.

  12. High Resolution Optical and NIR Spectra of HBC 722

    CERN Document Server

    Lee, Jeong-Eun; Green, Joel D; Cochran, William D; Kang, Wonseok; Lee, Sang-Gak; Sung, Hyun-Il

    2015-01-01

    We present the results of high resolution (R$\\ge$30,000) optical and near-IR spectroscopic monitoring observations of HBC 722, a recent FU Orionis object that underwent an accretion burst in 2010. We observed HBC 722 in optical/near-IR with the BOES, HET-HRS, and IGRINS spectrographs, at various points in the outburst. We found atomic lines with strongly blueshifted absorption features or P Cygni profiles, both evidence of a wind driven by the accretion. Some lines show a broad double-peaked absorption feature, evidence of disk rotation. However, the wind-driven and disk-driven spectroscopic features are anti-correlated in time; the disk features became strong as the wind features disappeared. This anti-correlation might indicate that the rebuilding of the inner disk was interrupted by the wind pressure during the first two years. The Half-Width at Half-Depth (HWHD) of the double-peaked profiles decreases with wavelength, indicative of the Keplerian rotation; the optical spectra with the disk feature are fitt...

  13. High-Resolution Sonars: What Resolution Do We Need for Target Recognition?

    Directory of Open Access Journals (Sweden)

    Pailhas Yan

    2010-01-01

    Full Text Available Target recognition in sonar imagery has long been an active research area in the maritime domain, especially in the mine-counter measure context. Recently it has received even more attention as new sensors with increased resolution have been developed; new threats to critical maritime assets and a new paradigm for target recognition based on autonomous platforms have emerged. With the recent introduction of Synthetic Aperture Sonar systems and high-frequency sonars, sonar resolution has dramatically increased and noise levels decreased. Sonar images are distance images but at high resolution they tend to appear visually as optical images. Traditionally algorithms have been developed specifically for imaging sonars because of their limited resolution and high noise levels. With high-resolution sonars, algorithms developed in the image processing field for natural images become applicable. However, the lack of large datasets has hampered the development of such algorithms. Here we present a fast and realistic sonar simulator enabling development and evaluation of such algorithms.We develop a classifier and then analyse its performances using our simulated synthetic sonar images. Finally, we discuss sensor resolution requirements to achieve effective classification of various targets and demonstrate that with high resolution sonars target highlight analysis is the key for target recognition.

  14. Improvement of depth resolution and detection efficiency by control of secondary-electrons in single-event three-dimensional time-of-flight Rutherford backscattering spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Abo, Satoshi, E-mail: s-abo@stec.es.osaka-u.ac.jp [Graduate School of Engineering Science, Osaka University, 1-3, Machikaneyama, Toyonaka, Osaka 560-8531 (Japan); Hamada, Yasuhisa [Graduate School of Engineering Science, Osaka University, 1-3, Machikaneyama, Toyonaka, Osaka 560-8531 (Japan); Seidl, Albert [Graduate School of Engineering Science, Osaka University, 1-3, Machikaneyama, Toyonaka, Osaka 560-8531 (Japan); Engineering Science and Industrial Design, Magdeburg-Stendal University of Applied Sciences, Breitscheidstraße 2, 39114 Magdeburg (Germany); Wakaya, Fujio; Takai, Mikio [Graduate School of Engineering Science, Osaka University, 1-3, Machikaneyama, Toyonaka, Osaka 560-8531 (Japan)

    2015-04-01

    An improvement of a depth resolution and a detection efficiency in single-event three-dimensional time-of-flight (TOF) Rutherford backscattering spectrometry (RBS) is discussed on both simulation and experiment by control of secondary electron trajectories using sample bias voltage. The secondary electron, used for a start signal in single-event TOF-RBS, flies more directly to a secondary electron detector with the positive sample bias voltage of several tens of volt than that without sample bias voltage in the simulation. The simulated collection efficiency of the secondary electrons also increases with the positive sample bias voltage of several tens of volt. These simulation results indicate the possibility of a smaller depth resolution and a shorter measurement time in single-event TOF-RBS with positive sample bias voltage. The measurement time for the Pt-stripe sample using single-event three-dimensional TOF-RBS with the sample bias voltage of +100 V is 65% shorter than that without sample bias voltage, resulting in a less sample damage by a probe beam. The depth resolution for the Pt stripes under the 50-nm-thick SiO{sub 2} cover-layer with the sample bias voltage of +100 V is 4 nm smaller than that without sample bias voltage. Positive sample bias voltage improves the depth resolution and the detection efficiency in single-event three-dimensional TOF-RBS without an influence on the beam focusing.

  15. A new high-resolution electromagnetic method for subsurface imaging

    Science.gov (United States)

    Feng, Wanjie

    high-power (moment of about 6800 Am2) vertical-array DTAC system was designed, developed and tested on controlled buried targets and surface interference to illustrate that the DTAC system was insensitive to surface interference even with a high-power transmitter and having higher resolution by using the large-moment transmitter. From the theoretical and practical analysis and tests, several characteristics of the DTAC method were found: (1) The DTAC method can null out the effect of 1D layered and 2D structures, because magnetic fields are orientation independent which lead to no difference among the null vector directions. This characteristic allows for the measurements of smaller subsurface targets; (2) The DTAC method is insensitive to the orientation errors. It is a robust EM null coupling method. Even large orientation errors do not affect the measured target responses, when a reference frequency and one or more data frequencies are used; (3) The vertical-array DTAC method is effective in reducing the geologic noise and insensitive to the surface interference, e.g., fences, vehicles, power line and buildings; (4) The DTAC method is a high-resolution EM sounding method. It can distinguish the depth and orientation of subsurface targets; (5) The vertical-array DTAC method can be adapted to a variety of rapidly moving survey applications. The transmitter moment can be scaled for effective study of near-surface targets (civil engineering, water resource, and environmental restoration) as well as deep targets (mining and other natural-resource exploration).

  16. Studying stellar populations at high spectral resolution

    CERN Document Server

    Bruzual, Gustavo A

    2007-01-01

    I describe very briefly the new libraries of empirical spectra of stars covering wide ranges of values of the atmospheric parameters Teff, log g, [Fe/H], as well as spectral type, that have become available in the recent past, among them the HNGSL, MILES, UVES-POP, ELODIE, and the IndoUS libraries. I show the results of using the IndoUS and the HNGSL libraries, as well as an atlas of theoretical model atmospheres, to build population synthesis models. These libraries are complementary in spectral resolution and wavelength coverage, and will prove extremely useful to describe spectral features expected in galaxy spectra from the NUV to the NIR. The fits to observed galaxy spectra using simple and composite stellar population models are discussed.

  17. A high-resolution vehicle emission inventory for China

    Science.gov (United States)

    Zheng, B.; Zhang, Q.; He, K.; Huo, H.; Yao, Z.; Wang, X.

    2012-12-01

    Developing high resolution emission inventory is an essential task for air quality modeling and management. However, current vehicle emission inventories in China are usually developed at provincial level and then allocated to grids based on various spatial surrogates, which is difficult to get high spatial resolution. In this work, we developed a new approach to construct a high-resolution vehicle emission inventory for China. First, vehicle population at county level were estimated by using the relationship between per-capita GDP and vehicle ownership. Then the Weather Research and Forecasting (WRF) model were used to drive the International Vehicle Emission (IVE) model to get monthly emission factors for each county. Finally, vehicle emissions by county were allocated to grids with 5-km horizon resolution by using high-resolution road network data. This work provides a better understanding of spatial representation of vehicle emissions in China and can benefit both air quality modeling and management with improved spatial accuracy.

  18. Towards optical intensity interferometry for high angular resolution stellar astrophysics

    CERN Document Server

    Nunez, Paul D

    2012-01-01

    Most neighboring stars are still detected as point sources and are beyond the angular resolution reach of current observatories. Methods to improve our understanding of stars at high angular resolution are investigated. Air Cherenkov telescopes (ACTs), primarily used for Gamma-ray astronomy, enable us to increase our understanding of the circumstellar environment of a particular system. When used as optical intensity interferometers, future ACT arrays will allow us to detect stars as extended objects and image their surfaces at high angular resolution. Optical stellar intensity interferometry (SII) with ACT arrays, composed of nearly 100 telescopes, will provide means to measure fundamental stellar parameters and also open the possibility of model-independent imaging. A data analysis algorithm is developed and permits the reconstruction of high angular resolution images from simulated SII data. The capabilities and limitations of future ACT arrays used for high angular resolution imaging are investigated via ...

  19. Research Relative to High Spatial Resolution Passive Microwave Sounding Systems

    Science.gov (United States)

    Staelin, D. H.; Rosenkranz, P. W.

    1984-01-01

    Methods to obtain high resolution passive microwave weather observations, and understanding of their probable impact on numerical weather prediction accuracy were investigated. The development of synthetic aperture concepts for geosynchronous passive microwave sounders were studied. The effects of clouds, precipitation, surface phenomena, and atmospheric thermal fine structure on a scale of several kilometers were examined. High resolution passive microwave sounders (e.g., AMSU) with an increased number of channels will produce initialization data for numerical weather prediction (NWP) models with both increased spatial resolution and coverage. The development of statistical models for error growth in high resolution primitive equation NWP models which permit the consequences of various observing system alternatives, including sensors and assimilation times and procedures is discussed. A high resolution three dimensional primitive equation NWP model to determine parameters in an error growth model similar to that formulated by Lorenz, but with more degrees of freedom is utilized.

  20. Comparison between pulsed laser and frequency-domain photoacoustic modalities: Signal-to-noise ratio, contrast, resolution, and maximum depth detectivity

    Science.gov (United States)

    Lashkari, Bahman; Mandelis, Andreas

    2011-09-01

    In this work, a detailed theoretical and experimental comparison between various key parameters of the pulsed and frequency-domain (FD) photoacoustic (PA) imaging modalities is developed. The signal-to-noise ratios (SNRs) of these methods are theoretically calculated in terms of transducer bandwidth, PA signal generation physics, and laser pulse or chirp parameters. Large differences between maximum (peak) SNRs were predicted. However, it is shown that in practice the SNR differences are much smaller. Typical experimental SNRs were 23.2 dB and 26.1 dB for FD-PA and time-domain (TD)-PA peak responses, respectively, from a subsurface black absorber. The SNR of the pulsed PA can be significantly improved with proper high-pass filtering of the signal, which minimizes but does not eliminate baseline oscillations. On the other hand, the SNR of the FD method can be enhanced substantially by increasing laser power and decreasing chirp duration (exposure) correspondingly, so as to remain within the maximum permissible exposure guidelines. The SNR crossover chirp duration is calculated as a function of transducer bandwidth and the conditions yielding higher SNR for the FD mode are established. Furthermore, it was demonstrated that the FD axial resolution is affected by both signal amplitude and limited chirp bandwidth. The axial resolution of the pulse is, in principle, superior due to its larger bandwidth; however, the bipolar shape of the signal is a drawback in this regard. Along with the absence of baseline oscillation in cross-correlation FD-PA, the FD phase signal can be combined with the amplitude signal to yield better axial resolution than pulsed PA, and without artifacts. The contrast of both methods is compared both in depth-wise (delay-time) and fixed delay time images. It was shown that the FD method possesses higher contrast, even after contrast enhancement of the pulsed response through filtering.

  1. High resolution resonant recombination measurements using evaporative cooling technique

    Energy Technology Data Exchange (ETDEWEB)

    Beilmann, C; Lopez-Urrutia, J R Crespo; Mokler, P H; Ullrich, J, E-mail: christian.beilmann@mpi-hd.mpg.d [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany)

    2010-09-15

    We report on a method significantly improving the energy resolution of dielectronic recombination (DR) measurements in electron beam ion traps (EBITs). The line width of DR resonances can be reduced to values distinctly smaller than the corresponding space charge width of the uncompensated electron beam. The experimental technique based on forced evaporative cooling is presented together with test measurements demonstrating its high efficiency. The principle for resolution improvement is elucidated and the limiting factors are discussed. This method opens access to high resolution DR measurements at high ion-electron collision energies required for innermost shell DR in highly charged ions (HCI).

  2. High Resolution 3D Radar Imaging of Comet Interiors

    Science.gov (United States)

    Asphaug, E. I.; Gim, Y.; Belton, M.; Brophy, J.; Weissman, P. R.; Heggy, E.

    2012-12-01

    Knowing the interiors of comets and other primitive bodies is fundamental to our understanding of how planets formed. We have developed a Discovery-class mission formulation, Comet Radar Explorer (CORE), based on the use of previously flown planetary radar sounding techniques, with the goal of obtaining high resolution 3D images of the interior of a small primitive body. We focus on the Jupiter-Family Comets (JFCs) as these are among the most primitive bodies reachable by spacecraft. Scattered in from far beyond Neptune, they are ultimate targets of a cryogenic sample return mission according to the Decadal Survey. Other suitable targets include primitive NEOs, Main Belt Comets, and Jupiter Trojans. The approach is optimal for small icy bodies ~3-20 km diameter with spin periods faster than about 12 hours, since (a) navigation is relatively easy, (b) radar penetration is global for decameter wavelengths, and (c) repeated overlapping ground tracks are obtained. The science mission can be as short as ~1 month for a fast-rotating JFC. Bodies smaller than ~1 km can be globally imaged, but the navigation solutions are less accurate and the relative resolution is coarse. Larger comets are more interesting, but radar signal is unlikely to be reflected from depths greater than ~10 km. So, JFCs are excellent targets for a variety of reasons. We furthermore focus on the use of Solar Electric Propulsion (SEP) to rendezvous shortly after the comet's perihelion. This approach leaves us with ample power for science operations under dormant conditions beyond ~2-3 AU. This leads to a natural mission approach of distant observation, followed by closer inspection, terminated by a dedicated radar mapping orbit. Radar reflections are obtained from a polar orbit about the icy nucleus, which spins underneath. Echoes are obtained from a sounder operating at dual frequencies 5 and 15 MHz, with 1 and 10 MHz bandwidths respectively. The dense network of echoes is used to obtain global 3D

  3. Cheetah: A high frame rate, high resolution SWIR image camera

    Science.gov (United States)

    Neys, Joel; Bentell, Jonas; O'Grady, Matt; Vermeiren, Jan; Colin, Thierry; Hooylaerts, Peter; Grietens, Bob

    2008-10-01

    A high resolution, high frame rate InGaAs based image sensor and associated camera has been developed. The sensor and the camera are capable of recording and delivering more than 1700 full 640x512pixel frames per second. The FPA utilizes a low lag CTIA current integrator in each pixel, enabling integration times shorter than one microsecond. On-chip logics allows for four different sub windows to be read out simultaneously at even higher rates. The spectral sensitivity of the FPA is situated in the SWIR range [0.9-1.7 μm] and can be further extended into the Visible and NIR range. The Cheetah camera has max 16 GB of on-board memory to store the acquired images and transfer the data over a Gigabit Ethernet connection to the PC. The camera is also equipped with a full CameralinkTM interface to directly stream the data to a frame grabber or dedicated image processing unit. The Cheetah camera is completely under software control.

  4. A high-resolution time-to-digital converter using a three-level resolution

    Science.gov (United States)

    Dehghani, Asma; Saneei, Mohsen; Mahani, Ali

    2016-08-01

    In this article, a three-level resolution Vernier delay line time-to-digital converter (TDC) was proposed. The proposed TDC core was based on the pseudo-differential digital architecture that made it insensitive to nMOS and pMOS transistor mismatches. It also employed a Vernier delay line (VDL) in conjunction with an asynchronous read-out circuitry. The time interval resolution was equal to the difference of delay between buffers of upper and lower chains. Then, via the extra chain included in the lower delay line, resolution was controlled and power consumption was reduced. This method led to high resolution and low power consumption. The measurement results of TDC showed a resolution of 4.5 ps, 12-bit output dynamic range, and integral nonlinearity of 1.5 least significant bits. This TDC achieved the consumption of 68.43 µW from 1.1-V supply.

  5. Updating Maps Using High Resolution Satellite Imagery

    Science.gov (United States)

    Alrajhi, Muhamad; Shahzad Janjua, Khurram; Afroz Khan, Mohammad; Alobeid, Abdalla

    2016-06-01

    Kingdom of Saudi Arabia is one of the most dynamic countries of the world. We have witnessed a very rapid urban development's which are altering Kingdom's landscape on daily basis. In recent years a substantial increase in urban populations is observed which results in the formation of large cities. Considering this fast paced growth, it has become necessary to monitor these changes, in consideration with challenges faced by aerial photography projects. It has been observed that data obtained through aerial photography has a lifecycle of 5-years because of delay caused by extreme weather conditions and dust storms which acts as hindrances or barriers during aerial imagery acquisition, which has increased the costs of aerial survey projects. All of these circumstances require that we must consider some alternatives that can provide us easy and better ways of image acquisition in short span of time for achieving reliable accuracy and cost effectiveness. The approach of this study is to conduct an extensive comparison between different resolutions of data sets which include: Orthophoto of (10 cm) GSD, Stereo images of (50 cm) GSD and Stereo images of (1 m) GSD, for map updating. Different approaches have been applied for digitizing buildings, roads, tracks, airport, roof level changes, filling stations, buildings under construction, property boundaries, mosques buildings and parking places.

  6. Sunspot Group Development in High Resolution

    CERN Document Server

    Muraközy, J; Ludmány, A

    2014-01-01

    The Solar and Heliospheric Obseratory/Michelson Doppler Imager--Debrecen Data (SDD) sunspot catalogue provides an opportunity to study the details and development of sunspot groups on a large statistical sample. The SDD data allow, in particular, the differential study of the leading and following parts with a temporal resolution of 1.5 hours. In this study, we analyse the equilibrium distance of sunspot groups as well as the evolution of this distance over the lifetime of the groups and the shifts in longitude associated with these groups. We also study the asymmetry between the compactness of the leading and following parts, as well as the time-profiles for the development of the area of sunspot groups. A logarithmic relationship has been found between the total area and the distance of leading-following parts of active regions (ARs) at the time of their maximum area. In the developing phase the leading part moves forward; this is more noticeable in larger ARs. The leading part has a higher growth rate than...

  7. A High-Resolution Continuous Flow Analysis System for Polar Ice Cores

    DEFF Research Database (Denmark)

    Dallmayr, Remi; Goto-Azuma, Kumiko; Kjær, Helle Astrid;

    2016-01-01

    of Polar Research (NIPR) in Tokyo. The system allows the continuous analysis of stable water isotopes and electrical conductivity, as well as the collection of discrete samples from both inner and outer parts of the core. This CFA system was designed to have sufficiently high temporal resolution to detect......In recent decades, the development of continuous flow analysis (CFA) technology for ice core analysis has enabled greater sample throughput and greater depth resolution compared with the classic discrete sampling technique. We developed the first Japanese CFA system at the National Institute...

  8. Optimization of High-Resolution Continuous Flow Analysis for Transient Climate Signals in Ice Cores

    DEFF Research Database (Denmark)

    Bigler, Matthias; Svensson, Anders; Kettner, Ernesto

    2011-01-01

    meltwater conductivity detection modules. The system is optimized for high- resolution determination of transient signals in thin layers of deep polar ice cores. Based on standard measurements and by comparing sections of early Holocene and glacial ice from Greenland, we find that the new system features...... a depth resolution in the ice of a few millimeters which is considerably better than other CFA systems. Thus, the new system can resolve ice strata down to 10 mm thickness and has the potential of identifying annual layers in both Greenland and Antarctic ice cores throughout the last glacial cycle....

  9. High resolution mid-infrared spectroscopy based on frequency upconversion

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Hu, Qi; Tidemand-Lichtenberg, Peter

    2013-01-01

    We present high resolution upconversion of incoherent infrared radiation by means of sum-frequency mixing with a laser followed by simple CCD Si-camera detection. Noise associated with upconversion is, in strong contrast to room temperature direct mid-IR detection, extremely small, thus very faint...... signals can be analyzed. The obtainable frequency resolution is usually in the nm range where sub nm resolution is preferred in many applications, like gas spectroscopy. In this work we demonstrate how to obtain sub nm resolution when using upconversion. In the presented realization one object point...

  10. Achieving High Resolution Timer Events in Virtualized Environment.

    Science.gov (United States)

    Adamczyk, Blazej; Chydzinski, Andrzej

    2015-01-01

    Virtual Machine Monitors (VMM) have become popular in different application areas. Some applications may require to generate the timer events with high resolution and precision. This however may be challenging due to the complexity of VMMs. In this paper we focus on the timer functionality provided by five different VMMs-Xen, KVM, Qemu, VirtualBox and VMWare. Firstly, we evaluate resolutions and precisions of their timer events. Apparently, provided resolutions and precisions are far too low for some applications (e.g. networking applications with the quality of service). Then, using Xen virtualization we demonstrate the improved timer design that greatly enhances both the resolution and precision of achieved timer events.

  11. High-resolution spectroscopy of gases for industrial applications

    DEFF Research Database (Denmark)

    Fateev, Alexander; Clausen, Sønnik

    High-resolution spectroscopy of gases is a powerful technique which has various fundamental and practical applications: in situ simultaneous measurements of gas temperature and gas composition, radiative transfer modeling, validation of existing and developing of new databases and etc. Existing...... to, for example, atmospheric research, combustion and gasification. Some high-temperature, high-resolution IR/UV absorption/transmission measurements gases (e.g. CO2, SO2, SO3 and phenol) are presented....

  12. Zonal character of failure near the wells and openings in high depth conditions

    Institute of Scientific and Technical Information of China (English)

    V.V. Makarov; L.S. Ksendzenko; V.M. Sapelkina; A.A. Opanasyuk; N.A. Opanasyuk; E.N. Jashkova

    2006-01-01

    Rock mass failure on the high depth near the underground openings often has zonal character. The mechanism of this phenomenon consists in the periodical character of stresses in surrounding rock mass and developing of tensile macrocracks at the places (zones) of maximum tangentional stresses. Mathematical model of the high stressed rock mass is developed on the base of the defect media mechanics and nonequilibrium thermodynamics principals. The correspondence between the experimental research of faulted zonal structures near the high depths openings and mathematical model calculation is achieved. Relationships between the width of cracking zones and rock mass strength property have been determined.

  13. Ultra-high resolution and high-brightness AMOLED

    Science.gov (United States)

    Wacyk, Ihor; Ghosh, Amal; Prache, Olivier; Draper, Russ; Fellowes, Dave

    2012-06-01

    As part of its continuing effort to improve both the resolution and optical performance of AMOLED microdisplays, eMagin has recently developed an SXGA (1280×3×1024) microdisplay under a US Army RDECOM CERDEC NVESD contract that combines the world's smallest OLED pixel pitch with an ultra-high brightness green OLED emitter. This development is aimed at next-generation HMD systems with "see-through" and daylight imaging requirements. The OLED pixel array is built on a 0.18-micron CMOS backplane and contains over 4 million individually addressable pixels with a pixel pitch of 2.7 × 8.1 microns, resulting in an active area of 0.52 inches diagonal. Using both spatial and temporal enhancement, the display can provide over 10-bits of gray-level control for high dynamic range applications. The new pixel design also enables the future implementation of a full-color QSXGA (2560 × RGB × 2048) microdisplay in an active area of only 1.05 inch diagonal. A low-power serialized low-voltage-differential-signaling (LVDS) interface is integrated into the display for use as a remote video link for tethered systems. The new SXGA backplane has been combined with the high-brightness green OLED device developed by eMagin under an NVESD contract. This OLED device has produced an output brightness of more than 8000fL with all pixels on; lifetime measurements are currently underway and will presented at the meeting. This paper will describe the operational features and first optical and electrical test results of the new SXGA demonstrator microdisplay.

  14. Examination of Tropical Forest Structure Using Field Data and High Spatial Resolution Image Data

    Science.gov (United States)

    Palace, M.; Keller, M.; Hunter, M.; Braswell, B.; Hagen, S.; Lefsky, M.

    2007-12-01

    Structural properties of tropical forests are an important component in ecological studies, yet they are difficult to quantify. Remote sensing of forest canopy structure estimation has greatly advanced to due the aid of high resolution satellite images. Field based methods of canopy structure have also improved due to the involvement of handheld laser range finders, which aid in gauging height, width, and depth of tree canopies. Using a handheld laser rangefinder we estimated canopy depth and generated canopy profiles from this data. Previously, we developed a crown characterization algorithm that uses high resolution satellite image data and have applied this algorithm in undisturbed tropical forests with good results. In this work we have further developed the algorithm to examine canopy depth using two allometric equations, developed from field data, that relate crown width to the top of the canopy and bottom of the canopy. Modification of our original algorithm also involved the incorporation of site specific allometric equations developed from field based measurements. Automated analysis of IKONOS imagery was used to estimate the distribution of canopy elements at various heights and their spatial locations. A comparison between the field based data and the estimates derived from remotely sensed images was conducted at four sites throughout Amazonia. We further compared our estimates of canopy structure with results from large footprint LIDAR data from GLAS. Ability to estimate canopy profiles and forest structural properties in vast areas of the Brazilian Amazon using high resolution imagery will help us to understand the regional carbon balance.

  15. Comparison of three-dimensional optical coherence tomography and high resolution photography for art conservation studies.

    Science.gov (United States)

    Adler, Desmond C; Stenger, Jens; Gorczynska, Iwona; Lie, Henry; Hensick, Teri; Spronk, Ron; Wolohojian, Stephan; Khandekar, Narayan; Jiang, James Y; Barry, Scott; Cable, Alex E; Huber, Robert; Fujimoto, James G

    2007-11-26

    Gold punchwork and underdrawing in Renaissance panel paintings are analyzed using both three-dimensional swept source / Fourier domain optical coherence tomography (3D-OCT) and high resolution digital photography. 3D-OCT can generate en face images with micrometer-scale resolutions at arbitrary sectioning depths, rejecting out-of-plane light by coherence gating. Therefore 3D-OCT is well suited for analyzing artwork where a surface layer obscures details of interest. 3D-OCT also enables cross-sectional imaging and quantitative measurement of 3D features such as punch depth, which is beneficial for analyzing the tools and techniques used to create works of art. High volumetric imaging speeds are enabled by the use of a Fourier domain mode locked (FDML) laser as the 3D-OCT light source. High resolution infrared (IR) digital photography is shown to be particularly useful for the analysis of underdrawing, where the materials used for the underdrawing and paint layers have significantly different IR absrption properties. In general, 3D-OCT provides a more flexible and comprehensive analysis of artwork than high resolution photography, but also requires more complex instrumentation and data analysis.

  16. Spatially adaptive regularized iterative high-resolution image reconstruction algorithm

    Science.gov (United States)

    Lim, Won Bae; Park, Min K.; Kang, Moon Gi

    2000-12-01

    High resolution images are often required in applications such as remote sensing, frame freeze in video, military and medical imaging. Digital image sensor arrays, which are used for image acquisition in many imaging systems, are not dense enough to prevent aliasing, so the acquired images will be degraded by aliasing effects. To prevent aliasing without loss of resolution, a dense detector array is required. But it may be very costly or unavailable, thus, many imaging systems are designed to allow some level of aliasing during image acquisition. The purpose of our work is to reconstruct an unaliased high resolution image from the acquired aliased image sequence. In this paper, we propose a spatially adaptive regularized iterative high resolution image reconstruction algorithm for blurred, noisy and down-sampled image sequences. The proposed approach is based on a Constrained Least Squares (CLS) high resolution reconstruction algorithm, with spatially adaptive regularization operators and parameters. These regularization terms are shown to improve the reconstructed image quality by forcing smoothness, while preserving edges in the reconstructed high resolution image. Accurate sub-pixel motion registration is the key of the success of the high resolution image reconstruction algorithm. However, sub-pixel motion registration may have some level of registration error. Therefore, a reconstruction algorithm which is robust against the registration error is required. The registration algorithm uses a gradient based sub-pixel motion estimator which provides shift information for each of the recorded frames. The proposed algorithm is based on a technique of high resolution image reconstruction, and it solves spatially adaptive regularized constrained least square minimization functionals. In this paper, we show that the reconstruction algorithm gives dramatic improvements in the resolution of the reconstructed image and is effective in handling the aliased information. The

  17. Sensitivity study of reliable, high-throughput resolution metricsfor photoresists

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Christopher N.; Naulleau, Patrick P.

    2007-07-30

    The resolution of chemically amplified resists is becoming an increasing concern, especially for lithography in the extreme ultraviolet (EUV) regime. Large-scale screening and performance-based down-selection is currently underway to identify resist platforms that can support shrinking feature sizes. Resist screening efforts, however, are hampered by the absence of reliable resolution metrics that can objectively quantify resist resolution in a high-throughput fashion. Here we examine two high-throughput metrics for resist resolution determination. After summarizing their details and justifying their utility, we characterize the sensitivity of both metrics to two of the main experimental uncertainties associated with lithographic exposure tools, namely: limited focus control and limited knowledge of optical aberrations. For an implementation at EUV wavelengths, we report aberration and focus limited error bars in extracted resolution of {approx} 1.25 nm RMS for both metrics making them attractive candidates for future screening and down-selection efforts.

  18. Development of a novel depth of interaction PET detector using highly multiplexed G-APD cross-strip encoding

    Energy Technology Data Exchange (ETDEWEB)

    Kolb, A., E-mail: armin.kolb@med.uni-tuebingen.de; Parl, C.; Liu, C. C.; Pichler, B. J. [Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, 72076 Tübingen (Germany); Mantlik, F. [Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, 72076 Tübingen, Germany and Department of Empirical Inference, Max Planck Institute for Intelligent Systems, 72076 Tübingen (Germany); Lorenz, E. [Max Planck Institute for Physics, Föhringer Ring 6, 80805 München (Germany); Renker, D. [Department of Physics, Technische Universität München, 85748 Garching (Germany)

    2014-08-15

    Purpose: The aim of this study was to develop a prototype PET detector module for a combined small animal positron emission tomography and magnetic resonance imaging (PET/MRI) system. The most important factor for small animal imaging applications is the detection sensitivity of the PET camera, which can be optimized by utilizing longer scintillation crystals. At the same time, small animal PET systems must yield a high spatial resolution. The measured object is very close to the PET detector because the bore diameter of a high field animal MR scanner is limited. When used in combination with long scintillation crystals, these small-bore PET systems generate parallax errors that ultimately lead to a decreased spatial resolution. Thus, we developed a depth of interaction (DoI) encoding PET detector module that has a uniform spatial resolution across the whole field of view (FOV), high detection sensitivity, compactness, and insensitivity to magnetic fields. Methods: The approach was based on Geiger mode avalanche photodiode (G-APD) detectors with cross-strip encoding. The number of readout channels was reduced by a factor of 36 for the chosen block elements. Two 12 × 2 G-APD strip arrays (25μm cells) were placed perpendicular on each face of a 12 × 12 lutetium oxyorthosilicate crystal block with a crystal size of 1.55 × 1.55 × 20 mm. The strip arrays were multiplexed into two channels and used to calculate the x, y coordinates for each array and the deposited energy. The DoI was measured in step sizes of 1.8 mm by a collimated {sup 18}F source. The coincident resolved time (CRT) was analyzed at all DoI positions by acquiring the waveform for each event and applying a digital leading edge discriminator. Results: All 144 crystals were well resolved in the crystal flood map. The average full width half maximum (FWHM) energy resolution of the detector was 12.8% ± 1.5% with a FWHM CRT of 1.14 ± 0.02 ns. The average FWHM DoI resolution over 12 crystals was 2.90

  19. Development of a novel depth of interaction PET detector using highly multiplexed G-APD cross-strip encoding.

    Science.gov (United States)

    Kolb, A; Parl, C; Mantlik, F; Liu, C C; Lorenz, E; Renker, D; Pichler, B J

    2014-08-01

    The aim of this study was to develop a prototype PET detector module for a combined small animal positron emission tomography and magnetic resonance imaging (PET/MRI) system. The most important factor for small animal imaging applications is the detection sensitivity of the PET camera, which can be optimized by utilizing longer scintillation crystals. At the same time, small animal PET systems must yield a high spatial resolution. The measured object is very close to the PET detector because the bore diameter of a high field animal MR scanner is limited. When used in combination with long scintillation crystals, these small-bore PET systems generate parallax errors that ultimately lead to a decreased spatial resolution. Thus, we developed a depth of interaction (DoI) encoding PET detector module that has a uniform spatial resolution across the whole field of view (FOV), high detection sensitivity, compactness, and insensitivity to magnetic fields. The approach was based on Geiger mode avalanche photodiode (G-APD) detectors with cross-strip encoding. The number of readout channels was reduced by a factor of 36 for the chosen block elements. Two 12 × 2 G-APD strip arrays (25 μm cells) were placed perpendicular on each face of a 12 × 12 lutetium oxyorthosilicate crystal block with a crystal size of 1.55 × 1.55 × 20 mm. The strip arrays were multiplexed into two channels and used to calculate the x, y coordinates for each array and the deposited energy. The DoI was measured in step sizes of 1.8 mm by a collimated (18)F source. The coincident resolved time (CRT) was analyzed at all DoI positions by acquiring the waveform for each event and applying a digital leading edge discriminator. All 144 crystals were well resolved in the crystal flood map. The average full width half maximum (FWHM) energy resolution of the detector was 12.8% ± 1.5% with a FWHM CRT of 1.14 ± 0.02 ns. The average FWHM DoI resolution over 12 crystals was 2.90 ± 0.15 mm. The novel DoI PET

  20. High Resolution CryoFESEM of Microbial Surfaces

    Science.gov (United States)

    Erlandsen, Stanley; Lei, Ming; Martin-Lacave, Ines; Dunny, Gary; Wells, Carol

    2003-08-01

    The outer surfaces of three microorganisms, Giardia lamblia, Enterococcus faecalis, and Proteus mirabilis, were investigated by cryo-immobilization followed by sublimation of extracellular ice and cryocoating with either Pt alone or Pt plus carbon. Cryocoated samples were examined at [minus sign]125°C in either an in-lens field emission SEM or a below-the-lens field emission SEM. Cryocoating with Pt alone was sufficient for low magnification observation, but attempts to do high-resolution imaging resulted in radiolysis and cracking of the specimen surface. Double coating with Pt and carbon, in combination with high resolution backscatter electron detectors, enabled high-resolution imaging of the glycocalyx of bacteria, revealing a sponge-like network over the surface. High resolution examination of bacterial flagella also revealed a periodic substructure. Common artifacts included radiolysis leading to “cracking” of the surface, and insufficient deposition of Pt resulting in the absence of detectable surface topography.

  1. High Resolution Orthoimagery = Orthorectified Metro Areas: 2000 - Present

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — High resolution orthorectified images combine the image characteristics of an aerial photograph with the geometric qualities of a map. An orthoimage is a...

  2. High-resolution SPECT for small-animal imaging

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This article presents a brief overview of the development of high-resolution SPECT for small-animal imaging. A pinhole collimator has been used for high-resolution animal SPECT to provide better spatial resolution and detection efficiency in comparison with a parallel-hole collimator. The theory of imaging characteristics of the pinhole collimator is presented and the designs of the pinhole aperture are discussed. The detector technologies used for the development of small-animal SPECT and the recent advances are presented. The evolving trend of small-animal SPECT is toward a multi-pinhole and a multi-detector system to obtain a high resolution and also a high detection efficiency.

  3. Methodology of high-resolution photography for mural condition database

    Science.gov (United States)

    Higuchi, R.; Suzuki, T.; Shibata, M.; Taniguchi, Y.

    2015-08-01

    Digital documentation is one of the most useful techniques to record the condition of cultural heritage. Recently, high-resolution images become increasingly useful because it is possible to show general views of mural paintings and also detailed mural conditions in a single image. As mural paintings are damaged by environmental stresses, it is necessary to record the details of painting condition on high-resolution base maps. Unfortunately, the cost of high-resolution photography and the difficulty of operating its instruments and software have commonly been an impediment for researchers and conservators. However, the recent development of graphic software makes its operation simpler and less expensive. In this paper, we suggest a new approach to make digital heritage inventories without special instruments, based on our recent our research project in Üzümlü church in Cappadocia, Turkey. This method enables us to achieve a high-resolution image database with low costs, short time, and limited human resources.

  4. High Resolution Screening of biologically active compounds and metabolites

    NARCIS (Netherlands)

    Kool, J.

    2007-01-01

    High Resolution Screening of biologically active compounds and metabolites Jeroen Kool Biotransformation enzymes play a crucial role in the metabolism of both endogenous compounds and xenobiotics. Usually, the detoxication of these compounds by biotransformation enzymes results in harmless metab

  5. NOAA High-Resolution Sea Surface Temperature (SST) Analysis Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archive covers two high resolution sea surface temperature (SST) analysis products developed using an optimum interpolation (OI) technique. The analyses have a...

  6. High Resolution, Range/Range-Rate Imager Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Visidyne proposes to develop a design for a small, lightweight, high resolution, in x, y, and z Doppler imager to assist in the guidance, navigation and control...

  7. Using High Spatial Resolution Digital Imagery

    Science.gov (United States)

    2005-02-01

    frame and a bright area (hot spot) at the center. The same brightness shifts are present within most aerial photography , particularly the pronounced hot...the deciduous trees and shrubs were without leaves. In addition, the reed and grass species were fully senesced . The lack of photosynthetically...For example, high quality, large-scale aerial photography will provide adequate clarity and detail to accurately identify surface features that are

  8. High resolution survey for topographic surveying

    Science.gov (United States)

    Luh, L. C.; Setan, H.; Majid, Z.; Chong, A. K.; Tan, Z.

    2014-02-01

    In this decade, terrestrial laser scanner (TLS) is getting popular in many fields such as reconstruction, monitoring, surveying, as-built of facilities, archaeology, and topographic surveying. This is due the high speed in data collection which is about 50,000 to 1,000,000 three-dimensional (3D) points per second at high accuracy. The main advantage of 3D representation for the data is that it is more approximate to the real world. Therefore, the aim of this paper is to show the use of High-Definition Surveying (HDS), also known as 3D laser scanning for topographic survey. This research investigates the effectiveness of using terrestrial laser scanning system for topographic survey by carrying out field test in Universiti Teknologi Malaysia (UTM), Skudai, Johor. The 3D laser scanner used in this study is a Leica ScanStation C10. Data acquisition was carried out by applying the traversing method. In this study, the result for the topographic survey is under 1st class survey. At the completion of this study, a standard of procedure was proposed for topographic data acquisition using laser scanning systems. This proposed procedure serves as a guideline for users who wish to utilize laser scanning system in topographic survey fully.

  9. Developing Visual Editors for High-Resolution Haptic Patterns

    DEFF Research Database (Denmark)

    Cuartielles, David; Göransson, Andreas; Olsson, Tony

    2012-01-01

    In this article we give an overview of our iterative work in developing visual editors for creating high resolution haptic patterns to be used in wearable, haptic feedback devices. During the past four years we have found the need to address the question of how to represent, construct and edit high...... resolution haptic patterns so that they translate naturally to the user’s haptic experience. To solve this question we have developed and tested several visual editors...

  10. High resolution computed tomography for peripheral facial nerve paralysis

    Energy Technology Data Exchange (ETDEWEB)

    Koester, O.; Straehler-Pohl, H.J.

    1987-01-01

    High resolution computer tomographic examinations of the petrous bones were performed on 19 patients with confirmed peripheral facial nerve paralysis. High resolution CT provides accurate information regarding the extent, and usually regarding the type, of pathological process; this can be accurately localised with a view to possible surgical treatments. The examination also differentiates this from idiopathic paresis, which showed no radiological changes. Destruction of the petrous bone, without facial nerve symptoms, makes early suitable treatment mandatory.

  11. Geometric calibration of high-resolution remote sensing sensors

    Institute of Scientific and Technical Information of China (English)

    LIANG Hong-you; GU Xing-fa; TAO Yu; QIAO Chao-fei

    2007-01-01

    This paper introduces the applications of high-resolution remote sensing imagery and the necessity of geometric calibration for remote sensing sensors considering assurance of the geometric accuracy of remote sensing imagery. Then the paper analyzes the general methodology of geometric calibration. Taking the DMC sensor geometric calibration as an example, the paper discusses the whole calibration procedure. Finally, it gave some concluding remarks on geometric calibration of high-resolution remote sensing sensors.

  12. Scalable Algorithms for Large High-Resolution Terrain Data

    DEFF Research Database (Denmark)

    Mølhave, Thomas; Agarwal, Pankaj K.; Arge, Lars Allan

    2010-01-01

    In this paper we demonstrate that the technology required to perform typical GIS computations on very large high-resolution terrain models has matured enough to be ready for use by practitioners. We also demonstrate the impact that high-resolution data has on common problems. To our knowledge, some...... of the computations we present have never before been carried out by standard desktop computers on data sets of comparable size....

  13. High-resolution photocurrent microscopy using near-field cathodoluminescence of quantum dots

    Directory of Open Access Journals (Sweden)

    Heayoung P. Yoon

    2013-06-01

    Full Text Available We report a fast, versatile photocurrent imaging technique to visualize the local photo response of solar energy devices and optoelectronics using near-field cathodoluminescence (CL from a homogeneous quantum dot layer. This approach is quantitatively compared with direct measurements of high-resolution Electron Beam Induced Current (EBIC using a thin film solar cell (n-CdS / p-CdTe. Qualitatively, the observed image contrast is similar, showing strong enhancement of the carrier collection efficiency at the p-n junction and near the grain boundaries. The spatial resolution of the new technique, termed Q-EBIC (EBIC using quantum dots, is determined by the absorption depth of photons. The results demonstrate a new method for high-resolution, sub-wavelength photocurrent imaging measurement relevant for a wide range of applications.

  14. Dynamics of High-Resolution Networks

    DEFF Research Database (Denmark)

    Sekara, Vedran

    NETWORKS are everywhere. From the smallest confines of the cells within our bodies to the webs of social relations across the globe. Networks are not static, they constantly change, adapt, and evolve to suit new conditions. In order to understand the fundamental laws that govern networks we need...... the unprecedented amounts of information collected by mobile phones to gain detailed insight into the dynamics of social systems. This dissertation presents an unparalleled data collection campaign, collecting highly detailed traces for approximately 1000 people over the course of multiple years. The availability...

  15. HIGH RESOLUTION OPTICAL AND NIR SPECTRA OF HBC 722

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong-Eun; Park, Sunkyung [School of Space Research, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701 (Korea, Republic of); Green, Joel D.; Cochran, William D. [Department of Astronomy, University of Texas at Austin, TX (United States); Kang, Wonseok; Lee, Sang-Gak [National Youth Space Center, 200 Deokheungyangjjok-gil, Dongil-myeon, Goheung-gun, Jeollanam-do 548-951 (Korea, Republic of); Sung, Hyun-Il, E-mail: jeongeun.lee@khu.ac.kr, E-mail: sunkyung@khu.ac.kr, E-mail: joel@astro.as.utexas.edu, E-mail: wdc@astro.as.utexas.edu, E-mail: wskang@kywa.or.kr, E-mail: sanggak@kywa.or.kr, E-mail: hisung@kasi.re.kr [Korea Astronomy and Space Science Institute, 776 Daedeok-daero, Yuseong-gu, Daejeon 305-348 (Korea, Republic of)

    2015-07-01

    We present the results of high resolution (R ≥ 30,000) optical and near-IR spectroscopic monitoring observations of HBC 722, a recent FU Orionis object that underwent an accretion burst in 2010. We observed HBC 722 in the optical/near-IR with the Bohyunsan Optical Echelle Spectrograph, Hobby–Eberly Telescope-HRS, and Immersion Grating Infrared Spectrograph, at various points in the outburst. We found atomic lines with strongly blueshifted absorption features or P Cygni profiles, both evidence of a wind driven by the accretion. Some lines show a broad double-peaked absorption feature, evidence of disk rotation. However, the wind-driven and disk-driven spectroscopic features are anti-correlated in time; the disk features became strong as the wind features disappeared. This anti-correlation might indicate that the rebuilding of the inner disk was interrupted by the wind pressure during the first 2 years. The half-width at half-depth of the double-peaked profiles decreases with wavelength, indicative of the Keplerian rotation; the optical spectra with the disk feature are fitted by a G5 template stellar spectrum convolved with a rotation velocity of 70 km s{sup −1} while the near-IR disk features are fitted by a K5 template stellar spectrum convolved with a rotation velocity of 50 km s{sup −1}. Therefore, the optical and near-IR spectra seem to trace the disk at 39 and 76 R{sub ⊙}, respectively. We fit a power-law temperature distribution in the disk, finding an index of 0.8, comparable to optically thick accretion disk models.

  16. High resolution 3-D wavelength diversity imaging

    Science.gov (United States)

    Farhat, N. H.

    1981-09-01

    A physical optics, vector formulation of microwave imaging of perfectly conducting objects by wavelength and polarization diversity is presented. The results provide the theoretical basis for optimal data acquisition and three-dimensional tomographic image retrieval procedures. These include: (a) the selection of highly thinned (sparse) receiving array arrangements capable of collecting large amounts of information about remote scattering objects in a cost effective manner and (b) techniques for 3-D tomographic image reconstruction and display in which polarization diversity data is fully accounted for. Data acquisition employing a highly attractive AMTDR (Amplitude Modulated Target Derived Reference) technique is discussed and demonstrated by computer simulation. Equipment configuration for the implementation of the AMTDR technique is also given together with a measurement configuration for the implementation of wavelength diversity imaging in a roof experiment aimed at imaging a passing aircraft. Extension of the theory presented to 3-D tomographic imaging of passive noise emitting objects by spectrally selective far field cross-correlation measurements is also given. Finally several refinements made in our anechoic-chamber measurement system are shown to yield drastic improvement in performance and retrieved image quality.

  17. A high resolution submillimeter map of OMC-1

    Science.gov (United States)

    Keene, J.; Hildebrand, R. H.; Whitcomb, S. E.

    1982-01-01

    The 400 micron emission from the central region of OMC-1 has been mapped with 35 resolution. This region contains two emission peaks with sizes of about 0.5 arcmin, separated by approximately 1.5 arcmin which probably represent distinct density condensations in the molecular cloud. Comparison of observations with earlier far-infrared observations shows the two condensations to have similar optical depths and dust masses. A bar of 400 micron emission is found about 15 arcsec SE of the ionization front near Theta 2 A Ori, indicating a sharp increase in dust density in the neutral matter outside the ionized region.

  18. A high resolution submillimeter map of OMC-1

    Science.gov (United States)

    Keene, J.; Hildebrand, R. H.; Whitcomb, S. E.

    1982-01-01

    The 400 micron emission from the central region of OMC-1 has been mapped with 35 resolution. This region contains two emission peaks with sizes of about 0.5 arcmin, separated by approximately 1.5 arcmin which probably represent distinct density condensations in the molecular cloud. Comparison of observations with earlier far-infrared observations shows the two condensations to have similar optical depths and dust masses. A bar of 400 micron emission is found about 15 arcsec SE of the ionization front near Theta 2 A Ori, indicating a sharp increase in dust density in the neutral matter outside the ionized region.

  19. High-resolution gravity model of Venus

    Science.gov (United States)

    Reasenberg, R. D.; Goldberg, Z. M.

    1992-01-01

    The anomalous gravity field of Venus shows high correlation with surface features revealed by radar. We extract gravity models from the Doppler tracking data from the Pioneer Venus Orbiter by means of a two-step process. In the first step, we solve the nonlinear spacecraft state estimation problem using a Kalman filter-smoother. The Kalman filter has been evaluated through simulations. This evaluation and some unusual features of the filter are discussed. In the second step, we perform a geophysical inversion using a linear Bayesian estimator. To allow an unbiased comparison between gravity and topography, we use a simulation technique to smooth and distort the radar topographic data so as to yield maps having the same characteristics as our gravity maps. The maps presented cover 2/3 of the surface of Venus and display the strong topography-gravity correlation previously reported. The topography-gravity scatter plots show two distinct trends.

  20. A Very High Spatial Resolution Detector for Small Animal PET

    Energy Technology Data Exchange (ETDEWEB)

    Kanai Shah, M.S.

    2007-03-06

    Positron Emission Tomography (PET) is an in vivo analog of autoradiography and has the potential to become a powerful new tool in imaging biological processes in small laboratory animals. PET imaging of small animals can provide unique information that can help in advancement of human disease models as well as drug development. Clinical PET scanners used for human imaging are bulky, expensive and do not have adequate spatial resolution for small animal studies. Hence, dedicated, low cost instruments are required for conducting small animal studies with higher spatial resolution than what is currently achieved with clinical as well as dedicated small animal PET scanners. The goal of the proposed project is to investigate a new all solid-state detector design for small animal PET imaging. Exceptionally high spatial resolution, good timing resolution, and excellent energy resolution are expected from the proposed detector design. The Phase I project was aimed at demonstrating the feasibility of producing high performance solid-state detectors that provide high sensitivity, spatial resolution, and timing characteristics. Energy resolution characteristics of the new detector were also investigated. The goal of the Phase II project is to advance the promising solid-state detector technology for small animal PET and determine its full potential. Detectors modules will be built and characterized and finally, a bench-top small animal PET system will be assembled and evaluated.

  1. High-resolution spectroscopy of gamma-ray transients

    Energy Technology Data Exchange (ETDEWEB)

    Cline, T.L.

    1988-09-25

    The first high-resolution spectrometer flown to observe gamma-ray bursts was launched on the ISEE-3 spacecraft over nine years ago. It recorded two events before instrument failure, giving results that were suggestive but marginal. Other studies, with coarser energy resolution, also show evidence for spectral features as well as for spectral evolution on short time scales. Absolute source strength calibration will be possible only with source identification, but understanding of the burst emission processes will surely come only from the measurements having the best spectral and temporal precision. The only high- resolution gamma-ray spectrometer now planned, here or abroad, for space flight is an instrument sequel to the ISEE-3 spectrometer, to be flown on the interplanetary 'GGS Wind' mission. Much larger and higher-sensitivity, high-resolution instruments may have their optimum opportunities in conjunction with studies of solar flares in the time frame of the solar maximum of 2002.

  2. Compact and high-resolution optical orbital angular momentum sorter

    Directory of Open Access Journals (Sweden)

    Chenhao Wan

    2017-03-01

    Full Text Available A compact and high-resolution optical orbital angular momentum (OAM sorter is proposed and demonstrated. The sorter comprises a quadratic fan-out mapper and a dual-phase corrector positioned in the pupil plane and the Fourier plane, respectively. The optical system is greatly simplified compared to previous demonstrations of OAM sorting, and the performance in resolution and efficiency is maintained. A folded configuration is set up using a single reflective spatial light modulator (SLM to demonstrate the validity of the scheme. The two phase elements are implemented on the left and right halves of the SLM and connected by a right-angle prism. Experimental results demonstrate the high resolution of the compact OAM sorter, and the current limit in efficiency can be overcome by replacing with transmissive SLMs and removing the beam splitters. This novel scheme paves the way for the miniaturization and integration of high-resolution OAM sorters.

  3. Climatologies at high resolution for the Earth land surface areas

    CERN Document Server

    Karger, Dirk Nikolaus; Böhner, Jürgen; Kawohl, Tobias; Kreft, Holger; Soria-Auza, Rodrigo Wilber; Zimmermann, Niklaus; Linder, H Peter; Kessler, Michael

    2016-01-01

    High resolution information of climatic conditions is essential to many application in environmental sciences. Here we present the CHELSA algorithm to downscale temperature and precipitation estimates from the European Centre for Medium-Range Weather Forecast (ECMWF) climatic reanalysis interim (ERA-Interim) to a high resolution of 30 arc sec. The algorithm for temperature is based on a statistical downscaling of atmospheric temperature from the ERA-Interim climatic reanalysis. The precipitation algorithm incorporates orographic predictors such as wind fields, valley exposition, and boundary layer height, and a bias correction using Global Precipitation Climatology Center (GPCC) gridded and Global Historical Climate Network (GHCN) station data. The resulting data consist of a monthly temperature and precipitation climatology for the years 1979-2013. We present a comparison of data derived from the CHELSA algorithm with two other high resolution gridded products with overlapping temporal resolution (Tropical R...

  4. High resolution single particle refinement in EMAN2.1.

    Science.gov (United States)

    Bell, James M; Chen, Muyuan; Baldwin, Philip R; Ludtke, Steven J

    2016-05-01

    EMAN2.1 is a complete image processing suite for quantitative analysis of grayscale images, with a primary focus on transmission electron microscopy, with complete workflows for performing high resolution single particle reconstruction, 2-D and 3-D heterogeneity analysis, random conical tilt reconstruction and subtomogram averaging, among other tasks. In this manuscript we provide the first detailed description of the high resolution single particle analysis pipeline and the philosophy behind its approach to the reconstruction problem. High resolution refinement is a fully automated process, and involves an advanced set of heuristics to select optimal algorithms for each specific refinement task. A gold standard FSC is produced automatically as part of refinement, providing a robust resolution estimate for the final map, and this is used to optimally filter the final CTF phase and amplitude corrected structure. Additional methods are in-place to reduce model bias during refinement, and to permit cross-validation using other computational methods.

  5. High resolution surface plasmon microscopy for cell imaging

    Science.gov (United States)

    Argoul, F.; Monier, K.; Roland, T.; Elezgaray, J.; Berguiga, L.

    2010-04-01

    We introduce a new non-labeling high resolution microscopy method for cellular imaging. This method called SSPM (Scanning Surface Plasmon Microscopy) pushes down the resolution limit of surface plasmon resonance imaging (SPRi) to sub-micronic scales. High resolution SPRi is obtained by the surface plasmon lauching with a high numerical aperture objective lens. The advantages of SPPM compared to other high resolution SPRi's rely on three aspects; (i) the interferometric detection of the back reflected light after plasmon excitation, (ii) the twodimensional scanning of the sample for image reconstruction, (iii) the radial polarization of light, enhancing both resolution and sensitivity. This microscope can afford a lateral resolution of - 150 nm in liquid environment and - 200 nm in air. We present in this paper images of IMR90 fibroblasts obtained with SSPM in dried environment. Internal compartments such as nucleus, nucleolus, mitochondria, cellular and nuclear membrane can be recognized without labelling. We propose an interpretation of the ability of SSPM to reveal high index contrast zones by a local decomposition of the V (Z) function describing the response of the SSPM.

  6. Liquid Scintillation High Resolution Spectral Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Grau Carles, A.; Grau Malonda, A.

    2010-08-06

    The CIEMAT/NIST and the TDCR methods in liquid scintillation counting are based on the determination of the efficiency for total counting. This paper tries to expand these methods analysing the pulse-height spectrum of radionuclides. To reach this objective we have to generalize the equations used in the model and to analyse the influence of ionization and chemical quench in both spectra and counting efficiency. We present equations to study the influence of different photomultipliers response in systems with one, two or three photomultipliers. We study the effect of the electronic noise discriminator level in both spectra and counting efficiency. The described method permits one to study problems that up to now was not possible to approach, such as the high uncertainty in the standardization of pure beta-ray emitter with low energy when we apply the TDCR method, or the discrepancies in the standardization of some electron capture radionuclides, when the CIEMAT/NIST method is applied. (Author) 107 refs.

  7. Array high-sensitivity room temperature coil system for SNMR detection in shallow depth

    Science.gov (United States)

    Lin, Tingting; Xie, Kunyu; Zhang, Siyuan; Zhao, Jing; Lin, Jun

    2017-01-01

    The noninvasive method of surface nuclear magnetic resonance (SNMR) is a geophysical technique that is directly sensitive to hydrogen protons, besides it can exploit the NMR phenomenon for a quantitative determination of the subsurface groundwater distribution. Traditionally, SNMR utilizes large surface coils for both transmitting excitation pulses and recording the groundwater response. While, in recent research, a low Tc-SQUIDs is taken as a new sensor to replace the large receiving coil (Rx), which performing the best sensitivity for the shallow depth. Nevertheless, SQUID is with the problems of flux trapping and operational difficulties. In this paper, we introduce a room temperature coil system. A Cu coil with diameter of 1 m and a low noise preamplifier was systematically investigated and reached a sensitivity of 0.2fT/Hz1/2.Four preamplifiers are chosen for optimizing the pickup coils. The resolution studies for the array coil systems were performed, and the optimum distance between the adjacent pickup coils to achieve a better experimental results especially for the shallow depth. Our study enable the further use of the room temperature coil for SNMR shallow depth detections.

  8. High-resolution urban flood modelling - a joint probability approach

    Science.gov (United States)

    Hartnett, Michael; Olbert, Agnieszka; Nash, Stephen

    2017-04-01

    (Divoky et al., 2005). Nevertheless, such events occur and in Ireland alone there are several cases of serious damage due to flooding resulting from a combination of high sea water levels and river flows driven by the same meteorological conditions (e.g. Olbert et al. 2015). A November 2009 fluvial-coastal flooding of Cork City bringing €100m loss was one such incident. This event was used by Olbert et al. (2015) to determine processes controlling urban flooding and is further explored in this study to elaborate on coastal and fluvial flood mechanisms and their roles in controlling water levels. The objective of this research is to develop a methodology to assess combined effect of multiple source flooding on flood probability and severity in urban areas and to establish a set of conditions that dictate urban flooding due to extreme climatic events. These conditions broadly combine physical flood drivers (such as coastal and fluvial processes), their mechanisms and thresholds defining flood severity. The two main physical processes controlling urban flooding: high sea water levels (coastal flooding) and high river flows (fluvial flooding), and their threshold values for which flood is likely to occur, are considered in this study. Contribution of coastal and fluvial drivers to flooding and their impacts are assessed in a two-step process. The first step involves frequency analysis and extreme value statistical modelling of storm surges, tides and river flows and ultimately the application of joint probability method to estimate joint exceedence return periods for combination of surges, tide and river flows. In the second step, a numerical model of Cork Harbour MSN_Flood comprising a cascade of four nested high-resolution models is used to perform simulation of flood inundation under numerous hypothetical coastal and fluvial flood scenarios. The risk of flooding is quantified based on a range of physical aspects such as the extent and depth of inundation (Apel et al

  9. High-resolution spectroscopy of gases for industrial applications

    DEFF Research Database (Denmark)

    Fateev, Alexander; Clausen, Sønnik

    High-resolution spectroscopy of gases is a powerful technique which has various fundamental and practical applications: in situ simultaneous measurements of gas temperature and gas composition, radiative transfer modeling, validation of existing and developing of new databases and etc. Existing...... for analysis of complex experimental data and further development of the databases. High-temperature gas cell facilities available at DTU Chemical Engineering are presented and described. The gas cells and high-resolution spectrometers allow us to perform high-quality reference measurements of gases relevant...

  10. High resolution positron tomography using PCR-I

    Energy Technology Data Exchange (ETDEWEB)

    Brownell, G.L.; Burnham, C.A.; Sandrew, B.; Elmaleh, D.R.; Livni, E.; Kizuka, H.

    1984-01-01

    PCR-I is a high resolution positron tomograph developed by the Physics Research Laboratory of the Massachusetts General Hospital to explore resolution limits of positron tomographs. PCR-I currently obtains images with 4.8 mm FWHM resolution at the center. Plane thickness may be varied between 5 and 10 mm. The instrument uses analog coding to obtain high resolution images without mechanical motion. This permits rapid dynamic imaging and gated cardiac imaging as well as conventional high resolution imaging. A series of studies has been carried out to demonstrate the ability of PCR-I to image structures in small animals. F-18 in the rat skeleton is clearly defined and various structures such as the spinal processes can be clearly resolved. A sequence of images at different spacing provides a three-dimensional reconstruction of the rat skeleton. Blood volume and palmitic acid have been imaged in the dog heart. Again, the sequence of images provides a clear delineation of the three dimensional nature of the blood pools and of the surrounding musculature. Blood flow, blood volume and glucose metabolism have been studied in the monkey brain. Structures within the brain of the Resus monkey can be clearly resolved. Increased activity resulting from induced seizures in the squirrel monkey have been observed and delineated. All of these studies indicate areas of future animal and clinical research using the high resolution tomograph, PCR-I.

  11. High-resolution neutron microtomography with noiseless neutron counting detector

    Energy Technology Data Exchange (ETDEWEB)

    Tremsin, A.S., E-mail: ast@ssl.berkeley.edu [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); McPhate, J.B.; Vallerga, J.V.; Siegmund, O.H.W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Feller, W.B. [Nova Scientific Inc., 10 Picker Road, Sturbridge, MA 01566 (United States); Lehmann, E. [Paul Scherrer Institute, CH-5232 Villigen (Switzerland); Butler, L.G. [Louisiana State University, Baton Rouge, LA 70803 (United States); Dawson, M. [Helmholtz Centre Berlin for Materials and Energy (Germany)

    2011-10-01

    The improved collimation and intensity of thermal and cold neutron beamlines combined with recent advances in neutron imaging devices enable high-resolution neutron radiography and microtomography, which can provide information on the internal structure of objects not achievable with conventional X-ray imaging techniques. Neutron detection efficiency, spatial and temporal resolution (important for the studies of dynamic processes) and low background count rate are among the crucial parameters defining the quality of radiographic images and tomographic reconstructions. The unique capabilities of neutron counting detectors with neutron-sensitive microchannel plates (MCPs) and with Timepix CMOS readouts providing high neutron detection efficiency ({approx}70% for cold neutrons), spatial resolutions ranging from 15 to 55 {mu}m and a temporal resolution of {approx}1 {mu}s-combined with the virtual absence of readout noise-make these devices very attractive for high-resolution microtomography. In this paper we demonstrate the capabilities of an MCP-Timepix detection system applied to microtomographic imaging, performed at the ICON cold neutron facility of the Paul Scherrer Institute. The high resolution and the absence of readout noise enable accurate reconstruction of texture in a relatively opaque wood sample, differentiation of internal tissues of a fly and imaging of individual {approx}400 {mu}m grains in an organic powder encapsulated in a {approx}700 {mu}m thick metal casing.

  12. Extension of least squares spectral resolution algorithm to high-resolution lipidomics data

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Ying-Xu [Department of Chemistry, University of Bergen, PO Box 7803, N-5020 Bergen (Norway); Mjøs, Svein Are, E-mail: svein.mjos@kj.uib.no [Department of Chemistry, University of Bergen, PO Box 7803, N-5020 Bergen (Norway); David, Fabrice P.A. [Bioinformatics and Biostatistics Core Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL) and Swiss Institute of Bioinformatics (SIB), Lausanne (Switzerland); Schmid, Adrien W. [Proteomics Core Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland)

    2016-03-31

    Lipidomics, which focuses on the global study of molecular lipids in biological systems, has been driven tremendously by technical advances in mass spectrometry (MS) instrumentation, particularly high-resolution MS. This requires powerful computational tools that handle the high-throughput lipidomics data analysis. To address this issue, a novel computational tool has been developed for the analysis of high-resolution MS data, including the data pretreatment, visualization, automated identification, deconvolution and quantification of lipid species. The algorithm features the customized generation of a lipid compound library and mass spectral library, which covers the major lipid classes such as glycerolipids, glycerophospholipids and sphingolipids. Next, the algorithm performs least squares resolution of spectra and chromatograms based on the theoretical isotope distribution of molecular ions, which enables automated identification and quantification of molecular lipid species. Currently, this methodology supports analysis of both high and low resolution MS as well as liquid chromatography-MS (LC-MS) lipidomics data. The flexibility of the methodology allows it to be expanded to support more lipid classes and more data interpretation functions, making it a promising tool in lipidomic data analysis. - Highlights: • A flexible strategy for analyzing MS and LC-MS data of lipid molecules is proposed. • Isotope distribution spectra of theoretically possible compounds were generated. • High resolution MS and LC-MS data were resolved by least squares spectral resolution. • The method proposed compounds that are likely to occur in the analyzed samples. • The proposed compounds matched results from manual interpretation of fragment spectra.

  13. Integrated geophysical techniques for high resolution archaeological studies

    Science.gov (United States)

    Pipan, M.; Forte, E.; Finetti, I.

    2003-04-01

    We exploit the integration of linear multi-fold Ground Penetrating Radar (GPR) techniques, magnetic gradiometry, resistivity measurements and seismic tomography for the high-resolution non-invasive study of archaeological sites. Tests of the proposed integrated procedure are shown from archaeological sites in Italy and Egypt. We perform in particular the integrated subsurface reconstruction of an Iron Age tumulus, the study of high contrast ruins in alluvial sediments, the identification of low contrast remains in a desert area. Multi-fold GPR datasets are processed using pre-stack wave equation based imaging, which effectively tackles the rapid lateral velocity variations that normally characterize archaeological sites. Further image enhancement is achieved by means of proprietary Wavelet Transform based algorithms to compute the instantaneous attributes of the radar trace. The subsurface models are further verified by means of comparison with numerical simulations by FDTD modelling algorithms. Test excavations finally validate all the results. The multi-fold datasets allow image enhancement and characterization of material properties not attainable by conventional GPR methods. In particular, the comparison of conventional and multi-fold data from the desert area gives evidence of the image enhancement attainable in hostile soil conditions. Velocity fields obtained from pre-stack velocity analysis provides further information on material properties. The subsurface model is further constrained by the results of seismic, resistivity and magnetic surveys. Joint interpretation of high resolution multi-fold GPR data, after pre-stack processing and imaging, and seismic tomography allows to constrain the subsurface model and classify the targets of potential archaeological interest in the case of the Iron Age Tumulus. Details of the inner structure are evidenced by the integrated interpretation of seismic and GPR data. In particular, location of the burial chamber and of

  14. Accelerated High-Resolution Photoacoustic Tomography via Compressed Sensing

    CERN Document Server

    Arridge, Simon; Betcke, Marta; Cox, Ben; Huynh, Nam; Lucka, Felix; Ogunlade, Olumide; Zhang, Edward

    2016-01-01

    Current 3D photoacoustic tomography (PAT) systems offer either high image quality or high frame rates but are not able to deliver high spatial and temporal resolution simultaneously, which limits their ability to image dynamic processes in living tissue. A particular example is the planar Fabry-Perot (FP) scanner, which yields high-resolution images but takes several minutes to sequentially map the photoacoustic field on the sensor plane, point-by-point. However, as the spatio-temporal complexity of many absorbing tissue structures is rather low, the data recorded in such a conventional, regularly sampled fashion is often highly redundant. We demonstrate that combining variational image reconstruction methods using spatial sparsity constraints with the development of novel PAT acquisition systems capable of sub-sampling the acoustic wave field can dramatically increase the acquisition speed while maintaining a good spatial resolution: First, we describe and model two general spatial sub-sampling schemes. Then...

  15. High Resolution Muon Computed Tomography at Neutrino Beam Facilities

    CERN Document Server

    Suerfu, Burkhant

    2015-01-01

    X-ray computed tomography (CT) has an indispensable role in constructing 3D images of objects made from light materials. However, limited by absorption coefficients, X-rays cannot deeply penetrate materials such as copper and lead. Here we show via simulation that muon beams can provide high resolution tomographic images of dense objects and of structures within the interior of dense objects. The effects of resolution broadening from multiple scattering diminish with increasing muon momentum. As the momentum of the muon increases, the contrast of the image goes down and therefore requires higher resolution in the muon spectrometer to resolve the image. The variance of the measured muon momentum reaches a minimum and then increases with increasing muon momentum. The impact of the increase in variance is to require a higher integrated muon flux to reduce fluctuations. The flux requirements and level of contrast needed for high resolution muon computed tomography are well matched to the muons produced in the pio...

  16. Performance of a high resolution cavity beam position monitor system

    Science.gov (United States)

    Walston, Sean; Boogert, Stewart; Chung, Carl; Fitsos, Pete; Frisch, Joe; Gronberg, Jeff; Hayano, Hitoshi; Honda, Yosuke; Kolomensky, Yury; Lyapin, Alexey; Malton, Stephen; May, Justin; McCormick, Douglas; Meller, Robert; Miller, David; Orimoto, Toyoko; Ross, Marc; Slater, Mark; Smith, Steve; Smith, Tonee; Terunuma, Nobuhiro; Thomson, Mark; Urakawa, Junji; Vogel, Vladimir; Ward, David; White, Glen

    2007-07-01

    It has been estimated that an RF cavity Beam Position Monitor (BPM) could provide a position measurement resolution of less than 1 nm. We have developed a high resolution cavity BPM and associated electronics. A triplet comprised of these BPMs was installed in the extraction line of the Accelerator Test Facility (ATF) at the High Energy Accelerator Research Organization (KEK) for testing with its ultra-low emittance beam. The three BPMs were each rigidly mounted inside an alignment frame on six variable-length struts which could be used to move the BPMs in position and angle. We have developed novel methods for extracting the position and tilt information from the BPM signals including a robust calibration algorithm which is immune to beam jitter. To date, we have demonstrated a position resolution of 15.6 nm and a tilt resolution of 2.1 μrad over a dynamic range of approximately ±20 μm.

  17. Resolution-recovery-embedded image reconstruction for a high-resolution animal SPECT system.

    Science.gov (United States)

    Zeraatkar, Navid; Sajedi, Salar; Farahani, Mohammad Hossein; Arabi, Hossein; Sarkar, Saeed; Ghafarian, Pardis; Rahmim, Arman; Ay, Mohammad Reza

    2014-11-01

    The small-animal High-Resolution SPECT (HiReSPECT) is a dedicated dual-head gamma camera recently designed and developed in our laboratory for imaging of murine models. Each detector is composed of an array of 1.2 × 1.2 mm(2) (pitch) pixelated CsI(Na) crystals. Two position-sensitive photomultiplier tubes (H8500) are coupled to each head's crystal. In this paper, we report on a resolution-recovery-embedded image reconstruction code applicable to the system and present the experimental results achieved using different phantoms and mouse scans. Collimator-detector response functions (CDRFs) were measured via a pixel-driven method using capillary sources at finite distances from the head within the field of view (FOV). CDRFs were then fitted by independent Gaussian functions. Thereafter, linear interpolations were applied to the standard deviation (σ) values of the fitted Gaussians, yielding a continuous map of CDRF at varying distances from the head. A rotation-based maximum-likelihood expectation maximization (MLEM) method was used for reconstruction. A fast rotation algorithm was developed to rotate the image matrix according to the desired angle by means of pre-generated rotation maps. The experiments demonstrated improved resolution utilizing our resolution-recovery-embedded image reconstruction. While the full-width at half-maximum (FWHM) radial and tangential resolution measurements of the system were over 2 mm in nearly all positions within the FOV without resolution recovery, reaching around 2.5 mm in some locations, they fell below 1.8 mm everywhere within the FOV using the resolution-recovery algorithm. The noise performance of the system was also acceptable; the standard deviation of the average counts per voxel in the reconstructed images was 6.6% and 8.3% without and with resolution recovery, respectively.

  18. High resolution modelling of the North Icelandic Irminger Current (NIIC

    Directory of Open Access Journals (Sweden)

    K. Logemann

    2006-01-01

    Full Text Available The northward inflow of Atlantic Water through Denmark Strait – the North Icelandic Irminger Current (NIIC – is simulated with a numerical model of the North Atlantic and Arctic Ocean. The model uses the technique of adaptive grid refinement which allows a high spatial resolution (1 km horizontal, 10 m vertical around Iceland. The model is used to assess time and space variability of volume and heat fluxes for the years 1997–2003. Passive tracers are applied to study origin and composition of NIIC water masses. The NIIC originates from two sources: the Irminger Current, flowing as part of the sub-polar gyre in 100–500 m depth along the Reykjanes Ridge and the shallow Icelandic coastal current, flowing north-westward on the south-west Icelandic shelf. The ratio of volume flux between the deep and shallow branch is around 2:1. The NIIC continues as a warm and saline branch northward through Denmark Strait where it entrains large amounts of polar water due to the collision with the southward flowing East Greenland Current. After passing Denmark Strait, the NIIC follows the coast line eastward being an important heat source for north Icelandic waters. At least 60% of the temporal temperature variability of north Icelandic waters is caused by the NIIC. The NIIC volume and heat transport is highly variable and depends strongly on the wind field north-east of Denmark Strait. Daily means can change from 1 Sv eastward to 2 Sv westward within a few days. Highest monthly mean transport rates occur in summer when winds from north are weak, whereas the volume flux is reduced by around 50% in winter. Summer heat flux rates can be even three times higher than in winter. The simulation also shows variability on the interannual scale. In particular weak winds from north during winter 2002/2003 combined with mild weather conditions south of Iceland led to anomalous high NIIC volume (+40% and heat flux (+60% rates. In this period, simulated north Icelandic

  19. Isotope specific resolution recovery image reconstruction in high resolution PET imaging.

    Science.gov (United States)

    Kotasidis, Fotis A; Angelis, Georgios I; Anton-Rodriguez, Jose; Matthews, Julian C; Reader, Andrew J; Zaidi, Habib

    2014-05-01

    Measuring and incorporating a scanner-specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However, due to the short half-life of clinically used isotopes, other long-lived isotopes not used in clinical practice are used to perform the PSF measurements. As such, non-optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction, usually underestimating the true PSF owing to the difference in positron range. In high resolution brain and preclinical imaging, this effect is of particular importance since the PSFs become more positron range limited and isotope-specific PSFs can help maximize the performance benefit from using resolution recovery image reconstruction algorithms. In this work, the authors used a printing technique to simultaneously measure multiple point sources on the High Resolution Research Tomograph (HRRT), and the authors demonstrated the feasibility of deriving isotope-dependent system matrices from fluorine-18 and carbon-11 point sources. Furthermore, the authors evaluated the impact of incorporating them within RM image reconstruction, using carbon-11 phantom and clinical datasets on the HRRT. The results obtained using these two isotopes illustrate that even small differences in positron range can result in different PSF maps, leading to further improvements in contrast recovery when used in image reconstruction. The difference is more pronounced in the centre of the field-of-view where the full width at half maximum (FWHM) from the positron range has a larger contribution to the overall FWHM compared to the edge where the parallax error dominates the overall FWHM. Based on the proposed methodology, measured isotope-specific and spatially variant PSFs can be reliably derived and used for improved spatial resolution and variance performance in resolution recovery image reconstruction. The

  20. Examining Lake Michigan Spring Euphotic Depth (Zeu) Anomalies: Utilizing 10 Years of MODIS-Aqua Data at 4 Kilometer Resolution

    Science.gov (United States)

    Acker, James G.

    2013-01-01

    Examination of ten years of euphotic depth anomalies in Lake Michigan during the months of March-June indicates the following: The well-known and frequently observed occurrence of a turbidity feature in the southern part of Lake Michigan during the spring season has become less common during the period 2003-2012. Overall, the clarity of Lake Michigan water in the southern end of the lake appears to have increased spring season over the period 2003-2012. Euphotic depth can be used as a primary indicator of changes in Lake Michigan lacustrine optics, and for other large lakes. Unique events, such as the heavy rains in June 2008, can have a distinct signature in the euphotic depth anomaly distribution in Lake Michigan.

  1. Rayleigh-wave mode separation by high-resolution linear radon transform

    Science.gov (United States)

    Luo, Y.; Xia, J.; Miller, R.D.; Xu, Y.; Liu, J.; Liu, Q.

    2009-01-01

    Multichannel analysis of surface waves (MASW) method is an effective tool for obtaining vertical shear wave profiles from a single non-invasive measurement. One key step of the MASW method is generation of a dispersion image and extraction of a reliable dispersion curve from raw multichannel shot records. Because different Rayleigh-wave modes normally interfere with each other in the time and space domain, it is necessary to perform mode separation and reconstruction to increase the accuracy of phase velocities determined from a dispersion image. In this paper, we demonstrate the effectiveness of high-resolution linear Radon transform (LRT) as a means of separating and reconstructing multimode, dispersive Rayleigh-wave energy. We first introduce high-resolution LRT methods and Rayleigh-wave mode separation using high-resolution LRT. Next, we use synthetic data and a real-world example to demonstrate the effectiveness of Rayleigh-wave mode separation using high-resolution LRT. Our synthetic and real-world results demonstrate that (1) high-resolution LRT successfully separates and reconstructs multimode dispersive Rayleigh-wave energy with high resolution allowing the multimode energy to be more accurately determined. The horizontal resolution of the Rayleigh-wave method can be increased by extraction of dispersion curves from a pair of traces in the mode-separated shot gather and (2) multimode separation and reconstruction expand the usable frequency range of higher mode dispersive energy, which increases the depth of investigation and provides a means for accurately determining cut-off frequencies. ?? 2009 The Authors Journal compilation ?? 2009 RAS.

  2. Extension of least squares spectral resolution algorithm to high-resolution lipidomics data.

    Science.gov (United States)

    Zeng, Ying-Xu; Mjøs, Svein Are; David, Fabrice P A; Schmid, Adrien W

    2016-03-31

    Lipidomics, which focuses on the global study of molecular lipids in biological systems, has been driven tremendously by technical advances in mass spectrometry (MS) instrumentation, particularly high-resolution MS. This requires powerful computational tools that handle the high-throughput lipidomics data analysis. To address this issue, a novel computational tool has been developed for the analysis of high-resolution MS data, including the data pretreatment, visualization, automated identification, deconvolution and quantification of lipid species. The algorithm features the customized generation of a lipid compound library and mass spectral library, which covers the major lipid classes such as glycerolipids, glycerophospholipids and sphingolipids. Next, the algorithm performs least squares resolution of spectra and chromatograms based on the theoretical isotope distribution of molecular ions, which enables automated identification and quantification of molecular lipid species. Currently, this methodology supports analysis of both high and low resolution MS as well as liquid chromatography-MS (LC-MS) lipidomics data. The flexibility of the methodology allows it to be expanded to support more lipid classes and more data interpretation functions, making it a promising tool in lipidomic data analysis.

  3. Study of Saturn electrostatic discharges with high time resolution

    Science.gov (United States)

    Zakharenko, V.; Mylostna, K.; Konovalenko, A.; Kolyadin, V.; Zarka, P.; Griessmeier, J.-M.; Litvinenko, G.; Sidorchuk, M.; Rucker, H.; Fischer, G.; Cecconi, B.; Coffre, A.; Denis, L.; Shevchenko, V.; Nikolaenko, V.

    2013-09-01

    Ground-based observations of SED (Saturn Electrostatic Discharges) with high time resolution are the next stage of extraterrestrial atmospheric processes study. Due to extremely high intensity of Saturn's storm J (2010) [1] we have obtained the records with high signal-to-noise (S/N) ratio with the time resolution of 15 ns. It permitted us to investigate the microsecond structure of lightning and clearly distinguish SED in the presence of local interference in virtue of a dispersive delay of extraterrestrial planetary signals.

  4. High-Resolution 3D Bathymetric Mapping for Small Streams Using Low-Altitude Aerial Photography

    Science.gov (United States)

    Dietrich, J. T.; Duffin, J.

    2015-12-01

    Geomorphic monitoring of river restoration projects is a critical component of measuring their success. In smaller streams, with depths less than 2 meters, one of the more difficult variables to map at high-resolution is bathymetry. In larger rivers, bathymetry can be measured with instruments like multi-beam sonar, bathymetric airborne LiDAR, or acoustic doppler current profilers (ADCP). However, these systems are often limited by their minimum operating depths, which makes them ineffective in shallow water. Remote sensing offers several potential solutions for collecting bathymetry, spectral depth mapping and photogrammetric measurement (e.g. Structure-from-Motion (SfM) multi-view photogrammetry). In this case study, we use SfM to produce both high-resolution above water topography and below water bathymetry for two reaches of a stream restoration project on the Middle Fork of the John Day River in eastern Oregon and one reach on the White River in Vermont. We collected low-allitude multispectral (RGB+NIR) aerial photography at all of the sites at altitudes of 30 to 50 meters. The SfM survey was georeferenced with RTK-GPS ground control points and the bathymetry was refraction-corrected using additional RTK-GPS sample points. The resulting raster data products have horizontal resolutions of ~4-8 centimeters for the topography and ~8-15 cm for the bathymetry. This methodology, like many fluvial remote sensing methods, will only work under ideal conditions (e.g. clear water), but it provides an additional tool for collecting high-resolution bathymetric datasets for geomorphic monitoring efforts.

  5. Evacuee Compliance Behavior Analysis using High Resolution Demographic Information

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wei [ORNL; Han, Lee [University of Tennessee, Knoxville (UTK); Liu, Cheng [ORNL; Tuttle, Mark A [ORNL; Bhaduri, Budhendra L [ORNL

    2014-01-01

    The purpose of this study is to examine whether evacuee compliance behavior with route assignments from different resolutions of demographic data would impact the evacuation performance. Most existing evacuation strategies assume that travelers will follow evacuation instructions, while in reality a certain percent of evacuees do not comply with prescribed instructions. In this paper, a comparison study of evacuation assignment based on Traffic Analysis Zones (TAZ) and high resolution LandScan USA Population Cells (LPC) were conducted for the detailed road network representing Alexandria, Virginia. A revised platform for evacuation modeling built on high resolution demographic data and activity-based microscopic traffic simulation is proposed. The results indicate that evacuee compliance behavior affects evacuation efficiency with traditional TAZ assignment, but it does not significantly compromise the efficiency with high resolution LPC assignment. The TAZ assignment also underestimates the real travel time during evacuation, especially for high compliance simulations. This suggests that conventional evacuation studies based on TAZ assignment might not be effective at providing efficient guidance to evacuees. From the high resolution data perspective, traveler compliance behavior is an important factor but it does not impact the system performance significantly. The highlight of evacuee compliance behavior analysis should be emphasized on individual evacuee level route/shelter assignments, rather than the whole system performance.

  6. Design and implementation of spaceborne high resolution infrared touch screen

    Science.gov (United States)

    Li, Tai-guo; Li, Wen-xin; Dong, Yi-peng; Ma, Wen; Xia, Jia-gao

    2015-10-01

    For the consideration of the special application environment of the electronic products used in aerospace and to further more improve the human-computer interaction of the manned aerospace area. The research is based on the design and implementation way of the high resolution spaceborne infrared touch screen on the basis of FPGA and DSP frame structure. Beside the introduction of the whole structure for the high resolution spaceborne infrared touch screen system, this essay also gives the detail information about design of hardware for the high resolution spaceborne infrared touch screen system, FPGA design, GUI design and DSP algorithm design based on Lagrange interpolation. What is more, the easy makes a comprehensive research of the reliability design for the high resolution spaceborne infrared touch screen for the special purpose of it. Besides, the system test is done after installation of spaceborne infrared touch screen. The test result shows that the system is simple and reliable enough, which has a stable running environment and high resolution, which certainly can meet the special requirement of the manned aerospace instrument products.

  7. Developing Visual Editors for High-Resolution Haptic Patterns

    DEFF Research Database (Denmark)

    Cuartielles, David; Göransson, Andreas; Olsson, Tony;

    2012-01-01

    In this article we give an overview of our iterative work in developing visual editors for creating high resolution haptic patterns to be used in wearable, haptic feedback devices. During the past four years we have found the need to address the question of how to represent, construct and edit high...

  8. Stars and planets at high spatial and spectral resolution

    NARCIS (Netherlands)

    Albrecht, Simon

    2008-01-01

    The work presented in this thesis involves the development of new instrumental techniques and analysing tools, combining high spectral resolution with high spatial information, with the aim to increase our understanding of the formation and evolution of stars and planets. First, a novel instrumental

  9. High resolution data analysis strategies for mesoscale human functional MRI at 7 and 9.4T

    NARCIS (Netherlands)

    Kemper, Valentin G; De Martino, Federico; Emmerling, Thomas C; Yacoub, Essa; Goebel, R.

    2017-01-01

    The advent of ultra-high field functional magnetic resonance imaging (fMRI) has greatly facilitated submillimeter resolution acquisitions (voxel volume below (1mm³)), allowing the investigation of cortical columns and cortical depth dependent (i.e. laminar) structures in the human brain. Advanced

  10. Martian Valley Networks and Associated Fluvial Features as Seen by the Mars Express High Resolution Stereo Camera (HRSC)

    Science.gov (United States)

    Jaumann, R.; Reiss, D.; Frei, S.; Scholten, F.; Gwinner, K.; Roatsch, T.; Matz, K.-D.; Hauber, E.; Mertens, V.; Hoffmann, H.; Head, J. W., III; Hiesinger, H.; Carr, M. H.; Neukum, G.; HRSC Co-Investigator Team

    2005-03-01

    In High Resolution Stereo Camera (HRSC) images of the Mars Express Mission a 130 km long inner channel is Lybia Montes. Based on HRSC stereo information we were able to determine the depth of this inner structure and thus we could estimate the discharge in the inner channel.

  11. Achieving High Resolution Timer Events in Virtualized Environment.

    Directory of Open Access Journals (Sweden)

    Blazej Adamczyk

    Full Text Available Virtual Machine Monitors (VMM have become popular in different application areas. Some applications may require to generate the timer events with high resolution and precision. This however may be challenging due to the complexity of VMMs. In this paper we focus on the timer functionality provided by five different VMMs-Xen, KVM, Qemu, VirtualBox and VMWare. Firstly, we evaluate resolutions and precisions of their timer events. Apparently, provided resolutions and precisions are far too low for some applications (e.g. networking applications with the quality of service. Then, using Xen virtualization we demonstrate the improved timer design that greatly enhances both the resolution and precision of achieved timer events.

  12. High-resolution structure of viruses from random diffraction snapshots

    CERN Document Server

    Hosseinizadeh, A; Dashti, A; Fung, R; D'Souza, R M; Ourmazd, A

    2014-01-01

    The advent of the X-ray Free Electron Laser (XFEL) has made it possible to record diffraction snapshots of biological entities injected into the X-ray beam before the onset of radiation damage. Algorithmic means must then be used to determine the snapshot orientations and thence the three-dimensional structure of the object. Existing Bayesian approaches are limited in reconstruction resolution typically to 1/10 of the object diameter, with the computational expense increasing as the eighth power of the ratio of diameter to resolution. We present an approach capable of exploiting object symmetries to recover three-dimensional structure to high resolution, and thus reconstruct the structure of the satellite tobacco necrosis virus to atomic level. Our approach offers the highest reconstruction resolution for XFEL snapshots to date, and provides a potentially powerful alternative route for analysis of data from crystalline and nanocrystalline objects.

  13. New high resolution synthetic stellar libraries for the Gaia Mission

    CERN Document Server

    Sordo, R; Bouret, J C; Brott, I; Edvardsson, B; Frémat, Y; Heber, U; Josselin, E; Kochukhov, O; Korn, A; Lanzafame, A; Martins, F; Schweitzer, A; Thévenin, F; Zorec, J

    2008-01-01

    High resolution synthetic stellar libraries are of fundamental importance for the preparation of the Gaia Mission. We present new sets of spectral stellar libraries covering two spectral ranges: 300 --1100 nm at 0.1 nm resolution, and 840 -- 890 nm at 0.001 nm resolution. These libraries span a large range in atmospheric parameters, from super-metal-rich to very metal-poor (-5.0 $<$[Fe/H]$<$+1.0), from cool to hot (\\teff=3000--50000 K) stars, including peculiar abundance variations. The spectral resolution, spectral type coverage and number of models represent a substantial improvement over previous libraries used in population synthesis models and in atmospheric analysis.

  14. Subcutaneous Cysticercosis: Role of High Resolution Ultrasound in Diagnosis

    Directory of Open Access Journals (Sweden)

    Sachin Lohra

    2014-02-01

    Full Text Available BACKGROUND: Though the commonest site of extraintestinal infestation with Taenia solium is brain, Subcutaneous cysticercosis is fairly common in asia. The advent of high resolution ultrasound, FNAC, and a heightened clinician awareness of the existence of isolated soft tissue cysticerci has probably supplanted the need for surgical intervention and excision biopsy in asymptomatic subcutaneous cysts, as cysts have high rate of spontaneous resolution. OBJECTIVES: - To observe role of high resolution ultrasound in diagnosis and need of surgical intervention in treatment of subcutaneous cysticercosis. MATERIALS and METHODS: retrospective study of seven cases of extraneural cysticercosis, all involving the subcutaneous tissues or muscles over the arms and torso. Either high resolution ultrasound, FNAC, or excision biopsy, or a combination of these were used to arrive at a diagnosis. All patients were followed up with serial ultrasounds. All patients received oral nitazoxanide for autoinfection. Surgical excision was resorted to in two patients, in whom it was possible to obtain a histopathologic diagnosis. RESULTS: of the seven cases of subcutaneous cysticercosis all have rural background, most of the patients (6 were vegetarian and one was non vegetarian. Age and gender of patient, size and duration of lesion were insignificant in establishing the diagnosis. High resolution ultrasound was highly significant in establishing the diagnosis over FNAC and histopathology. Five of the cases resolved spontaneously and surgical intervention was required only in two cases. INTERPRETATION and CONCLUSIONS: With heightened clinician awareness of the existence of isolated subcutaneous cysticercosis in patients with close animal contact, and the widespread availability of high resolution ultrasound and FNAC, subcutaneous cysticercosis can be diagnosed readily. Surgery can be avoided in the great majority of these patients, as the cysts mostly resolve on their own

  15. High-resolution multispectral satellite imagery for extracting bathymetric information of Antarctic shallow lakes

    Science.gov (United States)

    Jawak, Shridhar D.; Luis, Alvarinho J.

    2016-05-01

    High-resolution pansharpened images from WorldView-2 were used for bathymetric mapping around Larsemann Hills and Schirmacher oasis, east Antarctica. We digitized the lake features in which all the lakes from both the study areas were manually extracted. In order to extract the bathymetry values from multispectral imagery we used two different models: (a) Stumpf model and (b) Lyzenga model. Multiband image combinations were used to improve the results of bathymetric information extraction. The derived depths were validated against the in-situ measurements and root mean square error (RMSE) was computed. We also quantified the error between in-situ and satellite-estimated lake depth values. Our results indicated a high correlation (R = 0.60 0.80) between estimated depth and in-situ depth measurements, with RMSE ranging from 0.10 to 1.30 m. This study suggests that the coastal blue band in the WV-2 imagery could retrieve accurate bathymetry information compared to other bands. To test the effect of size and dimension of lake on bathymetry retrieval, we distributed all the lakes on the basis of size and depth (reference data), as some of the lakes were open, some were semi frozen and others were completely frozen. Several tests were performed on open lakes on the basis of size and depth. Based on depth, very shallow lakes provided better correlation (≈ 0.89) compared to shallow (≈ 0.67) and deep lakes (≈ 0.48). Based on size, large lakes yielded better correlation in comparison to medium and small lakes.

  16. Vehicle Detection and Classification from High Resolution Satellite Images

    Science.gov (United States)

    Abraham, L.; Sasikumar, M.

    2014-11-01

    In the past decades satellite imagery has been used successfully for weather forecasting, geographical and geological applications. Low resolution satellite images are sufficient for these sorts of applications. But the technological developments in the field of satellite imaging provide high resolution sensors which expands its field of application. Thus the High Resolution Satellite Imagery (HRSI) proved to be a suitable alternative to aerial photogrammetric data to provide a new data source for object detection. Since the traffic rates in developing countries are enormously increasing, vehicle detection from satellite data will be a better choice for automating such systems. In this work, a novel technique for vehicle detection from the images obtained from high resolution sensors is proposed. Though we are using high resolution images, vehicles are seen only as tiny spots, difficult to distinguish from the background. But we are able to obtain a detection rate not less than 0.9. Thereafter we classify the detected vehicles into cars and trucks and find the count of them.

  17. High resolution SPM imaging of organic molecules with functionalized tips

    Science.gov (United States)

    Jelínek, Pavel

    2017-08-01

    One of the most remarkable and exciting achievements in the field of scanning probe microscopy (SPM) in the last years is the unprecedented sub-molecular resolution of both atomic and electronic structures of single molecules deposited on solid state surfaces. Despite its youth, the technique has already brought many new possibilities to perform different kinds of measurements, which cannot be accomplished by other techniques. This opens new perspectives in advanced characterization of physical and chemical processes and properties of molecular structures on surfaces. Here, we discuss the history and recent progress of the high resolution imaging with a functionalized probe by means of atomic force microscopy (AFM), scanning tunnelling microscopy (STM) and inelastic electron tunneling spectroscopy (IETS). We describe the mechanisms responsible for the high-resolution AFM, STM and IETS-STM contrast. The complexity of this technique requires new theoretical approaches, where a relaxation of the functionalized probe is considered. We emphasise the similarities of the mechanism driving high-resolution SPM with other imaging methods. We also summarise briefly significant achievements and progress in different branches. Finally we provide brief perspectives and remaining challenges of the further refinement of these high-resolution methods.

  18. High resolution magnetic imaging: MicroSQUID Force Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hasselbach, K; Ladam, C; Dolocan, V O; Hykel, D; Crozes, T [Institut Neel, CNRS et Universite Joseph Fourier, BP 166, F-38042 Grenoble Cedex 9 (France); Schuster, K [Institut de RadioAstronomie Millimetrique 300 rue de la Piscine, Domaine Universitaire F-38406 Saint Martin d' Heres (France); Mailly, D [Laboratoire de Photonique et de Nanostructures, CNRS, Site Alcatel de Marcoussis Route de Nozay F-91460 Marcoussis (France)], E-mail: klaus.hasselbach@grenoble.cnrs.fr

    2008-02-01

    Magnetic imaging at the micrometer scale with high sensitivity is a challenge difficult to be met. Magnetic force microscopy has a very high spatial resolution but is limited in magnetic resolution. Hall probe microscopy is very powerful but sensor fabrication at the one micron scale is difficult and effects due to discreteness of charge appear in the form of significant 1/f noise. SQUID microscopy is very powerful, having high magnetic resolution, but spatial resolution is usually of the order of 10 {mu}m. The difficulties lay mostly in an efficient way to couple flux to the sensor. The only way to improve spatial resolution is to place the probe close to the very edge of the support, thus maximising coupling and spatial resolution. If there has been found a way to bring close the tip, there must be also found a reliable a way to maintain distance during scanning. We want to present recent improvements on scanning microsquid microscopy: Namely the improved fabrication of microSQUID tips using silicon micro machining and the precise positioning of the micrometer diameter microSQUID loop by electron beam lithography. The microSQUID is a microbridge DC SQUID, with two opposite microbridges. The constrictions are patterned by high-resolution e-beam lithography and have a width of 20 nm and a length of about 100 nm. The distance control during scanning is obtained by integrating the microSQUID sensor with a piezoelectric tuning fork acting as a force sensor allowing to control height and even topographic imaging. The detector is placed in a custom built near field microscope and the sample temperature can be varied between 0.1 Kelvin and 10 K. The microscope is used to study magnetic flux structures in unconventional superconductors and will be used to observe thermal domains in superconducting detectors in the voltage state.

  19. High spatial resolution diffusion tensor imaging and its applications

    CERN Document Server

    Wang, J J

    2002-01-01

    Introduction Magnetic Resonance Imaging is at present the only imaging technique available to measure diffusion of water and metabolites in humans. It provides vital insights to brain connectivity and has proved to be an important tool in diagnosis and therapy planning in many neurological diseases such as brain tumour, ischaemia and multiple sclerosis. This project focuses on the development of a high resolution diffusion tensor imaging technique. In this thesis, the basic theory of diffusion tensor MR Imaging is presented. The technical challenges encountered during development of these techniques will be discussed, with proposed solutions. New sequences with high spatial resolution have been developed and the results are compared with the standard technique more commonly used. Overview The project aims at the development of diffusion tensor imaging techniques with a high spatial resolution. Chapter 2 will describe the basic physics of MRI, the phenomenon of diffusion and the measurement of diffusion by MRI...

  20. Developing Visual Editors for High-Resolution Haptic Patterns

    DEFF Research Database (Denmark)

    Cuartielles, David; Göransson, Andreas; Olsson, Tony;

    2012-01-01

    In this article we give an overview of our iterative work in developing visual editors for creating high resolution haptic patterns to be used in wearable, haptic feedback devices. During the past four years we have found the need to address the question of how to represent, construct and edit hi...... resolution haptic patterns so that they translate naturally to the user’s haptic experience. To solve this question we have developed and tested several visual editors......In this article we give an overview of our iterative work in developing visual editors for creating high resolution haptic patterns to be used in wearable, haptic feedback devices. During the past four years we have found the need to address the question of how to represent, construct and edit high...

  1. A high resolution powder diffractometer using focusing optics

    Indian Academy of Sciences (India)

    V Siruguri; P D Babu; M Gupta; A V Pimpale; P S Goyal

    2008-11-01

    In this paper, we describe the design, construction and performance of a new high resolution neutron powder diffractometer that has been installed at the Dhruva reactor, Trombay, India. The instrument employs novel design concepts like the use of bent, perfect crystal monochromator and open beam geometry, enabling the use of smaller samples. The resolution curve of the instrument was found to have little variation over a wide angular region and a / ∼ 0.3% has been achieved. The instrument provides sample environment of very low temperatures and high magnetic fields using a 7 Tesla cryogen-free superconducting magnet with a VTI having a temperature range of 1.5–320 K. The special sample environment and high resolution make this neutron powder diffractometer a very powerful facility for studying magnetic properties of materials.

  2. Effect of taxonomic resolution on ecological and palaeoecological inference - a test using testate amoeba water table depth transfer functions

    Science.gov (United States)

    Mitchell, Edward A. D.; Lamentowicz, Mariusz; Payne, Richard J.; Mazei, Yuri

    2014-05-01

    Sound taxonomy is a major requirement for quantitative environmental reconstruction using biological data. Transfer function performance should theoretically be expected to decrease with reduced taxonomic resolution. However for many groups of organisms taxonomy is imperfect and species level identification not always possible. We conducted numerical experiments on five testate amoeba water table (DWT) transfer function data sets. We sequentially reduced the number of taxonomic groups by successively merging morphologically similar species and removing inconspicuous species. We then assessed how these changes affected model performance and palaeoenvironmental reconstruction using two fossil data sets. Model performance decreased with decreasing taxonomic resolution, but this had only limited effects on patterns of inferred DWT, at least to detect major dry/wet shifts. Higher-resolution taxonomy may however still be useful to detect more subtle changes, or for reconstructed shifts to be significant.

  3. Interpretation of high resolution aeromagnetic data over southern Benue Trough, southeastern Nigeria

    Science.gov (United States)

    Oha, I. A.; Onuoha, K. M.; Nwegbu, A. N.; Abba, A. U.

    2016-03-01

    High resolution airborne magnetic data of parts of the southern Benue Trough were digitally processed and analyzed in order to estimate the depth of magnetic sources and to map the distribution and orientation of subsurface structural features. Enhancement techniques applied include, reduction to pole/equator (RTP/RTE), first and second vertical derivatives, horizontal gradients and analytic signal. Results from these procedures show that at least 40% of the sedimentary basin contain shallow (possesses high potential for large accumulation of base metal mineralization.

  4. Characterization of a high-resolution hybrid DOI detector for a dedicated breast PET/CT scanner

    Science.gov (United States)

    Godinez, Felipe; Chaudhari, Abhijit J.; Yang, Yongfeng; Farrell, Richard; Badawi, Ramsey D.

    2012-06-01

    The aim of this study is to design and test a new high-resolution hybrid depth of interaction (DOI) detector for a dedicated breast PET/CT scanner. Two detectors have been designed and built. The completed detectors are based on a 14 × 14 array of 1.5 × 1.5 × 20 mm3 unpolished lutetium orthosilicate scintillation crystals, with each element coated in a 50 μm layer of reflective material. The detector is read out from both ends using a position-sensitive photomultiplier tube (PSPMT) and a large active area (20 × 20 mm2) avalanche photodiode (APD) to enable acquisition of DOI information. Nuclear instrumentation modules were used to characterize the detectors’ performances in terms of timing, intrinsic spatial resolution (ISR) and energy resolution, as well as DOI resolution with a dual-ended readout configuration. Measurements with the APD were performed at a temperature of 10 °C. All crystals were identified at all depths, even though the signal amplitude from the PSPMT decreases with depth away from it. We measured a timing resolution of 2.4 ns, and an average energy resolution of 19%. The mean ISR was measured to be 1.2 mm for crystals in the central row of the array for detectors in the face-to-face position. Two off-center positions were measured corresponding to 26° and 51° oblique photon incidence, and the mean ISR at these positions was 1.5 and 1.7 mm, respectively. The average DOI resolution across all crystals and depths was measured to be 2.9 mm (including the beam width of 0.6 mm). This detector design shows good promise as a high-resolution detector for a dedicated breast PET/CT scanner.

  5. High-resolution low-dose scanning transmission electron microscopy.

    Science.gov (United States)

    Buban, James P; Ramasse, Quentin; Gipson, Bryant; Browning, Nigel D; Stahlberg, Henning

    2010-01-01

    During the past two decades instrumentation in scanning transmission electron microscopy (STEM) has pushed toward higher intensity electron probes to increase the signal-to-noise ratio of recorded images. While this is suitable for robust specimens, biological specimens require a much reduced electron dose for high-resolution imaging. We describe here protocols for low-dose STEM image recording with a conventional field-emission gun STEM, while maintaining the high-resolution capability of the instrument. Our findings show that a combination of reduced pixel dwell time and reduced gun current can achieve radiation doses comparable to low-dose TEM.

  6. Novel techniques in VUV high-resolution spectroscopy

    CERN Document Server

    Ubachs, W; Eikema, K S E; de Oliveira, N; Nahon, L

    2013-01-01

    Novel VUV sources and techniques for VUV spectroscopy are reviewed. Laser-based VUV sources have been developed via non-linear upconversion of laser pulses in the nanosecond (ns), the picosecond (ps), and femtosecond (fs) domain, and are applied in high-resolution gas phase spectroscopic studies. While the ns and ps pulsed laser sources, at Fourier-transform limited bandwidths, are used in wavelength scanning spectroscopy, the fs laser source is used in a two-pulse time delayed mode. In addition a Fourier-transform spectrometer for high resolution gas-phase spectroscopic studies in the VUV is described, exhibiting the multiplex advantage to measure many resonances simultaneously.

  7. High-resolution second harmonic optical coherence tomography

    Science.gov (United States)

    Jiang, Yi; Tomov, Ivan V.; Wang, Yimin; Chen, Zhongping

    2005-04-01

    A high-resolution Second Harmonic Optical Coherence Tomography (SH-OCT) system is demonstrated using a spectrum broadened femtosecond Ti:sapphire laser. An axial resolution of 4.2 μm at the second harmonic wave center wavelength of 400 nm has been achieved. Because the SH-OCT system uses the second harmonic generation signals that strongly depend on the orientation, polarization and local symmetry properties of chiral molecules, this technique provides unique contrast enhancement to conventional optical coherence tomography. The system is applied to image biological tissues like the rat-tail tendon. Images of highly organized collagen fibrils in the rat-tail tendon have been demonstrated.

  8. Progress in high-resolution x-ray holographic microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, C.; Kirz, J.; Howells, M.; McQuaid, K.; Rothman, S.; Feder, R.; Sayre, D.

    1987-07-01

    Among the various types of x-ray microscopes that have been demonstrated, the holographic microscope has had the largest gap between promise and performance. The difficulties of fabricating x-ray optical elements have led some to view holography as the most attractive method for obtaining the ultimate in high resolution x-ray micrographs; however, we know of no investigations prior to 1987 that clearly demonstrated submicron resolution in reconstructed images. Previous efforts suffered from problems such as limited resolution and dynamic range in the recording media, low coherent x-ray flux, and aberrations and diffraction limits in visible light reconstruction. We have addressed the recording limitations through the use of an undulator x-ray source and high-resolution photoresist recording media. For improved results in the readout and reconstruction steps, we have employed metal shadowing and transmission electron microscopy, along with numerical reconstruction techniques. We believe that this approach will allow holography to emerge as a practical method of high-resolution x-ray microscopy. 30 refs., 4 figs.

  9. High-resolution EEG (HR-EEG) and magnetoencephalography (MEG).

    Science.gov (United States)

    Gavaret, M; Maillard, L; Jung, J

    2015-03-01

    High-resolution EEG (HR-EEG) and magnetoencephalography (MEG) allow the recording of spontaneous or evoked electromagnetic brain activity with excellent temporal resolution. Data must be recorded with high temporal resolution (sampling rate) and high spatial resolution (number of channels). Data analyses are based on several steps with selection of electromagnetic signals, elaboration of a head model and use of algorithms in order to solve the inverse problem. Due to considerable technical advances in spatial resolution, these tools now represent real methods of ElectroMagnetic Source Imaging. HR-EEG and MEG constitute non-invasive and complementary examinations, characterized by distinct sensitivities according to the location and orientation of intracerebral generators. In the presurgical assessment of drug-resistant partial epilepsies, HR-EEG and MEG can characterize and localize interictal activities and thus the irritative zone. HR-EEG and MEG often yield significant additional data that are complementary to other presurgical investigations and particularly relevant in MRI-negative cases. Currently, the determination of the epileptogenic zone and functional brain mapping remain rather less well-validated indications. In France, in 2014, HR-EEG is now part of standard clinical investigation of epilepsy, while MEG remains a research technique.

  10. Multi-resolution voxel phantom modeling: a high-resolution eye model for computational dosimetry

    Science.gov (United States)

    Caracappa, Peter F.; Rhodes, Ashley; Fiedler, Derek

    2014-09-01

    Voxel models of the human body are commonly used for simulating radiation dose with a Monte Carlo radiation transport code. Due to memory limitations, the voxel resolution of these computational phantoms is typically too large to accurately represent the dimensions of small features such as the eye. Recently reduced recommended dose limits to the lens of the eye, which is a radiosensitive tissue with a significant concern for cataract formation, has lent increased importance to understanding the dose to this tissue. A high-resolution eye model is constructed using physiological data for the dimensions of radiosensitive tissues, and combined with an existing set of whole-body models to form a multi-resolution voxel phantom, which is used with the MCNPX code to calculate radiation dose from various exposure types. This phantom provides an accurate representation of the radiation transport through the structures of the eye. Two alternate methods of including a high-resolution eye model within an existing whole-body model are developed. The accuracy and performance of each method is compared against existing computational phantoms.

  11. High temperature corrosion under conditions simulating biomass firing: depth-resolved phase identification

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi; Montgomery, Melanie; Jappe Frandsen, Flemming

    2014-01-01

    Both cross-sectional and plan view, ‘top-down’ characterization methods were employed , for a depth-resolved characterization of corrosion products resulting from high temperature corrosion under laboratory conditions simulating biomass firing. Samples of an austenitic stainless steel (TP 347H FG...... of the corrosion product. Results from this comprehensive characterization revealed more details on the morphology and composition of the corrosion product....

  12. High Resolution Simulations of Future Climate in West Africa Using a Variable-Resolution Atmospheric Model

    Science.gov (United States)

    Adegoke, J. O.; Engelbrecht, F.; Vezhapparambu, S.

    2013-12-01

    In previous work demonstrated the application of a var¬iable-resolution global atmospheric model, the conformal-cubic atmospheric model (CCAM), across a wide range of spatial and time scales to investigate the ability of the model to provide realistic simulations of present-day climate and plausible projections of future climate change over sub-Saharan Africa. By applying the model in stretched-grid mode the versatility of the model dynamics, numerical formulation and physical parameterizations to function across a range of length scales over the region of interest, was also explored. We primarily used CCAM to illustrate the capability of the model to function as a flexible downscaling tool at the climate-change time scale. Here we report on additional long term climate projection studies performed by downscaling at much higher resolutions (8 Km) over an area that stretches from just south of Sahara desert to the southern coast of the Niger Delta and into the Gulf of Guinea. To perform these simulations, CCAM was provided with synoptic-scale forcing of atmospheric circulation from 2.5 deg resolution NCEP reanalysis at 6-hourly interval and SSTs from NCEP reanalysis data uses as lower boundary forcing. CCAM 60 Km resolution downscaled to 8 Km (Schmidt factor 24.75) then 8 Km resolution simulation downscaled to 1 Km (Schmidt factor 200) over an area approximately 50 Km x 50 Km in the southern Lake Chad Basin (LCB). Our intent in conducting these high resolution model runs was to obtain a deeper understanding of linkages between the projected future climate and the hydrological processes that control the surface water regime in this part of sub-Saharan Africa.

  13. High resolution spectroscopy in the microwave and far infrared

    Science.gov (United States)

    Pickett, Herbert M.

    1990-01-01

    High resolution rotational spectroscopy has long been central to remote sensing techniques in atmospheric sciences and astronomy. As such, laboratory measurements must supply the required data to make direct interpretation of data for instruments which sense atmospheres using rotational spectra. Spectral measurements in the microwave and far infrared regions are also very powerful tools when combined with infrared measurements for characterizing the rotational structure of vibrational spectra. In the past decade new techniques were developed which have pushed high resolution spectroscopy into the wavelength region between 25 micrometers and 2 mm. Techniques to be described include: (1) harmonic generation of microwave sources, (2) infrared laser difference frequency generation, (3) laser sideband generation, and (4) ultrahigh resolution interferometers.

  14. High resolution map of light pollution over Poland

    Science.gov (United States)

    Netzel, Henryka; Netzel, Paweł

    2016-09-01

    In 1976 Berry introduced a simple mathematical equation to calculate artificial night sky brightness at zenith. In the original model cities, considered as points with given population, are only sources of light emission. In contrary to Berry's model, we assumed that all terrain surface can be a source of light. Emission of light depends on percent of built up area in a given cell. We based on Berry's model. Using field measurements and high-resolution data we obtained the map of night sky brightness over Poland in 100-m resolution. High resolution input data, combined with a very simple model, makes it possible to obtain detailed structures of the night sky brightness without complicating the calculations.

  15. High-Resolution Seismic Definition of the Distribution of Gas in the West Svalbard Margin

    Science.gov (United States)

    Minshull, T. A.; Westbrook, G. K.; Marin-Moreno, H.; Marsset, B.; Ker, S.; Sarkar, S.; Vardy, M. E.; Henstock, T.

    2014-12-01

    The widespread presence of gas beneath the seabed west of Svalbard is shown by negative-polarity high-amplitude reflectors (nephars), imaged in high-resolution near-surface and deep-towed seismic reflection data. The principal controls on the presence of gas are the gas hydrate stability zone (GHSZ), from which free gas is generally excluded, and stratigraphic control of permeable layers. A widespread bottom-simulating reflector (BSR) beneath the lower-mid continental slope indicates gas at the base of the GHSZ. The depth of the base of the GHSZ predicted by a numerical model that takes in to account variation in ocean temperature over the past two thousand years, is consistent with the depth of the BSR, even at its shallowest depth, where a steady-state model places base of the GHSZ shallower than the BSR. Similarly, farther up slope, where the BSR loses it coherency, the depths of the shallowest nephars are compatible with the predicted depth of the base of the GHSZ from the time-dependent model, but are about three times deeper than the predicted steady-state depth of the BSR. This approach to defining the limits of the GHSZ is not precise, as it depends upon the presence of gas. In the shallow sediment sequence, which has a high proportion of glacigenic sediments, gas is restricted to a smaller number of permeable units than in the contourite-dominated sequence farther down the continental slope. Where the seabed is shallower than the GHSZ, numerous plumes of methane gas ascend from the seabed, and gas, which has migrated up slope through dipping permeable layers, locally ponds beneath a thin veneer of unconformable glacial and post-glacial sediments on the continental shelf.

  16. A cloud mask methodology for high resolution remote sensing data combining information from high and medium resolution optical sensors

    Science.gov (United States)

    Sedano, Fernando; Kempeneers, Pieter; Strobl, Peter; Kucera, Jan; Vogt, Peter; Seebach, Lucia; San-Miguel-Ayanz, Jesús

    2011-09-01

    This study presents a novel cloud masking approach for high resolution remote sensing images in the context of land cover mapping. As an advantage to traditional methods, the approach does not rely on thermal bands and it is applicable to images from most high resolution earth observation remote sensing sensors. The methodology couples pixel-based seed identification and object-based region growing. The seed identification stage relies on pixel value comparison between high resolution images and cloud free composites at lower spatial resolution from almost simultaneously acquired dates. The methodology was tested taking SPOT4-HRVIR, SPOT5-HRG and IRS-LISS III as high resolution images and cloud free MODIS composites as reference images. The selected scenes included a wide range of cloud types and surface features. The resulting cloud masks were evaluated through visual comparison. They were also compared with ad-hoc independently generated cloud masks and with the automatic cloud cover assessment algorithm (ACCA). In general the results showed an agreement in detected clouds higher than 95% for clouds larger than 50 ha. The approach produced consistent results identifying and mapping clouds of different type and size over various land surfaces including natural vegetation, agriculture land, built-up areas, water bodies and snow.

  17. Development and assessment of a higher-spatial-resolution (4.4 km) MISR aerosol optical depth product using AERONET-DRAGON data

    Science.gov (United States)

    Garay, Michael J.; Kalashnikova, Olga V.; Bull, Michael A.

    2017-04-01

    Since early 2000, the Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite has been acquiring data that have been used to produce aerosol optical depth (AOD) and particle property retrievals at 17.6 km spatial resolution. Capitalizing on the capabilities provided by multi-angle viewing, the current operational (Version 22) MISR algorithm performs well, with about 75 % of MISR AOD retrievals globally falling within 0.05 or 20 % × AOD of paired validation data from the ground-based Aerosol Robotic Network (AERONET). This paper describes the development and assessment of a prototype version of a higher-spatial-resolution 4.4 km MISR aerosol optical depth product compared against multiple AERONET Distributed Regional Aerosol Gridded Observations Network (DRAGON) deployments around the globe. In comparisons with AERONET-DRAGON AODs, the 4.4 km resolution retrievals show improved correlation (r = 0. 9595), smaller RMSE (0.0768), reduced bias (-0.0208), and a larger fraction within the expected error envelope (80.92 %) relative to the Version 22 MISR retrievals.

  18. High-resolution TFT-LCD for spatial light modulator

    Science.gov (United States)

    Lee, JaeWon; Kim, Yong-Hae; Byun, Chun-Won; Pi, Jae-Eun; Oh, Himchan; Kim, GiHeon; Lee, Myung-Lae; Chu, Hye-Yong; Hwang, Chi-Sun

    2014-06-01

    SLM with very fine pixel pitch is needed for the holographic display system. Among various kinds of SLMs, commercially available high resolution LCoS has been widely used as a spatial light modulator. But the size of commercially available LCoS SLM is limited because the manufacturing technology of LCoS is based on the semiconductor process developed on small size Si wafer. Recently very high resolution flat panel display panel (~500ppi) was developed as a "retina display". Until now, the pixel pitch of flat panel display is several times larger than the pixel pitch of LCoS. But considering the possibility of shrink down the pixel pitch with advanced lithographic tools, the application of flat panel display will make it possible to build a SLM with high spatial bandwidth product. We simulated High resolution TFT-LCD panel on glass substrate using oxide semiconductor TFT with pixel pitch of 20um. And we considered phase modulation behavior of LC(ECB) mode. The TFT-LCD panel is reflective type with 4-metal structure with organic planarization layers. The technical challenge for high resolution large area SLM will be discussed with very fine pixel.

  19. Air quality estimates in Mediterranean cities using high resolution satellite technologies

    Science.gov (United States)

    Chudnovsky, Alexandra; Lyapustin, Alexei; Wang, Yujie

    2016-04-01

    Satellite imaging is an essential tool for monitoring air pollution because, unlike ground observations, it supplies continuous data with global coverage of terrestrial and atmospheric components. Satellite-based Aerosol Optical Depth (AOD) retrievals reflect particle abundance in the atmospheric column. This data provide some indication on the extent of particle concentrations. However, it is difficult to retrieve AOD at high spatial resolution above areas with high surface reflectance and heterogeneous land cover, such as urban areas. Therefore, many crowded regions worldwide including Israel, AOD climatology are still uncertain because of the high ground reflectance and coarse spatial resolution. Recently, a new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm was developed for MODIS which provides AOD at 1 km resolution. This study aims to investigate the spatial variability of AOD within Israeli and several other Mediterranean cities. In addition, we aim to characterize the impact of climatic condition on pollution patterns in-and-between cities and to identify days when cities exhibit the highest variability in AOD. Furthermore, we assessed the differences in pollution levels between adjacent locations. We will report on spatial variability in AOD levels derived from high 1km resolution MAIAC AOD algorithm on a temporal basis, in relation to season and synoptic-meteorological conditions.

  20. Depth-specific optogenetic control in vivo with a scalable, high-density μLED neural probe

    Science.gov (United States)

    Scharf, Robert; Tsunematsu, Tomomi; McAlinden, Niall; Dawson, Martin D.; Sakata, Shuzo; Mathieson, Keith

    2016-06-01

    Controlling neural circuits is a powerful approach to uncover a causal link between neural activity and behaviour. Optogenetics has been widely adopted by the neuroscience community as it offers cell-type-specific perturbation with millisecond precision. However, these studies require light delivery in complex patterns with cellular-scale resolution, while covering a large volume of tissue at depth in vivo. Here we describe a novel high-density silicon-based microscale light-emitting diode (μLED) array, consisting of up to ninety-six 25 μm-diameter μLEDs emitting at a wavelength of 450 nm with a peak irradiance of 400 mW/mm2. A width of 100 μm, tapering to a 1 μm point, and a 40 μm thickness help minimise tissue damage during insertion. Thermal properties permit a set of optogenetic operating regimes, with ~0.5 °C average temperature increase. We demonstrate depth-dependent activation of mouse neocortical neurons in vivo, offering an inexpensive novel tool for the precise manipulation of neural activity.

  1. Depth imaging in highly scattering underwater environments using time-correlated single-photon counting

    Science.gov (United States)

    Maccarone, Aurora; McCarthy, Aongus; Halimi, Abderrahim; Tobin, Rachael; Wallace, Andy M.; Petillot, Yvan; McLaughlin, Steve; Buller, Gerald S.

    2016-10-01

    This paper presents an optical depth imaging system optimized for highly scattering environments such as underwater. The system is based on the time-correlated single-photon counting (TCSPC) technique and the time-of-flight approach. Laboratory-based measurements demonstrate the potential of underwater depth imaging, with specific attention given to environments with a high level of scattering. The optical system comprised a monostatic transceiver unit, a fiber-coupled supercontinuum laser source with a wavelength tunable acousto-optic filter (AOTF), and a fiber-coupled single-element silicon single-photon avalanche diode (SPAD) detector. In the optical system, the transmit and receive channels in the transceiver unit were overlapped in a coaxial optical configuration. The targets were placed in a 1.75 meter long tank, and raster scanned using two galvo-mirrors. Laboratory-based experiments demonstrate depth profiling performed with up to nine attenuation lengths between the transceiver and target. All of the measurements were taken with an average laser power of less than 1mW. Initially, the data was processed using a straightforward pixel-wise cross-correlation of the return timing signal with the system instrumental timing response. More advanced algorithms were then used to process these cross-correlation results. These results illustrate the potential for the reconstruction of images in highly scattering environments, and to permit the investigation of much shorter acquisition time scans. These algorithms take advantage of the data sparseness under the Discrete Cosine Transform (DCT) and the correlation between adjacent pixels, to restore the depth and reflectivity images.

  2. Immersion Gratings for Infrared High-resolution Spectroscopy

    Science.gov (United States)

    Sarugaku, Yuki; Ikeda, Yuji; Kobayashi, Naoto; Kaji, Sayumi; Sukegawa, Takashi; Sugiyama, Shigeru; Nakagawa, Takao; Arasaki, Takayuki; Kondo, Sohei; Nakanishi, Kenshi; Yasui, Chikako; Kawakita, Hideyo

    2016-10-01

    High-resolution spectroscopy in the infrared wavelength range is essential for observations of minor isotopologues, such as HDO for water, and prebiotic organic molecules like hydrocarbons/P-bearing molecules because numerous vibrational molecular bands (including non-polar molecules) are located in this wavelength range. High spectral resolution enables us to detect weak lines without spectral line confusion. This technique has been widely used in planetary sciences, e.g., cometary coma (H2O, CO, and organic molecules), the martian atmosphere (CH4, CO2, H2O and HDO), and the upper atmosphere of gas giants (H3+ and organic molecules such as C2H6). Spectrographs with higher resolution (and higher sensitivity) still have a potential to provide a plenty of findings. However, because the size of spectrographs scales with the spectral resolution, it is difficult to realize it.Immersion grating (IG), which is a diffraction grating wherein the diffraction surface is immersed in a material with a high refractive index (n > 2), provides n times higher spectral resolution compared to a reflective grating of the same size. Because IG reduces the size of spectrograph to 1/n compared to the spectrograph with the same spectral resolution using a conventional reflective grating, it is widely acknowledged as a key optical device to realize compact spectrographs with high spectral resolution.Recently, we succeeded in fabricating a CdZnTe immersion grating with the theoretically predicted diffraction efficiency by machining process using an ultrahigh-precision five-axis processing machine developed by Canon Inc. Using the same technique, we completed a practical germanium (Ge) immersion grating with both a reflection coating on the grating surface and the an AR coating on the entrance surface. It is noteworthy that the wide wavelength range from 2 to 20 um can be covered by the two immersion gratings.In this paper, we present the performances and the applications of the immersion

  3. High speed, high resolution, and continuous chemical analysis of ice cores using a melter and ion chromatography.

    Science.gov (United States)

    Cole-Dai, Jihong; Budner, Drew M; Ferris, Dave G

    2006-11-01

    Measurement of trace chemical impurities in ice cores contributes to the reconstruction of records of the atmospheric environment and of the climate system. Ion chromatography (IC) is an effective analytical technique for ionic species in ice cores but has been used on discretely prepared ice samples, resulting in extensive and slow sample preparation and potential for contamination. A new technique has been developed that utilizes IC as the online detection technique in a melter-based continuous flow system for quantitative determination of major ionic chemical impurities. The system, called CFA-IC for continuous flow analysis with ion chromatography detection, consists of an ice core melter, several ion chromatographs, and an interface that distributes meltwater to the IC instruments. The CFA-IC technique combines the accuracy, precision, and ease of use of IC measurement with the enhanced speed and depth resolution of continuous melting systems and is capable of virtually continuous, high-speed and high-resolution chemical analysis of long ice cores. The new technique and operating procedures have been tested and validated with the analysis of over 100 m of ice cores from Antarctica. The current CFA-IC system provides an all-major-ion analysis speed of up to 8 m a day at a depth resolution of approximately 2 cm.

  4. High resolution colonoscopy in a bowel cancer screening program improves polyp detection

    Institute of Scientific and Technical Information of China (English)

    Matthew R Banks; Kalpesh Basherdas; Manuel Rodriguez-Justo; Laurence B Lovat; Rehan Haidry; M Adil Butt; Lisa Whitley; Judith Stein; Louise Langmead; Stuart L Bloom; Austin O'Bichere; Sara McCartney

    2011-01-01

    AIM:To compare high resolution colonoscopy (Olympus Lucera) with a megapixel high resolution system (Pentax HiLine) as an in-service evaluation.METHODS:Polyp detection rates and measures of performance were collected for 269 colonoscopy procedures.Five colonoscopists conducted the study over a three month period,as part of the United Kingdom bowel cancer screening program.ration (X2 P = 0.98),caecal intubation rates (X2 P = 0.67),or depth of sedation (X2 P = 0.64).Mild discomfort was more common in the Pentax group (X2 P = 0.036).Adenoma detection rate was significantly higher in the Pentax group (X2 test for trend P = 0.01).Most of the extra polyps detected were flat or sessile adenomas.CONCLUSION:Megapixel definition colonoscopes improve adenoma detection without compromising other measures of endoscope performance.Increased polyp detection rates may improve future outcomes in bowel cancer screening programs.

  5. A DVD Spectroscope: A Simple, High-Resolution Classroom Spectroscope

    Science.gov (United States)

    Wakabayashi, Fumitaka; Hamada, Kiyohito

    2006-01-01

    Digital versatile disks (DVDs) have successfully made up an inexpensive but high-resolution spectroscope suitable for classroom experiments that can easily be made with common material and gives clear and fine spectra of various light sources and colored material. The observed spectra can be photographed with a digital camera, and such images can…

  6. High-resolution kinetic energy distributions via doppler shift measurements

    Science.gov (United States)

    Xu, Z.; Koplitz, B.; Buelow, S.; Baugh, D.; Wittig, C.

    1986-07-01

    In photolysis/probe experiments using pulsed sources, time delay produces both spatial and directional bias in the fragment distributions, thus enabling well-resolved kinetic energy distributions to be obtained from Doppler shift measurements. Data are presented for H-atoms detected using two-photon ionization, and high S/N and laser-limited kinetic energy resolution are demonstrated.

  7. High resolution ultraviolet imaging spectrometer for latent image analysis.

    Science.gov (United States)

    Lyu, Hang; Liao, Ningfang; Li, Hongsong; Wu, Wenmin

    2016-03-21

    In this work, we present a close-range ultraviolet imaging spectrometer with high spatial resolution, and reasonably high spectral resolution. As the transmissive optical components cause chromatic aberration in the ultraviolet (UV) spectral range, an all-reflective imaging scheme is introduced to promote the image quality. The proposed instrument consists of an oscillating mirror, a Cassegrain objective, a Michelson structure, an Offner relay, and a UV enhanced CCD. The finished spectrometer has a spatial resolution of 29.30μm on the target plane; the spectral scope covers both near and middle UV band; and can obtain approximately 100 wavelength samples over the range of 240~370nm. The control computer coordinates all the components of the instrument and enables capturing a series of images, which can be reconstructed into an interferogram datacube. The datacube can be converted into a spectrum datacube, which contains spectral information of each pixel with many wavelength samples. A spectral calibration is carried out by using a high pressure mercury discharge lamp. A test run demonstrated that this interferometric configuration can obtain high resolution spectrum datacube. The pattern recognition algorithm is introduced to analyze the datacube and distinguish the latent traces from the base materials. This design is particularly good at identifying the latent traces in the application field of forensic imaging.

  8. A Large Scale, High Resolution Agent-Based Insurgency Model

    Science.gov (United States)

    2013-09-30

    2007). HSCB Models can be employed for simulating mission scenarios, determining optimal strategies for disrupting terrorist networks, or training and...High Resolution Agent-Based Insurgency Model ∑ = ⎜ ⎜ ⎝ ⎛ − −− = desired 1 move,desired, desired,,desired, desired,, N j ij jmoveij moveiD rp prp

  9. Workshop on high-resolution, large-acceptance spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Zeidman, B. (ed.)

    1981-01-01

    The purpose of the Workshop on High-Resolution, Large-Acceptance Spectrometers was to provide a means for exchange of information among those actively engaged in the design and construction of these new spectrometers. Thirty-seven papers were prepared for the data base.

  10. Remote parallel rendering for high-resolution tiled display walls

    KAUST Repository

    Nachbaur, Daniel

    2014-11-01

    © 2014 IEEE. We present a complete, robust and simple to use hardware and software stack delivering remote parallel rendering of complex geometrical and volumetric models to high resolution tiled display walls in a production environment. We describe the setup and configuration, present preliminary benchmarks showing interactive framerates, and describe our contributions for a seamless integration of all the software components.

  11. High resolution STEM of quantum dots and quantum wires

    DEFF Research Database (Denmark)

    Kadkhodazadeh, Shima

    2013-01-01

    This article reviews the application of high resolution scanning transmission electron microscopy (STEM) to semiconductor quantum dots (QDs) and quantum wires (QWRs). Different imaging and analytical techniques in STEM are introduced and key examples of their application to QDs and QWRs...

  12. Structure Identification in High-Resolution Transmission Electron Microscopic Images

    DEFF Research Database (Denmark)

    Vestergaard, Jacob Schack; Kling, Jens; Dahl, Anders Bjorholm

    2014-01-01

    A connection between microscopic structure and macroscopic properties is expected for almost all material systems. High-resolution transmission electron microscopy is a technique offering insight into the atomic structure, but the analysis of large image series can be time consuming. The present ...

  13. Signal Processing for High Resolution FMCW SAR and Moving Target

    NARCIS (Netherlands)

    Meta, A.; Hoogeboom, P.

    2005-01-01

    The combination of Frequency Modulated ContinuousWave (FMCW) technology and Synthetic Aperture Radar (SAR) leads to lightweight, cost-effective imaging sensors of high resolution. In FMCW SAR applications the conventional stop-and-go approximation used in pulse radar algorithms cannot be considered

  14. High Resolution Digital Imaging of Paintings: The Vasari Project.

    Science.gov (United States)

    Martinez, Kirk

    1991-01-01

    Describes VASARI (the Visual Art System for Archiving and Retrieval of Images), a project funded by the European Community to show the feasibility of high resolution colormetric imaging directly from paintings. The hardware and software used in the system are explained, storage on optical disks is described, and initial results are reported. (five…

  15. Ultra-high-resolution small-animal SPECT imaging

    NARCIS (Netherlands)

    Have, F. van der

    2007-01-01

    The main subject of this thesis is the development of the first two in a series of dedicated ultra-high resolution Single Photon Emission Computed Tomography (SPECT) systems (U-SPECT-I and II) for the imaging of distributions of radio-isotope labeled tracers in small laboratory animals such as mice

  16. HIGH RESOLUTION RESISTIVITY LEAK DETECTION DATA PROCESSING & EVALUATION MEHTODS & REQUIREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    SCHOFIELD JS

    2007-10-04

    This document has two purposes: {sm_bullet} Describe how data generated by High Resolution REsistivity (HRR) leak detection (LD) systems deployed during single-shell tank (SST) waste retrieval operations are processed and evaluated. {sm_bullet} Provide the basic review requirements for HRR data when Hrr is deployed as a leak detection method during SST waste retrievals.

  17. High resolution ultrasonography in isolated soft tissue and intramuscular cysticercosis

    Directory of Open Access Journals (Sweden)

    Gaurav Sharma

    2016-01-01

    Conclusions: With the advent of high resolution ultrasonography and increased clinical awareness of the isolated soft tissue-intramuscular cysticercosis especially in endemic zone, a more conservative non-invasive approach can be applied both in diagnosis and treatment of these isolated cases of cysticercosis. [Int J Res Med Sci 2016; 4(1.000: 42-46

  18. Development of high accuracy and resolution geoid and gravity maps

    Science.gov (United States)

    Gaposchkin, E. M.

    1986-01-01

    Precision satellite to satellite tracking can be used to obtain high precision and resolution maps of the geoid. A method is demonstrated to use data in a limited region to map the geopotential at the satellite altitude. An inverse method is used to downward continue the potential to the Earth surface. The method is designed for both satellites in the same low orbit.

  19. Systematic high-resolution assessment of global hydropower potential

    NARCIS (Netherlands)

    Hoes, Olivier A C; Meijer, Lourens J J; Van Der Ent, Ruud J.; Van De Giesen, Nick C.

    2017-01-01

    Population growth, increasing energy demand and the depletion of fossil fuel reserves necessitate a search for sustainable alternatives for electricity generation. Hydropower could replace a large part of the contribution of gas and oil to the present energy mix. However, previous high-resolution

  20. High-resolution radio imaging of young supernovae

    CERN Document Server

    Pérez-Torres, M A; Alberdi, A; Ros, E; Guirado, J C; Lara, L; Mantovani, F; Stockdale, C J; Weiler, K W; Diamond, P J; Van Dyk, S D; Lundqvist, P; Panagia, N; Shapiro, I I; Sramek, R

    2004-01-01

    The high resolution obtained through the use of VLBI gives an unique opportunity to directly observe the interaction of an expanding radio supernova with its surrounding medium. We present here results from our VLBI observations of the young supernovae SN 1979C, SN 1986J, and SN 2001gd.

  1. High energy resolution off-resonant X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wojciech, Blachucki [Univ. of Fribourg (Switzerland). Dept. of Physics

    2015-10-16

    This work treats of the high energy resolution off-resonant X-ray spectroscopy (HEROS) method of determining the density of unoccupied electronic states in the vicinity of the absorption edge. HEROS is an alternative to the existing X-ray absorption spectroscopy (XAS) methods and opens the way for new studies not achievable before.

  2. High-resolution palaeoclimatology of the last millennium

    DEFF Research Database (Denmark)

    Vinther, Bo Møllesøe; Jones, P.D.; Briffa, K.R.

    2009-01-01

    Palaeoclimatology • high-resolution • last millennium • tree rings • dendroclimatology • chronology • uncertainty • corals • ice-cores • speleothems • documentary evidence • instrumental records • varves • borehole temperature • marine sediments • composite plus scaling • CPS • climate field...

  3. Resolution of RNA using high-performance liquid chromatography

    NARCIS (Netherlands)

    Mclaughlin, L.W.; Bischoff, Rainer

    1987-01-01

    High-performance liquid chromatographic techniques can be very effective for the resolution and isolation of nucleic acids. The characteristic ionic (phosphodiesters) and hydrophobic (nucleobases) properties of RNAs can be exploited for their separation. In this respect anion-exchange and reversed-p

  4. Rock Mass Characterization by High-Resolution Sonic and GSI Borehole Logging

    Science.gov (United States)

    Agliardi, F.; Sapigni, M.; Crosta, G. B.

    2016-11-01

    We investigate the relationships between the in situ P-wave velocity (Vp) of rock masses, measured by borehole acoustic logging, and their Geological Strength Index (GSI), to support a reliable assessment of equivalent continuum rock mass properties at depth. We quantified both Vp and GSI in three deep boreholes drilled in a crystalline core complex of the central Italian Alps. The boreholes were driven up to 400 m in depth and provided high-quality drill cores in gneiss, schist and metasedimentary rocks with variable lithology. Geological and geomechanical logging was carried out for over 800 m of cores, and acoustic logging was performed for more than 600 m of borehole length. High-resolution core logging in terms of GSI was obtained using an original quantitative approach. Candidate empirical correlation functions linking Vp and GSI were tested by a two-step statistical analysis of the experimental dataset, including outlier removal and nonlinear regression analysis. We propose a sigmoid Vp-GSI equation valid over a depth range between 100 and 400 m. This accounts for extremely variable lithological, weathering and rock mass damage conditions, complementing existing shallow-depth approaches and showing potential for practical applications in different engineering settings.

  5. Using basic metrics to analyze high-resolution temperature data in the subsurface

    Science.gov (United States)

    Shanafield, Margaret; McCallum, James L.; Cook, Peter G.; Noorduijn, Saskia

    2017-08-01

    Time-series temperature data can be summarized to provide valuable information on spatial variation in subsurface flow, using simple metrics. Such computationally light analysis is often discounted in favor of more complex models. However, this study demonstrates the merits of summarizing high-resolution temperature data, obtained from a fiber optic cable installation at several depths within a water delivery channel, into daily amplitudes and mean temperatures. These results are compared to fluid flux estimates from a one-dimensional (1D) advection-conduction model and to the results of a previous study that used a full three-dimensional (3D) model. At a depth of 0.1 m below the channel, plots of amplitude suggested areas of advective water movement (as confirmed by the 1D and 3D models). Due to lack of diurnal signal at depths below 0.1 m, mean temperature was better able to identify probable areas of water movement at depths of 0.25-0.5 m below the channel. The high density of measurements provided a 3D picture of temperature change over time within the study reach, and would be suitable for long-term monitoring in man-made environments such as constructed wetlands, recharge basins, and water-delivery channels, where a firm understanding of spatial and temporal variation in infiltration is imperative for optimal functioning.

  6. Topography improvements in MEMS DMs for high-contrast, high-resolution imaging Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop and demonstrate an innovative microfabrication process to substantially improve the surface quality achievable in high-resolution...

  7. Ultra-high modulation depth exceeding 2,400% in optically controlled topological surface plasmons.

    Science.gov (United States)

    Sim, Sangwan; Jang, Houk; Koirala, Nikesh; Brahlek, Matthew; Moon, Jisoo; Sung, Ji Ho; Park, Jun; Cha, Soonyoung; Oh, Seongshik; Jo, Moon-Ho; Ahn, Jong-Hyun; Choi, Hyunyong

    2015-10-30

    Modulating light via coherent charge oscillations in solids is the subject of intense research topics in opto-plasmonics. Although a variety of methods are proposed to increase such modulation efficiency, one central challenge is to achieve a high modulation depth (defined by a ratio of extinction with/without light) under small photon-flux injection, which becomes a fundamental trade-off issue both in metals and semiconductors. Here, by fabricating simple micro-ribbon arrays of topological insulator Bi2Se3, we report an unprecedentedly large modulation depth of 2,400% at 1.5 THz with very low optical fluence of 45 μJ cm(-2). This was possible, first because the extinction spectrum is nearly zero due to the Fano-like plasmon-phonon-destructive interference, thereby contributing an extremely small denominator to the extinction ratio. Second, the numerator of the extinction ratio is markedly increased due to the photoinduced formation of massive two-dimensional electron gas below the topological surface states, which is another contributor to the ultra-high modulation depth.

  8. Gravity-derived High-resolution Moho Model for Greenland

    Science.gov (United States)

    Steffen, R.; Strykowski, G.; Lund, B.

    2016-12-01

    Obtaining knowledge of the depth of the crust-mantle boundary (Mohorovičić discontinuity, Moho) beneath Greenland is important for the understanding of ice mass losses as those estimates depend on earth model parameters. However, the ice sheet on Greenland impedes the access and installation of seismological stations as well as the gathering of reflection and refraction seismic data, making the use of the most common methods to determine the crust-mantle boundary difficult. However, the Moho depth can be estimated also from gravity data through an inversion procedure and such data can, on the contrary, be obtained not only through ground measurements, but also through airborne campaigns as well as from satellite missions. Here, we use the Parker-Oldenburg algorithm together with the most recent EIGEN-6C4 gravity model to estimate the crust-mantle boundary beneath Greenland and surroundings. The available gravity data are corrected for the topographic effect, the gravity effect of sediments and the gravity effect of the ice load induced deformation. The resulting Moho model for Greenland shows maximum depths below east Greenland of up to 55 km and and values less than 20 km offshore east Greenland. The northern part of Greenland has a shallower Moho of only 30 km compared to southern Greenland, indicating a change in the crustal structures and the presence of two different crustal blocks in Greenland. An uncertainty of ±2.5 km is determined for the final model, which has a spatial resolution of 0.1°. The results of the gravity inversion are consistent with previous Moho models determined by seismological and seismic data mainly, where those are available. The comparison to previously estimated models based on older gravity data and using different inversion algorithms shows only small differences.

  9. High resolution cross strip anodes for photon counting detectors

    Science.gov (United States)

    Siegmund, O. H. W.; Tremsin, A. S.; Vallerga, J. V.; Abiad, R.; Hull, J.

    2003-05-01

    A new photon counting, imaging readout for microchannel plate sensors, the cross strip (XS) anode, has been investigated. Charge centroiding of signals detected on two orthogonal layers of sense strip sets are used to derive photon locations. The XS anode spatial resolution (<3 μm FWHM) exceeds the spatial resolution of most direct charge sensing anodes, and does so at low gain (<2×10 6). The image linearity and fidelity are high enough to resolve and map 7 μm MCP pores, offering new possibilities for astronomical and other applications.

  10. High resolution atomic force microscopy of double-stranded RNA

    Science.gov (United States)

    Ares, Pablo; Fuentes-Perez, Maria Eugenia; Herrero-Galán, Elías; Valpuesta, José M.; Gil, Adriana; Gomez-Herrero, Julio; Moreno-Herrero, Fernando

    2016-06-01

    Double-stranded (ds) RNA mediates the suppression of specific gene expression, it is the genetic material of a number of viruses, and a key activator of the innate immune response against viral infections. The ever increasing list of roles played by dsRNA in the cell and its potential biotechnological applications over the last decade has raised an interest for the characterization of its mechanical properties and structure, and that includes approaches using Atomic Force Microscopy (AFM) and other single-molecule techniques. Recent reports have resolved the structure of dsDNA with AFM at unprecedented resolution. However, an equivalent study with dsRNA is still lacking. Here, we have visualized the double helix of dsRNA under near-physiological conditions and at sufficient resolution to resolve the A-form sub-helical pitch periodicity. We have employed different high-sensitive force-detection methods and obtained images with similar spatial resolution. Therefore, we show here that the limiting factors for high-resolution AFM imaging of soft materials in liquid medium are, rather than the imaging mode, the force between the tip and the sample and the sharpness of the tip apex.Double-stranded (ds) RNA mediates the suppression of specific gene expression, it is the genetic material of a number of viruses, and a key activator of the innate immune response against viral infections. The ever increasing list of roles played by dsRNA in the cell and its potential biotechnological applications over the last decade has raised an interest for the characterization of its mechanical properties and structure, and that includes approaches using Atomic Force Microscopy (AFM) and other single-molecule techniques. Recent reports have resolved the structure of dsDNA with AFM at unprecedented resolution. However, an equivalent study with dsRNA is still lacking. Here, we have visualized the double helix of dsRNA under near-physiological conditions and at sufficient resolution to

  11. Design for a focusing high-resolution neutron crystal diffractometer

    CERN Document Server

    Ionita, I; Popovici, M; Popa, N C

    1999-01-01

    A new concept of high-resolution focusing configuration begins to be accepted as an alternative solution to the existing conventional configurations. Among the earliest work performed in this direction is that performed at the Institute for Nuclear Research, Pitesti. These results are presented below. The experimentally determined resolution properties for two focusing configurations obtained at TRIGA reactor Pitesti and at VVRS reactor Bucharest are given in order to be compared with those obtained for the conventional ones. The principles to get focusing in crystal neutron diffractometry are presented. The main characteristics for a focusing instrument are given. (author)

  12. High resolution full-spectrum water Raman lidar

    Institute of Scientific and Technical Information of China (English)

    LIU FuChao; YI Fan; JIA JingYu; ZHANG YunPeng; ZHANG ShaoDong; YU ChangMing; TAN Ying

    2012-01-01

    Knowledge of the temporal-spatial distribution of water content in atmosphere and water phase change in cloud is important for atmospheric study.For this purpose,we have developed a high resolution full-spectrum water Raman lidar that can collect Raman signals from ice,water droplets and water vapor simultaneously.A double-grating polychromator and a 32-channel photomultiplier-tube detector are used to obtain a spectral resolution of ~0.19 nm in the full Raman spectrum range of water.Preliminary observations present the water Raman spectrum characteristics of both the mixed-phase cloud and humid air under cloudless condition.

  13. High resolution polar Kerr magnetometer for nanomagnetism and nanospintronics.

    Science.gov (United States)

    Cormier, M; Ferré, J; Mougin, A; Cromières, J-P; Klein, V

    2008-03-01

    A new high resolution polar magneto-optical (MO) Kerr magnetometer, devoted to the study of nanometer sized elements with perpendicular magnetic anisotropy, is described. The unique performances of this setup in terms of sensitivity (1.2x10(-15) emu), stability (lateral drift +/-35 nm over 3 h), and resolution (laser spot full width at half maximum down to 470 nm) are demonstrated, and illustrated by Kerr hysteresis loop measurements on a unique ultrathin magnetic nanodot, and over small segments of ultranarrow magnetic tracks. Large scanning MO Kerr microscopy images were also obtained with the same performances.

  14. High performance computational integral imaging system using multi-view video plus depth representation

    Science.gov (United States)

    Shi, Shasha; Gioia, Patrick; Madec, Gérard

    2012-12-01

    Integral imaging is an attractive auto-stereoscopic three-dimensional (3D) technology for next-generation 3DTV. But its application is obstructed by poor image quality, huge data volume and high processing complexity. In this paper, a new computational integral imaging (CII) system using multi-view video plus depth (MVD) representation is proposed to solve these problems. The originality of this system lies in three aspects. Firstly, a particular depth-image-based rendering (DIBR) technique is used in encoding process to exploit the inter-view correlation between different sub-images (SIs). Thereafter, the same DIBR method is applied in the display side to interpolate virtual SIs and improve the reconstructed 3D image quality. Finally, a novel parallel group projection (PGP) technique is proposed to simplify the reconstruction process. According to experimental results, the proposed CII system improves compression efficiency and displayed image quality, while reducing calculation complexity. [Figure not available: see fulltext.

  15. High-resolution axial MR imaging of tibial stress injuries

    Directory of Open Access Journals (Sweden)

    Mammoto Takeo

    2012-05-01

    Full Text Available Abstract Purpose To evaluate the relative involvement of tibial stress injuries using high-resolution axial MR imaging and the correlation with MR and radiographic images. Methods A total of 33 patients with exercise-induced tibial pain were evaluated. All patients underwent radiograph and high-resolution axial MR imaging. Radiographs were taken at initial presentation and 4 weeks later. High-resolution MR axial images were obtained using a microscopy surface coil with 60 × 60 mm field of view on a 1.5T MR unit. All images were evaluated for abnormal signals of the periosteum, cortex and bone marrow. Results Nineteen patients showed no periosteal reaction at initial and follow-up radiographs. MR imaging showed abnormal signals in the periosteal tissue and partially abnormal signals in the bone marrow. In 7 patients, periosteal reaction was not seen at initial radiograph, but was detected at follow-up radiograph. MR imaging showed abnormal signals in the periosteal tissue and entire bone marrow. Abnormal signals in the cortex were found in 6 patients. The remaining 7 showed periosteal reactions at initial radiograph. MR imaging showed abnormal signals in the periosteal tissue in 6 patients. Abnormal signals were seen in the partial and entire bone marrow in 4 and 3 patients, respectively. Conclusions Bone marrow abnormalities in high-resolution axial MR imaging were related to periosteal reactions at follow-up radiograph. Bone marrow abnormalities might predict later periosteal reactions, suggesting shin splints or stress fractures. High-resolution axial MR imaging is useful in early discrimination of tibial stress injuries.

  16. Spatial resolution effects on the assessment of evapotranspiration in olive orchards using high resolution thermal imagery

    Science.gov (United States)

    Santos, Cristina; Zarco-Tejada, Pablo J.; Lorite, Ignacio J.; Allen, Richard G.

    2013-04-01

    The use of remote sensing techniques for estimating surface energy balance and water consumption has significantly improved the characterization of the agricultural systems by determining accurate information about crop evapotranspiration and stress, mainly for extensive crops. However the use of these methodologies for woody crops has been low due to the difficulty in the accurate characterization of these crops, mainly caused by a coarse resolution of the imagery provided by the most widely used satellites (such as Landsat 5 and 7). The coarse spatial resolution provided by these satellite sensors aggregates into a single pixel the tree crown, sunlit and shaded soil components. These surfaces can each exhibit huge differences in temperature, albedo and vegetation indexes calculated in the visible, near infrared and short-wave infrared regions. Recent studies have found that the use of energy balance approaches can provide useful results for non-homogeneous crops (Santos et al., 2012) but detailed analysis is required to determine the effect of the spatial resolution and the aggregation of the scene components in these heterogeneous canopies. In this study a comparison between different spatial resolutions has been conducted using images from Landsat 7 (with thermal resolution of 60m) and from an airborne thermal (with resolution of 80 cm) flown over olive orchards at different dates coincident with the Landsat overpass. The high resolution thermal imagery was resampled at different scales to generate images with spatial resolution ranging from 0.8 m up to 120m (thermal resolution for Landsat 5 images). The selection of the study area was made to avoid those areas with missing Landsat 7 data caused by SLC-off gaps. The selected area has a total area of around 2500 ha and is located in Southern Spain, in the province of Malaga. The selected area is mainly cultivated with olive orchards with different crop practices (rainfed, irrigated, high density, young and adult

  17. SAGA GIS based processing of spatial high resolution temperature data

    Energy Technology Data Exchange (ETDEWEB)

    Gerlitz, Lars; Bechtel, Benjamin; Kawohl, Tobias; Boehner, Juergen [Hamburg Univ. (Germany). Inst. of Geography; Zaksek, Klemen [Hamburg Univ. (Germany). Inst. of Geophysics

    2013-07-01

    Many climate change impact studies require surface and near surface temperature data with high spatial and temporal resolution. The resolution of state of the art climate models and remote sensing data is often by far to coarse to represent the meso- and microscale distinctions of temperatures. This is particularly the case for regions with a huge variability of topoclimates, such as mountainous or urban areas. Statistical downscaling techniques are promising methods to refine gridded temperature data with limited spatial resolution, particularly due to their low demand for computer capacity. This paper presents two downscaling approaches - one for climate model output and one for remote sensing data. Both are methodically based on the FOSS-GIS platform SAGA. (orig.)

  18. Overview on high-resolution ocean modeling in JAMSTEC

    Institute of Scientific and Technical Information of China (English)

    Michio Kawamiya

    2014-01-01

    In view of the importance of ocean component for representing climate change,efforts are underway to implement a high-resolution nesting model system in Model for Interdisciplinary Research on Climate (MI-ROC) for the North Pacific using the same ocean model as used in the coupled model MIROC5. By comparing double (10 km for the northwestern Pacific,50 km for the rest of the Pacific) and triple (double nesting plus 2 km resolution near Japan) nesting,it turns out that relative vorticity is drastically enhanced near Japan with 2 km resolution. It is hoped that such an elaborated nesting system will reveal detailed processes for the ocean heat uptake by,e.g.,intermediate water and mode water formation for which the“perturbed region”near Japan is the key region.

  19. Bendable X-ray Optics for High Resolution Imaging

    Science.gov (United States)

    Gubarev, M.; Ramsey, B.; Kilaru, K.; Atkins, C.; Broadway, D.

    2014-01-01

    Current state-of the-art for x-ray optics fabrication calls for either the polishing of massive substrates into high-angular-resolution mirrors or the replication of thin, lower-resolution, mirrors from perfectly figured mandrels. Future X-ray Missions will require a change in this optics fabrication paradigm in order to achieve sub-arcsecond resolution in light-weight optics. One possible approach to this is to start with perfectly flat, light-weight surface, bend it into a perfect cone, form the desired mirror figure by material deposition, and insert the resulting mirror into a telescope structure. Such an approach is currently being investigated at MSFC, and a status report will be presented detailing the results of finite element analyses, bending tests and differential deposition experiments.

  20. Advances toward high spectral resolution quantum X-ray calorimetry

    Science.gov (United States)

    Moseley, S. H.; Kelley, R. L.; Schoelkopf, R. J.; Szymkowiak, A. E.; Mccammon, D.

    1988-01-01

    Thermal detectors for X-ray spectroscopy combining high spectral resolution and quantum efficiency have been developed. These microcalorimeters measure the energy released in the absorption of a single photon by sensing the rise in temperature of a small absorbing structure. The ultimate energy resolution of such a device is limited by the thermodynamic power fluctuations in the thermal link between the calorimeter and isothermal bath and can in principle be made as low as 1 eV. The performance of a real device is degraded due to noise contributions such as excess 1/f noise in the thermistor and incomplete conversion of energy into phonons. The authors report some recent advances in thermometry, X-ray absorption and thermalization, fabrication techniques, and detector optimization in the presence of noise. These improvements have resulted in a device with a spectral resolution of 17 eV FWHM, measured at 6 keV.

  1. High Resolution Absorption Spectroscopy using Externally Dispersed Interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Edelstein, J; Erskine, D J

    2005-07-06

    We describe the use of Externally Dispersed Interferometry (EDI) for high-resolution absorption spectroscopy. By adding a small fixed-delay interferometer to a dispersive spectrograph, a precise fiducial grid in wavelength is created over the entire spectrograph bandwidth. The fiducial grid interacts with narrow spectral features in the input spectrum to create a moire pattern. EDI uses the moire pattern to obtain new information about the spectra that is otherwise unavailable, thereby improving spectrograph performance. We describe the theory and practice of EDI instruments and demonstrate improvements in the spectral resolution of conventional spectrographs by a factor of 2 to 6. The improvement of spectral resolution offered by EDI can benefit space instruments by reducing spectrograph size or increasing instantaneous bandwidth.

  2. On temporal correlations in high-resolution frequency counting

    CERN Document Server

    Dunker, Tim; Rønningen, Ole Petter

    2016-01-01

    We analyze noise properties of time series of frequency data from different counting modes of a Keysight 53230A frequency counter. We use a 10 MHz reference signal from a passive hydrogen maser connected via phase-stable Huber+Suhner Sucoflex 104 cables to the reference and input connectors of the counter. We find that the high resolution gap-free (CONT) frequency counting process imposes long-term correlations in the output data, resulting in a modified Allan deviation that is characteristic of random walk phase noise. Equally important, the CONT mode results in a frequency bias. In contrast, the counter's undocumented raw continuous mode (RCON) yields unbiased frequency stability estimates with white phase noise characteristics, and of a magnitude consistent with the counter's 20 ps single-shot resolution. Furthermore, we demonstrate that a 100-point running average filter in conjunction with the RCON mode yields resolution enhanced frequency estimates with flicker phase noise characteristics. For instance,...

  3. High Resolution Software Defined Radar System for Target Detection

    Directory of Open Access Journals (Sweden)

    S. Costanzo

    2013-01-01

    Full Text Available The Universal Software Radio Peripheral USRP NI2920, a software defined transceiver so far mainly used in Software Defined Radio applications, is adopted in this work to design a high resolution L-Band Software Defined Radar system. The enhanced available bandwidth, due to the Gigabit Ethernet interface, is exploited to obtain a higher slant-range resolution with respect to the existing Software Defined Radar implementations. A specific LabVIEW application, performing radar operations, is discussed, and successful validations are presented to demonstrate the accurate target detection capability of the proposed software radar architecture. In particular, outdoor and indoor test are performed by adopting a metal plate as reference structure located at different distances from the designed radar system, and results obtained from the measured echo are successfully processed to accurately reveal the correct target position, with the predicted slant-range resolution equal to 6 m.

  4. Photoacoustic lymphatic imaging with high spatial-temporal resolution

    Science.gov (United States)

    Martel, Catherine; Yao, Junjie; Huang, Chih-Hsien; Zou, Jun; Randolph, Gwendalyn J.; Wang, Lihong V.

    2014-11-01

    Despite its critical function in coordinating the egress of inflammatory and immune cells out of tissues and maintaining fluid balance, the causative role of lymphatic network dysfunction in pathological settings is still understudied. Engineered-animal models and better noninvasive high spatial-temporal resolution imaging techniques in both preclinical and clinical studies will help to improve our understanding of different lymphatic-related pathologic disorders. Our aim was to take advantage of our newly optimized noninvasive wide-field fast-scanning photoacoustic (PA) microcopy system to coordinately image the lymphatic vasculature and its flow dynamics, while maintaining high resolution and detection sensitivity. Here, by combining the optical-resolution PA microscopy with a fast-scanning water-immersible microelectromechanical system scanning mirror, we have imaged the lymph dynamics over a large field-of-view, with high spatial resolution and advanced detection sensitivity. Depending on the application, lymphatic vessels (LV) were spectrally or temporally differentiated from blood vessels. Validation experiments were performed on phantoms and in vivo to identify the LV. Lymphatic flow dynamics in nonpathological and pathological conditions were also visualized. These results indicate that our newly developed PA microscopy is a promising tool for lymphatic-related biological research.

  5. High resolution imaging with impulse based thermoacoustic tomography

    Science.gov (United States)

    Kellnberger, Stephan; Hajiaboli, Amir; Sergiadis, George; Razansky, Daniel; Ntziachristos, Vasilis

    2011-07-01

    Existing imaging modalities like microwave- or radiofrequency (RF) induced thermoacoustic tomography systems show the potential for resolving structures deep inside tissue due to the high penetration properties of RF. However, one of the major drawbacks of existing thermoacoustic tomography systems with pulse modulated carrier frequency excitation is the compromise between efficient signal generation and attainable spatial resolution. In order to overcome limitations of conventional thermoacoustic imaging methods, we herein present and experimentally validate our novel approach towards high resolution thermoacoustic tomography. Instead of carrier-frequency amplification, we utilize ultrahigh-energy electromagnetic impulses at nanosecond duration with near-field energy coupling, thus maintaining thermoacoustic signal strength without compromising spatial resolution. Preliminary experiments on highly absorbing objects, consisting of copper wires with characteristic sizes of ~100 μm, reveal the resolution performance which yields 160 μm. Furthermore, benefits like its cost effectiveness, simplicity and compactness with the potential application in small animal imaging as well as human body imaging show that thermoacoustic tomography with impulse excitation is a promising imaging modality which has a broad range of applications.

  6. High-resolution Imaging Techniques for the Assessment of Osteoporosis

    Science.gov (United States)

    Krug, Roland; Burghardt, Andrew J.; Majumdar, Sharmila; Link, Thomas M.

    2010-01-01

    Synopsis The importance of assessing the bone’s microarchitectural make-up in addition to its mineral density in the context of osteoporosis has been emphasized in a number of publications. The high spatial resolution required to resolve the bone’s microstructure in a clinically feasible scan time is challenging. Currently, the best suited modalities meeting these requirements in vivo are high-resolution peripheral quantitative imaging (HR-pQCT) and magnetic resonance imaging (MRI). Whereas HR-pQCT is limited to peripheral skeleton regions like the wrist and ankle, MRI can also image other sites like the proximal femur but usually with lower spatial resolution. In addition Multidetector-CT has been used for high-resolution imaging of trabecular bone structure, however, the radiation dose is a limiting factor. This article provides an overview of the different modalities, technical requirements and recent developments in this emerging field. Details regarding imaging protocols as well as image post-processing methods for bone structure quantification are discussed. PMID:20609895

  7. A high-resolution x-ray spectrometer for a kaon mass measurement

    Science.gov (United States)

    Phelan, Kevin; Suzuki, Ken; Zmeskal, Johann; Tortorella, Daniele; Bühler, Matthias; Hertrich, Theo

    2017-02-01

    The ASPECT consortium (Adaptable Spectrometer Enabled by Cryogenic Technology) is currently constructing a generalised cryogenic platform for cryogenic detector work which will be able to accommodate a wide range of sensors. The cryogenics system is based on a small mechanical cooler with a further adiabatic demagnetisation stage and will work with cryogenic detectors at sub-Kelvin temperatures. The commercial aim of the consortium is to produce a compact, user-friendly device with an emphasis on reliability and portability which can easily be transported for specialised on-site work, such as beam-lines or telescope facilities. The cryogenic detector platform will accommodate a specially developed cryogenic sensor, either a metallic magnetic calorimeter or a magnetic penetration-depth thermometer. The detectors will be designed to work in various temperatures regions with an emphasis on optimising the various detector resolutions for specific temperatures. One resolution target is of about 10 eV at the energies range typically created in kaonic atoms experiments (soft x-ray energies). A following step will see the introduction of continuous, high-power, sub-Kelvin cooling which will bring the cryogenic basis for a high resolution spectrometer system to the market. The scientific goal of the project will produce an experimental set-up optimised for kaon-mass measurements performing high-resolution x-ray spectroscopy on a beam-line provided foreseeably by the J-PARC (Tokai, Japan) or DAΦNE (Frascati, Italy) facilities.

  8. High-resolution Compton cameras based on Si/CdTe double-sided strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Odaka, Hirokazu, E-mail: odaka@astro.isas.jaxa.jp [Department of High Energy Astrophysics, Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa 252-5210 (Japan); Ichinohe, Yuto [Department of High Energy Astrophysics, Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa 252-5210 (Japan); Department of Physics, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo, Tokyo 113-0033 (Japan); Takeda, Shin' ichiro [Department of High Energy Astrophysics, Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa 252-5210 (Japan); Fukuyama, Taro; Hagino, Koichi; Saito, Shinya; Sato, Tamotsu [Department of High Energy Astrophysics, Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa 252-5210 (Japan); Department of Physics, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo, Tokyo 113-0033 (Japan); Sato, Goro; Watanabe, Shin; Kokubun, Motohide [Department of High Energy Astrophysics, Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa 252-5210 (Japan); Takahashi, Tadayuki [Department of High Energy Astrophysics, Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa 252-5210 (Japan); Department of Physics, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo, Tokyo 113-0033 (Japan); Yamaguchi, Mitsutaka [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA), 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); and others

    2012-12-11

    We have developed a new Compton camera based on silicon (Si) and cadmium telluride (CdTe) semiconductor double-sided strip detectors (DSDs). The camera consists of a 500-{mu}m-thick Si-DSD and four layers of 750-{mu}m-thick CdTe-DSDs all of which have common electrode configuration segmented into 128 strips on each side with pitches of 250{mu}m. In order to realize high angular resolution and to reduce size of the detector system, a stack of DSDs with short stack pitches of 4 mm is utilized to make the camera. Taking advantage of the excellent energy and position resolutions of the semiconductor devices, the camera achieves high angular resolutions of 4.5 Degree-Sign at 356 keV and 3.5 Degree-Sign at 662 keV. To obtain such high resolutions together with an acceptable detection efficiency, we demonstrate data reduction methods including energy calibration using Compton scattering continuum and depth sensing in the CdTe-DSD. We also discuss imaging capability of the camera and show simultaneous multi-energy imaging.

  9. High resolution seismic reflection, an exploration tool within an underground environment (example from Zimbabwe)

    Science.gov (United States)

    Mutyorauta, J. J.

    Metallurgical grade chromite ore in Zimbabwe is mined from two underground mines, Peak Mine and Railway Block Mine, in Shurugwi. Peak Mine is at present just over 800 m deep. In the search for new chromite ore bodies, such a depth limits the application of the conventional geophysical exploration tools. Exploration diamond drilling is becoming more and more an expensive resort. Alternative and effective geophysical techniques are therefore being actively sought after. The high resolution seismic reflection technique, carried out right within Peak Mine, has the potential to become a useful exploration tool.

  10. Urban-scale mapping of PM2.5 distribution via data fusion between high-density sensor network and MODIS Aerosol Optical Depth

    Science.gov (United States)

    Ba, Yu Tao; xian Liu, Bao; Sun, Feng; Wang, Li hua; Tang, Yu jia; Zhang, Da wei

    2017-04-01

    High-resolution mapping of PM2.5 is the prerequisite for precise analytics and subsequent anti-pollution interventions. Considering the large variances of particulate distribution, urban-scale mapping is challenging either with ground-based fixed stations, with satellites or via models. In this study, a dynamic fusion method between high-density sensor network and MODIS Aerosol Optical Depth (AOD) was introduced. The sensor network was deployed in Beijing ( > 1000 fixed monitors across 16000 km2 area) to provide raw observations with high temporal resolution (sampling interval 5 km). The MODIS AOD was calibrated to provide distribution map with low temporal resolution (daily) and moderate spatial resolution ( = 3 km). By encoding the data quality and defects (e.g. could, reflectance, abnormal), a hybrid interpolation procedure with cross-validation generated PM2.5 distribution with both high temporal and spatial resolution. Several no-pollutant and high-pollution periods were tested to validate the proposed fusion method for capturing the instantaneous patterns of PM2.5 emission.

  11. Validation of AIRS high-resolution stratospheric temperature retrievals

    Science.gov (United States)

    Meyer, Catrin I.; Hoffmann, Lars

    2014-10-01

    This paper focuses on stratospheric temperature observations by the Atmospheric InfraRed Sounder (AIRS) aboard NASA's Aqua satellite. We validate a nine-year record (2003 - 2011) of data retrieved with a scientific retrieval processor independent from the operational processor operated by NASA. The retrieval discussed here provides stratospheric temperature profiles for each individual AIRS footprint and has nine times better horizontal sampling than the operational data provided by NASA. The high-resolution temperature data are considered optimal for for gravity wave studies. For validation the high-resolution retrieval data are compared with results from the AIRS operational Level-2 data and the ERA-Interim meteorological reanalysis. Due to the large amount of data we performed statistical comparisons of monthly zonal mean cross-sections and time series. The comparisons show that the high-resolution temperature data are in good agreement with the validation data sets. The bias in the zonal averages is mostly within ±2K. The bias reaches a maximum of 7K to ERA-Interim and 4K to the AIRS operational data at the stratopause, it is related to the different resolutions of the data sets. Variability is nearly the same in all three data sets, having maximum standard deviations around the polar vortex in the mid and upper stratosphere. The validation presented here indicates that the high-resolution temperature retrievals are well-suited for scientific studies. In particular, we expect that they will become a valuable asset for future studies of stratospheric gravity waves.

  12. 2009年上海浦东新区能见度资料的深度分析——兼论高时间分辨率地面观测资料的应用%In-Depth Analysis on Atmospheric Visibility in Shanghai Pudong 2009——Concurrently on Applying Surface Meteorological Data with High Temporal Resolution

    Institute of Scientific and Technical Information of China (English)

    毕凯; 王广河; 毛节泰

    2012-01-01

    利用2009年上海浦东新区气象站高时间分辨率的能见度资料及其同步地面气象要素资料,在气块静力稳定的假设下研究了由于辐射冷却引起的霾或雾在演变的各阶段气溶胶吸湿性增长及其消光系数随相对湿度的变化,结果表明:气溶胶吸湿性增长率f(RH)随相对湿度的增长具有先慢后快平滑连续的特点;气溶胶吸湿性增长率在不同季节有所差异,在夏季和秋季较高,在冬季和春季时较低;平均而言,当相对湿度从40%增大到95%时,气溶胶吸湿性增长率可达6.6;对比国内外实验和观测结果,发现f(RH)随相对湿度的变化曲线与硫酸铵亲水增长相似;在这种雾消散时,随着气温的升高,测量给出的相对湿度值不会立即下降,而是在接近饱和的情况下维持一段时间,然后再迅速下降,其滞后大约为1~2小时。这很可能是测湿元件不能及时反映外界湿度变化所致。%The absorption of water by ambient aerosols and the influence of ambient relative humidity on the extinction coefficient are investigated under the assumptions that the atmosphere is in static stability during low visibility process caused by radiative cooling using the continuous observations data(visibility, relative humidity,temperature,wind etc.) from Shanghai Pudong automatic weather stations in 2009. The subtle features of meteorological elements are also studied with such high temporal resolution(1 min) data.The results show that the hygroscopic growth factor f(RH) of the extinction coefficient increased continuously with RH and featured a first-slow-then-quick uptrend.The curves obtained from different seasons show that f(RH) was relatively higher in summer and autumn than that in winter and spring. Overall,the average f(RH) in 7 cases could reach to 6.6 when RH increased from less than 40%to 95%. We also present comparisons with other researches in the world,and the result shows

  13. Volume Attenuation and High Frequency Loss as Auditory Depth Cues in Stereoscopic 3D Cinema

    Science.gov (United States)

    Manolas, Christos; Pauletto, Sandra

    2014-09-01

    Assisted by the technological advances of the past decades, stereoscopic 3D (S3D) cinema is currently in the process of being established as a mainstream form of entertainment. The main focus of this collaborative effort is placed on the creation of immersive S3D visuals. However, with few exceptions, little attention has been given so far to the potential effect of the soundtrack on such environments. The potential of sound both as a means to enhance the impact of the S3D visual information and to expand the S3D cinematic world beyond the boundaries of the visuals is large. This article reports on our research into the possibilities of using auditory depth cues within the soundtrack as a means of affecting the perception of depth within cinematic S3D scenes. We study two main distance-related auditory cues: high-end frequency loss and overall volume attenuation. A series of experiments explored the effectiveness of these auditory cues. Results, although not conclusive, indicate that the studied auditory cues can influence the audience judgement of depth in cinematic 3D scenes, sometimes in unexpected ways. We conclude that 3D filmmaking can benefit from further studies on the effectiveness of specific sound design techniques to enhance S3D cinema.

  14. Efficient and high speed depth-based 2D to 3D video conversion

    Science.gov (United States)

    Somaiya, Amisha Himanshu; Kulkarni, Ramesh K.

    2013-09-01

    Stereoscopic video is the new era in video viewing and has wide applications such as medicine, satellite imaging and 3D Television. Such stereo content can be generated directly using S3D cameras. However, this approach requires expensive setup and hence converting monoscopic content to S3D becomes a viable approach. This paper proposes a depth-based algorithm for monoscopic to stereoscopic video conversion by using the y axis co-ordinates of the bottom-most pixels of foreground objects. This code can be used for arbitrary videos without prior database training. It does not face the limitations of single monocular depth cues nor does it combine depth cues, thus consuming less processing time without affecting the efficiency of the 3D video output. The algorithm, though not comparable to real-time, is faster than the other available 2D to 3D video conversion techniques in the average ratio of 1:8 to 1:20, essentially qualifying as high-speed. It is an automatic conversion scheme, hence directly gives the 3D video output without human intervention and with the above mentioned features becomes an ideal choice for efficient monoscopic to stereoscopic video conversion. [Figure not available: see fulltext.

  15. High-resolution Functional Magnetic Resonance Imaging Methods for Human Midbrain

    Science.gov (United States)

    Katyal, Sucharit; Greene, Clint A.; Ress, David

    2012-01-01

    Functional MRI (fMRI) is a widely used tool for non-invasively measuring correlates of human brain activity. However, its use has mostly been focused upon measuring activity on the surface of cerebral cortex rather than in subcortical regions such as midbrain and brainstem. Subcortical fMRI must overcome two challenges: spatial resolution and physiological noise. Here we describe an optimized set of techniques developed to perform high-resolution fMRI in human SC, a structure on the dorsal surface of the midbrain; the methods can also be used to image other brainstem and subcortical structures. High-resolution (1.2 mm voxels) fMRI of the SC requires a non-conventional approach. The desired spatial sampling is obtained using a multi-shot (interleaved) spiral acquisition1. Since, T2* of SC tissue is longer than in cortex, a correspondingly longer echo time (TE ~ 40 msec) is used to maximize functional contrast. To cover the full extent of the SC, 8-10 slices are obtained. For each session a structural anatomy with the same slice prescription as the fMRI is also obtained, which is used to align the functional data to a high-resolution reference volume. In a separate session, for each subject, we create a high-resolution (0.7 mm sampling) reference volume using a T1-weighted sequence that gives good tissue contrast. In the reference volume, the midbrain region is segmented using the ITK-SNAP software application2. This segmentation is used to create a 3D surface representation of the midbrain that is both smooth and accurate3. The surface vertices and normals are used to create a map of depth from the midbrain surface within the tissue4. Functional data is transformed into the coordinate system of the segmented reference volume. Depth associations of the voxels enable the averaging of fMRI time series data within specified depth ranges to improve signal quality. Data is rendered on the 3D surface for visualization. In our lab we use this technique for measuring

  16. The Gaia FGK Benchmark Stars - High resolution spectral library

    CERN Document Server

    Blanco-Cuaresma, S; Jofré, P; Heiter, U

    2014-01-01

    Context. An increasing number of high resolution stellar spectra is available today thanks to many past and ongoing spectroscopic surveys. Consequently, numerous methods have been developed in order to perform an automatic spectral analysis on a massive amount of data. When reviewing published results, biases arise and they need to be addressed and minimized. Aims. We are providing a homogeneous library with a common set of calibration stars (known as the Gaia FGK Benchmark Stars) that will allow to assess stellar analysis methods and calibrate spectroscopic surveys. Methods. High resolution and signal-to-noise spectra were compiled from different instruments. We developed an automatic process in order to homogenize the observed data and assess the quality of the resulting library. Results. We built a high quality library that will facilitate the assessment of spectral analyses and the calibration of present and future spectroscopic surveys. The automation of the process minimizes the human subjectivity and e...

  17. Design of UAV high resolution image transmission system

    Science.gov (United States)

    Gao, Qiang; Ji, Ming; Pang, Lan; Jiang, Wen-tao; Fan, Pengcheng; Zhang, Xingcheng

    2017-02-01

    In order to solve the problem of the bandwidth limitation of the image transmission system on UAV, a scheme with image compression technology for mini UAV is proposed, based on the requirements of High-definition image transmission system of UAV. The video codec standard H.264 coding module and key technology was analyzed and studied for UAV area video communication. Based on the research of high-resolution image encoding and decoding technique and wireless transmit method, The high-resolution image transmission system was designed on architecture of Android and video codec chip; the constructed system was confirmed by experimentation in laboratory, the bit-rate could be controlled easily, QoS is stable, the low latency could meets most applied requirement not only for military use but also for industrial applications.

  18. Automated data processing of high-resolution mass spectra

    DEFF Research Database (Denmark)

    Hansen, Michael Adsetts Edberg; Smedsgaard, Jørn

    There has been an almost explosive growth in performance and applications of Electrospray Ionization (ESI) Time of Flight (TOF) mass spectrometry, which today is one of the most efficient tools for screening of metabolites in complex bio-samples. Most efficiently ESI-MS can be used by directly...... infusion of crude extracts into the source taking advantage of the high sensitivity, high mass resolution and accuracy and the limited fragmentation. Unfortunately, there has not been a comparable development in the data processing techniques to fully exploit gain in high resolution and accuracy...... and mass axis on to a fixed one-dimensional array, we obtain a vector that can be used directly as input in multivariate statistics or library search methods. We demonstrate that both cluster- and discriminant analysis as well as PCA (and related methods) can be applied directly on mass spectra from direct...

  19. High Resolution Optical Spectra of HBC 722 after Outburst

    CERN Document Server

    Lee, Jeong-Eun; Lee, Sang-Gak; Sung, Hyun-Il; Lee, Byeong-Cheol; Sung, Hwankyung; Green, Joel D; Jeon, Young-Beom

    2011-01-01

    We report the results of our high resolution optical spectroscopic monitoring campaign ($\\lambda$ = 3800 -- 8800 A, R = 30000 -- 45000) of the new FU Orionis-type object HBC 722. We observed HBC 722 with the BOES 1.8-m telescope between 2010 November 26 and 2010 December 29 and FU Orionis itself on 2011 January 26. We detect a number of previously unreported high-resolution K I and Ca II lines beyond 7500 A. We resolve the H$\\alpha$ and Ca II line profiles into three velocity components, which we attribute to both disk and outflow. The increased accretion during outburst can heat the disk to produce the relatively narrow absorption feature and launch outflows appearing as high velocity blue and redshifted broad features.

  20. Application Research on High Resolution Radar Target Aggregation

    Directory of Open Access Journals (Sweden)

    Zhongzhi Li

    2010-11-01

    Full Text Available In high resolution radar system, the same target always has original data; so we need to merge multiple data from the same target as one target. Because of the system’s real-time requirement, we usually have to carry out target aggregation as quickly as possible. In this paper, we propose a quick target aggregation method based on clustering algorithm. The proposed method divides original data into subsets by single dimensional distance, and then merges subsets according to single dimensional distance and setdensity. At last we apply the proposed method to carry out target aggregation for airport scene surveillance radar system. Experimental result shows the proposed method has high execution efficiency and is not sensitive to noise data; it is useful for high resolution radar target aggregation.

  1. High Resolution X-ray-Induced Acoustic Tomography

    Science.gov (United States)

    Xiang, Liangzhong; Tang, Shanshan; Ahmad, Moiz; Xing, Lei

    2016-05-01

    Absorption based CT imaging has been an invaluable tool in medical diagnosis, biology, and materials science. However, CT requires a large set of projection data and high radiation dose to achieve superior image quality. In this letter, we report a new imaging modality, X-ray Induced Acoustic Tomography (XACT), which takes advantages of high sensitivity to X-ray absorption and high ultrasonic resolution in a single modality. A single projection X-ray exposure is sufficient to generate acoustic signals in 3D space because the X-ray generated acoustic waves are of a spherical nature and propagate in all directions from their point of generation. We demonstrate the successful reconstruction of gold fiducial markers with a spatial resolution of about 350 μm. XACT reveals a new imaging mechanism and provides uncharted opportunities for structural determination with X-ray.

  2. NASA LaRC airborne high spectral resolution lidar aerosol measurements during MILAGRO: observations and validation

    Directory of Open Access Journals (Sweden)

    L. I. Kleinman

    2009-07-01

    Full Text Available The NASA Langley Research Center (LaRC airborne High Spectral Resolution Lidar (HSRL measures vertical profiles of aerosol extinction, backscatter, and depolarization at both 532 nm and 1064 nm. In March of 2006 the HSRL participated in the Megacity Initiative: Local and Global Research Observations (MILAGRO campaign along with several other suites of instruments deployed on both aircraft and ground based platforms. This paper presents high spatial and vertical resolution HSRL measurements of aerosol extinction and optical depth from MILAGRO and comparisons of those measurements with similar measurements from other sensors and model predictions. HSRL measurements coincident with airborne in situ aerosol scattering and absorption measurements from two different instrument suites on the C-130 and G-1 aircraft, airborne aerosol optical depth (AOD and extinction measurements from an airborne tracking sunphotometer on the J-31 aircraft, and AOD from a network of ground based Aerosol Robotic Network (AERONET sun photometers are presented as a validation of the HSRL aerosol extinction and optical depth products. Regarding the extinction validation, we find bias differences between HSRL and these instruments to be less than 3% (0.01 km−1 at 532 nm, the wavelength at which the HSRL technique is employed. The rms differences at 532 nm were less than 50% (0.015 km−1. To our knowledge this is the most comprehensive validation of the HSRL measurement of aerosol extinction and optical depth to date. The observed bias differences in ambient aerosol extinction between HSRL and other measurements is within 15–20% at visible wavelengths, found by previous studies to be the differences observed with current state-of-the-art instrumentation (Schmid et al., 2006.

  3. NASA LaRC airborne high spectral resolution lidar aerosol measurements during MILAGRO: observations and validation

    Directory of Open Access Journals (Sweden)

    R. R. Rogers

    2009-04-01

    Full Text Available The NASA Langley Research Center (LaRC airborne High Spectral Resolution Lidar (HSRL measures vertical profiles of aerosol extinction, backscatter, and depolarization at both 532 nm and 1064 nm. In March of 2006 the HSRL participated in the Megacity Initiative: Local and Global Research Observations (MILAGRO campaign along with several other suites of instruments deployed on both aircraft and ground based platforms. This paper presents high spatial and vertical resolution HSRL measurements of aerosol extinction and optical depth from MILAGRO and comparisons of those measurements with similar measurements from other sensors and model predictions. HSRL measurements coincident with airborne in situ aerosol scattering and absorption measurements from two different instrument suites on the C-130 and G-1 aircraft, airborne aerosol optical depth (AOD and extinction measurements from an airborne tracking sunphotometer on the J-31 aircraft, and AOD from a network of ground based Aerosol Robotic Network (AERONET sun photometers are presented as a validation of the HSRL aerosol extinction and optical depth products. Regarding the extinction validation, we find bias differences between HSRL and these instruments to be less than 3% (0.01 km−1 at 532 nm, the wavelength at which the HSRL technique is employed. The rms differences at 532 nm were less than 50% (0.015 km−1. To our knowledge this is the most comprehensive validation of the HSRL measurement of aerosol extinction and optical depth to date. The observed bias differences in ambient aerosol extinction between HSRL and other measurements is within 15–20% at visible wavelengths, found by previous studies to be the differences observed with current state-of-the-art instrumentation (Schmid et al., 2006.

  4. Imaging collagen type I fibrillogenesis with high spatiotemporal resolution.

    Science.gov (United States)

    Stamov, Dimitar R; Stock, Erik; Franz, Clemens M; Jähnke, Torsten; Haschke, Heiko

    2015-02-01

    Fibrillar collagens, such as collagen type I, belong to the most abundant extracellular matrix proteins and they have received much attention over the last five decades due to their large interactome, complex hierarchical structure and high mechanical stability. Nevertheless, the collagen self-assembly process is still incompletely understood. Determining the real-time kinetics of collagen type I formation is therefore pivotal for better understanding of collagen type I structure and function, but visualising the dynamic self-assembly process of collagen I on the molecular scale requires imaging techniques offering high spatiotemporal resolution. Fast and high-speed scanning atomic force microscopes (AFM) provide the means to study such processes on the timescale of seconds under near-physiological conditions. In this study we have applied fast AFM tip scanning to study the assembly kinetics of fibrillar collagen type I nanomatrices with a temporal resolution reaching eight seconds for a frame size of 500 nm. By modifying the buffer composition and pH value, the kinetics of collagen fibrillogenesis can be adjusted for optimal analysis by fast AFM scanning. We furthermore show that amplitude-modulation imaging can be successfully applied to extract additional structural information from collagen samples even at high scan rates. Fast AFM scanning with controlled amplitude modulation therefore provides a versatile platform for studying dynamic collagen self-assembly processes at high resolution. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. High-resolution ionization detector and array of such detectors

    Energy Technology Data Exchange (ETDEWEB)

    McGregor, Douglas S. (Ypsilanti, MI); Rojeski, Ronald A. (Pleasanton, CA)

    2001-01-16

    A high-resolution ionization detector and an array of such detectors are described which utilize a reference pattern of conductive or semiconductive material to form interaction, pervious and measurement regions in an ionization substrate of, for example, CdZnTe material. The ionization detector is a room temperature semiconductor radiation detector. Various geometries of such a detector and an array of such detectors produce room temperature operated gamma ray spectrometers with relatively high resolution. For example, a 1 cm.sup.3 detector is capable of measuring .sup.137 Cs 662 keV gamma rays with room temperature energy resolution approaching 2% at FWHM. Two major types of such detectors include a parallel strip semiconductor Frisch grid detector and the geometrically weighted trapezoid prism semiconductor Frisch grid detector. The geometrically weighted detector records room temperature (24.degree. C.) energy resolutions of 2.68% FWHM for .sup.137 Cs 662 keV gamma rays and 2.45% FWHM for .sup.60 Co 1.332 MeV gamma rays. The detectors perform well without any electronic pulse rejection, correction or compensation techniques. The devices operate at room temperature with simple commercially available NIM bin electronics and do not require special preamplifiers or cooling stages for good spectroscopic results.

  6. High-resolution electron microscopy of advanced materials

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, T.E.; Kung, H.H.; Sickafus, K.E.; Gray, G.T. III; Field, R.D.; Smith, J.F. [Los Alamos National Lab., NM (United States). Materials Science and Technology Div.

    1997-11-01

    This final report chronicles a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The High-Resolution Electron Microscopy Facility has doubled in size and tripled in quality since the beginning of the three-year period. The facility now includes a field-emission scanning electron microscope, a 100 kV field-emission scanning transmission electron microscope (FE-STEM), a 300 kV field-emission high-resolution transmission electron microscope (FE-HRTEM), and a 300 kV analytical transmission electron microscope. A new orientation imaging microscope is being installed. X-ray energy dispersive spectrometers for chemical analysis are available on all four microscopes; parallel electron energy loss spectrometers are operational on the FE-STEM and FE-HRTEM. These systems enable evaluation of local atomic bonding, as well as chemical composition in nanometer-scale regions. The FE-HRTEM has a point-to-point resolution of 1.6 {angstrom}, but the resolution can be pushed to its information limit of 1 {angstrom} by computer reconstruction of a focal series of images. HRTEM has been used to image the atomic structure of defects such as dislocations, grain boundaries, and interfaces in a variety of materials from superconductors and ferroelectrics to structural ceramics and intermetallics.

  7. Accelerated high-resolution photoacoustic tomography via compressed sensing

    Science.gov (United States)

    Arridge, Simon; Beard, Paul; Betcke, Marta; Cox, Ben; Huynh, Nam; Lucka, Felix; Ogunlade, Olumide; Zhang, Edward

    2016-12-01

    Current 3D photoacoustic tomography (PAT) systems offer either high image quality or high frame rates but are not able to deliver high spatial and temporal resolution simultaneously, which limits their ability to image dynamic processes in living tissue (4D PAT). A particular example is the planar Fabry-Pérot (FP) photoacoustic scanner, which yields high-resolution 3D images but takes several minutes to sequentially map the incident photoacoustic field on the 2D sensor plane, point-by-point. However, as the spatio-temporal complexity of many absorbing tissue structures is rather low, the data recorded in such a conventional, regularly sampled fashion is often highly redundant. We demonstrate that combining model-based, variational image reconstruction methods using spatial sparsity constraints with the development of novel PAT acquisition systems capable of sub-sampling the acoustic wave field can dramatically increase the acquisition speed while maintaining a good spatial resolution: first, we describe and model two general spatial sub-sampling schemes. Then, we discuss how to implement them using the FP interferometer and demonstrate the potential of these novel compressed sensing PAT devices through simulated data from a realistic numerical phantom and through measured data from a dynamic experimental phantom as well as from in vivo experiments. Our results show that images with good spatial resolution and contrast can be obtained from highly sub-sampled PAT data if variational image reconstruction techniques that describe the tissues structures with suitable sparsity-constraints are used. In particular, we examine the use of total variation (TV) regularization enhanced by Bregman iterations. These novel reconstruction strategies offer new opportunities to dramatically increase the acquisition speed of photoacoustic scanners that employ point-by-point sequential scanning as well as reducing the channel count of parallelized schemes that use detector arrays.

  8. Imaging collagen type I fibrillogenesis with high spatiotemporal resolution

    Energy Technology Data Exchange (ETDEWEB)

    Stamov, Dimitar R, E-mail: stamov@jpk.com [JPK Instruments AG, Bouchéstrasse 12, 12435 Berlin (Germany); Stock, Erik [JPK Instruments AG, Bouchéstrasse 12, 12435 Berlin (Germany); Franz, Clemens M [DFG-Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Strasse 1a, 76131 Karlsruhe (Germany); Jähnke, Torsten; Haschke, Heiko [JPK Instruments AG, Bouchéstrasse 12, 12435 Berlin (Germany)

    2015-02-15

    Fibrillar collagens, such as collagen type I, belong to the most abundant extracellular matrix proteins and they have received much attention over the last five decades due to their large interactome, complex hierarchical structure and high mechanical stability. Nevertheless, the collagen self-assembly process is still incompletely understood. Determining the real-time kinetics of collagen type I formation is therefore pivotal for better understanding of collagen type I structure and function, but visualising the dynamic self-assembly process of collagen I on the molecular scale requires imaging techniques offering high spatiotemporal resolution. Fast and high-speed scanning atomic force microscopes (AFM) provide the means to study such processes on the timescale of seconds under near-physiological conditions. In this study we have applied fast AFM tip scanning to study the assembly kinetics of fibrillar collagen type I nanomatrices with a temporal resolution reaching eight seconds for a frame size of 500 nm. By modifying the buffer composition and pH value, the kinetics of collagen fibrillogenesis can be adjusted for optimal analysis by fast AFM scanning. We furthermore show that amplitude-modulation imaging can be successfully applied to extract additional structural information from collagen samples even at high scan rates. Fast AFM scanning with controlled amplitude modulation therefore provides a versatile platform for studying dynamic collagen self-assembly processes at high resolution. - Highlights: • Continuous non-invasive time-lapse investigation of collagen I fibrillogenesis in situ. • Imaging of collagen I self-assembly with high spatiotemporal resolution. • Application of setpoint modulation to study the hierarchical structure of collagen I. • Observing real-time formation of the D-banding pattern in collagen I.

  9. Search for direct evidence for charm in hadronic interactions using a high-resolution bubble chamber

    CERN Multimedia

    2002-01-01

    A high-resolution rapid-cycling hydrogen bubble chamber will be used to search for direct evidence of charmed-particle production in $\\sim$350 GeV/c $\\pi^{-}$ interactions. The chamber is 20 cm in diameter and contains $\\sim$1l of liquid hydrogen. The bright field optical system is designed to achieve a resolution in space $\\simeq$ 20-30 $\\mu$m (optical depth of field 2-4 mm), which should allow the detection of charmed-particle decay vertices in complex events if $\\tau_{charm} \\geq 10^{-13}$ sec. An interaction trigger will be used to give an initial sensitivity $\\sim$5-10 events/$\\mu$b for a test run designed primarily to search for the signal and establish a cross-section and approximate lifetime for charm.

  10. Autonomous, high-resolution observations of particle flux in the oligotrophic ocean

    Directory of Open Access Journals (Sweden)

    M. L. Estapa

    2013-01-01

    Full Text Available Observational gaps limit our understanding of particle flux attenuation through the upper mesopelagic because available measurements (sediment traps and radiochemical tracers have limited temporal resolution, are labor-intensive, and require ship support. Here, we conceptually evaluate an autonomous, optical proxy-based method for high-resolution observations of particle flux. We present four continuous records of particle flux collected with autonomous, profiling floats in the western Sargasso Sea and the subtropical North Pacific, as well as one shorter record of depth-resolved particle flux near the Bermuda Atlantic Timeseries Study (BATS and Oceanic Flux Program (OFP sites. These observations illustrate strong variability in particle flux over very short (~1 day timescales, but at longer timescales they reflect patterns of variability previously recorded during sediment trap timeseries. While particle flux attenuation at BATS/OFP agreed with the canonical power-law model when observations were averaged over a month, flux attenuation was highly variable on timescales of 1–3 days. Particle fluxes at different depths were decoupled from one another and from particle concentrations and chlorophyll fluorescence in the immediately-overlying surface water, consistent with horizontal advection of settling particles. We finally present an approach for calibrating this optical proxy in units of carbon flux, discuss in detail the related, inherent physical and optical assumptions, and look forward toward the requirements for the quantitative application of this method in highly time-resolved studies of particle export and flux attenuation.

  11. Autonomous, high-resolution observations of particle flux in the oligotrophic ocean

    Directory of Open Access Journals (Sweden)

    M. L. Estapa

    2013-08-01

    Full Text Available Observational gaps limit our understanding of particle flux attenuation through the upper mesopelagic because available measurements (sediment traps and radiochemical tracers have limited temporal resolution, are labor-intensive, and require ship support. Here, we conceptually evaluate an autonomous, optical proxy-based method for high-resolution observations of particle flux. We present four continuous records of particle flux collected with autonomous profiling floats in the western Sargasso Sea and the subtropical North Pacific, as well as one shorter record of depth-resolved particle flux near the Bermuda Atlantic Time-series Study (BATS and Oceanic Flux Program (OFP sites. These observations illustrate strong variability in particle flux over very short (~1-day timescales, but at longer timescales they reflect patterns of variability previously recorded during sediment trap time series. While particle flux attenuation at BATS/OFP agreed with the canonical power-law model when observations were averaged over a month, flux attenuation was highly variable on timescales of 1–3 days. Particle fluxes at different depths were decoupled from one another and from particle concentrations and chlorophyll fluorescence in the immediately overlying surface water, consistent with horizontal advection of settling particles. We finally present an approach for calibrating this optical proxy in units of carbon flux, discuss in detail the related, inherent physical and optical assumptions, and look forward toward the requirements for the quantitative application of this method in highly time-resolved studies of particle export and flux attenuation.

  12. Adaptive optics with pupil tracking for high resolution retinal imaging.

    Science.gov (United States)

    Sahin, Betul; Lamory, Barbara; Levecq, Xavier; Harms, Fabrice; Dainty, Chris

    2012-02-01

    Adaptive optics, when integrated into retinal imaging systems, compensates for rapidly changing ocular aberrations in real time and results in improved high resolution images that reveal the photoreceptor mosaic. Imaging the retina at high resolution has numerous potential medical applications, and yet for the development of commercial products that can be used in the clinic, the complexity and high cost of the present research systems have to be addressed. We present a new method to control the deformable mirror in real time based on pupil tracking measurements which uses the default camera for the alignment of the eye in the retinal imaging system and requires no extra cost or hardware. We also present the first experiments done with a compact adaptive optics flood illumination fundus camera where it was possible to compensate for the higher order aberrations of a moving model eye and in vivo in real time based on pupil tracking measurements, without the real time contribution of a wavefront sensor. As an outcome of this research, we showed that pupil tracking can be effectively used as a low cost and practical adaptive optics tool for high resolution retinal imaging because eye movements constitute an important part of the ocular wavefront dynamics.

  13. High-resolution SIT TV tube for subnanosecond image shuttering

    Science.gov (United States)

    Yates, G. J.; Vine, B. H.; Aeby, I.; Dunbar, D. L.; King, N. S. P.; Jaramillo, S. A.; Thayer, N. N.; Noel, B. W.

    1984-09-01

    A new ultrafast high-resolution image shutter tube with reasonable gain and shuttering efficiency has been designed and tested. The design uses a grid-gated silicon-intensified-target (SIT) image section and a high-speed focus projection and scan (FPS) vidicon read-out section in one envelope to eliminate resolution losses from external coupling. The design features low-gate-interface capacity, a high-conductivity shutter grid, and a segmented low-resistivity photocathode for optimum gating speed. Optical gate widths as short as 400 ps + or - 100 ps for full shuttering of the 25-mm-diam input window with spatial resolution as high as 15 1p/mm have been measured. Some design criteria, most of the electrical and optical performance data for several variations in the basic design, and a comparison (of several key response functions) with similarly tested 18- and 25-mm-diam proximity-focused microchannel-plate (MCP) image intensifier tubes (MCPTs) are included.

  14. Integration of high resolution geophysical methods. Detection of shallow depth bodies of archaeological interest

    Directory of Open Access Journals (Sweden)

    F. Rosso

    1998-06-01

    Full Text Available A combined survey using ground penetrating radar, self-potential, geoelectrical and magnetic methods has been carried out to detect near-surface tombs in the archaeological test site of the Sabine Necropolis at Colle del Forno, Rome, Italy. A 2D data acquisition mode has been adopted to obtain a 3D image of the investigated volumes. The multi-methodological approach has not only demonstrated the reliability of each method in delineating the spatial behaviour of the governing parameter, but mainly helped to obtain a detailed physical image closely conforming to the target geometry through the whole set of parameters involved.

  15. A Verification of Optical Depth Retrievals From High Resolution Satellite Imagery

    Science.gov (United States)

    2007-03-01

    the Environment. 461-469, 560. Boubel, W. Richard , and Fox, L. Donald, and Turner, D. Bruce, and Stern, Arthur C. 1994: Fundamentals of Air...Radiation Center, Davos Dorf , Switzerland. 74 THIS PAGE INTENTIONALLY LEFT BLANK 75 INITIAL DISTRIBUTION

  16. GIOVE: a new detector setup for high sensitivity germanium spectroscopy at shallow depth

    Energy Technology Data Exchange (ETDEWEB)

    Heusser, G.; Weber, M.; Hakenmueller, J.; Lindner, M.; Maneschg, W.; Simgen, H.; Stolzenburg, D.; Strecker, H. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Laubenstein, M. [Laboratori Nazionali del Gran Sasso, Assergi (Italy)

    2015-11-15

    We report on the development and construction of the high-purity germanium spectrometer setup GIOVE (Germanium Inner Outer VEto), recently built and now operated at the shallow underground laboratory of the Max-Planck-Institut fuer Kernphysik, Heidelberg. Particular attention was paid to the design of a novel passive and active shield, aiming at efficient rejection of environmental and muon induced radiation backgrounds. The achieved sensitivity level of ≤ 100μBq kg{sup -1} for primordial radionuclides from U and Th in typical γ ray sample screening measurements is unique among instruments located at comparably shallow depths and can compete with instruments at far deeper underground sites. (orig.)

  17. GIOVE - A New Detector Setup for High Sensitivity Germanium Spectroscopy At Shallow Depth

    CERN Document Server

    Heusser, Gerd; Hakenmüller, Janina; Laubenstein, Matthias; Lindner, Manfred; Maneschg, Werner; Simgen, Hardy; Stolzenburg, Dominik; Strecker, Herbert

    2015-01-01

    We report on the development and construction of the high-purity germanium spectrometer setup GIOVE (Germanium Inner Outer Veto), recently built and now operated at the shallow underground laboratory of the Max-Planck-Institut f\\"ur Kernphysik, Heidelberg. Particular attention was paid to the design of a novel passive and active shield, aiming at efficient rejection of environmental and muon induced radiation backgrounds. The achieved sensitivity level of <100 {\\mu}Bq/kg for primordial radionuclides from U and Th in typical {\\gamma} ray sample screening measurements is unique among instruments located at comparably shallow depths and can compete with instruments at far deeper underground sites.

  18. High contrast, depth-resolved thermoreflectance imaging using a Nipkow disk confocal microscope.

    Science.gov (United States)

    Summers, J A; Yang, T; Tuominen, M T; Hudgings, J A

    2010-01-01

    We have developed a depth-resolved confocal thermal imaging technique that is capable of measuring the temperature distribution of an encapsulated or semi-obstructed device. The technique employs lock-in charge coupled device-based thermoreflectance imaging via a Nipkow disk confocal microscope, which is used to eliminate extraneous reflections from above or below the imaging plane. We use the confocal microscope to predict the decrease in contrast and dynamic range due to an obstruction for widefield thermoreflectance, and we demonstrate the ability of confocal thermoreflectance to maintain a high contrast and thermal sensitivity in the presence of large reflecting obstructions in the optical path.

  19. Light storage in a cold atomic ensemble with a high optical depth

    Science.gov (United States)

    Park, Kwang-Kyoon; Chough, Young-Tak; Kim, Yoon-Ho

    2017-06-01

    A quantum memory with a high storage efficiency and a long coherence time is an essential element in quantum information applications. Here, we report our recent development of an optical quantum memory with a rubidium-87 cold atom ensemble. By increasing the optical depth of the medium, we have achieved a storage efficiency of 65% and a coherence time of 51 μs for a weak laser pulse. The result of a numerical analysis based on the Maxwell-Bloch equations agrees well with the experimental results. Our result paves the way toward an efficient optical quantum memory and may find applications in photonic quantum information processing.

  20. High-Resolution Audio with Inaudible High-Frequency Components Induces a Relaxed Attentional State without Conscious Awareness

    Science.gov (United States)

    Kuribayashi, Ryuma; Nittono, Hiroshi

    2017-01-01

    High-resolution audio has a higher sampling frequency and a greater bit depth than conventional low-resolution audio such as compact disks. The higher sampling frequency enables inaudible sound components (above 20 kHz) that are cut off in low-resolution audio to be reproduced. Previous studies of high-resolution audio have mainly focused on the effect of such high-frequency components. It is known that alpha-band power in a human electroencephalogram (EEG) is larger when the inaudible high-frequency components are present than when they are absent. Traditionally, alpha-band EEG activity has been associated with arousal level. However, no previous studies have explored whether sound sources with high-frequency components affect the arousal level of listeners. The present study examined this possibility by having 22 participants listen to two types of a 400-s musical excerpt of French Suite No. 5 by J. S. Bach (on cembalo, 24-bit quantization, 192 kHz A/D sampling), with or without inaudible high-frequency components, while performing a visual vigilance task. High-alpha (10.5–13 Hz) and low-beta (13–20 Hz) EEG powers were larger for the excerpt with high-frequency components than for the excerpt without them. Reaction times and error rates did not change during the task and were not different between the excerpts. The amplitude of the P3 component elicited by target stimuli in the vigilance task increased in the second half of the listening period for the excerpt with high-frequency components, whereas no such P3 amplitude change was observed for the other excerpt without them. The participants did not distinguish between these excerpts in terms of sound quality. Only a subjective rating of inactive pleasantness after listening was higher for the excerpt with high-frequency components than for the other excerpt. The present study shows that high-resolution audio that retains high-frequency components has an advantage over similar and indistinguishable digital

  1. High-Resolution Audio with Inaudible High-Frequency Components Induces a Relaxed Attentional State without Conscious Awareness.

    Science.gov (United States)

    Kuribayashi, Ryuma; Nittono, Hiroshi

    2017-01-01

    High-resolution audio has a higher sampling frequency and a greater bit depth than conventional low-resolution audio such as compact disks. The higher sampling frequency enables inaudible sound components (above 20 kHz) that are cut off in low-resolution audio to be reproduced. Previous studies of high-resolution audio have mainly focused on the effect of such high-frequency components. It is known that alpha-band power in a human electroencephalogram (EEG) is larger when the inaudible high-frequency components are present than when they are absent. Traditionally, alpha-band EEG activity has been associated with arousal level. However, no previous studies have explored whether sound sources with high-frequency components affect the arousal level of listeners. The present study examined this possibility by having 22 participants listen to two types of a 400-s musical excerpt of French Suite No. 5 by J. S. Bach (on cembalo, 24-bit quantization, 192 kHz A/D sampling), with or without inaudible high-frequency components, while performing a visual vigilance task. High-alpha (10.5-13 Hz) and low-beta (13-20 Hz) EEG powers were larger for the excerpt with high-frequency components than for the excerpt without them. Reaction times and error rates did not change during the task and were not different between the excerpts. The amplitude of the P3 component elicited by target stimuli in the vigilance task increased in the second half of the listening period for the excerpt with high-frequency components, whereas no such P3 amplitude change was observed for the other excerpt without them. The participants did not distinguish between these excerpts in terms of sound quality. Only a subjective rating of inactive pleasantness after listening was higher for the excerpt with high-frequency components than for the other excerpt. The present study shows that high-resolution audio that retains high-frequency components has an advantage over similar and indistinguishable digital sound

  2. High resolution MAS-NMR in combinatorial chemistry.

    Science.gov (United States)

    Shapiro, M J; Gounarides, J S

    High-resolution magic angle spinning (hr-MAS) NMR is a powerful tool for characterizing organic reactions on solid support. Because magic angle spinning reduces the line-broadening due to dipolar coupling and variations in bulk magnetic susceptibility, line widths approaching those obtained in solution-phase NMR can be obtained. The magic angle spinning method is amenable for use in conjunction with a variety of NMR-pulse sequences, making it possible to perform full-structure determinations and conformational analysis on compounds attached to a polymer support. Diffusion-weighted MAS-NMR methods such as SPEEDY (Spin-Echo-Enhanced Diffusion-Filtered Spectroscopy) can be used to remove unwanted signals from the solvent, residual reactants, and the polymer support from the MAS-NMR spectrum, leaving only those signals arising from the resin-bound product. This review will present the applications of high-resolution magic angle spinning NMR for use in combinatorial chemistry research.

  3. High resolution reservoir geological modelling using outcrop information

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Changmin; Lin Kexiang; Liu Huaibo [Jianghan Petroleum Institute, Hubei (China)] [and others

    1997-08-01

    This is China`s first case study of high resolution reservoir geological modelling using outcrop information. The key of the modelling process is to build a prototype model and using the model as a geological knowledge bank. Outcrop information used in geological modelling including seven aspects: (1) Determining the reservoir framework pattern by sedimentary depositional system and facies analysis; (2) Horizontal correlation based on the lower and higher stand duration of the paleo-lake level; (3) Determining the model`s direction based on the paleocurrent statistics; (4) Estimating the sandbody communication by photomosaic and profiles; (6) Estimating reservoir properties distribution within sandbody by lithofacies analysis; and (7) Building the reservoir model in sandbody scale by architectural element analysis and 3-D sampling. A high resolution reservoir geological model of Youshashan oil field has been built by using this method.

  4. Precision cosmology with time delay lenses: high resolution imaging requirements

    CERN Document Server

    Meng, Xiao-Lei; Agnello, Adriano; Auger, Matthew W; Liao, Kai; Marshall, Philip J

    2015-01-01

    Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as "Einstein Rings" in high resolution images. We carry out a systematic exploration of the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope $\\gamma'$ of the...

  5. HIGH AND LOW RESOLUTION TEXTURED MODELS OF COMPLEX ARCHITECTURAL SURFACES

    Directory of Open Access Journals (Sweden)

    E. K. Stathopoulou

    2012-09-01

    Full Text Available During the recent years it has become obvious that 3D technology, applied mainly with the use of terrestrial laser scanners (TLS is the most suitable technique for the complete geometric documentation of complex objects, whether they are monuments or architectural constructions in general. However, it is rather a challenging task to convert an acquired point cloud into a realistic 3D polygonal model that can simultaneously satisfy high resolution modeling and visualization demands. The aim of the visualization of a simple or complex object is to create a 3D model that best describes the reality within the computer environment. This paper is dedicated especially in the visualization of a complex object's 3D model, through high, as well as low resolution textured models. The object of interest for this study was the Almoina (Romanesque Door of the Cathedral of Valencia in Spain.

  6. Fabricating High-Resolution X-Ray Collimators

    Science.gov (United States)

    Appleby, Michael; Atkinson, James E.; Fraser, Iain; Klinger, Jill

    2008-01-01

    A process and method for fabricating multi-grid, high-resolution rotating modulation collimators for arcsecond and sub-arcsecond x-ray and gamma-ray imaging involves photochemical machining and precision stack lamination. The special fixturing and etching techniques that have been developed are used for the fabrication of multiple high-resolution grids on a single array substrate. This technology has application in solar and astrophysics and in a number of medical imaging applications including mammography, computed tomography (CT), single photon emission computed tomography (SPECT), and gamma cameras used in nuclear medicine. This collimator improvement can also be used in non-destructive testing, hydrodynamic weapons testing, and microbeam radiation therapy.

  7. High-resolution ultrasonographic findings in thyroid nodules

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sun Seob; Lee, Kwan Seh; Kim, Kun Sang; Park, Soo Soung [College of Medicine, Chung-Ang University, Seoul (Korea, Republic of)

    1985-08-15

    Ultrasonography, it's excellent ability of differentiating cystic from solid lesion and depicting detailed architecture, proved itself useful in the diagnosis of thyroid pathologies. Advanced high resolution equipment made hidden small lesion detected and finer structure clearly seen. They seemed to throw light on the histological diagnosis of thyroid diseases, especially differentiation of benignancy and malignancy. Author reviewed pictures of high-resolution ultrasonography of thyroid disease (24 cases) and correlated them with proven pathological findings. The results were as follows: 1. Multiplicity of lesion favors benignancy (4 cases). 2. Well defined margin favors benignancy (14/17), while ill defined margin favors malignancy (3/4), and lesion of no margin favors thyroiditis (3/3). 3. Surrounding halo favors benignancy (7 cases). 4. Hypoechogenicity were found in most of malignancy and thyroiditis. Cystic components in solid nodule were common findings in benign and malignant lesions. Calcification was not found in malignancy.

  8. Temperature-dependent high resolution absorption cross sections of propane

    Science.gov (United States)

    Beale, Christopher A.; Hargreaves, Robert J.; Bernath, Peter F.

    2016-10-01

    High resolution (0.005 cm-1) absorption cross sections have been measured for pure propane (C3H8). These cross sections cover the 2550-3500 cm-1 region at five temperatures (from 296 to 700 K) and were measured using a Fourier transform spectrometer and a quartz cell heated by a tube furnace. Calibrations were made by comparison to the integrated cross sections of propane from the Pacific Northwest National Laboratory. These are the first high resolution absorption cross sections of propane for the 3 μm region at elevated temperatures. The cross sections provided may be used to monitor propane in combustion environments and in astronomical sources such as the auroral regions of Jupiter, brown dwarfs and exoplanets.

  9. High and Low Resolution Textured Models of Complex Architectural Surfaces

    Science.gov (United States)

    Stathopoulou, E. K.; Valanis, A.; Lerma, J. L.; Georgopoulos, A.

    2011-09-01

    During the recent years it has become obvious that 3D technology, applied mainly with the use of terrestrial laser scanners (TLS) is the most suitable technique for the complete geometric documentation of complex objects, whether they are monuments or architectural constructions in general. However, it is rather a challenging task to convert an acquired point cloud into a realistic 3D polygonal model that can simultaneously satisfy high resolution modeling and visualization demands. The aim of the visualization of a simple or complex object is to create a 3D model that best describes the reality within the computer environment. This paper is dedicated especially in the visualization of a complex object's 3D model, through high, as well as low resolution textured models. The object of interest for this study was the Almoina (Romanesque) Door of the Cathedral of Valencia in Spain.

  10. Spatial Ensemble Postprocessing of Precipitation Forecasts Using High Resolution Analyses

    Science.gov (United States)

    Lang, Moritz N.; Schicker, Irene; Kann, Alexander; Wang, Yong

    2017-04-01

    Ensemble prediction systems are designed to account for errors or uncertainties in the initial and boundary conditions, imperfect parameterizations, etc. However, due to sampling errors and underestimation of the model errors, these ensemble forecasts tend to be underdispersive, and to lack both reliability and sharpness. To overcome such limitations, statistical postprocessing methods are commonly applied to these forecasts. In this study, a full-distributional spatial post-processing method is applied to short-range precipitation forecasts over Austria using Standardized Anomaly Model Output Statistics (SAMOS). Following Stauffer et al. (2016), observation and forecast fields are transformed into standardized anomalies by subtracting a site-specific climatological mean and dividing by the climatological standard deviation. Due to the need of fitting only a single regression model for the whole domain, the SAMOS framework provides a computationally inexpensive method to create operationally calibrated probabilistic forecasts for any arbitrary location or for all grid points in the domain simultaneously. Taking advantage of the INCA system (Integrated Nowcasting through Comprehensive Analysis), high resolution analyses are used for the computation of the observed climatology and for model training. The INCA system operationally combines station measurements and remote sensing data into real-time objective analysis fields at 1 km-horizontal resolution and 1 h-temporal resolution. The precipitation forecast used in this study is obtained from a limited area model ensemble prediction system also operated by ZAMG. The so called ALADIN-LAEF provides, by applying a multi-physics approach, a 17-member forecast at a horizontal resolution of 10.9 km and a temporal resolution of 1 hour. The performed SAMOS approach statistically combines the in-house developed high resolution analysis and ensemble prediction system. The station-based validation of 6 hour precipitation sums

  11. High Resolution Aircraft Scanner Mapping of Geothermal and Volcanic Areas

    Energy Technology Data Exchange (ETDEWEB)

    Mongillo, M.A.; Cochrane, G.R.; Wood, C.P.; Shibata, Y.

    1995-01-01

    High spectral resolution GEOSCAN Mkll multispectral aircraft scanner imagery has been acquired, at 3-6 m spatial resolutions, over much of the Taupo Volcanic Zone as part of continuing investigations aimed at developing remote sensing techniques for exploring and mapping geothermal and volcanic areas. This study examined the 24-band: visible, near-IR (NIR), mid-IR (MIR) and thermal-IR (TIR) imagery acquired over Waiotapu geothermal area (3 m spatial resolution) and White Island volcano (6 m resolution). Results show that color composite images composed of visible and NIR wavelengths that correspond to color infrared (CIR) photographic wavelengths can be useful for distinguishing among bare ground, water and vegetation features and, in certain cases, for mapping various vegetation types. However, combinations which include an MIR band ({approx} 2.2 {micro}m) with either visible and NIR bands, or two NIR bands, are the most powerful for mapping vegetation types, water bodies, and bare and hydrothermally altered ground. Combinations incorporating a daytime TIR band with NIR and MIR bands are also valuable for locating anomalously hot features and distinguishing among different types of surface hydrothermal alteration.

  12. A high resolution cavity BPM for the CLIC Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Chritin, N.; Schmickler, H.; Soby, L.; /CERN; Lunin, A.; Solyak, N.; Wendt, M.; Yakovlev, V.; /Fermilab

    2010-08-01

    In frame of the development of a high resolution BPM system for the CLIC Main Linac we present the design of a cavity BPM prototype. It consists of a waveguide loaded dipole mode resonator and a monopole mode reference cavity, both operating at 15 GHz, to be compatible with the bunch frequencies at the CLIC Test Facility. Requirements, design concept, numerical analysis, and practical considerations are discussed.

  13. High-Resolution Wind Measurements for Offshore Wind Energy Development

    Science.gov (United States)

    Nghiem, Son V.; Neumann, Gregory

    2011-01-01

    A mathematical transform, called the Rosette Transform, together with a new method, called the Dense Sampling Method, have been developed. The Rosette Transform is invented to apply to both the mean part and the fluctuating part of a targeted radar signature using the Dense Sampling Method to construct the data in a high-resolution grid at 1-km posting for wind measurements over water surfaces such as oceans or lakes.

  14. High resolution solar soft X-ray spectrometer

    Institute of Scientific and Technical Information of China (English)

    ZHANG Fei; WANG Huan-Yu; PENG Wen-Xi; LIANG Xiao-Hua; ZHANG Chun-Lei; CAO Xue-Lei; JIANG Wei-Chun; ZHANG Jia-Yu; CUI Xing-Zhu

    2012-01-01

    A high resolution solar soft X-ray spectrometer (SOX) payload onboard a satellite is developed.A silicon drift detector (SDD) is adopted as the detector of the SOX spectrometer.The spectrometer consists of the detectors and their readout electronics,a data acquisition unit and a payload data handling unit.A ground test system is also developed to test SOX.The test results show that the design goals of the spectrometer system have been achieved.

  15. High resolution bathymetry of China seas and their surroundings

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on the oceanic lithospheric flexure and the worldwide bathymetric data ETOPO5, the high resolu tion bathymetry of the China seas and their surroundings is computed from altimeter derived gravity anomalies. The new bathymetry obtained by this study is higher resolution and accuracy than the widely used ETOPO5 data, mean while it shows clearly the seafioor, the tectonic characteristics and the geodynamical processes in the China seas.

  16. High-resolution x-ray photoemission spectra of silver

    DEFF Research Database (Denmark)

    Barrie, A.; Christensen, N. E.

    1976-01-01

    An electron spectrometer fitted with an x-ray monochromator for Al Kα1,2 radiation (1486.6 eV) has been used to record high-resolution x-ray photoelectron spectra for the 4d valence band as well as the 3d spin doublet in silver. The core-level spectrum has a line shape that can be described...

  17. High resolution inelastic electron scattering and nuclear structure

    Science.gov (United States)

    Blok, H. B.; Heisenberg, J. H.

    Thanks to the improved characteristics of the experimental set-up electron scattering has become an excellent tool to study the structure of the nucleus. After describing globally how the nuclear structure enters in the formalism of (e,e') reactions and how the high experimental resolution is obtained, several examples of the use of electron scattering for the study of specific nuclear structure questions are discussed.

  18. Tuberculous otitis media: findings on high-resolution CT

    Energy Technology Data Exchange (ETDEWEB)

    Lungenschmid, D. [Dept. of Radiodiagnostics, University Hospital Innsbruck (Austria)]|[Dept. of Magnetic Resonance and Spectroscopy, University Hospital of Innsbruck (Austria); Buchberger, W. [Dept. of Radiodiagnostics, University Hospital Innsbruck (Austria)]|[Dept. of Magnetic Resonance and Spectroscopy, University Hospital of Innsbruck (Austria); Schoen, G. [Dept. of Radiodiagnostics, University Hospital Innsbruck (Austria); Schoepf, R. [Radiologic Inst., Landeck (Austria); Mihatsch, T. [Dept. of Oto-Rhino-Laryngology, University Hospital of Innsbruck (Austria); Birbamer, G. [Dept. of Magnetic Resonance and Spectroscopy, University Hospital of Innsbruck (Austria); Wicke, K. [Inst. of Computed Tomography, University Hospital of Innsbruck (Austria)

    1993-12-01

    We describe two cases of tuberculous otitis media studied with high-resolution computed tomography (CT). Findings included extensive soft tissue densities with fluid levels in the tympanic cavity, the antrum, the mastoid and petrous air cells. Multifocal bony erosions and reactive bone sclerosis were seen as well. CT proved valuable for planning therapy by accurately displaying the involvement of the various structures of the middle and inner ear. However, the specific nature of the disease could only be presumed. (orig.)

  19. Fusion Experiments of HSI and High Resolution Panchromatic Imagery

    Science.gov (United States)

    2007-11-02

    map derived from the unsharpened HSI. The classification is performed with an unsupervised feature extraction using principal component analysis (PCA... Classification of Hyperspectral Data in Urban Area", P. 169-172, SPIE Vol.3502 8. R. C. Gonzalez, P. Wintz, Digital Image Processing, Addison-Wesley...MA 02420-9185 Abstract In this paper, the fusion of hyperspectral imaging (HSI) sensor data and high-resolution panchromatic imagery (HPI) is

  20. Optical alignment of high resolution Fourier transform spectrometers

    Science.gov (United States)

    Breckinridge, J. B.; Ocallaghan, F. G.; Cassie, A. G.

    1980-01-01

    Remote sensing, high resolution FTS instruments often contain three primary optical subsystems: Fore-Optics, Interferometer Optics, and Post, or Detector Optics. We discuss the alignment of a double-pass FTS containing a cat's-eye retro-reflector. Also, the alignment of fore-optics containing confocal paraboloids with a reflecting field stop which relays a field image onto a camera is discussed.