Sample records for high density case

  1. Longitudinal high-density EMG classification: Case study in a glenohumeral TMR subject. (United States)

    Schweisfurth, Meike A; Ernst, Jennifer; Vujaklija, Ivan; Schilling, Arndt F; Farina, Dario; Aszmann, Oskar C; Felmerer, Gunther


    Targeted muscle reinnervation (TMR) represents a breakthrough interface for prosthetic control in high-level upper-limb amputees. However, clinically, it is still limited to the direct motion-wise control restricted by the number of reinnervation sites. Pattern recognition may overcome this limitation. Previous studies on EMG classification in TMR patients experienced with myocontrol have shown greater accuracy when using high-density (HD) recordings compared to conventional single-channel derivations. This case study investigates the potential of HD-EMG classification longitudinally over a period of 17 months post-surgery in a glenohumeral amputee. Five experimental sessions, separated by approximately 3 months, were performed. They were timed during a standard rehabilitation protocol that included intensive physio- and occupational therapy, myosignal training, and routine use of the final myoprosthesis. The EMG signals recorded by HD-EMG grids were classified into 12 classes. The first sign of EMG activity was observed in the second experimental session. The classification accuracy over 12 classes was 76% in the third session and ∼95% in the last two sessions. When using training and testing sets that were acquired with a 1-h time interval in between, a much lower accuracy (32%, Session 4) was obtained, which improved upon prosthesis usage (Session 5, 67%). The results document the improvement in EMG classification accuracy throughout the TMR-rehabilitation process.

  2. Earthworks logistics in the high density urban development conditions – case study (United States)

    Sobotka, A.; Blajer, M.


    Realisation of the construction projects on highly urbanised areas carries many difficulties and logistic problems. Earthworks conducted in such conditions constitute a good example of how important it is to properly plan the works and use the technical means of the logistics infrastructure. The construction processes on the observed construction site, in combination with their external logistics service are a complex system, difficult for mathematical modelling and achievement of appropriate data for planning the works. The paper shows describe and analysis of earthworks during construction of the Centre of Power Engineering of AGH in Krakow for two stages of a construction project. At the planning stage in the preparatory phase (before realization) and in the implementation phase of construction works (foundation). In the first case, an example of the use of queuing theory for prediction of excavation time under random work conditions of the excavator and the associated trucks is provided. In the second case there is a change of foundation works technology resulting as a consequence of changes in logistics earthworks. Observation of the construction has confirmed that the use of appropriate methods of construction works management, and in this case agile management, the time and cost of the project have not been exceeded. The success of a project depends on the ability of the contractor to react quickly when changes occur in the design, technology, environment, etc.

  3. Case Study: an accelerated 8-day monoclonal antibody production process based on high seeding densities. (United States)

    Padawer, Ishai; Ling, Wai Lam W; Bai, Yunling


    This study describes the development work to shorten the monoclonal antibody (mAb) production time in CHO cell cultures from 14 days to 8 days without impacting mAb titer or product quality. The proposed process increases cell inoculation densities up to 25× higher than a typical seeding density in the final production bioreactor, with the implementation of an ATF™ perfusion system in the N - 1 stage. Similar antibody titer and N-glycosylation profiles were reached in 8 days using the 25× seed condition, as in 14 days using the 1× seed condition. Acidic variants in the 25× seed condition were 12-20% lower than the 1× seed condition. These results indicate that an accelerated 8-day antibody production process utilizing a 25× seeding strategy has the potential of achieving similar product quality and titer as the 1× seeding condition in a 14-day production process. © 2013 American Institute of Chemical Engineers.

  4. Therapeutic High-Density Barium Enema in a Case of Presumed Diverticular Hemorrhage

    Directory of Open Access Journals (Sweden)

    Nonthalee Pausawasdi


    Full Text Available Many patients with lower gastrointestinal bleeding do not have an identifiable source of bleeding at colonoscopy. A significant percentage of these patients will have recurrent bleeding. In many patients, the presence of multiple diverticula leads to a diagnosis of presumed diverticular bleeding. Current treatment options include therapeutic endoscopy, angiography, or surgical resection, all of which depend on the identification of the diverticular source of bleeding. This report describes a case of recurrent bleeding in an elderly patient with diverticula but no identifiable source treated successfully with barium impaction therapy. This therapeutic modality does not depend on the identification of the bleeding diverticular lesion and was well tolerated by our 86-year-old patient.

  5. Triple X syndrome in a patient with partial lipodystrophy discovered using a high-density oligonucleotide microarray: a case report

    Directory of Open Access Journals (Sweden)

    Lanktree Matthew B


    Full Text Available Abstract Introduction Patients with lipodystrophy experience selective or generalized atrophy of adipose tissue. The disruption of lipid metabolism results in an increased risk for development of metabolic syndrome and coronary artery disease. Currently, the mutations responsible for approximately half of lipodystrophy patients are known, but new techniques and examination of different types of genetic variation may identify new disease-causing mechanisms. Case presentation A 53-year-old woman of African descent was referred to a tertiary care endocrinology clinic for treatment of severe insulin resistance, treatment-resistant hypertension and dyslipidemia. After all known lipodystrophy-causing mutations were excluded by DNA sequencing, the patient was found to have triple X syndrome after an initial investigation into copy number variation using a high-density oligonucleotide microarray. The patient also had a previously unobserved duplication of 415 kilobases of chromosome 5q33.2. This is the first case report of a patient with lipodystrophy who also had triple X syndrome. Conclusion While we cannot make a direct link between the presence of triple X syndrome and partial lipodystrophy, if unrelated, this is an extremely rare convergence of syndromes. This patient poses an interesting possibility regarding the influence triple X syndrome may have on an individual with other underlying lipodystrophy susceptibility. Finally, impending large-scale case-control and cohort copy number variation investigations will, as a by-product, further document the prevalence of triple X syndrome in various patient groups.

  6. Recognize PM2.5 sources and emission patterns via high-density sensor network: An application case in Beijing (United States)

    Ba, Yu tao; xian Liu, Bao; Sun, Feng; Wang, Li hua; Zhang, Da wei; Yin, Wen jun


    Beijing suffered severe air pollution during wintertime, 2016, with the unprecedented high level pollutants monitored. As the most dominant pollutant, fine particulate matter (PM2.5) was measured via high-density sensor network (>1000 fixed monitors across 16000 km2 area). This campaign provided precise observations (spatial resolution ≈ 3 km, temporal resolution = 10 min, error of measure pollution campaigns.

  7. High Energy Density Capacitors Project (United States)

    National Aeronautics and Space Administration — NASA?s future space science missions cannot be realized without the state of the art energy storage devices which require high energy density, high reliability, and...

  8. High Energy Density Laboratory Astrophysics

    CERN Document Server

    Lebedev, Sergey V


    During the past decade, research teams around the world have developed astrophysics-relevant research utilizing high energy-density facilities such as intense lasers and z-pinches. Every two years, at the International conference on High Energy Density Laboratory Astrophysics, scientists interested in this emerging field discuss the progress in topics covering: - Stellar evolution, stellar envelopes, opacities, radiation transport - Planetary Interiors, high-pressure EOS, dense plasma atomic physics - Supernovae, gamma-ray bursts, exploding systems, strong shocks, turbulent mixing - Supernova remnants, shock processing, radiative shocks - Astrophysical jets, high-Mach-number flows, magnetized radiative jets, magnetic reconnection - Compact object accretion disks, x-ray photoionized plasmas - Ultrastrong fields, particle acceleration, collisionless shocks. These proceedings cover many of the invited and contributed papers presented at the 6th International Conference on High Energy Density Laboratory Astrophys...

  9. High-density multicore fibers

    DEFF Research Database (Denmark)

    Takenaga, K.; Matsuo, S.; Saitoh, K.


    High-density single-mode multicore fibers were designed and fabricated. A heterogeneous 30-core fiber realized a low crosstalk of −55 dB. A quasi-single-mode homogeneous 31-core fiber attained the highest core count as a single-mode multicore fiber.......High-density single-mode multicore fibers were designed and fabricated. A heterogeneous 30-core fiber realized a low crosstalk of −55 dB. A quasi-single-mode homogeneous 31-core fiber attained the highest core count as a single-mode multicore fiber....

  10. High density matter at RHIC

    Indian Academy of Sciences (India)

    Keywords. Quark-gluon plasma; relativistic heavy ion physics; relativistic heavy ion collider ... matter and a quark-gluon plasma at high energy density. The relativistic heavy ion collider (RHIC) at Brookhaven National Laboratory is a new facility dedicated to the experimental study of matter under extreme conditions. Already ...

  11. High energy density aluminum battery (United States)

    Brown, Gilbert M.; Paranthaman, Mariappan Parans; Dai, Sheng; Dudney, Nancy J.; Manthiram, Arumugan; McIntyre, Timothy J.; Sun, Xiao-Guang; Liu, Hansan


    Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a material capable of intercalating aluminum or lithium ions during a discharge cycle and deintercalating the aluminum or lithium ions during a charge cycle. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of aluminum or lithium at the cathode.

  12. Forensic pathological evaluation of postmortem pulmonary CT high-density areas in serial autopsy cases of sudden cardiac death. (United States)

    Michiue, Tomomi; Ishikawa, Takaki; Oritani, Shigeki; Kamikodai, Yasunobu; Tsuda, Kohei; Okazaki, Shuji; Maeda, Hitoshi


    Previous studies suggested substantial postmortem interference with pulmonary CT findings. The present study evaluated postmortem CT (PM-CT) morphology of the lung, compared with histology, in autopsy cases of sudden cardiac death without recovery from cardiac arrest (SCD, n=22) with regard to the posture at the time of death and postmortem interference from a forensic pathological viewpoint. In witnessed cases (n=5), a case of SCD in a prone position had anterior consolidation with weak hypostatic opacification in the posterior about 18 h later. Among unwitnessed deaths (n=17), 8 cases of death lying prone, sitting facedown and lying laterally had possible gravity-dependent opacity about 15-38 h postmortem. Hypostatic opacification with 'niveau' formation was not evident in more than half of the cases (n=15). Histological findings for ground glass opacification and consolidation on PM-CT varied by case, involving intraalveolar edema and hemorrhages, accompanied by marked congestion; however, possible postmortem hypostatic opacification mostly represented intraalveolar edema. CT morphology of acute pulmonary congestion in SCD may often remain without serious postmortem interference in cases without clinical intervention involving massive fluid infusion, suggesting plain PM-CT findings of the lung to be useful for investigating the death process when combined with histology; however, the possible influence of the hydration status of the lungs at the time of death should be assessed by evaluation of CT and autopsy findings. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Models for Experimental High Density Housing (United States)

    Bradecki, Tomasz; Swoboda, Julia; Nowak, Katarzyna; Dziechciarz, Klaudia


    The article presents the effects of research on models of high density housing. The authors present urban projects for experimental high density housing estates. The design was based on research performed on 38 examples of similar housing in Poland that have been built after 2003. Some of the case studies show extreme density and that inspired the researchers to test individual virtual solutions that would answer the question: How far can we push the limits? The experimental housing projects show strengths and weaknesses of design driven only by such indexes as FAR (floor attenuation ratio - housing density) and DPH (dwellings per hectare). Although such projects are implemented, the authors believe that there are reasons for limits since high index values may be in contradiction to the optimum character of housing environment. Virtual models on virtual plots presented by the authors were oriented toward maximising the DPH index and DAI (dwellings area index) which is very often the main driver for developers. The authors also raise the question of sustainability of such solutions. The research was carried out in the URBAN model research group (Gliwice, Poland) that consists of academic researchers and architecture students. The models reflect architectural and urban regulations that are valid in Poland. Conclusions might be helpful for urban planners, urban designers, developers, architects and architecture students.

  14. High Energy Density Electrolytic Capacitor (United States)

    Evans, David A.


    A new type of electrolytic capacitor which combines an electrolytic capacitor anode with an electrochemical capacitor cathode was developed. The resulting capacitor has a four time higher energy density than standard electrolytic capacitors, with comparable electric performance. The prototype, a 480 microFarad, 200 V device, has an energy density exceeding 4 J/cc. Now a 680 microFarad 50 V, MIL-style all tantalum device has been constructed and is undergoing qualification testing. Pending a favorable outcome, work will begin on other ratings. The potential for commercially significant development exists in applying this technology to aluminum-based electrolytic capacitors. It is possible to at least double the energy density of aluminum electrolytics, while using existing manufacturing methods, and without adding material expense. Data presented include electrical characteristics and performance measurements of the 200 V and 50 V hybrid capacitors and results from ongoing qualification testing of the MIL-style tantalum capacitors.

  15. High-density lipoprotein cholesterol: How High

    Directory of Open Access Journals (Sweden)

    G Rajagopal


    Full Text Available The high-density lipoprotein cholesterol (HDL-C is considered anti-atherogenic good cholesterol. It is involved in reverse transport of lipids. Epidemiological studies have found inverse relationship of HDL-C and coronary heart disease (CHD risk. When grouped according to HDL-C, subjects having HDL-C more than 60 mg/dL had lesser risk of CHD than those having HDL-C of 40-60 mg/dL, who in turn had lesser risk than those who had HDL-C less than 40 mg/dL. No upper limit for beneficial effect of HDL-C on CHD risk has been identified. The goals of treating patients with low HDL-C have not been firmly established. Though many drugs are known to improve HDL-C concentration, statins are proven to improve CHD risk and mortality. Cholesteryl ester transfer protein (CETP is involved in metabolism of HDL-C and its inhibitors are actively being screened for clinical utility. However, final answer is still awaited on CETP-inhibitors.

  16. High Density Fuel Development for Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Daniel Wachs; Dennis Keiser; Mitchell Meyer; Douglas Burkes; Curtis Clark; Glenn Moore; Jan-Fong Jue; Totju Totev; Gerard Hofman; Tom Wiencek; Yeon So Kim; Jim Snelgrove


    An international effort to develop, qualify, and license high and very high density fuels has been underway for several years within the framework of multi-national RERTR programs. The current development status is the result of significant contributions from many laboratories, specifically CNEA in Argentina, AECL in Canada, CEA in France, TUM in Germany, KAERI in Korea, VNIIM, RDIPE, IPPE, NCCP and RIARR in Russia, INL, ANL and Y-12 in USA. These programs are mainly engaged with UMo dispersion fuels with densities from 6 to 8 gU/cm3 (high density fuel) and UMo monolithic fuel with density as high as 16 gU/cm3 (very high density fuel). This paper, mainly focused on the French & US programs, gives the status of high density UMo fuel development and perspectives on their qualification.

  17. Isolated low high density lipoprotein-cholesterol (HDL-C: implications of global risk reduction. Case report and systematic scientific review

    Directory of Open Access Journals (Sweden)

    Tyagi Suresh C


    Full Text Available Abstract Background The importance of low high-density lipoprotein cholesterol (HDL-C, elevated non HDL-C (as part of the metabolic syndrome, prediabetes, and type 2 diabetes mellitus, and an isolated low HDL-C is rapidly emerging. The antiatherosclerotic roles of reverse cholesterol transport and the pleiotropic antioxidant – anti-inflammatory mechanistic effects of HDL-C are undergoing rapid exponential growth. Case presentation In 1997 a 53-year-old Caucasian male presented with a lipoprotein profile of many years duration with an isolated low HDL-C and uric acid levels in the upper quintile of normal. He developed an acute myocardial infarction involving the right coronary artery and had percutaneous transluminal coronary angioplasty with stenting of this lesion. He also demonstrated a non-critical non-flow limiting lesion of the proximal left anterior descending coronary artery at the time of this evaluation. Following a program of global risk reduction this patient has done well over the past 7 years and remains free of any clinical signs and symptoms of atherosclerosis. His HDL-C and uric acid levels are currently in the normal physiological range. Conclusion Low HDL-C and isolated low HDL-C constitute an important risk factor for atherosclerosis. Therapies that lead to a return to normal physiologic range of HDL-C may result in the delay of atherosclerotic progression.

  18. High Energy Density Capacitors Project (United States)

    National Aeronautics and Space Administration — Capacitor size and reliability are often limiting factors in pulse power, high speed switching, and power management and distribution (PMAD) systems. T/J...

  19. Electronic DC transformer with high power density

    NARCIS (Netherlands)

    Pavlovský, M.


    This thesis is concerned with the possibilities of increasing the power density of high-power dc-dc converters with galvanic isolation. Three cornerstones for reaching high power densities are identified as: size reduction of passive components, reduction of losses particularly in active components

  20. Double trouble at high density:

    DEFF Research Database (Denmark)

    Gergs, André; Palmqvist, Annemette; Preuss, Thomas G


    regardless of resource availability, referred to as crowding. Animals are able to adapt to resource shortages by exhibiting a repertoire of life history and physiological plasticities. In addition to resource-related plasticity, crowding might lead to reduced fitness, with consequences for individual life...... history. We explored how different mechanisms behind resource-related plasticity and crowding-related fitness act independently or together, using the water flea Daphnia magna as a case study. For testing hypotheses related to mechanisms of plasticity and crowding stress across different biological levels......, we used an individual-based population model that is based on dynamic energy budget theory. Each of the hypotheses, represented by a sub-model, is based on specific assumptions on how the uptake and allocation of energy are altered under conditions of resource shortage or crowding. For cross...

  1. High regression rate, high density hybrid fuels Project (United States)

    National Aeronautics and Space Administration — This SBIR program will investigate high energy density novel nanofuels combined with high density binders for use with an N2O oxidizer. Terves has developed...

  2. Irradiation test of high density Si material

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Man Soon; Choo, Kee Nam; Lee, Chul Yong; Yang, Seong Woo; Shim, Kyue Taek; Park, Sang Jun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)


    The feasibility of irradiation test for the high-density Si material entrusted by Guju Inc. was reviewed. The high density Si material is used for a sealing of the penetration holes of piping at the nuclear power plants. The irradiation test was performed and the density changes between before and after irradiation test were measured. The irradiation tests were performed 2 times for 1 day and 20 days at IP 4 hole of HANARO. The 3 Si specimens irradiated were without flaws and the density changes after irradiation were successfully measured. The result satisfies the requirement of the design specification.

  3. High energy density lithium batteries

    CERN Document Server

    Aifantis, Katerina E; Kumar, R Vasant


    Cell phones, portable computers and other electronic devices crucially depend on reliable, compact yet powerful batteries. Therefore, intensive research is devoted to improving performance and reducing failure rates. Rechargeable lithium-ion batteries promise significant advancement and high application potential for hybrid vehicles, biomedical devices, and everyday appliances. This monograph provides special focus on the methods and approaches for enhancing the performance of next-generation batteries through the use of nanotechnology. Deeper understanding of the mechanisms and strategies is

  4. Importing low-density ideas to high-density revitalisation

    DEFF Research Database (Denmark)

    Arnholtz, Jens; Ibsen, Christian Lyhne; Ibsen, Flemming


    Why did union officials from a high-union-density country like Denmark choose to import an organising strategy from low-density countries such as the US and the UK? Drawing on in-depth interviews with key union officials and internal documents, the authors of this article argue two key points....... First, rather than unions settling for a semi-automatic response to membership decline, the ‘organising model’ was actively imported as a strategic tool for challenging alternative responses to membership decline. Second, the organising model was actively translated into a Danish context and most unions...... cherry-pick some elements while leaving fundamental aspects out. The study nevertheless indicates that a lack of coherency and model-fit to Danish industrial relations might hamper the positive effects of the organising strategy....

  5. Institute for High Energy Density Science

    Energy Technology Data Exchange (ETDEWEB)

    Wootton, Alan [Univ. of Texas, Austin, TX (United States)


    The project objective was for the Institute of High Energy Density Science (IHEDS) at the University of Texas at Austin to help grow the High Energy Density (HED) science community, by connecting academia with the Z Facility (Z) and associated staff at Sandia National Laboratories (SNL). IHEDS was originally motivated by common interests and complementary capabilities at SNL and the University of Texas System (UTX), in 2008.

  6. Association between plasma triglycerides and high-density lipoprotein cholesterol and microvascular kidney disease and retinopathy in type 2 diabetes mellitus: a global case-control study in 13 countries. (United States)

    Sacks, Frank M; Hermans, Michel P; Fioretto, Paola; Valensi, Paul; Davis, Timothy; Horton, Edward; Wanner, Christoph; Al-Rubeaan, Khalid; Aronson, Ronnie; Barzon, Isabella; Bishop, Louise; Bonora, Enzo; Bunnag, Pongamorn; Chuang, Lee-Ming; Deerochanawong, Chaicharn; Goldenberg, Ronald; Harshfield, Benjamin; Hernández, Cristina; Herzlinger-Botein, Susan; Itoh, Hiroshi; Jia, Weiping; Jiang, Yi-Der; Kadowaki, Takashi; Laranjo, Nancy; Leiter, Lawrence; Miwa, Takashi; Odawara, Masato; Ohashi, Ken; Ohno, Atsushi; Pan, Changyu; Pan, Jiemin; Pedro-Botet, Juan; Reiner, Zeljko; Rotella, Carlo Maria; Simo, Rafael; Tanaka, Masami; Tedeschi-Reiner, Eugenia; Twum-Barima, David; Zoppini, Giacomo; Carey, Vincent J


    Microvascular renal and retinal diseases are common major complications of type 2 diabetes mellitus. The relation between plasma lipids and microvascular disease is not well established. The case subjects were 2535 patients with type 2 diabetes mellitus with an average duration of 14 years, 1891 of whom had kidney disease and 1218 with retinopathy. The case subjects were matched for diabetes mellitus duration, age, sex, and low-density lipoprotein cholesterol to 3683 control subjects with type 2 diabetes mellitus who did not have kidney disease or retinopathy. The study was conducted in 24 sites in 13 countries. The primary analysis included kidney disease and retinopathy cases. Matched analysis was performed by use of site-specific conditional logistic regression in multivariable models that adjusted for hemoglobin A1c, hypertension, and statin treatment. Mean low-density lipoprotein cholesterol concentration was 2.3 mmol/L. The microvascular disease odds ratio increased by a factor of 1.16 (95% confidence interval, 1.11-1.22) for every 0.5 mmol/L (≈1 quintile) increase in triglycerides or decreased by a factor of 0.92 (0.88-0.96) for every 0.2 mmol/L (≈1 quintile) increase in high-density lipoprotein cholesterol. For kidney disease, the odds ratio increased by 1.23 (1.16-1.31) with triglycerides and decreased by 0.86 (0.82-0.91) with high-density lipoprotein cholesterol. Retinopathy was associated with triglycerides and high-density lipoprotein cholesterol in matched analysis but not significantly after additional adjustment. Diabetic kidney disease is associated worldwide with higher levels of plasma triglycerides and lower levels of high-density lipoprotein cholesterol among patients with good control of low-density lipoprotein cholesterol. Retinopathy was less robustly associated with these lipids. These results strengthen the rationale for studying dyslipidemia treatment to prevent diabetic microvascular disease.

  7. Strongly Interacting Matter at High Energy Density

    Energy Technology Data Exchange (ETDEWEB)



    This lecture concerns the properties of strongly interacting matter (which is described by Quantum Chromodynamics) at very high energy density. I review the properties of matter at high temperature, discussing the deconfinement phase transition. At high baryon density and low temperature, large N{sub c} arguments are developed which suggest that high baryonic density matter is a third form of matter, Quarkyonic Matter, that is distinct from confined hadronic matter and deconfined matter. I finally discuss the Color Glass Condensate which controls the high energy limit of QCD, and forms the low x part of a hadron wavefunction. The Glasma is introduced as matter formed by the Color Glass Condensate which eventually thermalizes into a Quark Gluon Plasma.

  8. The high density Z-pinch

    Energy Technology Data Exchange (ETDEWEB)

    McCall, G.H.


    During the past few years techniques have been developed for producing pinches in solid deuterium. The conditions which exist in these plasmas are quiet different from those produced earlier. The pinch is formed from a fiber of solid deuterium rather than from a low density gas, and the current is driven by a low impedance, high voltage pulse generator. Because of the high initial density, it is not necessary to compress the pinch to reach thermonuclear conditions, and the confinement time required for energy production is much shorter than for a gas. The experimental results, which have been verified by experiments performed at higher current were quite surprising and encouraging. The pinch appeared to be stable for a time much longer than the Alfven radial transit time. In this paper, however, I argue that the pinch is not strictly stable, but it does not appear to disassemble in a catastrophic fashion. It appears that there may be a distinction between stability and confinement in the high density pinch. In the discussion below I will present the status of the high density Z-pinch experiments at laboratories around the world, and I will describe some of the calculational and experimental results. I will confine my remarks to recent work on the high density pinch. 17 refs. 10 figs.

  9. High Density Methane Storage in Nanoporous Carbon (United States)

    Rash, Tyler; Dohnke, Elmar; Soo, Yuchoong; Maland, Brett; Doynov, Plamen; Lin, Yuyi; Pfeifer, Peter; Mriglobal Collaboration; All-Craft Team


    Development of low-pressure, high-capacity adsorbent based storage technology for natural gas (NG) as fuel for advanced transportation (flat-panel tank for NG vehicles) is necessary in order to address the temperature, pressure, weight, and volume constraints present in conventional storage methods (CNG & LNG.) Subcritical nitrogen adsorption experiments show that our nanoporous carbon hosts extended narrow channels which generate a high surface area and strong Van der Waals forces capable of increasing the density of NG into a high-density fluid. This improvement in storage density over compressed natural gas without an adsorbent occurs at ambient temperature and pressures ranging from 0-260 bar (3600 psi.) The temperature, pressure, and storage capacity of a 40 L flat-panel adsorbed NG tank filled with 20 kg of nanoporous carbon will be featured.

  10. Magnetization of High Density Hadronic Fluid

    DEFF Research Database (Denmark)

    Bohr, Henrik; Providencia, Constanca; da Providencia, João


    In the present paper the magnetization of a high density relativistic fluid of elementary particles is studied. At very high densities, such as may be found in the interior of a neutron star, when the external magnetic field is gradually increased, the energy of the normal phase of the fluid...... of the magnetization is derived by first considering and solving the Dirac equation of a fermion in interaction with a magnetic field and with a chiral sigma-pion pair. The solution provides the energies of single-particle states. The energy of the system is found by summing up contributions from all particles...

  11. Spin polarization in high density quark matter

    DEFF Research Database (Denmark)

    Bohr, Henrik; Panda, Prafulla K.; Providênci, Constanca


    We investigate the occurrence of a ferromagnetic phase transition in high density hadronic matter (e.g., in the interior of a neutron star). This could be induced by a four-fermion interaction analogous to the one which is responsible for chiral symmetry breaking in the Nambu-Jona-Lasinio model, ...

  12. Supernovae and high density nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Kahana, S.


    The role of the nuclear equation of state (EOS) in producing prompt supernova explosions is examined. Results of calculations of Baron, Cooperstein, and Kahana incorporating general relativity and a new high density EOS are presented, and the relevance of these calculations to laboratory experiments with heavy ions considered. 31 refs., 6 figs., 2 tabs.

  13. High Density GEOSAT/GM Altimeter Data (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The high density Geosat/GM altimeter data south of 30 S have finally arrived. In addition, ERS-1 has completed more than 6 cycles of its 35-day repeat track. These...

  14. The usefulness of total cholesterol and high density lipoprotein ...

    African Journals Online (AJOL)

    Objective: To determine the usefulness of total cholesterol/high-density lipoprotein cholesterol and/or highdensity lipoprotein cholesterol/total cholesterol ratios in the interpretation of lipid profile result in clinical practice. Methods: This is a prospective case-control study involving 109 diabetics, 98 diabetic hypertensives, 102 ...

  15. Injection molding ceramics to high green densities (United States)

    Mangels, J. A.; Williams, R. M.


    The injection molding behavior of a concentrated suspension of Si powder in wax was studied. It was found that the injection molding behavior was a function of the processing techniques used to generate the powder. Dry ball-milled powders had the best molding behavior, while air classified and impact-milled powders demonstrated poorer injection moldability. The relative viscosity of these molding batches was studied as a function of powder properties: distribution shape, surface area, packing density, and particle morphology. The experimental behavior, in all cases, followed existing theories. The relative viscosity of an injection molding composition composed of dry ball-milled powders could be expressed using Farris' relation.


    CERN Multimedia

    The Addendum 1 to Volume 2 of the CMS Physics TDR has been published The Heavy-Ion analysis group completed the writing of a TDR summarizing the CMS plans in using heavy ion collisions to study high density QCD. The document was submitted to the LHCC in March and presented in the Open Session of the LHCC on May 9th. The study of heavy-ion physics at the LHC is promising to be very exciting. LHC will open a new energy frontier in ultra-relativistic heavy-ion physics. The collision energy of heavy nuclei at sNN = 5.5 TeV will be thirty times larger than what is presently available at RHIC. We will certainly probe quark and gluon matter at unprecedented values of energy density. The prime goal of this research programme is to study the fundamental theory of the strong interaction - Quantum Chromodynamics (QCD) - in extreme conditions of temperature, density and parton momentum fraction (low-x). Such studies, with impressive experimental and theoretical advances in recent years thanks to the wealth of high-qua...

  17. High density scintillating glass proton imaging detector (United States)

    Wilkinson, C. J.; Goranson, K.; Turney, A.; Xie, Q.; Tillman, I. J.; Thune, Z. L.; Dong, A.; Pritchett, D.; McInally, W.; Potter, A.; Wang, D.; Akgun, U.


    In recent years, proton therapy has achieved remarkable precision in delivering doses to cancerous cells while avoiding healthy tissue. However, in order to utilize this high precision treatment, greater accuracy in patient positioning is needed. An accepted approximate uncertainty of +/-3% exists in the current practice of proton therapy due to conversions between x-ray and proton stopping power. The use of protons in imaging would eliminate this source of error and lessen the radiation exposure of the patient. To this end, this study focuses on developing a novel proton-imaging detector built with high-density glass scintillator. The model described herein contains a compact homogeneous proton calorimeter composed of scintillating, high density glass as the active medium. The unique geometry of this detector allows for the measurement of both the position and residual energy of protons, eliminating the need for a separate set of position trackers in the system. Average position and energy of a pencil beam of 106 protons is used to reconstruct the image rather than by analyzing individual proton data. Simplicity and efficiency were major objectives in this model in order to present an imaging technique that is compact, cost-effective, and precise, as well as practical for a clinical setting with pencil-beam scanning proton therapy equipment. In this work, the development of novel high-density glass scintillator and the unique conceptual design of the imager are discussed; a proof-of-principle Monte Carlo simulation study is performed; preliminary two-dimensional images reconstructed from the Geant4 simulation are presented.

  18. High Spectral Density Optical Communication Technologies

    CERN Document Server

    Nakazawa, Masataka; Miyazaki, Tetsuya


    The latest hot topics of high-spectral density optical communication systems using digital coherent optical fibre communication technologies are covered by this book. History and meaning of a "renaissance" of the technology, requirements to the Peta-bit/s class "new generation network" are also covered in the first part of this book. The main topics treated are electronic and optical devices, digital signal processing including forward error correction, modulation formats as well as transmission and application systems. The book serves as a reference to researchers and engineers.

  19. High density circuit technology, part 1 (United States)

    Wade, T. E.

    The metal (or dielectric) lift-off processes used in the semiconductor industry to fabricate high density very large scale integration (VLSI) systems were reviewed. The lift-off process consists of depositing the light-sensitive material onto the wafer and patterning first in such a manner as to form a stencil for the interconnection material. Then the interconnection layer is deposited and unwanted areas are lifted off by removing the underlying stencil. Several of these lift-off techniques were examined experimentally. The use of an auxiliary layer of polyimide to form a lift-off stencil offers considerable promise.

  20. Beyond the local density approximation : improving density functional theory for high energy density physics applications.

    Energy Technology Data Exchange (ETDEWEB)

    Mattsson, Ann Elisabet; Modine, Normand Arthur; Desjarlais, Michael Paul; Muller, Richard Partain; Sears, Mark P.; Wright, Alan Francis


    A finite temperature version of 'exact-exchange' density functional theory (EXX) has been implemented in Sandia's Socorro code. The method uses the optimized effective potential (OEP) formalism and an efficient gradient-based iterative minimization of the energy. The derivation of the gradient is based on the density matrix, simplifying the extension to finite temperatures. A stand-alone all-electron exact-exchange capability has been developed for testing exact exchange and compatible correlation functionals on small systems. Calculations of eigenvalues for the helium atom, beryllium atom, and the hydrogen molecule are reported, showing excellent agreement with highly converged quantumMonte Carlo calculations. Several approaches to the generation of pseudopotentials for use in EXX calculations have been examined and are discussed. The difficult problem of finding a correlation functional compatible with EXX has been studied and some initial findings are reported.

  1. Some novel phenomena at high density (United States)

    Berkowitz, Evan Scott

    Astrophysical environments probe matter in ways impossible on Earth. In particular, matter in compact objects are extraordinarily dense. In this thesis we discuss two phenomena that may occur at high density. First, we study toroidal topological solitons called vortons, which can occur in the kaon-condensed color-flavor-locked phase of high-density quark matter, a candidate phase for the core of some neutron stars. We show that vortons have a large radius compared to their thickness if their electrical charge is on the order of 104 times the fundamental charge. We show that shielding of electric fields by electrons dramatically reduces the size of a vorton. Second, we study an unusual phase of degenerate electrons and nonrelativistic Bose-condensed helium nuclei that may exist in helium white dwarfs. We show that this phase supports a previously-unknown gapless mode, known as the half-sound, that radically alters the material's specific heat, and can annihilate into neutrinos. We provide evidence that this neutrino radiation is negligible compared to the star's surface photoemission.

  2. High density lipoproteins, 1978 -- an overview. (United States)

    Levy, R I


    High density lipoproteins (HDL) have come of age. For years it has been fashionable to study HDL as an approach to understanding lipoprotein structure and lipid binding. Available in abundant amounts from normal human plasma, readily separable into its individual lipid and soluble apolipoprotein components, HDL has provided much information for lipoprotein model building. Suddenly it has been thrust center stage clinically by a host of convincing epidemiologic studies that clearly establishes an inverse relationship between HDL levels and coronary vascular events. Biochemists, clinicians, cardiologists and epidemiologists are simultaneously focusing attention on HDL. Familial High Density Lipoprotein Deficiency (Tangier Disease) has been well described but is poorly understood as a clinical syndrome complex. We have suddenly become aware of how little we understand about HDL's normal ultracentrifugal and apoprotein heterogeneity, about its functional role(s) or the determinant(s) of its concentration in plasma. The relative contributions of the two sites of HDL origin, the liver and intestine, are yet to be determined as are the site(s) of degradation. Awareness of a problem and its importance is the first step toward the solution(s) of the problem.

  3. High energy density redox flow device

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Yet-Ming; Carter, Craig W.; Ho, Bryan Y.; Duduta, Mihai; Limthongkul, Pimpa


    Redox flow devices are described in which at least one of the positive electrode or negative electrode-active materials is a semi-solid or is a condensed ion-storing electroactive material, and in which at least one of the electrode-active materials is transported to and from an assembly at which the electrochemical reaction occurs, producing electrical energy. The electronic conductivity of the semi-solid is increased by the addition of conductive particles to suspensions and/or via the surface modification of the solid in semi-solids (e.g., by coating the solid with a more electron conductive coating material to increase the power of the device). High energy density and high power redox flow devices are disclosed. The redox flow devices described herein can also include one or more inventive design features. In addition, inventive chemistries for use in redox flow devices are also described.

  4. High power density carbonate fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Yuh, C.; Johnsen, R.; Doyon, J.; Allen, J. [Energy Research Corp., Danbury, CT (United States)


    Carbonate fuel cell is a highly efficient and environmentally clean source of power generation. Many organizations worldwide are actively pursuing the development of the technology. Field demonstration of multi-MW size power plant has been initiated in 1996, a step toward commercialization before the turn of the century, Energy Research Corporation (ERC) is planning to introduce a 2.85MW commercial fuel cell power plant with an efficiency of 58%, which is quite attractive for distributed power generation. However, to further expand competitive edge over alternative systems and to achieve wider market penetration, ERC is exploring advanced carbonate fuel cells having significantly higher power densities. A more compact power plant would also stimulate interest in new markets such as ships and submarines where space limitations exist. The activities focused on reducing cell polarization and internal resistance as well as on advanced thin cell components.

  5. A High Density ECRH Plasma Source (United States)

    Simon, M.; Rosenthal, G.; Kidd, P.; Wuerker, R.; Wong, A. Y.; Siciliano, E. R.


    An ECRH plasma source has been constructed within a 10 kG solenoid, using a 10 kW (max) of CW 10.6 GHz klystron amplifier. Vacuum base pressures are on the order of 10-7 torr. One kW of CW ECRH microwave power is sufficient to create a high density (10^12 cm-3) fully ionized pure calcium metal plasma, the maximum theoretically possible at 10.6 GHz. The electron temperature is around 10 eV. Neutral Ca is evaporated through the ECRH resonance zone from a thermal oven. Only ions (not neutrals) trapped by the field enter the main chamber, resulting in a fully ionized plasma. The source is useful for generating fully ionized pure plasmas from low melting point materinals. Work Supported by NSF PHY-94-21693

  6. Nanotechnology for Synthetic High Density Lipoproteins (United States)

    Luthi, Andrea J.; Patel, Pinal C.; Ko, Caroline H.; Mutharasan, R. Kannan; Mirkin, Chad A.; Thaxton, C. Shad


    Atherosclerosis is the disease mechanism responsible for coronary heart disease (CHD), the leading cause of death worldwide. One strategy to combat atherosclerosis is to increase the amount of circulating high density lipoproteins (HDL), which transport cholesterol from peripheral tissues to the liver for excretion. The process, known as reverse cholesterol transport, is thought to be one of the main reasons for the significant inverse correlation observed between HDL blood levels and the development of CHD. This article highlights the most common strategies for treating atherosclerosis using HDL. We further detail potential treatment opportunities that utilize nanotechnology to increase the amount of HDL in circulation. The synthesis of biomimetic HDL nanostructures that replicate the chemical and physical properties of natural HDL provides novel materials for investigating the structure-function relationships of HDL and for potential new therapeutics to combat CHD. PMID:21087901

  7. Dark High Density Dipolar Liquid of Excitons. (United States)

    Cohen, Kobi; Shilo, Yehiel; West, Ken; Pfeiffer, Loren; Rapaport, Ronen


    The possible phases and the nanoscale particle correlations of two-dimensional interacting dipolar particles is a long-sought problem in many-body physics. Here we observe a spontaneous condensation of trapped two-dimensional dipolar excitons with internal spin degrees of freedom from an interacting gas into a high density, closely packed liquid state made mostly of dark dipoles. Another phase transition, into a bright, highly repulsive plasma, is observed at even higher excitation powers. The dark liquid state is formed below a critical temperature Tc ≈ 4.8 K, and it is manifested by a clear spontaneous spatial condensation to a smaller and denser cloud, suggesting an attractive part to the interaction which goes beyond the purely repulsive dipole-dipole forces. Contributions from quantum mechanical fluctuations are expected to be significant in this strongly correlated, long living dark liquid. This is a new example of a two-dimensional atomic-like interacting dipolar liquid, but where the coupling of light to its internal spin degrees of freedom plays a crucial role in the dynamical formation and the nature of resulting condensed dark ground state.

  8. High-density electroencephalography developmental neurophysiological trajectories. (United States)

    Dan, Bernard; Pelc, Karine; Cebolla, Ana M; Cheron, Guy


    Efforts to document early changes in the developing brain have resulted in the construction of increasingly accurate structural images based on magnetic resonance imaging (MRI) in newborn infants. Tractography diagrams obtained through diffusion tensor imaging have focused on white matter microstructure, with particular emphasis on neuronal connectivity at the level of fibre tract systems. Electroencephalography (EEG) provides a complementary approach with more direct access to brain electrical activity. Its temporal resolution is excellent, and its spatial resolution can be enhanced to physiologically relevant levels, through the combination of high-density recordings (e.g. by using 64 channels in newborn infants) and mathematical models (e.g. inverse modelling computation), to identify generators of different oscillation bands and synchrony patterns. The integration of functional and structural topography of the neonatal brain provides insights into typical brain organization, and the deviations seen in particular contexts, for example the effect of hypoxic-ischaemic insult in terms of damage, eventual reorganization, and functional changes. Endophenotypes can then be used for pathophysiological reasoning, management planning, and outcome measurements, and allow a longitudinal approach to individual developmental trajectories. © The Authors. Journal compilation © 2015 Mac Keith Press.

  9. High-density housing that works for all

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, Arif


    In an urbanising world, the way people fit into cities is vastly important - socially, economically, environmentally, even psychologically. So density, or the number of people living in a given area, is central to urban design and planning. Both governments and markets tend to get density wrong, leading to overcrowding, urban sprawl or often both. A case in point are the high-rise buildings springing up throughtout urban Asia - perceived as key features of that widely touted concept, the 'world-class city'. While some may offer a viable solution to land pressures and density requirements, many built to house evicted or resettled 'slum' dwellers are a social and economic nightmare - inconveniently sited, overcrowded and costly. New evidence from Karachi, Pakistan, reveals a real alternative. Poor people can create liveable high-density settlements as long as community control, the right technical assistance and flexible designs are in place. A city is surely 'world-class' only when it is cosmopolitan – built to serve all, including the poorest.

  10. Growth limitation of Lemna minor due to high plant density

    NARCIS (Netherlands)

    Driever, S.M.; Nes, van E.H.; Roijackers, R.M.M.


    The effect of high population densities on the growth rate of Lemna minor (L.) was studied under laboratory conditions at 23°C in a medium with sufficient nutrients. At high population densities, we found a non-linear decreasing growth rate with increasing L. minor density. Above a L. minor biomass

  11. VEGF expression and microvascular density in relation to high-risk ...

    African Journals Online (AJOL)

    VEGF expression and microvascular density in relation to high-risk-HPV infection in cervical carcinoma – An immunohistochemical study. ... Eleven cases were low grade and 19 were high-grade cases. VEGF expression was detected in 100% of cases. The relation between carcinoma grade and VEGF expression and ...

  12. Structure and Dynamics of Low-Density and High-Density Liquid Water at High Pressure. (United States)

    Fanetti, Samuele; Lapini, Andrea; Pagliai, Marco; Citroni, Margherita; Di Donato, Mariangela; Scandolo, Sandro; Righini, Roberto; Bini, Roberto


    Liquid water has a primary role in ruling life on Earth in a wide temperature and pressure range as well as a plethora of chemical, physical, geological, and environmental processes. Nevertheless, a full understanding of its dynamical and structural properties is still lacking. Water molecules are associated through hydrogen bonds, with the resulting extended network characterized by a local tetrahedral arrangement. Two different local structures of the liquid, called low-density (LDW) and high-density (HDW) water, have been identified to potentially affect many different chemical, biological, and physical processes. By combining diamond anvil cell technology, ultrafast pump-probe infrared spectroscopy, and classical molecular dynamics simulations, we show that the liquid structure and orientational dynamics are intimately connected, identifying the P-T range of the LDW and HDW regimes. The latter are defined in terms of the speeding up of the orientational dynamics, caused by the increasing probability of breaking and reforming the hydrogen bonds.

  13. Highly Compressed Ion Beams for High Energy Density Science

    CERN Document Server

    Friedman, Alex; Briggs, Richard J; Callahan, Debra; Caporaso, George; Celata, C M; Davidson, Ronald C; Faltens, Andy; Grant-Logan, B; Grisham, Larry; Grote, D P; Henestroza, Enrique; Kaganovich, Igor D; Lee, Edward; Lee, Richard; Leitner, Matthaeus; Nelson, Scott D; Olson, Craig; Penn, Gregory; Reginato, Lou; Renk, Tim; Rose, David; Sessler, Andrew M; Staples, John W; Tabak, Max; Thoma, Carsten H; Waldron, William; Welch, Dale; Wurtele, Jonathan; Yu, Simon


    The Heavy Ion Fusion Virtual National Laboratory (HIF-VNL) is developing the intense ion beams needed to drive matter to the High Energy Density (HED) regimes required for Inertial Fusion Energy (IFE) and other applications. An interim goal is a facility for Warm Dense Matter (WDM) studies, wherein a target is heated volumetrically without being shocked, so that well-defined states of matter at 1 to 10 eV are generated within a diagnosable region. In the approach we are pursuing, low to medium mass ions with energies just above the Bragg peak are directed onto thin target "foils," which may in fact be foams or "steel wool" with mean densities 1% to 100% of solid. This approach complements that being pursued at GSI, wherein high-energy ion beams deposit a small fraction of their energy in a cylindrical target. We present the requirements for warm dense matter experiments, and describe suitable accelerator concepts, including novel broadband traveling wave pulse-line, drift-tube linac, RF, and single-gap approa...

  14. Development of high temperature superconductors having high critical current density

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Gye Wong; Kim, C. J.; Lee, H.G.; Kwon, S. C.; Lee, H. J.; Kim, K. B.; Park, J. Y.; Jung, C. H


    Fabrication of high T{sub c} superconductors and its applications for electric power device were carried out for developing superconductor application technologies. High quality YBCO superconductors was fabricated by melt texture growth, top-seeded melt growth process and multi-seeded melt growth process and the properties was compared. The critical current density of the melt processed YBCO superconductors was about few 10,000 A/cm{sup 2} and the levitation force was 50 N. The processing time needed for the growth of the 123 single grain was greatly reduced by applying multi-seeding without no significant degradation of the levitation force. The multi-seeded melt growth process was confirmed as a time-saving and cost-effective method for the fabrication of bulk superconductors with controlled crystallographic orientation.

  15. High-density cervical ureaplasma urealyticum colonization in pregnant women

    Directory of Open Access Journals (Sweden)

    Ranđelović Gordana


    Full Text Available Background/aim: Ureaplasma urealyticum, a common commensal of the female lower genital tract, has been observed as an important opportunistic pathogen during pregnancy. The aims of this study were to determine the degree of cervical colonization with U. urealyticum in pregnant women with risk pregnancy and in pregnant women with normal term delivery and to evaluate the correlation between high-density cervical U. urealyticum colonization and premature rupture of membranes (PROM as well. Methods. This research was conducted on the samples comprising 130 hospitalized pregnant women with threatening preterm delivery and premature rupture of membranes. The control group consisted of 39 pregnant women with term delivery without PROM. In addition to standard bacteriological examination and performing direct immunofluorescence test to detect Chlamydia trachomatis, cervical swabs were also examined for the presence of U. urealyticum and Mycoplasma hominis by commercially available Mycofast Evolution 2 test (International Microbio, France. Results. The number of findings with isolated high-density U. urealyticum in the target group was 69 (53.08%, while in the control group was 14 (35.90%. Premature rupture of membranes (PROM occurred in 43 (33.08% examinees: 29 were pPROM, and 14 were PROM. The finding of U.urealyticum ≥104 was determined in 25 (58.14% pregnant women with rupture, 17 were pPROM, and 8 were PROM. There was statistically significant difference in the finding of high-density U. urealyticum between the pregnant women with PROM and the control group (χ² = 4.06, p < 0.05. U. urealyticum was predominant bacterial species found in 62.79% of isolates in the PROM cases, while in 32.56% it was isolated alone. Among the 49 pregnant women with preterm delivery, pPROM occurred in 29 (59.18% examinees, and in 70.83% of pregnant women with findings of high-density U. urealyticum pPROM was observed. Conclusion. Cervical colonization with U

  16. Parton Distributions in High Density Nuclear Matter (United States)

    Sargsian, Misak


    We investigate the modification of parton distributions in the nuclear medium in the density domain defined by short range multi-nucleon correlations(SRC). Special emphasis is given on the implication of the recently found dominance of proton-neutron SRCs on generation of flavor dependence in the modification of nuclear partonic distributions. Such a flavor dependence can have measurable impact on parity violating lepton-nuclear deep inelastic scattering and can explain the origin of NuTeV anomaly. The research is supported by US Department of Energy.

  17. Automated Volumetric Mammographic Breast Density Measurements May Underestimate Percent Breast Density for High-density Breasts. (United States)

    Rahbar, Kareem; Gubern-Merida, Albert; Patrie, James T; Harvey, Jennifer A


    The purpose of this study was to evaluate discrepancy in breast composition measurements obtained from mammograms using two commercially available software methods for systematic trends in overestimation or underestimation compared to magnetic resonance-derived measurements. An institutional review board-approved, Health Insurance Portability and Accountability Act-compliant retrospective study was performed to calculate percent breast density (PBD) by quantifying fibroglandular volume and total breast volume derived from magnetic resonance imaging (MRI) segmentation and mammograms using two commercially available software programs (Volpara and Quantra). Consecutive screening MRI exams from a 6-month period with negative or benign findings were used. The most recent mammogram within 9 months was used to derive mean density values from "for processing" images at the per breast level. Bland-Altman statistical analyses were performed to determine the mean discrepancy and the limits of agreement. A total of 110 women with 220 breasts met the study criteria. Overall, PBD was not different between MRI (mean 10%, range 1%-41%) and Volpara (mean 10%, range 3%-29%); a small but significant difference was present in the discrepancy between MRI and Quantra (4.0%, 95% CI: 2.9 to 5.0, P breast densities, with Volpara slightly underestimating and Quantra slightly overestimating PBD compared to MRI. The mean discrepancy for both Volpara and Quantra for total breast volume was not significantly different from MRI (p = 0.89, 0.35, respectively). Volpara tended to underestimate, whereas Quantra tended to overestimate fibroglandular volume, with the highest discrepancy at higher breast volumes. Both Volpara and Quantra tend to underestimate PBD, which is most pronounced at higher densities. PBD can be accurately measured using automated volumetric software programs, but values should not be used interchangeably between vendors. Copyright © 2017. Published by Elsevier Inc.

  18. On the Origin of the High Column Density Turnover in the H I Column Density Distribution (United States)

    Erkal, Denis; Gnedin, Nickolay Y.; Kravtsov, Andrey V.


    We study the high column density regime of the H I column density distribution function and argue that there are two distinct features: a turnover at N H I ≈ 1021 cm-2, which is present at both z = 0 and z ≈ 3, and a lack of systems above N H I ≈ 1022 cm-2 at z = 0. Using observations of the column density distribution, we argue that the H I-H2 transition does not cause the turnover at N H I ≈ 1021 cm-2 but can plausibly explain the turnover at N H I >~ 1022 cm-2. We compute the H I column density distribution of individual galaxies in the THINGS sample and show that the turnover column density depends only weakly on metallicity. Furthermore, we show that the column density distribution of galaxies, corrected for inclination, is insensitive to the resolution of the H I map or to averaging in radial shells. Our results indicate that the similarity of H I column density distributions at z = 3 and 0 is due to the similarity of the maximum H I surface densities of high-z and low-z disks, set presumably by universal processes that shape properties of the gaseous disks of galaxies. Using fully cosmological simulations, we explore other candidate physical mechanisms that could produce a turnover in the column density distribution. We show that while turbulence within giant molecular clouds cannot affect the damped Lyα column density distribution, stellar feedback can affect it significantly if the feedback is sufficiently effective in removing gas from the central 2-3 kpc of high-redshift galaxies. Finally, we argue that it is meaningful to compare column densities averaged over ~ kpc scales with those estimated from quasar spectra that probe sub-pc scales due to the steep power spectrum of H I column density fluctuations observed in nearby galaxies.

  19. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

    Energy Technology Data Exchange (ETDEWEB)

    Amendt, Peter; Ho, Darwin D.; Jones, Ogden S. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)


    A recent low gas-fill density (0.6 mg/cc {sup 4}He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc {sup 4}He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth.

  20. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum (United States)

    Amendt, Peter; Ho, Darwin D.; Jones, Ogden S.


    A recent low gas-fill density (0.6 mg/cc 4He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc 4He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth.

  1. State switching in regions of high modal density (United States)

    Lopp, Garrett K.; Kauffman, Jeffrey L.


    Performance of piezoelectric-based, semi-active vibration reduction approaches has been studied extensively in the past decade. Originally analyzed with single-degree-of-freedom systems, these approaches have been extended to multi-mode vibration reduction. However, the accompanying analysis typically assumes well-separated modes, which is often not the case for plate structures. Because the semi-active approaches induce a shift in the structural resonance frequency (at least temporarily), targeting a specific mode for vibration reduction can actually lead to additional vibration in an adjacent mode. This paper presents an analysis using a simplified model of a two-degree-of-freedom mass-spring-damper system with lightly-coupled masses to achieve two closely-spaced modes. This investigation is especially applicable to the resonance frequency detuning approach previously proposed to reduce vibrations caused by transient excitation in turbomachinery blades where regions of high modal density exist. More generally, this paper addresses these effects of stiffness state switches in frequency ranges containing regions of high modal density and subject to frequency sweep excitation. Of the approaches analyzed, synchronized switch damping on an inductor offers the greatest vibration reduction performance, whereas resonance frequency detuning and state switching each yield similar performance. Additionally, as the relative distance between resonance peaks decreases, the performance for the vibration reduction methods approaches that of a single-degree-of-freedom system; however, there are distances between these resonant peaks that diminish vibration reduction potential.

  2. Strongly Interacting Matter at Very High Energy Density

    Energy Technology Data Exchange (ETDEWEB)

    McLerran, L.


    The authors discuss the study of matter at very high energy density. In particular: what are the scientific questions; what are the opportunities to makes significant progress in the study of such matter and what facilities are now or might be available in the future to answer the scientific questions? The theoretical and experimental study of new forms of high energy density matter is still very much a 'wild west' field. There is much freedom for developing new concepts which can have order one effects on the way we think about such matter. It is also a largely 'lawless' field, in that concepts and methods are being developed as new information is generated. There is also great possibility for new experimental discovery. Most of the exciting results from RHIC experiments were unanticipated. The methods used for studying various effects like flow, jet quenching, the ridge, two particle correlations etc. were developed as experiments evolved. I believe this will continue to be the case at LHC and as we use existing and proposed accelerators to turn theoretical conjecture into tangible reality. At some point this will no doubt evolve into a precision science, and that will make the field more respectable, but for my taste, the 'wild west' times are the most fun.

  3. Density functional study of the electric double layer formed by a high density electrolyte. (United States)

    Henderson, Douglas; Lamperski, Stanisław; Jin, Zhehui; Wu, Jianzhong


    We use a classical density functional theory (DFT) to study the electric double layer formed by charged hard spheres near a planar charged surface. The DFT predictions are found to be in good agreement with recent computer simulation results. We study the capacitance of the charged hard-sphere system at a range of densities and surface charges and find that the capacitance exhibits a local minimum at low ionic densities and small electrode charge. Although this charging behavior is typical for an aqueous electrolyte solution, the local minimum gradually turns into a maximum as the density of the hard spheres increases. Charged hard spheres at high density provide a reasonable first approximation for ionic liquids. In agreement with experiment, the capacitance of this model ionic liquid double layer has a maximum at small electrode charge density.

  4. Quantum Phenomena in High Energy Density Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Murnane, Margaret [Univ. of Colorado, Boulder, CO (United States); Kapteyn, Henry [Univ. of Colorado, Boulder, CO (United States)


    The possibility of implementing efficient (phase matched) HHG upconversion of deep- UV lasers in multiply-ionized plasmas, with potentially unprecedented conversion efficiency is a fascinating prospect. HHG results from the extreme nonlinear response of matter to intense laser light:high harmonics are radiated as a result of a quantum coherent electron recollision process that occurs during laser field ionization of an atom. Under current support from this grant in work published in Science in 2015, we discovered a new regime of bright HHG in highly-ionized plasmas driven by intense UV lasers, that generates bright harmonics to photon energies >280eV

  5. High Stocking Density Controls Phillyrea Angustifolia in Mediterranean Grasslands (United States)

    Mesléard, François; Yavercovski, Nicole; Lefebvre, Gaétan; Willm, Loic; Bonis, Anne


    Extensive grazing applied in the form of low instantaneous pressure over a long period is a widespread management practice in protected areas. However this kind of stocking method does not always achieve the expected results, in particular because it fails to limit colonization by woody plants.This is the case in the relict xero-halophytic grasslands of the northern Mediterranean coastal region, subjected to widespread colonization by the shrub Phillyrea angustifolia despite the presence of extensive grazing. In this study, we investigated, for an equal annual stocking rate, the respective impact of high stocking density applied over a short period (mob grazing) and low stocking density applied over a long period on both P. angustifolia and herbaceous cover, using an in situ experimental design run for 7 years. Only mob grazing was effective both in controlling the establishment and increasing the mortality of P. angustifolia individuals. We did not find any difference after the 7 years of experimentation between the two stocking methods with regard to the herbaceous community parameters tested: species richness, diversity, evenness, contribution of annual characteristic species. By contrast, the exclusion of domestic grazing led to a strong reduction of these values.The use of mob grazing may be well suited for meeting conservation goals such as maintaining open habitats in these grasslands.

  6. BCS Theory of Hadronic Matter at High Densities

    DEFF Research Database (Denmark)

    Bohr, Henrik; Panda, Prafulla K.; Providencia, Constanca


    The equilibrium between the so-called 2SC and CFL phases of strange quark matter at high densities is investigated in the framework of a simple schematic model of the NJL type. Equal densities are assumed for quarks u, d and s. The 2SC phase is here described by a color-flavor symmetric state, in...

  7. High-density QCD phase transitions inside neutron stars: Glitches ...

    Indian Academy of Sciences (India)


    Oct 9, 2017 ... ... of different high-density phases and associated phase transitions. We study effectsof density fluctuations during transitions with and without topological defect production and study the effect on pulsar timings due to changing moment of inertia of the star. We also discuss gravitational wave production due ...

  8. Graphene supercapacitor with both high power and energy density (United States)

    Yang, Hao; Kannappan, Santhakumar; Pandian, Amaresh S.; Jang, Jae-Hyung; Lee, Yun Sung; Lu, Wu


    Supercapacitors, based on fast ion transportation, are specialized to provide high power, long stability, and efficient energy storage using highly porous electrode materials. However, their low energy density excludes them from many potential applications that require both high energy density and high power density performances. Using a scalable nanoporous graphene synthesis method involving an annealing process in hydrogen, here we show supercapacitors with highly porous graphene electrodes capable of achieving not only a high power density of 41 kW kg-1 and a Coulombic efficiency of 97.5%, but also a high energy density of 148.75 Wh kg-1. A high specific gravimetric and volumetric capacitance (306.03 F g-1 and 64.27 F cm-3) are demonstrated. The devices can retain almost 100% capacitance after 7000 charging/discharging cycles at a current density of 8 A g-1. The superior performance of supercapacitors is attributed to their ideal pore size, pore uniformity, and good ion accessibility of the synthesized graphene.

  9. Plasma polymerized high energy density dielectric films for capacitors (United States)

    Yamagishi, F. G.


    High energy density polymeric dielectric films were prepared by plasma polymerization of a variety of gaseous monomers. This technique gives thin, reproducible, pinhole free, conformable, adherent, and insoluble coatings and overcomes the processing problems found in the preparation of thin films with bulk polymers. Thus, devices are prepared completely in a vacuum environment. The plasma polymerized films prepared all showed dielectric strengths of greater than 1000 kV/cm and in some cases values of greater than 4000 kV/cm were observed. The dielectric loss of all films was generally less than 1% at frequencies below 10 kHz, but this value increased at higher frequencies. All films were self healing. The dielectric strength was a function of the polymerization technique, whereas the dielectric constant varied with the structure of the starting material. Because of the thin films used (thickness in the submicron range) surface smoothness of the metal electrodes was found to be critical in obtaining high dielectric strengths. High dielectric strength graft copolymers were also prepared. Plasma polymerized ethane was found to be thermally stable up to 150 C in the presence of air and 250 C in the absence of air. No glass transitions were observed for this material.

  10. 128x128 Ultra-High Density Optical Interconnect Project (United States)

    National Aeronautics and Space Administration — Future NASA programs like Tertiary Planet Finder (TPF) require high-density deformable mirrors with up to 16,000 actuators to enable direct imaging of planets around...

  11. Wake high-density electroencephalographic spatiospectral signatures of Insomnia

    NARCIS (Netherlands)

    Colombo, Michele A.; Ramautar, Jennifer R.; Wei, Yishul; Gomez-Herrero, Germán; Stoffers, Diederick; Wassing, Rick; Benjamins, Jeroen S.; Tagliazucchi, Enzo; van der Werf, Ysbrand; Cajochen, Christian; Van Someren, Eus J.W.


    Study Objectives: Although daytime complaints are a defining characteristic of insomnia, most EEG studies evaluated sleep only. We used high-density electroencephalography to investigate wake resting state oscillations characteristic of insomnia disorder (ID) at a fine-grained spatiospectral

  12. 128x128 Ultra-High Density Optical Interconnect Project (United States)

    National Aeronautics and Space Administration — Future NASA programs like Tertiary Planet Finder (TPF) require high density deformable mirrors with upto 16,000 actuators to enable direct imaging of planets around...

  13. Fifth International Conference on High Energy Density Physics

    Energy Technology Data Exchange (ETDEWEB)

    Beg, Farhat


    The Fifth International Conference on High Energy Density Physics (ICHED 2015) was held in the Catamaran Hotel in San Diego from August 23-27, 2015. This meeting was the fifth in a series which began in 2008 in conjunction with the April meeting of the American Physical Society (APS). The main goal of this conference has been to bring together researchers from all fields of High Energy Density Science (HEDS) into one, unified meeting.

  14. Workshop on extremely high energy density plasmas and their diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Shozo (ed.)


    Compiled are the papers presented at the workshop on 'Extremely High Energy Density Plasmas and Their Diagnostics' held at National Institute for Fusion Science. The papers cover physics and applications of extremely high-energy density plasmas such as dense z-pinch, plasma focus, and intense pulsed charged beams. Separate abstracts were presented for 7 of the papers in this report. The remaining 25 were considered outside the subject scope of INIS. (author)

  15. High Energy Density Capacitors for Pulsed Power Applications (United States)


    resistor in terms of shock and vibration, mounting requirements, total volume, system reliability, and cost. All of these parameters were from shock and vibration on a deployed system. III. STATE OF THE ART FOR HIGH ENERGY DENSITY CAPACITOR AND NEAR TERM PROJECTIONS t tipo ymer m qua y an capac or cons ruc on. Energy Density of 10,000 Shot High Efficiency Pulse Power Capacitors The primary driver was 1 5

  16. Spontaneous magnetization in high-density quark matter

    DEFF Research Database (Denmark)

    Tsue, Yasuhiko; da Providência, João; Providência, Constanca


    It is shown that spontaneous magnetization occurs due to the anomalous magnetic moments of quarks in high-density quark matter under the tensor-type four-point interaction. The spin polarized condensate for each flavor of quark appears at high baryon density, which leads to the spontaneous...... magnetization due to the anomalous magnetic moments of quarks. The implications for the strong magnetic field in compact stars is discussed....

  17. Still rethinking the value of high wood density. (United States)

    Larjavaara, Markku; Muller-Landau, Helene C


    In a previous paper, we questioned the traditional interpretation of the advantages and disadvantages of high wood density (Functional Ecology 24: 701-705). Niklas and Spatz (American Journal of Botany 97: 1587-1594) challenged the biomechanical relevance of studying properties of dry wood, including dry wood density, and stated that we erred in our claims regarding scaling. We first present the full derivation of our previous claims regarding scaling. We then examine how the fresh modulus of rupture and the elastic modulus scale with dry wood density and compare these scaling relationships with those for dry mechanical properties, using almost exactly the same data set analyzed by Niklas and Spatz. The derivation shows that given our assumptions that the modulus of rupture and elastic modulus are both proportional to wood density, the resistance to bending is inversely proportional to wood density and strength is inversely proportional with the square root of wood density, exactly as we previously claimed. The analyses show that the elastic modulus of fresh wood scales proportionally with wood density (exponent 1.05, 95% CI 0.90-1.11) but that the modulus of rupture of fresh wood does not, scaling instead with the 1.25 power of wood density (CI 1.18-1.31). The deviation from proportional scaling for modulus of rupture is so small that our central conclusion remains correct: for a given construction cost, trees with lower wood density have higher strength and higher resistance to bending.

  18. Breast density estimation from high spectral and spatial resolution MRI (United States)

    Li, Hui; Weiss, William A.; Medved, Milica; Abe, Hiroyuki; Newstead, Gillian M.; Karczmar, Gregory S.; Giger, Maryellen L.


    Abstract. A three-dimensional breast density estimation method is presented for high spectral and spatial resolution (HiSS) MR imaging. Twenty-two patients were recruited (under an Institutional Review Board--approved Health Insurance Portability and Accountability Act-compliant protocol) for high-risk breast cancer screening. Each patient received standard-of-care clinical digital x-ray mammograms and MR scans, as well as HiSS scans. The algorithm for breast density estimation includes breast mask generating, breast skin removal, and breast percentage density calculation. The inter- and intra-user variabilities of the HiSS-based density estimation were determined using correlation analysis and limits of agreement. Correlation analysis was also performed between the HiSS-based density estimation and radiologists’ breast imaging-reporting and data system (BI-RADS) density ratings. A correlation coefficient of 0.91 (pdensity estimations. An interclass correlation coefficient of 0.99 (pdensity estimations. A moderate correlation coefficient of 0.55 (p=0.0076) was observed between HiSS-based breast density estimations and radiologists’ BI-RADS. In summary, an objective density estimation method using HiSS spectral data from breast MRI was developed. The high reproducibility with low inter- and low intra-user variabilities shown in this preliminary study suggest that such a HiSS-based density metric may be potentially beneficial in programs requiring breast density such as in breast cancer risk assessment and monitoring effects of therapy. PMID:28042590

  19. High-density scintillating glasses for a proton imaging detector (United States)

    Tillman, I. J.; Dettmann, M. A.; Herrig, V.; Thune, Z. L.; Zieser, A. J.; Michalek, S. F.; Been, M. O.; Martinez-Szewczyk, M. M.; Koster, H. J.; Wilkinson, C. J.; Kielty, M. W.; Jacobsohn, L. G.; Akgun, U.


    High-density scintillating glasses are proposed for a novel proton-imaging device that can improve the accuracy of the hadron therapy. High-density scintillating glasses are needed to build a cost effective, compact calorimeter that can be attached to a gantry. This report summarizes the study on Europium, Terbium, and Cerium-doped scintillating glasses that were developed containing heavy elements such as Lanthanum, Gadolinium, and Tungsten. The density of the samples reach up to 5.9 g/cm3, and their 300-600 nm emission overlaps perfectly with the peak cathode sensitivity of the commercial photo detectors. The developed glasses do not require any special quenching and can be poured easily, which makes them a good candidate for production in various geometries. Here, the glass making conditions, preliminary tests on optical and physical properties of these scintillating, high-density, oxide glasses developed for a novel medical imaging application are reported.

  20. Ultra-high cell-density silicon photomultipliers with high detection efficiency (United States)

    Acerbi, Fabio; Gola, Alberto; Regazzoni, Veronica; Paternoster, Giovanni; Borghi, Giacomo; Piemonte, Claudio; Zorzi, Nicola


    Silicon photomultipliers (SiPMs) are arrays of many single-photon avalanche diodes (SPADs), all connected in parallel. Each SPAD is sensitive to single photons and the SiPM gives an output proportional to the number of detected photons. These sensors are becoming more and more popular in different applications, from high-energy physics to spectroscopy, and they have been significantly improved over last years, decreasing the noise, increasing the cell fill-factor (FF) and thus achieving very high photon-detection efficiency (PDE). In FBK (Trento, Italy), we developed new SiPM technologies with high-density (HD) and, more recently, ultra-high-density (UHD) of cells (i.e. density of SPADs). These technologies employ deep-trenches between cells, for electrical and optical isolation. As an extreme case the smallest-cell, SiPM, i.e. with 5μm cell pitch, has about 40000 SPADs per squared millimeter. Such small SPAD dimensions gives a significantly high dynamic range to the SiPM. These small-cells SiPM have a lower correlated noise (including lower afterpulsing probability) and a faster recharge time (in the order of few nanoseconds), and they also preserve a very good detection efficiency (despite the small SPAD dimension).

  1. Stability of high cell density brewery fermentations during serial repitching. (United States)

    Verbelen, Pieter J; Dekoninck, Tinne M L; Van Mulders, Sebastiaan E; Saerens, Sofie M G; Delvaux, Filip; Delvaux, Freddy R


    The volumetric productivity of the beer fermentation process can be increased by using a higher pitching rate (i.e. higher inoculum size). However, the decreased yeast net growth observed in these high cell density brewery fermentations can adversely affect the physiological stability throughout subsequent yeast generations. Therefore, different O(2) conditions (wort aeration and yeast preoxygenation) were applied to high cell density fermentation and eight generations of fermentations were evaluated together with conventional fermentations. Freshly propagated high cell density populations adapted faster to the fermentative conditions than normal cell density populations. Preoxygenating the yeast was essential for the yeast physiological and beer flavor compound stability of high cell density fermentations during serial repitching. In contrast, the use of non-preoxygenated yeast resulted in inadequate growth which caused (1) insufficient yield of biomass to repitch all eight generations, (2) a 10% decrease in viability, (3) a moderate increase of yeast age, (4) and a dramatic increase of the unwanted flavor compounds acetaldehyde and total diacetyl during the sequence of fermentations. Therefore, to achieve sustainable high cell density fermentations throughout the economical valuable process of serial repitching, adequate yeast growth is essential.

  2. Comparison of low density and high density pedicle screw instrumentation in Lenke 1 adolescent idiopathic scoliosis. (United States)

    Shen, Mingkui; Jiang, Honghui; Luo, Ming; Wang, Wengang; Li, Ning; Wang, Lulu; Xia, Lei


    The correlation between implant density and deformity correction has not yet led to a precise conclusion in adolescent idiopathic scoliosis (AIS). The aim of this study was to evaluate the effects of low density (LD) and high density (HD) pedicle screw instrumentation in terms of the clinical, radiological and Scoliosis Research Society (SRS)-22 outcomes in Lenke 1 AIS. We retrospectively reviewed 62 consecutive Lenke 1 AIS patients who underwent posterior spinal arthrodesis using all-pedicle screw instrumentation with a minimum follow-up of 24 months. The implant density was defined as the number of screws per spinal level fused. Patients were then divided into two groups according to the average implant density for the entire study. The LD group (n = 28) had fewer than 1.61 screws per level, while the HD group (n = 34) had more than 1.61 screws per level. The radiographs were analysed preoperatively, postoperatively and at final follow-up. The perioperative and SRS-22 outcomes were also assessed. Independent sample t tests were used between the two groups. Comparisons between the two groups showed no significant differences in the correction of the main thoracic curve and thoracic kyphosis, blood transfusion, hospital stay, and SRS-22 scores. Compared with the HD group, there was a decreased operating time (278.4 vs. 331.0 min, p = 0.004) and decreased blood loss (823.6 vs. 1010.9 ml, p = 0.048), pedicle screws needed (15.1 vs. 19.6, p density and high density pedicle screw instrumentation achieved satisfactory deformity correction in Lenke 1 AIS patients. However, the operating time and blood loss were reduced, and the implant costs were decreased with the use of low screw density constructs.

  3. Beyond high-density lipoprotein cholesterol levels evaluating high-density lipoprotein function as influenced by novel therapeutic approaches

    National Research Council Canada - National Science Library

    deGoma, Emil M; deGoma, Rolando L; Rader, Daniel J


    A number of therapeutic strategies targeting high-density lipoprotein (HDL) cholesterol and reverse cholesterol transport are being developed to halt the progression of atherosclerosis or even induce regression...

  4. Breast cancer screening effect across breast density strata: A case-control study. (United States)

    van der Waal, Daniëlle; Ripping, Theodora M; Verbeek, André L M; Broeders, Mireille J M


    Breast cancer screening is known to reduce breast cancer mortality. A high breast density may affect this reduction. We assessed the effect of screening on breast cancer mortality in women with dense and fatty breasts separately. Analyses were performed within the Nijmegen (Dutch) screening programme (1975-2008), which invites women (aged 50-74 years) biennially. Performance measures were determined. Furthermore, a case-control study was performed for women having dense and women having fatty breasts. Breast density was assessed visually with a dichotomized Wolfe scale. Breast density data were available for cases. The prevalence of dense breasts among controls was estimated with age-specific rates from the general population. Sensitivity analyses were performed on these estimates. Screening performance was better in the fatty than in the dense group (sensitivity 75.7% vs 57.8%). The mortality reduction appeared to be smaller for women with dense breasts, with an odds ratio (OR) of 0.87 (95% CI 0.52-1.45) in the dense and 0.59 (95% CI 0.44-0.79) in the fatty group. We can conclude that high density results in lower screening performance and appears to be associated with a smaller mortality reduction. Breast density is thus a likely candidate for risk-stratified screening. More research is needed on the association between density and screening harms. © 2016 UICC.

  5. A model of high-latitude thermospheric density (United States)

    Yamazaki, Yosuke; Kosch, Michael J.; Sutton, Eric K.


    We present an empirical model of the high-latitude air density at 450 km, derived from accelerometer measurements by the CHAllenging Minisatellite Payload and Gravity Recovery and Climate Experiment satellites during 2002-2006, which we call HANDY (High-Latitude Atmospheric Neutral DensitY). HANDY consists of a quiet model and disturbance model. The quiet model represents the background thermospheric density for "zero geomagnetic activity" conditions. The disturbance model represents the response of the thermospheric density to solar wind forcing at high latitudes. The solar wind inputs used are the following: (1) solar wind electric field ESW, (2) interplanetary magnetic field (IMF) clock angle CSW, and (3) solar wind dynamic pressure PSW. Both quiet and disturbance models are constructed on the basis of spherical harmonic function fitting to the data. Magnetic coordinates are used for the disturbance model, while geographical coordinates are used for the quiet model. HANDY reproduces main features of the solar wind influence on the high-latitude thermospheric density, such as the IMF By effect that produces a hemispheric asymmetry in the density distribution.

  6. The hydrogen equation of state at high densities

    CERN Document Server

    Vorberger, J; Kraeft, W -D


    We use a two-fluid model combining the quantum Green's function technique for the electrons and a classical HNC description for the ions to calculate the high-density equation of state of hydrogen. This approach allows us to describe fully ionized plasmas of any electron degeneracy and any ionic coupling strength which are important for the modeling of a variety of astrophysical objects and inertial confinement fusion targets. We have also performed density functional molecular dynamics simulations (DFT-MD) and show that the data obtained agree with our approach in the high density limit. Good agreement is also found between DFT-MD and quantum Monte Carlo simulations. The thermodynamic properties of dense hydrogen can thus be obtained for the entire density range using only calculations in the physical picture.

  7. Noise reduction in muon tomography for detecting high density objects (United States)

    Benettoni, M.; Bettella, G.; Bonomi, G.; Calvagno, G.; Calvini, P.; Checchia, P.; Cortelazzo, G.; Cossutta, L.; Donzella, A.; Furlan, M.; Gonella, F.; Pegoraro, M.; Rigoni Garola, A.; Ronchese, P.; Squarcia, S.; Subieta, M.; Vanini, S.; Viesti, G.; Zanuttigh, P.; Zenoni, A.; Zumerle, G.


    The muon tomography technique, based on multiple Coulomb scattering of cosmic ray muons, has been proposed as a tool to detect the presence of high density objects inside closed volumes. In this paper a new and innovative method is presented to handle the density fluctuations (noise) of reconstructed images, a well known problem of this technique. The effectiveness of our method is evaluated using experimental data obtained with a muon tomography prototype located at the Legnaro National Laboratories (LNL) of the Istituto Nazionale di Fisica Nucleare (INFN). The results reported in this paper, obtained with real cosmic ray data, show that with appropriate image filtering and muon momentum classification, the muon tomography technique can detect high density materials, such as lead, albeit surrounded by light or medium density material, in short times. A comparison with algorithms published in literature is also presented.

  8. Solid Oxide Electrolysis Cells: Degradation at High Current Densities

    DEFF Research Database (Denmark)

    Knibbe, Ruth; Traulsen, Marie Lund; Hauch, Anne


    The degradation of Ni/yttria-stabilized zirconia (YSZ)-based solid oxide electrolysis cells operated at high current densities was studied. The degradation was examined at 850°C, at current densities of −1.0, −1.5, and −2.0 A/cm2, with a 50:50 (H2O:H2) gas supplied to the Ni/YSZ hydrogen electrode...

  9. High-Energy-Density Physics at the National Ignition Facility (United States)

    Hurricane, O. A.; Herrmann, M. C.


    At modern laser facilities, energy densities ranging from 1 Mbar to many hundreds of gigabars can regularly be achieved. These high-energy states of matter last for mere moments, measured in nanoseconds to tens of picoseconds, but during those times numerous high-precision instruments can be employed, revealing remarkable compressed matter physics, radiation-hydrodynamics physics, laser-matter interaction physics, and nuclear physics processes. We review the current progress of high-energy-density physics at the National Ignition Facility and describe the underlying physical principles.

  10. Co-isolation of extracellular vesicles and high-density lipoproteins using density gradient ultracentrifugation

    NARCIS (Netherlands)

    Yuana, Yuana; Levels, Johannes; Grootemaat, Anita; Sturk, Auguste; Nieuwland, Rienk


    Extracellular vesicles (EVs) facilitate intercellular communication by carrying bioactive molecules such as proteins, messenger RNA, and micro (mi)RNAs. Recently, high-density lipoproteins (HDL) isolated from human plasma were also reported to transport miRNA to other cells. HDL, when isolated from

  11. Mendelian Disorders of High-Density Lipoprotein Metabolism

    NARCIS (Netherlands)

    Oldoni, Federico; Sinke, Richard J.; Kuivenhoven, Jan Albert


    High-density lipoproteins (HDLs) are a highly heterogeneous and dynamic group of the smallest and densest lipoproteins present in the circulation. This review provides the current molecular insight into HDL metabolism led by articles describing mutations in genes that have a large affect on HDL

  12. High Density Lipoprotein: A Therapeutic Target in Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Philip J. Barter


    Full Text Available High density lipoproteins (HDLs have a number of properties that have the potential to inhibit the development of atherosclerosis and thus reduce the risk of having a cardiovascular event. These protective effects of HDLs may be reduced in patients with type 2 diabetes, a condition in which the concentration of HDL cholesterol is frequently low. In addition to their potential cardioprotective properties, HDLs also increase the uptake of glucose by skeletal muscle and stimulate the synthesis and secretion of insulin from pancreatic β cells and may thus have a beneficial effect on glycemic control. This raises the possibility that a low HDL concentration in type 2 diabetes may contribute to a worsening of diabetic control. Thus, there is a double case for targeting HDLs in patients with type 2 diabetes: to reduce cardiovascular risk and also to improve glycemic control. Approaches to raising HDL levels include lifestyle factors such as weight reduction, increased physical activity and stopping smoking. There is an ongoing search for HDL-raising drugs as agents to use in patients with type 2 diabetes in whom the HDL level remains low despite lifestyle interventions.

  13. Effects of High-Density Impacts on Shielding Capability (United States)

    Christiansen, Eric L.; Lear, Dana M.


    Spacecraft are shielded from micrometeoroids and orbital debris (MMOD) impacts to meet requirements for crew safety and/or mission success. In the past, orbital debris particles have been considered to be composed entirely of aluminum (medium-density material) for the purposes of MMOD shielding design and verification. Meteoroids have been considered to be low-density porous materials, with an average density of 1 g/cu cm. Recently, NASA released a new orbital debris environment model, referred to as ORDEM 3.0, that indicates orbital debris contains a substantial fraction of high-density material for which steel is used in MMOD risk assessments [Ref.1]. Similarly, an update to the meteoroid environment model is also under consideration to include a high-density component of that environment. This paper provides results of hypervelocity impact tests and hydrocode simulations on typical spacecraft MMOD shields using steel projectiles. It was found that previous ballistic limit equations (BLEs) that define the protection capability of the MMOD shields did not predict the results from the steel impact tests and hydrocode simulations (typically, the predictions from these equations were too optimistic). The ballistic limit equations required updates to more accurately represent shield protection capability from the range of densities in the orbital debris environment. Ballistic limit equations were derived from the results of the work and are provided in the paper.

  14. High density data storage principle, technology, and materials

    CERN Document Server

    Zhu, Daoben


    The explosive increase in information and the miniaturization of electronic devices demand new recording technologies and materials that combine high density, fast response, long retention time and rewriting capability. As predicted, the current silicon-based computer circuits are reaching their physical limits. Further miniaturization of the electronic components and increase in data storage density are vital for the next generation of IT equipment such as ultra high-speed mobile computing, communication devices and sophisticated sensors. This original book presents a comprehensive introduction to the significant research achievements on high-density data storage from the aspects of recording mechanisms, materials and fabrication technologies, which are promising for overcoming the physical limits of current data storage systems. The book serves as an useful guide for the development of optimized materials, technologies and device structures for future information storage, and will lead readers to the fascin...

  15. Changing perceptions of hunger on a high nutrient density diet (United States)


    Background People overeat because their hunger directs them to consume more calories than they require. The purpose of this study was to analyze the changes in experience and perception of hunger before and after participants shifted from their previous usual diet to a high nutrient density diet. Methods This was a descriptive study conducted with 768 participants primarily living in the United States who had changed their dietary habits from a low micronutrient to a high micronutrient diet. Participants completed a survey rating various dimensions of hunger (physical symptoms, emotional symptoms, and location) when on their previous usual diet versus the high micronutrient density diet. Statistical analysis was conducted using non-parametric tests. Results Highly significant differences were found between the two diets in relation to all physical and emotional symptoms as well as the location of hunger. Hunger was not an unpleasant experience while on the high nutrient density diet, was well tolerated and occurred with less frequency even when meals were skipped. Nearly 80% of respondents reported that their experience of hunger had changed since starting the high nutrient density diet, with 51% reporting a dramatic or complete change in their experience of hunger. Conclusions A high micronutrient density diet mitigates the unpleasant aspects of the experience of hunger even though it is lower in calories. Hunger is one of the major impediments to successful weight loss. Our findings suggest that it is not simply the caloric content, but more importantly, the micronutrient density of a diet that influences the experience of hunger. It appears that a high nutrient density diet, after an initial phase of adjustment during which a person experiences "toxic hunger" due to withdrawal from pro-inflammatory foods, can result in a sustainable eating pattern that leads to weight loss and improved health. A high nutrient density diet provides benefits for long-term health

  16. Changing perceptions of hunger on a high nutrient density diet

    Directory of Open Access Journals (Sweden)

    Glaser Dale


    Full Text Available Abstract Background People overeat because their hunger directs them to consume more calories than they require. The purpose of this study was to analyze the changes in experience and perception of hunger before and after participants shifted from their previous usual diet to a high nutrient density diet. Methods This was a descriptive study conducted with 768 participants primarily living in the United States who had changed their dietary habits from a low micronutrient to a high micronutrient diet. Participants completed a survey rating various dimensions of hunger (physical symptoms, emotional symptoms, and location when on their previous usual diet versus the high micronutrient density diet. Statistical analysis was conducted using non-parametric tests. Results Highly significant differences were found between the two diets in relation to all physical and emotional symptoms as well as the location of hunger. Hunger was not an unpleasant experience while on the high nutrient density diet, was well tolerated and occurred with less frequency even when meals were skipped. Nearly 80% of respondents reported that their experience of hunger had changed since starting the high nutrient density diet, with 51% reporting a dramatic or complete change in their experience of hunger. Conclusions A high micronutrient density diet mitigates the unpleasant aspects of the experience of hunger even though it is lower in calories. Hunger is one of the major impediments to successful weight loss. Our findings suggest that it is not simply the caloric content, but more importantly, the micronutrient density of a diet that influences the experience of hunger. It appears that a high nutrient density diet, after an initial phase of adjustment during which a person experiences "toxic hunger" due to withdrawal from pro-inflammatory foods, can result in a sustainable eating pattern that leads to weight loss and improved health. A high nutrient density diet provides

  17. Changing perceptions of hunger on a high nutrient density diet. (United States)

    Fuhrman, Joel; Sarter, Barbara; Glaser, Dale; Acocella, Steve


    People overeat because their hunger directs them to consume more calories than they require. The purpose of this study was to analyze the changes in experience and perception of hunger before and after participants shifted from their previous usual diet to a high nutrient density diet. This was a descriptive study conducted with 768 participants primarily living in the United States who had changed their dietary habits from a low micronutrient to a high micronutrient diet. Participants completed a survey rating various dimensions of hunger (physical symptoms, emotional symptoms, and location) when on their previous usual diet versus the high micronutrient density diet. Statistical analysis was conducted using non-parametric tests. Highly significant differences were found between the two diets in relation to all physical and emotional symptoms as well as the location of hunger. Hunger was not an unpleasant experience while on the high nutrient density diet, was well tolerated and occurred with less frequency even when meals were skipped. Nearly 80% of respondents reported that their experience of hunger had changed since starting the high nutrient density diet, with 51% reporting a dramatic or complete change in their experience of hunger. A high micronutrient density diet mitigates the unpleasant aspects of the experience of hunger even though it is lower in calories. Hunger is one of the major impediments to successful weight loss. Our findings suggest that it is not simply the caloric content, but more importantly, the micronutrient density of a diet that influences the experience of hunger. It appears that a high nutrient density diet, after an initial phase of adjustment during which a person experiences "toxic hunger" due to withdrawal from pro-inflammatory foods, can result in a sustainable eating pattern that leads to weight loss and improved health. A high nutrient density diet provides benefits for long-term health as well as weight loss. Because our

  18. Frontiers for Discovery in High Energy Density Physics

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, R. C.; Katsouleas, T.; Arons, J.; Baring, M.; Deeney, C.; Di Mauro, L.; Ditmire, T.; Falcone, R.; Hammer, D.; Hill, W.; Jacak, B.; Joshi, C.; Lamb, F.; Lee, R.; Logan, B. G.; Melissinos, A.; Meyerhofer, D.; Mori, W.; Murnane, M.; Remington, B.; Rosner, R.; Schneider, D.; Silvera, I.; Stone, J.; Wilde, B.; Zajc. W.


    The report is intended to identify the compelling research opportunities of high intellectual value in high energy density physics. The opportunities for discovery include the broad scope of this highly interdisciplinary field that spans a wide range of physics areas including plasma physics, laser and particle beam physics, nuclear physics, astrophysics, atomic and molecular physics, materials science and condensed matter physics, intense radiation-matter interaction physics, fluid dynamics, and magnetohydrodynamics

  19. High Density Observation of Tids at White Sands, New Mexico (United States)

    Dao, E. V.; Colman, J. J.; McNamara, L. F.; Emmons, D. J., II


    In January, 2014, the IARPA High Frequency Geolocation program ran a week long experiment with high frequency (HF) instruments densely deployed over White Sands, New Mexico. The experiment yielded several observations of large-scale and medium-scale traveling ionospheric disturbances (TIDs) with high spatial and temporal density. We present initial observations of the mid-latitude TIDs to help understand their spatial and temporal properties better.

  20. A safe, high-power-density lithium battery (United States)

    Walsh, F.


    The Li/SOCl2 battery has received attention because of its high theoretical energy/power density. However, practical Li/SOCl2 cells have not provided the desired power density and have suffered from concerns with cell safety on discharge. In previous work, ECO has shown that the use of a TAA-type catalyst significantly improves the safety of the Li/S0Cl2 cell at high rate. The objective of this Phase 1 program was to determine whether a stacked disk electrode configuration with TAA-catalyzed cathodes would meet a high power-density design goal. Under the program, the effects of cathode thickness, preparation pressure, electrolyte gap and solute concentration on stacked-electrode cell performance and capacity were measured. The results of the Phase 1 program included the demonstration of stacked-electrode cell performance and capacity at levels suitable to meet a design goal of 400 W/kg with high energy density. Further work in a Phase 2 program will be required to demonstrate in laser-sealed fully-packaged cells that the results of Phase 1 can be practically applied to provide a safe high-rate, energy-dense power source for military applications.

  1. Study of Volumetrically Heated Ultra-High Energy Density Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Rocca, Jorge J. [Colorado State Univ., Fort Collins, CO (United States)


    Heating dense matter to millions of degrees is important for applications, but requires complex and expensive methods. The major goal of the project was to demonstrate using a compact laser the creation of a new ultra-high energy density plasma regime characterized by simultaneous extremely high temperature and high density, and to study it combining experimental measurements and advanced simulations. We have demonstrated that trapping of intense femtosecond laser pulses deep within ordered nanowire arrays can heat near solid density matter into a new ultra hot plasma regime. Extreme electron densities, and temperatures of several tens of million degrees were achieved using laser pulses of only 0.5 J energy from a compact laser. Our x-ray spectra and simulations showed that extremely highly ionized plasma volumes several micrometers in depth are generated by irradiation of gold and Nickel nanowire arrays with femtosecond laser pulses of relativistic intensities. We obtained extraordinarily high degrees of ionization (e.g. we peeled 52 electrons from gold atoms, and up to 26 electrons from nickel atoms). In the process we generated Gigabar pressures only exceeded in the central hot spot of highly compressed thermonuclear fusion plasmas.. The plasma created after the dissolved wires expand, collide, and thermalize, is computed to have a thermal energy density of 0.3 GJ cm-3 and a pressure of 1-2 Gigabar. These are pressures only exceeded in highly compressed thermonuclear fusion plasmas. Scaling these results to higher laser intensities promises to create plasmas with temperatures and pressures exceeding those in the center of the sun.

  2. Biofuels Barrier Properties of Polyamide 6 and High Density Polyethylene

    Directory of Open Access Journals (Sweden)

    Fillot L.-A.


    Full Text Available In this paper, a comparison of the biofuels barrier properties of PolyAmide 6 (PA6 and High Density PolyEthylene (HDPE is presented. Model fuels were prepared as mixtures of toluene, isooctane and ethanol, the ethanol volume fraction varying between 0% and 100%. Barrier properties were determined at 40°C by gravimetric techniques or gas chromatography measurements, and it was shown that polyamide 6 permeability is lower than that of polyethylene on a wide range of ethanol contents up to 85% of ethanol (E85 in the biofuel, permeability of PA6 being 100 times lower than that of HDPE for low ethanol content fuels (E5, E0. The time-lags were also compared, and on the whole range of ethanol contents, HDPE permeation kinetics appears to be much faster than that of PA6, the time lag for a 1 mm thick specimens in presence of E10 being 50 days for PA6 and 0.5 days for HDPE. The compositions of the solvent fluxes were analyzed by FID gas chromatography, and it turned out that the solvent flux was mainly made up of ethanol (minimum 95% in the case of PA6, whereas in the case of HDPE, solvent flux was mainly made up of hydrocarbons. The implication of this difference in the solvent flux composition is discussed in the present article, and a side effect called the “fuel exhaustion process” is presented. The influence of the sample thickness was then studied, and for the different biofuels compositions, the pervaporation kinetics of polyamide 6 appeared to evolve with the square of the thickness, a long transitory regime being highlighted in the case of PA6. This result implies that the time needed to characterize the steady state permeability of thick PA6 parts such as fuel tanks can be very long (one year or more, this duration being far superior to the Euros 5 or Euro 6 standard emission measurements time scale. The influence of temperature on the permeability was finally assessed, and the activation energy that is the signature of the temperature

  3. High-density waveguide superlattices with low crosstalk (United States)

    Song, Weiwei; Gatdula, Robert; Abbaslou, Siamak; Lu, Ming; Stein, Aaron; Lai, Warren Y.-C.; Provine, J.; Pease, R. Fabian W.; Christodoulides, Demetrios N.; Jiang, Wei


    Silicon photonics holds great promise for low-cost large-scale photonic integration. In its future development, integration density will play an ever-increasing role in a way similar to that witnessed in integrated circuits. Waveguides are perhaps the most ubiquitous component in silicon photonics. As such, the density of waveguide elements is expected to have a crucial influence on the integration density of a silicon photonic chip. A solution to high-density waveguide integration with minimal impact on other performance metrics such as crosstalk remains a vital issue in many applications. Here, we propose a waveguide superlattice and demonstrate advanced superlattice design concepts such as interlacing-recombination that enable high-density waveguide integration at a half-wavelength pitch with low crosstalk. Such waveguide superlattices can potentially lead to significant reduction in on-chip estate for waveguide elements and salient enhancement of performance for important applications, opening up possibilities for half-wavelength-pitch optical-phased arrays and ultra-dense space-division multiplexing.

  4. High-Density Nanosharp Microstructures Enable Efficient CO2 Electroreduction. (United States)

    Saberi Safaei, Tina; Mepham, Adam; Zheng, Xueli; Pang, Yuanjie; Dinh, Cao-Thang; Liu, Min; Sinton, David; Kelley, Shana O; Sargent, Edward H


    Conversion of CO2 to CO powered by renewable electricity not only reduces CO2 pollution but also is a means to store renewable energy via chemical production of fuels from CO. However, the kinetics of this reaction are slow due its large energetic barrier. We have recently reported CO2 reduction that is considerably enhanced via local electric field concentration at the tips of sharp gold nanostructures. The high local electric field enhances CO2 concentration at the catalytic active sites, lowering the activation barrier. Here we engineer the nucleation and growth of next-generation Au nanostructures. The electroplating overpotential was manipulated to generate an appreciably increased density of honed nanoneedles. Using this approach, we report the first application of sequential electrodeposition to increase the density of sharp tips in CO2 electroreduction. Selective regions of the primary nanoneedles are passivated using a thiol SAM (self-assembled monolayer), and then growth is concentrated atop the uncovered high-energy planes, providing new nucleation sites that ultimately lead to an increase in the density of the nanosharp structures. The two-step process leads to a new record in CO2 to CO reduction, with a geometric current density of 38 mA/cm2 at -0.4 V (vs reversible hydrogen electrode), and a 15-fold improvement over the best prior reports of electrochemical surface area (ECSA) normalized current density.

  5. A high energy density relaxor antiferroelectric pulsed capacitor dielectric

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Hwan Ryul; Lynch, Christopher S. [Department of Mechanical and Aerospace Engineering, University of California, Los Angeles (UCLA), Los Angeles, California 90095 (United States)


    Pulsed capacitors require high energy density and low loss, properties that can be realized through selection of composition. Ceramic (Pb{sub 0.88}La{sub 0.08})(Zr{sub 0.91}Ti{sub 0.09})O{sub 3} was found to be an ideal candidate. La{sup 3+} doping and excess PbO were used to produce relaxor antiferroelectric behavior with slim and slanted hysteresis loops to reduce the dielectric hysteresis loss, to increase the dielectric strength, and to increase the discharge energy density. The discharge energy density of this composition was found to be 3.04 J/cm{sup 3} with applied electric field of 170 kV/cm, and the energy efficiency, defined as the ratio of the discharge energy density to the charging energy density, was 0.920. This high efficiency reduces the heat generated under cyclic loading and improves the reliability. The properties were observed to degrade some with temperature increase above 80 °C. Repeated electric field cycles up to 10 000 cycles were applied to the specimen with no observed performance degradation.

  6. Interfacial stick–slip transition in hydroxyapatite filled high density ...

    Indian Academy of Sciences (India)

    Effect of filler addition and temperature on the stick–slip transition in high density polyethylene melt was studied. Results showed that shear stresses corresponding to stick–slip transition increases with the addition of filler. Increase in temperature also increases the shear stresses for stick–slip transition. The features of the ...

  7. Patterned magnetic thin films for ultra high density recording

    NARCIS (Netherlands)

    Haast, M.A.M.

    This thesis describes the results of a research project in the field of high bit-density data-storage media. More specifically, the material aspects of the novel recording technique using patterned media have been studied. The aim of the work was the design, realization and characterization of such

  8. High density lipoproteins (HDLs) and atherosclerosis; the unanswered questions

    NARCIS (Netherlands)

    Barter, Philip; Kastelein, John; Nunn, Alistair; Hobbs, Richard


    The concentration of high density lipoprotein-cholesterol (HDL-C) has been found consistently to be a powerful negative predictor of premature coronary heart disease (CHD) in human prospective population studies. There is also circumstantial evidence from human intervention studies and direct

  9. A Novel Anti-Inflammatory Effect for High Density Lipoprotein.

    Directory of Open Access Journals (Sweden)

    Scott J Cameron

    Full Text Available High density lipoprotein has anti-inflammatory effects in addition to mediating reverse cholesterol transport. While many of the chronic anti-inflammatory effects of high density lipoprotein (HDL are attributed to changes in cell adhesion molecules, little is known about acute signal transduction events elicited by HDL in endothelial cells. We now show that high density lipoprotein decreases endothelial cell exocytosis, the first step in leukocyte trafficking. ApoA-I, a major apolipoprotein of HDL, mediates inhibition of endothelial cell exocytosis by interacting with endothelial scavenger receptor-BI which triggers an intracellular protective signaling cascade involving protein kinase C (PKC. Other apolipoproteins within the HDL particle have only modest effects upon endothelial exocytosis. Using a human primary culture of endothelial cells and murine apo-AI knockout mice, we show that apo-AI prevents endothelial cell exocytosis which limits leukocyte recruitment. These data suggest that high density lipoprotein may inhibit diseases associated with vascular inflammation in part by blocking endothelial exocytosis.

  10. Design for a High Energy Density Kelvin-Helmholtz Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Hurricane, O A


    While many high energy density physics (HEDP) Rayleigh-Taylor and Richtmyer-Meshkov instability experiments have been fielded as part of basic HEDP and astrophysics studies, not one HEDP Kelvin-Helmholtz (KH) experiment has been successfully performed. Herein, a design for a novel HEDP x-ray driven KH experiment is presented along with supporting radiation-hydrodynamic simulation and theory.

  11. High and low density development in Puerto Rico (United States)

    William A. Gould; Sebastian Martinuzzi; Olga M. Ramos Gonzalez


    This map shows the distribution of high and low density developed lands in Puerto Rico (Martinuzzi et al. 2007). The map was created using a mosaic of Landsat ETM+ images that range from the years 2000 to 2003. The developed land cover was classified using the Iterative Self-Organizing Data Analysis Technique (ISODATA) unsupervised classification (ERDAS 2003)....

  12. Sparse deconvolution of high-density super-resolution images

    NARCIS (Netherlands)

    S. Hugelier (Siewert); J.J. de Rooi (Johan); R. Bernex (Romain); S. Duwé (Sam); O. Devos (Olivier); M. Sliwa (Michel); P. Dedecker (Peter); P.H.C. Eilers (Paul); C. Ruckebusch (Cyril)


    textabstractIn wide-field super-resolution microscopy, investigating the nanoscale structure of cellular processes, and resolving fast dynamics and morphological changes in cells requires algorithms capable of working with a high-density of emissive fluorophores. Current deconvolution algorithms

  13. A high current density DC magnetohydrodynamic (MHD) micropump

    NARCIS (Netherlands)

    Homsy, Alexandra; Koster, Sander; Hogen-Koster, S.; Eijkel, Jan C.T.; van den Berg, Albert; Lucklum, F.; Verpoorte, E.; de Rooij, Nico F.


    This paper describes the working principle of a DC magnetohydrodynamic (MHD) micropump that can be operated at high DC current densities (J) in 75-µm-deep microfluidic channels without introducing gas bubbles into the pumping channel. The main design feature for current generation is a micromachined

  14. A high current density DC magnetohydrodynamic (MHD) micropump

    NARCIS (Netherlands)

    Homsy, A; Koster, Sander; Eijkel, JCT; van den Berg, A; Lucklum, F; Verpoorte, E; de Rooij, NF


    This paper describes the working principle of a DC magnetohydrodynamic (MHD) micropump that can be operated at high DC current densities (J) in 75-mu m-deep microfluidic channels without introducing gas bubbles into the pumping channel. The main design feature for current generation is a

  15. Extreme states of matter high energy density physics

    CERN Document Server

    Fortov, Vladimir E


    With its many beautiful colour pictures, this book gives fascinating insights into the unusual forms and behaviour of matter under extremely high pressures and temperatures. These extreme states are generated, among other things, by strong shock, detonation and electric explosion waves, dense laser beams,electron and ion beams, hypersonic entry of spacecraft into dense atmospheres of planets, and in many other situations characterized by extremely high pressures and temperatures.Written by one of the world's foremost experts on the topic, this book will inform and fascinate all scientists dealing with materials properties and physics, and also serve as an excellent introduction to plasma-, shock-wave and high-energy-density physics for students and newcomers seeking an overview. This second edition is thoroughly revised and expanded, in particular with new material on high energy-density physics, nuclear explosions and other nuclear transformation processes.

  16. High Energy Density and High Temperature Multilayer Capacitor Films for Electric Vehicle Applications (United States)

    Treufeld, Imre; Song, Michelle; Zhu, Lei; Baer, Eric; Snyder, Joe; Langhe, Deepak


    Multilayer films (MLFs) with high energy density and high temperature capability (>120 °C) have been developed at Case Western Reserve University. Such films offer a potential solution for electric car DC-link capacitors, where high ripple currents and high temperature tolerance are required. The current state-of-the-art capacitors used in electric cars for converting DC to AC use biaxially oriented polypropylene (BOPP), which can only operate at temperatures up to 85 °C requiring an external cooling system. The polycarbonate (PC)/poly(vinylidene fluoride) (PVDF) MLFs have a higher permittivity compared to that of BOPP (2.3), leading to higher energy density. They have good mechanical stability and reasonably low dielectric losses at 120 °C. Nonetheless, our preliminary dielectric measurements show that the MLFs exhibit appreciable dielectric losses (20%) at 120 °C, which would, despite all the other advantages, make them not suitable for practical applications. Our preliminary data showed that dielectric losses of the MLFs at 120 °C up to 400 MV/m and 1000 Hz originate mostly from impurity ionic conduction. This work is supported by the NSF PFI/BIC Program (IIP-1237708).

  17. Changing perceptions of hunger on a high nutrient density diet


    Glaser Dale; Sarter Barbara; Fuhrman Joel; Acocella Steve


    Abstract Background People overeat because their hunger directs them to consume more calories than they require. The purpose of this study was to analyze the changes in experience and perception of hunger before and after participants shifted from their previous usual diet to a high nutrient density diet. Methods This was a descriptive study conducted with 768 participants primarily living in the United States who had changed their dietary habits from a low micronutrient to a high micronutrie...

  18. High energy density physics issues related to Future Circular Collider (United States)

    Tahir, N. A.; Burkart, F.; Schmidt, R.; Shutov, A.; Wollmann, D.; Piriz, A. R.


    A design study for a post-Large Hadron Collider accelerator named, Future Circular Collider (FCC), is being carried out by the International Scientific Community. A complete design report is expected to be ready by spring 2018. The FCC will accelerate two counter rotating beams of 50 TeV protons in a tunnel having a length (circumference) of 100 km. Each beam will be comprised of 10 600 proton bunches, with each bunch having an intensity of 1011 protons. The bunch length is of 0.5 ns, and two neighboring bunches are separated by 25 ns. Although there is an option for 5 ns bunch separation as well, in the present studies, we consider the former case only. The total energy stored in each FCC beam is about 8.5 GJ, which is equivalent to the kinetic energy of Airbus 380 (560 t) flying at a speed of 850 km/h. Machine protection is a very important issue while operating with such powerful beams. It is important to have an estimate of the damage caused to the equipment and accelerator components due to the accidental release of a partial or total beam at a given point. For this purpose, we carried out numerical simulations of full impact of one FCC beam on an extended solid copper target. These simulations have been done employing an energy deposition code, FLUKA, and a two-dimensional hydrodynamic code, BIG2, iteratively. This study shows that although the static range of a single FCC proton and its shower is about 1.5 m in solid copper, the entire beam will penetrate around 350 m into the target. This substantial increase in the range is due to the hydrodynamic tunneling of the beam. Our calculations also show that a large part of the target will be converted into high energy density matter including warm dense matter and strongly coupled plasmas.

  19. High-Sensitivity Measurement of Density by Magnetic Levitation. (United States)

    Nemiroski, Alex; Kumar, A A; Soh, Siowling; Harburg, Daniel V; Yu, Hai-Dong; Whitesides, George M


    This paper presents methods that use Magnetic Levitation (MagLev) to measure very small differences in density of solid diamagnetic objects suspended in a paramagnetic medium. Previous work in this field has shown that, while it is a convenient method, standard MagLev (i.e., where the direction of magnetization and gravitational force are parallel) cannot resolve differences in density mm) because (i) objects close in density prevent each other from reaching an equilibrium height due to hard contact and excluded volume, and (ii) using weaker magnets or reducing the magnetic susceptibility of the medium destabilizes the magnetic trap. The present work investigates the use of weak magnetic gradients parallel to the faces of the magnets as a means of increasing the sensitivity of MagLev without destabilization. Configuring the MagLev device in a rotated state (i.e., where the direction of magnetization and gravitational force are perpendicular) relative to the standard configuration enables simple measurements along the axes with the highest sensitivity to changes in density. Manipulating the distance of separation between the magnets or the lengths of the magnets (along the axis of measurement) enables the sensitivity to be tuned. These modifications enable an improvement in the resolution up to 100-fold over the standard configuration, and measurements with resolution down to 10(-6) g/cm(3). Three examples of characterizing the small differences in density among samples of materials having ostensibly indistinguishable densities-Nylon spheres, PMMA spheres, and drug spheres-demonstrate the applicability of rotated Maglev to measuring the density of small (0.1-1 mm) objects with high sensitivity. This capability will be useful in materials science, separations, and quality control of manufactured objects.

  20. Rf Gun with High-Current Density Field Emission Cathode

    Energy Technology Data Exchange (ETDEWEB)

    Jay L. Hirshfield


    High current-density field emission from an array of carbon nanotubes, with field-emission-transistor control, and with secondary electron channel multiplication in a ceramic facing structure, have been combined in a cold cathode for rf guns and diode guns. Electrodynamic and space-charge flow simulations were conducted to specify the cathode configuration and range of emission current density from the field emission cold cathode. Design of this cathode has been made for installation and testing in an existing S-band 2-1/2 cell rf gun. With emission control and modulation, and with current density in the range of 0.1-1 kA/cm2, this cathode could provide performance and long-life not enjoyed by other currently-available cathodes

  1. Fluidisation and dispersion behaviour of small high density pellicular expanded bed adsorbents

    DEFF Research Database (Denmark)

    Theodossiou, Irini; Elsner, H.D.; Thomas, Owen R. T.


    The fluidisation and dispersion properties of various agarose-based expanded bed matrices-small high density stainless steel cored prototypes and standard commercial types-were studied in I-cm diameter expanded bed contactors in which fluid entering the column base is locally stirred. In all cases...

  2. High density plasmas formation in Inertial Confinement Fusion and Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Val, J. M.; Minguez, E.; Velarde, P.; Perlado, J. M.; Velarde, G.; Bravo, E.; Eliezer, S.; Florido, R.; Garcia Rubiano, J.; Garcia-Senz, D.; Gil de la Fe, J. M.; Leon, P. T.; Martel, P.; Ogando, F.; Piera, M.; Relano, A.; Rodriguez, R.; Garcia, C.; Gonzalez, E.; Lachaise, M.; Oliva, E.


    In inertially confined fusion (ICF), high densities are required to obtain high gains. In Fast Ignition, a high density, low temperature plasma can be obtained during the compression. If the final temperature reached is low enough, the electrons of the plasma can be degenerate. In degenerate plasmas. Bremsstrahlung emission is strongly suppressed an ignition temperature becomes lower than in classical plasmas, which offers a new design window for ICF. The main difficulty of degenerate plasmas in the compression energy needed for high densities. Besides that, the low specific heat of degenerate electrons (as compared to classical values) is also a problem because of the rapid heating of the plasma. Fluid dynamic evolution of supernovae remnants is a very interesting problem in order to predict the thermodynamical conditions achieved in their collision regions. Those conditions have a strong influence in the emission of light and therefore the detection of such events. A laboratory scale system has been designed reproducing the fluid dynamic field in high energy experiments. The evolution of the laboratory system has been calculated with ARWEN code, 2D Radiation CFD that works with Adaptive Mesh Refinement. Results are compared with simulations on the original system obtained with a 3D SPH astrophysical code. New phenomena at the collision plane and scaling of the laboratory magnitudes will be described. Atomic physics for high density plasmas has been studied with participation in experiments to obtain laser produced high density plasmas under NLTE conditions, carried out at LULI. A code, ATOM3R, has been developed which solves rate equations for optically thin plasmas as well as for homogeneous optically thick plasmas making use of escape factors. New improvements in ATOM3R are been done to calculate level populations and opacities for non homogeneous thick plasmas in NLTE, with emphasis in He and H lines for high density plasma diagnosis. Analytical expression

  3. Neural network based feed-forward high density associative memory (United States)

    Daud, T.; Moopenn, A.; Lamb, J. L.; Ramesham, R.; Thakoor, A. P.


    A novel thin film approach to neural-network-based high-density associative memory is described. The information is stored locally in a memory matrix of passive, nonvolatile, binary connection elements with a potential to achieve a storage density of 10 to the 9th bits/sq cm. Microswitches based on memory switching in thin film hydrogenated amorphous silicon, and alternatively in manganese oxide, have been used as programmable read-only memory elements. Low-energy switching has been ascertained in both these materials. Fabrication and testing of memory matrix is described. High-speed associative recall approaching 10 to the 7th bits/sec and high storage capacity in such a connection matrix memory system is also described.

  4. Characterization of the high density plasma etching process of CCTO thin films for the fabrication of very high density capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Altamore, C; Tringali, C; Sparta' , N; Marco, S Di; Grasso, A; Ravesi, S [STMicroelectronics, Industial and Multi-segment Sector R and D, Catania (Italy)


    In this work the feasibility of CCTO (Calcium Copper Titanate) patterning by etching process is demonstrated and fully characterized in a hard to etch materials etcher. CCTO sintered in powder shows a giant relative dielectric constant (10{sup 5}) measured at 1 MHz at room temperature. This feature is furthermore coupled with stability from 10{sup 1} Hz to 10{sup 6} Hz in a wide temperature range (100K - 600K). In principle, this property can allow to fabricate very high capacitance density condenser. Due to its perovskite multi-component structure, CCTO can be considered a hard to etch material. For high density capacitor fabrication, CCTO anisotropic etching is requested by using high density plasma. The behavior of etched CCTO was studied in a HRe- (High Density Reflected electron) plasma etcher using Cl{sub 2}/Ar chemistry. The relationship between the etch rate and the Cl{sub 2}/Ar ratio was also studied. The effects of RF MHz, KHz Power and pressure variation, the impact of HBr addiction to the Cl{sub 2}/Ar chemistry on the CCTO etch rate and on its selectivity to Pt and photo resist was investigated.

  5. Predicting gully densities at sub-continental scales: a case study for the Horn of Africa (United States)

    Vanmaercke, Matthias; Pelckmans, Ignace; Poesen, Jean


    Gully erosion is a major cause of land degradation in many regions, due to its negative impacts on catchment hydrology, its associated losses of land and damage to infrastructure, as well as its often major contributions to catchment sediment yields. Mitigation and prevention of gully erosion requires a good knowledge of its spatial patterns and controlling factors. However, our ability to simulate or predict this process remains currently very limited. This is especially the case for the regional scale. Whereas detailed case studies have provided important insights into the drivers of gully erosion at local scales, these findings are often difficult to upscale to larger regions. Here we utilized a simple and cheap method to predict patterns of gully density at the sub-continental scale. By means of a random sampling procedure, we mapped gully densities for over sixty study sites across the Horn of Africa, using freely available Google Earth imagery. Next, we statistically analyzed which factors best explained the observed variation in mapped gully density. Based on these findings, we constructed a multiple regression model that simulates gully density, based on topography (average slope), soil characteristics (percentage silt) and land use (NDVI-value). Although our model could benefit from further refinement, it succeeds already fairly well in simulating the patterns of gully density at sub-continental scales. Over 75% of the predicted gully densities differ less than 5% from the observed gully density, while over 90% of the predictions deviate less than 10%. Exploration of our results further showed that this methodology may be highly useful to quantify total gully erosion rates at regional and continental scales as well as the contribution of gully erosion to catchment sediment yields.

  6. High Energy Density Regenerative Fuel Cell Systems for Terrestrial Applications (United States)

    Burke, Kenneth A.


    Regenerative Fuel Cell System (RFCS) technology for energy storage has been a NASA power system concept for many years. Compared to battery-based energy storage systems, RFCS has received relatively little attention or resources for development because the energy density and electrical efficiency were not sufficiently attractive relative to advanced battery systems. Even today, RFCS remains at a very low technology readiness level (TRL of about 2 indicating feasibility has been demonstrated). Commercial development of the Proton Exchange Membrane (PEM) fuel cells for automobiles and other terrestrial applications and improvements in lightweight pressure vessel design to reduce weight and improve performance make possible a high energy density RFCS energy storage system. The results from this study of a lightweight RFCS energy storage system for a remotely piloted, solar-powered, high altitude aircraft indicate an energy density up to 790 w-h/kg with electrical efficiency of 53.4% is attainable. Such an energy storage system would allow a solar-powered aircraft to carry hundreds of kilograms of payload and remain in flight indefinitely for use in atmospheric research, earth observation, resource mapping. and telecommunications. Future developments in the areas of hydrogen and oxygen storage, pressure vessel design, higher temperature and higher- pressure fuel cell operation, unitized regenerative fuel cells, and commercial development of fuel cell technology will improve both the energy density and electrical efficiency of the RFCS.

  7. High volumetric power density, non-enzymatic, glucose fuel cells (United States)

    Oncescu, Vlad; Erickson, David


    The development of new implantable medical devices has been limited in the past by slow advances in lithium battery technology. Non-enzymatic glucose fuel cells are promising replacement candidates for lithium batteries because of good long-term stability and adequate power density. The devices developed to date however use an “oxygen depletion design” whereby the electrodes are stacked on top of each other leading to low volumetric power density and complicated fabrication protocols. Here we have developed a novel single-layer fuel cell with good performance (2 μW cm−2) and stability that can be integrated directly as a coating layer on large implantable devices, or stacked to obtain a high volumetric power density (over 16 μW cm−3). This represents the first demonstration of a low volume non-enzymatic fuel cell stack with high power density, greatly increasing the range of applications for non-enzymatic glucose fuel cells. PMID:23390576

  8. Multiplexed, high density electrophysiology with nanofabricated neural probes.

    Directory of Open Access Journals (Sweden)

    Jiangang Du

    Full Text Available Extracellular electrode arrays can reveal the neuronal network correlates of behavior with single-cell, single-spike, and sub-millisecond resolution. However, implantable electrodes are inherently invasive, and efforts to scale up the number and density of recording sites must compromise on device size in order to connect the electrodes. Here, we report on silicon-based neural probes employing nanofabricated, high-density electrical leads. Furthermore, we address the challenge of reading out multichannel data with an application-specific integrated circuit (ASIC performing signal amplification, band-pass filtering, and multiplexing functions. We demonstrate high spatial resolution extracellular measurements with a fully integrated, low noise 64-channel system weighing just 330 mg. The on-chip multiplexers make possible recordings with substantially fewer external wires than the number of input channels. By combining nanofabricated probes with ASICs we have implemented a system for performing large-scale, high-density electrophysiology in small, freely behaving animals that is both minimally invasive and highly scalable.

  9. Multiplexed, high density electrophysiology with nanofabricated neural probes. (United States)

    Du, Jiangang; Blanche, Timothy J; Harrison, Reid R; Lester, Henry A; Masmanidis, Sotiris C


    Extracellular electrode arrays can reveal the neuronal network correlates of behavior with single-cell, single-spike, and sub-millisecond resolution. However, implantable electrodes are inherently invasive, and efforts to scale up the number and density of recording sites must compromise on device size in order to connect the electrodes. Here, we report on silicon-based neural probes employing nanofabricated, high-density electrical leads. Furthermore, we address the challenge of reading out multichannel data with an application-specific integrated circuit (ASIC) performing signal amplification, band-pass filtering, and multiplexing functions. We demonstrate high spatial resolution extracellular measurements with a fully integrated, low noise 64-channel system weighing just 330 mg. The on-chip multiplexers make possible recordings with substantially fewer external wires than the number of input channels. By combining nanofabricated probes with ASICs we have implemented a system for performing large-scale, high-density electrophysiology in small, freely behaving animals that is both minimally invasive and highly scalable.

  10. High density thermite mixture for shaped charge ordnance disposal

    Directory of Open Access Journals (Sweden)

    Tamer Elshenawy


    Full Text Available The effect of thermite mixture based on aluminum and ferric oxides for ammunition neutralization has been studied and tested. Thermochemical calculations have been carried out for different percentage of Al using Chemical Equilibrium Code to expect the highest performance thermite mixture used for shaped charge ordnance disposal. Densities and enthalpy of different formulations have been calculated and demonstrated. The optimized thermite formulation has been prepared experimentally using cold iso-static pressing technique, which exhibited relatively high density and high burning rate thermite mixture. The produced green product compacted powder mixture was tested against small caliber shaped charge bomblet for neutralization. Theoretical and experimental results showed that the prepared thermite mixture containing 33% of aluminum as a fuel with ferric oxide can be successfully used for shaped charge ordnance disposal.

  11. A Coupled Plasma-Sheath Model for High Density Sources (United States)

    Bose, Deepak; Govindan, T. R.; Meyyappan, M.


    High density, low pressure plasmas are used for etching and deposition in microelectronics fabrication processes. The process characteristics are strongly determined by the ion energy distribution (IED) and the ion flux arriving at the substrate that are responsible for desorption of etch products and neutral dissociation at the surface. The ion flux and energy are determined by a self- consistent modeling of the bulk plasma, where the ions and the neutral radicals are produced, and the sheath, where the ions are accelerated. Due to their widely different time scales, it is a formidable task to self-consistently resolve non-collisional sheath in a high density bulk plasma model. In this work, we first describe a coupled plasma-sheath model that attempts to resolve the non-collisional sheath in a reactor scale model. Second, we propose a semianalytical radio frequency (RF) sheath model to improve ion dynamics.

  12. Lithium-Based High Energy Density Flow Batteries (United States)

    Bugga, Ratnakumar V. (Inventor); West, William C. (Inventor); Kindler, Andrew (Inventor); Smart, Marshall C. (Inventor)


    Systems and methods in accordance with embodiments of the invention implement a lithium-based high energy density flow battery. In one embodiment, a lithium-based high energy density flow battery includes a first anodic conductive solution that includes a lithium polyaromatic hydrocarbon complex dissolved in a solvent, a second cathodic conductive solution that includes a cathodic complex dissolved in a solvent, a solid lithium ion conductor disposed so as to separate the first solution from the second solution, such that the first conductive solution, the second conductive solution, and the solid lithium ionic conductor define a circuit, where when the circuit is closed, lithium from the lithium polyaromatic hydrocarbon complex in the first conductive solution dissociates from the lithium polyaromatic hydrocarbon complex, migrates through the solid lithium ionic conductor, and associates with the cathodic complex of the second conductive solution, and a current is generated.

  13. Laboratory testing of high energy density capacitors for electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Burke, A.F.


    Laboratory tests of advanced, high energy density capacitors in the Battery Test Laboratory of the Idaho National Engineering Laboratory have been performed to investigate their suitability for load-leveling the battery in an electric vehicle. Two types of devices were tested -- 3 V, 70 Farad, spiral wound, carbon-based, single cell devices and 20 V, 3. 5 Farad, mixed-oxide, multi-cell bipolar devices. The energy density of the devices, based on energy stored during charge to the rated voltage, was found to be 1--2 Wh/kg, which agreed well with that claimed by the manufacturers. Constant power discharge tests were performed at power densities up to 1500 W/kg. Discharges at higher power densities could have been performed had equipment been available to maintain constant power during discharges of less than one second. It was found that the capacitance of the devices were rate dependent with the rate dependency of the carbon-based devices being higher than that of the mixed-oxide devices. The resistance of both types of devices were relatively low being 20--30 milliohms. Testing done in the study showed that the advanced high energy density capacitors can be charged and discharged over cycles (PSFUDS) which approximate the duty cycle that would be encountered if the devices are used to load-level the battery in an electric vehicle. Thermal tests of the advanced capacitors in an insulated environment using the PSFUDS cycle showed the devices do not overheat with their temperatures increasing only 4--5{degrees}C for tests that lasted 5--7 hours. 7 refs., 33 figs., 11 tabs.

  14. High-density quantum sensing with dissipative first order transitions


    Raghunandan, Meghana; Wrachtrup, Jörg; Weimer, Hendrik


    The sensing of external fields using quantum systems is a prime example of an emergent quantum technology. Generically, the sensitivity of a quantum sensor consisting of $N$ independent particles is proportional to $\\sqrt{N}$. However, interactions invariably occuring at high densities lead to a breakdown of the assumption of independence between the particles, posing a severe challenge for quantum sensors operating at the nanoscale. Here, we show that interactions in quantum sensors can be t...

  15. LTE Micro-cell Deployment for High-Density Railway Areas

    DEFF Research Database (Denmark)

    Sniady, Aleksander; Kassab, Mohamed; Soler, José


    Long Term Evolution (LTE) is a serious candidate for the future releases of the European Rail Traffic Management System (ERTMS). LTE offers more capacity and supports new communication-based applications and services for railways. Nevertheless, even with this technology, the classical macro......-cell radio deployments reach overload, especially in high-density areas, such as major train stations. In this paper, an LTE micro-cell deployment is investigated in high-density railway areas. Copenhagen Main Station is considered as a realistic deployment study case, with a set of relevant railway...

  16. Bottomside Ionospheric Electron Density Specification using Passive High Frequency Signals (United States)

    Kaeppler, S. R.; Cosgrove, R. B.; Mackay, C.; Varney, R. H.; Kendall, E. A.; Nicolls, M. J.


    The vertical bottomside electron density profile is influenced by a variety of natural sources, most especially traveling ionospheric disturbances (TIDs). These disturbances cause plasma to be moved up or down along the local geomagnetic field and can strongly impact the propagation of high frequency radio waves. While the basic physics of these perturbations has been well studied, practical bottomside models are not well developed. We present initial results from an assimilative bottomside ionosphere model. This model uses empirical orthogonal functions based on the International Reference Ionosphere (IRI) to develop a vertical electron density profile, and features a builtin HF ray tracing function. This parameterized model is then perturbed to model electron density perturbations associated with TIDs or ionospheric gradients. Using the ray tracing feature, the model assimilates angle of arrival measurements from passive HF transmitters. We demonstrate the effectiveness of the model using angle of arrival data. Modeling results of bottomside electron density specification are compared against suitable ancillary observations to quantify accuracy of our model.

  17. High energy density Z-pinch plasmas using flow stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Shumlak, U., E-mail:; Golingo, R. P., E-mail:; Nelson, B. A., E-mail:; Bowers, C. A., E-mail:; Doty, S. A., E-mail:; Forbes, E. G., E-mail:; Hughes, M. C., E-mail:; Kim, B., E-mail:; Knecht, S. D., E-mail:; Lambert, K. K., E-mail:; Lowrie, W., E-mail:; Ross, M. P., E-mail:; Weed, J. R., E-mail: [Aerospace and Energetics Research Program, University of Washington, Seattle, Washington, 98195-2250 (United States)


    The ZaP Flow Z-Pinch research project[1] at the University of Washington investigates the effect of sheared flows on MHD instabilities. Axially flowing Z-pinch plasmas are produced that are 100 cm long with a 1 cm radius. The plasma remains quiescent for many radial Alfvén times and axial flow times. The quiescent periods are characterized by low magnetic mode activity measured at several locations along the plasma column and by stationary visible plasma emission. Plasma evolution is modeled with high-resolution simulation codes – Mach2, WARPX, NIMROD, and HiFi. Plasma flow profiles are experimentally measured with a multi-chord ion Doppler spectrometer. A sheared flow profile is observed to be coincident with the quiescent period, and is consistent with classical plasma viscosity. Equilibrium is determined by diagnostic measurements: interferometry for density; spectroscopy for ion temperature, plasma flow, and density[2]; Thomson scattering for electron temperature; Zeeman splitting for internal magnetic field measurements[3]; and fast framing photography for global structure. Wall stabilization has been investigated computationally and experimentally by removing 70% of the surrounding conducting wall to demonstrate no change in stability behavior.[4] Experimental evidence suggests that the plasma lifetime is only limited by plasma supply and current waveform. The flow Z-pinch concept provides an approach to achieve high energy density plasmas,[5] which are large, easy to diagnose, and persist for extended durations. A new experiment, ZaP-HD, has been built to investigate this approach by separating the flow Z-pinch formation from the radial compression using a triaxial-electrode configuration. This innovation allows more detailed investigations of the sheared flow stabilizing effect, and it allows compression to much higher densities than previously achieved on ZaP by reducing the linear density and increasing the pinch current. Experimental results and

  18. High Density Thermal Energy Storage with Supercritical Fluids (United States)

    Ganapathi, Gani B.; Wirz, Richard


    A novel approach to storing thermal energy with supercritical fluids is being investigated, which if successful, promises to transform the way thermal energy is captured and utilized. The use of supercritical fluids allows cost-affordable high-density storage with a combination of latent heat and sensible heat in the two-phase as well as the supercritical state. This technology will enhance penetration of several thermal power generation applications and high temperature water for commercial use if the overall cost of the technology can be demonstrated to be lower than the current state-of-the-art molten salt using sodium nitrate and potassium nitrate eutectic mixtures.

  19. Human endothelial progenitor cells internalize high-density lipoprotein.

    Directory of Open Access Journals (Sweden)

    Kaemisa Srisen

    Full Text Available Endothelial progenitor cells (EPCs originate either directly from hematopoietic stem cells or from a subpopulation of monocytes. Controversial views about intracellular lipid traffic prompted us to analyze the uptake of human high density lipoprotein (HDL, and HDL-cholesterol in human monocytic EPCs. Fluorescence and electron microscopy were used to investigate distribution and intracellular trafficking of HDL and its associated cholesterol using fluorescent surrogates (bodipy-cholesterol and bodipy-cholesteryl oleate, cytochemical labels and fluorochromes including horseradish peroxidase and Alexa Fluor® 568. Uptake and intracellular transport of HDL were demonstrated after internalization periods from 0.5 to 4 hours. In case of HDL-Alexa Fluor® 568, bodipy-cholesterol and bodipy-cholesteryl oleate, a photooxidation method was carried out. HDL-specific reaction products were present in invaginations of the plasma membrane at each time of treatment within endocytic vesicles, in multivesicular bodies and at longer periods of uptake, also in lysosomes. Some HDL-positive endosomes were arranged in form of "strings of pearl"- like structures. HDL-positive multivesicular bodies exhibited intensive staining of limiting and vesicular membranes. Multivesicular bodies of HDL-Alexa Fluor® 568-treated EPCs showed multilamellar intra-vacuolar membranes. At all periods of treatment, labeled endocytic vesicles and organelles were apparent close to the cell surface and in perinuclear areas around the Golgi apparatus. No HDL-related particles could be demonstrated close to its cisterns. Electron tomographic reconstructions showed an accumulation of HDL-containing endosomes close to the trans-Golgi-network. HDL-derived bodipy-cholesterol was localized in endosomal vesicles, multivesicular bodies, lysosomes and in many of the stacked Golgi cisternae and the trans-Golgi-network Internalized HDL-derived bodipy-cholesteryl oleate was channeled into the lysosomal

  20. Fuel-rich catalytic combustion of a high density fuel (United States)

    Brabbs, Theodore A.; Merritt, Sylvia A.


    Fuel-rich catalytic combustion (ER is greater than 4) of the high density fuel exo-tetrahydrocyclopentadiene (JP-10) was studied over the equivalence ratio range 5.0 to 7.6, which yielded combustion temperatures of 1220 to 1120 K. The process produced soot-free gaseous products similar to those obtained with iso-octane and jet-A in previous studies. The measured combustion temperature agreed well with that calculated assuming soot was not a combustion product. The process raised the effective hydrogen/carbon (H/C) ratio from 1.6 to over 2.0, thus significantly improving the combustion properties of the fuel. At an equivalence ratio near 5.0, about 80 percent of the initial fuel carbon was in light gaseous products and about 20 percent in larger condensable molecules. Fuel-rich catalytic combustion has now been studied for three fuels with H/C ratios of 2.25 (iso-octane), 1.92 (jet-A), and 1.6 (JP-10). A comparison of the product distribution of these fuels shows that, in general, the measured concentrations of the combustion products were monotonic functions of the H/C ratio with the exception of hydrogen and ethylene. In these cases, data for JP-10 fell between iso-octane and jet-A rather than beyond jet-A. It is suggested that the ring cross-linking structure of JP-10 may be responsible for this behavior. All the fuels studied showed that the largest amounts of small hydrocarbon molecules and the smallest amounts of large condensable molecules occurred at the lower equivalence ratios. This corresponds to the highest combustion temperatures used in these studies. Although higher temperatures may improve this mix, the temperature is limited. First, the life of the present catalyst would be greatly shortened when operated at temperatures of 1300 K or greater. Second, fuel-rich catalytic combustion does not produce soot because the combustion temperatures used in the experiments were well below the threshold temperature (1350 K) for the formation of soot. Increasing

  1. High power density proton exchange membrane fuel cells (United States)

    Murphy, Oliver J.; Hitchens, G. Duncan; Manko, David J.


    Proton exchange membrane (PEM) fuel cells use a perfluorosulfonic acid solid polymer film as an electrolyte which simplifies water and electrolyte management. Their thin electrolyte layers give efficient systems of low weight, and their materials of construction show extremely long laboratory lifetimes. Their high reliability and their suitability for use in a microgravity environment makes them particularly attractive as a substitute for batteries in satellites utilizing high-power, high energy-density electrochemical energy storage systems. In this investigation, the Dow experimental PEM (XUS-13204.10) and unsupported high platinum loading electrodes yielded very high power densities, of the order of 2.5 W cm(exp -2). A platinum black loading of 5 mg per cm(exp 2) was found to be optimum. On extending the three-dimensional reaction zone of fuel cell electrodes by impregnating solid polymer electrolyte into the electrode structures, Nafion was found to give better performance than the Dow experimental PEM. The depth of penetration of the solid polymer electrolyte into electrode structures was 50-70 percent of the thickness of the platinum-catalyzed active layer. However, the degree of platinum utilization was only 16.6 percent and the roughness factor of a typical electrode was 274.

  2. High-density recording storage system by Collinear holography (United States)

    Horimai, Hideyoshi; Tan, Xiaodi; Aoki, Yoshio


    Collinear TM Holography, proposed and demonstrated by OPTWARE Corporation, can produce a small, practical holographic versatile disc (HVD TM) drive system more easily than conventional 2-axis holography. With Collinear TM technologies' unique configuration the optical pickup can be designed as small as DVDs, and can be placed on one side of the recording media. As servo technology is being introduced to control the objective lens to be maintained precisely to the disc in the recording and the reconstructing process, a vibration isolator is no longer necessary. Experimental and theoretical studies suggest that the holographic material is very effective in increasing the recording density of the system. A high density data recording of Collinear TM Holography by reducing optical noise is also demonstrated.

  3. Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries (United States)

    Li, Jianlin; Du, Zhijia; Ruther, Rose E.; AN, Seong Jin; David, Lamuel Abraham; Hays, Kevin; Wood, Marissa; Phillip, Nathan D.; Sheng, Yangping; Mao, Chengyu; Kalnaus, Sergiy; Daniel, Claus; Wood, David L.


    Reducing cost and increasing energy density are two barriers for widespread application of lithium-ion batteries in electric vehicles. Although the cost of electric vehicle batteries has been reduced by 70% from 2008 to 2015, the current battery pack cost (268/kWh in 2015) is still >2 times what the USABC targets (125/kWh). Even though many advancements in cell chemistry have been realized since the lithium-ion battery was first commercialized in 1991, few major breakthroughs have occurred in the past decade. Therefore, future cost reduction will rely on cell manufacturing and broader market acceptance. This article discusses three major aspects for cost reduction: (1) quality control to minimize scrap rate in cell manufacturing; (2) novel electrode processing and engineering to reduce processing cost and increase energy density and throughputs; and (3) material development and optimization for lithium-ion batteries with high-energy density. Insights on increasing energy and power densities of lithium-ion batteries are also addressed.

  4. A comparison of five methods of measuring mammographic density: a case-control study. (United States)

    Astley, Susan M; Harkness, Elaine F; Sergeant, Jamie C; Warwick, Jane; Stavrinos, Paula; Warren, Ruth; Wilson, Mary; Beetles, Ursula; Gadde, Soujanya; Lim, Yit; Jain, Anil; Bundred, Sara; Barr, Nicola; Reece, Valerie; Brentnall, Adam R; Cuzick, Jack; Howell, Tony; Evans, D Gareth


    High mammographic density is associated with both risk of cancers being missed at mammography, and increased risk of developing breast cancer. Stratification of breast cancer prevention and screening requires mammographic density measures predictive of cancer. This study compares five mammographic density measures to determine the association with subsequent diagnosis of breast cancer and the presence of breast cancer at screening. Women participating in the "Predicting Risk Of Cancer At Screening" (PROCAS) study, a study of cancer risk, completed questionnaires to provide personal information to enable computation of the Tyrer-Cuzick risk score. Mammographic density was assessed by visual analogue scale (VAS), thresholding (Cumulus) and fully-automated methods (Densitas, Quantra, Volpara) in contralateral breasts of 366 women with unilateral breast cancer (cases) detected at screening on entry to the study (Cumulus 311/366) and in 338 women with cancer detected subsequently. Three controls per case were matched using age, body mass index category, hormone replacement therapy use and menopausal status. Odds ratios (OR) between the highest and lowest quintile, based on the density distribution in controls, for each density measure were estimated by conditional logistic regression, adjusting for classic risk factors. The strongest predictor of screen-detected cancer at study entry was VAS, OR 4.37 (95% CI 2.72-7.03) in the highest vs lowest quintile of percent density after adjustment for classical risk factors. Volpara, Densitas and Cumulus gave ORs for the highest vs lowest quintile of 2.42 (95% CI 1.56-3.78), 2.17 (95% CI 1.41-3.33) and 2.12 (95% CI 1.30-3.45), respectively. Quantra was not significantly associated with breast cancer (OR 1.02, 95% CI 0.67-1.54). Similar results were found for subsequent cancers, with ORs of 4.48 (95% CI 2.79-7.18), 2.87 (95% CI 1.77-4.64) and 2.34 (95% CI 1.50-3.68) in highest vs lowest quintiles of VAS, Volpara and Densitas

  5. Ultra-Stretchable Interconnects for High-Density Stretchable Electronics

    Directory of Open Access Journals (Sweden)

    Salman Shafqat


    Full Text Available The exciting field of stretchable electronics (SE promises numerous novel applications, particularly in-body and medical diagnostics devices. However, future advanced SE miniature devices will require high-density, extremely stretchable interconnects with micron-scale footprints, which calls for proven standardized (complementary metal-oxide semiconductor (CMOS-type process recipes using bulk integrated circuit (IC microfabrication tools and fine-pitch photolithography patterning. Here, we address this combined challenge of microfabrication with extreme stretchability for high-density SE devices by introducing CMOS-enabled, free-standing, miniaturized interconnect structures that fully exploit their 3D kinematic freedom through an interplay of buckling, torsion, and bending to maximize stretchability. Integration with standard CMOS-type batch processing is assured by utilizing the Flex-to-Rigid (F2R post-processing technology to make the back-end-of-line interconnect structures free-standing, thus enabling the routine microfabrication of highly-stretchable interconnects. The performance and reproducibility of these free-standing structures is promising: an elastic stretch beyond 2000% and ultimate (plastic stretch beyond 3000%, with <0.3% resistance change, and >10 million cycles at 1000% stretch with <1% resistance change. This generic technology provides a new route to exciting highly-stretchable miniature devices.

  6. The Impact of the Prior Density on a Minimum Relative Entropy Density: A Case Study with SPX Option Data

    Directory of Open Access Journals (Sweden)

    Cassio Neri


    Full Text Available We study the problem of finding probability densities that match given European call option prices. To allow prior information about such a density to be taken into account, we generalise the algorithm presented in Neri and Schneider (Appl. Math. Finance 2013 to find the maximum entropy density of an asset price to the relative entropy case. This is applied to study the impact of the choice of prior density in two market scenarios. In the first scenario, call option prices are prescribed at only a small number of strikes, and we see that the choice of prior, or indeed its omission, yields notably different densities. The second scenario is given by CBOE option price data for S&P500 index options at a large number of strikes. Prior information is now considered to be given by calibrated Heston, Schöbel–Zhu or Variance Gamma models. We find that the resulting digital option prices are essentially the same as those given by the (non-relative Buchen–Kelly density itself. In other words, in a sufficiently liquid market, the influence of the prior density seems to vanish almost completely. Finally, we study variance swaps and derive a simple formula relating the fair variance swap rate to entropy. Then we show, again, that the prior loses its influence on the fair variance swap rate as the number of strikes increases.

  7. Shape-controlled high cell-density microcapsules by electrodeposition. (United States)

    Liu, Zeyang; Takeuchi, Masaru; Nakajima, Masahiro; Hasegawa, Yasuhisa; Huang, Qiang; Fukuda, Toshio


    Cell encapsulation within alginate-poly-l-lysine (PLL) microcapsules has been developed to provide a miniaturized three-dimensional (3D) microenvironment with an aqueous core while promoting development of encapsulated cells into high cell-density structures. In this paper, a novel method for fabricating shape-controlled alginate-PLL microcapsules to construct 3D cell structures based on electrodeposition method is provided. Two-dimensional Ca-alginate cell-laden gel membranes were electrodeposited onto a micro-patterned electrode and further detached from the electrode. The PLL was coated onto the gel structures to form alginate-PLL complex as an outer shell and sodium citric solution was utilized to melt the internal alginate to achieve miniaturized 3D microcapsules (sphere, cuboid, and rod shape). By this proposed method, rat liver cells (RLC-18) formed multi-cellular aggregates with high cell-density after cultivation for 2weeks. The use of alginate-poly-l-lysine (PLL) microcapsules has shown great potential in fabricating 3D cell structures with high cell density. Despite their success related to their ability to provide a miniaturized microenvironment with an aqueous core, alginate-PLL microcapsules has drawback such as a limited shape-control ability. Because of the mechanism of Ca-induced alginate gel formation, it is still difficult to precisely control the gelation process to produce alginate-PLL microcapsules with specific shape. The present study provides an electrodeposition-based method to generate shape-controlled microcapsules for 3D cell structures. Sphere, cuboid, and rod shaped microcapsules of RLC-18 cells were produced for long-term culture to obtain desired morphologies of cell aggregates. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. The glass transition in high-density amorphous ice. (United States)

    Loerting, Thomas; Fuentes-Landete, Violeta; Handle, Philip H; Seidl, Markus; Amann-Winkel, Katrin; Gainaru, Catalin; Böhmer, Roland


    There has been a long controversy regarding the glass transition in low-density amorphous ice (LDA). The central question is whether or not it transforms to an ultraviscous liquid state above 136 K at ambient pressure prior to crystallization. Currently, the most widespread interpretation of the experimental findings is in terms of a transformation to a superstrong liquid above 136 K. In the last decade some work has also been devoted to the study of the glass transition in high-density amorphous ice (HDA) which is in the focus of the present review. At ambient pressure HDA is metastable against both ice I and LDA, whereas at > 0.2 GPa HDA is no longer metastable against LDA, but merely against high-pressure forms of crystalline ice. The first experimental observation interpreted as the glass transition of HDA was made using in situ methods by Mishima, who reported a glass transition temperature Tg of 160 K at 0.40 GPa. Soon thereafter Andersson and Inaba reported a much lower glass transition temperature of 122 K at 1.0 GPa. Based on the pressure dependence of HDA's Tg measured in Innsbruck, we suggest that they were in fact probing the distinct glass transition of very high-density amorphous ice (VHDA). Very recently the glass transition in HDA was also observed at ambient pressure at 116 K. That is, LDA and HDA show two distinct glass transitions, clearly separated by about 20 K at ambient pressure. In summary, this suggests that three glass transition lines can be defined in the p-T plane for LDA, HDA, and VHDA.

  9. Exploring charge density analysis in crystals at high pressure: data collection, data analysis and advanced modelling. (United States)

    Casati, Nicola; Genoni, Alessandro; Meyer, Benjamin; Krawczuk, Anna; Macchi, Piero


    The possibility to determine electron-density distribution in crystals has been an enormous breakthrough, stimulated by a favourable combination of equipment for X-ray and neutron diffraction at low temperature, by the development of simplified, though accurate, electron-density models refined from the experimental data and by the progress in charge density analysis often in combination with theoretical work. Many years after the first successful charge density determination and analysis, scientists face new challenges, for example: (i) determination of the finer details of the electron-density distribution in the atomic cores, (ii) simultaneous refinement of electron charge and spin density or (iii) measuring crystals under perturbation. In this context, the possibility of obtaining experimental charge density at high pressure has recently been demonstrated [Casati et al. (2016). Nat. Commun. 7, 10901]. This paper reports on the necessities and pitfalls of this new challenge, focusing on the species syn-1,6:8,13-biscarbonyl[14]annulene. The experimental requirements, the expected data quality and data corrections are discussed in detail, including warnings about possible shortcomings. At the same time, new modelling techniques are proposed, which could enable specific information to be extracted, from the limited and less accurate observations, like the degree of localization of double bonds, which is fundamental to the scientific case under examination.

  10. [Residual risk: The roles of triglycerides and high density lipoproteins]. (United States)

    Grammer, Tanja; Kleber, Marcus; Silbernagel, Günther; Scharnagl, Hubert; März, Winfried


    In clinical trials, the reduction of LDL-cholesterol (LDL-C) with statins reduces the incidence rate of cardiovascular events by approximately one third. This means, that a sizeable "residual risk" remains. Besides high lipoprotein (a), disorders in the metabolism of triglyceride-rich lipoproteins and high density liproteins have been implicated as effectors of the residual risk. Both lipoprotein parameters correlate inversely with each other. Therefore, the etiological contributions of triglycerides and / or of HDL for developing cardiovascular disease can hardly be estimated from either observational studies or from intervention studies. The largely disappointing results of intervention studies with inhibitors of the cholesteryl ester transfer protein and in particular the available set of genetically-epidemiological studies suggest that in the last decade, the importance of HDL cholesterol has been overvalued, while the importance of triglycerides has been underestimated. High triglycerides not always atherogenic, but only if they are associated with the accumulation relatively cholesterol-enriched, incompletely catabolized remnants of chylomicrons and very low density lipoproteins (familial type III hyperlipidemia, metabolic syndrome, diabetes mellitus). The normalization of the concentration of triglycerides and remnants by inhibiting the expression of apolipoprotein C3 is hence a new, promising therapeutic target. © Georg Thieme Verlag KG Stuttgart · New York.

  11. On high-order perturbative calculations at finite density

    Energy Technology Data Exchange (ETDEWEB)

    Ghişoiu, Ioan, E-mail: [Helsinki Institute of Physics and Department of Physics, University of Helsinki (Finland); Gorda, Tyler, E-mail: [Helsinki Institute of Physics and Department of Physics, University of Helsinki (Finland); Department of Physics, University of Colorado Boulder, Boulder, CO (United States); Kurkela, Aleksi, E-mail: [Theoretical Physics Department, CERN, Geneva (Switzerland); Faculty of Science and Technology, University of Stavanger, Stavanger (Norway); Romatschke, Paul, E-mail: [Department of Physics, University of Colorado Boulder, Boulder, CO (United States); Center for Theory of Quantum Matter, University of Colorado, Boulder, CO (United States); Säppi, Matias, E-mail: [Helsinki Institute of Physics and Department of Physics, University of Helsinki (Finland); Vuorinen, Aleksi, E-mail: [Helsinki Institute of Physics and Department of Physics, University of Helsinki (Finland)


    We discuss the prospects of performing high-order perturbative calculations in systems characterized by a vanishing temperature but finite density. In particular, we show that the determination of generic Feynman integrals containing fermionic chemical potentials can be reduced to the evaluation of three-dimensional phase space integrals over vacuum on-shell amplitudes — a result reminiscent of a previously proposed “naive real-time formalism” for vacuum diagrams. Applications of these rules are discussed in the context of the thermodynamics of cold and dense QCD, where it is argued that they facilitate an extension of the Equation of State of cold quark matter to higher perturbative orders.

  12. High-Density Optical Cable For Public Communications (United States)

    Trunk, Jonas; Monteiro, Ricardo


    Optical fiber networks for public communications are moving toward the subscribers and therefore feeder optical cables with relative great amount of fibers are needed. A 120 fibers cable has been designed with ten UV curable acrilate coated fibers accommodate together inside each plastic loose tube, and twelve these tubes are stranded around a central strength member resulting in a high packaging density construction. A cable prototipe has been manufactured and some tests was made under conditions which simulate the situations found during installation and after due to hostile environments.

  13. Variable kernel density estimation in high-dimensional feature spaces

    CSIR Research Space (South Africa)

    Van der Walt, Christiaan M


    Full Text Available with the KDE is non-parametric, since no parametric distribution is imposed on the estimate; instead the estimated distribution is defined by the sum of the kernel functions centred on the data points. KDEs thus require the selection of two design parameters... has become feasible – understanding and modelling high- dimensional data has thus become a crucial activity, espe- cially in the field of machine learning. Since non-parametric density estimators are data-driven and do not require or impose a pre...

  14. Biomimetic High Density Lipoprotein Nanoparticles For Nucleic Acid Delivery (United States)

    McMahon, Kaylin M.; Mutharasan, R. Kannan; Tripathy, Sushant; Veliceasa, Dorina; Bobeica, Mariana; Shumaker, Dale K.; Luthi, Andrea J.; Helfand, Brian T.; Ardehali, Hossein; Mirkin, Chad A.; Volpert, Olga; Thaxton, C. Shad


    We report a gold nanoparticle-templated high density lipoprotein (HDL AuNP) platform for gene therapy which combines lipid-based nucleic acid transfection strategies with HDL biomimicry. For proof-of-concept, HDL AuNPs are shown to adsorb antisense cholesterylated DNA. The conjugates are internalized by human cells, can be tracked within cells using transmission electron microscopy (TEM), and regulate target gene expression. Overall, the ability to directly image the AuNP core within cells, the chemical tailorability of the HDL AuNP platform, and the potential for cell-specific targeting afforded by HDL biomimicry make this platform appealing for nucleic acid delivery. PMID:21319839

  15. Method for providing a low density high strength polyurethane foam (United States)

    Whinnery, Jr., Leroy L.; Goods, Steven H.; Skala, Dawn M.; Henderson, Craig C.; Keifer, Patrick N.


    Disclosed is a method for making a polyurethane closed-cell foam material exhibiting a bulk density below 4 lbs/ft.sup.3 and high strength. The present embodiment uses the reaction product of a modified MDI and a sucrose/glycerine based polyether polyol resin wherein a small measured quantity of the polyol resin is "pre-reacted" with a larger quantity of the isocyanate in a defined ratio such that when the necessary remaining quantity of the polyol resin is added to the "pre-reacted" resin together with a tertiary amine catalyst and water as a blowing agent, the polymerization proceeds slowly enough to provide a stable foam body.

  16. The physics of ultra-high-density magnetic recording

    CERN Document Server

    Ek, Johannes; Weller, Dieter


    In this book, 17 experts in magnetic recording focus on the underlying physical mechanisms that play crucial roles in medium and transducer development for high areal density disk drives. In 11 chapters, an examination is made of the fundamental physical concepts and their impact on recording mechanisms, with special emphasis on thin-film longitudinal, perpendicular, patterned and nanoparticle media. Theoretical and experimental investigations are presented which serve to enhance our basic understanding of thin-film dynamics, medium dynamics and thermal effects. Fundamental aspects of magnetotransport are discussed and an overview is given of recording head designs.

  17. Biofuels Barrier Properties of Polyamide 6 and High Density Polyethylene


    Fillot L.-A.; Ghiringhelli S.; Prebet C.; Rossi S.


    In this paper, a comparison of the biofuels barrier properties of PolyAmide 6 (PA6) and High Density PolyEthylene (HDPE) is presented. Model fuels were prepared as mixtures of toluene, isooctane and ethanol, the ethanol volume fraction varying between 0% and 100%. Barrier properties were determined at 40°C by gravimetric techniques or gas chromatography measurements, and it was shown that polyamide 6 permeability is lower than that of polyethylene on a wide range of ethanol contents up to 85%...

  18. The Pulsed High Density Experiment (PHDX) Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Slough, John P. [Univ. of Washington, Seattle, WA (United States); Andreason, Samuel [Univ. of Washington, Seattle, WA (United States)


    The purpose of this paper is to present the conclusions that can be drawn from the Field Reversed Configuration (FRC) formation experiments conducted on the Pulsed High Density experiment (PHD) at the University of Washington. The experiment is ongoing. The experimental goal for this first stage of PHD was to generate a stable, high flux (>10 mWb), high energy (>10 KJ) target FRC. Such results would be adequate as a starting point for several later experiments. This work focuses on experimental implementation and the results of the first four month run. Difficulties were encountered due to the initial on-axis plasma ionization source. Flux trapping with this ionization source acting alone was insufficient to accomplish experimental objectives. Additional ionization methods were utilized to overcome this difficulty. A more ideal plasma source layout is suggested and will be explored during a forthcoming work.

  19. Interfacial Tension and Surface Pressure of High Density Lipoprotein, Low Density Lipoprotein, and Related Lipid Droplets

    DEFF Research Database (Denmark)

    Ollila, O. H. S.; Lamberg, A.; Lehtivaara, M.


    ) are essentially lipid droplets surrounded by specific proteins, their main function being to transport cholesterol. Interfacial tension and surface pressure of these particles are of great interest because they are related to the shape and the stability of the droplets and to protein adsorption at the interface...... of interfacial tension becomes significant for particles with a radius of similar to 5 nm, when the area per molecule in the surface region is......Lipid droplets play a central role in energy storage and metabolism on a cellular scale. Their core is comprised of hydrophobic lipids covered by a surface region consisting of amphiphilic lipids and proteins. For example, high and low density lipoproteins (HDL and LDL, respectively...

  20. Molecular Dynamics Simulation of High Density DNA Arrays

    Directory of Open Access Journals (Sweden)

    Rudolf Podgornik


    Full Text Available Densely packed DNA arrays exhibit hexagonal and orthorhombic local packings, as well as a weakly first order transition between them. While we have some understanding of the interactions between DNA molecules in aqueous ionic solutions, the structural details of its ordered phases and the mechanism governing the respective phase transitions between them remains less well understood. Since at high DNA densities, i.e., small interaxial spacings, one can neither neglect the atomic details of the interacting macromolecular surfaces nor the atomic details of the intervening ionic solution, the atomistic resolution is a sine qua non to properly describe and analyze the interactions between DNA molecules. In fact, in order to properly understand the details of the observed osmotic equation of state, one needs to implement multiple levels of organization, spanning the range from the molecular order of DNA itself, the possible ordering of counterions, and then all the way to the induced molecular ordering of the aqueous solvent, all coupled together by electrostatic, steric, thermal and direct hydrogen-bonding interactions. Multiscale simulations therefore appear as singularly suited to connect the microscopic details of this system with its macroscopic thermodynamic behavior. We review the details of the simulation of dense atomistically resolved DNA arrays with different packing symmetries and the ensuing osmotic equation of state obtained by enclosing a DNA array in a monovalent salt and multivalent (spermidine counterions within a solvent permeable membrane, mimicking the behavior of DNA arrays subjected to external osmotic stress. By varying the DNA density, the local packing symmetry, and the counterion type, we are able to analyze the osmotic equation of state together with the full structural characterization of the DNA subphase, the counterion distribution and the solvent structural order in terms of its different order parameters and

  1. Biominetic High Density Lipoproteins for the Delivery of Therapeutic Oligonucleotides (United States)

    Tripathy, Sushant

    Advances in nanotechnology have brought about novel inorganic and hybrid nanoparticles with unique physico-chemical properties that make them suitable for a broad range of applications---from nano-circuitry to drug delivery. A significant part of those advancements have led to ground-breaking discoveries that have changed the approaches to formulation of therapeutics against diseases, such as cancer. Now-a-days the focus does not lie solely on finding a candidate small-molecule therapeutic with minimal adverse effects, but researchers are looking up to nanoparticles to improve biodistribution and biocompatibility profile of clinically proven therapeutics. The plethora of conjugation chemistries offered by currently extant inorganic nanoparticles have, in recent years, led to great leaps in the field of biomimicry---a modality that promises high biocompatibility. Further, in the pursuit of highly specific therapeutic molecules, researchers have turned to silencing oligonucleotides and some have already brought together the strengths of nanoparticles and silencing oligonucleotides in search of an efficacious therapy for cancer with minimal adverse effects. This dissertation work focuses on such a biomimetic platform---a gold nanoparticle based high density lipoprotein biomimetic (HDL NP), for the delivery of therapeutic oligonucleotides. The first chapter of this body of work introduces the molecular target of the silencing oligonucleotides---VEGFR2, and its role in the progression of solid tumor cancers. The background information also covers important aspects of natural high density lipoproteins (HDL), especially their innate capacity to bind and deliver exogenous and endogenous silencing oligonucleotides to tissues that express their high affinity receptor SRB1. We subsequently describe the synthesis of the biomimetic HDL NP and its oligonucleotide conjugates, and establish their biocompatibility. Further on, experimental data demonstrate the efficacy of silencing

  2. Development Status of High-Thrust Density Electrostatic Engines (United States)

    Patterson, Michael J.; Haag, Thomas W.; Foster, John E.; Young, Jason A.; Crofton, Mark W.


    Ion thruster technology offers the highest performance and efficiency of any mature electric propulsion thruster. It has by far the highest demonstrated total impulse of any technology option, demonstrated at input power levels appropriate for primary propulsion. It has also been successfully implemented for primary propulsion in both geocentric and heliocentric environments, with excellent ground/in-space correlation of both its performance and life. Based on these attributes there is compelling reasoning to continue the development of this technology: it is a leading candidate for high power applications; and it provides risk reduction for as-yet unproven alternatives. As such it is important that the operational limitations of ion thruster technology be critically examined and in particular for its application to primary propulsion its capabilities relative to thrust the density and thrust-to-power ratio be understood. This publication briefly addresses some of the considerations relative to achieving high thrust density and maximizing thrust-to-power ratio with ion thruster technology, and discusses the status of development work in this area being executed under a collaborative effort among NASA Glenn Research Center, the Aerospace Corporation, and the University of Michigan.

  3. High-Density Lipoprotein Processing and Premature Cardiovascular Disease (United States)

    Rosales, Corina; Gillard, Baiba K.; Gotto, Antonio M.; Pownall, Henry J.


    High plasma concentrations of low-density lipoprotein-cholesterol (LDL-C) are a well-accepted risk factor for cardiovascular disease (CVD), and the statin class of hypolipidemic drugs has emerged as an effective means of lowering LDL-C and reducing CVD risk. In contrast, the role of plasma high-density lipoproteins (HDL) in protection against atherosclerotic vascular disease is the subject of considerable controversy. Although the inverse correlation between plasma HDL-C and CVD is widely acknowledged, reduction of CVD risk by interventions that increase HDL-C have not been uniformly successful. Several studies of large populations have shown that the first step in reverse cholesterol transport (RCT), the transfer of cholesterol from the subendothelial space of the arterial wall via the plasma compartment to the liver for disposal, is impaired in patients with CVD. Here we review HDL function, the mechanisms by which HDL supports RCT, and the role of RCT in preventing CVD. PMID:26634027

  4. A Coupled Plasma and Sheath Model for High Density Reactors (United States)

    Deepak, Bose; Govindan, T. R.; Meyyappan, M.; Arnold, Jim (Technical Monitor)


    We present a coupled plasma and collisionless; sheath model for the simulation of high density plasma processing reactors. Due to inefficiencies in numerical schemes and the resulting computational burden, a coupled multidimensional plasma and sheath simulation has not been possible model for gas mixtures and high density reactors of practical interest. In this work we demonstrate that with a fully implicit algorithm and a refined computational mesh, a self-consistent plasma and sheath simulation is feasible. We discuss the details of the model equations, the importance of ion inertia, and the resulting sheath profiles for argon and chlorine plasmas. We find that at low operating pressures (10-30 mTorr), the charge separation occurs only within a 0.5 mm layer near the surface in a 300 mm inductively coupled plasma etch reactor. A unified model eliminates the use of off-line or loosely coupled sheath models with simplifying assumptions which generally lead to uncertainties in ion flux and sheath electrical properties.

  5. Simulating deposition of high density tailings using smoothed particle hydrodynamics (United States)

    Babaoglu, Yagmur; Simms, Paul H.


    Tailings are a slurry of silt-sized residual material derived from the milling of rock. High density (HD) tailings are tailings that have been sufficiently dewatered to a point where they exhibit a yield stress upon deposition. They form gently sloped stacks on the surface when deposited; this eliminates or minimizes the need for dams or embankments for containment. Understanding the flow behaviour of high density tailings is essential for estimating the final stack geometry and overall slope angle. This paper focuses on modelling the flow behaviour of HD tailings using smoothed particle hydrodynamics (SPH) method incorporating a `bi-viscosity' model to simulate the non-Newtonian behaviour. The model is validated by comparing the numerical results with bench scale experiments simulating single or multi-layer deposits in two-dimensions. The results indicate that the model agreed fairly well with the experimental work, excepting some repulsion of particles away from the bottom boundary closer to the toe of the deposits. Novel aspects of the work, compared to other simulation of Bingham fluids by SPH, are the simulation of multilayer deposits and the use of a stopping criteria to characterize the rest state.

  6. A complete life cycle assessment of high density polyethylene plastic bottle (United States)

    Treenate, P.; Limphitakphong, N.; Chavalparit, O.


    This study was aimed to determine environmental performances of a lubricant oil bottle made from high density polyethylene and to develop potential measures for reducing its impacts. A complete life cycle assessment was carried out to understand a whole effect on the environment from acquiring, processing, using, and disposing the product. Two scenarios of disposal phase; recycle and incineration: were examined to quantify a lesser degree on environmental impact. The results illustrated that major impacts of the two scenarios were at the same categories with the highest contributor of raw material acquisition and pre-processing. However, all impacts in case of recycling provided a lower point than that in case of incineration, except mineral extraction. Finally, feasible measures for reducing the environmental impact of high density polyethylene plastic bottle were proposed in accordance with 3Rs concept.

  7. High Energy Density Science at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Lee, R W


    High energy density science (HEDS), as a discipline that has developed in the United States from National Nuclear Security Agency (NNSA)-sponsored laboratory research programs, is, and will remain, a major component of the NNSA science and technology strategy. Its scientific borders are not restricted to NNSA. 'Frontiers in High Energy Density Physics: The X-Games of Contemporary Science' identified numerous exciting scientific opportunities in this field, while pointing to the need for a overarching interagency plan for its evolution. Meanwhile, construction of the first x-ray free-electron laser, the Office-of-Science-funded Linear Coherent Light Source-LCLS: the world's first free electron x-ray laser, with 100-fsec time resolution, tunable x-ray energies, a high rep rate, and a 10 order-of-magnitude increase in brightness over any other x-ray source--led to the realization that the scientific needs of NNSA and the broader scientific community could be well served by an LCLS HEDS endstation employing both short-pulse and high-energy optical lasers. Development of this concept has been well received in the community. NNSA requested a workshop on the applicability of LCLS to its needs. 'High Energy Density Science at the LCLS: NNSA Defense Programs Mission Need' was held in December 2006. The workshop provided strong support for the relevance of the endstation to NNSA strategic requirements. The range of science that was addressed covered a wide swath of the vast HEDS phase space. The unique possibilities provided by the LCLS in areas of intense interest to NNSA Defense Programs were discussed. The areas of focus included warm dense matter and equations of state, hot dense matter, and behavior of high-pressure materials under conditions of high strain-rate and extreme dynamic loading. Development of new and advanced diagnostic techniques was also addressed. This report lays out the relevant science, as brief summaries (Ch. II), expanded

  8. High Density Electroencephalography in Sleep Research: Potential, Problems, Future Perspective (United States)

    Lustenberger, Caroline; Huber, Reto


    High density EEG (hdEEG) during sleep combines the superior temporal resolution of EEG recordings with high spatial resolution. Thus, this method allows a topographical analysis of sleep EEG activity and thereby fosters the shift from a global view of sleep to a local one. HdEEG allowed to investigate sleep rhythms in terms of their characteristic behavior (e.g., the traveling of slow waves) and in terms of their relationship to cortical functioning (e.g., consciousness and cognitive abilities). Moreover, recent studies successfully demonstrated that hdEEG can be used to study brain functioning in neurological and neuro-developmental disorders, and to evaluate therapeutic approaches. This review highlights the potential, the problems, and future perspective of hdEEG in sleep research. PMID:22593753


    Energy Technology Data Exchange (ETDEWEB)

    Bieniosek, F.M.; Henestroza, E.; Lidia, S.; Ni, P.A.


    Intense beams of heavy ions are capable of heating volumetric samples of matter to high energy density. Experiments are performed on the resulting warm dense matter (WDM) at the NDCX-I ion beam accelerator. The 0.3 MeV, 30-mA K{sup +} beam from NDCX-I heats foil targets by combined longitudinal and transverse neutralized drift compression of the ion beam. Both the compressed and uncompressed parts of the NDCX-I beam heat targets. The exotic state of matter (WDM) in these experiments requires specialized diagnostic techniques. We have developed a target chamber and fielded target diagnostics including a fast multi-channel optical pyrometer, optical streak camera, laser Doppler-shift interferometer (VISAR), beam transmission diagnostics, and high-speed gated cameras. We also present plans and opportunities for diagnostic development and a new target chamber for NDCX-II.

  10. A Longitudinal Analysis of Densities within the Pedestrian Sheds around Metro Stations. The Case of Tehran.

    Directory of Open Access Journals (Sweden)

    Houshmand E. Masoumi


    Full Text Available Evaluation of spatial accessibility to public transportation has a weak background in many emerging countries, including Iran. Transit-Oriented Development is of great interest among Iranian planners and academics, but little is known about transit orientation provided by major public transport systems exemplified by the Tehran Metro. Statistical difference tests and polynomial regression done in this study show how residential densities within walking distances of metro stations established at different times after 1998 are significantly different. Both population and employment densities have decreased in more recent stations compared to those opened between 2005 and 2010. Moreover, one-way T-Tests comparing the population and densities of older lines with those of newer lines reveal that, in most cases, densities within walking distances of stations of older lines are higher. The paper concludes that lack of proper site selection and failing to locate new stations near job centers and highly populated areas threatens the transit-friendliness that emerged in the early years after establishing the first metro station in 1998.

  11. Development of ultra-high-density screening tools for microbial "omics".

    Directory of Open Access Journals (Sweden)

    Gordon J Bean

    Full Text Available High-throughput genetic screens in model microbial organisms are a primary means of interrogating biological systems. In numerous cases, such screens have identified the genes that underlie a particular phenotype or a set of gene-gene, gene-environment or protein-protein interactions, which are then used to construct highly informative network maps for biological research. However, the potential test space of genes, proteins, or interactions is typically much larger than current screening systems can address. To push the limits of screening technology, we developed an ultra-high-density, 6144-colony arraying system and analysis toolbox. Using budding yeast as a benchmark, we find that these tools boost genetic screening throughput 4-fold and yield significant cost and time reductions at quality levels equal to or better than current methods. Thus, the new ultra-high-density screening tools enable researchers to significantly increase the size and scope of their genetic screens.

  12. High-density biosynthetic fuels: the intersection of heterogeneous catalysis and metabolic engineering. (United States)

    Harvey, Benjamin G; Meylemans, Heather A; Gough, Raina V; Quintana, Roxanne L; Garrison, Michael D; Bruno, Thomas J


    Biosynthetic valencene, premnaspirodiene, and natural caryophyllene were hydrogenated and evaluated as high performance fuels. The parent sesquiterpenes were then isomerized to complex mixtures of hydrocarbons with the heterogeneous acid catalyst Nafion SAC-13. High density fuels with net heats of combustion ranging from 133-141 000 Btu gal(-1), or up to 13% higher than commercial jet fuel could be generated by this approach. The products of caryophyllene isomerization were primarily tricyclic hydrocarbons which after hydrogenation increased the fuel density by 6%. The isomerization of valencene and premnaspirodiene also generated a variety of sesquiterpenes, but in both cases the dominant product was δ-selinene. Ab initio calculations were conducted to determine the total electronic energies for the reactants and products. In all cases the results were in excellent agreement with the experimental distribution of isomers. The cetane numbers for the sesquiterpane fuels ranged from 20-32 and were highly dependent on the isomer distribution. Specific distillation cuts may have the potential to act as high density diesel fuels, while use of these hydrocarbons as additives to jet fuel will increase the range and/or time of flight of aircraft. In addition to the ability to generate high performance renewable fuels, the powerful combination of metabolic engineering and heterogeneous catalysis will allow for the preparation of a variety of sesquiterpenes with potential for pharmaceutical, flavor, and fragrance applications.

  13. High density collinear holographic data storage system (Conference Presentation) (United States)

    Tan, Xiaodi; Horimai, Hideyoshi; Arai, Ryo; Ikeda, Junichi; Inoue, Mitsuteru; Lin, Xiao; Xu, Ke; Liu, Jinpeng; Huang, Yong


    Collinear holography has been good candidate for a volumetric recording technology of holographic data storage system (HDSS), because of there are not only large storage capacities, high transfer rates, but also the unique configuration, in which the information and reference beams are modulated co-axially by the same spatial light modulator, as a new read/write method for HDSS are very promising. The optical pickup can be designed as small as DVDs, and can be placed on one side of the recording media (disc). In the disc structure, the preformatted reflective layer is used for the focus/tracking servo and reading address information, and a dichroic mirror layer is used for detecting holographic recording information without interfering with the preformatted information. A 2-dimensional digital page data format is used and the shift-multiplexing method is employed to increase recording density. As servo technologies are being introduced to control the objective lens to be maintained precisely to the disc in the recording and reconstructing process, a vibration isolator is no longer necessary. In this paper, we introduced the principle of the collinear holography and its media structure of disc. Some results of experimental and theoretical studies suggest that it is a very effective method. We also discussed some methods to increase the recording density and data transfer rates of collinear holography using phase modulated page data format.

  14. Construction and analysis of high-density linkage map using high-throughput sequencing data.

    Directory of Open Access Journals (Sweden)

    Dongyuan Liu

    Full Text Available Linkage maps enable the study of important biological questions. The construction of high-density linkage maps appears more feasible since the advent of next-generation sequencing (NGS, which eases SNP discovery and high-throughput genotyping of large population. However, the marker number explosion and genotyping errors from NGS data challenge the computational efficiency and linkage map quality of linkage study methods. Here we report the HighMap method for constructing high-density linkage maps from NGS data. HighMap employs an iterative ordering and error correction strategy based on a k-nearest neighbor algorithm and a Monte Carlo multipoint maximum likelihood algorithm. Simulation study shows HighMap can create a linkage map with three times as many markers as ordering-only methods while offering more accurate marker orders and stable genetic distances. Using HighMap, we constructed a common carp linkage map with 10,004 markers. The singleton rate was less than one-ninth of that generated by JoinMap4.1. Its total map distance was 5,908 cM, consistent with reports on low-density maps. HighMap is an efficient method for constructing high-density, high-quality linkage maps from high-throughput population NGS data. It will facilitate genome assembling, comparative genomic analysis, and QTL studies. HighMap is available at

  15. Probability density distribution of velocity differences at high Reynolds numbers (United States)

    Praskovsky, Alexander A.


    Recent understanding of fine-scale turbulence structure in high Reynolds number flows is mostly based on Kolmogorov's original and revised models. The main finding of these models is that intrinsic characteristics of fine-scale fluctuations are universal ones at high Reynolds numbers, i.e., the functional behavior of any small-scale parameter is the same in all flows if the Reynolds number is high enough. The only large-scale quantity that directly affects small-scale fluctuations is the energy flux through a cascade. In dynamical equilibrium between large- and small-scale motions, this flux is equal to the mean rate of energy dissipation epsilon. The pdd of velocity difference is a very important characteristic for both the basic understanding of fully developed turbulence and engineering problems. Hence, it is important to test the findings: (1) the functional behavior of the tails of the probability density distribution (pdd) represented by P(delta(u)) is proportional to exp(-b(r) absolute value of delta(u)/sigma(sub delta(u))) and (2) the logarithmic decrement b(r) scales as b(r) is proportional to r(sup 0.15) when separation r lies in the inertial subrange in high Reynolds number laboratory shear flows.

  16. Modulation of low-density lipoprotein-induced inhibition of intercellular communication by antioxidants and high-density lipoproteins

    NARCIS (Netherlands)

    Zwijsen, R M; de Haan, L. H. J.; Kuivenhoven, J A; Nusselder, I C

    In order to study the capacity of antioxidants and high-density lipoproteins (HDL) to modulate the effects of low-density lipoprotein (LDL) on intercellular communication, arterial smooth muscle cells and a dye transfer method were used. LDL, in contrast to HDL, inhibited the communication between

  17. Ultra-high current density thin-film Si diode (United States)

    Wang, Qi [Littleton, CO


    A combination of a thin-film .mu.c-Si and a-Si:H containing diode structure characterized by an ultra-high current density that exceeds 1000 A/cm.sup.2, comprising: a substrate; a bottom metal layer disposed on the substrate; an n-layer of .mu.c-Si deposited the bottom metal layer; an i-layer of .mu.c-Si deposited on the n-layer; a buffer layer of a-Si:H deposited on the i-layer, a p-layer of .mu.c-Si deposited on the buffer layer; and a top metal layer deposited on the p-layer.

  18. Scoping study. High density polyethylene (HDPE) in salstone service

    Energy Technology Data Exchange (ETDEWEB)

    Phifer, Mark A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)


    An evaluation of the use of high density polyethylene (HDPE) geomembranes in Saltstone service has been conducted due to the potential benefits that could be derived from such usage. HDPE is one of the simplest hydrocarbon polymers and one of the most common polymers utilized in the production of geomembranes, which means that its costs are relatively low. Additionally, HDPE geomembranes have an extremely low permeability and an extremely low water vapor diffusional flux, which means that it is a good barrier to contaminant transport. The primary consideration in association with HDPE geomembranes in Saltstone service is the potential impact of Saltstone on the degradation of the HDPE geomembranes. Therefore, the evaluation documented herein has primarily focused upon the potential HDPE degradation in Saltstone service.

  19. Sodium pentazolate: A nitrogen rich high energy density material (United States)

    Steele, Brad A.; Oleynik, Ivan I.


    Sodium pentazolates NaN5 and Na2N5, new high energy density materials, are discovered during first principles crystal structure search for the compounds of varying amounts of elemental sodium and nitrogen. The pentazole anion (N5-) is stabilized in the condensed phase by sodium Na+ cations at pressures exceeding 20 GPa, and becomes metastable upon release of pressure. The sodium azide (NaN3) precursor is predicted to undergo a chemical transformation above 50 GPa into sodium pentazolates NaN5 and Na2N5. The calculated Raman spectrum of NaN5 is in agreement with the experimental Raman spectrum of a previously unidentified substance appearing upon compression and heating of NaN3.

  20. The alterations in high density polyethylene properties with gamma irradiation (United States)

    Zaki, M. F.; Elshaer, Y. H.; Taha, Doaa. H.


    In the present investigation, high density polyethylene (HDPE) polymer has been used to study the alterations in its properties under gamma-irradiation. Physico-chemical properties have been investigated with different spectroscopy techniques, Fourier Transform Infrared spectroscopy (FTIR), X-ray diffraction (XRD), biocompatibility properties, as well as, mechanical properties change. The FT-IR analysis shows the formation of new band at 1716 cm-1 that is attributed to the oxidation of irradiated polymer chains, which is due to the formation of carbonyl groups (C˭O). XRD patterns show that a decrease in the crystallite size and increase in the Full Width at Half Maximum (FWHM). This means that the crystallinity of irradiated samples is decreased with increase in gamma dose. The contact angle measurements show an increase in the surface free energy as the gamma irradiation increases. The measurements of mechanical properties of irradiated HDPE samples were discussed.

  1. Single-Readout High-Density Memristor Crossbar

    KAUST Repository

    Zidan, M. A.


    High-density memristor-crossbar architecture is a very promising technology for future computing systems. The simplicity of the gateless-crossbar structure is both its principal advantage and the source of undesired sneak-paths of current. This parasitic current could consume an enormous amount of energy and ruin the readout process. We introduce new adaptive-threshold readout techniques that utilize the locality and hierarchy properties of the computer-memory system to address the sneak-paths problem. The proposed methods require a single memory access per pixel for an array readout. Besides, the memristive crossbar consumes an order of magnitude less power than state-of-the-art readout techniques.

  2. Characterization of high density through silicon vias with spectral reflectometry. (United States)

    Ku, Yi-Sha; Huang, Kuo Cheng; Hsu, Weite


    Measurement and control is an important step for production-worthy through silicon vias etch. We demonstrate the use and enhancement of an existing wafer metrology tool, spectral reflectometer by implementing novel theoretical model and measurement algorithm for high density through-silicon via (HDTSV) inspection. It is capable of measuring depth and depth variations of array vias by Discrete Fourier Transform (DFT) analysis in one shot measurement. Surface roughness of via bottom can also be extracted by scattering model fitting. Our non-destructive solution can measure TSV profile diameters as small as 5 μm and aspect ratios greater than 13:1. The measurement precision is in the range of 0.02 μm. Metrology results from actual 3D interconnect processing wafers are presented.

  3. High-density percutaneous chronic connector for neural prosthetics

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Kedar G.; Bennett, William J.; Pannu, Satinderpall S.


    A high density percutaneous chronic connector, having first and second connector structures each having an array of magnets surrounding a mounting cavity. A first electrical feedthrough array is seated in the mounting cavity of the first connector structure and a second electrical feedthrough array is seated in the mounting cavity of the second connector structure, with a feedthrough interconnect matrix positioned between a top side of the first electrical feedthrough array and a bottom side of the second electrical feedthrough array to electrically connect the first electrical feedthrough array to the second electrical feedthrough array. The two arrays of magnets are arranged to attract in a first angular position which connects the first and second connector structures together and electrically connects the percutaneously connected device to the external electronics, and to repel in a second angular position to facilitate removal of the second connector structure from the first connector structure.

  4. Methods and systems for rapid prototyping of high density circuits (United States)

    Palmer, Jeremy A [Albuquerque, NM; Davis, Donald W [Albuquerque, NM; Chavez, Bart D [Albuquerque, NM; Gallegos, Phillip L [Albuquerque, NM; Wicker, Ryan B [El Paso, TX; Medina, Francisco R [El Paso, TX


    A preferred embodiment provides, for example, a system and method of integrating fluid media dispensing technology such as direct-write (DW) technologies with rapid prototyping (RP) technologies such as stereolithography (SL) to provide increased micro-fabrication and micro-stereolithography. A preferred embodiment of the present invention also provides, for example, a system and method for Rapid Prototyping High Density Circuit (RPHDC) manufacturing of solderless connectors and pilot devices with terminal geometries that are compatible with DW mechanisms and reduce contact resistance where the electrical system is encapsulated within structural members and manual electrical connections are eliminated in favor of automated DW traces. A preferred embodiment further provides, for example, a method of rapid prototyping comprising: fabricating a part layer using stereolithography and depositing thermally curable media onto the part layer using a fluid dispensing apparatus.

  5. 5th International conference on High Energy Density Laboratory Astrophysics

    CERN Document Server

    Kyrala, G.A


    During the past several years, research teams around the world have developed astrophysics-relevant utilizing high energy-density facilities such as intense lasers and z-pinches. Research is underway in many areas, such as compressible hydrodynamic mixing, strong shock phenomena, radiation flow, radiative shocks and jets, complex opacities, equations o fstat, and relativistic plasmas. Beyond this current research and the papers it is producing, plans are being made for the application, to astrophysics-relevant research, of the 2 MJ National Ignition Facility (NIF) laser at Lawrence Livermore National Laboratory; the 600 kj Ligne d'Intergration Laser (LIL) and the 2 MJ Laser Megajoule (LMJ) in Bordeaux, France; petawatt-range lasers now under construction around the world; and current and future Z pinches. The goal of this conference and these proceedings is to continue focusing and attention on this emerging research area. The conference brought together different scientists interested in this emerging new fi...

  6. Jammed Humans in High-Density Crowd Disasters (United States)

    Bottinelli, Arianna; Sumpter, David; Silverberg, Jesse

    When people gather in large groups like those found at Black Friday sales events, pilgrimages, heavy metal concerts, and parades, crowd density often becomes exceptionally high. As a consequence, these events can produce tragic outcomes such as stampedes and ''crowd crushes''. While human collective motion has been studied with active particle simulations, the underlying mechanisms for emergent behavior are less well understood. Here, we use techniques developed to study jammed granular materials to analyze an active matter model inspired by large groups of people gathering at a point of common interest. In the model, a single behavioral rule combined with body-contact interactions are sufficient for the emergence of a self-confined steady state, where particles fluctuate around a stable position. Applying mode analysis to this system, we find evidence for Goldstone modes, soft spots, and stochastic resonance, which may be the preferential mechanisms for dangerous emergent collective motions in crowds.

  7. Environmental determinants, liver function, and high density lipoprotein cholesterol levels. (United States)

    Kuller, L H; Hulley, S B; LaPorte, R E; Neaton, J; Dai, W S


    High density lipoprotein cholesterol (HDL-chol) is negatively associated with coronary heart disease. Environmental heart disease risk factors may partially be related to coronary heart disease through alterations in HDL-chol concentrations. Little is known about the underlying mechanisms by which environmental factors are related to HDL-chol. The authors investigated a possible mechanism: changes in liver function as a mediating link between risk factors and HDL-chol concentrations in marathon runners, alcoholics, and participants in the Multiple Risk Factor Intervention Trial. Liver function, as measured by liver enzymes, was related to both coronary heart disease risk factors and alcohol consumption, suggesting that the increased levels of HDL-chol associated with alcohol were primarily the result of changes in liver function. The relationship of obesity to HDL-chol could not be explained by the alterations in liver function.

  8. Behavior and Preparedness to Fire Hazard in High Density Settlements in Bandung

    Directory of Open Access Journals (Sweden)

    Saut Sagala


    Full Text Available Fire is one of the hazards that may affect urban areas with high density settlements. Thus, research on fire mitigation is important to be conducted. This paper examines the behavior and preparedness of occupants in high density settlements towards fire risks in urban area. The case study is located at Kelurahan Sukahaji, Kecamatan Babakan Ciparay, Bandung that has very high density settlement as well as prone to fire hazards. This study assess 232 respondents in the study areas on information related to demography, understanding about fire, behavior and preparedness. The respondents understanding on the types of fire sources are still low. Similarly, the behavior related to the activites using fire are still dangerous because some activities are conducted with other activities which make people less aware of the fire hazards. Nevertheless, their knowledge on how to extinguish fires are quite good. This paper recommends more trainings on knowledge of fire source and behavior to be conducted to occupants living in high density settlements in order to reduce fire disaster risk.

  9. Contribution of high plasma triglycerides and low high-density lipoprotein cholesterol to residual risk of coronary heart disease after establishment of low-density lipoprotein cholesterol control. (United States)

    Carey, Vincent J; Bishop, Louise; Laranjo, Nancy; Harshfield, Benjamin J; Kwiat, Carolyn; Sacks, Frank M


    To determine the relative contributions of triglycerides (TGs) and high-density lipoprotein (HDL) cholesterol in the residual risk of coronary heart disease (CHD) after the reduction of low-density lipoprotein (LDL) cholesterol to guideline-recommended levels, we conducted a hospital-based, case-control study with optimal matching in the strata of LDL cholesterol, gender, ethnicity, and age. The 170 cases and 175 controls were patients at Brigham and Women's Hospital (Boston, Massachusetts) from 2005 to 2008 who had an LDL cholesterol level cholesterol level of 73 and 87 mg/dl, respectively. The association between TG and HDL cholesterol levels and CHD risk was assessed using conditional and unconditional logistic regression analysis. The models investigated accommodated the possibility of an interaction between lipid factors. The odds of CHD increased by approximately 20% per 23-mg/dl increase in TGs and decreased by approximately 40% per 7.5-mg/dl decrease in HDL cholesterol. High TGs and low HDL cholesterol interacted synergistically to increase the odds ratio to 10 for the combined greatest TG (> or =190 mg/dl) and lowest HDL cholesterol quintiles (cholesterol was low than average or high; and low HDL cholesterol levels were more strongly associated with CHD when the TGs were high. TGs and HDL cholesterol were associated with CHD in patients with a LDL cholesterol level of risk similar to, or greater than, those in the total group. In conclusion, high TG and low HDL cholesterol levels contribute strongly and synergistically to CHD when LDL cholesterol is well controlled. Thus, high TGs might have greater importance in patients with optimal rather than greater LDL cholesterol concentrations. Copyright 2010 Elsevier Inc. All rights reserved.

  10. High-Density Infrared Surface Treatments of Refractories

    Energy Technology Data Exchange (ETDEWEB)

    Tiegs, T.N.


    Refractory materials play a crucial role in all energy-intensive industries and are truly a crosscutting technology for the Industries of the Future (IOF). One of the major mechanisms for the degradation of refractories and a general decrease in their performance has been the penetration and corrosion by molten metals or glass. Methods and materials that would reduce the penetration, wetting, and corrosive chemistry would significantly improve refractory performance and also maintain the quality of the processed liquid, be it metal or glass. This report presents the results of an R&D project aimed at investigating the use of high-density infrared (HDI) heating to surface treat refractories to improve their performance. The project was a joint effort between Oak Ridge National Laboratory (ORNL) and the University of Missouri-Rolla (UMR). HDI is capable of heating the near-surface region of materials to very high temperatures where sintering, diffusion, and melting can occur. The intended benefits of HDI processing of refractories were to (1) reduce surface porosity (by essentially sealing the surface to prevent liquid penetration), (2) allow surface chemistry changes to be performed by bonding an adherent coating onto the underlying refractory (in order to inhibit wetting and/or improve corrosion resistance), and (3) produce noncontact refractories with high-emissivity surface coatings.

  11. Biodegradation of high density polyethylene using Streptomyces species

    Directory of Open Access Journals (Sweden)

    Ali Farzi


    Full Text Available Objective: To investigate the biodegradation of high density polyethylene (HDPE by Streptomyces species isolated from the soil of East Azerbaijan, Iran. Methods: Powders of HDPE samples were prepared by grinding in different particle sizes of 212, 300, 420, and 500 microns. Each time 50 mg of a sample was poured to a liquid medium containing species. Samples were incubated for 18 days at 28 °C in a shaker-incubator and their degradation percentage was measured by weighting method. Produced metabolite at 18th day was analyzed by gas chromatography-mass spectrometry. Also a film of HDPE was subjected to biodegradation and after one month was analyzed by scanning electron microscope which showed degradation on the surface of the film. Results: The results showed that Streptomyces species degraded 50 mg of HDPE sample with the size of 212 μm about 18.26%, 300 and 420 μm about 14.4%, and 500 μm about 13%. Kinetic modeling of biodegradation process showed that the reaction rate was first order with respect to concentration of HDPE. Based on gas chromatography-mass spectrometry results, no high toxic material was produced during biodegradation of HDPE. Conclusions: The research showed that isolated Streptomyces sp. are capable of degradation of HDPE polymer with high degradation efficiency.

  12. High-Density Droplet Microarray of Individually Addressable Electrochemical Cells. (United States)

    Zhang, Huijie; Oellers, Tobias; Feng, Wenqian; Abdulazim, Tarik; Saw, En Ning; Ludwig, Alfred; Levkin, Pavel A; Plumeré, Nicolas


    Microarray technology has shown great potential for various types of high-throughput screening applications. The main read-out methods of most microarray platforms, however, are based on optical techniques, limiting the scope of potential applications of such powerful screening technology. Electrochemical methods possess numerous complementary advantages over optical detection methods, including its label-free nature, capability of quantitative monitoring of various reporter molecules, and the ability to not only detect but also address compositions of individual compartments. However, application of electrochemical methods for the purpose of high-throughput screening remains very limited. In this work, we develop a high-density individually addressable electrochemical droplet microarray (eDMA). The eDMA allows for the detection of redox-active reporter molecules irrespective of their electrochemical reversibility in individual nanoliter-sized droplets. Orthogonal band microelectrodes are arranged to form at their intersections an array of three-electrode systems for precise control of the applied potential, which enables direct read-out of the current related to analyte detection. The band microelectrode array is covered with a layer of permeable porous polymethacrylate functionalized with a highly hydrophobic-hydrophilic pattern, forming spatially separated nanoliter-sized droplets on top of each electrochemical cell. Electrochemical characterization of single droplets demonstrates that the underlying electrode system is accessible to redox-active molecules through the hydrophilic polymeric pattern and that the nonwettable hydrophobic boundaries can spatially separate neighboring cells effectively. The eDMA technology opens the possibility to combine the high-throughput biochemical or living cell screenings using the droplet microarray platform with the sequential electrochemical read-out of individual droplets.

  13. Triglycerides, total cholesterol, high density lipoprotein cholesterol and low density lipoprotein cholesterol in rats exposed to premium motor spirit fumes. (United States)

    Aberare, Ogbevire L; Okuonghae, Patrick; Mukoro, Nathaniel; Dirisu, John O; Osazuwa, Favour; Odigie, Elvis; Omoregie, Richard


    Deliberate and regular exposure to premium motor spirit fumes is common and could be a risk factor for liver disease in those who are occupationally exposed. A possible association between premium motor spirit fumes and plasma levels of triglyceride, total cholesterol, high density lipoprotein cholesterol and low density lipoprotein cholesterol using a rodent model could provide new insights in the pathology of diseases where cellular dysfunction is an established risk factor. The aim of this study was to evaluate the possible effect of premium motor spirit fumes on lipids and lipoproteins in workers occupationally exposed to premium motor spirit fumes using rodent model. Twenty-five Wister albino rats (of both sexes) were used for this study between the 4(th) of August and 7(th) of September, 2010. The rats were divided into five groups of five rats each. Group 1 rats were not exposed to premium motor spirit fumes (control group), group 2 rats were exposed for 1 hour daily, group 3 for 3 hours daily, group 4 for 5 hours daily and group 5 for 7 hours daily. The experiment lasted for a period of 4 weeks. Blood samples obtained from all the groups after 4 weeks of exposure were used for the estimation of plasma levels of triglyceride, total cholesterol, high density lipoprotein- cholesterol and low density lipoprotein- cholesterol. Results showed significant increase in means of plasma total cholesterol and low density lipoprotein levels (Plevel of high density lipoprotein, the ratio of low density lipoprotein to high density lipoprotein and the ratio of total cholesterol to high density lipoprotein did not differ significantly in exposed subjects when compared with the control group. These results showed that frequent exposure to petrol fumes may be highly deleterious to the liver cells.

  14. Individual tree detection based on densities of high points of high resolution airborne lidar

    NARCIS (Netherlands)

    Abd Rahman, M.Z.; Gorte, B.G.H.


    The retrieval of individual tree location from Airborne LiDAR has focused largely on utilizing canopy height. However, high resolution Airborne LiDAR offers another source of information for tree detection. This paper presents a new method for tree detection based on high points’ densities from a

  15. Tree crown delineation from high resolution airborne LiDAR based on densities of high points

    NARCIS (Netherlands)

    Rahman, M.Z.A.; Gorte, B.G.H.


    Tree detection and tree crown delineation from Airborne LiDAR has been focusing mostly on utilizing the canopy height model (CHM). This paper presents a method for individual tree crown delineation based on densities of high points (DHP) from the high resolution Airborne LiDAR. The DHP method relies

  16. What happens in Josephson junctions at high critical current densities (United States)

    Massarotti, D.; Stornaiuolo, D.; Lucignano, P.; Caruso, R.; Galletti, L.; Montemurro, D.; Jouault, B.; Campagnano, G.; Arani, H. F.; Longobardi, L.; Parlato, L.; Pepe, G. P.; Rotoli, G.; Tagliacozzo, A.; Lombardi, F.; Tafuri, F.


    The impressive advances in material science and nanotechnology are more and more promoting the use of exotic barriers and/or superconductors, thus paving the way to new families of Josephson junctions. Semiconducting, ferromagnetic, topological insulator and graphene barriers are leading to unconventional and anomalous aspects of the Josephson coupling, which might be useful to respond to some issues on key problems of solid state physics. However, the complexity of the layout and of the competing physical processes occurring in the junctions is posing novel questions on the interpretation of their phenomenology. We classify some significant behaviors of hybrid and unconventional junctions in terms of their first imprinting, i.e., current-voltage curves, and propose a phenomenological approach to describe some features of junctions characterized by relatively high critical current densities Jc. Accurate arguments on the distribution of switching currents will provide quantitative criteria to understand physical processes occurring in high-Jc junctions. These notions are universal and apply to all kinds of junctions.

  17. Propofol anesthesia and sleep: a high-density EEG study. (United States)

    Murphy, Michael; Bruno, Marie-Aurélie; Riedner, Brady A; Boveroux, Pierre; Noirhomme, Quentin; Landsness, Eric C; Brichant, Jean-Francois; Phillips, Christophe; Massimini, Marcello; Laureys, Steven; Tononi, Giulio; Boly, Mélanie


    The electrophysiological correlates of anesthetic sedation remain poorly understood. We used high-density electroencephalography (hd-EEG) and source modeling to investigate the cortical processes underlying propofol anesthesia and compare them to sleep. 256-channel EEG recordings in humans during propofol anesthesia. Hospital operating room. 8 healthy subjects (4 males). N/A. Initially, propofol induced increases in EEG power from 12-25 Hz. Loss of consciousness (LOC) was accompanied by the appearance of EEG slow waves that resembled the slow waves of NREM sleep. We compared slow waves in propofol to slow waves recorded during natural sleep and found that both populations of waves share similar cortical origins and preferentially propagate along the mesial components of the default network. However, propofol slow waves were spatially blurred compared to sleep slow waves and failed to effectively entrain spindle activity. Propofol also caused an increase in gamma (25-40 Hz) power that persisted throughout LOC. Source modeling analysis showed that this increase in gamma power originated from the anterior and posterior cingulate cortices. During LOC, we found increased gamma functional connectivity between these regions compared to the wakefulness. Propofol anesthesia is a sleep-like state and slow waves are associated with diminished consciousness even in the presence of high gamma activity.

  18. High cell density cultivation of probiotics and lactic acid production. (United States)

    Schiraldi, Chiara; Adduci, Vincenzo; Valli, Vivien; Maresca, Carmelina; Giuliano, Mariateresa; Lamberti, Monica; Cartenì, Maria; De Rosa, Mario


    The commercial interest in functional foods that contain live microorganisms, also named probiotics, is paralleled by the increasing scientific attention to their functionality in the digestive tract. This is especially true of yogurts that contain strains of lactic-acid bacteria of intestinal origin, among these, Lactobacillus delbrueckii ssp. bulgaricus is extensively used in the dairy industry and it has been demonstrated to be a probiotic strain. In this work we describe high cell density cultivations of this microorganism also focusing on the stereospecific production of lactic acid. Key parameters such as medium composition (bactocasitone concentration) and diverse aeration conditions were explored. The results showed that the final concentration of biomass in anaerobic fermentation was lower than the one obtained in microaerophilic conditions, while it gave a very high productivity of lactic acid which was present as a racemic mixture in the permeate. Fermentation experiments carried out with air sparging, even at very low flow-rate, led to the production of the sole L(+) lactic acid giving sevenfold increase in biomass yield in respect to the batch cultivation. Finally, a mathematical model was developed to describe the microfiltration bioprocess applied in this research considering an inhibition kinetic and enucleating a suitable mathematical description for the decrease of the transmembrane flux. Copyright 2003 Wiley Periodicals, Inc.

  19. High-Density Carbon (HDC) Ablator for NIC Ignition Capsules (United States)

    Ho, D.; Haan, S.; Salmonson, J.; Milovich, J.; Callahan, D.


    HDC ablators show high performance based on simulations, despite the fact that the shorter pulses for HDC capsules result in higher M-band radiation compared to that for plastic capsules. HDC capsules have good 1-D performance because HDC has relatively high density (3.5 g/cc), which results in a thinner ablator that absorbs more radiation. HDC ablators have good 2-D performance because the ablator surface is more than an order-of-magnitude smoother than Be or plastic ablators. Refreeze of the ablator near the fuel region can be avoided by appropriate dopant placement. Here we present two HDC ignition designs doped with W and Si. For the design with maximum W concentration of 1.0 at% (and respectively with maximum Si concentration of 2.0 at%): peak velocity = 0.395 (0.397) mm/ns, mass weighted fuel entropy = 0.463 (0.469) kJ/mg/eV, peak core hydrodynamic stagnation pressure = 690 (780) Gbar, and yield = 17.3 (20.2) MJ. 2-D simulations show that yield is close to 80% YoC even with 2.5x of nominal surface roughness on all surfaces. The clean fuel fraction is about 75% at peak velocity. Doping HDC with the required concentration of W and Si is in progress. A first undoped HDC Symcap is scheduled to be fielded later this year.

  20. Altered activation of endothelial anti- and proapoptotic pathways by high-density lipoprotein from patients with coronary artery disease: role of high-density lipoprotein-proteome remodeling

    National Research Council Canada - National Science Library

    Riwanto, Meliana; Rohrer, Lucia; Roschitzki, Bernd; Besler, Christian; Mocharla, Pavani; Mueller, Maja; Perisa, Damir; Heinrich, Kathrin; Altwegg, Lukas; von Eckardstein, Arnold; Lüscher, Thomas F; Landmesser, Ulf


    ...). High-density lipoprotein from healthy subjects (HDL(Healthy)) has been proposed to exert endothelial antiapoptotic effects that may represent an important antiatherogenic property of the lipoprotein...

  1. Sustainable Urban Biophilia: The Case of Greenskins for Urban Density

    Directory of Open Access Journals (Sweden)

    Grant Revell


    Full Text Available Green infrastructure ameliorates the urban heat island effect, contributes positively to liveability and enables sustainability in higher density urban environments. Greenskins (living architectures are a more specific form of green infrastructure, including green walls and green roofs, for dense urban areas. These offer a new approach for sustainable urban biophilia and some forms can be built using the ecological design principles of constructed wetlands. The paper compares findings from two urban centres in warm Mediterranean climates. In general from Adelaide, South Australia and more specifically from university collaborative projects on particular technical and social parameters necessary to sustain Greenskins in dense urban conditions in Fremantle, Western Australia. Results from trials of a prototype greywater Greenskin using vertical constructed wetland cells are reported. Through an experimental investigation of designing living green walls in urban Fremantle, this paper challenges the conventional “triple-bottom-line” approach to sustainable dense urban systems by addressing the greater aesthetic needs of sustainability and its thinking. Here landscape aesthetics looks to the collaborative fields of urban design, environmental engineering and landscape architecture to design new urban biophilic experiences and restorative landscapes for regenerative cultural pleasure, ecological responsibility, environmental stewardship and intellectual gain.

  2. Development of large high current density superconducting solenoid magnets for use in high energy physics experiments. [Thesis

    Energy Technology Data Exchange (ETDEWEB)

    Green, M.A.


    The development of a unique type of large superconducting solenoid magnet, characterized by very high current density windings and a two-phase helium tubular cooling system is described. The development of the magnet's conceptual design and the construction of two test solenoids are described. The successful test of the superconducting coil and its tubular cooling refrigeration system is presented. The safety, environmental and economic impacts of the test program on future developments in high energy physics are shown. Large solid angle particle detectors for colliding beam physics will analyze both charged and neutral particles. In many cases, these detectors will require neutral particles, such as gamma rays, to pass through the magnet coil with minimum interaction. The magnet coils must be as thin as possible. The use of superconducting windings allows one to minimize radiation thickness, while at the same time maximizing charged particle momentum resolution and saving substantial quantities of electrical energy. The results of the experimental measurements show that large high current density solenoid magnets can be made to operate at high stored energies. The superconducting magnet development described has a positive safety and environmental impact. The use of large high current density thin superconducting solenoids has been proposed in two high energy physics experiments to be conducted at the Stanford Linear Accelerator Center and Cornell University as a result of the successful experiments described.

  3. Fundamental properties of high-quality carbon nanofoam: from low to high density

    Directory of Open Access Journals (Sweden)

    Natalie Frese


    Full Text Available Highly uniform samples of carbon nanofoam from hydrothermal sucrose carbonization were studied by helium ion microscopy (HIM, X-ray photoelectron spectroscopy (XPS, and Raman spectroscopy. Foams with different densities were produced by changing the process temperature in the autoclave reactor. This work illustrates how the geometrical structure, electron core levels, and the vibrational signatures change when the density of the foams is varied. We find that the low-density foams have very uniform structure consisting of micropearls with ≈2–3 μm average diameter. Higher density foams contain larger-sized micropearls (≈6–9 μm diameter which often coalesced to form nonspherical μm-sized units. Both, low- and high-density foams are comprised of predominantly sp2-type carbon. The higher density foams, however, show an advanced graphitization degree and a stronger sp3-type electronic contribution, related to the inclusion of sp3 connections in their surface network.

  4. High density plasmas and new diagnostics: An overview (invited) (United States)

    Celona, L.; Gammino, S.; Mascali, D.


    One of the limiting factors for the full understanding of Electron Cyclotron Resonance Ion Sources (ECRISs) fundamental mechanisms consists of few types of diagnostic tools so far available for such compact machines. Microwave-to-plasma coupling optimisation, new methods of density overboost provided by plasma wave generation, and magnetostatic field tailoring for generating a proper electron energy distribution function, suitable for optimal ion beams formation, require diagnostic tools spanning across the entire electromagnetic spectrum from microwave interferometry to X-ray spectroscopy; these methods are going to be implemented including high resolution and spatially resolved X-ray spectroscopy made by quasi-optical methods (pin-hole cameras). The ion confinement optimisation also requires a complete control of cold electrons displacement, which can be performed by optical emission spectroscopy. Several diagnostic tools have been recently developed at INFN-LNS, including "volume-integrated" X-ray spectroscopy in low energy domain (2-30 keV, by using silicon drift detectors) or high energy regime (>30 keV, by using high purity germanium detectors). For the direct detection of the spatially resolved spectral distribution of X-rays produced by the electronic motion, a "pin-hole camera" has been developed also taking profit from previous experiences in the ECRIS field. The paper will give an overview of INFN-LNS strategy in terms of new microwave-to-plasma coupling schemes and advanced diagnostics supporting the design of new ion sources and for optimizing the performances of the existing ones, with the goal of a microwave-absorption oriented design of future machines.

  5. Effect of High-Dose Vitamin D3 Intake on Ambulation, Muscular Pain and Bone Mineral Density in a Woman with Multiple Sclerosis: A 10-Year Longitudinal Case Report

    NARCIS (Netherlands)

    Van Amerongen, B.M.; Feron, F.


    Mounting evidence correlate vitamin D3 (cholecalciferol) supplementation or higher serum levels of vitamin D (25(OH)D) with a lower risk of developing multiple sclerosis (MS), reduced relapse rate, slower progression or fewer new brain lesions. We present here the case of a woman who was diagnosed

  6. Oscillating Thermionic Conversion For High-Density Space Power (United States)

    Jacobson, Dean L.; Morris, James F.


    Space nuclear reactors adapt admirably to compact maneuverable multimegawatt power generation. The compactness, maneuverability and productive weight utilization benefit from the use of thermionic converters at high temperatures. These modular static generators reduce waste-heat-radiator weights which loom large in high-power space systems. But greater space-power levels test even thermionic conversion because of its high current densities at low voltages: Relatively low-temperature power conditioning also contributes to large waste-heat-radiator weights. Therefore electromagnetic-wave outputs from thermionic conversion offer important advantages over its traditional direct-current power. In this advantageous operating mode thermionic-conversion lasing yet occupies a theoretic niche. Pulsing and switching with triode thermionic converters appear ready for development guided by continuing applied research. And power-producing thermionic-diode oscillators are excellent prospects for United States research exploitation. This direct thermal power oscillator continues to receive intense experimental and theoretical attention in the USSR--under the aegis of the State Committee for Utilization of Atomic Energy. Now the SDIO through AFWAL has funded a three-year program at Arizona State University to investigate high-temperature oscillatory thermionic conversion. Ascending toward its thermal limits enables thermionic conversion to produce more power at higher voltages and lower currents with greater efficiencies. These gains accrue with minimal collisional damping afforded by surface ionization and Knudsen-arc-mode operation. Here at high neutralization ratios p actual ionization JEXP greatly outstrips the equilibrium ion currents JISL predicted by Saha and Langmuir. In fact for large values of p the value of EXP can exceed JSL by 100-150 times" (Babanin, Ender et alii). And here high neutralization ratios with low collisional damping at reduced cesium pressures favor

  7. Matter composition at high density by effective scaled lagrangian

    Energy Technology Data Exchange (ETDEWEB)

    Hyun, Chang Ho; Min, Dong Pil [Dept. of Physics, Seoul National Univ., Seoul (Korea, Republic of)


    We investigate the matter composition at around the neutron star densities with a model lagrangian satisfying Brown-Rho scaling law. We calculate the neutron star properties such as maximum mass, radius, hyperon compositions and central density. We compare our results with those of Walecka model. (orig.)

  8. Experimental study of high density foods for the Space Operations Center (United States)

    Ahmed, S. M.


    The experimental study of high density foods for the Space Operations Center is described. A sensory evaluation of the high density foods was conducted first to test the acceptability of the products. A shelf-life study of the high density foods was also conducted for three different time lengths at three different temperatures. The nutritional analysis of the high density foods is at present incomplete.

  9. Properties of recycled high density polyethylene and coffee dregs composites

    Directory of Open Access Journals (Sweden)

    Sibele Piedade Cestari


    Full Text Available Composites of recycled high density polyethylene (HDPE-R and coffee dregs (COFD were elaborated. The blends were made at the proportions of 100-0, 90-10, 80-20, 70-30, 60-40, 50-50 and 40-60% polymer-filler ratio. The materials were evaluated through scanning electron microscopy (SEM, differential scanning calorimetry (DSC, thermogravimetry/derivative thermogravimetry (TGA, and compressive resistance test. The compounding was done using a two-stage co-kneader system extruder, and then cylindrical specimens were injection molded. All composites had a fine dispersion of the COFD into the polymeric matrix. The composites degraded in two steps. The first one was in a temperature lower than the neat HDPE, but higher than the average processing temperature of the polymer. The melting temperature and the degree of crystallinity of the composites resulted similar to the neat HDPE ones. The compressive moduli of the composites resulted similar to the neat polymer one. The results show that these composites have interesting properties as a building material.

  10. High density scalp EEG in frontal lobe epilepsy. (United States)

    Feyissa, Anteneh M; Britton, Jeffrey W; Van Gompel, Jamie; Lagerlund, Terrance L; So, Elson; Wong-Kisiel, Lilly C; Cascino, Gregory C; Brinkman, Benjamin H; Nelson, Cindy L; Watson, Robert; Worrell, Gregory A


    Localization of seizures in frontal lobe epilepsy using the 10-20 system scalp EEG is often challenging because neocortical seizure can spread rapidly, significant muscle artifact, and the suboptimal spatial resolution for seizure generators involving mesial frontal lobe cortex. Our aim in this study was to determine the value of visual interpretation of 76 channel high density EEG (hdEEG) monitoring (10-10 system) in patients with suspected frontal lobe epilepsy, and to evaluate concordance with MRI, subtraction ictal SPECT co-registered to MRI (SISCOM), conventional EEG, and intracranial EEG (iEEG). We performed a retrospective cohort study of 14 consecutive patients who underwent hdEEG monitoring for suspected frontal lobe seizures. The gold standard for localization was considered to be iEEG. Concordance of hdEEG findings with MRI, subtraction ictal SPECT co-registered to MRI (SISCOM), conventional 10-20 EEG, and iEEG as well as correlation of hdEEG localization with surgical outcome were examined. hdEEG localization was concordant with iEEG in 12/14 and was superior to conventional EEG 3/14 (pfrontal epilepsy requiring localization of epileptogenic brain. hdEEG may assist in developing a hypothesis for iEEG monitoring and could potentially augment EEG source localization. Published by Elsevier B.V.

  11. High-density matter: current status and future challenges

    Directory of Open Access Journals (Sweden)

    Stone J. R.


    Full Text Available There are many fascinating processes in the Universe which we observe in more and more in detail thanks to increasingly sophisticated technology. One of the most interesting phenomena is the life cycle of stars, their birth, evolution and death. If the stars are massive enough, they end their lives in the core-collapse supernova explosion, the one of the most violent events in the Universe. As the result, the densest objects in the Universe, neutron stars and/or black holes are created. Naturally, the physical basis of these events should be understood in line with observation. The current status of our knowledge of processes in the life of stars is far from adequate for their true understanding. We show that although many models have been constructed their detailed ability to describe observations is limited or non-existent. Furthermore the general failure of all models means that we cannot tell which are heading in the right direction. A possible way forward in modeling of high-density matter is outlined, exemplified by the quark-meson-coupling model (QMC. This model has a natural explanation for the saturation of nuclear forces and depends on very few adjustable parameters, strongly constrained by the underlying physics. Latest QMC results for compact objects and finite nuclei are presented.

  12. High cell density production of Deinococcus radiodurans under optimized conditions. (United States)

    He, Yi


    Deinococcus radiodurans is a bacterium being investigated for mechanisms of extreme radiation resistance and for bioremediation of environmental radioactive waste sites. In both fundamental and applied research settings, methods for large-scale production of D. radiodurans are needed. In this study, a systematic investigation was carried out to optimize D. radiodurans production at the 20-L fermentor scale. In defined medium, the phosphate buffer typically used was found to be inhibitory to D. radiodurans growth, and caused cell aggregation. Substitution of HEPES and MOPS buffers for phosphate buffer improved D. radiodurans growth characteristics. Several antifoaming agents were investigated to support large-scale production with submerged aeration, and the defoamer KFO 673 was chosen based on its ability to prevent foaming without affecting D. radiodurans growth. The conventional undefined rich medium tryptone/glucose/yeast extract (TGY) maximally supported D. radiodurans growth to an OD(600) of 10. Using a 'design of experiments' approach, we found glucose, Mg and Mn to be critical in supporting high-density growth of D. radiodurans. The optimal pH and temperature for D. radiodurans growth in large-scale preparations were 7.0 and 37 degrees C, respectively. Growth was carried out in a 20-L fermentor using the newly developed media under the optimal conditions. With addition of 10 g/L glucose, 0.5 g/L MgSO(4) . 7H(2)O, 5 microM MnCl(2) into TGY media, an OD(600) of 40 was achieved.

  13. Plasma high density lipoprotein cholesterol in thyroid disease. (United States)

    Agdeppa, D; Macaron, C; Mallik, T; Schnuda, N D


    The plasma levels of high density lipoprotein cholesterol (HDL-C) were reduced in 16 hyperthyroid female patients compared to 37 euthyroid women (33.5 +/- 8 vs. 51.5 +/- 13 mg/dl (mean +/- SD); P less than 0.001). When 5 patients were restudied after restoration of the euthyroid state, plasma HDL-C increased from 29 +/- 5 to 43 +/- 11.5 mg/dl (P less than 0.05). In addition, in 22 hypothyroid women, HDL-C levels were also diminished compared to the euthyroid group (43.4 +/- 15.5 vs. 51.5 +/- 13 mg/dl; P less than 0.05). Nine patients were restudied after L-T4 replacement therapy; their levels of HDL-C increased but not to a statistically significant degree. The daily administration of 0.3 mg L-T4 to eight normal male volunteers for 1 month did not significantly affect HDL-C levels.

  14. The Atlas High-Energy Density Physics Project (United States)

    Davis, Harold A.


    Atlas is a pulsed-power facility under development at Los Alamos National Laboratory to drive high-energy density experiments. It is optimized for materials properties and hydrodynamics experiments under extreme conditions. The system is designed to implode heavy liner loads ( ~ 50 g) with a peak current of 30 MA delivered in 4 μs. Atlas will be operational near the end of 2000 and is designed to provide 100 shots per year. The Atlas capacitor bank consists of an array of 240-kV Marx modules storing a total of 23 MJ. The bank is resistively damped to limit fault currents and capacitor voltage reversal and will have 16 nH total initial inductance. The current is propagated radially from the Marx generators to the one-meter radius by 24 vertical, triplate, oil-insulated transmission lines. A combination of flat and conical, radially converging transmission lines will deliver the current to the load from the one-meter radius. A prototype Marx generator has been successfully tested at full charge voltage. For many applications the Atlas liner will be a nominal 50-gram-aluminum cylinder with ~ 5-cm radius and 4-cm length. Implosion velocities exceeding 1.4 cm/μs are predicted. Using composite inner layers and a variety of interior target designs, a wide array of experiments in cm^3 volumes may be performed.---Sponsored by US DOE under contract W-7405-ENG-36

  15. Low fasting low high-density lipoprotein and postprandial lipemia

    Directory of Open Access Journals (Sweden)

    Sorodila Konstandina


    Full Text Available Abstract Background Low levels of high density lipoprotein (HDL cholesterol and disturbed postprandial lipemia are associated with coronary heart disease. In the present study, we evaluated the variation of triglyceride (TG postprandially in respect to serum HDL cholesterol levels. Results Fifty two Greek men were divided into 2 main groups: a the low HDL group (HDL p = 0.002. The low HDL group had significantly higher TG at 4, 6 and 8 h postprandially compared to the controls (p = 0.006, p = 0.002, and p p = 0.017 compared to the matched-control group. ROC analysis showed that fasting TG ≥ 121 mg/dl have 100% sensitivity and 81% specificity for an abnormal TG response (auc = 0.962, p Conclusions The delayed TG clearance postprandially seems to result in low HDL cholesterol even in subjects with low fasting TG. The fasting TG > 121 mg/dl are predictable for abnormal response to fatty meal.

  16. Crystallographic alignment of high-density gallium nitride nanowire arrays. (United States)

    Kuykendall, Tevye; Pauzauskie, Peter J; Zhang, Yanfeng; Goldberger, Joshua; Sirbuly, Donald; Denlinger, Jonathan; Yang, Peidong


    Single-crystalline, one-dimensional semiconductor nanostructures are considered to be one of the critical building blocks for nanoscale optoelectronics. Elucidation of the vapour-liquid-solid growth mechanism has already enabled precise control over nanowire position and size, yet to date, no reports have demonstrated the ability to choose from different crystallographic growth directions of a nanowire array. Control over the nanowire growth direction is extremely desirable, in that anisotropic parameters such as thermal and electrical conductivity, index of refraction, piezoelectric polarization, and bandgap may be used to tune the physical properties of nanowires made from a given material. Here we demonstrate the use of metal-organic chemical vapour deposition (MOCVD) and appropriate substrate selection to control the crystallographic growth directions of high-density arrays of gallium nitride nanowires with distinct geometric and physical properties. Epitaxial growth of wurtzite gallium nitride on (100) gamma-LiAlO(2) and (111) MgO single-crystal substrates resulted in the selective growth of nanowires in the orthogonal [1\\[Evec]0] and [001] directions, exhibiting triangular and hexagonal cross-sections and drastically different optical emission. The MOCVD process is entirely compatible with the current GaN thin-film technology, which would lead to easy scale-up and device integration.

  17. High-Density Superconducting Cables for Advanced ACTPol (United States)

    Pappas, C. G.; Austermann, J.; Beall, J. A.; Duff, S. M.; Gallardo, P. A.; Grace, E.; Henderson, S. W.; Ho, S. P.; Koopman, B. J.; Li, D.; hide


    Advanced ACTPol (AdvACT) is an upcoming Atacama Cosmology Telescope (ACT) receiver upgrade, scheduled to deploy in 2016, that will allow measure- ment of the cosmic microwave background polarization and temperature to the highest precision yet with ACT. The AdvACT increase in sensitivity is partly provided by an increase in the number of transition-edge sensors (TESes) per array by up to a factor of two over the current ACTPol receiver detector arrays. The high-density AdvACT TES arrays require 70 µ m pitch superconducting flexible cables (flex) to connect the detec- tor wafer to the first-stage readout electronics. Here, we present the flex fabrication process and test results. For the flex wiring layer, we use a 400-nm-thick sputtered alu- minum film. In the center of the cable, the wiring is supported by a polyimide substrate, which smoothly transitions to a bare (uncoated with polyimide) silicon substrate at the ends of the cable for a robust wedge wire-bonding interface. Tests on the first batch of flex made for the first AdvACT array show that the flex will meet the requirements for AdvACT, with a superconducting critical current above 1 mA at 500 mK, resilience to mechanical and cryogenic stress, and a room temperature yield of 97%.

  18. Replacing critical rare earth materials in high energy density magnets (United States)

    McCallum, R. William


    High energy density permanent magnets are crucial to the design of internal permanent magnet motors (IPM) for hybride and electric vehicles and direct drive wind generators. Current motor designs use rare earth permanent magnets which easily meet the performance goals, however, the rising concerns over cost and foreign control of the current supply of rare earth resources has motivated a search for non-rare earth based permanent magnets alloys with performance metrics which allow the design of permanent magnet motors and generators without rare earth magnets. This talk will discuss the state of non-rare-earth permanent magnets and efforts to both improve the current materials and find new materials. These efforts combine first principles calculations and meso-scale magnetic modeling with advance characterization and synthesis techniques in order to advance the state of the art in non rare earth permanent magnets. The use of genetic algorithms in first principle structural calculations, combinatorial synthesis in the experimental search for materials, atom probe microscopy to characterize grain boundaries on the atomic level, and other state of the art techniques will be discussed. In addition the possibility of replacing critical rare earth elements with the most abundant rare earth Ce will be discussed.

  19. High Density Nano-Electrode Array for Radiation Detection

    Energy Technology Data Exchange (ETDEWEB)

    Mano Misra


    Bulk single crystals of Cd1-xZnxTe (x=0.04 to x=0.2) compound semiconductor is used for room temperature radiation detection. The production of large volume of Cd1-xZnxTe with low defect density is expensive. As a result there is a growing research interest in the production of nanostructured compound semiconductors such as Cd1-xZnxTe in an electrochemical route. In this investigation, Cd1-xZnxTe ternary compound semiconductor, referred as CZT, was electrodeposited in the form of nanowires onto a TiO2 nanotubular template from propylene carbonate as the non-aqueous electrolyte, using a pulse-reverse electrodeposition process at 130 ºC. The template acted as a support in growing ordered nanowire of CZT which acts as a one dimensional conductor. Cyclic Voltammogram (CV) studies were conducted in determining the potentials for the growth of nanowires of uniform stoichiometry. The morphologies and composition of CZT were characterized by using SEM, TEM and XRD. The STEM mapping carried out on the nanowires showed the uniform distribution of Cd, Zn and Te elements. TEM image showed that the nanowires were polycrystalline in nature. The Mott-Schottky analysis carried on the nanowires showed that the nanowires were a p-type semiconductor. The carrier density, band gap and resistivity of the Cd0.9Zn0.1Te nanowires were 4.29x1013 cm-3, 1.56 eV and 2.76x1011Ω-cm respectively. The high resistivity was attributed to the presence of deep defect states such as cadmium vacancies or Te antisites which were created by the anodic cycle of the pulse-reverse electrodeposition process. Stacks of series connected CZT nanowire arrays were tested with different bias potentials. The background current was in the order of tens of picoamperes. When exposed to radiation source Amerecium-241 (60 KeV, 4 μCi), the stacked CZT nanowires arrays showed sensing behavior. The sensitivity of the nanowire arrays increased as the number of stacks increased. The preliminary results indicate that the

  20. A High-Density, High-Efficiency, Isolated On-Board Vehicle Battery Charger Utilizing Silicon Carbide Power Devices

    Energy Technology Data Exchange (ETDEWEB)

    Whitaker, B; Barkley, A; Cole, Z; Passmore, B; Martin, D; McNutt, TR; Lostetter, AB; Lee, JS; Shiozaki, K


    This paper presents an isolated on-board vehicular battery charger that utilizes silicon carbide (SiC) power devices to achieve high density and high efficiency for application in electric vehicles (EVs) and plug-in hybrid EVs (PHEVs). The proposed level 2 charger has a two-stage architecture where the first stage is a bridgeless boost ac-dc converter and the second stage is a phase-shifted full-bridge isolated dc-dc converter. The operation of both topologies is presented and the specific advantages gained through the use of SiC power devices are discussed. The design of power stage components, the packaging of the multichip power module, and the system-level packaging is presented with a primary focus on system density and a secondary focus on system efficiency. In this work, a hardware prototype is developed and a peak system efficiency of 95% is measured while operating both power stages with a switching frequency of 200 kHz. A maximum output power of 6.1 kW results in a volumetric power density of 5.0 kW/L and a gravimetric power density of 3.8 kW/kg when considering the volume and mass of the system including a case.

  1. Genome-wide association study using a high-density SNP-array and case-control design identifies a novel essential hypertension susceptibility locus in the promoter region of eNOS (United States)

    Salvi, Erika; Kutalik, Zoltán; Glorioso, Nicola; Benaglio, Paola; Frau, Francesca; Kuznetsova, Tatiana; Arima, Hisatomi; Hoggart, Clive; Tichet, Jean; Nikitin, Yury P.; Conti, Costanza; Seidlerova, Jitka; Tikhonoff, Valérie; Stolarz-Skrzypek, Katarzyna; Johnson, Toby; Devos, Nabila; Zagato, Laura; Guarrera, Simonetta; Zaninello, Roberta; Calabria, Andrea; Stancanelli, Benedetta; Troffa, Chiara; Thijs, Lutgarde; Rizzi, Federica; Simonova, Galina; Lupoli, Sara; Argiolas, Giuseppe; Braga, Daniele; D’Alessio, Maria C.; Ortu, Maria F.; Ricceri, Fulvio; Mercurio, Maurizio; Descombes, Patrick; Marconi, Maurizio; Chalmers, John; Harrap, Stephen; Filipovsky, Jan; Bochud, Murielle; Iacoviello, Licia; Ellis, Justine; Stanton, Alice V.; Laan, Maris; Padmanabhan, Sandosh; Dominiczak, Anna F.; Samani, Nilesh J.; Melander, Olle; Jeunemaitre, Xavier; Manunta, Paolo; Shabo, Amnon; Vineis, Paolo; Cappuccio, Francesco P.; Caulfield, Mark J.; Matullo, Giuseppe; Rivolta, Carlo; Munroe, Patricia B.; Barlassina, Cristina; Staessen, Jan A; Beckmann, Jacques S.; Cusi, Daniele


    Essential hypertension is a multi-factorial disorder and is the main risk factor for renal and cardiovascular complications. The research on the genetics of hypertension has been frustrated by the small predictive value of the discovered genetic variants. The HYPERGENES Project investigated associations between genetic variants and essential hypertension pursuing a two-stage study by recruiting cases and controls from extensively characterized cohorts recruited over many years in different European regions. The discovery phase consisted of 1,865 cases and 1,750 controls genotyped with 1M Illumina array. Best hits were followed up in a validation panel of 1,385 cases and 1,246 controls that were genotyped with a custom array of 14,055 markers. We identified a new hypertension susceptibility locus (rs3918226) in the promoter region of the endothelial nitric oxide synthase (eNOS) gene (odds ratio 1.54; 95% CI 1.37-1.73; combined p=2.58·10−13). A meta-analysis, using other in-silico/de novo genotyping data for a total of 21714 subjects, resulted in an overall odds ratio of 1.34 (95% CI 1.25-1.44, p=1.032·10−14). The quantitative analysis on a population-based sample revealed an effect size of 1.91 (95% CI 0.16-3.66) for systolic and 1.40 (95% CI 0.25-2.55) for diastolic blood pressure. We identified in-silico a potential binding site for ETS transcription-factors directly next to rs3918226, suggesting a potential modulation of eNOS expression. Biological evidence links eNOS with hypertension, as it is a critical mediator of cardiovascular homeostasis and blood pressure control via vascular tone regulation. This finding supports the hypothesis that there may be a causal genetic variation at this locus. PMID:22184326

  2. Combined analysis of six lipoprotein lipase genetic variants on triglycerides, high-density lipoprotein, and ischemic heart disease: cross-sectional, prospective, and case-control studies from the Copenhagen City Heart Study

    DEFF Research Database (Denmark)

    Wittrup, HH; Andersen, RV; Tybjærg-Hansen, A


    . SETTING: The study was performed in the Danish general population (the Copenhagen City Heart Study). PARTICIPANTS: IHD was angina pectoris or myocardial infarction. MAIN OUTCOME MEASURES: Triglycerides, HDL, and IHD were the main outcome measures. RESULTS: Cross-sectionally, triglycerides varied...... (CI), 1.2-2.3]; 291Ser and 447Ter did not change IHD risk. In the case-control study, combining the cohorts of IHD patients, 9Asn (with -93G) heterozygotes and homozygotes combined vs. noncarriers had an odds ratio for IHD of 1.5 (CI, 1.2-2.1). 291Ser and 447Ter did not change IHD risk. Stratified...

  3. Chemically and Thermally Stable High Energy Density Silicone Composites Project (United States)

    National Aeronautics and Space Administration — Thermal energy storage systems with 300 ? 1000 kJ/kg energy density through either phase changes or chemical heat absorption are sought by NASA. This proposed effort...

  4. High volumetric power density, non-enzymatic, glucose fuel cells


    Oncescu, Vlad; Erickson, David


    The development of new implantable medical devices has been limited in the past by slow advances in lithium battery technology. Non-enzymatic glucose fuel cells are promising replacement candidates for lithium batteries because of good long-term stability and adequate power density. The devices developed to date however use an ?oxygen depletion design? whereby the electrodes are stacked on top of each other leading to low volumetric power density and complicated fabrication protocols. Here we...

  5. Stability Of Rubble Mound Breakwaters Using High Density Rock

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Beck, J. B.


    The present paper discusses the effect of mass density on stability of rubble mound breakwaters. A short literature review of existing knowledge is give to establish a background for the ongoing research. Furthermore, several model tests are described in which the stability of rubble mound...... breakwaters with armour stones of different densities are investigated. The results from the model test are discussed with respect to application and further research....

  6. Radiation Tests of Highly Scaled, High-Density, Commercial, Nonvolatile NAND Flash Memories - Update 2010 (United States)

    Irom, Farokh; Nguyen, Duc N.


    High-density, commercial, nonvolatile flash memories with NAND architecture are now available from several manufacturers. This report examines SEE effects and TID response in single-level cell (SLC) and multi-level cell (MLC) NAND flash memories manufactured by Micron Technology.

  7. Radiation Tests of Highly scaled, High-Density, Commercial, Nonvolatile NAND Flash Memories--Update 2011 (United States)

    Irom, Farokh; Nguyen, Duc N.


    High-density, commercial, nonvolatile flash memories with NAND architecture are now available from several manufacturers. This report examines SEE effects and TID response in single-level cell (SLC) 32Gb and multi-level cell (MLC) 64Gb NAND flash memories manufactured by Micron Technology.

  8. Compensated readout for high-density MOS-gated memristor crossbar array

    KAUST Repository

    Zidan, Mohammed A.


    Leakage current is one of the main challenges facing high-density MOS-gated memristor arrays. In this study, we show that leakage current ruins the memory readout process for high-density arrays, and analyze the tradeoff between the array density and its power consumption. We propose a novel readout technique and its underlying circuitry, which is able to compensate for the transistor leakage-current effect in the high-density gated memristor array.

  9. Biomimetic High-Density Lipoproteins from a Gold Nanoparticle Template (United States)

    Luthi, Andrea Jane

    For hundreds of years the field of chemistry has looked to nature for inspiration and insight to develop novel solutions for the treatment of human diseases. The ability of chemists to identify, mimic, and modifiy small molecules found in nature has led to the discovery and development of many important therapeutics. Chemistry on the nanoscale has made it possible to mimic natural, macromolecular structures that may also be useful for understanding and treating diseases. One example of such a structure is high-density lipoprotein (HDL). The goal of this work is to use a gold nanoparticle (Au NP) as a template to synthesize functional mimics of HDL and characterize their structure and function. Chapter 1 details the structure and function of natural HDL and how chemistry on the nanoscale provides new strategies for mimicking HDL. This Chapter also describes the first examples of using nanoparticles to mimic HDL. Chapter 2 reports the synthesis and characterization of biomimetic HDL using different sizes of Au NPs and different surface chemistries and how these variables can be used to tailor the properties of biomimetic HDL. From these studies the optimal strategy for synthesizing biomimetic HDL was determined. In Chapter 3, the optimization of the synthesis of biomimetic HDL is discussed as well as a full characterization of its structure. In addition, the work in this chapter shows that biomimetic HDL can be synthesized on a large scale without alterations to its structure or function. Chapter 4 focuses on understanding the pathways by which biomimetic HDL accepts cholesterol from macrophage cells. The results of these studies demonstrate that biomimetic HDL is able to accept cholesterol by both active and passive pathways of cholesterol efflux. In Chapter 5 the preliminary results of in vivo studies to characterize the pharmacokinetics and pharmacodynamics of biomimetic HDL are presented. These studies suggest that biomimetic HDL traffics through tissues prone to

  10. High density transcriptional mapping of chromosome 21 by hybridization selection

    Energy Technology Data Exchange (ETDEWEB)

    Tassone, F.; Wade, H.; Gardiner, K. [Eleanor Roosevelt Institute, Denver, CO (United States)] [and others


    A transcriptional map of human chromosome 21 is important for the study of Down syndrome, development processes and genome organization. To construct a high density transcriptional map, the technique of cDNA hybrid selection is being applied to a minimal tiling path of YAC clones that span 21q. The cDNA used for selection represents a complex pool of sequences obtained from a variety of fetal and adult tissues and cell lines. Approximately 70-80 YAC clones are sufficient to span 21q; each is individually processed through the selection procedure to obtain a YAC-specific {open_quotes}selected cDNA library{close_quotes}. Survey analysis of each library includes determination of levels of ribosomal contamination, verification of enrichment of control genes, identification of a preliminary number of novel unique sequences, and verification that novel sequences map to the correct YAC and chromosomal regions. This analysis has been completed for 19 YACs that together comprise approximately 10 Mb of non-overlapping DNA, 25% of the long arm. Ribosomal cDNA contamination is low (<10%) and all known genes of appropriate tissue specificity of expression have been recovered, as well as new genes from each YAC. Libraries of expression have been recovered, as well as new genes from each YAC. Libraries from 8 of these YACs are now being subjected to exhaustive analysis to identify all novel genes contained within them and to obtain complete cDNAs and expression analysis for each. Not all regions of the chromosome, however, are equally amenable to these analyses. Selected cDNA libraries from the centromeric YACs are yielding apparently novel genes, but confirmation of map position is problematic. Also of interest is a region of several megabases within the Giemsa dark band, 21q21. Selected cDNA libraries from these YACs so far have yielded no novel genes and support the idea of a genuinely very gene-poor region.

  11. Differential analysis for high density tiling microarray data

    Directory of Open Access Journals (Sweden)

    Kapranov Philipp


    Full Text Available Abstract Background High density oligonucleotide tiling arrays are an effective and powerful platform for conducting unbiased genome-wide studies. The ab initio probe selection method employed in tiling arrays is unbiased, and thus ensures consistent sampling across coding and non-coding regions of the genome. These arrays are being increasingly used to study the associated processes of transcription, transcription factor binding, chromatin structure and their association. Studies of differential expression and/or regulation provide critical insight into the mechanics of transcription and regulation that occurs during the developmental program of a cell. The time-course experiment, which comprises an in-vivo system and the proposed analyses, is used to determine if annotated and un-annotated portions of genome manifest coordinated differential response to the induced developmental program. Results We have proposed a novel approach, based on a piece-wise function – to analyze genome-wide differential response. This enables segmentation of the response based on protein-coding and non-coding regions; for genes the methodology also partitions differential response with a 5' versus 3' versus intra-genic bias. Conclusion The algorithm built upon the framework of Significance Analysis of Microarrays, uses a generalized logic to define regions/patterns of coordinated differential change. By not adhering to the gene-centric paradigm, discordant differential expression patterns between exons and introns have been identified at a FDR of less than 12 percent. A co-localization of differential binding between RNA Polymerase II and tetra-acetylated histone has been quantified at a p-value -13. The prototype R code has been made available as supplementary material [see Additional file 1]. Additional file 1 File archive comprising of prototype R code for gSAM implementation including readme and examples. Click here for file

  12. Surface interactions involved in flashover with high density electronegative gases.

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, Keith Conquest; Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Wallace, Zachariah Red; Lehr, Jane Marie


    This report examines the interactions involved with flashover along a surface in high density electronegative gases. The focus is on fast ionization processes rather than the later time ionic drift or thermalization of the discharge. A kinetic simulation of the gas and surface is used to examine electron multiplication and includes gas collision, excitation and ionization, and attachment processes, gas photoionization and surface photoemission processes, as well as surface attachment. These rates are then used in a 1.5D fluid ionization wave (streamer) model to study streamer propagation with and without the surface in air and in SF6. The 1.5D model therefore includes rates for all these processes. To get a better estimate for the behavior of the radius we have studied radial expansion of the streamer in air and in SF6. The focus of the modeling is on voltage and field level changes (with and without a surface) rather than secondary effects, such as, velocities or changes in discharge path. An experiment has been set up to carry out measurements of threshold voltages, streamer velocities, and other discharge characteristics. This setup includes both electrical and photographic diagnostics (streak and framing cameras). We have observed little change in critical field levels (where avalanche multiplication sets in) in the gas alone versus with the surface. Comparisons between model calculations and experimental measurements are in agreement with this. We have examined streamer sustaining fields (field which maintains ionization wave propagation) in the gas and on the surface. Agreement of the gas levels with available literature is good and agreement between experiment and calculation is good also. Model calculations do not indicate much difference between the gas alone versus the surface levels. Experiments have identified differences in velocity between streamers on the surface and in the gas alone (the surface values being larger).

  13. Reconstituted high-density lipoprotein modulates activation of human leukocytes.

    Directory of Open Access Journals (Sweden)

    Rolf Spirig

    Full Text Available An anti-inflammatory effect of reconstituted High Density Lipoprotein (rHDL has been demonstrated in atherosclerosis and in sepsis models. An increase of adhesion molecules as well as tissue factor expression on endothelial cells in response to inflammatory or danger signals are attenuated by the treatment with rHDL. Here we show the inhibitory effect of rHDL on the activation of human leukocytes in a whole blood assay as well as on monocyte-derived human dendritic cells (DC. Multiplex analysis of human whole blood showed that phytohaemagglutinin (PHA-induced secretion of the cytokines IL-1β, IL-1RA, IL-2R, IL-6, IL-7, IL-12(p40, IL-15 and IFN-α was inhibited. Furthermore, an inhibitory effect on the production of the chemokines CCL-2, CCL-4, CCL-5, CXCL-9 and CXCL-10 was observed. Activation of granulocytes and CD14+ monocytes by PHA is inhibited dose-dependently by rHDL shown as decreased up-regulation of ICAM-1 surface expression. In addition, we found a strong inhibitory effect of rHDL on toll-like receptor 2 (TLR2- and TLR4-mediated maturation of DC. Treatment of DC with rHDL prevented the up-regulation of cell surface molecules CD80, CD83 and CD86 and it inhibited the TLR-driven activation of inflammatory transcription factor NF-κB. These findings suggest that rHDL prevents activation of crucial cellular players of cellular immunity and could therefore be a useful reagent to impede inflammation as well as the link between innate and adaptive immunity.

  14. Reconstituted high-density lipoprotein modulates activation of human leukocytes. (United States)

    Spirig, Rolf; Schaub, Alexander; Kropf, Alain; Miescher, Sylvia; Spycher, Martin O; Rieben, Robert


    An anti-inflammatory effect of reconstituted High Density Lipoprotein (rHDL) has been demonstrated in atherosclerosis and in sepsis models. An increase of adhesion molecules as well as tissue factor expression on endothelial cells in response to inflammatory or danger signals are attenuated by the treatment with rHDL. Here we show the inhibitory effect of rHDL on the activation of human leukocytes in a whole blood assay as well as on monocyte-derived human dendritic cells (DC). Multiplex analysis of human whole blood showed that phytohaemagglutinin (PHA)-induced secretion of the cytokines IL-1β, IL-1RA, IL-2R, IL-6, IL-7, IL-12(p40), IL-15 and IFN-α was inhibited. Furthermore, an inhibitory effect on the production of the chemokines CCL-2, CCL-4, CCL-5, CXCL-9 and CXCL-10 was observed. Activation of granulocytes and CD14+ monocytes by PHA is inhibited dose-dependently by rHDL shown as decreased up-regulation of ICAM-1 surface expression. In addition, we found a strong inhibitory effect of rHDL on toll-like receptor 2 (TLR2)- and TLR4-mediated maturation of DC. Treatment of DC with rHDL prevented the up-regulation of cell surface molecules CD80, CD83 and CD86 and it inhibited the TLR-driven activation of inflammatory transcription factor NF-κB. These findings suggest that rHDL prevents activation of crucial cellular players of cellular immunity and could therefore be a useful reagent to impede inflammation as well as the link between innate and adaptive immunity.

  15. Effects of acute exercise on high density lipoprotein cholesterol and high density lipoprotein subfractions in moderately trained females. (United States)

    Gordon, P M; Fowler, S; Warty, V; Danduran, M; Visich, P; Keteyian, S


    Increases in high density lipoprotein cholesterol (HDL-C) levels have previously been reported after moderate exercise bouts lasting less than two hours in men. Little information exists, however, on HDL-C responses after moderate duration exercise in women. Post-exercise HDL-C modifications may appear differently in women because of higher baseline HDL-C concentrations and differences in lipolytic activity. To determine the influence of exercise on acute HDL-C responses in women, 12 trained premenopausal women (22 (4) years old; mean (SD)) who ran 24-48 km a week exercised on a motor driven treadmill at 75% VO2MAX until 3.34 MJ (800 kcal) were expended (72 (9) min). Subjects were all tested during the early follicular phase of their menstrual cycle. Fasting blood samples were obtained before exercise (baseline), immediately after (IPE), one hour after (1 h PE), 24 hours after (24 h PE), and 48 hours after (48 h PE) exercise. Plasma was analysed for HDL-C, HDL2-C, and HDL3-C. A significant increase in HDL-C was observed 48 h PE (p<0.05). HDL3-C increased IPE (p<0.01) but returned to baseline at 1 h PE. In contrast, HDL2-C was not significantly different from baseline at any time point. The rise in HDL-C, however, was attributed to an increase in both HDL2 and HDL3. Moreover, at 48 h PE, the increase in HDL-C correlated highly with changes in HDL2-C (r = 0.92). Thus it appears that exercise of moderate duration can elicit similar post-exercise increases in HDL-C in women to those previously reported in men. However, the changes in HDL subfractions leading to the rise in HDL-C may be different in women.

  16. High Power Density and High Temperature Converter Design for Transportation Applications


    Wang, Ruxi


    The continual development of high-power-density power electronic converters is driven particularly by modern transportation applications like electrical vehicles and more electric aircraft where the space and carrier capability is limited. However, there are several challenges related to transportation applications such as fault tolerance for safety concern, high temperature operation in extreme environments and more strict electromagnetic compatibility requirement. These challenges will incr...

  17. Bilateral symmetrical low density areas in the basal ganglia. A case with dysarthria and gait disturbance

    Energy Technology Data Exchange (ETDEWEB)

    Ugawa, Yoshikazu; Ihara, Yasuo (Tokyo Univ. (Japan). Faculty of Medicine)


    We reported a case with dysarthria and gait disturbance, in which CT revealed symmetrical well-demarcated low density areas in the basal ganglia. The patient was a 43-year-old woman. Her family history and past history were not contributory. She had a little difficulty in speaking at the age of 17. Gait disturbance and micrographia appeared later. Although her expressionless face resembles to that seen in Parkinsonism, rigidity, akinesia and small-stepped gait were not present. The unclassified types of dysarthria and gait disturbance, which characterize the present case, were considered to be a kind of extrapyramidal symptoms, which were distinct from those of Parkinsonism. CT showed well demarcated low density areas predominantly in bilateral putamen. Metrizamide CT failed to show any communication between low density areas and subarachnoid spaces. To date, six cases, which presented similar clinical features and almost same CT findings as our case, were reported.

  18. The role of oxygen in yeast metabolism during high cell density brewery fermentations. (United States)

    Verbelen, P J; Saerens, S M G; Van Mulders, S E; Delvaux, F; Delvaux, F R


    The volumetric productivity of the beer fermentation process can be increased by using a higher pitching rate (i.e., higher inoculum size). However, the decreased yeast net growth observed in these high cell density fermentations can have a negative impact on the physiological stability throughout subsequent yeast generations. The use of different oxygen conditions (wort aeration, wort oxygenation, yeast preoxygenation) was investigated to improve the growth yield during high cell density fermentations and yeast metabolic and physiological parameters were assessed systematically. Together with a higher extent of growth (dependent on the applied oxygen conditions), the fermentation power and the formation of unsaturated fatty acids were also affected. Wort oxygenation had a significant decreasing effect on the formation of esters, which was caused by a decreased expression of the alcohol acetyl transferase gene ATF1, compared with the other conditions. Lower glycogen and trehalose levels at the end of fermentation were observed in case of the high cell density fermentations with oxygenated wort and the reference fermentation. The expression levels of BAP2 (encoding the branched chain amino acid permease), ERG1 (encoding squalene epoxidase), and the stress responsive gene HSP12 were predominantly influenced by the high cell concentrations, while OLE1 (encoding the fatty acid desaturase) and the oxidative stress responsive genes SOD1 and CTT1 were mainly affected by the oxygen availability per cell. These results demonstrate that optimisation of high cell density fermentations could be achieved by improving the oxygen conditions, without drastically affecting the physiological condition of the yeast and beer quality.

  19. Reduced scattering-matrix algorithm for high-density plasmonic structures. (United States)

    Bouchon, Patrick; Pardo, Fabrice; Haïdar, Riad; Vincent, Grégory; Pelouard, Jean-Luc


    We describe a method to compute S-matrix interface terms using a selection of eigenmodes. When solving the modal equation, the computation of left and right eigenvectors leads to rectangular eigenmodes matrices. Expressions of S-matrix interface terms are then expressed so as to allow for a significant reduction of the computation cost. The reduction is even further decreased in the case of the B-spline modal method, which deals with sparse matrices. Its convergence is illustrated on a high-density plasmonic structure and compared to a full modal method.

  20. High Current, High Density Arc Plasma as a New Source for WiPAL (United States)

    Waleffe, Roger; Endrizzi, Doug; Myers, Rachel; Wallace, John; Clark, Mike; Forest, Cary; WiPAL Team


    The Wisconsin Plasma Astrophysics Lab (WiPAL) has installed a new array of nineteen plasma sources (plasma guns) on its 3 m diameter, spherical vacuum vessel. Each gun is a cylindrical, molybdenum, washer-stabilized, arc plasma source. During discharge, the guns are maintained at 1.2 kA across 100 V for 10 ms by the gun power supply establishing a high density plasma. Each plasma source is fired independently allowing for adjustable plasma parameters, with densities varying between 1018 -1019 m-3 and electron temperatures of 5-15 eV. Measurements were characterized using a 16 tip Langmuir probe. The plasma source will be used as a background plasma for the magnetized coaxial plasma gun (MCPG), the Terrestrial Reconnection Experiment (TREX), and as the plasma source for a magnetic mirror experiment. Temperature, density, and confinement results will be presented. This work is supported by the DoE and the NSF.

  1. Effect of High-Dose Vitamin D3 Intake on Ambulation, Muscular Pain and Bone Mineral Density in a Woman with Multiple Sclerosis: A 10-Year Longitudinal Case Report

    Directory of Open Access Journals (Sweden)

    François Feron


    Full Text Available Mounting evidence correlate vitamin D3 (cholecalciferol supplementation or higher serum levels of vitamin D (25(OHD with a lower risk of developing multiple sclerosis (MS, reduced relapse rate, slower progression or fewer new brain lesions. We present here the case of a woman who was diagnosed with MS in 1990. From 1980 to 2000, her ability to walk decreased from ~20 to 1 km per day. Since January 2001, a vitamin D3 supplement was ingested daily. The starting dose was 20 mcg (800 IU/day and escalated to 100 mcg (4000 IU/day in September 2004 and then to 150 mcg (6000 IU/day in December 2005. Vitamin D3 intake reduced muscular pain and improved ambulation from 1 (February 2000 to 14 km/day (February 2008. Vitamin D intake over 10 years caused no adverse effects: no hypercalcaemia, nephrolithiasis or hypercalciuria were observed. Bowel problems in MS may need to be addressed as they can cause malabsorption including calcium, which may increase serum PTH and 1,25(OH2D levels, as well as bone loss. We suggest that periodic assessment of vitamin D3, calcium and magnesium intake, bowel problems and the measurement of serum 25(OHD, PTH, Ca levels, UCa/Cr and bone health become part of the integral management of persons with MS.

  2. Current-voltage curve of a bipolar membrane at high current density

    NARCIS (Netherlands)

    Aritomi, T.; van den Boomgaard, Anthonie; Strathmann, H.


    The potential drop across a bipolar membrane was measured as a function of the applied current density. As a result, an inflection point was observed in the obtained current-voltage curve at high current density. This inflection point indicates that at high current densities water supply from

  3. High energy-density liquid rocket fuel performance (United States)

    Rapp, Douglas C.


    A fuel performance database of liquid hydrocarbons and aluminum-hydrocarbon fuels was compiled using engine parametrics from the Space Transportation Engine Program as a baseline. Propellant performance parameters are introduced. General hydrocarbon fuel performance trends are discussed with respect to hydrogen-to-carbon ratio and heat of formation. Aluminum-hydrocarbon fuel performance is discussed with respect to aluminum metal loading. Hydrocarbon and aluminum-hydrocarbon fuel performance is presented with respect to fuel density, specific impulse and propellant density specific impulse.

  4. Test of high density UC targets development at Gatchina for neutron rich radioactive beam facilities

    CERN Document Server

    Lhersonneau, G; Lanchais, A; Rizzi, V; Tecchio, L.B; Bajeat, O; Essabaa, S; Lau, C; Cheikh Mhamed, M; Roussière, B; Barzakh, A.E; Fedorov, D.V; lonan, A.M; lvanov, V.S; Mezilev, K.A; Moroz, F.V; Orlov, S.YU; Panteleevc, V.N; Volkovc, YU.M; Dubois, M; Eléon, C; Gaubert, G; Jardin, P; Leroy, R; Saint Laurent, M.G; Villari, A.C.C; Stroe, L; 10.1016/j.nimb.2008.05.033


    Production of on-line mass separator neutron rich isotopes using fission induced by 1 GeV protons on high density uranium carbide has been investigate and results compared with the low density targets yields.

  5. Estimates of high absolute densities and emergence rates of demersal zooplankton from the Agatti Atoll, laccadives

    Digital Repository Service at National Institute of Oceanography (India)

    Madhupratap, M.; Achuthankutty, C.T.; Nair, S.R.S.

    Direct sampling of the sandy substratus of the Agatti Lagoon with a corer showed the presence of vary high densities of epibenthic forms. On average, densities were about 25 times higher than previously estimated with emergence traps. About 80...

  6. High density fuels using dispersion and monolithic fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Daniel S.; Silva, Antonio T.; Abe, Alfredo Y.; Muniz, Rafael O.R.; Giovedi, Claudia, E-mail:, E-mail:, E-mail:, E-mail:, E-mail: [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Universidade de São Paulo (USP), SP (Brazil). Departamento de Engenharia Naval e Oceânica


    Fuel plates used in high-performance research reactors need to be converted to low-enrichment uranium fuel; the fuel option based on a monolithic formulation requires alloys to contain 6 - 10 wt% Mo. In this case, the fuel plates are composed of the metallic alloy U-10Mo surrounded by a thin zirconium layer encapsulated in aluminum cladding. This study reviewed the physical properties of monolithic forms. The constraints produced during the manufacturing process were analyzed and compared to those of dispersed fuel. The bonding process used for dispersion fuels differs from the techniques applied to foil bonding used for pure alloys. The quality of monolithic plates depends on the fabrication method, which usually involves hot isostatic pressing and the thermal annealing effect of residual stress, which degrades the uranium cubic phase. The preservation of the metastable phase has considerable influence on fuel performance. The physical properties of the foil fuel under irradiation are superior to those of aluminum-dispersed fuels. The fuel meat, using zirconium as the diffusion barrier, prevents the interaction layer from becoming excessively thick. The problem with dispersed fuel is breakaway swelling with a medium fission rate. It has been observed that the fuel dispersed in aluminum was minimized in monolithic forms. The pure alloys exhibited a suitable response from a rate at least twice as much as the fission rate of dispersions. The foils can support fissile material concentration combined with a reduced swelling rate. (author)

  7. Patterned magnetic thin films for ultra high density recording

    NARCIS (Netherlands)

    Lodder, J.C.; Haast, M.A.M.; Abelmann, Leon; Hadjipanayis, G.C.


    The areal bit density of magnetic disk recording has increased since 1990 60% per year and even in the last years 100%. Extrapolation of these rates leads to recording parameters not likely to be achieved without changes in the present way of storing hard disk data. One of the possible solutions is

  8. Methods for preparing patterned media for high-density recording

    NARCIS (Netherlands)

    Lodder, J.C.


    The areal bit density of magnetic disk recording has made a colossal increase over the last decades. Extrapolation leads to recording parameters not likely to be achieved without changes in the present way of storing magnetic data. One of the potential solutions is the use of patterned media, which

  9. High Power Density Power Electronic Converters for Large Wind Turbines

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk

    assessments of these specific VSCs so that their power densities and reliabilities are quantitatively determined, which requires extensive utilization of the electro-thermal models of the VSCs under investigation. In this thesis, the three-level neutral-point-clamped VSCs (3L-NPC-VSCs), which are classified...

  10. High-energy-density electron beam from interaction of two successive laser pulses with subcritical-density plasma

    Directory of Open Access Journals (Sweden)

    J. W. Wang


    Full Text Available It is shown by particle-in-cell simulations that a narrow electron beam with high energy and charge density can be generated in a subcritical-density plasma by two consecutive laser pulses. Although the first laser pulse dissipates rapidly, the second pulse can propagate for a long distance in the thin wake channel created by the first pulse and can further accelerate the preaccelerated electrons therein. Given that the second pulse also self-focuses, the resulting electron beam has a narrow waist and high charge and energy densities. Such beams are useful for enhancing the target-back space-charge field in target normal sheath acceleration of ions and bremsstrahlung sources, among others.


    Directory of Open Access Journals (Sweden)

    Tatyana Yu. Nikolaeva


    Full Text Available The subject of study is the techniques of particle statistics evaluation, in particular, processing methods of particle images obtained by coherent illumination. This paper considers the problem of recognition and statistical accounting for individual images of small scattering particles in an arbitrary section of the volume in case of high concentrations. For automatic recognition of focused particles images, a special algorithm for statistical analysis based on contouring and thresholding was used. By means of the mathematical formalism of the scalar diffraction theory, coherent images of the particles formed by the optical system with high numerical aperture were simulated. Numerical testing of the method proposed for the cases of different concentrations and distributions of particles in the volume was performed. As a result, distributions of density and mass fraction of the particles were obtained, and the efficiency of the method in case of different concentrations of particles was evaluated. At high concentrations, the effect of coherent superposition of the particles from the adjacent planes strengthens, which makes it difficult to recognize images of particles using the algorithm considered in the paper. In this case, we propose to supplement the method with calculating the cross-correlation function of particle images from adjacent segments of the volume, and evaluating the ratio between the height of the correlation peak and the height of the function pedestal in the case of different distribution characters. The method of statistical accounting of particles considered in this paper is of practical importance in the study of volume with particles of different nature, for example, in problems of biology and oceanography. Effective work in the regime of high concentrations expands the limits of applicability of these methods for practically important cases and helps to optimize determination time of the distribution character and

  12. High Volumetric Energy Density Hybrid Supercapacitors Based on Reduced Graphene Oxide Scrolls. (United States)

    Rani, Janardhanan R; Thangavel, Ranjith; Oh, Se-I; Woo, Jeong Min; Chandra Das, Nayan; Kim, So-Yeon; Lee, Yun-Sung; Jang, Jae-Hyung


    The low volumetric energy density of reduced graphene oxide (rGO)-based electrodes limits its application in commercial electrochemical energy storage devices that require high-performance energy storage capacities in small volumes. The volumetric energy density of rGO-based electrode materials is very low due to their low packing density. A supercapacitor with enhanced packing density and high volumetric energy density is fabricated using doped rGO scrolls (GFNSs) as the electrode material. The restacking of rGO sheets is successfully controlled through synthesizing the doped scroll structures while increasing the packing density. The fabricated cell exhibits an ultrahigh volumetric energy density of 49.66 Wh/L with excellent cycling stability (>10 000 cycles). This unique design strategy for the electrode material has significant potential for the future supercapacitors with high volumetric energy densities.

  13. Low total, low-density lipoprotein, high-density lipoprotein, and non-high-density lipoprotein cholesterol levels in patients with complex congenital heart disease after Fontan palliation. (United States)

    Whiteside, Wendy; Tan, Meng; Yu, Sunkyung; Rocchini, Albert


    To test the hypothesis that patients with complex congenital heart disease who have undergone Fontan palliation have low total cholesterol, low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) levels. We retrospectively reviewed the random serum lipid profiles obtained at cardiology clinic visits between May 2010 and November 2011 in patients who had undergone the Fontan procedure. We compared these serum lipid levels against age- and sex-matched established normal data from the Third National Health and Nutrition Examination Survey. Eighty-eight patients who had undergone the Fontan procedure also had laboratory test data obtained during their visits. Median total cholesterol level in the Fontan group was 127 mg/dL (IQR, 116-144 mg/dL), median HDL-C was 40 mg/dL (IQR, 33-45 mg/dL), median non-HDL-C was 86 mg/dL (IQR, 76-109 mg/dL), and median LDL-C was 66 mg/dL (IQR, 57-83 mg/dL). Total cholesterol, LDL-C, non-HDL-C, and HDL-C levels were significantly lower in patients who had undergone a Fontan procedure compared with age- and sex-matched normal individuals (mean z-score, -1.4, -1.2, -1.0, and -1.0 respectively; all P<.0001). Cholesterol levels were below the 25th percentile for age and sex for total cholesterol in 82% of patients, for LDL-C in 76%, for non-HDL-C in 67%, and for HDL-C in 57%. Patients who have undergone the Fontan procedure have significantly lower serum total cholesterol, LDL-C, HDL-C and non-HDL-C levels than age- and sex-matched normal individuals. Although the implications of this finding are unknown, it raises the possibility of abnormalities in cholesterol absorption, synthesis, or catabolism in this patient population. Copyright © 2013 Mosby, Inc. All rights reserved.

  14. High density thermite mixture for shaped charge ordnance disposal


    Elshenawy, Tamer; Soliman, Salah; Hawass, Ahmed


    The effect of thermite mixture based on aluminum and ferric oxides for ammunition neutralization has been studied and tested. Thermochemical calculations have been carried out for different percentage of Al using Chemical Equilibrium Code to expect the highest performance thermite mixture used for shaped charge ordnance disposal. Densities and enthalpy of different formulations have been calculated and demonstrated. The optimized thermite formulation has been prepared experimentally using col...

  15. Microfabricated Fountain Pens for High-Density DNA Arrays


    Reese, Matthew O.; van Dam, R. Michae; Scherer, Axel; Quake, Stephen R.


    We used photolithographic microfabrication techniques to create very small stainless steel fountain pens that were installed in place of conventional pens on a microarray spotter. Because of the small feature size produced by the microfabricated pens, we were able to print arrays with up to 25,000 spots/cm2, significantly higher than can be achieved by other deposition methods. This feature density is sufficiently large that a standard microscope slide can contain multiple replicates of every...

  16. The 3D Stacking Bipolar RRAM for High Density (United States)


    schemes for STT- MRAM in 0.13µm CMOS,” in IEEE International Solid- State Circuits Conference Digest of Technical Papers (ISSCC), 2010, pp. 256– 257. [5] I...Conventionally, multiple bipolar RRAM layers are piled up vertically separated with isolation material to prevent signal interference between the...array density. Conventionally, multiple bipolar RRAM layers are piled up vertically separated with isolation material to prevent signal interference

  17. Capped bit patterned media for high density magnetic recording (United States)

    Li, Shaojing; Livshitz, Boris; Bertram, H. Neal; Inomata, Akihiro; Fullerton, Eric E.; Lomakin, Vitaliy


    A capped composite patterned medium design is described which comprises an array of hard elements exchange coupled to a continuous cap layer. The role of the cap layer is to lower the write field of the individual hard element and introduce ferromagnetic exchange interactions between hard elements to compensate the magnetostatic interactions. Modeling results show significant reduction in the reversal field distributions caused by the magnetization states in the array which is important to prevent bit errors and increase achievable recording densities.

  18. Microstructure Evolution of Cu-Cored Sn Solder Joints Under High Temperature and High Current Density (United States)

    Sa, Xianzhang; Wu, Ping


    This work investigated the microstructure evolution of Cu-cored Sn solder joints under high temperature and high current density. The Cu6Sn5 phase formed at both the Cu core/Sn interface and Cu wire/Sn interface right after reflow and grew with increasing annealing time, while the Cu3Sn phase formed and grew at the Cu/Cu6Sn5 interfaces. Intermetallic compound (IMC) growth followed a linear relationship with the square root of annealing time due to a diffusion-controlled mechanism. Under high current density, the thickness of the interfacial IMCs of the Cu core/Sn interface at the cathode side increased and the Cu core/Sn interface at the anode side exhibited an irregular and serrated morphology with prolonged current stressing time. Finite-element simulation was carried out to obtain the distribution of current density in the solder joint. Since Cu has lower resistivity, the electrical current primarily selected the Cu core as its electrical path, resulting in current crowding at the Cu core and the region between the Cu core and Cu wire. Compared with the conventional solder joint, the electromigration (EM) lifetime of the Cu-cored solder joint was much longer.

  19. Extract of mangosteen increases high density lipoprotein levels in rats fed high lipid

    Directory of Open Access Journals (Sweden)

    Dwi Laksono Adiputro


    Full Text Available BACKGROUND In cardiovascular medicine, Garcinia mangostana has been used as an antioxidant to inhibit oxidation of low density lipoproteins and as an antiobesity agent. The effect of Garcinia mangostana on hyperlipidemia is unknown. The aim of this study was to evaluate the effect of an ethanolic extract of Garcinia mangostana pericarp on lipid profile in rats fed a high lipid diet. METHODS A total of 40 rats were divided into five groups control, high lipid diet, and high lipid diet + ethanolic extract of Garcinia mangostana pericarp at dosages of 200, 400, and 800 mg/kg body weight. The control group received a standard diet for 60 days. The high lipid diet group received standard diet plus egg yolk, goat fat, cholic acid, and pig fat for 60 days with or without ethanolic extract of Garcinia mangostana pericarp by the oral route. After 60 days, rats were anesthesized with ether for collection of blood by cardiac puncture. Analysis of blood lipid profile comprised colorimetric determination of cholesterol, triglyceride, low density lipoprotein (LDL, and high density lipoprotein (HDL. RESULTS From the results of one-way ANOVA it was concluded that there were significant between-group differences in cholesterol, trygliceride, LDL, and HDL levels (p=0.000. Ethanolic extract of Garcinia mangostana pericarp significantly decreased cholesterol, trygliceride, and LDL levels, starting at 400 mg/kg body weight (p=0.000. Ethanolic extract of Garcinia mangostana pericarp significantly increased HDL level starting at 200 mg/kg body weight (p=0.000. CONCLUSION Ethanolic extract of Garcinia mangostana pericarp has a beneficial effect on lipid profile in rats on a high lipid diet.

  20. Reliability of High I/O High Density CCGA Interconnect Electronic Packages under Extreme Thermal Environment (United States)

    Ramesham, Rajeshuni


    This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non-destructive inspection tools were used to assess the reliability of high density CCGA packages for deep space extreme temperature missions. Ceramic column grid array (CCGA) packages have been increasing in use based on their advantages such as high interconnect density, very good thermal and electrical performances, compatibility with standard surface-mount packaging assembly processes, and so on. CCGA packages are used in space applications such as in logic and microprocessor functions, telecommunications, payload electronics, and flight avionics. As these packages tend to have less solder joint strain relief than leaded packages or more strain relief over lead-less chip carrier packages, the reliability of CCGA packages is very important for short-term and long-term deep space missions. We have employed high density CCGA 1152 and 1272 daisy chained electronic packages in this preliminary reliability study. Each package is divided into several daisy-chained sections. The physical dimensions of CCGA1152 package is 35 mm x 35 mm with a 34 x 34 array of columns with a 1 mm pitch. The dimension of the CCGA1272 package is 37.5 mm x 37.5 mm with a 36 x 36 array with a 1 mm pitch. The columns are made up of 80% Pb/20%Sn material. CCGA interconnect electronic package printed wiring polyimide boards have been assembled and inspected using non-destructive x-ray imaging techniques. The assembled CCGA boards were subjected to extreme temperature thermal atmospheric cycling to assess their reliability for future deep space missions. The resistance of daisy-chained interconnect sections were monitored continuously during thermal cycling. This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non

  1. Breast Tissue Composition and Immunophenotype and Its Relationship with Mammographic Density in Women at High Risk of Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Jia-Min B Pang

    Full Text Available To investigate the cellular and immunophenotypic basis of mammographic density in women at high risk of breast cancer.Mammograms and targeted breast biopsies were accrued from 24 women at high risk of breast cancer. Mammographic density was classified into Wolfe categories and ranked by increasing density. The histological composition and immunophenotypic profile were quantified from digitized haematoxylin and eosin-stained and immunohistochemically-stained (ERα, ERβ, PgR, HER2, Ki-67, and CD31 slides and correlated to mammographic density.Increasing mammographic density was significantly correlated with increased fibrous stroma proportion (rs (22 = 0.5226, p = 0.0088 and significantly inversely associated with adipose tissue proportion (rs (22 = -0.5409, p = 0.0064. Contrary to previous reports, stromal expression of ERα was common (19/20 cases, 95%. There was significantly higher stromal PgR expression in mammographically-dense breasts (p=0.026.The proportion of stroma and fat underlies mammographic density in women at high risk of breast cancer. Increased expression of PgR in the stroma of mammographically dense breasts and frequent and unexpected presence of stromal ERα expression raises the possibility that hormone receptor expression in breast stroma may have a role in mediating the effects of exogenous hormonal therapy on mammographic density.

  2. Cultivar and Tree Density As Key Factors in the Long-Term Performance of Super High-Density Olive Orchards. (United States)

    Díez, Concepción M; Moral, Juan; Cabello, Diego; Morello, Pablo; Rallo, Luis; Barranco, Diego


    Super high-density (SHD) olive orchards are rapidly expanding since the first plantation was set up in Spain in the 1990s. Because there are no long-term studies characterizing these systems, it is unknown if densities above a certain threshold could trigger competition among fully-grown trees, compromising their development. Over 14 years we have evaluated the performance of the major olive cultivars currently planted in SHD systems ("Arbequina," Arbequina IRTA-i·18, "Arbosana," "Fs-17," and "Koroneiki") and nine SHD designs ranging from 780 to 2254 trees ha(-1) for the cultivar "Arbequina." Remarkably, the accumulated fruit and oil production of the five cultivars increased linearly over time. Our data indicated the favorable long-term performance of the evaluated cultivars with an average annual oil production of 2.3 t ha(-1). Only "Fs-17" did not perform well to the SHD system in our conditions and it yielded about half (1.2 t ha(-1)) of the other cultivars. In the density trial for "Arbequina," both fruit and oil accumulated production increased over time as a function of tree density. Thus, the accumulated oil yield ranged from 16.1 t ha(-1) for the lowest density (780 trees ha(-1)) to 29.9 t ha(-1) for the highest (2254 trees ha(-1)). In addition, we note that the accumulated production per surface unit showed a better correlation with the hedgerow length than the tree density. Thus, the current planting designs of SHD olive orchards can be further improved taking this parameter into account. Despite observations that some irregular patterns of crop distribution have arisen, our olive hedgerows are still fully productive after 14 years of planting. This result contradicts previous experiences that showed declines in production 7 or 8 years after planting due to high vigor, shading, and limited ventilation.

  3. Cultivar and tree density as key factors in the long-term performance of super high-density olive orchards

    Directory of Open Access Journals (Sweden)

    Concepcion M. Diez


    Full Text Available Super high-density (SHD olive orchards are rapidly expanding since the first plantation was set up in Spain in the 1990s. Because there are no long-term studies characterizing these systems, it is unknown if densities above a certain threshold could trigger competition among fully-grown trees, compromising their development. Over 14 years we have evaluated the performance of the major olive cultivars currently planted in SHD systems (‘Arbequina’, Arbequina IRTA-i·18R, ‘Arbosana’, ‘Fs-17’, and ‘Koroneiki’ and nine SHD designs ranging from 780 to 2254 trees ha-1 for the cultivar ‘Arbequina’. Remarkably, the accumulated fruit and oil production of the five cultivars increased linearly over time. Our data indicated the favorable long-term performance of the evaluated cultivars with an average annual oil production of 2.3 t ha-1. Only ‘Fs-17’ did not perform well to the SHD system in our conditions and it yielded about half (1.2 t ha-1 of the other cultivars. In the density trial for ‘Arbequina’, both fruit and oil accumulated production increased over time as a function of tree density. Thus, the accumulated oil yield ranged from 16.1 t ha-1 for the lowest density (780 trees ha-1 to 29.9 t ha-1 for the highest (2254 trees ha-1. In addition, we note that the accumulated production per surface unit showed a better correlation with the hedgerow length than the tree density. Thus, the current planting designs of SHD olive orchards can be further improved taking this parameter into account. Despite observations that some irregular patterns of crop distribution have arisen, our olive hedgerows are still fully productive after 14 years of planting. This result contradicts previous experiences that showed declines in production seven or eight years after planting due to high vigor, shading, and limited ventilation.

  4. High-density digital data recording/reproducing system (United States)

    Leighou, R. O.


    Problems associated with reliably recording and reproducing digital data at densities of 10 to 30 kilobits per inch and the solutions to these problems are discussed. The three problems are skew, dc offset, and tape imperfections. The solutions are to use a 14-track, wideband II tape recorder; record NRZ-L; use a 24-bit sync word, 504-bit frame length, and odd parity in every 8-bit byte; and to employ circuit design techniques that minimize the effects of the remaining dc offset and tape imperfections.

  5. High density, optically corrected, micro-channel cooled, v-groove monolithic laser diode array (United States)

    Freitas, Barry L.


    An optically corrected, micro-channel cooled, high density laser diode array achieves stacking pitches to 33 bars/cm by mounting laser diodes into V-shaped grooves. This design will deliver>4kW/cm2 of directional pulsed laser power. This optically corrected, micro-channel cooled, high density laser is usable in all solid state laser systems which require efficient, directional, narrow bandwidth, high optical power density pump sources.

  6. High-Throughput Phase-Field Design of High-Energy-Density Polymer Nanocomposites. (United States)

    Shen, Zhong-Hui; Wang, Jian-Jun; Lin, Yuanhua; Nan, Ce-Wen; Chen, Long-Qing; Shen, Yang


    Understanding the dielectric breakdown behavior of polymer nanocomposites is crucial to the design of high-energy-density dielectric materials with reliable performances. It is however challenging to predict the breakdown behavior due to the complicated factors involved in this highly nonequilibrium process. In this work, a comprehensive phase-field model is developed to investigate the breakdown behavior of polymer nanocomposites under electrostatic stimuli. It is found that the breakdown strength and path significantly depend on the microstructure of the nanocomposite. The predicted breakdown strengths for polymer nanocomposites with specific microstructures agree with existing experimental measurements. Using this phase-field model, a high throughput calculation is performed to seek the optimal microstructure. Based on the high-throughput calculation, a sandwich microstructure for PVDF-BaTiO3 nanocomposite is designed, where the upper and lower layers are filled with parallel nanosheets and the middle layer is filled with vertical nanofibers. It has an enhanced energy density of 2.44 times that of the pure PVDF polymer. The present work provides a computational approach for understanding the electrostatic breakdown, and it is expected to stimulate future experimental efforts on synthesizing polymer nanocomposites with novel microstructures to achieve high performances. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. High energy density supercapacitors using macroporous kitchen sponges

    KAUST Repository

    Chen, Wei


    Macroporous, low-cost and recyclable kitchen sponges are explored as effective electrode platforms for supercapacitor devices. A simple and scalable process has been developed to fabricate MnO 2-carbon nanotube (CNT)-sponge supercapacitor electrodes using ordinary kitchen sponges. Two organic electrolytes (1 M of tetraethylammonium tetrafluoroborate (Et 4NBF 4) in propylene carbonate (PC), 1 M of LiClO 4 in PC) are utilized with the sponge-based electrodes to improve the energy density of the symmetrical supercapacitors. Compared to aqueous electrolyte (1 M of Na 2SO 4 in H 2O), the energy density of supercapacitors tripled in Et 4NBF 4 electrolyte, and further increased by six times in LiClO 4 electrolyte. The long-term cycling performance in different electrolytes was examined and the morphology changes of the electrode materials were also studied. The good electrochemical performance in both aqueous and organic electrolytes indicates that the MnO 2-CNT-sponge is a promising low-cost electrode for energy storage systems. © 2012 The Royal Society of Chemistry.

  8. Advanced Cathode Material For High Energy Density Lithium-Batteries Project (United States)

    National Aeronautics and Space Administration — Advanced cathode materials having high red-ox potential and high specific capacity offer great promise to the development of high energy density lithium-based...

  9. High density lipoproteins, dyslipidemia, and coronary heart disease

    National Research Council Canada - National Science Library


    ... with premature coronary heart disease (CHD). These familial disorders include lipoprotein(a) excess, dyslipidemia (high triglycerides and low HDL), combined hyperlipidemia (high cholesterol and high triglycerides often with low HDL), hypoalphalipoproteinemia (low HDL), and hypercholesterolemia. We discuss the management of these disorders. W...

  10. Experimental evidence that ecological effects of an invasive fish are reduced at high densities. (United States)

    Kornis, Matthew S; Carlson, Jedchada; Lehrer-Brey, Gabrielle; Vander Zanden, M Jake


    Understanding the relationship between invasive species density and ecological impact is a pressing topic in ecology, with implications for environmental management and policy. Although it is widely assumed that invasive species impact will increase with density, theory suggests interspecific competition may diminish at high densities due to increased intraspecific interactions. To test this theory, we experimentally examined intra- and interspecific interactions between a globally invasive fish, round goby (Neogobius melanostomus), and three native species at different round goby densities in a tributary of the Laurentian Great Lakes. Eighteen 2.25 m(2) enclosures were stocked with native fish species at natural abundances, while round gobies were stocked at three different densities: 0 m(-2), 2.7 m(-2), and 10.7 m(-2). After 52 days, native fish growth rate was significantly reduced in the low density goby treatment, while growth in the high density goby treatment mirrored the goby-free treatment for two of three native species. Invertebrate density and gut content weight of native fishes did not differ among treatments. Conversely, gut content weight and growth of round gobies were lower in the high goby density treatment, suggesting interactions between round gobies and native fishes are mediated by interference competition amongst gobies. Our experiment provides evidence that invasive species effects may diminish at high densities, possibly due to increased intraspecific interactions. This is consistent with some ecological theory, and cautions against the assumption that invasive species at moderate densities have low impact.

  11. Evolution of Automotive Chopper Circuits Towards Ultra High Efficiency and Power Density (United States)

    Pavlovsky, Martin; Tsuruta, Yukinori; Kawamura, Atsuo

    Automotive industry is considered to be one of the main contributors to environmental pollution and global warming. Therefore, many car manufacturers are in near future planning to introduce hybrid electric vehicles (HEV), fuel cell electric vehicles (FCEV) and pure electric vehicles (EV) to make our cars more environmentally friendly. These new vehicles require highly efficient and small power converters. In recent years, considerable improvements were made in designing such converters. In this paper, an approach based on so called Snubber Assisted Zero Voltage and Zero Current Switching topology otherwise also known as SAZZ is presented. This topology has evolved to be one of the leaders in the field of highly efficient converters with high power densities. Evolution and main features of this topology are briefly discussed. Capabilities of the topology are demonstrated on two case study prototypes based on different design approaches. The prototypes are designed to be fully bi-directional for peak power output of 30kW. Both designs reached efficiencies close to 99% in wide load range. Power densities over 40kW/litre are attainable in the same time. Combination of MOSFET technology and SAZZ topology is shown to be very beneficial to converters designed for EV applications.

  12. Microfabricated Fountain Pens for High-Density DNA Arrays (United States)

    Reese, Matthew O.; van Dam, R. Michae; Scherer, Axel; Quake, Stephen R.


    We used photolithographic microfabrication techniques to create very small stainless steel fountain pens that were installed in place of conventional pens on a microarray spotter. Because of the small feature size produced by the microfabricated pens, we were able to print arrays with up to 25,000 spots/cm2, significantly higher than can be achieved by other deposition methods. This feature density is sufficiently large that a standard microscope slide can contain multiple replicates of every gene in a complex organism such as a mouse or human. We tested carryover during array printing with dye solution, labeled DNA, and hybridized DNA, and we found it to be indistinguishable from background. Hybridization also showed good sequence specificity to printed oligonucleotides. In addition to improved slide capacity, the microfabrication process offers the possibility of low-cost mass-produced pens and the flexibility to include novel pen features that cannot be machined with conventional techniques. PMID:12975313

  13. Shift-Peristrophic Multiplexing for High Density Holographic Data Storage

    Directory of Open Access Journals (Sweden)

    Zenta Ushiyama


    Full Text Available Holographic data storage is a promising technology that provides very large data storage capacity, and the multiplexing method plays a significant role in increasing this capacity. Various multiplexing methods have been previously researched. In the present study, we propose a shift-peristrophic multiplexing technique that uses spherical reference waves, and experimentally verify that this method efficiently increases the data capacity. In the proposed method, a series of holograms is recorded with shift multiplexing, in which the recording material is rotated with its axis perpendicular to the material’s surface. By iterating this procedure, multiplicity is shown to improve. This method achieves more than 1 Tbits/inch2 data density recording. Furthermore, a capacity increase of several TB per disk is expected by maximizing the recording medium performance.

  14. Holographic memory for high-density data storage and high-speed pattern recognition (United States)

    Gu, Claire


    As computers and the internet become faster and faster, more and more information is transmitted, received, and stored everyday. The demand for high density and fast access time data storage is pushing scientists and engineers to explore all possible approaches including magnetic, mechanical, optical, etc. Optical data storage has already demonstrated its potential in the competition against other storage technologies. CD and DVD are showing their advantages in the computer and entertainment market. What motivated the use of optical waves to store and access information is the same as the motivation for optical communication. Light or an optical wave has an enormous capacity (or bandwidth) to carry information because of its short wavelength and parallel nature. In optical storage, there are two types of mechanism, namely localized and holographic memories. What gives the holographic data storage an advantage over localized bit storage is the natural ability to read the stored information in parallel, therefore, meeting the demand for fast access. Another unique feature that makes the holographic data storage attractive is that it is capable of performing associative recall at an incomparable speed. Therefore, volume holographic memory is particularly suitable for high-density data storage and high-speed pattern recognition. In this paper, we review previous works on volume holographic memories and discuss the challenges for this technology to become a reality.

  15. High-quality stable electron beams from laser wakefield acceleration in high density plasma

    Directory of Open Access Journals (Sweden)

    B. S. Rao


    Full Text Available High-quality, stable electron beams are produced from self-injected laser wakefield acceleration using the interaction of moderate 3 TW, 45 fs duration Ti:sapphire laser pulses with high density (>5×10^{19}   cm^{−3} helium gas jet plasma. The electron beam has virtually background-free quasimonoenergetic distribution with energy 35.6_{−2.5}^{+3.9}  MeV, charge 3.8_{−1.2}^{+2.8}  pC, divergence and pointing variation ∼10  mrad. The stable and high quality of the electron beam opens an easy way for applications of the laser wakefield accelerator in the future, particularly due to the widespread availability of sub-10 TW class lasers with a number of laser plasma laboratories around the world.

  16. High-density lipoprotein particles, coronary heart disease, and niacin (United States)

    In clinical trials, the use of statins in patients with high risk for cardiovascular disease (CVD) has resulted in a 25% to 40% decrease in major clinical events. However, despite a marked reduction (up to 60%) in LDL-C, approximately 50% (or more) of patients continue to have CVD events. This high ...

  17. Experiment to measure oxygen opacity at high density and temperature (United States)

    Keiter, Paul; Butler, Hannah; Trantham, Matt; Mussack, Katie; Colgan, James; Fontes, Chris; Guzik, Joyce; Kilcrease, David; Perry, Ted; Orban, Chris; Ducret, Jean-Eric; La Pennec, Maelle; Turck-Chieze, Sylvaine; Mancini, Roberto; Heeter, Robert


    In recent years, there has been a debate over the abundances of heavy elements (Z >2) in the solar interior. Recent solar atmosphere models [Asplund 2009] find a significantly lower abundance for C, N, and O compared to models used roughly a decade ago. Recent opacity measurements of iron disagree with opacity model predictions [Bailey et al., 2015]. Repeated scrutiny of the experiment and data has not produced a conclusive reason for the discrepancy. New models have been implemented in the ATOMIC opacity code for low-Z elements [Colgan, 2013, Armstrong 2014], however no data currently exists to test the low-Z material models in the regime relevant to the solar convection zone. We present an experimental design using the opacity platform developed at the National Ignition Facility to study the oxygen opacity at densities and temperatures near the solar convection zone conditions. This work is funded by the U.S. DOE, through the NNSA-DS and SC-OFES Joint Program in HEDLP, Grant Number DE-NA0002956, and the NLUF Program, Grant Number DE-NA0002719, and through the LLE, University of Rochester by the NNSA/OICF under No. DE-NA0001944.

  18. On The Use Of High-Density Rock In Rubble Mound Breakwaters

    DEFF Research Database (Denmark)

    Helgason, Einar; Burcharth, H. F.


    Natural rock with high density is widely used in the Scandinavian countries. However, the use of natural rock with density higher than 2:9t=m3 is ordinarily associated with some kind of problem solving, e.g. where normal density stones have to be replaced with heavier stones without increasing...... the construction volume or layer thickness. Most common design formulae do not give a clear conclusion on the in°uence of the rock density on the stability. The present paper presents results of small and large scale model tests in which is used rock with different densities. It is shown that the positive effect...

  19. Urban renewal: strategies for high density residential suburbs regeneration

    Directory of Open Access Journals (Sweden)

    Andrea Boeri


    Full Text Available This article summarizes the main results of a research conducted by the University of Bologna, Department of Architecture, within the framework of the Research Program PRIN 2008, «Renovation, regeneration and valorisation of social housing settlements built in the suburban areas in the second half of last century». Once quantified the residential stock, a methodology for multidisciplinary analysis, applied to a specific case study (the district of Pilastro in Bologna, aimed at evaluating the different complementary aspects of building quality (social, functional, technical and environmental ones was developed with the objective of formulating strategies of intervention and models aimed at reducing the problems detected.

  20. A Creep Model for High-Density Snow (United States)


    modifies Mellor and Smith’s creep model for dense snow to conform to the more general creep power law form (Glen’s creep law for ice is a special case of...Station, Green- land , and that will be founded on a compacted snow surface. The defor- mation of snow under a constant load (creep deformation, or...Glen’s creep law for ice , Glen 1955). From this, I for- mulated a general model that is the basis for both the primary and second- ary creep models

  1. High dimensional classifiers in the imbalanced case

    DEFF Research Database (Denmark)

    Bak, Britta Anker; Jensen, Jens Ledet

    We consider the binary classification problem in the imbalanced case where the number of samples from the two groups differ. The classification problem is considered in the high dimensional case where the number of variables is much larger than the number of samples, and where the imbalance leads...

  2. High Energy Density Lithium Air Batteries for Oxygen Concentrators Project (United States)

    National Aeronautics and Space Administration — For NASA's Exploration Medical Capabilities mission, extremely high specific energy power sources, with specific energy over 2000 Wh/kg, are urgently sought after....

  3. Dissecting Allele Architecture of Early Onset IBD Using High-Density Genotyping.

    Directory of Open Access Journals (Sweden)

    David J Cutler

    Full Text Available The inflammatory bowel diseases (IBD are common, complex disorders in which genetic and environmental factors are believed to interact leading to chronic inflammatory responses against the gut microbiota. Earlier genetic studies performed in mostly adult population of European descent identified 163 loci affecting IBD risk, but most have relatively modest effect sizes, and altogether explain only ~20% of the genetic susceptibility. Pediatric onset represents about 25% of overall incident cases in IBD, characterized by distinct disease physiology, course and risks. The goal of this study is to compare the allelic architecture of early onset IBD with adult onset in population of European descent.We performed a fine mapping association study of early onset IBD using high-density Immunochip genotyping on 1008 pediatric-onset IBD cases (801 Crohn's disease; 121 ulcerative colitis and 86 IBD undetermined and 1633 healthy controls. Of the 158 SNP genotypes obtained (out of the 163 identified in adult onset, this study replicated 4% (5 SNPs out of 136 of the SNPs identified in the Crohn's disease (CD cases and 0.8% (1 SNP out of 128 in the ulcerative colitis (UC cases. Replicated SNPs implicated the well known NOD2 and IL23R. The point estimate for the odds ratio (ORs for NOD2 was above and outside the confidence intervals reported in adult onset. A polygenic liability score weakly predicted the age of onset for a larger collection of CD cases (p< 0.03, R2= 0.007, but not for the smaller number of UC cases.The allelic architecture of common susceptibility variants for early onset IBD is similar to that of adult onset. This immunochip genotyping study failed to identify additional common variants that may explain the distinct phenotype that characterize early onset IBD. A comprehensive dissection of genetic loci is necessary to further characterize the genetic architecture of early onset IBD.

  4. Electron Temperature and Density in Local Helicity Injection and High betat Plasmas (United States)

    Schlossberg, David J.

    Tokamak startup in a spherical torus (ST) and an ST-based fusion nuclear science facility can greatly benefit from using non-inductive methods. The Pegasus Toroidal Experiment has developed a non-inductive startup technique using local helicity injection (LHI). Electron temperature, T e(r), and density, ne( r), profiles during LHI are unknown. These profiles are critical for understanding both the physics of the injection and relaxation mechanisms, as well as for extrapolating this technique to larger devices. A new Thomson scattering system has been designed, installed, and used to characterize Te(r, t) and ne(r, t) during LHI. The diagnostic leverages new technology in image intensified CCD cameras, high-efficiency diffraction gratings, and reliable Nd:YAG lasers. Custom systems for stray light mitigation, fast shuttering, and precision timing have been developed and implemented. The overall system provides a low-maintenance, economic, and effective means to explore novel physics regimes in Pegasus. Electron temperature and density profiles during LHI have been measured for the first time. Results indicate Te(r) peaked in the core of plasmas, and sustained while plasmas are coupled to injection drive. Electron densities also peak near the core of the tokamak, up to local values of n e ˜ 1.5 x 1019 m -3. A comparison of Te( r, t) has been made between discharges with dominant drive voltage from induction versus helicity injection. In both cases Te ( r, t) profiles remain peaked, with values for Te ,max > 150 eV in dominantly helicity-driven plasmas using high-field side LHI. Sustained values of betat ˜ 100% have been demonstrated in a tokamak for the first time. Plasmas are created and driven entirely non-solenoidally, and exhibit MHD stability. Measured temperature and density profiles are used to constrain magnetic equilibrium reconstructions, which calculate 80% ramp-down. For a continued decrease in the toroidal field these plasmas disrupt near the ideal MHD

  5. Experiment to measure oxygen opacity at high density and temperature (United States)

    Keiter, Paul; Mussack, Katie; Orban, Chris; Colgan, James; Ducret, Jean-Eric; Fontes, Christopher J.; Guzik, Joyce Ann; Heeter, Robert F.; Kilcrease, Dave; Le Pennec, Maelle; Mancini, Roberto; Perry, Ted; Turck-Chièze, Sylvaine; Trantham, Matt


    In recent years, there has been a debate over the abundances of heavy elements (Z >2) in the solar interior. Recent solar atmosphere models [Asplund 2009] find a significantly lower abundance for C, N, and O compared to models used roughly a decade ago. This discrepancy has led to an investigation of opacities through laboratory experiments and improved opacity models for many of the larger contributors to the sun’s opacity, including iron and oxygen. Recent opacity measurements of iron disagree with opacity model predictions [Bailey et al, 2015]. Although these results are still controversial, repeated scrutiny of the experiment and data has not produced a conclusive reason for the discrepancy. New models have been implemented in the ATOMIC opacity code for C, O and Fe to address the solar abundance issue [Colgan, 2013]. Armstrong et al [2014] have also implemented changes in the ATOMIC code for low-Z elements. However, no data currently exists to test the low-Z material models in the regime relevant to the solar convection zone. We present an experimental design using the opacity platform developed at the National Ignition Facility to study the oxygen opacity at densities and temperatures near the solar convection zone conditions.This work is funded by the U.S. DOE, through the NNSA-DS and SC-OFES Joint Program in HEDPLP, grant No. DE-NA0001840, and the NLUF Program, grant No. DE-NA0000850, and through LLE, University of Rochester by the NNSA/OICF under Agreement No. DE-FC52-08NA28302.

  6. High population density enhances recruitment and survival of a harvested coral reef fish. (United States)

    Wormald, Clare L; Steele, Mark A; Forrester, Graham E


    A negative relationship between population growth and population density (direct density dependence) is necessary for population regulation and is assumed in most models of harvested populations. Experimental tests for density dependence are lacking for large-bodied, harvested fish because of the difficulty of manipulating population density over large areas. We studied a harvested coral reef fish, Lutjanus apodus (schoolmaster snapper), using eight large, isolated natural reefs (0.4-1.6 ha) in the Bahamas as replicates. An initial observational test for density dependence was followed by a manipulation of population density. The manipulation weakened an association between density and shelter-providing habitat features and revealed a positive effect of population density on recruitment and survival (inverse density dependence), but no effect of density on somatic growth. The snappers on an individual reef were organized into a few shoals, and we hypothesize that large shoals on high-density reefs were less vulnerable to large piscivores (groupers and barracudas) than the small shoals on low-density reefs. Reductions in predation risk for individuals in large social groups are well documented, but because snapper shoals occupied reefs the size of small marine reserves, these ecological interactions may influence the outcome of management actions.

  7. Density-based retrieval from high-similarity image databases

    DEFF Research Database (Denmark)

    Hansen, Michael Edberg; Carstensen, Jens Michael


    Many image classification problems can fruitfully be thought of as image retrieval in a "high similarity image database" (HSID) characterized by being tuned towards a specific application and having a high degree of visual similarity between entries that should be distinguished. We introduce...... a method for HSID retrieval using a similarity measure based on a linear combination of Jeffreys-Matusita distances between distributions of local (pixelwise) features estimated from a set of automatically and consistently defined image regions. The weight coefficients are estimated based on optimal...... retrieval performance. Experimental results on the difficult task of visually identifying clones of fungal colonies grown in a petri dish and categorization of pelts show a high retrieval accuracy of the method when combined with standardized sample preparation and image acquisition....

  8. Drift waves in a high-density cylindrical helicon discharge

    DEFF Research Database (Denmark)

    Schröder, C.; Grulke, O.; Klinger, T.


    of the background plasma parameters. All experimentally observed features of the instability are found to be consistent with drift waves. A linear nonlocal numerical model for drift modes, based on the two-fluid description of a plasma, is used for comparison between the experimental observations and theory....... Comparing numerical and experimental frequencies, it is found that the experimentally observed frequencies are consistent with drift waves. The numerical results show that the high electron collision frequencies provide the strongest destabilization mechanism in the helicon plasma. (c) 2005 American......A low-frequency instability. is investigated in a helicon plasma, which is characterized by comparably high plasma-beta and high collision frequencies. Single movable Langmuir probes and a poloidal probe. array are used for studies of spatiotemporal dynamics and for characterization...

  9. Electron densities by the maximum entropy method (MEM) for various types of prior densities: a case study on three amino acids and a tripeptide. (United States)

    Prathapa, Siriyara Jagannatha; Mondal, Swastik; van Smaalen, Sander


    Dynamic model densities according to Mondal et al. [(2012), Acta Cryst. A68, 568-581] are presented for independent atom models (IAM), IAMs after high-order refinements (IAM-HO), invariom (INV) models and multipole (MP) models of α-glycine, DL-serine, L-alanine and Ala-Tyr-Ala at T ≃ 20 K. Each dynamic model density is used as prior in the calculation of electron density according to the maximum entropy method (MEM). We show that at the bond-critical points (BCPs) of covalent C-C and C-N bonds the IAM-HO and INV priors produce reliable MEM density maps, including reliable values for the density and its Laplacian. The agreement between these MEM density maps and dynamic MP density maps is less good for polar C-O bonds, which is explained by the large spread of values of topological descriptors of C-O bonds in static MP densities. The density and Laplacian at BCPs of hydrogen bonds have similar values in MEM density maps obtained with all four kinds of prior densities. This feature is related to the smaller spatial variation of the densities in these regions, as expressed by small magnitudes of the Laplacians and the densities. It is concluded that the use of the IAM-HO prior instead of the IAM prior leads to improved MEM density maps. This observation shows interesting parallels to MP refinements, where the use of the IAM-HO as an initial model is the accepted procedure for solving MP parameters. A deconvolution of thermal motion and static density that is better than the deconvolution of the IAM appears to be necessary in order to arrive at the best MP models as well as at the best MEM densities.

  10. Method For Enhanced Gas Monitoring In High Density Flow Streams (United States)

    Von Drasek, William A.; Mulderink, Kenneth A.; Marin, Ovidiu


    A method for conducting laser absorption measurements in high temperature process streams having high levels of particulate matter is disclosed. An impinger is positioned substantially parallel to a laser beam propagation path and at upstream position relative to the laser beam. Beam shielding pipes shield the beam from the surrounding environment. Measurement is conducted only in the gap between the two shielding pipes where the beam propagates through the process gas. The impinger facilitates reduced particle presence in the measurement beam, resulting in improved SNR (signal-to-noise) and improved sensitivity and dynamic range of the measurement.

  11. High Energy Density Solid State Li-ion Battery with Enhanced Safety Project (United States)

    National Aeronautics and Space Administration — We propose to develop an all solid state Li-ion battery which is capable of delivering high energy density, combined with high safety over a wide operating...

  12. Nanomaterials Enabled High Energy and Power Density Li-ion Batteries Project (United States)

    National Aeronautics and Space Administration — There is a need for high energy (~ 200 Wh/kg) and high power (> 500 W/kg) density rechargeable Li-ion batteries that are safe and reliable for several space and...

  13. High precision (14 bit), high density (octal) analog to digital converter for spectroscopy applications. (United States)

    Subramaniam, E T; Jain, Mamta; Bhowmik, R K; Tripon, Michel


    Nuclear and particle physics experiments with large number of detectors require signal processing and data collection strategies that call for the ability to collect large amount of data while not sacrificing the precision and accuracy of the data being collected. This paper deals with the development of a high precision pulse peak detection, analog to digital converter (ADC) module with eight independent channels in plug-in daughter card motherboard model, best suited for spectroscopy experiments. This module provides multiple channels without cross-talk and of 14 bit resolution, while maintaining high density (each daughter card has an area of just 4.2(")x0.51(")) and exhibiting excellent integral nonlinearity (< or = +/-2 mV or +/-0.02% full scale reading) and differential nonlinearity (< or = +/-1%). It was designed, developed and tested, in house, and gives added advantages of cost effectiveness and ease of maintenance.

  14. Processor for high-density digital tape-recorded signals (United States)

    Ashlock, J. C.


    Linear filter and detection theory can bear on problem of reconstructing recorded bit stream. Problem can be taken from realm of nonlinear problems even though basic record process is still recognized as highly nonlinear. Digital tape recorder can be modeled as particular type of linear communication channel with intersymbol interference.

  15. Ultra High Energy Density Cathodes with Carbon Nanotubes (United States)


    mL of ethanol by heating to 50 °C, and evaporating to dryness. The resulting powder is then ground in an agate mortar and pestle for 30 min. In...Batteries," The Journal of Physical Chemistry C, vol. 114, pp. 15862-15867, 2010/09/23 2010. [3] J. Alvarenga, et al., "High conductivity carbon nanotube

  16. Beyond Low-Density Lipoprotein Cholesterol Respective Contributions of Non-High-Density Lipoprotein Cholesterol Levels, Triglycerides, and the Total Cholesterol/High-Density Lipoprotein Cholesterol Ratio to Coronary Heart Disease Risk in Apparently Healthy Men and Women

    NARCIS (Netherlands)

    Arsenault, Benoit J.; Rana, Jamal S.; Stroes, Erik S. G.; Després, Jean-Pierre; Shah, Prediman K.; Kastelein, John J. P.; Wareham, Nicholas J.; Boekholdt, S. Matthijs; Khaw, Kay-Tee


    OBJECTIVES: This study was designed to test the hypothesis that at any low-density lipoprotein cholesterol (LDL-C) level, other lipid parameters such as non-high-density lipoprotein cholesterol (HDL-C) levels, triglyceride (TG) levels, and the total cholesterol (TC)/HDL-C are still associated with

  17. Inter-observer agreement according to three methods of evaluating mammographic density and parenchymal pattern in a case control study

    DEFF Research Database (Denmark)

    Winkel, Rikke Rass; von Euler-Chelpin, My Catarina; Nielsen, Mads


    , Intraclass Correlation Coefficient (ICC) (equivalent to weighted kappa), Pearson's linear correlation coefficient and limits-of-agreement analysis were used to evaluate inter-observer agreement. High/low-risk agreement was also determined by defining the following categories as high-risk: BI-RADS's D3 and D4......, respectively. Inter-reader variability showed different impact on the relative risk of breast cancer estimated by the two readers on a multiple-category scale, however, not on a high/low-risk scale. Tabár's pattern IV demonstrated the highest ORs of all density patterns investigated. CONCLUSIONS: Our study...... impact reproducibility has on relative risk estimates of breast cancer. METHODS: This retrospective case-control study included 122 cases and 262 age- and time matched controls (765 breasts) based on a 2007 screening cohort of 14,736 women with negative screening mammograms from Bispebjerg Hospital...

  18. The challenge of high density QCD the onset of nonlinear aspects

    CERN Document Server

    Gay-Ducati, M B


    The dynamics of QCD at high partonic density is presented addressing the issues that consider parton recombination mechanism (AGL and K) developed in order to respect unitarity limits for nucleon and the nucleus. The resulting non-linear evolution equations that intend to include unitarity corrections are presented and compared, and a connection with non-perturbative approaches (MV-JKLW) is discussed. The phenomenology related to Deep Inelastic Scattering with nucleons and nucleus and the application to AA processes are addressed. We emphasize the relevance of the saturation phenomenon and its scale due to shadowing corrections in the case of heavy quark production and ion physics, pointing out the implications to e-RHIC, HERA-A, and LHC. (53 refs).

  19. Application of schlieren interferometry to temperature measurements during laser welding of high-density polyethylene films. (United States)

    Coelho, João M P; Abreu, Manuel A; Rodrigues, F Carvalho


    Schlieren interferometry is found to be an alternative tool for temperature measurement during thermoplastic laser welding with regard to methods based on thermocouples or optical pyrometers. In fact, these techniques are not easily applied when materials to be processed have reduced thickness, negligible heat conduction, and low emissivity, as is the case of welding high-density polyethylene films with 10.6-microm CO2 laser radiation, even if the method reaches its applicability limit after approximately 1 s of the interaction process. The schlieren method provides the means and the results to probe the thermal variations of the laser-thermoplastic interaction on both the surface and the interface between the sample material and the air.

  20. ADX: a high field, high power density, advanced divertor and RF tokamak (United States)

    LaBombard, B.; Marmar, E.; Irby, J.; Terry, J. L.; Vieira, R.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; Baek, S.; Beck, W.; Bonoli, P.; Brunner, D.; Doody, J.; Ellis, R.; Ernst, D.; Fiore, C.; Freidberg, J. P.; Golfinopoulos, T.; Granetz, R.; Greenwald, M.; Hartwig, Z. S.; Hubbard, A.; Hughes, J. W.; Hutchinson, I. H.; Kessel, C.; Kotschenreuther, M.; Leccacorvi, R.; Lin, Y.; Lipschultz, B.; Mahajan, S.; Minervini, J.; Mumgaard, R.; Nygren, R.; Parker, R.; Poli, F.; Porkolab, M.; Reinke, M. L.; Rice, J.; Rognlien, T.; Rowan, W.; Shiraiwa, S.; Terry, D.; Theiler, C.; Titus, P.; Umansky, M.; Valanju, P.; Walk, J.; White, A.; Wilson, J. R.; Wright, G.; Zweben, S. J.


    The MIT Plasma Science and Fusion Center and collaborators are proposing a high-performance Advanced Divertor and RF tokamak eXperiment (ADX)—a tokamak specifically designed to address critical gaps in the world fusion research programme on the pathway to next-step devices: fusion nuclear science facility (FNSF), fusion pilot plant (FPP) and/or demonstration power plant (DEMO). This high-field (⩾6.5 T, 1.5 MA), high power density facility (P/S ˜ 1.5 MW m-2) will test innovative divertor ideas, including an ‘X-point target divertor’ concept, at the required performance parameters—reactor-level boundary plasma pressures, magnetic field strengths and parallel heat flux densities entering into the divertor region—while simultaneously producing high-performance core plasma conditions that are prototypical of a reactor: equilibrated and strongly coupled electrons and ions, regimes with low or no torque, and no fuelling from external heating and current drive systems. Equally important, the experimental platform will test innovative concepts for lower hybrid current drive and ion cyclotron range of frequency actuators with the unprecedented ability to deploy launch structures both on the low-magnetic-field side and the high-magnetic-field side—the latter being a location where energetic plasma-material interactions can be controlled and favourable RF wave physics leads to efficient current drive, current profile control, heating and flow drive. This triple combination—advanced divertors, advanced RF actuators, reactor-prototypical core plasma conditions—will enable ADX to explore enhanced core confinement physics, such as made possible by reversed central shear, using only the types of external drive systems that are considered viable for a fusion power plant. Such an integrated demonstration of high-performance core-divertor operation with steady-state sustainment would pave the way towards an attractive pilot plant, as envisioned in the ARC concept

  1. Expansion of Endothelial Progenitor Cells in High Density Dot Culture of Rat Bone Marrow Cells (United States)

    Wang, Ling; Kretlow, James D.; Zhou, Guangdong; Cao, Yilin; Liu, Wei; Zhang, Wen Jie


    In vitro expansion of endothelial progenitor cells (EPCs) remains a challenge in stem cell research and its application. We hypothesize that high density culture is able to expand EPCs from bone marrow by mimicking cell-cell interactions of the bone marrow niche. To test the hypothesis, rat bone marrow cells were either cultured in high density (2×105 cells/cm2) by seeding total 9×105 cells into six high density dots or cultured in regular density (1.6×104 cells/cm2) with the same total number of cells. Flow cytometric analyses of the cells cultured for 15 days showed that high density cells exhibited smaller cell size and higher levels of marker expression related to EPCs when compared to regular density cultured cells. Functionally, these cells exhibited strong angiogenic potentials with better tubal formation in vitro and potent rescue of mouse ischemic limbs in vivo with their integration into neo-capillary structure. Global gene chip and ELISA analyses revealed up-regulated gene expression of adhesion molecules and enhanced protein release of pro-angiogenic growth factors in high density cultured cells. In summary, high density cell culture promotes expansion of bone marrow contained EPCs that are able to enhance tissue angiogenesis via paracrine growth factors and direct differentiation into endothelial cells. PMID:25254487

  2. A carbon nanotube field emission cathode with high current density and long-term stability

    Energy Technology Data Exchange (ETDEWEB)

    Calderon-Colon, Xiomara; Zhou, Otto [Curriculum in Applied Science and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Geng Huaizhi; Gao Bo [Xintek, Incorporated, 7020 Kit Creek Road, Research Triangle Park, NC (United States); An Lei; Cao Guohua [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States)


    Carbon nanotube (CNT) field emitters are now being evaluated for a wide range of vacuum electronic applications. However, problems including short lifetime at high current density, instability under high voltage, poor emission uniformity, and pixel-to-pixel inconsistency are still major obstacles for device applications. We developed an electrophoretic process to fabricate composite CNT films with controlled nanotube orientation and surface density, and enhanced adhesion. The cathodes have significantly enhanced macroscopic field emission current density and long-term stability under high operating voltages. The application of this CNT electron source for high-resolution x-ray imaging is demonstrated.

  3. Dissecting Allele Architecture of Early Onset IBD Using High-Density Genotyping. (United States)

    Cutler, David J; Zwick, Michael E; Okou, David T; Prahalad, Sampath; Walters, Thomas; Guthery, Stephen L; Dubinsky, Marla; Baldassano, Robert; Crandall, Wallace V; Rosh, Joel; Markowitz, James; Stephens, Michael; Kellermayer, Richard; Pfefferkorn, Marian; Heyman, Melvin B; LeLeiko, Neal; Mack, David; Moulton, Dedrick; Kappelman, Michael D; Kumar, Archana; Prince, Jarod; Bose, Promita; Mondal, Kajari; Ramachandran, Dhanya; Bohnsack, John F; Griffiths, Anne M; Haberman, Yael; Essers, Jonah; Thompson, Susan D; Aronow, Bruce; Keljo, David J; Hyams, Jeffrey S; Denson, Lee A; Kugathasan, Subra


    The inflammatory bowel diseases (IBD) are common, complex disorders in which genetic and environmental factors are believed to interact leading to chronic inflammatory responses against the gut microbiota. Earlier genetic studies performed in mostly adult population of European descent identified 163 loci affecting IBD risk, but most have relatively modest effect sizes, and altogether explain only ~20% of the genetic susceptibility. Pediatric onset represents about 25% of overall incident cases in IBD, characterized by distinct disease physiology, course and risks. The goal of this study is to compare the allelic architecture of early onset IBD with adult onset in population of European descent. We performed a fine mapping association study of early onset IBD using high-density Immunochip genotyping on 1008 pediatric-onset IBD cases (801 Crohn's disease; 121 ulcerative colitis and 86 IBD undetermined) and 1633 healthy controls. Of the 158 SNP genotypes obtained (out of the 163 identified in adult onset), this study replicated 4% (5 SNPs out of 136) of the SNPs identified in the Crohn's disease (CD) cases and 0.8% (1 SNP out of 128) in the ulcerative colitis (UC) cases. Replicated SNPs implicated the well known NOD2 and IL23R. The point estimate for the odds ratio (ORs) for NOD2 was above and outside the confidence intervals reported in adult onset. A polygenic liability score weakly predicted the age of onset for a larger collection of CD cases (parchitecture of common susceptibility variants for early onset IBD is similar to that of adult onset. This immunochip genotyping study failed to identify additional common variants that may explain the distinct phenotype that characterize early onset IBD. A comprehensive dissection of genetic loci is necessary to further characterize the genetic architecture of early onset IBD.

  4. Non-Boussinesq turbulent buoyant jet of a low-density gas leaks into high-density ambient

    KAUST Repository

    El-Amin, Mohamed


    In this article, we study the problem of low-density gas jet injected into high-density ambient numerically which is important in applications such as fuel injection and leaks. It is assumed that the local rate of entrainment is consisted of two components; one is the component of entrainment due to jet momentum while the other is the component of entrainment due to buoyancy. The integral models of the mass, momentum and concentration fluxes are obtained and transformed to a set of ordinary differential equations using some similarity transformations. The resulting system is solved to determine the centerline quantities which are used to get the mean axial velocity, mean concentration and mean density of the jet. Therefore, the centerline and mean quantities are used together with the governing equation to determine some important turbulent quantities such as, cross-stream velocity, Reynolds stress, velocity- concentration correlation, turbulent eddy viscosity and turbulent eddy diffusivity. Throughout this paper the developed model is verified by comparing the present results with experimental results and jet/plume theory from the literature. © 2010 Elsevier Inc. All rights reserved.

  5. High-density polyethylene dosimetry by transvinylene FTIR analysis

    DEFF Research Database (Denmark)

    McLaughlin, W.L.; Silverman, J.; Al-Sheikhly, M.


    The formation of transvinylene unsaturation, -CH=CH-, due to free-radical or cationic-initiated dehydrogenation by irradiation, is a basic reaction in polyethylene and is useful for dosimetry at high absorbed doses. The radiation-enhanced infrared absorption having a maximum at nu = 965 cm......(-l) (lambda = 10.36 mu m) is stable in air and can be measured by Fourier-transform infrared (FTIR) spectrophotometry. The quantitative analysis is a useful means of product end-point dosimetry for radiation processing with gamma rays and electrons, where polyethylene is a component of the processed product....... The transvinylene response in air to gamma radiation is linear with dose and has relatively low yield compared with the response to electrons, whereas the response in deaerated polyethylene samples is also linear, but is more sensitive, and has negligible dose-rate dependence in its response to gamma rays...

  6. Effects of High Charge Densities in Multi-GEM Detectors

    CERN Document Server

    Franchino, S.; Hall-Wilton, R.; Muller, H.; Oliveri, E.; Pfeiffer, D.; Resnati, F.; Ropelewski, L.; Van Stenis, M.; Streli, C.; Thuiner, P.; Veenhof, R.


    A comprehensive study, supported by systematic measurements and numerical computations, of the intrinsic limits of multi-GEM detectors when exposed to very high particle fluxes or operated at very large gains is presented. The observed variations of the gain, of the ion back-flow, and of the pulse height spectra are explained in terms of the effects of the spatial distribution of positive ions and their movement throughout the amplification structure. The intrinsic dynamic character of the processes involved imposes the use of a non-standard simulation tool for the interpretation of the measurements. Computations done with a Finite Element Analysis software reproduce the observed behaviour of the detector. The impact of this detailed description of the detector in extreme conditions is multiple: it clarifies some detector behaviours already observed, it helps in defining intrinsic limits of the GEM technology, and it suggests ways to extend them.

  7. The Dynamic Mechanical Analysis of Highly Filled Rice Husk Biochar/High-Density Polyethylene Composites

    Directory of Open Access Journals (Sweden)

    Qingfa Zhang


    Full Text Available In this study, rice husk biochar/high-density polyethylene (HDPE composites were prepared via melt mixing followed by extrusion. Effects of biochar content and testing temperature on the dynamic mechanical analysis (DMA of the composites were studied. Morphological analysis of the rice husk biochar and composites were evaluated by scanning electron microscopy (SEM. The results showed that biochar had a positive effect on dynamic viscoelasticity, creep resistance and stress relaxation properties of the composites, but the creep resistance and stress relaxation of the composites decreased with the increase of temperature. SEM analysis showed that HDPE components were embedded in the holes of the rice husk biochar, and it is believed that strong interaction was achieved.

  8. Radiation Tests of Highly Scaled, High-Density, Commercial, Nonvolatile NAND Flash Memories - Update 2012 (United States)

    Irom, Farokh; Allen, Gregory R.


    The space radiation environment poses a certain risk to all electronic components on Earth-orbiting and planetary mission spacecraft. In recent years, there has been increased interest in the use of high-density, commercial, nonvolatile flash memories in space because of ever-increasing data volumes and strict power requirements. They are used in a wide variety of spacecraft subsystems. At one end of the spectrum, flash memories are used to store small amounts of mission-critical data such as boot code or configuration files and, at the other end, they are used to construct multi-gigabyte data recorders that record mission science data. This report examines single-event effect (SEE) and total ionizing dose (TID) response in single-level cell (SLC) 32-Gb, multi-level cell (MLC) 64-Gb, and Triple-level (TLC) 64-Gb NAND flash memories manufactured by Micron Technology with feature size of 25 nm.

  9. A Comparative Density Functional Theory and Density Functional Tight Binding Study of Phases of Nitrogen Including a High Energy Density Material N8

    Directory of Open Access Journals (Sweden)

    Nicholas Capel


    Full Text Available We present a comparative dispersion-corrected Density Functional Theory (DFT and Density Functional Tight Binding (DFTB-D study of several phases of nitrogen, including the well-known alpha, beta, and gamma phases as well as recently discovered highly energetic phases: covalently bound cubic gauche (cg nitrogen and molecular (vdW-bound N8 crystals. Among several tested parametrizations of N–N interactions for DFTB, we identify only one that is suitable for modeling of all these phases. This work therefore establishes the applicability of DFTB-D to studies of phases, including highly metastable phases, of nitrogen, which will be of great use for modelling of dynamics of reactions involving these phases, which may not be practical with DFT due to large required space and time scales. We also derive a dispersion-corrected DFT (DFT-D setup (atom-centered basis parameters and Grimme dispersion parameters tuned for accurate description simultaneously of several nitrogen allotropes including covalently and vdW-bound crystals and including high-energy phases.

  10. Segregation analysis of alcoholism in high density families: A replication

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, H.; Marazita, M.L.; Hill, S.Y. [Univ. of Pittsburgh, PA (United States)


    We have previously reported segregation analysis of alcoholism in 35 multigenerational families, each ascertained through a pair of male alcoholics by using the mixed model implemented by POINTER. This analysis suggested that liability to alcoholism was, in part, controlled by a major effect with or without additional multifactorial effects. The hypothesis that the major effect was explained by a single genetic locus with strictly Mendelian transmission was rejected. The purpose of the present analysis was to use the regressive model implemented by the REGD program from the Statistical Analysis for Genetic Epidemiology computer package (S.A.G.E.) to confirm by replication that a major effect was present in these 35 families. Evidence for the major effect found in Pointer was replicated in the present analysis by using S.A.G.E. Also, we found strong evidence for parental effects that were independent of the major locus transmission from ancestral relatives to children. Mendelian transmission of this major effect was rejected when models incorporated parental effects. When the major effect was calculated adjusting for parental phenotypes, the relative risk of affection for children was about twice as high with affected parents vs. unaffected parents. 25 refs., 4 tabs.

  11. Segregation analysis of alcoholism in high density families: a replication. (United States)

    Yuan, H; Marazita, M L; Hill, S Y


    We have previously reported segregation analysis of alcoholism in 35 multigenerational families, each ascertained through a pair of male alcoholics by using the mixed model implemented by POINTER. This analysis suggested that liability to alcoholism was, in part, controlled by a major effect with or without additional multifactorial effects. The hypothesis that the major effect was explained by a single genetic locus with strictly mendelian transmission was rejected. The purpose of the present analysis was to use the regressive model implemented by the REGD program from the Statistical Analysis for Genetic Epidemiology computer package (S.A.G.E.) to confirm by replication that a major effect was present in these 35 families. Evidence for the major effect found in Pointer was replicated in the present analysis by using S.A.G.E. Also, we found strong evidence for parental effects that were independent of the major locus transmission from ancestral relatives to children. Mendelian transmission of this major effect was rejected when models incorporated parental effects. When the major effect was calculated adjusting for parental phenotypes, the relative risk of affection for children was about twice as high with affected parents vs. unaffected parents.

  12. Fundamental Study of Interactions Between Pulsed High-Density Plasmas and Materials for Space Propulsion (United States)


    interaction phenomena. The high density thermal plasma source was also used to produce surface tracking high density non-thermal plasma discharges...state. A set of high speed image sequences were used to determine the dielectric tracking path and propagation velocity of the non- thermal streamer...represented by a slab of atoms supported by a frozen layer held in the position of the bulk. A thermostat above this frozen layer is used to remove

  13. High-density QCD phase transitions inside neutron stars: Glitches and gravitational waves (United States)

    Srivastava, A. M.; Bagchi, P.; Das, A.; Layek, B.


    We discuss physics of exotic high baryon density QCD phases which are believed to exist in the core of a neutron star. This can provide a laboratory for exploring exotic physics such as axion emission, KK graviton production etc. Much of the physics of these high-density phases is model-dependent and not very well understood, especially the densities expected to occur inside neutron stars. We follow a different approach and use primarily universal aspects of the physics of different high-density phases and associated phase transitions. We study effects of density fluctuations during transitions with and without topological defect production and study the effect on pulsar timings due to changing moment of inertia of the star. We also discuss gravitational wave production due to rapidly changing quadrupole moment of the star due to these fluctuations.


    Energy Technology Data Exchange (ETDEWEB)

    Schneider, N.; Andre, Ph.; Koenyves, V.; Motte, F.; Arzoumanian, D.; Didelon, P.; Hennemann, M.; Hill, T.; Palmeirim, P.; Peretto, N.; Roy, A. [IRFU/SAp CEA/DSM, Laboratoire AIM CNRS, Universite Paris Diderot, F-91191 Gif-sur-Yvette (France); Bontemps, S. [OASU/LAB-UMR5804, CNRS, Universite Bordeaux 1, F-33270 Floirac (France); Federrath, C. [MoCA, School of Mathematical Sciences, Monash University, VIC 3800 (Australia); Ward-Thompson, D. [Jeremiah Horrocks Institute, UCLAN, Preston, Lancashire PR1 2HE (United Kingdom); Benedettini, M.; Pezzuto, S.; Rygl, K. L. J. [IAPS-INAF, Fosso del Cavaliere 100, I-00133 Roma (Italy); Bressert, E. [CSIRO Astronomy and Space Science, Epping (Australia); Di Francesco, J. [NRCC, Herzberg Institute of Astrophysics, University of Victoria (Canada); Griffin, M. [University School of Physics and Astronomy, Cardiff (United Kingdom); and others


    A key parameter to the description of all star formation processes is the density structure of the gas. In this Letter, we make use of probability distribution functions (PDFs) of Herschel column density maps of Orion B, Aquila, and Polaris, obtained with the Herschel Gould Belt survey (HGBS). We aim to understand which physical processes influence the PDF shape, and with which signatures. The PDFs of Orion B (Aquila) show a lognormal distribution for low column densities until A{sub V} {approx} 3 (6), and a power-law tail for high column densities, consistent with a {rho}{proportional_to}r {sup -2} profile for the equivalent spherical density distribution. The PDF of Orion B is broadened by external compression due to the nearby OB stellar aggregates. The PDF of a quiescent subregion of the non-star-forming Polaris cloud is nearly lognormal, indicating that supersonic turbulence governs the density distribution. But we also observe a deviation from the lognormal shape at A{sub V} > 1 for a subregion in Polaris that includes a prominent filament. We conclude that (1) the point where the PDF deviates from the lognormal form does not trace a universal A{sub V} -threshold for star formation, (2) statistical density fluctuations, intermittency, and magnetic fields can cause excess from the lognormal PDF at an early cloud formation stage, (3) core formation and/or global collapse of filaments and a non-isothermal gas distribution lead to a power-law tail, and (4) external compression broadens the column density PDF, consistent with numerical simulations.

  15. What Determines the Density Structure of Molecular Clouds? A Case Study of Orion B with Herschel (United States)

    Schneider, N.; André, Ph.; Könyves, V.; Bontemps, S.; Motte, F.; Federrath, C.; Ward-Thompson, D.; Arzoumanian, D.; Benedettini, M.; Bressert, E.; Didelon, P.; Di Francesco, J.; Griffin, M.; Hennemann, M.; Hill, T.; Palmeirim, P.; Pezzuto, S.; Peretto, N.; Roy, A.; Rygl, K. L. J.; Spinoglio, L.; White, G.


    A key parameter to the description of all star formation processes is the density structure of the gas. In this Letter, we make use of probability distribution functions (PDFs) of Herschel column density maps of Orion B, Aquila, and Polaris, obtained with the Herschel Gould Belt survey (HGBS). We aim to understand which physical processes influence the PDF shape, and with which signatures. The PDFs of Orion B (Aquila) show a lognormal distribution for low column densities until A V ~ 3 (6), and a power-law tail for high column densities, consistent with a ρvpropr -2 profile for the equivalent spherical density distribution. The PDF of Orion B is broadened by external compression due to the nearby OB stellar aggregates. The PDF of a quiescent subregion of the non-star-forming Polaris cloud is nearly lognormal, indicating that supersonic turbulence governs the density distribution. But we also observe a deviation from the lognormal shape at A V > 1 for a subregion in Polaris that includes a prominent filament. We conclude that (1) the point where the PDF deviates from the lognormal form does not trace a universal A V -threshold for star formation, (2) statistical density fluctuations, intermittency, and magnetic fields can cause excess from the lognormal PDF at an early cloud formation stage, (3) core formation and/or global collapse of filaments and a non-isothermal gas distribution lead to a power-law tail, and (4) external compression broadens the column density PDF, consistent with numerical simulations. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  16. High energy density plasma science with an ultrarelativistic electron beam (United States)

    Joshi, C.; Blue, B.; Clayton, C. E.; Dodd, E.; Huang, C.; Marsh, K. A.; Mori, W. B.; Wang, S.; Hogan, M. J.; O'Connell, C.; Siemann, R.; Watz, D.; Muggli, P.; Katsouleas, T.; Lee, S.


    An intense, high-energy electron or positron beam can have focused intensities rivaling those of today's most powerful laser beams. For example, the 5 ps (full-width, half-maximum), 50 GeV beam at the Stanford Linear Accelerator Center (SLAC) at 1 kA and focused to a 3 micron rms spot size gives intensities of >1020 W/cm-2 at a repetition rate of >10 Hz. Unlike a ps or fs laser pulse which interacts with the surface of a solid target, the particle beam can readily tunnel through tens of cm of steel. However, the same particle beam can be manipulated quite effectively by a plasma that is a million times less dense than air! This is because of the incredibly strong collective fields induced in the plasma by the Coulomb force of the beam. The collective fields in turn react back onto the beam leading to many clearly observable phenomena. The beam paraticles can be: (1) Deflected leading to focusing, defocusing, or even steering of the beam; (2) undulated causing the emission of spontaneous betatron x-ray radiation and; (3) accelerated or decelerated by the plasma fields. Using the 28.5 GeV electron beam from the SLAC linac a series of experiments have been carried out that demonstrate clearly many of the above mentioned effects. The results can be compared with theoretical predictions and with two-dimensional and three-dimensional, one-to-one, particle-in-cell code simulations. These phenomena may have practical applications in future technologies including optical elements in particle beam lines, synchrotron light sources, and ultrahigh gradient accelerators.

  17. High density preheating effects on Q-ball decays and inflation in the minimal supersymmetric standard model. (United States)

    Berkooz, Micha; Chung, Daniel J H; Volansky, Tomer


    Nonperturbative preheating decay of postinflationary condensates often results in a high density, low momenta, nonthermal gas. In the case where the nonperturbative classical evolution also leads to Q balls, this effect shields them from instant dissociation, and may radically change the thermal history of the Universe. For example, in a large class of inflationary scenarios, motivated by the minimal supersymmetric standard model and its embedding in string theory, the reheat temperature changes by a multiplicative factor of 10(12).


    Directory of Open Access Journals (Sweden)

    Setsuo Iwakiri


    Full Text Available This research was developed aiming to evaluate the effects of board density and melamine-urea-formaldehyde resin onthe properties of particleboard for semi-structural applications. The boards were manufactured with nominal density of 0.65 g/cm³and 0.90 g/cm³ using urea-formaldehyde resin as control and melamine-urea-formaldehyde. The results showed a better dimensionallystability and mechanical properties of the boards manufactured with higher density and MUF resin content. The fine furnish usedfor external layer of particleboard in the industrial process, could be used for high density homogeneous board to semi-strucuturaluses, such as flooring applications.

  19. The Experimental Demonstration of the Optimized Electrical Probe Memory for Ultra-High Density Recording. (United States)

    Wang, Lei; Gong, Sidi; Yang, Cihui; Wen, Jing


    A theoretical model has been previously proposed to optimize the structure of the electrical probe memory system, whereby the optimal thickness and resistivity of DLC capping layer and TiN under layer are predicted to be 2 nm, 0.01 Ωm, and 40 nm, 2×10-7 Ωm,respectively However, there is no experimental evidence to show that such a media stack can be fabricated in reality by the time of writing and few patents regarding this intriguing topic have been reviewed and cited. In order to realize this optimized design experimentally, the thickness dependent resistivity for both DLC and TiN film are assessed, from which it is not possible to obtain a media stack with exactly the same properties as the optimized design. Therefore, the previously proposed architecture is re-optimized using the measured properties values, and the capability of using the modified memory architecture to provide ultra-high density, high data rate, and low energy consumption is demonstrated. The results show that it is difficult to experimentally attain an electrical probe memory with exactly the same properties values as the optimized counterpart. An optimized electrical probe memory structure that includes a DLC capping layer and TiN under layer was previously proposed according to a parametric approach, while the practicality of realizing such a media stack experimentally has not bee investigated. In order to assess its practical feasibility, we first measured the electrical resistivities of DLC and TiN films for different thicknesses. In this case, for the purpose of optimizing the memory system with appropriate, but more physically realistic properties values, we re-designed the architecture using the measured properties, and the modified system is able to provide ultra-high density, large data rate, and low energy consumption. Copyright© Bentham Science Publishers; For any queries, please email at

  20. Breast cancer screening effect across breast density strata: A case-control study

    NARCIS (Netherlands)

    Waal, D. van der; Ripping, T.M.; Verbeek, A.L.M.; Broeders, M.J.


    Breast cancer screening is known to reduce breast cancer mortality. A high breast density may affect this reduction. We assessed the effect of screening on breast cancer mortality in women with dense and fatty breasts separately. Analyses were performed within the Nijmegen (Dutch) screening

  1. High-density marker imputation accuracy in sixteen French cattle breeds. (United States)

    Hozé, Chris; Fouilloux, Marie-Noëlle; Venot, Eric; Guillaume, François; Dassonneville, Romain; Fritz, Sébastien; Ducrocq, Vincent; Phocas, Florence; Boichard, Didier; Croiseau, Pascal


    Genotyping with the medium-density Bovine SNP50 BeadChip® (50K) is now standard in cattle. The high-density BovineHD BeadChip®, which contains 777,609 single nucleotide polymorphisms (SNPs), was developed in 2010. Increasing marker density increases the level of linkage disequilibrium between quantitative trait loci (QTL) and SNPs and the accuracy of QTL localization and genomic selection. However, re-genotyping all animals with the high-density chip is not economically feasible. An alternative strategy is to genotype part of the animals with the high-density chip and to impute high-density genotypes for animals already genotyped with the 50K chip. Thus, it is necessary to investigate the error rate when imputing from the 50K to the high-density chip. Five thousand one hundred and fifty three animals from 16 breeds (89 to 788 per breed) were genotyped with the high-density chip. Imputation error rates from the 50K to the high-density chip were computed for each breed with a validation set that included the 20% youngest animals. Marker genotypes were masked for animals in the validation population in order to mimic 50K genotypes. Imputation was carried out using the Beagle 3.3.0 software. Mean allele imputation error rates ranged from 0.31% to 2.41% depending on the breed. In total, 1980 SNPs had high imputation error rates in several breeds, which is probably due to genome assembly errors, and we recommend to discard these in future studies. Differences in imputation accuracy between breeds were related to the high-density-genotyped sample size and to the genetic relationship between reference and validation populations, whereas differences in effective population size and level of linkage disequilibrium showed limited effects. Accordingly, imputation accuracy was higher in breeds with large populations and in dairy breeds than in beef breeds. More than 99% of the alleles were correctly imputed if more than 300 animals were genotyped at high-density. No

  2. Catalyst design by cyclic deposition: Nanoparticle formation and growth of high-density nanotube forests

    Energy Technology Data Exchange (ETDEWEB)

    Esconjauregui, Santiago; Fouquet, Martin; Xie, Rongsie; Cartwright, Richard; Robertson, John [Engineering Department, University of Cambridge, CB2 1PZ Cambridge (United Kingdom); Newcomb, Simon B. [Glebe Scientific Ltd., Newport, County Tipperary (Ireland)


    The areal density of carbon nanotube forests can be increased up to the order of 10{sup 13} cm{sup -2} using cycles of deposition and annealing of ultra-thin metal films, followed by nanoparticle immobilization. Herein, we show how the density of the catalyst nanoparticles increases after each cycle by using cross-sectional transmission electron microscopy. The layers of metal catalyst - subsequently deposited after previous annealing - sit on the uncovered areas of the support and, after annealing, restructure into nanoparticles cumulatively increasing the catalyst density. These nanoparticles lead to close-packed, high-density nanotube forests with nanotube areal densities of {proportional_to}10{sup 13} cm{sup -2}. The height of these high-density forests shortens as the density of the catalyst nanoparticle increases, which is observed using several synthesis conditions. This high nanotube density is required for using carbon nanotubes as interconnects in integrated circuits and in thermal interface materials. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Density variations and their influence on carbon stocks: case-study on two Biosphere Reserves in the Democratic Republic of Congo (United States)

    De Ridder, Maaike; De Haulleville, Thalès; Kearsley, Elizabeth; Van den Bulcke, Jan; Van Acker, Joris; Beeckman, Hans


    It is commonly acknowledged that allometric equations for aboveground biomass and carbon stock estimates are improved significantly if density is included as a variable. However, not much attention is given to this variable in terms of exact, measured values and density profiles from pith to bark. Most published case-studies obtain density values from literature sources or databases, this way using large ranges of density values and possible causing significant errors in carbon stock estimates. The use of one single fixed value for density is also not recommended if carbon stock increments are estimated. Therefore, our objective is to measure and analyze a large number of tree species occurring in two Biosphere Reserves (Luki and Yangambi). Nevertheless, the diversity of tree species in these tropical forests is too high to perform this kind of detailed analysis on all tree species (> 200/ha). Therefore, we focus on the most frequently encountered tree species with high abundance (trees/ha) and dominance (basal area/ha) for this study. Increment cores were scanned with a helical X-ray protocol to obtain density profiles from pith to bark. This way, we aim at dividing the tree species with a distinct type of density profile into separate groups. If, e.g., slopes in density values from pith to bark remain stable over larger samples of one tree species, this slope could also be used to correct for errors in carbon (increment) estimates, caused by density values from simplified density measurements or density values from literature. In summary, this is most likely the first study in the Congo Basin that focuses on density patterns in order to check their influence on carbon stocks and differences in carbon stocking based on species composition (density profiles ~ temperament of tree species).


    Chen, Sike; Sobansky, Matthew R.; Hage, David S.


    Columns containing immobilized lipoproteins were prepared for the analysis of drug interactions with these particles by high-performance affinity chromatography. This approach was evaluated by using it to examine the binding of high density lipoprotein (HDL) to the drugs propranolol or verapamil. HDL was immobilized by the Schiff base method onto silica and gave HPLC columns with reproducible binding to propranolol over four to five days of continuous operation at pH 7.4. Frontal analysis experiments indicated that two types of interactions were occurring between R/S-propranolol and HDL at 37°C: saturable binding with an association equilibrium constant (Ka) of 1.1–1.9 × 105 M−1, and non-saturable binding with an overall affinity constant (n Ka) of 3.7–4.1 × 104 M−1. Similar results were found at 4 and 27°C. Verapamil also gave similar behavior, with a Ka of 6.0 × 104 M−1 at 37°C for the saturable sites and a n Ka value for the non-saturable sites of 2.5 × 104 M−1. These measured affinities gave good agreement with solution-phase values. The results indicated HPAC can be used to study drug interactions with HDL, providing information that should be valuable in obtaining a better description of how drugs are transported within the body. PMID:19833090

  5. High Density Lipoproteins and Arteriosclerosis: Role of Cholesterol Efflux and Reverse Cholesterol Transport

    National Research Council Canada - National Science Library

    von Eckardstein, Arnold; Nofer, Jerzy Roch; Assmann, Gerd


    Abstract—High density lipoprotein (HDL) cholesterol is an important risk factor for coronary heart disease, and HDL exerts various potentially antiatherogenic properties, including the mediation of reverse transport of cholesterol...

  6. Human plasma phospholipid transfer protein increases the antiatherogenic potential of high density lipoproteins in transgenic mice

    NARCIS (Netherlands)

    M.J. van Haperen (Rien); A. van Tol (Arie); P. Vermeulen; M. Jauhiainen; T. van Gent (Teus); P.M. van den Berg (Paul); S. Ehnholm (Sonja); A.W.M. van der Kamp (Arthur); M.P.G. de Crom (Rini); F.G. Grosveld (Frank)


    textabstractPlasma phospholipid transfer protein (PLTP) transfers phospholipids between lipoprotein particles and alters high density lipoprotein (HDL) subfraction patterns in vitro, but its physiological function is poorly understood. Transgenic mice that overexpress

  7. A Decentralized Control Strategy for High Density Material Flow Systems with Automated Guided Vehicles


    Schwab, Melanie


    This work presents a universal decentralized control strategy for grid-based high-density material flow systems with automated guided vehicles and gives insights into the system behavior as well as the solution quality.

  8. Single Crystal Piezoelectric Deformable Mirrors with High Actuator Density and Large Stroke Project (United States)

    National Aeronautics and Space Administration — Single crystal piezoelectric deformable mirrors with high actuator density, fine pitch, large stroke and no floating wires will be developed for future NASA science...

  9. High Energy Density Li-ion Batteries Designed for Low Temperature Applications Project (United States)

    National Aeronautics and Space Administration — NEI Corporation proposes to develop a mixed metal oxide nanocomposite cathode that is designed for delivering high energy density with good rate performance at low...

  10. Moderate doses of alcoholic beverages with dinner and postprandial high density lipoprotein composition

    NARCIS (Netherlands)

    Hendriks, H.F.J.; Veenstra, J.; Tol, A. van; Groener, J.E.M.; Schaafsma, G.


    Moderate alcohol consumption is associated with a reduced risk of coronary heart disease. In this study, postprandial changes in plasma lipids, high-density lipoprotein (HDL) composition and cholesteryl ester transfer protein (CETP) and lecithin: cholesterol acyltransferase (LCAT) activity levels

  11. The Influence of Opacity on Hydrogen Line Emission and Ionisation Balance in High Density Divertor Plasmas


    Behringer, K.


    The influence of opacity on hydrogen line emission and ionisation balance in high density divertor plasmas. - Garching bei München : Max-Planck-Inst. für Plasmaphysik, 1997. - 21 S. - (IPP-Report ; 10/5)

  12. High-density lipoproteins and adrenal steroidogenesis : A population-based study

    NARCIS (Netherlands)

    Buitenwerf, Edward; Kerstens, Michiel N.; Links, Thera P.; Kema, Ido P.; Dullaart, Robin P. F.

    BACKGROUND: Cholesterol trafficked within plasma lipoproteins, in particular high-density lipoproteins (HDL), may represent an important source of cholesterol that is required for adrenal steroidogenesis. Based on a urinary gas chromatography method, compromised adrenal function has been suggested

  13. Foundations of high-energy-density physics physical processes of matter at extreme conditions

    CERN Document Server

    Larsen, Jon


    High-energy-density physics explores the dynamics of matter at extreme conditions. This encompasses temperatures and densities far greater than we experience on Earth. It applies to normal stars, exploding stars, active galaxies, and planetary interiors. High-energy-density matter is found on Earth in the explosion of nuclear weapons and in laboratories with high-powered lasers or pulsed-power machines. The physics explored in this book is the basis for large-scale simulation codes needed to interpret experimental results whether from astrophysical observations or laboratory-scale experiments. The key elements of high-energy-density physics covered are gas dynamics, ionization, thermal energy transport, and radiation transfer, intense electromagnetic waves, and their dynamical coupling. Implicit in this is a fundamental understanding of hydrodynamics, plasma physics, atomic physics, quantum mechanics, and electromagnetic theory. Beginning with a summary of the topics and exploring the major ones in depth, thi...

  14. High-energy-density physics foundation of inertial fusion and experimental astrophysics

    CERN Document Server

    Drake, R Paul


    The raw numbers of high-energy-density physics are amazing: shock waves at hundreds of km/s (approaching a million km per hour), temperatures of millions of degrees, and pressures that exceed 100 million atmospheres. This title surveys the production of high-energy-density conditions, the fundamental plasma and hydrodynamic models that can describe them and the problem of scaling from the laboratory to the cosmos. Connections to astrophysics are discussed throughout. The book is intended to support coursework in high-energy-density physics, to meet the needs of new researchers in this field, and also to serve as a useful reference on the fundamentals. Specifically the book has been designed to enable academics in physics, astrophysics, applied physics and engineering departments to provide in a single-course, an introduction to fluid mechanics and radiative transfer, with dramatic applications in the field of high-energy-density systems. This second edition includes pedagogic improvements to the presentation ...

  15. The National Ignition Facility: A New Era in High Energy Density Science

    Energy Technology Data Exchange (ETDEWEB)

    Moses, E


    The National Ignition Facility, the world's most energetic laser system, is now operational. This talk will describe NIF, the ignition campaign, and new opportunities in fusion energy and high energy density science enabled by NIF.

  16. Traffic Signal Synchronization in the Saturated High-Density Grid Road Network

    National Research Council Canada - National Science Library

    Hu, Xiaojian; Lu, Jian; Wang, Wei; Zhirui, Ye


    ... has inspired several urban road network development trends, including increased use of the high-density grid road network (HGRN). The structure of the HGRN is the orthogonal checkerboard pattern,...

  17. Characteristic density contrasts in the evolution of superclusters. The case of A2142 supercluster (United States)

    Gramann, Mirt; Einasto, Maret; Heinämäki, Pekka; Teerikorpi, Pekka; Saar, Enn; Nurmi, Pasi; Einasto, Jaan


    Context. The formation and evolution of the cosmic web in which galaxy superclusters are the largest relatively isolated objects is governed by a gravitational attraction of dark matter and antigravity of dark energy (cosmological constant). Aims: We study the characteristic density contrasts in the spherical collapse model for several epochs in the supercluster evolution and their dynamical state. Methods: We analysed the density contrasts for the turnaround, future collapse, and zero gravity in different ΛCDM models and applied them to study the dynamical state of the supercluster A2142 with an almost spherical main body, making it a suitable test object to apply a model that assumes sphericity. Results: We present characteristic density contrasts in the spherical collapse model for different cosmological parameters. The analysis of the supercluster A2142 shows that its high-density core has already started to collapse. The zero-gravity line outlines the outer region of the main body of the supercluster. In the course of future evolution, the supercluster may split into several collapsing systems. Conclusions: The various density contrasts presented in our study and applied to the supercluster A2142 offer a promising way to characterise the dynamical state and expected future evolution of galaxy superclusters.

  18. The National Ignition Facility (NIF) and High Energy Density Science Research at LLNL (Briefing Charts) (United States)


    The National Ignition Facility ( NIF ) and High Energy Density Science Research at LLNL Presentation to: IEEE Pulsed Power and Plasma Science...Conference C. J. Keane Director, NIF User Office June 21, 2013 1491978-1-4673-5168-3/13/$31.00 ©2013 IEEE Report Documentation Page Form ApprovedOMB No...4. TITLE AND SUBTITLE The National Ignition Facility ( NIF ) and High Energy Density Science Research at LLNL 5a. CONTRACT NUMBER 5b. GRANT

  19. High-density polymer microarrays: identifying synthetic polymers that control human embryonic stem cell growth. (United States)

    Hansen, Anne; Mjoseng, Heidi K; Zhang, Rong; Kalloudis, Michail; Koutsos, Vasileios; de Sousa, Paul A; Bradley, Mark


    The fabrication of high-density polymer microarray is described, allowing the simultaneous and efficient evaluation of more than 7000 different polymers in a single-cellular-based screen. These high-density polymer arrays are applied in the search for synthetic substrates for hESCs culture. Up-scaling of the identified hit polymers enables long-term cellular cultivation and promoted successful stem-cell maintenance. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Report of the Interagency Task Force on High Energy Density Physics

    Energy Technology Data Exchange (ETDEWEB)



    Identifies the needs for improving Federal stewardship of specific aspects of high energy density physics, particularly the study of high energy density plasmas in the laboratory, and strengthening university activities in this latter discipline. The report articulates how HEDP fits into the portfolio of federally funded missions and includes agency actions to be taken that are necessary to further this area of study consistent with Federal priorities and plans, while being responsive to the needs of the scientific community.

  1. Participation in High-Impact Sports Predicts Bone Mineral Density in Senior Olympic Athletes


    Leigey, Daniel; Irrgang, James; FRANCIS, KIMBERLY; Cohen, Peter; Wright, Vonda


    Background: Loss of bone mineral density (BMD) and resultant fractures increase with age in both sexes. Participation in resistance or high-impact sports is a known contributor to bone health in young athletes; however, little is known about the effect of participation in impact sports on bone density as people age. Hypothesis: To test the hypothesis that high-impact sport participation will predict BMD in senior athletes, this study evaluated 560 athletes during the 2005 National Senior Game...

  2. Effects of Low-density Lipoprotein Cholesterol on Coronary Artery Calcification Progression According to High-density Lipoprotein Cholesterol Levels. (United States)

    Lee, Da Young; Kim, Ji Hyun; Park, Se Eun; Park, Cheol-Young; Oh, Ki-Won; Park, Sung-Woo; Rhee, Eun-Jung; Lee, Won-Young


    Previous studies reported that many patients are at high risk for cardiovascular disease (CVD) despite achieving recommended low-density lipoprotein cholesterol (LDL-C) levels. Therefore, we investigated whether the association between LDL-C and the risk for incident CVD differed according to high-density lipoprotein cholesterol (HDL-C) levels using coronary artery calcium score (CACS) progression as a surrogate marker for predicting CVD. We investigated 2132 Korean men in a health screening program, in which CACS was measured at baseline and after 4 years. Coronary artery calcification (CAC) progression was defined as a change in CACS ≥0 over 4 years. We divided the subjects into nine groups according to baseline HDL-C and LDL-C levels and compared their risks for CAC progression. After 4 years, 475 subjects (22.3%) exhibited CAC progression. We identified a positive relationship between baseline LDL-C levels and the risk for incident CAC. However, this association was attenuated by high baseline HDL-C levels. Multivariate logistic regression analysis adjusted for age, body mass index, systolic blood pressure, fasting glucose, smoking, and exercise status revealed that the odds ratios for incident CAC in the lowest HDL-C tertile were 3.08 for LDL-C tertile 3 and 2.02 for LDL-C tertile 2 compared to LDL-C tertile 1. However, these differences disappeared in the highest HDL-C tertile (HDL-C ≥54.0 mg/dL). In this longitudinal study, we found that the positive relationship between LDL-C and the relative risk for incident CAC was attenuated by higher HDL-C levels. Therefore, HDL-C levels should be considered when estimating CVD risk. Copyright © 2017 IMSS. Published by Elsevier Inc. All rights reserved.

  3. Effect of apolipoprotein M on high density lipoprotein metabolism and atherosclerosis in low density lipoprotein receptor knock-out mice

    DEFF Research Database (Denmark)

    Christoffersen, Christina; Jauhiainen, Matti; Moser, Markus


    To investigate the role of apoM in high density lipoprotein (HDL) metabolism and atherogenesis, we generated human apoM transgenic (apoM-Tg) and apoM-deficient (apoM(-/-)) mice. Plasma apoM was predominantly associated with 10-12-nm alpha-migrating HDL particles. Human apoM overexpression (11-fold...... of alpha- to pre-alpha-migrating HDL was delayed in apoM-Tg mice. Moreover, lecithin: cholesterol acyltransferase-independent generation of pre-beta-migrating apoA-I-containing particles in plasma was increased in apoM-Tg mice (4.2 +/- 1.1%, p = 0.06) and decreased in apoM(-/-) mice (0.5 +/- 0.3%, p = 0.......03) versus controls (1.8 +/- 0.05%). In the setting of low density lipoprotein receptor deficiency, apoM-Tg mice with approximately 2-fold increased plasma apoM concentrations developed smaller atherosclerotic lesions than controls. The effect of apoM on atherosclerosis may be facilitated by enzymatic...

  4. Experimental studies and modelling of high radiation and high density plasmas in the ASDEX upgrade tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Casali, Livia


    Fusion plasmas contain impurities, either intrinsic originating from the wall, or injected willfully with the aim of reducing power loads on machine components by converting heat flux into radiation. The understanding and the prediction of the effects of these impurities and their radiation on plasma performances is crucial in order to retain good confinement. In addition, it is important to understand the impact of pellet injection on plasma performance since this technique allows higher core densities which are required to maximise the fusion power. This thesis contributes to these efforts through both experimental investigations and modelling. Experiments were conducted at ASDEX Upgrade which has a full-W wall. Impurity seeding was applied to H-modes by injecting nitrogen and also medium-Z impurities such as Kr and Ar to assess the impact of both edge and central radiation on confinement. A database of about 25 discharges has been collected and analysed. A wide range of plasma parameters was achieved up to ITER relevant values such as high Greenwald and high radiation fractions. Transport analyses taking into account the radiation distribution reveal that edge localised radiation losses do not significantly impact confinement as long as the H-mode pedestal is sustained. N seeding induces higher pedestal pressure which is propagated to the core via profile stiffness. Central radiation must be limited and controlled to avoid confinement degradation. This requires reliable control of the impurity concentration but also possibilities to act on the ELM frequency which must be kept high enough to avoid an irreversible impurity accumulation in the centre and the consequent radiation collapse. The key role of the f{sub ELM} is confirmed also by the analysis of N+He discharges. Non-coronal effects affect the radiation of low-Z impurities at the plasma edge. Due to the radial transport, the steep temperature gradients and the ELM flush out, a local equilibrium cannot be

  5. Evaluating Approaches to Rendering Braille Text on a High-Density Pin Display. (United States)

    Morash, Valerie S; Russomanno, Alexander; Gillespie, R Brent; OModhrain, Sile


    Refreshable displays for tactile graphics are typically composed of pins that have smaller diameters and spacing than standard braille dots. We investigated configurations of high-density pins to form braille text on such displays using non-refreshable stimuli produced with a 3D printer. Normal dot braille (diameter 1.5 mm) was compared to high-density dot braille (diameter 0.75 mm) wherein each normal dot was rendered by high-density simulated pins alone or in a cluster of pins configured in a diamond, X, or square; and to "blobs" that could result from covering normal braille and high-density multi-pin configurations with a thin membrane. Twelve blind participants read MNREAD sentences displayed in these conditions. For high-density simulated pins, single pins were as quickly and easily read as normal braille, but diamond, X, and square multi-pin configurations were slower and/or harder to read than normal braille. We therefore conclude that as long as center-to-center dot spacing and dot placement is maintained, the dot diameter may be open to variability for rendering braille on a high density tactile display.

  6. Elastic Behavior and Platelet Retraction in Low- and High-Density Fibrin Gels (United States)

    Wufsus, Adam R.; Rana, Kuldeepsinh; Brown, Andrea; Dorgan, John R.; Liberatore, Matthew W.; Neeves, Keith B.


    Fibrin is a biopolymer that gives thrombi the mechanical strength to withstand the forces imparted on them by blood flow. Importantly, fibrin is highly extensible, but strain hardens at low deformation rates. The density of fibrin in clots, especially arterial clots, is higher than that in gels made at plasma concentrations of fibrinogen (3–10 mg/mL), where most rheology studies have been conducted. Our objective in this study was to measure and characterize the elastic regimes of low (3–10 mg/mL) and high (30–100 mg/mL) density fibrin gels using shear and extensional rheology. Confocal microscopy of the gels shows that fiber density increases with fibrinogen concentration. At low strains, fibrin gels act as thermal networks independent of fibrinogen concentration. Within the low-strain regime, one can predict the mesh size of fibrin gels by the elastic modulus using semiflexible polymer theory. Significantly, this provides a link between gel mechanics and interstitial fluid flow. At moderate strains, we find that low-density fibrin gels act as nonaffine mechanical networks and transition to affine mechanical networks with increasing strains within the moderate regime, whereas high-density fibrin gels only act as affine mechanical networks. At high strains, the backbone of individual fibrin fibers stretches for all fibrin gels. Platelets can retract low-density gels by >80% of their initial volumes, but retraction is attenuated in high-density fibrin gels and with decreasing platelet density. Taken together, these results show that the nature of fibrin deformation is a strong function of fibrin fiber density, which has ramifications for the growth, embolization, and lysis of thrombi. PMID:25564864

  7. Ionospheric plasma density structures associated with magnetopause motion: a case study using the Cluster spacecraft and the EISCAT Svalbard Radar

    Directory of Open Access Journals (Sweden)

    F. Pitout


    Full Text Available On 5 January 2003, the footprint of the Cluster spacecraft, then orbiting in the dayside magnetosphere near the magnetopause, was in the close vicinity of the EISCAT Svalbard Radar (ESR in the dayside afternoon sector. This configuration made possible the study of the magnetopause motion and its direct consequences on the ionospheric plasma at high latitude. Cluster observed multiple magnetopause crossings despite its high latitude, while on the ground the magnetic activity was very low, whereas the ionospheric plasma sounded by the ESR exhibited poleward moving plasma density structures. In this paper, we compare the satellite and radar data, in order to show that the plasma density structures are directly related to the magnetopause motion and its associated pulsed ionospheric flow. We propose that the variations in electric field make the convection velocity vary enough to alter the electron population by accelerating the chemistry in the F-region and act as a source of electron depletion. The magnetopause motion is in this case, a source of plasma density structures in the polar dayside ionosphere.

  8. A case-control study assessing bone mineral density in severe haemophilia A in the UK. (United States)

    Wells, A J; McLaughlin, P; Simmonds, J V; Prouse, P J; Prelevic, G; Gill, S; Chowdary, P


    It has been shown that bone mineral density (BMD) may be lower in patients with haemophilia (PWH). A comparison to control subjects is required to thoroughly assess current BMD in PWH in the UK. The objective of this study was to test the hypothesis that BMD is lower in PWH than in controls, and in patients with more severely affected joints or lower activity levels. In this case-control study, 37 patients with severe haemophilia A were recruited from two haemophilia centres in the UK. A group of 37 age, gender and ethnicity-matched control participants were recruited. All participants had a bone density scan, a musculoskeletal assessment, a blood test for vitamin D and completed a functional activity questionnaire. Of the case group, 5% had osteoporosis and 24% had BMD lower than expected for age. No control participants had osteoporosis, 3% had osteopenia and 14% had BMD lower than expected for age. Ninety one per cent of case participants and 92% of control participants had reduced 25(OH)D levels. Case participants had significantly lower BMD than control participants, and case participants with more severely affected joints, lower activity levels, HIV, history of hepatitis C or lower BMI had significantly lower BMD. Patients with severe haemophilia have a higher risk of low BMD than men without haemophilia. Patients with more severely affected joints and lower activity levels have lower BMD. It remains unclear whether patients with low BMD reached adequate peak bone mass. Low vitamin D may be present in the majority of PWH. © 2014 John Wiley & Sons Ltd.

  9. Pairing and unpairing electron densities in organic systems: [1.1.1]Propellane case (United States)

    Lobayan, Rosana M.; Bochicchio, Roberto C.


    We present a theoretical description of the case of the strained [1.1.1]propellane system by application of the local and nonlocal topological formalisms to the density decomposition into its effectively paired and unpaired contributions. The analysis is mainly focused on the nature of its carbon-carbon headbridge sequence and the existence of 2e-3c complex patterns of bonding. The results clearly indicate that the system only possess 2e-2c patterns, including a true carbon-carbon headbridge bond and no 3c-2e complex patterns of bonding appear.

  10. Determination of helium number densities in high-frequency electrodeless plasma (United States)

    Gavare, Zanda


    The number densities of He first excited states 2 3S 1, 2 1S 0, 2 3P 0,1,2, and 2 1P 0 were measured by absorption and self-absorption methods. The emission lines in the range 290-730 nm were used to determine the number densities of He metastable and resonant states of inductively coupled high-frequency electrodeless lamps filled with helium at pressure 0.1 Torr. The obtained number densities of helium metastable levels 2 3S 1 and 2 1S 0 are 2×10 12 and 3×10 11 cm -3, respectively. For the 2 3P 0,1,2 and 2 1P 0 levels the determined number densities are ten times smaller than that of the metastable levels. Values of number densities from measurements using both methods are in good agreement.

  11. Ultra-high density optical data storage in common transparent plastics (United States)

    Kallepalli, Deepak L. N.; Alshehri, Ali M.; Marquez, Daniela T.; Andrzejewski, Lukasz; Scaiano, Juan C.; Bhardwaj, Ravi


    The ever-increasing demand for high data storage capacity has spurred research on development of innovative technologies and new storage materials. Conventional GByte optical discs (DVDs and Bluray) can be transformed into ultrahigh capacity storage media by encoding multi-level and multiplexed information within the three dimensional volume of a recording medium. However, in most cases the recording medium had to be photosensitive requiring doping with photochromic molecules or nanoparticles in a multilayer stack or in the bulk material. Here, we show high-density data storage in commonly available plastics without any special material preparation. A pulsed laser was used to record data in micron-sized modified regions. Upon excitation by the read laser, each modified region emits fluorescence whose intensity represents 32 grey levels corresponding to 5 bits. We demonstrate up to 20 layers of embedded data. Adjusting the read laser power and detector sensitivity storage capacities up to 0.2 TBytes can be achieved in a standard 120 mm disc.

  12. Coupling temporal and spatial gradient information in high-density unstructured Lagrangian measurements (United States)

    Wong, Jaime G.; Rosi, Giuseppe A.; Rouhi, Amirreza; Rival, David E.


    Particle tracking velocimetry (PTV) produces high-quality temporal information that is often neglected when computing spatial gradients. A method is presented here to utilize this temporal information in order to improve the estimation of spatial gradients for spatially unstructured Lagrangian data sets. Starting with an initial guess, this method penalizes any gradient estimate where the substantial derivative of vorticity along a pathline is not equal to the local vortex stretching/tilting. Furthermore, given an initial guess, this method can proceed on an individual pathline without any further reference to neighbouring pathlines. The equivalence of the substantial derivative and vortex stretching/tilting is based on the vorticity transport equation, where viscous diffusion is neglected. By minimizing the residual of the vorticity-transport equation, the proposed method is first tested to reduce error and noise on a synthetic Taylor-Green vortex field dissipating in time. Furthermore, when the proposed method is applied to high-density experimental data collected with `Shake-the-Box' PTV, noise within the spatial gradients is significantly reduced. In the particular test case investigated here of an accelerating circular plate captured during a single run, the method acts to delineate the shear layer and vortex core, as well as resolve the Kelvin-Helmholtz instabilities, which were previously unidentifiable without the use of ensemble averaging. The proposed method shows promise for improving PTV measurements that require robust spatial gradients while retaining the unstructured Lagrangian perspective.

  13. High power density dc/dc converter: Component selection and design (United States)

    Divan, Deepakraj M.

    Further work pertaining to design considerations for the new high power, high frequency dc/dc converters is discussed. The goal of the project is the development of high power, high power density dc/dc converters at power levels in the multi-kilowatt to megawatt range for aerospace applications. The prototype converter is rated for 50 kW at a switching frequency of 50 kHz, with an input voltage of 200 Vdc and an output of 2000 Vdc. The overall power density must be in the vicinity of 0.2 to 0.3 kg/kW.

  14. An Ultraflexible Silicon-Oxygen Battery Fiber with High Energy Density. (United States)

    Zhang, Ye; Jiao, Yiding; Lu, Lijun; Wang, Lie; Chen, Taiqiang; Peng, Huisheng


    To satisfy the rapid development of portable and wearable electronics, it is highly desired to make batteries with both high energy densities and flexibility. Although some progress has been made in recent decades, the available batteries share critical problems of poor energy storage capacity and low flexibility. Herein, we have developed a silicon-oxygen battery fiber with high energy density and ultra-high flexibility by designing a coaxial architecture with a lithiated silicon/carbon nanotube hybrid fiber as inner anode, a polymer gel as middle electrolyte and a bare carbon nanotube sheet as outer cathode. The fiber showed a high energy density of 512 Wh kg(-1) and could effectively work after bending for 20 000 cycles. These battery fibers have been further woven into flexible textiles for a large-scale application. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Effects of chronic high stocking density on liver proteome of rainbow trout (Oncorhynchus mykiss). (United States)

    Naderi, Mahdi; Keyvanshokooh, Saeed; Salati, Amir Parviz; Ghaedi, Alireza


    The main aim of the present study was to assess the effects of chronic high stocking density on liver proteome of rainbow trout. Rainbow trout juveniles (42.6 ± 2.3 g average body weight) were randomly distributed into six tanks at two stocking densities (low stocking density (LD) = 20 kg m -3 and high stocking density (HD) = 80 kg m -3 ). Both treatments were performed in triplicate tanks for a period of 60 days. High stocking density caused a reduction in the growth performance compared with LD fish. Lysozyme activity increased with stocking density, while serum complement activity presented the opposite pattern. Serum cortisol and total protein levels did not show significant differences (P > 0.05) between experimental groups. The fish reared at high stocking density showed significantly lower osmolality and globulin values but higher albumin level. The HD group had significantly higher activities of catalase, glutathione peroxidase and superoxide dismutase, and malondialdehyde content in the liver when compared to the LD group. Comparative proteomics was used to determine the proteomic responses in livers of rainbow trout reared at high stocking density for 60 days. Out of nine protein spots showing altered abundance (>1.5-folds, P < 0.05), eight spots were successfully identified. Two proteins including apolipoprotein A-I-2 precursor and mitochondrial stress-70 protein were found to increase in HD group. The spots found to decrease in the HD group were identified as follows: 2-peptidylprolyl isomerase A, two isoforms of glyceraldehydes-3-phosphate dehydrogenase, an unnamed protein product similar to fructose-bisphosphate aldolase, 78 kDa glucose-regulated protein, and serum albumin 1 protein.

  16. Probing the nuclear symmetry energy at high densities with nuclear reactions (United States)

    Leifels, Y.


    The nuclear equation of state is a topic of highest current interest in nuclear structure and reactions as well as in astrophysics. The symmetry energy is the part of the equation of state which is connected to the asymmetry in the neutron/proton content. During recent years a multitude of experimental and theoretical efforts on different fields have been undertaken to constraint its density dependence at low densities but also above saturation density (ρ_0=0.16 fm ^{-3} . Conventionally the symmetry energy is described by its magnitude S_v and the slope parameter L , both at saturation density. Values of L = 44 -66MeV and S_v=31 -33MeV have been deduced in recent compilations of nuclear structure, heavy-ion reaction and astrophysics data. Apart from astrophysical data on mass and radii of neutron stars, heavy-ion reactions at incident energies of several 100MeV are the only means do access the high density behaviour of the symmetry energy. In particular, meson production and collective flows upto about 1 AGeV are predicted to be sensitive to the slope of the symmetry energy as a function of density. From the measurement of elliptic flow of neutrons with respect to charged particles at GSI, a more stringent constraint for the slope of the symmetry energy at supra-saturation densities has been deduced. Future options to reach even higher densities will be discussed.

  17. Selection of haplotype variables from a high-density marker map for genomic prediction. (United States)

    Cuyabano, Beatriz Cd; Su, Guosheng; Lund, Mogens S


    Using haplotype blocks as predictors rather than individual single nucleotide polymorphisms (SNPs) may improve genomic predictions, since haplotypes are in stronger linkage disequilibrium with the quantitative trait loci than are individual SNPs. It has also been hypothesized that an appropriate selection of a subset of haplotype blocks can result in similar or better predictive ability than when using the whole set of haplotype blocks. This study investigated genomic prediction using a set of haplotype blocks that contained the SNPs with large effects estimated from an individual SNP prediction model. We analyzed protein yield, fertility and mastitis of Nordic Holstein cattle, and used high-density markers (about 770k SNPs). To reach an optimum number of haplotype variables for genomic prediction, predictions were performed using subsets of haplotype blocks that contained a range of 1000 to 50 000 main SNPs. The use of haplotype blocks improved the prediction reliabilities, even when selection focused on only a group of haplotype blocks. In this case, the use of haplotype blocks that contained the 20 000 to 50 000 SNPs with the highest effect was sufficient to outperform the model that used all individual SNPs as predictors (up to 1.3 % improvement in prediction reliability for mastitis, compared to individual SNP approach), and the achieved reliabilities were similar to those using all haplotype blocks available in the genome data (from 0.6 % lower to 0.8 % higher reliability). Haplotype blocks used as predictors can improve the reliability of genomic prediction compared to the individual SNP model. Furthermore, the use of a subset of haplotype blocks that contains the main SNP effects from genomic data could be a feasible approach to genomic prediction in dairy cattle, given an increase in density of genotype data available. The predictive ability of the models that use a subset of haplotype blocks was similar to that obtained using either all haplotype blocks

  18. Probing intracellular mass density fluctuation through confocal microscopy: application in cancer diagnostics as a case study

    CERN Document Server

    Sahay, Peeyush; Ghimire, Hemendra M; Almabadi, Huda; Yallappu, Murali M; Skalli, Omar; Jaggi, Meena; Chauhan, Subhash C; Pradhan, Prabhakar


    Intracellular structural alterations are hallmark of several disease conditions and treatment modalities. However, robust methods to quantify these changes are scarce. In view of this, we introduce a new method to quantify structural alterations in biological cells through the widely used confocal microscopy. This novel method employs optical eigenfunctions localization properties of cells and quantifies the degree of structural alterations, in terms of nano- to micron scale intracellular mass density fluctuations, in one single parameter. Such approach allows a powerful way to compare changing structures in heterogeneous cellular media irrespective of the origin of the cause. As a case study, we demonstrate its applicability in cancer detection with breast and prostate cancer cases of different tumorigenicity levels. Adding new dimensions to the confocal based studies, this technique has potentially significant applications in areas ranging from disease diagnostics to therapeutic studies, such as patient pro...

  19. Anatomical traits related to stress in high density populations of Typha angustifolia L. (Typhaceae

    Directory of Open Access Journals (Sweden)

    F. F. Corrêa

    Full Text Available Abstract Some macrophytes species show a high growth potential, colonizing large areas on aquatic environments. Cattail (Typha angustifolia L. uncontrolled growth causes several problems to human activities and local biodiversity, but this also may lead to competition and further problems for this species itself. Thus, the objective of this study was to investigate anatomical modifications on T. angustifolia plants from different population densities, once it can help to understand its biology. Roots and leaves were collected from natural populations growing under high and low densities. These plant materials were fixed and submitted to usual plant microtechnique procedures. Slides were observed and photographed under light microscopy and images were analyzed in the UTHSCSA-Imagetool software. The experimental design was completely randomized with two treatments and ten replicates, data were submitted to one-way ANOVA and Scott-Knott test at p<0.05. Leaves from low density populations showed higher stomatal density and index. These modifications on stomatal characteristics were more evident on the leaf abaxial surface. Plants from low density populations showed thicker mesophyll and higher proportion of aerenchymal area. Roots from low density populations showed a higher proportion of the vascular cylinder. Whereas, plants from higher density populations showed greater thickness of the endodermis, exodermis, phloem and root cortex. Higher density populations showed a higher proportion of aerenchymal gaps in the root cortex. Therefore, cattail plants from populations growing under high density population show anatomical traits typical of plants under stress, which promotes the development of less functional anatomical modifications to aquatic environments.

  20. The next generation vanadium flow batteries with high power density - a perspective. (United States)

    Lu, Wenjing; Li, Xianfeng; Zhang, Huamin


    Vanadium flow batteries (VFBs) have received increasing attention due to their attractive features for large-scale energy storage applications. However, the relatively high cost and severe polarization of VFB energy storage systems at high current densities restrict their utilization in practical industrial applications. Optimization of the performance of key VFB materials, including electrodes, electrolytes and membranes, can realize simultaneous minimization of polarization and capacity decay. The power density and energy density of VFBs are thus simultaneously enhanced. Moreover, relevant theoretical mechanisms and foundations based on virtual investigations of VFB models and simulations can guide these optimizations. The improved power density and energy density can reduce the cost of VFB energy storage systems, accelerating their successful industrialization. In this perspective, modification methods to optimize the performance of key VFB materials and investigations of models and simulations of VFBs will be discussed. Therefore, the available ideas and approaches will be provided to direct further improvements in the power density and energy density of VFB systems.

  1. High-density ferroelectric recording using a hard disk drive-type data storage system (United States)

    Aoki, Tomonori; Hiranaga, Yoshiomi; Cho, Yasuo


    Ferroelectric probe data storage has been proposed as a novel data storage method in which bits are recorded based on the polarization directions of individual domains. These bits are subsequently read by scanning nonlinear dielectric microscopy. The domain walls of typical ferroelectric materials are quite thin: often only several times the lattice constant, which is advantageous for high-density data storage. In this work, high-density read/write (R/W) demonstrations were conducted using a hard disk drive-type test system, and the writing of bit arrays with a recording density of 3.4 Tbit/in.2 was achieved. Additionally, a series of writing and reading operations was successfully demonstrated at a density of 1 Tbit/in.2. Favorable characteristics of ferroelectric recording media for use with the proposed method are discussed in the latter part of this paper.

  2. Relationship between Non-High-Density Lipoprotein Cholesterol and Low-Density Lipoprotein Cholesterol in the General Population. (United States)

    Kuwabara, Kazuyo; Harada, Sei; Sugiyama, Daisuke; Kurihara, Ayako; Kubota, Yoshimi; Higashiyama, Aya; Hirata, Takumi; Nishida, Yoko; Kawasaki, Midori; Takebayashi, Toru; Okamura, Tomonori


    The Japan Atherosclerosis Society (JAS) Guidelines for Diagnosis and Prevention of Atherosclerotic Cardiovascular Diseases for Japanese 2012 version have set a non-high-density lipoprotein cholesterol (non-HDL-C)-management target of low-density lipoprotein cholesterol (LDL-C) +30 mg/dL. However, the actual difference between non-HDL-C and LDL-C is not clear. Therefore, we evaluated its joint distribution and assessed the validity of this criterion in the general Japanese population. We used baseline cross-sectional data of 4,110 participants from two studies; the KOBE Study (n=1,108) and the Tsuruoka Metabolomic Cohort Study (n=3,002). To evaluate whether the difference between LDL-C and non-HDL-C in the general population match that of the current guidelines, we classified LDL-C levels into four groups according to the JAS Guideline and evaluated its agreement with the corresponding non-HDL-C group. Analysis was also done using six groups (the previous four groups plus the upper and lower cut-off values). The mean difference (mg/dL) between the non-HDL-C and LDL-C (for the KOBE Study and Tsuruoka Metabolomic Cohort Study, respectively) was 19.6 and 24.1 (ppopulation, the difference between non-HDL-C and LDL-C was lower than the expected difference of 30 mg/dL. Changes to the criteria for non-HDL-C target levels may be considered in the future.

  3. High torque density permanent magnet brushless machines with similar slot and pole numbers (United States)

    Ishak, D.; Zhu, Z. Q.; Howe, D.


    The paper describes a theoretical and experimental investigation into the electromagnetic performance of permanent magnet brushless machines having similar slot and pole numbers. Finite element analysis is employed to predict the airgap flux density distribution, the cogging torque and emf waveforms, and the winding inductances. It is shown that such machines exhibit a high torque density and is conducive to fault tolerance. The results are validated on two experimental motors.

  4. Ag incorporated Mn3O4/AC nanocomposite based supercapacitor devices with high energy density and power density. (United States)

    Nagamuthu, S; Vijayakumar, S; Muralidharan, G


    Silver incorporated Mn3O4/amorphous carbon (AC) nanocomposites are synthesized by a green chemistry method. X-ray diffraction studies revealed the structural changes in Mn3O4/AC nanocomposites attributable to the addition of silver. Cyclic voltammetry, charge-discharge and ac-impedance studies indicated that the Ag-Mn3O4/AC-5 electrode was the most suitable candidate for supercapacitor applications. From the galvanostatic charge-discharge studies, a higher specific capacitance of 981 F g(-1) at a specific current of 1 A g(-1) was obtained. An Ag-Mn3O4/AC-symmetric supercapacitor consisting of an Ag-incorporated Mn3O4/AC composite as an anode as well as a cathode, and an asymmetric supercapacitor consisting of an Ag-incorporated Mn3O4/AC composite as a cathode and an activated carbon as an anode have been fabricated. The symmetric device exhibits a specific cell capacitance of 72 F g(-1) at a specific current of 1 A g(-1) whereas the asymmetric device delivers a specific cell capacitance of 180 F g(-1) at a high current rate of 10 A g(-1). The asymmetric supercapacitor device yields a high energy density of 81 W h kg(-1). This is higher than that of lead acid batteries and comparable with that of nickel hydride batteries.

  5. FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data (United States)

    Min, Junhong; Vonesch, Cédric; Kirshner, Hagai; Carlini, Lina; Olivier, Nicolas; Holden, Seamus; Manley, Suliana; Ye, Jong Chul; Unser, Michael


    Super resolution microscopy such as STORM and (F)PALM is now a well known method for biological studies at the nanometer scale. However, conventional imaging schemes based on sparse activation of photo-switchable fluorescent probes have inherently slow temporal resolution which is a serious limitation when investigating live-cell dynamics. Here, we present an algorithm for high-density super-resolution microscopy which combines a sparsity-promoting formulation with a Taylor series approximation of the PSF. Our algorithm is designed to provide unbiased localization on continuous space and high recall rates for high-density imaging, and to have orders-of-magnitude shorter run times compared to previous high-density algorithms. We validated our algorithm on both simulated and experimental data, and demonstrated live-cell imaging with temporal resolution of 2.5 seconds by recovering fast ER dynamics.

  6. Exploration of Plasma Jets Approach to High Energy Density Physics. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chiping [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)


    High-energy-density laboratory plasma (HEDLP) physics is an emerging, important area of research in plasma physics, nuclear physics, astrophysics, and particle acceleration. While the HEDLP regime occurs at extreme conditions which are often found naturally in space but not on the earth, it may be accessible by colliding high intensity plasmas such as high-energy-density plasma jets, plasmoids or compact toroids from plasma guns. The physics of plasma jets is investigated in the context of high energy density laboratory plasma research. This report summarizes results of theoretical and computational investigation of a plasma jet undergoing adiabatic compression and adiabatic expansion. A root-mean-squared (rms) envelope theory of plasma jets is developed. Comparison between theory and experiment is made. Good agreement between theory and experiment is found.

  7. Triglycerides and high-density lipoprotein cholesterol are associated with insulinemia in adolescents

    Directory of Open Access Journals (Sweden)

    Ramírez-López Guadalupe


    Full Text Available OBJECTIVE: The aim of this study was to evaluate the association between lipids and insulin concentration in adolescents. MATERIAL AND METHODS: A cross-sectional study of 350 adolescents aged 14-19 years old from a public high school in Guadalajara, in the state of Jalisco, Mexico, was conducted. Fasting insulin concentration was determined using microparticle enzyme immunoassay; total cholesterol and triglycerides were detected by standard enzymatic procedures; and low- and high-density lipoproteins were found using standard precipitation methods. Statistical analysis included linear multivariate regression. RESULTS: Serum triglycerides were associated positively with insulin fasting (beta= 0.003, p= 0.0001 and high-density lipoprotein cholesterol was negatively associated with insulin fasting in male adolescents 18-19 years old (beta= -0.03, p= 0.012. CONCLUSIONS: The relationships between triglycerides and insulin and between high-density lipoprotein cholesterol and insulin are already present in adolescence.

  8. Research on and Application to BH-HTC High Density Cementing Slurry System on Tarim Region (United States)

    Yuanhong, Song; Fei, Gao; Jianyong, He; Qixiang, Yang; Jiang, Yang; Xia, Liu


    A large section of salt bed is contented in Tarim region Piedmont which constructs complex geological conditions. For high-pressure gas well cementing difficulties from the region, high density cement slurry system has been researched through reasonable level of particle size distribution and second weighting up. The results of laboratory tests and field applications show that the high density cementing slurry system is available to Tarim region cementing because this system has a well performance in slurry stability, gas breakthrough control, fluidity, water loss, and strength.

  9. The effect of water stress on super-high- density 'Koroneiki' olive oil quality. (United States)

    Dag, Arnon; Naor, Amos; Ben-Gal, Alon; Harlev, Guy; Zipori, Isaac; Schneider, Doron; Birger, Reuven; Peres, Moti; Gal, Yoni; Kerem, Zohar


    Over the last two decades, the area of cultivated super-high-density olive orchards has increased rapidly. Water stress is an important tool in super-high-density orchards to reduce tree growth and promote suitability for overhead mechanical harvesters. Little is known regarding the effect of water stress in super-high-density orchards on oil quality parameters. In this study the effect of irrigation rate on oil quality parameters was evaluated in a six-year-old super-high-density 'Koreneiki' olive orchard for five consecutive seasons. Five water status levels, determined by irrigating in order to maintain various midday stem water potential threshold values (-1.5, -2, -2.5, -3 and -4 MPa), were applied during the oil accumulation stage. The MUFA/PUFA ratio and free fatty acid content generally decreased as a function of increasing tree water stress. In most seasons a reduction in polyphenols was found with decreasing irrigation level. Peroxide value was not affected by the water stress level. The present study demonstrates that limiting irrigation and exposure of olive trees to water stress in a super-high-density orchard lowers free fatty acid content and therefore benefits oil quality. However, the decreased MUFA/PUFA ratio and the reduction in polyphenol content that were also found under increased water stress negatively influence oil quality. © 2014 Society of Chemical Industry.

  10. Protein aggregation under high concentration/density state during chromatographic and ultrafiltration processes. (United States)

    Arakawa, Tsutomu; Ejima, Daisuke; Akuta, Teruo


    Local transient high protein concentration or high density condition can occur during processing of protein solutions. Typical examples are saturated binding of proteins during column chromatography and high protein concentration on the semi-permeable membrane during ultrafiltration. Both column chromatography and ultrafiltration are fundamental technologies, specially for production of pharmaceutical proteins. We summarize here our experiences related to such high concentration conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Amorphous silicon rich silicon nitride optical waveguides for high density integrated optics

    DEFF Research Database (Denmark)

    Philipp, Hugh T.; Andersen, Karin Nordström; Svendsen, Winnie Edith


    Amorphous silicon rich silicon nitride optical waveguides clad in silica are presented as a high-index contrast platform for high density integrated optics. Performance of different cross-sectional geometries have been measured and are presented with regards to bending loss and insertion loss...

  12. Rendering high charge density of states in ionic liquid-gated MoS 2 transistors

    NARCIS (Netherlands)

    Lee, Y.; Lee, J.; Kim, S.; Park, H.S.


    We investigated high charge density of states (DOS) in the bandgap of MoS2 nanosheets with variable temperature measurements on ionic liquid-gated MoS2 transistors. The thermally activated charge transport indicates that the electrical current in the two-dimensional MoS 2 nanosheets under high

  13. Deep anisotropic dry etching of silicon microstructures by high-density plasmas

    NARCIS (Netherlands)

    Blauw, M.A.


    This thesis deals with the dry etching of deep anisotropic microstructures in monocrystalline silicon by high-density plasmas. High aspect ratio trenches are necessary in the fabrication of sensitive inertial devices such as accellerometers and gyroscopes. The etching of silicon in fluorine-based

  14. The Pain in Storage: Work Safety in a High-Density Shelving Facility (United States)

    Atkins, Stephanie A.


    An increasing number of academic and research libraries have built high-density shelving facilities to address overcrowding conditions in their regular stacks. However, the work performed in these facilities is physically strenuous and highly repetitive in nature and may require the use of potentially dangerous equipment. This article will examine…

  15. High-order ionospheric effects on electron density estimation from Fengyun-3C GPS radio occultation (United States)

    Li, Junhai; Jin, Shuanggen


    GPS radio occultation can estimate ionospheric electron density and total electron content (TEC) with high spatial resolution, e.g., China's recent Fengyun-3C GPS radio occultation. However, high-order ionospheric delays are normally ignored. In this paper, the high-order ionospheric effects on electron density estimation from the Fengyun-3C GPS radio occultation data are estimated and investigated using the NeQuick2 ionosphere model and the IGRF12 (International Geomagnetic Reference Field, 12th generation) geomagnetic model. Results show that the high-order ionospheric delays have large effects on electron density estimation with up to 800 el cm-3, which should be corrected in high-precision ionospheric density estimation and applications. The second-order ionospheric effects are more significant, particularly at 250-300 km, while third-order ionospheric effects are much smaller. Furthermore, the high-order ionospheric effects are related to the location, the local time, the radio occultation azimuth and the solar activity. The large high-order ionospheric effects are found in the low-latitude area and in the daytime as well as during strong solar activities. The second-order ionospheric effects have a maximum positive value when the radio occultation azimuth is around 0-20°, and a maximum negative value when the radio occultation azimuth is around -180 to -160°. Moreover, the geomagnetic storm also affects the high-order ionospheric delay, which should be carefully corrected.

  16. Wax co-cracking synergism of high density polyethylene to alternative fuels

    Directory of Open Access Journals (Sweden)

    Magdy Motawie


    Full Text Available Attempts have been made to understand the thermal degradation of high density polyethylene (HDPE and their combined co-cracking using different ratios of HDPE and petroleum wax under nitrogen atmosphere. We have conducted the experiments using HDPE as the raw material and petroleum wax as co-feed by at 400 and 450 °C reaction temperatures. The product distribution was noted along with reaction time of 0.5–3 h for the degradation. Thermal gravimetric analysis (TGA technique was used to measure the weight change of the feedstock as a function of temperature and time. Differential scanning calorimetry (DSC was used to determine the degradation temperature. Products were characterized using gas chromatography (GC and infrared spectroscopy (FTIR, some other standard physical methods were used to determine the main properties of the liquid products. Results show that the mixed plastic-wax samples could be converted into gases, gasoline, and middle distillate depending upon the composition of feed polymer/wax ratio. It was found that the products mostly consisted of paraffin and olefin compounds, with carbon numbers of C1–C4, C5–C9 and C10–C19 in the case of gases, gasoline and middle distillate respectively.

  17. Compression of high-density EMG signals for trapezius and gastrocnemius muscles (United States)


    Background New technologies for data transmission and multi-electrode arrays increased the demand for compressing high-density electromyography (HD EMG) signals. This article aims the compression of HD EMG signals recorded by two-dimensional electrode matrices at different muscle-contraction forces. It also shows methodological aspects of compressing HD EMG signals for non-pinnate (upper trapezius) and pinnate (medial gastrocnemius) muscles, using image compression techniques. Methods HD EMG signals were placed in image rows, according to two distinct electrode orders: parallel and perpendicular to the muscle longitudinal axis. For the lossless case, the images obtained from single-differential signals as well as their differences in time were compressed. For the lossy algorithm, the images associated to the recorded monopolar or single-differential signals were compressed for different compression levels. Results Lossless compression provided up to 59.3% file-size reduction (FSR), with lower contraction forces associated to higher FSR. For lossy compression, a 90.8% reduction on the file size was attained, while keeping the signal-to-noise ratio (SNR) at 21.19 dB. For a similar FSR, higher contraction forces corresponded to higher SNR Conclusions The computation of signal differences in time improves the performance of lossless compression while the selection of signals in the transversal order improves the lossy compression of HD EMG, for both pinnate and non-pinnate muscles. PMID:24612604

  18. Mammographic density and factors determining it from the point of view of high oncological risks

    Directory of Open Access Journals (Sweden)

    D. A. Vasilyev


    Full Text Available There is now extensive proof that high percentage of mammographic density (MD is an independent risk factor for breast cance.r Taking this into account, the research data are summarized with regard to relation of MD to anthropometric, as well as hormonal, genetic and genotoxic factors. There is a negative correlation between MD and such risk factors as age, number of deliveries, BMI and waist-hip ratio. Most inves- tigations show a direct connection between MD and prolactin level or insulin-like growth factor in blood, mostly in premenopaus al women. Relations of MD with blood estrogens, testosterone, sex hormone binding globulin prove to be too diverse to be taken in account of. It is pos- sible that the action of hormones, especially estrogens, is mediated through their metabolites catecholestrogens and / or reactive oxygen spe- cies. There is certain evidence that a genetic component plays a role in MD. It refers to COMT Val158Met, IGF-I rs6220 A> G and UGT1A1 in premenopausal women, and to ESR1 (XbaI и PvuII in menopausal cases.Although it is obvious that the risk of breast cancer related to MD is brought about by many factors, there is a necessity for studying addi- tional criteria modifying the process, as well as for searching means for preventing it.

  19. Swift heavy ion induced single event upsets in high density UV-EPROM's

    Energy Technology Data Exchange (ETDEWEB)

    Dahiwale, S.S. [Department of Physics, University of Pune, Pune 7 (India); Shinde, N.S. [Department of Chemical Engineering, Mie University (Japan); Kanjilal, D. [Inter University Accelerator Center, New Delhi (India); Bhoraskar, V.N. [Department of Physics, University of Pune, Pune 7 (India); Dhole, S.D. [Department of Physics, University of Pune, Pune 7 (India)], E-mail:


    A few high density UV-EPROM's (32Kb x 8) were irradiated with 5.41 MeV energy {alpha}-particles with fluences from 10{sup 4} to 10{sup 8} alphas/cm{sup 2} and 100 MeV nickel, iodine and silver ions for low fluences between 5 x 10{sup 7} and 10{sup 8} ions/cm{sup 2}. The energy and ion species was selected on the basis of predicted threshold values of linear energy transfer (LET) in silicon. The program which was stored in the memory found to be changed from 0 to 1 and 1 to 0 state, respectively. On the basis of changed states, the cross-sections ({sigma}) were calculated to investigate the single event effects/upsets. No upset was observed in case of {alpha}-particle since it has very low LET, but the SEU cross-section found to be more in case of Iodine i.e. 2.29 x 10{sup -3} cm{sup 2} than that of nickel, 2.12 x 10{sup -3} cm{sup 2} and silver, 2.26 x 10{sup -3}. This mainly attributes that LET for iodine is more as compared to silver and nickel ions, which deposits large amount of energy near the sensitive node of memory cell in the form of electron-hole pairs required to change the state. These measured SEU cross-section were also compared with theoretically predicted values along with the Weibull distribution fit to the ion induced experimental SEU data. The theoretical predicted SEU cross-section 3.27 x 10{sup -3} cm{sup 2} found to be in good agreement with the measured SEU cross-section.

  20. High-Beta, Improved Confinement Reversed-Field Pinch Plasmas at High Density

    Energy Technology Data Exchange (ETDEWEB)

    Wyman, M. [University of Wisconsin, Madison; Chapman, B. E. [University of Wisconsin, Madison; Ahn, J. W. [University of Wisconsin, Madison; Almagri, A. [University of Wisconsin, Madison; Anderson, J. [University of Wisconsin, Madison; Bonomo, F. [Consorzio RFX, Italy; Brower, D. L. [University of California, Los Angeles; Combs, Stephen Kirk [ORNL; Craig, D. [University of Wisconsin, Madison; Hartog, D. J. Den [University of Wisconsin, Madison; Deng, B. [University of California, Los Angeles; Ding, W. X. [University of California, Los Angeles; Ebrahimi, F. [University of Wisconsin, Madison; Ennis, D. [University of Wisconsin, Madison; Fiksel, G. [University of Wisconsin, Madison; Foust, Charles R [ORNL; Franz, P. [EURATOM / ENEA, Italy; Gangadhara, S. [University of Wisconsin, Madison; Goetz, J. [University of Wisconsin, Madison; O' Connell, R, [University of Wisconsin, Madison; Oliva, S. [University of Wisconsin, Madison; Prager, S. C. [University of Wisconsin, Madison; Reusch, J. A. [University of Wisconsin, Madison; Sarff, J. S. [University of Wisconsin, Madison; Stephens, H. D. [University of Wisconsin, Madison; Yates, T. [University of California, Los Angeles


    In Madison Symmetric Torus Dexter et al., Fusion Technol. 19, 131 1991 discharges where improved confinement is brought about by modification of the current profile, pellet injection has quadrupled the density, reaching ne=41019 m 3. Without pellet injection, the achievable density in improved confinement discharges had been limited by edge-resonant tearing instability. With pellet injection, the total beta has been increased to 26%, and the energy confinement time is comparable to that at low density. Pressure-driven local interchange and global tearing are predicted to be linearly unstable. Interchange has not yet been observed experimentally, but there is possible evidence of pressure-driven tearing, an instability usually driven by the current gradient in the reversed-field pinch.

  1. StreamMap: Smooth Dynamic Visualization of High-Density Streaming Points. (United States)

    Li, Chenhui; Baciu, George; Yu, Han


    Interactive visualization of streaming points for real-time scatterplots and linear blending of correlation patterns is increasingly becoming the dominant mode of visual analytics for both big data and streaming data from active sensors and broadcasting media. To better visualize and interact with inter-stream patterns, it is generally necessary to smooth out gaps or distortions in the streaming data. Previous approaches either animate the points directly or present a sampled static heatmap. We propose a new approach, called StreamMap, to smoothly blend high-density streaming points and create a visual flow that emphasizes the density pattern distributions. In essence, we present three new contributions for the visualization of high-density streaming points. The first contribution is a density-based method called super kernel density estimation that aggregates streaming points using an adaptive kernel to solve the overlapping problem. The second contribution is a robust density morphing algorithm that generates several smooth intermediate frames for a given pair of frames. The third contribution is a trend representation design that can help convey the flow directions of the streaming points. The experimental results on three datasets demonstrate the effectiveness of StreamMap when dynamic visualization and visual analysis of trend patterns on streaming points are required.

  2. Activated platelets contribute to oxidized low-density lipoproteins and dysfunctional high-density lipoproteins through a phospholipase A2-dependent mechanism

    NARCIS (Netherlands)

    Blache, Denis; Gautier, Thomas; Tietge, Uwe J. F.; Lagrost, Laurent

    Plasma activity of secretory phospholipase A2 (sPLA2) increases in patients with cardiovascular disease. The present study investigated whether platelet-released sPLA2 induces low-density lipoprotein (LDL) and high-density lipoprotein (HDL) modifications that translate into changes in lipoprotein

  3. Design of Ultra-High-Power-Density Machine Optimized for Future Aircraft (United States)

    Choi, Benjamin B.


    The NASA Glenn Research Center's Structural Mechanics and Dynamics Branch is developing a compact, nonpolluting, bearingless electric machine with electric power supplied by fuel cells for future "more-electric" aircraft with specific power in the projected range of 50 hp/lb, whereas conventional electric machines generate usually 0.2 hp/lb. The use of such electric drives for propulsive fans or propellers depends on the successful development of ultra-high-power-density machines. One possible candidate for such ultra-high-power-density machines, a round-rotor synchronous machine with an engineering current density as high as 20,000 A/sq cm, was selected to investigate how much torque and power can be produced.

  4. High-density 3D graphene-based monolith and related materials, methods, and devices (United States)

    Worsley, Marcus A.; Baumann, Theodore F.; Biener, Juergen; Charnvanichborikarn, Supakit; Kucheyev, Sergei; Montalvo, Elizabeth; Shin, Swanee; Tylski, Elijah


    A composition comprising at least one high-density graphene-based monolith, said monolith comprising a three-dimensional structure of graphene sheets crosslinked by covalent carbon bonds and having a density of at least 0.1 g/cm.sup.3. Also provided is a method comprising: preparing a reaction mixture comprising a suspension and at least one catalyst, said suspension selected from a graphene oxide (GO) suspension and a carbon nanotube suspension; curing the reaction mixture to produce a wet gel; drying the wet gel to produce a dry gel, said drying step is substantially free of supercritical drying and freeze drying; and pyrolyzing the dry gel to produce a high-density graphene-based monolith. Exceptional combinations of properties are achieved including high conductive and mechanical properties.

  5. The final stage of gravitational collapse for high density fluid medium

    Energy Technology Data Exchange (ETDEWEB)

    Souza, R. G. [Physics Department , Roraima Federal University, 69304-000 Boa Vista, RR (Brazil); De Campos, M. [Physics Department, Roraima Federal University, 69304-000 Boa Vista, RR (Brazil) and Astronomy Department, Sao Paulo University, 05508-900 Sao Paulo, SP (Brazil)


    The High density high density fluids can be represented by a stiff matter state equation P={rho} and also by the Hagedorn state equation. The first is constructed using a lagrangian that allows bare nucleons to interact attractively via scalar meson exchange, and repulsively by a more massive vector meson exchange; the second consider that for large mass the spectrum of hadrons grows exponentially, namely {rho}(m) {approx}exp(m/T{sub H}), where T{sub H} is the Hagedorn temperature, resulting the state equation P = P{sub 0}+{rho}{sub 0}ln({rho}/{rho}{sub 0}). We study the gravitational collapse for a high density fluid, considering a Hagedorn state equation in a presence of a vacuum component.

  6. High density-high purity graphite prepared by hot isostatic pressing in refractory metal containers (United States)

    Hoenig, C.L.


    Porous graphite in solid form is hot isostatically pressed in a refractory metal container to produce a solid graphite monolith with a bulk density greater than or equal to 2.10 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed, chemically vapor deposited, or coated by some other suitable means onto graphite. Hot isostatic pressing at 2,200 C and 30 KSI (206.8 MPa) argon pressure for two hours produces a bulk density of 2.10 g/cc. Complex shapes can be made. 1 fig.

  7. A high parasite density environment induces transcriptional changes and cell death in Plasmodium falciparum blood stages. (United States)

    Chou, Evelyn S; Abidi, Sabia Z; Teye, Marian; Leliwa-Sytek, Aleksandra; Rask, Thomas S; Cobbold, Simon A; Tonkin-Hill, Gerry Q; Subramaniam, Krishanthi S; Sexton, Anna E; Creek, Darren J; Daily, Johanna P; Duffy, Michael F; Day, Karen P


    Transient regulation of Plasmodium numbers below the density that induces fever has been observed in chronic malaria infections in humans. This species transcending control cannot be explained by immunity alone. Using an in vitro system we have observed density dependent regulation of malaria population size as a mechanism to possibly explain these in vivo observations. Specifically, Plasmodium falciparum blood stages from a high but not low-density environment exhibited unique phenotypic changes during the late trophozoite (LT) and schizont stages of the intraerythrocytic cycle. These included in order of appearance: failure of schizonts to mature and merozoites to replicate, apoptotic-like morphological changes including shrinking, loss of mitochondrial membrane potential, and blebbing with eventual release of aberrant parasites from infected erythrocytes. This unique death phenotype was triggered in a stage-specific manner by sensing of a high-density culture environment. Conditions of glucose starvation, nutrient depletion, and high lactate could not induce the phenotype. A high-density culture environment induced rapid global changes in the parasite transcriptome including differential expression of genes involved in cell remodeling, clonal antigenic variation, metabolism, and cell death pathways including an apoptosis-associated metacaspase gene. This transcriptional profile was also characterized by concomitant expression of asexual and sexual stage-specific genes. The data show strong evidence to support our hypothesis that density sensing exists in P. falciparum. They indicate that an apoptotic-like mechanism may play a role in P. falciparum density regulation, which, as in yeast, has features quite distinguishable from mammalian apoptosis. Gene expression data are available in the GEO databases under the accession number GSE91188. © 2017 Federation of European Biochemical Societies.

  8. Formation of high-density Si nanodots by agglomeration of ultra-thin amorphous Si films

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Hiroki [Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)], E-mail:; Ueyama, Tomonori [Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Ikenaga, Eiji; Kobayashi, Keisuke [Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Sakai, Akira [Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Ogawa, Masaki [EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Zaima, Shigeaki [Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)


    High-density and similarly-sized Si nanodots were formed by annealing ultra-thin amorphous Si (a-Si) films deposited on SiO{sub 2}/Si substrates in vacuum. Dependences of density and diameter of the Si nanodots on the a-Si film thickness and, annealing temperature and time were investigated by scanning electron microscopy. It is found that drastic increase (decrease) in the density (diameter) occurred at an a-Si thickness of 1 nm. By agglomeration of sub-nanometer thick a-Si films, a density larger than 10{sup 12} cm{sup -2}, an average diameter smaller than 5 nm, and a dispersion of diameter less than 15% were achieved.

  9. Anodic Oxidation of Carbon Steel at High Current Densities and Investigation of Its Corrosion Behavior (United States)

    Fattah-Alhosseini, Arash; Khan, Hamid Yazdani


    This work aims at studying the influence of high current densities on the anodization of carbon steel. Anodic protective coatings were prepared on carbon steel at current densities of 100, 125, and 150 A/dm2 followed by a final heat treatment. Coatings microstructures and morphologies were analyzed using X-ray diffraction (XRD) and scanning electron microscope (SEM). The corrosion resistance of the uncoated carbon steel substrate and the anodic coatings were evaluated in 3.5 wt pct NaCl solution through electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements. The results showed that the anodic oxide coatings which were prepared at higher current densities had thicker coatings as a result of a higher anodic forming voltage. Therefore, the anodized coatings showed better anti-corrosion properties compared to those obtained at lower current densities and the base metal.

  10. Interfacial Tension and Surface Pressure of High Density Lipoprotein, Low Density Lipoprotein, and Related Lipid Droplets (United States)

    Ollila, O. H. Samuli; Lamberg, Antti; Lehtivaara, Maria; Koivuniemi, Artturi; Vattulainen, Ilpo


    Lipid droplets play a central role in energy storage and metabolism on a cellular scale. Their core is comprised of hydrophobic lipids covered by a surface region consisting of amphiphilic lipids and proteins. For example, high and low density lipoproteins (HDL and LDL, respectively) are essentially lipid droplets surrounded by specific proteins, their main function being to transport cholesterol. Interfacial tension and surface pressure of these particles are of great interest because they are related to the shape and the stability of the droplets and to protein adsorption at the interface. Here we use coarse-grained molecular-dynamics simulations to consider a number of related issues by calculating the interfacial tension in protein-free lipid droplets, and in HDL and LDL particles mimicking physiological conditions. First, our results suggest that the curvature dependence of interfacial tension becomes significant for particles with a radius of ∼5 nm, when the area per molecule in the surface region is tensions in the used HDL and LDL models are essentially unaffected by single apo-proteins at the surface. Finally, interfacial tensions of lipoproteins are higher than in thermodynamically stable droplets, suggesting that HDL and LDL are kinetically trapped into a metastable state. PMID:22995496

  11. The continuous high-precision measurement of the density of flowing blood. (United States)

    Kenner, T; Leopold, H; Hinghofer-Szalkay, H


    The "mechanical oscillator" technique for the measurement of the density of fluids is based on the influence of mass on the natural frequency of a mechanical oscillator. The practical application of this principle was worked out by Kratky et al. (1969) and Leopold (1970). It is demonstrated in this study that the method permits the continuous high-precision measurement of the density of flowing blood in anesthetized animals. The accuracy is 10(5) g/ml, the maximum sampling rate 20/min. As found in rabbits and cats during the control state, physiological blood density changes related to spontaneous blood pressure variations are up to 2-10(4) g/ml. The method can be combined with i.v. injections of isotonic and iso-oncotic solutions to determine cardiac output and blood volume on the basis of a "density dilution" principle. Since the density of the interstitial fluid is lower than that of blood, fluid shifts through the capillary walls can be detected. The effects of hypertonic glucose and of hyperoncotic dextran have been examined. Changes in the density of the arterial blood appear within 10 s after i.v. injection of these fluids. Similarly, density changes result from hemorrhage and reinfusion. During and after i.v. administration of vasoactive drugs (noradrenaline, angiotensin II, acetylcholine), marked transient changes in blood density are seen which obviously reflect the effects of fluid shifts through the capillary walls. During hemorrhagic hypotension we found periodic variations in the blood density synchronous with spontaneously occurring Mayer waves. The new method seems to be a promising tool for investigations physiological and pathological capillary fluid dynamics.

  12. Long-term observations of D-region electron densities at high and middle northern latitudes (United States)

    Singer, Werner; Keuer, Dieter; Friedrich, Martin; Strelnikova, Irina; Latteck, Ralph

    D-region electron densities are estimated using Doppler radars at frequencies around 3 MHz in Andenes, Norway (69.3°N, 16.0°E) since summer 2003 and in Juliusruh, Germany (54.6°N, 13.4°E) since summer 2006. Both experiments utilize partial reflections of ordinary and extraordinary component waves from scatterers in the altitude range 50-90 km to estimate electron number densities from differential absorption (DAE) and differential phase (DPE) measurements. Height profiles of electron density are obtained between about 55 km and 90 km with sampling times of 2-3 minutes and height resolution of 1.5 km at Andenes and 3 km at Juliusruh. The electron density profiles independently derived from DAE and DPE measurements agree remarkably well. The radar results are compared with co-located simultaneously measured electron densities by rocket-borne radio wave propagation experiments (differential absorption, Faraday rotation, and impedance probe) in Andenes with good agreement between insitu and ground-based measurements. The diurnal and seasonal variability of electron densities as observed at high and mid-latitudes under quiet ionospheric conditions is presented and compared to the corresponding electron density profiles of the International Reference Ionosphere. The response of D-region ionization to regular solar activity variation as well as to solar activity storms and geomagnetic disturbances has been studied at polar latitudes. Characteristic electron density variations are found during downwelling events of nitric oxide due to strong vertical coupling during stratospheric warming events. In addition, we discuss the inter-relation between D-region electron densities from radar observations, riometer absorption, and the empirical model IMAZ at different levels of solar activity and during particle precipitation events.

  13. Brewster angle reflection measurements of Hg density and laser deflection (Schlieren) measurements of Hg density gradients in an ultra-high pressure arc lamp (United States)

    Kane, J; Kato, M; Lawler, J E


    A Brewster angle reflection measurement is used to determine the Hg vapor density at the arc tube wall of an ultra-high pressure lamp. The density measurement in combination with the wall temperature yields a pressure of 201 ± 11 bar. This lamp pressure in combination with an arc core temperature measurement yields an arc core Hg vapor density of 1.78 × 1020 cm-3, which agrees with the density from resonance collisional line broadening measurements of the 1014 nm Hg line. These density results are combined with Abel inverted laser deflection or schlieren measurements to determine a density/temperature map of the Hg vapor in the lamp. The laser deflection technique is sensitive in the arc core and mantle, unlike emission techniques which are sensitive only in the arc core.

  14. Development of Advanced High Uranium Density Fuels for Light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, James [Univ. of Wisconsin, Madison, WI (United States); Butt, Darryl [Boise State Univ., ID (United States); Meyer, Mitchell [Idaho National Lab. (INL), Idaho Falls, ID (United States); Xu, Peng [Westinghouse Electric Corporation, Pittsburgh, PA (United States)


    This work conducts basic materials research (fabrication, radiation resistance, thermal conductivity, and corrosion response) on U3Si2 and UN, two high uranium density fuel forms that have a high potential for success as advanced light water reactor (LWR) fuels. The outcome of this proposed work will serve as the basis for the development of advance LWR fuels, and utilization of such fuel forms can lead to the optimization of the fuel performance related plant operating limits such as power density, power ramp rate and cycle length.

  15. Physics and applications of high energy density plasmas. Extreme state driven by pulsed electromagnetic energy

    Energy Technology Data Exchange (ETDEWEB)

    Horioka, Kazuhiko (ed.)


    The papers presented at the symposium on ''Physics and application of high energy density plasmas, held December 20-21, 2001 at NIFS'' are collected in this proceedings. The topics covered in the meeting include dense z-pinches, plasma focus, intense charged particle beams, intense radiation sources, discharge pumped X-ray lasers, their diagnostics, and applications of them. The papers reflect the present status and trends in the research field of high energy density plasmas. (author)

  16. High-Density Chemical Intercalation of Zero-Valent Copper into Bi 2 Se 3 Nanoribbons

    KAUST Repository

    Koski, Kristie J.


    A major goal of intercalation chemistry is to intercalate high densities of guest species without disrupting the host lattice. Many intercalant concentrations, however, are limited by the charge of the guest species. Here we have developed a general solution-based chemical method for intercalating extraordinarily high densities of zero-valent copper metal into layered Bi 2Se 3 nanoribbons. Up to 60 atom % copper (Cu 7.5Bi 2Se 3) can be intercalated with no disruption to the host lattice using a solution disproportionation redox reaction. © 2012 American Chemical Society.

  17. Interplay between spin polarization and color superconductivity in high density quark matter

    DEFF Research Database (Denmark)

    Tsue, Yasuhiko; da Providência, João; Providência, Constança


    Here, it is suggested that a four-point interaction of the tensor type may lead to spin polarization in quark matter at high density. It is found that the two-flavor superconducting phase and the spin polarized phase correspond to distinct local minima of a certain generalized thermodynamical...... potential. It follows that a transition from one to the other phase occurs, passing through true minima with both a spin polarization and a color superconducting gap. It is shown that the quark spin polarized phase is realized at rather high density, while the two-flavor color superconducting phase...

  18. Strongly Interacting Matter Matter at Very High Energy Density: 3 Lectures in Zakopane

    Energy Technology Data Exchange (ETDEWEB)

    McLerran, L.


    These lectures concern the properties of strongly interacting matter at very high energy density. I begin with the Color Glass Condensate and the Glasma, matter that controls the earliest times in hadronic collisions. I then describe the Quark Gluon Plasma, matter produced from the thermalized remnants of the Glasma. Finally, I describe high density baryonic matter, in particular Quarkyonic matter. The discussion will be intuitive and based on simple structural aspects of QCD. There will be some discussion of experimental tests of these ideas.

  19. Improving the circular economy via hydrothermal processing of high-density waste plastics

    DEFF Research Database (Denmark)

    Pedersen, Thomas Helmer; Conti, Federica


    Rising environmental concerns on climate changes are causing an increasing attention on circular economies. The plastic economy, in particular, is in focus due to the accelerating consumption of plastics, mainly derived from virgin feedstock, combined with the lack of plastic recycling strategies....... This work presents a novel outlook on the potential of using supercritical hydrothermal processing of waste plastic fractions for tertiary recycling. The study investigates hydrothermal processing of nine different, high-density types of plastics into original resin monomers and other value-added chemical...... processing of high-density plastics is a prospective technology for increasing the circularity of the plastic economy....

  20. Rapid inactivation of Penicillium digitatum spores using high-density nonequilibrium atmospheric pressure plasma (United States)

    Iseki, Sachiko; Ohta, Takayuki; Aomatsu, Akiyoshi; Ito, Masafumi; Kano, Hiroyuki; Higashijima, Yasuhiro; Hori, Masaru


    A promising, environmentally safe method for inactivating fungal spores of Penicillium digitatum, a difficult-to-inactivate food spoilage microorganism, was developed using a high-density nonequilibrium atmospheric pressure plasma (NEAPP). The NEAPP employing Ar gas had a high electron density on the order of 1015 cm-3. The spores were successfully and rapidly inactivated using the NEAPP, with a decimal reduction time in spores (D value) of 1.7 min. The contributions of ozone and UV radiation on the inactivation of the spores were evaluated and concluded to be not dominant, which was fundamentally different from the conventional sterilizations.

  1. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery (United States)

    Li, Bin; Nie, Zimin; Vijayakumar, M.; Li, Guosheng; Liu, Jun; Sprenkle, Vincent; Wang, Wei


    Redox flow batteries are receiving wide attention for electrochemical energy storage due to their unique architecture and advantages, but progress has so far been limited by their low energy density (~25 Wh l-1). Here we report a high-energy density aqueous zinc-polyiodide flow battery. Using the highly soluble iodide/triiodide redox couple, a discharge energy density of 167 Wh l-1 is demonstrated with a near-neutral 5.0 M ZnI2 electrolyte. Nuclear magnetic resonance study and density functional theory-based simulation along with flow test data indicate that the addition of an alcohol (ethanol) induces ligand formation between oxygen on the hydroxyl group and the zinc ions, which expands the stable electrolyte temperature window to from -20 to 50 °C, while ameliorating the zinc dendrite. With the high-energy density and its benign nature free from strong acids and corrosive components, zinc-polyiodide flow battery is a promising candidate for various energy storage applications.

  2. Reduce pests, enhance production: benefits of intercropping at high densities for okra farmers in Cameroon. (United States)

    Singh, Akanksha; Weisser, Wolfgang W; Hanna, Rachid; Houmgny, Raissa; Zytynska, Sharon E


    Intercropping can help reduce insect pest populations. However, the results of intercropping can be pest- and crop-species specific, with varying effects on crop yield, and pest suppression success. In Cameroon, okra vegetable is often grown in intercropped fields and sown with large distances between planting rows (∼ 2 m). Dominant okra pests include cotton aphids, leaf beetles and whiteflies. In a field experiment, we intercropped okra with maize and bean in different combinations (okra monoculture, okra-bean, okra-maize and okra-bean-maize) and altered plant densities (high and low) to test for the effects of diversity, crop identity and planting distances on okra pests, their predators and yield. We found crop identity and plant density, but not crop diversity to influence okra pests, their predators and okra yield. Only leaf beetles decreased okra yield and their abundance reduced at high plant density. Overall, okra grown with bean at high density was the most economically profitable combination. We suggest that when okra is grown at higher densities, legumes (e.g. beans) should be included as an additional crop. Intercropping with a leguminous crop can enhance nitrogen in the soil, benefiting other crops, while also being harvested and sold at market for additional profit. Manipulating planting distances and selecting plants based on their beneficial traits may thus help to eliminate yield gaps in sustainable agriculture. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. The impact of Hall physics on magnetized high energy density plasma jets

    Energy Technology Data Exchange (ETDEWEB)

    Gourdain, P.-A.; Seyler, C. E.; Atoyan, L.; Greenly, J. B.; Hammer, D. A.; Kusse, B. R.; Pikuz, S. A.; Potter, W. M.; Schrafel, P. C.; Shelkovenko, T. A. [Cornell University, Ithaca, New York 14853 (United States)


    Hall physics is often neglected in high energy density plasma jets due to the relatively high electron density of such jets (n{sub e} ∼ 10{sup 19} cm{sup −3}). However, the vacuum region surrounding the jet has much lower densities and is dominated by Hall electric field. This electric field redirects plasma flows towards or away from the axis, depending on the radial current direction. A resulting change in the jet density has been observed experimentally. Furthermore, if an axial field is applied on the jet, the Hall effect is enhanced and ignoring it leads to serious discrepancies between experimental results and numerical simulations. By combining high currents (∼1 MA) and magnetic field helicity (15° angle) in a pulsed power generator such as COBRA, plasma jets can be magnetized with a 10 T axial field. The resulting field enhances the impact of the Hall effect by altering the density profile of current-free plasma jets and the stability of current-carrying plasma jets (e.g., Z-pinches)

  4. Action potential generation requires a high sodium channel density in the axon initial segment. (United States)

    Kole, Maarten H P; Ilschner, Susanne U; Kampa, Björn M; Williams, Stephen R; Ruben, Peter C; Stuart, Greg J


    The axon initial segment (AIS) is a specialized region in neurons where action potentials are initiated. It is commonly assumed that this process requires a high density of voltage-gated sodium (Na(+)) channels. Paradoxically, the results of patch-clamp studies suggest that the Na(+) channel density at the AIS is similar to that at the soma and proximal dendrites. Here we provide data obtained by antibody staining, whole-cell voltage-clamp and Na(+) imaging, together with modeling, which indicate that the Na(+) channel density at the AIS of cortical pyramidal neurons is approximately 50 times that in the proximal dendrites. Anchoring of Na(+) channels to the cytoskeleton can explain this discrepancy, as disruption of the actin cytoskeleton increased the Na(+) current measured in patches from the AIS. Computational models required a high Na(+) channel density (approximately 2,500 pS microm(-2)) at the AIS to account for observations on action potential generation and backpropagation. In conclusion, action potential generation requires a high Na(+) channel density at the AIS, which is maintained by tight anchoring to the actin cytoskeleton.

  5. Tolosa-Hunt syndrome. A CT demonstration of a high-density lesion

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Kazuhiro; Muramoto, Masato; Chiba, Yasuhiro; Yagishita, Saburo


    CT scan studies of the Tolosa-Hunt syndrome have seldom been reported; positive abnormal findings are especially rare. A 36-year-old man suffered from steady, boring pain behind the left eye for one year. On admission he complained of diplopia on the right lateral gaze and hypesthesea of the first and second divisions of the left trigeminal nerve. A CT scan demonstrated a slightly high-density lesion, which was homogeneously enhanced, in the left cavernous portion and the superior orbital fissure. Carotid angiograms demonstrated no abnormal finding, and the cavernous sinus venography revealed no filling of the left cavernous sinus. A left front-temporal craniotomy was performed for the purpose of biopsy. A histological examination revealed non-specific focal granulomatous pachymeningitis. He responded dramatically to systemic steroid therapy, and he became pain-free by the fourth post-operative day. This diagnosis of the Tolosa-Hunt syndrome was confirmed both clinically and etiologically; however, the CT scan after the treatment demonstrated no definitive change in the lesion. The CT scan is useful for the diagnosis of this syndrome. Considering the stage of the illness, it is possible that the high-resolution CT scan can demonstrate this lesion with an advanced technique. The clinical diagnosis is almost easy, and surgical exploration is not always necessary if there is a prompt remission upon systemic steroid therapy. However, this syndrome should be differentiated from the other causes by appropriate examinations. Some cases similar to ours, especially suspected tumors, need surgical exploration because these angiographic findings are not specific.

  6. Enhanced xylose fermentation by engineered yeast expressing NADH oxidase through high cell density inoculums. (United States)

    Zhang, Guo-Chang; Turner, Timothy L; Jin, Yong-Su


    Accumulation of reduced byproducts such as glycerol and xylitol during xylose fermentation by engineered Saccharomyces cerevisiae hampers the economic production of biofuels and chemicals from cellulosic hydrolysates. In particular, engineered S. cerevisiae expressing NADPH-linked xylose reductase (XR) and NAD + -linked xylitol dehydrogenase (XDH) produces substantial amounts of the reduced byproducts under anaerobic conditions due to the cofactor difference of XR and XDH. While the additional expression of a water-forming NADH oxidase (NoxE) from Lactococcus lactis in engineered S. cerevisiae with the XR/XDH pathway led to reduced glycerol and xylitol production and increased ethanol yields from xylose, volumetric ethanol productivities by the engineered yeast decreased because of growth defects from the overexpression of noxE. In this study, we introduced noxE into an engineered yeast strain (SR8) exhibiting near-optimal xylose fermentation capacity. To overcome the growth defect caused by the overexpression of noxE, we used a high cell density inoculum for xylose fermentation by the SR8 expressing noxE. The resulting strain, SR8N, not only showed a higher ethanol yield and lower byproduct yields, but also exhibited a high ethanol productivity during xylose fermentation. As noxE overexpression elicits a negligible growth defect on glucose conditions, the beneficial effects of noxE overexpression were substantial when a mixture of glucose and xylose was used. Consumption of glucose led to rapid cell growth and therefore enhanced the subsequent xylose fermentation. As a result, the SR8N strain produced more ethanol and fewer byproducts from a mixture of glucose and xylose than the parental SR8 strain without noxE overexpression. Our results suggest that the growth defects from noxE overexpression can be overcome in the case of fermenting lignocellulose-derived sugars such as glucose and xylose.

  7. A 90 minute soccer match decreases triglyceride and low density lipoprotein but not high-density lipoprotein and cholesterol levels

    Directory of Open Access Journals (Sweden)

    Nader - Rahnama


    Full Text Available

    • BACKGROUND: The association between the lipid profiles level and the incidence and severity of coronary heart disease (CHD is very pronounced in epidemiological studies, and an inverse relation between physical fitness and the incidence of coronary heart disease has been observed in many studies. The aim of this study was to investigate the impact of a soccer match on lipid parameters of professional soccer players.
    • METHODS: Twenty two professional soccer players participated in the study. Blood (10ml for determination of lipid profiles was obtained at rest and immediately after a 90 minute soccer match. Lipid parameters were measured using Boehringer Mannheim kits and Clinilab and BioMerieux analyser.
    • RESULTS: The results of this study showed that the triglyceride was significantly higher before the match than afterwards (159.09 ± 58.2 vs. 88.63 ± 34.1 mg/dl, p < 0.001, whereas the low-density lipoprotein (LDL was lower before the match than after it (98.04 ± 28.9 vs. 112.31 ± 30.5 mg/dl. Moreover, there were no significant differences in cholesterol concentration (171.4 ± 30.28 mg/dl vs. 173.18 ± 32.75 mg/dl and high-density lipoprotein (HDL concentration (34.04 ± 5.58 mg/dl vs. 34.4 ± 4.6 mg/dl between before and after the match.
    • CONCLUSIONS: Although the soccer competitive match has no favourable acute effect on lipid

    • High endemism and stem density distinguish New Caledonian from other high-diversity rainforests in the Southwest Pacific. (United States)

      Ibanez, Thomas; Blanchard, E; Hequet, V; Keppel, G; Laidlaw, M; Pouteau, R; Vandrot, H; Birnbaum, P


      The biodiversity hotspot of New Caledonia is globally renowned for the diversity and endemism of its flora. New Caledonia's tropical rainforests have been reported to have higher stem densities, higher concentrations of relictual lineages and higher endemism than other rainforests. This study investigates whether these aspects differ in New Caledonian rainforests compared to other high-diversity rainforests in the Southwest Pacific. Plants (with a diameter at breast height ≥10 cm) were surveyed in nine 1-ha rainforest plots across the main island of New Caledonia and compared with 14 1-ha plots in high-diversity rainforests of the Southwest Pacific (in Australia, Fiji, Papua New Guinea and the Solomon Islands). This facilitated a comparison of stem densities, taxonomic composition and diversity, and species turnover among plots and countries. The study inventoried 11 280 stems belonging to 335 species (93 species ha-1 on average) in New Caledonia. In comparison with other rainforests in the Southwest Pacific, New Caledonian rainforests exhibited higher stem density (1253 stems ha-1 on average) including abundant palms and tree ferns, with the high abundance of the latter being unparalleled outside New Caledonia. In all plots, the density of relictual species was ≥10 % for both stems and species, with no discernible differences among countries. Species endemism, reaching 89 % on average, was significantly higher in New Caledonia. Overall, species turnover increased with geographical distance, but not among New Caledonian plots. High stem density, high endemism and a high abundance of tree ferns with stem diameters ≥10 cm are therefore unique characteristics of New Caledonian rainforests. High endemism and high spatial species turnover imply that the current system consisting of a few protected areas is inadequate, and that the spatial distribution of plant species needs to be considered to adequately protect the exceptional flora of New Caledonian rainforests.

    • High capacity and high density functional conductive polymer and SiO anode for high-energy lithium-ion batteries. (United States)

      Zhao, Hui; Yuca, Neslihan; Zheng, Ziyan; Fu, Yanbao; Battaglia, Vincent S; Abdelbast, Guerfi; Zaghib, Karim; Liu, Gao


      High capacity and high density functional conductive polymer binder/SiO electrodes are fabricated and calendered to various porosities. The effect of calendering is investigated in the reduction of thickness and porosity, as well as the increase of density. SiO particle size remains unchanged after calendering. When compressed to an appropriate density, an improved cycling performance and increased energy density are shown compared to the uncalendered electrode and overcalendered electrode. The calendered electrode has a high-density of ∼1.2 g/cm(3). A high loading electrode with an areal capacity of ∼3.5 mAh/cm(2) at a C/10 rate is achieved using functional conductive polymer binder and simple and effective calendering method.

    • High-Energy-Density Physics Fundamentals, Inertial Fusion, and Experimental Astrophysics

      CERN Document Server

      Drake, R. Paul; Horie, Yasuyuki


      The raw numbers of high-energy-density physics are amazing: shock waves at hundreds of km/s (approaching a million km per hour), temperatures of millions of degrees, and pressures that exceed 100 million atmospheres. This book introduces the reader to the fundamental tools and discoveries of high-energy-density physics. It surveys the production of high-energy-density conditions, the fundamental plasma and hydrodynamic models that can describe them and the problem of scaling from the laboratory to the cosmos. Connections to astrophysics are discussed throughout. The book is intended to support coursework in high-energy-density physics, to meet the needs of new researchers in this field, and also to serve as a useful reference on the fundamentals. Specifically the book has been designed to enable academics in physics, astrophysics, applied physics and engineering departments to provide in a single-course introduction to fluid mechanics and radiative transfer, with dramatic applications in the field of high-ene...

    • High Tap Density Li4Ti5O12 Microspheres: Synthetic Conditions and Advanced Electrochemical Performance

      KAUST Repository

      Ming, Jun


      Preparation of uniform spherical Li4Ti5O12 with high tap density is significant to achieve a high volumetric energy density in lithium-ion batteries. Herein, Li4Ti5O12 micro-spheres with variable tap-density and tunable size distribution were synthesized by a newly designed industrial spray drying approach. The slurry concentration, sintering time and sintering conditions after spray, the effect of Li/Ti molar ratio on the lithium ion (Li+) storage capability were investigated. A narrow particle size distribution around 10 μm and high tap-density close to 1.4 g cm-3 of the Li4Ti5O12 spheres can be obtained under the optimized conditions. The Li4Ti5O12 spheres can deliver much higher capacity of 168 mAh g-1 at 1 C-rate and show high capacity retention of 97.7% over 400 cycles. The synthetic conditions are confirmed to be critical for improving the electron conductivity and Li+ diffusivity by adjusting the crystal and spatial structures. As-prepared high performance Li4Ti5O12 is an ideal electrode for Li-ion batteries or capacitors; meanwhile the presented approach is also applicable for preparing other kind of spherical materials.

    • Evidence of low-density and high-density liquid phases and isochore end point for water confined to carbon nanotube

      National Research Council Canada - National Science Library

      Nomura, Kentaro; Kaneko, Toshihiro; Bai, Jaeil; Francisco, Joseph S; Yasuoka, Kenji; Zeng, Xiao Cheng


      Possible transition between two phases of supercooled liquid water, namely the low- and high-density liquid water, has been only predicted to occur below 230 K from molecular dynamics (MD) simulation...

    • Forming high-efficiency silicon solar cells using density-graded anti-reflection surfaces (United States)

      Yuan, Hao-Chih; Branz, Howard M.; Page, Matthew R.


      A method (50) is provided for processing a graded-density AR silicon surface (14) to provide effective surface passivation. The method (50) includes positioning a substrate or wafer (12) with a silicon surface (14) in a reaction or processing chamber (42). The silicon surface (14) has been processed (52) to be an AR surface with a density gradient or region of black silicon. The method (50) continues with heating (54) the chamber (42) to a high temperature for both doping and surface passivation. The method (50) includes forming (58), with a dopant-containing precursor in contact with the silicon surface (14) of the substrate (12), an emitter junction (16) proximate to the silicon surface (14) by doping the substrate (12). The method (50) further includes, while the chamber is maintained at the high or raised temperature, forming (62) a passivation layer (19) on the graded-density silicon anti-reflection surface (14).

    • Forming high efficiency silicon solar cells using density-graded anti-reflection surfaces (United States)

      Yuan, Hao-Chih; Branz, Howard M.; Page, Matthew R.


      A method (50) is provided for processing a graded-density AR silicon surface (14) to provide effective surface passivation. The method (50) includes positioning a substrate or wafer (12) with a silicon surface (14) in a reaction or processing chamber (42). The silicon surface (14) has been processed (52) to be an AR surface with a density gradient or region of black silicon. The method (50) continues with heating (54) the chamber (42) to a high temperature for both doping and surface passivation. The method (50) includes forming (58), with a dopant-containing precursor in contact with the silicon surface (14) of the substrate (12), an emitter junction (16) proximate to the silicon surface (14) by doping the substrate (12). The method (50) further includes, while the chamber is maintained at the high or raised temperature, forming (62) a passivation layer (19) on the graded-density silicon anti-reflection surface (14).

    • Turbulence at the transition to the high density H-mode in Wendelstein 7-AS plasmas

      DEFF Research Database (Denmark)

      Basse, N.P.; Zoletnik, S.; Baumel, S.


      Recently a new improved confinement regime was found in the Wendelstein 7-AS (W7-AS) stellarator (Renner H. et al 1989 Plasma Phys. Control. Fusion 31 1579). The discovery of this high density high confinement mode (HDH-mode) was facilitated by the installation of divertor modules. In this paper......, measurements of short wavelength density fluctuations in the HDH-mode using collective scattering of infrared light are presented. These measurements will be contrasted to fluctuations during normal confinement operation (NC-mode). The autopower spectra of the measurements show a consistent increase...... of the fluctuation level associated with the transition from NC- to HDH-mode. Correlation calculations on a 20 mus timescale between magnetic and density fluctuations lead to the result that the fluctuations are correlated in NC- but not in HDH-mode. Finally, a comparative analysis between the enhanced D-alpha H...

    • PRIVACY AS A CULTURAL VALUE WITHIN TRADITIONAL IRANIAN HOUSING: Lessons for Modern Iranian High Density Vertical Development Housing

      Directory of Open Access Journals (Sweden)

      Siyamak Nayyeri Fallah


      Full Text Available The role of value of privacy in shaping Iranian culture is vital. In contrary to modern middle-class Iranian high density vertical development housing, this cultural principle plays a great role in shaping spatial organization of Iranian traditional housing. The aim of this study is to establish a framework to improve spatial organization of modern Iranian high density vertical development (HDVD housing through lessons learnt from traditional Iranian housing. In this regard, to reach the aim through qualitative approach and case study strategy, this value of the Iranian traditional housing was investigated. The data collection methods to collect data from middle-class traditional and modern high-density vertical development (HDVD housing, were multiple tactics as direct observation, open-ended expert interview, semi-structured and focus group interviewing, taking photo, and plan layout. As conclude, it was reached that privacy as a principle governing all aspects of life has had deep impacts on spatial organization of traditional Iranian housing. Thus through using the spatial concept of privacy learnt from traditional Iranian housing can formulate recommendations to betterment spatial organization of middle-class modern Iranian HDVD housing.

    • Computer simulation of the creation of a transient, high-density plasma by convergent neutral beams

      Energy Technology Data Exchange (ETDEWEB)

      Eggens (Hartman), C.J.


      A computer simulation of the creation of a transient, high-density plasma by convergent neutral beams establishes a formalism through which accurate predictions of the geometrical convergence and the temporal bunching of neutral beams can be made as they proceed. Numerical studies of convergent neutral beams can be made as they proceed. Numerical studies of convergent neutral beams include calculation of number densities and the degree of ionization of the neutral distribution as the beams approach convergence. The calculations encompass both spherical and cylindrical geometries. The distribution functions obtained from a mathematical model are integrated numerically to obtain particle densities. Values of the ionization rate parameter anti sigma v/sub NN/ are similarly obtained using numerical fits to the neutral-neutral ionization cross-section data. Integration of the resulting ionization rate provides a first-order estimate of the ion density n/sub I/ as a function of space and time. A better calculation of n/sub I/ is then obtained by adding the second-order effects of neutral-ion collisions. It is thereby possible to determine whether the distribution will be significantly ionized before it has completely converged. Theory had suggested that temporal and spatial convergence of neutral beams would create a maximum density at the target center that would correspond to an enhancement of the initial beam densities by many orders of magnitude. Results of calculations confirm that the suggested technique could have important application in fusion power research.

    • Road density (United States)

      U.S. Environmental Protection Agency — Road density is generally highly correlated with amount of developed land cover. High road densities usually indicate high levels of ecological disturbance. More...

    • High density LHRF experiments in Alcator C-Mod and implications for reactor scale devices (United States)

      Baek, S. G.; Parker, R. R.; Bonoli, P. T.; Shiraiwa, S.; Wallace, G. M.; LaBombard, B.; Faust, I. C.; Porkolab, M.; Whyte, D. G.


      Parametric decay instabilities (PDI) appear to be an ubiquitous feature of lower hybrid current drive (LHCD) experiments at high density. In density ramp experiments in Alcator C-Mod and other machines the onset of PDI activity has been well correlated with a decrease in current drive efficiency and production of fast electron bremsstrahlung. However whether PDI is the primary cause of the ‘density limit’, and if so by exactly what mechanism (beyond the obvious one of pump depletion) has not been clearly established. In order to further understand the connection, the frequency spectrum of PDI activity occurring during Alcator C-Mod LHCD experiments has been explored in detail by means of a number of RF probes distributed around the periphery of the C-Mod tokamak including a probe imbedded in the inner wall. The results show that (i) the excited spectra consists mainly of a few discrete ion cyclotron (IC) quasi-modes, which have higher growth than the ion sound branch; (ii) PDI activity can begin either at the inner or outer wall, depending on magnetic configuration; (iii) the frequencies of the IC quasi-modes correspond to the magnetic field strength close to the low-field side (LFS) or high-field side separatrix; and (iv) although PDI activity may initiate near the inner separatrix, the loss in fast electron bremsstrahlung is best correlated with the appearance of IC quasi-modes characteristic of the magnetic field strength near the LFS separatrix. These data, supported by growth rate calculations, point to the importance of the LFS scrape-off layer (SOL) density in determining PDI onset and degradation in current drive efficiency. By minimizing the SOL density it is possible to extend the core density regime over which PDI can be avoided, thus potentially maximizing the effectiveness of LHCD at high density. Increased current drive efficiency at high density has been achieved in FTU and EAST through lithium coating and special fuelling methods, and in recent

    • [A study of bone density and lifestyles of high school girls]. (United States)

      Akisaka, M; Zakouji, H; Ariizumi, M


      To obtain basic data on the bone density of high school girls, the bone density of the right heel was measured in principle and their lifestyles were surveyed. The subjects were 142 girls (15-18 years, mean +/- SD = 16.5 +/- 0.8 years old) of a high school in Nagano Prefecture, who accepted our visiting bone health check. Bone density was measured with an 'Achilles' ultrasound bone-densitometer (Lunar Co.) and a self-registered questionnaire on their lifestyles was also employed in this study. The main results were as follows: 1. There were no significant correlations between Stiffness and, age, grade, bone fracture, family history, and regularity of menstruation. However, Stiffness significantly correlated to the age of menophania (r = -0.191, p = 0.002) 2. High school girls who belonged to a sports club had significantly higher bone density than other girls. Those who did-exercises which consist mainly of jumping, had significantly higher bone density than others who participated in running sports or did no exercise. There were also significant differences in the frequency of exercise and the duration of exercise. Moreover, those who had a regular exercise history had higher bone density than those who had no regular exercise history, and the mean Stiffness of the group that did exercises daily was higher than for those who did not. 3. There were no significant correlations between Stiffness and food intakes. There also were no significant difference for Stiffness concerning intake of calcium-containing food groups. Regarding the cause of weight loss of more than 2 kg/month, the mean Stiffness of the group with intense exercise was significantly higher than those in the no-weigh loss group and the group that had reduced dietary intake. 4. Regarding the relationships between bone density and the lifestyles of high school girls, a delayed age of menophania had a significantly decreasing effect on Stiffness, whereas three variables of regular exercise habits at

  1. High nymphal host density and mortality negatively impact parasitoid complex during an insect herbivore outbreak. (United States)

    Hall, Aidan A G; Johnson, Scott N; Cook, James M; Riegler, Markus


    Insect herbivore outbreaks frequently occur and this may be due to factors that restrict top-down control by parasitoids, for example, host-parasitoid asynchrony, hyperparasitization, resource limitation and climate. Few studies have examined host-parasitoid density relationships during an insect herbivore outbreak in a natural ecosystem with diverse parasitoids. We studied parasitization patterns of Cardiaspina psyllids during an outbreak in a Eucalyptus woodland. First, we established the trophic roles of the parasitoids through a species-specific multiplex PCR approach on mummies from which parasitoids emerged. Then, we assessed host-parasitoid density relationships across three spatial scales (leaf, tree and site) over one year. We detected four endoparasitoid species of the family Encyrtidae (Hymenoptera); two primary parasitoid and one heteronomous hyperparasitoid Psyllaephagus species (the latter with female development as a primary parasitoid and male development as a hyperparasitoid), and the hyperparasitoid Coccidoctonus psyllae. Parasitoid development was host-synchronized, although synchrony between sites appeared constrained during winter (due to temperature differences). Parasitization was predominantly driven by one primary parasitoid species and was mostly inversely host-density dependent across the spatial scales. Hyperparasitization by C. psyllae was psyllid-density dependent at the site scale, however, this only impacted the rarer primary parasitoid. High larval parasitoid mortality due to density-dependent nymphal psyllid mortality (a consequence of resource limitation) compounded by a summer heat wave was incorporated in the assessment and resulted in density independence of host-parasitoid relationships. As such, high larval parasitoid mortality during insect herbivore outbreaks may contribute to the absence of host density-dependent parasitization during outbreak events. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  2. Effect of electrolysis parameters on the morphologies of copper powder obtained at high current densities

    Directory of Open Access Journals (Sweden)

    Orhan Gökhan


    Full Text Available The effects of copper ion concentrations and electrolyte temperature on the morphologies and on the apparent densities of electrolytic copper powders at high current densities under galvanostatic regime were examined. These parameters were evaluated by the current efficiency of hydrogen evolution. In addition, scanning electron microscopy was used for analyzing the morphology of the copper powders. It was found that the morphology was dependent over the copper ion concentration and electrolyte temperature under same current density (CD conditions. At 150 mA cm-2 and the potential of 1000±20 mV (vs. SCE, porous and disperse copper powders were obtained at low concentrations of Cu ions (0.120 M Cu2+ in 0.50 M H2SO4. Under this condition, high rate of hydrogen evolution reaction took place parallel to copper electrodeposition. The morphology was changed from porous, disperse and cauliflower-like to coral-like, shrub-like and stalk-stock like morphology with the increasing of Cu ion concentrations towards 0.120 M, 0.155 M, 0.315 M, 0.475 M and 0.630 M Cu2+ in 0.5 M H2SO4 respectively at the same CD. Similarly, as the temperature was increased, powder morphology and apparent density were observed to be changed. The apparent density values of copper powders were found to be suitable for many of the powder metallurgy applications.

  3. Analysis of the weld strength of the High Density Polyethylene (HDPE)

    African Journals Online (AJOL)

    An analysis was carried out to determine the strength of welded joints in High Density Polyethylene (HDPE) dam liners. Samples were collected of welded joints and subjected to tensile tests and creep test. It was observed that the welded joints from field welded samples were much weaker and had a very low straining ...

  4. Revealing structural and dynamical properties of high density lipoproteins through molecular simulations

    DEFF Research Database (Denmark)

    Koivuniemi, A.; Vattulainen, I.


    The structure and function of high density lipoprotein (HDL) particles have intrigued the scientific community for decades because of their crucial preventive role in coronary heart disease. However, it has been a taunting task to reveal the precise molecular structure and dynamics of HDL. Further...

  5. Assessing the feasibility of high-density subsurface heat extraction in urban areas (United States)

    Abesser, Corinna; Busby, Jonathan


    The subsurface is increasingly utilized as a heat source (sink) for use in heating (and cooling) applications. This is driven by the need to increase the amount of heat generated from renewable sources to meet the EU renewable energy target of 12% by 2020. This study explores the feasibility, performance and long-term sustainability of high density, closed-loop GSHP installations in urban areas. Specifically, it employs a 2D, finite element, heat transport model to assess the impact of high density heat extraction in a residential area in Reading. A block of semi-detached houses is modelled, assuming that separate GSHP systems are installed in every property. The model considers conductive and advective heat transport. Uncertainties are explored through varying thermal properties and groundwater gradients across the site. Different heat demand scenarios are evaluated and the impact on the subsurface temperature distribution and on heat pump efficiency is assessed. The scenarios are selected to represent variations in inter-annual weather pattern, heating pattern and building insulation standards. Results indicate that high density heat extraction for domestic heating can be sustainable over the lifespan expected for GSHP systems (of around 20 years), in particular where heat demand is reduced by home improvement measures. Based on the results, recommendations are being presented for the sustainable deployment of high density GSHP installation in urban areas.

  6. High-density surface electromyography improves the identification of oscillatory synaptic inputs to motor neurons

    NARCIS (Netherlands)

    van de Steeg, C.; Daffertshofer, A.; Stegeman, D.F.; Boonstra, T.W.


    Many studies have addressed corticomuscular coherence (CMC), but broad applications are limited by low coherence values and the variability across subjects and recordings. Here, we investigated how the use of high-density surface electromyography (HDsEMG) can improve the detection of CMC. Sixteen

  7. High-density surface electromyography improves the identification of oscillatory synaptic inputs to motoneurons

    NARCIS (Netherlands)

    Steeg, C.V.; Daffertshofer, A.; Stegeman, D.F.; Boonstra, T.W.


    Many studies have addressed corticomuscular coherence (CMC), but broad applications are limited by low coherence values and the variability across subjects and recordings. Here, we investigated how the use of high-density surface electromyography (HDsEMG) can improve the detection of CMC. Sixteen

  8. Magnetic force microscopy of thin film media for high density magnetic recording

    NARCIS (Netherlands)

    Porthun, Steffen; Porthun, S.; Abelmann, Leon; Lodder, J.C.


    This paper discusses various aspect of magnetic force microscopy (MFM) for use in the field of high density magnetic recording. After an introduction of the most important magnetic imaging techniques, an overview is given of the operation and theory of MFM. The developments in instrumentation, MFM

  9. The Effects of Interspersal Training versus High-Density Reinforcement on Spelling Acquisition and Retention. (United States)

    Neef, Nancy A.; And Others


    The study investigated the effects of interspersing known items during spelling instruction on new words for three moderately to severely mentally retarded male students (ages 19 to 24). Results showed that high density reinforcement did facilitate performance over baseline; however, interspersal training was superior to the other conditions in…

  10. The HDL hypothesis : does high-density lipoprotein protect from atherosclerosis?

    NARCIS (Netherlands)

    Vergeer, Menno; Holleboom, Adriaan G; Kastelein, John J P; Kuivenhoven, Jan Albert

    There is unequivocal evidence of an inverse association between plasma high-density lipoprotein (HDL) cholesterol concentrations and the risk of cardiovascular disease, a finding that has led to the hypothesis that HDL protects from atherosclerosis. This review details the experimental evidence for

  11. The HDL hypothesis: does high-density lipoprotein protect from atherosclerosis?

    NARCIS (Netherlands)

    Vergeer, Menno; Holleboom, Adriaan G.; Kastelein, John J. P.; Kuivenhoven, Jan Albert


    There is unequivocal evidence of an inverse association between plasma high-density lipoprotein (HDL) cholesterol concentrations and the risk of cardiovascular disease, a finding that has led to the hypothesis that HDL protects from atherosclerosis. This review details the experimental evidence for

  12. Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency

    NARCIS (Netherlands)

    Brooks-Wilson, A.; Marcil, M.; Clee, S. M.; Zhang, L. H.; Roomp, K.; van Dam, M.; Yu, L.; Brewer, C.; Collins, J. A.; Molhuizen, H. O.; Loubser, O.; Ouelette, B. F.; Fichter, K.; Ashbourne-Excoffon, K. J.; Sensen, C. W.; Scherer, S.; Mott, S.; Denis, M.; Martindale, D.; Frohlich, J.; Morgan, K.; Koop, B.; Pimstone, S.; Kastelein, J. J.; Genest, J.; Hayden, M. R.


    Genes have a major role in the control of high-density lipoprotein (HDL) cholesterol (HDL-C) levels. Here we have identified two Tangier disease (TD) families, confirmed 9q31 linkage and refined the disease locus to a limited genomic region containing the gene encoding the ATP-binding cassette

  13. Measurement of neutrino oscillations by means of a high density detector on the atmospheric neutrino beam

    CERN Document Server

    Aglietta, M; Aprile, E; Bologna, G; Bonesini, M; Bencivenni, G; Calvi, M; Castellina, A; Curioni, A; Fulgione, W; Ghia, P L; Gustavino, C; Kokoulin, R P; Mannocchi, G; Murtas, F; Murtas, G P; Negri, P; Paganoni, M; Periale, L; Petrukhin, A A; Picchi, P; Pullia, Antonio; Ragazzi, S; Redaelli, N G; Satta, L; Tabarelli de Fatis, T; Terranova, F; Tonazzo, A; Trinchero, G C; Vallania, P; Villone, B


    A high-density calorimeter, consisting of magnetized iron planes interleaved by RPCs, as tracking and timing devices, is a good candidate for a next generation experiment on atmospheric neutrinos. With 34 kt of mass and in four years of data taking, this experiment will be sensitive to $\

  14. Effect of resin variables on the creep behavior of high density hardwood composite panels (United States)

    R.C. Tang; Jianhua Pu; C.Y Hse


    The flexural creep behavior of oriented strandboards (OSB) fabricated with mixed high, density hardwood flakes was investigated. Three types of adhesives, liquid phenolic-formaldehyde (LPF), melamine modified urea-formaldehyde (MUF), and LPF (face)/MUF (core) were chosen in this investigation. The resin contents (RC) used were 3.5 percent and 5.0 percent. The flakes...

  15. A High-Density Map for Navigating the Human Polycomb Complexome

    DEFF Research Database (Denmark)

    Hauri, Simon; Comoglio, Federico; Seimiya, Makiko


    Polycomb group (PcG) proteins are major determinants of gene silencing and epigenetic memory in higher eukaryotes. Here, we systematically mapped the human PcG complexome using a robust affinity purification mass spectrometry approach. Our high-density protein interaction network uncovered...

  16. Plasma modification of sisal and high-density polyethylene composites : effect on mechanical properties (United States)

    A.R. Martin; S. Manolache; L.H.C. Mattoso; R.M. Rowell; F. Denes


    Sisal fibers and finely powdered high-density polyethylene were surface functionalized using dichlorosilane (DS) under R-F plasma conditions to improve interfacial adhesion between the two dissimilar substrates. The functionalized polyethylene (70%) and sisal (30%) were compounded on four different ways using thermokinetic mixer and injected molded into composites...

  17. Thermographic determination of the sheath heat transmission coefficient in a high density plasma

    NARCIS (Netherlands)

    van den Berg, M. A.; Bystrov, K.; Pasquet, R.; Zielinski, J. J.; De Temmerman, G.


    Experiments were performed in the Pilot-PSI linear plasma device, to determine the sheath heat transmission coefficients in a high recycling regime under various conditions of density (1–20 × 1020 m−3) and plasma composition (H2, Ar, N2) relevant for the

  18. High-density cultivation of Lactobacillus plantarum NCU116 in an ...

    African Journals Online (AJOL)

    In this study, we reported a simple fedbatch process for Lactobacillus plantarum NCU116 with high cell density. It was found that the optimum initial glucose concentration for this strain was 5% (w/v). To reduce the effect of acid and starvation, the exponential fed-batch culture and ammonium fed-batch system were ...

  19. Increased Antioxidant Quality Versus Lower Quantity Of High Density Lipoprotein In Benign Prostatic Hyperplasia

    Directory of Open Access Journals (Sweden)

    Aydin Ozgur


    Full Text Available Background: Oxidative stress may be involved in the pathogenesis of every human disease. To understand its possible role in benign prostatic hyperplasia (BPH, we measured the overall oxidative status of patients with BPH and the serum activity of the high density lipoprotein (HDL-related antioxidant enzymes paraoxonase 1 (PON1 and arylesterase (ARE.

  20. Changes in labial capillary density on ascent to and descent from high altitude

    NARCIS (Netherlands)

    Gilbert-Kawai, Edward; Coppel, Jonny; Phillip, Hennis; Grocott, Michael; Ince, Can; Martin, Daniel


    Present knowledge of how the microcirculation is altered by prolonged exposure to hypoxia at high altitude is incomplete and modification of existing analytical techniques may improve our knowledge considerably. We set out to use a novel simplified method of measuring in vivo capillary density

  1. Residual gas entering high density hydrogen plasma: rarefaction due to rapid heating

    NARCIS (Netherlands)

    N. den Harder,; D.C. Schram,; W. J. Goedheer,; de Blank, H. J.; M. C. M. van de Sanden,; van Rooij, G. J.


    The interaction of background molecular hydrogen with magnetized (0.4 T) high density (1–5 × 10 20  m −3 ) low temperature (∼3 eV) hydrogen plasma was inferred from the Fulcher band emission in the linear plasma generator Pilot-PSI. In the plasma center,

  2. Highly Shocked Low Density Sedimentary Rocks from the Haughton Impact Structure, Devon Island, Nunavut, Canada (United States)

    Osinski, G. R.; Spray, J. G.


    We present the preliminary results of a detailed investigation of the shock effects in highly shocked, low density sedimentary rocks from the Haughton impact structure. We suggest that some textural features can be explained by carbonate-silicate immiscibility. Additional information is contained in the original extended abstract.

  3. Peripapillary vessel density and the relevant factors in highly myopic eyes with peripapillary intrachoroidal cavitation

    Directory of Open Access Journals (Sweden)

    Qiu-Ying Chen


    Full Text Available AIM:To investigate peripapillary vessel density and its relationship with other ocular parameters in highly myopic eyes with peripapillary intrachoroidal cavitation(PICC, and to analyze risk factors for PICC.METHODS:Cross-sectional study. A total of 35 highly myopic eyes with PICC, 40 highly myopic eyes without PICC and 35 normal eyes were included in this study. All participants underwent fundus photography and spectral-domain optical coherence tomography(SD-OCT. OCT angiography was also performed to image the retinal vasculature in the peripapillary areas of different sectors, including the radial peripapillary capillaries(RPCand optic nerve head(ONHlayer. The difference of morphology changes in optic disc and peripapillary vessel density between these three groups were compared. Correlations between peripapillary vessel density and PICC and risk factors for the presence of PICC were analyzed.RESULTS: Significant differences were found among the three groups in spherical equivalent refraction(SER, best-corrected visual acuity(BCVA, axial length, peripapillary atrophy β-zone(β-PPAarea, retinal nerve fiber layer(RNFLthickness and the presence of tilted optic disc, posterior staphyloma and myopic maculopathy(MMD(PPPOR=8.007, 95%CI: 2.045-31.348; OR=7.558, 95%CI: 1.398-50.026.CONCLUSION:Highly myopic eyes with PICC had relatively lower peripapillary vessel densities, especially in the temporal area, than those without. Tilted optic disc and posterior staphyloma were independent risk factors for the presence of PICC.

  4. Large adaptive deformable membrane mirror with high actuator density: design and first prototypes

    NARCIS (Netherlands)

    Hamelinck, R.; Rosielle, N.; Steinbuch, M.; Doelman, N.J.


    A large adaptive deformable mirror with high actuator density is presented. The DM consists of a thin continuous membrane which acts as the correcting element. A grid of low voltage electro-magnetical push-pull actuators, - located in an actuator plate -, impose out-of-plane displacements in the

  5. [Effects of high-strip density anti-scatter grid on image quality and radiation dose]. (United States)

    Wamser, G; Maier, W; Aichinger, H; Bohndorf, K


    Using a new type of a stationary high strip density grid (13/75) for plain films of the abdomen, the effect was evaluated with regard to quality and patient dose in comparison with an established moving radiographic grid (12/40). The high strip density grid (13/75) was compared with a 12/40 grid using test objects and 100 patients per each grid type for plain films of the abdomen. The examinations were carried out via the screen-film system, speed class (SC) 400. Patients' weight, age and dose measurements were recorded. The image quality was evaluated via a multi-reader study using delineation of anatomical structures and a rating scale (score 1-5 or 1-3). Both measurements with test objects and patients abdominal plain films showed a decrease in radiation dose of 17% using the 13/75 grid, and 24%, respectively. The delineation of 4 out of 7 anatomical structures was slightly reduced with the new high strip density grid (maximum score reduction: 0.4), the image contrast, as well as the radiologists' subjective rating. Apart from an acceptable loss in image quality compared with the 12/40 grid, the new high strip density grid (13/ 75) enables a clear reduction in radiation dose.

  6. The constraints of high density production of the calanoid copepod Acartia tonsa Dana

    DEFF Research Database (Denmark)

    Vu, Minh T. T.; Hansen, Benni W.; Kiørboe, Thomas


    Copepods are excellent live feed for marine fish larvae in aquaculture. Culturing copepods at high density is important to increase the total egg yield, but this is still a main challenge. To address this, we conducted experiments to test factors affecting the egg harvest potential of the well...

  7. Properties of high density polyethylene – Paulownia wood flour composites via injection molding (United States)

    Paulownia wood (PW) flour is evaluated as a bio-based fiber reinforcement. Composites of high density polyethylene (HDPE), 25% by weight of PW, and either 0% or 5% by weight of maleated polyethylene (MAPE) were produced by twin screw compounding followed by injection molding. Molded test composite...

  8. Functional mapping of the pelvic floor and sphincter muscles from high-density surface EMG recordings. (United States)

    Peng, Yun; He, Jinbao; Khavari, Rose; Boone, Timothy B; Zhang, Yingchun


    Knowledge of the innervation of pelvic floor and sphincter muscles is of great importance to understanding the pathophysiology of female pelvic floor dysfunctions. This report presents our high-density intravaginal and intrarectal electromyography (EMG) probes and a comprehensive innervation zone (IZ) imaging technique based on high-density EMG readings to characterize the IZ distribution. Both intravaginal and intrarectal probes are covered with a high-density surface electromyography electrode grid (8 × 8). Surface EMG signals were acquired in ten healthy women performing maximum voluntary contractions of their pelvic floor. EMG decomposition was performed to separate motor-unit action potentials (MUAPs) and then localize their IZs. High-density surface EMG signals were successfully acquired over the vaginal and rectal surfaces. The propagation patterns of muscle activity were clearly visualized for multiple muscle groups of the pelvic floor and anal sphincter. During each contraction, up to 218 and 456 repetitions of motor units were detected by the vaginal and rectal probes, respectively. MUAPs were separated with their IZs identified at various orientations and depths. The proposed probes are capable of providing a comprehensive mapping of IZs of the pelvic floor and sphincter muscles. They can be employed as diagnostic and preventative tools in clinical practices.

  9. Plasma detachment study of high density helium plasmas in the Pilot-PSI device

    NARCIS (Netherlands)

    Hayashi, Y.; Jesko, K.; van der Meiden, H. J.; Vernimmen, J. W. M.; Morgan, T. W.; Ohno, N.; Kajita, S.; Yoshikawa, M.; Masuzaki, S.


    We have investigated plasma detachment phenomena of high-density helium plasmas in the linear plasma device Pilot-PSI, which can realize a relevant ITER SOL/Divertor plasma condition. The experiment clearly indicated plasma detachment features such as drops in the plasma pressure and particle flux

  10. Properties Of 10 Ghanaian High Density Lesser-Used-Species Of ...

    African Journals Online (AJOL)

    Sixty trees of ten high density Lesser Used Species (LUS) of potential importance to bridge construction were extracted from four forest reserves - Bobiri, Pra-Anum, Nueng, and Subri River (in four different ecological zones). Logs from the trees were converted on a horizontal bandmill to 27 and 53 mm thick boards.

  11. How Well Does BODIPY-Cholesteryl Ester Mimic Unlabeled Cholesteryl Esters in High Density Lipoprotein Particles?

    DEFF Research Database (Denmark)

    Karilainen, Topi; Vuorela, Timo; Vattulainen, Ilpo


    We compare the behavior of unlabeled and BODIPY-labeled cholesteryl ester (CE) in high density lipoprotein by atomistic molecular dynamics simulations. We find through replica exchange umbrella sampling and unbiased molecular dynamics simulations that BODIPY labeling has no significant effect...

  12. Action potential generation requires a high sodium channel density in the axon initial segment

    NARCIS (Netherlands)

    Kole, Maarten H. P.; Ilschner, Susanne U.; Kampa, Björn M.; Williams, Stephen R.; Ruben, Peter C.; Stuart, Greg J.


    The axon initial segment ( AIS) is a specialized region in neurons where action potentials are initiated. It is commonly assumed that this process requires a high density of voltage-gated sodium ( Na(+)) channels. Paradoxically, the results of patch-clamp studies suggest that the Na(+) channel

  13. Spin polarization versus color–flavor locking in high-density quark matter

    DEFF Research Database (Denmark)

    Tsue, Yasuhiko; da Providência, João; Providência, Constança


    It is shown that spin polarization with respect to each flavor in three-flavor quark matter occurs instead of color–flavor locking at high baryon density by using the Nambu–Jona-Lasinio model with four-point tensor-type interaction. Also, it is indicated that the order of phase transition between...

  14. Clinical applications of high-density surface EMG: a systematic review.

    NARCIS (Netherlands)

    Drost, G.; Stegeman, D.F.; Engelen, B.G.M. van; Zwarts, M.J.


    High density-surface EMG (HD-sEMG) is a non-invasive technique to measure electrical muscle activity with multiple (more than two) closely spaced electrodes overlying a restricted area of the skin. Besides temporal activity HD-sEMG also allows spatial EMG activity to be recorded, thus expanding the

  15. Clinical applications of high-density surface EMG: A systematic review

    NARCIS (Netherlands)

    Drost, G; Stegeman, D.F.; van Engelen, B.G.M.; Smeitink, J.A.M.; Rodenburg, J.A.; Hol, F.A.


    High density-surface EMG (HD-sEMG) is a non-invasive technique to measure electrical muscle activity with multiple (more than two) closely spaced electrodes overlying a restricted area of the skin. Besides temporal activity HD-sEMG also allows spatial EMG activity to be recorded, thus expanding the

  16. Graphene/graphite sheet assisted growth of high-areal-density horizontally aligned carbon nanotubes. (United States)

    Xie, Huanhuan; Zhang, Rufan; Zhang, Yingying; Zhang, Wenlin; Jian, Muqiang; Wang, Chunya; Wang, Qi; Wei, Fei


    We report a facile graphene/graphite sheet assisted CVD process for the synthesis of high-areal-density HACNT arrays. Besides, some metal nanoparticles could eat the graphene/graphite sheets, forming serpentine holes on the sheets in the early stage, and finally leading to the precipitation of CNTs without an additional carbon source.

  17. Does high-density stocking affect perennial forbs in mesic grassland ...

    African Journals Online (AJOL)

    Livestock production is an appropriate land use for mainstreaming biodiversity conservation, but little is known about the impact of grazing strategies on forbs that contribute most species, in grasslands. This study compared the effects of high-density, short-duration stocking (HDG) with no grazing (control) on vegetation ...

  18. High Packing Density Unidirectional Arrays of Vertically Aligned Graphene with Enhanced Areal Capacitance for High-Power Micro-Supercapacitors. (United States)

    Zheng, Shuanghao; Li, Zhilin; Wu, Zhong-Shuai; Dong, Yanfeng; Zhou, Feng; Wang, Sen; Fu, Qiang; Sun, Chenglin; Guo, Liwei; Bao, Xinhe


    Interfacial integration of a shape-engineered electrode with a strongly bonded current collector is the key for minimizing both ionic and electronic resistance and then developing high-power supercapacitors. Herein, we demonstrated the construction of high-power micro-supercapacitors (VG-MSCs) based on high-density unidirectional arrays of vertically aligned graphene (VG) nanosheets, derived from a thermally decomposed SiC substrate. The as-grown VG arrays showed a standing basal plane orientation grown on a (0001̅) SiC substrate, tailored thickness (3.5-28 μm), high-density structurally ordering alignment of graphene consisting of 1-5 layers, vertically oriented edges, open intersheet channels, high electrical conductivity (192 S cm(-1)), and strong bonding of the VG edges to the SiC substrate. As a result, the demonstrated VG-MSCs displayed a high areal capacitance of ∼7.3 mF cm(-2) and a fast frequency response with a short time constant of 9 ms. Furthermore, VG-MSCs in both an aqueous polymer gel electrolyte and nonaqueous ionic liquid of 1-ethyl-3-methylimidazolium tetrafluoroborate operated well at high scan rates of up to 200 V s(-1). More importantly, VG-MSCs offered a high power density of ∼15 W cm(-3) in gel electrolyte and ∼61 W cm(-3) in ionic liquid. Therefore, this strategy of producing high-density unidirectional VG nanosheets directly bonded on a SiC current collector demonstrated the feasibility of manufacturing high-power compact supercapacitors.

  19. High-energy gas fracturing in cased and perforated wellbores

    Energy Technology Data Exchange (ETDEWEB)

    Cuderman, J.F.


    A propellant-based technology, High-Energy Gas Fracturing (HEGF), has been applied to fracturing through perforations in cased boreholes. HEGF is a tailored-pulse fracturing technique originally developed by Sandia National Laboratories for application in uncased, liquid-free gas wells in Appalachian Devonian shales. Because most oil and gas wells are liquid filled as well as cased and perforated, the potential impact of present research is significantly broader. A number of commercial tailored-pulse fracturing services, using a variety of explosives or propellants, are currently available. Present research provides valuable insight into phenomena that occur in those stimulations. The use of propellants that deflagrate or burn rather than detonate, as do high-order explosives, permits controlled buildup of pressure in the wellbore. The key to successful stimulation in cased and perforated wellbores is to control the pressure buildup of the combustion gases to maximize fracturing without destroying the casing. Eight experiments using cased and perforated wellbore were conducted in a tunnel complex at the Department of Energy's Nevada Test Site, which provides a realistic in situ stress environment (4 to 10 MPa (600 to 1500 psi)) and provides access for mineback to directly observe fracturing obtained. Primary variables in the experiments include propellant burn rate and amount of propellant used, presence or absence of liquid in the wellbore, in situ stress orientation, and perforation diameter, density, and phasing. In general, the presence of liquid in the borehole results in a much faster pressure risetime and a lower peak pressure for the same propellant charge. Fracture surfaces proceed outward along lines of perforations as determined by phasing, then gradually turn toward the hydraulic fracture direction. 8 refs., 23 figs., 3 tabs.

  20. Enzyme controlled glucose auto-delivery for high cell density cultivations in microplates and shake flasks

    Directory of Open Access Journals (Sweden)

    Casteleijn Marco G


    Full Text Available Abstract Background Here we describe a novel cultivation method, called EnBase™, or enzyme-based-substrate-delivery, for the growth of microorganisms in millilitre and sub-millilitre scale which yields 5 to 20 times higher cell densities compared to standard methods. The novel method can be directly applied in microwell plates and shake flasks without any requirements for additional sensors or liquid supply systems. EnBase is therefore readily applicable for many high throughput applications, such as DNA production for genome sequencing, optimisation of protein expression, production of proteins for structural genomics, bioprocess development, and screening of enzyme and metagenomic libraries. Results High cell densities with EnBase are obtained by applying the concept of glucose-limited fed-batch cultivation which is commonly used in industrial processes. The major difference of the novel method is that no external glucose feed is required, but glucose is released into the growth medium by enzymatic degradation of starch. To cope with the high levels of starch necessary for high cell density cultivation, starch is supplied to the growing culture suspension by continuous diffusion from a storage gel. Our results show that the controlled enzyme-based supply of glucose allows a glucose-limited growth to high cell densities of OD600 = 20 to 30 (corresponding to 6 to 9 g l-1 cell dry weight without the external feed of additional compounds in shake flasks and 96-well plates. The final cell density can be further increased by addition of extra nitrogen during the cultivation. Production of a heterologous triosphosphate isomerase in E. coli BL21(DE3 resulted in 10 times higher volumetric product yield and a higher ratio of soluble to insoluble product when compared to the conventional production method. Conclusion The novel EnBase method is robust and simple-to-apply for high cell density cultivation in shake flasks and microwell plates. The

  1. Giardia Colonizes and Encysts in High-Density Foci in the Murine Small Intestine (United States)

    Barash, N. R.; Nosala, C.; Pham, J. K.; McInally, S. G.; Gourguechon, S.; McCarthy-Sinclair, B.


    ABSTRACT Giardia lamblia is a highly prevalent yet understudied protistan parasite causing significant diarrheal disease worldwide. Hosts ingest Giardia cysts from contaminated sources. In the gastrointestinal tract, cysts excyst to become motile trophozoites, colonizing and attaching to the gut epithelium. Trophozoites later differentiate into infectious cysts that are excreted and contaminate the environment. Due to the limited accessibility of the gut, the temporospatial dynamics of giardiasis in the host are largely inferred from laboratory culture and thus may not mirror Giardia physiology in the host. Here, we have developed bioluminescent imaging (BLI) to directly interrogate and quantify the in vivo temporospatial dynamics of Giardia infection, thereby providing an improved murine model to evaluate anti-Giardia drugs. Using BLI, we determined that parasites primarily colonize the proximal small intestine nonuniformly in high-density foci. By imaging encystation-specific bioreporters, we show that encystation initiates shortly after inoculation and continues throughout the duration of infection. Encystation also initiates in high-density foci in the proximal small intestine, and high density contributes to the initiation of encystation in laboratory culture. We suggest that these high-density in vivo foci of colonizing and encysting Giardia likely result in localized disruption to the epithelium. This more accurate visualization of giardiasis redefines the dynamics of the in vivo Giardia life cycle, paving the way for future mechanistic studies of density-dependent parasitic processes in the host. IMPORTANCE Giardia is a single-celled parasite causing significant diarrheal disease in several hundred million people worldwide. Due to limited access to the site of infection in the gastrointestinal tract, our understanding of the dynamics of Giardia infections in the host has remained limited and largely inferred from laboratory culture. To better understand

  2. Low-enriched uranium high-density target project. Compendium report

    Energy Technology Data Exchange (ETDEWEB)

    Vandegrift, George; Brown, M. Alex; Jerden, James L.; Gelis, Artem V.; Stepinski, Dominique C.; Wiedmeyer, Stanley; Youker, Amanda; Hebden, Andrew; Solbrekken, G; Allen, C; Robertson., D; El-Gizawy, Sherif; Govindarajan, Srisharan; Hoyer, Annemarie; Makarewicz, Philip; Harris, Jacob; Graybill, Brian; Gunn, Andy; Berlin, James; Bryan, Chris; Sherman, Steven; Hobbs, Randy; Griffin, F. P.; Chandler, David; Hurt, C. J.; Williams, Paul; Creasy, John; Tjader, Barak; McFall, Danielle; Longmire, Hollie


    At present, most 99Mo is produced in research, test, or isotope production reactors by irradiation of highly enriched uranium targets. To achieve the denser form of uranium needed for switching from high to low enriched uranium (LEU), targets in the form of a metal foil (~125-150 µm thick) are being developed. The LEU High Density Target Project successfully demonstrated several iterations of an LEU-fission-based Mo-99 technology that has the potential to provide the world’s supply of Mo-99, should major producers choose to utilize the technology. Over 50 annular high density targets have been successfully tested, and the assembly and disassembly of targets have been improved and optimized. Two target front-end processes (acidic and electrochemical) have been scaled up and demonstrated to allow for the high-density target technology to mate up to the existing producer technology for target processing. In the event that a new target processing line is started, the chemical processing of the targets is greatly simplified. Extensive modeling and safety analysis has been conducted, and the target has been qualified to be inserted into the High Flux Isotope Reactor, which is considered above and beyond the requirements for the typical use of this target due to high fluence and irradiation duration.

  3. A high-density SNP genotyping array for rice biology and molecular breeding. (United States)

    Chen, Haodong; Xie, Weibo; He, Hang; Yu, Huihui; Chen, Wei; Li, Jing; Yu, Renbo; Yao, Yue; Zhang, Wenhui; He, Yuqing; Tang, Xiaoyan; Zhou, Fasong; Deng, Xing Wang; Zhang, Qifa


    A high-density single nucleotide polymorphism (SNP) array is critically important for geneticists and molecular breeders. With the accumulation of huge amounts of genomic re-sequencing data and available technologies for accurate SNP detection, it is possible to design high-density and high-quality rice SNP arrays. Here we report the development of a high-density rice SNP array and its utility. SNP probes were designed by screening more than 10 000 000 SNP loci extracted from the re-sequencing data of 801 rice varieties and an array named RiceSNP50 was produced on the Illumina Infinium platform. The array contained 51 478 evenly distributed markers, 68% of which were within genic regions. Several hundred rice plants with parent/F1 relationships were used to generate a high-quality cluster file for accurate SNP calling. Application tests showed that this array had high genotyping accuracy, and could be used for different objectives. For example, a core collection of elite rice varieties was clustered with fine resolution. Genome-wide association studies (GWAS) analysis correctly identified a characterized QTL. Further, this array was successfully used for variety verification and trait introgression. As an accurate high-throughput genotyping tool, RiceSNP50 will play an important role in both functional genomics studies and molecular breeding.

  4. Design of robust hollow fiber membranes with high power density for osmotic energy production

    KAUST Repository

    Zhang, Sui


    This study highlights the design strategy of highly asymmetric hollow fiber membranes that possess both characteristics of high flux and high mechanical strength to effectively reap the osmotic energy from seawater brine with an ultrahigh power density. An advanced co-extrusion technology was employed to fabricate the polyethersulfone (PES) hollow fiber supports with diversified structures from macrovoid to sponge-like. The microstructure of the supports is found critical for the stability and water permeability of the thin film composite (TFC) membranes. A high porosity in the porous layer is needed to reduce internal concentration polarization, while a thick and relatively dense skin layer underneath the TFC layer is required to maintain good mechanical stability and stress dissipation. The pore size of the supporting layer underneath the TFC layer must be small with a narrow pore size distribution to ensure the formation of a less-defective, highly permeable and mechanically stable TFC layer. The newly developed hollow fiber comprising high asymmetry, high porosity, and a thick skin layer with a small and narrow pore size distribution underneath the TFC layer produces a maximum power density of 24.3W/m2 at 20.0bar by using 1M NaCl as the concentrated brine and deionized (DI) water as the feed. The proposed design strategy for ultrahigh power density membranes clearly advances the osmotic energy production close to commercialization with a quite cost-effective and practicable approach. © 2013 Elsevier B.V.

  5. Fabrication, Micro-structural Analysis, and Mechanical Testing of High Density Polymeric Foam (United States)

    Marks, Trevor Gustov

    Foams, or what are often called cellular solids, are some of the most widely used materials in the modern era. In general, foam is a porous substance formed by the introduction of gas filled pores into condensed matter; the result is typically a light weight substance with properties related to the base (non-porous) medium. Applications of foams include: vibration dampening, energy mitigation (such as packaging and bike helmets), insulation, filtration, and flotation. The focus of this work is on the properties of flexible elastomeric foam of high relative-density. The bulk of existing literature on elastomeric foam is concerned with foam of low relative-density (ratio of the foam density to the density of the material from which the foam is formed ≤ 0.1). The relationship between the micro-structure of high relative-density foam and its mechanical response has, in large part, not been subjected to systematic investigation heretofore. The present work examines how the micro-structural features of pore shape, size, and location affect the macro-structural response of relative high density foam to compressive loading. In order to carry out this study, methods were developed and employed to control a foam's micro-structure, and hence its mechanical response, with the use of temporary pore forming particles and micron scale inclusions. Advanced microscopy techniques were used to observe, in situ, the evolution of a foam's micro-structure under compressive loading, and the results were correlated with the evolution of the foam's stress - strain response. Additionally, quantitative methods were developed and employed to describe numerically the foam's micro-structural features, such as: (i), pore shape, (ii), pore size, and (iii), the arrangement of the pores with respect to each other. Numerous foams were produced, tested, and subjected to the methodology developed for this study.

  6. Evidence of low-density and high-density liquid phases and isochore end point for water confined to carbon nanotube. (United States)

    Nomura, Kentaro; Kaneko, Toshihiro; Bai, Jaeil; Francisco, Joseph S; Yasuoka, Kenji; Zeng, Xiao Cheng


    Possible transition between two phases of supercooled liquid water, namely the low- and high-density liquid water, has been only predicted to occur below 230 K from molecular dynamics (MD) simulation. However, such a phase transition cannot be detected in the laboratory because of the so-called "no-man's land" under deeply supercooled condition, where only crystalline ices have been observed. Here, we show MD simulation evidence that, inside an isolated carbon nanotube (CNT) with a diameter of 1.25 nm, both low- and high-density liquid water states can be detected near ambient temperature and above ambient pressure. In the temperature-pressure phase diagram, the low- and high-density liquid water phases are separated by the hexagonal ice nanotube (hINT) phase, and the melting line terminates at the isochore end point near 292 K because of the retracting melting line from 292 to 278 K. Beyond the isochore end point (292 K), low- and high-density liquid becomes indistinguishable. When the pressure is increased from 10 to 600 MPa along the 280-K isotherm, we observe that water inside the 1.25-nm-diameter CNT can undergo low-density liquid to hINT to high-density liquid reentrant first-order transitions.

  7. Banks-Casher-type relation for the BCS gap at high density

    Energy Technology Data Exchange (ETDEWEB)

    Kanazawa, Takuya [The University of Tokyo, Department of Physics, Tokyo (Japan); Wettig, Tilo [University of Regensburg, Department of Physics, Regensburg (Germany); Yamamoto, Naoki [Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan); University of Maryland, Maryland Center for Fundamental Physics, Department of Physics, College Park, MD (United States)


    We derive a new Banks-Casher-type relation which relates the density of complex Dirac eigenvalues at the origin to the BCS gap of quarks at high density and zero temperature. Our relation is applicable to QCD and QCD-like theories without a sign problem, such as two-color QCD and adjoint QCD with baryon chemical potential, and QCD with isospin chemical potential. It provides us with a method to measure the BCS gap through the Dirac spectrum on the lattice. (orig.)

  8. Best practices in heterotrophic high-cell-density microalgal processes: achievements, potential and possible limitations


    Bumbak, Fabian; Cook, Stella; Zachleder, Vilém; Hauser, Silas; Kovar, Karin


    Microalgae of numerous heterotrophic genera (obligate or facultative) exhibit considerable metabolic versatility and flexibility but are currently underexploited in the biotechnological manufacturing of known plant-derived compounds, novel high-value biomolecules or enriched biomass. Highly efficient production of microalgal biomass without the need for light is now feasible in inexpensive, well-defined mineral medium, typically supplemented with glucose. Cell densities of more than 100 g l−1...

  9. Predicting accurate fluorescent spectra for high molecular weight polycyclic aromatic hydrocarbons using density functional theory (United States)

    Powell, Jacob; Heider, Emily C.; Campiglia, Andres; Harper, James K.


    The ability of density functional theory (DFT) methods to predict accurate fluorescence spectra for polycyclic aromatic hydrocarbons (PAHs) is explored. Two methods, PBE0 and CAM-B3LYP, are evaluated both in the gas phase and in solution. Spectra for several of the most toxic PAHs are predicted and compared to experiment, including three isomers of C24H14 and a PAH containing heteroatoms. Unusually high-resolution experimental spectra are obtained for comparison by analyzing each PAH at 4.2 K in an n-alkane matrix. All theoretical spectra visually conform to the profiles of the experimental data but are systematically offset by a small amount. Specifically, when solvent is included the PBE0 functional overestimates peaks by 16.1 ± 6.6 nm while CAM-B3LYP underestimates the same transitions by 14.5 ± 7.6 nm. These calculated spectra can be empirically corrected to decrease the uncertainties to 6.5 ± 5.1 and 5.7 ± 5.1 nm for the PBE0 and CAM-B3LYP methods, respectively. A comparison of computed spectra in the gas phase indicates that the inclusion of n-octane shifts peaks by +11 nm on average and this change is roughly equivalent for PBE0 and CAM-B3LYP. An automated approach for comparing spectra is also described that minimizes residuals between a given theoretical spectrum and all available experimental spectra. This approach identifies the correct spectrum in all cases and excludes approximately 80% of the incorrect spectra, demonstrating that an automated search of theoretical libraries of spectra may eventually become feasible.

  10. Elevated high-density lipoprotein cholesterol and cardiovascular mortality in maintenance hemodialysis patients. (United States)

    Moradi, Hamid; Streja, Elani; Kashyap, Moti L; Vaziri, Nosratola D; Fonarow, Gregg C; Kalantar-Zadeh, Kamyar


    High-density lipoprotein (HDL) confers protection against atherosclerosis by several different mechanisms. Although in the general population, increasing levels of HDL are associated with reduced cardiovascular (CV) mortality, this association is not well known in patients with chronic disease states such as end-stage renal disease. We hypothesize that the association of serum HDL concentration and its ratio to total cholesterol with all-cause and CV mortality in hemodialysis patients is different from the general population. A 3-year (July 2004 to June 2007) cohort of 33 109 chronic hemodialysis patients was studied in the USA in the dialysis clinics where lipid profile was measured in at least 50% of all outpatients of the clinic during a given calendar quarter. Cox proportional hazard models were adjusted for demographics and case-mix variables and cubic splines were plotted. Higher HDL concentrations up to 50 mg/dL were associated with better overall survival, while HDL at 60 mg/dL and above was associated with a rise in all-cause and CV mortality. All-cause and CV mortality hazard ratio was 1.28 (1.20-1.38) and 1.08 (1.01-1.16) for HDL mortality in hemodialysis patients. A U-shaped association between HDL cholesterol level and all-cause and CV mortality exists in hemodialysis patients with HDL between 50 and <60 mg/dL exhibiting the best survival. The underlying mechanisms responsible for these seemingly paradoxical associations await further investigation. © The Author 2014. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  11. Measurement of Plasma density in High Intensity Discharge Lamps by THz Interferometry (United States)

    Kieckhafer, Alex; Curry, John


    A THz interferometer has been constructed with the goal of directly measuring plasma electron densities in High Intensity Discharge (HID) lamp plasmas. The use of THz frequencies has several advantages. Primary of these is the ability to measure high densities. The 0.6 THz system constructed is capable of measuring densities up to 4x10^15 cm-3. Additionally, the short wavelength of 0.6 THz radiation will allow focal spot sizes smaller than a millimeter in diameter, thus enabling high spatial resolution measurements. The system also differs from traditional microwave interferometry in that heterodyning has been eliminated. In inductively driven lamps the plasma recombines twice per AC cycle, when the voltage drops below a critical value. This time-dependent phase shift of the THz beam will allow calculation of density as a function of time. Zero-points can be acquired during the measurement itself due to the twice-per-cycle recombination of the plasma. Detection using electro-optical or nonlinear optical methods can easily achieve the time resolution required for these measurements, while maintaining sufficient signal-to-noise levels for detection without the assistance of lock-in amplification.

  12. a Comparison of Tree Segmentation Methods Using Very High Density Airborne Laser Scanner Data (United States)

    Pirotti, F.; Kobal, M.; Roussel, J. R.


    Developments of LiDAR technology are decreasing the unit cost per single point (e.g. single-photo counting). This brings to the possibility of future LiDAR datasets having very dense point clouds. In this work, we process a very dense point cloud ( 200 points per square meter), using three different methods for segmenting single trees and extracting tree positions and other metrics of interest in forestry, such as tree height distribution and canopy area distribution. The three algorithms are tested at decreasing densities, up to a lowest density of 5 point per square meter. Accuracy assessment is done using Kappa, recall, precision and F-Score metrics comparing results with tree positions from groundtruth measurements in six ground plots where tree positions and heights were surveyed manually. Results show that one method provides better Kappa and recall accuracy results for all cases, and that different point densities, in the range used in this study, do not affect accuracy significantly. Processing time is also considered; the method with better accuracy is several times slower than the other two methods and increases exponentially with point density. Best performer gave Kappa = 0.7. The implications of metrics for determining the accuracy of results of point positions' detection is reported. Motives for the different performances of the three methods is discussed and further research direction is proposed.

  13. High oxygen consumption rates and scale loss indicate elevated aggressive behaviour at low rearing density, while elevated brain serotonergic activity suggest chronic stress at high rearing densities in farmed rainbow trout Oncorhynchus mykiss

    DEFF Research Database (Denmark)

    Laursen, Danielle Caroline; Silva, P.I.M.; Larsen, Bodil Katrine


    of a previous study,where levels of crowding where determined using the spatial distribution of fish in two-tank systems. An un-crowded low density of 25 kg m−3, the highest density accepted by the fish without showing indications of crowding stress of 80 kg m−3 as the intermediate density, and the highest...... density accepted by the fish showing indications of crowding stress of 140 kg m−3 as the high density were investigated. The aimof the present study was to examine the effect of being held at these densities on indicators of welfare. This was achieved through oxygen consumption measurements using...

  14. Improved forcing scheme in pseudopotential lattice Boltzmann methods for multiphase flow at arbitrarily high density ratios. (United States)

    Lycett-Brown, Daniel; Luo, Kai H


    The pseudopotential lattice Boltzmann method has been widely used to simulate many multiphase flow applications. However, there still exist problems with reproducing realistic values of density ratio and surface tension. In this study, a higher-order analysis of a general forcing term is derived. A forcing scheme is then constructed for the pseudopotential method that is able to accurately reproduce the full range of coexistence curves. As a result, multiphase flow of arbitrarily high density ratios independent of the surface tension can be simulated. Furthermore, the interface width can be tuned to allow for grid refinement and systematic error reduction. Numerical results confirm that the proposed scheme enables independent control of density ratio, surface tension, and interface width simultaneously.

  15. Synthesis of high-density nickel cobalt aluminum hydroxide by continuous coprecipitation method. (United States)

    Kim, Yongseon; Kim, Doyu


    Spherical nickel cobalt aluminum hydroxide (Ni(0.80)Co(0.15)Al(0.05)-hydroxide, NCA) was prepared by a continuous coprecipitation method. A new design of the Al solution and the feeding method was applied, which enabled to prevent rapid precipitation of Al(OH)(3) and to obtain spherical NCA with large enough particle size and high density. The active material (LiNi(0.80)Co(0.15)Al(0.05)O(2) or LNCA) prepared from it showed higher tap-density than that made from NCA prepared by general processes, and homogeneity of Al-distribution was also improved. It is expected that the electrode density of lithium ion batteries adopting LNCA could be improved with the new process proposed in this study.

  16. High-density ultracold neutron sources for the WWR-M and PIK reactors

    Energy Technology Data Exchange (ETDEWEB)

    Serebrov, A. P., E-mail:; Fomin, A. K.; Kharitonov, A. G.; Lyamkin, V. A.; Prudnikov, D. V.; Ivanov, S. A.; Erykalov, A. N.; Onegin, M. S. [National Research Centre “Kurchatov Institute”, Petersburg Nuclear Physics Institute (Russian Federation); Gridnev, K. A. [St. Petersburg State University (Russian Federation)


    It is proposed to equip the PIK and WWR-M research reactors at the Petersburg Nuclear Physics Institute (PNPI) with high-density ultracold neutron (UCN) sources, where UCNs will be obtained based on the effect of their accumulation in superfluid helium (due to the specific features of this quantum fluid). The maximum UCN storage time in superfluid helium is obtained at temperatures on the order of 1 K. These sources are expected to yield UCN densities of 10{sup 3}–10{sup 4} cm{sup –3}, i.e., approximately three orders of magnitude higher than the density from existing UCN sources throughout the world. The development of highest intensity UCN sources will make PNPI an international center of fundamental UCN research.

  17. Note: A high-energy-density Tesla-type pulse generator with novel insulating oil (United States)

    Liu, Sheng; Su, Jiancang; Fan, Xuliang


    A 10-GW high-energy-density Tesla-type pulse generator is developed with an improved insulating liquid based on a modified Tesla pulser—TPG700, of which the pulse forming line (PFL) is filled with novel insulating oil instead of transformer oil. Properties of insulating oil determining the stored energy density of the PFL are analyzed, and a criterion for appropriate oil is proposed. Midel 7131 is chosen as an application example. The results of insulating property experiment under tens-of-microsecond pulse charging demonstrate that the insulation capability of Midel 7131 is better than that of KI45X transformer oil. The application test in Tesla pulser TPG700 shows that the output power is increased to 10.5 GW with Midel 7131. The output energy density of TPG700 increases for about 60% with Midel 7131.

  18. Estimations of bulk geometrically necessary dislocation density using high resolution EBSD. (United States)

    Ruggles, T J; Fullwood, D T


    Characterizing the content of geometrically necessary dislocations (GNDs) in crystalline materials is crucial to understanding plasticity. Electron backscatter diffraction (EBSD) effectively recovers local crystal orientation, which is used to estimate the lattice distortion, components of the Nye dislocation density tensor (α), and subsequently the local bulk GND density of a material. This paper presents a complementary estimate of bulk GND density using measurements of local lattice curvature and strain gradients from more recent high resolution EBSD (HR-EBSD) methods. A continuum adaptation of classical equations for the distortion around a dislocation are developed and used to simulate random GND fields to validate the various available approximations of GND content. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Microstructure characterisation of solid oxide electrolysis cells operated at high current density

    DEFF Research Database (Denmark)

    Bowen, Jacob R.; Bentzen, Janet Jonna; Chen, Ming

    High temperature solid oxide cells can be operated either as fuel cells or electrolysis cells for efficient power generation or production of hydrogen from steam or synthesis gas (H2 + CO) from steam and CO2 respectively. When operated under harsh conditions, they often exhibit microstructural......, microstructure evolution of the Ni-yttria stabilized zirconia (YSZ) is followed as a function of galvanostatic steam electrolysis testing at current densities between -0.5 and -1.0 A cm-2 for periods of up to 750 hours at 800 °C. The volume fraction and size of the percolating Ni particles was statistically...... quantified using the mean linear intercept method as a function of current density and correlated to increases in serial resistance. The above structural changes are then compared in terms of electrode degradation observed during the co-electrolysis of steam and CO2 at current densities up to -1.5 A cm-2...

  20. Direct Selective Laser Sintering/Melting of High Density Alumina Powder Layers at Elevated Temperatures (United States)

    Deckers, J.; Meyers, S.; Kruth, J. P.; Vleugels, J.

    Direct selective laser sintering (SLS) or selective laser melting (SLM) are additive manufacturing techniques that can be used to produce three-dimensional ceramic parts directly, without the need for a sacrificial binder. In this paper, a low laser energy density is applied to SLS/SLM high density powder layers of sub-micrometer alumina at elevated temperatures (up to 800̊C). In order to achieve this, a furnace was designed and built into a commercial SLS machine. This furnace was able to produce a homogeneously heated cylindrical zone with a height of 60 mm and a diameter of 32 mm. After optimizing the layer deposition and laser scanning parameters, two ceramic parts with a density up to 85% and grain sizes as low as 5 μm were successfully produced.

  1. High cell density strategy for poly(3-hydroxybutyrate production by Cupriavidus necator

    Directory of Open Access Journals (Sweden)

    J. L. Ienczak


    Full Text Available Poly(3-hydroxybutyrate (P(3HB is a carbon and intracellular storage source for different microorganisms and its production can achieve high productivities by means of high cell density cultures. The aim of this study was to propose a high cell density strategy for P(3HB production by Cupriavidus necator. The exponential growth phase demands an accurate control of the oxygen transfer system in the bioreactor, due to maximum specific growth rate (µXr, and, consequently, a maximum specific oxygen uptake rate (QO2, in addition to significant residual biomass (Xr growth in high cell density cultures. In this context, this work investigated the strategy for obtaining high cell density, with the inclusion of a linear growth phase for P(3HB production by C. necator in a fed-batch culture. The linear growth phase was included between the exponential growth phase and the P(3HB production phase as a strategy to reduce the specific growth rate (µXr and specific oxygen uptake rate (QO2, with constant residual biomass growth rate (d(V.Xr/dt = k = constant and linear increase of biomass. Three strategies of culture were performed. The results showed that a high residual biomass concentration (30 gXr.L-1 can be reached by the inclusion of the linear growth strategy and specific growth rates (µXr between 0.08 and 0.05 h-1, at the beginning of the production phase, are necessary to attain a high P(3HB productivity.

  2. Automated breast tissue density assessment using high order regional texture descriptors in mammography (United States)

    Law, Yan Nei; Lieng, Monica Keiko; Li, Jingmei; Khoo, David Aik-Aun


    Breast cancer is the most common cancer and second leading cause of cancer death among women in the US. The relative survival rate is lower among women with a more advanced stage at diagnosis. Early detection through screening is vital. Mammography is the most widely used and only proven screening method for reliably and effectively detecting abnormal breast tissues. In particular, mammographic density is one of the strongest breast cancer risk factors, after age and gender, and can be used to assess the future risk of disease before individuals become symptomatic. A reliable method for automatic density assessment would be beneficial and could assist radiologists in the evaluation of mammograms. To address this problem, we propose a density classification method which uses statistical features from different parts of the breast. Our method is composed of three parts: breast region identification, feature extraction and building ensemble classifiers for density assessment. It explores the potential of the features extracted from second and higher order statistical information for mammographic density classification. We further investigate the registration of bilateral pairs and time-series of mammograms. The experimental results on 322 mammograms demonstrate that (1) a classifier using features from dense regions has higher discriminative power than a classifier using only features from the whole breast region; (2) these high-order features can be effectively combined to boost the classification accuracy; (3) a classifier using these statistical features from dense regions achieves 75% accuracy, which is a significant improvement from 70% accuracy obtained by the existing approaches.

  3. Estimation of Wheat Plant Density at Early Stages Using High Resolution Imagery

    Directory of Open Access Journals (Sweden)

    Shouyang Liu


    Full Text Available Crop density is a key agronomical trait used to manage wheat crops and estimate yield. Visual counting of plants in the field is currently the most common method used. However, it is tedious and time consuming. The main objective of this work is to develop a machine vision based method to automate the density survey of wheat at early stages. RGB images taken with a high resolution RGB camera are classified to identify the green pixels corresponding to the plants. Crop rows are extracted and the connected components (objects are identified. A neural network is then trained to estimate the number of plants in the objects using the object features. The method was evaluated over three experiments showing contrasted conditions with sowing densities ranging from 100 to 600 seeds⋅m-2. Results demonstrate that the density is accurately estimated with an average relative error of 12%. The pipeline developed here provides an efficient and accurate estimate of wheat plant density at early stages.

  4. High seed dispersal ability of Pinus canariensis in stands of contrasting density inferred from genotypic data

    Directory of Open Access Journals (Sweden)

    Unai López de Heredia


    Full Text Available Aim of the study: Models that combine parentage analysis from molecular data with spatial information of seeds and seedlings provide a framework to describe and identify the factors involved in seed dispersal and recruitment of forest species. In the present study we used a spatially explicit method (the gene shadow model in order to assess primary and effective dispersal in Pinus canariensis. Area of study: Pinus canariensis is endemic to the Canary Islands (Spain. Sampling sites were a high density forest in southern slopes of Tenerife and a low density stand in South Gran Canaria. Materials and methods: We fitted models based on parentage analysis from seeds and seedlings collected in two sites with contrasting stand density, and then compared the resulting dispersal distributions. Main results: The results showed that: 1 P. canariensis has a remarkable dispersal ability compared to other pine species; 2 there is no discordance between primary and effective dispersals, suggesting limited secondary dispersal by animals and lack of Janzen-Connell effect; and 3 low stand densities enhance the extent of seed dispersal, which was higher in the low density stand. Research highlights: The efficient dispersal mechanism of P. canariensis by wind inferred by the gene shadow model is congruent with indirect measures of gene flow, and has utility in reconstructing past demographic events and in predicting future distribution ranges for the species.

  5. Changes in permittivity and density of molecular liquids under high pressure. (United States)

    Kiselev, Vladimir D; Kornilov, Dmitry A; Konovalov, Alexander I


    We collected and analyzed the density and permittivity of 57 nonpolar and dipolar molecular liquids at different temperatures (143 sets) and pressures (555 sets). No equation was found that could accurately predict the change to polar liquid permittivity by the change of its density in the range of the pressures and temperatures tested. Consequently, the influence of high hydrostatic pressure and temperature on liquid permittivity may be a more complicated process compared to density changes. The pressure and temperature coefficients of permittivity can be drastically larger than the pressure and temperature coefficients of density, indicating that pressure and particularly temperature significantly affect the structure of molecular liquids. These changes have less influence on the density change but can strongly affect the permittivity change. The clear relationship between the tangent and secant moduli of the permittivity curvatures under pressure for various molecular liquids at different temperatures was obtained, from which one can calculate the Tait equation coefficients from the experimental values of the pressure influence on the permittivity at ambient pressure.

  6. NASA Glenn Research Center Program in High Power Density Motors for Aeropropulsion (United States)

    Brown, Gerald V.; Kascak, Albert F.; Ebihara, Ben; Johnson, Dexter; Choi, Benjamin; Siebert, Mark; Buccieri, Carl


    Electric drive of transport-sized aircraft propulsors, with electric power generated by fuel cells or turbo-generators, will require electric motors with much higher power density than conventional room-temperature machines. Cryogenic cooling of the motor windings by the liquid hydrogen fuel offers a possible solution, enabling motors with higher power density than turbine engines. Some context on weights of various systems, which is required to assess the problem, is presented. This context includes a survey of turbine engine weights over a considerable size range, a correlation of gear box weights and some examples of conventional and advanced electric motor weights. The NASA Glenn Research Center program for high power density motors is outlined and some technical results to date are presented. These results include current densities of 5,000 A per square centimeter current density achieved in cryogenic coils, finite element predictions compared to measurements of torque production in a switched reluctance motor, and initial tests of a cryogenic switched reluctance motor.

  7. Automated extraction of natural drainage density patterns for the conterminous United States through high performance computing (United States)

    Stanislawski, Larry V.; Falgout, Jeff T.; Buttenfield, Barbara P.


    Hydrographic networks form an important data foundation for cartographic base mapping and for hydrologic analysis. Drainage density patterns for these networks can be derived to characterize local landscape, bedrock and climate conditions, and further inform hydrologic and geomorphological analysis by indicating areas where too few headwater channels have been extracted. But natural drainage density patterns are not consistently available in existing hydrographic data for the United States because compilation and capture criteria historically varied, along with climate, during the period of data collection over the various terrain types throughout the country. This paper demonstrates an automated workflow that is being tested in a high-performance computing environment by the U.S. Geological Survey (USGS) to map natural drainage density patterns at the 1:24,000-scale (24K) for the conterminous United States. Hydrographic network drainage patterns may be extracted from elevation data to guide corrections for existing hydrographic network data. The paper describes three stages in this workflow including data pre-processing, natural channel extraction, and generation of drainage density patterns from extracted channels. The workflow is concurrently implemented by executing procedures on multiple subbasin watersheds within the U.S. National Hydrography Dataset (NHD). Pre-processing defines parameters that are needed for the extraction process. Extraction proceeds in standard fashion: filling sinks, developing flow direction and weighted flow accumulation rasters. Drainage channels with assigned Strahler stream order are extracted within a subbasin and simplified. Drainage density patterns are then estimated with 100-meter resolution and subsequently smoothed with a low-pass filter. The extraction process is found to be of better quality in higher slope terrains. Concurrent processing through the high performance computing environment is shown to facilitate and refine

  8. High energy efficiency and high power density proton exchange membrane fuel cells: Electrode kinetics and mass transport (United States)

    Srinivasan, Supramaniam; Velev, Omourtag A.; Parthasathy, Arvind; Manko, David J.; Appleby, A. John


    The development of proton exchange membrane (PEM) fuel cell power plants with high energy efficiencies and high power densities is gaining momentum because of the vital need of such high levels of performance for extraterrestrial (space, underwater) and terrestrial (power source for electric vehicles) applications. Since 1987, considerable progress has been made in achieving energy efficiencies of about 60 percent at a current density of 200 mA/sq cm and high power densities (greater than 1 W/sq cm) in PEM fuel cells with high (4 mg/sq cm) or low (0.4 mg/sq cm) platinum loadings in electrodes. The following areas are discussed: (1) methods to obtain these high levels of performance with low Pt loading electrodes - by proton conductor impregnation into electrodes, localization of Pt near front surface; (2) a novel microelectrode technique which yields electrode kinetic parameters for oxygen reduction and mass transport parameters; (3) demonstration of lack of water transport from anode to cathode; (4) modeling analysis of PEM fuel cell for comparison with experimental results and predicting further improvements in performance; and (5) recommendations of needed research and development for achieving the above goals.

  9. Comparative analysis of image-based phenotypes of mammographic density and parenchymal patterns in distinguishing between BRCA1/2 cases, unilateral cancer cases, and controls. (United States)

    Li, Hui; Giger, Maryellen L; Lan, Li; Janardanan, Jyothi; Sennett, Charlene A


    We statistically compare the contributions of parenchymal phenotypes to mammographic density in distinguishing between high-risk cases and low-risk controls. The age-matched evaluation included computerized mammographic assessment of breast percent density (PD) and parenchymal patterns (phenotypes of coarseness and contrast) from radiographic texture analysis (RTA) of the full-field digital mammograms from 456 cases: 53 women with BRCA1/2 gene mutations, 75 with unilateral cancer, and 328 at low risk of developing breast cancer. Image-based phenotypes of parenchymal pattern coarseness and contrast were each found to significantly discriminate between the groups; however, PD did not. From ROC analysis, PD alone yielded area under the fitted ROC curve (AUC) values of 0.53 ([Formula: see text]) and 0.57 ([Formula: see text]) in the classification task between BRCA1/2 gene-mutation carriers and low-risk women, and between unilateral cancer and low-risk women, respectively. In a round-robin evaluation with Bayesian artificial neural network (BANN) analysis, RTA yielded AUC values of 0.81 (95% confidence interval [0.71, 0.89]) and 0.70 (95% confidence interval [0.63, 0.77]) between the BRCA1/2 gene-mutation carriers and low-risk women, and between unilateral cancer and low-risk women, respectively. These results show that high-risk and low-risk women have different mammographic parenchymal patterns with significantly higher discrimination resulting from characteristics of the parenchymal patterns than just the breast PD.

  10. High density lipoproteins as indicators of endothelial dysfunction in children with diadetes type I

    Directory of Open Access Journals (Sweden)

    Lobanova S.M.


    Full Text Available The aim of the investigation was to study the level of blood high density lipoproteins (HDL in the groups of children with different course of diadetes type I in order to find out the dependence of course and complications of diabetes on that level. Materials and methods: Blood high density lipoprotein (HDL levels were investigated in children and adolescents with diadetes type I, depending on the duration of diadetes type I, age, stage of sexual development, the stage of diabetic nephropathy and levels of plasma endothelin-1 (E-1. Results: Decrease in HDL level with increasing duration of diadetes type I in prepubertate patients, higher indices of HDL cholesterol were determined in girls, especially with impaired puberty. HDL cholesterol was higher in diabetic nephropathy at the stage of proteinuria and high level of blood endothelin-1. Conclusion: The revealed changes were considered to cause deregulation of vascular endothelium as a manifestation of the initial stages of endothelial dysfunction

  11. Experimental apparatus for measurement of density of supercooled water at high pressure

    Directory of Open Access Journals (Sweden)

    Peukert Pavel


    Full Text Available Thermodynamic behavior of supercooled water (metastable fluid water existing transiently below the equilibrium freezing point at high pressures was subject to many recent theoretical studies. Some of them assume that a second critical point of water exists, related to two liquid phases of supercooled water: the low-density liquid and the high-density liquid. To test these theories, an original experimental cryogenic apparatus is being developed. The volume changes are measured optically in custom-treated fused-silica capillary tubes. The capillaries are placed in a metal vessel designed for pressures up to 200 MPa. The vessel is connected to a circulation thermostat enabling a rapid change of temperature to prevent freezing. A new high-vacuum device was developed for degassing of the ultrapure water sample and filling it into the measuring capillaries. The experiments will contribute to fundamental understanding of the anomalous behavior of water and to applications in meteorology, aerospace engineering, cryobiology etc.

  12. High power density vertical-cavity surface-emitting lasers with ion implanted isolated current aperture. (United States)

    Higuchi, Akira; Naito, Hideyuki; Torii, Kousuke; Miyamoto, Masahiro; Morita, Takenori; Maeda, Junya; Miyajima, Hirofumi; Yoshida, Harumasa


    We report on GaAs-based high power density vertical-cavity surface-emitting laser diodes (VCSELs) with ion implanted isolated current apertures. A continuous-wave output power of over 380 mW and the power density of 4.9 kW/cm2 have been achieved at 15 °C from the 100-μm-diameter aperture, which is the highest output characteristic ever reported for an ion implanted VCSEL. A high background suppression ratio of over 40 dB has also been obtained at the emission wavelength of 970 nm. The ion implantation technique provides an excellent current isolation in the apertures and would be a key to realize high power output from a VCSEL array.

  13. Jet Impingement Heat Transfer at High Reynolds Numbers and Large Density Variations

    DEFF Research Database (Denmark)

    Jensen, Michael Vincent; Walther, Jens Honore


    Jet impingement heat transfer from a round gas jet to a flat wall has been investigated numerically in a configuration with H/D=2, where H is the distance from the jet inlet to the wall and D is the jet diameter. The jet Reynolds number was 361000 and the density ratio across the wall boundary....... The results also show a noticeable difference in the heat transfer predictions when applying different turbulence models. Furthermore calculations were performed to study the effect of applying temperature dependent thermophysical properties versus constant properties and the effect of calculating the gas...... density from the ideal gas law versus real gas data. In both cases the effect was found to be negligible....

  14. Novel LLM series high density energy materials: Synthesis, characterization, and thermal stability (United States)

    Pagoria, Philip; Zhang, Maoxi; Tsyshevskiy, Roman; Kuklja, Maija

    Novel high density energy materials must satisfy specific requirements, such as an increased performance, reliably high stability to external stimuli, cost-efficiency and ease of synthesis, be environmentally benign, and be safe for handling and transportation. During the last decade, the attention of researchers has drifted from widely used nitroester-, nitramine-, and nitroaromatic-based explosives to nitrogen-rich heterocyclic compounds. Good thermal stability, the low melting point, high density, and moderate sensitivity make heterocycle materials attractive candidates for use as oxidizers in rocket propellants and fuels, secondary explosives, and possibly as melt-castable ingredients of high explosive formulations. In this report, the synthesis, characterization, and results of quantum-chemical DFT study of thermal stability of LLM-191, LLM-192 and LLM-200 high density energy materials are presented. Work performed under the auspices of the DOE by the LLNL (Contract DE-AC52-07NA27344). This research is supported in part by ONR (Grant N00014-12-1-0529) and NSF. We used NSF XSEDE (Grant DMR-130077) and DOE NERSC (Contract DE-AC02-05CH11231) resources.

  15. Strain-tolerant High Capacity Silicon Anodes via Directed Lithium Ion Transport for High Energy Density Lithium-ion Batteries (United States)

    Goldman, Jason


    Energy storage is an essential component of modern technology, with applications including public infrastructure, transportation systems, and consumer electronics. Lithium-ion batteries are the preeminent form of energy storage when high energy / moderate power densities are required. Improvements to lithium-ion battery energy / power density through the adoption of silicon anodes—with approximately an order of magnitude greater gravimetric capacity than traditional carbon-based anodes--have been limited by ˜300% strains during electrochemical lithium insertion which result in short operational lifetimes. In two different systems we demonstrated improvements to silicon-based anode performance via directed lithium ion transport. The first system demonstrated a crystallographic-dependent anisotropic electrochemical lithium insertion in single-crystalline silicon anode microstructures. Exploiting this anisotropy, we highlight model silicon anode architectures that limit the maximum strain during electrochemical lithium insertion. This self-strain-limiting is a result of selecting a specific microstructure design such that during lithiation the anisotropic evolution of strain, above a given threshold, blocks further lithium intercalation. Exemplary design rules have achieved self-strain-limited charging capacities ranging from 677 mAhg-1 to 2833 mAhg-1. A second system with variably encapsulated silicon-based anodes demonstrated greater than 98% of their initial capacity after 130+ cycles. This anode also can operate stably at high energy/power densities. A lithium-ion battery with this anode was able to continuously (dis)charge in 10 minutes, corresponding to a power / energy density of ˜1460 W/kg and ˜243 Wh/kg--up to 780% greater power density and 220% higher energy density than conventional lithium-ion batteries. Anodes were also demonstrated with areal capacities of 12.7 mAh/cm^2, two orders of magnitude greater than traditional thin-film silicon anodes.[4pt

  16. High-Density Lipoprotein (HDL) Phospholipid Content and Cholesterol Efflux Capacity Are Reduced in Patients With Very High HDL Cholesterol and Coronary Disease. (United States)

    Agarwala, Anandita P; Rodrigues, Amrith; Risman, Marjorie; McCoy, Mary; Trindade, Kevin; Qu, Liming; Cuchel, Marina; Billheimer, Jeffrey; Rader, Daniel J


    Plasma levels of high-density lipoprotein cholesterol (HDL-C) are strongly inversely associated with coronary artery disease (CAD), and high HDL-C is generally associated with reduced risk of CAD. Extremely high HDL-C with CAD is an unusual phenotype, and we hypothesized that the HDL in such individuals may have an altered composition and reduced function when compared with controls with similarly high HDL-C and no CAD. Fifty-five subjects with very high HDL-C (mean, 86 mg/dL) and onset of CAD at the age of ≈ 60 years with no known risk factors for CAD (cases) were identified through systematic recruitment. A total of 120 control subjects without CAD, matched for race, sex, and HDL-C level (controls), were identified. In all subjects, HDL composition was analyzed and HDL cholesterol efflux capacity was assessed. HDL phospholipid composition was significantly lower in cases (92 ± 37 mg/dL) than in controls (109 ± 43 mg/dL; P=0.0095). HDL cholesterol efflux capacity was significantly lower in cases (1.96 ± 0.39) than in controls (2.11 ± 0.43; P=0.04). In people with very high HDL-C, reduced HDL phospholipid content and cholesterol efflux capacity are associated with the paradoxical development of CAD. © 2015 American Heart Association, Inc.

  17. High-density all-optical magnetic recording using a high-NA lens illuminated by circularly polarized pulse lights

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yaoju [College of Physics and Electronic Information, Wenzhou University, Wenzhou 325035 (China)], E-mail:; Bai Jianping [School of Physics and Electronic Engineering, Nanyang Normal College, Nanyang 472000 (China)


    We propose a method for high-density all-optical magnetic recording. Our analyses, based on the vector diffraction theory, show that owing to the inverse Faraday effect, circularly polarized laser pulses focused by a high numerical aperture (NA) lens can induce a small magnetization domain. For an example, the FWHM of the effective magnetization domain is 0.4646{lambda} when NA=0.85. The magnetization direction is basically perpendicular to the surface of the optic-magneto film within the effective magnetization domain and the switching direction of magnetization can be controlled by the helicity of the incident circularly polarized light. These characteristics are useful to next-generation high-density all-optical magnetic storage.

  18. Effect of diameter limits and stand structure on relative density indices: a case study (United States)

    Robert O. Curtis


    An understory of shade-tolerant species often develops in stands in the Douglas-fir region of western Washington and Oregon and can have a disproportionate effect on relative density indices, such as Reineke stand density index and Curtis relative density. The effects of such understories and of other departures from The even-aged condition are illustrated with...

  19. High-density lipoprotein subfractions and influence of endothelial lipase in a healthy Turkish population: a study in a land of low high-density lipoprotein cholesterol. (United States)

    Kilic, Harun; Atalar, Enver; Lay, Incilay; Yazihan, Nuray; Buyukcam, Fatih; Saygisunar, Ugur; Aksoy, Murat; Gunduz, Huseyin; Akdemir, Ramazan


    Low concentration of high-density lipoprotein (HDL) is prevalent in Turkey. Endothelial lipase (EL) regulates lipoprotein metabolism. Small, lipid-poor HDL particles represent more-efficient cholesterol acceptors than their large, lipid-rich counterparts. The aim of this study was to investigate HDL subfractions and the effect of EL on HDL concentrations in healthy Turkish population. 102 healthy subjects were included in the study (mean age 33.6 ± 10.3 years, 42 female). HDL subfractions were assayed by single precipitation method and EL concentrations were measured by competitive enzyme immunoassay. Mean HDL concentrations were 1.45 ± 0.37 mmol/L in women, 1.10 ± 0.30 mmol/L in men. Small HDL subfraction levels did not differ statistically between density lipoprotein cholesterol (LDL), triglyceride (TG) and age but positively correlated with total cholesterol and HDL (r = 0.2, p = 0.017; r = 0.2, p = 0.028, respectively). Large HDL was not correlated with age, EL and total cholesterol, and negatively correlated with HDL, LDL, TG (r = - 0.7, p 1.6 mmol/L, mean EL concentrations were 475.83 ± 521.77 nmol/L and 529.71 ± 276.92 nmol/L, respectively (p = 0.086). There were no differences between small HDL concentrations in the HDL low and high groups. Our data did not support EL to be the reason for low HDL in a healthy Turkish population. Our results in a healthy population may serve as a reference for clinical studies on HDL subfractions.

  20. High Temperature, high pressure equation of state density correlations and viscosity correlations

    Energy Technology Data Exchange (ETDEWEB)

    Tapriyal, D.; Enick, R.; McHugh, M.; Gamwo, I.; Morreale, B.


    Global increase in oil demand and depleting reserves has derived a need to find new oil resources. To find these untapped reservoirs, oil companies are exploring various remote and harsh locations such as deep waters in Gulf of Mexico, remote arctic regions, unexplored deep deserts, etc. Further, the depth of new oil/gas wells being drilled has increased considerably to tap these new resources. With the increase in the well depth, the bottomhole temperature and pressure are also increasing to extreme values (i.e. up to 500 F and 35,000 psi). The density and viscosity of natural gas and crude oil at reservoir conditions are critical fundamental properties required for accurate assessment of the amount of recoverable petroleum within a reservoir and the modeling of the flow of these fluids within the porous media. These properties are also used to design appropriate drilling and production equipment such as blow out preventers, risers, etc. With the present state of art, there is no accurate database for these fluid properties at extreme conditions. As we have begun to expand this experimental database it has become apparent that there are neither equations of state for density or transport models for viscosity that can be used to predict these fundamental properties of multi-component hydrocarbon mixtures over a wide range of temperature and pressure. Presently, oil companies are using correlations based on lower temperature and pressure databases that exhibit an unsatisfactory predictive capability at extreme conditions (e.g. as great as {+-} 50%). From the perspective of these oil companies that are committed to safely producing these resources, accurately predicting flow rates, and assuring the integrity of the flow, the absence of an extensive experimental database at extreme conditions and models capable of predicting these properties over an extremely wide range of temperature and pressure (including extreme conditions) makes their task even more daunting.