WorldWideScience

Sample records for high damage threshold

  1. High-Damage-Threshold Pinhole for Glass Fusion Laser Applications

    International Nuclear Information System (INIS)

    Kumit, N.A.; Letzring, S.A.; Johnson, R.P.

    1998-01-01

    We are investigating methods to fabricate high-damage-threshold spatial-filter pinholes that might not be susceptible to plasma closure for relatively high energies and long pulses. These are based on the observation that grazing-incidence reflection from glass can withstand in excess of 5 kJ/cm 2 (normal to the beam) without plasma formation. The high damage threshold results from both the cos q spreading of the energy across the surface and the reflection of a large fraction of the energy from the surface, thereby greatly reducing the field strength within the medium

  2. Large-aperture, high-damage-threshold optics for beamlet

    International Nuclear Information System (INIS)

    Campbell, J.H.; Atherton, L.J.; DeYoreo, J.J.; Kozlowski, M.R.; Maney, R.T.; Montesanti, R.C.; Sheehan, L.M.; Barker, C.E.

    1995-01-01

    Beamlet serves as a test bed for the proposed NIF laser design and components. Therefore, its optics are similar in size and quality to those proposed for the NIF. In general, the optics in the main laser cavity and transport section of Beamlet are larger and have higher damage thresholds than the optics manufactured for any of our previous laser systems. In addition, the quality of the Beamlet optical materials is higher, leading to better wavefront quality, higher optical transmission, and lower-intensity modulation of the output laser beam than, for example, that typically achieved on Nova. In this article, we discuss the properties and characteristics of the large-aperture optics used on Beamlet

  3. Robust optimization of the laser induced damage threshold of dielectric mirrors for high power lasers.

    Science.gov (United States)

    Chorel, Marine; Lanternier, Thomas; Lavastre, Éric; Bonod, Nicolas; Bousquet, Bruno; Néauport, Jérôme

    2018-04-30

    We report on a numerical optimization of the laser induced damage threshold of multi-dielectric high reflection mirrors in the sub-picosecond regime. We highlight the interplay between the electric field distribution, refractive index and intrinsic laser induced damage threshold of the materials on the overall laser induced damage threshold (LIDT) of the multilayer. We describe an optimization method of the multilayer that minimizes the field enhancement in high refractive index materials while preserving a near perfect reflectivity. This method yields a significant improvement of the damage resistance since a maximum increase of 40% can be achieved on the overall LIDT of the multilayer.

  4. Damage thresholds of thin film materials and high reflectors at 248 nm

    International Nuclear Information System (INIS)

    Rainer, F.; Lowdermilk, W.H.; Milam, D.; Carniglia, C.K.; Hart, T.T.; Lichtenstein, T.L.

    1982-01-01

    Twenty-ns, 248-nm KrF laser pulses were used to measure laser damage thresholds for halfwave-thick layers of 15 oxide and fluoride coating materials, and for high reflectance coatings made with 13 combinations of these materials. The damage thresholds of the reflectors and single-layer films were compared to measurements of several properties of the halfwave-thick films to determine whether measurements of these properties of single-layer films to determine whether measurements of these properties of single-layer films were useful for identifying materials for fabrication of damage resistant coatings

  5. Improvement of the damage threshold of high reflectivity multidielectric coatings 1.06 μM

    International Nuclear Information System (INIS)

    Geenen, B.; Malherbes, A.; Guerain, J.; Boisgard, D.

    1985-01-01

    Development of new high power laser for laser-matter interaction in C.E.A. Limeil requires the realization of H.R. coatings with damage thresholds above 8 J/cm/sup 2/. MATRA's laboratory ''couches minces optiques'' (thin optical layers) production commercial mirrors was around 3.5 J/cm/sup 2/ in 1982. In order to obtain better results the authors decided to improve the control of evaporation parameters such as: vacuum and regulation of oxygen pressure by means of a mass spectrometer; better measurements of evaporation temperature and regulation of evaporation rate; measurement and control of substrate temperature by pyrometric observation; and to automatize the process. These different measurements and controls enable them to establish new processing operations giving better evaporation conditions. The result was an increase of damage threshold from 3.5 J/cm/sup 2/ to 8 J/cm/sup 2/

  6. High-damage-threshold static laser beam shaping using optically patterned liquid-crystal devices.

    Science.gov (United States)

    Dorrer, C; Wei, S K-H; Leung, P; Vargas, M; Wegman, K; Boulé, J; Zhao, Z; Marshall, K L; Chen, S H

    2011-10-15

    Beam shaping of coherent laser beams is demonstrated using liquid crystal (LC) cells with optically patterned pixels. The twist angle of a nematic LC is locally set to either 0 or 90° by an alignment layer prepared via exposure to polarized UV light. The two distinct pixel types induce either no polarization rotation or a 90° polarization rotation, respectively, on a linearly polarized optical field. An LC device placed between polarizers functions as a binary transmission beam shaper with a highly improved damage threshold compared to metal beam shapers. Using a coumarin-based photoalignment layer, various devices have been fabricated and tested, with a measured single-shot nanosecond damage threshold higher than 30 J/cm2.

  7. Design of a high pulse repitition frequency carbon dioxide laser for processing high damage threshold materials

    Science.gov (United States)

    Chatwin, Christopher R.; McDonald, Donald W.; Scott, Brian F.

    1989-07-01

    The absence of an applications led design philosophy has compromised both the development of laser source technology and its effective implementation into manufacturing technology in particular. For example, CO2 lasers are still incapable of processing classes of refractory and non-ferrous metals. Whilst the scope of this paper is restricted to high power CO2 lasers; the design methodology reported herein is applicable to source technology in general, which when exploited, will effect an expansion of applications. The CO2 laser operational envelope should not only be expanded to incorporate high damage threshold materials but also offer a greater degree of controllability. By a combination of modelling and experimentation the requisite beam characteristics, at the workpiece, were determined then utilised to design the Laser Manufacturing System. The design of sub-system elements was achieved by a combination of experimentation and simulation which benefited from a comprehensive set of software tools. By linking these tools the physical processes in the laser - electron processes in the plasma, the history of photons in the resonator, etc. - can be related, in a detailed model, to the heating mechanisms in the workpiece.

  8. Design and fabrication of a high-damage threshold infrared Smattt interferometer

    International Nuclear Information System (INIS)

    Hammond, R.B.; Gibbs, A.J.

    1981-01-01

    It has been shown that a Smartt interferometer may be used as a very precise alignment tool for infrared lasers. This interferometer may also be used effectively to investigate the phase front of a laser pulse. To use this tool for applications to high-power, fast-pulse laser systems such as Helios and Antares; however, it has been necessary to fabricate a structure with the unique optical characteristics of the Smartt interferometer combined with a very high optical-damage threshold. We have been successful in this effort by utilizing the high technology, process control, and unique properties of semiconductor-grade, single-crystal Si

  9. High-threshold motor unit firing reflects force recovery following a bout of damaging eccentric exercise.

    Science.gov (United States)

    Macgregor, Lewis J; Hunter, Angus M

    2018-01-01

    Exercise-induced muscle damage (EIMD) is associated with impaired muscle function and reduced neuromuscular recruitment. However, motor unit firing behaviour throughout the recovery period is unclear. EIMD impairment of maximal voluntary force (MVC) will, in part, be caused by reduced high-threshold motor unit firing, which will subsequently increase to recover MVC. Fourteen healthy active males completed a bout of eccentric exercise on the knee extensors, with measurements of MVC, rate of torque development and surface electromyography performed pre-exercise and 2, 3, 7 and 14 days post-exercise, on both damaged and control limb. EIMD was associated with decreased MVC (235.2 ± 49.3 Nm vs. 161.3 ± 52.5 Nm; p exercise. Mean motor unit firing rate was reduced (16.4 ± 2.2 Hz vs. 12.6 ± 1.7 Hz; p motor units only, 48h post-exercise, and common drive was elevated (0.36 ± 0.027 vs. 0.56 ± 0.032; pexercise. The firing rate of high-threshold motor units was reduced in parallel with impaired muscle function, whilst early recruited motor units remained unaltered. Common drive of motor units increased in offset to the firing rate impairment. These alterations correlated with the recovery of force decrement, but not of pain elevation. This study provides fresh insight into the central mechanisms associated with EIMD recovery, relative to muscle function. These findings may in turn lead to development of novel management and preventative procedures.

  10. Development of high damage threshold optics for petawatt-class short-pulse lasers

    International Nuclear Information System (INIS)

    Stuart, B.C.; Perry, M.D.; Boyd, R.D.

    1995-01-01

    The authors report laser-induced damage threshold measurements on pure and multilayer dielectrics and gold-coated optics at 1053 and 526 nm for pulse durations, τ, ranging from 140 fs to 1 ns. Damage thresholds of gold coatings are limited to 500 mJ/cm 2 in the subpicosecond range for 1053-nm pulses. In dielectrics, qualitative differences in the morphology of damage and a departure from the diffusion-dominated τ1/2 scaling indicate that damage results from plasma formation and ablation for τ≤10 ps and from conventional melting and boiling for τ>50 ps. A theoretical model based on electron production via multiphoton ionization, Joule heating, and collisional (avalanche) ionization is in quantitative agreement with both the pulsewidth and wavelength scaling of experimental results

  11. High-threshold motor unit firing reflects force recovery following a bout of damaging eccentric exercise

    Science.gov (United States)

    Macgregor, Lewis J.

    2018-01-01

    Exercise-induced muscle damage (EIMD) is associated with impaired muscle function and reduced neuromuscular recruitment. However, motor unit firing behaviour throughout the recovery period is unclear. EIMD impairment of maximal voluntary force (MVC) will, in part, be caused by reduced high-threshold motor unit firing, which will subsequently increase to recover MVC. Fourteen healthy active males completed a bout of eccentric exercise on the knee extensors, with measurements of MVC, rate of torque development and surface electromyography performed pre-exercise and 2, 3, 7 and 14 days post-exercise, on both damaged and control limb. EIMD was associated with decreased MVC (235.2 ± 49.3 Nm vs. 161.3 ± 52.5 Nm; p motor unit firing rate was reduced (16.4 ± 2.2 Hz vs. 12.6 ± 1.7 Hz; p motor units only, 48h post-exercise, and common drive was elevated (0.36 ± 0.027 vs. 0.56 ± 0.032; pmotor units was reduced in parallel with impaired muscle function, whilst early recruited motor units remained unaltered. Common drive of motor units increased in offset to the firing rate impairment. These alterations correlated with the recovery of force decrement, but not of pain elevation. This study provides fresh insight into the central mechanisms associated with EIMD recovery, relative to muscle function. These findings may in turn lead to development of novel management and preventative procedures. PMID:29630622

  12. Efficient Phase Locking of Fiber Amplifiers Using a Low-Cost and High-Damage-Threshold Phase Control System

    International Nuclear Information System (INIS)

    Pu, Zhou; Yan-Xing, Ma; Xiao-Lin, Wang; Hao-Tong, Ma; Xiao-Jun, Xu; Ze-Jin, Liu

    2010-01-01

    We propose a low-cost and high-damage-threshold phase control system that employs a piezoelectric ceramic transducer modulator controlled by a stochastic parallel gradient descent algorithm. Efficient phase locking of two fiber amplifiers is demonstrated. Experimental results show that energy encircled in the target pinhole is increased by a factor of 1.76 and the visibility of the fringe pattern is as high as 90% when the system is in close-loop. The phase control system has potential in phase locking of large-number and high-power fiber laser endeavors. (fundamental areas of phenomenology (including applications))

  13. Effects of deposition rates on laser damage threshold of TiO2/SiO2 high reflectors

    International Nuclear Information System (INIS)

    Yao Jianke; Xu Cheng; Ma Jianyong; Fang Ming; Fan Zhengxiu; Jin Yunxia; Zhao Yuanan; He Hongbo; Shao Jianda

    2009-01-01

    TiO 2 single layers and TiO 2 /SiO 2 high reflectors (HR) are prepared by electron beam evaporation at different TiO 2 deposition rates. It is found that the changes of properties of TiO 2 films with the increase of rate, such as the increase of refractive index and extinction coefficient and the decrease of physical thickness, lead to the spectrum shift and reflectivity bandwidth broadening of HR together with the increase of absorption and decrease of laser-induced damage threshold. The damages are found of different morphologies: a shallow pit to a seriously delaminated and deep crater, and the different amorphous-to-anatase-to-rutile phase transition processes detected by Raman study. The frequency shift of Raman vibration mode correlates with the strain in film. Energy dispersive X-ray analysis reveals that impurities and non-stoichiometric defects are two absorption initiations resulting to the laser-induced transformation.

  14. Modelling single shot damage thresholds of multilayer optics for high-intensity short-wavelength radiation sources

    NARCIS (Netherlands)

    Loch, R.A.; Sobierajski, R.; Louis, Eric; Bosgra, J.; Bosgra, J.; Bijkerk, Frederik

    2012-01-01

    The single shot damage thresholds of multilayer optics for highintensity short-wavelength radiation sources are theoretically investigated, using a model developed on the basis of experimental data obtained at the FLASH and LCLS free electron lasers. We compare the radiation hardness of commonly

  15. Preparation of high laser-induced damage threshold Ta{sub 2}O{sub 5} films

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Cheng, E-mail: xucheng@cumt.edu.cn [School of Materials Science and Engineering, China University of Mining and Technology, Xuzhou 221116 (China); Yi, Peng; Fan, Heliang; Qi, Jianwei; Yang, Shuai; Qiang, Yinghuai; Liu, Jiongtian [School of Materials Science and Engineering, China University of Mining and Technology, Xuzhou 221116 (China); Li, Dawei [Key Laboratory of High Power Laser Materials, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2014-08-01

    High laser-induced damage threshold (LIDT) Ta{sub 2}O{sub 5} films were prepared by the sol–gel method using TaCl{sub 5} as a new precursor. The optical properties, surface morphologies, chemical composition, absorption and LIDT of the films were investigated. The results showed that the transparent and homogenous Ta{sub 2}O{sub 5} films had small surface roughness, low absorption and high LIDT even with large number of layers. The maximum LIDT at 1064 nm and 12 ns of the films was 24.8 J/cm{sup 2}. The ion chromatograph and Fourier transform infrared spectrum were used to reveal the functions of the addition of H{sub 2}O{sub 2} in the sol formation. It was shown that H{sub 2}O{sub 2} had two important functions, which were the decrease of Cl element content and the rapid generation of tantalum oxide. The high LIDT achieved was mainly due to the nearly free of defects in the films.

  16. Analysis of the damage threshold of the GaAs pseudomorphic high electron mobility transistor induced by the electromagnetic pulse

    International Nuclear Information System (INIS)

    Xi Xiao-Wen; Chai Chang-Chun; Liu Yang; Yang Yin-Tang; Fan Qing-Yang; Shi Chun-Lei

    2016-01-01

    An electromagnetic pulse (EMP)-induced damage model based on the internal damage mechanism of the GaAs pseudomorphic high electron mobility transistor (PHEMT) is established in this paper. With this model, the relationships among the damage power, damage energy, pulse width and signal amplitude are investigated. Simulation results show that the pulse width index from the damage power formula obtained here is higher than that from the empirical formula due to the hotspot transferring in the damage process of the device. It is observed that the damage energy is not a constant, which decreases with the signal amplitude increasing, and then changes little when the signal amplitude reaches up to a certain level. (paper)

  17. Very high laser-damage threshold of polymer-derived Si(B)CN-carbon nanotube composite coatings.

    Science.gov (United States)

    Bhandavat, R; Feldman, A; Cromer, C; Lehman, J; Singh, G

    2013-04-10

    We study the laser irradiance behavior and resulting structural evolution of polymer-derived silicon-boron-carbonitride (Si(B)CN) functionalized multiwall carbon nanotube (MWCNT) composite spray coatings on copper substrate. We report a damage threshold value of 15 kWcm(-2) and an optical absorbance of 0.97 after irradiation. This is an order of magnitude improvement over MWCNT (1.4 kWcm(-2), 0.76), SWCNT (0.8 kWcm(-2), 0.65) and carbon paint (0.1 kWcm(-2), 0.87) coatings previously tested at 10.6 μm (2.5 kW CO2 laser) exposure. Electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy suggests partial oxidation of Si(B)CN forming a stable protective SiO2 phase upon irradiation.

  18. Acoustic emission sensor radiation damage threshold experiment

    International Nuclear Information System (INIS)

    Beeson, K.M.; Pepper, C.E.

    1994-01-01

    Determination of the threshold for damage to acoustic emission sensors exposed to radiation is important in their application to leak detection in radioactive waste transport and storage. Proper response to system leaks is necessary to ensure the safe operation of these systems. A radiation impaired sensor could provide ''false negative or false positive'' indication of acoustic signals from leaks within the system. Research was carried out in the Radiochemical Technology Division at Oak Ridge National Laboratory to determine the beta/gamma radiation damage threshold for acoustic emission sensor systems. The individual system consisted of an acoustic sensor mounted with a two part epoxy onto a stainless steel waveguide. The systems were placed in an irradiation fixture and exposed to a Cobalt-60 source. After each irradiation, the sensors were recalibrated by Physical Acoustics Corporation. The results were compared to the initial calibrations performed prior to irradiation and a control group, not exposed to radiation, was used to validate the results. This experiment determines the radiation damage threshold of each acoustic sensor system and verifies its life expectancy, usefulness and reliability for many applications in radioactive environments

  19. Synthesis, growth and characterization of o-phenylinediaminium benzilate: An SHG material with high laser damage threshold for NLO applications

    Science.gov (United States)

    Rajkumar, M.; Chandramohan, A.

    2017-02-01

    An organic molecular charge transfer complex salt, o-phenylenediaminium benzilate was synthesized and single crystals grown by slow solvent evaporation solution growth technique in methanol at ambient temperature. The grown crystal was subjected to Single crystal XRD analysis to establish the molecular structure. The molecular structure was further confirmed by 1H and 13C NMR spectral studies. The formation of the charge transfer complex salt was confirmed by UV-VIS spectroscopic technique. To identify the optical transmittance window and lower wavelength cut-off, the crystal was subjected to UV-Vis-NIR transmission spectral studies. The presence of various functional groups in the salt crystal was confirmed by FT-IR spectroscopic technique. Photoluminescence study was carried out to explore its efficiency towards device fabrications. The TG and DTA thermal analyses were simultaneously carried out to establish the thermal stability of the crystal. The dielectric studies of the grown crystal were executed at different temperatures as a function of frequency to investigate its electrical properties. The SHG efficiency of the crystal was determined using the modified Kurtz and Perry powder technique and its value was found to be 1.98 times that of the KDP crystal. Laser damage threshold value was measured using Nd:YAG laser. The mechanical stability of the title crystal was established employing Vickers micro hardness tester.

  20. Database of average-power damage thresholds at 1064 nm

    International Nuclear Information System (INIS)

    Rainer, F.; Hildum, E.A.; Milam, D.

    1987-01-01

    We have completed a database of average-power, laser-induced, damage thresholds at 1064 nm on a variety of materials. Measurements were made with a newly constructed laser to provide design input for moderate and high average-power laser projects. The measurements were conducted with 16-ns pulses at pulse-repetition frequencies ranging from 6 to 120 Hz. Samples were typically irradiated for time ranging from a fraction of a second up to 5 minutes (36,000 shots). We tested seven categories of samples which included antireflective coatings, high reflectors, polarizers, single and multiple layers of the same material, bare and overcoated metal surfaces, bare polished surfaces, and bulk materials. The measured damage threshold ranged from 2 for some metals to > 46 J/cm 2 for a bare polished glass substrate. 4 refs., 7 figs., 1 tab

  1. Synthesis and stabilization of oxide-based colloidal suspensions in organic media: application in the preparation of hybrids organic-inorganic materials for very high laser damage threshold coatings

    International Nuclear Information System (INIS)

    Marchet, N.

    2008-02-01

    Multilayer coatings are widely used in optic and particular in the field of high power laser on the components of laser chains. The development of a highly reflective coating with a laser damage resistance requires the fine-tuning of a multilayer stack constituted by a succession alternated by materials with low and high refractive index. In order to limit the number of layers in the stack, refractive indexes must be optimized. To do it, an original approach consists in synthesizing new organic-inorganic hybrid materials satisfying the criteria of laser damage resistance and optimized refractive index. These hybrid materials are constituted by nano-particles of metal oxides synthesized by sol-gel process and dispersed in an organic polymer with high laser damage threshold. Nevertheless, this composite system requires returning both compatible phases between them by chemical grafting of alc-oxy-silanes or carboxylic acids. We showed that it was so possible to disperse in a homogeneous way these functionalized nano-particles in non-polar, aprotic solvent containing solubilized organic polymers, to obtain time-stable nano-composite solutions. From these organic-inorganic hybrid solutions, thin films with optical quality and high laser damage threshold were obtained. These promising results have permitted to realize highly reflective stacks, constituted by 7 pairs with optical properties in agreement with the theoretical models and high laser damage threshold. (author)

  2. Influence of microstructure on laser damage threshold of IBS coatings

    International Nuclear Information System (INIS)

    Stolz, C.J.; Genin, F.Y.; Kozlowski, M.R.; Long, D.; Lalazari, R.; Wu, Z.L.; Kuo, P.K.

    1996-01-01

    Ion-beam sputtering (IBS) coatings were developed for the laser gyro industry to meet significantly different requirements than those of fusion lasers. Laser gyro mirrors are small ( 26 J/cm 2 at 1,064 nm with 3-ns pulses). As part of the National Ignition Facility (NIF) coating development effort, IBS coatings are being studied to explore the possible benefits of this technology to NIF optics. As an initial step to achieving the NIF size and damage threshold requirements, the coating process is being scaled to uniformly coat a 20 x 40 cm 2 area with reduced spectral, reflected wavefront, and laser damage threshold requirements. Here, multilayer coatings deposited by ion-beam sputtering with amorphous layers were found to have lower damage thresholds at 1,064 nm than similar coatings with crystalline layers. Interestingly, at higher fluences the damage was less severe for the amorphous coatings. The magnitude of the difference in damage thresholds between the two different microstructures was strongly influenced by the size of the tested area. To better understand the microstructure effects, single layers of HfO 2 with different microstructures were studied using transmission electron microscopy, ellipsometry, and a photothermal deflection technique. Since the laser damage initiated at defects, the influence of thermal diffusivity on thermal gradients in nodular defects is also presented

  3. Laser-induced damage thresholds of gold, silver and their alloys in air and water

    Energy Technology Data Exchange (ETDEWEB)

    Starinskiy, Sergey V.; Shukhov, Yuri G.; Bulgakov, Alexander V., E-mail: bulgakov@itp.nsc.ru

    2017-02-28

    Highlights: • Laser damage thresholds of Ag, Au and Ag-Au alloys in air and water are measured. • Alloy thresholds are lower than those of Ag and Au due to low thermal conductivity. • Laser damage thresholds in water are ∼1.5 times higher than those in air. • Light scattering mechanisms responsible for high thresholds in water are suggested. • Light scattering mechanisms are supported by optical reflectance measurements. - Abstract: The nanosecond-laser-induced damage thresholds of gold, silver and gold-silver alloys of various compositions in air and water have been measured for single-shot irradiation conditions. The experimental results are analyzed theoretically by solving the heat flow equation for the samples irradiated in air and in water taking into account vapor nucleation at the solid-water interface. The damage thresholds of Au-Ag alloys are systematically lower than those for pure metals, both in air and water that is explained by lower thermal conductivities of the alloys. The thresholds measured in air agree well with the calculated melting thresholds for all samples. The damage thresholds in water are found to be considerably higher, by a factor of ∼1.5, than the corresponding thresholds in air. This cannot be explained, in the framework of the used model, neither by the conductive heat transfer to water nor by the vapor pressure effect. Possible reasons for the high damage thresholds in water such as scattering of the incident laser light by the vapor-liquid interface and the critical opalescence in the superheated water are suggested. Optical pump-probe measurements have been performed to study the reflectance dynamics of the surface irradiated in air and water. Comparison of the transient reflectance signal with the calculated nucleation dynamics provides evidence that the both suggested scattering mechanisms are likely to occur during metal ablation in water.

  4. Computer simulation of threshold radiation damage in rutile, TiO2

    International Nuclear Information System (INIS)

    Richardson, D.D.

    1983-01-01

    Computer simulation methods have been used to study threshold radiation damage structures in rutile. It was found Ti ions have threshold energies much larger than O ions. Basal plane displacements for oxygen were shown to be complex, and focuson behaviour was only found at energies several times the threshold energy. Oxygen ions do not have simple interstitials or vacancies, but rather a three-ion crowdion and divacancy-interstitial combination were found, respectively. Threshold energies were found to be highly dependent on crystallographic direction, being as low as 10 eV in one instance, but often much higher. Oxygen ions were seen to defocus along the c-axis. (author)

  5. Synthesis and physicochemical properties of bis(L-asparaginato) zinc(II): A promising new semiorganic crystal with high laser damage threshold for shorter wavelength generation

    Science.gov (United States)

    Subhashini, R.; Arjunan, S.

    2018-05-01

    An exceedingly apparent nonlinear semiorganic optical crystals of bis(L-asparaginato)zinc(II) [BLAZ], was synthesized by a traditional slow evaporation solution growth technique. The cell parameters were estimated from single crystal X-ray diffraction analysis. Spectroscopic study substantiates the presence of functional groups. The UV spectrum shows the sustenance of wide transparency window and several optical constants, such as extinction coefficient (K), refractive index, optical conductivity and electric susceptibility with real and imaginary parts of dielectric constant were calculated using the transmittance data. The fluorescence emission spectrum of the crystal pronounces red emission. The laser induced surface damage threshold of the crystal was measured using Nd:YAG laser. The output intensity of second harmonic generation was estimated using the Kurtz and Perry powder method. The hardness stability was investigated by Vickers microhardness test. The decomposition and thermal stability of the compound were scrutinized by TGA-DSC studies. Dielectric studies were carried out to anatomize the electrical properties of the crystal. SEM analysis reveals the existence of minute crystallites on the growth surface.

  6. Multiple pulse nanosecond laser induced damage threshold on hybrid mirrors

    Science.gov (United States)

    Vanda, Jan; Muresan, Mihai-George; Bilek, Vojtech; Sebek, Matej; Hanus, Martin; Lucianetti, Antonio; Rostohar, Danijela; Mocek, Tomas; Škoda, Václav

    2017-11-01

    So-called hybrid mirrors, consisting of broadband metallic surface coated with dielectric reflector designed for specific wavelength, becoming more important with progressing development of broadband mid-IR sources realized using parametric down conversion system. Multiple pulse nanosecond laser induced damage on such mirrors was tested by method s-on-1, where s stands for various numbers of pulses. We show difference in damage threshold between common protected silver mirrors and hybrid silver mirrors prepared by PVD technique and their variants prepared by IAD. Keywords: LIDT,

  7. Laser-induced damage thresholds of gold, silver and their alloys in air and water

    Science.gov (United States)

    Starinskiy, Sergey V.; Shukhov, Yuri G.; Bulgakov, Alexander V.

    2017-02-01

    The nanosecond-laser-induced damage thresholds of gold, silver and gold-silver alloys of various compositions in air and water have been measured for single-shot irradiation conditions. The experimental results are analyzed theoretically by solving the heat flow equation for the samples irradiated in air and in water taking into account vapor nucleation at the solid-water interface. The damage thresholds of Au-Ag alloys are systematically lower than those for pure metals, both in air and water that is explained by lower thermal conductivities of the alloys. The thresholds measured in air agree well with the calculated melting thresholds for all samples. The damage thresholds in water are found to be considerably higher, by a factor of ∼1.5, than the corresponding thresholds in air. This cannot be explained, in the framework of the used model, neither by the conductive heat transfer to water nor by the vapor pressure effect. Possible reasons for the high damage thresholds in water such as scattering of the incident laser light by the vapor-liquid interface and the critical opalescence in the superheated water are suggested. Optical pump-probe measurements have been performed to study the reflectance dynamics of the surface irradiated in air and water. Comparison of the transient reflectance signal with the calculated nucleation dynamics provides evidence that the both suggested scattering mechanisms are likely to occur during metal ablation in water.

  8. Laser-damage thresholds of thin-film optical coatings at 248 nm

    International Nuclear Information System (INIS)

    Milam, D.; Rainer, F.; Lowdermilk, W.H.

    1981-01-01

    We have measured the laser-induced damage thresholds for 248 nm wavelength light of over 100 optical coatings from commercial vendors and research institutions. All samples were irradiated once per damage site with temporally multi-lobed, 20-ns pulses generated by a KrF laser. The survey included high, partial, and dichroic reflectors, anti-reflective coatings, and single layer films. The samples were supplied by ten vendors. The majority of samples tested were high reflectors and antireflective coatings. The highest damage thresholds were 8.5 to 9.4 J/cm 2 , respectively. Although these represent extremes of what has been tested so far, several vendors have produced coatings of both types with thresholds which consistently exceed 6 J/cm 2 . Repeated irradiations of some sites were made on a few samples. These yielded no degradation in threshold, but in fact some improvement in damage resistance. These same samples also exhibited no change in threshold after being retested seven months later

  9. Cleaning Process Versus Laser-Damage Threshold of Coated Optical Components

    International Nuclear Information System (INIS)

    Rigatti, A.L.

    2005-01-01

    The cleaning of optical surfaces is important in the manufacture of high-laser-damage-threshold coatings, which are a key component on peak-power laser systems such as OMEGA located at the Laboratory for Laser Energetics (LLE). Since cleaning adds time, labor, and ultimately cost to the final coated component, this experiment was designed to determine the impact of different cleaning protocols on the measured laser-damage performance

  10. Infrared laser damage thresholds in corneal tissue phantoms using femtosecond laser pulses

    Science.gov (United States)

    Boretsky, Adam R.; Clary, Joseph E.; Noojin, Gary D.; Rockwell, Benjamin A.

    2018-02-01

    Ultrafast lasers have become a fixture in many biomedical, industrial, telecommunications, and defense applications in recent years. These sources are capable of generating extremely high peak power that can cause laser-induced tissue breakdown through the formation of a plasma upon exposure. Despite the increasing prevalence of such lasers, current safety standards (ANSI Z136.1-2014) do not include maximum permissible exposure (MPE) values for the cornea with pulse durations less than one nanosecond. This study was designed to measure damage thresholds in corneal tissue phantoms in the near-infrared and mid-infrared to identify the wavelength dependence of laser damage thresholds from 1200-2500 nm. A high-energy regenerative amplifier and optical parametric amplifier outputting 100 femtosecond pulses with pulse energies up to 2 mJ were used to perform exposures and determine damage thresholds in transparent collagen gel tissue phantoms. Three-dimensional imaging, primarily optical coherence tomography, was used to evaluate tissue phantoms following exposure to determine ablation characteristics at the surface and within the bulk material. The determination of laser damage thresholds in the near-IR and mid-IR for ultrafast lasers will help to guide safety standards and establish the appropriate MPE levels for exposure sensitive ocular tissue such as the cornea. These data will help promote the safe use of ultrafast lasers for a wide range of applications.

  11. Femtosecond laser damage threshold and nonlinear characterization in bulk transparent SiC materials

    International Nuclear Information System (INIS)

    DesAutels, G. Logan; Finet, Marc; Ristich, Scott; Whitaker, Matt; Brewer, Chris; Juhl, Shane; Walker, Mark; Powers, Peter

    2008-01-01

    Semi-insulating and conducting SiC crystalline transparent substrates were studied after being processed by femtosecond (fs) laser radiation (780 nm at 160 fs). Z-scan and damage threshold experiments were performed on both SiC bulk materials to determine each sample's nonlinear and threshold parameters. 'Damage' in this text refers to an index of refraction modification as observed visually under an optical microscope. In addition, a study was performed to understand the damage threshold as a function of numerical aperture. Presented here for the first time, to the best of our knowledge, are the damage threshold, nonlinear index of refraction, and nonlinear absorption measured values

  12. Porcine skin damage thresholds for pulsed nanosecond-scale laser exposure at 1064-nm

    Science.gov (United States)

    DeLisi, Michael P.; Peterson, Amanda M.; Noojin, Gary D.; Shingledecker, Aurora D.; Tijerina, Amanda J.; Boretsky, Adam R.; Schmidt, Morgan S.; Kumru, Semih S.; Thomas, Robert J.

    2018-02-01

    Pulsed high-energy lasers operating in the near-infrared (NIR) band are increasingly being used in medical, industrial, and military applications, but there are little available experimental data to characterize their hazardous effects on skin tissue. The current American National Standard for the Safe Use of Lasers (ANSI Z136.1-2014) defines the maximum permissible exposure (MPE) on the skin as either a single-pulse or total exposure time limit. This study determined the minimum visible lesion (MVL) damage thresholds in Yucatan miniature pig skin for the single-pulse case and several multiple-pulse cases over a wide range of pulse repetition frequencies (PRFs) (10, 125, 2,000, and 10,000 Hz) utilizing nanosecond-scale pulses (10 or 60 ns). The thresholds are expressed in terms of the median effective dose (ED50) based on varying individual pulse energy with other laser parameters held constant. The results confirm a decrease in MVL threshold as PRF increases for exposures with a constant number of pulses, while also noting a PRF-dependent change in the threshold as a function of the number of pulses. Furthermore, this study highlights a change in damage mechanism to the skin from melanin-mediated photomechanical events at high irradiance levels and few numbers of pulses to bulk tissue photothermal additivity at lower irradiance levels and greater numbers of pulses. The observed trends exceeded the existing exposure limits by an average factor of 9.1 in the photothermally-damaged cases and 3.6 in the photomechanicallydamaged cases.

  13. Laser induced damage threshold on metallic surfaces during laser cleaning

    CSIR Research Space (South Africa)

    Labuschagne, K

    2005-07-01

    Full Text Available laser paint removal. Laser induced damage on 316L stainless steel was studied, with the target subjected to single and multiple pulse irradiations using a Q-switched Nd:YAG, with fluences between 0.15 and 11.8 J/cm2. Several different damage morphologies...

  14. Reduction of damage threshold in dielectric materials induced by negatively chirped laser pulses

    International Nuclear Information System (INIS)

    Louzon, E.; Henis, Z.; Pecker, S.; Ehrlich, Y.; Fisher, D.; Fraenkel, M.; Zigler, A.

    2005-01-01

    The threshold fluence for laser induced damage in wide band gap dielectric materials, fused silica and MgF 2 , is observed to be lower by up to 20% for negatively (down) chirped pulses than for positively (up) chirped, at pulse durations ranging from 60 fs to 1 ps. This behavior of the threshold fluence for damage on the chirp direction was not observed in semiconductors (silicon and GaAs). Based on a model including electron generation in the conduction band and Joule heating, it is suggested that the decrease in the damage threshold for negatively chirped pulse is related to the dominant role of multiphoton ionization in wide gap materials

  15. Correlating optical damage threshold with intrinsic defect populations in fused silica as a function of heat treatment temperature

    Energy Technology Data Exchange (ETDEWEB)

    Shen, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Matthews, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Elhadj, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Miller, P. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nelson, A. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hamilton, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-04-03

    Here, chemical vapor deposition (CVD) is used for the production of fused silica optics in high-power laser applications. However, relatively little is known about the ultraviolet laser damage threshold of CVD films and how they relate to intrinsic defects produced during deposition. We present here a study relating structural and electronic defects in CVD films to 355 nm pulsed-laser damage threshold as a function of post-deposition annealing temperature (THT). Plasma-enhanced CVD based on SiH4/N2O under oxygen-rich conditions was used to deposit 1.5, 3.1 and 6.4 µm thick films on etched SiO2 substrates. Rapid annealing was performed using a scanned CO2 laser beam up to THT ~ 2100 K. The films were then characterized using x-ray photoemission spectroscopy, Fourier transform infrared spectroscopy (FTIR) and photoluminescence spectroscopy. A gradual transition in the damage threshold of annealed films was observed for THT values up to 1600 K, correlating with a decrease in non-bridging silanol and oxygen deficient centres. An additional sharp transition in damage threshold also occurs at ~1850 K indicating substrate annealing. Based on our results, a mechanism for damage-related defect annealing is proposed, and the potential of using high-THT CVD SiO2 to mitigate optical damage is also discussed.

  16. Review of ultraviolet damage threshold measurements at Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Lowdermilk, W.H.; Milam, D.

    1984-01-01

    The results of damage threshold measurements made at LLNL using ultraviolet wavelength laser pulses are reviewed. Measurements were made with pulses from a krypton fluoride laser with wavelength of 248 nm and pulse duration of 20 ns and with Nd-glass laser pulses converted to the third harmonic wavelength of 355 nm with duration of 0.6 ns. Measurements are presented for transparent window materials, crystals and harmonic generation, single layer dielectric films of oxide and fluoride materials and multilayer high reflectivity and antireflective coatings.

  17. Review of ultraviolet damage threshold measurements at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Lowdermilk, W.H.; Milam, D.

    1984-01-01

    The results of damage threshold measurements made at LLNL using ultraviolet wavelength laser pulses are reviewed. Measurements were made with pulses from a krypton fluoride laser with wavelength of 248 nm and pulse duration of 20 ns and with Nd-glass laser pulses converted to the third harmonic wavelength of 355 nm with duration of 0.6 ns. Measurements are presented for transparent window materials, crystals and harmonic generation, single layer dielectric films of oxide and fluoride materials and multilayer high reflectivity and antireflective coatings

  18. Experimental Determination of Damage Threshold Characteristics of IR Compatible Optical Materials

    International Nuclear Information System (INIS)

    Soong, Ken

    2011-01-01

    The accelerating gradient in a laser-driven dielectric accelerating structure is often limited by the laser damage threshold of the structure. For a given laser-driven dielectric accelerator design, we can maximize the accelerating gradient by choosing the best combination of the accelerator's constituent material and operating wavelength. We present here a model of the damage mechanism from ultrafast infrared pulses and compare that model with experimental measurements of the damage threshold of bulk silicon. Additionally, we present experimental measurements of a variety of candidate materials, thin films, and nanofabricated accelerating structures.

  19. The Laser Damage Threshold for Materials and the Relation Between Solid-Melt and Melt-Vapor Interface Velocities

    International Nuclear Information System (INIS)

    Khalil, Osama Mostafa

    2010-01-01

    Numerous experiments have demonstrated and analytic theories have predicted that there is a threshold for pulsed laser ablation of a wide range of materials. Optical surface damage threshold is a very complex and important application of high-power lasers. Optical damage may also be considered to be the initial phase of laser ablation. In this work it was determined the time required and the threshold energy of a layer of thickness to heat up. We used the Finite Difference method to simulate the process of laser-target interaction in three cases. Namely, the case before melting begins using a continuous wave (c.w) laser source and a pulsed laser source, the case after the first change of state (from solid to melt), and the case after the second change of state (from melt to vapor). And also study the relation between the solid-melt and melt-vapor interface velocities to have a commonsense of the laser ablation process.

  20. Investigation of damage threshold to TiO2 coatings at different laser wavelength and pulse duration

    International Nuclear Information System (INIS)

    Yao Jianke; Fan Zhengxiu; Jin Yunxia; Zhao Yuanan; He Hongbo; Shao Jianda

    2008-01-01

    Laser-induced damages to TiO 2 single layers and TiO 2 /SiO 2 high reflectors at laser wavelength of 1064 nm, 800 nm, 532 nm, and pulse width of 12 ns, 220 ps, 50 fs, 8 ns are investigated. All films are prepared by electron beam evaporation. The relations among microstructure, chemical composition, optical properties and laser-induced damage threshold (LIDT), have been researched. The dependence of damage mechanism on laser wavelength and pulse width is discussed. It is found that from 1064 nm to 532 nm, LIDT is mainly absorption related, which is determined by film's extinction coefficient and stoichiometric defects. The rapid decrease of LIDT at 800 nm is due to the pulse width factor. TiO 2 coatings are mainly thermally by damaged at long pulse (τ ≥ 220 ps). The damage shows ablation feature at 50 fs

  1. A historical perspective on fifteen years of laser damage thresholds at LLNL

    International Nuclear Information System (INIS)

    Rainer, F.; De Marco, F.P.; Staggs, M.C.; Kozlowski, M.R.; Atherton, L.J.; Sheehan, L.M.

    1993-01-01

    We have completed a fifteen year, referenced and documented compilation of more than 15,000 measurements of laser-induced damage thresholds (LIDT) conducted at the Lawrence Livermore National Laboratory (LLNL). These measurements cover the spectrum from 248 to 1064 nm with pulse durations ranging from < 1 ns to 65 ns and at pulse-repetition frequencies (PRF) from single shots to 6.3 kHz. We emphasize the changes in LIDTs during the past two years since we last summarized our database. We relate these results to earlier data concentrating on improvements in processing methods, materials, and conditioning techniques. In particular, we highlight the current status of anti-reflective (AR) coatings, high reflectors (HR), polarizers, and frequency-conversion crystals used primarily at 355 nm and 1064 nm

  2. Damage threshold in adult rabbit eyes after scleral cross-linking by riboflavin/blue light application.

    Science.gov (United States)

    Iseli, Hans Peter; Körber, Nicole; Karl, Anett; Koch, Christian; Schuldt, Carsten; Penk, Anja; Liu, Qing; Huster, Daniel; Käs, Josef; Reichenbach, Andreas; Wiedemann, Peter; Francke, Mike

    2015-10-01

    Several scleral cross-linking (SXL) methods were suggested to increase the biomechanical stiffness of scleral tissue and therefore, to inhibit axial eye elongation in progressive myopia. In addition to scleral cross-linking and biomechanical effects caused by riboflavin and light irradiation such a treatment might induce tissue damage, dependent on the light intensity used. Therefore, we characterized the damage threshold and mechanical stiffening effect in rabbit eyes after application of riboflavin combined with various blue light intensities. Adult pigmented and albino rabbits were treated with riboflavin (0.5 %) and varying blue light (450 ± 50 nm) dosages from 18 to 780 J/cm(2) (15 to 650 mW/cm(2) for 20 min). Scleral, choroidal and retinal tissue alterations were detected by means of light microscopy, electron microscopy and immunohistochemistry. Biomechanical changes were measured by shear rheology. Blue light dosages of 480 J/cm(2) (400 mW/cm(2)) and beyond induced pathological changes in ocular tissues; the damage threshold was defined by the light intensities which induced cellular degeneration and/or massive collagen structure changes. At such high dosages, we observed alterations of the collagen structure in scleral tissue, as well as pigment aggregation, internal hemorrhages, and collapsed blood vessels. Additionally, photoreceptor degenerations associated with microglia activation and macroglia cell reactivity in the retina were detected. These pathological alterations were locally restricted to the treated areas. Pigmentation of rabbit eyes did not change the damage threshold after a treatment with riboflavin and blue light but seems to influence the vulnerability for blue light irradiations. Increased biomechanical stiffness of scleral tissue could be achieved with blue light intensities below the characterized damage threshold. We conclude that riboflavin and blue light application increased the biomechanical stiffness of scleral tissue at

  3. Modeling of damage generation mechanisms in silicon at energies below the displacement threshold

    International Nuclear Information System (INIS)

    Santos, Ivan; Marques, Luis A.; Pelaz, Lourdes

    2006-01-01

    We have used molecular dynamics simulation techniques to study the generation of damage in Si within the low-energy deposition regime. We have demonstrated that energy transfers below the displacement threshold can produce a significant amount of damage, usually neglected in traditional radiation damage calculations. The formation of amorphous pockets agrees with the thermal spike concept of local melting. However, we have found that the order-disorder transition is not instantaneous, but it requires some time to reach the appropriate kinetic-potential energy redistribution for melting. The competition between the rate of this energy redistribution and the energy diffusion to the surrounding atoms determines the amount of damage generated by a given deposited energy. Our findings explain the diverse damage morphology produced by ions of different masses

  4. Determination of ultra-short laser induced damage threshold of KH2PO4 crystal: Numerical calculation and experimental verification

    Directory of Open Access Journals (Sweden)

    Jian Cheng

    2016-03-01

    Full Text Available Rapid growth and ultra-precision machining of large-size KDP (KH2PO4 crystals with high laser damage resistance are tough challenges in the development of large laser systems. It is of high interest and practical significance to have theoretical models for scientists and manufacturers to determine the laser-induced damage threshold (LIDT of actually prepared KDP optics. Here, we numerically and experimentally investigate the laser-induced damage on KDP crystals in ultra-short pulse laser regime. On basis of the rate equation for free electron generation, a model dedicated to predicting the LIDT is developed by considering the synergistic effect of photoionization, impact ionization and decay of electrons. Laser damage tests are performed to measure the single-pulse LIDT with several testing protocols. The testing results combined with previously reported experimental data agree well with those calculated by the model. By taking the light intensification into consideration, the model is successfully applied to quantitatively evaluate the effect of surface flaws inevitably introduced in the preparation processes on the laser damage resistance of KDP crystals. This work can not only contribute to further understanding of the laser damage mechanisms of optical materials, but also provide available models for evaluating the laser damage resistance of exquisitely prepared optical components used in high power laser systems.

  5. Calculation of femtosecond pulse laser induced damage threshold for broadband antireflective microstructure arrays.

    Science.gov (United States)

    Jing, Xufeng; Shao, Jianda; Zhang, Junchao; Jin, Yunxia; He, Hongbo; Fan, Zhengxiu

    2009-12-21

    In order to more exactly predict femtosecond pulse laser induced damage threshold, an accurate theoretical model taking into account photoionization, avalanche ionization and decay of electrons is proposed by comparing respectively several combined ionization models with the published experimental measurements. In addition, the transmittance property and the near-field distribution of the 'moth eye' broadband antireflective microstructure directly patterned into the substrate material as a function of the surface structure period and groove depth are performed by a rigorous Fourier model method. It is found that the near-field distribution is strongly dependent on the periodicity of surface structure for TE polarization, but for TM wave it is insensitive to the period. What's more, the femtosecond pulse laser damage threshold of the surface microstructure on the pulse duration taking into account the local maximum electric field enhancement was calculated using the proposed relatively accurate theoretical ionization model. For the longer incident wavelength of 1064 nm, the weak linear damage threshold on the pulse duration is shown, but there is a surprising oscillation peak of breakdown threshold as a function of the pulse duration for the shorter incident wavelength of 532 nm.

  6. Development of damage functions for high-rise building components

    International Nuclear Information System (INIS)

    Kustu, O.; Miller, D.D.; Brokken, S.T.

    1982-10-01

    The component approach for predicting the effects that ground motion from underground nuclear explosions will have on structures involves predicting the damage to each structural and nonstructural component of a building on the basis of the expected local deformation that most affects the damage to the component. This study was conducted to provide the basic data necessary to evaluate the component approach. Available published laboratory test data for various high-rise building components were collected. These data were analyzed statistically to determine damage threshold values and their variabilities, which in turn were used to derive component damage functions. The portion of construction costs attributable to various building components was determined statistically. This information was needed because component damage functions define damage as a percentage of the replacement values of the component, and, in order to calculate the overall building damage factor, the relative cost of each component must be estimated. The feasibility of the component approach to damage prediction is demonstrated. It is recommended that further experimental research directed towards developing an adequate data base of component damage thresholds for all significant building components should be encouraged. Parallel to this effort, detailed damage data from specific buildings damaged in earthquakes should be collected to verify the theoretical procedure

  7. Infrared skin damage thresholds from 1319-nm continuous-wave laser exposures

    Science.gov (United States)

    Oliver, Jeffrey W.; Vincelette, Rebecca; Noojin, Gary D.; Clark, Clifton D.; Harbert, Corey A.; Schuster, Kurt J.; Shingledecker, Aurora D.; Kumru, Semih S.; Maughan, Justin; Kitzis, Naomi; Buffington, Gavin D.; Stolarski, David J.; Thomas, Robert J.

    2013-12-01

    A series of experiments were conducted in vivo using Yucatan miniature pigs (Sus scrofa domestica) to determine thermal damage thresholds to the skin from 1319-nm continuous-wave Nd:YAG laser irradiation. Experiments employed exposure durations of 0.25, 1.0, 2.5, and 10 s and beam diameters of ˜0.6 and 1 cm. Thermal imagery data provided a time-dependent surface temperature response from the laser. A damage endpoint of fifty percent probability of a minimally visible effect was used to determine threshold for damage at 1 and 24 h postexposure. Predicted thermal response and damage thresholds are compared with a numerical model of optical-thermal interaction. Resultant trends with respect to exposure duration and beam diameter are compared with current standardized exposure limits for laser safety. Mathematical modeling agreed well with experimental data, predicting that though laser safety standards are sufficient for exposures <10 s, they may become less safe for very long exposures.

  8. Damage threshold of lithium niobate crystal under single and multiple femtosecond laser pulses: theoretical and experimental study

    International Nuclear Information System (INIS)

    Meng, Qinglong; Zhang, Bin; Zhong, Sencheng; Zhu, Liguo

    2016-01-01

    The damage threshold of lithium niobate crystal under single and multiple femtosecond laser pulses has been studied theoretically and experimentally. Firstly, the model for the damage threshold prediction of crystal materials based on the improved rate equation has been proposed. Then, the experimental measure method of the damage threshold of crystal materials has been given in detail. On the basis, the variation of the damage threshold of lithium niobate crystal with the pulse duration has also been analyzed quantitatively. Finally, the damage threshold of lithium niobate crystal under multiple laser pulses has been measured and compared to the theoretical results. The results show that the transmittance of lithium niobate crystal is almost a constant when the laser pulse fluence is relative low, whereas it decreases linearly with the increase in the laser pulse fluence below the damage threshold. The damage threshold of lithium niobate crystal increases with the increase in the duration of the femtosecond laser pulse. And the damage threshold of lithium niobate crystal under multiple laser pulses is obviously lower than that irradiated by a single laser pulse. The theoretical data fall in good agreement with the experimental results. (orig.)

  9. Tornado risk analysis at Savannah River Plant using windspeed damage thresholds and single building strike frequencies

    International Nuclear Information System (INIS)

    Taylor, D.H.; McDonald, J.R.; Twisdale, L.A.

    1985-01-01

    Tornado risk analysis at the Savannah River Plant has taken a two pronged approach: (1) developing a catalogue of damage thresholds as a function of windspeed for processing buildings and other representative site structures; (2) developing a method of estimating, for each building, the probability of a tornado exceeding each damage threshold. Wind resistance of building construction at SRP varies widely depending on the function of the structure. It was recognized that all tornadoes do not necessarily seriously damage buildings, but the damage thresholds were unknown. In order to evaluate the safety of existing structures and properly design new structures, an analysis of tornado resistance was conducted by J.R. McDonald on each process building at SRP and other buildings by type. Damage estimates were catalogued for each Fujita class windspeed interval and windspeeds were catalogued as a function of increased levels of damage. Tornado single point and structure specific strike probabilities for the SRP site were determined by L.A. Twisdale using the TORRISK computer code. To calculate the structure specific strike probability, a correction factor is determined from a set of curves using building area and aspect ratio (length/width relative to north) as parameters. The structure specific probability is then the product of the correction factor and the point probability. The correction factor increases as a function of building size and windspeed. For large buildings (10 5 ft 2 ) and very intense storms (250 mph), the correction factor is equal to or greater than 4. The cumulative probability of a tornado striking any building type (process, personnel, etc.) was also calculated

  10. Long-range pulselength scaling of 351nm laser damage thresholds

    Science.gov (United States)

    Foltyn, S. R.; Jolin, L. J.

    1986-12-01

    In a series of experiments incorporating 351nm pulselength of 9, 26, 54, and 625ns, it was found that laser damage thresholds increased as (pulselength)/sup x/, and that the exponent averaged 0.36 and ranged, for different samples, from 0.23 to 0.48. Similar results were obtained when only catastrophic damage was considered. Samples included Al2O3/SiO2 in both AR and HR multilayers, HR's of Sc2O3/SiO2 and HfO2/SiO2, and Al-on-pyrex mirror; 9ns thresholds were between 0.2 to 5.6 J/sq cm. When these data were compared with a wide range of other results - for wavelengths from 0.25 to 10.6 microns and pulselengths down to 4ps - a remarkably consistent picture emerged. Damage thresholds, on average, increase approximately as the cube-root of pulselength from picoseconds to nearly a microsecond, and do so regardless of wavelength or material under test.

  11. Wavelength dependence of femtosecond laser-induced damage threshold of optical materials

    Energy Technology Data Exchange (ETDEWEB)

    Gallais, L., E-mail: laurent.gallais@fresnel.fr; Douti, D.-B.; Commandré, M. [Aix-Marseille Université, CNRS, Centrale Marseille, Institut Fresnel UMR 7249, 13013 Marseille (France); Batavičiūtė, G.; Pupka, E.; Ščiuka, M.; Smalakys, L.; Sirutkaitis, V.; Melninkaitis, A. [Laser Research Center, Vilnius University, Saulétekio aléja 10, LT-10223 Vilnius (Lithuania)

    2015-06-14

    An experimental and numerical study of the laser-induced damage of the surface of optical material in the femtosecond regime is presented. The objective of this work is to investigate the different processes involved as a function of the ratio of photon to bandgap energies and compare the results to models based on nonlinear ionization processes. Experimentally, the laser-induced damage threshold of optical materials has been studied in a range of wavelengths from 1030 nm (1.2 eV) to 310 nm (4 eV) with pulse durations of 100 fs with the use of an optical parametric amplifier system. Semi-conductors and dielectrics materials, in bulk or thin film forms, in a range of bandgap from 1 to 10 eV have been tested in order to investigate the scaling of the femtosecond laser damage threshold with the bandgap and photon energy. A model based on the Keldysh photo-ionization theory and the description of impact ionization by a multiple-rate-equation system is used to explain the dependence of laser-breakdown with the photon energy. The calculated damage fluence threshold is found to be consistent with experimental results. From these results, the relative importance of the ionization processes can be derived depending on material properties and irradiation conditions. Moreover, the observed damage morphologies can be described within the framework of the model by taking into account the dynamics of energy deposition with one dimensional propagation simulations in the excited material and thermodynamical considerations.

  12. Measurements of the dependence of damage thresholds on laser wavelength, pulse duration and film thickness

    International Nuclear Information System (INIS)

    Rainer, F.; Vercimak, C.L.; Carniglia, C.K.; Milam, D.; Hart, T.T.

    1985-01-01

    Results of three experiments are described. The authors used 351-nm and 355-nm pulses with durations of 0.6, 1, 5 and 9 ns to measure thresholds for a variety of antireflectance and high reflectance coatings. The functional form t/sup m/, with t the pulse duration, was used to scale fluence thresholds measured at 0.6 ns to those measured at 9.0 ns. Values of the coefficient m ranged from 0.10 to 0.51. The average value was 0.30. In the second experiment, they measured thresholds at 1064 nm, 527 nm and 355 nm for single-frequency high reflectance ZrO/sub 2//SiO/sub 2/ coatings. Coatings for all three frequencies were deposited simultaneously by use of masks in the coating chamber. Thresholds varied from 2-4 J/cm/sup 2/ at 355 nm to 7-10 J/cm/sup 2/ at 1064 nm. The third experiment measured thresholds at 355 nm for antireflection coatings made with layer thicknesses varying from greater than one wavelength to less than a quarterwavelength. A significant variation of threshold with coating thickness was not observed, but the median thresholds increased slightly as coating thickness increased

  13. Deuteron threshold electrodisintegration at high momentum transfer

    International Nuclear Information System (INIS)

    Schmitt, W.M.; Turchinetz, W.; Williamson, C.F.; Yates, T.C.; Zumbro, J.D.; Lee, K.S.; Baghaei, H.; Churchwell, S.; Hicks, R.S.; Miskimen, R.; Peterson, G.A.; Wang, K.; Bosted, P.E.; Spengos, M.; Frois, B.; Martino, J.; Platchkov, S.; Hotta, A.

    1997-01-01

    Absolute differential cross sections for the threshold electrodisintegration of the deuteron with good resolution were measured at a laboratory scattering angle of 160 degree for five values of Q 2 ranging from 8.66 to 42.4fm -2 . Comparisons of the data averaged over E np from 0 to 3 MeV and from 0 to 10 MeV are made with nonrelativistic meson exchange calculations. These calculations are sensitive to the nucleon electromagnetic form factors, nucleon-nucleon potential, and relativistic effects. The data are also compared with a hybrid quark-hadron model calculation that describes the deuteron as a six-quark cluster for the short range part of the interaction. Some of these calculations can describe the data reasonably well over certain ranges of Q 2 ; however, none of these calculations can accurately describe the data over the entire measured Q 2 range. copyright 1997 The American Physical Society

  14. Deuteron threshold electrodisintegration at high momentum transfer

    International Nuclear Information System (INIS)

    Schmitt, W.M.; Turchinetz, W.; Williamson, C.F.

    1997-01-01

    Absolute differential cross sections for the threshold electrodisintegration of the deuteron with good resolution were measured at a laboratory scattering angle of 160 degree for five values of Q 2 ranging from 8.66 to 42.4 fm -2 . Comparisons of the data averaged over E np from 0--3 MeV and 0--10 MeV are made with nonrelativistic meson-exchange calculations. These calculations are sensitive to the nucleon electromagnetic form factors, nucleon-nucleon potential, and relativistic effects. The data are also compared with a hybrid quark-hadron model calculation that describes the deuteron as a six-quark cluster for the short range part of the interaction. Some of these calculations can describe the data reasonably well over certain ranges of Q 2 ; however, none of these calculations can accurately describe the data over the entire measured Q 2 range

  15. Image thresholding in the high resolution target movement monitor

    Science.gov (United States)

    Moss, Randy H.; Watkins, Steve E.; Jones, Tristan H.; Apel, Derek B.; Bairineni, Deepti

    2009-03-01

    Image thresholding in the High Resolution Target Movement Monitor (HRTMM) is examined. The HRTMM was developed at the Missouri University of Science and Technology to detect and measure wall movements in underground mines to help reduce fatality and injury rates. The system detects the movement of a target with sub-millimeter accuracy based on the images of one or more laser dots projected on the target and viewed by a high-resolution camera. The relative position of the centroid of the laser dot (determined by software using thresholding concepts) in the images is the key factor in detecting the target movement. Prior versions of the HRTMM set the image threshold based on a manual, visual examination of the images. This work systematically examines the effect of varying threshold on the calculated centroid position and describes an algorithm for determining a threshold setting. First, the thresholding effects on the centroid position are determined for a stationary target. Plots of the centroid positions as a function of varying thresholds are obtained to identify clusters of thresholds for which the centroid position does not change for stationary targets. Second, the target is moved away from the camera in sub-millimeter increments and several images are obtained at each position and analyzed as a function of centroid position, target movement and varying threshold values. With this approach, the HRTMM can accommodate images in batch mode without the need for manual intervention. The capability for the HRTMM to provide automated, continuous monitoring of wall movement is enhanced.

  16. Damage threshold from large retinal spot size repetitive-pulse laser exposures.

    Science.gov (United States)

    Lund, Brian J; Lund, David J; Edsall, Peter R

    2014-10-01

    The retinal damage thresholds for large spot size, multiple-pulse exposures to a Q-switched, frequency doubled Nd:YAG laser (532 nm wavelength, 7 ns pulses) have been measured for 100 μm and 500 μm retinal irradiance diameters. The ED50, expressed as energy per pulse, varies only weakly with the number of pulses, n, for these extended spot sizes. The previously reported threshold for a multiple-pulse exposure for a 900 μm retinal spot size also shows the same weak dependence on the number of pulses. The multiple-pulse ED50 for an extended spot-size exposure does not follow the n dependence exhibited by small spot size exposures produced by a collimated beam. Curves derived by using probability-summation models provide a better fit to the data.

  17. On the threshold of damage formation in aluminum oxide via electronic excitations

    Energy Technology Data Exchange (ETDEWEB)

    Skuratov, V.A., E-mail: skuratov@jinr.ru [Joint Institute for Nuclear Research, Dubna (Russian Federation); O’Connell, J. [Centre for HRTEM, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Kirilkin, N.S. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Neethling, J. [Centre for HRTEM, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa)

    2014-05-01

    This work is aimed to determine the threshold of dense ionization induced damage formation and their morphology in sapphire single crystals irradiated with 1.2 MeV/amu Xe ions. Cross-sectional TEM examination of r-oriented Al{sub 2}O{sub 3} specimens irradiated to fluences of 2 × 10{sup 12} and 2 × 10{sup 13} cm{sup −2} has revealed discontinuous ion tracks visible from the irradiated surface up to a depth of 7.6 ± 0.1 μm. According to the SRIM code calculation, the threshold electronic stopping power for track formation in Al{sub 2}O{sub 3} is within the range 9.8 ÷ 10.5 keV/nm. This value agrees with those predicted by both inelastic and analytical thermal spike models.

  18. On the threshold of damage formation in aluminum oxide via electronic excitations

    International Nuclear Information System (INIS)

    Skuratov, V.A.; O’Connell, J.; Kirilkin, N.S.; Neethling, J.

    2014-01-01

    This work is aimed to determine the threshold of dense ionization induced damage formation and their morphology in sapphire single crystals irradiated with 1.2 MeV/amu Xe ions. Cross-sectional TEM examination of r-oriented Al 2 O 3 specimens irradiated to fluences of 2 × 10 12 and 2 × 10 13 cm −2 has revealed discontinuous ion tracks visible from the irradiated surface up to a depth of 7.6 ± 0.1 μm. According to the SRIM code calculation, the threshold electronic stopping power for track formation in Al 2 O 3 is within the range 9.8 ÷ 10.5 keV/nm. This value agrees with those predicted by both inelastic and analytical thermal spike models

  19. Influence of Different Substrates on Laser Induced Damage Thresholds at 1064 nm of Ta2O5 Films

    International Nuclear Information System (INIS)

    Cheng, Xu; Jian-Yong, Ma; Yun-Xia, Jin; Hong-Bo, He; Jian-Da, Shao; Zheng-Xiu, Fan

    2008-01-01

    Ta 2 O 5 films are prepared on Si, BK7, fused silica, antireflection (AR) and high reflector (HR) substrates by electron beam evaporation method, respectively. Both the optical property and laser induced damage thresholds (LIDTs) at 1064 nm of Ta 2 O 5 films on different substrates are investigated before and after annealing at 673K for 12 h. It is shown that annealing increases the refractive index and decreases the extinction index, and improves the O/Ta ratio of the Ta 2 O 5 films from 2.42 to 2.50. Moreover, the results show that the LIDTs of the Ta 2 O 5 films are mainly correlated with three parameters: substrate property, substoichiometry defect in the films and impurity defect at the interface between the substrate and the films. Details of the laser induced damage models in different cases are discussed

  20. Neodymium: YAG laser damage threshold. A comparison of injection-molded and lathe-cut polymethylmethacrylate intraocular lenses.

    Science.gov (United States)

    Wilson, S E; Brubaker, R F

    1987-01-01

    The possibility that injection-molded intraocular lenses (IOLs) with imperfections called iridescent clefts could have a decreased threshold to neodymium: YAG (Nd:YAG) laser-induced damage was investigated. Thresholds for Nd:YAG laser-induced damage were determined for injection-molded and lathe-cut polymethylmethacrylate lenses. When aimed at a membrane in contact with a posterior convex surface, the average thresholds were 0.96 +/- 0.18 mJ (Standard deviation [SD]) and 1.80 +/- 0.55 mJ, respectively. The difference was significant at P = 0.001. When injection-molding polymethylmethacrylate was used to make lathe-cut IOLs, very few iridescent clefts were present, and the threshold to Nd:YAG laser-induced damage was 0.94 +/- 0.25 mJ. Iridescent clefts are therefore produced during the injection-molding process but they do not lower the threshold to Nd:YAG laser-induced damage. Rather, the reduced threshold in injection-molded lenses is most probably a result of the polymethylmethacrylate used in their manufacture. Clinically, iridescent clefts in a lens suggest that it has been manufactured by an injection-molding process and that Nd:YAG laser posterior capsulotomy must be performed at the lowest possible energy level to avoid damage.

  1. Increasing the laser-induced damage threshold of single-crystal ZnGeP{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Zawilski, Kevin T; Setzler, Scott D; Schunemann, Peter G; Pollak, Thomas M [BAE Systems, Advanced Systems and Technology, P.O. Box 868, MER15-1813, Nashua, New Hampshire 03061-0868 (United States)

    2006-11-15

    The laser-induced damage threshold (LIDT) of single-crystal zinc germanium phosphide (ZGP), ZnGeP{sub 2}, was increased to 2 J/cm{sup 2} at 2.05 {mu}m and a 10 kHz pulse rate frequency (double the previously measured value of 1 J/cm{sup 2}). This increased LIDT was achieved by improving the polishing of ZGP optical parametric oscillator crystals. Two different polishing techniques were evaluated. Surfaces were characterized using scanning white-light interferometry to determine rms surface roughness and sample flatness. The photon backscatter technique was used to determine the degree of surface and subsurface damage in the sample induced through the fabrication process. The effect of subsurface damage in the samples was studied by removing different amounts of material during polishing for otherwise identical samples. Statistical LIDT was measured using a high-average-power, repetitively Q-switched Tm,Ho:YLF 2.05 {mu}m pump laser. On average, lower surface roughness and photon backscatter measurements were a good indicator of ZGP samples exhibiting higher LIDT. The removal of more material during polishing significantly improved the LIDT of otherwise identical samples, indicating the importance of subsurface damage defects in the LIDT of ZGP.

  2. Enhancement of laser induced damage threshold of fused silica by acid etching combined with UV laser conditioning

    International Nuclear Information System (INIS)

    Chen Meng; Xiang Xia; Jiang Yong; Zu Xiaotao; Yuan Xiaodong; Zheng Wanguo; Wang Haijun; Li Xibin; Lu Haibing; Jiang Xiaodong; Wang Chengcheng

    2010-01-01

    Acid etching combined with UV laser conditioning is developed to enhance the laser induced damage threshold (LIDT) of fused silica. Firstly, the fused silica is etched for 1 ∼ 100 min with a buffered 1% HF solution. After acid etching, its transmittance, surface roughness and LIDT are measured. The results reveal that the fused silica has the highest LIDT and transmittance after etching for 10 min. Then UV laser (355 nm) conditioning is adopted to process the 10-min-etched fused silica. When the laser fluence is below 60% of fused silica's zero probability damage threshold, the LIDT increases gradually with the increase of laser conditioning fluence. However, the LIDT rapidly decreases to be lower than the threshold of the 10-min-etched fused silica when the conditioning fluence is up to 80% of the threshold. Proper acid etching and laser conditioning parameters will effectively enhance the laser damage resistance of fused silica. (authors)

  3. Program requirements to determine and relate fuel damage and failure thresholds to anticipated conditions in pressurized water reactors

    International Nuclear Information System (INIS)

    Loyd, R.F.; Croucher, D.W.

    1980-03-01

    Anticipated transients, licensing criteria, and damage mechanisms for PWR fuel rods are reviewed. Potential mechanistic fuel rod damage limits for PWRs are discussed. An expermental program to be conducted out-of-pile and in the Engineering Test Reactor (ETR) to generate a safety data base to define mechanistic fuel damage and failure thresholds and to relate these thresholds to the thermal-hydraulic and power conditions in a PWR is proposed. The requirements for performing the tests are outlined. Analytical support requirements are defined

  4. Laser-induced damage threshold tests of ultrafast multilayer dielectric coatings in various environmental conditions relevant for operation of ELI beamlines laser systems

    Science.gov (United States)

    Ďurák, Michal; Velpula, Praveen Kumar; Kramer, Daniel; Cupal, Josef; Medřík, Tomáš; Hřebíček, Jan; Golasowski, Jiří; Peceli, Davorin; Kozlová, Michaela; Rus, Bedřich

    2017-01-01

    Increasing the laser-induced damage resistance of optical components is one of the major challenges in the development of Peta-watt (PW) class laser systems. The extreme light infrastructure (ELI) beamlines project will provide ultrafast laser systems with peak powers up to 10 PW available every minute and PW class beams at 10 Hz complemented by a 5-TW, 1-kHz beamline. Sustainable performance of PW class laser systems relies on the durability of the employed optical components. As part of an effort to evaluate the damage resistance of components utilized in ELI beamlines systems, damage thresholds of several optical multilayer dielectric coatings were measured with different laser parameters and in different environments. Three coatings were tested with 10 Hz and 1 kHz pulse repetition rates, and the effect of a cleaning treatment on their damage resistance was examined. To explore the damage threshold behavior at different vacuum levels, one coating was subject to tests at various residual gas pressures. No change of damage threshold in a high vacuum with respect to ambient pressure was recorded. The effect of the cleaning treatment was found to be inconsistent, suggesting that development of the optimal cleaning treatment for a given coating requires consideration of its specific properties.

  5. Synchronization of low- and high-threshold motor units.

    Science.gov (United States)

    Defreitas, Jason M; Beck, Travis W; Ye, Xin; Stock, Matt S

    2014-04-01

    We examined the degree of synchronization for both low- and high-threshold motor unit (MU) pairs at high force levels. MU spike trains were recorded from the quadriceps during high-force isometric leg extensions. Short-term synchronization (between -6 and 6 ms) was calculated for every unique MU pair for each contraction. At high force levels, earlier recruited motor unit pairs (low-threshold) demonstrated relatively low levels of short-term synchronization (approximately 7.3% extra firings than would have been expected by chance). However, the magnitude of synchronization increased significantly and linearly with mean recruitment threshold (reaching 22.1% extra firings for motor unit pairs recruited above 70% MVC). Three potential mechanisms that could explain the observed differences in synchronization across motor unit types are proposed and discussed. Copyright © 2013 Wiley Periodicals, Inc.

  6. High-order above-threshold dissociation of molecules

    Science.gov (United States)

    Lu, Peifen; Wang, Junping; Li, Hui; Lin, Kang; Gong, Xiaochun; Song, Qiying; Ji, Qinying; Zhang, Wenbin; Ma, Junyang; Li, Hanxiao; Zeng, Heping; He, Feng; Wu, Jian

    2018-03-01

    Electrons bound to atoms or molecules can simultaneously absorb multiple photons via the above-threshold ionization featured with discrete peaks in the photoelectron spectrum on account of the quantized nature of the light energy. Analogously, the above-threshold dissociation of molecules has been proposed to address the multiple-photon energy deposition in the nuclei of molecules. In this case, nuclear energy spectra consisting of photon-energy spaced peaks exceeding the binding energy of the molecular bond are predicted. Although the observation of such phenomena is difficult, this scenario is nevertheless logical and is based on the fundamental laws. Here, we report conclusive experimental observation of high-order above-threshold dissociation of H2 in strong laser fields where the tunneling-ionized electron transfers the absorbed multiphoton energy, which is above the ionization threshold to the nuclei via the field-driven inelastic rescattering. Our results provide an unambiguous evidence that the electron and nuclei of a molecule as a whole absorb multiple photons, and thus above-threshold ionization and above-threshold dissociation must appear simultaneously, which is the cornerstone of the nowadays strong-field molecular physics.

  7. Downregulation of Wip1 phosphatase modulates the cellular threshold of DNA damage signaling in mitosis

    Science.gov (United States)

    Macurek, Libor; Benada, Jan; Müllers, Erik; Halim, Vincentius A.; Krejčíková, Kateřina; Burdová, Kamila; Pecháčková, Sona; Hodný, Zdeněk; Lindqvist, Arne; Medema, René H.; Bartek, Jiri

    2013-01-01

    Cells are constantly challenged by DNA damage and protect their genome integrity by activation of an evolutionary conserved DNA damage response pathway (DDR). A central core of DDR is composed of a spatiotemporally ordered net of post-translational modifications, among which protein phosphorylation plays a major role. Activation of checkpoint kinases ATM/ATR and Chk1/2 leads to a temporal arrest in cell cycle progression (checkpoint) and allows time for DNA repair. Following DNA repair, cells re-enter the cell cycle by checkpoint recovery. Wip1 phosphatase (also called PPM1D) dephosphorylates multiple proteins involved in DDR and is essential for timely termination of the DDR. Here we have investigated how Wip1 is regulated in the context of the cell cycle. We found that Wip1 activity is downregulated by several mechanisms during mitosis. Wip1 protein abundance increases from G1 phase to G2 and declines in mitosis. Decreased abundance of Wip1 during mitosis is caused by proteasomal degradation. In addition, Wip1 is phosphorylated at multiple residues during mitosis, and this leads to inhibition of its enzymatic activity. Importantly, ectopic expression of Wip1 reduced γH2AX staining in mitotic cells and decreased the number of 53BP1 nuclear bodies in G1 cells. We propose that the combined decrease and inhibition of Wip1 in mitosis decreases the threshold necessary for DDR activation and enables cells to react adequately even to modest levels of DNA damage encountered during unperturbed mitotic progression. PMID:23255129

  8. Fractional sunburn threshold UVR doses generate equivalent vitamin D and DNA damage in skin types I-VI, but with epidermal DNA damage gradient correlated to skin darkness.

    Science.gov (United States)

    Shih, Barbara B; Farrar, Mark D; Cooke, Marcus S; Osman, Joanne; Langton, Abigail K; Kift, Richard; Webb, Ann R; Berry, Jacqueline L; Watson, Rachel E B; Vail, Andy; de Gruijl, Frank R; Rhodes, Lesley E

    2018-05-03

    Public health guidance recommends limiting sun-exposure to sub-sunburn levels, but it's unknown whether these can gain vitamin D (for musculoskeletal health) whilst avoiding epidermal DNA damage (initiates skin cancer). Well-characterised healthy humans of all skin types (I-VI; lightest to darkest skin) were exposed to a low dose-series of solar simulated UVR of 20-80% their individual sunburn threshold dose (minimal erythemal dose, MED). Significant UVR dose-responses were seen for serum 25(OH)D and whole epidermal CPD, with as little as 0.2 MED concurrently producing 25(OH)D and CPD. Notably, fractional MEDs generated equivalent levels of whole epidermal CPD and 25(OH)D across all skin types. Crucially, we demonstrated an epidermal gradient of CPD formation strongly correlated with skin darkness (r=0.74; Pskin types, ranging from darkest skin, where high CPD levels occurred superficially with none in the germinative basal layer, through to lightest skin where CPD were induced evenly across the epidermal depth. Darker skin people can be encouraged to utilise sub-sunburn UVR-exposure to enhance their vitamin D. In lighter skin people, basal cell damage occurs concurrent with vitamin D synthesis at exquisitely low UVR levels, providing an explanation for their high skin cancer incidence; greater caution is required. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Effect of temperature on surface error and laser damage threshold for self-healing BK7 glass.

    Science.gov (United States)

    Wang, Chu; Wang, Hongxiang; Shen, Lu; Hou, Jing; Xu, Qiao; Wang, Jian; Chen, Xianhua; Liu, Zhichao

    2018-03-20

    Cracks caused during the lapping and polishing process can decrease the laser-induced damage threshold (LIDT) of the BK7 glass optical elements, which would shorten the lifetime and limit the output power of the high-energy laser system. When BK7 glass is heated under appropriate conditions, the surface cracks can exhibit a self-healing phenomenon. In this paper, based on thermodynamics and viscous fluid mechanics theory, the mechanisms of crack self-healing are explained. The heat-healing experiment was carried out, and the effect of water was analyzed. The multi-spatial-frequency analysis was used to investigate the effect of temperature on surface error for self-healing BK7 glass, and the lapped BK7 glass specimens before and after heat healing were detected by an interferometer and atomic force microscopy. The low-spatial-frequency error was analyzed by peak to valley and root mean square, the mid-spatial-frequency error was analyzed by power spectral density, and the high-spatial-frequency error was analyzed by surface roughness. The results showed that the optimal heating temperature for BK7 was 450°C, and when the heating temperature was higher than the glass transition temperature (555°C), the surface quality decreased a lot. The laser damage test was performed, and the specimen heated at 450°C showed an improvement in LIDT.

  10. Development and validation of rheumatoid arthritis magnetic resonance imaging inflammation thresholds associated with lack of damage progression

    DEFF Research Database (Denmark)

    Baker, Joshua F.; Østergaard, Mikkel; Emery, Paul

    2017-01-01

    Objective To determine thresholds for rheumatoid arthritis (RA) magnetic resonance imaging scores (RAMRIS) associated with a low risk of structural damage progression. Methods MRI of the dominant hand was performed and RAMRIS scores determined at weeks 0, 24, and 52. X-rays were performed and van...

  11. On the threshold conditions for electron beam damage of asbestos amosite fibers in the transmission electron microscope (TEM).

    Science.gov (United States)

    Martin, Joannie; Beauparlant, Martin; Sauvé, Sébastien; L'Espérance, Gilles

    2016-12-01

    Asbestos amosite fibers were investigated to evaluate the damage caused by a transmission electron microscope (TEM) electron beam. Since elemental x-ray intensity ratios obtained by energy dispersive x-ray spectroscopy (EDS) are commonly used for asbestos identification, the impact of beam damage on these ratios was evaluated. It was determined that the magnesium/silicon ratio best represented the damage caused to the fiber. Various tests showed that most fibers have a current density threshold above which the chemical composition of the fiber is modified. The value of this threshold current density varied depending on the fiber, regardless of fiber diameter, and in some cases could not be determined. The existence of a threshold electron dose was also demonstrated. This value was dependent on the current density used and can be increased by providing a recovery period between exposures to the electron beam. This study also established that the electron beam current is directly related to the damage rate above a current density of 165 A/cm 2 . The large number of different results obtained suggest, that in order to ensure that the amosite fibers are not damaged, analysis should be conducted below a current density of 100 A/cm 2 .

  12. Music students: conventional hearing thresholds and at high frequencies.

    Science.gov (United States)

    Lüders, Débora; Gonçalves, Cláudia Giglio de Oliveira; Lacerda, Adriana Bender de Moreira; Ribas, Ângela; Conto, Juliana de

    2014-01-01

    Research has shown that hearing loss in musicians may cause difficulty in timbre recognition and tuning of instruments. To analyze the hearing thresholds from 250 Hz to 16,000 Hz in a group of music students and compare them to a non-musician group in order to determine whether high-frequency audiometry is a useful tool in the early detection of hearing impairment. Study design was a retrospective observational cohort. Conventional and high-frequency audiometry was performed in 42 music students (Madsen Itera II audiometer and TDH39P headphones for conventional audiometry, and HDA 200 headphones for high-frequency audiometry). Of the 42 students, 38.1% were female students and 61.9% were male students, with a mean age of 26 years. At conventional audiometry, 92.85% had hearing thresholds within normal limits; but even within the normal limits, the worst results were observed in the left ear for all frequencies, except for 4000 Hz; compared to the non-musician group, the worst results occurred at 500 Hz in the left ear, and at 250 Hz, 6000 Hz, 9000 Hz, 10,000 Hz, and 11,200 Hz in both the ears. The periodic evaluation of high-frequency thresholds may be useful in the early detection of hearing loss in musicians. Copyright © 2014 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  13. Music students: conventional hearing thresholds and at high frequencies

    Directory of Open Access Journals (Sweden)

    Débora Lüders

    2014-07-01

    Full Text Available INTRODUCTION: Research has shown that hearing loss in musicians may cause difficulty in timbre recognition and tuning of instruments. AIM: To analyze the hearing thresholds from 250 Hz to 16,000 Hz in a group of music students and compare them to a non-musician group in order to determine whether high-frequency audiometry is a useful tool in the early detection of hearing impairment. METHODS: Study design was a retrospective observational cohort. Conventional and high-frequency audiometry was performed in 42 music students (Madsen Itera II audiometer and TDH39P headphones for conventional audiometry, and HDA 200 headphones for high-frequency audiometry. RESULTS: Of the 42 students, 38.1% were female students and 61.9% were male students, with a mean age of 26 years. At conventional audiometry, 92.85% had hearing thresholds within normal limits; but even within the normal limits, the worst results were observed in the left ear for all frequencies, except for 4000 Hz; compared to the non-musician group, the worst results occurred at 500 Hz in the left ear, and at 250 Hz, 6000 Hz, 9000 Hz, 10,000 Hz, and 11,200 Hz in both the ears. CONCLUSION: The periodic evaluation of high-frequency thresholds may be useful in the early detection of hearing loss in musicians.

  14. Determination of ultra-short laser induced damage threshold of KH{sub 2}PO{sub 4} crystal: Numerical calculation and experimental verification

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jian [Center for Precision Engineering, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Department of Physics, The Ohio State University, 191 W. Woodruff Ave, Columbus, OH 43210 (United States); Chen, Mingjun, E-mail: chenmj@hit.edu.cn, E-mail: chowdhury.24@osu.edu; Wang, Jinghe; Xiao, Yong [Center for Precision Engineering, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Kafka, Kyle; Austin, Drake; Chowdhury, Enam, E-mail: chenmj@hit.edu.cn, E-mail: chowdhury.24@osu.edu [Department of Physics, The Ohio State University, 191 W. Woodruff Ave, Columbus, OH 43210 (United States)

    2016-03-15

    Rapid growth and ultra-precision machining of large-size KDP (KH{sub 2}PO{sub 4}) crystals with high laser damage resistance are tough challenges in the development of large laser systems. It is of high interest and practical significance to have theoretical models for scientists and manufacturers to determine the laser-induced damage threshold (LIDT) of actually prepared KDP optics. Here, we numerically and experimentally investigate the laser-induced damage on KDP crystals in ultra-short pulse laser regime. On basis of the rate equation for free electron generation, a model dedicated to predicting the LIDT is developed by considering the synergistic effect of photoionization, impact ionization and decay of electrons. Laser damage tests are performed to measure the single-pulse LIDT with several testing protocols. The testing results combined with previously reported experimental data agree well with those calculated by the model. By taking the light intensification into consideration, the model is successfully applied to quantitatively evaluate the effect of surface flaws inevitably introduced in the preparation processes on the laser damage resistance of KDP crystals. This work can not only contribute to further understanding of the laser damage mechanisms of optical materials, but also provide available models for evaluating the laser damage resistance of exquisitely prepared optical components used in high power laser systems.

  15. Eccentric muscle damage has variable effects on motor unit recruitment thresholds and discharge patterns in elbow flexor muscles.

    Science.gov (United States)

    Dartnall, Tamara J; Rogasch, Nigel C; Nordstrom, Michael A; Semmler, John G

    2009-07-01

    The purpose of this study was to determine the effect of eccentric muscle damage on recruitment threshold force and repetitive discharge properties of low-threshold motor units. Ten subjects performed four tasks involving isometric contraction of elbow flexors while electromyographic (EMG) data were recorded from human biceps brachii and brachialis muscles. Tasks were 1) maximum voluntary contraction (MVC); 2) constant-force contraction at various submaximal targets; 3) motor unit recruitment threshold task; and 4) minimum motor unit discharge rate task. These tasks were performed on three separate days before, immediately after, and 24 h after eccentric exercise of elbow flexor muscles. MVC force declined (42%) immediately after exercise and remained depressed (29%) 24 h later, indicative of muscle damage. Mean motor unit recruitment threshold for biceps brachii was 8.4+/-4.2% MVC, (n=34) before eccentric exercise, and was reduced by 41% (5.0+/-3.0% MVC, n=34) immediately after and by 39% (5.2+/-2.5% MVC, n=34) 24 h after exercise. No significant changes in motor unit recruitment threshold were observed in the brachialis muscle. However, for the minimum tonic discharge rate task, motor units in both muscles discharged 11% faster (10.8+/-2.0 vs. 9.7+/-1.7 Hz) immediately after (n=29) exercise compared with that before (n=32). The minimum discharge rate variability was greater in brachialis muscle immediately after exercise (13.8+/-3.1%) compared with that before (11.9+/-3.1%) and 24 h after exercise (11.7+/-2.4%). No significant changes in minimum discharge rate variability were observed in the biceps brachii motor units after exercise. These results indicate that muscle damage from eccentric exercise alters motor unit recruitment thresholds for >or=24 h, but the effect is not the same in the different elbow flexor muscles.

  16. Anisotropy of hardness and laser damage threshold of unidirectional organic NLO crystal in relation to the internal structure

    International Nuclear Information System (INIS)

    Natarajan, V.; Arivanandhan, M.; Sankaranarayanan, K.; Hayakawa, Y.

    2011-01-01

    Highlights: · Growth rate of the unidirectional organic crystals were measured and the variation in the growth rate was explained based on the attachment energy model. · Anisotropic behaviors of hardness and laser damage threshold of the unidirectional materials were analyzed. · The obtained results were explained based on the crystal structure of the material. - Abstract: Unidirectional benzophenone crystals were grown along , and directions by uniaxially solution crystallization method at ambient temperature. The growth rate of the grown crystals was varied with orientation. The optical absorption coefficients of benzophenone were measured as a function of wavelength. The optical absorption study reveals that the benzophenone crystal has very low absorption in the wavelength range of interest. Moreover, the laser damage threshold and micro hardness for , and oriented unidirectional benzophenone crystals were measured using a Q-switched Nd:YAG laser operating at 1064 nm radiation and Vicker's micro hardness tester, respectively. The laser damage threshold is larger for the and oriented crystals compared to oriented crystal at 1064 nm wavelength. The result is consistent with the hardness variation observed for the three different crystallographic directions of benzophenone crystal. The relation between the laser damage profile and mechanical hardness anisotropy is discussed based on the crystal structure of benzophenone.

  17. Analysis of high resolution scatter images from laser damage experiments performed on KDP

    International Nuclear Information System (INIS)

    Runkel, M.; Woods, B.; Yan, M.

    1996-01-01

    Interest in producing high damage threshold KH 2 PO 4 (KDP) and (D x H 1-x ) 2 PO 4 (KD*P, DKDP) for optical switching and frequency conversion applications is being driven by the system requirements for the National Ignition Facility (NIF) at Lawrence Livermore National Lab (LLNL). Historically, the path to achieving higher damage thresholds has been to improve the purity of crystal growth solutions. Application of advanced filtration technology has increased the damage threshold, but gives little insight into the actual mechanisms of laser damage. We have developed a laser scatter diagnostic to better study bulk defects and laser damage mechanisms in KDP and KD*P crystals. This diagnostic consists of a cavity doubled, kilohertz class, Nd:YLF laser (527 nm) and high dynamic range CCD camera which allows imaging of bulk scatter signals. With it, we have performed damage tests at 355 nm on four different open-quotes vintagesclose quotes of KDP crystals, concentrating on crystals produced via fast growth methods. We compare the diagnostic's resolution to LLNL's standard damage detection method of 100X darkfield microscopy and discuss its impact on damage threshold determination. We have observed the disappearance of scatter sites upon exposure to subthreshold irradiation. In contrast, we have seen scatterers appear where none previously existed. This includes isolated, large (high signal) sites as well as multiple small scatter sites which appear at fluences above 7 J/cm 2 (fine tracking). However, we have not observed a strong correlation of preexisting scatter sites and laser damage sites. We speculate on the connection between the laser-induced disappearance of scatter sites and the observed increase in damage threshold with laser conditioning

  18. Damage Mechanisms In Polymers Upon NIR Femtosecond Pulse Laser Irradiation: Sub-Threshold Processes And Their Implications For Laser Safety Applications

    International Nuclear Information System (INIS)

    Bonse, Joern; Krueger, Joerg; Solis, Javier; Spielmann, Christian; Lippert, Thomas

    2010-01-01

    This contribution investigates laser-induced damage of thin film and bulk polymer samples, with the focus on physical processes occurring close to the damage threshold. In-situ real-time reflectivity (RTR) measurements with picosecond (ps) and nanosecond (ns) temporal resolution were performed on thin polymer films on a timescale up to a few microseconds (μs). A model for polymer thin film damage is presented, indicating that irreversible chemical modification processes take place already below the fluence threshold for macroscopic damage. On dye-doped bulk polymer filters (as used for laser goggles), transmission studies using fs-and ps-laser pulses reveal the optical saturation behavior of the material and its relation to the threshold of permanent damage. Implications of the sub-threshold processes for laser safety applications will be discussed for thin film and bulk polymer damage.

  19. Improved laser damage threshold performance of calcium fluoride optical surfaces via Accelerated Neutral Atom Beam (ANAB) processing

    Science.gov (United States)

    Kirkpatrick, S.; Walsh, M.; Svrluga, R.; Thomas, M.

    2015-11-01

    Optics are not keeping up with the pace of laser advancements. The laser industry is rapidly increasing its power capabilities and reducing wavelengths which have exposed the optics as a weak link in lifetime failures for these advanced systems. Nanometer sized surface defects (scratches, pits, bumps and residual particles) on the surface of optics are a significant limiting factor to high end performance. Angstrom level smoothing of materials such as calcium fluoride, spinel, magnesium fluoride, zinc sulfide, LBO and others presents a unique challenge for traditional polishing techniques. Exogenesis Corporation, using its new and proprietary Accelerated Neutral Atom Beam (ANAB) technology, is able to remove nano-scale surface damage and particle contamination leaving many material surfaces with roughness typically around one Angstrom. This surface defect mitigation via ANAB processing can be shown to increase performance properties of high intensity optical materials. This paper describes the ANAB technology and summarizes smoothing results for calcium fluoride laser windows. It further correlates laser damage threshold improvements with the smoothing produced by ANAB surface treatment. All ANAB processing was performed at Exogenesis Corporation using an nAccel100TM Accelerated Particle Beam processing tool. All surface measurement data for the paper was produced via AFM analysis on a Park Model XE70 AFM, and all laser damage testing was performed at Spica Technologies, Inc. Exogenesis Corporation's ANAB processing technology is a new and unique surface modification technique that has demonstrated to be highly effective at correcting nano-scale surface defects. ANAB is a non-contact vacuum process comprised of an intense beam of accelerated, electrically neutral gas atoms with average energies of a few tens of electron volts. The ANAB process does not apply mechanical forces associated with traditional polishing techniques. ANAB efficiently removes surface

  20. Damage Threshold of In Vivo Rabbit Cornea by 2 micron Laser Irradiation

    National Research Council Canada - National Science Library

    Chen, Bo; Oliver, Jeffery; Dutta, Soumak; Rylander, III, Grady H; Thomsen, Sharon L; Welch, Ashley J

    2007-01-01

    To support refinement of the Maximum Permissible Exposure (MPE) safety limits, a series of experiments were conducted in vivo on Dutch Belted rabbit corneas to determine corneal minimum visible lesion thresholds...

  1. Azygos Vein Lead Implantation For High Defibrillation Thresholds In Implantable Cardioverter Defibrillator Placement

    Directory of Open Access Journals (Sweden)

    Naga VA Kommuri

    2010-01-01

    Full Text Available Evaluation of defibrillation threshold is a standard of care during implantation of implantable cardioverter defibrillator. High defibrillation thresholds are often encountered and pose a challenge to electrophysiologists to improve the defibrillation threshold. We describe a case series where defibrillation thresholds were improved after implanting a defibrillation lead in the azygos vein.

  2. Influence of post-deposition treatment by UV light and oxygen (ozone) on 350 nm damage thresholds of SiO2 films deposited from sols

    International Nuclear Information System (INIS)

    Thomas, I.; Wilder, J.; Lee, A.; George, D.

    1988-01-01

    Certain multilayer porous silica AR coatings on fused silica substrates prepared by the sol-gel process have been found to have a much lower laser damage threshold than single layer coatings prepared by the same method. Treatment with UV light in the presence of oxygen (which gives ozone) at low temperature was found to restore damage thresholds to the levels found in single layers. Damage thresholds were measured at 350 nm with a 25 ns pulse for 1000 shots at 25 Hz. The effect of exposure time and other factors such as replacement of oxygen with nitrogen and vacuum are described

  3. White Light Generation and Anisotropic Damage in Gold Films near Percolation Threshold

    DEFF Research Database (Denmark)

    Novikov, Sergey M.; Frydendahl, Christian; Beermann, Jonas

    2017-01-01

    in vanishingly small gaps between gold islands in thin films near the electrically determined percolation threshold. Optical explorations using two-photon luminescence (TPL) and near-field microscopies reveals supercubic TPL power dependencies with white-light spectra, establishing unequivocally...... that the strongest TPL signals are generated close to the percolation threshold films, and occurrence of extremely confined (similar to 30 nm) and strongly enhanced (similar to 100 times) fields at the illumination wavelength. For linearly polarized and sufficiently powerful light, we observe pronounced optical...

  4. Effect of Li and NH4 doping on the crystal perfection, second harmonic generation efficiency and laser damage threshold of potassium pentaborate crystals

    Science.gov (United States)

    Vigneshwaran, A. N.; Kalainathan, S.; Raja, C. Ramachandra

    2018-03-01

    Potassium pentaborate (KB5) is an excellent nonlinear optical material especially in the UV region. In this work, Li and NH4 doped KB5 crystals were grown using slow evaporation solution growth method. The incorporation of dopant has been confirmed and analysed by Energy dispersive X-ray analysis (EDAX), Inductively coupled plasma (ICP) analysis and Raman spectroscopy. The crystalline perfection of pure and doped KB5 crystals was studied by High resolution X-ray diffraction (HRXRD) analysis. Structural grain boundaries were observed in doped crystals. Second harmonic generation was confirmed for pure and doped crystals and output values revealed the enhancement of SHG efficiency in doped crystals. Resistance against laser damage was carried out using 1064 nm Nd-YAG laser of pulse width 10 ns. The laser damage threshold value is increased in Li doped crystal and decreased in NH4 doped crystal when compared to pure KB5 crystal.

  5. High damage tolerance of electrochemically lithiated silicon

    Science.gov (United States)

    Wang, Xueju; Fan, Feifei; Wang, Jiangwei; Wang, Haoran; Tao, Siyu; Yang, Avery; Liu, Yang; Beng Chew, Huck; Mao, Scott X.; Zhu, Ting; Xia, Shuman

    2015-01-01

    Mechanical degradation and resultant capacity fade in high-capacity electrode materials critically hinder their use in high-performance rechargeable batteries. Despite tremendous efforts devoted to the study of the electro–chemo–mechanical behaviours of high-capacity electrode materials, their fracture properties and mechanisms remain largely unknown. Here we report a nanomechanical study on the damage tolerance of electrochemically lithiated silicon. Our in situ transmission electron microscopy experiments reveal a striking contrast of brittle fracture in pristine silicon versus ductile tensile deformation in fully lithiated silicon. Quantitative fracture toughness measurements by nanoindentation show a rapid brittle-to-ductile transition of fracture as the lithium-to-silicon molar ratio is increased to above 1.5. Molecular dynamics simulations elucidate the mechanistic underpinnings of the brittle-to-ductile transition governed by atomic bonding and lithiation-induced toughening. Our results reveal the high damage tolerance in amorphous lithium-rich silicon alloys and have important implications for the development of durable rechargeable batteries. PMID:26400671

  6. Stochastic Threshold Exponential (TE) Model for Hematopoietic Tissue Reconstitution Deficit after Radiation Damage.

    Science.gov (United States)

    Scott, B R; Potter, C A

    2014-07-01

    Whole-body exposure to large radiation doses can cause severe loss of hematopoietic tissue cells and threaten life if the lost cells are not replaced in a timely manner through natural repopulation (a homeostatic mechanism). Repopulation to the baseline level N 0 is called reconstitution and a reconstitution deficit (repopulation shortfall) can occur in a dose-related and organ-specific manner. Scott et al. (2013) previously introduced a deterministic version of a threshold exponential (TE) model of tissue-reconstitution deficit at a given follow-up time that was applied to bone marrow and spleen cellularity (number of constituent cells) data obtained 6 weeks after whole-body gamma-ray exposure of female C.B-17 mice. In this paper a more realistic, stochastic version of the TE model is provided that allows radiation response to vary between different individuals. The Stochastic TE model is applied to post gamma-ray-exposure cellularity data previously reported and also to more limited X-ray cellularity data for whole-body irradiated female C.B-17 mice. Results indicate that the population average threshold for a tissue reconstitution deficit appears to be similar for bone marrow and spleen and for 320-kV-spectrum X-rays and Cs-137 gamma rays. This means that 320-kV spectrum X-rays could successfully be used in conducting such studies.

  7. Downregulation of Wip1 phosphatase modulates the cellular threshold of DNA damage signaling in mitosis

    Czech Academy of Sciences Publication Activity Database

    Macůrek, Libor; Benada, Jan; Müllers, E.; Halim, V.A.; Krejčíková, Kateřina; Burdová, Kamila; Pecháčková, Soňa; Hodný, Zdeněk; Lindqvist, A.; Medema, R.H.; Bartek, Jiří

    2013-01-01

    Roč. 12, č. 2 (2013), s. 251-262 ISSN 1538-4101 R&D Projects: GA ČR GPP305/10/P420; GA ČR GAP301/10/1525 Grant - others:Netherlands Genomic Initiative of NWO(NL) CGC; EK(XE) 259893 Institutional support: RVO:68378050 Keywords : DNA damage response * Wip1 phosphatase * cell cycle * mitotic progression * γH2AX Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.006, year: 2013

  8. High-frequency (8 to 16 kHz) reference thresholds and intrasubject threshold variability relative to ototoxicity criteria using a Sennheiser HDA 200 earphone.

    Science.gov (United States)

    Frank, T

    2001-04-01

    The first purpose of this study was to determine high-frequency (8 to 16 kHz) thresholds for standardizing reference equivalent threshold sound pressure levels (RETSPLs) for a Sennheiser HDA 200 earphone. The second and perhaps more important purpose of this study was to determine whether repeated high-frequency thresholds using a Sennheiser HDA 200 earphone had a lower intrasubject threshold variability than the ASHA 1994 significant threshold shift criteria for ototoxicity. High-frequency thresholds (8 to 16 kHz) were obtained for 100 (50 male, 50 female) normally hearing (0.25 to 8 kHz) young adults (mean age of 21.2 yr) in four separate test sessions using a Sennheiser HDA 200 earphone. The mean and median high-frequency thresholds were similar for each test session and increased as frequency increased. At each frequency, the high-frequency thresholds were not significantly (p > 0.05) different for gender, test ear, or test session. The median thresholds at each frequency were similar to the 1998 interim ISO RETSPLs; however, large standard deviations and wide threshold distributions indicated very high intersubject threshold variability, especially at 14 and 16 kHz. Threshold repeatability was determined by finding the threshold differences between each possible test session comparison (N = 6). About 98% of all of the threshold differences were within a clinically acceptable range of +/-10 dB from 8 to 14 kHz. The threshold differences between each subject's second, third, and fourth minus their first test session were also found to determine whether intrasubject threshold variability was less than the ASHA 1994 criteria for determining a significant threshold shift due to ototoxicity. The results indicated a false-positive rate of 0% for a threshold shift > or = 20 dB at any frequency and a false-positive rate of 2% for a threshold shift >10 dB at two consecutive frequencies. This study verified that the output of high-frequency audiometers at 0 dB HL using

  9. Level of damages and economical threshold, decisive aspects in the integrated management of plagues.

    Directory of Open Access Journals (Sweden)

    Rafael Meneses

    2011-03-01

    Full Text Available The establishment and application of economical levels demand a procedure to find with precision the insects population in a given moment. In the integrated management of plagues is not allowed the idea that any insect which is feeding from a part of plants requires a control action, that is why it is very important to determine the real effect that this insect population causes to the cultivation. Any decrease in the crop, constitutes a real waste of time; but when the economical level is defined, it is included an additional factor which is the measure cost of the plagues control. The determination of damages of levels is very important for economists, farming experts and specialists; while for producers is very significant its implementation with the objective to count with a sustainable and beneficial agriculture.

  10. Borate protection of softwood from Coptotermes acinaciformis (Isoptera: Rhinotermitidae) damage: variation in protection thresholds explained.

    Science.gov (United States)

    Peters, Brenton C; Fitzgerald, Christopher J

    2006-10-01

    Laboratory and field data reported in the literature are confusing with regard to "adequate" protection thresholds for borate timber preservatives. The confusion is compounded by differences in termite species, timber species and test methodology. Laboratory data indicate a borate retention of 0.5% mass/mass (m/m) boric acid equivalent (BAE) would cause > 90% termite mortality and restrict mass loss in test specimens to 0.5% m/m BAE are required. We report two field experiments with varying amounts of untreated feeder material in which Coptotermes acinaciformis (Froggatt) (Isoptera: Rhinotermitidae) responses to borate-treated radiata (Monterey) pine, Pinus radiata D. Don, were measured. The apparently conflicting results between laboratory and field data are explained by the presence or absence of untreated feeder material in the test environment. In the absence of untreated feeder material, wood containing 0.5% BAE provided adequate protection from Coptotermes sp., whereas in the presence of untreated feeder material, increased retentions were required. Furthermore, the retentions required increased with increased amounts of susceptible material present. Some termites, Nasutitermes sp. and Mastotermes darwiniensis Froggatt, for example, are borate-tolerant and borate timber preservatives are not a viable management option with these species. The lack of uniform standards for termite test methodology and assessment criteria for efficacy across the world is recognized as a difficulty with research into the performance of timber preservatives with termites. The many variables in laboratory and field assays make "prescriptive" standards difficult to recommend. The use of "performance" standards to define efficacy criteria ("adequate" protection) is discussed.

  11. Radiation damage in a high Ni weld

    International Nuclear Information System (INIS)

    Brumovsky, M.; Kytka, M.; Kopriva, R.

    2015-01-01

    WWER-1000 RPV weld metals are characterized by a high content of nickel, mostly about 1.7 mass % with content of manganese around 0.8 mass % with a very low copper content - about 0.05 mass %. In such material some late blooming phase effect should be observed during irradiation. Such typical weld material was irradiated in the experimental reactor LVR-15 in N RI Rez at the irradiation temperature 290 C degrees and at five neutron fluences from 1.5 to 9.5 *10 23 m -2 (E>1 MeV). Charpy V-notch impact tests, static fracture toughness tests, tensile and hardness measurement were performed to obtain effect of neutron fluence on radiation hardening as well as embrittlement. Neutron fluence dependences of all these property changes have monotonic character but with a high neutron embrittlement exponent around 0.8. Scanning electron microscope of fracture surfaces showed no or very small portion of intercrystalline fracture. Transmission electron microscopy was performed on specimens from all neutron fluences. Only low density of black-dot damage has been observed. It is assumed that most of defect are dislocation loops. The late blooming phase which may be observed from results of mechanical properties are probably below the resolution of the used JEM-2010, i.e. 1.5 nm. (authors)

  12. Growth, structural, optical, thermal and laser damage threshold studies of an organic single crystal: 1,3,5 – triphenylbenzene (TPB)

    International Nuclear Information System (INIS)

    Raja, R. Subramaniyan; Babu, G. Anandha; Ramasamy, P.

    2016-01-01

    Good quality single crystals of pure hydrocarbon 1,3,5-Triphenylbenzene (TPB) have been successfully grown using toluene as a solvent using controlled slow cooling solution growth technique. TPB crystallizes in orthorhombic structure with the space group Pna2 1 . The structural perfection of the grown crystal has been analysed by high resolution X-ray diffraction measurements. The range and percentage of the optical transmission are ascertained by recording the UV-vis spectrum. Thermo gravimetric analysis (TGA) and differential thermal analysis (DTA) were used to study its thermal properties. Powder second harmonic generation studies were carried out to explore its NLO properties. Laser damage threshold value has been determined using Nd:YAG laser operating at 1064 nm.

  13. A high sensitivity process variation sensor utilizing sub-threshold operation

    OpenAIRE

    Meterelliyoz, Mesut; Song, Peilin; Stellari, Franco; Kulkarni, Jaydeep P.; Roy, Kaushik

    2008-01-01

    In this paper, we propose a novel low-power, bias-free, high-sensitivity process variation sensor for monitoring random variations in the threshold voltage. The proposed sensor design utilizes the exponential current-voltage relationship of sub-threshold operation thereby improving the sensitivity by 2.3X compared to the above-threshold operation. A test-chip containing 128 PMOS and 128 NMOS devices has been fabri...

  14. Low threshold for optical damage in AlGaN epilayers and heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Tanuj [Department of ECSE, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Tamulaitis, Gintautas [Institute of Applied Research and Semiconductor Physics Department, Vilnius University, Sauletekio al. 9-III, Vilnius, LT-10222 (Lithuania); Shatalov, Max; Yang, Jinwei; Gaska, Remis [Sensor Electronic Technology, Inc., 1195 Atlas Road, Columbia, South Carolina 29209 (United States); Shur, Michael S. [Department of ECSE, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Department of PAPA, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2013-11-28

    Laser pulses with duration much shorter than the effective carrier lifetime cause permanent photoluminescence (PL) quenching and enhancement of PL decay rate in bare-faceted and capped AlGaN epilayers and multiple quantum wells at pulse energies about an order of magnitude lower than those causing the surface to melt and degrade. In contrast, GaN epilayers exhibit no photomodification in the same excitation intensity range. PL spectra and decay kinetics show that lattice heating is not responsible for the observed changes in AlGaN, which result from the formation of nonradiative recombination centers via recombination-enhanced defect reactions occurring at high nonequilibrium carrier densities.

  15. Threshold effect under nonlinear limitation of the intensity of high-power light

    International Nuclear Information System (INIS)

    Tereshchenko, S A; Podgaetskii, V M; Gerasimenko, A Yu; Savel'ev, M S

    2015-01-01

    A model is proposed to describe the properties of limiters of high-power laser radiation, which takes into account the threshold character of nonlinear interaction of radiation with the working medium of the limiter. The generally accepted non-threshold model is a particular case of the threshold model if the threshold radiation intensity is zero. Experimental z-scan data are used to determine the nonlinear optical characteristics of media with carbon nanotubes, polymethine and pyran dyes, zinc selenide, porphyrin-graphene and fullerene-graphene. A threshold effect of nonlinear interaction between laser radiation and some of investigated working media of limiters is revealed. It is shown that the threshold model more adequately describes experimental z-scan data. (nonlinear optical phenomena)

  16. Applications of molecules as high-resolution, high-sensitivity threshold electron detectors

    International Nuclear Information System (INIS)

    Chutjian, A.

    1991-01-01

    The goal of the work under the contract entitled ''Applications of Molecules as High-Resolution, High-Sensitivity Threshold Electron Detectors'' (DoE IAA No. DE-AI01-83ER13093 Mod. A006) was to explore the electron attachment properties of a variety of molecules at electron energies not accessible by other experimental techniques. As a result of this work, not only was a large body of basic data measured on attachment cross sections and rate constants; but also extensive theoretical calculations were carried out to verify the underlying phenomenon of s-wave attachment. Important outgrowths of this week were also realized in other areas of research. The basic data have applications in fields such as combustion, soot reduction, rocket-exhaust modification, threshold photoelectron spectroscopy, and trace species detection

  17. Damage Analysis and Evaluation of High Strength Concrete Frame Based on Deformation-Energy Damage Model

    Directory of Open Access Journals (Sweden)

    Huang-bin Lin

    2015-01-01

    Full Text Available A new method of characterizing the damage of high strength concrete structures is presented, which is based on the deformation energy double parameters damage model and incorporates both of the main forms of damage by earthquakes: first time damage beyond destruction and energy consumption. Firstly, test data of high strength reinforced concrete (RC columns were evaluated. Then, the relationship between stiffness degradation, strength degradation, and ductility performance was obtained. And an expression for damage in terms of model parameters was determined, as well as the critical input data for the restoring force model to be used in analytical damage evaluation. Experimentally, the unloading stiffness was found to be related to the cycle number. Then, a correction for this changing was applied to better describe the unloading phenomenon and compensate for the shortcomings of structure elastic-plastic time history analysis. The above algorithm was embedded into an IDARC program. Finally, a case study of high strength RC multistory frames was presented. Under various seismic wave inputs, the structural damages were predicted. The damage model and correction algorithm of stiffness unloading were proved to be suitable and applicable in engineering design and damage evaluation of a high strength concrete structure.

  18. Outstanding laser damage threshold in Li2MnGeS4 and tunable optical nonlinearity in diamond-like semiconductors.

    Science.gov (United States)

    Brant, Jacilynn A; Clark, Daniel J; Kim, Yong Soo; Jang, Joon I; Weiland, Ashley; Aitken, Jennifer A

    2015-03-16

    The new Li2MnGeS4 and Li2CoSnS4 compounds result from employing a rational and simple design strategy that guides the discovery of diamond-like semiconductors (DLSs) with wide regions of optical transparency, high laser damage threshold, and efficient second-order optical nonlinearity. Single-crystal X-ray diffraction was used to solve and refine the crystal structures of Li2MnGeS4 and Li2CoSnS4, which crystallize in the noncentrosymmetric space groups Pna21 and Pn, respectively. Synchrotron X-ray powder diffraction (SXRPD) was used to assess the phase purity, and diffuse reflectance UV-vis-NIR spectroscopy was used to estimate the bandgaps of Li2MnGeS4 (Eg = 3.069(3) eV) and Li2CoSnS4 (Eg = 2.421(3) eV). In comparison with Li2FeGeS4, Li2FeSnS4, and Li2CoSnS4 DLSs, Li2MnGeS4 exhibits the widest region of optical transparency (0.60-25 μm) and phase matchability (≥1.6 μm). All four of the DLSs exhibit second-harmonic generation and are compared with the benchmark NLO material, AgGaSe2. Most remarkably, Li2MnGeS4 does not undergo two- or three-photon absorption upon exposure to a fundamental Nd:YAG beam (λ = 1.064 μm) and exhibits a laser damage threshold > 16 GW/cm(2).

  19. High temperature damage of a re-sulfurized stainless steel

    International Nuclear Information System (INIS)

    Tinet, Hougo

    2002-01-01

    After having evoked the industrial problem raised by high-temperature damage in the 303 stainless steel, and outlined that the experimental study of high-temperature damage implies the study of the sane (or non damaged) material, the study of micro-voids germination, growth and coalescence, and the study of the material failure process, the author of this research thesis reports a bibliographical study on the behaviour of sane re-sulfurized stainless steel and different damage models. He presents experimental techniques (thermal-mechanical compression and tensile tests, image analysis in optical microscopy) which have been used in this work, and describes and comments results obtained on axisymmetric samples for micro-void germination, growth and coalescence in case of a damage under low and medium stress triaxiality. The last part addresses the study of the damage of strongly notched samples (stress triaxialities close to those existing at the crack bottom) [fr

  20. High threshold distributed quantum computing with three-qubit nodes

    International Nuclear Information System (INIS)

    Li Ying; Benjamin, Simon C

    2012-01-01

    In the distributed quantum computing paradigm, well-controlled few-qubit ‘nodes’ are networked together by connections which are relatively noisy and failure prone. A practical scheme must offer high tolerance to errors while requiring only simple (i.e. few-qubit) nodes. Here we show that relatively modest, three-qubit nodes can support advanced purification techniques and so offer robust scalability: the infidelity in the entanglement channel may be permitted to approach 10% if the infidelity in local operations is of order 0.1%. Our tolerance of network noise is therefore an order of magnitude beyond prior schemes, and our architecture remains robust even in the presence of considerable decoherence rates (memory errors). We compare the performance with that of schemes involving nodes of lower and higher complexity. Ion traps, and NV-centres in diamond, are two highly relevant emerging technologies: they possess the requisite properties of good local control, rapid and reliable readout, and methods for entanglement-at-a-distance. (paper)

  1. A study of the high-frequency hearing thresholds of dentistry professionals

    Directory of Open Access Journals (Sweden)

    Lopes, Andréa Cintra

    2012-01-01

    Full Text Available Introduction: In the dentistry practice, dentists are exposed to harmful effects caused by several factors, such as the noise produced by their work instruments. In 1959, the American Dental Association recommended periodical hearing assessments and the use of ear protectors. Aquiring more information regarding dentists', dental nurses', and prosthodontists' hearing abilities is necessary to propose prevention measures and early treatment strategies. Objective: To investigate the auditory thresholds of dentists, dental nurses, and prosthodontists. Method: In this clinical and experimental study, 44 dentists (Group I; GI, 36 dental nurses (Group II; GII, and 28 prosthodontists (Group III; GIII were included, , with a total of 108 professionals. The procedures that were performed included a specific interview, ear canal inspection, conventional and high-frequency threshold audiometry, a speech reception threshold test, and an acoustic impedance test. Results: In the 3 groups that were tested, the comparison between the mean hearing thresholds provided evidence of worsened hearing ability relative to the increase in frequency. For the tritonal mean at 500 to 2,000 Hz and 3,000 to 6,000 Hz, GIII presented the worst thresholds. For the mean of the high frequencies (9,000 and 16,000 Hz, GII presented the worst thresholds. Conclusion: The conventional hearing threshold evaluation did not demonstrate alterations in the 3 groups that were tested; however, the complementary tests such as high-frequency audiometry provided greater efficacy in the early detection of hearing problems, since this population's hearing loss impaired hearing ability at frequencies that are not tested by the conventional tests. Therefore, we emphasize the need of utilizing high-frequency threshold audiometry in the hearing assessment routine in combination with other audiological tests.

  2. Fabrication of Pt nanowires with a diffraction-unlimited feature size by high-threshold lithography

    International Nuclear Information System (INIS)

    Li, Li; Zhang, Ziang; Yu, Miao; Song, Zhengxun; Weng, Zhankun; Wang, Zuobin; Li, Wenjun; Wang, Dapeng; Zhao, Le; Peng, Kuiqing

    2015-01-01

    Although the nanoscale world can already be observed at a diffraction-unlimited resolution using far-field optical microscopy, to make the step from microscopy to lithography still requires a suitable photoresist material system. In this letter, we consider the threshold to be a region with a width characterized by the extreme feature size obtained using a Gaussian beam spot. By narrowing such a region through improvement of the threshold sensitization to intensity in a high-threshold material system, the minimal feature size becomes smaller. By using platinum as the negative photoresist, we demonstrate that high-threshold lithography can be used to fabricate nanowire arrays with a scalable resolution along the axial direction of the linewidth from the micro- to the nanoscale using a nanosecond-pulsed laser source with a wavelength λ 0  = 1064 nm. The minimal feature size is only several nanometers (sub λ 0 /100). Compared with conventional polymer resist lithography, the advantages of high-threshold lithography are sharper pinpoints of laser intensity triggering the threshold response and also higher robustness allowing for large area exposure by a less-expensive nanosecond-pulsed laser

  3. Low cycle fatigue: high cycle fatigue damage accumulation in a 304L austenitic stainless steel

    International Nuclear Information System (INIS)

    Lehericy, Y.

    2007-05-01

    The aim of this study was to evaluate the consequences of a Low Cycle Fatigue pre-damage on the subsequent fatigue limit of a 304L stainless steel. The effects of hardening and severe roughness (grinding) have also been investigated. In a first set of tests, the evolution of the surface damage induced by the different LCF pre-cycling was characterized. This has permitted to identify mechanisms and kinetics of damage in the plastic domain for different surface conditions. Then, pre-damaged samples were tested in the High Cycle Fatigue domain in order to establish the fatigue limits associated with each level of pre-damage. Results evidence that, in the case of polished samples, an important number of cycles is required to initiate surface cracks ant then to affect the fatigue limit of the material but, in the case of ground samples, a few number of cycles is sufficient to initiate cracks and to critically decrease the fatigue limit. The fatigue limit of pre-damaged samples can be estimated using the stress intensity factor threshold. Moreover, this detrimental effect of severe surface conditions is enhanced when fatigue tests are performed under a positive mean stress (author)

  4. Gain optimization in fiber optical parametric amplifiers by combining standard and high-SBS threshold highly nonlinear fibers

    DEFF Research Database (Denmark)

    Da Ros, Francesco; Rottwitt, Karsten; Peucheret, Christophe

    2012-01-01

    Combining Al-doped and Ge-doped HNLFs as gain media in FOPAs is proposed and optimized, resulting in efficient SBS mitigation while circumventing the additional loss of the high SBS threshold Al-doped fiber.......Combining Al-doped and Ge-doped HNLFs as gain media in FOPAs is proposed and optimized, resulting in efficient SBS mitigation while circumventing the additional loss of the high SBS threshold Al-doped fiber....

  5. Impact of gain saturation on the mode instability threshold in high-power fiber amplifiers

    DEFF Research Database (Denmark)

    Hansen, Kristian Rymann; Lægsgaard, Jesper

    2014-01-01

    We present a coupled-mode model of transverse mode instability in high-power fiber amplifiers, which takes the effect of gain saturation into account. The model provides simple semi-analytical formulas for the mode instability threshold, which are valid also for highly saturated amplifiers...

  6. Quantification of high-power ultrasound induced damage on potato starch granules using light microscopy.

    Science.gov (United States)

    Zuo, Yue Yue J; Hébraud, Pascal; Hemar, Yacine; Ashokkumar, Muthupandian

    2012-05-01

    A simple light microscopic technique was developed in order to quantify the damage inflicted by high-power low-frequency ultrasound (0-160 W, 20 kHz) treatment on potato starch granules in aqueous dispersions. The surface properties of the starch granules were modified using ethanol and SDS washing methods, which are known to displace proteins and lipids from the surface of the starch granules. The study showed that in the case of normal and ethanol-washed potato starch dispersions, two linear regions were observed. The number of defects first increased linearly with an increase in ultrasound power up to a threshold level. This was then followed by another linear dependence of the number of defects on the ultrasound power. The power threshold where the change-over occurred was higher for the ethanol-washed potato dispersions compared to non-washed potato dispersions. In the case of SDS-washed potato starch, although the increase in defects was linear with the ultrasound power, the power threshold for a second linear region was not observed. These results are discussed in terms of the different possible mechanisms of cavitation induced-damage (hydrodynamic shear stresses and micro-jetting) and by taking into account the hydrophobicity of the starch granule surface. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. High LET radiation and mechanism of DNA damage repair

    International Nuclear Information System (INIS)

    Furusawa, Yoshiya

    2004-01-01

    Clarifying the mechanism of repair from radiation damage gives most important information on radiation effects on cells. Approximately 10% of biological experiments groups in Heavy Ion Medical Accelerator in Chiba (HIMAC) cooperative research group has performed the subject. They gave a lot of new findings on the mechanism, and solved some open questions. The reason to show the peak of relative biological effectiveness RBE at around 100-200 keV/μm causes miss-repair of DNA damage. Sub-lethal damage generated by high linear energy transfer (LET) radiation can be repaired fully. Potentially lethal damages by high-LET radiation also repaired, but the efficiency decreased with the LET, and so on. (author)

  8. Measurement and interpretation of threshold stress intensity factors for steels in high-pressure hydrogen gas.

    Energy Technology Data Exchange (ETDEWEB)

    Dadfarnia, Mohsen (University of Illinois at Urbana-Champaign, Urbana, IL); Nibur, Kevin A.; San Marchi, Christopher W.; Sofronis, Petros (University of Illinois at Urbana-Champaign, Urbana, IL); Somerday, Brian P.; Foulk, James W., III; Hayden, Gary A. (CP Industries, McKeesport, PA)

    2010-07-01

    Threshold stress intensity factors were measured in high-pressure hydrogen gas for a variety of low alloy ferritic steels using both constant crack opening displacement and rising crack opening displacement procedures. The sustained load cracking procedures are generally consistent with those in ASME Article KD-10 of Section VIII Division 3 of the Boiler and Pressure Vessel Code, which was recently published to guide design of high-pressure hydrogen vessels. Three definitions of threshold were established for the two test methods: K{sub THi}* is the maximum applied stress intensity factor for which no crack extension was observed under constant displacement; K{sub THa} is the stress intensity factor at the arrest position for a crack that extended under constant displacement; and K{sub JH} is the stress intensity factor at the onset of crack extension under rising displacement. The apparent crack initiation threshold under constant displacement, K{sub THi}*, and the crack arrest threshold, K{sub THa}, were both found to be non-conservative due to the hydrogen exposure and crack-tip deformation histories associated with typical procedures for sustained-load cracking tests under constant displacement. In contrast, K{sub JH}, which is measured under concurrent rising displacement and hydrogen gas exposure, provides a more conservative hydrogen-assisted fracture threshold that is relevant to structural components in which sub-critical crack extension is driven by internal hydrogen gas pressure.

  9. Determination of the threshold-energy surface for copper using in-situ electrical-resistivity measurements in the high-voltage electron microscope

    International Nuclear Information System (INIS)

    King, W.E.; Merkle, K.L.; Meshii, M.

    1981-01-01

    A detailed study of the anisotropy of the threshold energy for Frenkel-pair production in copper was carried out experimentally, using in-situ electrical-resistivity measurements in the high-voltage electron microscope. These electrical-resistivity measurements, which are sensitive to small changes in point-defect concentration, were used to determine the damage or defect production rate. Damage-rate measurements in copper single crystals were carried out for approx.40 incident electron-beam directions and six electron energies from 0.4 to 1.1 MeV. The total cross section for Frenkel-pair production is proportional to the measured damage rate and can be theoretically calculated if the form of the threshold-energy surface is known. Trial threshold-energy surfaces were systematically altered until a ''best fit'' of the calculated to the measured total cross sections for Frenkel-pair production was obtained. The average threshold energy of this surface is 28.5 eV. The minimum threshold energy is 18 +- 2 eV and is located near . A ring of very high threshold energy (>50 eV) surrounds the direction. A damage function for single-defect production was derived from this surface and was applied to defect-production calculations at higher recoil energies. This function rises rather sharply from a value of zero at 17 eV to 0.8 at 42 eV. It has the value of 0.5 at 24.5 eV. Above 30 eV the slope of the curve begins to decrease, reflecting the presence of the high-energy regions of the threshold-energy surface. Both topographical and quantitative comparisons of the present surface with those in the literature were presented. Based on a chi 2 goodness-of-fit test, the present surface was found to predict the experimentally observed total cross sections for Frenkel-pair production significantly better than the other available surfaces. Also, the goodness of fit varied substantially less with energy and direction for the present surface

  10. Lifetime laser damage performance of β-Ga2O3 for high power applications

    Directory of Open Access Journals (Sweden)

    Jae-Hyuck Yoo

    2018-03-01

    Full Text Available Gallium oxide (Ga2O3 is an emerging wide bandgap semiconductor with potential applications in power electronics and high power optical systems where gallium nitride and silicon carbide have already demonstrated unique advantages compared to gallium arsenide and silicon-based devices. Establishing the stability and breakdown conditions of these next-generation materials is critical to assessing their potential performance in devices subjected to large electric fields. Here, using systematic laser damage performance tests, we establish that β-Ga2O3 has the highest lifetime optical damage performance of any conductive material measured to date, above 10 J/cm2 (1.4 GW/cm2. This has direct implications for its use as an active component in high power laser systems and may give insight into its utility for high-power switching applications. Both heteroepitaxial and bulk β-Ga2O3 samples were benchmarked against a heteroepitaxial gallium nitride sample, revealing an order of magnitude higher optical lifetime damage threshold for β-Ga2O3. Photoluminescence and Raman spectroscopy results suggest that the exceptional damage performance of β-Ga2O3 is due to lower absorptive defect concentrations and reduced epitaxial stress.

  11. Lifetime laser damage performance of β -Ga2O3 for high power applications

    Science.gov (United States)

    Yoo, Jae-Hyuck; Rafique, Subrina; Lange, Andrew; Zhao, Hongping; Elhadj, Selim

    2018-03-01

    Gallium oxide (Ga2O3) is an emerging wide bandgap semiconductor with potential applications in power electronics and high power optical systems where gallium nitride and silicon carbide have already demonstrated unique advantages compared to gallium arsenide and silicon-based devices. Establishing the stability and breakdown conditions of these next-generation materials is critical to assessing their potential performance in devices subjected to large electric fields. Here, using systematic laser damage performance tests, we establish that β-Ga2O3 has the highest lifetime optical damage performance of any conductive material measured to date, above 10 J/cm2 (1.4 GW/cm2). This has direct implications for its use as an active component in high power laser systems and may give insight into its utility for high-power switching applications. Both heteroepitaxial and bulk β-Ga2O3 samples were benchmarked against a heteroepitaxial gallium nitride sample, revealing an order of magnitude higher optical lifetime damage threshold for β-Ga2O3. Photoluminescence and Raman spectroscopy results suggest that the exceptional damage performance of β-Ga2O3 is due to lower absorptive defect concentrations and reduced epitaxial stress.

  12. Radiation damage in molybdenum and tungsten in high neutron fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Veljkovic, S; Milasin, N [Institute of Nuclear Sciences Boris Kidric, Department of Reactor Materials, Vinca, Beograd (Serbia and Montenegro)

    1964-04-15

    The effects of radiation on molybdenum and tungsten in high neutron fluxes are presented. The changes induced, particularly defects with a high migration activation energy, are analyzed. The correlation of these changes with the basic concepts of radiation damage in solids is considered. An attempt is made to relate the defects studied with the changes in macroscopic properties (author)

  13. Radiation damage in molybdenum and tungsten in high neutron fluxes

    International Nuclear Information System (INIS)

    Veljkovic, S.; Milasin, N.

    1964-01-01

    The effects of radiation on molybdenum and tungsten in high neutron fluxes are presented. The changes induced, particularly defects with a high migration activation energy, are analyzed. The correlation of these changes with the basic concepts of radiation damage in solids is considered. An attempt is made to relate the defects studied with the changes in macroscopic properties (author)

  14. Seismic damage assessment for high-rise buildings

    Science.gov (United States)

    Scholl, Roger E.

    1980-01-01

    The problem considered in this project, conducted by URS/John A. Blume & Associates, Engineers (URS/Blume), for the U.S. Geological Survey, is the identification, evaluation, and correlation of ground-motion and structural parameters in order to improve procedures for predicting dollar losses for high-rise structures damaged by earthquakes. Ground-motion data bases, analytical techniques, and known motion-damage relationships already developed for high-rise buildings and for other classes of structures will be refined and extended so that reliable quantitative seismic risk evaluations can be made.

  15. Simulation and experimental study of high power microwave damage effect on AlGaAs/InGaAs pseudomorphic high electron mobility transistor

    International Nuclear Information System (INIS)

    Yu Xin-Hai; Chai Chang-Chun; Liu Yang; Yang Yin-Tang; Xi Xiao-Wen

    2015-01-01

    The high power microwave (HPM) damage effect on the AlGaAs/InGaAs pseudomorphic high electron mobility transistor (pHEMT) is studied by simulation and experiments. Simulated results suggest that the HPM damage to pHEMT is due to device burn-out caused by the emerging current path and strong electric field beneath the gate. Besides, the results demonstrate that the damage power threshold decreases but the energy threshold slightly increases with the increase of pulse-width, indicating that HPM with longer pulse-width requires lower power density but more energy to cause the damage to pHEMT. The empirical formulas are proposed to describe the pulse-width dependence. Then the experimental data validate the pulse-width dependence and verify that the proposed formula P = 55τ −0.06 is capable of quickly and accurately estimating the HPM damage susceptibility of pHEMT. Finally the interior observation of damaged samples by scanning electron microscopy (SEM) illustrates that the failure mechanism of the HPM damage to pHEMT is indeed device burn-out and the location beneath the gate near the source side is most susceptible to burn-out, which is in accordance with the simulated results. (paper)

  16. Demonstration of a 100-mJ OPO/OPA for future lidar applications and laser-induced damage threshold testing of optical components for MERLIN

    Science.gov (United States)

    Elsen, Florian; Livrozet, Marie; Strotkamp, Michael; Wüppen, Jochen; Jungbluth, Bernd; Kasemann, Raphael; Löhring, Jens; Meissner, Ansgar; Meyer, Rudolf; Hoffmann, Hans-Dieter; Poprawe, Reinhart

    2018-02-01

    In the field of atmospheric research, lidar is a powerful technology that can measure gas or aerosol concentrations, wind speed, or temperature profiles remotely. To conduct such measurements globally, spaceborne systems are advantageous. Pulse energies in the 100-mJ range are required to achieve highly accurate, longitudinal resolved measurements. Measuring concentrations of specific gases, such as CH4 or CO2, requires output wavelengths in the IR-B, which can be addressed by optical-parametric frequency conversion. An OPO/OPA frequency conversion setup was designed and built as a demonstration module to address the 1.6-μm range. The pump laser is an Nd:YAG-MOPA system, consisting of a stable oscillator and two subsequent Innoslab-based amplifier stages that deliver up to 500 mJ of output pulse energy at 100 Hz repetition frequency. The OPO is inherited from the OPO design for the CH4 lidar instrument on the French-German climate satellite methane remote-sensing lidar mission (MERLIN). To address the 100-mJ regime, the OPO output beam is amplified in a subsequent multistage OPA. With potassium titanyl phosphate as nonlinear medium, the OPO/OPA delivered more than 100 mJ of output energy at 1645 nm from 450 mJ of the pump energy and a pump pulse duration of 30 ns. This corresponds to a quantum conversion efficiency of about 25%. In addition to demonstrating optical performance for future lidar systems, this laser will be part of a laser-induced damage thresholds test facility, which will be used to qualify optical components especially for the MERLIN.

  17. Multiscale Modeling of Dewetting Damage in Highly Filled Particulate Composites

    Science.gov (United States)

    Geubelle, P. H.; Inglis, H. M.; Kramer, J. D.; Patel, J. J.; Kumar, N. C.; Tan, H.

    2008-02-01

    Particle debonding or dewetting constitutes one of the key damage processes in highly filled particulate composites such as solid propellant and other energetic materials. To analyze this failure process, we have developed a multiscale finite element framework that combines, at the microscale, a nonlinear description of the binder response with a cohesive model of the damage process taking place in a representative periodic unit cell (PUC). To relate micro-scale damage to the macroscopic constitutive response of the material, we employ the mathematical theory of homogenization (MTH). After a description of the numerical scheme, we present the results of the damage response of a highly filled particulate composite subjected to a uniaxial macroscopic strain, and show the direct correlation between the complex damage processes taking place in the PUC and the nonlinear macroscopic constitutive response. We also present a detailed study of the PUC size and a comparison between the finite element MTH-based study and a micromechanics model of the dewetting process.

  18. The ship edge feature detection based on high and low threshold for remote sensing image

    Science.gov (United States)

    Li, Xuan; Li, Shengyang

    2018-05-01

    In this paper, a method based on high and low threshold is proposed to detect the ship edge feature due to the low accuracy rate caused by the noise. Analyze the relationship between human vision system and the target features, and to determine the ship target by detecting the edge feature. Firstly, using the second-order differential method to enhance the quality of image; Secondly, to improvement the edge operator, we introduction of high and low threshold contrast to enhancement image edge and non-edge points, and the edge as the foreground image, non-edge as a background image using image segmentation to achieve edge detection, and remove the false edges; Finally, the edge features are described based on the result of edge features detection, and determine the ship target. The experimental results show that the proposed method can effectively reduce the number of false edges in edge detection, and has the high accuracy of remote sensing ship edge detection.

  19. Bottom Raking Damage to High-Speed Craft

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup

    1998-01-01

    This paper presents a comparative study of the raking damage to high speed craft (HSC) and conventional ships. The analysis is based on a detailed theoretical model for the raking resistance of an assembled ship bottom structure and on the idea that the impact conditions for various ship types have...

  20. Techniques for preventing damage to high power laser components

    International Nuclear Information System (INIS)

    Stowers, I.F.; Patton, H.G.; Jones, W.A.; Wentworth, D.E.

    1977-09-01

    Techniques for preventing damage to components of the LASL Shiva high power laser system were briefly presented. Optical element damage in the disk amplifier from the combined fluence of the primary laser beam and the Xenon flash lamps that pump the cavity was discussed. Assembly and cleaning techniques were described which have improved optical element life by minimizing particulate and optically absorbing film contamination on assembled amplifier structures. A Class-100 vertical flaw clean room used for assembly and inspection of laser components was also described. The life of a disk amplifier was extended from less than 50 shots to 500 shots through application of these assembly and cleaning techniques

  1. Unidirectional threshold switching in Ag/Si-based electrochemical metallization cells for high-density bipolar RRAM applications

    Science.gov (United States)

    Wang, Chao; Song, Bing; Li, Qingjiang; Zeng, Zhongming

    2018-03-01

    We herein present a novel unidirectional threshold selector for cross-point bipolar RRAM array. The proposed Ag/amorphous Si based threshold selector showed excellent threshold characteristics in positive field, such as high selectivity ( 105), steep slope (type RRAM. By integrating a bipolar RRAM device with the selector, experiments showed that the undesired sneak was significantly suppressed, indicating its potentiality for high-density integrated nonvolatile memory applications.

  2. Relaxed damage threshold intensity conditions and nonlinear increase in the conversion efficiency of an optical parametric oscillator using a bi-directional pump geometry.

    Science.gov (United States)

    Norris, G; McConnell, G

    2010-03-01

    A novel bi-directional pump geometry that nonlinearly increases the nonlinear optical conversion efficiency of a synchronously pumped optical parametric oscillator (OPO) is reported. This bi-directional pumping method synchronizes the circulating signal pulse with two counter-propagating pump pulses within a linear OPO resonator. Through this pump scheme, an increase in nonlinear optical conversion efficiency of 22% was achieved at the signal wavelength, corresponding to a 95% overall increase in average power. Given an almost unchanged measured pulse duration of 260 fs under optimal performance conditions, this related to a signal wavelength peak power output of 18.8 kW, compared with 10 kW using the traditional single-pass geometry. In this study, a total effective peak intensity pump-field of 7.11 GW/cm(2) (corresponding to 3.55 GW/cm(2) from each pump beam) was applied to a 3 mm long periodically poled lithium niobate crystal, which had a damage threshold intensity of 4 GW/cm(2), without impairing crystal integrity. We therefore prove the application of this novel pump geometry provides opportunities for power-scaling of synchronously pumped OPO systems together with enhanced nonlinear conversion efficiency through relaxed damage threshold intensity conditions.

  3. Heat-related deaths in hot cities: estimates of human tolerance to high temperature thresholds.

    Science.gov (United States)

    Harlan, Sharon L; Chowell, Gerardo; Yang, Shuo; Petitti, Diana B; Morales Butler, Emmanuel J; Ruddell, Benjamin L; Ruddell, Darren M

    2014-03-20

    In this study we characterized the relationship between temperature and mortality in central Arizona desert cities that have an extremely hot climate. Relationships between daily maximum apparent temperature (ATmax) and mortality for eight condition-specific causes and all-cause deaths were modeled for all residents and separately for males and females ages heat. For this condition-specific cause of death, the heat thresholds in all gender and age groups (ATmax = 90-97 °F; 32.2-36.1 °C) were below local median seasonal temperatures in the study period (ATmax = 99.5 °F; 37.5 °C). Heat threshold was defined as ATmax at which the mortality ratio begins an exponential upward trend. Thresholds were identified in younger and older females for cardiac disease/stroke mortality (ATmax = 106 and 108 °F; 41.1 and 42.2 °C) with a one-day lag. Thresholds were also identified for mortality from respiratory diseases in older people (ATmax = 109 °F; 42.8 °C) and for all-cause mortality in females (ATmax = 107 °F; 41.7 °C) and males Heat-related mortality in a region that has already made some adaptations to predictable periods of extremely high temperatures suggests that more extensive and targeted heat-adaptation plans for climate change are needed in cities worldwide.

  4. The Effect of High-Frequency Stimulation on Sensory Thresholds in Chronic Pain Patients.

    Science.gov (United States)

    Youn, Youngwon; Smith, Heather; Morris, Brian; Argoff, Charles; Pilitsis, Julie G

    2015-01-01

    High-frequency stimulation (HFS) has recently gained attention as an alternative to parameters used in traditional spinal cord stimulation (SCS). Because HFS is paresthesia free, the gate theory of pain control as a basis of SCS has been called into question. The mechanism of action of HFS remains unclear. We compare the effects of HFS and traditional SCS on quantitative sensory testing parameters to provide insight into how HFS modulates the nervous system. Using quantitative sensory testing, we measured thermal detection and pain thresholds and mechanical detection and pressure pain thresholds, as well as vibratory detection, in 20 SCS patients off stimulation (OFF), on traditional stimulation (ON) and on HFS in a randomized order. HFS significantly increased the mechanical detection threshold compared to OFF stimulation (p < 0.001) and traditional SCS (p = 0.01). Pressure pain detection and vibratory detection thresholds also significantly increased with HFS compared to ON states (p = 0.04 and p = 0.01, respectively). In addition, HFS significantly decreased 10- and 40-gram pinprick detection compared to OFF states (both p = 0.01). No significant differences between OFF, ON and HFS states were seen in thermal and thermal pain detection. HFS is a new means of modulating chronic pain. The mechanism by which HFS works seems to differ from that of traditional SCS, offering a new platform for innovative advancements in treatment and a greater potential to treat patients by customizing waveforms. © 2015 S. Karger AG, Basel.

  5. Crack Growth Behavior in the Threshold Region for High Cycle Fatigue Loading

    Science.gov (United States)

    Forman, R. G.; Zanganeh, M.

    2014-01-01

    This paper describes the results of a research program conducted to improve the understanding of fatigue crack growth rate behavior in the threshold growth rate region and to answer a question on the validity of threshold region test data. The validity question relates to the view held by some experimentalists that using the ASTM load shedding test method does not produce valid threshold test results and material properties. The question involves the fanning behavior observed in threshold region of da/dN plots for some materials in which the low R-ratio data fans out from the high R-ratio data. This fanning behavior or elevation of threshold values in the low R-ratio tests is generally assumed to be caused by an increase in crack closure in the low R-ratio tests. Also, the increase in crack closure is assumed by some experimentalists to result from using the ASTM load shedding test procedure. The belief is that this procedure induces load history effects which cause remote closure from plasticity and/or roughness changes in the surface morphology. However, experimental studies performed by the authors have shown that the increase in crack closure is a result of extensive crack tip bifurcations that can occur in some materials, particularly in aluminum alloys, when the crack tip cyclic yield zone size becomes less than the grain size of the alloy. This behavior is related to the high stacking fault energy (SFE) property of aluminum alloys which results in easier slip characteristics. Therefore, the fanning behavior which occurs in aluminum alloys is a function of intrinsic dislocation property of the alloy, and therefore, the fanned data does represent the true threshold properties of the material. However, for the corrosion sensitive steel alloys tested in laboratory air, the occurrence of fanning results from fretting corrosion at the crack tips, and these results should not be considered to be representative of valid threshold properties because the fanning is

  6. High pain sensitivity is distinct from high susceptibility to non-painful sensory input at threshold level.

    Science.gov (United States)

    Hummel, Thomas; Springborn, Maria; Croy, Ilona; Kaiser, Jochen; Lötsch, Jörn

    2011-04-01

    Individuals may differ considerably in their sensitivity towards various painful stimuli supporting the notion of a person as stoical or complaining about pain. Molecular and functional imaging research provides support that this may extend also to other sensory qualities. Whether a person can be characterized as possessing a generally high or low sensory acuity is unknown. This was therefore assessed with thresholds to painful and non-painful stimuli, with a focus on chemical stimuli that besides pain may evoke clearly non-painful sensations such as taste or smell. In 36 healthy men and 78 women (ages 18 to 52 years), pain thresholds to chemo-somatosensory (intranasal gaseous CO(2)) and electrical stimuli (cutaneous stimulation) were significantly correlated (ρ(2)=0.2268, psensory qualities, i.e., for the rose-like odor phenyl ethyl alcohol and gustatory thresholds for sour (citric acid) and salty (NaCl). Similarly, pain clusters showed no differences in thresholds to other stimuli. Moreover, no clustering was obtained for thresholds to both painful and non-painful stimuli together. Thus, individuals could not be characterized as highly sensitive (or insensitive) to all chemical stimuli no matter of evoking pain. This suggests that pain is primarily a singular sensory perception distinct from others such as olfaction or taste. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Micro-damage propagation in ultra-high vacuum seals

    CERN Document Server

    Lutkiewicz, P; Garion, C

    2010-01-01

    The paper addresses a fundamental problem of tightness of ultra-high vacuum systems (UHV) at cryogenic temperatures in the light of continuum damage mechanics (CDM). The problem of indentation of a rigid punch into an elastic-plastic half-space is investigated based on rate independent plasticity with mixed kinematic and isotropic hardening. The micro-damage fields are modeled by using an anisotropic approach with a kinetic law of damage evolution suitable for ductile materials and cryogenic temperatures. The model has been experimentally validated and the results are used to predict the onset of macro-cracking (loss of tightness) and the corresponding load (contact pressure). The algorithm is applied in the design of UHV systems for particle accelerators. (C) 2009 Published by Elsevier Ltd.

  8. Experimental study of EUV mirror radiation damage resistance under long-term free-electron laser exposures below the single-shot damage threshold

    Czech Academy of Sciences Publication Activity Database

    Makhotkin, I.; Sobierajski, R.; Chalupský, Jaromír; Tiedtke, K.; de Vries, G.; Stoermer, M.; Scholze, F.; Siewert, F.; van de Kruijs, R.W.E.; Milov, I.; Louis, E.; Jacyna, I.; Jurek, M.; Klinger, D.; Nittler, L.; Syryanyy, Y.; Juha, Libor; Hájková, Věra; Vozda, Vojtěch; Burian, Tomáš; Saksl, Karel; Faatz, B.; Keitel, B.; Ploenjes, E.; Schreiber, S.; Toleikis, S.; Loch, R.A.; Hermann, M.; Strobel, S.; Nienhuys, H.-K.; Gwalt, G.; Mey, T.; Enkisch, H.

    2018-01-01

    Roč. 25, č. 1 (2018), s. 77-84 ISSN 1600-5775. [Workshop on FEL Photon Diagnostics, Instrumentation and Beamline Design (PhotonDiag2017). Stanford, 01.05.2017-03.05.2017] R&D Projects: GA MŠk LG15013; GA ČR(CZ) GA17-05167s; GA ČR(CZ) GA14-29772S Institutional support: RVO:68378271 Keywords : free-electron laser induced damage * EUV optics * thin films * FELs Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 3.011, year: 2016

  9. Experimental study of EUV mirror radiation damage resistance under long-term free-electron laser exposures below the single-shot damage threshold

    Czech Academy of Sciences Publication Activity Database

    Makhotkin, I.A.; Sobierajski, R.; Chalupský, J.; Tiedtke, K.; de Vries, G.; Stoermer, M.; Scholze, F.; Siewert, F.; van de Kruijs, R.W.E.; Louis, E.; Jacyna, I.; Jurek, M.; Klinger, D.; Nittler, L.; Syryanyy, Y.; Juha, Libor; Hájková, V.; Vozda, V.; Burian, Tomáš; Saksl, K.; Faatz, B.; Keitel, B.; Ploenjes, E.; Schreiber, S.; Toleikis, S.; Loch, R.; Hermann, M.; Strobel, S.; Nienhuys, H.-K.; Gwalt, G.; Mey, T.; Enkisch, H.

    2018-01-01

    Roč. 25, č. 1 (2018), s. 77-84 ISSN 0909-0495. [Workshop on FEL Photon Diagnostics, Instrumentation and Beamline Design (PhotonDiag2017). Stanford, 01.05.2017-03.05.2017] R&D Projects: GA ČR(CZ) GA14-29772S; GA MŠk LG15013 Institutional support: RVO:61389021 Keywords : free-electron laser induced damage * EUV optics * thin films * FELs Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics)

  10. Multiphoton Absorption is Probably Not the Primary Threshold Damage Mechanism for Femtosecond Laser Pulse Exposures in the Retinal Pigment Epithelium

    Science.gov (United States)

    2004-01-01

    Tromberg, and E. Gratton, "Two-photon excited lifetime imaging of autofluorescence in cells during UTVA and NIR photostress", J. Micros. 183, pp. 197-204...1996. 4. K. Konig, Y. Liu, G. J. Sonek, M. W. Berns, and B. J. Tromberg, " Autofluorescence spectroscopy of optically trapped cells", Photochem...34, Photochem. Photobiol. 70, pp. 146-151, 1999. 10. R. D. Glickman, "Phototoxicity to the retina : Mechanisms of damage", International Journal of

  11. Foton Crosses the High Threshold of Overseas Market--the First 40 Van Arrives at Russia

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ On January 14, 2006, after half year's planning, 40 Foton View Van start the expedition from the headquarter square of Foton Motor.It is believed that it is another achievement of Foton Motor's overseas "strategic market" export. The export is a landmark for Foton Motor. Iran, Russia and India are defined as the 3 major overseas strategic markets for the export thresholds are very high and hard to operate.

  12. Foton Crosses the High Threshold of Overseas Market--the First 40 Van Arrives at Russia

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

      On January 14, 2006, after half year's planning, 40 Foton View Van start the expedition from the headquarter square of Foton Motor.It is believed that it is another achievement of Foton Motor's overseas "strategic market" export. The export is a landmark for Foton Motor. Iran, Russia and India are defined as the 3 major overseas strategic markets for the export thresholds are very high and hard to operate.……

  13. The Caenorhabditis elegans interneuron ALA is (also) a high-threshold mechanosensor

    OpenAIRE

    Sanders, Jarred; Nagy, Stanislav; Fetterman, Graham; Wright, Charles; Treinin, Millet; Biron, David

    2013-01-01

    Background To survive dynamic environments, it is essential for all animals to appropriately modulate their behavior in response to various stimulus intensities. For instance, the nematode Caenorhabditis elegans suppresses the rate of egg-laying in response to intense mechanical stimuli, in a manner dependent on the mechanosensory neurons FLP and PVD. We have found that the unilaterally placed single interneuron ALA acted as a high-threshold mechanosensor, and that it was required for this pr...

  14. Experimental research for γ-ray interference threshold effect of high electromagnetic pulse sensor

    International Nuclear Information System (INIS)

    Meng Cui; Chen Xiangyue; Nie Xin; Xiang Hui; Guo Xiaoqiang; Mao Congguang; Cheng Jianping; Ni Jianping

    2007-01-01

    The high electromagnetic pulse (EMP) sensor using optical-fiber to transmit signal can restrain electromagnetic interference. The Compton electrons scattered by γ-ray irradiated from nuclear explosion or nuclear explosion simulator can generate high EMP, γ-ray can penetrate the shielding box and irradiate the integrated circuit directly. The γ-ray irradiation effect includes interference, latch up and burn out, these will make the measurement result unbelievable. In this paper, the experimental method researching the γ-ray irradiation effect of high electromagnetic pulse sensor on Qiangguang-I accelerator is introduced. The γ-ray dose rate interference threshold is 2 x 10 6 Gy/s. (authors)

  15. Growth, structural, physical and computational perspectives of trans-4-hydroxy-l-proline: a promising organic nonlinear optical material with large laser-induced damage threshold

    Science.gov (United States)

    Thirumurugan, Ramaiah; Anitha, Kandasamy

    2017-05-01

    In this work, a systematic study of an organic nonlinear optical (NLO) material, trans-4-hydroxy-l-proline (THP), C5H9NO3 is reported. An optical quality single crystals of THP have been successfully grown by using slow evaporation solution growth technique (SEST). The single crystal x-ray diffraction (SXRD) analysis reveals that grown crystal belongs to the orthorhombic system with non-centrosymmetric space group (NCS), P212121. Powder x-ray diffraction (PXRD) analysis shows relatively a good crystalline nature. The molecular structure of THP was recognized by NMR (1H and 13C) studies and its vibrational modes were confirmed by FTIR and FT-Raman vibrational studies. UV-Vis-NIR spectrum of grown crystal shows high optical transparency in the visible and near-IR region with low near-UV cut-off wavelength at 218 nm. Photoluminescence study confirms ultraviolet wavelength emission of THP crystal. The second harmonic generation (SHG) efficiency of grown crystal is 1.6 times greater with respect to standard potassium dihydrogen phosphate (KDP). Nonlinear refractive index (n 2) and nonlinear absorption coefficient (β) were determined using the Z-scan technique. The title compound owns high thermal stability of 294 °C and specific heat capacity (C P) of 1.21 J g-1 K-1 at 300 K and 11.33 J g-1 K-1 at 539 K (melting point). The laser-induced damage threshold (LDT) value of grown crystal was measured as 7.25 GW cm-2. The crystal growth mechanism and defects of grown crystal were studied by chemical etching technique. Mechanical strength was extensively studied by Vickers microhardness test and crystal void percentage analysis. Moreover, density functional theory (DFT) studies were carried out to probe the Mulliken charge distribution, frontier molecular orbitals (FMOs) and first order hyperpolarizability (β) of the optimized molecular structure to get a better insight of the molecular properties. These characterization results endorse that grown THP crystal as a

  16. Using self-organizing maps to determine observation threshold limit predictions in highly variant data

    Science.gov (United States)

    Paganoni, C.A.; Chang, K.C.; Robblee, M.B.

    2006-01-01

    A significant data quality challenge for highly variant systems surrounds the limited ability to quantify operationally reasonable limits on the data elements being collected and provide reasonable threshold predictions. In many instances, the number of influences that drive a resulting value or operational range is too large to enable physical sampling for each influencer, or is too complicated to accurately model in an explicit simulation. An alternative method to determine reasonable observation thresholds is to employ an automation algorithm that would emulate a human analyst visually inspecting data for limits. Using the visualization technique of self-organizing maps (SOM) on data having poorly understood relationships, a methodology for determining threshold limits was developed. To illustrate this approach, analysis of environmental influences that drive the abundance of a target indicator species (the pink shrimp, Farfantepenaeus duorarum) provided a real example of applicability. The relationship between salinity and temperature and abundance of F. duorarum is well documented, but the effect of changes in water quality upstream on pink shrimp abundance is not well understood. The highly variant nature surrounding catch of a specific number of organisms in the wild, and the data available from up-stream hydrology measures for salinity and temperature, made this an ideal candidate for the approach to provide a determination about the influence of changes in hydrology on populations of organisms.

  17. Heat-Related Deaths in Hot Cities: Estimates of Human Tolerance to High Temperature Thresholds

    Directory of Open Access Journals (Sweden)

    Sharon L. Harlan

    2014-03-01

    Full Text Available In this study we characterized the relationship between temperature and mortality in central Arizona desert cities that have an extremely hot climate. Relationships between daily maximum apparent temperature (ATmax and mortality for eight condition-specific causes and all-cause deaths were modeled for all residents and separately for males and females ages <65 and ≥65 during the months May–October for years 2000–2008. The most robust relationship was between ATmax on day of death and mortality from direct exposure to high environmental heat. For this condition-specific cause of death, the heat thresholds in all gender and age groups (ATmax = 90–97 °F; 32.2‒36.1 °C were below local median seasonal temperatures in the study period (ATmax = 99.5 °F; 37.5 °C. Heat threshold was defined as ATmax at which the mortality ratio begins an exponential upward trend. Thresholds were identified in younger and older females for cardiac disease/stroke mortality (ATmax = 106 and 108 °F; 41.1 and 42.2 °C with a one-day lag. Thresholds were also identified for mortality from respiratory diseases in older people (ATmax = 109 °F; 42.8 °C and for all-cause mortality in females (ATmax = 107 °F; 41.7 °C and males <65 years (ATmax = 102 °F; 38.9 °C. Heat-related mortality in a region that has already made some adaptations to predictable periods of extremely high temperatures suggests that more extensive and targeted heat-adaptation plans for climate change are needed in cities worldwide.

  18. Extended high-frequency thresholds in college students: effects of music player use and other recreational noise.

    Science.gov (United States)

    Le Prell, Colleen G; Spankovich, Christopher; Lobariñas, Edward; Griffiths, Scott K

    2013-09-01

    Human hearing is sensitive to sounds from as low as 20 Hz to as high as 20,000 Hz in normal ears. However, clinical tests of human hearing rarely include extended high-frequency (EHF) threshold assessments, at frequencies extending beyond 8000 Hz. EHF thresholds have been suggested for use monitoring the earliest effects of noise on the inner ear, although the clinical usefulness of EHF threshold testing is not well established for this purpose. The primary objective of this study was to determine if EHF thresholds in healthy, young adult college students vary as a function of recreational noise exposure. A retrospective analysis of a laboratory database was conducted; all participants with both EHF threshold testing and noise history data were included. The potential for "preclinical" EHF deficits was assessed based on the measured thresholds, with the noise surveys used to estimate recreational noise exposure. EHF thresholds measured during participation in other ongoing studies were available from 87 participants (34 male and 53 female); all participants had hearing within normal clinical limits (≤25 HL) at conventional frequencies (0.25-8 kHz). EHF thresholds closely matched standard reference thresholds [ANSI S3.6 (1996) Annex C]. There were statistically reliable threshold differences in participants who used music players, with 3-6 dB worse thresholds at the highest test frequencies (10-16 kHz) in participants who reported long-term use of music player devices (>5 yr), or higher listening levels during music player use. It should be possible to detect small changes in high-frequency hearing for patients or participants who undergo repeated testing at periodic intervals. However, the increased population-level variability in thresholds at the highest frequencies will make it difficult to identify the presence of small but potentially important deficits in otherwise normal-hearing individuals who do not have previously established baseline data. American

  19. Ambient high temperature and mortality in Jinan, China: A study of heat thresholds and vulnerable populations.

    Science.gov (United States)

    Li, Jing; Xu, Xin; Yang, Jun; Liu, Zhidong; Xu, Lei; Gao, Jinghong; Liu, Xiaobo; Wu, Haixia; Wang, Jun; Yu, Jieqiong; Jiang, Baofa; Liu, Qiyong

    2017-07-01

    Understanding the health consequences of continuously rising temperatures-as is projected for China-is important in terms of developing heat-health adaptation and intervention programs. This study aimed to examine the association between mortality and daily maximum (T max ), mean (T mean ), and minimum (T min ) temperatures in warmer months; to explore threshold temperatures; and to identify optimal heat indicators and vulnerable populations. Daily data on temperature and mortality were obtained for the period 2007-2013. Heat thresholds for condition-specific mortality were estimated using an observed/expected analysis. We used a generalised additive model with a quasi-Poisson distribution to examine the association between mortality and T max /T min /T mean values higher than the threshold values, after adjustment for covariates. T max /T mean /T min thresholds were 32/28/24°C for non-accidental deaths; 32/28/24°C for cardiovascular deaths; 35/31/26°C for respiratory deaths; and 34/31/28°C for diabetes-related deaths. For each 1°C increase in T max /T mean /T min above the threshold, the mortality risk of non-accidental-, cardiovascular-, respiratory, and diabetes-related death increased by 2.8/5.3/4.8%, 4.1/7.2/6.6%, 6.6/25.3/14.7%, and 13.3/30.5/47.6%, respectively. Thresholds for mortality differed according to health condition when stratified by sex, age, and education level. For non-accidental deaths, effects were significant in individuals aged ≥65 years (relative risk=1.038, 95% confidence interval: 1.026-1.050), but not for those ≤64 years. For most outcomes, women and people ≥65 years were more vulnerable. High temperature significantly increases the risk of mortality in the population of Jinan, China. Climate change with rising temperatures may bring about the situation worse. Public health programs should be improved and implemented to prevent and reduce health risks during hot days, especially for the identified vulnerable groups. Copyright

  20. Damage detection in high-rise buildings using damage-induced rotations

    International Nuclear Information System (INIS)

    Sung, Seung Hun; Jung, Ho Youn; Lee, Jung Hoon; Jung, Hyung Jo

    2016-01-01

    In this paper, a new damage-detection method based on structural vibration is proposed. The essence of the proposed method is the detection of abrupt changes in rotation. Damage-induced rotation (DIR), which is determined from the modal flexibility of the structure, initially occurs only at a specific damaged location. Therefore, damage can be localized by evaluating abrupt changes in rotation. We conducted numerical simulations of two damage scenarios using a 10-story cantilever-type building model. Measurement noise was also considered in the simulation. We compared the sensitivity of the proposed method to localize damage to that of two conventional modal-flexibility-based damage-detection methods, i.e., uniform load surface (ULS) and ULS curvature. The proposed method was able to localize damage in both damage scenarios for cantilever structures, but the conventional methods could not

  1. Damage detection in high-rise buildings using damage-induced rotations

    International Nuclear Information System (INIS)

    Sung, Seung Hoon; Jung, Ho Youn; Lee, Jung Hoon; Jung, Hyung Jo

    2014-01-01

    In this paper, a new damage-detection method based on structural vibration is proposed. The essence of the proposed method is the detection of abrupt changes in rotation. Damage-induced rotation (DIR), which is determined from the modal flexibility of the structure, initially occurs only at a specific damaged location. Therefore, damage can be localized by evaluating abrupt changes in rotation. We conducted numerical simulations of two damage scenarios using a 10-story cantilever-type building model. Measurement noise was also considered in the simulation. We compared the sensitivity of the proposed method to localize damage to that of two conventional modal-flexibility-based damage-detection methods, i.e., uniform load surface (ULS) and ULS curvature. The proposed method was able to localize damage in both damage scenarios for cantilever structures, but the conventional methods could not.

  2. Semiparametric profile likelihood estimation for continuous outcomes with excess zeros in a random-threshold damage-resistance model.

    Science.gov (United States)

    Rice, John D; Tsodikov, Alex

    2017-05-30

    Continuous outcome data with a proportion of observations equal to zero (often referred to as semicontinuous data) arise frequently in biomedical studies. Typical approaches involve two-part models, with one part a logistic model for the probability of observing a zero and some parametric continuous distribution for modeling the positive part of the data. We propose a semiparametric model based on a biological system with competing damage manifestation and resistance processes. This allows us to derive a closed-form profile likelihood based on the retro-hazard function, leading to a flexible procedure for modeling continuous data with a point mass at zero. A simulation study is presented to examine the properties of the method in finite samples. We apply the method to a data set consisting of pulmonary capillary hemorrhage area in lab rats subjected to diagnostic ultrasound. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Threshold-voltage modulated phase change heterojunction for application of high density memory

    International Nuclear Information System (INIS)

    Yan, Baihan; Tong, Hao; Qian, Hang; Miao, Xiangshui

    2015-01-01

    Phase change random access memory is one of the most important candidates for the next generation non-volatile memory technology. However, the ability to reduce its memory size is compromised by the fundamental limitations inherent in the CMOS technology. While 0T1R configuration without any additional access transistor shows great advantages in improving the storage density, the leakage current and small operation window limit its application in large-scale arrays. In this work, phase change heterojunction based on GeTe and n-Si is fabricated to address those problems. The relationship between threshold voltage and doping concentration is investigated, and energy band diagrams and X-ray photoelectron spectroscopy measurements are provided to explain the results. The threshold voltage is modulated to provide a large operational window based on this relationship. The switching performance of the heterojunction is also tested, showing a good reverse characteristic, which could effectively decrease the leakage current. Furthermore, a reliable read-write-erase function is achieved during the tests. Phase change heterojunction is proposed for high-density memory, showing some notable advantages, such as modulated threshold voltage, large operational window, and low leakage current

  4. Threshold-voltage modulated phase change heterojunction for application of high density memory

    Science.gov (United States)

    Yan, Baihan; Tong, Hao; Qian, Hang; Miao, Xiangshui

    2015-09-01

    Phase change random access memory is one of the most important candidates for the next generation non-volatile memory technology. However, the ability to reduce its memory size is compromised by the fundamental limitations inherent in the CMOS technology. While 0T1R configuration without any additional access transistor shows great advantages in improving the storage density, the leakage current and small operation window limit its application in large-scale arrays. In this work, phase change heterojunction based on GeTe and n-Si is fabricated to address those problems. The relationship between threshold voltage and doping concentration is investigated, and energy band diagrams and X-ray photoelectron spectroscopy measurements are provided to explain the results. The threshold voltage is modulated to provide a large operational window based on this relationship. The switching performance of the heterojunction is also tested, showing a good reverse characteristic, which could effectively decrease the leakage current. Furthermore, a reliable read-write-erase function is achieved during the tests. Phase change heterojunction is proposed for high-density memory, showing some notable advantages, such as modulated threshold voltage, large operational window, and low leakage current.

  5. Comparison of retina damage thresholds simulating the femtosecond-laser in situ keratomileusis (fs-LASIK) process with two laser systems in the CW- and fs-regime

    Science.gov (United States)

    Sander, M.; Minet, O.; Zabarylo, U.; Müller, M.; Tetz, M. R.

    2012-04-01

    The femtosecond-laser in situ keratomileusis procedure affords the opportunity to correct ametropia by cutting transparent corneal tissue with ultra-short laser pulses. Thereby the tissue cut is generated by a laser-induced optical breakdown in the cornea with ultra-short laser pulses in the near-infrared range. Compared to standard procedures such as photorefractive keratectomy and laser in-situ keratomileusis with the excimer laser, where the risk potential for the eye is low due to the complete absorption of ultraviolet irradiation from corneal tissue, only a certain amount of the pulse energy is deposited in the cornea during the fs-LASIK process. The remaining energy propagates through the eye and interacts with the retina and the strong absorbing tissue layers behind. The objective of the presented study was to determine and compare the retina damage thresholds during the fs-LASIK process simulated with two various laser systems in the CW- and fs-regime.

  6. Chemical Etching, AFM, Laser Damage Threshold, and Nonlinear Optical Studies of Potential Nonlinear Optical Crystal: Bis (L-Glutamine Potassium Nitrate

    Directory of Open Access Journals (Sweden)

    Redrothu Hanumantharao

    2013-01-01

    Full Text Available A novel semiorganic nonlinear optical crystal bis (L-glutamine potassium nitrate (BGPN grown by slow evaporation technique at ambient temperature. The grown crystal surface has been analyzed by chemical etching and atomic force microscopy (AFM studies. Amplitude parameters like area roughness, roughness average, valley height, valley depth, peak height, and peak valley height were measured successfully from AFM studies. Etching studies were carried out by various solvents like water, methanol and ethanol. The etching study indicates the occurrence of different types of etch pit patterns like striations and steplike pattern. The laser damage threshold energy has been measured by irradiating laser beam using a Q-switched Nd: YAG laser (1064 nm. Second harmonic generation (SHG studies have been performed by famous Kurtz powder technique with reference to standard potassium dihydrogen phosphate single crystals (KDP. It is found from this technique that SHG efficiency of BGPN is in comparison to that of standard KDP crystals.

  7. Tunneling-induced shift of the cutoff law for high-order above-threshold ionization

    International Nuclear Information System (INIS)

    Lai, X. Y.; Quan, W.; Liu, X.

    2011-01-01

    We investigate the cutoff law for high-order above-threshold ionization (HATI) within a semiclassical framework. By explicitly adopting the tunneling effect and considering the initial position shift of the tunneled electron from the origin in the model, the cutoff energy position in HATI spectrum exhibits a well-defined upshift from the simple-man model prediction. The comparison between numerical results from our improved semiclassical model and the quantum-orbit theory shows a good agreement for small values of the Keldysh parameter γ, implying the important role of the inherent quantum tunneling effect in HATI dynamics.

  8. AR coating with high damage threshold on SiO2 glass. Final report

    International Nuclear Information System (INIS)

    Toratani, H.; Kanamori, C.; Nakajima, S.; Nakagawa, K.; Izumitani, T.

    1983-01-01

    The following experimental results are shown: (1) uniformity of AR coatings on Optosil and Sprasil provided by LLNL; (2) relation between cleaning methods and properties of AR coatings; (3) baking and sintering conditions of gel-derived films; (4) heat treatment of AR coating in O 2 flow

  9. High-resolution tide projections reveal extinction threshold in response to sea-level rise.

    Science.gov (United States)

    Field, Christopher R; Bayard, Trina S; Gjerdrum, Carina; Hill, Jason M; Meiman, Susan; Elphick, Chris S

    2017-05-01

    Sea-level rise will affect coastal species worldwide, but models that aim to predict these effects are typically based on simple measures of sea level that do not capture its inherent complexity, especially variation over timescales shorter than 1 year. Coastal species might be most affected, however, by floods that exceed a critical threshold. The frequency and duration of such floods may be more important to population dynamics than mean measures of sea level. In particular, the potential for changes in the frequency and duration of flooding events to result in nonlinear population responses or biological thresholds merits further research, but may require that models incorporate greater resolution in sea level than is typically used. We created population simulations for a threatened songbird, the saltmarsh sparrow (Ammodramus caudacutus), in a region where sea level is predictable with high accuracy and precision. We show that incorporating the timing of semidiurnal high tide events throughout the breeding season, including how this timing is affected by mean sea-level rise, predicts a reproductive threshold that is likely to cause a rapid demographic shift. This shift is likely to threaten the persistence of saltmarsh sparrows beyond 2060 and could cause extinction as soon as 2035. Neither extinction date nor the population trajectory was sensitive to the emissions scenarios underlying sea-level projections, as most of the population decline occurred before scenarios diverge. Our results suggest that the variation and complexity of climate-driven variables could be important for understanding the potential responses of coastal species to sea-level rise, especially for species that rely on coastal areas for reproduction. © 2016 John Wiley & Sons Ltd.

  10. Radiation damage by high-energy electrons in GaAs: DLTS investigation

    International Nuclear Information System (INIS)

    Lehmann, B.

    1991-10-01

    An isothermal variation of the DLTS technique is developed and applied to the study of displacement damage in GaAs, through the determination of threshold energies and displacement cross sections. Its results correspond to those of an LED based method. A pronounced anisotropy is found for the threshold energy. A linearly increasing displacement probability function is shown to properly model the displacement cross section in direction, as compared with the direction which requires only a single step function. Differences in the damage between these two directions are as large as a factor of two. (orig.) [de

  11. Simulation of electron displacement damage in a high voltage electron microscope

    International Nuclear Information System (INIS)

    Ono, Susumu; Kanaya, Koichi

    1979-01-01

    By applying the fundamental theory of the neutron cooling to the conservation law of energy and momentum, the threshold energies of incident electrons for displacing atoms are calculated and illustrated periodically for the atomic number. And the observable damage due to the secondary action of displaced atoms in the practical use of a high voltage electron microscope is described for several materials and accelerating voltages. The trajectories of incident electrons and displaced atoms in several materials are simulated by a Monte-Carlo method, using rigorous formulas of electron scattering events, i.e. elastic and inelastic scattering cross-sections, ionization loss and plasmon excitation. The simulation results are substantially agreement with experiments. (author)

  12. Grinding damage assessment on four high-strength ceramics.

    Science.gov (United States)

    Canneto, Jean-Jacques; Cattani-Lorente, Maria; Durual, Stéphane; Wiskott, Anselm H W; Scherrer, Susanne S

    2016-02-01

    The purpose of this study was to assess surface and subsurface damage on 4 CAD-CAM high-strength ceramics after grinding with diamond disks of 75 μm, 54 μm and 18 μm and to estimate strength losses based on damage crack sizes. The materials tested were: 3Y-TZP (Lava), dense Al2O3 (In-Ceram AL), alumina glass-infiltrated (In-Ceram ALUMINA) and alumina-zirconia glass-infiltrated (In-Ceram ZIRCONIA). Rectangular specimens with 2 mirror polished orthogonal sides were bonded pairwise together prior to degrading the top polished surface with diamond disks of either 75 μm, 54 μm or 18 μm. The induced chip damage was evaluated on the bonded interface using SEM for chip depth measurements. Fracture mechanics were used to estimate fracture stresses based on average and maximum chip depths considering these as critical flaws subjected to tension and to calculate possible losses in strength compared to manufacturer's data. 3Y-TZP was hardly affected by grinding chip damage viewed on the bonded interface. Average chip depths were of 12.7±5.2 μm when grinding with 75 μm diamond inducing an estimated loss of 12% in strength compared to manufacturer's reported flexural strength values of 1100 MPa. Dense alumina showed elongated chip cracks and was suffering damage of an average chip depth of 48.2±16.3 μm after 75 μm grinding, representing an estimated loss in strength of 49%. Grinding with 54 μm was creating chips of 32.2±9.1 μm in average, representing a loss in strength of 23%. Alumina glass-infiltrated ceramic was exposed to chipping after 75 μm (mean chip size=62.4±19.3 μm) and 54 μm grinding (mean chip size=42.8±16.6 μm), with respectively 38% and 25% estimated loss in strength. Alumina-zirconia glass-infiltrated ceramic was mainly affected by 75 μm grinding damage with a chip average size of 56.8±15.1 μm, representing an estimated loss in strength of 34%. All four ceramics were not exposed to critical chipping at 18 μm diamond grinding. Reshaping a

  13. Proceedings of damage and oxidation protection in high temperature composites

    International Nuclear Information System (INIS)

    Haritos, G.K.; Ochoa, O.O.

    1991-01-01

    This book contains proceedings of Damage and Oxidation Protection in High Temperature Composites. Topics covered include: current issues in the development of new materials and structural concepts for the aerospace structures of the future; transportation vehicles of the future; materials and structural concepts; fundamental understanding and quantitative descriptions of the physical processes and mechanisms controlling the behavior of emerging materials and structures; and the critical need for advances in our understanding of how the interaction of service loads and environment influences the lifecycle of emerging structures and materials

  14. Reduced firing rates of high threshold motor units in response to eccentric overload.

    Science.gov (United States)

    Balshaw, Tom G; Pahar, Madhu; Chesham, Ross; Macgregor, Lewis J; Hunter, Angus M

    2017-01-01

    Acute responses of motor units were investigated during submaximal voluntary isometric tasks following eccentric overload (EO) and constant load (CL) knee extension resistance exercise. Ten healthy resistance-trained participants performed four experimental test sessions separated by 5 days over a 20 day period. Two sessions involved constant load and the other two used eccentric overload. EO and CL used both sessions for different target knee eccentric extension phases; one at 2 sec and the other at 4 sec. Maximal voluntary contractions (MVC) and isometric trapezoid efforts for 10 sec at 70% MVC were completed before and after each intervention and decomposed electromyography was used to measure motor unit firing rate. The firing rate of later recruited, high-threshold motor units declined following the 2-sec EO but was maintained following 2sec CL (P motor units were maintained for both loading types following 4-sec extension phases. MVC and rate of force development where maintained following both EO and CL and 2 and 4 sec phases. This study demonstrates a slower firing rate of high-threshold motor units following fast eccentric overload while MVC was maintained. This suggests that there was a neuromuscular stimulus without cost to the force-generating capacity of the knee extensors. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  15. Testing electrode suitability for field stimulation of high-threshold biological preparations

    Directory of Open Access Journals (Sweden)

    Hugo Fernando Maia Milan

    Full Text Available IntroductionA problem posed by electrical field (E stimulation of biological preparations with high excitation threshold is that the E intensity required for excitation is likely to induce water electrolysis at the electrode surface, which can alter the extracellular medium and cause deleterious effects on the cells. In this study, different electrode materials and geometries were tested aiming at identifying electrode configurations that could transduce the E intensity required for exciting ventricular cardiomyocytes isolated from neonatal rats (threshold E ~30 V/cm without causing water electrolysis.MethodsWire and plate electrodes made of platinum, stainless steel and nickel/chrome alloy were used. The effect of blasting the electrode surface with sand and NaHCO3 solution was also tested. Electrodes were inserted into a cell perfusion chamber containing the saline solution routinely used for physiological experiments. During E application for 5 min, the electrode surface and its surroundings were examined at high magnification for the presence of microbubbles, which indicates the occurrence of water electrolysis. The greatest E intensity applied that failed to generate microbubbles (En was estimated.ResultsWhile nickel/chrome and stainless steel electrodes resulted in low En values, the best performance was observed for sandblasted platinum wire (2 mm diameter and plate (25 mm x 5 mm; 0.1 mm thickness electrodes, for which Enwas ≥40 V/cm.ConclusionThese electrode configurations are suitable for effective and safe stimulation of isolated neonatal cardiomyocytes.

  16. The Caenorhabditis elegans interneuron ALA is (also) a high-threshold mechanosensor.

    Science.gov (United States)

    Sanders, Jarred; Nagy, Stanislav; Fetterman, Graham; Wright, Charles; Treinin, Millet; Biron, David

    2013-12-17

    To survive dynamic environments, it is essential for all animals to appropriately modulate their behavior in response to various stimulus intensities. For instance, the nematode Caenorhabditis elegans suppresses the rate of egg-laying in response to intense mechanical stimuli, in a manner dependent on the mechanosensory neurons FLP and PVD. We have found that the unilaterally placed single interneuron ALA acted as a high-threshold mechanosensor, and that it was required for this protective behavioral response. ALA was required for the inhibition of egg-laying in response to a strong (picking-like) mechanical stimulus, characteristic of routine handling of the animals. Moreover, ALA did not respond physiologically to less intense touch stimuli, but exhibited distinct physiological responses to anterior and posterior picking-like touch, suggesting that it could distinguish between spatially separated stimuli. These responses required neither neurotransmitter nor neuropeptide release from potential upstream neurons. In contrast, the long, bilaterally symmetric processes of ALA itself were required for producing its physiological responses; when they were severed, responses to stimuli administered between the cut and the cell body were unaffected, while responses to stimuli administered posterior to the cut were abolished. C. elegans neurons are typically classified into three major groups: sensory neurons with specialized sensory dendrites, interneurons, and motoneurons with neuromuscular junctions. Our findings suggest that ALA can autonomously sense intense touch and is thus a dual-function neuron, i.e., an interneuron as well as a novel high-threshold mechanosensor.

  17. High levels of sound pressure: acoustic reflex thresholds and auditory complaints of workers with noise exposure

    Directory of Open Access Journals (Sweden)

    Alexandre Scalli Mathias Duarte

    2015-08-01

    Full Text Available INTRODUCTION: The clinical evaluation of subjects with occupational noise exposure has been difficult due to the discrepancy between auditory complaints and auditory test results. This study aimed to evaluate the contralateral acoustic reflex thresholds of workers exposed to high levels of noise, and to compare these results to the subjects' auditory complaints.METHODS: This clinical retrospective study evaluated 364 workers between 1998 and 2005; their contralateral acoustic reflexes were compared to auditory complaints, age, and noise exposure time by chi-squared, Fisher's, and Spearman's tests.RESULTS: The workers' age ranged from 18 to 50 years (mean = 39.6, and noise exposure time from one to 38 years (mean = 17.3. We found that 15.1% (55 of the workers had bilateral hearing loss, 38.5% (140 had bilateral tinnitus, 52.8% (192 had abnormal sensitivity to loud sounds, and 47.2% (172 had speech recognition impairment. The variables hearing loss, speech recognition impairment, tinnitus, age group, and noise exposure time did not show relationship with acoustic reflex thresholds; however, all complaints demonstrated a statistically significant relationship with Metz recruitment at 3000 and 4000 Hz bilaterally.CONCLUSION: There was no significance relationship between auditory complaints and acoustic reflexes.

  18. Development of martensitic steels for high neutron damage applications

    International Nuclear Information System (INIS)

    Gelles, D.S.

    1998-01-01

    Martensitic stainless steels have been developed for both in-core applications in advanced liquid metal fast breeder reactors (LMFBR) and for first wall and structural materials applications for commercial fusion reactors. It can now be shown that these steels can be expected to maintain properties to levels as high as 175 or 200 dpa, respectively. The 12Cr-1Mo-0.5W-0.2C alloy HT-9 has been extensively tested for LMFBR applications and shown to resist radiation damage, providing a creep and swelling resistant alternative to austenitic steels. Degradation of fracture toughness and Charpy impact properties have been observed, but properties are sufficient to provide reliable service. In comparison, alloys with lower chromium contents are found to decarburize in contact with liquid sodium and are therefore not recommended. Tungsten stabilized martensitic stainless steels have appropriate properties for fusion applications. Radioactivity levels are being less than 500 years after service, radiation damage resistance is excellent, including impact properties, and swelling is modest. This report describes the history of the development effort. (author)

  19. Development of martensitic steels for high neutron damage applications

    Science.gov (United States)

    Gelles, D. S.

    1996-12-01

    Martensitic stainless steels have been developed for both in-core applications in advanced liquid metal fast breeder reactors (LMFBR) and for first wall and structural materials applications for commercial fusion reactors. It can now be shown that these steels can be expected to maintain properties to levels as high as 175 or 200 dpa, respectively. The 12Cr1Mo0.5W0.2C alloy HT-9 has been extensively tested for LMFBR applications and shown to resist radiation damage, providing a creep and swelling resistant alternative to austenitic steels. Degradation of fracture toughness and Charpy impact properties have been observed, but properties are sufficient to provide reliable service. In comparison, alloys with lower chromium contents are found to decarburize in contact with liquid sodium and are therefore not recommended. Tungsten stabilized martensitic stainless steels have appropriate properties for fusion applications. Radioactivity levels are benign less than 500 years after service, radiation damage resistance is excellent, including impact properties, and swelling is modest. This report describes the history of the development effort.

  20. Damage of plasmid DNA by high energy ions

    International Nuclear Information System (INIS)

    Michaelidesova, A.; Pachnerova Brabcova, K.; Davidkova, M.

    2018-01-01

    The aim of the study was to determine the degree of direct DNA damage by high-energy ions, which are one of the components of cosmic rays, and therefore the knowledge of the biological effects of these ions is key to long-term space missions with human crew. The pBR322 plasmid containing 4361 base pairs was used in this study. The aqueous solution of plasmid pBR322 was transferred on ice to Japan to the Heavy Ion Medical Accelerator in Chiba, the Research Center for Charged Particle Therapy. Just before the experiment, the droplets of solution of known concentration were applied to the slides and the water was allowed to evaporate to produce dry DNA samples. Half of the slides were irradiated with 290 MeV/u of carbon ions and a dose rate of 20 Gy/min. The other half of the slides were irradiated with helium nuclei of 150 MeV/hr and a dose rate of 12.6 Gy/min. Both sets of slides were irradiated with doses of 0-1,400 Gy with a 200 Gy step. After irradiation, the samples were re-dissolved in distilled water, frozen and transported on ice to the Czech Republic for processing. Samples were analyzed by agarose gel electrophoresis. The plasmid was evaluated separately to determine the degree of radiation induced lesions and further to incubation with enzymes recognizing basal damage. (authors)

  1. Laser-induced damage thresholds of bulk and coating optical materials at 1030  nm, 500  fs.

    Science.gov (United States)

    Gallais, Laurent; Commandré, Mireille

    2014-02-01

    We report on extensive femtosecond laser damage threshold measurements of optical materials in both bulk and thin-film form. This study, which is based on published and new data, involved simple oxide and fluoride films, composite films made from a mixture of two dielectric materials, metallic films, and the surfaces of various bulk materials: oxides, fluorides, semiconductors, and ionic crystals. The samples were tested in comparable conditions at 1030 nm, 375 to 600 fs, under single-pulse irradiation. A large number of different samples prepared by different deposition techniques have been tested, involving classical materials used in the fabrication of optical thin film components (Ag, AlF3, Al2O3, HfO2, MgF2, Nb2O5, Pt, Sc2O3, SiO2, Ta2O5, Y2O3, and ZrO2) and their combination with codeposition processes. Their behaviors are compared with the surfaces of bulk materials (Al2O3, BaF2, CaF2, Ge, KBr, LiF, MgF2, NaCl, Quartz, Si, ZnS, ZnSe, and different silica glasses). Tabulated values of results are presented and discussed.

  2. Hearing thresholds at high frequency in patients with cystic fibrosis: a systematic review

    Directory of Open Access Journals (Sweden)

    Debora T.M. Caumo

    Full Text Available Abstract Introduction: High-frequency audiometry may contribute to the early detection of hearing loss caused by ototoxic medications. Many ototoxic drugs are widely used in the treatment of patients with cystic fibrosis. Early detection of hearing loss should allow known harmful drugs to be identified before the damage affects speech frequencies. The damage caused by ototoxicity is irreversible, resulting in important social and psychological consequences. In children, hearing loss, even when restricted to high frequencies, can affect the development of language. Objective: To investigate the efficacy and effectiveness of hearing monitoring through high-frequency audiometry in pediatric patients with cystic fibrosis. Methods: Electronic databases PubMed, MedLine, Web of Science and LILACS were searched, from January to November 2015. The selected studies included those in which high-frequency audiometry was performed in patients with cystic fibrosis, undergoing treatment with ototoxic drugs and published in Portuguese, English and Spanish. The GRADE system was chosen for the evaluation of the methodological quality of the articles. Results: During the search process carried out from January 2015 to November 2015, 512 publications were identified, of which 250 were found in PubMed, 118 in MedLine, 142 in Web of Science and 2 in LILACS. Of these, nine articles were selected. Conclusion: The incidence of hearing loss was identified at high frequencies in cystic fibrosis patients without hearing complaints. It is assumed that high-frequency audiometry can be an early diagnostic method to be recommended for hearing investigation of patients at risk of ototoxicity.

  3. A novel theory of radiation damage at high doses

    International Nuclear Information System (INIS)

    Seeger, A.; Stuttgart Univ.

    1989-01-01

    Deviations of radiation damage (in the case of metals usually monitored by the residual electrical resistivity) from proportionality with the irradiation dose have so far been analysed almost exclusively in terms of extensions of models originally developed for small doses. The present theory considers the opposite limit i.e. the quasi-saturated state. It is argued that at high doses the Lueck-Sizmann effect may result in a self-organization of clusters of vacancies and self-interstitials, forming a heterogeneous froth. Possible structures of this froth and its effect on the electrical resistivity of metals are discussed. The model is shown to account for the dependence of the ''saturation resistivity'' on the nature of the irradiation as well as for several other hitherto poorly explained observations. Among them are the electrical-resistivity variation induced by high-dose irradiation with heavy ions, the amorphization of certain alloys by high-dose electron irradiation, and the occurrence of ordered arrays of stacking-fault tetrahedra after in-situ irradiations in high-voltage electron microscopes. (author)

  4. Electron-beam damaged high-temperature superconductor Josephson junctions

    International Nuclear Information System (INIS)

    Pauza, A.J.; Booij, W.E.; Herrmann, K.; Moore, D.F.; Blamire, M.G.; Rudman, D.A.; Vale, L.R.

    1997-01-01

    Results are presented on the fabrication and characterization of high critical temperature Josephson junctions in thin films of YBa 2 Cu 3 O 7-δ produced by the process of focused electron-beam irradiation using 350 keV electrons. The junctions so produced have uniform spatial current densities, can be described in terms of the resistive shunted junction model, and their current densities can be tailored for a given operating temperature. The physical properties of the damaged barrier can be described as a superconducting material of either reduced or zero critical temperature (T c ), which has a length of ∼15nm. The T c reduction is caused primarily by oxygen Frenkel defects in the Cu - O planes. The large beam currents used in the fabrication of the junctions mean that the extent of the barrier is limited by the incident electron-beam diameter, rather than by scattering within the film. The properties of the barrier can be calculated using a superconductor/normal/superconductor (SNS) junction model with no boundary resistance. From the SNS model, we can predict the scaling of the critical current resistance (I c R n ) product and gain insight into the factors controlling the junction properties, T c , and reproducibility. From the measured I c R n scaling data, we can predict the I c R n product of a junction at a given operating temperature with a given current density. I c R n products of ∼2mV can be achieved at 4.2 K. The reproducibility of several junctions in a number of samples can be characterized by the ratio of the maximum-to-minimum critical currents on the same substrate of less than 1.4. Stability over several months has been demonstrated at room and refrigerator temperatures (297 and 281 K) for junctions that have been initially over damaged and then annealed at temperatures ∼380K. (Abstract Truncated)

  5. Correlation of damage threshold and surface geometry of nodular defects in HR coatings as determined by in-situ atomic force microscopy

    International Nuclear Information System (INIS)

    Staggs, M.C.; Kozlowski, M.R.; Siekhaus, W.J.; Balooch, M.

    1992-10-01

    Atomic force microscopy (AFM) was used to determine in-situ the correlation between the surface dimensions of defects in dielectric multilayer optical coatings and their susceptibility to damage by pulsed laser illumination. The primary surface defects studied were μm-scale domes associated with the classic nodule defect. The optical film studied was a highly reflective dielectric multilayer consisting of pairs of alternating HfO 2 and SiO 2 layers of quarter wave thickness at 1.06 μm. Nodule defect height and width dimensions were measured prior to laser illumination on two different samples. Correlation between these dimensions supported a simple model for the defect geometry. Defects with high nodule heights (> 0.6 μm) were found to be most susceptible to laser damage over a range of fluences between 0-35 J/cm 2 (1.06 μm, 10 ns, and 1/e 2 diam. of 1.3 mm). Crater defects, formed by nodules ejected from the coating prior to illumination, were also studied. None of the crater defects damaged when illuminated over the same range of fluences that the nodule defects were subjected to

  6. Research of the mode instability threshold in high power double cladding Yb-doped fiber amplifiers

    International Nuclear Information System (INIS)

    Wang, Yanshan; Ma, Yi; Sun, Yinhong; Peng, Wanjing; Tang, Chun; Liu, Qinyong; Ke, Weiwei; Wang, Xiaojun

    2017-01-01

    We experimentally investigate the behavior of the mode instability (MI) threshold in the double cladding Yb-doped fiber amplifier when the amplifier is pumped by broad linewidth laser diodes and narrow linewidth laser diodes respectively. It is found that the MI threshold increases by 26% when the amplifier is pumped by the broad linewidth laser diodes. Experiment results show that the MI threshold is affected by the local heat load rather than the average or the total heat load. The calculation shows that the local heat deposit actually plays the key role to stimulate the MI behaviour. At the MI threshold position in the fiber, the local heat deposit also changes dramatically. The effect of the thermal conductivity on the MI threshold is also studied. Our investigation shows that the MI threshold increases from 1269 W to 1950 W when the thermal conductivity of the fiber amplifier is increased from 0.3 W/(m . K) to 5 W/(m . K). Through optimizing the pump linewidth and the cooling efficiency of the gain fiber, the MI threshold is doubled in our experiment. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Research of the mode instability threshold in high power double cladding Yb-doped fiber amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yanshan; Ma, Yi; Sun, Yinhong; Peng, Wanjing; Tang, Chun [Institute of Applied Electronics, CAEP, Mianyang, Sichuan (China); The Key Laboratory of Science and Technology on High Energy Laser, CAEP, Mianyang, Sichuan (China); Liu, Qinyong; Ke, Weiwei [Institute of Applied Physics and Computational Mathematics, CAEP, Beijing (China); Wang, Xiaojun [Institute of Applied Physics and Computational Mathematics, CAEP, Beijing (China); Technical Institute of Physics and Chemistry, CAS, Beijing (China)

    2017-08-15

    We experimentally investigate the behavior of the mode instability (MI) threshold in the double cladding Yb-doped fiber amplifier when the amplifier is pumped by broad linewidth laser diodes and narrow linewidth laser diodes respectively. It is found that the MI threshold increases by 26% when the amplifier is pumped by the broad linewidth laser diodes. Experiment results show that the MI threshold is affected by the local heat load rather than the average or the total heat load. The calculation shows that the local heat deposit actually plays the key role to stimulate the MI behaviour. At the MI threshold position in the fiber, the local heat deposit also changes dramatically. The effect of the thermal conductivity on the MI threshold is also studied. Our investigation shows that the MI threshold increases from 1269 W to 1950 W when the thermal conductivity of the fiber amplifier is increased from 0.3 W/(m . K) to 5 W/(m . K). Through optimizing the pump linewidth and the cooling efficiency of the gain fiber, the MI threshold is doubled in our experiment. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Threshold burnup for recrystallization and model for rim porosity in the high burnup UO2 fuel

    International Nuclear Information System (INIS)

    Lee, Byung Ho; Koo, Yang Hyun; Sohn, Dong Seong

    1998-01-01

    Applicability of the threshold burnup for rim formation was investigated as a function of temperature by Rest's model. The threshold burnup was the lowest in the intermediate temperature region, while on the other temperature regions the threshold burnup is higher. The rim porosity was predicted by the van der Waals equation based of the rim pore radius of 0.75μm and the overpressurization model on rim pores. The calculated centerline temperature is in good agreement with the measured temperature. However, more efforts seem to be necessary for the mechanistic model of the rim effect including rim growth with the fuel burnup

  9. Relationship between permeability and damage in concretes at high temperature

    International Nuclear Information System (INIS)

    Dal Pont, St.

    2004-09-01

    Due to its technical and economical advantages, concrete is nowadays the most used building material in civil engineering. Even if its use is known since nearly two centuries, its behavior has not been yet completely explained due to the complexity of its porous microstructure. This fact is quite evident under particular conditions such as, by instance, during an elevation of temperature. This condition can mainly occur in two cases: due to a casualty (e.g. a fire) or in normal use conditions (e.g. storage of nuclear rejects). This work aims at contributing to the study of the phenomena that can be observed in concrete exposed to high temperatures and, in particular, focuses on the study of the evolution of intrinsic permeability. The characterisation of permeability (which is hardly measurable in hot conditions) is necessary for describing and modelling transport phenomena which occur in porous media. An experimental study has been made in collaboration with the CEA. A real-scale hollow cylinder has been instrumented with gauges for studying the evolution of temperature and gas pressure fields inside concrete. Later, the cylinder has been then numerically modelled by means of a thermo-hydro-chemical (THC) and a thermo-hydro-chemo-mechanical (THCM) model. The THC model, implemented by means of the finite volume method, has allowed a first, qualitative study of the behaviour of concrete submitted to high temperature. This model, which, for sake of simplicity, has neglected all mechanical effects, has allowed the description of the main phenomena occurring inside concrete: mass transport, phase changes, microstructure evolution. Later, the modelling has been completed by means of the THCM model using the Hitecosp code, implemented by means of the finite element method at the university of Padua. This code allows a very complete description of the phenomena occurring inside concrete and takes into consideration the mechanical behavior of concrete by means of an

  10. Speech-in-Noise Tests and Supra-threshold Auditory Evoked Potentials as Metrics for Noise Damage and Clinical Trial Outcome Measures.

    Science.gov (United States)

    Le Prell, Colleen G; Brungart, Douglas S

    2016-09-01

    In humans, the accepted clinical standards for detecting hearing loss are the behavioral audiogram, based on the absolute detection threshold of pure-tones, and the threshold auditory brainstem response (ABR). The audiogram and the threshold ABR are reliable and sensitive measures of hearing thresholds in human listeners. However, recent results from noise-exposed animals demonstrate that noise exposure can cause substantial neurodegeneration in the peripheral auditory system without degrading pure-tone audiometric thresholds. It has been suggested that clinical measures of auditory performance conducted with stimuli presented above the detection threshold may be more sensitive than the behavioral audiogram in detecting early-stage noise-induced hearing loss in listeners with audiometric thresholds within normal limits. Supra-threshold speech-in-noise testing and supra-threshold ABR responses are reviewed here, given that they may be useful supplements to the behavioral audiogram for assessment of possible neurodegeneration in noise-exposed listeners. Supra-threshold tests may be useful for assessing the effects of noise on the human inner ear, and the effectiveness of interventions designed to prevent noise trauma. The current state of the science does not necessarily allow us to define a single set of best practice protocols. Nonetheless, we encourage investigators to incorporate these metrics into test batteries when feasible, with an effort to standardize procedures to the greatest extent possible as new reports emerge.

  11. Effects of high repetition rate and beam size on hard tissue damage due to subpicosecond laser pulses

    International Nuclear Information System (INIS)

    Kim, Beop-Min; Feit, Michael D.; Rubenchik, Alexander M.; Joslin, Elizabeth J.; Eichler, Juergen; Stoller, Patrick C.; Da Silva, Luiz B.

    2000-01-01

    We report the effects of the repetition rate and the beam size on the threshold for ultrashort laser pulse induced damage in dentin. The observed results are explained as cumulative thermal effects. Our model is consistent with the experimental results and explains the dependence of the threshold on repetition rate, beam size, and exposure time. (c) 2000 American Institute of Physics

  12. Growth, spectral, thermal, laser damage threshold, microhardness, dielectric, linear and nonlinear optical properties of an organic single crystal: L-phenylalanine DL-mandelic acid

    Energy Technology Data Exchange (ETDEWEB)

    Jayaprakash, P. [PG & Research Department of Physics, Arignar Anna Govt. Arts College, Cheyyar 604 407, Tamil Nadu (India); Peer Mohamed, M. [PG & Research Department of Physics, Arignar Anna Govt. Arts College, Cheyyar 604 407, Tamil Nadu (India); Department of Physics, C. Abdul Hakeem College, Melvisharam 632 509, Tamil Nadu (India); Krishnan, P. [Department of Physics, St. Joseph’s College of Engineering, Chennai 600 119, Tamil Nadu (India); Nageshwari, M.; Mani, G. [PG & Research Department of Physics, Arignar Anna Govt. Arts College, Cheyyar 604 407, Tamil Nadu (India); Lydia Caroline, M., E-mail: lydiacaroline2006@yahoo.co.in [PG & Research Department of Physics, Arignar Anna Govt. Arts College, Cheyyar 604 407, Tamil Nadu (India)

    2016-12-15

    Single crystals of L-phenylalanine dl-mandelic acid [C{sub 9}H{sub 11}NO{sub 2}. C{sub 8}H{sub 8}O{sub 3}], have been grown by the slow evaporation technique at room temperature using aqueous solution. The single crystal XRD study confirms monoclinic system for the grown crystal. The functional groups present in the grown crystal have been identified by FTIR and FT-Raman analyses. The optical absorption studies show that the crystal is transparent in the visible region with a lower cut-off wavelength of 257 nm and the optical band gap energy E{sub g} is determined to be 4.62 eV. The Kurtz powder second harmonic generation was confirmed using Nd:YAG laser with fundamental wavelength of 1064 nm. Further, the thermal studies confirmed no weight loss up to 150°C for the as-grown crystal. The photoluminescence spectrum exhibited three peaks (414 nm, 519 nm, 568 nm) due to the donation of protons from carboxylic acid to amino group. Laser damage threshold value was found to be 4.98 GW/cm{sup 2}. The Vickers microhardness test was carried out on the grown crystals and there by Vickers hardness number (H{sub v}), work hardening coefficient (n), yield strength (σ{sub y}), stiffness constant C{sub 11} were evaluated. The dielectric behavior of the crystal has been determined in the frequency range 50 Hz–5 MHz at various temperatures.

  13. Effect of low dose pre-irradiation on DNA damage and genetic material damage caused by high dosage of cyclophosphamide

    International Nuclear Information System (INIS)

    Yu Hongsheng; Zhu Jingjuan; Shang Qingjun; Wang Zhuomin; Cui Fuxian

    2007-01-01

    Objective: To study the effect of low dose γ-rays pre-irradiation on the induction of DNA damage and genetic material damage in peripheral lymphocytes by high dosage of cyclophosphamide (CTX). Methods: Male Kunming strain mice were randomly divided into five groups: control group, sham-irradiated group, low dose irradiated group(LDR group), cyclophosphamide chemotherapy group(CTX group) and low dose irradiation combined with chemotherapy group(LDR + CTX group). After being feeded for one week, all the mice were implanted subcutaneously with S180 cells in the left groin (control group excluded). On days 8 and 11, groups of LDR and LDR + CTX were administered with 75 mGy of whole-body irradiation, 30 h later groups CTX and LDR + CTX were injected intraperitoneally 3.0 mg cyclophosphamide. All the mice were sacrificed on day 13. DNA damage of the peripheral lymphocytes was analyzed using single cell gel electrophoresis (SCGE). Genetic material damage was analyzed using micronucleus frequency(MNF) of polychromatoerythrocytes(PCE) in bone marrow. Results: (1) Compared with control group and sham-irradiated group, the DNA damage of peripheral lymphocytes in CTX group were increased significantly (P 0.05). Conclusions: (1) High- dosage of CTX chemotherapy can cause DNA damage in peripheral lymphocytes. 75 mGy y-irradiation before chemotherapy may have certain protective effect on DNA damage. (2) CTX has potent mutagenic effect, giving remarkable rise to MNF of PCE. 75 mGy γ-ray pre-irradiation has not obvious protection against genetic toxicity of high-dose CTX chemotherapy. (authors)

  14. Radiation damage in diatomic materials at high doses

    International Nuclear Information System (INIS)

    Hobbs, L.W.; Hughes, A.E.

    1975-10-01

    Radiation effects in diatomic materials can differ structurally from those in metals because of the need to take into account different displacement rates on the two sublattices and the inevitable stoichiometric implications; in most diatomic insulators the anion species has the greater displacement cross section. Anion point defect stabilisation in heavily-irradiated (0.1 to 10 dpa) diatomic insulators has been studied using radiolysis of alkali and alkaline earth halides. A temperatures > 0.3 Tsub(m), all anion defects are mobile and can aggregate. Aggregation of anion interstitials results in creation of perfect dislocation loops without the need for primary cation displacements; simultaneous formation of substitutional anion molecular centres provides the necessary cation interstitials. Aggregation of anion vacancies leads to formation of metallic inclusions of the cation species, in some cases in an ordered array, which is the analogue, on a single sublattice, to the void lattice in metals. Availability of sinks for both anion interstitials and anion vacancies yields defect growth kinetics similar to those observed during formation of voids in irradiated metals, and a very high level of damage (approximately 10%) can be sustained in the lattice. The width of the temperature region concerned is much narrower, however, due to the possibility of recombination of aggregated or re-emitted anion vacancies with mobile or dispersed anion molecular defects; the latter can also aggregate to form fluid anion molecular inclusions and so complete the decomposition of the solid into separate phases of its constituent elements. (author)

  15. Application of high quality antiproton beam to study charmonium and exotics above DD-bar threshold

    International Nuclear Information System (INIS)

    Barabanov, M.Y.; Vodopyanov, A.S.

    2014-01-01

    The spectroscopy of charmonium and exotic states with hidden charm is discussed. It is a good testing tool for theories of strong interactions including QCD in both perturbative and non-perturbative regime, lattice QCD, potential models and phenomenological models. An elaborated analysis of charmonium and charmed hybrid spectrum is given, and attempts to interpret recent experimental data in the above DD-bar threshold region are considered. Experiments using antiproton beam take advantage of the intensive production of particle-antiparticle pairs in antiproton-proton annihilations. Experimental data from different collaboration are analyzed with special attention given to new states with hidden charm that were discovered recently. Some of these states can be interpreted as higher-laying S, P and D wave charmonium states. But much more data on different decay modes are needed before firmer conclusions can be made. These data can be derived directly from the experiments using high quality antiproton beam with momentum up to 15 GeV/c. (authors)

  16. An analysis of the development of high temperature cavitation damage

    International Nuclear Information System (INIS)

    Tinivella, R.

    1986-07-01

    The objective of the paper is the investigation of creep cavitation damage in copper. Radii distribution curves obtained from small angle neutron scattering experiments conducted on crept specimens were analyzed and compared with calculated curves. The latter were derived from cavity nucleation- and growth models. From the comparison the appropriateness of particular models can be infered. Valuable information is obtained about the nucleation behaviour. In crept and fatigued specimens, already after very short loading times, cavities appear with remarkable different radii, an observation which is contradictory to the concept of a critical radius. The analysis of the nucleation behavior emphasizes the influence of the stress dependence of the nucleation rate upon the stress dependence of damage and hence upon the stress dependence of the lifetime. In most of damage theories the latter is attributed to the stress dependency of cavity growth. A strong argument is derived in this paper in favour of the idea that both the mechanisms - growth and nucleation - contribute to the stress dependence of the lifetime. The damage development in Cu (as well as in alpha-Fe, AISI 304 and AISI 347) is compared with the prediction of the phenomenological A-model which assumes that the damage rate is proportional to the damage itself. The experiments show, that the damage increases in time slower (Cu, alpha-Fe, AISI 304) or faster (AISI 347) than predicted by the model. In copper the damage rate turns out to be constant independent of time. Accordingly the A-model is modified and the respective consequences are briefly discussed. (orig./GSCH) [de

  17. Characterisation of radiation damage in perovskite using high angular resolution electron channeling x-ray spectroscopy (HARECXS)

    International Nuclear Information System (INIS)

    Smith, K.L.; Zaluzec, N.J.

    2002-01-01

    Full text: Predicting and/or modelling the occurrence of radiation damage induced defects and their effects on physical properties (eg. amorphisation induced swelling, electrical conductivity., optical response etc.) in ceramic phases requires knowledge of the displacement energies, E d , of cations and anions in those phases. In this study, High Angular Resolution Electron Channelling X-ray Spectroscopy (HARECXS) spectra were collected from perovskite (CaTiO 3 ) samples that had been exposed to high-energy electrons or high-energy heavy ions. Calculations based on experimental data were then used to indicate the E d of the cations in perovskite. The HARECXS measurements were conducted on a Philips EM 420T AEM (LaB6 source, operated at 120 kV) fitted with an EDAX ultra thin window Si(Li) detector. The specimen was first manually oriented to an appropriate zone axis. Then control of the relative orientation of the incident probe was accomplished via direct computer control of the beam tilt coils, Typical acquisition times for a complete two-dimensional scan were 18-24 hours, while one dimensional scans ranged from 1-5 hours. Our experiments established that: a) HARECXS can detect radiation damage in perovskite caused by either high energy heavy ions or high energy electrons, b) the HARECXS signature of perovskite shows a systematic change with ion dose, c) HARECXS detects damage in perovskite that has been irradiated with 900kV electrons and does not detect damage in perovskite that has been irradiated with 620kV electrons, indicating the existance of an electron irradiation damage threshold. Calculations based on the latter results indicate that the displacement energy, E d of calcium and titanium in perovskite lie between 50 and 85eV. Copyright (2002) Australian Society for Electron Microscopy Inc

  18. An assessment of threshold shifts in nonprofessional pop/rock musicians using conventional and extended high-frequency audiometry.

    Science.gov (United States)

    Schmuziger, Nicolas; Patscheke, Jochen; Probst, Rudolf

    2007-09-01

    The clinical value of extended high-frequency audiometry for the detection of noise-induced hearing loss has not been established conclusively. The purpose of this study was to assess the relative temporary threshold shift (TTS) in two frequency regions (conventional versus extended high frequency). In this exploratory study, pure-tone thresholds from 0.5 to 14 kHz were measured in both ears of 16 nonprofessional pop/rock musicians (mean age, 35 yr; range, 27 to 49 yr), before and after a 90-minute rehearsal session. All had experienced repeated exposures to intense sound levels during at least 5 yr of their musical careers. After the rehearsal, median threshold levels were found to be significantly poorer for frequencies from 0.5 to 8 kHz (Wilcoxon signed rank test, p high-frequency range from 9 to 14 kHz. Decreases in the median threshold values measured before the rehearsal were present across the conventional frequency range, most notably at 6 kHz, but were not observed in the extended high-frequency range. On the basis of these results, extended high-frequency audiometry does not seem advantageous as a means of the early detection of noise-induced hearing loss.

  19. Ductile failure analysis of high strength steel in hot forming based on micromechanical damage model

    OpenAIRE

    Ying Liang; Liu Wenquan; Wang Dantong; Hu Ping

    2016-01-01

    The damage evolution of high strength steel at elevated temperature is investigated by using the Gurson-Tvergaard-Needleman (GTN) model. A hybrid method integrated thermal tensile test and numerical technique is employed to identify the damage parameters. The analysis results show that the damage parameters are different at different temperature as the variation of tested material microstructure. Furthermore, the calibrated damage parameters are implemented to simulate a bugling forming at el...

  20. Relationship Between Unusual High-Temperature Fatigue Crack Growth Threshold Behavior in Superalloys and Sudden Failure Mode Transitions

    Science.gov (United States)

    Telesman, J.; Smith, T. M.; Gabb, T. P.; Ring, A. J.

    2017-01-01

    An investigation of high temperature cyclic fatigue crack growth (FCG) threshold behavior of two advanced nickel disk alloys was conducted. The focus of the study was the unusual crossover effect in the near-threshold region of these type of alloys where conditions which produce higher crack growth rates in the Paris regime, produce higher resistance to crack growth in the near threshold regime. It was shown that this crossover effect is associated with a sudden change in the fatigue failure mode from a predominant transgranular mode in the Paris regime to fully intergranular mode in the threshold fatigue crack growth region. This type of a sudden change in the fracture mechanisms has not been previously reported and is surprising considering that intergranular failure is typically associated with faster crack growth rates and not the slow FCG rates of the near-threshold regime. By characterizing this behavior as a function of test temperature, environment and cyclic frequency, it was determined that both the crossover effect and the onset of intergranular failure are caused by environmentally driven mechanisms which have not as yet been fully identified. A plausible explanation for the observed behavior is proposed.

  1. Vibratory perception threshold in young and middle-aged patients at high risk of knee osteoarthritis compared to controls

    DEFF Research Database (Denmark)

    Thorlund, Jonas Bloch; Shakoor, Najia; Ageberg, Eva

    2012-01-01

    Vibratory perception threshold (VPT) is impaired in patients with knee osteoarthritis (OA). It is, however, not known if sensory deficits precede or follow as a consequence of OA. The aim of this study was to investigate VPT in 2 independent groups of patients with high risk of future OA (young a...

  2. A Violation of the Conditional Independence Assumption in the Two-High-Threshold Model of Recognition Memory

    Science.gov (United States)

    Chen, Tina; Starns, Jeffrey J.; Rotello, Caren M.

    2015-01-01

    The 2-high-threshold (2HT) model of recognition memory assumes that test items result in distinct internal states: they are either detected or not, and the probability of responding at a particular confidence level that an item is "old" or "new" depends on the state-response mapping parameters. The mapping parameters are…

  3. Time-over-threshold readout to enhance the high flux capabilities of single-photon-counting detectors

    International Nuclear Information System (INIS)

    Bergamaschi, Anna; Dinapoli, Roberto; Greiffenberg, Dominic; Henrich, Beat; Johnson, Ian; Mozzanica, Aldo; Radicci, Valeria; Schmitt, Bernd; Shi, Xintian; Stoppani, Laura

    2011-01-01

    The MYTHEN photon-counting ASIC operated in time-over-threshold mode shows an innovative approach towards the development of a detector operating with very high photon intensities while maintaining the single-photon sensitivity for synchrotron radiation experiments. The MYTHEN single-photon-counting (SPC) detector has been characterized using the time-over-threshold (ToT) readout method, i.e. measuring the time that the signal produced by the detected X-rays remains above the comparator threshold. In the following it is shown that the ToT readout preserves the sensitivity, dynamic range and capability of background suppression of the SPC mode, while enhancing the count-rate capability, which is the main limitation of state-of-the-art SPC systems

  4. Time-over-threshold readout to enhance the high flux capabilities of single-photon-counting detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bergamaschi, Anna, E-mail: anna.bergamaschi@psi.ch; Dinapoli, Roberto; Greiffenberg, Dominic; Henrich, Beat; Johnson, Ian; Mozzanica, Aldo; Radicci, Valeria; Schmitt, Bernd; Shi, Xintian; Stoppani, Laura [Paul Scherrer Institut, CH-5232 Villigen (Switzerland)

    2011-11-01

    The MYTHEN photon-counting ASIC operated in time-over-threshold mode shows an innovative approach towards the development of a detector operating with very high photon intensities while maintaining the single-photon sensitivity for synchrotron radiation experiments. The MYTHEN single-photon-counting (SPC) detector has been characterized using the time-over-threshold (ToT) readout method, i.e. measuring the time that the signal produced by the detected X-rays remains above the comparator threshold. In the following it is shown that the ToT readout preserves the sensitivity, dynamic range and capability of background suppression of the SPC mode, while enhancing the count-rate capability, which is the main limitation of state-of-the-art SPC systems.

  5. The aerogel threshold Cherenkov detector for the high momentum spectrometer in Hall C at Jefferson lab

    International Nuclear Information System (INIS)

    Razmik Asaturyan; Rolf Ent; Howard Fenker; David Gaskell; Garth Huber; Mark Jones; David Mack; Hamlet Mkrtchyan; Bert Metzger; Nadia Novikoff; Vardan Tadevosyan; William Vulcan; Stephen Wood

    2004-01-01

    We describe a new aerogel threshold Cherenkov detector installed in the HMS spectrometer in Hall C at Jefferson Lab. The Hall C experimental program in 2003 required an improved particle identification system for better identification of π/K/p, which was achieved by installing an additional threshold Cherenkov counter. Two types of aerogel with n = 1.03 and n = 1.015 allow one to reach ∼10 -3 proton and 10 -2 kaon rejection in the 1-5 GeV/c momentum range with pion detection efficiency better than 99% (97%). The detector response shows no significant position dependence due to a diffuse light collection technique. The diffusion box was equipped with 16 Photonis XP4572 PMT's. The mean number of photoelectrons in saturation was ∼16 and ∼8, respectively. Moderate particle identification is feasible near threshold

  6. Radiation damage in silicon exposed to high-energy protons

    International Nuclear Information System (INIS)

    Davies, Gordon; Hayama, Shusaku; Murin, Leonid; Krause-Rehberg, Reinhard; Bondarenko, Vladimir; Sengupta, Asmita; Davia, Cinzia; Karpenko, Anna

    2006-01-01

    Photoluminescence, infrared absorption, positron annihilation, and deep-level transient spectroscopy (DLTS) have been used to investigate the radiation damage produced by 24 GeV/c protons in crystalline silicon. The irradiation doses and the concentrations of carbon and oxygen in the samples have been chosen to monitor the mobility of the damage products. Single vacancies (and self-interstitials) are introduced at the rate of ∼1 cm -1 , and divacancies at 0.5 cm -1 . Stable di-interstitials are formed when two self-interstitials are displaced in one damage event, and they are mobile at room temperature. In the initial stages of annealing the evolution of the point defects can be understood mainly in terms of trapping at the impurities. However, the positron signal shows that about two orders of magnitude more vacancies are produced by the protons than are detected in the point defects. Damage clusters exist, and are largely removed by annealing at 700 to 800 K, when there is an associated loss of broad band emission between 850 and 1000 meV. The well-known W center is generated by restructuring within clusters, with a range of activation energies of about 1.3 to 1.6 eV, reflecting the disordered nature of the clusters. Comparison of the formation of the X centers in oxygenated and oxygen-lean samples suggests that the J defect may be interstitial related rather than vacancy related. To a large extent, the damage and annealing behavior may be factorized into point defects (monitored by sharp-line optical spectra and DLTS) and cluster defects (monitored by positron annihilation and broadband luminescence). Taking this view to the limit, the generation rates for the point defects are as predicted by simply taking the damage generated by the Coulomb interaction of the protons and Si nuclei

  7. Crystal growth, structural, optical, thermal, mechanical, laser damage threshold and electrical properties of triphenylphosphine oxide 4-nitrophenol (TP4N) single crystals for nonlinear optical applications

    Science.gov (United States)

    Karuppasamy, P.; Senthil Pandian, Muthu; Ramasamy, P.; Verma, Sunil

    2018-05-01

    The optically good quality single crystals of triphenylphosphine oxide 4-nitrophenol (TP4N) with maximum dimension of 15 × 10 × 5 mm3 were grown by slow evaporation solution technique (SEST) at room temperature. The cell dimensions of the grown TP4N crystal were confirmed by single crystal X-ray diffraction (SXRD) and the crystalline purity was confirmed and planes were indexed by powder X-ray diffraction (PXRD) analysis. Functional groups of TP4N crystal were confirmed by Fourier transform infrared (FTIR) spectral analysis. The optical transmittance of the grown crystal was determined by the UV-Vis NIR spectral analysis and it has good optical transparency in the entire visible region. The band tail (Urbach) energy of the grown crystal was analyzed and it appears to be minimum, which indicates that the TP4N has good crystallinity. The position of valence band (Ev) and conduction band (Ec) of the TP4N have been determined from the electron affinity energy (EA) and the ionization energy (EI) of its elements and using the optical band gap. The thermal behaviour of the grown crystal was investigated by thermogravimetric and differential thermal analysis (TG-DTA). Vickers microhardness analysis was carried out to identify the mechanical stability of the grown crystal and their indentation size effect (ISE) was explained by the Meyer's law (ML), Hays-Kendall's (HK) approach, proportional specimen resistance (PSR) model, modified PSR model (MPSR), elastic/plastic deformation (EPD) model and indentation induced cracking (IIC) model. Chemical etching study was carried out to find the etch pit density (EPD) of the grown crystal. Laser damage threshold (LDT) value was measured by using Nd:YAG laser (1064 nm). The dielectric permittivity (ε՛) and dielectric loss (tan δ) as a function of frequency was measured. The electronic polarizability (α) of the TP4N crystal was calculated. It is well matched to the value which was calculated from Clausius-Mossotti relation

  8. [FRAX® thresholds to identify people with high or low risk of osteoporotic fracture in Spanish female population].

    Science.gov (United States)

    Azagra, Rafael; Roca, Genís; Martín-Sánchez, Juan Carlos; Casado, Enrique; Encabo, Gloria; Zwart, Marta; Aguyé, Amada; Díez-Pérez, Adolf

    2015-01-06

    To detect FRAX(®) threshold levels that identify groups of the population that are at high/low risk of osteoporotic fracture in the Spanish female population using a cost-effective assessment. This is a cohort study. Eight hundred and sixteen women 40-90 years old selected from the FRIDEX cohort with densitometry and risk factors for fracture at baseline who received no treatment for osteoporosis during the 10 year follow-up period and were stratified into 3 groups/levels of fracture risk (low20%) according to the real fracture incidence. The thresholds of FRAX(®) baseline for major osteoporotic fracture were: low riskX-ray absorptiometry (DXA-scan) for FRAX(®)≥ 5 (Intermediate and high risk) to reclassify by FRAX(®) with DXA-scan at high/low risk. These thresholds select 17.5% of women for DXA-scan and 10% for treatment. With these thresholds of FRAX(®), compared with the strategy of opportunistic case finding isolated risk factors, would improve the predictive parameters and reduce 82.5% the DXA-scan, 35.4% osteoporosis prescriptions and 28.7% cost to detect the same number of women who suffer fractures. The use of FRAX ® thresholds identified as high/low risk of osteoporotic fracture in this calibration (FRIDEX model) improve predictive parameters in Spanish women and in a more cost-effective than the traditional model based on the T-score ≤ -2.5 of DXA scan. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.

  9. Polarized training has greater impact on key endurance variables than threshold, high intensity or high volume training

    Directory of Open Access Journals (Sweden)

    Thomas eStöggl

    2014-02-01

    Full Text Available Endurance athletes integrate four conditioning concepts in their training programs: high-volume training (HVT, ‘threshold-training’ (THR, high-intensity interval training (HIIT and a combination of these aforementioned concepts known as polarized training (POL. The purpose of this study was to explore which of these four training concepts provides the greatest response on key components of endurance performance in well-trained endurance athletes. Methods: Forty eight runners, cyclists, triathletes and cross-country skiers (peak oxygen uptake: (VO2peak: 62.6±7.1 mL∙min-1∙kg-1 were randomly assigned to one of four groups performing over nine weeks. An incremental test, work economy and a VO2peak tests were performed. Training intensity was heart rate controlled. Results: POL demonstrated the greatest increase in VO2peak (+6.8 ml∙min∙kg-1 or 11.7%, P0.05. Conclusion: POL resulted in the greatest improvements in most key variables of endurance performance in well-trained endurance athletes. THR or HVT did not lead to further improvements in performance related variables.

  10. Ductile failure analysis of high strength steel in hot forming based on micromechanical damage model

    Directory of Open Access Journals (Sweden)

    Ying Liang

    2016-01-01

    Full Text Available The damage evolution of high strength steel at elevated temperature is investigated by using the Gurson-Tvergaard-Needleman (GTN model. A hybrid method integrated thermal tensile test and numerical technique is employed to identify the damage parameters. The analysis results show that the damage parameters are different at different temperature as the variation of tested material microstructure. Furthermore, the calibrated damage parameters are implemented to simulate a bugling forming at elevated temperature. The experimental results show the availability of GTN damage model in analyzing sheet formability in hot forming.

  11. An application of impediography to the high sensitivity and high resolution identification of structural damage

    International Nuclear Information System (INIS)

    Zhao, L; Yang, J; Semperlotti, F; Wang, K W

    2015-01-01

    In this study we explore the use of impediographic techniques to perform damage detection in plate-like metal structures. Impediography relies on the piezo-resistive coupling of the host structure to reconstruct high sensitivity and high resolution maps of the internal electrical conductivity. By exploiting localized strain perturbations generated via focused acoustic waves, the piezo-resistive coupling allows extracting a set of linearly independent boundary voltage data that drastically reduces the ill-conditioning of the inverse problem, therefore increasing the performance. The localized perturbation is achieved by leveraging the concept of frequency selective structure (FSS), that is a dynamically tailored structural element enabling the required acoustic focusing via vibration localization. Based on the FSS approach, the impediographic technique is numerically tested to investigate the performance of the combined approach for structural damage detection. The effects of practical implementation issues, such as limited perturbations and limited boundary data, are also explored. (paper)

  12. Threshold voltage control in TmSiO/HfO2 high-k/metal gate MOSFETs

    Science.gov (United States)

    Dentoni Litta, E.; Hellström, P.-E.; Östling, M.

    2015-06-01

    High-k interfacial layers have been proposed as a way to extend the scalability of Hf-based high-k/metal gate CMOS technology, which is currently limited by strong degradations in threshold voltage control, channel mobility and device reliability when the chemical oxide (SiOx) interfacial layer is scaled below 0.4 nm. We have previously demonstrated that thulium silicate (TmSiO) is a promising candidate as a high-k interfacial layer, providing competitive advantages in terms of EOT scalability and channel mobility. In this work, the effect of the TmSiO interfacial layer on threshold voltage control is evaluated, showing that the TmSiO/HfO2 dielectric stack is compatible with threshold voltage control techniques commonly used with SiOx/HfO2 stacks. Specifically, we show that the flatband voltage can be set in the range -1 V to +0.5 V by the choice of gate metal and that the effective workfunction of the stack is properly controlled by the metal workfunction in a gate-last process flow. Compatibility with a gate-first approach is also demonstrated, showing that integration of La2O3 and Al2O3 capping layers can induce a flatband voltage shift of at least 150 mV. Finally, the effect of the annealing conditions on flatband voltage is investigated, finding that the duration of the final forming gas anneal can be used as a further process knob to tune the threshold voltage. The evaluation performed on MOS capacitors is confirmed by the fabrication of TmSiO/HfO2/TiN MOSFETs achieving near-symmetric threshold voltages at sub-nm EOT.

  13. High-light damage in air-dry thalli of the old forest lichen Lobaria pulmonaria - interactions of irradiance, exposure duration and high temperature

    International Nuclear Information System (INIS)

    Gauslaa, Y.; Solhaug, K.A.

    1999-01-01

    High-light damage in air-dry thalli of Lobaria pulmonaria were measured in the laboratory as reductions in maximal PSII efficiency (FV/FM) after a 48 h recovery in a hydrated state at low light to account for permanent damage. Thalli treated with the lowest light dose (90 mol photons m −2 ) recovered normal FV/FM-values with increasing irradiances (400–700 nm) up to 1000 µmol photons m −2 s −1 . Doubling this dose lowered the threshold level for damage from 1000 to 320 µmol photons m −2 s −1 , and reduced FV/FM at 1000 µmol photons m −2 s −1 by more than 50%. A second doubling of the dose to 360 mol photons m −2 caused damage at 200 µmol photons m −2 s −1 , and a nearly complete cessation of PSII efficiency occurred at 1000 µmol photons m −2 s −1 . No reciprocity of irradiance and duration of illumination for PSII function was found. The measured time-dependent decrease in FV/FM was remarkably similar for the naturally coupled, but artificially separated, light and temperature factors. Therefore, the damage of high light on desiccated L. pulmonaria seemed to be an additive effect of high irradiance and high temperatures. Air-dry thalli were highly heat susceptible, being affected already at temperatures around 40 °C. Logging operations in forests are likely to raise the solar radiation at remaining lichen sites to destructive levels. (author)

  14. Local Likelihood Approach for High-Dimensional Peaks-Over-Threshold Inference

    KAUST Repository

    Baki, Zhuldyzay

    2018-05-14

    Global warming is affecting the Earth climate year by year, the biggest difference being observable in increasing temperatures in the World Ocean. Following the long- term global ocean warming trend, average sea surface temperatures across the global tropics and subtropics have increased by 0.4–1◦C in the last 40 years. These rates become even higher in semi-enclosed southern seas, such as the Red Sea, threaten- ing the survival of thermal-sensitive species. As average sea surface temperatures are projected to continue to rise, careful study of future developments of extreme temper- atures is paramount for the sustainability of marine ecosystem and biodiversity. In this thesis, we use Extreme-Value Theory to study sea surface temperature extremes from a gridded dataset comprising 16703 locations over the Red Sea. The data were provided by Operational SST and Sea Ice Analysis (OSTIA), a satellite-based data system designed for numerical weather prediction. After pre-processing the data to account for seasonality and global trends, we analyze the marginal distribution of ex- tremes, defined as observations exceeding a high spatially varying threshold, using the Generalized Pareto distribution. This model allows us to extrapolate beyond the ob- served data to compute the 100-year return levels over the entire Red Sea, confirming the increasing trend of extreme temperatures. To understand the dynamics govern- ing the dependence of extreme temperatures in the Red Sea, we propose a flexible local approach based on R-Pareto processes, which extend the univariate Generalized Pareto distribution to the spatial setting. Assuming that the sea surface temperature varies smoothly over space, we perform inference based on the gradient score method over small regional neighborhoods, in which the data are assumed to be stationary in space. This approach allows us to capture spatial non-stationarity, and to reduce the overall computational cost by taking advantage of

  15. Cranial nerve threshold for thermal injury induced by MRI-guided high-intensity focused ultrasound (MRgHIFU): preliminary results on an optic nerve model.

    Science.gov (United States)

    Harnof, Sagi; Zibly, Zion; Cohen, Zvi; Shaw, Andrew; Schlaff, Cody; Kassel, Neal F

    2013-04-01

    Future clinical applications of magnetic resonance imaging-guided high-intensity focused ultrasound (MRgHIFU) are moving toward the management of different intracranial pathologies. We sought to validate the production, safety, and efficacy of thermal injury to cranial nerves generated by MRgHIFU. In this study, five female domestic pigs underwent a standard bifrontal craniectomy under general anesthesia. Treatment was then given using an MRgHIFU system to induce hyperthermic ablative sonication (6 to 10 s; 50 to 2000 J.) Histological analyses were done to confirm nerve damage; temperature measured on the optic nerve was approximately 53.4°C (range: 39°C to 70°C.) Histology demonstrated a clear definition between a necrotic, transitional zone, and normal tissue. MRgHIFU induces targeted thermal injury to nervous tissue within a specific threshold of 50°C to 60°C with the tissue near the sonication center yielding the greatest effect; adjacent tissue showed minimal changes. Additional studies utilizing this technology are required to further establish accurate threshold parameters for optic nerve thermo-ablation.

  16. A high-energy, low-threshold tunable intracavity terahertz-wave parametric oscillator with surface-emitted configuration

    International Nuclear Information System (INIS)

    Wang, Y Y; Xu, D G; Jiang, H; Zhong, K; Yao, J Q

    2013-01-01

    A high-energy, low-threshold THz-wave output has been experimentally demonstrated with an intracavity terahertz-wave parametric oscillator based on a surface-emitted configuration, which was pumped by a diode-side-pumped Q-switched Nd:YAG laser. Different beam sizes and repetition rates of the pump light have been investigated for high-energy and high-efficiency THz-wave generation. The maximum THz-wave output energy of 283 nJ/pulse was obtained at 1.54 THz under an intracavity 1064 nm pump energy of 59 mJ. The conversion efficiency was 4.8 × 10 −6 , corresponding to a photon conversion efficiency of 0.088%. The pump threshold was 12.9 mJ/pulse. A continuously tunable range from 0.75 to 2.75 THz was realized. (paper)

  17. Status of SiO2/TiO2 HR coating damage

    International Nuclear Information System (INIS)

    Lowermilk, W.H.

    1979-01-01

    The data, observations, and conclusions from a number of experiments on high-reflector (HR) coating damage which were done in FY 1979 are summarized. Damage threshold measurements for the experiments described are presented

  18. High-intensity interval training and β-hydroxy-β-methylbutyric free acid improves aerobic power and metabolic thresholds

    OpenAIRE

    Robinson, Edward H; Stout, Jeffrey R; Miramonti, Amelia A; Fukuda, David H; Wang, Ran; Townsend, Jeremy R; Mangine, Gerald T; Fragala, Maren S; Hoffman, Jay R

    2014-01-01

    Background Previous research combining Calcium β-hydroxy-β-methylbutyrate (CaHMB) and running high-intensity interval training (HIIT) have shown positive effects on aerobic performance measures. The purpose of this study was to examine the effect of β-hydroxy-β-methylbutyric free acid (HMBFA) and cycle ergometry HIIT on maximal oxygen consumption (VO2peak), ventilatory threshold (VT), respiratory compensation point (RCP) and time to exhaustion (Tmax) in college-aged men and women. Methods Thi...

  19. Vacuum ultra-violet damage and damage mitigation for plasma processing of highly porous organosilicate glass dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Marneffe, J.-F. de, E-mail: marneffe@imec.be; Lukaszewicz, M.; Porter, S. B.; Vajda, F.; Rutigliani, V.; Verdonck, P.; Baklanov, M. R. [IMEC v.z.w., 3001 Leuven (Belgium); Zhang, L.; Heyne, M.; El Otell, Z.; Krishtab, M. [IMEC v.z.w., 3001 Leuven (Belgium); Department of Chemistry, KULeuven, 3001 Leuven (Belgium); Goodyear, A.; Cooke, M. [Oxford Instruments Plasma Technology, BS49 4AP Bristol (United Kingdom)

    2015-10-07

    Porous organosilicate glass thin films, with k-value 2.0, were exposed to 147 nm vacuum ultra-violet (VUV) photons emitted in a Xenon capacitive coupled plasma discharge. Strong methyl bond depletion was observed, concomitant with a significant increase of the bulk dielectric constant. This indicates that, besides reactive radical diffusion, photons emitted during plasma processing do impede dielectric properties and therefore need to be tackled appropriately during patterning and integration. The detrimental effect of VUV irradiation can be partly suppressed by stuffing the low-k porous matrix with proper sacrificial polymers showing high VUV absorption together with good thermal and VUV stability. In addition, the choice of an appropriate hard-mask, showing high VUV absorption, can minimize VUV damage. Particular processing conditions allow to minimize the fluence of photons to the substrate and lead to negligible VUV damage. For patterned structures, in order to reduce VUV damage in the bulk and on feature sidewalls, the combination of both pore stuffing/material densification and absorbing hard-mask is recommended, and/or the use of low VUV-emitting plasma discharge.

  20. Threshold-dependent climate effects and high mortality limit recruitment and recovery of the Kattegat cod

    DEFF Research Database (Denmark)

    Lindegren, Martin; Eero, Margit

    2013-01-01

    Cod in the Kattegat is one of the most dramatic examples of stock collapse, where despite large management efforts, almost no signs of recovery have been observed. We investigate how multiple physical and biological factors could potentially influence recruitment and recovery of Kattegat cod, using...... non-additive threshold models. In contrast to previous studies on recruitment dynamics of Kattegat cod Gadus morhua, we found that recruitment variability may be explained by a combination of the size of the spawning stock and external conditions (i.e. sea surface temperature and oxygen concentrations...

  1. Median filters as a tool to determine dark noise thresholds in high resolution smartphone image sensors for scientific imaging

    Science.gov (United States)

    Igoe, Damien P.; Parisi, Alfio V.; Amar, Abdurazaq; Rummenie, Katherine J.

    2018-01-01

    An evaluation of the use of median filters in the reduction of dark noise in smartphone high resolution image sensors is presented. The Sony Xperia Z1 employed has a maximum image sensor resolution of 20.7 Mpixels, with each pixel having a side length of just over 1 μm. Due to the large number of photosites, this provides an image sensor with very high sensitivity but also makes them prone to noise effects such as hot-pixels. Similar to earlier research with older models of smartphone, no appreciable temperature effects were observed in the overall average pixel values for images taken in ambient temperatures between 5 °C and 25 °C. In this research, hot-pixels are defined as pixels with intensities above a specific threshold. The threshold is determined using the distribution of pixel values of a set of images with uniform statistical properties associated with the application of median-filters of increasing size. An image with uniform statistics was employed as a training set from 124 dark images, and the threshold was determined to be 9 digital numbers (DN). The threshold remained constant for multiple resolutions and did not appreciably change even after a year of extensive field use and exposure to solar ultraviolet radiation. Although the temperature effects' uniformity masked an increase in hot-pixel occurrences, the total number of occurrences represented less than 0.1% of the total image. Hot-pixels were removed by applying a median filter, with an optimum filter size of 7 × 7; similar trends were observed for four additional smartphone image sensors used for validation. Hot-pixels were also reduced by decreasing image resolution. The method outlined in this research provides a methodology to characterise the dark noise behavior of high resolution image sensors for use in scientific investigations, especially as pixel sizes decrease.

  2. Bacterial natural transformation by highly fragmented and damaged DNA

    DEFF Research Database (Denmark)

    Overballe-Petersen, Søren; Harms, Klaus; Orlando, Ludovic Antoine Alexandre

    2013-01-01

    for microbes, but not as potential substrate for bacterial evolution. Here, we show that fragmented DNA molecules (≥20 bp) that additionally may contain abasic sites, cross-links, or miscoding lesions are acquired by the environmental bacterium Acinetobacter baylyi through natural transformation. With uptake......DNA molecules are continuously released through decomposition of organic matter and are ubiquitous in most environments. Such DNA becomes fragmented and damaged (often DNA is recognized as nutrient source...... of DNA from a 43,000-y-old woolly mammoth bone, we further demonstrate that such natural transformation events include ancient DNA molecules. We find that the DNA recombination is RecA recombinase independent and is directly linked to DNA replication. We show that the adjacent nucleotide variations...

  3. High-Threshold Low-Overhead Fault-Tolerant Classical Computation and the Replacement of Measurements with Unitary Quantum Gates.

    Science.gov (United States)

    Cruikshank, Benjamin; Jacobs, Kurt

    2017-07-21

    von Neumann's classic "multiplexing" method is unique in achieving high-threshold fault-tolerant classical computation (FTCC), but has several significant barriers to implementation: (i) the extremely complex circuits required by randomized connections, (ii) the difficulty of calculating its performance in practical regimes of both code size and logical error rate, and (iii) the (perceived) need for large code sizes. Here we present numerical results indicating that the third assertion is false, and introduce a novel scheme that eliminates the two remaining problems while retaining a threshold very close to von Neumann's ideal of 1/6. We present a simple, highly ordered wiring structure that vastly reduces the circuit complexity, demonstrates that randomization is unnecessary, and provides a feasible method to calculate the performance. This in turn allows us to show that the scheme requires only moderate code sizes, vastly outperforms concatenation schemes, and under a standard error model a unitary implementation realizes universal FTCC with an accuracy threshold of p<5.5%, in which p is the error probability for 3-qubit gates. FTCC is a key component in realizing measurement-free protocols for quantum information processing. In view of this, we use our scheme to show that all-unitary quantum circuits can reproduce any measurement-based feedback process in which the asymptotic error probabilities for the measurement and feedback are (32/63)p≈0.51p and 1.51p, respectively.

  4. A Modified Fatigue Damage Model for High-Cycle Fatigue Life Prediction

    Directory of Open Access Journals (Sweden)

    Meng Wang

    2016-01-01

    Full Text Available Based on the assumption of quasibrittle failure under high-cycle fatigue for the metal material, the damage constitutive equation and the modified damage evolution equation are obtained with continuum damage mechanics. Then, finite element method (FEM is used to describe the failure process of metal material. The increment of specimen’s life and damage state can be researched using damage mechanics-FEM. Finally, the lifetime of the specimen is got at the given stress level. The damage mechanics-FEM is inserted into ABAQUS with subroutine USDFLD and the Python language is used to simulate the fatigue process of titanium alloy specimens. The simulation results have a good agreement with the testing results under constant amplitude loading, which proves the accuracy of the method.

  5. Two scale damage model and related numerical issues for thermo-mechanical high cycle fatigue

    International Nuclear Information System (INIS)

    Desmorat, R.; Kane, A.; Seyedi, M.; Sermage, J.P.

    2007-01-01

    On the idea that fatigue damage is localized at the microscopic scale, a scale smaller than the mesoscopic one of the Representative Volume Element (RVE), a three-dimensional two scale damage model has been proposed for High Cycle Fatigue applications. It is extended here to aniso-thermal cases and then to thermo-mechanical fatigue. The modeling consists in the micro-mechanics analysis of a weak micro-inclusion subjected to plasticity and damage embedded in an elastic meso-element (the RVE of continuum mechanics). The consideration of plasticity coupled with damage equations at micro-scale, altogether with Eshelby-Kroner localization law, allows to compute the value of microscopic damage up to failure for any kind of loading, 1D or 3D, cyclic or random, isothermal or aniso-thermal, mechanical, thermal or thermo-mechanical. A robust numerical scheme is proposed in order to make the computations fast. A post-processor for damage and fatigue (DAMAGE-2005) has been developed. It applies to complex thermo-mechanical loadings. Examples of the representation by the two scale damage model of physical phenomena related to High Cycle Fatigue are given such as the mean stress effect, the non-linear accumulation of damage. Examples of thermal and thermo-mechanical fatigue as well as complex applications on real size testing structure subjected to thermo-mechanical fatigue are detailed. (authors)

  6. Evaluation of Pressure Pain Threshold as a Measure of Perceived Stress and High Job Strain

    DEFF Research Database (Denmark)

    Hven, Lisbeth; Frost, Poul; Bonde, Jens Peter Ellekilde

    2017-01-01

    pressure pain algometry measurements of PPT on the trapezius and supraspinatus muscles and the tibia. Associations of stress symptoms and job strain with PPT of each site was analyzed for men and women separately with adjustment for age body mass index, and discomfort in the anatomical region closest...... to the point of pressure algometry using multivariable linear regression. RESULTS: We found significant inverse associations between perceived stress and PPT in both genders in models adjusting for age and body mass index: the higher level of perceived stress, the lower the threshold. For job strain...... associations between perceived stress and PPT, the discriminative capability of PPT to distinguish individuals with and without stress is low. PPT measured by pressure algometry seems not applicable as a diagnostic tool of a state of mental stress....

  7. Evaluation of Pressure Pain Threshold as a Measure of Perceived Stress and High Job Strain

    DEFF Research Database (Denmark)

    Hven, Lisbeth; Frost, Poul; Bonde, Jens Peter Ellekilde

    2017-01-01

    OBJECTIVE: To investigate whether pressure pain threshold (PPT), determined by pressure algometry, can be used as an objective measure of perceived stress and job strain. METHODS: We used cross-sectional base line data collected during 1994 to 1995 within the Project on Research and Intervention...... in Monotonous work (PRIM), which included 3123 employees from a variety of Danish companies. Questionnaire data included 18 items on stress symptoms, 23 items from the Karasek scale on job strain, and information on discomfort in specified anatomical regions was also collected. Clinical examinations included...... pressure pain algometry measurements of PPT on the trapezius and supraspinatus muscles and the tibia. Associations of stress symptoms and job strain with PPT of each site was analyzed for men and women separately with adjustment for age body mass index, and discomfort in the anatomical region closest...

  8. High-resolution modeling of thermal thresholds and environmental influences on coral bleaching for local and regional reef management.

    Science.gov (United States)

    Kumagai, Naoki H; Yamano, Hiroya

    2018-01-01

    Coral reefs are one of the world's most threatened ecosystems, with global and local stressors contributing to their decline. Excessive sea-surface temperatures (SSTs) can cause coral bleaching, resulting in coral death and decreases in coral cover. A SST threshold of 1 °C over the climatological maximum is widely used to predict coral bleaching. In this study, we refined thermal indices predicting coral bleaching at high-spatial resolution (1 km) by statistically optimizing thermal thresholds, as well as considering other environmental influences on bleaching such as ultraviolet (UV) radiation, water turbidity, and cooling effects. We used a coral bleaching dataset derived from the web-based monitoring system Sango Map Project, at scales appropriate for the local and regional conservation of Japanese coral reefs. We recorded coral bleaching events in the years 2004-2016 in Japan. We revealed the influence of multiple factors on the ability to predict coral bleaching, including selection of thermal indices, statistical optimization of thermal thresholds, quantification of multiple environmental influences, and use of multiple modeling methods (generalized linear models and random forests). After optimization, differences in predictive ability among thermal indices were negligible. Thermal index, UV radiation, water turbidity, and cooling effects were important predictors of the occurrence of coral bleaching. Predictions based on the best model revealed that coral reefs in Japan have experienced recent and widespread bleaching. A practical method to reduce bleaching frequency by screening UV radiation was also demonstrated in this paper.

  9. Use of high voltage electron microscope to simulate radiation damage by neutrons

    International Nuclear Information System (INIS)

    Mayer, R.M.

    1976-01-01

    The use of the high voltage electron microscope to simulate radiation damage by neutrons is briefly reviewed. This information is important in explaining how alloying affects void formation during neutron irradiation

  10. Subsurface damage mechanism of high speed grinding process in single crystal silicon revealed by atomistic simulations

    International Nuclear Information System (INIS)

    Li, Jia; Fang, Qihong; Zhang, Liangchi; Liu, Youwen

    2015-01-01

    Highlights: • Molecular dynamic model of nanoscale high speed grinding of silicon workpiece has been established. • The effect of grinding speed on subsurface damage and grinding surface integrity by analyzing the chip, dislocation movement, and phase transformation during high speed grinding process are thoroughly investigated. • Subsurface damage is studied by the evolution of surface area at first time for more obvious observation on transition from ductile to brittle. • The hydrostatic stress and von Mises stress by the established analytical model are studied subsurface damage mechanism during nanoscale grinding. - Abstract: Three-dimensional molecular dynamics (MD) simulations are performed to investigate the nanoscale grinding process of single crystal silicon using diamond tool. The effect of grinding speed on subsurface damage and grinding surface integrity by analyzing the chip, dislocation movement, and phase transformation are studied. We also establish an analytical model to calculate several important stress fields including hydrostatic stress and von Mises stress for studying subsurface damage mechanism, and obtain the dislocation density on the grinding subsurface. The results show that a higher grinding velocity in machining brittle material silicon causes a larger chip and a higher temperature, and reduces subsurface damage. However, when grinding velocity is above 180 m s −1 , subsurface damage thickness slightly increases because a higher grinding speed leads to the increase in grinding force and temperature, which accelerate dislocation nucleation and motion. Subsurface damage is studied by the evolution of surface area at first time for more obvious observation on transition from ductile to brittle, that provides valuable reference for machining nanometer devices. The von Mises stress and the hydrostatic stress play an important role in the grinding process, and explain the subsurface damage though dislocation mechanism under high

  11. Bulk damage and absorption in fused silica due to high-power laser applications

    Science.gov (United States)

    Nürnberg, F.; Kühn, B.; Langner, A.; Altwein, M.; Schötz, G.; Takke, R.; Thomas, S.; Vydra, J.

    2015-11-01

    Laser fusion projects are heading for IR optics with high broadband transmission, high shock and temperature resistance, long laser durability, and best purity. For this application, fused silica is an excellent choice. The energy density threshold on IR laser optics is mainly influenced by the purity and homogeneity of the fused silica. The absorption behavior regarding the hydroxyl content was studied for various synthetic fused silica grades. The main absorption influenced by OH vibrational excitation leads to different IR attenuations for OH-rich and low-OH fused silica. Industrial laser systems aim for the maximum energy extraction possible. Heraeus Quarzglas developed an Yb-doped fused silica fiber to support this growing market. But the performance of laser welding and cutting systems is fundamentally limited by beam quality and stability of focus. Since absorption in the optical components of optical systems has a detrimental effect on the laser focus shift, the beam energy loss and the resulting heating has to be minimized both in the bulk materials and at the coated surfaces. In collaboration with a laser research institute, an optical finisher and end users, photo thermal absorption measurements on coated samples of different fused silica grades were performed to investigate the influence of basic material properties on the absorption level. High purity, synthetic fused silica is as well the material of choice for optical components designed for DUV applications (wavelength range 160 nm - 260 nm). For higher light intensities, e.g. provided by Excimer lasers, UV photons may generate defect centers that effect the optical properties during usage, resulting in an aging of the optical components (UV radiation damage). Powerful Excimer lasers require optical materials that can withstand photon energy close to the band gap and the high intensity of the short pulse length. The UV transmission loss is restricted to the DUV wavelength range below 300 nm and

  12. A high sensitivity, high throughput, automated single-cell gel electrophoresis ('Comet') DNA damage assay

    International Nuclear Information System (INIS)

    Vojnovic, B.; Barber, P.R.; Johnston, P.J.; Gregory, H.C.; Locke, R.J.

    2003-01-01

    A fully automated microscopy machine vision image capture and analysis system for the collection of data from slides of 'comets' has been developed. The novel image processing algorithms employed in delineating the 'comet head' from the 'comet tail' allow us to determine accurately very low levels of damage. In conjunction with calibrated and automated image capture methods, we are able to eliminate operator subjectivity and analyse large numbers of cells (>2500) in a short time (<1 hour). The image processing algorithm is designed to handle particularly difficult nuclei containing a high degree of structure, due to DNA clumping. We also present techniques used to extend the assay's dynamic range by removing interfering background fluorescence and to define a region of interest. If subtle biological variations are to be quantified (e.g. cell cycle dependant damage), then the use of large cell populations is dictated. Under those circumstances, the use of a fully automated system is particularly advantageous providing that the manner in which data is extracted does not introduce any inadvertent bias. In practice, it is essential that the image processing steps are geared towards the correct recognition of an acceptable cell nucleus, i.e. comet 'head'. We acknowledge the financial support of CRUK, Programme Grant C133/A1812 - SP 2195-01/02 and the US Department of Energy Low Dose Radiation Research Program grant DE-FG07-99ER62878

  13. Full-length high-temperature severe fuel damage test No. 2

    International Nuclear Information System (INIS)

    Hesson, G.M.; Lombardo, N.J.; Pilger, J.P.; Rausch, W.N.; King, L.L.; Hurley, D.E.; Parchen, L.J.; Panisko, F.E.

    1993-09-01

    Hazardous conditions associated with performing the Full-Length High- Temperature (FLHT). Severe Fuel Damage Test No. 2 experiment have been analyzed. Major hazards that could cause harm or damage are (1) radioactive fission products, (2) radiation fields, (3) reactivity changes, (4) hydrogen generation, (5) materials at high temperature, (6) steam explosion, and (7) steam pressure pulse. As a result of this analysis, it is concluded that with proper precautions the FLHT- 2 test can be safely conducted

  14. Converting Hangar High Expansion Foam Systems to Prevent Cockpit Damage: Full-Scale Validation Tests

    Science.gov (United States)

    2017-09-01

    AFCEC-CO-TY-TR-2018-0001 CONVERTING HANGAR HIGH EXPANSION FOAM SYSTEMS TO PREVENT COCKPIT DAMAGE: FULL-SCALE VALIDATION TESTS Gerard G...manufacturer, or otherwise does not constitute or imply its endorsement, recommendation , or approval by the United States Air Force. The views and...09-2017 Final Test Report May 2017 Converting Hangar High Expansion Foam Systems to Prevent Cockpit Damage: Full-Scale Validation Tests N00173-15-D

  15. Investigation of damage in KDP using scattering techniques

    International Nuclear Information System (INIS)

    Woods, B.; Runkel, M.; Yan, M.; Staggs, M.; Zaitseva, N.; Kozlowski, M.; De Yoreo, J.

    1997-01-01

    Interest in producing high damage threshold KH 2 PO 4 (KDP) and (D x H 1-x ) 2 PO 4 (DKDP)(also called KD*P) for frequency conversion and optical switching applications is driven by the requirements of the National Ignition Facility (NIF). Presently only the best crystals meet the NIF system requirements at the third harmonic (351 nm) and only after a laser conditioning process. Neither the mechanism for damage in bulk KDP nor the mechanism for conditioning is understood. As part of a development effort to increase the damage thresholds of KDP and DKDP, we have been developing techniques to pinpoint the locations where damage will initiate in the bulk material. After we find these locations we will use other measurement techniques to determine how these locations differ from the other surrounding material and why they cause damage. This will allow crystal growers to focus their efforts to improve damage thresholds. Historically damage thresholds have increased it is believed as a consequence of increased purity of the growth solution and through the use of constant filtration during the growth process. As a result we believe that damage is caused by defects in the crystals and have conducted a series of experiments using light scatter to locate these defects and to determine when and where damage occurs. In this paper we present results which show a low correlation between light scatter from bulk defects in KDP and the initiation sites for damage. We have also studied the effects of thermal conditioning on light scatter, strain induced birefringence and damage threshold. We have seen evidence that regions of high strain also exhibit lower damage threshold than the surrounding lower strain material. When thermally conditioned, these crystals show a decrease in some of the strong linear scattering features and a decrease in the strain birefringence while the damage threshold in these regions increased to that of the surrounding bulk material

  16. Measurement of the generalized form factors near threshold via $\\gamma^* p \\to n\\pi^+$ at high $Q^2$

    OpenAIRE

    Park, Kijun; Gothe, Ralf; Adhikari, Krishna; Adikaram-Mudiyanselage, Dasuni; Anghinolfi, Marco; Baghdasaryan, Hovhannes; Ball, Jacques; Battaglieri, Marco; Baturin, Vitaly; Bedlinskiy, Ivan; Bennett, Robert; Biselli, Angela; Bookwalter, Craig; Boyarinov, Sergey; Branford, Derek

    2012-01-01

    We report the first extraction of the pion-nucleon multipoles near the production threshold for the $n\\pi^+$ channel at relatively high momentum transfer ($Q^2$ up to 4.2 $\\rm{GeV^2}$). The dominance of the s-wave transverse multipole ($E_{0+}$), expected in this region, allowed us to access the generalized form factor $G_1$ within the light-cone sum rule (LCSR) framework as well as the axial form factor $G_A$. The data analyzed in this work were collected by the nearly $4\\pi$ CEBAF Large Acc...

  17. A threshold-voltage model for small-scaled GaAs nMOSFET with stacked high-k gate dielectric

    Science.gov (United States)

    Chaowen, Liu; Jingping, Xu; Lu, Liu; Hanhan, Lu; Yuan, Huang

    2016-02-01

    A threshold-voltage model for a stacked high-k gate dielectric GaAs MOSFET is established by solving a two-dimensional Poisson's equation in channel and considering the short-channel, DIBL and quantum effects. The simulated results are in good agreement with the Silvaco TCAD data, confirming the correctness and validity of the model. Using the model, impacts of structural and physical parameters of the stack high-k gate dielectric on the threshold-voltage shift and the temperature characteristics of the threshold voltage are investigated. The results show that the stacked gate dielectric structure can effectively suppress the fringing-field and DIBL effects and improve the threshold and temperature characteristics, and on the other hand, the influence of temperature on the threshold voltage is overestimated if the quantum effect is ignored. Project supported by the National Natural Science Foundation of China (No. 61176100).

  18. A threshold-voltage model for small-scaled GaAs nMOSFET with stacked high-k gate dielectric

    International Nuclear Information System (INIS)

    Liu Chaowen; Xu Jingping; Liu Lu; Lu Hanhan; Huang Yuan

    2016-01-01

    A threshold-voltage model for a stacked high-k gate dielectric GaAs MOSFET is established by solving a two-dimensional Poisson's equation in channel and considering the short-channel, DIBL and quantum effects. The simulated results are in good agreement with the Silvaco TCAD data, confirming the correctness and validity of the model. Using the model, impacts of structural and physical parameters of the stack high-k gate dielectric on the threshold-voltage shift and the temperature characteristics of the threshold voltage are investigated. The results show that the stacked gate dielectric structure can effectively suppress the fringing-field and DIBL effects and improve the threshold and temperature characteristics, and on the other hand, the influence of temperature on the threshold voltage is overestimated if the quantum effect is ignored. (paper)

  19. Comparison of skin barrier function and sensory nerve electric current perception threshold between IgE-high extrinsic and IgE-normal intrinsic types of atopic dermatitis.

    Science.gov (United States)

    Mori, T; Ishida, K; Mukumoto, S; Yamada, Y; Imokawa, G; Kabashima, K; Kobayashi, M; Bito, T; Nakamura, M; Ogasawara, K; Tokura, Y

    2010-01-01

    Background Two types of atopic dermatitis (AD) have been proposed, with different pathophysiological mechanisms underlying this seemingly heterogeneous disorder. The extrinsic type shows high IgE levels presumably as a consequence of skin barrier damage and feasible allergen permeation, whereas the intrinsic type exhibits normal IgE levels and is not mediated by allergen-specific IgE. Objectives To investigate the relationship between pruritus perception threshold and skin barrier function of patients with AD in a comparison between the extrinsic and intrinsic types. Methods Enrolled in this study were 32 patients with extrinsic AD, 17 with intrinsic AD and 24 healthy individuals. The barrier function of the stratum corneum was assessed by skin surface hydration and transepidermal water loss (TEWL), and pruritus perception was evaluated by the electric current perception threshold (CPT) of sensory nerves upon neuroselective transcutaneous electric stimulation. Results Skin surface hydration was significantly lower and TEWL was significantly higher in extrinsic AD than intrinsic AD or normal controls. Although there was no statistically significant difference in CPT among extrinsic AD, intrinsic AD and normal controls, CPT was significantly correlated with skin surface hydration and inversely with TEWL in intrinsic AD and normal controls, but not extrinsic AD. Finally, CPT was correlated with the visual analogue scale of itch in the nonlesional skin of patients with extrinsic but not intrinsic AD. Conclusions Patients with extrinsic AD have an impaired barrier, which increases the pre-existing pruritus but rather decreases sensitivity to external stimuli. In contrast, patients with intrinsic AD retain a normal barrier function and sensory reactivity to external pruritic stimuli.

  20. High performance Si nanowire field-effect-transistors based on a CMOS inverter with tunable threshold voltage.

    Science.gov (United States)

    Van, Ngoc Huynh; Lee, Jae-Hyun; Sohn, Jung Inn; Cha, Seung Nam; Whang, Dongmok; Kim, Jong Min; Kang, Dae Joon

    2014-05-21

    We successfully fabricated nanowire-based complementary metal-oxide semiconductor (NWCMOS) inverter devices by utilizing n- and p-type Si nanowire field-effect-transistors (NWFETs) via a low-temperature fabrication processing technique. We demonstrate that NWCMOS inverter devices can be operated at less than 1 V, a significantly lower voltage than that of typical thin-film based complementary metal-oxide semiconductor (CMOS) inverter devices. This low-voltage operation was accomplished by controlling the threshold voltage of the n-type Si NWFETs through effective management of the nanowire (NW) doping concentration, while realizing high voltage gain (>10) and ultra-low static power dissipation (≤3 pW) for high-performance digital inverter devices. This result offers a viable means of fabricating high-performance, low-operation voltage, and high-density digital logic circuits using a low-temperature fabrication processing technique suitable for next-generation flexible electronics.

  1. Recent Advancements in DNA Damage-Transcription Crosstalk and High-Resolution Mapping of DNA Breaks.

    Science.gov (United States)

    Vitelli, Valerio; Galbiati, Alessandro; Iannelli, Fabio; Pessina, Fabio; Sharma, Sheetal; d'Adda di Fagagna, Fabrizio

    2017-08-31

    Until recently, DNA damage arising from physiological DNA metabolism was considered a detrimental by-product for cells. However, an increasing amount of evidence has shown that DNA damage could have a positive role in transcription activation. In particular, DNA damage has been detected in transcriptional elements following different stimuli. These physiological DNA breaks are thought to be instrumental for the correct expression of genomic loci through different mechanisms. In this regard, although a plethora of methods are available to precisely map transcribed regions and transcription start sites, commonly used techniques for mapping DNA breaks lack sufficient resolution and sensitivity to draw a robust correlation between DNA damage generation and transcription. Recently, however, several methods have been developed to map DNA damage at single-nucleotide resolution, thus providing a new set of tools to correlate DNA damage and transcription. Here, we review how DNA damage can positively regulate transcription initiation, the current techniques for mapping DNA breaks at high resolution, and how these techniques can benefit future studies of DNA damage and transcription.

  2. High-Density Plasma-Induced Etch Damage of GaN

    International Nuclear Information System (INIS)

    Baca, A.G.; Han, J.; Lester, L.F.; Pearton, S.J.; Ren, F.; Shul, R.J.; Willison, C.G.; Zhang, L.; Zolper, J.C.

    1999-01-01

    Anisotropic, smooth etching of the group-III nitrides has been reported at relatively high rates in high-density plasma etch systems. However, such etch results are often obtained under high de-bias and/or high plasma flux conditions where plasma induced damage can be significant. Despite the fact that the group-III nitrides have higher bonding energies than more conventional III-V compounds, plasma-induced etch damage is still a concern. Attempts to minimize such damage by reducing the ion energy or increasing the chemical activity in the plasma often result in a loss of etch rate or anisotropy which significantly limits critical dimensions and reduces the utility of the process for device applications requiring vertical etch profiles. It is therefore necessary to develop plasma etch processes which couple anisotropy for critical dimension and sidewall profile control and high etch rates with low-damage for optimum device performance. In this study we report changes in sheet resistance and contact resistance for n- and p-type GaN samples exposed to an Ar inductively coupled plasma (ICP). In general, plasma-induced damage was more sensitive to ion bombardment energies as compared to plasma flux. In addition, p-GaN was typically more sensitive to plasma-induced damage as compared to n-GaN

  3. High energy proton simulation of 14-MeV neutron damage in Al2O3

    International Nuclear Information System (INIS)

    Muir, D.W.; Bunch, J.M.

    1975-01-01

    High-energy protons are a potentially useful tool for simulating the radiation damage produced by 14-MeV neutrons in CTR materials. A comparison is given of calculations and measurements of the relative damage effectiveness of these two types of radiation in single-crystal Al 2 O 3 . The experiments make use of the prominent absorption band at 206 nm as an index to lattice damage, on the assumption that peak absorption is proportional to the concentration of lattice vacancies. The induced absorption is measured for incident proton energies ranging from 5 to 15 MeV and for 14-MeV neutrons. Recoil-energy spectra are calculated for elastic and inelastic scattering using published angular distributions. Recoil-energy spectra also are calculated for the secondary alpha particles and 12 C nuclei produced by (p,p'α) reactions on 16 O. The recoil spectra are converted to damage-energy spectra and then integrated to yield the damage-energy cross section at each proton energy and for 14 MeV neutrons. A comparison of the calculations with experimental results suggests that damage energy, at least at high energies, is a reasonable criterion for estimating this type of radiation damage. (auth)

  4. Healing of damaged metal by a pulsed high-energy electromagnetic field

    Science.gov (United States)

    Kukudzhanov, K. V.; Levitin, A. L.

    2018-04-01

    The processes of defect (intergranular micro-cracks) transformation are investigated for metal samples in a high-energy short-pulsed electromagnetic field. This investigation is based on a numerical coupled model of the impact of high-energy electromagnetic field on the pre-damaged thermal elastic-plastic material with defects. The model takes into account the melting and evaporation of the metal and the dependence of its physical and mechanical properties on the temperature. The system of equations is solved numerically by finite element method with an adaptive mesh using the arbitrary Euler–Lagrange method. The calculations show that the welding of the crack and the healing of micro-defects under treatment by short pulses of the current takes place. For the macroscopic description of the healing process, the healing and damage parameters of the material are introduced. The healing of micro-cracks improves the material healing parameter and reduces its damage. The micro-crack shapes practically do not affect the time-dependence of the healing and damage under the treatment by the current pulses. These changes are affected only by the value of the initial damage of the material and the initial length of the micro-crack. The time-dependence of the healing and the damage is practically the same for all different shapes of micro-defects, provided that the initial lengths of micro-cracks and the initial damages are the same for these different shapes of defects.

  5. Crane RF accelerator for high current radiation damage studies

    International Nuclear Information System (INIS)

    Whitham, K.; Anamkath, H.; Evans, K.; Lyons, S.; Palmer, D.; Miller, R.; Treas, P.; Zante, T.

    1992-01-01

    An electron accelerator was designed and built for the Naval Weapons Support Center for transient radiation effects on electronics experiments and testing. The Crane L Band RF Electron Linac was designed to provide high currents over a wide range of pulse widths and energies. The energy extends to 60 MeV and pulse widths vary from a few ns to 10 μsec. Beam currents range from 20 amps in the short pulse case to 1.5 amps in the long pulse case. This paper describes the linac, its architecture, the e-gun and pulser, waveguides, klystrons and modulator, vacuum system, beam transport, and control systems. fig., tab

  6. Model for visualizing high energy laser (HEL) damage

    Science.gov (United States)

    Erten, Gail

    2017-11-01

    This paper describes and presents results from a model created in MATLAB® to calculate and display the time dependent temperature profile on a target aimpoint as it is being engaged by a high energy laser (HEL) beam. The model uses public domain information namely physics equations of heat conduction and phase changes and material properties such as thermal conductivity/diffusivity, latent heat, specific heat, melting and evaporation points as well as user input material type and thickness. The user also provides time varying characteristics of the HEL beam on the aimpoint, including beam size and intensity distribution (in Watts per centimeter square). The model calculates the temperature distribution at and around the aimpoint and also shows the phase changes of the aimpoint with the material first melting and then evaporating. User programmable features (selecting materials and thickness, erosion rates for melting) make the model highly versatile. The objective is to bridge the divide between remaining faithful to theoretical formulations such as the partial differential equations of heat conduction and at the same time serving practical concerns of the model user who needs to rapidly evaluate HEL thermal effects. One possible use of the tool is to assess lethality values of different aimpoints without costly (as well as often dangerous and destructive) experiments.

  7. Relationships Between Land Use and Stream Nutrient Concentrations in a Highly Urbanized Tropical Region of Brazil: Thresholds and Riparian Zones.

    Science.gov (United States)

    Tromboni, F; Dodds, W K

    2017-07-01

    Nutrient enrichment in streams due to land use is increasing globally, reducing water quality and causing eutrophication of downstream fresh and coastal waters. In temperate developed countries, the intensive use of fertilizers in agriculture is a main driver of increasing nutrient concentrations, but high levels and fast rates of urbanization can be a predominant issue in some areas of the developing world. We investigated land use in the highly urbanized tropical State of Rio de Janeiro, Brazil. We collected total nitrogen, total phosphorus, and inorganic nutrient data from 35 independent watersheds distributed across the State and characterized land use at a riparian and entire watershed scales upstream from each sample station, using ArcGIS. We used regression models to explain land use influences on nutrient concentrations and to assess riparian protection relationships to water quality. We found that urban land use was the primary driver of nutrient concentration increases, independent of the scale of analyses and that urban land use was more concentrated in the riparian buffer of streams than in the entire watersheds. We also found significant thresholds that indicated strong increases in nutrient concentrations with modest increases in urbanization reaching maximum nutrient concentrations between 10 and 46% urban cover. These thresholds influenced calculation of reference nutrient concentrations, and ignoring them led to higher estimates of these concentrations. Lack of sewage treatment in concert with urban development in riparian zones apparently leads to the observation that modest increases in urban land use can cause large increases in nutrient concentrations.

  8. Increase the threshold voltage of high voltage GaN transistors by low temperature atomic hydrogen treatment

    Energy Technology Data Exchange (ETDEWEB)

    Erofeev, E. V., E-mail: erofeev@micran.ru [Tomsk State University of Control Systems and Radioelectronics, Research Institute of Electrical-Communication Systems (Russian Federation); Fedin, I. V.; Kutkov, I. V. [Research and Production Company “Micran” (Russian Federation); Yuryev, Yu. N. [National Research Tomsk Polytechnic University, Institute of Physics and Technology (Russian Federation)

    2017-02-15

    High-electron-mobility transistors (HEMTs) based on AlGaN/GaN epitaxial heterostructures are a promising element base for the fabrication of high voltage electronic devices of the next generation. This is caused by both the high mobility of charge carriers in the transistor channel and the high electric strength of the material, which makes it possible to attain high breakdown voltages. For use in high-power switches, normally off-mode GaN transistors operating under enhancement conditions are required. To fabricate normally off GaN transistors, one most frequently uses a subgate region based on magnesium-doped p-GaN. However, optimization of the p-GaN epitaxial-layer thickness and the doping level makes it possible to attain a threshold voltage of GaN transistors close to V{sub th} = +2 V. In this study, it is shown that the use of low temperature treatment in an atomic hydrogen flow for the p-GaN-based subgate region before the deposition of gate-metallization layers makes it possible to increase the transistor threshold voltage to V{sub th} = +3.5 V. The effects under observation can be caused by the formation of a dipole layer on the p-GaN surface induced by the effect of atomic hydrogen. The heat treatment of hydrogen-treated GaN transistors in a nitrogen environment at a temperature of T = 250°C for 12 h reveals no degradation of the transistor’s electrical parameters, which can be caused by the formation of a thermally stable dipole layer at the metal/p-GaN interface as a result of hydrogenation.

  9. Increase the threshold voltage of high voltage GaN transistors by low temperature atomic hydrogen treatment

    International Nuclear Information System (INIS)

    Erofeev, E. V.; Fedin, I. V.; Kutkov, I. V.; Yuryev, Yu. N.

    2017-01-01

    High-electron-mobility transistors (HEMTs) based on AlGaN/GaN epitaxial heterostructures are a promising element base for the fabrication of high voltage electronic devices of the next generation. This is caused by both the high mobility of charge carriers in the transistor channel and the high electric strength of the material, which makes it possible to attain high breakdown voltages. For use in high-power switches, normally off-mode GaN transistors operating under enhancement conditions are required. To fabricate normally off GaN transistors, one most frequently uses a subgate region based on magnesium-doped p-GaN. However, optimization of the p-GaN epitaxial-layer thickness and the doping level makes it possible to attain a threshold voltage of GaN transistors close to V_t_h = +2 V. In this study, it is shown that the use of low temperature treatment in an atomic hydrogen flow for the p-GaN-based subgate region before the deposition of gate-metallization layers makes it possible to increase the transistor threshold voltage to V_t_h = +3.5 V. The effects under observation can be caused by the formation of a dipole layer on the p-GaN surface induced by the effect of atomic hydrogen. The heat treatment of hydrogen-treated GaN transistors in a nitrogen environment at a temperature of T = 250°C for 12 h reveals no degradation of the transistor’s electrical parameters, which can be caused by the formation of a thermally stable dipole layer at the metal/p-GaN interface as a result of hydrogenation.

  10. Early-state damage detection, characterization, and evolution using high-resolution computed tomography

    Science.gov (United States)

    Grandin, Robert John

    Safely using materials in high performance applications requires adequately understanding the mechanisms which control the nucleation and evolution of damage. Most of a material's operational life is spent in a state with noncritical damage, and, for example in metals only a small portion of its life falls within the classical Paris Law regime of crack growth. Developing proper structural health and prognosis models requires understanding the behavior of damage in these early stages within the material's life, and this early-stage damage occurs on length scales at which the material may be considered "granular'' in the sense that the discrete regions which comprise the whole are large enough to require special consideration. Material performance depends upon the characteristics of the granules themselves as well as the interfaces between granules. As a result, properly studying early-stage damage in complex, granular materials requires a means to characterize changes in the granules and interfaces. The granular-scale can range from tenths of microns in ceramics, to single microns in fiber-reinforced composites, to tens of millimeters in concrete. The difficulty of direct-study is often overcome by exhaustive testing of macro-scale damage caused by gross material loads and abuse. Such testing, for example optical or electron microscopy, destructive and further, is costly when used to study the evolution of damage within a material and often limits the study to a few snapshots. New developments in high-resolution computed tomography (HRCT) provide the necessary spatial resolution to directly image the granule length-scale of many materials. Successful application of HRCT with fiber-reinforced composites, however, requires extending the HRCT performance beyond current limits. This dissertation will discuss improvements made in the field of CT reconstruction which enable resolutions to be pushed to the point of being able to image the fiber-scale damage structures and

  11. Spot-shadowing optimization to mitigate damage growth in a high-energy-laser amplifier chain.

    Science.gov (United States)

    Bahk, Seung-Whan; Zuegel, Jonathan D; Fienup, James R; Widmayer, C Clay; Heebner, John

    2008-12-10

    A spot-shadowing technique to mitigate damage growth in a high-energy laser is studied. Its goal is to minimize the energy loss and undesirable hot spots in intermediate planes of the laser. A nonlinear optimization algorithm solves for the complex fields required to mitigate damage growth in the National Ignition Facility amplifier chain. The method is generally applicable to any large fusion laser.

  12. High dose neutron irradiation damage in beryllium as blanket material

    Energy Technology Data Exchange (ETDEWEB)

    Chakin, V.P. E-mail: fae@niiar.ru; Kazakov, V.A.; Teykovtsev, A.A.; Pimenov, V.V.; Shimansky, G.A.; Ostrovsky, Z.E.; Suslov, D.N.; Latypov, R.N.; Belozerov, S.V.; Kupriyanov, I.B. E-mail: vniinm.400@g23.relkom.ru

    2001-11-01

    The paper presents the investigation results of beryllium products that operated in the SM and BOR-60 reactors up to neutron doses of 2.8x10{sup 22} and 8.0x10{sup 22} cm{sup -2} (E>1 MeV), respectively. The calculated and experimental data are given on helium and tritium accumulation, swelling, micro-hardness and thermal conductivity. The microstructural investigation results of irradiated beryllium are also presented. It is shown that the rate of helium and tritium accumulation in beryllium in the SM and BOR-60 reactors is high enough, which is of interest from the viewpoint of modeling the working conditions of the DEMO fusion reactor. Swelling of beryllium at irradiation temperature of 70-150 deg. C and neutron fluence of 2.8x10{sup 22} cm{sup -2} (E>1 MeV) makes up 0.8-1.5%, at 400 deg. C and fluence of 8x10{sup 22} cm{sup -2} (E>1 MeV)-3.2-5.0%. Irradiation hardening and decrease of thermal conductivity strongly depend on the irradiation temperature and are more significant at reduced temperatures. All results presented in the paper were analyzed with due account of the supposed working parameters of the DEMO fusion reactor blanket.

  13. High dose neutron irradiation damage in beryllium as blanket material

    International Nuclear Information System (INIS)

    Chakin, V.P.; Kazakov, V.A.; Teykovtsev, A.A.; Pimenov, V.V.; Shimansky, G.A.; Ostrovsky, Z.E.; Suslov, D.N.; Latypov, R.N.; Belozerov, S.V.; Kupriyanov, I.B.

    2001-01-01

    The paper presents the investigation results of beryllium products that operated in the SM and BOR-60 reactors up to neutron doses of 2.8x10 22 and 8.0x10 22 cm -2 (E>1 MeV), respectively. The calculated and experimental data are given on helium and tritium accumulation, swelling, micro-hardness and thermal conductivity. The microstructural investigation results of irradiated beryllium are also presented. It is shown that the rate of helium and tritium accumulation in beryllium in the SM and BOR-60 reactors is high enough, which is of interest from the viewpoint of modeling the working conditions of the DEMO fusion reactor. Swelling of beryllium at irradiation temperature of 70-150 deg. C and neutron fluence of 2.8x10 22 cm -2 (E>1 MeV) makes up 0.8-1.5%, at 400 deg. C and fluence of 8x10 22 cm -2 (E>1 MeV)-3.2-5.0%. Irradiation hardening and decrease of thermal conductivity strongly depend on the irradiation temperature and are more significant at reduced temperatures. All results presented in the paper were analyzed with due account of the supposed working parameters of the DEMO fusion reactor blanket

  14. Aging, Loss-of-Coolant Accident (LOCA), and high potential testing of damaged cables

    International Nuclear Information System (INIS)

    Vigil, R.A.; Jacobus, M.J.

    1994-04-01

    Experiments were conducted to assess the effects of high potential testing of cables and to assess the survivability of aged and damaged cables under Loss-of-Coolant Accident (LOCA) conditions. High potential testing at 240 Vdc/mil on undamaged cables suggested that no damage was incurred on the selected virgin cables. During aging and LOCA testing, Okonite ethylene propylene rubber (EPR) cables with a bonded jacket experienced unexpected failures. The failures appear to be primarily related to the level of thermal aging and the presence of a bonded jacket that ages more rapidly than the insulation. For Brand Rex crosslinked polyolefin (XLPO) cables, the results suggest that 7 mils of insulation remaining should give the cables a high probability of surviving accident exposure following aging. The voltage necessary to detect when 7 mils of insulation remain on unaged Brand Rex cables is approximately 35 kVdc. This voltage level would almost certainly be unacceptable to a utility for use as a damage assessment tool. However, additional tests indicated that a 35 kvdc voltage application would not damage virgin Brand Rex cables when tested in water. Although two damaged Rockbestos silicone rubber cables also failed during the accident test, no correlation between failures and level of damage was apparent

  15. Inelastic electron scattering from 3He and 4He in the threshold region at high momentum transfer

    International Nuclear Information System (INIS)

    Rock, S.; Arnold, R.G.; Chertok, B.T.; Szalata, Z.M.; Day, D.; McCarthy, J.S.; Martin, F.; Mecking, B.A.; Sick, I.; Tamas, G.

    1981-01-01

    The cross section for inclusive inelastic electron scattering from the helium isotopes has been measured at momentum transfers squared of 0.8 less than or equal to Q 2 less than or equal to 5.0 (GeV/c) 2 for 3 He and 0.8 less than or equal to Q 2 less than or equal to 2.4 (GeV/c) 2 for 4 He. The data were taken at 10 0 and cover the range 1.0 2 /2M/sub He/ν, which includes the elastic peak, nuclear breakup threshold, the high momentum tail of the quasi elastic scattering, and pion production. The structure function, νW 2 , derived from the data is approaching a scaling limit at high Q 2 . It can be factored into a product of functions of Q 2 and of x as predicted by some models

  16. Enhanced Exciton and Photon Confinement in Ruddlesden-Popper Perovskite Microplatelets for Highly Stable Low-Threshold Polarized Lasing.

    Science.gov (United States)

    Li, Mingjie; Wei, Qi; Muduli, Subas Kumar; Yantara, Natalia; Xu, Qiang; Mathews, Nripan; Mhaisalkar, Subodh G; Xing, Guichuan; Sum, Tze Chien

    2018-06-01

    At the heart of electrically driven semiconductors lasers lies their gain medium that typically comprises epitaxially grown double heterostuctures or multiple quantum wells. The simultaneous spatial confinement of charge carriers and photons afforded by the smaller bandgaps and higher refractive index of the active layers as compared to the cladding layers in these structures is essential for the optical-gain enhancement favorable for device operation. Emulating these inorganic gain media, superb properties of highly stable low-threshold (as low as ≈8 µJ cm -2 ) linearly polarized lasing from solution-processed Ruddlesden-Popper (RP) perovskite microplatelets are realized. Detailed investigations using microarea transient spectroscopies together with finite-difference time-domain simulations validate that the mixed lower-dimensional RP perovskites (functioning as cladding layers) within the microplatelets provide both enhanced exciton and photon confinement for the higher-dimensional RP perovskites (functioning as the active gain media). Furthermore, structure-lasing-threshold relationship (i.e., correlating the content of lower-dimensional RP perovskites in a single microplatelet) vital for design and performance optimization is established. Dual-wavelength lasing from these quasi-2D RP perovskite microplatelets can also be achieved. These unique properties distinguish RP perovskite microplatelets as a new family of self-assembled multilayer planar waveguide gain media favorable for developing efficient lasers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. High-resolution simulations of cylindrical void collapse in energetic materials: Effect of primary and secondary collapse on initiation thresholds

    Science.gov (United States)

    Rai, Nirmal Kumar; Schmidt, Martin J.; Udaykumar, H. S.

    2017-04-01

    Void collapse in energetic materials leads to hot spot formation and enhanced sensitivity. Much recent work has been directed towards simulation of collapse-generated reactive hot spots. The resolution of voids in calculations to date has varied as have the resulting predictions of hot spot intensity. Here we determine the required resolution for reliable cylindrical void collapse calculations leading to initiation of chemical reactions. High-resolution simulations of collapse provide new insights into the mechanism of hot spot generation. It is found that initiation can occur in two different modes depending on the loading intensity: Either the initiation occurs due to jet impact at the first collapse instant or it can occur at secondary lobes at the periphery of the collapsed void. A key observation is that secondary lobe collapse leads to large local temperatures that initiate reactions. This is due to a combination of a strong blast wave from the site of primary void collapse and strong colliding jets and vortical flows generated during the collapse of the secondary lobes. The secondary lobe collapse results in a significant lowering of the predicted threshold for ignition of the energetic material. The results suggest that mesoscale simulations of void fields may suffer from significant uncertainty in threshold predictions because unresolved calculations cannot capture the secondary lobe collapse phenomenon. The implications of this uncertainty for mesoscale simulations are discussed in this paper.

  18. Study on Relaxation Damage Properties of High Viscosity Asphalt Sand under Uniaxial Compression

    Directory of Open Access Journals (Sweden)

    Yazhen Sun

    2018-01-01

    Full Text Available Laboratory investigations of relaxation damage properties of high viscosity asphalt sand (HVAS by uniaxial compression tests and modified generalized Maxwell model (GMM to simulate viscoelastic characteristics coupling damage were carried out. A series of uniaxial compression relaxation tests were performed on HVAS specimens at different temperatures, loading rates, and constant levels of input strain. The results of the tests show that the peak point of relaxation modulus is highly influenced by the loading rate in the first half of an L-shaped curve, while the relaxation modulus is almost constant in the second half of the curve. It is suggested that for the HVAS relaxation tests, the temperature should be no less than −15°C. The GMM is used to determine the viscoelastic responses, the Weibull distribution function is used to characterize the damage of the HVAS and its evolution, and the modified GMM is a coupling of the two models. In this paper, the modified GMM is implemented through a secondary development with the USDFLD subroutine to analyze the relaxation damage process and improve the linear viscoelastic model in ABAQUS. Results show that the numerical method of coupling damage provides a better approximation of the test curve over almost the whole range. The results also show that the USDFLD subroutine can effectively predict the relaxation damage process of HVAS and can provide a theoretical support for crack control of asphalt pavements.

  19. Oblique Orientation Discrimination Thresholds Are Superior in Those with a High Level of Autistic Traits

    Science.gov (United States)

    Dickinson, Abigail; Jones, Myles; Milne, Elizabeth

    2014-01-01

    Enhanced low-level perception, although present in individuals with autism, is not seen in individuals with high, but non-clinical, levels of autistic traits (Brock et al.in "Percept Lond" 40(6):739. doi:10.1068/p6953, 2011). This is surprising, as many of the higher-level visual differences found in autism have been shown to correlate…

  20. A prediction and damage assessment model for snowmelt flood events in middle and high latitudes Region

    Science.gov (United States)

    Qiao, C.; Huang, Q.; Chen, T.; Zhang, X.

    2017-12-01

    In the context of global warming, the snowmelt flood events in the mountainous area of the middle and high latitudes are increasingly frequent and create severe casualties and property damages. Carrying out the prediction and risk assessment of the snowmelt flood is of great importance in the water resources management, the flood warning and prevention. Based on the remote sensing and GIS techniques, the relationships of the variables influencing the snowmelt flood such as the snow area, the snow depth, the air temperature, the precipitation, the land topography and land covers are analyzed and a prediction and damage assessment model for snowmelt floods is developed. This model analyzes and predicts the flood submerging area, flood depth, flood grade, and the damages of different underlying surfaces in the study area in a given time period based on the estimation of snowmelt amount, the snowmelt runoff, the direction and velocity of the flood. Then it was used to predict a snowmelt flood event in the Ertis River Basin in northern Xinjiang, China, during March and June, 2005 and to assess its damages including the damages of roads, transmission lines, settlements caused by the floods and the possible landslides using the hydrological and meteorological data, snow parameter data, DEM data and land use data. A comparison was made between the prediction results from this model and observation data including the flood measurement and its disaster loss data, which suggests that this model performs well in predicting the strength and impact area of snowmelt flood and its damage assessment. This model will be helpful for the prediction and damage assessment of snowmelt flood events in the mountainous area in the middle and high latitudes in spring, which has great social and economic significance because it provides a relatively reliable method for snowmelt flood prediction and reduces the possible damages caused by snowmelt floods.

  1. Single-longitudinal mode distributed-feedback fiber laser with low-threshold and high-efficiency

    Science.gov (United States)

    Jiang, Man; Zhou, Pu; Gu, Xijia

    2018-01-01

    Single-frequency fiber laser has attracted a lot of interest in recent years due to its numerous application potentials in telecommunications, LIDAR, high resolution sensing, atom frequency standard, etc. Phosphate glass fiber is one of the candidates for building compact high gain fiber lasers because of its capability of high-concentration of rare-earth ions doping in fiber core. Nevertheless, it is challenging for the integration of UV-written intra-core fiber Bragg gratings into the fiber laser cavity due to the low photosensitivity of phosphate glass fiber. The research presented in this paper will focus on demonstration of UV-written Bragg gratings in phosphate glass fiber and its application in direct-written short monolithic single-frequency fiber lasers. Strong π-phase shift Bragg grating structure is direct-inscribed into the Er/Yb co-doped gain fiber using an excimer laser, and a 5-cm-long phase mask is used to inscribe a laser cavity into the Er/Yb co-doped phosphate glass fibers. The phase mask is a uniform mask with a 50 μm gap in the middle. The fiber laser device emits output power of 10.44 mW with a slope efficiency of 21.5% and the threshold power is about 42.8 mW. Single-longitudinal mode operation is validated by radio frequency spectrum measurement. Moreover, the output spectrum at the highest power shows an excellent optical signal to noise ratio of about 70 dB. These results, to the best of our knowledge, show the lowest power threshold and highest efficiency among the reports that using the same structure to achieve single-longitudinal mode laser output.

  2. Particle damage sources for fused silica optics and their mitigation on high energy laser systems.

    Science.gov (United States)

    Bude, J; Carr, C W; Miller, P E; Parham, T; Whitman, P; Monticelli, M; Raman, R; Cross, D; Welday, B; Ravizza, F; Suratwala, T; Davis, J; Fischer, M; Hawley, R; Lee, H; Matthews, M; Norton, M; Nostrand, M; VanBlarcom, D; Sommer, S

    2017-05-15

    High energy laser systems are ultimately limited by laser-induced damage to their critical components. This is especially true of damage to critical fused silica optics, which grows rapidly upon exposure to additional laser pulses. Much progress has been made in eliminating damage precursors in as-processed fused silica optics (the advanced mitigation process, AMP3), and very high damage resistance has been demonstrated in laboratory studies. However, the full potential of these improvements has not yet been realized in actual laser systems. In this work, we explore the importance of additional damage sources-in particular, particle contamination-for fused silica optics fielded in a high-performance laser environment, the National Ignition Facility (NIF) laser system. We demonstrate that the most dangerous sources of particle contamination in a system-level environment are laser-driven particle sources. In the specific case of the NIF laser, we have identified the two important particle sources which account for nearly all the damage observed on AMP3 optics during full laser operation and present mitigations for these particle sources. Finally, with the elimination of these laser-driven particle sources, we demonstrate essentially damage free operation of AMP3 fused silica for ten large optics (a total of 12,000 cm 2 of beam area) for shots from 8.6 J/cm 2 to 9.5 J/cm 2 of 351 nm light (3 ns Gaussian pulse shapes). Potentially many other pulsed high energy laser systems have similar particle sources, and given the insight provided by this study, their identification and elimination should be possible. The mitigations demonstrated here are currently being employed for all large UV silica optics on the National Ignition Facility.

  3. Oxidative DNA damage and repair in skeletal muscle of humans exposed to high-altitude hypoxia

    DEFF Research Database (Denmark)

    Lundby, Carsten; Pilegaard, Henriette; van Hall, Gerrit

    2003-01-01

    Recent research suggests that high-altitude hypoxia may serve as a model for prolonged oxidative stress in healthy humans. In this study, we investigated the consequences of prolonged high-altitude hypoxia on the basal level of oxidative damage to nuclear DNA in muscle cells, a major oxygen-consuming...

  4. Measurement of the generalized form factors near threshold via γ*p→nπ+ at high Q2

    Science.gov (United States)

    Park, K.; Gothe, R. W.; Adhikari, K. P.; Adikaram, D.; Anghinolfi, M.; Baghdasaryan, H.; Ball, J.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Bennett, R. P.; Biselli, A. S.; Bookwalter, C.; Boiarinov, S.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Cole, P. L.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Daniel, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dupre, R.; El Alaoui, A.; El Fassi, L.; Eugenio, P.; Fedotov, G.; Fradi, A.; Gabrielyan, M. Y.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Graham, L.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Heddle, D.; Hicks, K.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jenkins, D.; Jo, H. S.; Joo, K.; Kalantarians, N.; Khandaker, M.; Khetarpal, P.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Kubarovsky, A.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Kvaltine, N. D.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Mestayer, M. D.; Meyer, C. A.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Moutarde, H.; Munevar, E.; Nadel-Turonski, P.; Nasseripour, R.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Pappalardo, L.; Paremuzyan, R.; Park, S.; Pereira, S. Anefalos; Phelps, E.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Prok, Y.; Ricco, G.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seraydaryan, H.; Sharabian, Y. G.; Smith, E. S.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tang, W.; Taylor, C. E.; Tian, Y.; Tkachenko, S.; Trivedi, A.; Ungaro, M.; Vernarsky, B.; Vlassov, A. V.; Voutier, E.; Watts, D. P.; Weygand, D. P.; Wood, M. H.; Zachariou, N.; Zhao, B.; Zhao, Z. W.

    2012-03-01

    We report the first extraction of the pion-nucleon multipoles near the production threshold for the nπ+ channel at relatively high momentum transfer (Q2 up to 4.2 GeV2). The dominance of the s-wave transverse multipole (E0+), expected in this region, allowed us to access the generalized form factor G1 within the light-cone sum-rule (LCSR) framework as well as the axial form factor GA. The data analyzed in this work were collected by the nearly 4π CEBAF Large Acceptance Spectrometer (CLAS) using a 5.754-GeV electron beam on a proton target. The differential cross section and the π-N multipole E0+/GD were measured using two different methods, the LCSR and a direct multipole fit. The results from the two methods are found to be consistent and almost Q2 independent.

  5. High Resolution SAR Imaging Employing Geometric Features for Extracting Seismic Damage of Buildings

    Science.gov (United States)

    Cui, L. P.; Wang, X. P.; Dou, A. X.; Ding, X.

    2018-04-01

    Synthetic Aperture Radar (SAR) image is relatively easy to acquire but difficult for interpretation. This paper probes how to identify seismic damage of building using geometric features of SAR. The SAR imaging geometric features of buildings, such as the high intensity layover, bright line induced by double bounce backscattering and dark shadow is analysed, and show obvious differences texture features of homogeneity, similarity and entropy in combinatorial imaging geometric regions between the un-collapsed and collapsed buildings in airborne SAR images acquired in Yushu city damaged by 2010 Ms7.1 Yushu, Qinghai, China earthquake, which implicates a potential capability to discriminate collapsed and un-collapsed buildings from SAR image. Study also shows that the proportion of highlight (layover & bright line) area (HA) is related to the seismic damage degree, thus a SAR image damage index (SARDI), which related to the ratio of HA to the building occupation are of building in a street block (SA), is proposed. While HA is identified through feature extraction with high-pass and low-pass filtering of SAR image in frequency domain. A partial region with 58 natural street blocks in the Yushu City are selected as study area. Then according to the above method, HA is extracted, SARDI is then calculated and further classified into 3 classes. The results show effective through validation check with seismic damage classes interpreted artificially from post-earthquake airborne high resolution optical image, which shows total classification accuracy 89.3 %, Kappa coefficient 0.79 and identical to the practical seismic damage distribution. The results are also compared and discussed with the building damage identified from SAR image available by other authors.

  6. High-order above-threshold ionization beyond the electric dipole approximation

    Science.gov (United States)

    Brennecke, Simon; Lein, Manfred

    2018-05-01

    Photoelectron momentum distributions from strong-field ionization are calculated by numerical solution of the one-electron time-dependent Schrödinger equation for a model atom including effects beyond the electric dipole approximation. We focus on the high-energy electrons from rescattering and analyze their momentum component along the field propagation direction. We show that the boundary of the calculated momentum distribution is deformed in accordance with the classical three-step model including the beyond-dipole Lorentz force. In addition, the momentum distribution exhibits an asymmetry in the signal strengths of electrons emitted in the forward/backward directions. Taken together, the two non-dipole effects give rise to a considerable average forward momentum component of the order of 0.1 a.u. for realistic laser parameters.

  7. Increased effects of machining damage in beryllium observed at high strain rates

    International Nuclear Information System (INIS)

    Beitscher, S.; Brewer, A.W.; Corle, R.R.

    1980-01-01

    Tensile tests at both low and high strain rates, and also impact shear tests, were performed on a weldable grade powder-source beryllium. Impact energies increased by a factor of 2 to 3 from the as-machined level after etching or annealing. Similar increases in the ductility from machining damage removal were observed from the tensile data at the higher strain rate (10 s -1 ) while an insignificant increase in elongation was measured at the lower strain rate (10 -4 s -1 ). High strain-rate tests appear to be more sensitive and reliable for evaluating machining practice and damage removal methods for beryllium components subjected to sudden loads. 2 tables

  8. A survey of high explosive-induced damage and spall in selected metals using proton radiography

    International Nuclear Information System (INIS)

    Holtkamp, D.B.; Clark, D.A.; Ferm, E.N.; Gallegos, R.A.; Hammon, D.; Hemsing, W.F.; Hogan, G.E.; Holmes, V.H.; King, N.S.P.; Lopez, R.P.; Merrill, F.E.; Morris, C.L.; Morley, K.B.; Murray, M.M.; Pazuchanics, P.D.; Prestridge, K.P.; Quintana, J.P.; Saunders, A.; Shinas, M.A.; Stacy, H.L.

    2004-01-01

    Multiple spall and damage layers can be created in metal when the free surface reflects a Taylor wave generated by high explosives. These phenomena have been explored in different thicknesses of several metals (tantalum, copper, 6061 T6-aluminum, and tin) using high-energy proton radiography. Multiple images (up to 21) can be produced of the dynamic evolution of damaged material on the microsecond time scale with a <50 ns 'shutter' time. Movies and multiframe still images of areal and (Abel inverted) volume densities are presented. An example of material that is likely melted on release (tin) is also presented

  9. Optical Thin Film Coating Having High Damage Resistance in Near-Stoichiometric MgO-Doped LiTaO3

    Science.gov (United States)

    Tateno, Ryo; Kashiwagi, Kunihiro

    2008-08-01

    Currently, High power and compact red, green, and blue (RGB) lasers are being considered for use in large screen laser televisions and reception-lobby projectors. Among these three laser sources, green semiconductor lasers are expensive and exhibit inferior performance in terms of the semiconductor material used, making it difficult to achieve a high output. In this study, we examined the use of our coating on MgO-doped LiTaO3, using a mirror coated with a multilayer film. Over a substrate, a Ta2O5 film was used to coat a high-refractive-index film layer, and a SiO2 film was used to coat a low-refractive-index film layer. To improve reflectivity, we designed the peak of the electric field intensity to be in the film layer with the low refractive index. As a result, the film endurance of 100 J/cm2 was obtained by one-on-one testing. With the nonlinear crystal material, the mirror without our coating exhibited a damage threshold of 33 J/cm2; however, after coating, this mirror demonstrated a higher damage threshold of 47 J/cm2. Thus, the film we fabricated using this technique is useful for improving the strength and durability of laser mirrors.

  10. High dose radiation damage in nuclear energy structural materials investigated by heavy ion irradiation simulation

    International Nuclear Information System (INIS)

    Zheng Yongnan; Xu Yongjun; Yuan Daqing

    2014-01-01

    Structural materials in ITER, ADS and fast reactor suffer high dose irradiations of neutrons and/or protons, that leads to severe displacement damage up to lOO dpa per year. Investigation of radiation damage induced by such a high dose irradiation has attracted great attention along with the development of nuclear energy facilities of new generation. However, it is deeply hampered for the lacking of high dose neutron and proton sources. Irradiation simulation of heavy ions produced by accelerators opens up an effective way for laboratory investigation of high dose irradiation induced radiation damage encountered in the ITER, ADS, etc. Radiation damage is caused mainly by atomic displacement in materials. The displacement rate of heavy ions is about lO 3 ∼10 7 orders higher than those of neutrons and protons. High displacement rate of heavy ions significantly reduces the irradiation time. The heavy ion irradiation simulation technique (HIIS) technique has been developed at China Institute of Atomic Energy and a series of the HIIS experiments have been performed to investigate radiation damage in stainless steels, tungsten and tantalum at irradiation temperatures from room temperature to 800 ℃ and in the irradiation dose region up to 100 dpa. The experimental results show that he radiation swelling peak for the modified stainless steel appears in the temperature region around 580 ℃ and the radiation damage is more sensitive to the temperature, the size of the radiation induced vacancy cluster or void increase with the increasing of the irradiation dose, and among the three materials the home-made modified stainless steel has the best radiation resistant property. (authors)

  11. Applications of high order harmonic radiation to UVX-solids interaction: high excitation density in electronic relaxation dynamics and surface damaging

    International Nuclear Information System (INIS)

    De Grazia, M.

    2007-12-01

    The new sources of radiation in the extreme-UV (X-UV: 10-100 nm), which deliver spatially coherent, ultra-short and intense pulses, allow studying high flux processes and ultra-fast dynamics in various domains. The thesis work presents two applications of the high-order laser harmonics (HH) to solid state physics. In Part I, we describe the optimization of the harmonic for studies of X-UV/solids interaction. In Part II, we investigate effects of high excitation density in the dynamics of electron relaxation in dielectric scintillator crystals - tungstates and fluorides, using time-resolved luminescence spectroscopy. Quenching of luminescence at short time gives evidence of the competition between radiative and non-radiative recombination of self-trapped excitons (STE). The non-radiative channel is identified to mutual interaction of STE at high excitation density. In Part III, we study the X-UV induced damage mechanism in various materials, either conductor (amorphous carbon) or insulators (organic polymers, e.g., PMMA). In PMMA-Plexiglas, in the desorption regime (0.2 mJ/cm 2 , i.e., below damage threshold), the surface modifications reflect X-UV induced photochemical processes that are tentatively identified, as a function of dose: at low dose, polymer chain scission followed by the blow-up of the volatile, low-molecular fragments leads to crater formation; at high dose, cross-linking in the near-surface layer of remaining material leads to surface hardening. These promising results have great perspectives considering the performances already attained and planned in the next future in the development of the harmonic sources. (author)

  12. Impacts of weld residual stresses and fatigue crack growth threshold on crack arrest under high-cycle thermal fluctuations

    International Nuclear Information System (INIS)

    Taheri, Said; Julan, Emricka; Tran, Xuan-Van; Robert, Nicolas

    2017-01-01

    Highlights: • For crack growth analysis, weld residual stress field must be considered through its SIF in presence of a crack. • Presence of cracks of same depth proves their arrest, where equal depth is because mean stress acts only on crack opening. • Not considering amplitudes under a fatigue crack growth threshold (FCGT) does not compensate the lack of FGCT in Paris law. • Propagation rates are close for axisymmetric and circumferential semi-elliptical cracks. - Abstract: High cycle thermal crazing has been observed in some residual heat removal (RHR) systems made of 304 stainless steel in PWR nuclear plants. This paper deals with two types of analyses including logical argumentation and simulation. Crack arrest in networks is demonstrated due to the presence of two cracks of the same depth in the network. This identical depth may be proved assuming that mean stress acts only on crack opening and that cracks are fully open during the load cycle before arrest. Weld residual stresses (WRS) are obtained by an axisymmetric simulation of welding on a tube with a chamfer. Axisymmetric and 3D parametric studies of crack growth on: representative sequences for variable amplitude thermal loading, fatigue crack growth threshold (FCGT), permanent mean stress, cyclic counting methods and WRS, are performed with Code-Aster software using XFEM methodology. The following results are obtained on crack depth versus time: the effect of WRS on crack growth cannot be determined by the initial WRS field in absence of crack, but by the associated stress intensity factor. Moreover the relation between crack arrest depth and WRS is analyzed. In the absence of FCGT Paris’s law may give a significant over-estimation of crack depth even if amplitudes of loading smaller than FCGT have not been considered. Appropriate depth versus time may be obtained using different values of FCGT, but axisymmetric simulations do not really show a possibility of arrest for shallow cracks in

  13. Impacts of weld residual stresses and fatigue crack growth threshold on crack arrest under high-cycle thermal fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Taheri, Said, E-mail: Said.taheri@edf.fr [EDF-LAB, IMSIA, 7 Boulevard Gaspard Monge, 91120 Palaiseau Cedex (France); Julan, Emricka [EDF-LAB, AMA, 7 Boulevard Gaspard Monge, 91120 Palaiseau Cedex (France); Tran, Xuan-Van [EDF Energy R& D UK Centre/School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL (United Kingdom); Robert, Nicolas [EDF-DPN, UNIE, Strategic Center, Saint Denis (France)

    2017-01-15

    Highlights: • For crack growth analysis, weld residual stress field must be considered through its SIF in presence of a crack. • Presence of cracks of same depth proves their arrest, where equal depth is because mean stress acts only on crack opening. • Not considering amplitudes under a fatigue crack growth threshold (FCGT) does not compensate the lack of FGCT in Paris law. • Propagation rates are close for axisymmetric and circumferential semi-elliptical cracks. - Abstract: High cycle thermal crazing has been observed in some residual heat removal (RHR) systems made of 304 stainless steel in PWR nuclear plants. This paper deals with two types of analyses including logical argumentation and simulation. Crack arrest in networks is demonstrated due to the presence of two cracks of the same depth in the network. This identical depth may be proved assuming that mean stress acts only on crack opening and that cracks are fully open during the load cycle before arrest. Weld residual stresses (WRS) are obtained by an axisymmetric simulation of welding on a tube with a chamfer. Axisymmetric and 3D parametric studies of crack growth on: representative sequences for variable amplitude thermal loading, fatigue crack growth threshold (FCGT), permanent mean stress, cyclic counting methods and WRS, are performed with Code-Aster software using XFEM methodology. The following results are obtained on crack depth versus time: the effect of WRS on crack growth cannot be determined by the initial WRS field in absence of crack, but by the associated stress intensity factor. Moreover the relation between crack arrest depth and WRS is analyzed. In the absence of FCGT Paris’s law may give a significant over-estimation of crack depth even if amplitudes of loading smaller than FCGT have not been considered. Appropriate depth versus time may be obtained using different values of FCGT, but axisymmetric simulations do not really show a possibility of arrest for shallow cracks in

  14. High-energy-neutron damage in Nb3Sn: changes in critical properties, and damage-energy analysis

    International Nuclear Information System (INIS)

    Snead, C.L. Jr.; Parkin, D.M.; Guinan, M.W.

    1981-01-01

    Filamentary wires of Nb 3 Sn have been irradiated with fission-reactor, 14.8-MeV, and d-Be neutrons and the changes in critical properties measured. The changes observed scale reasonably well with the calculated damage energies for the irradiations. A critical dose for operation of these conductors in fusion-magnet applications is determined to be 0.19 eV/atom damage energy or 0.0019 dpa

  15. A comprehensive analysis of earthquake damage patterns using high dimensional model representation feature selection

    Science.gov (United States)

    Taşkin Kaya, Gülşen

    2013-10-01

    Recently, earthquake damage assessment using satellite images has been a very popular ongoing research direction. Especially with the availability of very high resolution (VHR) satellite images, a quite detailed damage map based on building scale has been produced, and various studies have also been conducted in the literature. As the spatial resolution of satellite images increases, distinguishability of damage patterns becomes more cruel especially in case of using only the spectral information during classification. In order to overcome this difficulty, textural information needs to be involved to the classification to improve the visual quality and reliability of damage map. There are many kinds of textural information which can be derived from VHR satellite images depending on the algorithm used. However, extraction of textural information and evaluation of them have been generally a time consuming process especially for the large areas affected from the earthquake due to the size of VHR image. Therefore, in order to provide a quick damage map, the most useful features describing damage patterns needs to be known in advance as well as the redundant features. In this study, a very high resolution satellite image after Iran, Bam earthquake was used to identify the earthquake damage. Not only the spectral information, textural information was also used during the classification. For textural information, second order Haralick features were extracted from the panchromatic image for the area of interest using gray level co-occurrence matrix with different size of windows and directions. In addition to using spatial features in classification, the most useful features representing the damage characteristic were selected with a novel feature selection method based on high dimensional model representation (HDMR) giving sensitivity of each feature during classification. The method called HDMR was recently proposed as an efficient tool to capture the input

  16. Accelerated Near-Threshold Fatigue Crack Growth Behavior of an Aluminum Powder Metallurgy Alloy

    Science.gov (United States)

    Piascik, Robert S.; Newman, John A.

    2002-01-01

    Fatigue crack growth (FCG) research conducted in the near threshold regime has identified a room temperature creep crack growth damage mechanism for a fine grain powder metallurgy (PM) aluminum alloy (8009). At very low DK, an abrupt acceleration in room temperature FCG rate occurs at high stress ratio (R = Kmin/Kmax). The near threshold accelerated FCG rates are exacerbated by increased levels of Kmax (Kmax less than 0.4 KIC). Detailed fractographic analysis correlates accelerated FCG with the formation of crack-tip process zone micro-void damage. Experimental results show that the near threshold and Kmax influenced accelerated crack growth is time and temperature dependent.

  17. Abnormal photothermal effect of laser radiation on highly defect oxide bronze nanoparticles under the sub-threshold excitation of absorption

    Science.gov (United States)

    Gulyaev, P.; Kotvanova, M.; Omelchenko, A.

    2017-05-01

    The mechanism of abnormal photo-thermal effect of laser radiation on nanoparticles of oxide bronzes has been proposed in this paper. The basic features of the observed effect are: a) sub-threshold absorption of laser radiation by the excitation of donor-like levels formed in the energy gap due to superficial defects of the oxide bronze nano-crystals; b) an interband radiationless transition of energy of excitation on deep triplet levels and c) consequent recombination occurring at the plasmon absorption. K or Na atoms thermally intercalated to the octahedral crystal structure of TiO2 in the wave SHS combustion generate acceptor levels in the gap. The prepared oxide bronzes of the non-stoichiometric composition NaxTiO2 and KxTiO2 were examined by high resolution TEM, and then grinded in a planetary mill with powerful dispersion energy density up to 4000 J/g. This made it possible to obtain nanoparticles about 50 nm with high surface defect density (1017-1019 cm-2 at a depth of 10 nm). High photo-thermal effect of laser radiation on the defect nanocrystals observed after its impregnation into cartilaginous tissue exceeds 7 times in comparison with the intact ones.

  18. Prediction of microstructure and ductile damage of a high-speed railway axle steel during cross wedge rolling

    OpenAIRE

    Huo, Y; Lin, J; Bai, Q; Wang, B; Tang, X; Ji, H

    2016-01-01

    Microstructure and ductile damage have a significant influence on the deformation behavior of high-speed railway axles during hot cross wedge rolling (CWR) and its final performance. In this study, based on the continuum damage mechanics, a multiaxial constitutive model coupling microstructure and ductile damage was established to predict the evolution of microstructure and ductile damage of 25CrMo4 during hot CWR processes. Material constants within the multiaxial constitutive model were det...

  19. Compilation of radiation damage test data part III: materials used around high-energy accelerators

    CERN Document Server

    Beynel, P; Schönbacher, H; CERN. Geneva

    1982-01-01

    For pt.II see CERN report 79-08 (1979). This handbook gives the results of radiation damage tests on various engineering materials and components intended for installation in radiation areas of the CERN high-energy particle accelerators. It complements two previous volumes covering organic cable-insulating materials and thermoplastic and thermosetting resins.

  20. Detection of Fatigue Damage by Using High Frequency Nonlinear Laser Ultrasonic Signals

    International Nuclear Information System (INIS)

    Park, Seung Kyu; Park, Nak Kyu; Baik, Sung Hoon; Cheong, Yong Moo; Cha, Byung Heon

    2012-01-01

    The detection of fatigue damage for the components of a nuclear power plant is one of key techniques to prevent a catastrophic accident and the subsequent severe losses. Specifically, it is preferred to detect at an early stage of the fatigue damage. If the fatigue damage that is in danger of growing into a fracture is accurately detected, an appropriate treatment could be carried out to improve the condition. Although most engineers and designers take precautions against fatigue, some breakdowns of nuclear power plant components still occur due to fatigue damage. It is considered that ultrasound testing technique is the most promising method to detect the fatigue damage in many nondestructive testing methods. Laser ultrasound has attracted attention as a noncontact testing technique. Especially, laser ultrasonic signal has wide band frequency spectrum which can provide more accurate information for a testing material. The conventional linear ultrasonic technique is sensitive to gross defects or opened cracks whereas it is less sensitive to evenly distributed micro-cracks or degradation. An alternative technique to overcome this limitation is nonlinear ultrasound. The principal difference between linear and nonlinear technique is that in the latter the existence and characteristics of defects are often related to an acoustic signal whose frequency differs from that of the input signal. This is related to the radiation and propagation of finite amplitude, especially high power, ultrasound and its interaction with discontinuities, such as cracks, interfaces and voids. Since material failure or degradation is usually preceded by some kind of nonlinear mechanical behavior before significant plastic deformation or material damage occurs. The presence of nonlinear terms in the wave equation causes intense acoustic waves to generate new waves at frequencies which are multiples of the initial sound wave frequency. The nonlinear effect can exert a strong effect on the

  1. Radiation Damage Observations in the ATLAS Pixel Detector Using the High Voltage Delivery System

    CERN Document Server

    Toms, K

    2011-01-01

    We describe the implementation of radiation damage monitoring using leakage current measurement of the silicon pixel sensors provided by the circuits of the ATLAS Pixel Detector high voltage delivery (HVPP4) system. The dependence of the leakage current upon the integrated luminosity for several temperature scenarios is presented. Based on the analysis we have determined the sensitivity specifications for a Current Measurement System. The status of the system and the first measurement of the radiation damage corresponding to 2--4 fb$^{-1}$ of integrated luminosity are presented, as well as the comparison with the theoretical model.

  2. The assessment of bond strength between heat damaged concrete and high strength fibre reinforced concrete

    Science.gov (United States)

    Zahid, M. Z. A. Mohd; Muhamad, K.

    2017-09-01

    The aim of this study is to assess the bond strength between heat damaged concrete and high strength fibre reinforced concrete (HPFRC). Firstly, this paper presents the various steps taken to prepare the HPFRC with self-compacting property. The minimum targeted slump flow is 600 mm and minimum targeted compressive strength is 80 MPa. The key mix variables considered are such as type of superplasticizer, water cement ratio and silica fume content. Then, the bond strength between the heat damaged concrete with HPFRC was examined. The experimental parameters are heating temperature, surface treatment technique and curing method and the results show that, all experimental parameters are significantly affected the bond strength between heat damaged concrete and HPFRC.

  3. Assessment of damage domains of the High-Temperature Engineering Test Reactor (HTTR)

    International Nuclear Information System (INIS)

    Flores, Alain; Izquierdo, José María; Tuček, Kamil; Gallego, Eduardo

    2014-01-01

    Highlights: • We developed an adequate model for the identification of damage domains of the HTTR. • We analysed an anticipated operational transient, using the HTTR5+/GASTEMP code. • We simulated several transients of the same sequence. • We identified the corresponding damage domains using two methods. • We calculated exceedance frequency using the two methods. - Abstract: This paper presents an assessment analysis of damage domains of the 30 MW th prototype High-Temperature Engineering Test Reactor (HTTR) operated by the Japan Atomic Energy Agency (JAEA). For this purpose, an in-house deterministic risk assessment computational tool was developed based on the Theory of Stimulated Dynamics (TSD). To illustrate the methodology and applicability of the developed modelling approach, assessment results of a control rod (CR) withdrawal accident during subcritical conditions are presented and compared with those obtained by the JAEA

  4. Assessment of Mechanical Properties and Damage of High Performance Concrete Subjected to Magnesium Sulfate Environment

    Directory of Open Access Journals (Sweden)

    Sheng Cang

    2017-01-01

    Full Text Available Sulfate attack is one of the most important problems affecting concrete structures, especially magnesium sulfate attack. This paper presents an investigation on the mechanical properties and damage evolution of high performance concrete (HPC with different contents of fly ash exposure to magnesium sulfate environment. The microstructure, porosity, mass loss, dimensional variation, compressive strength, and splitting tensile strength of HPC were investigated at various erosion times up to 392 days. The ultrasonic pulse velocity (UPV propagation in HPC at different erosion time was determined by using ultrasonic testing technique. A relationship between damage and UPV of HPC was derived according to damage mechanics, and a correlation between the damage of HPC and erosion time was obtained eventually. The results indicated that (1 the average increasing amplitude of porosity for HPCs was 34.01% before and after exposure to magnesium sulfate solution; (2 the damage evolution of HPCs under sulfate attack could be described by an exponential fitting; (3 HPC containing 20% fly ash had the strongest resistance to magnesium sulfate attack.

  5. Improved assay for thymine base damage in E. coli using high performance liquid chromatography

    International Nuclear Information System (INIS)

    Claycamp, H.G.

    1985-01-01

    A simple high performance liquid chromatography (HPLC) technique has been established for the simultaneous assay of thymine and thymidine radiation damage products. The HPLC procedure uses an isocratic mobile phase of 4% acetonitrile in 0.2 M ammonium dihydrogen phosphate (pH 5.0), a reversed-phase octadecylsilicate (5 micro-spherical packing) 0.45 x 25 cm column, and a variable wavelength UV detector. This procedure affords much better resolution than other published procedures that use 10 micron columns or separate assays for bases and nucleosides. For example, irradiation of 5 x 10 -3 M thymidine solutions have been performed to calibrate the system for base damage assays in E. coli. This yields up to 15 resolvable residues within 20 minutes. Sensitivity of the system (at 2210 nm) for 5,6- dihydrothymine (DHT) is about 10 -10 moles. Preliminary results show that this translates to about 0.4 DHT residues per 10 6 daltons of E. coli DNA. This is comparable to the sensitivities of monoclonal assays to thymine damage products that have recently been reported by others. Since it is feasible that the sensitivity of this system can be improved by 2-3 times, this HPLC technique should provide a simple and rapid means of detecting E. coli base damage release and base damage in nucleoside hydrolysates of DNA

  6. Methodology for determining void swelling at very high damage under ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Getto, E., E-mail: embecket@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Sun, K. [Department of Materials Science Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Taller, S.; Monterrosa, A.M.; Jiao, Z. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Was, G.S. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Department of Materials Science Engineering, University of Michigan, Ann Arbor, MI 48109 (United States)

    2016-08-15

    At very high damage levels in ion irradiated samples, the decrease in effective density of the irradiated material due to void swelling can lead to errors in quantifying swelling. HT9 was pre-implanted with 10 appm He and subjected to a raster-scanned beam with a damage rate of ∼1 × 10{sup −3} dpa/s at 460{sup o}C. Voids were characterized from 0 to 1300 nm. Fixed damage rate and fixed depth methods were developed to account for damage-dependent porosity increase and resulting dependence on depth. The fixed depth method was more appropriate as it limits undue effects from the injected interstitial while maintaining a usable void distribution. By keeping the depth fixed and accounting for the change in damage rate due to reduced density, the steady state swelling rate was 10% higher than calculation of swelling from raw data. This method is easily translatable to other materials, ion types and energies and limits the impact of the injected interstitial.

  7. High EDSS can predict risk for upper urinary tract damage in patients with multiple sclerosis.

    Science.gov (United States)

    Ineichen, Benjamin V; Schneider, Marc P; Hlavica, Martin; Hagenbuch, Niels; Linnebank, Michael; Kessler, Thomas M

    2018-04-01

    Neurogenic lower urinary tract dysfunction (NLUTD) is very common in patients with multiple sclerosis (MS), and it might jeopardize renal function and thereby increase mortality. Although there are well-known urodynamic risk factors for upper urinary tract damage, no clinical prediction parameters are available. We aimed to assess clinical parameters potentially predicting urodynamic risk factors for upper urinary tract damage. A consecutive series of 141 patients with MS referred from neurologists for primary neuro-urological work-up including urodynamics were prospectively evaluated. Clinical parameters taken into account were age, sex, duration, and clinical course of MS and Expanded Disability Status Scale (EDSS). Multivariate modeling revealed EDSS as a clinical parameter significantly associated with urodynamic risk factors for upper urinary tract damage (odds ratio = 1.34, 95% confidence interval (CI) = 1.06-1.71, p = 0.02). Using receiver operator characteristic (ROC) curves, an EDSS of 5.0 as cutoff showed a sensitivity of 86%-87% and a specificity of 52% for at least one urodynamic risk factor for upper urinary tract damage. High EDSS is significantly associated with urodynamic risk factors for upper urinary tract damage and allows a risk-dependent stratification in daily neurological clinical practice to identify MS patients requiring further neuro-urological assessment and treatment.

  8. Novel high-fidelity realistic explosion damage simulation for urban environments

    Science.gov (United States)

    Liu, Xiaoqing; Yadegar, Jacob; Zhu, Youding; Raju, Chaitanya; Bhagavathula, Jaya

    2010-04-01

    Realistic building damage simulation has a significant impact in modern modeling and simulation systems especially in diverse panoply of military and civil applications where these simulation systems are widely used for personnel training, critical mission planning, disaster management, etc. Realistic building damage simulation should incorporate accurate physics-based explosion models, rubble generation, rubble flyout, and interactions between flying rubble and their surrounding entities. However, none of the existing building damage simulation systems sufficiently faithfully realize the criteria of realism required for effective military applications. In this paper, we present a novel physics-based high-fidelity and runtime efficient explosion simulation system to realistically simulate destruction to buildings. In the proposed system, a family of novel blast models is applied to accurately and realistically simulate explosions based on static and/or dynamic detonation conditions. The system also takes account of rubble pile formation and applies a generic and scalable multi-component based object representation to describe scene entities and highly scalable agent-subsumption architecture and scheduler to schedule clusters of sequential and parallel events. The proposed system utilizes a highly efficient and scalable tetrahedral decomposition approach to realistically simulate rubble formation. Experimental results demonstrate that the proposed system has the capability to realistically simulate rubble generation, rubble flyout and their primary and secondary impacts on surrounding objects including buildings, constructions, vehicles and pedestrians in clusters of sequential and parallel damage events.

  9. Carbon-carbon composite and copper-composite bond damages for high flux component controlled fusion

    International Nuclear Information System (INIS)

    Chevet, G.

    2010-01-01

    Plasma facing components constitute the first wall in contact with plasma in fusion machines such as Tore Supra and ITER. These components have to sustain high heat flux and consequently elevated temperatures. They are made up of an armour material, the carbon-carbon composite, a heat sink structure material, the copper chromium zirconium, and a material, the OFHC copper, which is used as a compliant layer between the carbon-carbon composite and the copper chromium zirconium. Using different materials leads to the apparition of strong residual stresses during manufacturing, because of the thermal expansion mismatch between the materials, and compromises the lasting operation of fusion machines as damage which appeared during manufacturing may propagate. The objective of this study is to understand the damage mechanisms of the carbon-carbon composite and the composite-copper bond under solicitations that plasma facing components may suffer during their life. The mechanical behaviours of carbon-carbon composite and composite-copper bond were studied in order to define the most suitable models to describe these behaviours. With these models, thermomechanical calculations were performed on plasma facing components with the finite element code Cast3M. The manufacturing of the components induces high stresses which damage the carbon-carbon composite and the composite-copper bond. The damage propagates during the cooling down to room temperature and not under heat flux. Alternative geometries for the plasma facing components were studied to reduce damage. The relation between the damage of the carbon-carbon composite and its thermal conductivity was also demonstrated. (author) [fr

  10. EJ-309 pulse shape discrimination performance with a high gamma-ray-to-neutron ratio and low threshold

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, A.C., E-mail: Alexis.C.Kaplan@gmail.com [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Blvd., Ann Arbor, MI 48104 (United States); Nuclear Engineering and Nonproliferation Division, Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Flaska, M.; Enqvist, A.; Dolan, J.L.; Pozzi, S.A. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Blvd., Ann Arbor, MI 48104 (United States)

    2013-11-21

    Measuring neutrons in the presence of high gamma-ray fluence is a challenge with multi-particle detectors. Organic liquid scintillators such as the EJ-309 are capable of accurate pulse-shape discrimination (PSD) but the chance for particle misclassification is not negligible for some applications. By varying the distance from an EJ-309 scintillator to a strong-gamma-ray source and keeping a weak-neutron source at a fixed position, various gamma-to-neutron ratios can be measured and PSD performance can be quantified. Comparing neutron pulse-height distributions allows for pulse-height specific PSD evaluation, and quantification and visualization of deviation from {sup 252}Cf alone. Even with the addition of the misclassified gamma-rays, the PSD is effective in separating particles so that neutron count rate can be predicted with less than 10% error up to a gamma-to-neutron ratio of almost 650. For applications which can afford a reduction in neutron detection efficiency, PSD can be sufficiently effective in discriminating particles to measure a weak neutron source in a high gamma-ray background. -- Highlights: •We measure neutrons in a high photon background with EJ-309 liquid scintillators. •A low threshold is used to test the limits of particle discrimination. •A weak neutron signal is detectable with a gamma/neutron ratio as high as 770. •Photon pileup most commonly adds to error in classification of neutrons. •Neutron count rates are within 10% of expected rate under high gamma background.

  11. EJ-309 pulse shape discrimination performance with a high gamma-ray-to-neutron ratio and low threshold

    International Nuclear Information System (INIS)

    Kaplan, A.C.; Flaska, M.; Enqvist, A.; Dolan, J.L.; Pozzi, S.A.

    2013-01-01

    Measuring neutrons in the presence of high gamma-ray fluence is a challenge with multi-particle detectors. Organic liquid scintillators such as the EJ-309 are capable of accurate pulse-shape discrimination (PSD) but the chance for particle misclassification is not negligible for some applications. By varying the distance from an EJ-309 scintillator to a strong-gamma-ray source and keeping a weak-neutron source at a fixed position, various gamma-to-neutron ratios can be measured and PSD performance can be quantified. Comparing neutron pulse-height distributions allows for pulse-height specific PSD evaluation, and quantification and visualization of deviation from 252 Cf alone. Even with the addition of the misclassified gamma-rays, the PSD is effective in separating particles so that neutron count rate can be predicted with less than 10% error up to a gamma-to-neutron ratio of almost 650. For applications which can afford a reduction in neutron detection efficiency, PSD can be sufficiently effective in discriminating particles to measure a weak neutron source in a high gamma-ray background. -- Highlights: •We measure neutrons in a high photon background with EJ-309 liquid scintillators. •A low threshold is used to test the limits of particle discrimination. •A weak neutron signal is detectable with a gamma/neutron ratio as high as 770. •Photon pileup most commonly adds to error in classification of neutrons. •Neutron count rates are within 10% of expected rate under high gamma background

  12. Conference Analysis Report of Assessments on Defect and Damage for a High Temperature Structure

    International Nuclear Information System (INIS)

    Lee, Hyeong Yeon

    2008-11-01

    This report presents the analysis on the state-of-the-art research trends on creep-fatigue damage, defect assessment of high temperature structure, development of heat resistant materials and their behavior at high temperature based on the papers presented in the two international conferences of ASME PVP 2008 which was held in Chicago in July 2008 and CF-5(5th International Conference on Creep, Fatigue and Creep-Fatigue) which was held in Kalpakkam, India in September 2008

  13. Conference Analysis Report of Assessments on Defect and Damage for a High Temperature Structure

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeong Yeon

    2008-11-15

    This report presents the analysis on the state-of-the-art research trends on creep-fatigue damage, defect assessment of high temperature structure, development of heat resistant materials and their behavior at high temperature based on the papers presented in the two international conferences of ASME PVP 2008 which was held in Chicago in July 2008 and CF-5(5th International Conference on Creep, Fatigue and Creep-Fatigue) which was held in Kalpakkam, India in September 2008.

  14. Acoustic Emission and Damage Characteristics of Granite Subjected to High Temperature

    Directory of Open Access Journals (Sweden)

    X. L. Xu

    2018-01-01

    Full Text Available Acoustic emission (AE signals can be detected from rocks under the effect of temperature and loading, which can be used to reflect rock damage evolution process and predict rock fracture. In this paper, uniaxial compression tests of granite at high temperatures from 25°C to 1000°C were carried out, and AE signals were monitored simultaneously. The results indicated that AE ring count rate shows the law of “interval burst” and “relatively calm,” which can be explained from the energy point of view. From 25°C to 1000°C, the rock failure mode changes from single splitting failure to multisplitting failure, and then to incomplete shear failure, ideal shear failure, and double shear failure, until complete integral failure. Thermal damage (DT defined by the elastic modulus shows logistic increase with the rise of temperature. Mechanical damage (DM derived by the AE ring count rate can be divided into initial stage, stable stage, accelerated stage, and destructive stage. Total damage (D increases with the rise of strain, which is corresponding to the stress-strain curve at various temperatures. Using AE data, we can further analyze the mechanism of deformation and fracture of rock, which helps to gather useful data for predicting rock stability at high temperatures.

  15. 1.3μm low threshold distributed feedback lasers for high bit-rate applications

    International Nuclear Information System (INIS)

    Artigue, C.; Louis, Y.; Padioleau, C.; Poingt, F.; Sigogne, D.; Starck, C.; Benoit, J.

    1985-01-01

    A low threshold current (≅ 30 mA) 1.3μm (InGaAsP) second order DFB laser with a ridge structure made by liquid phase epitaxy is reported. The low threshold results from: optimized heterostructure and grating profile, good tuning of the DFB wavelength with the peak gain wavelength, and the proper LPE regrowth conditions on the grating

  16. High-Temperature Performance and Multiscale Damage Mechanisms of Hollow Cellulose Fiber-Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Liping Guo

    2016-01-01

    Full Text Available Spalling resistance properties and their damage mechanisms under high temperatures are studied in hollow cellulose fiber-reinforced concrete (CFRC used in tunnel structures. Measurements of mass loss, relative dynamic elastic modulus, compressive strength, and splitting tensile strength of CFRC held under high temperatures (300, 600, 800, and 1050°C for periods of 2.5, 4, and 5.5 h were carried out. The damage mechanism was analyzed using scanning electron microscopy, mercury intrusion porosimetry, thermal analysis, and X-ray diffraction phase analysis. The results demonstrate that cellulose fiber can reduce the performance loss of concrete at high temperatures; the effect of holding time on the performance is more noticeable below 600°C. After exposure to high temperatures, the performance of ordinary concrete deteriorates faster and spalls at 700–800°C; in contrast, cellulose fiber melts at a higher temperature, leaving a series of channels in the matrix that facilitate the release of the steam pressure inside the CFRC. Hollow cellulose fibers can thereby slow the damage caused by internal stress and improve the spalling resistance of concrete under high temperatures.

  17. High-damage-resistant tungsten disulfide saturable absorber mirror for passively Q-switched fiber laser.

    Science.gov (United States)

    Chen, Hao; Chen, YuShan; Yin, Jinde; Zhang, Xuejun; Guo, Tuan; Yan, Peiguang

    2016-07-25

    In this paper, we demonstrate a high-damage-resistant tungsten disulfide saturable absorber mirror (WS2-SAM) fabricated by magnetron sputtering technique. The WS2-SAM has an all-fiber-integrated configuration and high-damage-resistant merit because the WS2 layer is protected by gold film so as to avoid being oxidized and destroyed at high pump power. Employing the WS2-SAM in an Erbium-doped fiber laser (EDFL) with linear cavity, the stable Q-switching operation is achieved at central wavelength of 1560 nm, with the repetition rates ranging from 29.5 kHz to 367.8 kHz and the pulse duration ranging from 1.269 μs to 154.9 ns. For the condition of the maximum pump power of 600 mW, the WS2-SAM still works stably with an output power of 25.2 mW, pulse energy of 68.5 nJ, and signal-noise-ratio of 42 dB. The proposed WS2-SAM configuration provides a promising solution for advanced pulsed fiber lasers with the characteristics of high damage resistance, high output energy, and wide tunable frequency.

  18. Persistent DNA damage after high dose in vivo gamma exposure of minipig skin.

    Directory of Open Access Journals (Sweden)

    Emad A Ahmed

    Full Text Available Exposure to high doses of ionizing radiation (IR can lead to localized radiation injury of the skin and exposed cells suffer dsDNA breaks that may elicit cell death or stochastic changes. Little is known about the DNA damage response after high-dose exposure of the skin. Here, we investigate the cellular and DNA damage response in acutely irradiated minipig skin.IR-induced DNA damage, repair and cellular survival were studied in 15 cm(2 of minipig skin exposed in vivo to ~50 Co-60 γ rays. Skin biopsies of control and 4 h up to 96 days post exposure were investigated for radiation-induced foci (RIF formation using γ-H2AX, 53BP1, and active ATM-p immunofluorescence. High-dose IR induced massive γ-H2AX phosphorylation and high 53BP1 RIF numbers 4 h, 20 h after IR. As time progressed RIF numbers dropped to a low of 3-fold elevated at all subsequent time points. Replicating basal cells (Ki67+ were reduced 3 days post IR followed by increased proliferation and recovery of epidermal cellularity after 28 days.Acute high dose irradiation of minipig epidermis impaired stem cell replication and induced elevated apoptosis from 3 days onward. DNA repair cleared the high numbers of DBSs in skin cells, while RIFs that persisted in <1% cells marked complex and potentially lethal DNA damage up to several weeks after exposure. An elevated frequency of keratinocytes with persistent RIFs may thus serve as indicator of previous acute radiation exposure, which may be useful in the follow up of nuclear or radiological accident scenarios.

  19. Top quark threshold scan and study of detectors for highly granular hadron calorimeters at future linear colliders

    International Nuclear Information System (INIS)

    Tesar, Michal

    2014-01-01

    Two major projects for future linear electron-positron colliders, the International Linear Collider (ILC) and the Compact Linear Collider (CLIC), are currently under development. These projects can be seen as complementary machines to the Large Hadron Collider (LHC) which permit a further progress in high energy physics research. They overlap considerably and share the same technological approaches. To meet the ambitious goals of precise measurements, new detector concepts like very finely segmented calorimeters are required. We study the precision of the top quark mass measurement achievable at CLIC and the ILC. The employed method was a t anti t pair production threshold scan. In this technique, simulated measurement points of the t anti t production cross section around the threshold are fitted with theoretical curves calculated at next-to-next-to-leading order. Detector effects, the influence of the beam energy spectrum and initial state radiation of the colliding particles are taken into account. Assuming total integrated luminosity of 100 fb -1 , our results show that the top quark mass in a theoretically well-defined 1S mass scheme can be extracted with a combined statistical and systematic uncertainty of less than 50 MeV. The other part of this work regards experimental studies of highly granular hadron calorimeter (HCAL) elements. To meet the required high jet energy resolution at the future linear colliders, a large and finely segmented detector is needed. One option is to assemble a sandwich calorimeter out of many low-cost scintillators read out by silicon photomultipliers (SiPM). We characterize the areal homogeneity of SiPM response with the help of a highly collimated beam of pulsed visible light. The spatial resolution of the experiment reach the order of 1 μm and allows to study the active area structures within single SiPM microcells. Several SiPM models are characterized in terms of relative photon detection efficiency and probability crosstalk

  20. Extreme implanting in Si: A study of ion-induced damage at high temperature and high dose

    International Nuclear Information System (INIS)

    Holland, O.W.

    1994-01-01

    Ion-solid interactions near room temperature and below have been well studied in single-crystal Si. While this has led to a better understanding of the mechanisms responsible for nucleation and growth of lattice damage during irradiation, these studies have not, in general, been extended to high temperatures (e.g., >200 degrees C). This is the case despite the commercialization of ion beam technologies which utilize high-temperature processing, such as separation by implantation of oxygen (SIMOX). In this process, a silicon-on-insulator (SOI) material is produced by implanting a high dose of oxygen ions into a Si wafer to form a buried, stoichiometric oxide layer. Results will be presented of a study of damage accumulation during high-dose implantation of Si at elevated temperatures. In particular, O + -ions were used because of the potential impact of the results on the SIMOX technology. It will be shown that the nature of the damage accumulation at elevated temperatures is quite distinctive and portends the presence of a new mechanism, one which is only dominant under the extreme conditions encountered during ion beam synthesis (i.e., high temperature and high dose). This mechanism is discussed and shown to be quite general and not dependent on the chemical identity of the ions. Also, techniques for suppressing this mechanism by open-quotes defect engineeringclose quotes are discussed. Such techniques are technologically relevant because they offer the possibility of reducing the defect density of the SOI produced by SIMOX

  1. Oxidative DNA damage and repair in skeletal muscle of humans exposed to high-altitude hypoxia

    International Nuclear Information System (INIS)

    Lundby, Carsten; Pilegaard, Henriette; Hall, Gerrit van; Sander, Mikael; Calbet, Jose; Loft, Steffen; Moeller, Peter

    2003-01-01

    Recent research suggests that high-altitude hypoxia may serve as a model for prolonged oxidative stress in healthy humans. In this study, we investigated the consequences of prolonged high-altitude hypoxia on the basal level of oxidative damage to nuclear DNA in muscle cells, a major oxygen-consuming tissue. Muscle biopsies from seven healthy humans were obtained at sea level and after 2 and 8 weeks of hypoxia at 4100 m.a.s.l. We found increased levels of strand breaks and endonuclease III-sensitive sites after 2 weeks of hypoxia, whereas oxidative DNA damage detected by formamidopyrimidine DNA glycosylase (FPG) protein was unaltered. The expression of 8-oxoguanine DNA glycosylase 1 (OGG1), determined by quantitative RT-PCR of mRNA levels did not significantly change during high-altitude hypoxia, although the data could not exclude a minor upregulation. The expression of heme oxygenase-1 (HO-1) was unaltered by prolonged hypoxia, in accordance with the notion that HO-1 is an acute stress response protein. In conclusion, our data indicate high-altitude hypoxia may serve as a good model for oxidative stress and that antioxidant genes are not upregulated in muscle tissue by prolonged hypoxia despite increased generation of oxidative DNA damage

  2. High-fidelity Modeling of Local Effects of Damage for Derated Offshore Wind Turbines

    International Nuclear Information System (INIS)

    Richards, Phillip W; Griffith, D Todd; Hodges, Dewey H

    2014-01-01

    Offshore wind power production is an attractive clean energy option, but the difficulty of access can lead to expensive and rare opportunities for maintenance. As part of the Structural Health and Prognostics Management (SHPM) project at Sandia National Laboratories, smart loads management (controls) are investigated for their potential to increase the fatigue life of offshore wind turbine rotor blades. Derating refers to altering the rotor angular speed and blade pitch to limit power production and loads on the rotor blades. High- fidelity analysis techniques like 3D finite element modeling (FEM) should be used alongside beam models of wind turbine blades to characterize these control strategies in terms of their effect to mitigate fatigue damage and extend life of turbine blades. This study will consider a commonly encountered damage type for wind turbine blades, the trailing edge disbond, and show how FEM can be used to quantify the effect of operations and control strategies designed to extend the fatigue life of damaged blades. The Virtual Crack Closure Technique (VCCT) will be used to post-process the displacement and stress results to provide estimates of damage severity/criticality and provide a means to estimate the fatigue life under a given operations and control strategy

  3. High-fidelity Modeling of Local Effects of Damage for Derated Offshore Wind Turbines

    Science.gov (United States)

    Richards, Phillip W.; Griffith, D. Todd; Hodges, Dewey H.

    2014-06-01

    Offshore wind power production is an attractive clean energy option, but the difficulty of access can lead to expensive and rare opportunities for maintenance. As part of the Structural Health and Prognostics Management (SHPM) project at Sandia National Laboratories, smart loads management (controls) are investigated for their potential to increase the fatigue life of offshore wind turbine rotor blades. Derating refers to altering the rotor angular speed and blade pitch to limit power production and loads on the rotor blades. High- fidelity analysis techniques like 3D finite element modeling (FEM) should be used alongside beam models of wind turbine blades to characterize these control strategies in terms of their effect to mitigate fatigue damage and extend life of turbine blades. This study will consider a commonly encountered damage type for wind turbine blades, the trailing edge disbond, and show how FEM can be used to quantify the effect of operations and control strategies designed to extend the fatigue life of damaged blades. The Virtual Crack Closure Technique (VCCT) will be used to post-process the displacement and stress results to provide estimates of damage severity/criticality and provide a means to estimate the fatigue life under a given operations and control strategy.

  4. High and Low LET Radiation Differentially Induce Normal Tissue Damage Signals

    International Nuclear Information System (INIS)

    Niemantsverdriet, Maarten; Goethem, Marc-Jan van; Bron, Reinier; Hogewerf, Wytse; Brandenburg, Sytze; Langendijk, Johannes A.; Luijk, Peter van; Coppes, Robert P.

    2012-01-01

    Purpose: Radiotherapy using high linear energy transfer (LET) radiation is aimed at efficiently killing tumor cells while minimizing dose (biological effective) to normal tissues to prevent toxicity. It is well established that high LET radiation results in lower cell survival per absorbed dose than low LET radiation. However, whether various mechanisms involved in the development of normal tissue damage may be regulated differentially is not known. Therefore the aim of this study was to investigate whether two actions related to normal tissue toxicity, p53-induced apoptosis and expression of the profibrotic gene PAI-1 (plasminogen activator inhibitor 1), are differentially induced by high and low LET radiation. Methods and Materials: Cells were irradiated with high LET carbon ions or low LET photons. Cell survival assays were performed, profibrotic PAI-1 expression was monitored by quantitative polymerase chain reaction, and apoptosis was assayed by annexin V staining. Activation of p53 by phosphorylation at serine 315 and serine 37 was monitored by Western blotting. Transfections of plasmids expressing p53 mutated at serines 315 and 37 were used to test the requirement of these residues for apoptosis and expression of PAI-1. Results: As expected, cell survival was lower and induction of apoptosis was higher in high -LET irradiated cells. Interestingly, induction of the profibrotic PAI-1 gene was similar with high and low LET radiation. In agreement with this finding, phosphorylation of p53 at serine 315 involved in PAI-1 expression was similar with high and low LET radiation, whereas phosphorylation of p53 at serine 37, involved in apoptosis induction, was much higher after high LET irradiation. Conclusions: Our results indicate that diverse mechanisms involved in the development of normal tissue damage may be differentially affected by high and low LET radiation. This may have consequences for the development and manifestation of normal tissue damage.

  5. Initiation and propagation of damage in actively cooled CFC armoured high heat flux components in fusion machines

    International Nuclear Information System (INIS)

    Chevet, G.; Schlosser, J.; Martin, E.; Herb, V.; Camus, G.; Escourbiac, F.

    2009-01-01

    Plasma facing components (PFCs) in magnetic confinement controlled fusion machines are armoured with carbon fibre composite (CFC) bonded to a copper alloy heat sink. The manufacturing process induces high level of residual stresses due to the thermal expansion mismatch between CFC and copper and PFCs have to withstand strong stress ranges during operation. To study the initiation and propagation of damage in the CFC part, the ONERA damage model is used to describe the behaviour of the N11 material. The finite element simulations show that the damage is located near the interface and develops during the manufacturing of the PFCs as a consequence of the high amplitude of shear stresses. Under high heat flux, stresses decrease and the damage does not evolve. Further studies will take into account the damageable behaviour of the composite/copper interface, which will lead to geometrical optimisations and better knowledge of the link between damage and conductivity.

  6. Monitoring of corrosion damage using high-frequency guided ultrasonic waves

    OpenAIRE

    Chew, D.; Fromme, P.

    2014-01-01

    Due to adverse environmental conditions corrosion can develop during the life cycle of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the integrity and load bearing capacity of the structure. Structural health monitoring of corrosion damage in difficult to access areas can in principle be achieved using high frequency guided waves propagating along...

  7. Surface damage characterization of FBK devices for High Luminosity LHC (HL-LHC) operations

    Science.gov (United States)

    Moscatelli, F.; Passeri, D.; Morozzi, A.; Dalla Betta, G.-F.; Mattiazzo, S.; Bomben, M.; Bilei, G. M.

    2017-12-01

    The very high fluences (e.g. up to 2×1016 1 MeV neq/cm2) and total ionising doses (TID) of the order of 1 Grad, expected at the High Luminosity LHC (HL-LHC), impose new challenges for the design of effective, radiation resistant detectors. Ionising energy loss is the dominant effect for what concerns SiO2 and SiO2/Si interface radiation damage. In particular, surface damage can create a positive charge layer near the SiO2/Si interface and interface traps along the SiO2/Si interface, which strongly influence the breakdown voltage, the inter-electrode isolation and capacitance, and might also impact the charge collection properties of silicon sensors. To better understand in a comprehensive framework the complex and articulated phenomena related to surface damage at these very high doses, measurements on test structures have been carried out in this work (e.g. C-V and I-V). In particular, we have studied the properties of the SiO2 layer and of the SiO2/Si interface, using MOS capacitors, gated diodes (GD) and MOSFETs manufactured by FBK on high-resistivity n-type and p-type silicon, before and after irradiation with X-rays in the range from 50 krad(SiO2) to 20 Mrad(SiO2). Relevant parameters have been determined for all the tested devices, converging in the oxide charge density NOX, the surface generation velocity s0 and the integrated interface-trap density NIT dose-dependent values. These parameters have been extracted to both characterize the technology as a function of the dose and to be used in TCAD simulations for the surface damage effect modeling and the analysis and optimization of different classes of detectors for the next HEP experiments.

  8. Monitoring of corrosion damage using high-frequency guided ultrasonic waves

    Science.gov (United States)

    Chew, D.; Fromme, P.

    2015-03-01

    Due to adverse environmental conditions corrosion can develop during the life cycle of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the integrity and load bearing capacity of the structure. Structural health monitoring of corrosion damage in difficult to access areas can in principle be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, high frequency guided wave modes were generated that penetrate through the complete thickness of the structure. Wall thickness reduction was induced using accelerated corrosion in a salt water bath. The corrosion damage was monitored based on the effect on the wave propagation and interference of the different modes. The change in the wave interference was quantified based on an analysis in the frequency domain (Fourier transform) and was found to match well with theoretical predictions for the wall thickness loss. High frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  9. Near threshold fatigue testing

    Science.gov (United States)

    Freeman, D. C.; Strum, M. J.

    1993-01-01

    Measurement of the near-threshold fatigue crack growth rate (FCGR) behavior provides a basis for the design and evaluation of components subjected to high cycle fatigue. Typically, the near-threshold fatigue regime describes crack growth rates below approximately 10(exp -5) mm/cycle (4 x 10(exp -7) inch/cycle). One such evaluation was recently performed for the binary alloy U-6Nb. The procedures developed for this evaluation are described in detail to provide a general test method for near-threshold FCGR testing. In particular, techniques for high-resolution measurements of crack length performed in-situ through a direct current, potential drop (DCPD) apparatus, and a method which eliminates crack closure effects through the use of loading cycles with constant maximum stress intensity are described.

  10. Automatic Detection of Storm Damages Using High-Altitude Photogrammetric Imaging

    Science.gov (United States)

    Litkey, P.; Nurminen, K.; Honkavaara, E.

    2013-05-01

    The risks of storms that cause damage in forests are increasing due to climate change. Quickly detecting fallen trees, assessing the amount of fallen trees and efficiently collecting them are of great importance for economic and environmental reasons. Visually detecting and delineating storm damage is a laborious and error-prone process; thus, it is important to develop cost-efficient and highly automated methods. Objective of our research project is to investigate and develop a reliable and efficient method for automatic storm damage detection, which is based on airborne imagery that is collected after a storm. The requirements for the method are the before-storm and after-storm surface models. A difference surface is calculated using two DSMs and the locations where significant changes have appeared are automatically detected. In our previous research we used four-year old airborne laser scanning surface model as the before-storm surface. The after-storm DSM was provided from the photogrammetric images using the Next Generation Automatic Terrain Extraction (NGATE) algorithm of Socet Set software. We obtained 100% accuracy in detection of major storm damages. In this investigation we will further evaluate the sensitivity of the storm-damage detection process. We will investigate the potential of national airborne photography, that is collected at no-leaf season, to automatically produce a before-storm DSM using image matching. We will also compare impact of the terrain extraction algorithm to the results. Our results will also promote the potential of national open source data sets in the management of natural disasters.

  11. Damage in agitated vessels of large visco-elastic particles dispersed in a highly viscous fluid.

    Science.gov (United States)

    Bouvier, Laurent; Moreau, Anne; Line, Alain; Fatah, Nouria; Delaplace, Guillaume

    2011-01-01

    Many food recipes entail several homogenization steps for solid particles in hot or cold viscous liquids, such as pureed fruit and sugar, jam or sauce with mushroom pieces. Unfortunately, these unavoidable processes induce damage to the solid particles. To date, little is known of the extent and nature of the damage caused. Consequently, few clear guidelines are available for monitoring solid particle integrity when mixing solid/liquid suspensions in an agitated tank. In this study, an attempt is made to quantify the impact of various physical parameters including the influence of the rotational speed of the impeller and the processing time on particle attrition, when a suspension of large visco-elastic particles in a highly viscous fluid is mixed under isothermal condition. Pectin gel particles were immerged in a viscous liquid and homogenized for various times and rotational speeds, while the evolution of the particle's morphological parameters was monitored. Then, a set of dimensionless numbers governing the attrition mechanism is established and some empirical process relationships are proposed to correlate these numbers to the morphological characteristics and mass balance ratios. From the conditions observed, it is clear that 2 dimensionless ratios could be responsible for a change in the damaging mechanisms. These 2 ratios are the Froude and impeller rotation numbers. Finally, in the conditions tested, mass balance ratios appear to be mainly sensitive to the impeller rotational number, while the shape ratios are both impacted by the Froude and impeller rotational numbers. Damage to solid particles suspended in a stirred vessel reduce the final product quality in industrial cooking processes. Examples of this are fruit in jam or sauces with mushroom pieces. The attrition phenomenon was measured and the influences of the impeller rotational speed and processing time were evaluated quantitatively in function of dimensionless numbers. This study contributes key

  12. Use of Threshold of Toxicological Concern (TTC) with High Throughput Exposure Predictions as a Risk-Based Screening Approach to Prioritize More Than Seven Thousand Chemicals (ASCCT)

    Science.gov (United States)

    Here, we present results of an approach for risk-based prioritization using the Threshold of Toxicological Concern (TTC) combined with high-throughput exposure (HTE) modelling. We started with 7968 chemicals with calculated population median oral daily intakes characterized by an...

  13. The relationship between high-frequency pure-tone hearing loss, hearing in noise test (HINT) thresholds, and the articulation index.

    Science.gov (United States)

    Vermiglio, Andrew J; Soli, Sigfrid D; Freed, Daniel J; Fisher, Laurel M

    2012-01-01

    Speech recognition in noise testing has been conducted at least since the 1940s (Dickson et al, 1946). The ability to recognize speech in noise is a distinct function of the auditory system (Plomp, 1978). According to Kochkin (2002), difficulty recognizing speech in noise is the primary complaint of hearing aid users. However, speech recognition in noise testing has not found widespread use in the field of audiology (Mueller, 2003; Strom, 2003; Tannenbaum and Rosenfeld, 1996). The audiogram has been used as the "gold standard" for hearing ability. However, the audiogram is a poor indicator of speech recognition in noise ability. This study investigates the relationship between pure-tone thresholds, the articulation index, and the ability to recognize speech in quiet and in noise. Pure-tone thresholds were measured for audiometric frequencies 250-6000 Hz. Pure-tone threshold groups were created. These included a normal threshold group and slight, mild, severe, and profound high-frequency pure-tone threshold groups. Speech recognition thresholds in quiet and in noise were obtained using the Hearing in Noise Test (HINT) (Nilsson et al, 1994; Vermiglio, 2008). The articulation index was determined by using Pavlovic's method with pure-tone thresholds (Pavlovic, 1989, 1991). Two hundred seventy-eight participants were tested. All participants were native speakers of American English. Sixty-three of the original participants were removed in order to create groups of participants with normal low-frequency pure-tone thresholds and relatively symmetrical high-frequency pure-tone threshold groups. The final set of 215 participants had a mean age of 33 yr with a range of 17-59 yr. Pure-tone threshold data were collected using the Hughson-Weslake procedure. Speech recognition data were collected using a Windows-based HINT software system. Statistical analyses were conducted using descriptive, correlational, and multivariate analysis of covariance (MANCOVA) statistics. The

  14. Combined effects of displacement damage and high gas content in aluminum

    International Nuclear Information System (INIS)

    Farrell, K.; Houston, J.T.

    1976-01-01

    A solid solution alloy of 2300 at. ppM of 6 Li isotope in aluminum was neutron irradiated at about 0.36 T/sub m/ in high, fast and thermal fluxes producing a damage level of 2 to 3 dpa and simultaneously inducing a gas content of about 2200 at. ppM each of helium and tritium from burnup of 6 Li. The gases significantly increased the nucleation of structural defects but did not change the degree of swelling; cavity concentrations were increased approximately 1000-fold, cavity sizes were decreased approximately 10-fold and there was approximately 10-fold increase in the concentrations of dislocations. Also, large cavities were developed on grain boundaries. The cavities were consistent with their being gas-filled bubbles. The refinement of damage structure by the gases caused a considerable increase in radiation hardening. Bend tests at 77 and 296 0 K revealed severe embrittlement and intergranular fracture. Comparison with data from material irradiated to produce comparable gas levels but relatively little displacement damage indicates that premature intergranular failure is much enhanced by the presence of a defect-hardened matrix. Postirradiation annealing tests showed the cavity and dislocation structures to have high resistance to annealing. Annealing also encouraged the development of a secondary population of large cavities believed to be associated with migration and precipitation of tritium

  15. Upgrading of highly elapsed degradation damage evaluation of structural materials for the light water reactors

    International Nuclear Information System (INIS)

    Katada, Yasuyuki; Matsushima, Shinobu; Sato, Shunji

    1998-01-01

    In this study, for degradation of structural materials in accompanying with highly yearly lapse of the nuclear power plants, it was an aim to elucidate interaction between material degradation and degradation under high hot water environment. And, another aims consisted in intention of expansion protection and recovery evaluation of damage due to laser processing method and so on for welded portion showing extreme material degradation and in preparation of damage region diagram based on the obtained data. In this fiscal year, on interaction between materials and environmental degradation, it was found that as stress corrosion cracking of materials hardened by shot peening shows a resemble shapes of stress-strain curve in CERT and CLRT, shapes of load-time curve were much different. On comparison of the SP material and non-processing material, as peak current showing activity of newly created surface shows no difference, re-passivation of the SP material was found to be too late. And, on recovery evaluation of material degradation damage, as it was found that constant melt depth was essential to evaluate corrosion, a condition preparation aimed for melt depth of more than 1 mm. As only small amount of bubbles were observed at molten metal part on YAG laser processing, it was found that many small bubbles scatter at thermal effect part. (G.K.)

  16. In which metals are high electronic excitations able to create damage?

    International Nuclear Information System (INIS)

    Legrand, P.; Dunlop, A.; Lesueur, D.; Lorenzelli, N.; Morillo, J.; Bouffard, S.

    1992-01-01

    Since a few years a certain number of results have shown that high energy deposition through electronic excitation can lead to damage creation in metallic targets. In order to test which is the right parameter favouring damage creation (high d-electrons density favouring electron-phonon coupling, various electrical conductivities, existence of different displacive phase transformations . . .) chosen metallic targets (Zr, Co, Ti, Ag, Pd, Pt, W, Ni) were irradiated on the french accelerator GANIL in Caen, at cryogenic temperatures with GeV-ions (Pb, O). In situ electrical resistance variation measurements at low temperature were achieved, followed by isochronal annealing of defects and post-X-ray observations at room temperature. This study shows that a very strong enhancement of the damage production occurs only in Zr, Ti and Co which present different allotropic phases and in particular a displacive transformation associated with soft modes in the phonon spectrum. The structure of stage I recovery of all the samples depends on the electronic stopping power

  17. Combined effects of displacement damage and high gas content in aluminum

    International Nuclear Information System (INIS)

    Farrell, K.; Houston, J.T.

    1976-05-01

    A solid solution alloy of 2300 appm of 6 Li isotope in aluminum was neutron irradiated at about 0.36 T/sub m/ in high, fast and thermal fluxes producing a damage level of 2 to 3 dpa and simultaneously inducing a gas content of about 2200 appm each of helium and tritium from burnup of 6 Li. The gases significantly increased the nucleation of structural defects but did not change the degree of swelling; cavity concentrations were increased approximately 1000-fold, cavity sizes were decreased approximately 10-fold and there was approximately 10-fold increase in the concentrations of dislocations. Also, large cavities were developed on grain boundaries. The cavities were consistent with their being gas-filled bubbles. The refinement of damage structure by the gases caused a considerable increase in radiation hardening. Bend tests at 77 and 296 K revealed severe embrittlement and intergranular fracture. Comparison with data from material irradiated to produce comparable gas levels but relatively little displacement damage indicates that premature intergranular failure is much enhanced by the presence of a defect-hardened matrix. Postirradiation annealing tests showed the cavity and dislocation structures to have high resistance to annealing. Annealing also encouraged the development of a secondary population of large cavities believed to be associated with migration and precipitation of tritium

  18. Three dimensional imaging of damage in structural materials using high resolution micro-tomography

    Energy Technology Data Exchange (ETDEWEB)

    Buffiere, J.-Y. [GEMPPM UMR CNRS 5510, INSA Lyon, 20 Av. A. Einstein, 69621 Villeurbanne Cedex (France)]. E-mail: jean-yves.buffiere@insa-lyon.fr; Proudhon, H. [GEMPPM UMR CNRS 5510, INSA Lyon, 20 Av. A. Einstein, 69621 Villeurbanne Cedex (France); Ferrie, E. [GEMPPM UMR CNRS 5510, INSA Lyon, 20 Av. A. Einstein, 69621 Villeurbanne Cedex (France); Ludwig, W. [GEMPPM UMR CNRS 5510, INSA Lyon, 20 Av. A. Einstein, 69621 Villeurbanne Cedex (France); Maire, E. [GEMPPM UMR CNRS 5510, INSA Lyon, 20 Av. A. Einstein, 69621 Villeurbanne Cedex (France); Cloetens, P. [ESRF Grenoble (France)

    2005-08-15

    This paper presents recent results showing the ability of high resolution synchrotron X-ray micro-tomography to image damage initiation and development during mechanical loading of structural metallic materials. First, the initiation, growth and coalescence of porosities in the bulk of two metal matrix composites have been imaged at different stages of a tensile test. Quantitative data on damage development has been obtained and related to the nature of the composite matrix. Second, three dimensional images of fatigue crack have been obtained in situ for two different Al alloys submitted to fretting and/or uniaxial in situ fatigue. The analysis of those images shows the strong interaction of the cracks with the local microstructure and provides unique experimental data for modelling the behaviour of such short cracks.

  19. Three dimensional imaging of damage in structural materials using high resolution micro-tomography

    International Nuclear Information System (INIS)

    Buffiere, J.-Y.; Proudhon, H.; Ferrie, E.; Ludwig, W.; Maire, E.; Cloetens, P.

    2005-01-01

    This paper presents recent results showing the ability of high resolution synchrotron X-ray micro-tomography to image damage initiation and development during mechanical loading of structural metallic materials. First, the initiation, growth and coalescence of porosities in the bulk of two metal matrix composites have been imaged at different stages of a tensile test. Quantitative data on damage development has been obtained and related to the nature of the composite matrix. Second, three dimensional images of fatigue crack have been obtained in situ for two different Al alloys submitted to fretting and/or uniaxial in situ fatigue. The analysis of those images shows the strong interaction of the cracks with the local microstructure and provides unique experimental data for modelling the behaviour of such short cracks

  20. Designing a highly sensitive Eddy current sensor for evaluating damage on thermal barrier coating

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Min; Kim, Hak Joon; Song, Sung Jin; Seok, Chang Seong; Lee, Yeong Ze [Dept. of Mechanical Engineering, Sungkyunkwan University, Suwon (Korea, Republic of); Lee, Seul Gi [LG Electronics, Seoul (Korea, Republic of)

    2016-06-15

    A thermal barrier coating (TBC) has been widely applied to machine components working under high temperature as a thermal insulator owing to its critical financial and safety benefits to the industry. However, the nondestructive evaluation of TBC damage is not easy since sensing of the microscopic change that occurs on the TBC is required during an evaluation. We designed an eddy current probe for evaluating damage on a TBC based on the finite element method (FEM) and validated its performance through an experiment. An FEM analysis predicted the sensitivity of the probe, showing that impedance change increases as the TBC thermally degrades. In addition, the effect of the magnetic shield concentrating magnetic flux density was also observed. Finally, experimental validation showed good agreement with the simulation result.

  1. Fearfulness and feather damage in laying hens divergently selected for high and low feather pecking

    DEFF Research Database (Denmark)

    Rodenburg, T Bas; de Haas, Elske N; Nielsen, Birte Lindstrøm

    2010-01-01

    Feather pecking (FP) remains a major welfare and economic problem in laying hens. FP has been found to be related to other behavioural characteristics, such as fearfulness. There are indications that fearful birds are more likely to develop FP. Furthermore, FP can lead to increased fearfulness...... in the victims. To investigate further the relationship between FP and fearfulness, feather damage and behavioural fear responses were recorded in three White Leghorn lines of laying hens: a line selected for high FP (HFP line), a line selected for low FP (LFP line) and an unselected control line (10th...... in fear responses between the HFP and LFP lines were not found, neither in the TI-test, nor in the HA or NO test. As expected, birds from the HFP line had considerably more feather damage than birds from the LFP line and birds from the unselected control line were intermediate. Cages that withdrew from...

  2. Influence of resonator length on catastrophic optical damage in high-power AlGaInP broad-area lasers

    Science.gov (United States)

    Bou Sanayeh, Marwan

    2017-05-01

    The increasing importance of extracting high optical power out of semiconductor lasers motivated several studies in catastrophic optical damage (COD) level improvement. In this study, the influence of the resonator length in high-power broad-area (BA) AlGaInP lasers on COD is presented. For the analyses, several 638 nm AlGaInP 60 μm BA lasers from the same wafer were used. Resonator lengths of 900, 1200, 1500, and 1800 μm were compared. In order to independently examine the effect of the resonator length on the maximum power reached by the lasers before COD (PCOD), the lasers used are uncoated and unmounted, and PCOD under pulsed mode was determined. It was found that higher output powers and eventually higher PCOD can be achieved using longer resonators; however, it was also found that this is mainly useful when working at high output powers far away from the laser threshold, since the threshold current and slope efficiency worsen when the resonator length increases.

  3. Damage Mechanisms and Mechanical Properties of High-Strength Multiphase Steels

    Directory of Open Access Journals (Sweden)

    Sebastian Heibel

    2018-05-01

    Full Text Available The usage of high-strength steels for structural components and reinforcement parts is inevitable for modern car-body manufacture in reaching lightweight design as well as increasing passive safety. Depending on their microstructure these steels show differing damage mechanisms and various mechanical properties which cannot be classified comprehensively via classical uniaxial tensile testing. In this research, damage initiation, evolution and final material failure are characterized for commercially produced complex-phase (CP and dual-phase (DP steels in a strength range between 600 and 1000 MPa. Based on these investigations CP steels with their homogeneous microstructure are characterized as damage tolerant and hence less edge-crack sensitive than DP steels. As final fracture occurs after a combination of ductile damage evolution and local shear band localization in ferrite grains at a characteristic thickness strain, this strain measure is introduced as a new parameter for local formability. In terms of global formability DP steels display advantages because of their microstructural composition of soft ferrite matrix including hard martensite particles. Combining true uniform elongation as a measure for global formability with the true thickness strain at fracture for local formability the mechanical material response can be assessed on basis of uniaxial tensile testing incorporating all microstructural characteristics on a macroscopic scale. Based on these findings a new classification scheme for the recently developed high-strength multiphase steels with significantly better formability resulting of complex underlying microstructures is introduced. The scheme overcomes the steel designations using microstructural concepts, which provide no information about design and production properties.

  4. Detection and classification of alarm threshold violations in condition monitoring systems working in highly varying operational conditions

    Science.gov (United States)

    Strączkiewicz, M.; Barszcz, T.; Jabłoński, A.

    2015-07-01

    All commonly used condition monitoring systems (CMS) enable defining alarm thresholds that enhance efficient surveillance and maintenance of dynamic state of machinery. The thresholds are imposed on the measured values such as vibration-based indicators, temperature, pressure, etc. For complex machinery such as wind turbine (WT) the total number of thresholds might be counted in hundreds multiplied by the number of operational states. All the parameters vary not only due to possible machinery malfunctions, but also due to changes in operating conditions and these changes are typically much stronger than the former ones. Very often, such a behavior may lead to hundreds of false alarms. Therefore, authors propose a novel approach based on parameterized description of the threshold violation. For this purpose the novelty and severity factors are introduced. The first parameter refers to the time of violation occurrence while the second one describes the impact of the indicator-increase to the entire machine. Such approach increases reliability of the CMS by providing the operator with the most useful information of the system events. The idea of the procedure is presented on a simulated data similar to those from a wind turbine.

  5. Detection and classification of alarm threshold violations in condition monitoring systems working in highly varying operational conditions

    International Nuclear Information System (INIS)

    Strączkiewicz, M; Barszcz, T; Jabłoński, A

    2015-01-01

    All commonly used condition monitoring systems (CMS) enable defining alarm thresholds that enhance efficient surveillance and maintenance of dynamic state of machinery. The thresholds are imposed on the measured values such as vibration-based indicators, temperature, pressure, etc. For complex machinery such as wind turbine (WT) the total number of thresholds might be counted in hundreds multiplied by the number of operational states. All the parameters vary not only due to possible machinery malfunctions, but also due to changes in operating conditions and these changes are typically much stronger than the former ones. Very often, such a behavior may lead to hundreds of false alarms. Therefore, authors propose a novel approach based on parameterized description of the threshold violation. For this purpose the novelty and severity factors are introduced. The first parameter refers to the time of violation occurrence while the second one describes the impact of the indicator-increase to the entire machine. Such approach increases reliability of the CMS by providing the operator with the most useful information of the system events. The idea of the procedure is presented on a simulated data similar to those from a wind turbine. (paper)

  6. Radiation damage

    CERN Document Server

    Heijne, Erik H M; CERN. Geneva

    1998-01-01

    a) Radiation damage in organic materials. This series of lectures will give an overview of radiation effects on materials and components frequently used in accelerator engineering and experiments. Basic degradation phenomena will be presented for organic materials with comprehensive damage threshold doses for commonly used rubbers, thermoplastics, thermosets and composite materials. Some indications will be given for glass, scintillators and optical fibres. b) Radiation effects in semiconductor materials and devices. The major part of the time will be devoted to treat radiation effects in semiconductor sensors and the associated electronics, in particular displacement damage, interface and single event phenomena. Evaluation methods and practical aspects will be shown. Strategies will be developed for the survival of the materials under the expected environmental conditions of the LHC machine and detectors. I will describe profound revolution in our understanding of black holes and their relation to quantum me...

  7. Local damage to Ultra High Performance Concrete structures caused by an impact of aircraft engine missiles

    International Nuclear Information System (INIS)

    Riedel, Werner; Noeldgen, Markus; Strassburger, Elmar; Thoma, Klaus; Fehling, Ekkehard

    2010-01-01

    Research highlights: → Experimental series on UHPC panels subjected to aircraft engine impact. → Improved ballistic limit of fiber reinforced UHPC in comparison to conventional R/C. → Detailed investigation of failure mechanisms of fiber reinforced UHPC panel. - Abstract: The impact of an aircraft engine missile causes high stresses, deformations and a severe local damage to conventional reinforced concrete. As a consequence the design of R/C protective structural elements results in components with rather large dimensions. Fiber reinforced Ultra High Performance Concrete (UHPC) is a concrete based material which combines ultra high strength, high packing density and an improved ductility with a significantly increased energy dissipation capacity due to the addition of fiber reinforcement. With those attributes the material is potentially suitable for improved protective structural elements with a reduced need for material resources. The presented paper reports on an experimental series of scaled aircraft engine impact tests with reinforced UHPC panels. The investigations are focused on the material behavior and the damage intensity in comparison to conventional concrete. The fundamental work of is taken as reference for the evaluation of the results. The impactor model of a Phantom F4 GE-J79 engine developed and validated by Sugano et al. is used as defined in the original work. In order to achieve best comparability, the experimental configuration and method are adapted for the UHPC experiments. With 'penetration', 'scabbing' and 'perforation' all relevant damage modes defined in are investigated so that a full set of results are provided for a representative UHPC structural configuration.

  8. The external costs of low probability-high consequence events: Ex ante damages and lay risks

    International Nuclear Information System (INIS)

    Krupnick, A.J.; Markandya, A.; Nickell, E.

    1994-01-01

    This paper provides an analytical basis for characterizing key differences between two perspectives on how to estimate the expected damages of low probability - high consequence events. One perspective is the conventional method used in the U.S.-EC fuel cycle reports [e.g., ORNL/RFF (1994a,b]. This paper articulates another perspective, using economic theory. The paper makes a strong case for considering this, approach as an alternative, or at least as a complement, to the conventional approach. This alternative approach is an important area for future research. I Interest has been growing worldwide in embedding the external costs of productive activities, particularly the fuel cycles resulting in electricity generation, into prices. In any attempt to internalize these costs, one must take into account explicitly the remote but real possibilities of accidents and the wide gap between lay perceptions and expert assessments of such risks. In our fuel cycle analyses, we estimate damages and benefits' by simply monetizing expected consequences, based on pollution dispersion models, exposure-response functions, and valuation functions. For accidents, such as mining and transportation accidents, natural gas pipeline accidents, and oil barge accidents, we use historical data to estimate the rates of these accidents. For extremely severe accidents--such as severe nuclear reactor accidents and catastrophic oil tanker spills--events are extremely rare and they do not offer a sufficient sample size to estimate their probabilities based on past occurrences. In those cases the conventional approach is to rely on expert judgments about both the probability of the consequences and their magnitude. As an example of standard practice, which we term here an expert expected damage (EED) approach to estimating damages, consider how evacuation costs are estimated in the nuclear fuel cycle report

  9. The external costs of low probability-high consequence events: Ex ante damages and lay risks

    Energy Technology Data Exchange (ETDEWEB)

    Krupnick, A J; Markandya, A; Nickell, E

    1994-07-01

    This paper provides an analytical basis for characterizing key differences between two perspectives on how to estimate the expected damages of low probability - high consequence events. One perspective is the conventional method used in the U.S.-EC fuel cycle reports [e.g., ORNL/RFF (1994a,b]. This paper articulates another perspective, using economic theory. The paper makes a strong case for considering this, approach as an alternative, or at least as a complement, to the conventional approach. This alternative approach is an important area for future research. I Interest has been growing worldwide in embedding the external costs of productive activities, particularly the fuel cycles resulting in electricity generation, into prices. In any attempt to internalize these costs, one must take into account explicitly the remote but real possibilities of accidents and the wide gap between lay perceptions and expert assessments of such risks. In our fuel cycle analyses, we estimate damages and benefits' by simply monetizing expected consequences, based on pollution dispersion models, exposure-response functions, and valuation functions. For accidents, such as mining and transportation accidents, natural gas pipeline accidents, and oil barge accidents, we use historical data to estimate the rates of these accidents. For extremely severe accidents--such as severe nuclear reactor accidents and catastrophic oil tanker spills--events are extremely rare and they do not offer a sufficient sample size to estimate their probabilities based on past occurrences. In those cases the conventional approach is to rely on expert judgments about both the probability of the consequences and their magnitude. As an example of standard practice, which we term here an expert expected damage (EED) approach to estimating damages, consider how evacuation costs are estimated in the nuclear fuel cycle report.

  10. High-speed, low-damage grinding of advanced ceramics Phase 1. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kovach, J.A. [Eaton Corp., Willoughby Hills, OH (United States). Mfg. Technologies Center; Malkin, S. [Univ. of Massachusetts (United States)

    1995-03-01

    In manufacture of structural ceramic components, grinding costs can comprise up to 80% of the entire manufacturing cost. Most of these costs arise from the conventional multi-step grinding process with numerous grinding wheels and additional capital equipment, perishable dressing tools, and labor. In an attempt to reduce structural ceramic grinding costs, a feasibility investigation was undertaken to develop a single step, roughing-finishing process suitable for producing high-quality silicon nitride ceramic parts at high material removal rates at lower cost than traditional, multi-stage grinding. This feasibility study employed combined use of laboratory grinding tests, mathematical grinding models, and characterization of resultant material surface condition. More specifically, this Phase 1 final report provides a technical overview of High-Speed, Low-Damage (HSLD) ceramic grinding and the conditions necessary to achieve the small grain depths of cut necessary for low damage grinding while operating at relatively high material removal rates. Particular issues addressed include determining effects of wheel speed and material removal rate on resulting mode of material removal (ductile or brittle fracture), limiting grinding forces, calculation of approximate grinding zone temperatures developed during HSLD grinding, and developing the experimental systems necessary for determining HSLD grinding energy partition relationships. In addition, practical considerations for production utilization of the HSLD process are also discussed.

  11. Rapid Identification of Cortical Motor Areas in Rodents by High-Frequency Automatic Cortical Stimulation and Novel Motor Threshold Algorithm

    Directory of Open Access Journals (Sweden)

    Mitsuaki Takemi

    2017-10-01

    Full Text Available Cortical stimulation mapping is a valuable tool to test the functional organization of the motor cortex in both basic neurophysiology (e.g., elucidating the process of motor plasticity and clinical practice (e.g., before resecting brain tumors involving the motor cortex. However, compilation of motor maps based on the motor threshold (MT requires a large number of cortical stimulations and is therefore time consuming. Shortening the time for mapping may reduce stress on the subjects and unveil short-term plasticity mechanisms. In this study, we aimed to establish a cortical stimulation mapping procedure in which the time needed to identify a motor area is reduced to the order of minutes without compromising reliability. We developed an automatic motor mapping system that applies epidural cortical surface stimulations (CSSs through one-by-one of 32 micro-electrocorticographic electrodes while examining the muscles represented in a cortical region. The next stimulus intensity was selected according to previously evoked electromyographic responses in a closed-loop fashion. CSS was repeated at 4 Hz and electromyographic responses were submitted to a newly proposed algorithm estimating the MT with smaller number of stimuli with respect to traditional approaches. The results showed that in all tested rats (n = 12 the motor area maps identified by our novel mapping procedure (novel MT algorithm and 4-Hz CSS significantly correlated with the maps achieved by the conventional MT algorithm with 1-Hz CSS. The reliability of the both mapping methods was very high (intraclass correlation coefficients ≧0.8, while the time needed for the mapping was one-twelfth shorter with the novel method. Furthermore, the motor maps assessed by intracortical microstimulation and the novel CSS mapping procedure in two rats were compared and were also significantly correlated. Our novel mapping procedure that determined a cortical motor area within a few minutes could help

  12. High-intensity interval training and β-hydroxy-β-methylbutyric free acid improves aerobic power and metabolic thresholds

    Science.gov (United States)

    2014-01-01

    Background Previous research combining Calcium β-hydroxy-β-methylbutyrate (CaHMB) and running high-intensity interval training (HIIT) have shown positive effects on aerobic performance measures. The purpose of this study was to examine the effect of β-hydroxy-β-methylbutyric free acid (HMBFA) and cycle ergometry HIIT on maximal oxygen consumption (VO2peak), ventilatory threshold (VT), respiratory compensation point (RCP) and time to exhaustion (Tmax) in college-aged men and women. Methods Thirty-four healthy men and women (Age: 22.7 ± 3.1 yrs ; VO2peak: 39.3 ± 5.0 ml · kg-1 · min-1) volunteered to participate in this double-blind, placebo-controlled design study. All participants completed a series of tests prior to and following treatment. A peak oxygen consumption test was performed on a cycle ergometer to assess VO2peak, Tmax, VT, and RCP. Twenty-six participants were randomly assigned into either a placebo (PLA-HIIT) or 3 g per day of HMBFA (BetaTor™) (HMBFA-HIIT) group. Eight participants served as controls (CTL). Participants in the HIIT groups completed 12 HIIT (80-120% maximal workload) exercise sessions consisting of 5–6 bouts of a 2:1 minute cycling work to rest ratio protocol over a four-week period. Body composition was measured with dual energy x-ray absorptiometry (DEXA). Outcomes were assessed by ANCOVA with posttest means adjusted for pretest differences. Results The HMBFA-HIIT intervention showed significant (p HIIT group. Both PLA-HIIT and HMBFA-HIIT treatment groups demonstrated significant (p HIIT and HMBFA-HIIT groups. Conclusions Our findings support the use of HIIT in combination with HMBFA to improve aerobic fitness in college age men and women. These data suggest that the addition of HMBFA supplementation may result in greater changes in VO2peak and VT than HIIT alone. Study registration The study was registered on ClinicalTrials.gov (ID NCT01941368). PMID:24782684

  13. Associations of Power at V̇O2peak and Anaerobic Threshold with Rank in British High Performance Junior Surfers

    Directory of Open Access Journals (Sweden)

    Barlow Matthew John

    2015-03-01

    Full Text Available Purpose. The objective of this study was to determine the relationships of peak oxygen uptake ( V̇O2peak, power at V̇O2peak and power at the anaerobic threshold (AT with national ranking in a sample of British high performance junior surfers. Methods. Eighteen male surfers (aged 15.4 ± 1.4 years from the British Junior Surfing team were tested for V̇O2peak and AT using an adapted kayak ergometer; national ranking was used to indicate performance level. The AT was identified as the point at which V̇E/V̇O2 started to rise without a concomitant increase in V̇E/V̇CO2. Spearman’s rank (rs and partial correlations (rp controlling for age were used to identify the relationships between the physiological variables and national ranking. Results. Mean V̇O2peak was 3.1 ± 0.5 l · min-1 (47.7 ± 7.2 ml · kg-1 · min-1 and mean AT occurred at 48.1 ± 12.2 W. There were significant correlations between national ranking and power at V̇O2peak (rs = -0.549, p = 0.028, power at AT (rs = -0.646, p = 0.009, and age (rs = -0.579, p = 0.012. Significant partial correlations were established controlling for age between national ranking and power at V̇O2peak (rp = -0.839, p = 0.000 and power at AT (rp = -0.541, p < 0.046. Conclusions. The power outputs associated with V̇O2peak and AT were significantly related to surfer ranking in this sample. However, due to the low coefficient of determination associated with the AT/ranking relationship, AT does not discriminate well between the ranking of surfers. These findings support the inclusion of power at V̇O2peak in assessment batteries for junior competitive surfers.

  14. High-intensity interval training and β-hydroxy-β-methylbutyric free acid improves aerobic power and metabolic thresholds.

    Science.gov (United States)

    Robinson, Edward H; Stout, Jeffrey R; Miramonti, Amelia A; Fukuda, David H; Wang, Ran; Townsend, Jeremy R; Mangine, Gerald T; Fragala, Maren S; Hoffman, Jay R

    2014-01-01

    Previous research combining Calcium β-hydroxy-β-methylbutyrate (CaHMB) and running high-intensity interval training (HIIT) have shown positive effects on aerobic performance measures. The purpose of this study was to examine the effect of β-hydroxy-β-methylbutyric free acid (HMBFA) and cycle ergometry HIIT on maximal oxygen consumption (VO2peak), ventilatory threshold (VT), respiratory compensation point (RCP) and time to exhaustion (Tmax) in college-aged men and women. Thirty-four healthy men and women (Age: 22.7 ± 3.1 yrs ; VO2peak: 39.3 ± 5.0 ml · kg(-1) · min(-1)) volunteered to participate in this double-blind, placebo-controlled design study. All participants completed a series of tests prior to and following treatment. A peak oxygen consumption test was performed on a cycle ergometer to assess VO2peak, Tmax, VT, and RCP. Twenty-six participants were randomly assigned into either a placebo (PLA-HIIT) or 3 g per day of HMBFA (BetaTor™) (HMBFA-HIIT) group. Eight participants served as controls (CTL). Participants in the HIIT groups completed 12 HIIT (80-120% maximal workload) exercise sessions consisting of 5-6 bouts of a 2:1 minute cycling work to rest ratio protocol over a four-week period. Body composition was measured with dual energy x-ray absorptiometry (DEXA). Outcomes were assessed by ANCOVA with posttest means adjusted for pretest differences. The HMBFA-HIIT intervention showed significant (p body composition. An independent-samples t-test confirmed that there were no significant differences between the training volumes for the PLA-HIIT and HMBFA-HIIT groups. Our findings support the use of HIIT in combination with HMBFA to improve aerobic fitness in college age men and women. These data suggest that the addition of HMBFA supplementation may result in greater changes in VO2peak and VT than HIIT alone. The study was registered on ClinicalTrials.gov (ID NCT01941368).

  15. High resolution transmission electron microscopy and microdiffraction for radiation damage analysis

    International Nuclear Information System (INIS)

    Sinclair, R.

    1982-01-01

    High resolution TEM techniques have developed to quite a sophisticated level over the past few years. In addition TEM instruments with a scanning capability have become available commercially which permit in particular the formation of a small electron probe at the specimen. Thus direct resolution and microdiffraction investigations of thin specimens are now possible, neither of which have been employed to any great extent in the analysis of radiation damage. Some recent advances which are thought to be relevant to this specific area of research are highlighted

  16. Damage process of high purity tungsten coatings by hydrogen beam heat loads

    International Nuclear Information System (INIS)

    Tamura, S.; Tokunaga, K.; Yoshida, N.; Taniguchi, M.; Ezato, K.; Sato, K.; Suzuki, S.; Akiba, M.; Tsunekawa, Y.; Okumiya, M.

    2005-01-01

    To investigate the synergistic effects of heat load and hydrogen irradiation, cyclic heat load tests with a hydrogen beam and a comparable electron beam were performed for high purity CVD-tungsten coatings. Surface modification was examined as a function of the peak temperature by changing the heat flux. Scanning Electron Microscopy analysis showed that the surface damage caused by the hydrogen beam was more severe than that by the electron beam. In the hydrogen beam case, cracking at the surface occurred at all peak temperatures examined from 300 deg. C to 1600 deg. C. These results indicate that the injected hydrogen induces embrittlement for the CVD-tungsten coating

  17. IL-6, Antioxidant Capacity and Muscle Damage Markers Following High-Intensity Interval Training Protocols

    OpenAIRE

    Cipryan, Lukas

    2017-01-01

    Abstract The aim of this study was to investigate changes of interleukin-6 (IL-6), total antioxidant capacity (TAC) and muscle damage markers (creatine kinase (CK), myoglobin and lactate dehydrogenase (LDH)) in response to three different high-intensity interval training (HIIT) protocols of identical external work. Twelve moderately-trained males participated in the three HIIT trials which consisted of a warm-up, followed by 12 min of 15 s, 30 s or 60 s HIIT sequences with the work/rest ratio...

  18. Full-Length High-Temperature Severe Fuel Damage Test No. 5: Final safety analysis

    International Nuclear Information System (INIS)

    Lanning, D.D.; Lombardo, N.J.; Panisko, F.E.

    1993-09-01

    This report presents the final safety analysis for the preparation, conduct, and post-test discharge operation for the Full-Length High Temperature Experiment-5 (FLHT-5) to be conducted in the L-24 position of the National Research Universal (NRU) Reactor at Chalk River Nuclear Laboratories (CRNL), Ontario, Canada. The test is sponsored by an international group organized by the US Nuclear Regulatory Commission. The test is designed and conducted by staff from Pacific Northwest Laboratory with CRNL staff support. The test will study the consequences of loss-of-coolant and the progression of severe fuel damage

  19. Investigating coseismic fracture damage using a new high speed triaxial apparatus

    Science.gov (United States)

    Mitchell, T. M.; Aben, F. M.; Pricci, R.; Brantut, N.; Rockwell, T. K.; Boon, S.

    2017-12-01

    The occurence of pulverized rocks, a type of intensely damaged fault rock which has undergone minimal shear strain, has been linked to damage induced by transient high strain-rate stress perturbations during earthquake rupture. Damage induced by such transient stresses, whether compressional or tensional, likely constitute heterogeneous modulations of the remote stresses that will impart significant changes on the strength, elastic and fluid flow properties of a fault zone immediately after rupture propagation, at the early stage of fault slip. While the physical mechanisms for pulverized rock generation are still not yet fully understood, it is likely that they are in some way related to a combination of the dynamic compressive and tensional stresses imparted on the rock surrounding a fault at the tip of a propagating earthquake rupture. Typical triaxial rock deformation apparatuses are limited by their loading systems to strain rates on the order of 10-4 s-1, which in terms of the seismic cycle, is only applicable to processes operating within the inter-seismic period. In order to achieve strain rates in excess of 100 s-1 under confined conditions with pore fluids (currently unachievable with conventional deformation apparatus such as split bar Hopkinson), we have designed, manufactured and constructed a new high strain rate triaxial rock deformation apparatus, with a unique innovative hydraulic loading system that allows samples to be deformed in compression and tension at strain rates from 10-7 up to 200 s-1 . We present preliminary data demonstrating the unique capability of this apparatus to produce co-seismic experimental conditions not previously acheived.

  20. High Cycle Fatigue Damage Mechanisms of MAR-M 247 Superalloy at High Temperatures

    Czech Academy of Sciences Publication Activity Database

    Šmíd, Miroslav; Horník, Vít; Hutař, Pavel; Hrbáček, K.; Kunz, Ludvík

    2016-01-01

    Roč. 69, č. 2 (2016), s. 393-397 ISSN 0972-2815 R&D Projects: GA TA ČR(CZ) TA04011525; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : High cycle fatigue * S-N curves * Fractography * High temperature * EBSD analysis Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 0.533, year: 2016

  1. Characterization and damaging law of CFC for high heat flux actively cooled plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Chevet, G., E-mail: gaelle.chevet@cea.fr [Association EURATOM-CEA, DSM/IRFM, CEA Cadarache, F-13108 Saint Paul lez Durance (France); Martin, E., E-mail: martin@lcts.u-bordeaux1.fr [LCTS, CNRS UMR 5801, Universite Bordeaux 1, Bordeaux (France); Boscary, J., E-mail: jean.boscary@ipp.mpg.de [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, 85748 Garching (Germany); Camus, G., E-mail: camus@lcts.u-bordeaux1.fr [LCTS, CNRS UMR 5801, Universite Bordeaux 1, Bordeaux (France); Herb, V., E-mail: herb@lcts.u-bordeaux1.fr [LCTS, CNRS UMR 5801, Universite Bordeaux 1, Bordeaux (France); Schlosser, J., E-mail: jacques.schlosser@cea.fr [Association EURATOM-CEA, DSM/IRFM, CEA Cadarache, F-13108 Saint Paul lez Durance (France); Escourbiac, F., E-mail: frederic.escourbiac@cea.fr [Association EURATOM-CEA, DSM/IRFM, CEA Cadarache, F-13108 Saint Paul lez Durance (France); Missirlian, M., E-mail: marc.missirlian@cea.fr [Association EURATOM-CEA, DSM/IRFM, CEA Cadarache, F-13108 Saint Paul lez Durance (France)

    2011-10-01

    The carbon fiber reinforced carbon composite (CFC) Sepcarb N11 has been used in the Tore Supra (TS) tokamak (Cadarache, France) as armour material for the plasma facing components. For the fabrication of the Wendelstein 7-X (W7-X) divertor (Greifswald, Germany), the NB31 material was chosen. For the fabrication of the ITER divertor, two potential CFC candidates are the NB31 and NB41 materials. In the case of Tore Supra, defects such as microcracks or debonding were found at the interface between CFC tile and copper heat sink. A mechanical characterization of the behaviour of N11 and NB31 was undertaken, allowing the identification of a damage model and finite element calculations both for flat tiles (TS and W7-X) and monoblock (ITER) armours. The mechanical responses of these CFC materials were found almost linear under on-axis tensile tests but highly nonlinear under shear tests or off-axis tensile tests. As a consequence, damage develops within the high shear-stress zones.

  2. Characterization and damaging law of CFC for high heat flux actively cooled plasma facing components

    International Nuclear Information System (INIS)

    Chevet, G.; Martin, E.; Boscary, J.; Camus, G.; Herb, V.; Schlosser, J.; Escourbiac, F.; Missirlian, M.

    2011-01-01

    The carbon fiber reinforced carbon composite (CFC) Sepcarb N11 has been used in the Tore Supra (TS) tokamak (Cadarache, France) as armour material for the plasma facing components. For the fabrication of the Wendelstein 7-X (W7-X) divertor (Greifswald, Germany), the NB31 material was chosen. For the fabrication of the ITER divertor, two potential CFC candidates are the NB31 and NB41 materials. In the case of Tore Supra, defects such as microcracks or debonding were found at the interface between CFC tile and copper heat sink. A mechanical characterization of the behaviour of N11 and NB31 was undertaken, allowing the identification of a damage model and finite element calculations both for flat tiles (TS and W7-X) and monoblock (ITER) armours. The mechanical responses of these CFC materials were found almost linear under on-axis tensile tests but highly nonlinear under shear tests or off-axis tensile tests. As a consequence, damage develops within the high shear-stress zones.

  3. Some remarks on non-monotonic effects at low radiation intensities, on the problem of extrapolating doses between high and low intensities and on the problem of thresholds

    International Nuclear Information System (INIS)

    Delattre, P.

    1983-01-01

    On the basis of a general descriptive framework which takes into account the intensity factor and the time distribution of radiation, a detailed justification for which is to be found in earlier publications, the three fundamental problems mentioned in the title of this paper can be approached in a new way. If the biological effect e for a given dose D delivered at different radiation intensities phi is studied, we find that the curve e=f(phi) can exhibit non-monotonic shapes. This type of phenomenon is known in pharmacology and toxicology and may well exist also for low- or medium-intensity radiation effects. Extrapolation of the effects of a given dose between high and low radiation intensities phi is usually carried out by means of an empirical linear or linear-quadratic formulation. This procedure is insufficiently justified from a theoretical point of view. It is shown here that the effects can be written in the form e=k(phi)D and that the factor of proportionality k(phi) is a generally very complicated function of phi. Hence, the usual extrapolation procedures cannot deal with certain ranges of values of phi within which the effects observed at a given dose may be greater than when the dose is delivered at higher intensity. The problem of thresholds is actually far more difficult than the current literature on the subject would suggest. It is shown here, on the basis of considerations of qualitative dynamics, that several types of threshold must be defined, starting with a threshold for the radiation intensity phi. All these thresholds are interrelated hierarchically in fairly complex ways which must be studied case by case. These results show that it is illusory to attempt to define a universal notion of threshold in terms of dose. The conceptual framework used in the proposed approach proves also to be very illuminating for other studies in progress, particularly in the investigation of phenomena associated with ageing and carcinogenesis. (author)

  4. Exploring ultrashort high-energy electron-induced damage in human carcinoma cells

    International Nuclear Information System (INIS)

    Rigaud, O.; Fortunel, N.O.; Vaigot, P.; Cadio, E.; Martin, M.T.; Lundh, O.; Faure, J.; Rechatin, C.; Malka, V.; Gauduel, Y.A.

    2010-01-01

    In conventional cancer therapy or fundamental radiobiology research, the accumulated knowledge on the complex responses of healthy or diseased cells to ionizing radiation is generally obtained with low-dose rates. Under these radiation conditions, the time spent for energy deposition is very long compared with the dynamics of early molecular and cellular responses. The use of ultrashort pulsed radiation would offer new perspectives for exploring the 'black box' aspects of long irradiation profiles and favouring the selective control of early damage in living targets. Several attempts were previously performed using nanosecond or picosecond pulsed irradiations on various mammalian cells and radiosensitive mutants at high dose rate. The effects of single or multi-pulsed radiations on cell populations were generally analyzed in the framework of dose survival curves or characterized by 2D imaging of γ-H2AX foci and no increase in cytotoxicity was shown compared with a delivery at a conventional dose rate. Moreover, when multi-shot irradiations were performed, the overall time needed to obtain an integrated dose of several Grays again overlapped with the multi-scale dynamics of bio-molecular damage-repair sequences and cell signalling steps. Ideally, a single-shot irradiation delivering a well-defined energy profile, via a very short temporal window, would permit the approach of a real-time investigation of early radiation induced molecular damage within the confined spaces of cell compartments. Owing to the potential applications of intense ultrashort laser for radiation therapy, the model of the A431 carcinoma cell line was chosen. An ultrafast single-shot irradiation strategy was carried out with these radio-resistant human skin carcinoma cells, using the capacity of an innovating laser-plasma accelerator to generate quasi mono-energetic femtosecond electron bunches in the MeV domain and to deliver a very high dose rate of 10 13 Gy s -1 per pulse. The alkaline comet

  5. Avoiding thermal striping damage: Experimentally-based design procedures for high-cycle thermal fatigue

    International Nuclear Information System (INIS)

    Betts, C.; Judd, A.M.; Lewis, M.W.J.

    1994-01-01

    In the coolant circuits of a liquid metal cooled reactor (LMR), where there is turbulent mixing of coolant streams at different temperatures, there are temperature fluctuations in the fluid. If an item of the reactor structure is immersed in this fluid it will, because of the good heat transfer from the flowing liquid metal, experience surface temperature fluctuations which will induce dynamic surface strains. It is necessary to design the reactor so that these temperature fluctuations do not, over the life of the plant, cause damage. The purpose of this paper is to describe design procedures to prevent damage of this type. Two such procedures are given, one to prevent the initiation of defects in a nominally defect-free structure or to allow initiation only at the end of the component life, and the other to prevent significant growth of undetectable pre-existing defects of the order of 0.2 to 0.4 mm in depth. Experimental validation of these procedures is described, and the way they can be applied in practice is indicated. To set the scene the paper starts with a brief summary of cases in which damage of this type, or the need to avoid such damage, have had important effects on reactor operation. Structural damage caused by high-cycle thermal fatigue has had a significant adverse influence on the operation of LMRs on several occasions. It is necessary to eliminate the risk of such damage at the design stage. In the absence of detailed knowledge of the temperature history to which it will be subject, an LMR structure can be designed so that, if it is initially free of defects more than 0.1 mm deep, no such defects will be initiated by high-cycle fatigue. This can be done by ensuring that the maximum source temperature difference in the liquid metal is less than a limiting value, which depends on temperature. The limit is very low, however, and likely to be restrictive. This method, by virtue of its safety margin, takes into account pre-existing surface crack

  6. High-density plasma etching of III-nitrides: Process development, device applications and damage remediation

    Science.gov (United States)

    Singh, Rajwinder

    Plasma-assisted etching is a key technology for III-nitride device fabrication. The inevitable etch damage resulting from energetic pattern transfer is a challenge that needs to be addressed in order to optimize device performance and reliability. This dissertation focuses on the development of a high-density inductively-coupled plasma (ICP) etch process for III-nitrides, the demonstration of its applicability to practical device fabrication using a custom built ICP reactor, and development of techniques for remediation of etch damage. A chlorine-based standard dry etch process has been developed and utilized in fabrication of a number of electronic and optoelectronic III-nitride devices. Annealing studies carried out at 700°C have yielded the important insight that the annealing time necessary for making good-quality metal contacts to etch processed n-GaN is very short (water, prior to metallization, removes some of the etch damage and is helpful in recovering contact quality. In-situ treatment consisting of a slow ramp-down of rf bias at the end of the etch is found to achieve the same effect as the ex-situ treatment. This insitu technique is significantly advantageous in a large-scale production environment because it eliminates a process step, particularly one involving treatment in hydrochloric acid. ICP equipment customization for scaling up the process to full 2-inch wafer size is described. Results on etching of state of the art 256 x 256 AlGaN focal plane arrays of ultraviolet photodetectors are reported, with excellent etch uniformity over the wafer area.

  7. Thermal damage produced by high-irradiance continuous wave CO2 laser cutting of tissue.

    Science.gov (United States)

    Schomacker, K T; Walsh, J T; Flotte, T J; Deutsch, T F

    1990-01-01

    Thermal damage produced by continuous wave (cw) CO2 laser ablation of tissue in vitro was measured for irradiances ranging from 360 W/cm2 to 740 kW/cm2 in order to investigate the extent to which ablative cooling can limit tissue damage. Damage zones thinner than 100 microns were readily produced using single pulses to cut guinea pig skin as well as bovine cornea, aorta, and myocardium. Multiple pulses can lead to increased damage. However, a systematic decrease in damage with irradiance, predicted theoretically by an evaporation model of ablation, was not observed. The damage-zone thickness was approximately constant around the periphery of the cut, consistent with the existence of a liquid layer which stores heat and leads to tissue damage, and with a model of damage and ablation recently proposed by Zweig et al.

  8. Low cycle fatigue: high cycle fatigue damage accumulation in a 304L austenitic stainless steel; Endommagement et cumul de dommage en fatigue dans le domaine de l'endurance limitee d'un acier inoxydable austenitique 304L

    Energy Technology Data Exchange (ETDEWEB)

    Lehericy, Y

    2007-05-15

    The aim of this study was to evaluate the consequences of a Low Cycle Fatigue pre-damage on the subsequent fatigue limit of a 304L stainless steel. The effects of hardening and severe roughness (grinding) have also been investigated. In a first set of tests, the evolution of the surface damage induced by the different LCF pre-cycling was characterized. This has permitted to identify mechanisms and kinetics of damage in the plastic domain for different surface conditions. Then, pre-damaged samples were tested in the High Cycle Fatigue domain in order to establish the fatigue limits associated with each level of pre-damage. Results evidence that, in the case of polished samples, an important number of cycles is required to initiate surface cracks ant then to affect the fatigue limit of the material but, in the case of ground samples, a few number of cycles is sufficient to initiate cracks and to critically decrease the fatigue limit. The fatigue limit of pre-damaged samples can be estimated using the stress intensity factor threshold. Moreover, this detrimental effect of severe surface conditions is enhanced when fatigue tests are performed under a positive mean stress (author)

  9. Damage structure of gallium arsenide irradiated in a high-voltage electron microscope

    International Nuclear Information System (INIS)

    Loretto, D.; Loretto, M.H.

    1989-01-01

    Semi-insulating undoped gallium arsenide has been irradiated in a high-voltage electron microscope between room temperature and about 500 0 C for doses of up to 5 x 10 22 electrons cm -2 at 1 MeV. Room-temperature irradiation produces small (less than 5 nm) damage clusters. As the temperature of the irradiation is increased, the size of these clusters increases, until at about 300 0 C a high density of dislocation loops can be resolved. The dislocation loops, 20 nm or less in diameter, which are produced at about 500 0 C have been analysed in a bright field using a two-beam inside-outside method which minimises the tilt necessary between micrographs. It is concluded that the loops are an interstitial perfect-edge type with a Burgers vector of (a/2) . (author)

  10. Radiation-damage studies, irradiations and high-dose dosimetry for LHC detectors

    CERN Document Server

    Coninckx, F; León-Florián, E; Leutz, H; Schönbacher, Helmut; Sonderegger, P; Tavlet, Marc; Sopko, B; Henschel, H; Schmidt, H U; Boden, A; Bräunig, D; Wulf, F; Cramariuc, R; Ilie, D; Fattibene, P; Onori, S; Miljanic, S; Paic, G; Razen, B; Razem, D; Rendic, D; CERN. Geneva. Detector Research and Development Committee

    1991-01-01

    The proposal is divided into a main project and special projects. The main project consists of a service similar to the one given in the past to accelerator construction projects at CERN (ISR,SPS,LEP) on high-dose dosimetry, material irradiations, irradiations tests, standardization of test procedures and data compilations. Large experience in this field and numerous radiation damage test data of insulating and structural materials are available. The special projects cover three topics which are of specific interest for LHC detector physicists and engineers at CERN and in other high energy physics institutes, namely: Radiation effects in scintillators; Selection of radiation hard optical fibres for data transmission; and Selection and testing of radiation hard electronic components.

  11. Which markers of subclinical organ damage to measure in individuals with high normal blood pressure?

    DEFF Research Database (Denmark)

    Sehestedt, Thomas; Jeppesen, Jørgen; Hansen, Tine W

    2009-01-01

    plaques or urine albumin/creatinine ratio of at least the 90th percentile did not produce significantly worse results. Seventy-five percent of individuals with three or more traditional risk factors had SOD. CONCLUSION: In healthy individuals with high normal BP, measuring two of pulse wave velocities......OBJECTIVE: Medical treatment of healthy individuals with high normal blood pressure (BP) is recommended if there is subclinical organ damage (SOD). We examined which markers of SOD to use based on their supplementary prognostic value. METHODS: In a population sample of 1968 individuals, aged 41, 51......, 61 and 71 years, without diabetes, prior stroke or myocardial infarction, not receiving any cardiovascular, antidiabetic or lipid-lowering medications, we measured urine albumin/creatinine ratio, carotid atherosclerotic plaques, carotid/femoral pulse wave velocity and left ventricular mass index...

  12. Role of interfaces i nthe design of ultra-high strength, radiation damage tolerant nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Misra, Amit [Los Alamos National Laboratory; Wang, Yongqiang [Los Alamos National Laboratory; Nastasi, Michael A [Los Alamos National Laboratory; Baldwin, Jon K [Los Alamos National Laboratory; Wei, Qiangmin [Los Alamos National Laboratory; Li, Nan [Los Alamos National Laboratory; Mara, Nathan [Los Alamos National Laboratory; Zhang, Xinghang [Los Alamos National Laboratory; Fu, Engang [Los Alamos National Laboratory; Anderoglu, Osman [Los Alamos National Laboratory; Li, Hongqi [Los Alamos National Laboratory; Bhattacharyya, Dhriti [NON LANL

    2010-12-09

    The combination of high strength and high radiation damage tolerance in nanolaminate composites can be achieved when the individual layers in these composites are only a few nanometers thick and contain special interfaces that act both as obstacles to slip, as well as sinks for radiation-induced defects. The morphological and phase stabilities and strength and ductility of these nano-composites under ion irradiation are explored as a function of layer thickness, temperature and interface structure. Magnetron sputtered metallic multilayers such as Cu-Nb and V-Ag with a range of individual layer thickness from approximately 2 nm to 50 nm and the corresponding 1000 nm thick single layer films were implanted with helium ions at room temperature. Cross-sectional Transmission Electron Microscopy (TEM) was used to measure the distribution of helium bubbles and correlated with the helium concentration profile measured vis ion beam analysis techniques to obtain the helium concentration at which bubbles are detected in TEM. It was found that in multilayers the minimum helium concentration to form bubbles (approximately I nm in size) that are easily resolved in through-focus TEM imaging was several atomic %, orders of magnitude higher than that in single layer metal films. This observation is consistent with an increased solubility of helium at interfaces that is predicted by atomistic modeling of the atomic structures of fcc-bcc interfaces. At helium concentrations as high as 7 at.%, a uniform distribution of I nm diameter bubbles results in negligible irradiation hardening and loss of deformability in multi layers with layer thicknesses of a few nanometers. The control of atomic structures of interfaces to produce high helium solubility at interfaces is crucial in the design of nano-composite materials that are radiation damage tolerant. Reduced radiation damage also leads to a reduction in the irradiation hardening, particularly at layer thickness of approximately 5 run

  13. Impact Damage Evaluation Method of Friction Disc Based on High-Speed Photography and Tooth-Root Stress Coupling

    International Nuclear Information System (INIS)

    Yin, L; Shao, Y M; Liu, J; Zheng, H L

    2015-01-01

    The stability of friction disc could be seriously affected by the tooth surface damage due to poor working conditions of the wet multi-disc brake in heavy trucks. There are few current works focused on the damage of the friction disc caused by torsion-vibration impacts. Hence, it is necessary to investigate its damage mechanisms and evaluation methods. In this paper, a damage mechanism description and evaluation method of a friction disc based on the high-speed photography and tooth-root stress coupling is proposed. According to the HighSpeed Photography, the collision process between the friction disc and hub is recorded, which can be used to determine the contact position and deformation. Combined with the strain-stress data obtained by the strain gauge at the place of the tooth-root, the impact force and property are studied. In order to obtain the evaluation method, the damage surface morphology data of the friction disc extracted by 3D Super Depth Digital Microscope (VH-Z100R) is compared with the impact force and property. The quantitative relationships between the amount of deformation and collision number are obtained using a fitting analysis method. The experimental results show that the damage of the friction disc can be evaluated by the proposed impact damage evaluation method based on the high-speed photography and tooth-root stress coupling. (paper)

  14. Relationships between browsing damage and the species dominance by the highly food-attractive and less food-attractive trees

    Directory of Open Access Journals (Sweden)

    Petr Čermák

    2011-01-01

    Full Text Available The paper analyses data on the browsing damage to Acer pseudoplatanus, Carpinus betulus, Fraxinus excelsior, Quercus spp., Tilia cordata and Fagus sylvatica. Field research was carried out in the period 2007–2010 and analysed data came from 33 transects at 10 localities with the various abundance of game in the CR (everywhere Capreolus capreolus, on several plots also Cervus elaphus, Ovis musimon or Dama dama. Trees were monitored up to a height of 150 cm in natural regeneration under stands and in plantations and the occurrence was noted of new browsing damage. Differences between the percentage of damaged individuals of the given species of a food-attractive species (A. p., C. b., F. e. and the percentage of damaged individuals of all tree species on a transect as well as the proportion of these parameters correlate negatively with the given species dominance and thus, they appear to be suitable parameters for the analysis of relationships between the damage intensity and dominance. The higher the percentage proportions of highly food-attractive species and the lower the percentage of less-attractive species, the lower the relative intensity of damage to highly food-attractive species. At the same time, the higher the percentage proportion of highly food-attractive species and the lower the percentage of less-attractive species then the lower a difference between damage to less food-attractive species and all species.

  15. Vochysia rufa Stem Bark Extract Protects Endothelial Cells against High Glucose Damage

    Directory of Open Access Journals (Sweden)

    Neire Moura de Gouveia

    2017-02-01

    Full Text Available Background: Increased oxidative stress by persistent hyperglycemia is a widely accepted factor in vascular damage responsible for type 2 diabetes complications. The plant Vochysia rufa (Vr has been used in folk medicine in Brazil for the treatment of diabetes. Thus; the protective effect of a Vr stem bark extract against a challenge by a high glucose concentration on EA.hy926 (EA endothelial cells is evaluated. Methods: Vegetal material is extracted with distilled water by maceration and evaporated until dryness under vacuum. Then; it is isolated by capillary electrophoresis–tandem mass spectrometry. Cell viability is evaluated on EA cells treated with 0.5–100 µg/mL of the Vr extract for 24 h. The extract is diluted at concentrations of 5, 10 and 25 µg/mL and maintained for 24 h along with 30 mM of glucose to evaluate its protective effect on reduced glutathione (GSH; glutathione peroxidase (GPx and reductase (GR and protein carbonyl groups. Results: V. rufa stem bark is composed mainly of sugars; such as inositol; galactose; glucose; mannose; sacarose; arabinose and ribose. Treatment with Vr up to 100 µg/mL for 24 h did not affect cell viability. Treatment of EA cells with 30 mM of glucose for 24 h significantly increased the cell damage. EA cells treated with 30 mM of glucose showed a decrease of GSH concentration and increased Radical Oxygen Species (ROS and activity of antioxidant enzymes and protein carbonyl levels; compared to control. Co-treatment of EA with 30 mM glucose plus 1–10 μg/mL Vr significantly reduced cell damage while 5–25 μg/mL Vr evoked a significant protection against the glucose insult; recovering ROS; GSH; antioxidant enzymes and carbonyls to baseline levels. Conclusion: V. rufa extract protects endothelial cells against oxidative damage by modulating ROS; GSH concentration; antioxidant enzyme activity and protein carbonyl levels.

  16. Experimental investigation and analysis of damage evolution in concrete under high-cyclic fatigue loadings

    International Nuclear Information System (INIS)

    Thiele, Marc

    2016-01-01

    The main objective of this thesis is the fatigue behavior of concrete under high-cycle compressive loadings. Current knowledge about fatigue behavior of concrete is still incomplete. This concerns especially the process of fatigue which is preceding the fatigue failure. The leak of knowledge about fatigue behavior is opposed to the steady growing importance of this topic within the practice in civil engineering. Therefore, within this thesis a systematic and comprehensive investigation of the process of fatigue itself was done. This contributes to the better understanding of the progression of damage and the corresponding processes within the material. The experimental investigation consisted mainly of experiments with constant amplitude loadings in compression with cylindrical specimen made of normal strength concrete. Two differed load levels were used which resulted in numbers of cycles to failure of 10 6 and 10 7 as well as 10 3 and 10 4 . The experiments were done in combination with different types of nondestructive and destructive testing methods like strain measuring, deformation of surface, ultrasonic signals, acoustic emissions, optical microscopy and also scattering electron microscopy. To access some parameters of influence in relation to the fatigue behavior additional creep tests and also several tests with different scales of specimen were done. The fatigue process of concrete is determined as an evolution of damage that starts from the beginning of the loading process. This evolution has manifold and different influences on the different material properties of concrete. In this relation a major finding was that fatigue related damage leads to a transformation of the complete stress-strain-relationship. This relationship is also subjected to an evolution process. Due to the authors observations it could not be determined that the investigated changes in macroscopic material behavior are caused by a development of micro cracks within the material

  17. Full-length high-temperature severe fuel damage test No. 5

    International Nuclear Information System (INIS)

    Lanning, D.D.; Lombardo, N.J.; Hensley, W.K.; Fitzsimmons, D.E.; Panisko, F.E.; Hartwell, J.K.

    1993-09-01

    This report describes and presents data from a severe fuel damage test that was conducted in the National Research Universal (NRU) reactor at Chalk River Nuclear Laboratories (CRNL), Ontario, Canada. The test, designated FLHT-5, was the fourth in a series of full-length high-temperature (FLHT) tests on light-water reactor fuel. The tests were designed and performed by staff from the US Department of Energy's Pacific Northwest Laboratory (PNL), operated by Battelle Memorial Institute. The test operation and test results are described in this report. The fuel bundle in the FLHT-5 experiment included 10 unirradiated full-length pressurized-water reactor (PWR) rods, 1 irradiated PWR rod and 1 dummy gamma thermometer. The fuel rods were subjected to a very low coolant flow while operating at low fission power. This caused coolant boilaway, rod dryout and overheating to temperatures above 2600 K, severe fuel rod damage, hydrogen generation, and fission product release. The test assembly and its effluent path were extensively instrumented to record temperatures, pressures, flow rates, hydrogen evolution, and fission product release during the boilaway/heatup transient. Post-test gamma scanning of the upper plenum indicated significant iodine and cesium release and deposition. Both stack gas activity and on-line gamma spectrometer data indicated significant (∼50%) release of noble fission gases. Post-test visual examination of one side of the fuel bundle revealed no massive relocation and flow blockage; however, rundown of molten cladding was evident

  18. Rotator Interval Lesion and Damaged Subscapularis Tendon Repair in a High School Baseball Player

    Directory of Open Access Journals (Sweden)

    Tomoyuki Muto

    2015-01-01

    Full Text Available In 2013, a 16-year-old baseball pitcher visited Nobuhara Hospital complaining of shoulder pain and limited range of motion in his throwing shoulder. High signal intensity in the rotator interval (RI area (ball sign, injured subscapularis tendon, and damage to both the superior and middle glenohumeral ligaments were identified using magnetic resonance imaging (MRI. Repair of the RI lesion and partially damaged subscapularis tendon was performed in this pitcher. During surgery, an opened RI and dropping of the subscapularis tendon were observed. The RI was closed in a 90° externally rotated and abducted position. To reconfirm the exact repaired state of the patient, arthroscopic examination was performed from behind. However, suture points were not visible in the >30° externally rotated position, which indicates that the RI could not be correctly repaired with the arthroscopic procedure. One year after surgery, the patient obtained full function of the shoulder and returned to play at a national convention. Surgical repair of the RI lesion should be performed in exactly the correct position of the upper extremity.

  19. Casualties and threshold effects

    International Nuclear Information System (INIS)

    Mays, C.W.; National Cancer Inst., Bethesda

    1988-01-01

    Radiation effects like cancer are denoted as casualties. Other radiation effects occur almost in everyone when the radiation dose is sufficiently high. One then speaks of radiation effects with a threshold dose. In this article the author puts his doubt about this classification of radiation effects. He argues that some effects of exposure to radiation do not fit in this classification. (H.W.). 19 refs.; 2 figs.; 1 tab

  20. Influence of subcascade formation on displacement damage at high PKA energies

    Energy Technology Data Exchange (ETDEWEB)

    Stoller, R.E. [Oak Ridge National Lab., TN (United States); Greenwood, L.R. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-08-01

    The design of first generation fusion reactors will have to be rely on radiation effects data obtained from experiments conducted in fission reactors. Two issues must be addressed to use this data with confidence. The first is differences in the neutron energy spectrum, and the second is differences in nuclear transmutation rates. Differences in the neutron energy spectra are reflected in the energy spectra of the primary knockon atoms (PKA). The issue of PKA energy effects has been addressed through the use of displacement cascade simulations using the method of molecular dynamics (MD). Although MD simulations can provide a detailed picture of the formation and evolution of displacement cascades, they impose a substantial computational burden. However, recent advances in computing equipment permit the simulation of high energy displacement events involving more than one-million atoms; the results presented here encompass MD cascade simulation energies from near the displacement threshold to as high as 40 keV. Two parameters have been extracted from the MD simulations: the number of point defects that remain after the displacement event is completed and the fraction of the surviving interstitials that are contained in clusters. The MD values have been normalized to the number of atomic displacements calculated with the secondary displacement model by Norgett, Robinson, and Torrens (NRT).

  1. Skin damage probabilities using fixation materials in high-energy photon beams

    International Nuclear Information System (INIS)

    Carl, J.; Vestergaard, A.

    2000-01-01

    Patient fixation, such as thermoplastic masks, carbon-fibre support plates and polystyrene bead vacuum cradles, is used to reproduce patient positioning in radiotherapy. Consequently low-density materials may be introduced in high-energy photon beams. The aim of the this study was to measure the increase in skin dose when low-density materials are present and calculate the radiobiological consequences in terms of probabilities of early and late skin damage. An experimental thin-windowed plane-parallel ion chamber was used. Skin doses were measured using various overlaying low-density fixation materials. A fixed geometry of a 10 x 10 cm field, a SSD = 100 cm and photon energies of 4, 6 and 10 MV on Varian Clinac 2100C accelerators were used for all measurements. Radiobiological consequences of introducing these materials into the high-energy photon beams were evaluated in terms of early and late damage of the skin based on the measured surface doses and the LQ-model. The experimental ion chamber save results consistent with other studies. A relationship between skin dose and material thickness in mg/cm 2 was established and used to calculate skin doses in scenarios assuming radiotherapy treatment with opposed fields. Conventional radiotherapy may apply mid-point doses up to 60-66 Gy in daily 2-Gy fractions opposed fields. Using thermoplastic fixation and high-energy photons as low as 4 MV do increase the dose to the skin considerably. However, using thermoplastic materials with thickness less than 100 mg/cm 2 skin doses are comparable with those produced by variation in source to skin distance, field size or blocking trays within clinical treatment set-ups. The use of polystyrene cradles and carbon-fibre materials with thickness less than 100 mg/cm 2 should be avoided at 4 MV at doses above 54-60 Gy. (author)

  2. Doubler system quench detection threshold

    International Nuclear Information System (INIS)

    Kuepke, K.; Kuchnir, M.; Martin, P.

    1983-01-01

    The experimental study leading to the determination of the sensitivity needed for protecting the Fermilab Doubler from damage during quenches is presented. The quench voltage thresholds involved were obtained from measurements made on Doubler cable of resistance x temperature and voltage x time during quenches under several currents and from data collected during operation of the Doubler Quench Protection System as implemented in the B-12 string of 20 magnets. At 4kA, a quench voltage threshold in excess of 5.OV will limit the peak Doubler cable temperature to 452K for quenches originating in the magnet coils whereas a threshold of 0.5V is required for quenches originating outside of coils

  3. Statistical damage analysis of transverse cracking in high temperature composite laminates

    International Nuclear Information System (INIS)

    Sun Zuo; Daniel, I.M.; Luo, J.J.

    2003-01-01

    High temperature polymer composites are receiving special attention because of their potential applications to high speed transport airframe structures and aircraft engine components exposed to elevated temperatures. In this study, a statistical analysis was used to study the progressive transverse cracking in a typical high temperature composite. The mechanical properties of this unidirectional laminate were first characterized both at room and high temperatures. Damage mechanisms of transverse cracking in cross-ply laminates were studied by X-ray radiography at room temperature and in-test photography technique at high temperature. Since the tensile strength of unidirectional laminate along transverse direction was found to follow Weibull distribution, Monte Carlo simulation technique based on experimentally obtained parameters was applied to predict transverse cracking at different temperatures. Experiments and simulation showed that they agree well both at room temperature and 149 deg. C (stress free temperature) in terms of applied stress versus crack density. The probability density function (PDF) of transverse crack spacing considering statistical strength distribution was also developed, and good agreements with simulation and experimental results are reached. Finally, a generalized master curve that predicts the normalized applied stress versus normalized crack density for various lay-ups and various temperatures was established

  4. Growth, spectral, optical, laser damage threshold and DFT investigations on 2-amino 4-methyl pyridinium 4-methoxy benzoate (2A4MP4MB): A potential organic third order nonlinear optical material for optoelectronic applications

    Science.gov (United States)

    Krishnakumar, M.; Karthick, S.; Thirupugalmani, K.; Babu, B.; Vinitha, G.

    2018-05-01

    In present investigation, single crystals of organic charge transfer complex, 2-amino-4-methyl pyridinium-4-methoxy benzoate (2A4MP4MB) was grown by controlled slow evaporation solution growth technique using methanol as a solvent at room temperature. Single crystal XRD analysis confirmed the crystal system and lattice parameters of 2A4MP4MB. The crystalline nature, presence of various vibrational modes and other chemical bonds in the compound have been recognized and confirmed by powder X-ray diffraction, FT-IR and FT-Raman spectroscopic techniques respectively. The presence of various proton and carbon positions in title compound was confirmed using 1H NMR and 13C NMR spectral studies. The wide optical operating window and cut-off wavelength were identified and band gap value of the title compound was calculated using UV-vis-NIR study. The specific heat capacity (cp) values of the title compound, 1.712 J g-1·K-1 at 300 K and 13.6 J g-1 K-1 at 433 K (melting point) were measured using Modulated Differential Scanning Calorimetric studies (MDSC). From Z-scan study, nonlinear refractive index (n2), nonlinear absorption (β) and third order nonlinear susceptibility (χ(3)) values were determined. The self-defocusing effect and saturable absorption behavior of the material were utilized to exhibit the optical limiting action at λ = 532 nm by employing the same continuous wave (cw) Nd: YAG laser source. The laser damage threshold (LDT) study of title compound was carried out using Nd: YAG laser of 532 nm wavelength. The Vickers' micro hardness test was carried out at room temperature and obtained results were investigated using classical Meyer's law. In addition, DFT calculations were carried out for the first time for this compound. These characterization studies performed on the title compound planned to probe the valuable and safe region of optical, thermal and mechanical properties to improve efficacy of 2A4MP4MB single crystals in optoelectronic device

  5. Stress and Damage in Polymer Matrix Composite Materials Due to Material Degradation at High Temperatures

    Science.gov (United States)

    McManus, Hugh L.; Chamis, Christos C.

    1996-01-01

    This report describes analytical methods for calculating stresses and damage caused by degradation of the matrix constituent in polymer matrix composite materials. Laminate geometry, material properties, and matrix degradation states are specified as functions of position and time. Matrix shrinkage and property changes are modeled as functions of the degradation states. The model is incorporated into an existing composite mechanics computer code. Stresses, strains, and deformations at the laminate, ply, and micro levels are calculated, and from these calculations it is determined if there is failure of any kind. The rationale for the model (based on published experimental work) is presented, its integration into the laminate analysis code is outlined, and example results are given, with comparisons to existing material and structural data. The mechanisms behind the changes in properties and in surface cracking during long-term aging of polyimide matrix composites are clarified. High-temperature-material test methods are also evaluated.

  6. Damage parameters for non-metals in a high energy neutron environment

    International Nuclear Information System (INIS)

    Dell, G.F.; Berry, H.C.; Lazareth, O.W.; Goland, A.N.

    1980-01-01

    Simulation of radiation damage induced in monatomic and binary non-metals by FMIT and fusion neutrons is described. Damage produced by elastic scattering of recoil atoms and by ionization-assisted processes has been evaluated using the damage program DON. Displacement damage from gamma rays has been evaluated by using the technique of Oen and Holmes. A comparison of damage for an anticipated FMIT radiation environment generated by a coupled n-γ transport calculations and a fusion spectrum is made. Gamma-induced displacement damage is sufficiently small that it is dominated by neutron-induced recoil processes. Ionization-assisted displacements may be important depending upon the ionization cross section of the particular non-metal under consideration

  7. Radiation damage study in montmorillonites. Application to the high-level nuclear waste disposal in France

    International Nuclear Information System (INIS)

    Sorieul, St.

    2003-11-01

    Smectite is a major component of bentonite, a material considered for engineered barriers in high level nuclear wastes repositories (HLNWR). In order to predict the long-term performance of the bentonite, various physical and chemical factors such as, e.g., thermal gradient, redox potential or mechanical stresses are currently considered. By contrast, little is known about radiation effects in smectite, although it might affect the properties of this mineral through cumulative radiation damages produced by ionizing radiations. The present study focuses on radiation damage in montmorillonite considered herein as a simplified model of bentonite. Two reference clays have been selected, one from Liaoning (China, CHI), containing native radiation-induced defects, and the other (called MX) separated from the MX80 reference bentonite (Wyoming, USA). They are distinguished by layer composition, particularly iron content (1 % and 4 % for CHI and MX, respectively). Radiation effects have been studied by combining X-ray diffraction, Fourier transform infrared spectroscopy, Electron Paramagnetic Resonance (EPR) and Moessbauer spectroscopies. Ionizing irradiation induces two main effects. First, several paramagnetic point defects are identified as trapped holes located on oxygen atoms of the smectite structure. These defects are characterized by different thermal stabilities, according to annealing experiments. Their creation is limited by saturation curve with maximum damage around 100 MGy. The response of the two montmorillonites is different in terms of nature and production of point defects, indicating a role of layer composition and structural precursors. Besides, EPR and Moessbauer results show substantial modifications of the oxidation state of structural iron, which are sample and dose-dependent. Irradiation induces reduction and oxidation of iron in CHI and MX samples, respectively. Moreover, physico-chemical treatments show that intensity of redox effects varies

  8. Adropin levels and target organ damage secondary to high blood pressure in the ED.

    Science.gov (United States)

    Gulen, Bedia; Eken, Cenker; Kucukdagli, Okkes Taha; Serinken, Mustafa; Kocyigit, Abdurrahim; Kılıc, Elif; Uyarel, Hüseyin

    2016-11-01

    High blood pressure is still a challenge for emergency physicians to discern the patients that require further analysis to establish the existence of acute hypertensive target organ damage (TOD). The present study aimed to reveal that adropin levels are useful for detecting TOD in patients presenting with high blood pressure. Patients presenting with a blood pressure of more than 180/110 mm Hg were enrolled into the study. After a resting period of 15 minutes, patients' blood pressures were measured thrice at 5-minute intervals while the patients were sitting on a chair, and the average of these measurements was accepted as the baseline value. Blood samples were obtained for either adropin levels or possible TOD during the emergency department admission. A total of 119 patients were included in the study. The mean systolic and diastolic blood pressures of study patients were 204.8±23.2 and 108.3 ± 10.3, respectively, and 42% (n = 50) of the patients had TOD. Although the adropin levels were similar between the patients with or without TOD (TOD group = 195 pg/mL, interquartile range [IQR]: 178-201; no-TOD group = 196 pg/mL, IQR: 176-204 [P = .982]), it is significantly higher in normotensive patients (normotensive group = 289 pg/mL, IQR: 193-403) compared with the hypertensive ones (P high blood pressure to the emergency department. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Low Damage, High Anisotropy Inductively Coupled Plasma for Gallium Nitride based Devices

    KAUST Repository

    Ibrahim, Youssef H.

    2013-05-27

    Group III-nitride semiconductors possess unique properties, which make them versatile materials for suiting many applications. Structuring vertical and exceptionally smooth GaN profiles is crucial for efficient optical device operation. The processing requirements for laser devices and ridge waveguides are stringent as compared to LEDs and other electronic devices. Due to the strong bonding and chemically inert nature of GaN, dry etching becomes a critical fabrication step. The surface morphology and facet etch angle are analyzed using SEM and AFM measurements. The influence of different mask materials is also studied including Ni as well as a SiO2 and resist bilayer. The high selectivity Ni Mask is found to produce high sidewall angles ~79°. Processing parameters are optimized for both the mask material and GaN in order to achieve a highly anisotropic, smooth profile, without resorting to additional surface treatment steps. An optimizing a SF6/O2 plasma etch process resulted in smooth SiO2 mask sidewalls. The etch rate and GaN surface roughness dependence on the RF power was also examined. Under a low 2mTorr pressure, the RF and ICP power were optimized to 150W and 300W respectively, such that a smooth GaN morphology and sidewalls was achieved with reduced ion damage. The The AFM measurements of the etched GaN surface indicate a low RMS roughness ranging from 4.75 nm to 7.66 nm.

  10. Characterisation of high-temperature damage mechanisms of oxide dispersion strengthened (ODS) ferritic steels

    International Nuclear Information System (INIS)

    Salmon-Legagneur, Hubert

    2017-01-01

    The development of the fourth generation of nuclear power plants relies on the improvement of cladding materials, in order to achieve resistance to high temperature, stress and irradiation dose levels. Strengthening of ferritic steels through nano-oxide dispersion allows obtaining good mechanical strength at high temperature and good resistance to irradiation induced swelling. Nonetheless, studies available from open literature evidenced an unusual creep behavior of these materials: high anisotropy in time to rupture and flow behavior, low ductility and quasi-inexistent tertiary creep stage. These phenomena, and their still unclear origin are addressed in this study. Three 14Cr ODS steels rods have been studied. Their mechanical behavior is similar to those of other ODS steels from open literature. During creep tests, the specimens fractured by through crack nucleation and propagation from the lateral surfaces, followed by ductile tearing once the critical stress intensity factor was reached at the crack tip. Tensile and creep properties did not depend on the chemical environment of specimens. Crack propagation tests performed at 650 C showed a low value of the stress intensity factor necessary to start crack propagation. The cracks followed an intergranular path through the smaller-grained regions, which partly explains the anisotropy of high temperature strength. Notched specimens have been used to study the impact of the main loading parameters (deformation rate, temperature, stress triaxiality) on macroscopic crack initiation and stable propagation, from the central part of the specimens. These tests allowed revealing cavities created during high temperature loading, but unexposed to the external environment. These cavities showed a high chemical reactivity of the free surfaces in this material. The performed tests also evidenced different types of grain boundaries, which presented different damage development behaviors, probably due to differences in local

  11. Microstructural Damage During High-Strain Torsion Experiments on Calcite-Anhydrite Aggregates

    Science.gov (United States)

    Cross, A. J.; Skemer, P. A.

    2016-12-01

    Ductile shear zones play a critical role in localising deformation in the Earth's crust and mantle. Severe grain size reduction - a ubiquitous feature of natural mylonites - is commonly thought to cause strain weakening via a transition to grain size sensitive deformation mechanisms. Although grain size reduction is modulated by grain growth in single-phase aggregates, grain boundary pinning in well-mixed poly-phase composites can inhibit grain growth, leading to microstructural `damage' which is likely a critical element of strain localization in the lithosphere. While dynamic recrystallization has been widely explored in rock mechanics and materials science, the mechanisms behind phase-mixing remain poorly understood. In this contribution we present results from high-strain, deformation experiments on calcite-anhydrite composites. Experiments were conducted in torsion at T = 500-700°C and P 1.5 GPa, using the new Large Volume Torsion (LVT) solid-medium apparatus, to shear strains of 0.5-30. As shear strain increases, progressive thinning and necking of initially large (≤ 1 mm) calcite domains is observed, resulting in an increase in the proportion of interphase boundaries. Grain-size is negatively correlated with the fraction of interphase boundaries, such that calcite grains in well-mixed regions are significantly smaller than those in single-phase domains. Crucially, progressive deformation leads to a reduction in grain-size beyond the lower limit established by the grain size piezometer for mono-phase calcite, implying microstructural damage. These data therefore demonstrate continued microstructural evolution in two-phase composites that is not possible in single-phase aggregates. These observations mark a new `geometric' mechanism for phase mixing, complementing previous models for phase mixing involving chemical reactions, material diffusion, and/or grain boundary sliding.

  12. IL-6, Antioxidant Capacity and Muscle Damage Markers Following High-Intensity Interval Training Protocols.

    Science.gov (United States)

    Cipryan, Lukas

    2017-02-01

    The aim of this study was to investigate changes of interleukin-6 (IL-6), total antioxidant capacity (TAC) and muscle damage markers (creatine kinase (CK), myoglobin and lactate dehydrogenase (LDH)) in response to three different high-intensity interval training (HIIT) protocols of identical external work. Twelve moderately-trained males participated in the three HIIT trials which consisted of a warm-up, followed by 12 min of 15 s, 30 s or 60 s HIIT sequences with the work/rest ratio 1. The biochemical markers of inflammation, oxidative stress and muscle damage were analysed POST, 3 h and 24 h after the exercise. All HIIT protocols caused an immediate increase in IL-6, TAC, CK, myoglobin and LDH. The most pronounced between-trials differences were found for the POST-exercise changes in IL-6 (Effect size ± 90% confidence interval: 1.51 ± 0.63, 0.84 ± 0.34 and 1.80 ± 0.60 for the 15s/15s, 30s/30s and 60s/60s protocol, respectively) and myoglobin (1.11 ± 0.29, 0.45 ± 0.48 and 1.09 ± 0.22 for the 15s/15s, 30s/30s and 60s/60s protocol, respectively). There were no substantial between-trial differences in other biochemical variables. In conclusion, the 15s/15s and 60s/60s protocols might be preferred to the 30s/30s protocols in order to maximize the training stimulus.

  13. The organ specificity in pathological damage of chronic intermittent hypoxia: an experimental study on rat with high-fat diet.

    Science.gov (United States)

    Wang, Hui; Tian, Jian-li; Feng, Shu-zhi; Sun, Ning; Chen, Bao-yuan; Zhang, Yun

    2013-09-01

    It is known today that sleep apnea hypopnea syndrome and its characteristic chronic intermittent hypoxia can cause damages to multiple organs, including the cardiovascular system, urinary system, and liver. It is still unclear, however, whether the damage caused by sleep apnea hypopnea syndrome and the severity of the damage are organ-specific. This research observed the pathological effects of chronic intermittent hypoxia on rat's thoracic aorta, myocardium, liver, and kidney, under the condition of lipid metabolism disturbance, through establishing the rat model of chronic intermittent hypoxia with high-fat diet by imitating the features of human sleep apnea hypopnea syndrome. In this model, 24 male Wistar rats were randomly divided into three groups: a control group fed by regular diet, a high-fat group fed by high-fat diet, and a high-fat plus intermittent hypoxia group fed by high-fat diet and treated with intermittent hypoxia 7 h a day. At the end of the ninth week, the pathological changes of rat's organs, including the thoracic aorta, myocardium, liver, and kidney are observed (under both optical microscopy and transmission electron microscopy). As the result of the experiment shows, while there was no abnormal effect observed on any organs of the control group, slight pathological changes were found in the organs of the high-fat group. For the high-fat plus intermittent hypoxia group, however, remarkably severer damages were found on all the organs. It also showed that the severity of the damage varies by organ in the high-fat plus intermittent hypoxia group, with the thoracic aorta being the worst, followed by the liver and myocardium, and the kidney being the slightest. Chronic intermittent hypoxia can lead to multiple-organ damage to rat with high-fat diet. Different organs appear to have different sensitivity to chronic intermittent hypoxia.

  14. CARA Risk Assessment Thresholds

    Science.gov (United States)

    Hejduk, M. D.

    2016-01-01

    Warning remediation threshold (Red threshold): Pc level at which warnings are issued, and active remediation considered and usually executed. Analysis threshold (Green to Yellow threshold): Pc level at which analysis of event is indicated, including seeking additional information if warranted. Post-remediation threshold: Pc level to which remediation maneuvers are sized in order to achieve event remediation and obviate any need for immediate follow-up maneuvers. Maneuver screening threshold: Pc compliance level for routine maneuver screenings (more demanding than regular Red threshold due to additional maneuver uncertainty).

  15. The Crack Initiation and Propagation in threshold regime and S-N curves of High Strength Spring Steels

    International Nuclear Information System (INIS)

    Gubeljak, N; Predan, J; Senčič, B; Chapetti, M D

    2016-01-01

    An integrated fracture mechanics approach is proposed to account for the estimation of the fatigue resistance of component. Applications, estimations and results showed very good agreements with experimental results. The model is simple to apply, accounts for the main geometrical, mechanical and material parameters that define the fatigue resistance, and allows accurate predictions. It offers a change in design philosophy: It could be used for design, while simultaneously dealing with crack propagation thresholds. Furthermore, it allows quantification of the material defect sensitivity. In the case of the set of fatigue tests carried out by rotational bending of specimens without residual stresses, the estimated results showed good agreement and that an initial crack length of 0.5 mm can conservatively explain experimental data. In the case of fatigue tests carried out on the springs at their final condition with bending at R = 0.1 our data shows the influence of compressive residual stresses on fatigue strength. Results also showed that the procedures allow us to analyze the different combinations of initial crack length and residual stress levels, and how much the fatigue resistance can change by changing that configuration. For this set of tests, the fatigue resistance estimated for an initial crack length equal to 0.35 mm, can explain all testing data observed for the springs. (paper)

  16. Rainfall thresholds for the triggering of landslides in Slovenia

    Science.gov (United States)

    Peternel, Tina; Jemec Auflič, Mateja; Rosi, Ascanio; Segoni, Samuele; Komac, Marko; Casagli, Nicola

    2017-04-01

    Both at the worldwide level and in Slovenia, precipitation and related phenomena represent one of the most important triggering factors for the occurrence of slope mass movements. In the past decade, extreme rainfall events with a very high amount of precipitation occurs in a relatively short rainfall period have become increasingly important and more frequent, that causing numerous undesirable consequences. Intense rainstorms cause flash floods and mostly trigger shallow landslides and soil slips. On the other hand, the damage of long lasting rainstorms depends on the region's adaptation and its capacity to store or infiltrate excessive water from the rain. The amount and, consequently, the intensity of daily precipitation that can cause floods in the eastern part of Slovenia is a rather common event for the north-western part of the country. Likewise, the effect of rainfall is very dependent on the prior soil moisture, periods of full soil saturation and the creation of drifts in groundwater levels due to the slow melting of snow, growing period, etc. Landslides could be identified and to some extent also prevent with better knowledge of the relation between landslides and rainfall. In this paper the definition of rainfall thresholds for rainfall-induced landslides in Slovenia is presented. The thresholds have been calculated by collecting approximately 900 landslide data and the relative rainfall amounts, which have been collected from 41 rain gauges all over the country. The thresholds have been defined by the (1) use of an existing procedure, characterized by a high degree of objectiveness and (2) software that was developed for a test site with very different geological and climatic characteristics (Tuscany, central Italy). Firstly, a single national threshold has been defined, later the country was divided into four zones, on the basis of major the river basins and a single threshold has been calculated for each of them. Validation of the calculated

  17. The role of the substrate in the high energy boron implantation damage recovering

    International Nuclear Information System (INIS)

    Mica, I.; Di Piazza, L.; Laurin, L.; Mariani, M.; Mauri, A.G.; Polignano, M.L.; Ricci, E.; Sammiceli, F.; Spoldi, G.

    2009-01-01

    In this work the role of the Si substrate in the high energy boron implantation damage recovering is studied. The boron implants were carried out in Czochralski grown (1 0 0) polished Si substrates as well as in epitaxial Si layers grown on (1 0 0) Si by chemical vapor deposition. The boron implantation dose was 2 x 10 14 cm -2 and the implantation energy was 600 keV. The recovery annealing was a furnace annealing at 1000 deg. C for 40 min. The defects formed by high energy boron implantation have been observed with transmission electron microscopy (TEM). In order to increase the statistics some junctions were formed on the buried p-well and electrically characterized. For the epitaxial wafers it was found that the number and the size of the dislocations change according to the doping of the substrate. For the Czochralski wafers it was found that the morphology and the size of the dislocations change according to the presence of the wafer pre-annealing (whether conventional furnace annealing or Magic Denuded Zone process).

  18. High-Intensity Exercise Induced Oxidative Stress and Skeletal Muscle Damage in Postpubertal Boys and Girls: A Comparative Study.

    Science.gov (United States)

    Pal, Sangita; Chaki, Biswajit; Chattopadhyay, Sreya; Bandyopadhyay, Amit

    2018-04-01

    Pal, S, Chaki, B, Chattopadhyay, S, and Bandyopadhyay, A. High-intensity exercise induced oxidative stress and skeletal muscle damage in post-pubertal boys and girls: a comparative study. J Strength Cond Res 32(4): 1045-1052, 2018-The purpose of this study was to examine the sex variation in high-intensity exercise induced oxidative stress and muscle damage among 44 sedentary postpubertal boys and girls through estimation of postexercise release pattern of muscle damage markers like creatine kinase, lactate dehydrogenase (LDH), alanine aminotransferase (ALT), aspartate aminotransferase (AST) and oxidative stress markers like extent of lipid peroxidation (thiobarbituric acid-reactive substances) and catalase activity. Muscle damage markers like creatine kinase, LDH, ALT, and AST were measured before, immediately after, and 24 and 48 hours after high-intensity incremental treadmill running. Oxidative stress markers like thiobarbituric acid-reactive substances and catalase activity were estimated before and immediately after the exercise. Lipid peroxidation and serum catalase activity increased significantly in both groups after exercise (p exercise level at 24 and 48 hours after exercise in both the sexes, (p exercise, the pattern of postexercise release of these markers were found to be similar in both the groups. Accordingly, it has been concluded from the present investigation that high-intensity exercise induces significant oxidative stress and increases indices of skeletal muscle damage in both postpubertal girls and boys. However, postpubertal girls are relatively better protected from oxidative stress and muscle damage as compared to the boys of similar age and physical activity level. It is further evident that sex difference may not be apparent for all the biomarkers of muscle damage in this age group.

  19. Re-examination of the threshold energy surface in copper

    International Nuclear Information System (INIS)

    King, W.E.; Benedek, R.; Merkle, K.L.; Meshii, M.

    1981-01-01

    Radiation-induced defect production in copper has been studied using in-situ electrical resistivity damage-rate measurements in the HVEM and molecular dynamics simulations. Analysis of the results yields a threshold energy surface characterized by two isolated pockets of low threshold energy centered at and surrounded by regions of much higher threshold energy; the corresponding damage function exhibits a plateau at 0.65 Frenkel pairs. A Frenkel pair resistivity of (2.75/sub -0.2/ + 0 6 ) x 10 - 4 Ω-cm is proposed. A model damage function is constructed and compared to results from ion irradiation damage-rate measurements. 7 figures

  20. Reading Comprehension in Quiet and in Noise: Effects on Immediate and Delayed Recall in Relation to Tinnitus and High-Frequency Hearing Thresholds.

    Science.gov (United States)

    Brännström, K Jonas; Waechter, Sebastian

    2018-06-01

    A common complaint by people with tinnitus is that they experience that the tinnitus causes attention and concentration problems. Previous studies have examined how tinnitus influences cognitive performance on short and intensive cognitive tasks but without proper control of hearing status. To examine the impact tinnitus and high-frequency hearing thresholds have on reading comprehension in quiet and in background noise. A between-group design with matched control participants. One group of participants with tinnitus (n = 20) and an age and gender matched control group without tinnitus (n = 20) participated. Both groups had normal hearing thresholds (20 dB HL at frequencies 0.125 to 8 kHz). Measurements were made assessing hearing thresholds and immediate and delayed recall using a reading comprehension test in quiet and in noise. All participants completed the Swedish version of the Hospital Anxiety and Depression Scale, and participants with tinnitus also completed the Tinnitus Questionnaire. The groups did not differ in immediate nor delayed recall. Accounting for the effect of age, a significant positive correlation was found between best ear high-frequency pure tone average (HF-PTA; 10000, 12500, and 14000 Hz) and the difference score between immediate and delayed recall in noise. Tinnitus seems to have no effect on immediate and delayed recall in quiet or in background noise when hearing status is controlled for. The detrimental effect of background noise on the processes utilized for efficient encoding into long-term memory is larger in participants with better HF-PTA. More specifically, when reading in noise, participants with better HF-PTA seem to recall less information than participants with poorer HF-PTA. American Academy of Audiology.

  1. Lightweight Damage Tolerant, High-Temperature Radiators for Nuclear Power and Propulsion

    Science.gov (United States)

    Craven, Paul D.; SanSoucie, Michael P.

    2015-01-01

    is enabled. High thermal conductivity carbon fibers are lightweight, damage tolerant, and can be heated to high temperature. Areal densities in the NASA set target range of 2 to 4 kg/m2 (for enabling NEP) are achieved and with specific powers (kW/kg) a factor of about 7 greater than conventional metal fins and about 1.5 greater than carbon composite fins. Figure 2 shows one fin under test. All tests were done under vacuum conditions.

  2. Spectroscopic study of subsurface damage in high purity silica glasses under UV irradiation

    International Nuclear Information System (INIS)

    Fournier, Jessica

    2011-01-01

    Defects present in subsurface damage, supposed to be possible damage precursors, have been studied by luminescence spectroscopy. Because of the difficulty to detect micro cracks, we have selected a model cracks based on indentations. Luminescence spectra performed under a 325 nm excitation wavelength (experimental condition close to that used on the LMJ) are be compared on indentation as well as laser damages. Luminescence experiments at low temperature and on etched samples are reported in order to complete data obtained for the different observed defects. (author) [fr

  3. Analysis techniques of charging damage studied on three different high-current ion implanters

    Science.gov (United States)

    Felch, S. B.; Larson, L. A.; Current, M. I.; Lindsey, D. W.

    1989-02-01

    One of the Greater Silicon Valley Implant Users' Group's recent activities has been to sponsor a round-robin on charging damage, where identical wafers were implanted on three different state-of-the-art, high-current ion implanters. The devices studied were thin-dielectric (250 Å SiO2), polysilicon-gate MOS capacitors isolated by thick field oxide. The three implanters involved were the Varian/Extrion 160XP, the Eaton/Nova 10-80, and the Applied Materials PI9000. Each implanter vendor was given 48 wafers to implant with 100 keV As+ ions at a dose of 1 × 1016 cm-2. Parameters that were varied include the beam current, electron flood gun current, and chamber pressure. The charge-to-breakdown, breakdown voltage, and leakage current of several devices before anneal have been measured. The results from these tests were inconclusive as to the physical mechanism of charging and as to the effectiveness of techniques to reduce its impact on devices. However, the methodology of this study is discussed in detail to aid in the planning of future experiments. Authors' industrial affiliations: S.B. Felch, Varian Research Center, 611 Hansen Way, Palo Alto, CA 94303, USA; L.A. Larson, National Semiconductor Corp., P.O. Box 58090, Santa Clara, CA 95052-8090, USA; M.I. Current, Applied Materials, 3050 Bowers Ave., Santa Clara, CA 95054, USA; D.W. Lindsey, Eaton/NOVA, 931 Benicia Ave, Sunnyvale, CA 94086, USA.

  4. Surface damage on 6H–SiC by highly-charged Xeq+ ions irradiation

    International Nuclear Information System (INIS)

    Zhang, L.Q.; Zhang, C.H.; Han, L.H.; Xu, C.L.; Li, J.J.; Yang, Y.T.; Song, Y.; Gou, J.; Li, J.Y.; Ma, Y.Z.

    2014-01-01

    Surface damage on 6H–SiC irradiated by highly-charged Xe q+ (q = 18, 26) ions to different fluences in two geometries was studied by means of AFM, Raman scattering spectroscopy and FTIR spectrometry. The FTIR spectra analysis shows that for Xe 26+ ions irradiation at normal incidence, a deep reflection dip appears at about 930 cm −1 . Moreover, the reflectance on top of reststrahlen band decreases as the ion fluence increases, and the reflectance at tilted incidence is larger than that at normal incidence. The Raman scattering spectra reveal that for Xe 26+ ions at normal incidence, surface reconstruction occurs and amorphous stoichiometric SiC and Si–Si and C–C bonds are generated and original Si–C vibrational mode disappears. And the intensity of scattering peaks decreases with increasing dose. The AFM measurement shows that the surface swells after irradiation. With increasing ion fluence, the step height between the irradiated and the unirradiated region increases for Xe 18+ ions irradiation; while for Xe 26+ ions irradiation, the step height first increases and then decreases with increasing ion fluence. Moreover, the step height at normal incidence is higher than that at tilted incidence by the irradiation with Xe 18+ to the same ion fluence. A good agreement between the results from the three methods is found

  5. Threshold quantum cryptography

    International Nuclear Information System (INIS)

    Tokunaga, Yuuki; Okamoto, Tatsuaki; Imoto, Nobuyuki

    2005-01-01

    We present the concept of threshold collaborative unitary transformation or threshold quantum cryptography, which is a kind of quantum version of threshold cryptography. Threshold quantum cryptography states that classical shared secrets are distributed to several parties and a subset of them, whose number is greater than a threshold, collaborates to compute a quantum cryptographic function, while keeping each share secretly inside each party. The shared secrets are reusable if no cheating is detected. As a concrete example of this concept, we show a distributed protocol (with threshold) of conjugate coding

  6. Celastrol ameliorates liver metabolic damage caused by a high-fat diet through Sirt1

    Directory of Open Access Journals (Sweden)

    Yinliang Zhang

    2017-01-01

    Full Text Available Objective: Celastrol was recently identified as a potential novel treatment for obesity. However, the effect of Celastrol on nonalcoholic fatty liver disease (NAFLD remains elusive. The aim of this study is to evaluate the role of Celastrol in NAFLD. Methods: Functional studies were performed using wild-type C57BL/6J (WT mice and liver specific Sirt1-deficient (LKO mice. The molecular mechanism was explored in primary mouse liver and primary hepatocytes. Results: When WT mice receiving a high-fat diet (HFD were treated with Celastrol, reductions in body weight, subcutaneous and visceral fat content, and liver lipid droplet formation were observed, along with reduced hepatic intracellular triglyceride and serum triglyceride, free fatty acid, and ALT concentrations. Furthermore, Celastrol decreased hepatic sterol regulatory element binding protein 1c (Srebp-1c expression, enhanced the phosphorylation of hepatic AMP-activated protein kinase α (AMPKα, and increased the expression of hepatic serine–threonine liver kinase B1 (LKB1. Additionally, Celastrol treatment improved glucose tolerance and insulin sensitivity in WT mice fed the HFD. Celastrol administration also improved the anti-inflammatory and anti-oxidative status by inhibiting nuclear factor kappa B (NFκB activity and the mRNA levels of proinflammatory cytokines and increasing mitochondrial DNA copy number and anti-oxidative stress genes expression in WT mice liver, in vivo and in vitro. Moreover, Celastrol induced hepatic Sirt1 expression in WT mice, in vivo and in vitro. These Celastrol-mediated protective effects in WT mice fed a HFD were abolished in LKO mice fed a HFD. It was more interesting that Celastrol aggravated HFD-induced liver damage in LKO mice fed a HFD by inhibiting the phosphorylation of AMPKα and boosting the translocation of NFκB into the nucleus, thereby resulting in the increase of Srebp-1c expression and the mRNA levels of liver proinflammatory cytokines

  7. A high-Q low threshold thulium-doped silica microsphere laser in the 2 μm wavelength region designed for gas sensing applications

    International Nuclear Information System (INIS)

    Pal, Atasi; Chen, Shu Ying; Sun, Tong; Grattan, K T V; Sen, Ranjan

    2013-01-01

    A high-Q and low threshold laser resonator, operating in the 2 μm wavelength region, has been demonstrated by coupling a thulium-doped silica microsphere to a tapered fibre. Microspheres with diameters ranging from fifty to a few hundred micrometres were carefully fabricated for this purpose by melting an etched-clad thulium-doped silica fibre tip using a focused beam from a CO 2 laser, while the tapered fibre with waist diameter in the desired range of 2 μm was fabricated by using heating and stretching of standard single-mode telecommunication fibre. The tapered fibre served the dual purpose of transporting pump power into the sphere and allowing the extraction of the resulting laser emission. Under excitation at a wavelength of ∼1.6 μm, lasing occurred at wavelengths over the range from 1.9 to 2.0 μm. Single-mode laser operation was obtained by exciting the fundamental whispering gallery mode resonance of the microsphere, while multi-mode lasing occurred for non-fundamental mode excitation. The threshold power of the laser was measured to be about 50 μW delivered pump power, and a maximum laser power of 0.8 mW at around 1.94 μm was observed for a 6 mW pump power, operating at wavelengths around 1.6 μm. The laser was designed as a low threshold and compact source for miniaturized gas sensing devices operating over this important wavelength region. (letter)

  8. Assessment of DNA damage in car spray painters exposed to organic solvents by the high-throughput comet assay.

    Science.gov (United States)

    Londoño-Velasco, Elizabeth; Martínez-Perafán, Fabián; Carvajal-Varona, Silvio; García-Vallejo, Felipe; Hoyos-Giraldo, Luz Stella

    2016-05-01

    Occupational exposure as a painter is associated with DNA damage and development of cancer. Comet assay has been widely adopted as a sensitive and quantitative tool for DNA damage assessment at the individual cell level in populations exposed to genotoxics. The aim of this study was to assess the application of the high-throughput comet assay, to determine the DNA damage in car spray painters. The study population included 52 car spray painters and 52 unexposed subjects. A significant increase in the %TDNA median (p  0.05). The results showed an increase in DNA breaks in car spray painters exposed to organic solvents and paints; furthermore, they demonstrated the application of high-throughput comet assay in an occupational exposure study to genotoxic agents.

  9. Combined Bulk and Surface Radiation Damage Effects at Very High Fluences in Silicon Detectors: Measurements and TCAD Simulations

    CERN Document Server

    Moscatelli, F; Morozzi, A; Mendicino, R; Dalla Betta, G F; Bilei, G M

    2016-01-01

    In this work we propose a new combined TCAD radiation damage modelling scheme, featuring both bulk and surface radiation damage effects, for the analysis of silicon detectors aimed at the High Luminosity LHC. In particular, a surface damage model has been developed by introducing the relevant parameters (NOX, NIT) extracted from experimental measurements carried out on p-type substrate test structures after gamma irradiations at doses in the range 10-500 Mrad(Si). An extended bulk model, by considering impact ionization and deep-level cross-sections variation, was included as well. The model has been validated through the comparison of the simulation findings with experimental measurements carried out at very high fluences (2×1016 1 MeV equivalent n/cm2) thus fostering the application of this TCAD approach for the design and optimization of the new generation of silicon detectors to be used in future HEP experiments.

  10. High throughput DNA damage quantification of human tissue with home-based collection device

    Energy Technology Data Exchange (ETDEWEB)

    Costes, Sylvain V.; Tang, Jonathan; Yannone, Steven M.

    2018-04-03

    Kits, methods and systems for providing a service to provide a subject with information regarding the state of a subject's DNA damage. Collection, processing and analysis of samples are also described.

  11. Damage invariant and high security acquisition of the internal fingerprint using optical coherence tomography

    CSIR Research Space (South Africa)

    Darlow, Luke N

    2016-11-01

    Full Text Available representation they offer. Using an emerging fingerprint acquisition technology – optical coherence tomography – to access an internal fingerprint under the skin surface, this paper serves to address two limitations of conventional scanners: fingertip skin damage...

  12. High throughput DNA damage quantification of human tissue with home-based collection device

    Science.gov (United States)

    Costes, Sylvain V.; Tang, Jonathan; Yannone, Steven M.

    2018-04-03

    Kits, methods and systems for providing a service to provide a subject with information regarding the state of a subject's DNA damage. Collection, processing and analysis of samples are also described.

  13. Damage observation in a high-manganese austenitic TWIP steel by synchrotron radiation computed tomography

    International Nuclear Information System (INIS)

    Lorthios, J.; Nguyen, F.; Gourgues, A.-F.; Morgeneyer, T.F.; Cugy, P.

    2010-01-01

    Internal damage below the fracture surface of a multiaxial specimen made of twinning-induced plasticity (TWIP) steel was observed by three-dimensional X-ray microtomography as very elongated 'primary' voids. Specific tools for the local damage analysis were developed. A gradient in void volume fraction was measured from the fracture surface down to the bulk of the scanned volume (from ∼0.06% to 90% in area fraction), indicating strongly localized final fracture.

  14. Theory of threshold phenomena

    International Nuclear Information System (INIS)

    Hategan, Cornel

    2002-01-01

    Theory of Threshold Phenomena in Quantum Scattering is developed in terms of Reduced Scattering Matrix. Relationships of different types of threshold anomalies both to nuclear reaction mechanisms and to nuclear reaction models are established. Magnitude of threshold effect is related to spectroscopic factor of zero-energy neutron state. The Theory of Threshold Phenomena, based on Reduced Scattering Matrix, does establish relationships between different types of threshold effects and nuclear reaction mechanisms: the cusp and non-resonant potential scattering, s-wave threshold anomaly and compound nucleus resonant scattering, p-wave anomaly and quasi-resonant scattering. A threshold anomaly related to resonant or quasi resonant scattering is enhanced provided the neutron threshold state has large spectroscopic amplitude. The Theory contains, as limit cases, Cusp Theories and also results of different nuclear reactions models as Charge Exchange, Weak Coupling, Bohr and Hauser-Feshbach models. (author)

  15. The Swedish infant high-grade reflux trial: UTI and renal damage.

    Science.gov (United States)

    Nordenström, Josefin; Sjöström, Sofia; Sillén, Ulla; Sixt, Rune; Brandström, Per

    2017-04-01

    High-grade vesicoureteral reflux (VUR) in children is associated with recurrent urinary tract infection (UTI) and renal damage. Breakthrough UTI despite continuous antibiotic prophylaxis (CAP) during the first years of life is a matter of concern and evokes early intervention. We investigated whether early endoscopic treatment (ET) of VUR grade 4-5 can reduce the risk of UTI recurrence and renal scarring. This prospective, randomized, controlled, multicentre, 1-year follow-up trial comprised 77 infants, UTIs were reported. There were 27 recurrent febrile UTIs in 6 (16%) children in the ET group and in 10 (26%) in the CAP group (p = 0.43), in eight (36%) girls and eight (15%) boys (p = 0.039). Successful VUR outcome (VUR 0-2) was seen in 22 (59%) in the ET and eight (21%) in the CAP group (p = 0.0014). Multiple recurrences were only seen in patients with persistent dilating reflux at follow-up (p = 0.019). Deterioration on scintigraphy was seen in eight children (9 kidneys) with no difference between treatment groups (p = 0.48) or sex (p = 0.17). Renal deterioration was associated with high bladder capacity (BC) and large residual volume (PVR) at 1 year (p = 0.0092 and p = 0.041). Six of the eight children with renal deterioration had a recurrent UTI (p = 0.0032). Seven of nine renal units with deterioration were seen in children with persistent VUR 3-5 at follow-up. Univariable logistic regression identified female sex and high PVR as positive predictors for recurrent UTI (p = 0.039 and 0.034) and high PVR tended to predict renal deterioration (p = 0.053). No differences between the treatment groups regarding recurrent UTI and renal deterioration could be found. Increased PVR and female sex were positive predictors for UTI recurrences. VUR grade at follow-up was correlated to UTI recurrence and renal deterioration. This study did not show any difference between ET and CAP in reducing the risk of UTI recurrence or renal deterioration. The rate

  16. [Study the impacts of diagnosis on occupational noise-induced deafness after bring into the different high frequency hearing threshold weighted value].

    Science.gov (United States)

    Xue, L J; Yang, A C; Chen, H; Huang, W X; Guo, J J; Liang, X Y; Chen, Z Q; Zheng, Q L

    2017-11-20

    Objective: Study of the results and the degree on occupational noise-induced deafness in-to the different high frequency hearing threshold weighted value, in order to provide theoretical basis for the re-vision of diagnostic criteria on occupational noise-induced deafness. Methods: A retrospective study was con-ducted to investigate the cases on the diagnosis of occupational noise-induced deafness in Guangdong province hospital for occupational disease prevention and treatment from January 2016 to January 2017. Based on the re-sults of the 3 hearing test for each test interval greater than 3 days in the hospital, the best threshold of each frequency was obtained, and based on the diagnostic criteria of occupational noise deafness in 2007 edition, Chi square test, t test and variance analysis were used to measure SPSS21.0 data, their differences are tested among the means of speech frequency and the high frequency weighted value into different age group, noise ex-posure group, and diagnostic classification between different dimensions. Results: 1. There were totally 168 cases in accordance with the study plan, male 154 cases, female 14 cases, the average age was 41.18 ±6.07 years old. 2. The diagnosis rate was increased into the weighted value of different high frequency than the mean value of pure speech frequency, the weighted 4 kHz frequency increased by 13.69% (χ(2)=9.880, P =0.002) , 6 kHz increased by 15.47% (χ(2)=9.985, P =0.002) and 4 kHz+6 kHz increased by15.47% (χ(2)=9.985, P =0.002) , the difference was statistically significant. The diagnostic rate of different high threshold had no obvious differ-ence between the genders. 3. The age groups were divided into less than or equal to 40years old group (A group) and 40-50 years old group (group B) , there were higher the diagnostic rate between high frequency weighted 4 kHz (A group χ(2)=3.380, P =0.050; B group χ(2)=4.054, P =0.032) , weighted 6 kHz (A group χ(2)=6.362, P =0.012; B group χ(2

  17. Influence of oxygen at high pressure on the induction of damage in barley seeds by gamma radiation

    International Nuclear Information System (INIS)

    Donaldson, E.; Nilan, R.A.; Konzak, C.F.

    1978-01-01

    The influence of oxygen pressure prior to, during, and after irradiation on the induction of radiation damage was investigated using Himalaya (C.I. 620) barley seeds. Seeds were adjusted to water contents of 2 to 14% and then irradiated with 60 Co gamma rays in vacuo or under various oxygen tensions. After irradiation, the seeds were rehydrated at approximately 0 0 C in water continuously bubbled with oxygen or nitrogen. Biological effects of the treatments were recorded as M 1 seedling injury. Seeds irradiated in oxygen pressure sustained two or three times more damage than those irradiated in vacuo followed by rehydrating in oxygenated water. Greater damage occurred when seeds were (a) exposed to oxygen pressure and the pressure released before irradiation, (b) irradiated under oxygen pressure, or (c) irradiated in vacuo and then exposed to oxygen pressure than when irradiated in vacuo and rehydrated in oxygenated water. These results suggest that seeds can be saturated with oxygen before irradiation and also that the radiation-induced sites (presumably free radicals) which react with the oxygen are somewhat stable in very dry seeds. That the reaction probably occurs before the seeds are rehydrated was demonstrated by the failure to remove the effect of oxygen pressure between high oxygen pressure treatment and irradiation. The results indicate that placing the seeds under oxygen pressure may increase the rate and extent of the reactions occurring during post-radiation storage of seeds in the presence of oxygen. The increase in damage associated with aerobic rehydration is partially lost during aerobic storage and is largely pre-empted when seeds are placed under oxygen pressure. The decrease in damage associated with aerobic rehydration is accompanied by an increase in damage occurring with anaerobic rehydration, suggesting that the reaction which leads to damage was initiated before rehydration and to the same oxygen sensitive sites

  18. High-energy electron irradiation of NdFeB permanent magnets: Dependence of radiation damage on the electron energy

    International Nuclear Information System (INIS)

    Bizen, Teruhiko; Asano, Yoshihiro; Marechal, Xavier-Marie; Seike, Takamitsu; Aoki, Tsuyoshi; Fukami, Kenji; Hosoda, Naoyasu; Yonehara, Hiroto; Takagi, Tetsuya; Hara, Toru; Tanaka, Takashi; Kitamura, Hideo

    2007-01-01

    High-energy electron-beam bombardment of Nd 2 Fe 14 B-type permanent magnets induces radiation damage characterized by a drop in the magnetic field. Experiments carried out at the SPring-8 booster synchrotron, with 4, 6, and 8 GeV electrons, show that the drop in magnetic field is energy dependent. Electromagnetic shower simulations suggest that most of the radiation damage happens in a small region around the irradiation axis, and that the contribution of neutrons with large scattering angles or with low energies to the magnetic field change is small

  19. High-energy electron irradiation of NdFeB permanent magnets: Dependence of radiation damage on the electron energy

    Energy Technology Data Exchange (ETDEWEB)

    Bizen, Teruhiko [JASRI SPring-8, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan)]. E-mail: bizen@spring8.or.jp; Asano, Yoshihiro [JASRI SPring-8, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); RIKEN SPring-8 Center, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Marechal, Xavier-Marie [JASRI SPring-8, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Seike, Takamitsu [JASRI SPring-8, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Aoki, Tsuyoshi [JASRI SPring-8, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Fukami, Kenji [JASRI SPring-8, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Hosoda, Naoyasu [JASRI SPring-8, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Yonehara, Hiroto [JASRI SPring-8, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Takagi, Tetsuya [JASRI SPring-8, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Hara, Toru [RIKEN SPring-8 Center, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Tanaka, Takashi [RIKEN SPring-8 Center, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Kitamura, Hideo [RIKEN SPring-8 Center, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan)

    2007-05-11

    High-energy electron-beam bombardment of Nd{sub 2}Fe{sub 14}B-type permanent magnets induces radiation damage characterized by a drop in the magnetic field. Experiments carried out at the SPring-8 booster synchrotron, with 4, 6, and 8 GeV electrons, show that the drop in magnetic field is energy dependent. Electromagnetic shower simulations suggest that most of the radiation damage happens in a small region around the irradiation axis, and that the contribution of neutrons with large scattering angles or with low energies to the magnetic field change is small.

  20. Accelerated Threshold Fatigue Crack Growth Effect-Powder Metallurgy Aluminum Alloy

    Science.gov (United States)

    Piascik, R. S.; Newman, J. A.

    2002-01-01

    Fatigue crack growth (FCG) research conducted in the near threshold regime has identified a room temperature creep crack growth damage mechanism for a fine grain powder metallurgy (PM) aluminum alloy (8009). At very low (Delta) K, an abrupt acceleration in room temperature FCG rate occurs at high stress ratio (R = K(sub min)/K(sub max)). The near threshold accelerated FCG rates are exacerbated by increased levels of K(sub max) (K(sub max) = 0.4 K(sub IC)). Detailed fractographic analysis correlates accelerated FCG with the formation of crack-tip process zone micro-void damage. Experimental results show that the near threshold and K(sub max) influenced accelerated crack growth is time and temperature dependent.

  1. A New Integrated Threshold Selection Methodology for Spatial Forecast Verification of Extreme Events

    Science.gov (United States)

    Kholodovsky, V.

    2017-12-01

    Extreme weather and climate events such as heavy precipitation, heat waves and strong winds can cause extensive damage to the society in terms of human lives and financial losses. As climate changes, it is important to understand how extreme weather events may change as a result. Climate and statistical models are often independently used to model those phenomena. To better assess performance of the climate models, a variety of spatial forecast verification methods have been developed. However, spatial verification metrics that are widely used in comparing mean states, in most cases, do not have an adequate theoretical justification to benchmark extreme weather events. We proposed a new integrated threshold selection methodology for spatial forecast verification of extreme events that couples existing pattern recognition indices with high threshold choices. This integrated approach has three main steps: 1) dimension reduction; 2) geometric domain mapping; and 3) thresholds clustering. We apply this approach to an observed precipitation dataset over CONUS. The results are evaluated by displaying threshold distribution seasonally, monthly and annually. The method offers user the flexibility of selecting a high threshold that is linked to desired geometrical properties. The proposed high threshold methodology could either complement existing spatial verification methods, where threshold selection is arbitrary, or be directly applicable in extreme value theory.

  2. Corneal Damage from Infrared Radiation

    National Research Council Canada - National Science Library

    McCally, Russell

    2000-01-01

    ...) laser radiation at 10.6 (micrometer) and Tm: YAG laser radiation at 2.02 (micrometer). Retinal damage from sources with rectangular irradiance distributions was also modeled. Thresholds for CO(2...

  3. Damage characterization of E-glass and C-glass fibre polymer composites after high velocity impact

    Science.gov (United States)

    Razali, N.; Sultan, M. T. H.; Cardona, F.; Jawaid, M.

    2017-12-01

    The purpose of this work is to identify impact damage on glass fibre reinforced polymer composite structures after high velocity impact. In this research, Type C-glass (600 g/m2) and Type E-glass (600 g/m2) were used to fabricate Glass Fibre-Reinforced Polymer composites (GFRP) plates. The panels were fabricated using a vacuum bagging and hot bounder method. Single stage gas gun (SSGG) was used to do the testing and data acquisition system was used to collect the damage data. Different types of bullets and different pressure levels were used for the experiment. The obtained results showed that the C-glass type of GFRP experienced more damage in comparison to E-glass type of materials based on the amount of energy absorbed on impact and the size of the damage area. All specimens underwent a partial fibre breakage but the laminates were not fully penetrated by the bullets. This indicated that both types of materials have high impact resistance even though the applied pressures of the gas gun were on the high range. We concluded that within the material specifications of the laminates including the type of glass fibre reinforcement and the thickness of the panels, those composite materials are safe to be applied in structural and body armour applications as an alternative to more expensive materials such as Kevlar and type S-glass fibre based panels.

  4. Highly Stable, Dual-Gated MoS2 Transistors Encapsulated by Hexagonal Boron Nitride with Gate-Controllable Contact, Resistance, and Threshold Voltage.

    Science.gov (United States)

    Lee, Gwan-Hyoung; Cui, Xu; Kim, Young Duck; Arefe, Ghidewon; Zhang, Xian; Lee, Chul-Ho; Ye, Fan; Watanabe, Kenji; Taniguchi, Takashi; Kim, Philip; Hone, James

    2015-07-28

    Emerging two-dimensional (2D) semiconductors such as molybdenum disulfide (MoS2) have been intensively studied because of their novel properties for advanced electronics and optoelectronics. However, 2D materials are by nature sensitive to environmental influences, such as temperature, humidity, adsorbates, and trapped charges in neighboring dielectrics. Therefore, it is crucial to develop device architectures that provide both high performance and long-term stability. Here we report high performance of dual-gated van der Waals (vdW) heterostructure devices in which MoS2 layers are fully encapsulated by hexagonal boron nitride (hBN) and contacts are formed using graphene. The hBN-encapsulation provides excellent protection from environmental factors, resulting in highly stable device performance, even at elevated temperatures. Our measurements also reveal high-quality electrical contacts and reduced hysteresis, leading to high two-terminal carrier mobility (33-151 cm(2) V(-1) s(-1)) and low subthreshold swing (80 mV/dec) at room temperature. Furthermore, adjustment of graphene Fermi level and use of dual gates enable us to separately control contact resistance and threshold voltage. This novel vdW heterostructure device opens up a new way toward fabrication of stable, high-performance devices based on 2D materials.

  5. Jagiellonian University Radiation Damage in Silicon Particle Detectors in High Luminosity Experiments

    CERN Document Server

    Oblakowska-Mucha, A

    2017-01-01

    Radiation damage is nowadays the most serious problem in silicon particle detectors placed in the very harsh radiation environment. This problem will be even more pronounced after the LHC Upgrade because of extremely strong particle fluences never encountered before. In this review, a few aspects of radiation damage in silicon trackers are presented. Among them, the change in the silicon lattice and its influence on the detector performance are discussed. Currently applied solutions and the new ideas for future experiments will be also shown. Most of the results presented in this summary were obtained within the RD50 Collaboration

  6. Low-damage high-throughput grazing-angle sputter deposition on graphene

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.-T.; Gajek, M.; Raoux, S. [IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Casu, E. A. [IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Politecnico di Torino, Turin 10129 (Italy)

    2013-07-15

    Despite the prevalence of sputter deposition in the microelectronics industry, it has seen very limited applications for graphene electronics. In this letter, we report systematic investigation of the sputtering induced damages in graphene and identify the energetic sputtering gas neutrals as the primary cause of graphene disorder. We further demonstrate a grazing-incidence sputtering configuration that strongly suppresses fast neutral bombardment and retains graphene structure integrity, creating considerably lower damage than electron-beam evaporation. Such sputtering technique yields fully covered, smooth thin dielectric films, highlighting its potential for contact metals, gate oxides, and tunnel barriers fabrication in graphene device applications.

  7. Low-damage high-throughput grazing-angle sputter deposition on graphene

    International Nuclear Information System (INIS)

    Chen, C.-T.; Gajek, M.; Raoux, S.; Casu, E. A.

    2013-01-01

    Despite the prevalence of sputter deposition in the microelectronics industry, it has seen very limited applications for graphene electronics. In this letter, we report systematic investigation of the sputtering induced damages in graphene and identify the energetic sputtering gas neutrals as the primary cause of graphene disorder. We further demonstrate a grazing-incidence sputtering configuration that strongly suppresses fast neutral bombardment and retains graphene structure integrity, creating considerably lower damage than electron-beam evaporation. Such sputtering technique yields fully covered, smooth thin dielectric films, highlighting its potential for contact metals, gate oxides, and tunnel barriers fabrication in graphene device applications

  8. Low-damage high-throughput grazing-angle sputter deposition on graphene

    Science.gov (United States)

    Chen, C.-T.; Casu, E. A.; Gajek, M.; Raoux, S.

    2013-07-01

    Despite the prevalence of sputter deposition in the microelectronics industry, it has seen very limited applications for graphene electronics. In this letter, we report systematic investigation of the sputtering induced damages in graphene and identify the energetic sputtering gas neutrals as the primary cause of graphene disorder. We further demonstrate a grazing-incidence sputtering configuration that strongly suppresses fast neutral bombardment and retains graphene structure integrity, creating considerably lower damage than electron-beam evaporation. Such sputtering technique yields fully covered, smooth thin dielectric films, highlighting its potential for contact metals, gate oxides, and tunnel barriers fabrication in graphene device applications.

  9. Simulation and Damage Analysis of an Accidental Jet Fire in a High-Pressure Compressed Pump Shelter

    OpenAIRE

    Jang, Chang Bong; Choi, Sang-Won

    2016-01-01

    Background: As one of the most frequently occurring accidents in a chemical plant, a fire accident may occur at any place where transfer or handling of combustible materials is routinely performed. Methods: In particular, a jet fire incident in a chemical plant operated under high pressure may bring severe damage. To review this event numerically, Computational Fluid Dynamics methodology was used to simulate a jet fire at a pipe of a compressor under high pressure. Results: For jet fire...

  10. Method to reduce damage to backing plate

    Science.gov (United States)

    Perry, Michael D.; Banks, Paul S.; Stuart, Brent C.

    2001-01-01

    The present invention is a method for penetrating a workpiece using an ultra-short pulse laser beam without causing damage to subsequent surfaces facing the laser. Several embodiments are shown which place holes in fuel injectors without damaging the back surface of the sack in which the fuel is ejected. In one embodiment, pulses from an ultra short pulse laser remove about 10 nm to 1000 nm of material per pulse. In one embodiment, a plasma source is attached to the fuel injector and initiated by common methods such as microwave energy. In another embodiment of the invention, the sack void is filled with a solid. In one other embodiment, a high viscosity liquid is placed within the sack. In general, high-viscosity liquids preferably used in this invention should have a high damage threshold and have a diffusing property.

  11. Comparison of the Efficacy of Dry Needling and High-Power Pain Threshold Ultrasound Therapy with Clinical Status and Sonoelastography in Myofascial Pain Syndrome.

    Science.gov (United States)

    Aridici, Rifat; Yetisgin, Alparslan; Boyaci, Ahmet; Tutoglu, Ahmet; Bozdogan, Erol; Sen Dokumaci, Dilek; Kilicaslan, Nihat; Boyaci, Nurefsan

    2016-10-01

    The aim of this study was to compare the therapeutic efficacy of high-power pain threshold (HPPT) ultrasound therapy applied to the trigger points and dry needling (DN) in myofascial pain syndrome. Sixty-one patients were randomly assigned to an HPPT (n = 30) and dry needling (n = 31) groups. The primary outcome measures were the Visual Analog Scale (VAS) and Neck Pain and Disability Scale (NPDS), both at 1 week and 4 weeks after treatment. The secondary outcome measures were the number of painful trigger points, range of the tragus-acromioclavicular joint, the Short Form-36, the Beck Depression Inventory, the Beck Anxiety Inventory, and sonoelastographic tests after a 1-week treatment. More improvement was seen in anxiety in the HPPT group (P 0.05). A decrease in tissue stiffness was only seen in the HPPT group (P pain syndrome. Although a significant decrease was shown in tissue stiffness with HPPT, neither of these treatments had an apparent superiority.

  12. Determination of the fission-neutron averaged cross sections of some high-energy threshold reactions of interest for reactor dosimetry

    International Nuclear Information System (INIS)

    Arribere, M.A.; Kestelman, A.J.; Korochinsky, S.; Blostein, J.J.

    2003-01-01

    For three high threshold reactions, we have measured the cross sections averaged over a 235 U fission neutron spectrum. The measured reactions, and corresponding averaged cross sections found, are: 127 I(n,2n) 126 I, (1.36±0.12) mb; 90 Zr(n,2n) 89m Zr, (13.86±0.83) μb; and 58 Ni(n,d+np+pn) 57 Co, (274±15) μb; all referred to the well known standard of (111±3) mb for the 58 Ni(n,p) 58m+g Co averaged cross section. The measured cross sections are of interest in nuclear engineering for the characterization of the fast neutron component in the energy distribution of reactor neutrons. (author)

  13. Low-threshold, nanosecond, high-repetition-rate vortex pulses with controllable helicity generated in Cr,Nd:YAG self-Q-switched microchip laser

    Science.gov (United States)

    He, Hong-Sen; Chen, Zhen; Li, Hong-Bin; Dong, Jun

    2018-05-01

    A high repetition rate, nanosecond, pulsed optical vortex beam has been generated in a Cr,Nd:YAG self-Q-switched microchip laser pumped by the annular-beam formed with a hollow focus lens. The lasing threshold for vortex pulses is 0.9 W. A pulse width of 6.5 ns and a repetition rate of over 330 kHz have been achieved. The average output power of 1 W and the slope efficiency of 46.6% have been obtained. The helicity of the optical vortices has been controlled by adjusting the tilted angle between Cr,Nd:YAG crystal and output coupler. The work provides a new method for developing pulsed optical vortices for potential applications on quantum communication and optical trapping.

  14. Modeling of DNA damage-cluster, cell-cycle and repair pathway dependent radiosensitivity after low- and high-LET irradiation

    International Nuclear Information System (INIS)

    Guenther, Paul

    2017-01-01

    This work focuses on modeling of the effects of ionizing radiation on cells, primarily on, the influence of the DNA repair pathway availability and the radiation quality on the cell-survival probability. The availability of DNA repair pathways depends on the replication state and defects of the DNA repair pathways. The radiation quality manifests itself in the microscopic ionization pattern. The Giant LOop Binary LEsion (GLOBLE) model and the Local Effect Model (LEM) describe the cell-survival after photon and ion irradiation, respectively. Both models assume that cell survival can be modeled based on the spatial distribution of Double-Strand Breaks (DSB) of the DNA (damage pattern), within a higher order chromatin structure. Single DSB are referred to as isolated DSB (iDSB) and two or more DSB in close proximity (within 540 nm) are called complex DSB (cDSB). In order to predict the cell-survival, the GLOBLE-Model considers different iDSB repair-pathways and their availability. One central assumption of the LEM is that the same damage patterns imply same effects, regardless of the radiation quality. In order to predict the damage pattern the microscopic local dose distribution of ions, described by the amorphous track structure, is evaluated. The cell survival after ion irradiation is predicted from a comparison with corresponding damage patterns after photon irradiation. The cell-survival curves after high dose photon irradiation cannot be predicted from the Linear Quadratic (LQ) Model due to their transition towards a linear dose dependence. This work uses the GLOBLE-Model to introduce a novel mechanistic approach, which allows the threshold dose to be predicted for the transition from a linear quadratic dose dependence, of survival curves at low doses, to a linear dose dependence at high doses. Furthermore, a method is presented, which allows LEM to predict the survival of synchronous cells after ion irradiation based on the cell survival after photon

  15. AlGaN/GaN high electron mobility transistors with a low sub-threshold swing on free-standing GaN wafer

    Directory of Open Access Journals (Sweden)

    Xinke Liu

    2017-09-01

    Full Text Available This paper reported AlGaN/GaN high electron mobility transistors (HEMTs with low sub-threshold swing SS on free-standing GaN wafer. High quality AlGaN/GaN epi-layer has been grown by metal-organic chemical vapor deposition (MOCVD on free-standing GaN, small full-width hall maximum (FWHM of 42.9 arcsec for (0002 GaN XRD peaks and ultralow dislocation density (∼104-105 cm-2 were obtained. Due to these extremely high quality material properties, the fabricated AlGaN/GaN HEMTs achieve a low SS (∼60 mV/decade, low hysteresis of 54 mV, and high peak electron mobility μeff of ∼1456 cm2V-1s-1. Systematic study of materials properties and device characteristics exhibits that GaN-on-GaN AlGaN/GaN HEMTs are promising candidate for next generation high power device applications.

  16. Damage effect and mechanism of the GaAs pseudomorphic high electron mobility transistor induced by the electromagnetic pulse

    Science.gov (United States)

    Xiao-Wen, Xi; Chang-Chun, Chai; Gang, Zhao; Yin-Tang, Yang; Xin-Hai, Yu; Yang, Liu

    2016-04-01

    The damage effect and mechanism of the electromagnetic pulse (EMP) on the GaAs pseudomorphic high electron mobility transistor (PHEMT) are investigated in this paper. By using the device simulation software, the distributions and variations of the electric field, the current density and the temperature are analyzed. The simulation results show that there are three physical effects, i.e., the forward-biased effect of the gate Schottky junction, the avalanche breakdown, and the thermal breakdown of the barrier layer, which influence the device current in the damage process. It is found that the damage position of the device changes with the amplitude of the step voltage pulse. The damage appears under the gate near the drain when the amplitude of the pulse is low, and it also occurs under the gate near the source when the amplitude is sufficiently high, which is consistent with the experimental results. Project supported by the National Basic Research Program of China (Grant No. 2014CB339900), and the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology, China Academy of Engineering Physics (CAEP) (Grant No. 2015-0214.XY.K).

  17. Protecting Against Damage from Refraction of High Power Microwaves in the DIII-D Tokamak

    Directory of Open Access Journals (Sweden)

    Lohr John

    2017-01-01

    Full Text Available Several new protective systems are being installed on the DIII D tokamak to increase the safety margins for plasma operations with injected ECH power at densities approaching cutoff. Inadvertent overdense operation has previously resulted in reflection of an rf beam back into a launcher causing extensive arcing and melt damage on one waveguide line. Damage to microwave diagnostics, which are located on the same side of the tokamak as the ECH launchers, also has occurred. Developing a reliable microwave based interlock to protect the many vulnerable systems in DIII-D has proved to be difficult. Therefore, multiple protective steps have been taken to reduce the risk of damage in the future. Among these is a density interlock generated by the plasma control system, with setpoint determined by the ECH operators based on rf beam trajectories and plasma parameters. Also installed are enhanced video monitoring of the launchers, and an ambient light monitor on each of the waveguide systems, along with a Langmuir probe at the mouth of each launcher. Versatile rf monitors, measuring forward and reflected power in addition to the mode content of the rf beams, have been installed as the last miter bends in each waveguide line. As these systems are characterized, they are being incorporated in the interlock chains, which enable the ECH injection permits. The diagnostics most susceptible to damage from the ECH waves have also been fitted with a variety of protective devices including stripline filters, thin resonant notch filters tuned to the 110 GHz injected microwave frequency, blazed grating filters and shutters. Calculations of rf beam trajectories in the plasmas are performed using the TORAY ray tracing code with input from kinetic profile diagnostics. Using these calculations, strike points for refracted beams on the vacuum vessel are calculated, which allows evaluation of the risk of damage to sensitive diagnostics and hardware.

  18. Evaluation of High-Temporal-Resolution Bedload Sensors for Tracking Channel Bed Movement and Transport Thresholds in Forested Mountain Headwater Catchments.

    Science.gov (United States)

    Martin, S.; Conklin, M. H.; Bales, R. C.

    2014-12-01

    High temporal resolution data is required to take channel bed movement data beyond time integrated changes between measurements where many of the subtleties of bedload movement patterns are often missed. This study used continuous bedload scour sensors (flexible, fluid-filled pans connected to a pressure transducer) to collect high temporal resolution, long term bedload movement data for 4 high elevation (1500-1800 m) Sierra Nevada headwater streams draining 1 km2 catchments and to investigate the physical channel characteristics under which they perform best. Data collected by the scour sensors were used to investigate the disturbance and recovery patterns of these streams, to relate the observed patterns to channel bed stability, and to evaluate whether the channel bed is acting as a sediment source, sink, or storage across various temporal scales. Finally, attempts are made to identify discharge thresholds for bed movement from scour sensor and discharge data and to compare these threshold values to observed changes in the channel bed. Bedload scour data, turbidity data, and stream discharge data were collected at 15 minute intervals for (WY 2011 to WY 2014), including both above average (2011) and below average (2012, 2013, 2014) water years. Bedload scour sensors were found to have a relatively high (60%) failure rate in these systems. In addition, they required in situ calibrations as the factory and laboratory calibrations did not translate well to the field deployments. Data from the working sensors, showed patterns of abrupt channel bed disturbance (scour and/or fill) on an hour to day temporal scale followed by gradual recovery on a day to month scale back to a stable equilibrium bed surface elevation. These observed patterns suggest the bed acts as a short term source or sink for sediment, but is roughly sediment neutral over longer time periods implying the changes in bed elevation are reflective of fluctuations in storage rather than a true source or

  19. Highly sensitive colour change system within slight differences in metal ion concentrations based on homo-binuclear complex formation equilibrium for visual threshold detection of trace metal ions

    International Nuclear Information System (INIS)

    Mizuguchi, Hitoshi; Atsumi, Hiroshi; Hashimoto, Keigo; Shimada, Yasuhiro; Kudo, Yuki; Endo, Masatoshi; Yokota, Fumihiko; Shida, Junichi; Yotsuyanagi, Takao

    2004-01-01

    A new technique of expressing slight differences in metal ion concentrations by clear difference in colour was established for visual threshold detection of trace metal ions. The proposed method is based on rapid change of the mole fraction of the homo-binuclear complex (M 2 L) about a ligand in a narrow range of the total metal ion concentration (M T ) in a small excess, in case the second metal ion is bound to the reagent molecule which can bind two metal ions. Theoretical simulations showed that the highly sensitive colour change within slight differences in metal ion concentrations would be realized under the following conditions: (i) both of the stepwise formation constants of complex species are sufficiently large; (ii) the stepwise formation constant of the 1:1 complex (ML) is larger than that of M 2 L; and (iii) the absorption spectrum of M 2 L is far apart from the other species in the visible region. Furthermore, the boundary of the colour region in M T would be readily controlled by the total ligand concentration (L T ). Based on this theory, the proposed model was verified with the 3,3'-bis[bis(carboxymethyl)amino]methyl derivatives of sulphonephthalein dyes such as xylenol orange (XO), methylthymol blue (MTB), and methylxylenol blue (MXB), which can bind two metal ions at both ends of a π-electron conjugated system. The above-mentioned model was proved with the iron(III)-XO system at pH 2. In addition, MTB and MXB were suitable reagents for the visual threshold detection of trivalent metal ions such as iron(III), aluminium(III), gallium(III) and indium(III) ion in slightly acidic media. The proposed method has been applied successfully as a screening test for aluminium(III) ion in river water sampled at the downstream area of an old mine

  20. Effects of foreign object damage from small hard particles on the high-cycle fatigue life of titanium-(6)aluminum-(4)vanadium

    Science.gov (United States)

    Hamrick, Joseph L., II

    Thin rectangular samples of Ti-6Al-4V were damaged by four methods to represent foreign object damage found in turbine engine blades: (1) impact with 2 mm. and 5 mm diameter glass spheres at 305 m/s, (2) impact with 2 mm and 4 mm diameter steel spheres at 305 m/s, (3) quasi-static displacement controlled indentation using steel chisels with 1 mm, 2 nun and 5 mm diameter tips and (4) shearing notches with a 2 mm. diameter chisel point under a quasi-static loading condition. Finite element analysis was used to study the relationship between the stress state created by the plastic damage and the fatigue strength. A new method of quantifying the amount of plastic damage from multiple methods was developed. The fatigue strength required for crack initiation at 10E7 cycles was found to be a function of the total depth from the edge of the undeformed specimen up to the end of the plastically deformed zone. For damage depths less than 1750 mum, the reduction in fatigue strength is proportional to the depth of total damage. For depths > 1750 mum, there appears to be a threshold value of fatigue strength.

  1. Quantification of damage in DNA recovered from highly degraded samples – a case study on DNA in faeces

    Directory of Open Access Journals (Sweden)

    Eveson J Paige

    2006-08-01

    Full Text Available Abstract Background Poorly preserved biological tissues have become an important source of DNA for a wide range of zoological studies. Measuring the quality of DNA obtained from these samples is often desired; however, there are no widely used techniques available for quantifying damage in highly degraded DNA samples. We present a general method that can be used to determine the frequency of polymerase blocking DNA damage in specific gene-regions in such samples. The approach uses quantitative PCR to measure the amount of DNA present at several fragment sizes within a sample. According to a model of random degradation the amount of available template will decline exponentially with increasing fragment size in damaged samples, and the frequency of DNA damage (λ can be estimated by determining the rate of decline. Results The method is illustrated through the analysis of DNA extracted from sea lion faecal samples. Faeces contain a complex mixture of DNA from several sources and different components are expected to be differentially degraded. We estimated the frequency of DNA damage in both predator and prey DNA within individual faecal samples. The distribution of fragment lengths for each target fit well with the assumption of a random degradation process and, in keeping with our expectations, the estimated frequency of damage was always less in predator DNA than in prey DNA within the same sample (mean λpredator = 0.0106 per nucleotide; mean λprey = 0.0176 per nucleotide. This study is the first to explicitly define the amount of template damage in any DNA extracted from faeces and the first to quantify the amount of predator and prey DNA present within individual faecal samples. Conclusion We present an approach for characterizing mixed, highly degraded PCR templates such as those often encountered in ecological studies using non-invasive samples as a source of DNA, wildlife forensics investigations and ancient DNA research. This method will

  2. Radiation damage in He implanted silicon at high temperature using multi-energies

    CERN Document Server

    David, M L; Oliviero, E; Denanot, M F; Beaufort, M F; Declemy, A; Blanchard, C; Gerasimenko, N N; Barbot, J F

    2002-01-01

    He sup + ions were implanted at 800 deg. C into (1 0 0) silicon with multiple energies and selected fluences to get a number of displacement per atom constant in a large plateau. The ion-related defects have been mainly studied by transmission electron microscopy. Both the amount and the microstructure of defects have been found to be strongly dependent on the order of implants. Faceted cavities are only observed where damage overlapping occurs. The first implant provides thus nucleation sites for cavities. The generation of these sites is less efficient when using increasing energies because of damage recovery; fewer cavities are observed. Concurrently interstitial-type defects, left brace 1 1 3 right brace agglomerates, are formed. The observed state of growth of these left brace 1 1 3 right brace defects (rod-like and ribbon-like defects) is dependent on the implantation energy order but in any cases, no dislocation loops are observed even in the deepest damage region.

  3. The micro-mechanics of strength, durability and damage tolerance in composites: new insights from high resolution computed tomography

    Science.gov (United States)

    Spearing, S. Mark; Sinclair, Ian

    2016-07-01

    Recent work, led by the authors, on impact damage resistance, particle toughening and tensile fibre failure is reviewed in order to illustrate the use of high-resolution X-ray tomography to observe and quantify damage mechanisms in carbon fibre composite laminates. Using synchrotron and micro-focus X-ray sources resolutions of less than 1 μm have been routinely achieved. This enables individual broken fibres and the micromechanisms of particle toughening to be observed and quantified. The data for fibre failure, cluster formation and overall tensile strength are compared with model predictions. This allows strategies for future model development to be identified. The overall implications for using such high-resolution 3-D measurements to inform a “data-rich mechanics” approach to materials evaluation and modeling is discussed.

  4. Oxidation damage evaluation by non-destructive method for graphite components in high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Shibata, Taiju; Tada, Tatsuya; Sumita, Junya; Sawa, Kazuhiro

    2008-01-01

    To develop non-destructive evaluation methods for oxidation damage on graphite components in High Temperature Gas-cooled Reactors (HTGRs), the applicability of ultrasonic wave and micro-indentation methods were investigated. Candidate graphites, IG-110 and IG-430, for core components of Very High Temperature Reactor (VHTR) were used in this study. These graphites were oxidized uniformly by air at 500degC. The following results were obtained from this study. (1) Ultrasonic wave velocities with 1 MHz can be expressed empirically by exponential formulas to burn-off, oxidation weight loss. (2) The porous condition of the oxidized graphite could be evaluated with wave propagation analysis with a wave-pore interaction model. It is important to consider the non-uniformity of oxidized porous condition. (3) Micro-indentation method is expected to determine the local oxidation damage. It is necessary to assess the variation of the test data. (author)

  5. Threshold Signature Schemes Application

    Directory of Open Access Journals (Sweden)

    Anastasiya Victorovna Beresneva

    2015-10-01

    Full Text Available This work is devoted to an investigation of threshold signature schemes. The systematization of the threshold signature schemes was done, cryptographic constructions based on interpolation Lagrange polynomial, elliptic curves and bilinear pairings were examined. Different methods of generation and verification of threshold signatures were explored, the availability of practical usage of threshold schemes in mobile agents, Internet banking and e-currency was shown. The topics of further investigation were given and it could reduce a level of counterfeit electronic documents signed by a group of users.

  6. Particles near threshold

    International Nuclear Information System (INIS)

    Bhattacharya, T.; Willenbrock, S.

    1993-01-01

    We propose returning to the definition of the width of a particle in terms of the pole in the particle's propagator. Away from thresholds, this definition of width is equivalent to the standard perturbative definition, up to next-to-leading order; however, near a threshold, the two definitions differ significantly. The width as defined by the pole position provides more information in the threshold region than the standard perturbative definition and, in contrast with the perturbative definition, does not vanish when a two-particle s-wave threshold is approached from below

  7. Some considerations regarding the creep crack growth threshold

    International Nuclear Information System (INIS)

    Thouless, M.D.; Evans, A.G.

    1984-01-01

    The preceding analysis reveals that the existence of a threshold determined by the sintering stress does not influence the post threshold crack velocity. Considerations of the sintering stress can thus be conveniently excluded from analysis of the post threshold crack velocity. The presence of a crack growth threshold has been predicted, based on the existence of cavity nucleation controlled crack growth. A preliminary analysis of cavity nucleation rates within the damage zone reveals that this threshold is relatively abrupt, in accord with experimental observations. Consequently, at stress intensities below K /SUB th/ growth becomes nucleation limited and crack blunting occurs in preference to crack growth

  8. Biological Signatures of Brain Damage Associated with High Serum Ferritin Levels in Patients with Acute Ischemic Stroke and Thrombolytic Treatment

    Directory of Open Access Journals (Sweden)

    Mónica Millán

    2008-01-01

    Full Text Available Background and purpose: Increased body iron stores have been related to greater oxidative stress and brain injury in clinical and experimental cerebral ischemia and reperfusion. We aimed to investigate the biological signatures of excitotoxicity, inflammation and blood brain barrier disruption potentially associated with high serum ferritin levels-related damage in acute stroke patients treated with i.v. t-PA.

  9. Testing of bulk radiation damage of n-in-p silicon sensors for very high radiation environments

    Czech Academy of Sciences Publication Activity Database

    Hara, K.; Affolder, A.A.; Allport, P.P.; Bates, R.; Betancourt, C.; Böhm, Jan; Brown, H.; Buttar, C.; Carter, J. R.; Casse, G.; Mikeštíková, Marcela

    2011-01-01

    Roč. 636, č. 1 (2011), "S83"-"S89" ISSN 0168-9002 R&D Projects: GA MŠk LA08032 Institutional research plan: CEZ:AV0Z10100502 Keywords : p-bulk silicon * microstrip * charge collection * radiation damage Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.207, year: 2011 http://dx.doi.org/10.1016/j.nima.2010.04.090

  10. The numerical high cycle fatigue damage model of fillet weld joint under weld-induced residual stresses

    Science.gov (United States)

    Nguyen Van Do, Vuong

    2018-04-01

    In this study, a development of nonlinear continuum damage mechanics (CDM) model for multiaxial high cycle fatigue is proposed in which the cyclic plasticity constitutive model has been incorporated in the finite element (FE) framework. T-joint FE simulation of fillet welding is implemented to characterize sequentially coupled three-dimensional (3-D) of thermo-mechanical FE formulation and simulate the welding residual stresses. The high cycle fatigue damage model is then taken account into the fillet weld joints under the various cyclic fatigue load types to calculate the fatigue life considering the residual stresses. The fatigue crack initiation and the propagation in the present model estimated for the total fatigue is compared with the experimental results. The FE results illustrated that the proposed high cycle fatigue damage model in this study could become a powerful tool to effectively predict the fatigue life of the welds. Parametric studies in this work are also demonstrated that the welding residual stresses cannot be ignored in the computation of the fatigue life of welded structures.

  11. A threshold for dissipative fission

    International Nuclear Information System (INIS)

    Thoennessen, M.; Bertsch, G.F.

    1993-01-01

    The empirical domain of validity of statistical theory is examined as applied to fission data on pre-fission data on pre-fission neutron, charged particle, and γ-ray multiplicities. Systematics are found of the threshold excitation energy for the appearance of nonstatistical fission. From the data on systems with not too high fissility, the relevant phenomenological parameter is the ratio of the threshold temperature T thresh to the (temperature-dependent) fission barrier height E Bar (T). The statistical model reproduces the data for T thresh /E Bar (T) thresh /E Bar (T) independent of mass and fissility of the systems

  12. Threshold current for fireball generation

    Science.gov (United States)

    Dijkhuis, Geert C.

    1982-05-01

    Fireball generation from a high-intensity circuit breaker arc is interpreted here as a quantum-mechanical phenomenon caused by severe cooling of electrode material evaporating from contact surfaces. According to the proposed mechanism, quantum effects appear in the arc plasma when the radius of one magnetic flux quantum inside solid electrode material has shrunk to one London penetration length. A formula derived for the threshold discharge current preceding fireball generation is found compatible with data reported by Silberg. This formula predicts linear scaling of the threshold current with the circuit breaker's electrode radius and concentration of conduction electrons.

  13. Validity of the linear no-threshold (LNT) hypothesis in setting radiation protection regulations for the inhabitants in high level natural radiation areas of Ramsar, Iran

    International Nuclear Information System (INIS)

    Mortazavi, S.M.J.; Atefi, M.; Razi, Z.; Mortazavi Gh

    2010-01-01

    Some areas in Ramsar, a city in northern Iran, have long been known as inhabited areas with the highest levels of natural radiation. Despite the fact that the health effects of high doses of ionizing radiation are well documented, biological effects of above the background levels of natural radiation are still controversial and the validity of the LNT hypothesis in this area, has been criticized by many investigators around the world. The study of the health effects of high levels of natural radiation in areas such as Ramsar, help scientists to investigate the biological effects without the need for extrapolating the observations either from high doses of radiation to low dose region or from laboratory animals to humans. Considering the importance of these studies, National Radiation Protection Department (NRPD) of the Iranian Nuclear Regulatory Authority has started an integrative research project on the health effects of long-term exposure to high levels of natural radiation. This paper reviews findings of the studies conducted on the plants and humans living or laboratory animals kept in high level natural radiation areas of Ramsar. In human studies, different end points such as DNA damage, chromosome aberrations, blood cells and immunological alterations are discussed. This review comes to the conclusion that no reproducible detrimental health effect has been reported so far. In this paper the validity of LNT hypothesis in the assessment of the health effects of high levels of natural radiation is discussed. (author)

  14. Excitation thresholds of field-aligned irregularities and associated ionospheric hysteresis at very high latitudes observed using SPEAR-induced HF radar backscatter

    Directory of Open Access Journals (Sweden)

    D. M. Wright

    2009-07-01

    Full Text Available On 10 October 2006 the SPEAR high power radar facility was operated in a power-stepping mode where both CUTLASS radars were detecting backscatter from the SPEAR-induced field-aligned irregularities (FAIs. The effective radiated power of SPEAR was varied from 1–10 MW. The aim of the experiment was to investigate the power thresholds for excitation (Pt and collapse (Pc of artificially-induced FAIs in the ionosphere over Svalbard. It was demonstrated that FAI could be excited by a SPEAR ERP of only 1 MW, representing only 1/30th of SPEAR's total capability, and that once created the irregularities could be maintained for even lower powers. The experiment also demonstrated that the very high latitude ionosphere exhibits hysteresis, where the down-going part of the power cycle provided a higher density of irregularities than for the equivalent part of the up-going cycle. Although this second result is similar to that observed previously by CUTLASS in conjunction with the Tromsø heater, the same is not true for the equivalent incoherent scatter measurements. The EISCAT Svalbard Radar (ESR failed to detect any hysteresis in the plasma parameters over Svalbard in stark contract with the measurements made using the Tromsø UHF.

  15. Excitation thresholds of field-aligned irregularities and associated ionospheric hysteresis at very high latitudes observed using SPEAR-induced HF radar backscatter

    Directory of Open Access Journals (Sweden)

    D. M. Wright

    2009-07-01

    Full Text Available On 10 October 2006 the SPEAR high power radar facility was operated in a power-stepping mode where both CUTLASS radars were detecting backscatter from the SPEAR-induced field-aligned irregularities (FAIs. The effective radiated power of SPEAR was varied from 1–10 MW. The aim of the experiment was to investigate the power thresholds for excitation (Pt and collapse (Pc of artificially-induced FAIs in the ionosphere over Svalbard. It was demonstrated that FAI could be excited by a SPEAR ERP of only 1 MW, representing only 1/30th of SPEAR's total capability, and that once created the irregularities could be maintained for even lower powers. The experiment also demonstrated that the very high latitude ionosphere exhibits hysteresis, where the down-going part of the power cycle provided a higher density of irregularities than for the equivalent part of the up-going cycle. Although this second result is similar to that observed previously by CUTLASS in conjunction with the Tromsø heater, the same is not true for the equivalent incoherent scatter measurements. The EISCAT Svalbard Radar (ESR failed to detect any hysteresis in the plasma parameters over Svalbard in stark contract with the measurements made using the Tromsø UHF.

  16. Acute Oxidative Effect and Muscle Damage after a Maximum 4 Min Test in High Performance Athletes.

    Directory of Open Access Journals (Sweden)

    Heros Ribeiro Ferreira

    Full Text Available The purpose of this investigation was to determine lipid peroxidation markers, physiological stress and muscle damage in elite kayakers in response to a maximum 4-min kayak ergometer test (KE test, and possible correlations with individual 1000m kayaking performances. The sample consisted of twenty-three adult male and nine adult female elite kayakers, with more than three years' experience in international events, who voluntarily took part in this study. The subjects performed a 10-min warm-up, followed by a 2-min passive interval, before starting the test itself, which consisted of a maximum 4-min work paddling on an ergometer; right after the end of the test, an 8 ml blood sample was collected for analysis. 72 hours after the test, all athletes took part in an official race, when then it was possible to check their performance in the on site K1 1000m test (P1000m. The results showed that all lipoproteins and hematological parameters tested presented a significant difference (p≤0.05 after exercise for both genders. In addition, parameters related to muscle damage such as lactate dehydrogenase (LDH and creatine kinase (CK presented significant differences after stress. Uric acid presented an inverse correlation with the performance (r = -0.76, while CK presented a positive correlation (r = 0.46 with it. Based on these results, it was possible to verify muscle damage and the level of oxidative stress caused by indoor training with specific ergometers for speed kayaking, highlighting the importance of analyzing and getting to know the physiological responses to this type of training, in order to provide information to coaches and optimize athletic performance.

  17. Low and high frequency tonal threshold audiometry: comparing hearing thresholds between smokers and non-smokers Da audiometria tonal limiar em baixa e alta frequência: comparação dos limiares auditivos entre tabagistas e não-tabagistas

    Directory of Open Access Journals (Sweden)

    Daniela Cecílio Capra Marques de Oliveira

    2009-10-01

    Full Text Available Cigarette smoking can cause many potentially fatal diseases and worsen others. Numerous studies have shown the relationship between smoking and hearing loss. However, the increase in auditory threshold in high frequency arising from smoking has been very little described. AIM: to compare low and high frequency auditory thresholds among a group of smoking and non-smoking male individuals between 18 and 40 years. STUDY DESIGN: Cross-sectional. MATERIALS AND METHODS: by means of low and high frequency tonal threshold audiometry we studied 30 male individuals between 18 and 40 years and 30 non-smokers of matching age and gender. RESULTS: auditory thresholds were different between smokers and non-smokers, being worse in the former. Although within normal ranges, auditory thresholds in low frequencies were higher among smokers. In high frequencies we noticed a marked increase in auditory thresholds among smokers. CONCLUSION: we found statistically significant difference in auditory thresholds in low and high frequencies, among young male individuals, smokers and non-smokers, being worse in the former.O uso do cigarro pode levar a diversas doenças potencialmente fatais e contribuir para o agravo de outras condições patológicas. Inúmeros estudos mostram a relação entre tabagismo e perda auditiva, entretanto, o aumento dos limiares auditivos em alta frequência decorrente do tabagismo é pouco descrito. OBJETIVO: Comparar os limiares auditivos em baixas e altas frequências, entre um grupo de indivíduos não-tabagistas e tabagistas, do sexo masculino com idades entre 18 e 40 anos. FORMA DE ESTUDO: Tipo transversal. MATERIAL E MÉTODO: Foram estudados, através de audiometria tonal limiar em baixas e altas frequências, 30 indivíduos tabagistas do sexo masculino com idades entre 18 e 40 anos e 30 indivíduos não-tabagistas do mesmo sexo e da mesma faixa etária. RESULTADOS: Os limiares auditivos foram diferentes entre os indivíduos do grupo n

  18. Laser induced photoreceptor damage and recovery in the high numerical aperture eye of the garter snake.

    Science.gov (United States)

    Zwick, H; Edsall, P; Stuck, B E; Wood, E; Elliott, R; Cheramie, R; Hacker, H

    2008-02-01

    The garter snake provides a unique model for in-vivo imaging of photoreceptor damage induced by laser retinal exposure. Laser thermal/mechanical retinal injury induced alterations in photoreceptor structure and leukocyte cellular behavior. Photoreceptors turned white, lost mode structure, and swelled; leukocyte activity was observed in the vicinity of photoreceptor cells. Non-thermal alterations were identified with a bio-tag for oxidative stress. Mechanisms of photoreceptor recovery and replacement were observed and evaluated for active cytoskeletal systems by using an anti-actin tag that could detect the presence of active cytoskeletal systems resident in photoreceptors as well as other retinal systems.

  19. Radiation effects and damage formation in semiconductors due to high-energy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kamarou, A.

    2006-11-07

    The object of this thesis was the study of ion-beam induced damage formation and annealing in crystalline and conventionally predamaged Ge, GaAs, and InP. The samples were irradiated either at {approx}80 K or at room temperature with Kr, Xe, or Au ions with specific energy of about 0.3 MeV/u to 3 MeV/u. Thereafter the samples were studied by means of Rutherford backscattering spectroscopy and/or transmission electron microscopy.

  20. Micropatterned comet assay enables high throughput and sensitive DNA damage quantification.

    Science.gov (United States)

    Ge, Jing; Chow, Danielle N; Fessler, Jessica L; Weingeist, David M; Wood, David K; Engelward, Bevin P

    2015-01-01

    The single cell gel electrophoresis assay, also known as the comet assay, is a versatile method for measuring many classes of DNA damage, including base damage, abasic sites, single strand breaks and double strand breaks. However, limited throughput and difficulties with reproducibility have limited its utility, particularly for clinical and epidemiological studies. To address these limitations, we created a microarray comet assay. The use of a micrometer scale array of cells increases the number of analysable comets per square centimetre and enables automated imaging and analysis. In addition, the platform is compatible with standard 24- and 96-well plate formats. Here, we have assessed the consistency and sensitivity of the microarray comet assay. We showed that the linear detection range for H2O2-induced DNA damage in human lymphoblastoid cells is between 30 and 100 μM, and that within this range, inter-sample coefficient of variance was between 5 and 10%. Importantly, only 20 comets were required to detect a statistically significant induction of DNA damage for doses within the linear range. We also evaluated sample-to-sample and experiment-to-experiment variation and found that for both conditions, the coefficient of variation was lower than what has been reported for the traditional comet assay. Finally, we also show that the assay can be performed using a 4× objective (rather than the standard 10× objective for the traditional assay). This adjustment combined with the microarray format makes it possible to capture more than 50 analysable comets in a single image, which can then be automatically analysed using in-house software. Overall, throughput is increased more than 100-fold compared to the traditional assay. Together, the results presented here demonstrate key advances in comet assay technology that improve the throughput, sensitivity, and robustness, thus enabling larger scale clinical and epidemiological studies. © The Author 2014. Published by

  1. Radiation effects and damage formation in semiconductors due to high-energy ion irradiation

    International Nuclear Information System (INIS)

    Kamarou, A.

    2006-01-01

    The object of this thesis was the study of ion-beam induced damage formation and annealing in crystalline and conventionally predamaged Ge, GaAs, and InP. The samples were irradiated either at ∼80 K or at room temperature with Kr, Xe, or Au ions with specific energy of about 0.3 MeV/u to 3 MeV/u. Thereafter the samples were studied by means of Rutherford backscattering spectroscopy and/or transmission electron microscopy

  2. Behavior of high resistance to He{sup 2+} induced irradiation damage in metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bin [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024 (China); Mei, Xianxiu, E-mail: xxmei@dlut.edu.cn [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024 (China); Hou, Wenjing; Wang, Younian [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024 (China); Wang, Zhiguang [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Dong, Chuang [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024 (China)

    2013-10-01

    Highlights: •Metallic glasses and W were irradiated with 500 keV He{sup 2+} at different fluences. •Metallic glasses could maintain amorphous state at different irradiation fluences. •The resistance to He{sup 2+} irradiation of metallic glasses was superior to the one in W metal. •Cu- and Zr-based metallic glasses had better resistance to He{sup 2+} irradiation. -- Abstract: This study details the irradiation of various metallic glasses ((Cu{sub 47}Zr{sub 45}Al{sub 8}){sub 98.5}Y{sub 1.5}, Zr{sub 64}Cu{sub 17.8}Ni{sub 10.7}Al{sub 7.5}, Co{sub 61.2}B{sub 26.2}Si{sub 7.8}Ta{sub 4.8}) and metallic W using He{sup 2+} ions with an energy of 500 keV at irradiation fluences of 2 × 10{sup 17}, 1 × 10{sup 18} and 2 × 10{sup 18} ions/cm{sup 2} to investigate the radiation-resistant properties of these metallic glasses compared to the conventional irradiation-resistant material W. These three metallic glasses were able to maintain an amorphous state during these irradiation fluences. There was no significant irradiation damage at the low irradiation fluence. When the irradiation fluence was increased to 2 × 10{sup 18} ions/cm{sup 2}, a damage layer appeared up to a distance corresponding to the range of the ions away from the surfaces of the Cu- and Zr-based metallic glasses without any visible damage on the surface. Significant surface stripping damage appeared in the Co-based metallic glass. Relatively speaking, surface layer peeling appeared in metallic W along the crystal boundary at a fluence of 1 × 10{sup 18} ions/cm{sup 2}. When the fluence was increased to 2 × 10{sup 18} ions/cm{sup 2}, multilayer peeling, stripping, etc. appeared. The roughness of the Cu- and Zr-based metallic glass showed further smoothing with increasing fluence, while the opposite occurred in the Co-based metallic glass. Within the wavelength range of 400–1700 nm, after irradiation of He{sup 2+} at a fluence of 1 × 10{sup 18} ions/cm{sup 2}, the reflectance of the Cu-based and Co

  3. The DNA damage of high doses of X-ray on human peripheral blood nucleated cell's and sperm

    International Nuclear Information System (INIS)

    Wang Hui; Zoulian; Jiang Qisheng; Li Fengsheng; He Rui; Song Xiujun

    2011-01-01

    Objective: To detect the DNA damage of high doses of X-ray on human peripheral blood nucleated cell's and sperm by single cell gel electrophoresis (SCGE). Evaluation the level of DNA damage of human peripheral blood nucleated cell's and sperm after high doses of X-ray. Methods: Using human peripheral blood with normal blood routine and normal sperm,give the dose of 0 Gy, 2 Gy, 4 Gy, 6 Gy, 8 Gy, 10 Gy X-ray radiation with energy of 6MU. Detect the percentage of comet-like tail, tail length and content of DNA in tail of whole blood cell's DNA and sperm's DNA by SCGE technique in 1 hour. Results: The peripheral blood nucleated cell's and sperm's comet rate were 1.00±0.10%, 2.1±1.5%, respectively, have an evidently variance in 0 Gy group (υ=18, t=2.31>1.734, P 1.734, P 1.734, P<0.05). The peripheral blood nucleated cell's and sperm's comet rate were all 100%, 100%, have no-statistical significance in 8 Gy, 10 Gy group. Conclusion: The evidence is powerful enough. That the sperm's SCGE is more sensitive than peripheral blood nucleated cell's SCGE in reflect the X-ray damage in a certain extent (2-6 Gy). (authors)

  4. Highly transparent, stable, and superhydrophobic coatings based on gradient structure design and fast regeneration from physical damage

    International Nuclear Information System (INIS)

    Chen, Zao; Liu, Xiaojiang; Wang, Yan; Li, Jun; Guan, Zisheng

    2015-01-01

    Graphical abstract: - Highlights: • Highly transparent, stable, and superhydrophobic PET film was fabricated by dip-coating way. • The gradient structure is beneficial to both hydrophobicity and transparency. • The superhydrophobic PET film after physical damage can quickly regain by one-step spary. • The fabrication method is available for various substrates and large-scale production. - Abstract: Optical transparency, mechanical flexibility, and fast regeneration are important factors to expand the application of superhydrophobic surfaces. Herein, we fabricated highly transparent, stable, and superhydrophobic coatings through a novel gradient structure design by versatile dip-coating of silica colloid particles (SCPs) and diethoxydimethysiliane cross-linked silica nanoparticles (DDS-SNPs) on polyethylene terephthalate (PET) film and glass, followed by the modification of octadecyltrichlorosiliane (OTCS). When the DDS concentration reached 5 wt%, the modified SCPs/DDS-SNPs coating exhibited a water contact angle (WCA) of 153° and a sliding angle (SA) <5°. Besides, the average transmittance of this superhydrophobic coating on PET film and glass was increased by 2.7% and 1% in the visible wavelength, respectively. This superhydrophobic coating also showed good robustness and stability against water dropping impact, ultrasonic damage, and acid solution. Moreover, the superhydrophobic PET film after physical damage can quickly regain the superhydrophobicity by one-step spray regenerative solution of dodecyltrichlorosilane (DTCS) modified silica nanoparticles at room temperature. The demonstrated method for the preparation and regeneration of superhydrophobic coating is available for different substrates and large-scale production at room temperature.

  5. Diamond Particle Detector Properties during High Fluence Material Damage Tests and their Future Applications for Machine Protection in the LHC

    CERN Document Server

    Burkart, F; Borburgh, J; Dehning, B; Di Castro, M; Griesmayer, E; Lechner, A; Lendaro, J; Loprete, F; Losito, R; Montesano, S; Schmidt, R; Wollmann, D; Zerlauth, M

    2013-01-01

    Experience with LHC machine protection (MP) during the last three years of operation shows that the MP systems sufficiently protect the LHC against damage in case of failures leading to beam losses with a time constant exceeding 1ms. An unexpected fast beam loss mechanism, called UFOs [1], was observed, which could potentially quench superconducting magnets. For such fast losses, but also for better understanding of slower losses, an improved understanding of the loss distribution within a bunch train is required [2]. Diamond particle detectors with bunch-by-bunch resolution and high dynamic range have been developed and successfully tested in the LHC and in experiments to quantify the damage limits of LHC components. This paper will focus on experience gained in use of diamond detectors. The properties of these detectors were measured during high-fluence material damage tests in CERN’s Hi-RadMat facility. The results will be discussed and compared to the cross-calibration with FLUKA simulations. Future app...

  6. Mitigation technologies for damage induced by pressure waves in high-power mercury spallation neutron sources (1). Material surface improvement

    International Nuclear Information System (INIS)

    Naoe, Takashi; Futakawa, Masatoshi; Wakui, Takashi; Kogawa, Hiroyuki; Shoubu, Takahisa; Takeuchi, Hirotsugu; Kawai, Masayoshi

    2008-01-01

    Liquid-mercury target systems for MW-class spallation neutron sources are being developed in the world. Proton beams will be used to induce the spallation reaction. At the moment the proton beam hits the target, pressure waves are generated in the mercury because of the abrupt heat deposition. The pressure waves interact with the target vessel leading to negative pressure that may cause cavitation along the vessel wall. Localized impacts by microjets and/or shock waves that are caused by cavitation bubble collapse impose pitting damage on the vessel wall. Bubble collapse behavior was observed by using a high-speed video camera, as well as simulated numerically. Localized impact due to cavitation bubble collapse was quantitatively estimated through comparison between numerical simulation and experiment. A novel surface treatment technique that consists of carburizing and nitriding processes was developed and the treatment condition was optimized to mitigate the pitting damage due to localized impacts. (author)

  7. High strain rate and quasi-static tensile behaviour of Ti-6Al-4V after cyclic damage

    Directory of Open Access Journals (Sweden)

    Verleysen P.

    2012-08-01

    Full Text Available It is common that energy absorbing structural elements are subjected to a number of loading cycles before a crash event. Several studies have shown that previous fatigue can significantly influence the tensile properties of some materials, and hence the behaviour of structural elements made of them. However, when the capacity of absorbing energy of engineering materials is determined, fresh material without any fatigue damage is most often used. This study investigates the effect of fatigue damage on the dynamic tensile properties of Ti-6Al-4V in thin-sheet form. Results are completed with tests at quasi-static strain rates and observations of the fracture surfaces, and compared with results obtained from other alloys and steel grades. The experiments show that the dynamic properties of Ti-6Al-4V are not affected by a number of fatigue loading cycles high enough to significantly reduce the energy absorbing capabilities of EDM machined samples.

  8. High activity antioxidant enzymes protect flying-fox haemoglobin against damage: an evolutionary adaptation for flight?

    Science.gov (United States)

    Reinke, N B; O'Brien, G M

    2006-11-01

    Flying-foxes are better able to defend haemoglobin against autoxidation than non-volant mammals such as sheep. When challenged with the common physiological oxidant, hydrogen peroxide, haemolysates of flying-fox red blood cells (RBC) were far less susceptible to methaemoglobin formation than sheep. Challenge with 1-acetyl-2-phenylhydrazine (APH) caused only half as much methaemoglobin formation in flying-fox as in ovine haemolysates. When intact cells were challenged with phenazine methosulfate (PMS), flying-fox RBC partially reversed the oxidant damage, and reduced methaemoglobin from 40 to 20% over 2 h incubation, while ovine methaemoglobin remained at 40%. This reflected flying-fox cells' capacity to replenish GSH fast enough that it did not deplete beyond 50%, while ovine RBC GSH was depleted to around 20%. The greater capacity of flying-foxes to defend haemoglobin against oxidant damage may be explained in part by antioxidant enzymes catalase, superoxide dismutase and cytochrome-b ( 5 ) reductase having two- to four-fold higher activity than in sheep (P foxes.

  9. High-flux He+ irradiation effects on surface damages of tungsten under ITER relevant conditions

    International Nuclear Information System (INIS)

    Liu, Lu; Liu, Dongping; Hong, Yi; Fan, Hongyu; Ni, Weiyuan; Yang, Qi; Bi, Zhenhua; Benstetter, Günther; Li, Shouzhe

    2016-01-01

    A large-power inductively coupled plasma source was designed to perform the continuous helium ions (He + ) irradiations of polycrystalline tungsten (W) under International Thermonuclear Experimental Reactor (ITER) relevant conditions. He + irradiations were performed at He + fluxes of 2.3 × 10 21 –1.6 × 10 22 /m 2  s and He + energies of 12–220 eV. Surface damages and microstructures of irradiated W were observed by scanning electron microscopy. This study showed the growth of nano-fuzzes with their lengths of 1.3–2.0 μm at He + energies of >70 eV or He + fluxes of >1.3 × 10 22 /m 2  s. Nanometer-sized defects or columnar microstructures were formed in W surface layer due to low-energy He + irradiations at an elevated temperature (>1300 K). The diffusion and coalescence of He atoms in W surface layers led to the growth and structures of nano-fuzzes. This study indicated that a reduction of He + energy below 12–30 eV may greatly decrease the surface damage of tungsten diverter in the fusion reactor.

  10. Investigations of DNA damage induction and repair resulting from cellular exposure to high dose-rate pulsed proton beams

    International Nuclear Information System (INIS)

    Renis, M.; Malfa, G.; Tomasello, B.; Borghesi, M.; Schettino, G.; Favetta, M.; Romano, F.; Cirrone, G. A. P.; Manti, L.

    2013-01-01

    Studies regarding the radiobiological effects of low dose radiation, microbeam irradiation services have been developed in the world and today laser acceleration of protons and heavy ions may be used in radiation therapy. The application of different facilities is essential for studying bystander effects and relating signalling phenomena in different cells or tissues. In particular the use of ion beams results advantageous in cancer radiotherapy compared to more commonly used X-rays, since the ability of ions in delivering lethal amount of doses into the target tumour avoiding or limiting damage to the contiguous healthy tissues. At the INFN-LNS in Catania, a multidisciplinary radiobiology group is strategically structured aimed to develop radiobiological research, finalised to therapeutic applications, compatible with the use of high dose laser-driven ion beams. The characteristic non-continuous dose rates with several orders of magnitude of laser-driven ion beams makes this facility very interesting in the cellular systems' response to ultra-high dose rates with non-conventional pulse time intervals cellular studies. Our group have projected to examine the effect of high dose laser-driven ion beams on two cellular types: foetal fibroblasts (normal control cells) and DU145 (prostate cancer cells), studying the modulation of some different bio-molecular parameters, in particular cell proliferation and viability, DNA damage, redox cellular status, morphological alterations of both the cytoskeleton components and some cell organelles and the possible presence of apoptotic or necrotic cell death. Our group performed preliminary experiments with high energy (60 MeV), dose rate of 10 Gy/min, doses of 1, 2, 3 Gy and LET 1 keV/μm on human foetal fibroblasts (control cells). We observed that cell viability was not influenced by the characteristics of the beam, the irradiation conditions or the analysis time. Conversely, DNA damage was present at time 0, immediately

  11. Investigations of DNA damage induction and repair resulting from cellular exposure to high dose-rate pulsed proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Renis, M.; Malfa, G.; Tomasello, B. [Drug Sciences Department, University of Catania, Catania (Italy); Borghesi, M.; Schettino, G. [Queen' s University Belfast, Northern Ireland (United Kingdom); Favetta, M.; Romano, F.; Cirrone, G. A. P. [National Institute for Nuclear Physics (INFN-LNS), Catania (Italy); Manti, L. [Physics Science Department, University of Naples Federico II, Naples, and National Institute for Nuclear Physics (INFN), Naples (Italy)

    2013-07-26

    Studies regarding the radiobiological effects of low dose radiation, microbeam irradiation services have been developed in the world and today laser acceleration of protons and heavy ions may be used in radiation therapy. The application of different facilities is essential for studying bystander effects and relating signalling phenomena in different cells or tissues. In particular the use of ion beams results advantageous in cancer radiotherapy compared to more commonly used X-rays, since the ability of ions in delivering lethal amount of doses into the target tumour avoiding or limiting damage to the contiguous healthy tissues. At the INFN-LNS in Catania, a multidisciplinary radiobiology group is strategically structured aimed to develop radiobiological research, finalised to therapeutic applications, compatible with the use of high dose laser-driven ion beams. The characteristic non-continuous dose rates with several orders of magnitude of laser-driven ion beams makes this facility very interesting in the cellular systems' response to ultra-high dose rates with non-conventional pulse time intervals cellular studies. Our group have projected to examine the effect of high dose laser-driven ion beams on two cellular types: foetal fibroblasts (normal control cells) and DU145 (prostate cancer cells), studying the modulation of some different bio-molecular parameters, in particular cell proliferation and viability, DNA damage, redox cellular status, morphological alterations of both the cytoskeleton components and some cell organelles and the possible presence of apoptotic or necrotic cell death. Our group performed preliminary experiments with high energy (60 MeV), dose rate of 10 Gy/min, doses of 1, 2, 3 Gy and LET 1 keV/μm on human foetal fibroblasts (control cells). We observed that cell viability was not influenced by the characteristics of the beam, the irradiation conditions or the analysis time. Conversely, DNA damage was present at time 0, immediately

  12. Use of enzymes to minimize the rheological dough problems caused by high levels of damaged starch in starch-gluten systems.

    Science.gov (United States)

    Barrera, Gabriela N; León, Alberto E; Ribotta, Pablo D

    2016-05-01

    During wheat milling, starch granules can experience mechanical damage, producing damaged starch. High levels of damaged starch modify the physicochemical properties of wheat flour, negatively affecting the dough behavior as well as the flour quality and cookie and bread making quality. The aim of this work was to evaluate the effect of α-amylase, maltogenic amylase and amyloglucosidase on dough rheology in order to propose alternatives to reduce the issues related to high levels of damaged starch. The dough with a high level of damaged starch became more viscous and resistant to deformations as well as less elastic and extensible. The soluble fraction of the doughs influenced the rheological behavior of the systems. The α-amylase and amyloglucosidase reduced the negative effects of high damaged starch contents, improving the dough rheological properties modified by damaged starch. The rheological behavior of dough with the higher damaged-starch content was related to a more open gluten network arrangement as a result of the large size of the swollen damaged starch granules. We can conclude that the dough rheological properties of systems with high damaged starch content changed positively as a result of enzyme action, particularly α-amylase and amyloglucosidase additions, allowing the use of these amylases and mixtures of them as corrective additives. Little information was reported about amyloglucosidase activity alone or combined with α-amylase. The combinations of these two enzymes are promising to minimize the negative effects caused by high levels of damaged starch on product quality. More research needs to be done on bread quality combining these two enzymes. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  13. The co-evolution of microstructure features in self-ion irradiated HT9 at very high damage levels

    Energy Technology Data Exchange (ETDEWEB)

    Getto, E., E-mail: getto@usna.edu [Department of Mechanical Engineering, United States Naval Academy, Annapolis, MD, 21402 (United States); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI, 48109 (United States); Vancoevering, G.; Was, G.S. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI, 48109 (United States)

    2017-02-15

    Understanding the void swelling and phase evolution of reactor structural materials at very high damage levels is essential to maintaining safety and longevity of components in Gen IV fast reactors. A combination of ion irradiation and modeling was utilized to understand the microstructure evolution of ferritic-martensitic alloy HT9 at high dpa. Self-ion irradiation experiments were performed on alloy HT9 to determine the co-evolution of voids, dislocations and precipitates up to 650 dpa at 460 °C. Modeling of microstructure evolution was conducted using the modified Radiation Induced Microstructure Evolution (RIME) model, which utilizes a mean field rate theory approach with grouped cluster dynamics. Irradiations were performed with 5 MeV raster-scanned Fe{sup 2+} ions on samples pre-implanted with 10 atom parts per million He. The swelling, dislocation and precipitate evolution at very high dpa was determined using Analytical Electron Microscopy in Scanning Transmission Electron Microscopy (STEM) mode. Experimental results were then interpreted using the RIME model. A microstructure consisting only of dislocations and voids is insufficient to account for the swelling evolution observed experimentally at high damage levels in a complicated microstructure such as irradiated alloy HT9. G phase was found to have a minimal effect on either void or dislocation evolution. M{sub 2}X played two roles; a variable biased sink for defects, and as a vehicle for removal of carbon from solution, thus promoting void growth. When accounting for all microstructure interactions, swelling at high damage levels is a dynamic process that continues to respond to other changes in the microstructure as long as they occur.

  14. Fatigue damage assessment of high-usage in-service aircraft fuselage structure

    Science.gov (United States)

    Mosinyi, Bao Rasebolai

    As the commercial and military aircraft fleets continue to age, there is a growing concern that multiple-site damage (MSD) can compromise structural integrity. Multiple site damage is the simultaneous occurrence of many small cracks at independent structural locations, and is the natural result of fatigue, corrosion, fretting and other possible damage mechanisms. These MSD cracks may linkup and form a fatigue lead crack of critical length. The presence of MSD also reduces the structure's ability to withstand longer cracks. The objective of the current study is to assess, both experimentally and analytically, MSD formation and growth in the lap joint of curved panels removed from a retired aircraft. A Boeing 727-232 airplane owned and operated by Delta Air Lines, and retired at its design service goal, was selected for the study. Two panels removed from the left-hand side of the fuselage crown, near stringer 4L, were subjected to extended fatigue testing using the Full-Scale Aircraft Structural Test Evaluation and Research (FASTER) facility located at the Federal Aviation Administration (FAA) William J. Hughes Technical Center. The state of MSD was continuously assessed using several nondestructive inspection (NDI) methods. Damage to the load attachment points of the first panel resulted in termination of the fatigue test at 43,500 fatigue cycles, before cracks had developed in the lap joint. The fatigue test for the second panel was initially conducted under simulated in-service loading conditions for 120,000 cycles, and no cracks were detected in the skin of the panel test section. Artificial damage was then introduced into the panel at selected rivets in the critical (lower) rivet row, and the fatigue loads were increased. Visually detectable crack growth from the artificial notches was first seen after 133,000 cycles. The resulting lead crack grew along the lower rivet row, eventually forming an 11.8" long unstable crack after 141,771 cycles, at which point the

  15. Highly reliable field electron emitters produced from reproducible damage-free carbon nanotube composite pastes with optimal inorganic fillers

    Science.gov (United States)

    Kim, Jae-Woo; Jeong, Jin-Woo; Kang, Jun-Tae; Choi, Sungyoul; Ahn, Seungjoon; Song, Yoon-Ho

    2014-02-01

    Highly reliable field electron emitters were developed using a formulation for reproducible damage-free carbon nanotube (CNT) composite pastes with optimal inorganic fillers and a ball-milling method. We carefully controlled the ball-milling sequence and time to avoid any damage to the CNTs, which incorporated fillers that were fully dispersed as paste constituents. The field electron emitters fabricated by printing the CNT pastes were found to exhibit almost perfect adhesion of the CNT emitters to the cathode, along with good uniformity and reproducibility. A high field enhancement factor of around 10 000 was achieved from the CNT field emitters developed. By selecting nano-sized metal alloys and oxides and using the same formulation sequence, we also developed reliable field emitters that could survive high-temperature post processing. These field emitters had high durability to post vacuum annealing at 950 °C, guaranteeing survival of the brazing process used in the sealing of field emission x-ray tubes. We evaluated the field emitters in a triode configuration in the harsh environment of a tiny vacuum-sealed vessel and observed very reliable operation for 30 h at a high current density of 350 mA cm-2. The CNT pastes and related field emitters that were developed could be usefully applied in reliable field emission devices.

  16. Large-strain time-temperature equivalence in high density polyethylene for prediction of extreme deformation and damage

    Directory of Open Access Journals (Sweden)

    Gray G.T.

    2012-08-01

    Full Text Available Time-temperature equivalence is a widely recognized property of many time-dependent material systems, where there is a clear predictive link relating the deformation response at a nominal temperature and a high strain-rate to an equivalent response at a depressed temperature and nominal strain-rate. It has been found that high-density polyethylene (HDPE obeys a linear empirical formulation relating test temperature and strain-rate. This observation was extended to continuous stress-strain curves, such that material response measured in a load frame at large strains and low strain-rates (at depressed temperatures could be translated into a temperature-dependent response at high strain-rates and validated against Taylor impact results. Time-temperature equivalence was used in conjuction with jump-rate compression tests to investigate isothermal response at high strain-rate while exluding adiabatic heating. The validated constitutive response was then applied to the analysis of Dynamic-Tensile-Extrusion of HDPE, a tensile analog to Taylor impact developed at LANL. The Dyn-Ten-Ext test results and FEA found that HDPE deformed smoothly after exiting the die, and after substantial drawing appeared to undergo a pressure-dependent shear damage mechanism at intermediate velocities, while it fragmented at high velocities. Dynamic-Tensile-Extrusion, properly coupled with a validated constitutive model, can successfully probe extreme tensile deformation and damage of polymers.

  17. Evaluation of a Low-Threshold/High-Tolerance Methadone Maintenance Treatment Clinic in Saint John, New Brunswick, Canada: One Year Retention Rate and Illicit Drug Use

    Directory of Open Access Journals (Sweden)

    Timothy K. S. Christie

    2013-01-01

    Full Text Available Objective. To report the one-year retention rate and the prevalence of illicit opioid use and cocaine use in the Low-Threshold/High-Tolerance (LTHT methadone maintenance treatment (MMT clinic located in Saint John, New Brunswick, Canada. Methods. A description of the LTHT MMT clinic is provided. The one-year retention rate was determined by collecting data on patients who enrolled in the LTHT MMT clinic between August 04, 2009 and August 04, 2010. The prevalence of illicit drug use was determined using a randomly selected retrospective cohort of 84 participants. For each participant the results of six consecutive urine tests for the most recent three months were compared to the results of the first six consecutive urine tests after program entry. Results. The one-year retention rate was 95%, 67% of the cohort achieved abstinence from illicit opioids and an additional 13% abstained from cocaine use. Conclusion. The novel feature of the LTHT MMT clinic is that patients are not denied methadone because of lack of ancillary services. Traditional comprehensive MMT programs invest the majority of financial resources in ancillary services that support the biopsychosocial model, whereas the LTHT approach utilizes a medical model and directs resources at medical management.

  18. Thermotactile perception thresholds measurement conditions.

    Science.gov (United States)

    Maeda, Setsuo; Sakakibara, Hisataka

    2002-10-01

    The purpose of this paper is to investigate the effects of posture, push force and rate of temperature change on thermotactile thresholds and to clarify suitable measuring conditions for Japanese people. Thermotactile (warm and cold) thresholds on the right middle finger were measured with an HVLab thermal aesthesiometer. Subjects were eight healthy male Japanese students. The effects of posture in measurement were examined in the posture of a straight hand and forearm placed on a support, the same posture without a support, and the fingers and hand flexed at the wrist with the elbow placed on a desk. The finger push force applied to the applicator of the thermal aesthesiometer was controlled at a 0.5, 1.0, 2.0 and 3.0 N. The applicator temperature was changed to 0.5, 1.0, 1.5, 2.0 and 2.5 degrees C/s. After each measurement, subjects were asked about comfort under the measuring conditions. Three series of experiments were conducted on different days to evaluate repeatability. Repeated measures ANOVA showed that warm thresholds were affected by the push force and the rate of temperature change and that cold thresholds were influenced by posture and push force. The comfort assessment indicated that the measurement posture of a straight hand and forearm laid on a support was the most comfortable for the subjects. Relatively high repeatability was obtained under measurement conditions of a 1 degrees C/s temperature change rate and a 0.5 N push force. Measurement posture, push force and rate of temperature change can affect the thermal threshold. Judging from the repeatability, a push force of 0.5 N and a temperature change of 1.0 degrees C/s in the posture with the straight hand and forearm laid on a support are recommended for warm and cold threshold measurements.

  19. DOE approach to threshold quantities

    International Nuclear Information System (INIS)

    Wickham, L.E.; Kluk, A.F.; Department of Energy, Washington, DC)

    1985-01-01

    The Department of Energy (DOE) is developing the concept of threshold quantities for use in determining which waste materials must be handled as radioactive waste and which may be disposed of as nonradioactive waste at its sites. Waste above this concentration level would be managed as radioactive or mixed waste (if hazardous chemicals are present); waste below this level would be handled as sanitary waste. Ideally, the threshold must be set high enough to significantly reduce the amount of waste requiring special handling. It must also be low enough so that waste at the threshold quantity poses a very small health risk and multiple exposures to such waste would still constitute a small health risk. It should also be practical to segregate waste above or below the threshold quantity using available instrumentation. Guidance is being prepared to aid DOE sites in establishing threshold quantity values based on pathways analysis using site-specific parameters (waste stream characteristics, maximum exposed individual, population considerations, and site specific parameters such as rainfall, etc.). A guidance dose of between 0.001 to 1.0 mSv/y (0.1 to 100 mrem/y) was recommended with 0.3 mSv/y (30 mrem/y) selected as the guidance dose upon which to base calculations. Several tasks were identified, beginning with the selection of a suitable pathway model for relating dose to the concentration of radioactivity in the waste. Threshold concentrations corresponding to the guidance dose were determined for waste disposal sites at a selected humid and arid site. Finally, cost-benefit considerations at the example sites were addressed. The results of the various tasks are summarized and the relationship of this effort with related developments at other agencies discussed

  20. A numerical study of threshold states

    International Nuclear Information System (INIS)

    Ata, M.S.; Grama, C.; Grama, N.; Hategan, C.

    1979-01-01

    There are some experimental evidences of charged particle threshold states. On the statistical background of levels, some simple structures were observed in excitation spectrum. They occur near the coulombian threshold and have a large reduced width for the decay in the threshold channel. These states were identified as charged cluster threshold states. Such threshold states were observed in sup(15,16,17,18)O, sup(18,19)F, sup(19,20)Ne, sup(24)Mg, sup(32)S. The types of clusters involved were d, t, 3 He, α and even 12 C. They were observed in heavy-ions transfer reactions in the residual nucleus as strong excited levels. The charged particle threshold states occur as simple structures at high excitation energy. They could be interesting both from nuclear structure as well as nuclear reaction mechanism point of view. They could be excited as simple structures both in compound and residual nucleus. (author)

  1. Optical Fiber Demodulation System with High Performance for Assessing Fretting Damage of Steam Generator Tubes.

    Science.gov (United States)

    Huang, Peijian; Wang, Ning; Li, Junying; Zhu, Yong; Zhang, Jie; Xi, Zhide

    2018-01-12

    In order to access the fretting damage of the steam generator tube (SGT), a fast fiber Fabry-Perot (F-P) non-scanning correlation demodulation system based on a super luminescent light emitting diode (SLED) was performed. By demodulating the light signal coming out from the F-P force sensor, the radial collision force between the SGT and the tube support plate (TSP) was interrogated. For higher demodulation accuracy, the effects of the center wavelength, bandwidth, and spectrum noise of SLED were discussed in detail. Specially, a piezoelectric ceramic transducer (PZT) modulation method was developed to get rid of the interference of mode coupling induced by different types of fiber optics in the demodulation system. The reflectivity of optical wedge and F-P sensor was optimized. Finally, the demodulation system worked well in a 1:1 steam generator test loop and successfully demodulated a force signal of 32 N with a collision time of 2 ms.

  2. Damage induced by high energy multiply charged oxygen ions in oxide coated silicon

    Energy Technology Data Exchange (ETDEWEB)

    Dhole, S.D. [Department of Physics, University of Pune, Pune 411 007 (India)]. E-mail: sanjay@physics.unipune.ernet.in; Dahiwale, S.S. [Department of Physics, University of Pune, Pune 411 007 (India); Kulkarni, V.R. [Department of Physics, University of Pune, Pune 411 007 (India); Bogle, K.A. [Department of Physics, University of Pune, Pune 411 007 (India); Shinde, N.S. [Ecotopia Science Institute, Division of Energy Science, Nagoya University, Nagoya (Japan); Bhoraskar, V.N. [Department of Physics, University of Pune, Pune 411 007 (India)

    2006-03-15

    P-type oxide coated silicon samples of resistivity 120 {omega} cm were irradiated with 60 MeV oxygen ions of fixed charge states 4{sup +}, 5{sup +}, 6{sup +} and 7{sup +} at an equal fluence of, {phi}, {approx}10{sup 13} ions/cm{sup 2}. The induced damage was estimated by Hall voltage, Hall coefficient, carrier concentration and lifetime of minority carriers. The results indicate that Hall voltage (V {sub H}) and Hall coefficient (R {sub H}) increases, while carrier concentration (n) decreases with the charge state of impinging oxygen ions. The V {sub H} increases from 22 mV to 76.5 mV at typical current of 0.5 mA, R {sub H} from 0.42 x 10{sup 5} cm{sup 3}/C to 2.16 x 10{sup 5} cm{sup 3}/C and n decreases from 9 x 10{sup 13} cm{sup -3} to 2.88 x 10{sup 13} cm{sup -3} for the different charge states. This fact is an evidence that the oxygen ions with an individual fixed charge state passing through very thin 40 A layer of silicon dioxide, induces significant damage at the SiO{sub 2}-Si interface through the mechanism of electronic stopping power. The lifetime of minority charge carriers, {tau} (bulk property), remains constant at around 6 {mu}s for all the charge states of the 60 MeV energy oxygen ion irradiated samples at a constant fluence of, {phi}, 10{sup 13} ions/cm{sup 2}.

  3. Electron-emission processes in highly charged Ar and Xe ions impinging on highly ordered pyrolytic graphite at energies just above the kinetic threshold

    NARCIS (Netherlands)

    Bodewits, E.; Hoekstra, R.; Dobes, K.; Aumayr, F.

    2014-01-01

    At keV energies, many electronic processes contribute to the emission of secondary electrons in the interaction of highly charged ions on surfaces. To unravel contributions resulting from isolated hollow atoms in front of the surface or embedded in the electron gas of the target, heavy highly

  4. DNA damage in buccal mucosa cells of pre-school children exposed to high levels of urban air pollutants.

    Directory of Open Access Journals (Sweden)

    Elisabetta Ceretti

    Full Text Available Air pollution has been recognized as a human carcinogen. Children living in urban areas are a high-risk group, because genetic damage occurring early in life is considered able to increase the risk of carcinogenesis in adulthood. This study aimed to investigate micronuclei (MN frequency, as a biomarker of DNA damage, in exfoliated buccal cells of pre-school children living in a town with high levels of air pollution. A sample of healthy 3-6-year-old children living in Brescia, Northern Italy, was investigated. A sample of the children's buccal mucosa cells was collected during the winter months in 2012 and 2013. DNA damage was investigated using the MN test. Children's exposure to urban air pollution was evaluated by means of a questionnaire filled in by their parents that included items on various possible sources of indoor and outdoor pollution, and the concentration of fine particulate matter (PM10, PM2.5 and NO2 in the 1-3 weeks preceding biological sample collection. 181 children (mean age ± SD: 4.3 ± 0.9 years were investigated. The mean ± SD MN frequency was 0.29 ± 0.13%. A weak, though statistically significant, association of MN with concentration of air pollutants (PM10, PM2.5 and NO2 was found, whereas no association was apparent between MN frequency and the indoor and outdoor exposure variables investigated via the questionnaire. This study showed a high MN frequency in children living in a town with heavy air pollution in winter, higher than usually found among children living in areas with low or medium-high levels of air pollution.

  5. Mechanism of cluster DNA damage repair in response to high-atomic number and energy particles radiation

    Energy Technology Data Exchange (ETDEWEB)

    Asaithamby, Aroumougame, E-mail: Aroumougame.Asaithamy@UTsouthwestern.edu [Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390 (United States); Chen, David J., E-mail: David.Chen@UTsouthwestern.edu [Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390 (United States)

    2011-06-03

    Low-linear energy transfer (LET) radiation (i.e., {gamma}- and X-rays) induces DNA double-strand breaks (DSBs) that are rapidly repaired (rejoined). In contrast, DNA damage induced by the dense ionizing track of high-atomic number and energy (HZE) particles is slowly repaired or is irreparable. These unrepaired and/or misrepaired DNA lesions may contribute to the observed higher relative biological effectiveness for cell killing, chromosomal aberrations, mutagenesis, and carcinogenesis in HZE particle irradiated cells compared to those treated with low-LET radiation. The types of DNA lesions induced by HZE particles have been characterized in vitro and usually consist of two or more closely spaced strand breaks, abasic sites, or oxidized bases on opposing strands. It is unclear why these lesions are difficult to repair. In this review, we highlight the potential of a new technology allowing direct visualization of different types of DNA lesions in human cells and document the emerging significance of live-cell imaging for elucidation of the spatio-temporal characterization of complex DNA damage. We focus on the recent insights into the molecular pathways that participate in the repair of HZE particle-induced DSBs. We also discuss recent advances in our understanding of how different end-processing nucleases aid in repair of DSBs with complicated ends generated by HZE particles. Understanding the mechanism underlying the repair of DNA damage induced by HZE particles will have important implications for estimating the risks to human health associated with HZE particle exposure.

  6. Mechanism of cluster DNA damage repair in response to high-atomic number and energy particles radiation

    International Nuclear Information System (INIS)

    Asaithamby, Aroumougame; Chen, David J.

    2011-01-01

    Low-linear energy transfer (LET) radiation (i.e., γ- and X-rays) induces DNA double-strand breaks (DSBs) that are rapidly repaired (rejoined). In contrast, DNA damage induced by the dense ionizing track of high-atomic number and energy (HZE) particles is slowly repaired or is irreparable. These unrepaired and/or misrepaired DNA lesions may contribute to the observed higher relative biological effectiveness for cell killing, chromosomal aberrations, mutagenesis, and carcinogenesis in HZE particle irradiated cells compared to those treated with low-LET radiation. The types of DNA lesions induced by HZE particles have been characterized in vitro and usually consist of two or more closely spaced strand breaks, abasic sites, or oxidized bases on opposing strands. It is unclear why these lesions are difficult to repair. In this review, we highlight the potential of a new technology allowing direct visualization of different types of DNA lesions in human cells and document the emerging significance of live-cell imaging for elucidation of the spatio-temporal characterization of complex DNA damage. We focus on the recent insights into the molecular pathways that participate in the repair of HZE particle-induced DSBs. We also discuss recent advances in our understanding of how different end-processing nucleases aid in repair of DSBs with complicated ends generated by HZE particles. Understanding the mechanism underlying the repair of DNA damage induced by HZE particles will have important implications for estimating the risks to human health associated with HZE particle exposure.

  7. Emergence of realism: Enhanced visual artistry and high accuracy of visual numerosity representation after left prefrontal damage.

    Science.gov (United States)

    Takahata, Keisuke; Saito, Fumie; Muramatsu, Taro; Yamada, Makiko; Shirahase, Joichiro; Tabuchi, Hajime; Suhara, Tetsuya; Mimura, Masaru; Kato, Motoichiro

    2014-05-01

    Over the last two decades, evidence of enhancement of drawing and painting skills due to focal prefrontal damage has accumulated. It is of special interest that most artworks created by such patients were highly realistic ones, but the mechanism underlying this phenomenon remains to be understood. Our hypothesis is that enhanced tendency of realism was associated with accuracy of visual numerosity representation, which has been shown to be mediated predominantly by right parietal functions. Here, we report a case of left prefrontal stroke, where the patient showed enhancement of artistic skills of realistic painting after the onset of brain damage. We investigated cognitive, functional and esthetic characteristics of the patient׳s visual artistry and visual numerosity representation. Neuropsychological tests revealed impaired executive function after the stroke. Despite that, the patient׳s visual artistry related to realism was rather promoted across the onset of brain damage as demonstrated by blind evaluation of the paintings by professional art reviewers. On visual numerical cognition tasks, the patient showed higher performance in comparison with age-matched healthy controls. These results paralleled increased perfusion in the right parietal cortex including the precuneus and intraparietal sulcus. Our data provide new insight into mechanisms underlying change in artistic style due to focal prefrontal lesion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Multiscale analysis: a way to investigate laser damage precursors in materials for high power applications at nanosecond pulse duration

    Science.gov (United States)

    Natoli, J. Y.; Wagner, F.; Ciapponi, A.; Capoulade, J.; Gallais, L.; Commandré, M.

    2010-11-01

    The mechanism of laser induced damage in optical materials under high power nanosecond laser irradiation is commonly attributed to the presence of precursor centers. Depending on material and laser source, the precursors could have different origins. Some of them are clearly extrinsic, such as impurities or structural defects linked to the fabrication conditions. In most cases the center size ranging from sub-micrometer to nanometer scale does not permit an easy detection by optical techniques before irradiation. Most often, only a post mortem observation of optics permits to proof the local origin of breakdown. Multi-scale analyzes by changing irradiation beam size have been performed to investigate the density, size and nature of laser damage precursors. Destructive methods such as raster scan, laser damage probability plot and morphology studies permit to deduce the precursor densities. Another experimental way to get information on nature of precursors is to use non destructive methods such as photoluminescence and absorption measurements. The destructive and non destructive multiscale studies are also motivated for practical reasons. Indeed LIDT studies of large optics as those used in LMJ or NIF projects are commonly performed on small samples and with table top lasers whose characteristics change from one to another. In these conditions, it is necessary to know exactly the influence of the different experimental parameters and overall the spot size effect on the final data. In this paper, we present recent developments in multiscale characterization and results obtained on optical coatings (surface case) and KDP crystal (bulk case).

  9. High-resolution measurement of the unsteady velocity field to evaluate blood damage induced by a mechanical heart valve.

    Science.gov (United States)

    Bellofiore, Alessandro; Quinlan, Nathan J

    2011-09-01

    We investigate the potential of prosthetic heart valves to generate abnormal flow and stress patterns, which can contribute to platelet activation and lysis according to blood damage accumulation mechanisms. High-resolution velocity measurements of the unsteady flow field, obtained with a standard particle image velocimetry system and a scaled-up model valve, are used to estimate the shear stresses arising downstream of the valve, accounting for flow features at scales less than one order of magnitude larger than blood cells. Velocity data at effective spatial and temporal resolution of 60 μm and 1.75 kHz, respectively, enabled accurate extraction of Lagrangian trajectories and loading histories experienced by blood cells. Non-physiological stresses up to 10 Pa were detected, while the development of vortex flow in the wake of the valve was observed to significantly increase the exposure time, favouring platelet activation. The loading histories, combined with empirical models for blood damage, reveal that platelet activation and lysis are promoted at different stages of the heart cycle. Shear stress and blood damage estimates are shown to be sensitive to measurement resolution.

  10. Double Photoionization Near Threshold

    Science.gov (United States)

    Wehlitz, Ralf

    2007-01-01

    The threshold region of the double-photoionization cross section is of particular interest because both ejected electrons move slowly in the Coulomb field of the residual ion. Near threshold both electrons have time to interact with each other and with the residual ion. Also, different theoretical models compete to describe the double-photoionization cross section in the threshold region. We have investigated that cross section for lithium and beryllium and have analyzed our data with respect to the latest results in the Coulomb-dipole theory. We find that our data support the idea of a Coulomb-dipole interaction.

  11. Thresholds in radiobiology

    International Nuclear Information System (INIS)

    Katz, R.; Hofmann, W.

    1982-01-01

    Interpretations of biological radiation effects frequently use the word 'threshold'. The meaning of this word is explored together with its relationship to the fundamental character of radiation effects and to the question of perception. It is emphasised that although the existence of either a dose or an LET threshold can never be settled by experimental radiobiological investigations, it may be argued on fundamental statistical grounds that for all statistical processes, and especially where the number of observed events is small, the concept of a threshold is logically invalid. (U.K.)

  12. Implementation of constitutive equations for creep damage mechanics into the ABAQUS finite element code - some practical cases in high temperature component design and life assessment

    International Nuclear Information System (INIS)

    Segle, P.; Samuelson, L.Aa.; Andersson, Peder; Moberg, F.

    1996-01-01

    Constitutive equations for creep damage mechanics are implemented into the finite element program ABAQUS using a user supplied subroutine, UMAT. A modified Kachanov-Rabotnov constitutive equation which accounts for inhomogeneity in creep damage is used. With a user defined material a number of bench mark tests are analyzed for verification. In the cases where analytical solutions exist, the numerical results agree very well. In other cases, the creep damage evolution response appear to be realistic in comparison with laboratory creep tests. The appropriateness of using the creep damage mechanics concept in design and life assessment of high temperature components is demonstrated. 18 refs

  13. Thresholds for Coral Bleaching: Are Synergistic Factors and Shifting Thresholds Changing the Landscape for Management? (Invited)

    Science.gov (United States)

    Eakin, C.; Donner, S. D.; Logan, C. A.; Gledhill, D. K.; Liu, G.; Heron, S. F.; Christensen, T.; Rauenzahn, J.; Morgan, J.; Parker, B. A.; Hoegh-Guldberg, O.; Skirving, W. J.; Strong, A. E.

    2010-12-01

    As carbon dioxide rises in the atmosphere, climate change and ocean acidification are modifying important physical and chemical parameters in the oceans with resulting impacts on coral reef ecosystems. Rising CO2 is warming the world’s oceans and causing corals to bleach, with both alarming frequency and severity. The frequent return of stressful temperatures has already resulted in major damage to many of the world’s coral reefs and is expected to continue in the foreseeable future. Warmer oceans also have contributed to a rise in coral infectious diseases. Both bleaching and infectious disease can result in coral mortality and threaten one of the most diverse ecosystems on Earth and the important ecosystem services they provide. Additionally, ocean acidification from rising CO2 is reducing the availability of carbonate ions needed by corals to build their skeletons and perhaps depressing the threshold for bleaching. While thresholds vary among species and locations, it is clear that corals around the world are already experiencing anomalous temperatures that are too high, too often, and that warming is exceeding the rate at which corals can adapt. This is despite a complex adaptive capacity that involves both the coral host and the zooxanthellae, including changes in the relative abundance of the latter in their coral hosts. The safe upper limit for atmospheric CO2 is probably somewhere below 350ppm, a level we passed decades ago, and for temperature is a sustained global temperature increase of less than 1.5°C above pre-industrial levels. How much can corals acclimate and/or adapt to the unprecedented fast changing environmental conditions? Any change in the threshold for coral bleaching as the result of acclimation and/or adaption may help corals to survive in the future but adaptation to one stress may be maladaptive to another. There also is evidence that ocean acidification and nutrient enrichment modify this threshold. What do shifting thresholds mean

  14. High-sensitivity C-reactive protein predicts target organ damage in Chinese patients with metabolic syndrome

    DEFF Research Database (Denmark)

    Zhao, Zhigang; Nie, Hai; He, Hongbo

    2007-01-01

    with metabolic syndrome. A total of 1082 consecutive patients of Chinese origin were screened for the presence of metabolic syndrome according to the National Cholesterol Education Program's Adult Treatment Panel III. High-sensitivity C-reactive protein and target organ damage, including cardiac hypertrophy......Observational studies established high-sensitivity C-reactive protein as a risk factor for cardiovascular events in the general population. The goal of this study was to determine the relationship between target organ damage and high-sensitivity C-reactive protein in a cohort of Chinese patients......, carotid intima-media thickness, and renal impairment, were investigated. The median (25th and 75th percentiles) of high-sensitivity C-reactive protein in 619 patients with metabolic syndrome was 2.42 mg/L (0.75 and 3.66 mg/L) compared with 1.13 mg/L (0.51 and 2.46 mg/L) among 463 control subjects (P

  15. Characterization of Impact Damage in Ultra-High Performance Concrete Using Spatially Correlated Nanoindentation/SEM/EDX

    Science.gov (United States)

    Moser, R. D.; Allison, P. G.; Chandler, M. Q.

    2013-12-01

    Little work has been done to study the fundamental material behaviors and failure mechanisms of cement-based materials including ordinary Portland cement concrete and ultra-high performance concretes (UHPCs) under high strain impact and penetration loads at lower length scales. These high strain rate loadings have many possible effects on UHPCs at the microscale and nanoscale, including alterations in the hydration state and bonding present in phases such as calcium silicate hydrate, in addition to fracture and debonding. In this work, the possible chemical and physical changes in UHPCs subjected to high strain rate impact and penetration loads were investigated using a novel technique wherein nanoindentation measurements were spatially correlated with images using scanning electron microscopy and chemical composition using energy dispersive x-ray microanalysis. Results indicate that impact degrades both the elastic modulus and indentation hardness of UHPCs, and in particular hydrated phases, with damage likely occurring due to microfracturing and debonding.

  16. Correlation of interface states/border traps and threshold voltage shift on AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistors

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Tian-Li, E-mail: Tian-Li.Wu@imec.be; Groeseneken, Guido [imec, Kapeldreef 75, 3001 Leuven (Belgium); Department of Electrical Engineering, KU Leuven, Leuven (Belgium); Marcon, Denis; De Jaeger, Brice; Lin, H. C.; Franco, Jacopo; Stoffels, Steve; Van Hove, Marleen; Decoutere, Stefaan [imec, Kapeldreef 75, 3001 Leuven (Belgium); Bakeroot, Benoit [imec, Kapeldreef 75, 3001 Leuven (Belgium); Centre for Microsystems Technology, Ghent University, 9052 Gent (Belgium); Roelofs, Robin [ASM, Kapeldreef 75, 3001 Leuven (Belgium)

    2015-08-31

    In this paper, three electrical techniques (frequency dependent conductance analysis, AC transconductance (AC-g{sub m}), and positive gate bias stress) were used to evaluate three different gate dielectrics (Plasma-Enhanced Atomic Layer Deposition Si{sub 3}N{sub 4}, Rapid Thermal Chemical Vapor Deposition Si{sub 3}N{sub 4}, and Atomic Layer Deposition (ALD) Al{sub 2}O{sub 3}) for AlGaN/GaN Metal-Insulator-Semiconductor High-Electron-Mobility Transistors. From these measurements, the interface state density (D{sub it}), the amount of border traps, and the threshold voltage (V{sub TH}) shift during a positive gate bias stress can be obtained. The results show that the V{sub TH} shift during a positive gate bias stress is highly correlated to not only interface states but also border traps in the dielectric. A physical model is proposed describing that electrons can be trapped by both interface states and border traps. Therefore, in order to minimize the V{sub TH} shift during a positive gate bias stress, the gate dielectric needs to have a lower interface state density and less border traps. However, the results also show that the commonly used frequency dependent conductance analysis technique to extract D{sub it} needs to be cautiously used since the resulting value might be influenced by the border traps and, vice versa, i.e., the g{sub m} dispersion commonly attributed to border traps might be influenced by interface states.

  17. Challenging Conventions of Bullying Thresholds: Exploring Differences between Low and High Levels of Bully-Only, Victim-Only, and Bully-Victim Roles.

    Science.gov (United States)

    Goldbach, Jeremy T; Sterzing, Paul R; Stuart, Marla J

    2018-03-01

    Using a commonly accepted threshold of 2 to 3 times per month as a marker of bullying-involvement from noninvolvement, approximately 30% of U.S. students report being a bully, victim, or both. Although variation in the frequency of involvement exists, infrequent engagement (less than 2 to 3 times a month) is generally considered noninvolved. However, the question remains: Do these differences have implications for behavioral health patterns, including substance use, depression and school connectedness? The present study used a district-wide random cluster sample of 66 middle and high schools in a mid-size city. The study population consisted of 3,221 middle school (53.4%) and high school (45.6%) students, with 48.7% females, 44.6 males, and 6.7% youth identifying with another gender category. These youth were racially diverse, with the modal category being Black (36.0%). Based on student survey response, we report, (a) the frequency and intensity of bullying behaviors, (b) common patterns of involvement, and (c) demographic and individual-level risk factors associated with these patterns. Analyses resulted in nine bully types, with substantial differences in bullying-involvement intensity based on gender, race, school connectedness, and mental health. Perhaps most striking, the majority of youth (70.9%) were involved in some level of bullying perpetration, victimization, or both, when accounting for the accumulation of low frequency involvement (e.g., once, twice, or a few times) across multiple bullying behaviors. Implications for adolescent development and prevention are described.

  18. Sensitivity of on-resistance and threshold voltage to buffer-related deep level defects in AlGaN/GaN high electron mobility transistors

    International Nuclear Information System (INIS)

    Armstrong, Andrew M; Allerman, Andrew A; Baca, Albert G; Sanchez, Carlos A

    2013-01-01

    The influence of deep levels defects located in highly resistive GaN:C buffers on the on-resistance (R ON ) and threshold voltage (V th ) of AlGaN/GaN high electron mobility transistors (HEMTs) power devices was studied by a combined photocapacitance deep level optical spectroscopy (C-DLOS) and photoconductance deep level optical spectroscopy (G-DLOS) methodology as a function of electrical stress. Two carbon-related deep levels at 1.8 and 2.85 eV below the conduction band energy minimum were identified from C-DLOS measurements under the gate electrode. It was found that buffer-related defects under the gate shifted V th positively by approximately 10%, corresponding to a net areal density of occupied defects of 8 × 10 12 cm −2 . The effect of on-state drain stress and off-state gate stress on buffer deep level occupancy and R ON was also investigated via G-DLOS. It was found that the same carbon-related deep levels observed under the gate were also active in the access region. Off-state gate stress produced significantly more trapping and degradation of R ON (∼140%) compared to on-state drain stress (∼75%). Greater sensitivity of R ON to gate stress was explained by a more sharply peaked lateral distribution of occupied deep levels between the gate and drain compared to drain stress. The overall greater sensitivity of R ON compared to V th to buffer defects suggests that electron trapping is significantly greater in the access region compared to under the gate, likely due to the larger electric fields in the latter region. (invited paper)

  19. The M-current contributes to high threshold membrane potential oscillations in a cell type-specific way in the pedunculopontine nucleus of mice

    Directory of Open Access Journals (Sweden)

    Csilla eBordas

    2015-04-01

    Full Text Available The pedunculopontine nucleus is known as a cholinergic nucleus of the reticular activating system, participating in regulation of sleep and wakefulness. Besides cholinergic neurons, it consists of GABAergic and glutamatergic neurons as well. According to classical and recent studies, more subgroups of neurons were defined. Groups based on the neurotransmitter released by a neuron are not homogenous, but can be further subdivided.The PPN neurons do not only provide cholinergic and non-cholinergic inputs to several subcortical brain areas but they are also targets of cholinergic and other different neuromodulatory actions. Although cholinergic neuromodulation has been already investigated in the nucleus, one of its characteristic targets, the M-type potassium current has not been described yet.Using slice electrophysiology, we provide evidence in the present work that cholinergic neurons possess M-current, whereas GABAergic neurons lack it. The M-current contributes to certain functional differences of cholinergic and GABAergic neurons, as spike frequency adaptation, action potential firing frequency or the amplitude difference of medium afterhyperpolarizations. Furthermore, we showed that high threshold membrane potential oscillation with high power, around 20 Hz frequency is a functional property of almost all cholinergic cells, whereas GABAergic neurons have only low amplitude oscillations. Blockade of the M-current abolished the oscillatory activity at 20 Hz, and largely diminished it at other frequencies.Taken together, the M-current seems to be characteristic for PPN cholinergic neurons. It provides a possibility for modulating gamma band activity of these cells, thus contributing to neuromodulatory regulation of the reticular activating system.

  20. Hydrometeorological threshold conditions for debris flow initiation in Norway

    Directory of Open Access Journals (Sweden)

    N. K. Meyer

    2012-10-01

    Full Text Available Debris flows, triggered by extreme precipitation events and rapid snow melt, cause considerable damage to the Norwegian infrastructure every year. To define intensity-duration (ID thresholds for debris flow initiation critical water supply conditions arising from intensive rainfall or snow melt were assessed on the basis of daily hydro-meteorological information for 502 documented debris flow events. Two threshold types were computed: one based on absolute ID relationships and one using ID relationships normalized by the local precipitation day normal (PDN. For each threshold type, minimum, medium and maximum threshold values were defined by fitting power law curves along the 10th, 50th and 90th percentiles of the data population. Depending on the duration of the event, the absolute threshold intensities needed for debris flow initiation vary between 15 and 107 mm day−1. Since the PDN changes locally, the normalized thresholds show spatial variations. Depending on location, duration and threshold level, the normalized threshold intensities vary between 6 and 250 mm day−1. The thresholds obtained were used for a frequency analysis of over-threshold events giving an estimation of the exceedance probability and thus potential for debris flow events in different parts of Norway. The absolute thresholds are most often exceeded along the west coast, while the normalized thresholds are most frequently exceeded on the west-facing slopes of the Norwegian mountain ranges. The minimum thresholds derived in this study are in the range of other thresholds obtained for regions with a climate comparable to Norway. Statistics reveal that the normalized threshold is more reliable than the absolute threshold as the former shows no spatial clustering of debris flows related to water supply events captured by the threshold.

  1. Regional Seismic Threshold Monitoring

    National Research Council Canada - National Science Library

    Kvaerna, Tormod

    2006-01-01

    ... model to be used for predicting the travel times of regional phases. We have applied these attenuation relations to develop and assess a regional threshold monitoring scheme for selected subregions of the European Arctic...

  2. Knowledge-Based Detection and Assessment of Damaged Roads Using Post-Disaster High-Resolution Remote Sensing Image

    OpenAIRE

    Wang, Jianhua; Qin, Qiming; Zhao, Jianghua; Ye, Xin; Feng, Xiao; Qin, Xuebin; Yang, Xiucheng

    2015-01-01

    Road damage detection and assessment from high-resolution remote sensing image is critical for natural disaster investigation and disaster relief. In a disaster context, the pairing of pre-disaster and post-disaster road data for change detection and assessment is difficult to achieve due to the mismatch of different data sources, especially for rural areas where the pre-disaster data (i.e., remote sensing imagery or vector map) are hard to obtain. In this study, a knowledge-based method for ...

  3. Effects of prior surface damage on high-temperature oxidation of Fe-, Ni-, and Co-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Blau, Peter Julian [ORNL; Lowe, Tracie M [ORNL; Pint, Bruce A [ORNL

    2009-01-01

    Multi-component metallic alloys have been developed to withstand high-temperature service in corrosive environments. Some of these applications, like exhaust valve seats in internal combustion engines, must also resist sliding, impact, and abrasion. The conjoint effects of temperature, oxidation, and mechanical contact can result in accelerated wear and the formation of complex surface layers whose properties differ from those of the base metal and the oxide scale that forms in the absence of mechanical contact. The authors have investigated the effects of prior surface damage, produced by scratch tests, on the localized reformation of oxide layers. Three high-performance commercial alloys, based on iron, nickel, and cobalt, were used as model materials. Thermogravimetric analysis (TGA) was used to determine their static oxidation rates at elevated temperature (850o C). A micro-abrasion, ball-cratering technique was used to measure oxide layer thickness and to compare it with TGA results. By using taper-sectioning techniques and energy-dispersive elemental mapping, a comparison was made between oxide compositions grown on non-damaged surfaces and oxides that formed on grooves produced by a diamond stylus. Microindentation and scratch hardness data revealed the effects of high temperature exposure on both the substrate hardness and the nature of oxide scale disruption. There were significant differences in elemental distribution between statically-formed oxides and those that formed on scratched regions

  4. Fiber Fabry-Perot Force Sensor with Small Volume and High Performance for Assessing Fretting Damage of Steam Generator Tubes.

    Science.gov (United States)

    Huang, Peijian; Wang, Ning; Li, Junying; Zhu, Yong; Zhang, Jie

    2017-12-13

    Measuring the radial collision force between the steam generator tube (SGT) and the tube support plate (TSP) is essential to assess the fretting damage of the SGT. In order to measure the radial collision force, a novel miniaturized force sensor based on fiber Fabry-Perot (F-P) was designed, and the principle and characteristics of the sensor were analyzed in detail. Then, the F-P force sensor was successfully fabricated and calibrated, and the overall dimensions of the encapsulated fiber F-P sensor were 17 mm × 5 mm × 3 mm (L × W × H). The sensor works well in humid, high pressure (10 MPa), high temperature (350 °C), and vibration (40 kHz) environments. Finally, the F-P force sensors were installed in a 1:1 steam generator test loop, and the radial collision force signals between the SGT and the TSP were obtained. The experiments indicated that the F-P sensor with small volume and high performance could help in assessing the fretting damage of the steam generator tubes.

  5. Kinetics of sublethal damage recovery in mouse lip mucosa comparing low and high-LET radiation

    International Nuclear Information System (INIS)

    Scalliet, P.; Landuyt, W.; Schueren, E. van der; Vynckier, S.; Wambersie, A.

    1989-01-01

    The effects of d(50)+Be neutrons on the lip mucosa in mice were investigated as a model of early effects. The biological endpoint eas the incidence of desquamation in the lower lip after selective irradiation of the snout of the animals. ED 50 (dose leading to desquamation in 50% of the animals) were calculated by probit analysis. Fractionated (two, four and ten fractions) and protracted (43.5, 11.5 and 0.88 Gy.h -1 ) irradiations have been carried out. Results were analysed using the mathematical method of Dale. An α/β of 39.6 Gy and a t 1/2 of recovery of sublethal damage of 47 min have been derived. These results have been compared to data previously obtained with cobalt-60 gamma rays. Using the same mathematical approach, and comparing similar fractionated and protracted experiments, an α/β of 7.4 Gy and a t 1/2 of recovery of 47 min have been calculated. There was no significant difference in the repair kinetics after irradiations with gamma rays or d(50)+Be neutrons. (orig.) [de

  6. Optical Fiber Demodulation System with High Performance for Assessing Fretting Damage of Steam Generator Tubes

    Directory of Open Access Journals (Sweden)

    Peijian Huang

    2018-01-01

    Full Text Available In order to access the fretting damage of the steam generator tube (SGT, a fast fiber Fabry-Perot (F-P non-scanning correlation demodulation system based on a super luminescent light emitting diode (SLED was performed. By demodulating the light signal coming out from the F-P force sensor, the radial collision force between the SGT and the tube support plate (TSP was interrogated. For higher demodulation accuracy, the effects of the center wavelength, bandwidth, and spectrum noise of SLED were discussed in detail. Specially, a piezoelectric ceramic transducer (PZT modulation method was developed to get rid of the interference of mode coupling induced by different types of fiber optics in the demodulation system. The reflectivity of optical wedge and F-P sensor was optimized. Finally, the demodulation system worked well in a 1:1 steam generator test loop and successfully demodulated a force signal of 32 N with a collision time of 2 ms.

  7. Threshold Assessment of Gear Diagnostic Tools on Flight and Test Rig Data

    Science.gov (United States)

    Dempsey, Paula J.; Mosher, Marianne; Huff, Edward M.

    2003-01-01

    A method for defining thresholds for vibration-based algorithms that provides the minimum number of false alarms while maintaining sensitivity to gear damage was developed. This analysis focused on two vibration based gear damage detection algorithms, FM4 and MSA. This method was developed using vibration data collected during surface fatigue tests performed in a spur gearbox rig. The thresholds were defined based on damage progression during tests with damage. The thresholds false alarm rates were then evaluated on spur gear tests without damage. Next, the same thresholds were applied to flight data from an OH-58 helicopter transmission. Results showed that thresholds defined in test rigs can be used to define thresholds in flight to correctly classify the transmission operation as normal.

  8. Thresholding magnetic resonance images of human brain

    Institute of Scientific and Technical Information of China (English)

    Qing-mao HU; Wieslaw L NOWINSKI

    2005-01-01

    In this paper, methods are proposed and validated to determine low and high thresholds to segment out gray matter and white matter for MR images of different pulse sequences of human brain. First, a two-dimensional reference image is determined to represent the intensity characteristics of the original three-dimensional data. Then a region of interest of the reference image is determined where brain tissues are present. The non-supervised fuzzy c-means clustering is employed to determine: the threshold for obtaining head mask, the low threshold for T2-weighted and PD-weighted images, and the high threshold for T1-weighted, SPGR and FLAIR images. Supervised range-constrained thresholding is employed to determine the low threshold for T1-weighted, SPGR and FLAIR images. Thresholding based on pairs of boundary pixels is proposed to determine the high threshold for T2- and PD-weighted images. Quantification against public data sets with various noise and inhomogeneity levels shows that the proposed methods can yield segmentation robust to noise and intensity inhomogeneity. Qualitatively the proposed methods work well with real clinical data.

  9. Impact of doped boron concentration in emitter on high- and low-dose-rate damage in lateral PNP transistors

    International Nuclear Information System (INIS)

    Zheng Yuzhan; Lu Wu; Ren Diyuan; Wang Yiyuan; Wang Zhikuan; Yang Yonghui

    2010-01-01

    The characteristics of radiation damage under a high or low dose rate in lateral PNP transistors with a heavily or lightly doped emitter is investigated. Experimental results show that as the total dose increases, the base current of transistors would increase and the current gain decreases. Furthermore, more degradation has been found in lightly-doped PNP transistors, and an abnormal effect is observed in heavily doped transistors. The role of radiation defects, especially the double effects of oxide trapped charge, is discussed in heavily or lightly doped transistors. Finally, through comparison between the high- and low-dose-rate response of the collector current in heavily doped lateral PNP transistors, the abnormal effect can be attributed to the annealing of the oxide trapped charge. The response of the collector current, in heavily doped PNP transistors under high- and low-dose-rate irradiation is described in detail. (semiconductor integrated circuits)

  10. Advances in detecting localized road damage due to sinkholes induced by engineering works using high resolution RASARSAT-2 data

    Science.gov (United States)

    Chen, J.; Zebker, H. A.; Lakshmi, V.

    2016-12-01

    Sinkholes often occur in karst terrains such as found in central and eastern Pennsylvania. Voids produced by dissolution of carbonate rocks can result in soil transport leading to localized, gradual or rapid, sinking of the land surface. A cluster of sinkholes developed in 2000 around a small rural community beside Bushkill creek near a limestone quarry, and severely destroyed road bridges and railway tracks. At a cost of $6 million, the Pennsylvania DoT replaced the bridge, which was damaged again in 2004 by newly developed sinkholes likely associated with quarry's pumping activity. Here we present high-resolution spaceborne interferometric radar images of sinkhole development on this community. We show that this technique may be used to monitor regions with high sinkhole damage risk and assist future infrastructure route planning, especially in rural areas where hydrogeologic information is limited. Specifically, we processed 66 RADARSAT-2 interferograms to extract deformation occurred over Bushkill creek between Jun. 2015 and Mar. 2016 with a temporal resolution of 24 days. We advanced recent persistent scatterer techniques to preserve meter-level spatial resolution in the interferograms while minimizing temporal decorrelation and phase unwrapping error. We observe periodic deformation due to pumping activity at the quarry and localized subsidence along Bushkill creek that is co-located with recent reported sinkholes. We plan to use the automatic processing techniques developed for this study to study road damage in another region in Pennsylvania, along Lewiston Narrows, and also to monitor urban infrastructure improvements in Seattle, both again with RASARSAT-2 data. Our results demonstrate that recent advances in satellite geodesy can be transferred to benefit society beyond the science community.

  11. Neuroprotective effect of curcumin against oxidative damage in BV-2 microglia and high intraocular pressure animal model.

    Science.gov (United States)

    Yue, Yan-Kun; Mo, Bin; Zhao, Jun; Yu, Ya-Jie; Liu, Lu; Yue, Chang-Li; Liu, Wu

    2014-10-01

    The involvement of local and systemic oxidative stress in intraocular pressure (IOP) elevation and optic nerve damage has been hypothesized in the pathogenesis of glaucoma. In this study, we aim to evaluate the antioxidant effects of curcumin in BV-2 microglia oxidative damage and assess its neuroprotective effects in a chronic high IOP rat model. BV-2 microglia cell line was used in an in vitro study and Wistar rats were used in an in vivo study. Cultured BV-2 microglia cells were pretreated with 10, 1, or 0.1 μM curcumin for 1 h, and sustained oxidative stress was induced by subjecting BV-2 microglia to 200 μM hydrogen peroxide (H2O2) for 24 h. MTT assay was used to determine cell viability. Changes of intracellular reactive oxygen species (ROS) and apoptosis were analyzed by flow cytometry. Three episcleral veins were cauterized to induce high IOP in Wistar rats and measured by Tonopen. After 6 weeks of treatment with curcumin (10 mg/kg/day) by intragastric administration, surviving of retinal ganglion cells was quantified. Activation of caspase 3, cytochrome c, BAX, and BCL2 was quantified by Western blotting both in BV-2 microglia and in animal model. Data were analyzed with the GraphPad Prism 5.0 software, and Pcurcumin, the cell viability increased and the intracellular ROS and apoptosis significantly decreased. In the in vivo study, chronic mild IOP elevation was induced for 4 weeks. In the curcumin-treated group, curcumin protected rat BV-2 microglia from death significantly. In both H2O2-treated BV-2 microglia and glaucoma models, caspase 3, cytochrome c, and BAX were downregulated and BCL2 was upregulated in the curcumin-treated group. Curcumin affords neuroprotective effects by inhibiting oxidative damage and could be a new or adjunctive treatment for glaucoma.

  12. Ultrasonic detection of spall damage nucleation under low-velocity repeated impact

    Directory of Open Access Journals (Sweden)

    Watanabe T.

    2012-08-01

    Full Text Available Repeated plate impact testing with impact stress well below the threshold spall-stress (2.6 GPa on medium carbon steel was carried out to the identical target plate by impacting the flyer plate. Occurrence of spall damage under low-velocity repeated impact was evaluated nondestructively with a low frequency scanning acoustic microscope. We observed the spall damage distribution by the B- and C-scan images. In order to initiate the spall damage (voids in a ductile material or cracks in a brittle one the particular value of threshold spall-stress should be exceeded what already belongs to a commonly accepted knowledge. Generally, the spall damage development is dependent on the amplitude and the duration of the stress pulse. If the stress is high and duration is long enough to create tensile failure of material, the voids or cracks nucleate along the spall plane, and consequently, they form macrocracks. Therefore, the spall damage does not create when the first impact stress is less than the threshold spall-stress. However, after the fifth low-velocity repeated impact test, the generation of the spall damage was detected, even if the impact stress (1.1–1.7 GPa was lower than the threshold spall-stress (2.6 GPa.

  13. Large area damage testing of optics

    International Nuclear Information System (INIS)

    Sheehan, L.; Kozlowski, M.; Stolz, C.

    1996-01-01

    The damage threshold specifications for the National Ignition Facility will include a mixture of standard small-area tests and new large-area tests. During our studies of laser damage and conditioning processes of various materials we have found that some damage morphologies are fairly small and this damage does not grow with further illumination. This type of damage might not be detrimental to the laser performance. We should therefore assume that some damage can be allowed on the optics, but decide on a maximum damage allowance of damage. A new specification of damage threshold termed open-quotes functional damage thresholdclose quotes was derived. Further correlation of damage size and type to system performance must be determined in order to use this measurement, but it is clear that it will be a large factor in the optics performance specifications. Large-area tests have verified that small-area testing is not always sufficient when the optic in question has defect-initiated damage. This was evident for example on sputtered polarizer and mirror coatings where the defect density was low enough that the features could be missed by standard small- area testing. For some materials, the scale-length at which damage non-uniformities occur will effect the comparison of small-area and large-area tests. An example of this was the sub-aperture tests on KD*P crystals on the Beamlet test station. The tests verified the large-area damage threshold to be similar to that found when testing a small-area. Implying that for this KD*P material, the dominate damage mechanism is of sufficiently small scale-length that small-area testing is capable of determining the threshold. The Beamlet test station experiments also demonstrated the use of on-line laser conditioning to increase the crystals damage threshold

  14. Visual short-term memory for high resolution associations is impaired in patients with medial temporal lobe damage.

    Science.gov (United States)

    Koen, Joshua D; Borders, Alyssa A; Petzold, Michael T; Yonelinas, Andrew P

    2017-02-01

    The medial temporal lobe (MTL) plays a critical role in episodic long-term memory, but whether the MTL is necessary for visual short-term memory is controversial. Some studies have indicated that MTL damage disrupts visual short-term memory performance whereas other studies have failed to find such evidence. To account for these mixed results, it has been proposed that the hippocampus is critical in supporting short-term memory for high resolution complex bindings, while the cortex is sufficient to support simple, low resolution bindings. This hypothesis was tested in the current study by assessing visual short-term memory in patients with damage to the MTL and controls for high resolution and low resolution object-location and object-color associations. In the location tests, participants encoded sets of two or four objects in different locations on the screen. After each set, participants performed a two-alternative forced-choice task in which they were required to discriminate the object in the target location from the object in a high or low resolution lure location (i.e., the object locations were very close or far away from the target location, respectively). Similarly, in the color tests, participants were presented with sets of two or four objects in a different color and, after each set, were required to discriminate the object in the target color from the object in a high or low resolution lure color (i.e., the lure color was very similar or very different, respectively, to the studied color). The patients were significantly impaired in visual short-term memory, but importantly, they were more impaired for high resolution object-location and object-color bindings. The results are consistent with the proposal that the hippocampus plays a critical role in forming and maintaining complex, high resolution bindings. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Evidence of direct cardiac damage following high-intensity exercise in chronic energy restriction: A case report and literature review.

    Science.gov (United States)

    Baird, Marianne F; Grace, Fergal; Sculthorpe, Nicholas; Graham, Scott M; Fleming, Audrey; Baker, Julien S

    2017-07-01

    Following prolonged endurance events such as marathons, elevated levels of cardiospecific biomarkers are commonly reported. Although transiently raised levels are generally not considered to indicate clinical myocardial damage, comprehension of this phenomenon remains incomplete. The popularity of high-intensity interval training highlights a paucity of research measuring cardiac biomarker response to this type of exercise. This a posteriori case report discusses the elevation of cardiac troponins (cTn) associated with short interval, high-intensity exercise. In this case report, an apparently healthy 29-year-old recreationally active female presented clinically raised cardiac troponin I (cTnI) levels (>0.04 ng/mL), after performing high-intensity cycle ergometer sprints. As creatine kinase (CK) is expressed by multiple organs (e.g., skeletal muscle, brain, and myocardium), cTnI assays were performed to determine any changes in total serum CK levels not originating from skeletal muscle damage. A posteriori the individual's daily energy expenditure indicated chronically low-energy availability. Psychometric testing suggested that the individual scored positive for disordered eating, highly for fatigue levels, and low in mental health components. The current case report provides novel evidence of elevated cTnI occurring as a result of performing short duration, high intensity, cycle ergometer exercise in an individual with self-reported chronically depleted energy balance. A schematic to identify potentially "at risk" individuals is presented. Considering this as a case report, results cannot be generalized; however, the main findings suggest that individuals who habitually restrict their calorie intake below their bodies' daily energy requirements, may have elevated biomarkers of exercise induced myocardial stress from performing high-intensity exercise.

  16. Characterization of optical and microstructure properties of ultraviolet Sc2O3 thin films and their damage mechanism at high laser power

    International Nuclear Information System (INIS)

    Liu Guanghui; Xue Chunrong; Jin Yunxia; Zhang Weili; Fang Ming; He Hongbo; Fan Zhengxiu

    2010-01-01

    The electron beam evaporation deposition method was employed to prepare scandium oxide (Sc 2 O 3 ) films with substrate temperatures varying from 50 to 350 degree C. A spectrophotometer, a glancing incidence X-ray diffraction spectrometer and a WYKO optical profilograph were employed to investigate the optical, microstructure properties and surface roughness of the Sc 2 O 3 films. The refractive index and the extinction coefficient were calculated from the transmittance and reflectance spectra with the help of the Essential Macleod. The laser induced damage threshold (LIDT) of the Sc 2 O 3 films was characterized by a pulsed Nd: YAG laser system at 355 nm with a pulse duration of 8 ns. A maximum value of 2.6 J/cm 2 was derived, and the LIDT results were found to vary in the opposite direction to the extinction coefficient, surface root mean square roughness and optical loss of the Sc 2 O 3 films. An optical microscope and a scanning electron microscope were used to characterize the damage morphology of the samples, and the development of damage with increasing laser energy density was recorded and discussed. The relationship between the LIDT and the deposition parameters of the Sc 2 O 3 thin films was analyzed, and the damage mechanism of the films under 355 nm laser irradiation was discussed. (authors)

  17. Later Onset Fabry Disease, Cardiac Damage Progress in Silence: Experience With a Highly Prevalent Mutation.

    Science.gov (United States)

    Hsu, Ting-Rong; Hung, Sheng-Che; Chang, Fu-Pang; Yu, Wen-Chung; Sung, Shih-Hsien; Hsu, Chia-Lin; Dzhagalov, Ivan; Yang, Chia-Feng; Chu, Tzu-Hung; Lee, Han-Jui; Lu, Yung-Hsiu; Chang, Sheng-Kai; Liao, Hsuan-Chieh; Lin, Hsiang-Yu; Liao, Tsan-Chieh; Lee, Pi-Chang; Li, Hsing-Yuan; Yang, An-Hang; Ho, Hui-Chen; Chiang, Chuan-Chi; Lin, Ching-Yuang; Desnick, Robert J; Niu, Dau-Ming

    2016-12-13

    Recently, several studies revealed a much higher prevalence of later onset Fabry disease (FD) than previously expected. It suggested that later onset FD might present as an important hidden health issue in certain ethnic or demographic populations in the world. However, the natural history of its phenotype has not been systemically investigated, especially the cardiac involvement. The study analyzed a large-scale newborn screening program for FD to understand the natural course of later onset FD. To date, 916,383 newborns have been screened for FD in Taiwan, including more than 1,200 individuals with the common, later onset IVS4+919G>A (IVS4) mutation. Echocardiography was performed in 620 adults with the IVS4 mutation to analyze the prevalence of left ventricular hypertrophy (LVH), and gadolinium-enhanced cardiac magnetic resonance imaging was performed in 129 patients with FD, including 100 IVS4 adults. LVH was observed in 67% of men and 32% of women older than 40 years. Imaging evidenced significant late gadolinium enhancement in 38.1% of IVS4 men and 16.7% of IVS4 women with the IVS4 mutation but without LVH. Seventeen patients underwent endomyocardial biopsies, which revealed significant globotriaosylceramide substrate accumulation in their cardiomyocytes. Significant cardiomyocyte substrate accumulation in IVS4 patients led to severe and irreversible cardiac fibrosis before development of LVH or other significant cardiac manifestations. Thus, it might be too late to start enzyme replacement therapy after the occurrence of LVH or other significant cardiac manifestations in patients with later onset FD. This study also indicated the importance of newborn screening for early detection of the insidious, ongoing, irreversible cardiac damage in patients with later onset FD. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  18. An improved experimental scheme for simultaneous measurement of high-resolution zero electron kinetic energy (ZEKE) photoelectron and threshold photoion (MATI) spectra

    Science.gov (United States)

    Michels, François; Mazzoni, Federico; Becucci, Maurizio; Müller-Dethlefs, Klaus

    2017-10-01

    An improved detection scheme is presented for threshold ionization spectroscopy with simultaneous recording of the Zero Electron Kinetic Energy (ZEKE) and Mass Analysed Threshold Ionisation (MATI) signals. The objective is to obtain accurate dissociation energies for larger molecular clusters by simultaneously detecting the fragment and parent ion MATI signals with identical transmission. The scheme preserves an optimal ZEKE spectral resolution together with excellent separation of the spontaneous ion and MATI signals in the time-of-flight mass spectrum. The resulting improvement in sensitivity will allow for the determination of dissociation energies in clusters with substantial mass difference between parent and daughter ions.

  19. Vendor-based laser damage metrology equipment supporting the National Ignition Facility

    International Nuclear Information System (INIS)

    Campbell, J. H; Jennings, R. T.; Kimmons, J. F.; Kozlowski, M. R.; Mouser, R. P.; Schwatz, S.; Stolz, C. J.; Weinzapfel, C. L.

    1998-01-01

    A sizable laser damage metrology effort is required as part of optics production and installation for the 192 beam National Ignition Facility (NIF) laser. The large quantities, high damage thresholds, and large apertures of polished and coated optics necessitates vendor-based metrology equipment to assure component quality during production. This equipment must be optimized to provide the required information as rapidly as possible with limited operator experience. The damage metrology tools include: (1) platinum inclusion damage test systems for laser amplifier slabs, (2) laser conditioning stations for mirrors and polarizers, and (3) mapping and damage testing stations for UV transmissive optics. Each system includes a commercial Nd:YAG laser, a translation stage for the optics, and diagnostics to evaluate damage. The scanning parameters, optical layout, and diagnostics vary with the test fluences required and the damage morphologies expected. This paper describes the technical objectives and milestones involved in fulfilling these metrology requirements

  20. Surface damage of 316 stainless steel irradiated with 4He+ to high doses

    International Nuclear Information System (INIS)

    Kaminsky, M.; Das, S.K.

    1978-01-01

    Surface blistering of niobium by implantation with helium ions in the 9 to 15 keV range was investigated. The apparent disappearance of blisters at sufficiently high doses was believed to be an equilibrium effect. To determine whether high temperature annealing causes the equilibrium condition, stainless steel-316 samples were irradiated at a constant 450 0 C. Results are presented

  1. Experimental Investigation of Multi-layer Insulation Effect on Damage of Stuffed Shield by High-velocity Impact

    Directory of Open Access Journals (Sweden)

    GUAN Gong-shun

    2016-09-01

    Full Text Available The stuffed shield with multi-layer insulation(MLI was designed by improving on Al Whipple shield, and a series of high-velocity impact tests were practiced with a two-stage light gas gun facility at vacuum environment. The damage model of the stuffed shield with different MLI location by Al-sphere projectile impacting was obtained. The effect of MLI on damage of the stuffed shield by high-velocity impact was studied. The results indicate when the MLI is located at front side of the first Al-plate, the protection performance of the stuffed shield is improved with the larger perforation diameter of the first Al-plate and more impact kinetic energy dissipation of the projectile. When MLI is arranged at back side of the first Al-plate, the expansion of the secondary debris cloud from projectile impacting the first Al-plate is restrained, it is not good to improve the protection performance of the stuffed shield. When MLI is arranged at front side of the stuffed wall, the perforation size of the stuffed wall increases; when MLI is arranged at front side of the rear wall, the distribution range of crater on the rear wall decreases.

  2. Extent, perception and mitigation of damage due to high groundwater levels in the city of Dresden, Germany

    Directory of Open Access Journals (Sweden)

    H. Kreibich

    2009-07-01

    Full Text Available Flood risk analysis and management plans mostly neglect groundwater flooding, i.e. high groundwater levels. However, rising groundwater may cause considerable damage to buildings and infrastructure. To improve the knowledge about groundwater flooding and support risk management, a survey was undertaken in the city of Dresden (Saxony, Germany, resulting in 605 completed interviews with private households endangered by high groundwater levels. The reported relatively low flood impact and damage of groundwater floods in comparison with mixed floods was reflected by its scarce perception: Hardly anybody thinks about the risk of groundwater flooding. The interviewees thought that public authorities and not themselves, should be mainly responsible for preparedness and emergency response. Up to now, people do not include groundwater risk in their decision processes on self protection. The implementation of precautionary measures does not differ between households with groundwater or with mixed flood experience. However, less households undertake emergency measures when expecting a groundwater flood only. The state of preparedness should be further improved via an intensified risk communication about groundwater flooding by the authorities. Conditions to reach the endangered population are good, since 70% of the interviewed people are willing to inform themselves about groundwater floods. Recommendations for an improved risk communication are given.

  3. Acute high-intensity interval running increases markers of gastrointestinal damage and permeability but not gastrointestinal symptoms.

    Science.gov (United States)

    Pugh, Jamie N; Impey, Samuel G; Doran, Dominic A; Fleming, Simon C; Morton, James P; Close, Graeme L

    2017-09-01

    The purpose of this study was to investigate the effects of high-intensity interval running on markers of gastrointestinal (GI) damage and permeability alongside subjective symptoms of GI discomfort. Eleven male runners completed an acute bout of high-intensity interval training (HIIT) (eighteen 400-m runs at 120% maximal oxygen uptake) where markers of GI permeability, intestinal damage, and GI discomfort symptoms were assessed and compared with resting conditions. Compared with rest, HIIT significantly increased serum lactulose/rhamnose ratio (0.051 ± 0.016 vs. 0.031 ± 0.021, p = 0.0047; 95% confidence interval (CI) = 0.006 to 0.036) and sucrose concentrations (0.388 ± 0.217 vs. 0.137 ± 0.148 mg·L -1 ; p HIIT and resting conditions. Plasma intestinal-fatty acid binding protein (I-FABP) was significantly increased (p HIIT whereas no changes were observed during rest. Mild symptoms of GI discomfort were reported immediately and at 24 h post-HIIT, although these symptoms did not correlate to GI permeability or I-FABP. In conclusion, acute HIIT increased GI permeability and intestinal I-FABP release, although these do not correlate with symptoms of GI discomfort. Furthermore, by using serum sampling, we provide data showing that it is possible to detect changes in intestinal permeability that is not observed using urinary sampling over a shorter time-period.

  4. Multi-sensor system for in situ shape monitoring and damage identification of high-speed composite rotors

    Science.gov (United States)

    Philipp, K.; Filippatos, A.; Kuschmierz, R.; Langkamp, A.; Gude, M.; Fischer, A.; Czarske, J.

    2016-08-01

    Glass fibre-reinforced polymer (GFRP) composites offer a higher stiffness-to-weight ratio than conventional rotor materials used in turbomachinery. However, the material behaviour of GFRP high-speed rotors is difficult to predict due to the complexity of the composite material and the dynamic loading conditions. Consequently dynamic expansion measurements of GRFP rotors are required in situ and with micron precision. However, the whirling motion amplitude is about two orders of magnitude higher than the desired precision. To overcome this problem, a multi-sensor system capable of separating rotor expansion and whirling motion is proposed. High measurement rates well above the rotational frequency and micron uncertainty are achieved at whirling amplitudes up to 120μm and surface velocities up to 300 m/s. The dynamic elliptical expansion of a GFRP rotor is investigated in a rotor loading test rig under vacuum conditions. In situ measurements identified not only the introduced damage but also damage initiation and propagation.

  5. Temporary threshold shifts from exposures to equal equivalent continuous A-weighted sound pressure level

    DEFF Research Database (Denmark)

    Ordoñez, Rodrigo Pizarro; Hammershøi, Dorte

    2014-01-01

    the assumptions made using the A-weighting curve for the assessment of hearing damage. By modifying exposure ratings to compensate for the build-up of energy at mid and high-frequencies (above 1 kHz) due to the presence of the listener in the sound field and for the levels below an effect threshold that does...... not induce changes in hearing (equivalent quiet levels), ratings of the sound exposure that reflect the observed temporary changes in auditory function can be obtained.......According to existing methods for the assessment of hearing damage, signals with the same A-weighted equivalent level should pose the same hazard to the auditory system. As a measure of hazard, it is assumed that Temporary Thresholds Shifts (TTS) reflect the onset of alterations to the hearing...

  6. Threshold guidance update

    International Nuclear Information System (INIS)

    Wickham, L.E.

    1986-01-01

    The Department of Energy (DOE) is developing the concept of threshold quantities for use in determining which waste materials must be handled as radioactive waste and which may be disposed of as nonradioactive waste at its sites. Waste above this concentration level would be managed as radioactive or mixed waste (if hazardous chemicals are present); waste below this level would be handled as sanitary waste. Last years' activities (1984) included the development of a threshold guidance dose, the development of threshold concentrations corresponding to the guidance dose, the development of supporting documentation, review by a technical peer review committee, and review by the DOE community. As a result of the comments, areas ha