WorldWideScience

Sample records for high current switching

  1. High-voltage high-current triggering vacuum switch

    International Nuclear Information System (INIS)

    Alferov, D.F.; Bunin, R.A.; Evsin, D.V.; Sidorov, V.A.

    2012-01-01

    Experimental investigations of switching and breaking capacities of the new high current triggered vacuum switch (TVS) are carried out at various parameters of discharge current. It has been shown that the high current triggered vacuum switch TVS can switch repeatedly a current from units up to ten kiloampers with duration up to ten millisecond [ru

  2. High-voltage, high-current, solid-state closing switch

    Science.gov (United States)

    Focia, Ronald Jeffrey

    2017-08-22

    A high-voltage, high-current, solid-state closing switch uses a field-effect transistor (e.g., a MOSFET) to trigger a high-voltage stack of thyristors. The switch can have a high hold-off voltage, high current carrying capacity, and high time-rate-of-change of current, di/dt. The fast closing switch can be used in pulsed power applications.

  3. High PRF high current switch

    Science.gov (United States)

    Moran, Stuart L.; Hutcherson, R. Kenneth

    1990-03-27

    A triggerable, high voltage, high current, spark gap switch for use in pu power systems. The device comprises a pair of electrodes in a high pressure hydrogen environment that is triggered by introducing an arc between one electrode and a trigger pin. Unusually high repetition rates may be obtained by undervolting the switch, i.e., operating the trigger at voltages much below the self-breakdown voltage of the device.

  4. High current vacuum closing switch

    International Nuclear Information System (INIS)

    Dolgachev, G.I.; Maslennikov, D.D.; Romanov, A.S.; Ushakov, A.G.

    2005-01-01

    The paper proposes a powerful pulsed closing vacuum switch for high current commutation consisting of series of the vacuum diodes with near 1 mm gaps having closing time determined by the gaps shortening with the near-electrode plasmas [ru

  5. Development of high electrical resistance persistent current switch for high speed energization system

    International Nuclear Information System (INIS)

    Jizo, Y.; Furuta, Y.; Nakashima, H.

    1986-01-01

    Japanese National Railways is now developing a superconducting magnetically-levitated train system. A persistent current switch is incorporated in the super-conducting magnet used in the magnetically-levitated train. In recent years, the switch has been required to have higher electrical resistance during its off-state in order to realize the high speed energization/de-energization system of the superconducting magnets. The system aims to decrease evaporation volume of liquid helium during the energization/de-energization of the magnet, by means of energizing the superconducting magnet with high current increasing/decreasing rate. Consequently, it would be possible to decrease the dependence of the on-board magnet system upon the ground cooling system. Through the development of a stable superconductive wire material and a coil structure for the persistent current switch using many small model switches which were produced in order to improve their current carrying capacities, the authors have succeeded in manufacturing the high electrical resistance persistent current switch whose electrical resistance was 5 ohms. The switch, of cylindrical shape, has a diameter of about 100mm, a length of about 100mm. These 5 ohm PCSs are now functioning in stable conditions being incorporated in the superconducting magnets of No.2 vehicle of MLU001 at the JNR's Miyazaki test track. Further, the authors are now developing the PCS of still higher resistance values, such as 50 ohms, through studies for stabilization in structural aspects of the winding and obtaining results therefrom

  6. On-line Monitoring Device for High-voltage Switch Cabinet Partial Discharge Based on Pulse Current Method

    Science.gov (United States)

    Y Tao, S.; Zhang, X. Z.; Cai, H. W.; Li, P.; Feng, Y.; Zhang, T. C.; Li, J.; Wang, W. S.; Zhang, X. K.

    2017-12-01

    The pulse current method for partial discharge detection is generally applied in type testing and other off-line tests of electrical equipment at delivery. After intensive analysis of the present situation and existing problems of partial discharge detection in switch cabinets, this paper designed the circuit principle and signal extraction method for partial discharge on-line detection based on a high-voltage presence indicating systems (VPIS), established a high voltage switch cabinet partial discharge on-line detection circuit based on the pulse current method, developed background software integrated with real-time monitoring, judging and analyzing functions, carried out a real discharge simulation test on a real-type partial discharge defect simulation platform of a 10KV switch cabinet, and verified the sensitivity and validity of the high-voltage switch cabinet partial discharge on-line monitoring device based on the pulse current method. The study presented in this paper is of great significance for switch cabinet maintenance and theoretical study on pulse current method on-line detection, and has provided a good implementation method for partial discharge on-line monitoring devices for 10KV distribution network equipment.

  7. Helical EMG module with explosive current opening switches

    International Nuclear Information System (INIS)

    Chernyshev, V.K.; Vakhrushev, V.V.; Volkov, G.I.; Ivanov, V.A.; Fetisov, I.K.

    1990-01-01

    To carry out the experimental work to study plasma properties, electromagnetic sources with 10 6 to 10 8 J of stored energy delivered to the load in microsecond time, are required. Among the current electromagnetic storage devices, the explosive magnetic generators (EMG) are of the largest energy capacity. The disadvantages of this type of generators is relatively long time (ten of microseconds) of electromagnetic energy cumulation in the deformable circuit. To reduce the time of energy transfer to the load to a microsecond range the switching scheme is generally used, where the cumulation circuit and that of the load are separated and connected in parallel via a switching element (opening switch) providing generation of desired power. In this paper, some ways and means of designing opening switches to generate high current pulses have been investigated. The opening switches to generate high current pulses have been investigated. The opening switches which operation is based on mechanic destruction of the conductor using high explosive, have the highest and most reliable performance. The authors have explored the mechanic disruption of a thin conductor (foil), the technique based on throwing the foil at the ribbed barrier of electric insulator material. The report presents the data obtained in studying the operation of this type of opening switch having cylindrical shape, 200 mm in diameter and 200 mm long, designed for generation of 5.5 MA current pulse in the load

  8. High Voltage, Fast-Switching Module for Active Control of Magnetic Fields and Edge Plasma Currents

    Science.gov (United States)

    Ziemba, Timothy; Miller, Kenneth; Prager, James; Slobodov, Ilia

    2016-10-01

    Fast, reliable, real-time control of plasma is critical to the success of magnetic fusion science. High voltage and current supplies are needed to mitigate instabilities in all experiments as well as disruption events in large scale tokamaks for steady-state operation. Silicon carbide (SiC) MOSFETs offer many advantages over IGBTs including lower drive energy requirements, lower conduction and switching losses, and higher switching frequency capabilities; however, these devices are limited to 1.2-1.7 kV devices. As fusion enters the long-pulse and burning plasma eras, efficiency of power switching will be important. Eagle Harbor Technologies (EHT), Inc. developing a high voltage SiC MOSFET module that operates at 10 kV. This switch module utilizes EHT gate drive technology, which has demonstrated the ability to increase SiC MOSFET switching efficiency. The module will allow more rapid development of high voltage switching power supplies at lower cost necessary for the next generation of fast plasma feedback and control. EHT is partnering with the High Beta Tokamak group at Columbia to develop detailed high voltage module specifications, to ensure that the final product meets the needs of the fusion science community.

  9. Optically triggered high voltage switch network and method for switching a high voltage

    Science.gov (United States)

    El-Sharkawi, Mohamed A.; Andexler, George; Silberkleit, Lee I.

    1993-01-19

    An optically triggered solid state switch and method for switching a high voltage electrical current. A plurality of solid state switches (350) are connected in series for controlling electrical current flow between a compensation capacitor (112) and ground in a reactive power compensator (50, 50') that monitors the voltage and current flowing through each of three distribution lines (52a, 52b and 52c), which are supplying three-phase power to one or more inductive loads. An optical transmitter (100) controlled by the reactive power compensation system produces light pulses that are conveyed over optical fibers (102) to a switch driver (110') that includes a plurality of series connected optical triger circuits (288). Each of the optical trigger circuits controls a pair of the solid state switches and includes a plurality of series connected resistors (294, 326, 330, and 334) that equalize or balance the potential across the plurality of trigger circuits. The trigger circuits are connected to one of the distribution lines through a trigger capacitor (340). In each switch driver, the light signals activate a phototransistor (300) so that an electrical current flows from one of the energy reservoir capacitors through a pulse transformer (306) in the trigger circuit, producing gate signals that turn on the pair of serially connected solid state switches (350).

  10. Optically triggered high voltage switch network and method for switching a high voltage

    Energy Technology Data Exchange (ETDEWEB)

    El-Sharkawi, Mohamed A. (Renton, WA); Andexler, George (Everett, WA); Silberkleit, Lee I. (Mountlake Terrace, WA)

    1993-01-19

    An optically triggered solid state switch and method for switching a high voltage electrical current. A plurality of solid state switches (350) are connected in series for controlling electrical current flow between a compensation capacitor (112) and ground in a reactive power compensator (50, 50') that monitors the voltage and current flowing through each of three distribution lines (52a, 52b and 52c), which are supplying three-phase power to one or more inductive loads. An optical transmitter (100) controlled by the reactive power compensation system produces light pulses that are conveyed over optical fibers (102) to a switch driver (110') that includes a plurality of series connected optical triger circuits (288). Each of the optical trigger circuits controls a pair of the solid state switches and includes a plurality of series connected resistors (294, 326, 330, and 334) that equalize or balance the potential across the plurality of trigger circuits. The trigger circuits are connected to one of the distribution lines through a trigger capacitor (340). In each switch driver, the light signals activate a phototransistor (300) so that an electrical current flows from one of the energy reservoir capacitors through a pulse transformer (306) in the trigger circuit, producing gate signals that turn on the pair of serially connected solid state switches (350).

  11. Stable Amplification and High Current Drop Bistable Switching in Supercritical GaAs Tills

    DEFF Research Database (Denmark)

    Izadpanah, S.H; Jeppsson, B; Jeppesen, Palle

    1974-01-01

    Bistable switching with current drops of 40% and switching times of 100 ps are obtained in pulsed operation of 10¿m supercritically doped n+ nn+ GaAs Transferred Electron Devices (TEDs). When CW-operated the same devices exhibit a 5-17 GHz bandwidth for the stable negative resistance.......Bistable switching with current drops of 40% and switching times of 100 ps are obtained in pulsed operation of 10¿m supercritically doped n+ nn+ GaAs Transferred Electron Devices (TEDs). When CW-operated the same devices exhibit a 5-17 GHz bandwidth for the stable negative resistance....

  12. High-power semiconductor RSD-based switch

    Energy Technology Data Exchange (ETDEWEB)

    Bezuglov, V G; Galakhov, I V; Grusin, I A [All-Russian Scientific Research Inst. of Experimental Physics, Sarov (Russian Federation); and others

    1997-12-31

    The operating principle and test results of a high-power semiconductor RSD-based switch with the following operating parameters is described: operating voltage 25 kV, peak operating current 200 kA, maximum transferred charge 70 C. The switch is intended for use by high-power capacitor banks of state-of-the-art research facilities. The switch was evaluated for applicability in commercial pulsed systems. The possibility of increasing the peak operating current to 500 kA is demonstrated. (author). 4 figs., 2 refs.

  13. The impact of switching capacitor banks with very high inrush current on switchgear

    NARCIS (Netherlands)

    Smeets, R.P.P.; Wiggers, R.; Bannink, H.; Kuivenhoven, S.; Chakraborty, S.; Sandolache, G.

    2012-01-01

    Capacitor banks are installed in an increasing number in order to control power quality issues in the transmission and distribution networks. Due to load fluctuation, switching of capacitor banks is normally a daily operation. Although the current to be switched (e.g. the normal load current) is far

  14. A new Zero-Current-Transition PWM switching cell

    Energy Technology Data Exchange (ETDEWEB)

    Grigore, V. [Electronics and Telecommunications Faculty, `Politechnica` University Bucharest (Romania); Kyyrae, J. [Helsinki University of Technology, Otaniemi (Finland): Institute of Intelligent Power Electronics

    1997-12-31

    In this paper a new Zero-Current-Transition (ZCT) PWM switching cell is presented. The proposed switching cell is composed of the normal hard-switched PWM cell (consisting of one active switch and one passive switch), plus as auxiliary circuit. The auxiliary circuit is inactive during the ON ad OFF intervals of the switches in the normal PWM switch. The transitions between the two states are controlled by the auxiliary circuit. Prior to turn-off, the current through the active switch in the PWM cell is forced to zero, thus the turn-off losses of the active switch are practically eliminated. At turn-on the auxiliary circuit slows down the growing rate of the current through the main switch. Thus, turn-on losses are also very much reduced. The active switch operates under ZCT conditions, the passive switch (diode) has a controlled reverse recovery, while the switch in the auxiliary circuit operates under Zero-Current-Switching (ZCS) conditions. (orig.) 3 refs.

  15. Zener diode controls switching of large direct currents

    Science.gov (United States)

    1965-01-01

    High-current zener diode is connected in series with the positive input terminal of a dc supply to block the flow of direct current until a high-frequency control signal is applied across the zener diode. This circuit controls the switching of large dc signals.

  16. Current-driven thermo-magnetic switching in magnetic tunnel junctions

    Science.gov (United States)

    Kravets, A. F.; Polishchuk, D. M.; Pashchenko, V. A.; Tovstolytkin, A. I.; Korenivski, V.

    2017-12-01

    We investigate switching of magnetic tunnel junctions (MTJs) driven by the thermal effect of the transport current through the junctions. The switching occurs in a specially designed composite free layer, which acts as one of the MTJ electrodes, and is due to a current-driven ferro-to-paramagnetic Curie transition with the associated exchange decoupling within the free layer leading to magnetic reversal. We simulate the current and heat propagation through the device and show how heat focusing can be used to improve the power efficiency. The Curie-switch MTJ demonstrated in this work has the advantage of being highly tunable in terms of its operating temperature range, conveniently to or just above room temperature, which can be of technological significance and competitive with the known switching methods using spin-transfer torques.

  17. Specific features of the switch-on gate current and different switch-on modes in silicon carbide thyristors

    International Nuclear Information System (INIS)

    Yurkov, S N; Mnatsakanov, T T; Levinshtein, M E; Cheng, L; Palmour, J W

    2014-01-01

    The specific features of the temperature and bias dependences of the switch-on gate current in SiC thyristors are examined analytically for two possible switching mechanisms. The so-called γ-mechanism, which is highly typical of the conventional Si thyristors, is characterized by very weak temperature and bias dependences. By contrast, the so-called α-mechanism, which is very characteristic of SiC thyristors, is highly sensitive to changes in temperature and bias. If the thyristor is switched on by the α-mechanism, the switch-on gate current density decreases very steeply with increasing temperature. As a result, the thyristor can lose its working capacity at elevated temperatures due to the instability against even very weak impacts. With decreasing the bias voltage U a , the gate switch-on current increases very steeply, which can make switching the thyristor on difficult. The unintentional shunting, which is apparently present in high-voltage SiC thyristors, causes the transition from the α- to the γ-mechanism at elevated temperatures and high biases. It can be supposed that introduction of a controllable technological shunting of the emitter–thin base junction allows stabilization of the temperature and bias parameters of SiC thyristors. The analytical results are confirmed by computer simulations performed in wide temperature and bias ranges for a 4H-SiC thyristor of the 18 kV class. (paper)

  18. Plasma erosion opening switch in the double-pulse operation mode of a high-current electron accelerator

    International Nuclear Information System (INIS)

    Isakov, I.F.; Lopatin, V.S.; Remnev, G.E.

    1987-01-01

    This paper reports the results of investigations of the operation of a fast current opening switch, with a 10/sup 13/-10/sup 16/ plasma density produced either by dielectric surface flashover or by explosive emission of graphite. A series of two pulses was applied to two diodes in parallel. The first pulse produced plasma in the first diode which closed that diode gap by the arrival time of the second pulse. The first, shorted, diode then acted as an erosion switch for the second pulse. A factor of 2.5-3 power multiplication was obtained under optimum conditions. The opening-switch resistance during the magnetic insulation phase, neglecting the electron losses between the switch and the generating diode, exceeded 100 Ω. The duration of the rapid opening phase was less than 5 ns under optimum conditions. This method of plasma production does not require external plasma sources, and permits a wide variation of plasma density, which in turn allows high inductor currents and stored energies

  19. High-explosive driven crowbar switch

    International Nuclear Information System (INIS)

    Dike, R.S.; Kewish, R.W. Jr.

    1976-01-01

    The disclosure relates to a compact explosive driven switch for use as a low resistance, low inductance crowbar switch. A high-explosive charge extrudes a deformable conductive metallic plate through a polyethylene insulating layer to achieve a hard current contact with a supportive annular conductor

  20. Three-Phase High-Power and Zero-Current-Switching OBC for Plug-In Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Cheng-Shan Wang

    2015-06-01

    Full Text Available In this paper, an interleaved high-power zero-current-switching (ZCS onboard charger (OBC based on the three-phase single-switch buck rectifier is proposed for application to plug-in electric vehicles (EVs. The multi-resonant structure is used to achieve high efficiency and high power density, which are necessary to reduce the volume and weight of the OBC. This study focuses on the border conditions of ZCS converting with a battery load, which means the variation ranges of the output voltage and current are very large. Furthermore, a novel hybrid control method combining pulse frequency modulation (PFM and pulse width modulation (PWM together is presented to ensure a driving frequency higher than 10 kHz, and this will reduce the unexpected inner resonant power flow and decrease the total harmonic distortion (THD of the input current under a light load at the end of the charging process. Finally, a prototype is established, and experiments are carried out. According to the experimental results, the conversion efficiency is higher than 93.5%, the THD about 4.3% and power factor (PF 0.98 under the maximum power output condition. Besides, a three-stage charging process is also carried out the experimental platform.

  1. Studies of current-perpendicular-to-plane magnetoresistance (CPP-MR) and current-induced magnetization switching (CIMS)

    Science.gov (United States)

    Kurt, Huseyin

    2005-08-01

    most technical applications of CIMS require low switching currents, some, like read-heads, require high switching currents. We show that use of a synthetic antiferromagnet can increase the switching current. Manschot et al. recently predicted that the positive critical current for switching from P to AP could be reduced by up to a factor of five by using asymmetric current leads. In magnetically uncoupled samples, we find that highly asymmetric current leads do not significantly reduce the switching current. A CIMS equation given by Katine et al. predicts that lowering the demagnetization field should reduce the switching current. To test this prediction, we compare switching currents for Co/Au/Co(t)/Au nanopillars with t = 1 to 4 nm (where the easy axis should be normal to the layer planes at least for t = 1 and 2 nm) with those for Co/Cu/Co(t)/Au nanopillars (where the easy axis should be in the layer planes). We do not find significant differences in switching currents for the two systems.

  2. Switching phenomena in high-voltage circuit breakers

    International Nuclear Information System (INIS)

    Nakanishi, K.

    1991-01-01

    The topics covered in this book include: general problems concerning current interruption, the physical arc model, and miscellaneous types of modern switching apparatus, such as gas circuit breakers, gas-insulated switch-gear, vacuum circuit breakers and high-voltage direct-current circuit breakers

  3. A high-current rail-type gas switch with preionization by an additional corona discharge

    Energy Technology Data Exchange (ETDEWEB)

    Antipov, E. I.; Belozerov, O. S.; Krastelev, E. G., E-mail: ekrastelev@yandex.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation)

    2016-12-15

    The characteristics of a high-current rail-type gas switch with preionization of the gas (air) in a spark gap by an additional corona discharge are investigated. The experiments were performed in a voltage range of 10–45 kV using a two-electrode switch consisting of two cylindrical electrodes with a diameter of 22 mm and a length of 100 mm and a set of laterally located corona-discharge needles. The requirements for the position and size of the needles are defined for which a corona discharge is ignited before a breakdown of the main gap and does not change to a sparking form, and the entire length of the rail electrodes is efficiently used. The fulfillment of these requirements ensures stable operation of the switch with a small variation of the pulse breakdown voltage, which is not more than 1% for a fixed voltage-pulse rise time in the range from 150 ns to 3.5 μs. A short delay time of the switch breakdown makes it possible to control the two-electrode switch by an overvoltage pulse of nanosecond duration.

  4. A high-current rail-type gas switch with preionization by an additional corona discharge

    International Nuclear Information System (INIS)

    Antipov, E. I.; Belozerov, O. S.; Krastelev, E. G.

    2016-01-01

    The characteristics of a high-current rail-type gas switch with preionization of the gas (air) in a spark gap by an additional corona discharge are investigated. The experiments were performed in a voltage range of 10–45 kV using a two-electrode switch consisting of two cylindrical electrodes with a diameter of 22 mm and a length of 100 mm and a set of laterally located corona-discharge needles. The requirements for the position and size of the needles are defined for which a corona discharge is ignited before a breakdown of the main gap and does not change to a sparking form, and the entire length of the rail electrodes is efficiently used. The fulfillment of these requirements ensures stable operation of the switch with a small variation of the pulse breakdown voltage, which is not more than 1% for a fixed voltage-pulse rise time in the range from 150 ns to 3.5 μs. A short delay time of the switch breakdown makes it possible to control the two-electrode switch by an overvoltage pulse of nanosecond duration.

  5. High voltage superconducting switch for power application

    International Nuclear Information System (INIS)

    Mawardi, O.; Ferendeci, A.; Gattozzi, A.

    1983-01-01

    This paper reports the development of a novel interrupter which meets the requirements of a high voltage direct current (HVDC) power switch and at the same time doubles as a current limiter. The basic concept of the interrupter makes use of a fast superconducting, high capacity (SHIC) switch that carries the full load current while in the superconducting state and reverts to the normal resistive state when triggered. Typical design parameters are examined for the case of a HVDC transmission line handling 2.5KA at 150KVDC. The result is a power switch with superior performance and smaller size than the ones reported to date

  6. Fast and efficient STT switching in MTJ using additional transient pulse current

    Science.gov (United States)

    Pathak, Sachin; Cha, Jongin; Jo, Kangwook; Yoon, Hongil; Hong, Jongill

    2017-06-01

    We propose a profile of write pulse current-density to switch magnetization in a perpendicular magnetic tunnel junction to reduce switching time and write energy as well. Our simulated results show that an overshoot transient pulse current-density (current spike) imposed to conventional rectangular-shaped pulse current-density (main pulse) significantly improves switching speed that yields the reduction in write energy accordingly. For example, we could dramatically reduce the switching time by 80% and thereby reduce the write energy over 9% in comparison to the switching without current spike. The current spike affects the spin dynamics of the free layer and reduces the switching time mainly due to spin torque induced. On the other hand, the large Oersted field induced causes changes in spin texture. We believe our proposed write scheme can make a breakthrough in magnetic random access memory technology seeking both high speed operation and low energy consumption.

  7. Functional model of a high-current high-voltage superconducting switches

    International Nuclear Information System (INIS)

    Menke, Kh.; Shishov, Yu.A.

    1977-01-01

    Considered are problems of superconducting switches (SS) for energy extraction from magnets at a current of several kiloamperes and a voltage of several kilovolts with a time for transition to the normal state of <0.5 ms. SS is made of a wire of 0.5 mm diameter containing 19 strands of Nb-Ti alloy of 65 μm diameter. The wire matrix was etched out, 19 wires of 4.5 m length were braided together. On each of three groups of wires a heater wire of constantan of 0.12 mm diameter and 6 m length was wound. A second heater intended for slow heating during current feeding into the magnet, is wound over the braid. The wires and heaters are parallel connected and impregnated by an epoxy compound. The following main parameters were obtained in SS testing: critical current of 920 A, resistance in the normal state of 2.5 Ohm, and minimum delay time of 0.2 ms at a nominal current of 0.8 of the critical one

  8. Method and system for a gas tube switch-based voltage source high voltage direct current transmission system

    Science.gov (United States)

    She, Xu; Chokhawala, Rahul Shantilal; Zhou, Rui; Zhang, Di; Sommerer, Timothy John; Bray, James William

    2016-12-13

    A voltage source converter based high-voltage direct-current (HVDC) transmission system includes a voltage source converter (VSC)-based power converter channel. The VSC-based power converter channel includes an AC-DC converter and a DC-AC inverter electrically coupled to the AC-DC converter. The AC-DC converter and a DC-AC inverter include at least one gas tube switching device coupled in electrical anti-parallel with a respective gas tube diode. The VSC-based power converter channel includes a commutating circuit communicatively coupled to one or more of the at least one gas tube switching devices. The commutating circuit is configured to "switch on" a respective one of the one or more gas tube switching devices during a first portion of an operational cycle and "switch off" the respective one of the one or more gas tube switching devices during a second portion of the operational cycle.

  9. Verification of the short-circuit current making capability of high-voltage switching devices

    NARCIS (Netherlands)

    Smeets, R.P.P.; Linden, van der W.A.

    2001-01-01

    Switching-in of short-circuit current leads to pre-arcing in the switching device. Pre-arcing affects the ability of switchgear to close and latch. In three-phase systems, making is associated with transient voltage phenomena that may have a significant impact on the duration of the pre-arcing

  10. The Implementation Of Solid State Switches In A Parallel Configuration To Gain Output Current Capacity In A High Current Capacitive Discharge Unit (CDU).

    Energy Technology Data Exchange (ETDEWEB)

    Chaves, Mario Paul [Univ. of New Mexico, Albuquerque, NM (United States)

    2017-07-01

    For my project I have selected to research and design a high current pulse system, which will be externally triggered from a 5V pulse. The research will be conducted in the region of paralleling the solid state switches for a higher current output, as well as to see if there will be any other advantages in doing so. The end use of the paralleled solid state switches will be used on a Capacitive Discharge Unit (CDU). For the first part of my project, I have set my focus on the design of the circuit, selection of components, and simulation of the circuit.

  11. Nonlinear Deadbeat Current Control of a Switched Reluctance Motor

    OpenAIRE

    Rudolph, Benjamin

    2009-01-01

    High performance current control is critical to the success of the switched reluctance motor (SRM). Yet high motor phase nonlinearities in the SRM place extra burden on the current controller, rendering it the weakest link in SRM control. In contrast to linear motor control techniques that respond to current error, the deadbeat controller calculates the control voltage by the current command, phase current, rotor position and applied phase voltage. The deadbeat controller has demonstrated sup...

  12. Emerging memories: resistive switching mechanisms and current status

    International Nuclear Information System (INIS)

    Jeong, Doo Seok; Thomas, Reji; Katiyar, R S; Scott, J F; Kohlstedt, H; Petraru, A; Hwang, Cheol Seong

    2012-01-01

    The resistance switching behaviour of several materials has recently attracted considerable attention for its application in non-volatile memory (NVM) devices, popularly described as resistive random access memories (RRAMs). RRAM is a type of NVM that uses a material(s) that changes the resistance when a voltage is applied. Resistive switching phenomena have been observed in many oxides: (i) binary transition metal oxides (TMOs), e.g. TiO 2 , Cr 2 O 3 , FeO x and NiO; (ii) perovskite-type complex TMOs that are variously functional, paraelectric, ferroelectric, multiferroic and magnetic, e.g. (Ba,Sr)TiO 3 , Pb(Zr x Ti 1−x )O 3 , BiFeO 3 and Pr x Ca 1−x MnO 3 ; (iii) large band gap high-k dielectrics, e.g. Al 2 O 3 and Gd 2 O 3 ; (iv) graphene oxides. In the non-oxide category, higher chalcogenides are front runners, e.g. In 2 Se 3 and In 2 Te 3 . Hence, the number of materials showing this technologically interesting behaviour for information storage is enormous. Resistive switching in these materials can form the basis for the next generation of NVM, i.e. RRAM, when current semiconductor memory technology reaches its limit in terms of density. RRAMs may be the high-density and low-cost NVMs of the future. A review on this topic is of importance to focus concentration on the most promising materials to accelerate application into the semiconductor industry. This review is a small effort to realize the ambitious goal of RRAMs. Its basic focus is on resistive switching in various materials with particular emphasis on binary TMOs. It also addresses the current understanding of resistive switching behaviour. Moreover, a brief comparison between RRAMs and memristors is included. The review ends with the current status of RRAMs in terms of stability, scalability and switching speed, which are three important aspects of integration onto semiconductors. (review article)

  13. Emerging memories: resistive switching mechanisms and current status

    Science.gov (United States)

    Jeong, Doo Seok; Thomas, Reji; Katiyar, R. S.; Scott, J. F.; Kohlstedt, H.; Petraru, A.; Hwang, Cheol Seong

    2012-07-01

    The resistance switching behaviour of several materials has recently attracted considerable attention for its application in non-volatile memory (NVM) devices, popularly described as resistive random access memories (RRAMs). RRAM is a type of NVM that uses a material(s) that changes the resistance when a voltage is applied. Resistive switching phenomena have been observed in many oxides: (i) binary transition metal oxides (TMOs), e.g. TiO2, Cr2O3, FeOx and NiO; (ii) perovskite-type complex TMOs that are variously functional, paraelectric, ferroelectric, multiferroic and magnetic, e.g. (Ba,Sr)TiO3, Pb(Zrx Ti1-x)O3, BiFeO3 and PrxCa1-xMnO3 (iii) large band gap high-k dielectrics, e.g. Al2O3 and Gd2O3; (iv) graphene oxides. In the non-oxide category, higher chalcogenides are front runners, e.g. In2Se3 and In2Te3. Hence, the number of materials showing this technologically interesting behaviour for information storage is enormous. Resistive switching in these materials can form the basis for the next generation of NVM, i.e. RRAM, when current semiconductor memory technology reaches its limit in terms of density. RRAMs may be the high-density and low-cost NVMs of the future. A review on this topic is of importance to focus concentration on the most promising materials to accelerate application into the semiconductor industry. This review is a small effort to realize the ambitious goal of RRAMs. Its basic focus is on resistive switching in various materials with particular emphasis on binary TMOs. It also addresses the current understanding of resistive switching behaviour. Moreover, a brief comparison between RRAMs and memristors is included. The review ends with the current status of RRAMs in terms of stability, scalability and switching speed, which are three important aspects of integration onto semiconductors.

  14. Current distribution in a plasma erosion opening switch

    International Nuclear Information System (INIS)

    Weber, B.V.; Commisso, R.J.; Meger, R.A.; Neri, J.M.; Oliphant, W.F.; Ottinger, P.F.

    1984-01-01

    The current distribution in a plasma erosion opening switch is determined from magnetic field probe data. During the closed state of the switch the current channel broadens rapidly. The width of the current channel is consistent with a bipolar current density limit imposed by the ion flux to the cathode. The effective resistivity of the current channel is anomalously large. Current is diverted to the load when a gap opens near the cathode side of the switch. The observed gap opening can be explained by erosion of the plasma. Magnetic pressure is insufficient to open the gap

  15. Current distribution in a plasma erosion opening switch

    International Nuclear Information System (INIS)

    Weber, B.V.; Commisso, R.J.; Meger, R.A.; Neri, J.M.; Oliphant, W.F.; Ottinger, P.F.

    1985-01-01

    The current distribution in a plasma erosion opening switch is determined from magnetic field probe data. During the closed state of the switch the current channel broadens rapidly. The width of the current channel is consistent with a bipolar current density limit imposed by the ion flux to the cathode. The effective resistivity of the current channel is anomalously large. Current is diverted to the load when a gap opens near the cathode side of the switch. The observed gap opening can be explained by erosion of the plasma. Magnetic pressure is insufficient to open the gap

  16. High current, high bandwidth laser diode current driver

    Science.gov (United States)

    Copeland, David J.; Zimmerman, Robert K., Jr.

    1991-01-01

    A laser diode current driver has been developed for free space laser communications. The driver provides 300 mA peak modulation current and exhibits an optical risetime of less than 400 ps. The current and optical pulses are well behaved and show minimal ringing. The driver is well suited for QPPM modulation at data rates up to 440 Mbit/s. Much previous work has championed current steering circuits; in contrast, the present driver is a single-ended on/off switch. This results in twice the power efficiency as a current steering driver. The driver electrical efficiency for QPPM data is 34 percent. The high speed switch is realized with a Ku-band GaAsFET transistor, with a suitable pre-drive circuit, on a hybrid microcircuit adjacent to the laser diode.

  17. Stabilization of a Nb3Sn persistent current switch

    International Nuclear Information System (INIS)

    Urata, M.; Maeda, H.; Nakayama, S.; Yoneda, E.; Oda, Y.; Kumano, T.; Aoki, N.; Tomisaki, T.; Kabashima, S.

    1993-01-01

    A 2000 A class Nb 3 Sn persistent current switch has been successfully fabricated in the Toshiba R and D Center. The Nb tube processed conductor with Cu-10 wt.% Ni matrix has been developed for the switch in the Showa Electric Wire and Cable Co. Ltd. The magnetic instability which was observed in the previous 35 Ω Nb 3 Sn persistent current switch was improved in the present switch. The problem of quench current degradation and flux jump on magnetization, emerged in the previous switch, were confirmed to be solved. In the fast ramp, however, the switch degrades from the calculated results assuming the self field ac loss. In the Nb 3 Sn reaction process, Sn in the bronze diffuses into the Nb tube, which decreases the switch resistance. It was observed by a computer aided micro analysis (CMA) that Ni in the CuNi matrix precipitated on the Nb tube, which slightly reduced the switch resistance. (orig.)

  18. Ultra-Low Voltage Class AB Switched Current Memory Cell

    DEFF Research Database (Denmark)

    Igor, Mucha

    1996-01-01

    This paper presents the theoretical basis for the design of class AB switched current memory cells employing floating-gate MOS transistors, suitable for ultra-low-voltage applications. To support the theoretical assumptions circuits based on these cells were designed using a CMOS process with thr......This paper presents the theoretical basis for the design of class AB switched current memory cells employing floating-gate MOS transistors, suitable for ultra-low-voltage applications. To support the theoretical assumptions circuits based on these cells were designed using a CMOS process...... with threshold voltages of 0.9V. Both hand calculations and PSPICE simulations showed that the cells designed allowed a maximum signal range better than +/-13 micoamp, with a supply voltage down to 1V and a quiescent bias current of 1 microamp, resulting in a very high current efficiency and effective power...

  19. Pseudospark switches

    International Nuclear Information System (INIS)

    Billault, P.; Riege, H.; Gulik, M. van; Boggasch, E.; Frank, K.

    1987-01-01

    The pseudospark discharge is bound to a geometrical structure which is particularly well suited for switching high currents and voltages at high power levels. This type of discharge offers the potential for improvement in essentially all areas of switching operation: peak current and current density, current rise, stand-off voltage, reverse current capability, cathode life, and forward drop. The first pseudospark switch was built at CERN at 1981. Since then, the basic switching characteristics of pseudospark chambers have been studied in detail. The main feature of a pseudospark switch is the confinement of the discharge plasma to the device axis. The current transition to the hollow electrodes is spread over a rather large surface area. Another essential feature is the easy and precise triggering of the pseudospark switch from the interior of the hollow electrodes, relatively far from the main discharge gap. Nanosecond delay and jitter values can be achieved with trigger energies of less than 0.1 mJ, although cathode heating is not required. Pseudospark gaps may cover a wide range of high-voltage, high-current, and high-pulse-power switching at repetition rates of many kilohertz. This report reviews the basic researh on pseudospark switches which has been going on at CERN. So far, applications have been developed in the range of thyratron-like medium-power switches at typically 20 to 40 kV and 0.5 to 10 kA. High-current pseudospark switches have been built for a high-power 20 kJ pulse generator which is being used for long-term tests of plasma lenses developed for the future CERN Antiproton Collector (ACOL). The high-current switches have operated for several hundred thousand shots, with 20 to 50 ns jitter at 16 kV charging voltage and more than 100 kA peak current amplitude. (orig.)

  20. Dynamics of a gain-switched distributed feedback ridge waveguide laser in nanoseconds time scale under very high current injection conditions.

    Science.gov (United States)

    Klehr, A; Wenzel, H; Brox, O; Schwertfeger, S; Staske, R; Erbert, G

    2013-02-11

    We present detailed experimental investigations of the temporal, spectral and spatial behavior of a gain-switched distributed feedback (DFB) laser emitting at a wavelength of 1064 nm. Gain-switching is achieved by injecting nearly rectangular shaped current pulses having a length of 50 ns and a very high amplitude up to 2.5 A. The repetition frequency is 200 kHz. The laser has a ridge waveguide (RW) for lateral waveguiding with a ridge width of 3 µm and a cavity length of 1.5 mm. Time resolved investigations show, depending on the amplitude of the current pulses, that the optical power exhibits different types of oscillatory behavior during the pulses, accompanied by changes in the lateral near field intensity profiles and optical spectra. Three different types of instabilities can be distinguished: mode beating with frequencies between 25 GHz and 30 GHz, switching between different lateral intensity profiles with a frequency of 0.4 GHz and self-sustained oscillations with a frequency of 4 GHz. The investigations are of great relevance for the utilization of gain-switched DFB-RW lasers as seed lasers for fiber laser systems and in other applications, which require a high optical power.

  1. Low Voltage Current Mode Switched-Current-Mirror Mixer

    Directory of Open Access Journals (Sweden)

    Chunhua Wang

    2009-09-01

    Full Text Available A new CMOS active mixer topology can operate at 1 V supply voltage by use of SCM (switched currentmirror. Such current-mode mixer requires less voltage headroom with good linearization. Mixing is achieved with four improved current mirrors, which are alternatively activated. For ideal switching, the operation is equivalent to a conventional active mixer. This paper analyzes the performance of the SCM mixer, in comparison with the conventional mixer, demonstrating competitive performance at a lower supply voltage. Moreover, the new mixer’s die, without any passive components, is very small, and the conversion gain is easy to adjust. An experimental prototype was designed and simulated in standard chartered 0.18μm RF CMOS Process with Spectre in Cadence Design Systems. Experimental results show satisfactory mixer performance at 2.4 GHz.

  2. High current and high power superconducting rectifiers

    International Nuclear Information System (INIS)

    Kate, H.H.J. ten; Bunk, P.B.; Klundert, L.J.M. van de; Britton, R.B.

    1981-01-01

    Results on three experimental superconducting rectifiers are reported. Two of them are 1 kA low frequency flux pumps, one thermally and magnetically switched. The third is a low-current high-frequency magnetically switched rectifier which can use the mains directly. (author)

  3. Subnanosecond, high voltage photoconductive switching in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Druce, R.L.; Pocha, M.D.; Griffin, K.L. (Lawrence Livermore National Lab., CA (USA)); O' Bannon, B.J. (Rockwell International Corp., Anaheim, CA (USA))

    1990-01-01

    We are conducting research on the switching properties of photoconductive materials to explore their potential for generating high-power microwaves (HPM) and for high rep-rate switching. We have investigated the performance of Gallium Arsenide (GaAs) in linear mode (the conductivity of the device follows the optical pulse) as well as an avalanche-like mode (the optical pulse only controls switch closing). Operating in the linear mode, we have observed switch closing times of less than 200 ps with a 100 ps duration laser pulse and opening times of less than 400 ps at several kV/cm fields using neutron irradiated GaAs. In avalanche and lock-on modes, high fields are switched with lower laser pulse energies, resulting in higher efficiencies; but with measurable switching delay and jitter. We are currently investigating both large area (1 cm{sup 2}) and small area (<1 mm{sup 2}) switches illuminated by AlGaAs laser diodes at 900 nm and Nd:YAG lasers at 1.06 {mu}m.

  4. Subnanosecond, high-voltage photoconductive switching in GaAs

    Science.gov (United States)

    Druce, Robert L.; Pocha, Michael D.; Griffin, Kenneth L.; O'Bannon, Jim

    1991-03-01

    We are conducting research on the switching properties of photoconductive materials to explore their potential for generating highpower microwaves (HPM) and for high reprate switching. We have investigated the performance of Gallium Arsenide (GaAs) in linear mode (the conductivity of the device follows the optical pulse) as well as an avalanchelike mode (the optical pulse only controls switch closing) . Operating in the unear mode we have observed switch closing times of less than 200 Ps with a 100 ps duration laser pulse and opening times of less than 400 ps at several kV/cm fields using neutron irradiated GaAs. In avalanche and lockon modes high fields are switched with lower laser pulse energies resulting in higher efficiencies but with measurable switching delay and jitter. We are currently investigating both large area (1 cm2) and small area 1 mm2) switches illuminated by AlGaAs laser diodes at 900 nm and Nd:YAG lasers at 1. 06 tim.

  5. Low-profile high-voltage compact gas switch

    International Nuclear Information System (INIS)

    Goerz, D.A.; Wilson, M.J.; Speer, R.D.

    1997-01-01

    This paper discusses the development and testing of a low-profile, high-voltage, spark-gap switch designed to be closely coupled with other components into an integrated high-energy pulsed-power source. The switch is designed to operate at 100 kV using SF6 gas pressurized to less than 0.7 MPa. The volume of the switch cavity region is less than 1.5 cm3, and the field stress along the gas-dielectric interface is as high as 130 kV/cm. The dielectric switch body has a low profile that is only I -cm tall at its greatest extent and nominally 2-mm thick over most of its area. This design achieves a very low inductance of less than 5 nH, but results in field stresses exceeding 500 kV/cm in the dielectric material. Field modeling was done to determine the appropriate shape for the highly stressed insulator and electrodes, and special manufacturing techniques were employed to mitigate the usual mechanisms that induce breakdown and failure in solid dielectrics. Static breakdown tests verified that the switch operates satisfactorily at 100 kV levels. The unit has been characterized with different shaped electrodes having nominal gap spacings of 2.0, 2.5, and 3.0 mm. The relationship between self-break voltage and operating pressure agrees well with published data on gas properties, accounting for the field enhancements of the electrode shapes being used. Capacitor discharge tests in a low inductance test fixture exhibited peak currents up to 25 kA with characteristic frequencies of the ringdown circuit ranging from 10 to 20 MHz. The ringdown waveforms and scaling of measured parameters agree well with circuit modeling of the switch and test fixture. Repetitive operation has been demonstrated at moderate rep-rates up to 15 Hz, limited by the power supply being used. Preliminary tests to evaluate lifetime of the compact switch assembly have been encouraging. In one case, after more than 7,000 high-current ringdown tests with approximately 30 C of total charge transferred, the

  6. Micromagnetic Simulation of Strain-Assisted Current-Induced Magnetization Switching

    Directory of Open Access Journals (Sweden)

    H. B. Huang

    2016-01-01

    Full Text Available We investigated the effect of substrate misfit strain on the current-induced magnetization switching in magnetic tunnel junctions by combining micromagnetic simulation with phase-field microelasticity theory. Our results indicate that the positive substrate misfit strain can decrease the critical current density of magnetization switching by pushing the magnetization from out-of-plane to in-plane directions, while the negative strain pushes the magnetization back to the out-of-plane directions. The magnetic domain evolution is obtained to demonstrate the strain-assisted current-induced magnetization switching.

  7. A graphite based STT-RAM cell with reduction in switching current

    International Nuclear Information System (INIS)

    Varghani, Ali; Peiravi, Ali

    2015-01-01

    Spin Transfer Torque Random Access Memory (STT-RAM) is a serious candidate for “universal memory” because of its non-volatility, fast access time, high density, good scalability, high endurance and relatively low power dissipation. However, problems with low write speed and large write current are important existing challenges in STT-RAM design and there is a tradeoff between them and data retention time. In this study, a novel STT-RAM cell structure which uses perfect graphite based Magnetic Tunnel Junction (MTJ) is proposed. First, the cross-section of the structure is selected to be an ellipse of 45 nm and 180 nm dimensions and a six-layer graphite is used as tunnel barrier. By passing a lateral current with a short pulse width (before applying STT current and independent of it) through four middle graphene layers of the tunnel barrier, a 27% reduction in the amplitude of the switching current (for fast switching time of 2 ns) or a 58% reduction in its pulse width is achieved without any reduction in data retention time. Finally, the effect of downscaling of technology on the proposed structure is evaluated. A reduction of 31.6% and 9% in switching current is achieved for 90 and 22 nm cell width respectively by passing sufficient current (100 µA with 0.1 ns pulse width) through the tunnel barrier. Simulations are done using Object Oriented Micro Magnetic Framework (OOMMF). - Highlights: • A new STT-RAM cell structure which uses perfect graphite based MTJ is proposed. • The amplitude of the switching current or its pulsewidth can be reduced without any sacrifice of data retention time. • The proposed design is down-scalable from 90 nm to 22 nm. • Micromagnetic simulations are done with OOMMF

  8. Current measurement method for characterization of fast switching power semiconductors with Silicon Steel Current Transformer

    DEFF Research Database (Denmark)

    Li, Helong; Beczkowski, Szymon; Munk-Nielsen, Stig

    2015-01-01

    This paper proposes a novel current measurement method with Silicon Steel Current Transformer (SSCT) for the characterization of fast switching power semiconductors. First, the existing current sensors for characterization of fast switching power semiconductors are experimentally evaluated...

  9. A Digital Hysteresis Current Control for Half-Bridge Inverters with Constrained Switching Frequency

    Directory of Open Access Journals (Sweden)

    Triet Nguyen-Van

    2017-10-01

    Full Text Available This paper proposes a new robustly adaptive hysteresis current digital control algorithm for half-bridge inverters, which plays an important role in electric power, and in various applications in electronic systems. The proposed control algorithm is assumed to be implemented on a high-speed Field Programmable Gate Array (FPGA circuit, using measured data with high sampling frequency. The hysteresis current band is computed in each switching modulation period based on both the current error and the negative half switching period during the previous modulation period, in addition to the conventionally used voltages measured at computation instants. The proposed control algorithm is derived by solving the optimization problem—where the switching frequency is always constrained at below the desired constant frequency—which is not guaranteed by the conventional method. The optimization problem also keeps the output current stable around the reference, and minimizes power loss. Simulation results show good performances of the proposed algorithm compared with the conventional one.

  10. Streamer model for high voltage water switches

    International Nuclear Information System (INIS)

    Sazama, F.J.; Kenyon, V.L. III

    1979-01-01

    An electrical switch model for high voltage water switches has been developed which predicts streamer-switching effects that correlate well with water-switch data from Casino over the past four years and with switch data from recent Aurora/AMP experiments. Preclosure rounding and postclosure resistive damping of pulseforming line voltage waveforms are explained in terms of spatially-extensive, capacitive-coupling of the conducting streamers as they propagate across the gap and in terms of time-dependent streamer resistance and inductance. The arc resistance of the Casino water switch and of a gas switch under test on Casino was determined by computer fit to be 0.5 +- 0.1 ohms and 0.3 +- 0.06 ohms respectively, during the time of peak current in the power pulse. Energy lost in the water switch during the first pulse is 18% of that stored in the pulseforming line while similar energy lost in the gas switch is 11%. The model is described, computer transient analyses are compared with observed water and gas switch data and the results - switch resistance, inductance and energy loss during the primary power pulse - are presented

  11. Ultra Low Voltage Class AB Switched Current Memory Cells Based on Floating Gate Transistors

    DEFF Research Database (Denmark)

    Mucha, Igor

    1999-01-01

    current memory cells were designed using a CMOS process with threshold voltages V-T0n = \\V-T0p\\ = 0.9 V for the n- and p-channel devices. Both hand calculations and PSPICE simulations showed that the designed example switched current memory cell allowed a maximum signal range better than +/-18 mu......A proposal for a class AB switched current memory cell, suitable for ultra-low-voltage applications is presented. The proposal employs transistors with floating gates, allowing to build analog building blocks for ultralow supply voltage operation also in CMOS processes with high threshold voltages....... This paper presents the theoretical basis for the design of "floating-gate'' switched current memory cells by giving a detailed description and analysis of the most important impacts degrading the performance of the cells. To support the theoretical assumptions circuits based on "floating-gate'' switched...

  12. Study of electron and ion fluxes in a microsecond plasma switch during current switch phase at power level of 0,2TW

    International Nuclear Information System (INIS)

    Anan'in, P.S.; Bystritskij, V.M.; Karpov, V.B.; Krasik, Ya.E.; Lisitsin, I.V.; Sinebryukhov, A.A.

    1991-01-01

    Results of experimental study of dynamics of electron and ion losses in a microsecond plasma switch (PS), carring the short-circuited inductance load and operating with open potential electrode, are presented. Investigations were carried out at 'DUBL' microsecond generator with stored energy of 56 kJ and 300 kA current amplitude in inductive storage. The investigations showed that primary channel of energy losses, limiting microsecond plasma switch impedance, are energy losses: they constitute 70% of all losses under inductive load and 30% during operation with an open cathode. It was shown that ion current in PS attains its peak value by the end of conductivity phase and it does not increase in switch phase. With an open cathode, PS impedance is defined by an electron beam, forming during current switch phase and propagating towards external electrode end. In this high-current electron beam H + ions, accelerated up to 3.5-4.2 MeV energy, and outcoming from PS plasma boundary, were detected

  13. Switching a Perpendicular Ferromagnetic Layer by Competing Spin Currents

    Science.gov (United States)

    Ma, Qinli; Li, Yufan; Gopman, D. B.; Kabanov, Yu. P.; Shull, R. D.; Chien, C. L.

    2018-03-01

    An ultimate goal of spintronics is to control magnetism via electrical means. One promising way is to utilize a current-induced spin-orbit torque (SOT) originating from the strong spin-orbit coupling in heavy metals and their interfaces to switch a single perpendicularly magnetized ferromagnetic layer at room temperature. However, experimental realization of SOT switching to date requires an additional in-plane magnetic field, or other more complex measures, thus severely limiting its prospects. Here we present a novel structure consisting of two heavy metals that delivers competing spin currents of opposite spin indices. Instead of just canceling the pure spin current and the associated SOTs as one expects and corroborated by the widely accepted SOTs, such devices manifest the ability to switch the perpendicular CoFeB magnetization solely with an in-plane current without any magnetic field. Magnetic domain imaging reveals selective asymmetrical domain wall motion under a current. Our discovery not only paves the way for the application of SOT in nonvolatile technologies, but also poses questions on the underlying mechanism of the commonly believed SOT-induced switching phenomenon.

  14. A graphite based STT-RAM cell with reduction in switching current

    Science.gov (United States)

    Varghani, Ali; Peiravi, Ali

    2015-10-01

    Spin Transfer Torque Random Access Memory (STT-RAM) is a serious candidate for "universal memory" because of its non-volatility, fast access time, high density, good scalability, high endurance and relatively low power dissipation. However, problems with low write speed and large write current are important existing challenges in STT-RAM design and there is a tradeoff between them and data retention time. In this study, a novel STT-RAM cell structure which uses perfect graphite based Magnetic Tunnel Junction (MTJ) is proposed. First, the cross-section of the structure is selected to be an ellipse of 45 nm and 180 nm dimensions and a six-layer graphite is used as tunnel barrier. By passing a lateral current with a short pulse width (before applying STT current and independent of it) through four middle graphene layers of the tunnel barrier, a 27% reduction in the amplitude of the switching current (for fast switching time of 2 ns) or a 58% reduction in its pulse width is achieved without any reduction in data retention time. Finally, the effect of downscaling of technology on the proposed structure is evaluated. A reduction of 31.6% and 9% in switching current is achieved for 90 and 22 nm cell width respectively by passing sufficient current (100 μA with 0.1 ns pulse width) through the tunnel barrier. Simulations are done using Object Oriented Micro Magnetic Framework (OOMMF).

  15. A Novel Application of Zero-Current-Switching Quasiresonant Buck Converter for Battery Chargers

    Directory of Open Access Journals (Sweden)

    Kuo-Kuang Chen

    2011-01-01

    Full Text Available The main purpose of this paper is to develop a novel application of a resonant switch converter for battery chargers. A zero-current-switching (ZCS converter with a quasiresonant converter (QRC was used as the main structure. The proposed ZCS dc–dc battery charger has a straightforward structure, low cost, easy control, and high efficiency. The operating principles and design procedure of the proposed charger are thoroughly analyzed. The optimal values of the resonant components are computed by applying the characteristic curve and electric functions derived from the circuit configuration. Experiments were conducted using lead-acid batteries. The optimal parameters of the resonance components were determined using the load characteristic curve diagrams. These values enable the battery charger to turn on and off at zero current, resulting in a reduction of switching losses. The results of the experiments show that when compared with the traditional pulse-width-modulation (PWM converter for a battery charger, the buck converter with a zero- current-switching quasiresonant converter can lower the temperature of the activepower switch.

  16. A Switched-Capacitor Based High Conversion Ratio Converter for Renewable Energy Applications

    DEFF Research Database (Denmark)

    Li, Kerui; Yin, Zhijian; Yang, Yongheng

    2017-01-01

    A high step-up switched-capacitor based converter is proposed in this paper. The proposed converter features high conversion ratio, low voltage stress and continuous input current, which makes it very suitable for renewable energy applications like photovoltaic systems. More importantly...... voltage gain, low voltage stress on the switches, continuous input current, and relatively high efficiency....

  17. Iaverage current mode (ACM) control for switching power converters

    OpenAIRE

    2014-01-01

    Providing a fast current sensor direct feedback path to a modulator for controlling switching of a switched power converter in addition to an integrating feedback path which monitors average current for control of a modulator provides fast dynamic response consistent with system stability and average current mode control. Feedback of output voltage for voltage regulation can be combined with current information in the integrating feedback path to limit bandwidth of the voltage feedback signal.

  18. High voltage disconnect switch position monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Crampton, S W

    1983-08-01

    Unreliable position indication on high-voltage (HV) disconnect switches can result in equipment damage worth many times the cost of a disconnect switch. The benefits and limitations of a number of possible methods of reliably monitoring HV disconnect switches are assessed. Several methods of powering active devices at HV are noted. It is concluded that the most reliable way of monitoring switch position at reasonable cost would use a passive hermetically-sealed blade-position sensor located at HV, with a fibre-optic link between HV and ground. Separate sensors would be used for open and closed position indication. For maximum reliability the fibre-optic link would continue into the relay building. A passive magnetically actuated fibre-optic sensor has been built which demonstrates the feasibility of the concept. The sensor monitors blade position relative to the jaws in three dimensions with high resolution. A design for an improved passive magneto-optic sensor has significantly lower optical losses, allowing a single fibre-optic loop and 3 sensors to monitor closure of all phases of a disconnect switch. A similar loop would monitor switch opening. The improved sensor has a solid copper housing to provide greater immunity to fault currents, and to protect it from the environment and from physical damage. Two methods of providing a protected path for fibre-optics passing from HV to ground are proposed, one using a hollow porcelain switch-support insulator and the other using an additional small-diameter polymer insulator with optical fibres imbedded in its fibreglass core. A number of improvements are recommended which can be made to existing switches to increase their reliability. 16 refs., 13 figs., 1 tab.

  19. Leakage Current Suppression with A Novel Six-Switch Photovoltaic Grid-Connected Inverter

    DEFF Research Database (Denmark)

    Wei, Baoze; Guo, Xiaoqiang; Guerrero, Josep M.

    2015-01-01

    In order to solve the problem of the leakage current in non-isolated photovoltaic (PV) systems, a novel six-switch topology and control strategy are proposed in this paper. The inductor-bypass strategy solves the common-mode voltage limitation of the conventional six-switch topology in case...... of unmatched inductances. And the stray capacitor voltage of the non-isolated photovoltaic system is free of high frequency ripples. Theoretical analysis and simulation are carried out to verify the proposed topology and its control strategy. Results indicate that the leakage current suppression can...

  20. Advances in high voltage power switching with GTOs

    International Nuclear Information System (INIS)

    Podlesak, T.F.

    1990-01-01

    The control of high voltage at high power, particularly opening switches, has been difficult in the past. Using gate turnoff thyristors (GTOs) arranged in series enables large currents to be switched at high voltage. The authors report a high voltage opening switch has been successfully demonstrated. This switch uses GTOs in series and successfully operates at voltages higher than the rated voltage of the individual devices. It is believed that this is the first time this has been successfully demonstrated, in that GTOs have been operated in series before, but always in a manner as to not exceed the voltage capability of the individual devices. In short, the devices have not worked together, sharing the voltage, but one device has been operated using several backup devices. Of particular interest is how well the individual devices share the voltage applied to them. Equal voltage sharing between devices is absolutely essential, in order to not exceed the voltage rating of any of the devices in the series chain. This is accomplished at high (microsecond) switching speeds. Thus, the system is useful for high frequency applications as well as high power, making for a flexible circuit system element. This demonstration system is rated at 5 KV and uses 1 KV devices. A larger 24 KV system is under design and will use 4.5 KV devices. In order to design the 24 KV switch, the safe operating area of the large devices must be known thoroughly

  1. Dynamic behavior of HTSC opening switch models controlled by short over-critical current pulses

    International Nuclear Information System (INIS)

    Agafonov, A.V.; Krastelev, E.G.; Voronin, V.S.

    1999-01-01

    We present results of experimental research of dynamical properties of thin films of YBa 2 Cu 3 O 7 HTSC-switch models under action of short overcritical current pulses to test this method of control of fast high-power opening switches for accelerator applications

  2. Micromagnetic analysis of geometrically controlled current-driven magnetization switching

    Directory of Open Access Journals (Sweden)

    O. Alejos

    2017-05-01

    Full Text Available The magnetization dynamics induced by current pulses in a pair of two “S-shaped” ferromagnetic elements, each one consisting on two oppositely tilted tapered spikes at the ends of a straight section, is theoretically studied by means of micromagnetic simulations. Our results indicate that the magnetization reversal is triggered by thermal activation, which assists the current-induced domain nucleation and the propagation of domain walls. The detailed analysis of the magnetization dynamics reveals that the magnetization switching is only achieved when a single domain wall is nucleated in the correct corner of the element. In agreement with recent experimental studies, the switching is purely dictated by the shape, being independent of the current polarity. The statistical study points out that successful switching is only achieved within a narrow range of the current pulse amplitudes.

  3. Low-temperature DC-contact piezoelectric switch operable in high magnetic fields

    CERN Document Server

    Kaltenbacher, T; Doser, M; Kellerbauer, A; Pribyl, W

    2013-01-01

    A piezoelectric single-pole single-throw (SPST) switch has been developed, since there is no satisfying commercial low-resistance, high current DC-contact RF switch available which is operable at 4.2K and in a high magnetic field of at least 0.5T. This piezoelectric switch shows very low insertion loss of less than -0.1dB within a bandwidth of 100MHz when operated at 4.2K. The switch could also be used to mechanically disconnect and connect electrodes or electrical circuits from one another.

  4. Low-temperature DC-contact piezoelectric switch operable in high magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Kaltenbacher, Thomas, E-mail: thomas.kaltenbacher@cern.ch [Physics and Accelerator Departments, CERN, 1211 Geneva 23 (Switzerland); Institute of Electronics, Graz University of Technology, Inffeldgasse 12, 8010 Graz (Austria); Caspers, Fritz; Doser, Michael [Physics and Accelerator Departments, CERN, 1211 Geneva 23 (Switzerland); Kellerbauer, Alban [Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg (Germany); Pribyl, Wolfgang [Institute of Electronics, Graz University of Technology, Inffeldgasse 12, 8010 Graz (Austria)

    2013-11-21

    A piezoelectric single-pole single-throw (SPST) switch has been developed, since there is no satisfying commercial low-resistance, high current DC-contact RF switch available which is operable at 4.2 K and in a high magnetic field of at least 0.5 T. This piezoelectric switch shows very low insertion loss of less than −0.1 dB within a bandwidth of 100 MHz when operated at 4.2 K. The switch could also be used to mechanically disconnect and connect electrodes or electrical circuits from one another.

  5. A Switched Capacitor Based AC/DC Resonant Converter for High Frequency AC Power Generation

    Directory of Open Access Journals (Sweden)

    Cuidong Xu

    2015-09-01

    Full Text Available A switched capacitor based AC-DC resonant power converter is proposed for high frequency power generation output conversion. This converter is suitable for small scale, high frequency wind power generation. It has a high conversion ratio to provide a step down from high voltage to low voltage for easy use. The voltage conversion ratio of conventional switched capacitor power converters is fixed to n, 1/n or −1/n (n is the switched capacitor cell. In this paper, A circuit which can provide n, 1/n and 2n/m of the voltage conversion ratio is presented (n is stepping up the switched capacitor cell, m is stepping down the switching capacitor cell. The conversion ratio can be changed greatly by using only two switches. A resonant tank is used to assist in zero current switching, and hence the current spike, which usually exists in a classical switching switched capacitor converter, can be eliminated. Both easy operation and efficiency are possible. Principles of operation, computer simulations and experimental results of the proposed circuit are presented. General analysis and design methods are given. The experimental result verifies the theoretical analysis of high frequency AC power generation.

  6. Leakage Current Suppression with A Novel Six-Switch Photovoltaic Grid-Connected Inverter

    OpenAIRE

    Wei, Baoze; Guo, Xiaoqiang; Guerrero, Josep M.; Savaghebi, Mehdi

    2015-01-01

    In order to solve the problem of the leakage current in non-isolated photovoltaic (PV) systems, a novel six-switch topology and control strategy are proposed in this paper. The inductor-bypass strategy solves the common-mode voltage limitation of the conventional six-switch topology in case of unmatched inductances. And the stray capacitor voltage of the non-isolated photovoltaic system is free of high frequency ripples. Theoretical analysis and simulation are carried out to verify the propos...

  7. Operation and Modulation of H7 Current Source Inverter with Hybrid SiC and Si Semiconductor Switches

    DEFF Research Database (Denmark)

    Wang, Weiqi; Gao, Feng; Yang, Yongheng

    2018-01-01

    This paper proposes an H7 current source inverter (CSI) consisting of a single parallel-connected silicon carbide (SiC) switch and a traditional silicon (Si) H6 CSI. The proposed H7 CSI takes the advantages of the SiC switch to maintain high efficiency, while significantly increasing the switching...... as an all-SiC-switch converter in terms of high performance and high efficiency with reduced DC inductance. It provides a cost-effective solution to addressing the efficiency issue of conventional CSI systems. Simulations and experiments are performed to validate the effectiveness of the proposed H7 CSI...

  8. Modelling switching-time effects in high-frequency power conditioning networks

    Science.gov (United States)

    Owen, H. A.; Sloane, T. H.; Rimer, B. H.; Wilson, T. G.

    1979-01-01

    Power transistor networks which switch large currents in highly inductive environments are beginning to find application in the hundred kilohertz switching frequency range. Recent developments in the fabrication of metal-oxide-semiconductor field-effect transistors in the power device category have enhanced the movement toward higher switching frequencies. Models for switching devices and of the circuits in which they are imbedded are required to properly characterize the mechanisms responsible for turning on and turning off effects. Easily interpreted results in the form of oscilloscope-like plots assist in understanding the effects of parametric studies using topology oriented computer-aided analysis methods.

  9. All-electric-controlled spin current switching in single-molecule magnet-tunnel junctions

    Science.gov (United States)

    Zhang, Zheng-Zhong; Shen, Rui; Sheng, Li; Wang, Rui-Qiang; Wang, Bai-Gen; Xing, Ding-Yu

    2011-04-01

    A single-molecule magnet (SMM) coupled to two normal metallic electrodes can both switch spin-up and spin-down electronic currents within two different windows of SMM gate voltage. Such spin current switching in the SMM tunnel junction arises from spin-selected single electron resonant tunneling via the lowest unoccupied molecular orbit of the SMM. Since it is not magnetically controlled but all-electrically controlled, the proposed spin current switching effect may have potential applications in future spintronics.

  10. GaN transistors on Si for switching and high-frequency applications

    Science.gov (United States)

    Ueda, Tetsuzo; Ishida, Masahiro; Tanaka, Tsuyoshi; Ueda, Daisuke

    2014-10-01

    In this paper, recent advances of GaN transistors on Si for switching and high-frequency applications are reviewed. Novel epitaxial structures including superlattice interlayers grown by metal organic chemical vapor deposition (MOCVD) relieve the strain and eliminate the cracks in the GaN over large-diameter Si substrates up to 8 in. As a new device structure for high-power switching application, Gate Injection Transistors (GITs) with a p-AlGaN gate over an AlGaN/GaN heterostructure successfully achieve normally-off operations maintaining high drain currents and low on-state resistances. Note that the GITs on Si are free from current collapse up to 600 V, by which the drain current would be markedly reduced after the application of high drain voltages. Highly efficient operations of an inverter and DC-DC converters are presented as promising applications of GITs for power switching. The high efficiencies in an inverter, a resonant LLC converter, and a point-of-load (POL) converter demonstrate the superior potential of the GaN transistors on Si. As for high-frequency transistors, AlGaN/GaN heterojuction field-effect transistors (HFETs) on Si designed specifically for microwave and millimeter-wave frequencies demonstrate a sufficiently high output power at these frequencies. Output powers of 203 W at 2.5 GHz and 10.7 W at 26.5 GHz are achieved by the fabricated GaN transistors. These devices for switching and high-frequency applications are very promising as future energy-efficient electronics because of their inherent low fabrication cost and superior device performance.

  11. CMOS switched current phase-locked loop

    NARCIS (Netherlands)

    Leenaerts, D.M.W.; Persoon, G.G.; Putter, B.M.

    1997-01-01

    The authors present an integrated circuit realisation of a switched current phase-locked loop (PLL) in standard 2.4 µm CMOS technology. The centre frequency is tunable to 1 MHz at a clock frequency of 5.46 MHz. The PLL has a measured maximum phase error of 21 degrees. The chip consumes

  12. Very high plasma switches. Basic plasma physics and switch technology

    International Nuclear Information System (INIS)

    Doucet, H.J.; Roche, M.; Buzzi, J.M.

    1988-01-01

    A review of some high power switches recently developed for very high power technology is made with a special attention to the aspects of plasma physics involved in the mechanisms, which determine the limits of the possible switching parameters

  13. High-frequency, three-phase current controller implementation in an FPGA

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, M.; Round, S. D.; Kolar, J. W.

    2008-07-01

    Three phase rectifiers with switching frequencies of 500 kHz or more require high speed current controllers. At such high switching frequencies analog controllers as well as high speed digital signal processing (DSP) systems have limited performance. In this paper, two high speed current controller implementations using two different field-programmable gate arrays (FPGA) - one for switching frequencies up to 1 MHz and one for switching frequencies beyond 1 MHz - are presented to overcome this performance limitation. Starting with the digital system design all the blocks of the signal chain, containing analog-to-digital (A/D) interface, digital controller implementation using HW-multipliers and implementation of a novel high speed, high resolution pulse width modulation (PWM) are discussed and compared. Final measurements verify the performance of the controllers. (author)

  14. A Novel Application of Zero-Current-Switching Quasiresonant Buck Converter for Battery Chargers

    OpenAIRE

    Kuo-Kuang Chen

    2011-01-01

    The main purpose of this paper is to develop a novel application of a resonant switch converter for battery chargers. A zero-current-switching (ZCS) converter with a quasiresonant converter (QRC) was used as the main structure. The proposed ZCS dc–dc battery charger has a straightforward structure, low cost, easy control, and high efficiency. The operating principles and design procedure of the proposed charger are thoroughly analyzed. The optimal values of the resonant components are compute...

  15. Method and system for a gas tube-based current source high voltage direct current transmission system

    Science.gov (United States)

    She, Xu; Chokhawala, Rahul Shantilal; Bray, James William; Sommerer, Timothy John; Zhou, Rui; Zhang, Di

    2017-08-29

    A high-voltage direct-current (HVDC) transmission system includes an alternating current (AC) electrical source and a power converter channel that includes an AC-DC converter electrically coupled to the electrical source and a DC-AC inverter electrically coupled to the AC-DC converter. The AC-DC converter and the DC-AC inverter each include a plurality of legs that includes at least one switching device. The power converter channel further includes a commutating circuit communicatively coupled to one or more switching devices. The commutating circuit is configured to "switch on" one of the switching devices during a first portion of a cycle of the H-bridge switching circuits and "switch off" the switching device during a second portion of the cycle of the first and second H-bridge switching circuits.

  16. Magnetization switching driven by spin-transfer-torque in high-TMR magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Aurelio, D.; Torres, L.; Finocchio, G.

    2009-01-01

    This paper presents a numerical study of magnetization switching driven by spin-polarized current in high-TMR magnetic tunnel junctions (TMR>100%). The current density distribution throughout the free-layer is computed dynamically, by modeling the ferromagnet/insulator/ferromagnet trilayer as a series of parallel resistances. The validity of the main hypothesis, which states that the current flows perpendicular to the sample plane, has been verified by numerically solving the Poisson equation. Our results show that the nonuniform current density distribution is a source of asymmetry to the switching process. Furthermore, we observe that the reversal mechanisms are characterized by well-defined localized pre-switching oscillation modes.

  17. Current switching ratio optimization using dual pocket doping engineering

    Science.gov (United States)

    Dash, Sidhartha; Sahoo, Girija Shankar; Mishra, Guru Prasad

    2018-01-01

    This paper presents a smart idea to maximize current switching ratio of cylindrical gate tunnel FET (CGT) by growing pocket layers in both source and channel region. The pocket layers positioned in the source and channel of the device provides significant improvement in ON-state and OFF-state current respectively. The dual pocket doped cylindrical gate TFET (DP-CGT) exhibits much superior performance in term of drain current, transconductance and current ratio as compared to conventional CGT, channel pocket doped CGT (CP-CGT) and source pocket doped CGT (SP-CGT). Further, the current ratio has been optimized w.r.t. width and instantaneous position both the pocket layers. The much improved current ratio and low power consumption makes the proposed device suitable for low-power and high speed application. The simulation work of DP-CGT is done using 3D Sentaurus TCAD device simulator from Synopsys.

  18. Current-Driven Switch-Mode Audio Power Amplifiers

    DEFF Research Database (Denmark)

    Knott, Arnold; Buhl, Niels Christian; Andersen, Michael A. E.

    2012-01-01

    The conversion of electrical energy into sound waves by electromechanical transducers is proportional to the current through the coil of the transducer. However virtually all audio power amplifiers provide a controlled voltage through the interface to the transducer. This paper is presenting...... a switch-mode audio power amplifier not only providing controlled current but also being supplied by current. This results in an output filter size reduction by a factor of 6. The implemented prototype shows decent audio performance with THD + N below 0.1 %....

  19. Gas tube-switched high voltage DC power converter

    Science.gov (United States)

    She, Xu; Bray, James William; Sommerer, Timothy John; Chokhawala, Rahul

    2018-05-15

    A direct current (DC)-DC converter includes a transformer and a gas tube-switched inverter circuit. The transformer includes a primary winding and a secondary winding. The gas tube-switched inverter circuit includes first and second inverter load terminals and first and second inverter input terminals. The first and second inverter load terminals are coupled to the primary winding. The first and second inverter input terminals are couplable to a DC node. The gas tube-switched inverter circuit further includes a plurality of gas tube switches respectively coupled between the first and second inverter load terminals and the first and second inverter input terminals. The plurality of gas tube switches is configured to operate to generate an alternating current (AC) voltage at the primary winding.

  20. Very High Frequency Switch-Mode Power Supplies

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre

    The importance of technology and electronics in our daily life is constantly increasing. At the same time portability and energy efficiency are currently some of the hottest topics. This creates a huge need for power converters in a compact form factor and with high efficiency, which can supply...... these electronic devices. This calls for new technologies in order to miniaturize the power electronics of today. One way to do this is by increasing the switching frequency dramatically and develop very high frequency switch mode power supplies. If these converters can be designed to operate efficiently, a huge...... size, weight and cost reduction can be achieved due to the smaller energy storing elements needed at these frequencies. The research presented in this thesis focuses on exactly this. First various technologies for miniaturization of power supplies are studied, e.g. piezo electric transformers, wide...

  1. Power quality improvement in highly varying loads using thyristor-switched capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Poshtan, M. [Petroleum Inst., Abu Dhabi (United Arab Emirates). Dept. of Electrical Engineering; Mokhtari, H.; Esmaeili, A. [Sharif Univ. of Technology, Tehran (Iran, Islamic Republic of). Dept. of Electrical Engineering

    2007-07-01

    Ordinary contactor-based-capacitor (CBC) banks may not be able to response quickly enough in highly varying electrical loads such as welding machines or arc furnace loads. Thyristor-switched capacitor (TSC) banks are therefore used to compensate for reactive power of highly varying loads. In this paper, the performance of a TSC was compared to CBC banks. The 2 systems, were also compared in terms of energy saving in transmission systems. Simulations carried out using PSCAD/EMTDC software showed that there was a considerable difference in the performance of the 2 systems. The shortcomings of existing CBC systems include slow response of mechanical switching systems; problem of switching more than one bank into the system; and, voltage/current transients during on-off switching. 3 refs., 6 tabs., 14 figs.

  2. Voltage-Controlled Square/Triangular Wave Generator with Current Conveyors and Switching Diodes

    Directory of Open Access Journals (Sweden)

    Martin Janecek

    2012-12-01

    Full Text Available A novel relaxation oscillator based on integrating the diode-switched currents and Schmitt trigger is presented. It is derived from a known circuit with operational amplifiers where these active elements were replaced by current conveyors. The circuit employs only grounded resistances and capacitance and is suitable for high frequency square and triangular signal generation. Its frequency can be linearly and accurately controlled by voltage that is applied to a high-impedance input. Computer simulation with a model of a manufactured conveyor prototype verifies theoretic assumptions.

  3. Digital control of high-frequency switched-mode power converters

    CERN Document Server

    Corradini, Luca; Mattavelli, Paolo; Zane, Regan

    This book is focused on the fundamental aspects of analysis, modeling and design of digital control loops around high-frequency switched-mode power converters in a systematic and rigorous manner Comprehensive treatment of digital control theory for power converters Verilog and VHDL sample codes are provided Enables readers to successfully analyze, model, design, and implement voltage, current, or multi-loop digital feedback loops around switched-mode power converters Practical examples are used throughout the book to illustrate applications of the techniques developed Matlab examples are also

  4. High explosive driven plasma opening switches

    International Nuclear Information System (INIS)

    Greene, A.E.; Bowers, R.L.; Brownell, J.H.; Goforth, J.H.; Oliphant, T.A.; Weiss, D.L.

    1983-01-01

    A joint theoretical and experimental effort is underway to understand and improve upon the performance of high explosive driven plasma opening switches such as those first described by Pavlovskii et al. We have modeled these switches in both planar and cylindrical geometry using a one dimensional Lagrangian MHD code. This one-dimensional analysis is now essentially complete. It has shown that simple, one-dimensional, compression of the current-carrying channel can explain the observed resistance increases during the time of flight of the HE detonation products. Our calculations imply that ionization plays an important role as an energy sink and the performance of these switches might be improved by a judicious choice of gases. We also predict improved performance by lowering the pressure in the plasma channel. The bulk of our experimental effort to date has been with planar switches. We have worked with current densities of 0.25 to 0.4 MA/cm and have observed resistance increases of 40 to 60 mΩ. Significant resistance increases are observed later than the time of flight of the HE detonation products. We suggest that these resistance increases are due to mixing between the hot plasma and the relatively cooler detonation products. Such mixing is not included in the 1-D, Lagrangian code. We are presently beginning a computational effort with a 2-D Eulerian code. The status of this effort is discussed. Experimentally we have designed an apparatus that will permit us to test the role of different gases and pressures. This system is also in a planar geometry, but the plasma channel is doughnut shaped, permitting us to avoid edge effects associated with the planar rectangular geometry. The first experiments with this design are quite encouraging and the status of this effort is also discussed

  5. Investigation of electrically exploded large area foil for current switching

    International Nuclear Information System (INIS)

    Chernyshev, V.K.; Boyko, A.M.; Kostyukov, V.N.; Kuzyaev, A.I.; Kulagin, A.A.; Mamyshev, V.I.; Mezhevov, A.B.; Nechaev, A.I.; Petrukhin, A.A.; Protasov, M.S.; Shevtsov, V.I.; Yakubov, V.B.

    1990-01-01

    The possibility of microsecond ∼40 MA current switching from EMG into a quasiconstant inductive load by an electrically exploded foil is investigated. The copper foil of large area, S ∼ 10 4 cm 2 , was placed between thin-walled insulators into a coaxial transmission line (TL). This paper shows a conceptual device scheme. To feed a foil opening switch (FOS), a disc explosive magnetic generator (DEMG) with 20 μs current rise time was employed. An inductive coaxial load was connected to a FOS at a moment, that was close to the foil vaporization start by means of an axisymmetric explosive current commutator (ECC)

  6. Current-induced switching of magnetic molecules on topological insulator surfaces

    Science.gov (United States)

    Locane, Elina; Brouwer, Piet W.

    2017-03-01

    Electrical currents at the surface or edge of a topological insulator are intrinsically spin polarized. We show that such surface or edge currents can be used to switch the orientation of a molecular magnet weakly coupled to the surface or edge of a topological insulator. For the edge of a two-dimensional topological insulator as well as for the surface of a three-dimensional topological insulator the application of a well-chosen surface or edge current can lead to a complete polarization of the molecule if the molecule's magnetic anisotropy axis is appropriately aligned with the current direction. For a generic orientation of the molecule a nonzero but incomplete polarization is obtained. We calculate the probability distribution of the magnetic states and the switching rates as a function of the applied current.

  7. Experimental and theoretical studies of a high temperature cesium-barium tacitron, with application to low voltage-high current inversion

    International Nuclear Information System (INIS)

    Murray, C.S.; El-Genk, M.S.

    1994-02-01

    A low voltage/high current switch refer-red as ''Cs-Ba tacitron'' is studied for use as a dc to ac inverter in high temperature and/or ionizing radiation environments. The operational characteristics of the Cs-Ba tacitron as a switch were investigated experimentally in three modes: (a) breakdown mode, (b) I-V mode, and (c) current modulation mode. Operation parameters measured include switching frequencies up to 20 kHz, hold-off voltages up to 200 V, current densities in excess of 15 A/CM 2 , switch power density of 1 kW/cm 2 , and a switching efficiency in excess of 90 % at collector voltages greater than 30 V. Also, if the discharge current is circuit limited to a value below the maximum thermal emission current density, the voltage drop is constant and below 3 V

  8. Modeling of plasma flow switches at low, intermediate and high energies

    International Nuclear Information System (INIS)

    Bowers, R.L.; Brownell, J.H.; Greene, A.E.; Peterson, D.L.; Roderick, N.; Turchi, P.

    1992-01-01

    Inductively stored pulsed power technology has been used over the past thirty years to produce multi-megaamp currents to implode low inductance loads and produce x-radiation. Because of the large difference in timescales for the delivery of magnetic energy to the load and the desire for high power x-radiation output (short timescale for the implosion), most inductively stored systems require at least one opening switch. The design and understanding of fast, efficient opening switches for multi-megaamp systems represents a long standing problem in pulsed power research. The Los Alamos Foil Implosion Project uses inductively stored magnetic energy to implode thin metallic liners. A plasma flow switch (PFS) has been investigated as the final pulse shaping step for this systems. The PFS consists of a wire array and a barrier foil located upstream from the load region. Several stages can be identified in the performance of the plasma flow switch. These are: (1) the vaporization of the wire array; (2) the assembly of the initiated plasma on tie barrier foil to form the switch plasma; (3) the motion of the switch plasma down the coaxial barrel; and (4) current switching to the load (the actual switching stage). The fourth stage affects the switch's efficiency, as well as the quality of the load implosion. Instabilities may develop during any of these four stages, and their presence may seriously degrade the structure of the switch plasma. Two primary criteria may be used to characterize good switching. The first is switching efficiency. A second criterion is transferred to the load during or after switching. This paper summarizes the computational design of the PFS experiments carried out on Pegasus 1. We conclude by considering the implications of these results for the design of a PFS for the higher energy regime (Procyon) regime

  9. Soft controller switching technique to minimize the torque and current pulsations of a SCIM during its reswitching

    International Nuclear Information System (INIS)

    Larik, A.S.

    2010-01-01

    The direct-on-line starting of induction motor draws heavy current and to limit this Inrush current to a safe level normally a star-delta switch is used. However, the switching over from star to delta causes over current transients and this leads to torque pulsations. Therefore, in this paper the current and torque pulsations developed during the switching process are focused and a soft-switched controller is devised to minimize the re-closure transient currents and torque pulsations during star-delta switching of induction motor. The designed system can readily handles the sensing of favorable conditions of re closure of a switched-off running induction motor and it minimizes the inrush current and hence the pulsations of torque of all types of induction motors, whether, single-phase or three phase. An investigation is made into the transient currents and pulsation torques generated due to opening the circuit of a running induction motor and the switching pattern of star-delta switching. The re-switching control scheme for the induction motor is practically tested in the laboratory with and without soft controller. (author)

  10. High-current railgap studies

    Science.gov (United States)

    Druce, R.; Gordon, L.; Hofer, W.; Wilson, M.

    1983-06-01

    Characteristics of a 40-kV, 750-kA, multichannel rail gap are presented. The gap is a three electrode, field distortion triggered design, with a total switch inductance of less than 10 nH. At maximum ratings, the gap typically switches 10 C per shot, at 700 kA, with a jitter of less than 2 ns. Channel evolution and current division were studied on image converter streak photographs. Transient gas pressure measurements were made to investigate the arc generated shocks and to detect single channel failure. Channel current sharing and simultaneity are described and their effects on the switch inductance in the channel current sharing and erosion measurements are discussed.

  11. Phase shift PWM with double two-switch bridge for high power capacitor charging

    International Nuclear Information System (INIS)

    Karandikar, U.S.; Singh, Yashpal; Thakurta, A.C.

    2013-01-01

    Pulse power supply systems working at higher voltage and high repetition rate demands for higher power from capacitor chargers. Capacitor charging requirement become more challenging in such cases. In pulse power circuits, energy storage capacitor should be charged to its desired voltage before the next switching occurs. It is discharged within a small time, delivering large pulse power. A capacitor charger has to work with wide load variation repeatedly. Many schemes are used for this purpose. The proposed scheme aims at reducing stresses on switches by reducing peak current and their evils. A high voltage power supply is designed for capacitor charging. The proposed scheme is based on a Phase-Shifted PWM without using any extra component to achieve soft switching. Indirect constant average current capacitor charging is achieved with a simple control scheme. A double two-switch bridge is proposed to enhance reliability. Power supply has been developed to charge a capacitor of 50 μF to 2.5 kV at 25 Hz. (author)

  12. Current induced magnetization switching in Co/Cu/Ni-Fe nanopillar with orange peel coupling

    International Nuclear Information System (INIS)

    Aravinthan, D.; Daniel, M.; Sabareesan, P.

    2015-01-01

    The impact of orange peel coupling on spin current induced magnetization switching in a Co/Cu/Ni-Fe nanopillar device is investigated by solving the switching dynamics of magnetization of the free layer governed by the Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equation. The value of the critical current required to initiate the magnetization switching is calculated analytically by solving the LLGS equation and verified the same through numerical analysis. Results of numerical simulation of the LLGS equation using Runge-Kutta fourth order procedure shows that the presence of orange peel coupling between the spacer and the ferromagnetic layers reduces the switching time of the nanopillar device from 67 ps to 48 ps for an applied current density of 4 × 10 12 Am −2 . Also, the presence of orange peel coupling reduces the critical current required to initiate switching, and in this case, from 1.65 × 10 12 Am −2 to 1.39 × 10 12 Am −2

  13. High-current railgap studies

    Energy Technology Data Exchange (ETDEWEB)

    Druce, R.; Gordon, L.; Hofer, W.; Wilson, M.

    1983-06-03

    Characteristics of a 40-kV, 750-kA, multichannel rail gap are presented. The gap is a three electrode, field-distortion-triggered design, with a total switch inductance of less than 10 nH. At maximum ratings, the gap typically switches 10 C per shot, at 700 kA, with a jitter of less than 2 ns. Image-converter streak photographs were used to study channel evolution and current division. Transient gas-pressure measurements were made to investigate the arc generated shocks and to detect single channel failure. Channel current sharing and simultaneity are described and their effects on the switch inductance and lifetime are discussed. Lifetime tests of the rail gap were performed. Degradation in the channel current-sharing and erosion measurements are discussed.

  14. Hybrid switch for resonant power converters

    Science.gov (United States)

    Lai, Jih-Sheng; Yu, Wensong

    2014-09-09

    A hybrid switch comprising two semiconductor switches connected in parallel but having different voltage drop characteristics as a function of current facilitates attainment of zero voltage switching and reduces conduction losses to complement reduction of switching losses achieved through zero voltage switching in power converters such as high-current inverters.

  15. Adaptation of superconducting fault current limiter to high-speed reclosing

    International Nuclear Information System (INIS)

    Koyama, T.; Yanabu, S.

    2009-01-01

    Using a high temperature superconductor, we constructed and tested a model superconducting fault current limiter (SFCL). The superconductor might break in some cases because of its excessive generation of heat. Therefore, it is desirable to interrupt early the current that flows to superconductor. So, we proposed the SFCL using an electromagnetic repulsion switch which is composed of a superconductor, a vacuum interrupter and a by-pass coil, and its structure is simple. Duration that the current flow in the superconductor can be easily minimized to the level of less than 0.5 cycle using this equipment. On the other hand, the fault current is also easily limited by large reactance of the parallel coil. There is duty of high-speed reclosing after interrupting fault current in the electric power system. After the fault current is interrupted, the back-up breaker is re-closed within 350 ms. So, the electromagnetic repulsion switch should return to former state and the superconductor should be recovered to superconducting state before high-speed reclosing. Then, we proposed the SFCL using an electromagnetic repulsion switch which employs our new reclosing function. We also studied recovery time of the superconductor, because superconductor should be recovered to superconducting state within 350 ms. In this paper, the recovery time characteristics of the superconducting wire were investigated. Also, we combined the superconductor with the electromagnetic repulsion switch, and we did performance test. As a result, a high-speed reclosing within 350 ms was proven to be possible.

  16. Digital switched hydraulics

    Science.gov (United States)

    Pan, Min; Plummer, Andrew

    2018-06-01

    This paper reviews recent developments in digital switched hydraulics particularly the switched inertance hydraulic systems (SIHSs). The performance of SIHSs is presented in brief with a discussion of several possible configurations and control strategies. The soft switching technology and high-speed switching valve design techniques are discussed. Challenges and recommendations are given based on the current research achievements.

  17. Current induced magnetization switching in Co/Cu/Ni-Fe nanopillar with orange peel coupling

    Energy Technology Data Exchange (ETDEWEB)

    Aravinthan, D.; Daniel, M. [Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli - 620 024 (India); Sabareesan, P. [Centre for Nonlinear Science and Engineering, School of Electrical and Electronics Engineering, SASTRA University, Thanjavur - 613 401 (India)

    2015-07-15

    The impact of orange peel coupling on spin current induced magnetization switching in a Co/Cu/Ni-Fe nanopillar device is investigated by solving the switching dynamics of magnetization of the free layer governed by the Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equation. The value of the critical current required to initiate the magnetization switching is calculated analytically by solving the LLGS equation and verified the same through numerical analysis. Results of numerical simulation of the LLGS equation using Runge-Kutta fourth order procedure shows that the presence of orange peel coupling between the spacer and the ferromagnetic layers reduces the switching time of the nanopillar device from 67 ps to 48 ps for an applied current density of 4 × 10{sup 12}Am{sup −2}. Also, the presence of orange peel coupling reduces the critical current required to initiate switching, and in this case, from 1.65 × 10{sup 12}Am{sup −2} to 1.39 × 10{sup 12}Am{sup −2}.

  18. Noise Analysis of Switched-Current Circuits

    DEFF Research Database (Denmark)

    Jørgensen, Ivan Harald Holger; Bogason, Gudmundur

    1998-01-01

    The understanding of noise in analog sampled data systems is vital for the design of high resolution circuitry. In this paper a general description of sampled and held noise is presented. The noise calculations are verified by measurements on an analog delay line implemented using switched...

  19. Current-induced switching in a magnetic insulator

    Science.gov (United States)

    Avci, Can Onur; Quindeau, Andy; Pai, Chi-Feng; Mann, Maxwell; Caretta, Lucas; Tang, Astera S.; Onbasli, Mehmet C.; Ross, Caroline A.; Beach, Geoffrey S. D.

    2017-03-01

    The spin Hall effect in heavy metals converts charge current into pure spin current, which can be injected into an adjacent ferromagnet to exert a torque. This spin-orbit torque (SOT) has been widely used to manipulate the magnetization in metallic ferromagnets. In the case of magnetic insulators (MIs), although charge currents cannot flow, spin currents can propagate, but current-induced control of the magnetization in a MI has so far remained elusive. Here we demonstrate spin-current-induced switching of a perpendicularly magnetized thulium iron garnet film driven by charge current in a Pt overlayer. We estimate a relatively large spin-mixing conductance and damping-like SOT through spin Hall magnetoresistance and harmonic Hall measurements, respectively, indicating considerable spin transparency at the Pt/MI interface. We show that spin currents injected across this interface lead to deterministic magnetization reversal at low current densities, paving the road towards ultralow-dissipation spintronic devices based on MIs.

  20. Transient voltage sharing in series-coupled high voltage switches

    Directory of Open Access Journals (Sweden)

    Editorial Office

    1992-07-01

    Full Text Available For switching voltages in excess of the maximum blocking voltage of a switching element (for example, thyristor, MOSFET or bipolar transistor such elements are often coupled in series - and additional circuitry has to be provided to ensure equal voltage sharing. Between each such series element and system ground there is a certain parasitic capacitance that may draw a significant current during high-speed voltage transients. The "open" switch is modelled as a ladder network. Analy­sis reveals an exponential progression in the distribution of the applied voltage across the elements. Overstressing thus oc­curs in some of the elements at levels of the total voltage that are significantly below the design value. This difficulty is overcome by grading the voltage sharing circuitry, coupled in parallel with each element, in a prescribed manner, as set out here.

  1. High-efficiency thermal switch based on topological Josephson junctions

    Science.gov (United States)

    Sothmann, Björn; Giazotto, Francesco; Hankiewicz, Ewelina M.

    2017-02-01

    We propose theoretically a thermal switch operating by the magnetic-flux controlled diffraction of phase-coherent heat currents in a thermally biased Josephson junction based on a two-dimensional topological insulator. For short junctions, the system shows a sharp switching behavior while for long junctions the switching is smooth. Physically, the switching arises from the Doppler shift of the superconducting condensate due to screening currents induced by a magnetic flux. We suggest a possible experimental realization that exhibits a relative temperature change of 40% between the on and off state for realistic parameters. This is a factor of two larger than in recently realized thermal modulators based on conventional superconducting tunnel junctions.

  2. Dependence of the Spin Transfer Torque Switching Current Density on the Exchange Stiffness Constant

    OpenAIRE

    You, Chun-Yeol

    2012-01-01

    We investigate the dependence of the switching current density on the exchange stiffness constant in the spin transfer torque magnetic tunneling junction structure with micromagnetic simulations. Since the widely accepted analytic expression of the switching current density is based on the macro-spin model, there is no dependence of the exchange stiffness constant. When the switching is occurred, however, the spin configuration forms C-, S-type, or complicated domain structures. Since the spi...

  3. Switching Magnetism and Superconductivity with Spin-Polarized Current in Iron-Based Superconductor.

    Science.gov (United States)

    Choi, Seokhwan; Choi, Hyoung Joon; Ok, Jong Mok; Lee, Yeonghoon; Jang, Won-Jun; Lee, Alex Taekyung; Kuk, Young; Lee, SungBin; Heinrich, Andreas J; Cheong, Sang-Wook; Bang, Yunkyu; Johnston, Steven; Kim, Jun Sung; Lee, Jhinhwan

    2017-12-01

    We explore a new mechanism for switching magnetism and superconductivity in a magnetically frustrated iron-based superconductor using spin-polarized scanning tunneling microscopy (SPSTM). Our SPSTM study on single-crystal Sr_{2}VO_{3}FeAs shows that a spin-polarized tunneling current can switch the Fe-layer magnetism into a nontrivial C_{4} (2×2) order, which cannot be achieved by thermal excitation with an unpolarized current. Our tunneling spectroscopy study shows that the induced C_{4} (2×2) order has characteristics of plaquette antiferromagnetic order in the Fe layer and strongly suppresses superconductivity. Also, thermal agitation beyond the bulk Fe spin ordering temperature erases the C_{4} state. These results suggest a new possibility of switching local superconductivity by changing the symmetry of magnetic order with spin-polarized and unpolarized tunneling currents in iron-based superconductors.

  4. Irradiation of optically activated SI-GaAs high-voltage switches with low and high energy protons

    CERN Document Server

    Bertolucci, Ennio; Mettivier, G; Russo, P; Bisogni, M G; Bottigli, U; Fantacci, M E; Stefanini, A; Cola, A; Quaranta, F; Vasanelli, L; Stefanini, G

    1999-01-01

    Semi-Insulating Gallium Arsenide (SI-GaAs) devices have been tested for radiation hardness with 3-4 MeV or 24 GeV proton beams. These devices can be operated in dc mode as optically activated electrical switches up to 1 kV. Both single switches (vertical Schottky diodes) and multiple (8) switches (planar devices) have been studied, by analyzing their current-voltage (I-V) reverse characteristics in the dark and under red light illumination, both before and after irradiation. We propose to use them in the system of high-voltage (-600 V) switches for the microstrip gas chambers for the CMS experiment at CERN. Low energy protons (3-4 MeV) were used in order to produce a surface damage below the Schottky contact: their fluence (up to 2.6*10/sup 15/ p/cm/sup 2/) gives a high-dose irradiation. The high energy proton irradiation (energy: 24 GeV, fluence: 1.1*10/sup 14/ p/cm/sup 2/) reproduced a ten years long proton exposure of the devices in CMS experiment conditions. For low energy irradiation, limited changes of ...

  5. Breakover mechanism of GaAs photoconductive switch triggering spark gap for high power applications

    Science.gov (United States)

    Tian, Liqiang; Shi, Wei; Feng, Qingqing

    2011-11-01

    A spark gap (SG) triggered by a semi-insulating GaAs photoconductive semiconductor switch (PCSS) is presented. Currents as high as 5.6 kA have been generated using the combined switch, which is excited by a laser pulse with energy of 1.8 mJ and under a bias of 4 kV. Based on the transferred-electron effect and gas streamer theory, the breakover characteristics of the combined switch are analyzed. The photoexcited carrier density in the PCSS is calculated. The calculation and analysis indicate that the PCSS breakover is caused by nucleation of the photoactivated avalanching charge domain. It is shown that the high output current is generated by the discharge of a high-energy gas streamer induced by the strong local electric field distortion or by overvoltage of the SG resulting from quenching of the avalanching domain, and periodic oscillation of the current is caused by interaction between the gas streamer and the charge domain. The cycle of the current oscillation is determined by the rise time of the triggering electric pulse generated by the PCSS, the pulse transmission time between the PCSS and the SG, and the streamer transit time in the SG.

  6. Wide Bandgap Extrinsic Photoconductive Switches

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, James S. [State Univ. of New York (SUNY), Plattsburgh, NY (United States); Univ. of California, Davis, CA (United States)

    2012-01-20

    Photoconductive semiconductor switches (PCSS) have been investigated since the late 1970s. Some devices have been developed that withstand tens of kilovolts and others that switch hundreds of amperes. However, no single device has been developed that can reliably withstand both high voltage and switch high current. Yet, photoconductive switches still hold the promise of reliable high voltage and high current operation with subnanosecond risetimes. Particularly since good quality, bulk, single crystal, wide bandgap semiconductor materials have recently become available. In this chapter we will review the basic operation of PCSS devices, status of PCSS devices and properties of the wide bandgap semiconductors 4H-SiC, 6H-SiC and 2H-GaN.

  7. A high-switching-frequency flyback converter in resonant mode

    NARCIS (Netherlands)

    Li, Jianting; van Horck, Frank B.M.; Daniel, Bobby J.; Bergveld, Henk Jan

    2017-01-01

    The demand of miniaturization of power systems has accelerated the research on high-switching-frequency power converters. A flyback converter in resonant mode that features low switching losses, less transformer losses, and low switching noise at high switching frequency is investigated in this

  8. Current-induced magnetic switching of a single molecule magnet on a spin valve

    International Nuclear Information System (INIS)

    Zhang, Xiao; Wang, Zheng-Chuan; Zheng, Qing-Rong; Zhu, Zheng-Gang; Su, Gang

    2015-01-01

    The current-induced magnetic switching of a single-molecule magnet (SMM) attached on the central region of a spin valve is explored, and the condition for the switching current is derived. Electrons flowing through the spin valve will interact with the SMM via the s–d exchange interaction, producing the spin accumulation that satisfies the spin diffusion equation. We further describe the spin motion of the SMM by a Heisenberg-like equation. Based on the linear stability analysis, we obtain the critical current from two coupled equations. The results of the critical current versus the external magnetic field indicate that one can manipulate the magnetic state of the SMM by an external magnetic field. - Highlights: • We theoretically study the current-induced magnetic switching of the SMM. • We describe the spin motion of the SMM by a Heisenberg-like equation. • We describe the spin accumulation by the spin diffusion equation. • We obtain the critical current by the linear stability analysis. • Our approach can be easily extended to other SMMs

  9. Current-induced magnetic switching of a single molecule magnet on a spin valve

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiao [Theoretical Condensed Matter Physics and Computational Materials Physics Laboratory, School of Physics, University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Zheng-Chuan, E-mail: wangzc@ucas.ac.cn [Theoretical Condensed Matter Physics and Computational Materials Physics Laboratory, School of Physics, University of Chinese Academy of Sciences, Beijing 100049 (China); Zheng, Qing-Rong [Theoretical Condensed Matter Physics and Computational Materials Physics Laboratory, School of Physics, University of Chinese Academy of Sciences, Beijing 100049 (China); Zhu, Zheng-Gang [Theoretical Condensed Matter Physics and Computational Materials Physics Laboratory, School of Physics, University of Chinese Academy of Sciences, Beijing 100049 (China); School of Electronics, Electric and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049 (China); Su, Gang, E-mail: gsu@ucas.ac.cn [Theoretical Condensed Matter Physics and Computational Materials Physics Laboratory, School of Physics, University of Chinese Academy of Sciences, Beijing 100049 (China)

    2015-04-17

    The current-induced magnetic switching of a single-molecule magnet (SMM) attached on the central region of a spin valve is explored, and the condition for the switching current is derived. Electrons flowing through the spin valve will interact with the SMM via the s–d exchange interaction, producing the spin accumulation that satisfies the spin diffusion equation. We further describe the spin motion of the SMM by a Heisenberg-like equation. Based on the linear stability analysis, we obtain the critical current from two coupled equations. The results of the critical current versus the external magnetic field indicate that one can manipulate the magnetic state of the SMM by an external magnetic field. - Highlights: • We theoretically study the current-induced magnetic switching of the SMM. • We describe the spin motion of the SMM by a Heisenberg-like equation. • We describe the spin accumulation by the spin diffusion equation. • We obtain the critical current by the linear stability analysis. • Our approach can be easily extended to other SMMs.

  10. Ab initio theory for current-induced molecular switching: Melamine on Cu(001)

    KAUST Repository

    Ohto, Tatsuhiko

    2013-05-28

    Melamine on Cu(001) is mechanically unstable under the current of a scanning tunneling microscope tip and can switch among configurations. However, these are not equally accessible, and the switching critical current depends on the bias polarity. In order to explain such rich phenomenology, we have developed a scheme to evaluate the evolution of the reaction paths and activation barriers as a function of bias, which is rooted in the nonequilibrium Green\\'s function method implemented within density functional theory. This, combined with the calculation of the inelastic electron tunneling spectroscopy signal, allows us to identify the vibrational modes promoting the observed molecular conformational changes. Finally, once our ab initio results are used within a resonance model, we are able to explain the details of the switching behavior, such as its dependence on the bias polarity, and the noninteger power relation between the reaction rate constants and both the bias voltage and the electric current. © 2013 American Physical Society.

  11. Ab initio theory for current-induced molecular switching: Melamine on Cu(001)

    KAUST Repository

    Ohto, Tatsuhiko; Rungger, Ivan; Yamashita, Koichi; Nakamura, Hisao; Sanvito, Stefano

    2013-01-01

    Melamine on Cu(001) is mechanically unstable under the current of a scanning tunneling microscope tip and can switch among configurations. However, these are not equally accessible, and the switching critical current depends on the bias polarity. In order to explain such rich phenomenology, we have developed a scheme to evaluate the evolution of the reaction paths and activation barriers as a function of bias, which is rooted in the nonequilibrium Green's function method implemented within density functional theory. This, combined with the calculation of the inelastic electron tunneling spectroscopy signal, allows us to identify the vibrational modes promoting the observed molecular conformational changes. Finally, once our ab initio results are used within a resonance model, we are able to explain the details of the switching behavior, such as its dependence on the bias polarity, and the noninteger power relation between the reaction rate constants and both the bias voltage and the electric current. © 2013 American Physical Society.

  12. High current transistor pulse generator

    International Nuclear Information System (INIS)

    Nesterov, V.; Cassel, R.

    1991-05-01

    A solid state pulse generator capable of delivering high current trapezoidally shaped pulses into an inductive load has been developed at SLAC. Energy stored in the capacitor bank of the pulse generator is switched to the load through a pair of Darlington transistors. A combination of diodes and Darlington transistors is used to obtain trapezoidal or triangular shaped current pulses into an inductive load and to recover the remaining energy in the same capacitor bank without reversing capacitor voltage. The transistors work in the switch mode, and the power losses are low. The rack mounted pulse generators presently used at SLAC contain a 660 microfarad storage capacitor bank and can deliver 400 amps at 800 volts into inductive loads up to 3 mH. The pulse generators are used in several different power systems, including pulse to pulse bipolar power supplies and in application with current pulses distributed into different inductive loads. The current amplitude and discharge time are controlled by the central computer system through a specially developed multichannel controller. Several years of operation with the pulse generators have proven their consistent performance and reliability. 8 figs

  13. Switching current imbalance mitigation in power modules with parallel connected SiC MOSFETs

    DEFF Research Database (Denmark)

    Beczkowski, Szymon; Jørgensen, Asger Bjørn; Li, Helong

    2017-01-01

    Multichip power modules use parallel connected chips to achieve high current rating. Due to a finite flexibility in a DBC layout, some electrical asymmetries will occur in the module. Parallel connected transistors will exhibit uneven static and dynamic current sharing due to these asymmetries....... Especially important are the couplings between gate and power loops of individual transistors. Fast changing source currents cause gate voltage imbalances yielding uneven switching currents. Equalizing gate voltages seen by paralleled transistors, done by adjusting source bond wires, is proposed...... in this paper. Analysis is performed on an industry standard DBC layout using numerically extracted module parasitics. The method of tuning individual source inductances shows clear improvement in dynamic current balancing and prevents excessive current overshoot during transistors turn-on....

  14. Quasi-Resonant Full-Wave Zero-Current Switching Buck Converter Design, Simulation and Application

    OpenAIRE

    Yanik, G.; Isen, E.

    2015-01-01

    —This paper presents a full wave quasi-resonant zerocurrent switching buck converter design, simulation and application. The converter control uses with zero-current switching (ZCS) technique to decrease the switching losses. Comparing to conventional buck converter, resonant buck converter includes a resonant tank equipped with resonant inductor and capacitor. The converter is analyzed in mathematical for each subintervals. Depending on the desired input and output electrical quantities, con...

  15. Design and testing of a surface switch for the dynamic load current multiplier on the SPHINX microsecond LTD

    International Nuclear Information System (INIS)

    Maysonnave, T.; Bayol, F.; Demol, G.; Almeida, T. d'; Morell, A.; Lassalle, F.; Grunenwald, J.; Chuvatin, A.S.; Pecastaing, L.; De Ferron, A.S.

    2013-01-01

    SPHINX is a microsecond linear transformer driver located at Atomic Energy Commission (CEA) Gramat (France), which can deliver a current pulse of 6 MA within 800 ns in a Z-pinch load. Using the concept of the dynamic load current multiplier (DLCM), which was proposed by Chuvatin, we expect to increase the load current above 6 MA, while decreasing its rise time to ∼300 ns. The DLCM developed by the CEA Gramat and International Technologies for High Pulsed Power (ITHPP) is a compact system made up of concentric electrodes (auto-transformer), a dynamic flux extruder (cylindrical wire array), a vacuum convolute (eight post-hole rods), and a closing switch (compact vacuum surface switch). The latter is a key component of the system, which is used to prevent the current from flowing into the load until the inductance builds up due to the implosion of the wire array. This paper presents the design and testing of the DLCM surface switch, resulting from both electrostatic simulations and experiments on the SPHINX generator. These studies, carried out either with or without load (open circuit), were valuable for a first experimental evaluation of the DLCM scheme in a microsecond regime and provided detailed information on the surface switch behavior. (authors)

  16. Protection relay of phase-shifting device with thyristor switch for high voltage power transmission lines

    Science.gov (United States)

    Lachugin, V. F.; Panfilov, D. I.; Akhmetov, I. M.; Astashev, M. G.; Shevelev, A. V.

    2014-12-01

    Problems of functioning of differential current protection systems of phase shifting devices (PSD) with mechanically changed coefficient of transformation of shunt transformer are analyzed. Requirements for devices of protection of PSD with thyristor switch are formulated. Based on use of nonlinear models of series-wound and shunt transformers of PSD modes of operation of major protection during PSD, switching to zero load operation and to operation under load and during short circuit operation were studied for testing PSD with failures. Use of the principle of duplicating by devices of differential current protection (with realization of functions of breaking) of failures of separate pares of PSD with thyristor switch was substantiated. To ensure protection sensitivity to the shunt transformer winding short circuit, in particular, to a short circuit that is not implemented in the current differential protection for PSD with mechanical switch, the differential current protection reacting to the amount of primary ampere-turns of high-voltage and low-voltage winding of this transformer was designed. Studies have shown that the use of differential current cutoff instead of overcurrent protection for the shunt transformer wndings allows one to provide the sensitivity during thyristor failure with the formation of a short circuit. The results of simulation mode for the PSD with switch thyristor designed to be installed as switching point of Voskhod-Tatarskaya-Barabinsk 220 kV transmission line point out the efficiency of the developed solutions that ensure reliable functioning of the PSD.

  17. Controlled parity switch of persistent currents in quantum ladders

    Science.gov (United States)

    Filippone, Michele; Bardyn, Charles-Edouard; Giamarchi, Thierry

    2018-05-01

    We investigate the behavior of persistent currents for a fixed number of noninteracting fermions in a periodic quantum ladder threaded by Aharonov-Bohm and transverse magnetic fluxes Φ and χ . We show that the coupling between ladder legs provides a way to effectively change the ground-state fermion-number parity, by varying χ . Specifically, we demonstrate that varying χ by 2 π (one flux quantum) leads to an apparent fermion-number parity switch. We find that persistent currents exhibit a robust 4 π periodicity as a function of χ , despite the fact that χ →χ +2 π leads to modifications of order 1 /N of the energy spectrum, where N is the number of sites in each ladder leg. We show that these parity-switch and 4 π periodicity effects are robust with respect to temperature and disorder, and outline potential physical realizations using cold atomic gases and photonic lattices, for bosonic analogs of the effects.

  18. A Pt/TiO(2)/Ti Schottky-type selection diode for alleviating the sneak current in resistance switching memory arrays.

    Science.gov (United States)

    Park, Woo Young; Kim, Gun Hwan; Seok, Jun Yeong; Kim, Kyung Min; Song, Seul Ji; Lee, Min Hwan; Hwang, Cheol Seong

    2010-05-14

    This study examined the properties of Schottky-type diodes composed of Pt/TiO(2)/Ti, where the Pt/TiO(2) and TiO(2)/Ti junctions correspond to the blocking and ohmic contacts, respectively, as the selection device for a resistive switching cross-bar array. An extremely high forward-to-reverse current ratio of approximately 10(9) was achieved at 1 V when the TiO(2) film thickness was 19 nm. TiO(2) film was grown by atomic layer deposition at a substrate temperature of 250 degrees C. Conductive atomic force microscopy revealed that the forward current flew locally, which limits the maximum forward current density to current measurement showed a local forward current density as high as approximately 10(5) A cm(-2). Therefore, it is expected that this type of Schottky diode effectively suppresses the sneak current without adverse interference effects in a nano-scale resistive switching cross-bar array with high block density.

  19. High frequency Soft Switching Half Bridge Series-Resonant DC-DC Converter Utilizing Gallium Nitride FETs

    DEFF Research Database (Denmark)

    Nour, Yasser; Knott, Arnold; Petersen, Lars Press

    2017-01-01

    The need for efficient, smaller, lighter and cheaper power supply units drive the investigation of using high switching frequency soft switching resonant converters. This work presents an 88% efficient 48V nominal input converter switching at 6 MHz and output power of 21 Watts achieving power...... density of 7 W/cm3 for Power-over-Ethernet LED lighting applications. The switching frequency is used to control the output current delivered to the load resistance. The converter was tested using a constant resistance load. The performance and thermal behavior were investigated and reported in this work....

  20. A new soft-switched high step-up DC-DC converter with dual coupled inductors

    DEFF Research Database (Denmark)

    Forouzesh, Mojtaba; Shen, Yanfeng; Yari, Keyvan

    2017-01-01

    This paper introduces a new efficient high step-up dc-dc converter with a shared input path and dual series coupled inductors at the output. This converter is suitable for high power applications due to its shared input current that puts low current stresses on the low voltage side switches...

  1. Low prepulse, high power density water dielectric switching

    International Nuclear Information System (INIS)

    Johnson, D.L.; VanDevender, J.P.; Martin, T.H.

    1979-01-01

    Prepulse voltage suppression has proven difficult in high power, high voltage accelerators employing self-breakdown water dielectric switches. A novel and cost effective water switch has been developed at Sandia Laboratories which reduces prepulse voltage by reducing the capacity across the switch. This prepulse suppression switch causes energy formerly stored in the switch capacity and dissipated in the arc to be useful output energy. The switching technique also allows the pulse forming lines to be stacked in parallel and electrically isolated from the load after the line has been discharged. The switch consists of a ground plane, with several holes, inserted between the switch electrodes. The output line switch electrodes extend through the holes and face electrodes on the pulse forming line (PFL). The capacity between the PFL and the output transmission line is reduced by about 80%. The gap spacing between the output line electrode and the hole in the ground plane is adjusted so that breakdown occurs after the main pulse and provides a crow bar between the load and the source. Performance data from the Proto II, Mite and Ripple test facilities are presented

  2. Highly uniform bipolar resistive switching characteristics in TiO2/BaTiO3/TiO2 multilayer

    International Nuclear Information System (INIS)

    Ma, W. J.; Zhang, X. Y.; Wang, Ying; Zheng, Yue; Lin, S. P.; Luo, J. M.; Wang, B.; Li, Z. X.

    2013-01-01

    Nanoscale multilayer structure TiO 2 /BaTiO 3 /TiO 2 has been fabricated on Pt/Ti/SiO 2 /Si substrate by chemical solution deposition method. Highly uniform bipolar resistive switching (BRS) characteristics have been observed in Pt/TiO 2 /BaTiO 3 /TiO 2 /Pt cells. Analysis of the current-voltage relationship demonstrates that the space-charge-limited current conduction controlled by the localized oxygen vacancies should be important to the resistive switching behavior. X-ray photoelectron spectroscopy results indicated that oxygen vacancies in TiO 2 play a crucial role in the resistive switching phenomenon and the introduced TiO 2 /BaTiO 3 interfaces result in the high uniformity of bipolar resistive switching characteristics

  3. Periodically Swapping Modulation (PSM) Strategy for Three-Level (TL) DC/DC Converter with Balanced Switch Currents

    DEFF Research Database (Denmark)

    Liu, Dong; Deng, Fujin; Zhang, Qi

    2018-01-01

    The asymmetrical modulation strategy is widely used in various types of three-level (TL) DC/DC converters, while the current imbalance among the power switches is one of the important issues. In this paper, a novel periodically swapping modulation (PSM) strategy is proposed for balancing the power...... switches’ currents in various types of TL DC/DC converters. In the proposed PSM strategy, the driving signals of the switch pairs are swapped periodically, which guarantees that the currents through the power switches are kept balanced in every two switching periods. Therefore, the proposed PSM...... strategy can effectively improve the reliability of the converter by balancing the power losses and thermal stresses among the power switches. The operation principle and performances of the proposed PSM strategy are analyzed in detail. Finally, the simulation and experimental results are presented...

  4. Pulsed laser triggered high speed microfluidic switch

    Science.gov (United States)

    Wu, Ting-Hsiang; Gao, Lanyu; Chen, Yue; Wei, Kenneth; Chiou, Pei-Yu

    2008-10-01

    We report a high-speed microfluidic switch capable of achieving a switching time of 10 μs. The switching mechanism is realized by exciting dynamic vapor bubbles with focused laser pulses in a microfluidic polydimethylsiloxane (PDMS) channel. The bubble expansion deforms the elastic PDMS channel wall and squeezes the adjacent sample channel to control its fluid and particle flows as captured by the time-resolved imaging system. A switching of polystyrene microspheres in a Y-shaped channel has also been demonstrated. This ultrafast laser triggered switching mechanism has the potential to advance the sorting speed of state-of-the-art microscale fluorescence activated cell sorting devices.

  5. Magnetic switching of a single molecular magnet due to spin-polarized current

    Science.gov (United States)

    Misiorny, Maciej; Barnaś, Józef

    2007-04-01

    Magnetic switching of a single molecular magnet (SMM) due to spin-polarized current flowing between ferromagnetic metallic leads (electrodes) is investigated theoretically. Magnetic moments of the leads are assumed to be collinear and parallel to the magnetic easy axis of the molecule. Electrons tunneling through the barrier between magnetic leads are coupled to the SMM via exchange interaction. The current flowing through the system, as well as the spin relaxation times of the SMM, are calculated from the Fermi golden rule. It is shown that spin of the SMM can be reversed by applying a certain voltage between the two magnetic electrodes. Moreover, the switching may be visible in the corresponding current-voltage characteristics.

  6. Enhancement of resistive switching properties in Al2O3 bilayer-based atomic switches: multilevel resistive switching

    Science.gov (United States)

    Vishwanath, Sujaya Kumar; Woo, Hyunsuk; Jeon, Sanghun

    2018-06-01

    Atomic switches are considered to be building blocks for future non-volatile data storage and internet of things. However, obtaining device structures capable of ultrahigh density data storage, high endurance, and long data retention, and more importantly, understanding the switching mechanisms are still a challenge for atomic switches. Here, we achieved improved resistive switching performance in a bilayer structure containing aluminum oxide, with an oxygen-deficient oxide as the top switching layer and stoichiometric oxide as the bottom switching layer, using atomic layer deposition. This bilayer device showed a high on/off ratio (105) with better endurance (∼2000 cycles) and longer data retention (104 s) than single-oxide layers. In addition, depending on the compliance current, the bilayer device could be operated in four different resistance states. Furthermore, the depth profiles of the hourglass-shaped conductive filament of the bilayer device was observed by conductive atomic force microscopy.

  7. Model predictive control of a high speed switched reluctance generator system

    NARCIS (Netherlands)

    Marinkov, Sava; De Jager, Bram; Steinbuch, Maarten

    2013-01-01

    This paper presents a novel voltage control strategy for the high-speed operation of a Switched Reluctance Generator. It uses a linear Model Predictive Control law based on the average system model. The controller computes the DC-link current needed to achieve the tracking of a desired voltage

  8. Analysis and design of a charge pump circuit for high output current applications

    NARCIS (Netherlands)

    van Steenwijk, Gijs; van Steenwijk, Gijs; Hoen, Klaas; Hoen, Klaas; Wallinga, Hans

    1993-01-01

    A charge pump circuit has been developed that can deliver high currents even for a system supply voltage of 3 V. The circuit consists of capacitances, connected by MOS switches. The influence of the on-resistance of the switches on the circuit's output resistance has been analysed. The switches are

  9. A new soft switched push pull current fed converter for fuel cell applications

    International Nuclear Information System (INIS)

    Delshad, Majid; Farzanehfard, Hosein

    2011-01-01

    In this paper a new zero voltage switching current fed push pull dc-dc converter is proposed for fuel cell generation system. The auxiliary circuit in this converter, not only absorbs the voltage surge across the switches at turn off instance, but also provides zero voltage switching condition for all converter switches. Therefore, the converter efficiency is increased and size and weight of the converter can be decreased. Also implementation of control circuit is very simple since the converter is PWM controlled. In this paper, the proposed dc-dc converter operating modes are analyzed and to verify the converter operation a laboratory prototype is implemented and the experimental results are presented.

  10. High frequency switched-mode stimulation can evoke postsynaptic responses in cerebellar principal neurons

    Directory of Open Access Journals (Sweden)

    Marijn Van Dongen

    2015-03-01

    Full Text Available This paper investigates the efficacy of high frequency switched-mode neural stimulation. Instead of using a constant stimulation amplitude, the stimulus is switched on and off repeatedly with a high frequency (up to 100kHz duty cycled signal. By means of tissue modeling that includes the dynamic properties of both the tissue material as well as the axon membrane, it is first shown that switched-mode stimulation depolarizes the cell membrane in a similar way as classical constant amplitude stimulation.These findings are subsequently verified using in vitro experiments in which the response of a Purkinje cell is measured due to a stimulation signal in the molecular layer of the cerebellum of a mouse. For this purpose a stimulator circuit is developed that is able to produce a monophasic high frequency switched-mode stimulation signal. The results confirm the modeling by showing that switched-mode stimulation is able to induce similar responses in the Purkinje cell as classical stimulation using a constant current source. This conclusion opens up possibilities for novel stimulation designs that can improve the performance of the stimulator circuitry. Care has to be taken to avoid losses in the system due to the higher operating frequency.

  11. Improved Turn-on Characteristics of Fast High Current Thyristors

    CERN Document Server

    Ducimetière, L; Vossenberg, Eugène B

    1999-01-01

    The beam dumping system of CERN's Large Hadron Collider (LHC) is equipped with fast solid state closing switches, designed for a hold-off voltage of 30 kV and a quasi half sine wave current of 20 kA, with 3 ms rise time, a maximum di/dt of 12 kA/ms and 2 ms fall time. The design repetition rate is 20 s. The switch is composed of ten Fast High Current Thyristors (FHCT’s), which are modified symmetric 4.5 kV GTO thyristors of WESTCODE. Recent studies aiming at improving the turn-on delay, switching speed and at decreasing the switch losses, have led to test an asymmetric not fully optimised GTO thyristor of WESTCODE and an optimised device of GEC PLESSEY Semiconductor (GPS), GB. The GPS FHCT, which gave the best results, is a non irradiated device of 64 mm diameter with a hold-off voltage of 4.5 kV like the symmetric FHCT. Tests results of the GPS FHCT show a reduction in turn-on delay of 40 % and in switching losses of almost 50 % with respect to the symmetric FHCT of WESTCODE. The GPS device can sustain an i...

  12. A magnetically switched kicker for proton extraction

    International Nuclear Information System (INIS)

    Dinkel, J.; Biggs, J.

    1989-03-01

    The application of magnetic current amplification and switching techniques to the generation of precise high current pulses for switching magnets is described. The square loop characteristic of Metglas tape wound cores at high excitation levels provides excellent switching characteristics for microsecond pulses. The rugged and passive nature of this type pulser makes it possible to locate the final stages of amplification at the load for maximum efficiency. 12 refs., 8 figs

  13. Structural health monitoring of high voltage electrical switch ceramic insulators in seismic areas

    OpenAIRE

    REBILLAT, Marc; BARTHES, Clément; MECHBAL, Nazih; MOSALAM, Khalid M.

    2014-01-01

    International audience; High voltage electrical switches are crucial components to restart rapidly the electrical network right after an earthquake. But there currently exists no automatic procedure to check if these ceramic insulators have suffered after an earthquake, and there exists no method to recertify a given switch. To deploy a vibration-based structural health monitoring method on ceramic insulators a large shake table able to generate accelerations up to 3 g was used. The idea unde...

  14. Repetitive plasma opening switch for powerful high-voltage pulse generators

    International Nuclear Information System (INIS)

    Dolgachev, G.I.; Zakatov, L.P.; Nitishinskii, M.S.; Ushakov, A.G.

    1998-01-01

    Results are presented of experimental studies of plasma opening switches that serve to sharpen the pulses of inductive microsecond high-voltage pulse generators. It is demonstrated that repetitive plasma opening switches can be used to create super-powerful generators operating in a quasi-continuous regime. An erosion switching mechanism and the problem of magnetic insulation in repetitive switches are considered. Achieving super-high peak power in plasma switches makes it possible to develop new types of high-power generators of electron beams and X radiation. Possible implementations and the efficiency of these generators are discussed

  15. Characteristics of trap-filled gallium arsenide photoconductive switches used in high gain pulsed power applications

    International Nuclear Information System (INIS)

    ISLAM, N.E.; SCHAMILOGLU, E.; MAR, ALAN; LOUBRIEL, GUILLERMO M.; ZUTAVERN, FRED J.; JOSHI, R.P.

    2000-01-01

    The electrical properties of semi-insulating (SI) Gallium Arsenide (GaAs) have been investigated for some time, particularly for its application as a substrate in microelectronics. Of late this material has found a variety of applications other than as an isolation region between devices, or the substrate of an active device. High resistivity SI GaAs is increasingly being used in charged particle detectors and photoconductive semiconductor switches (PCSS). PCSS made from these materials operating in both the linear and non-linear modes have applications such as firing sets, as drivers for lasers, and in high impedance, low current Q-switches or Pockels cells. In the non-linear mode, it has also been used in a system to generate Ultra-Wideband (UWB) High Power Microwaves (HPM). The choice of GaAs over silicon offers the advantage that its material properties allow for fast, repetitive switching action. Furthermore photoconductive switches have advantages over conventional switches such as improved jitter, better impedance matching, compact size, and in some cases, lower laser energy requirement for switching action. The rise time of the PCSS is an important parameter that affects the maximum energy transferred to the load and it depends, in addition to other parameters, on the bias or the average field across the switch. High field operation has been an important goal in PCSS research. Due to surface flashover or premature material breakdown at higher voltages, most PCSS, especially those used in high power operation, need to operate well below the inherent breakdown voltage of the material. The lifetime or the total number of switching operations before breakdown, is another important switch parameter that needs to be considered for operation at high bias conditions. A lifetime of ∼ 10 4 shots has been reported for PCSS's used in UWB-HPM generation [5], while it has exceeded 10 8 shots for electro-optic drivers. Much effort is currently being channeled in the

  16. A Soft-Switching Inverter for High-Temperature Advanced Hybrid Electric Vehicle Traction Motor Drives

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Jason [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Yu, Wensong [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Sun, Pengwei [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Leslie, Scott [Powerex, Inc., Harrison, OH (United States); Prusia, Duane [Powerex, Inc., Harrison, OH (United States); Arnet, Beat [Azure Dynamics, Oak Park, MI (United States); Smith, Chris [Azure Dynamics, Oak Park, MI (United States); Cogan, Art [Azure Dynamics, Oak Park, MI (United States)

    2012-03-31

    The state-of-the-art hybrid electric vehicles (HEVs) require the inverter cooling system to have a separate loop to avoid power semiconductor junction over temperatures because the engine coolant temperature of 105°C does not allow for much temperature rise in silicon devices. The proposed work is to develop an advanced soft-switching inverter that will eliminate the device switching loss and cut down the power loss so that the inverter can operate at high-temperature conditions while operating at high switching frequencies with small current ripple in low inductance based permanent magnet motors. The proposed tasks also include high-temperature packaging and thermal modeling and simulation to ensure the packaged module can operate at the desired temperature. The developed module will be integrated with the motor and vehicle controller for dynamometer and in-vehicle testing to prove its superiority. This report will describe the detailed technical design of the soft-switching inverters and their test results. The experiments were conducted both in module level for the module conduction and switching characteristics and in inverter level for its efficiency under inductive and dynamometer load conditions. The performance will be compared with the DOE original specification.

  17. Monolithic, High-Speed Fiber-Optic Switching Array for Lidar

    Science.gov (United States)

    Suckow, Will; Roberts, Tony; Switzer, Gregg; Terwilliger, Chelle

    2011-01-01

    Current fiber switch technologies use mechanical means to redirect light beams, resulting in slow switch time, as well as poor reliability due to moving parts wearing out quickly at high speeds. A non-mechanical ability to switch laser output into one of multiple fibers within a fiber array can provide significant power, weight, and costs savings to an all-fiber system. This invention uses an array of crystals that act as miniature prisms to redirect light as an electric voltage changes the prism s properties. At the heart of the electro-optic fiber-optic switch is an electro- optic crystal patterned with tiny prisms that can deflect the beam from the input fiber into any one of the receiving fibers arranged in a linear array when a voltage is applied across the crystal. Prism boundaries are defined by a net dipole moment in the crystal lattice that has been poled opposite to the surrounding lattice fabricated using patterned, removable microelectrodes. When a voltage is applied across the crystal, the resulting electric field changes the index of refraction within the prism boundaries relative to the surrounding substrate, causing light to deflect slightly according to Snell s Law. There are several materials that can host the necessary monolithic poled pattern (including, but not limited to, SLT, KTP, LiNbO3, and Mg:LiNbO3). Be cause this is a solid-state system without moving parts, it is very fast, and does not wear down easily. This invention is applicable to all fiber networks, as well as industries that use such networks. The unit comes in a compact package, can handle both low and high voltages, and has a high reliability (100,000 hours without maintenance).

  18. Switched Current Micropower 4th Order Lowpass / Highpass Filter

    DEFF Research Database (Denmark)

    Bogason, Gudmundur

    1993-01-01

    This paper describes a 4th order lowpass / highpass Butterworth filter implemented in switched current technique. The filter has been designed for low power operation. A prototype implementation has been made and it operates with supply voltages down to 2V and with a total supply current of 211Â......¿A at a sampling rate of 50kHz. The chip includes a clock-generator, three current-followers, sample-and-hold and two 4th order filters. The sampling frequency is restricted to approximately 50kHz and the ratio between sampling frequency and cutoff frequency is 12.5. The dynamic-range was found to be 49d...

  19. Control of a high-speed switched reluctance machine using only the DC-link measurements

    NARCIS (Netherlands)

    Marinkov, Sava; De Jager, Bram

    2015-01-01

    In this paper we present a novel speed control strategy for a high-speed Switched Reluctance Machine that uses only the DC-link voltage and current measurements. This eliminates a number of hardware components such as position, speed, phase current and phase voltage sensors. It further lowers the

  20. A High-Precision Control for a ZVT PWM Soft-Switching Inverter to Eliminate the Dead-Time Effect

    Directory of Open Access Journals (Sweden)

    Baoquan Kou

    2016-07-01

    Full Text Available Attributing to the advantages of high efficiency, low electromagnetic interference (EMI noise and closest to the pulse-width-modulation (PWM converter counterpart, zero-voltage-transition (ZVT PWM soft-switching inverters are very suitable for high-performance applications. However, the conventional control algorithms intended for high efficiency generally results in voltage distortion. Thus, this paper, for the first time, proposes a high-precision control method to eliminate the dead-time effect through controlling the auxiliary current in the auxiliary resonant snubber inverter (ARSI, which is a typical ZVT PWM inverter. The dead-time effect of ARSI is analyzed, which is distinguished from hard-switching inverters. The proposed high-precision control is introduced based on the investigation of dead-time effect. A prototype was developed to verify the effectiveness of the proposed control. The experimental results shows that the total harmonic distortion (THD of the output current of the ARSI can be reduced compared with that of the hard-switching inverter, because the blanking delay error is eliminated. The quality of the output current and voltage can be further improved by utilizing the proposed control method.

  1. Solid state bistable power switch

    Science.gov (United States)

    Bartko, J.; Shulman, H.

    1970-01-01

    Tin and copper provide high current and switching time capabilities for high-current resettable fuses. They show the best performance for trip current and degree of reliability, and have low coefficients of thermal expansion.

  2. In-plane current-driven spin-orbit torque switching in perpendicularly magnetized films with enhanced thermal tolerance

    International Nuclear Information System (INIS)

    Wu, Di; Yu, Guoqiang; Shao, Qiming; Li, Xiang; Wong, Kin L.; Wang, Kang L.; Wu, Hao; Han, Xiufeng; Zhang, Zongzhi; Khalili Amiri, Pedram

    2016-01-01

    We study spin-orbit-torque (SOT)-driven magnetization switching in perpendicularly magnetized Ta/Mo/Co_4_0Fe_4_0B_2_0 (CoFeB)/MgO films. The thermal tolerance of the perpendicular magnetic anisotropy (PMA) is enhanced, and the films sustain the PMA at annealing temperatures of up to 430 °C, due to the ultra-thin Mo layer inserted between the Ta and CoFeB layers. More importantly, the Mo insertion layer also allows for the transmission of the spin current generated in the Ta layer due to spin Hall effect, which generates a damping-like SOT and is able to switch the perpendicular magnetization. When the Ta layer is replaced by a Pt layer, i.e., in a Pt/Mo/CoFeB/MgO multilayer, the direction of the SOT-induced damping-like effective field becomes opposite because of the opposite sign of spin Hall angle in Pt, which indicates that the SOT-driven switching is dominated by the spin current generated in the Ta or Pt layer rather than the Mo layer. Quantitative characterization through harmonic measurements reveals that the large SOT effective field is preserved for high annealing temperatures. This work provides a route to applying SOT in devices requiring high temperature processing steps during the back-end-of-line processes.

  3. Fast-opening vacuum switches for high-power inductive energy storage

    International Nuclear Information System (INIS)

    Cooperstein, G.

    1988-01-01

    The subject of fast-opening vacuum switches for high-power inductive energy storage is emerging as an exciting new area of plasma science research. This opening switch technology, which generally involves the use of plasmas as the switching medium, is key to the development of inductive energy storage techniques for pulsed power which have a number of advantages over conventional capacitive techniques with regard to cost and size. This paper reviews the state of the art in this area with emphasis on applications to inductive storage pulsed power generators. Discussion focuses on fast-opening vacuum switches capable of operating at high power (≥10 12 W). These include plasma erosion opening switches, ion beam opening switches, plasma filled diodes, reflex diodes, plasma flow switches, and other novel vacuum opening switches

  4. A High-Voltage Low-Power Switched-Capacitor DC-DC Converter Based on GaN and SiC Devices for LED Drivers

    DEFF Research Database (Denmark)

    Fan, Lin; Knott, Arnold; Jørgensen, Ivan Harald Holger

    2018-01-01

    Previous research on switched-capacitor DC-DC converters has focused on low-voltage and/or high-power ranges where the efficiencies are dominated by conduction loss. Switched-capacitor DC-DC converters at high-voltage (> 100 V) low-power (high efficiency and high power density...... are anticipated to emerge. This paper presents a switched-capacitor converter with an input voltage up to 380 V (compatible with rectified European mains) and a maximum output power of 10 W. GaN switches and SiC diodes are analytically compared and actively combined to properly address the challenges at high......-voltage low-current levels, where switching loss becomes significant. Further trade-off between conduction loss and switching loss is experimentally optimized with switching frequencies. Three variant designs of the proposed converter are implemented, and the trade-off between the efficiency and the power...

  5. An integrated circuit switch

    Science.gov (United States)

    Bonin, E. L.

    1969-01-01

    Multi-chip integrated circuit switch consists of a GaAs photon-emitting diode in close proximity with S1 phototransistor. A high current gain is obtained when the transistor has a high forward common-emitter current gain.

  6. MOSFET Switching Circuit Protects Shape Memory Alloy Actuators

    Science.gov (United States)

    Gummin, Mark A.

    2011-01-01

    A small-footprint, full surface-mount-component printed circuit board employs MOSFET (metal-oxide-semiconductor field-effect transistor) power switches to switch high currents from any input power supply from 3 to 30 V. High-force shape memory alloy (SMA) actuators generally require high current (up to 9 A at 28 V) to actuate. SMA wires (the driving element of the actuators) can be quickly overheated if power is not removed at the end of stroke, which can damage the wires. The new analog driver prevents overheating of the SMA wires in an actuator by momentarily removing power when the end limit switch is closed, thereby allowing complex control schemes to be adopted without concern for overheating. Either an integral pushbutton or microprocessor-controlled gate or control line inputs switch current to the actuator until the end switch line goes from logic high to logic low state. Power is then momentarily removed (switched off by the MOSFET). The analog driver is suited to use with nearly any SMA actuator.

  7. Soft switching buck-boost converter for photovoltaic power generation; Taiyoko hatsuden no tame no soft switching shokoatsu converter

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H. [Kyungnam University (Korea, Republic of)

    1996-10-27

    A soft switching method with small switching loss was proposed for the purpose of increasing the efficiency of a DC-DC boost converter which converted a DC current generated by solar cells to a variable DC current. Existing current converters are supplemented by using a snubber circuit around the switch so as to protect the switch by a hard switching action. However, with an increase of the output current, snubber loss is increased, reducing the efficiency. In order to solve this problem, the partial resonant switch method was applied to the converter; with this method of partially forming a resonant circuit only at the time of turning on/off of the switch, the switching loss was reduced through the soft switching, thereby making the proposed converter operate with high efficiency. Moreover, the resonant element of the partial resonant circuit using a snubber condenser, the energy accumulated in the condenser was regenerated on the power supply side without loss of snubber. With the regenerated energy, the proposed converter was provided with a smaller ratio of switching to use than the conventional converter. 4 refs., 7 figs., 1 tab.

  8. Ultra High-Speed Radio Frequency Switch Based on Photonics.

    Science.gov (United States)

    Ge, Jia; Fok, Mable P

    2015-11-26

    Microwave switches, or Radio Frequency (RF) switches have been intensively used in microwave systems for signal routing. Compared with the fast development of microwave and wireless systems, RF switches have been underdeveloped particularly in terms of switching speed and operating bandwidth. In this paper, we propose a photonics based RF switch that is capable of switching at tens of picoseconds speed, which is hundreds of times faster than any existing RF switch technologies. The high-speed switching property is achieved with the use of a rapidly tunable microwave photonic filter with tens of gigahertz frequency tuning speed, where the tuning mechanism is based on the ultra-fast electro-optics Pockels effect. The RF switch has a wide operation bandwidth of 12 GHz and can go up to 40 GHz, depending on the bandwidth of the modulator used in the scheme. The proposed RF switch can either work as an ON/OFF switch or a two-channel switch, tens of picoseconds switching speed is experimentally observed for both type of switches.

  9. Current-induced magnetization switching in atom-thick tungsten engineered perpendicular magnetic tunnel junctions with large tunnel magnetoresistance.

    Science.gov (United States)

    Wang, Mengxing; Cai, Wenlong; Cao, Kaihua; Zhou, Jiaqi; Wrona, Jerzy; Peng, Shouzhong; Yang, Huaiwen; Wei, Jiaqi; Kang, Wang; Zhang, Youguang; Langer, Jürgen; Ocker, Berthold; Fert, Albert; Zhao, Weisheng

    2018-02-14

    Perpendicular magnetic tunnel junctions based on MgO/CoFeB structures are of particular interest for magnetic random-access memories because of their excellent thermal stability, scaling potential, and power dissipation. However, the major challenge of current-induced switching in the nanopillars with both a large tunnel magnetoresistance ratio and a low junction resistance is still to be met. Here, we report spin transfer torque switching in nano-scale perpendicular magnetic tunnel junctions with a magnetoresistance ratio up to 249% and a resistance area product as low as 7.0 Ω µm 2 , which consists of atom-thick W layers and double MgO/CoFeB interfaces. The efficient resonant tunnelling transmission induced by the atom-thick W layers could contribute to the larger magnetoresistance ratio than conventional structures with Ta layers, in addition to the robustness of W layers against high-temperature diffusion during annealing. The critical switching current density could be lower than 3.0 MA cm -2 for devices with a 45-nm radius.

  10. Gallium nitride based transistors for high-efficiency microwave switch-mode amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Maroldt, Stephan

    2012-07-01

    circuit efficiency of >80% were achieved for an operation at 0.45 GHz when adjusting the transistor size for lower operation frequencies. A further decisive improvement of speed and circuit complexity was found by the implementation of enhancement-mode GaN transistors based on a high-transconductance gate-recess technology. Transistors with a threshold voltage of +1 V were demonstrated with a high current drive capability and a maximum transconductance of up to 600 mS/mm. Their reduced input voltage swing tremendously increases the compatibility of digital power amplifier circuits based on GaN and external digital driver and modulator circuits based on silicon technology. Moreover, an innovative development, the series-diode GaN transistor, replaces an off-chip hybrid diode in the class-S amplifier with an integrated solution. It reduces parasitic switching losses and improves the total amplifier properties in terms of operation frequency, efficiency, and circuit complexity. A differential switch-mode core chip featuring series-diode transistors and additional onchip filter elements enabled our partner EADS to realize the first class-S amplifier at 2 GHz worldwide in a module.

  11. New Pulsed Power Technology for High Current Accelerators

    International Nuclear Information System (INIS)

    Caporaso, G J

    2002-01-01

    Recent advances in solid-state modulators now permit the design of a new class of high current accelerators. These new accelerators will be able to operate in burst mode at frequencies of several MHz with unprecedented flexibility and precision in pulse format. These new modulators can drive accelerators to high average powers that far exceed those of any other technology and can be used to enable precision beam manipulations. New insulator technology combined with novel pulse forming lines and switching may enable the construction of a new type of high gradient, high current accelerator. Recent developments in these areas will be reviewed

  12. Open-loop correction for an eddy current dominated beam-switching magnet.

    Science.gov (United States)

    Koseki, K; Nakayama, H; Tawada, M

    2014-04-01

    A beam-switching magnet and the pulsed power supply it requires have been developed for the Japan Proton Accelerator Research Complex. To switch bunched proton beams, the dipole magnetic field must reach its maximum value within 40 ms. In addition, the field flatness should be less than 5 × 10(-4) to guide each bunched beam to the designed orbit. From a magnetic field measurement by using a long search coil, it was found that an eddy current in the thick endplates and laminated core disturbs the rise of the magnetic field. The eddy current also deteriorates the field flatness over the required flat-top period. The measured field flatness was 5 × 10(-3). By using a double-exponential equation to approximate the measured magnetic field, a compensation pattern for the eddy current was calculated. The integrated magnetic field was measured while using the newly developed open-loop compensation system. A field flatness of less than 5 × 10(-4), which is an acceptable value, was achieved.

  13. High voltage switches having one or more floating conductor layers

    Science.gov (United States)

    Werne, Roger W.; Sampayan, Stephen; Harris, John Richardson

    2015-11-24

    This patent document discloses high voltage switches that include one or more electrically floating conductor layers that are isolated from one another in the dielectric medium between the top and bottom switch electrodes. The presence of the one or more electrically floating conductor layers between the top and bottom switch electrodes allow the dielectric medium between the top and bottom switch electrodes to exhibit a higher breakdown voltage than the breakdown voltage when the one or more electrically floating conductor layers are not present between the top and bottom switch electrodes. This increased breakdown voltage in the presence of one or more electrically floating conductor layers in a dielectric medium enables the switch to supply a higher voltage for various high voltage circuits and electric systems.

  14. Resistive switching near electrode interfaces: Estimations by a current model

    Science.gov (United States)

    Schroeder, Herbert; Zurhelle, Alexander; Stemmer, Stefanie; Marchewka, Astrid; Waser, Rainer

    2013-02-01

    The growing resistive switching database is accompanied by many detailed mechanisms which often are pure hypotheses. Some of these suggested models can be verified by checking their predictions with the benchmarks of future memory cells. The valence change memory model assumes that the different resistances in ON and OFF states are made by changing the defect density profiles in a sheet near one working electrode during switching. The resulting different READ current densities in ON and OFF states were calculated by using an appropriate simulation model with variation of several important defect and material parameters of the metal/insulator (oxide)/metal thin film stack such as defect density and its profile change in density and thickness, height of the interface barrier, dielectric permittivity, applied voltage. The results were compared to the benchmarks and some memory windows of the varied parameters can be defined: The required ON state READ current density of 105 A/cm2 can only be achieved for barriers smaller than 0.7 eV and defect densities larger than 3 × 1020 cm-3. The required current ratio between ON and OFF states of at least 10 requests defect density reduction of approximately an order of magnitude in a sheet of several nanometers near the working electrode.

  15. Development of a switched integrator amplifier for high-accuracy optical measurements

    International Nuclear Information System (INIS)

    Mountford, John; Porrovecchio, Geiland; Smid, Marek; Smid, Radislav

    2008-01-01

    In the field of low flux optical measurements, the development and use of large area silicon detectors is becoming more frequent. The current/voltage conversion of their photocurrent presents a set of problems for traditional transimpedance amplifiers. The switched integration principle overcomes these limitations. We describe the development of a fully characterized current-voltage amplifier using the switched integrator technique. Two distinct systems have been developed in parallel at the United Kingdom's National Physical Laboratory (NPL) and Czech Metrology Institute (CMI) laboratories. We present the circuit theory and best practice in the design and construction of switched integrators. In conclusion the results achieved and future developments are discussed

  16. Development of a switched integrator amplifier for high-accuracy optical measurements.

    Science.gov (United States)

    Mountford, John; Porrovecchio, Geiland; Smid, Marek; Smid, Radislav

    2008-11-01

    In the field of low flux optical measurements, the development and use of large area silicon detectors is becoming more frequent. The current/voltage conversion of their photocurrent presents a set of problems for traditional transimpedance amplifiers. The switched integration principle overcomes these limitations. We describe the development of a fully characterized current-voltage amplifier using the switched integrator technique. Two distinct systems have been developed in parallel at the United Kingdom's National Physical Laboratory (NPL) and Czech Metrology Institute (CMI) laboratories. We present the circuit theory and best practice in the design and construction of switched integrators. In conclusion the results achieved and future developments are discussed.

  17. Experimental investigation of the ion current distribution in microsecond plasma opening switch

    Energy Technology Data Exchange (ETDEWEB)

    Bystritskij, V; Grigor` ev, S; Kharlov, A; Sinebryukhov, A [Russian Academy of Sciences, Tomsk (Russian Federation). Institute of Electrophysics

    1997-12-31

    This paper is devoted to the investigations of properties of the microsecond plasma opening switch (MPOS) as an ion beam source for surface modification. Two plasma sources were investigated: flash-board and cable guns. The detailed measurements of axial and azimuthal distributions of ion current density in the switch were performed. It was found that the azimuthal inhomogeneity of the ion beam increases from the beginning to the end of MPOS. The advantages and problems of this approach are discussed. (author). 5 figs., 2 refs.

  18. A β-Ta system for current induced magnetic switching in the absence of external magnetic field

    Science.gov (United States)

    Chen, Wenzhe; Qian, Lijuan; Xiao, Gang

    2018-05-01

    Magnetic switching via Giant Spin Hall Effect (GSHE) has received great interest for its role in developing future spintronics logic or memory devices. In this work, a new material system (i.e. a transition metal sandwiched between two ferromagnetic layers) with interlayer exchange coupling is introduced to realize the deterministic field-free perpendicular magnetic switching. This system uses β-Ta, as the GSHE agent to generate a spin current and as the interlayer exchange coupling medium to generate an internal field. The critical switching current density at zero field is on the order of 106 A/cm2 due to the large spin Hall angle of β-Ta. The internal field, along with switching efficiency, depends strongly on the orthogonal magnetization states of two ferromagnetic coupling layers in this system.

  19. Investigation of switch designs for the dynamic load current multiplier scheme on the SPHYNX microsecond linear transformer driver

    International Nuclear Information System (INIS)

    Maysonnave, T.; Bayol, F.; Demol, G.; Almeida, T. d'; Lassalle, F.; Morell, A.; Grunenwald, J.; Chuvatin, A.S.; Pecastaing, L.; De Ferron, A.S.

    2014-01-01

    SPHINX is a microsecond linear transformer driver LTD, used essentially for implosion of Z-pinch loads in direct drive mode. It can deliver a 6-MA current pulse within 800 ns into a Z-pinch load. The dynamic load current multiplier concept enables the current pulse to be modified by increasing its amplitude while reducing its rise time before being delivered to the load. This compact system is made up of concentric electrodes (auto transformer), a dynamic flux extruder (cylindrical wire array), a vacuum convolute (eight post-holes), and a vacuum closing switch, which is the key component of the system. Several different schemes are investigated for designing a vacuum switch suitable for operating the dynamic load current multiplier on the SPHINX generator for various applications, including isentropic compression experiments and Z-pinch radiation effects studies. In particular, the design of a compact vacuum surface switch and a multichannel vacuum switch, located upstream of the load are studied. Electrostatic simulations supporting the switch designs are presented along with test bed experiments. Initial results from shots on the SPHINX driver are also presented. (authors)

  20. IGBT Dynamic Loss Reduction through Device Level Soft Switching

    Directory of Open Access Journals (Sweden)

    Lan Ma

    2018-05-01

    Full Text Available Due to its low conduction loss, hence high current ratings, as well as low cost, Silicon Insulated Gate Bipolar Transistor (Si IGBT is widely used in high power applications. However, its switching frequency is generally low because of relatively large switching losses. Silicon carbide Metal-Oxide-Semiconductor Field-Effect Transistor (SiC MOSFET is much more superior due to their fast switching speed, which is determined by the internal parasitic capacitance instead of the stored charges, like the IGBT. By the combination of SiC MOSFET and Si IGBT, this paper presents a novel series hybrid switching method to achieve IGBT’s dynamic switching loss reduction by switching under Zero Voltage Hard Current (ZVHC turn-on and Zero Current Hard Voltage (ZCHV turn-off conditions. Both simulation and experimental results of IGBT are carried out, which shows that the soft switching of IGBT has been achieved both in turn-on and turn-off period. Thus 90% turn-on loss and 57% turn-off loss are reduced. Two different IGBTs’ test results are also provided to study the modulation parameter’s effect on the turn-off switching loss. Furthermore, with the consideration of voltage and current transient states, a new soft switching classification is proposed. At last, another improved modulation and Highly Efficient and Reliable Inverter Concept (HERIC inverter are given to validate the effectiveness of the device level hybrid soft switching method application.

  1. The influence of preferred orientation and poling temperature on the polarization switching current in PZT thin films

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Mi; Zhang, Weikang; Zhang, Zebin; Zhang, Ping [Tianjin University, School of Electrical and Information Engineering, Tianjin (China); Lan, Kuibo [Tianjin University, School of Microelectronics, Tianjin (China)

    2017-07-15

    In this paper, Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} (PZT) thin films with different preferred orientation were prepared on platinized silicon substrates by a modified sol-gel method. Our results indicate that the polarization switching current in PZT thin films is dependent on preferred orientation and poling temperature. In our measurements, (111)-oriented PZT has a larger polarization switching current than randomly oriented PZT, and with the increase of the degree of (111) preferred orientation and the poling temperature, the polarization switching current gradually increase. Considering the contact of PZT thin film with electrodes, the space-charged limited conduction (SCLC) combined with domain switching mechanism may be responsible for such phenomena. By analyzing the conduction data, we found the interface-limited Schottky emission (ES) and bulk-limited Poole-Frenkel hopping (PF) are not suitable for our samples. (orig.)

  2. Energy losses in switches

    International Nuclear Information System (INIS)

    Martin, T.H.; Seamen, J.F.; Jobe, D.O.

    1993-01-01

    The authors experiments show energy losses between 2 and 10 times that of the resistive time predictions. The experiments used hydrogen, helium, air, nitrogen, SF 6 polyethylene, and water for the switching dielectric. Previously underestimated switch losses have caused over predicting the accelerator outputs. Accurate estimation of these losses is now necessary for new high-efficiency pulsed power devices where the switching losses constitute the major portion of the total energy loss. They found that the switch energy losses scale as (V peak I peak ) 1.1846 . When using this scaling, the energy losses in any of the tested dielectrics are almost the same. This relationship is valid for several orders of magnitude and suggested a theoretical basis for these results. Currents up to .65 MA, with voltages to 3 MV were applied to various gaps during these experiments. The authors data and the developed theory indicates that the switch power loss continues for a much longer time than the resistive time, with peak power loss generally occurring at peak current in a ranging discharge instead of the early current time. All of the experiments were circuit code modeled after developing a new switch loss version based on the theory. The circuit code predicts switch energy loss and peak currents as a function of time. During analysis of the data they noticed slight constant offsets between the theory and data that depended on the dielectric. They modified the plasma conductivity for each tested dielectric to lessen this offset

  3. Interplay between Switching Driven by the Tunneling Current and Atomic Force of a Bistable Four-Atom Si Quantum Dot.

    Science.gov (United States)

    Yamazaki, Shiro; Maeda, Keisuke; Sugimoto, Yoshiaki; Abe, Masayuki; Zobač, Vladimír; Pou, Pablo; Rodrigo, Lucia; Mutombo, Pingo; Pérez, Ruben; Jelínek, Pavel; Morita, Seizo

    2015-07-08

    We assemble bistable silicon quantum dots consisting of four buckled atoms (Si4-QD) using atom manipulation. We demonstrate two competing atom switching mechanisms, downward switching induced by tunneling current of scanning tunneling microscopy (STM) and opposite upward switching induced by atomic force of atomic force microscopy (AFM). Simultaneous application of competing current and force allows us to tune switching direction continuously. Assembly of the few-atom Si-QDs and controlling their states using versatile combined AFM/STM will contribute to further miniaturization of nanodevices.

  4. High Performance Gigabit Ethernet Switches for DAQ Systems

    CERN Document Server

    Barczyk, Artur

    2005-01-01

    Commercially available high performance Gigabit Ethernet (GbE) switches are optimized mostly for Internet and standard LAN application traffic. DAQ systems on the other hand usually make use of very specific traffic patterns, with e.g. deterministic arrival times. Industry's accepted loss-less limit of 99.999% may be still unacceptably high for DAQ purposes, as e.g. in the case of the LHCb readout system. In addition, even switches passing this criteria under random traffic can show significantly higher loss rates if subject to our traffic pattern, mainly due to buffer memory limitations. We have evaluated the performance of several switches, ranging from "pizza-box" devices with 24 or 48 ports up to chassis based core switches in a test-bed capable to emulate realistic traffic patterns as expected in the readout system of our experiment. The results obtained in our tests have been used to refine and parametrize our packet level simulation of the complete LHCb readout network. In this paper we report on the...

  5. Energy storage, compression, and switching. Vol. 2

    International Nuclear Information System (INIS)

    Nardi, V.; Bostick, W.H.; Sahlin, H.

    1983-01-01

    This book is a compilation of papers presented at the Second International Conference on Energy Storage, Compression, and Switching, which was held in order to assemble active researchers with a major interest in plasma physics, electron beams, electric and magnetic energy storage systems, high voltage and high current switches, free-electron lasers, and pellet implosion plasma focus. Topics covered include: Slow systems: 50-60 Hz machinery, homopolar generators, slow capacitors, inductors, and solid state switches; Intermediate systems: fast capacitor banks; superconducting storage and switching; gas, vacuum, and dielectric switching; nonlinear (magnetic) switching; imploding liners capacitors; explosive generators; and fuses; and Fast systems: Marx, Blumlein, oil, water, and pressurized water dielectrics; switches; magnetic insulation; electron beams; and plasmas

  6. Wavelet Entropy-Based Traction Inverter Open Switch Fault Diagnosis in High-Speed Railways

    Directory of Open Access Journals (Sweden)

    Keting Hu

    2016-03-01

    Full Text Available In this paper, a diagnosis plan is proposed to settle the detection and isolation problem of open switch faults in high-speed railway traction system traction inverters. Five entropy forms are discussed and compared with the traditional fault detection methods, namely, discrete wavelet transform and discrete wavelet packet transform. The traditional fault detection methods cannot efficiently detect the open switch faults in traction inverters because of the low resolution or the sudden change of the current. The performances of Wavelet Packet Energy Shannon Entropy (WPESE, Wavelet Packet Energy Tsallis Entropy (WPETE with different non-extensive parameters, Wavelet Packet Energy Shannon Entropy with a specific sub-band (WPESE3,6, Empirical Mode Decomposition Shannon Entropy (EMDESE, and Empirical Mode Decomposition Tsallis Entropy (EMDETE with non-extensive parameters in detecting the open switch fault are evaluated by the evaluation parameter. Comparison experiments are carried out to select the best entropy form for the traction inverter open switch fault detection. In addition, the DC component is adopted to isolate the failure Isolated Gate Bipolar Transistor (IGBT. The simulation experiments show that the proposed plan can diagnose single and simultaneous open switch faults correctly and timely.

  7. Conceptual design of a high-speed electromagnetic switch for a modified flux-coupling-type SFCL and its application in renewable energy system.

    Science.gov (United States)

    Chen, Lei; Chen, Hongkun; Yang, Jun; Shu, Zhengyu; He, Huiwen; Shu, Xin

    2016-01-01

    The modified flux-coupling-type superconducting fault current (SFCL) is a high-efficient electrical auxiliary device, whose basic function is to suppress the short-circuit current by controlling the magnetic path through a high-speed switch. In this paper, the high-speed switch is based on electromagnetic repulsion mechanism, and its conceptual design is carried out to promote the application of the modified SFCL. Regarding that the switch which is consisting of a mobile copper disc, two fixed opening and closing coils, the computational method for the electromagnetic force is discussed, and also the dynamic mathematical model including circuit equation, magnetic field equation as well as mechanical motion equation is theoretically deduced. According to the mathematical modeling and calculation of characteristic parameters, a feasible design scheme is presented, and the high-speed switch's response time can be less than 0.5 ms. For that the modified SFCL is equipped with this high-speed switch, the SFCL's application in a 10 kV micro-grid system with multiple renewable energy sources are assessed in the MATLAB software. The simulations are well able to affirm the SFCL's performance behaviors.

  8. A silicon doped hafnium oxide ferroelectric p–n–p–n SOI tunneling field–effect transistor with steep subthreshold slope and high switching state current ratio

    Directory of Open Access Journals (Sweden)

    Saeid Marjani

    2016-09-01

    Full Text Available In this paper, a silicon–on–insulator (SOI p–n–p–n tunneling field–effect transistor (TFET with a silicon doped hafnium oxide (Si:HfO2 ferroelectric gate stack is proposed and investigated via 2D device simulation with a calibrated nonlocal band–to–band tunneling model. Utilization of Si:HfO2 instead of conventional perovskite ferroelectrics such as lead zirconium titanate (PbZrTiO3 and strontium bismuth tantalate (SrBi2Ta2O9 provides compatibility to the CMOS process as well as improved device scalability. By using Si:HfO2 ferroelectric gate stack, the applied gate voltage is effectively amplified that causes increased electric field at the tunneling junction and reduced tunneling barrier width. Compared with the conventional p–n–p–n SOI TFET, the on–state current and switching state current ratio are appreciably increased; and the average subthreshold slope (SS is effectively reduced. The simulation results of Si:HfO2 ferroelectric p–n–p–n SOI TFET show significant improvement in transconductance (∼9.8X enhancement at high overdrive voltage and average subthreshold slope (∼35% enhancement over nine decades of drain current at room temperature, indicating that this device is a promising candidate to strengthen the performance of p–n–p–n and conventional TFET for a switching performance.

  9. A graphene integrated highly transparent resistive switching memory device

    Science.gov (United States)

    Dugu, Sita; Pavunny, Shojan P.; Limbu, Tej B.; Weiner, Brad R.; Morell, Gerardo; Katiyar, Ram S.

    2018-05-01

    We demonstrate the hybrid fabrication process of a graphene integrated highly transparent resistive random-access memory (TRRAM) device. The indium tin oxide (ITO)/Al2O3/graphene nonvolatile memory device possesses a high transmittance of >82% in the visible region (370-700 nm) and exhibits stable and non-symmetrical bipolar switching characteristics with considerably low set and reset voltages (ITO/Al2O3/Pt device and studied its switching characteristics for comparison and a better understanding of the ITO/Al2O3/graphene device characteristics. The conduction mechanisms in high and low resistance states were analyzed, and the observed polarity dependent resistive switching is explained based on electro-migration of oxygen ions.

  10. High power switches for ion induction linacs

    International Nuclear Information System (INIS)

    Humphries, S. Jr.; Savage, M.; Saylor, W.B.

    1985-01-01

    The success of linear induction ion accelerators for accelerator inertial fusion (AIF) applications depends largely on innovations in pulsed power technology. There are tight constraints on the accuracy of accelerating voltage waveforms to maintain a low momentum spread. Furthermore, the non-relativistic ion beams may be subject to a klystron-like interaction with the accelerating cavities leading to enhanced momentum spread. In this paper, the author describe a novel high power switch with a demonstrated ability to interrupt 300 A at 20 kV in less than 60 ns. The switch may allow the replacement of pulse modulators in linear induction accelerators with hard tube pulsers. A power system based on a hard tube pulser could solve the longitudinal instability problem while maintaining high energy transfer efficiency. The problem of longitudinal beam control in ion induction linacs is reviewed in Section 2. Section 3 describes the principles of the plasma flow switch. Experimental results are summarized in Section 4

  11. High power switches for ion induction linacs

    International Nuclear Information System (INIS)

    Humphries, S.; Savage, M.; Saylor, W.B.

    1985-01-01

    The success of linear induction ion accelerators for accelerator inertial fusion (AIF) applications depends largely on innovations in pulsed power technology. There are tight constraints on the accuracy of accelerating voltage waveforms to maintain a low momentum spread. Furthermore, the non-relativistic ion beams may be subject to a klystronlike interaction with the accelerating cavities, leading to enhanced momentum spread. In this paper, we describe a novel high power switch with a demonstrated ability to interrupt 300 A at 20 kV in less than 60 ns. The switch may allow the replacement of pulse modulators in linear induction accelerators with hard tube pulsers. A power system based on a hard tube pulser could solve the longitudinal instability problem while maintaining high energy transfer efficiency. The problem of longitudinal beam control in ion induction linacs is reviewed in Section 2. Section 3 describes the principles of the plasma flow switch. Experimental results are summarized in Section 4

  12. Bimetallic nanoparticles for surface modification and lubrication of MEMS switch contacts

    International Nuclear Information System (INIS)

    Patton, Steven T; Hu Jianjun; Slocik, Joseph M; Campbell, Angela; Naik, Rajesh R; Voevodin, Andrey A

    2008-01-01

    Reliability continues to be a critical issue in microelectromechanical systems (MEMS) switches. Failure mechanisms include high contact resistance (R), high adhesion, melting/shorting, and contact erosion. Little previous work has addressed the lubrication of MEMS switches. In this study, bimetallic nanoparticles (NPs) are synthesized using a biotemplated approach and deposited on Au MEMS switch contacts as a nanoparticle-based lubricant. Bimetallic nanoparticles are comprised of a metallic core (∼10 nm diameter gold nanoparticle) with smaller metallic nanoparticles (∼2-3 nm diameter Pd nanoparticles) populating the core surface. Adhesion and resistance (R) were measured during hot switching experiments at low (10 μA) and high (1 mA) current. The Au/Pd NP coated contacts led to reduced adhesion as compared to pure Au contacts with a compromise of slightly higher R. For switches held in the closed position at low current, R gradually decreased over tens of seconds due to increased van der Waals force and growth of the real area of contact with temporal effects being dominant over load effects. Contact behavior transitioned from 'Pd-like' to 'Au-like' during low current cycling experiments. Melting at high current resulted in rapid formation of large real contact area, low and stable R, and minimal effect of load on R. Durability at high current was excellent with no failure through 10 6 hot switching cycles. Improvement at high current is due to controlled nanoscale surface roughness that spreads current through multiple nanocontacts, which restricts the size of melting regions and causes termination of nanowire growth (prevents shorting) during contact opening. Based on these results, bimetallic NPs show excellent potential as surface modifiers/lubricants for MEMS switch contacts

  13. High voltage, high power operation of the plasma erosion opening switch

    International Nuclear Information System (INIS)

    Neri, J.M.; Boller, J.R.; Ottinger, P.F.; Weber, B.V.; Young, F.C.

    1987-01-01

    A Plasma Erosion Opening Switch (PEOS) is used as the opening switch for a vacuum inductive storage system driven by a 1.8-MV, 1.6-TW pulsed power generator. A 135-nH vacuum inductor is current charged to ∼750 kA in 50 ns through the closed PEOS which then opens in <10 ns into an inverse ion diode load. Electrical diagnostics and nuclear activations from ions accelerated in the diode yield a peak load voltage (4.25 MV) and peak load power (2.8 TW) that are 2.4 and 1.8 times greater than ideal matched load values for the same generator pulse

  14. A HIGH CURRENT, HIGH VOLTAGE SOLID-STATE PULSE GENERATOR FOR THE NIF PLASMA ELECTRODE POCKELS CELL

    International Nuclear Information System (INIS)

    Arnold, P A; Barbosa, F; Cook, E G; Hickman, B C; Akana, G L; Brooksby, C A

    2007-01-01

    A high current, high voltage, all solid-state pulse modulator has been developed for use in the Plasma Electrode Pockels Cell (PEPC) subsystem in the National Ignition Facility. The MOSFET-switched pulse generator, designed to be a more capable plug-in replacement for the thyratron-switched units currently deployed in NIF, offers unprecedented capabilities including burst-mode operation, pulse width agility and a steady-state pulse repetition frequency exceeding 1 Hz. Capable of delivering requisite fast risetime, 17 kV flattop pulses into a 6 (Omega) load, the pulser employs a modular architecture characteristic of the inductive adder technology, pioneered at LLNL for use in acceleration applications, which keeps primary voltages low (and well within the capabilities of existing FET technology), reduces fabrication costs and is amenable to rapid assembly and quick field repairs

  15. Operation of a semiconductor opening switch at ultrahigh current densities

    International Nuclear Information System (INIS)

    Lyubutin, S. K.; Rukin, S. N.; Slovikovsky, B. G.; Tsyranov, S. N.

    2012-01-01

    The operation of a semiconductor opening switch (SOS diode) at cutoff current densities of tens of kA/cm 2 is studied. In experiments, the maximum reverse current density reached 43 kA/cm 2 for ∼40 ns. Experimental data on SOS diodes with a p + -p-n-n + structure and a p-n junction depth from 145 to 180 μm are presented. The dynamics of electron-hole plasma in the diode at pumping and current cutoff stages is studied by numerical simulation methods. It is shown that current cutoff is associated with the formation of an electric field region in a thin (∼45 μm) layer of the structure’s heavily doped p-region, in which the acceptor concentration exceeds 10 16 cm −3 , and the current cutoff process depends weakly on the p-n junction depth.

  16. On a mechanism of switching off low-hybrid run away currents in tokamak devices

    International Nuclear Information System (INIS)

    Budnikov, V.N.; Esipov, L.A.; Irzak, M.A.

    1990-01-01

    The problem of the generation of low-hybrid run-away currents (LR) in tokamak devices is described. The mechanism of switching off LRCs is considered. Qualitative representation of the density limit, the transitions of which stops the generation of currents, is given

  17. Study on pulsed-discharge devices with high current rising rate for point spot short-wavelength source in dense plasma observations

    International Nuclear Information System (INIS)

    Tachinami, Fumitaka; Anzai, Nobuyuki; Sasaki, Toru; Kikuchi, Takashi; Harada, Nob.

    2014-01-01

    A pulsed-power generator with high current rise based on a pulse-forming-network was studied toward generating intense point-spot X-ray source. To obtain the high rate of current rise, we have designed the compact discharge device with low circuit inductance. The results indicate that the inductance of the compact discharge device was dominated by a gap switch inductance. To reduce the gap switch inductance and operation voltage, the feasible gap switch inductance in the vacuum chamber has been estimated by the circuit simulation. The gap switch inductance can be reduced by the lower pressure operation. It means that the designed discharge device achieves the rate of current rise of 10 12 A/s

  18. Voltage- and current-activated metal–insulator transition in VO2-based electrical switches: a lifetime operation analysis

    Directory of Open Access Journals (Sweden)

    Aurelian Crunteanu, Julien Givernaud, Jonathan Leroy, David Mardivirin, Corinne Champeaux, Jean-Christophe Orlianges, Alain Catherinot and Pierre Blondy

    2010-01-01

    Full Text Available Vanadium dioxide is an intensively studied material that undergoes a temperature-induced metal–insulator phase transition accompanied by a large change in electrical resistivity. Electrical switches based on this material show promising properties in terms of speed and broadband operation. The exploration of the failure behavior and reliability of such devices is very important in view of their integration in practical electronic circuits. We performed systematic lifetime investigations of two-terminal switches based on the electrical activation of the metal–insulator transition in VO2 thin films. The devices were integrated in coplanar microwave waveguides (CPWs in series configuration. We detected the evolution of a 10 GHz microwave signal transmitted through the CPW, modulated by the activation of the VO2 switches in both voltage- and current-controlled modes. We demonstrated enhanced lifetime operation of current-controlled VO2-based switching (more than 260 million cycles without failure compared with the voltage-activated mode (breakdown at around 16 million activation cycles. The evolution of the electrical self-oscillations of a VO2-based switch induced in the current-operated mode is a subtle indicator of the material properties modification and can be used to monitor its behavior under various external stresses in sensor applications.

  19. An Original Transformer and Switched-Capacitor (T & SC-Based Extension for DC-DC Boost Converter for High-Voltage/Low-Current Renewable Energy Applications: Hardware Implementation of a New T & SC Boost Converter

    Directory of Open Access Journals (Sweden)

    Sanjeevikumar Padmanaban

    2018-03-01

    Full Text Available In this article a new Transformer and Switched Capacitor-based Boost Converter (T & SC-BC is proposed for high-voltage/low-current renewable energy applications. The proposed T & SC-BC is an original extension for DC-DC boost converter which is designed by utilizing a transformer and switched capacitor (T & SC. Photovoltaic (PV energy is a fast emergent segment among the renewable energy systems. The proposed T & SC-BC combines the features of the conventional boost converter and T & SC to achieve a high voltage conversion ratio. A Maximum Power Point Tracking (MPPT controller is compulsory and necessary in a PV system to extract maximum power. Thus, a photovoltaic MPPT control mechanism also articulated for the proposed T & SC-BC. The voltage conversion ratio (Vo/Vin of proposed converter is (1 + k/(1 − D where, k is the turns ratio of the transformer and D is the duty cycle (thus, the converter provides 9.26, 13.88, 50/3 voltage conversion ratios at 78.4 duty cycle with k = 1, 2, 2.6, respectively. The conspicuous features of proposed T & SC-BC are: (i a high voltage conversion ratio (Vo/Vin; (ii continuous input current (Iin; (iii single switch topology; (iv single input source; (v low drain to source voltage (VDS rating of control switch; (vi a single inductor and a single untapped transformer are used. Moreover, the proposed T & SC-BC topology was compared with recently addressed DC-DC converters in terms of number of components, cost, voltage conversion ratio, ripples, efficiency and power range. Simulation and experimental results are provided which validate the functionality, design and concept of the proposed approach.

  20. The Effects of 10 Hz Transcranial Alternating Current Stimulation on Audiovisual Task Switching

    Directory of Open Access Journals (Sweden)

    Michael S. Clayton

    2018-02-01

    Full Text Available Neural oscillations in the alpha band (7–13 Hz are commonly associated with disengagement of visual attention. However, recent studies have also associated alpha with processes of attentional control and stability. We addressed this issue in previous experiments by delivering transcranial alternating current stimulation at 10 Hz over posterior cortex during visual tasks (alpha tACS. As this stimulation can induce reliable increases in EEG alpha power, and given that performance on each of our visual tasks was negatively associated with alpha power, we assumed that alpha tACS would reliably impair visual performance. However, alpha tACS was instead found to prevent both deteriorations and improvements in visual performance that otherwise occurred during sham & 50 Hz tACS. Alpha tACS therefore appeared to exert a stabilizing effect on visual attention. This hypothesis was tested in the current, pre-registered experiment by delivering alpha tACS during a task that required rapid switching of attention between motion, color, and auditory subtasks. We assumed that, if alpha tACS stabilizes visual attention, this stimulation should make it harder for people to switch between visual tasks, but should have little influence on transitions between auditory and visual subtasks. However, in contrast to this prediction, we observed no evidence of impairments in visuovisual vs. audiovisual switching during alpha vs. control tACS. Instead, we observed a trend-level reduction in visuoauditory switching accuracy during alpha tACS. Post-hoc analyses showed no effects of alpha tACS in response time variability, diffusion model parameters, or on performance of repeat trials. EEG analyses also showed no effects of alpha tACS on endogenous or stimulus-evoked alpha power. We discuss possible explanations for these results, as well as their broader implications for current efforts to study the roles of neural oscillations in cognition using tACS.

  1. High Efficiency Boost Converter with Three State Switching Cell

    DEFF Research Database (Denmark)

    Klimczak, Pawel; Munk-Nielsen, Stig

    2009-01-01

    is on performance improvement of this type of the converter. Use of foil windings helps to reduce conduction losses in magnetic components and to reduce size of these components. Also it has been demonstrated that the regulation range of this type of converter can be increased by operation with duty cycle lower......The boost converter with the three-state switching cell seems to be a good candidate for a dc-dc stage for non-isolated generators based on alternative energy sources. It provides a high voltage gain, a reduced voltage stress on transistors and limited input current ripples. In this paper the focus...

  2. Bimetallic nanoparticles for surface modification and lubrication of MEMS switch contacts

    Energy Technology Data Exchange (ETDEWEB)

    Patton, Steven T; Hu Jianjun [University of Dayton Research Institute, Dayton, OH 45469-0168 (United States); Slocik, Joseph M; Campbell, Angela; Naik, Rajesh R; Voevodin, Andrey A [Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433-7750 (United States)], E-mail: steve.patton@wpafb.af.mil, E-mail: rajesh.naik@wpafb.af.mil

    2008-10-08

    Reliability continues to be a critical issue in microelectromechanical systems (MEMS) switches. Failure mechanisms include high contact resistance (R), high adhesion, melting/shorting, and contact erosion. Little previous work has addressed the lubrication of MEMS switches. In this study, bimetallic nanoparticles (NPs) are synthesized using a biotemplated approach and deposited on Au MEMS switch contacts as a nanoparticle-based lubricant. Bimetallic nanoparticles are comprised of a metallic core ({approx}10 nm diameter gold nanoparticle) with smaller metallic nanoparticles ({approx}2-3 nm diameter Pd nanoparticles) populating the core surface. Adhesion and resistance (R) were measured during hot switching experiments at low (10 {mu}A) and high (1 mA) current. The Au/Pd NP coated contacts led to reduced adhesion as compared to pure Au contacts with a compromise of slightly higher R. For switches held in the closed position at low current, R gradually decreased over tens of seconds due to increased van der Waals force and growth of the real area of contact with temporal effects being dominant over load effects. Contact behavior transitioned from 'Pd-like' to 'Au-like' during low current cycling experiments. Melting at high current resulted in rapid formation of large real contact area, low and stable R, and minimal effect of load on R. Durability at high current was excellent with no failure through 10{sup 6} hot switching cycles. Improvement at high current is due to controlled nanoscale surface roughness that spreads current through multiple nanocontacts, which restricts the size of melting regions and causes termination of nanowire growth (prevents shorting) during contact opening. Based on these results, bimetallic NPs show excellent potential as surface modifiers/lubricants for MEMS switch contacts.

  3. A novel solid-state control system for the minimization of re-switching transient currents of induction motor

    International Nuclear Information System (INIS)

    Abro, M.R.; Larik, A.S.; Mahar, M.A.

    2005-01-01

    This work is an investigation into the minimizing re-closure transient currents of induction motors by activating NOVEL solid state control system switching at a matched condition. This emphasis is placed upon-circuit transition starting of cage motors, particularly star-delta switching. The initial study is carried out on single-phase induction motion. This system is capable of effective sensing re-closure of a switched off running single-phase induction motor. Further this scheme could be developed to give sequential delta closure of a switched off running three-phase induction motor during 1st cycles following the opening of the star mode. Consideration is also given to the possibility of using sensed re-closure to minimize transient whenever the supply to a running induction motor is briefly interrupted, irrespective of whether the interruption is by accident design. A brief study is made into the type of transient currents generated by opening the circuit of a running induction motor. The importance of the switching pattern for star-delta starting is explained and emphasized. (author)

  4. Current-driven channel switching and colossal positive magnetoresistance in the manganite-based structure

    International Nuclear Information System (INIS)

    Volkov, N V; Eremin, E V; Tsikalov, V S; Patrin, G S; Kim, P D; Seong-Cho, Yu; Kim, Dong-Hyun; Chau, Nguyen

    2009-01-01

    The transport and magnetotransport properties of a newly fabricated tunnel structure manganite/depletion layer/manganese silicide have been studied in the current-in-plane (CIP) geometry. A manganite depletion layer in the structure forms a potential barrier sandwiched between two conducting layers, one of manganite and the other of manganese silicide. The voltage-current characteristics of the structure are nonlinear due to switching conducting channels from an upper manganite film to a bottom, more conductive MnSi layer with an increase in the current applied to the structure. Bias current assists tunnelling of a carrier across the depletion layer; thus, a low-resistance contact between the current-carrying electrodes and the bottom layer is established. Below 30 K, both conducting layers are in the ferromagnetic state (magnetic tunnel junction), which allows control of the resistance of the tunnel junction and, consequently, switching of the conducting channels by the magnetic field. This provides a fundamentally new mechanism of magnetoresistance (MR) implementation in the magnetic layered structure with CIP geometry. MR of the structure under study depends on the bias current and can reach values greater than 400% in a magnetic field lower than 1 kOe. A positive MR value is related to peculiarities of the spin-polarized electronic structures of manganites and manganese silicides.

  5. Effects of Transverse Magnetic Anisotropy on Current-Induced Spin Switching

    OpenAIRE

    Misiorny, Maciej; Barnaś, Józef

    2013-01-01

    Spin-polarized transport through bistable magnetic adatoms or single-molecule magnets (SMMs), which exhibit both uniaxial and transverse magnetic anisotropy, is considered theoretically. The main focus is on the impact of transverse anisotropy on transport characteristics and the adatom's/SMM's spin. In particular, we analyze the role of quantum tunneling of magnetization (QTM) in the mechanism of the current-induced spin switching, and show that the QTM phenomenon becomes revealed as resonan...

  6. Impact of electrically formed interfacial layer and improved memory characteristics of IrOx/high-κx/W structures containing AlOx, GdOx, HfOx, and TaOx switching materials.

    Science.gov (United States)

    Prakash, Amit; Maikap, Siddheswar; Banerjee, Writam; Jana, Debanjan; Lai, Chao-Sung

    2013-09-06

    Improved switching characteristics were obtained from high-κ oxides AlOx, GdOx, HfOx, and TaOx in IrOx/high-κx/W structures because of a layer that formed at the IrOx/high-κx interface under external positive bias. The surface roughness and morphology of the bottom electrode in these devices were observed by atomic force microscopy. Device size was investigated using high-resolution transmission electron microscopy. More than 100 repeatable consecutive switching cycles were observed for positive-formatted memory devices compared with that of the negative-formatted devices (only five unstable cycles) because it contained an electrically formed interfacial layer that controlled 'SET/RESET' current overshoot. This phenomenon was independent of the switching material in the device. The electrically formed oxygen-rich interfacial layer at the IrOx/high-κx interface improved switching in both via-hole and cross-point structures. The switching mechanism was attributed to filamentary conduction and oxygen ion migration. Using the positive-formatted design approach, cross-point memory in an IrOx/AlOx/W structure was fabricated. This cross-point memory exhibited forming-free, uniform switching for >1,000 consecutive dc cycles with a small voltage/current operation of ±2 V/200 μA and high yield of >95% switchable with a large resistance ratio of >100. These properties make this cross-point memory particularly promising for high-density applications. Furthermore, this memory device also showed multilevel capability with a switching current as low as 10 μA and a RESET current of 137 μA, good pulse read endurance of each level (>105 cycles), and data retention of >104 s at a low current compliance of 50 μA at 85°C. Our improvement of the switching characteristics of this resistive memory device will aid in the design of memory stacks for practical applications.

  7. Effects of Transverse Magnetic Anisotropy on Current-Induced Spin Switching

    Science.gov (United States)

    Misiorny, Maciej; Barnaś, Józef

    2013-07-01

    Spin-polarized transport through bistable magnetic adatoms or single-molecule magnets (SMMs), which exhibit both uniaxial and transverse magnetic anisotropy, is considered theoretically. The main focus is on the impact of transverse anisotropy on transport characteristics and the adatom’s or SMM’s spin. In particular, we analyze the role of quantum tunneling of magnetization (QTM) in the mechanism of the current-induced spin switching, and show that the QTM phenomenon becomes revealed as resonant peaks in the average values of the molecule’s spin and in the charge current. These features appear at some resonant fields and are observable when at least one of the electrodes is ferromagnetic.

  8. External field induced switching of tunneling current in the coupled quantum dots

    OpenAIRE

    Mantsevich, V. N.; Maslova, N. S.; Arseyev, P. I.

    2014-01-01

    We investigated the tunneling current peculiarities in the system of two coupled by means of the external field quantum dots (QDs) weakly connected to the electrodes in the presence of Coulomb correlations. It was found that tuning of the external field frequency induces fast multiple tunneling current switching and leads to the negative tunneling conductivity. Special role of multi-electrons states was demonstrated. Moreover we revealed conditions for bistable behavior of the tunneling curre...

  9. Switching Schools: Reconsidering the Relationship Between School Mobility and High School Dropout

    Science.gov (United States)

    Gasper, Joseph; DeLuca, Stefanie; Estacion, Angela

    2014-01-01

    Youth who switch schools are more likely to demonstrate a wide array of negative behavioral and educational outcomes, including dropping out of high school. However, whether switching schools actually puts youth at risk for dropout is uncertain, since youth who switch schools are similar to dropouts in their levels of prior school achievement and engagement, which suggests that switching schools may be part of the same long-term developmental process of disengagement that leads to dropping out. Using data from the National Longitudinal Survey of Youth 1997, this study uses propensity score matching to pair youth who switched high schools with similar youth who stayed in the same school. We find that while over half the association between switching schools and dropout is explained by observed characteristics prior to 9th grade, switching schools is still associated with dropout. Moreover, the relationship between switching schools and dropout varies depending on a youth's propensity for switching schools. PMID:25554706

  10. High voltage switch triggered by a laser-photocathode subsystem

    Science.gov (United States)

    Chen, Ping; Lundquist, Martin L.; Yu, David U. L.

    2013-01-08

    A spark gap switch for controlling the output of a high voltage pulse from a high voltage source, for example, a capacitor bank or a pulse forming network, to an external load such as a high gradient electron gun, laser, pulsed power accelerator or wide band radar. The combination of a UV laser and a high vacuum quartz cell, in which a photocathode and an anode are installed, is utilized as triggering devices to switch the spark gap from a non-conducting state to a conducting state with low delay and low jitter.

  11. High-speed packet switching network to link computers

    CERN Document Server

    Gerard, F M

    1980-01-01

    Virtually all of the experiments conducted at CERN use minicomputers today; some simply acquire data and store results on magnetic tape while others actually control experiments and help to process the resulting data. Currently there are more than two hundred minicomputers being used in the laboratory. In order to provide the minicomputer users with access to facilities available on mainframes and also to provide intercommunication between various experimental minicomputers, CERN opted for a packet switching network back in 1975. It was decided to use Modcomp II computers as switching nodes. The only software to be taken was a communications-oriented operating system called Maxcom. Today eight Modcomp II 16-bit computers plus six newer Classic minicomputers from Modular Computer Services have been purchased for the CERNET data communications networks. The current configuration comprises 11 nodes connecting more than 40 user machines to one another and to the laboratory's central computing facility. (0 refs).

  12. A Switch Is Not a Switch: Syntactically-Driven Bilingual Language Control

    Science.gov (United States)

    Gollan, Tamar H.; Goldrick, Matthew

    2018-01-01

    The current study investigated the possibility that language switches could be relatively automatically triggered by context. "Single-word switches," in which bilinguals switched languages on a single word in midsentence and then immediately switched back, were contrasted with more complete "whole-language switches," in which…

  13. Modeling and Mitigation for High Frequency Switching Transients Due to Energization in Offshore Wind Farms

    Directory of Open Access Journals (Sweden)

    Yanli Xin

    2016-12-01

    Full Text Available This paper presents a comprehensive investigation on high frequency (HF switching transients due to energization of vacuum circuit breakers (VCBs in offshore wind farms (OWFs. This research not only concerns the modeling of main components in collector grids of an OWF for transient analysis (including VCBs, wind turbine transformers (WTTs, submarine cables, but also compares the effectiveness between several mainstream switching overvoltage (SOV protection methods and a new mitigation method called smart choke. In order to accurately reproduce such HF switching transients considering the current chopping, dielectric strength (DS recovery capability and HF quenching capability of VCBs, three models are developed, i.e., a user–defined VCB model, a HF transformer terminal model and a three-core (TC frequency dependent model of submarine cables, which are validated through simulations and compared with measurements. Based on the above models and a real OWF configuration, a simulation model is built and several typical switching transient cases are investigated to analyze the switching transient process and phenomena. Subsequently, according to the characteristics of overvoltages, appropriate parameters of SOV mitigation methods are determined to improve their effectiveness. Simulation results indicate that the user–defined VCB model can satisfactorily simulate prestrikes and the proposed component models display HF characteristics, which are consistent with onsite measurement behaviors. Moreover, the employed protection methods can suppress induced SOVs, which have a steep front, a high oscillation frequency and a high amplitude, among which the smart choke presents a preferable HF damping effect.

  14. An In-Rush Current Suppression Technique for the Solid-State Transfer Switch System

    Science.gov (United States)

    Cheng, Po-Tai; Chen, Yu-Hsing

    More and more utility companies provide dual power feeders as a premier service of high power quality and reliability. To take advantage of this, the solid-state transfer switch (STS) is adopted to protect the sensitive load against the voltage sag. However, the fast transfer process may cause in-rush current on the load-side transformer due to the resulting DC-offset in its magnetic flux as the load-transfer is completed. The in-rush current can reach 2∼6 p.u. and it may trigger the over-current protections on the power feeder. This paper develops a flux estimation scheme and a thyristor gating scheme based on the impulse commutation bridge STS (ICBSTS) to minimize the DC-offset on the magnetic flux. By sensing the line voltages of both feeders, the flux estimator can predict the peak transient flux linkage at the moment of load-transfer and evaluate a suitable moment for the transfer to minimize the in-rush current. Laboratory test results are presented to validate the performance of the proposed system.

  15. Sub-10 nm low current resistive switching behavior in hafnium oxide stack

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Y., E-mail: houyi@pku.edu.cn, E-mail: lfliu@pku.edu.cn [Institute of Microelectronics, Peking University, 100871 Beijing (China); IMEC, Kapeldreef 75, B-3001 Heverlee (Belgium); Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Heverlee (Belgium); Celano, U.; Xu, Z.; Vandervorst, W. [IMEC, Kapeldreef 75, B-3001 Heverlee (Belgium); Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Heverlee (Belgium); Goux, L.; Fantini, A.; Degraeve, R.; Youssef, A.; Jurczak, M. [IMEC, Kapeldreef 75, B-3001 Heverlee (Belgium); Liu, L., E-mail: houyi@pku.edu.cn, E-mail: lfliu@pku.edu.cn; Cheng, Y.; Kang, J. [Institute of Microelectronics, Peking University, 100871 Beijing (China)

    2016-03-21

    In this letter, a tip-induced cell relying on the conductive atomic force microscope is proposed. It is verified as a referable replica of an integrated resistive random access memory (RRAM) device. On the basis of this cell, the functionality of sub-10 nm resistive switching is confirmed in hafnium oxide stack. Moreover, the low current switching behavior in the sub-10 nm dimension is found to be more pronounced than that of a 50 × 50 nm{sup 2} device. It shows better ON/OFF ratio and low leakage current. The enhanced memory performance is ascribed to a change in the shape of the conductive filament as the device dimensions are reduced to sub-10 nm. Therefore, device downscaling provides a promising approach for the resistance optimization that benefits the RRAM array design.

  16. Evaluation of resistive switching properties of Si-rich oxide embedded with Ti nanodots by applying constant voltage and current

    Science.gov (United States)

    Ohta, Akio; Kato, Yusuke; Ikeda, Mitsuhisa; Makihara, Katsunori; Miyazaki, Seiichi

    2018-06-01

    We have studied the resistive switching behaviors of electron beam (EB) evaporated Si-rich oxide (SiO x ) sandwiched between Ni electrodes by applying a constant voltage and current. Additionally, the impact of Ti nanodots (NDs) embedded into SiO x on resistive switching behaviors was investigated because it is expected that NDs can trigger the formation of a conductive filament path in SiO x . The resistive switching behaviors of SiO x show that the response time during resistance switching was decreased by increasing the applied constant current or constant voltage. It was found that Ti-NDs in SiO x enhance the conductive filament path formation owing to electric field concentration by Ti-NDs.

  17. The Atlas load protection switch

    CERN Document Server

    Davis, H A; Dorr, G; Martínez, M; Gribble, R F; Nielsen, K E; Pierce, D; Parsons, W M

    1999-01-01

    Atlas is a high-energy pulsed-power facility under development to study materials properties and hydrodynamics experiments under extreme conditions. Atlas will implode heavy liner loads (m~45 gm) with a peak current of 27-32 MA delivered in 4 mu s, and is energized by 96, 240 kV Marx generators storing a total of 23 MJ. A key design requirement for Atlas is obtaining useful data for 95601130f all loads installed on the machine. Materials response calculations show current from a prefire can damage the load requiring expensive and time consuming replacement. Therefore, we have incorporated a set of fast-acting mechanical switches in the Atlas design to reduce the probability of a prefire damaging the load. These switches, referred to as the load protection switches, short the load through a very low inductance path during system charge. Once the capacitors have reached full charge, the switches open on a time scale short compared to the bank charge time, allowing current to flow to the load when the trigger pu...

  18. Magnetic Switching of a Single Molecular Magnet due to Spin-Polarized Current

    OpenAIRE

    Misiorny, Maciej; Barnas, Józef

    2006-01-01

    Magnetic switching of a single molecular magnet (SMM) due to spin-polarized current flowing between ferromagnetic metallic electrodes is investigated theoretically. Magnetic moments of the electrodes are assumed to be collinear and parallel to the magnetic easy axis of the molecule. Electrons tunneling through a barrier between magnetic leads are coupled to the SMM via exchange interaction. The current flowing through the system as well as the spin relaxation times of the SMM are calculated f...

  19. High efficiency three-phase power factor correction rectifier using SiC switches

    DEFF Research Database (Denmark)

    Kouchaki, Alireza; Nymand, Morten

    2017-01-01

    This paper presents designing procedure of a high efficiency 5 kW silicon-carbide (SiC) based threephase power factor correction (PFC). SiC switches present low capacitive switching loss compared to the alternative Si switches. Therefore, the switching frequency can be increased and hence the siz...

  20. Very High Frequency Switch-Mode Power Supplies.:Miniaturization of Power Electronics.

    OpenAIRE

    Madsen, Mickey Pierre; Andersen, Michael A. E.; Knott, Arnold

    2015-01-01

    The importance of technology and electronics in our daily life is constantly increasing. At the same time portability and energy efficiency are currently some of the hottest topics. This creates a huge need for power converters in a compact form factor and with high efficiency, which can supply these electronic devices. This calls for new technologies in order to miniaturize the power electronics of today. One way to do this is by increasing the switching frequency dramatically and develop ve...

  1. Comparison of Ion Beam opening switch and plasma opening switch performance

    International Nuclear Information System (INIS)

    Greenly, J.R.; Rondeau, G.D.; Sheldon, H.T.; Dreike, P.L.

    1986-01-01

    The Ion Beam opening switch (IBOS) experiment has shown that an intense charge-neutralized ion beam can carry current across a vacuum magnetically-insulated transmission line and then transfer that current to a downstream load quickly. In the IBOS experiment, a 10 cm wide parallel plate transmission line was fed up to 100 kA peak current by a 4Ω, 100 ns pulser. An ion beam of up to 100 A/cm/sup 2/, 100-300 keV protons or carbon was injected through the anode of the line in a 10 cm x 10 cm region. The line terminated in either a 15 nH short circuit or an electron diode with variable gap. The ion beam switch was able to carry up to 70 kA of line current before load current began to flow. This model is also quantitatively consistent with the observation that switch conduction current is not linear with either injected ion beam current or switch area

  2. High current high accuracy IGBT pulse generator

    International Nuclear Information System (INIS)

    Nesterov, V.V.; Donaldson, A.R.

    1995-05-01

    A solid state pulse generator capable of delivering high current triangular or trapezoidal pulses into an inductive load has been developed at SLAC. Energy stored in a capacitor bank of the pulse generator is switched to the load through a pair of insulated gate bipolar transistors (IGBT). The circuit can then recover the remaining energy and transfer it back to the capacitor bank without reversing the capacitor voltage. A third IGBT device is employed to control the initial charge to the capacitor bank, a command charging technique, and to compensate for pulse to pulse power losses. The rack mounted pulse generator contains a 525 μF capacitor bank. It can deliver 500 A at 900V into inductive loads up to 3 mH. The current amplitude and discharge time are controlled to 0.02% accuracy by a precision controller through the SLAC central computer system. This pulse generator drives a series pair of extraction dipoles

  3. E-beam high voltage switching power supply

    Science.gov (United States)

    Shimer, Daniel W.; Lange, Arnold C.

    1997-01-01

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360.degree./n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load.

  4. E-beam high voltage switching power supply

    International Nuclear Information System (INIS)

    Shimer, D.W.; Lange, A.C.

    1997-01-01

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360 degree/n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load. 7 figs

  5. Heavy-duty explosively operated pulsed opening and closing switches

    International Nuclear Information System (INIS)

    Peterson, D.R.; Price, J.H.; Upshaw, J.L.; Weldon, W.F.; Zowarka, R.C.; Gully, J.H.; Spann, M.L.

    1991-01-01

    This paper discusses improvements to heavy duty, explosively operated, opening and closing switches to reduce component cost, installation cost, and turnaround time without sacrificing reliability. Heavy duty opening and closing switches operated by small explosive charges (50 g or less) are essential to operation of the 60 MJ Balcones power supply. The six independent modules - a 10 MJ homopolar generator (HPG) and a 6 μH storage inductor - can be discharged sequentially, a valuable feature for shaping the current pulse delivered to loads such as high-energy railguns. Each delayed inductor must be isolated from the railgun circuit with a heavy duty closing switch capable of carrying megampere currents to millisecond duration. Similar closing switches are used to crowbar the railgun as the projectile approaches the muzzle: noise reduction, reduction of muzzle arc damage, and reduction of post-launch perturbation of projectile flight. The switches - both opening and closing - are characterized by microhm resistance in the closed state. Current is carried in metallic conductors. Metal-to-metal seams which carry current are maintained in uniform high pressure contact. Efficient switching is crucial to efficient conversion: rotor kinetic energy to stored inductive energy with ∼50% efficiency, stored inductive energy to projectile kinetic energy with ∼30% efficiency. The switches must operate with a precision and repeatability of 10 -5 s, readily achievable with explosives. The opening switches must be structurally and thermally capable of carrying megampere currents for more than 100 ms (∼10 5 C) and develop 10 kV upon opening, stay open for 10 - 2 s, and safely and reliably dissipate megajoules of inductive energy in the event of a fault, a failure of the switch to operate or an attempt to commutate into an open circuit

  6. Attention switching after dietary brain 5-HT challenge in high impulsive subjects.

    Science.gov (United States)

    Markus, C Rob; Jonkman, Lisa M

    2007-09-01

    High levels of impulsivity have adverse effects on performance in cognitive tasks, particularLy in those tasks that require high attention investment. Furthermore, both animal and human research has indicated that reduced brain serotonin (5-HT) function is associated with increases in impulsive behaviour or decreased inhibition ability, but the effects of 5-HT challenge have not yet been investigated in subjects vulnerable to impulsivity. The present study aimed to investigate whether subjects with high trait impulsivity perform worse than low impulsive subjects in a task switching paradigm in which they have to rapidly shift their attention between two response rules, and to investigate the influence of a 5-HT enhancing diet. Healthy subjects with high ( n = 19) and low (n = 18) trait impulsivity scores participated in a double-blind placebo-controlled study. All subjects performed the attention switch task in the morning following breakfast containing either tryptophan-rich alpha-lactalbumin (4.8 g/100 g TRP) or placebo protein (1.4 g/100 g TRP). Whereas there were no baseline differences between high and low impulsive subjects in task switching abilities, high impulsive subjects made significantly more switch errors and responded slower after dietary 5-HT stimulation, whereas no dietary effects were found on task switching performance in low-impulsive subjects. The deterioration in task switching performance induced by the 5-HT enhancing diet in high impulsive subjects was suggested to be established by general arousal/attention-reducing effects of 5-HT, which might have a larger impact in high impulsive subjects due to either different brain circuitry involved in task switching in this group or lower baseline arousal levels.

  7. A plasma switch synchronous closing operations in high-voltage networks

    International Nuclear Information System (INIS)

    Mourente, P.

    1984-01-01

    Overvoltages and overcurrent arising in energizing or in fast reclosing operations are a concerning problem in high-voltage networks. Reduction of overvoltages and overcurrents is possible using the synchronous closing technique. Some attempts have been done to perform the synchronous closing with conventional circuit-breakers. But since the requirements to synchronous closing and to current interruption are very contradictory this technique is not yet a common practice. Three simple cases may be used as examples to show the benefits of synchronous closing; energizaton of grounded star capacitor bank; back-to-back switching of large capacitor banks; and fast reclosing on transmission lines

  8. High voltage, fast turn-on and turn-off switch: Final report for period September 2, 1998 - March 17, 1999

    International Nuclear Information System (INIS)

    Jochen Schein; Xiaoxi Xu; Niansheng Qi; Steven Gensler; Rahul Prasad; Mahadevan Krishnan

    1999-01-01

    The aspect to be investigated during this contract was an electron-beam triggered diamond switch to be used in high power modulators. Today's high power modulators require higher voltage switches than those developed to date. Specifically, the proposed 1 TeV linear collider, the NLC/ILC at the Stanford Linear Accelerator Center (SLAC), consists of two linacs with 6600 X-Band klystrons powered by 3300 high power modulators. These modulators require switches capable of handling 80 kV, switching 8 kA with pulse durations ranging from 2 ps (linac) to 6 micros (pre-linac) with switching times <50 ns at pulse repetition frequencies up to 180 Hz. In addition the large number of switches and other components dictate a pulse to pulse jitter of <10 ns and a mean time between failures of at least 50,000 hours. The present approach is to use hydrogen filled thyratrons. While these switches meet the voltage and conduction current requirements they lack the required reliability (pulse to pulse jitter) and lifetime. Research to improve these aspects is in progress. A solid state switch inherently offers the required reliability and lifetime. However, Si-based switches developed to date are limited to about 5 kV and several must be stacked in series to deliver the required voltage. This further increases the already large parts count and compromises reliability and lifetime. A monolithic, solid state switch capable of meeting all the requirements for X-Band modulators would be ideal. DOE selected this proposal for a Phase 1 SBIR award and this final report describes the progress made during the contract

  9. High voltage, fast turn-on and turn-off switch: Final report for period September 2, 1998 - March 17, 1999

    Energy Technology Data Exchange (ETDEWEB)

    Jochen Schein; Xiaoxi Xu; Niansheng Qi; Steven Gensler; Rahul Prasad; Mahadevan Krishnan

    1999-04-10

    The aspect to be investigated during this contract was an electron-beam triggered diamond switch to be used in high power modulators. Today's high power modulators require higher voltage switches than those developed to date. Specifically, the proposed 1 TeV linear collider, the NLC/ILC at the Stanford Linear Accelerator Center (SLAC), consists of two linacs with 6600 X-Band klystrons powered by 3300 high power modulators. These modulators require switches capable of handling 80 kV, switching 8 kA with pulse durations ranging from 2 ps (linac) to 6 {micro}s (pre-linac) with switching times <50 ns at pulse repetition frequencies up to 180 Hz. In addition the large number of switches and other components dictate a pulse to pulse jitter of <10 ns and a mean time between failures of at least 50,000 hours. The present approach is to use hydrogen filled thyratrons. While these switches meet the voltage and conduction current requirements they lack the required reliability (pulse to pulse jitter) and lifetime. Research to improve these aspects is in progress. A solid state switch inherently offers the required reliability and lifetime. However, Si-based switches developed to date are limited to about 5 kV and several must be stacked in series to deliver the required voltage. This further increases the already large parts count and compromises reliability and lifetime. A monolithic, solid state switch capable of meeting all the requirements for X-Band modulators would be ideal. DOE selected this proposal for a Phase 1 SBIR award and this final report describes the progress made during the contract.

  10. Ferroelectric switch for a high-power Ka-band active pulse compressor

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L. [Omega-P, Inc., New Haven, CT (United States)

    2013-12-18

    Results are presented for design of a high-power microwave switch for operation at 34.3 GHz, intended for use in an active RF pulse compressor. The active element in the switch is a ring of ferroelectric material, whose dielectric constant can be rapidly changed by application of a high-voltage pulse. As envisioned, two of these switches would be built into a pair of delay lines, as in SLED-II at SLAC, so as to allow 30-MW μs-length Ka-band pulses to be compressed in time by a factor-of-9 and multiplied in amplitude to generate 200 MW peak power pulses. Such high-power pulses could be used for testing and evaluation of high-gradient mm-wave accelerator structures, for example. Evaluation of the switch design was carried out with an X-band (11.43 GHz) prototype, built to incorporate all the features required for the Ka-band version.

  11. High power semiconductor switching in the nanosecond regime

    International Nuclear Information System (INIS)

    Zucker, O.S.; Long, J.R.; Smith, V.L.; Page, D.J.; Roberts, J.S.

    1975-12-01

    Light activated multilayered silicon semiconductor devices have been used to switch at megawatt power levels with nanosecond turnon time. Current rate of rise of 700 kA/μs at 10 kA, with 1 kV across the load have been achieved. Recovery time of 1 millisec has been obtained. Applicability to fusion research needs is discussed

  12. Soft switching PWM isolated boost converter for fuel cell application

    Energy Technology Data Exchange (ETDEWEB)

    Rezaei, M.; Adib, E. [Isfahan Univ. of Technology, Isfahan (Iran, Islamic Republic of)

    2009-07-01

    This presentation introduced a newly developed soft switching, isolated boost type converter for fuel cell applications. With a simple PWM control circuit, the converter achieves zero voltage switching the main switch. Since the auxiliary circuit is soft switched, the converter can operate at high powers which make it suitable for fuel cell applications. In particular, the converter is suitable for the interface of fuel cell and inverters because of its high voltage gain and isolation between input and output sources. In addition, the input current of the converter (current drained from the fuel cell) is almost constant since it is a boost type converter. The converter was analyzed and the simulation results validate the theoretical analysis.

  13. Magnetization switching and microwave oscillations in nanomagnets driven by spin-polarized currents

    International Nuclear Information System (INIS)

    Bertotti, G.; Magni, A.; Serpico, C.; d'Aquino, M.; Mayergoyz, I. D.; Bonin, R.

    2005-01-01

    Full text: Considerable interest has been generated in recent years by the discovery that a current of spin-polarized electrons can apply appreciable torques to a nanoscale ferromagnet. This mechanism was theoretically predicted and subsequently confirmed by a number of experiments which have shown that spin transfer can indeed induce switching or microwave oscillations of the magnetization. Significant efforts have been devoted to the explanation of these results, in view of the new physics involved and of the possible applications to new types of current-controlled memory cells or microwave sources and resonators . However, the precise nature of magnetization dynamics when spin-polarized currents and external magnetic fields are simultaneously present has not yet been fully understood. The spin-transfer-driven nanomagnet is a nonlinear open system that is forced far from equilibrium by the injection of the current. Thus, the appropriate framework for the study of the problem is nonlinear dynamical system theory and bifurcation theory. In this talk, it is shown that within this framework the complexity and subtlety of spin-torque effects are fully revealed and quantified, once it is recognized that both intrinsic damping and spin transfer can be treated as perturbations of the free precessional dynamics typical of ferromagnetic resonance. Complete stability diagrams are derived for the case where spin torques and external magnetic fields are simultaneously present. Quantitative predictions are made for the critical currents and fields inducing magnetization switching; for the amplitude and frequency of magnetization self-oscillations; for the conditions leading to hysteretic transitions between self-oscillations and stationary states

  14. A Novel Ni/WOX/W Resistive Random Access Memory with Excellent Retention and Low Switching Current

    Science.gov (United States)

    Chien, Wei-Chih; Chen, Yi-Chou; Lee, Feng-Ming; Lin, Yu-Yu; Lai, Erh-Kun; Yao, Yeong-Der; Gong, Jeng; Horng, Sheng-Fu; Yeh, Chiao-Wen; Tsai, Shih-Chang; Lee, Ching-Hsiung; Huang, Yu-Kai; Chen, Chun-Fu; Kao, Hsiao-Feng; Shih, Yen-Hao; Hsieh, Kuang-Yeu; Lu, Chih-Yuan

    2011-04-01

    The behavior of WOX resistive random access memory (ReRAM) is a strong function of the top electrode material, which controls the conduction mechanism and the forming process. When using a top electrode with low work function, the current conduction is limited by space charges. On the other hand, the mechanism becomes thermionic emission for devices with a high work function top electrode. These (thermionic) devices are also found to have higher initial resistance, reduced forming current, and larger resistance window. Based on these insights and considering the compatibility to complementary metal-oxide-semiconductor (CMOS) process, we proposed to use Ni as the top electrode for high performance WOX ReRAM devices. The new Ni/WOX/W device can be switched at a low current density less than 8×105 A/cm2, with RESET/SET resistance ratio greater than 100, and extremely good data retention of more than 300 years at 85 °C.

  15. Frequency-Controlled Current-Fed Resonant Converter with No Input Ripple Current

    Directory of Open Access Journals (Sweden)

    Bor-Ren Lin

    2018-02-01

    Full Text Available This paper studies a frequency-controlled current-fed resonant circuit. The adopted direct current (DC-to-DC converter contains two boost circuits and a resonant circuit on the primary side. First, two boost circuits are connected in parallel to achieve voltage step-up and reduce input ripple current by using interleaved pulse-width modulation. Therefore, the size and current rating of boost inductors are decreased in the proposed converter. Second, the boost voltage is connected to the resonant circuit to realize the mechanism of the zero-voltage switching of all active switches and zero-current switching of all diodes. Two boost circuits and a resonant circuit use the same power devices in order to lessen the switch counts. The voltage doubler topology is adopted on the secondary side (high-voltage side. Therefore, the voltage rating of diodes on the high-voltage side is clamped at output voltage. The feasibility of the studied circuit is confirmed by the experimental tests with a 1 kW prototype circuit.

  16. Development of Digital Hysteresis Current Control with PLL Loop Gain Compensation Strategy for PWM Inverters with Constant Switching Frequency

    Directory of Open Access Journals (Sweden)

    N. Belhaouchet

    2008-03-01

    Full Text Available Hysteresis current control is one of the simplest techniques used to control the magnitude and phase angle of motor current for motor drives systems. However, this technique presents several disadvantages such as operation at variable switching frequency which can reveal problems of filtering, interference between the phases in the case of the three-phase systems with insulated neutral connection or delta connection, and irregularity of the modulation pulses which especially causes an acoustic noise on the level of the machine for the high power drive. In this paper, a new technique is proposed for a variable-hysteresis-band controller based on dead beat control applied to three phase voltage source PWM inverters feeding AC motors. Its main aim is firstly ensure a constant switching frequency and secondly the synchronization of modulation pulses using the phase-locked-loop with loop gain compensation in order to ensure a better stability. The behavior of the proposed technique is verified by simulation.

  17. High Current, Low Voltage Power Converter [20kA, 6V] LHC Converter Prototype

    CERN Document Server

    Jørgensen, H E; Dupaquier, A; Fernqvist, G

    1998-01-01

    The superconducting LHC accelerator requires high currents (~12.5kA) and relatively low voltages (~10 V) for its magnets. The need to install the power converters underground is the driving force for reduced volume and high efficiency. Moreover, the LHC machine will require a very high level of performance from the power converters, particularly in terms of DC stability, dynamic response and also in matters of EMC. To meet these requirements soft-switching techniques will be used. This paper describes the development of a [20kA,6V] power converter intended as a stable high-current source for D CCT calibration and an evaluation prototype for the future LHC converters. The converter is made with a modular concept with five current sources [4kA,6V] in parallel. The 4kA sources are built as plu g-in modules: a diode rectifier on the AC mains with a damped L-C passive filter, a Zero Voltage Switching inverter working at 20 kHz and an output stage (high frequency transformers, Schottky rectifi ers and output filter...

  18. Rotor position sensor switches currents in brushless dc motors

    Science.gov (United States)

    1965-01-01

    Reluctance switch incorporated in an induction motor is used for sensing rotor position and switching armature circuits in a brushless dc motor. This device drives the solar array system of an unmanned space satellite.

  19. State Recognition of High Voltage Isolation Switch Based on Background Difference and Iterative Search

    Science.gov (United States)

    Xu, Jiayuan; Yu, Chengtao; Bo, Bin; Xue, Yu; Xu, Changfu; Chaminda, P. R. Dushantha; Hu, Chengbo; Peng, Kai

    2018-03-01

    The automatic recognition of the high voltage isolation switch by remote video monitoring is an effective means to ensure the safety of the personnel and the equipment. The existing methods mainly include two ways: improving monitoring accuracy and adopting target detection technology through equipment transformation. Such a method is often applied to specific scenarios, with limited application scope and high cost. To solve this problem, a high voltage isolation switch state recognition method based on background difference and iterative search is proposed in this paper. The initial position of the switch is detected in real time through the background difference method. When the switch starts to open and close, the target tracking algorithm is used to track the motion trajectory of the switch. The opening and closing state of the switch is determined according to the angle variation of the switch tracking point and the center line. The effectiveness of the method is verified by experiments on different switched video frames of switching states. Compared with the traditional methods, this method is more robust and effective.

  20. Design and development of bipolar 4-quadrant switch-mode power converter for superconducting magnets

    International Nuclear Information System (INIS)

    Yashwant Kumar; Thakur, S.K.; Ghosh, M.K.; Tiwari, T.P.; De, Anirban; Kumari, S.; Saha, S.

    2011-01-01

    A uniform zero crossing magnetic field in a magnet can be achieved by using bipolar power converter with four quadrant operation. A high current bipolar switch-mode power converter (rated ±27 V max , ±7V flat top, ±300A, 100 ppm) has been designed and developed indigenously at VECC Kolkata. Four quadrants operation is accomplished by using power IGBTs in an H-bridge configuration with switching frequency around 20 kHz. The switch-mode power converter is used because of high dynamic response, low output ripple, high efficiency and low input current harmonics. In this paper, circuit topology, function of system components and key system specifications of high current bipolar switch mode power converter is discussed. (author)

  1. Rad-Hard, Miniaturized, Scalable, High-Voltage Switching Module for Power Applications Rad-Hard, Miniaturized

    Science.gov (United States)

    Adell, Philippe C.; Mojarradi, Mohammad; DelCastillo, Linda Y.; Vo, Tuan A.

    2011-01-01

    A paper discusses the successful development of a miniaturized radiation hardened high-voltage switching module operating at 2.5 kV suitable for space application. The high-voltage architecture was designed, fabricated, and tested using a commercial process that uses a unique combination of 0.25 micrometer CMOS (complementary metal oxide semiconductor) transistors and high-voltage lateral DMOS (diffusion metal oxide semiconductor) device with high breakdown voltage (greater than 650 V). The high-voltage requirements are achieved by stacking a number of DMOS devices within one module, while two modules can be placed in series to achieve higher voltages. Besides the high-voltage requirements, a second generation prototype is currently being developed to provide improved switching capabilities (rise time and fall time for full range of target voltages and currents), the ability to scale the output voltage to a desired value with good accuracy (few percent) up to 10 kV, to cover a wide range of high-voltage applications. In addition, to ensure miniaturization, long life, and high reliability, the assemblies will require intensive high-voltage electrostatic modeling (optimized E-field distribution throughout the module) to complete the proposed packaging approach and test the applicability of using advanced materials in a space-like environment (temperature and pressure) to help prevent potential arcing and corona due to high field regions. Finally, a single-event effect evaluation would have to be performed and single-event mitigation methods implemented at the design and system level or developed to ensure complete radiation hardness of the module.

  2. New solid state opening switches for repetitive pulsed power technology

    Energy Technology Data Exchange (ETDEWEB)

    Lyubutin, S K; Mesyats, G A; Rukin, S N; Slovikovskii, B G; Turov, A M [Russian Academy of Sciences, Ekaterinburg (Russian Federation). Inst. of Electrophysics

    1997-12-31

    In 1991 the authors discovered a semiconductor opening switch (SOS) effect that occurs in p{sup +}-p-n-n{sup +} silicon structures at a current density of up to 60 kA/cm{sup 2}. This effect was used to develop high-power semiconductor opening switches in intermediate inductive storage circuits. The breaking power of the opening switches was as high as 5 GW, the interrupted current being up to 45 kA, reverse voltage up to 1 MV and the current interruption time between 10 and 60 ns. The opening switches were assembled from quantity-produced Russian-made rectifying diodes type SDL with hard recovery characteristic. On the basis of experimental and theoretical investigations of the SOS effect, new SOS diodes were designed and manufactured by the Electrophysical Institute. The paper gives basic parameters of the SOS diodes. The new diodes offer higher values of interrupted current and shorter times of current interruption together with a considerable increase in the energy switching efficiency. The new SOS diodes were used to develop repetitive all-solid-state pulsed generators with an output voltage of up to 250 kV, pulse repetition rate up to 5 kHz, and pulse duration between 10 and 30 ns. (author). 2 tabs., 3 figs., 4 refs.

  3. Pulsed power opening switch research at the University of New Mexico

    International Nuclear Information System (INIS)

    Humphries, S. Jr.

    1987-01-01

    Opening switch research at the University of New Mexico (UNM) is directed toward moderate-current (--10 kA) devices with potential applications to high-power charged particle accelerators. Two devices with the capacity for controlling gigawatt high-voltage circuits, the grid-controlled plasma flow switch and the scanned-beam switch, are under investigation. Both switches are conceptually simple; they involve little collective physics and are within the capabilities of current technology. In the plasma flow switch, the flux of electrons into a high-voltage power gap is controlled by a low-voltage control grid. Plasma generation is external to, and independent of, the power circuit. In the closed phase, plasma fills the gap so that the switch has a low on-state impedance. Pulse repetition rates in the megahertz range should be feasible. In single-shot proof-of-principle experiments, a small area switch modulated a 3-MW circuit; a 20-ns opening time was observed. The scanned-beam switch will utilize electric field deflection to direct the power of a sheet electron beam. The beam is to be alternately scanned to two inverse diodes connected to output transmission lines. The switch is expected to generate continuous-wave pulse trains for applications such as high-frequency induction linacs. Theoretical studies indicate that 10-GW devices in the 100-MHz range with 70-percent efficiency should be technologically feasible

  4. Plasma flow switch characterization for the Los Alamos Foil Implosion Project

    International Nuclear Information System (INIS)

    Bowers, R.L.; Brownell, J.H.; Greene, A.E.; Peterson, D.L.

    1990-01-01

    The next system design under consideration for the Los Alamos Foil Implosion Project is projected to deliver tens of mega-amperes of electrical current produced by high-explosive driven flux compression generators on a time scale of about one microsecond to a load foil. The use of such generators, with time scales of order several tenths of a millisecond, leads to considerable pulse shaping problems. Previously it was noted that a commutating switch might serve as an efficient alternative to a closing switch in transferring current from a coaxial transmission line to a cylindrically imploding load. Research at the Air Force Weapons Laboratory (AFWL) has met with considerable success in efficiently transferring currents of order 10 MA to an imploding liner using the plasma flow switch concept (PFS). Besides efficiently transferring current, the plasma flow switch protects the load region from high voltages generated by an opening switch until the current is present to provide magnetic insulation. For these reasons, a PFS is being investigated as the final pulse shaping step in the design. A series of capacitor bank experiments is also being fielded to help investigate physics issues and to benchmark the codes

  5. Theoretical investigation of a photoconductively switched high-voltage spark gap

    NARCIS (Netherlands)

    Broks, B.H.P.; Hendriks, J.; Brok, W.J.M.; Brussaard, G.J.H.; Mullen, van der J.J.A.M.

    2006-01-01

    In this contribution, a photoconductively switched high-voltage spark gap with an emphasis on theswitching behavior is modeled. It is known experimentally that not all of the voltage that is present at the input of the spark gap is switched, but rather a fraction of it drops across the spark gap.

  6. Bipolar and unipolar resistive switching behaviors of sol–gel-derived SrTiO3 thin films with different compliance currents

    International Nuclear Information System (INIS)

    Tang, M H; Wang, Z P; Zeng, Z Q; Xu, X L; Wang, G Y; Zhang, L B; Xiao, Y G; Yang, S B; Jiang, B; Li, J C; He, J

    2011-01-01

    The SrTiO 3 (STO) thin films on a Pt/Ti/SiO 2 /Si substrate were synthesized using a sol–gel method to form a metal–insulator–metal structure. This device shows the bipolar resistance switching (BRS) behavior for a compliance current I cc of less than 0.1 mA but exhibits soft breakdown at a higher level of compliance current. A transition from the BRS behavior to the stable unipolar resistive switching behavior (URS) was also observed. We found that the BRS behavior may be controlled by the structure interface while the URS behavior is likely bulk controlled. Our study indicates that the external compliance current is a key factor in resistance switching phenomenon of STO thin films

  7. MHz repetition rate solid-state driver for high current induction accelerators

    International Nuclear Information System (INIS)

    Brooksby, C; Caporaso, G; Goerz, D; Hanks, R; Hickman, B; Kirbie, H; Lee, B; Saethre, R.

    1999-01-01

    A research team from the Lawrence Livermore National Laboratory and Bechtel Nevada Corporation is developing an all solid-state power source for high current induction accelerators. The original power system design, developed for heavy-ion fusion accelerators, is based on the simple idea of using an array of field effect transistors to switch energy from a pre-charged capacitor bank to an induction accelerator cell. Recently, that idea has been expanded to accommodate the greater power needs of a new class of high-current electron accelerators for advanced radiography. For this purpose, we developed a 3-stage induction adder that uses over 4,000 field effect transistors to switch peak voltages of 45 kV at currents up to 4.8 kA with pulse repetition rates of up to 2 MHz. This radically advanced power system can generate a burst of five or more pulses that vary from 200 ns to 2 ampersand micro;s at a duty cycle of up to 25%. Our new source is precise, robust, flexible, and exceeds all previous drivers for induction machines by a factor of 400 in repetition rate and a factor of 1000 in duty cycle

  8. Intrinsic nanofilamentation in resistive switching

    KAUST Repository

    Wu, Xing

    2013-03-15

    Resistive switching materials are promising candidates for nonvolatile data storage and reconfiguration of electronic applications. Intensive studies have been carried out on sandwiched metal-insulator-metal structures to achieve high density on-chip circuitry and non-volatile memory storage. Here, we provide insight into the mechanisms that govern highly reproducible controlled resistive switching via a nanofilament by using an asymmetric metal-insulator-semiconductor structure. In-situ transmission electron microscopy is used to study in real-time the physical structure and analyze the chemical composition of the nanofilament dynamically during resistive switching. Electrical stressing using an external voltage was applied by a tungsten tip to the nanosized devices having hafnium oxide (HfO2) as the insulator layer. The formation and rupture of the nanofilaments result in up to three orders of magnitude change in the current flowing through the dielectric during the switching event. Oxygen vacancies and metal atoms from the anode constitute the chemistry of the nanofilament.

  9. EDITORIAL: Molecular switches at surfaces Molecular switches at surfaces

    Science.gov (United States)

    Weinelt, Martin; von Oppen, Felix

    2012-10-01

    In nature, molecules exploit interaction with their environment to realize complex functionalities on the nanometer length scale. Physical, chemical and/or biological specificity is frequently achieved by the switching of molecules between microscopically different states. Paradigmatic examples are the energy production in proton pumps of bacteria or the signal conversion in human vision, which rely on switching molecules between different configurations or conformations by external stimuli. The remarkable reproducibility and unparalleled fatigue resistance of these natural processes makes it highly desirable to emulate nature and develop artificial systems with molecular functionalities. A promising avenue towards this goal is to anchor the molecular switches at surfaces, offering new pathways to control their functional properties, to apply electrical contacts, or to integrate switches into larger systems. Anchoring at surfaces allows one to access the full range from individual molecular switches to self-assembled monolayers of well-defined geometry and to customize the coupling between molecules and substrate or between adsorbed molecules. Progress in this field requires both synthesis and preparation of appropriate molecular systems and control over suitable external stimuli, such as light, heat, or electrical currents. To optimize switching and generate function, it is essential to unravel the geometric structure, the electronic properties and the dynamic interactions of the molecular switches on surfaces. This special section, Molecular Switches at Surfaces, collects 17 contributions describing different aspects of this research field. They analyze elementary processes, both in single molecules and in ensembles of molecules, which involve molecular switching and concomitant changes of optical, electronic, or magnetic properties. Two topical reviews summarize the current status, including both challenges and achievements in the field of molecular switches on

  10. Optical triggering of 4H-SiC thyristors (18 kV class) to high currents in purely inductive load circuit

    International Nuclear Information System (INIS)

    Rumyantsev, S L; Levinshtein, M E; Saxena, T; Shur, M S; Cheng, L; Palmour, J W; Agarwal, A

    2014-01-01

    Optical switch-on of a very high voltage (18 kV class) 4H-SiC thyristor with an amplification step (pilot thyristor) to the current I max  = 1225 A is demonstrated using a purely inductive load and a calibrated air transformer. Increasing the inductance of the transformer primary winding slows down the turn on process. However, the inductance has little effect during the initial stage of the switch-on process when the voltage drop on the thyristor and its internal resistance is high. The results show that a further switch-on current increase can be only achieved by introducing additional amplification steps in the pilot thyristor. (paper)

  11. High Voltage Coil Current Sensor for DC-DC Converters Employing DDCC

    Directory of Open Access Journals (Sweden)

    M. Drinovsky

    2015-12-01

    Full Text Available Current sensor is an integral part of every switching converter. It is used for over-current protection, regulation and in case of multiphase converters for balancing. A new high voltage current sensor for coil-based current sensing in DC-DC converters is presented. The sensor employs DDCC with high voltage input stage and gain trimming. The circuit has been simulated and implemented in 0.35 um BCD technology as part of a multiphase DC-DC converter where its function has been verified. The circuit is able to sustain common mode voltage on the input up to 40 V, it occupies 0.387*0.345 mm2 and consumes 3.2 mW typically.

  12. Multiscale modeling of current-induced switching in magnetic tunnel junctions using ab initio spin-transfer torques

    Science.gov (United States)

    Ellis, Matthew O. A.; Stamenova, Maria; Sanvito, Stefano

    2017-12-01

    There exists a significant challenge in developing efficient magnetic tunnel junctions with low write currents for nonvolatile memory devices. With the aim of analyzing potential materials for efficient current-operated magnetic junctions, we have developed a multi-scale methodology combining ab initio calculations of spin-transfer torque with large-scale time-dependent simulations using atomistic spin dynamics. In this work we introduce our multiscale approach, including a discussion on a number of possible schemes for mapping the ab initio spin torques into the spin dynamics. We demonstrate this methodology on a prototype Co/MgO/Co/Cu tunnel junction showing that the spin torques are primarily acting at the interface between the Co free layer and MgO. Using spin dynamics we then calculate the reversal switching times for the free layer and the critical voltages and currents required for such switching. Our work provides an efficient, accurate, and versatile framework for designing novel current-operated magnetic devices, where all the materials details are taken into account.

  13. Performance of highly connected photonic switching lossless metro-access optical networks

    Science.gov (United States)

    Martins, Indayara Bertoldi; Martins, Yara; Barbosa, Felipe Rudge

    2018-03-01

    The present work analyzes the performance of photonic switching networks, optical packet switching (OPS) and optical burst switching (OBS), in mesh topology of different sizes and configurations. The "lossless" photonic switching node is based on a semiconductor optical amplifier, demonstrated and validated with experimental results on optical power gain, noise figure, and spectral range. The network performance was evaluated through computer simulations based on parameters such as average number of hops, optical packet loss fraction, and optical transport delay (Am). The combination of these elements leads to a consistent account of performance, in terms of network traffic and packet delivery for OPS and OBS metropolitan networks. Results show that a combination of highly connected mesh topologies having an ingress e-buffer present high efficiency and throughput, with very low packet loss and low latency, ensuring fast data delivery to the final receiver.

  14. Switching dynamics of TaOx-based threshold switching devices

    Science.gov (United States)

    Goodwill, Jonathan M.; Gala, Darshil K.; Bain, James A.; Skowronski, Marek

    2018-03-01

    Bi-stable volatile switching devices are being used as access devices in solid-state memory arrays and as the active part of compact oscillators. Such structures exhibit two stable states of resistance and switch between them at a critical value of voltage or current. A typical resistance transient under a constant amplitude voltage pulse starts with a slow decrease followed by a rapid drop and leveling off at a low steady state value. This behavior prompted the interpretation of initial delay and fast transition as due to two different processes. Here, we show that the entire transient including incubation time, transition time, and the final resistance values in TaOx-based switching can be explained by one process, namely, Joule heating with the rapid transition due to the thermal runaway. The time, which is required for the device in the conducting state to relax back to the stable high resistance one, is also consistent with the proposed mechanism.

  15. The Development of the Electrically Controlled High Power RF Switch and Its Application to Active RF Pulse Compression Systems

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jiquan [Stanford Univ., CA (United States)

    2008-12-01

    In the past decades, there has been increasing interest in pulsed high power RF sources for building high-gradient high-energy particle accelerators. Passive RF pulse compression systems have been used in many applications to match the available RF sources to the loads requiring higher RF power but a shorter pulse. Theoretically, an active RF pulse compression system has the advantage of higher efficiency and compactness over the passive system. However, the key component for such a system an element capable of switching hundreds of megawatts of RF power in a short time compared to the compressed pulse width is still an open problem. In this dissertation, we present a switch module composed of an active window based on the bulk effects in semiconductor, a circular waveguide three-port network and a movable short plane, with the capability to adjust the S-parameters before and after switching. The RF properties of the switch module were analyzed. We give the scaling laws of the multiple-element switch systems, which allow the expansion of the system to a higher power level. We present a novel overmoded design for the circular waveguide three-port network and the associated circular-to-rectangular mode-converter. We also detail the design and synthesis process of this novel mode-converter. We demonstrate an electrically controlled ultra-fast high power X-band RF active window built with PIN diodes on high resistivity silicon. The window is capable of handling multi-megawatt RF power and can switch in 2-300ns with a 1000A current driver. A low power active pulse compression experiment was carried out with the switch module and a 375ns resonant delay line, obtaining 8 times compression gain with a compression ratio of 20.

  16. High-Bandwidth, High-Efficiency Envelope Tracking Power Supply for 40W RF Power Amplifier Using Paralleled Bandpass Current Sources

    DEFF Research Database (Denmark)

    Høyerby, Mikkel Christian Wendelboe; Andersen, Michael Andreas E.

    2005-01-01

    This paper presents a high-performance power conversion scheme for power supply applications that require very high output voltage slew rates (dV/dt). The concept is to parallel 2 switching bandpass current sources, each optimized for its passband frequency space and the expected load current....... The principle is demonstrated with a power supply, designed for supplying a 40 W linear RF power amplifier for efficient amplification of a 16-QAM modulated data stream...

  17. Current-induced forces: a new mechanism to induce negative differential resistance and current-switching effect in molecular junctions

    Science.gov (United States)

    Gu, Lei; Fu, Hua-Hua

    2015-12-01

    Current-induced forces can excite molecules, polymers and other low-dimensional materials, which in turn leads to an effective gate voltage through Holstein interaction. Here, by taking a short asymmetric DNA junction as an example, and using the Langevin approach, we find that when suppression of charge transport by the effective gate voltage surpasses the current increase from an elevated voltage bias, the current-voltage (I-V) curves display strong negative differential resistance (NDR) and perfect current-switching characteristics. The asymmetric DNA chain differs in mechanical stability under inverse voltages and the I-V curve is asymmetric about inverse biases, which can be used to understand recent transport experiments on DNA chains, and meanwhile provides a new strategy to realize NDR in molecular junctions and other low-dimensional quantum systems.

  18. Current-induced forces: a new mechanism to induce negative differential resistance and current-switching effect in molecular junctions

    International Nuclear Information System (INIS)

    Gu, Lei; Fu, Hua-Hua

    2015-01-01

    Current-induced forces can excite molecules, polymers and other low-dimensional materials, which in turn leads to an effective gate voltage through Holstein interaction. Here, by taking a short asymmetric DNA junction as an example, and using the Langevin approach, we find that when suppression of charge transport by the effective gate voltage surpasses the current increase from an elevated voltage bias, the current-voltage (I–V) curves display strong negative differential resistance (NDR) and perfect current-switching characteristics. The asymmetric DNA chain differs in mechanical stability under inverse voltages and the I–V curve is asymmetric about inverse biases, which can be used to understand recent transport experiments on DNA chains, and meanwhile provides a new strategy to realize NDR in molecular junctions and other low-dimensional quantum systems. (paper)

  19. Polyaniline-based memristive microdevice with high switching rate and endurance

    Science.gov (United States)

    Lapkin, D. A.; Emelyanov, A. V.; Demin, V. A.; Erokhin, V. V.; Feigin, L. A.; Kashkarov, P. K.; Kovalchuk, M. V.

    2018-01-01

    Polyaniline (PANI) based memristive devices have emerged as promising candidates for hardware implementation of artificial synapses (the key components of neuromorphic systems) due to their high flexibility, low cost, solution processability, three-dimensional stacking capability, and biocompatibility. Here, we report on a way of the significant improvement of the switching rate and endurance of PANI-based memristive devices. The reduction of the PANI active channel dimension leads to the increase in the resistive switching rate by hundreds of times in comparison with the conventional one. The miniaturized memristive device was shown to be stable within at least 104 cyclic switching events between high- and low-conductive states with a retention time of at least 103 s. The obtained results make PANI-based memristive devices potentially widely applicable in neuromorphic systems.

  20. A 380 V High Efficiency and High Power Density Switched-Capacitor Power Converter using Wide Band Gap Semiconductors

    DEFF Research Database (Denmark)

    Fan, Lin; Knott, Arnold; Jørgensen, Ivan Harald Holger

    2018-01-01

    . This paper presents such a high voltage low power switched-capacitor DC-DC converter with an input voltage upto 380 V (compatible with rectified European mains) and an output power experimentally validated up to 21.3 W. The wideband gap semiconductor devices of GaN switches and SiC diodes are combined...... to compose the proposed power stage. Their switching and loss characteristics are analyzed with transient waveforms and thermal images. Different isolated driving circuits are compared and a compact isolated halfbridge driving circuit is proposed. The full-load efficiencies of 98.3% and 97.6% are achieved......State-of-the-art switched-capacitor DC-DC power converters mainly focus on low voltage and/or high power applications. However, at high voltage and low power levels, new designs are anticipated to emerge and a power converter that has both high efficiency and high power density is highly desirable...

  1. A high linearity current mode second IF CMOS mixer for a DRM/DAB receiver

    International Nuclear Information System (INIS)

    Xu Jian; Zhou Zheng; Wu Yiqiang; Wang Zhigong; Chen Jianping

    2015-01-01

    A passive current switch mixer was designed for the second IF down-conversion in a DRM/DAB receiver. The circuit consists of an input transconductance stage, a passive current switching stage, and a current amplifier stage. The input transconductance stage employs a self-biasing current reusing technique, with a resistor shunt feedback to increase the gain and output impedance. A dynamic bias technique is used in the switching stage to ensure the stability of the overdrive voltage versus the PVT variations. A current shunt feedback is introduced to the conventional low-voltage second-generation fully balanced multi-output current converter (FBMOCCII), which provides very low input impedance and high output impedance. With the circuit working in current mode, the linearity is effectively improved with low supply voltages. Especially, the transimpedance stage can be removed, which simplifies the design considerably. The design is verified with a SMIC 0.18 μm RF CMOS process. The measurement results show that the voltage conversation gain is 1.407 dB, the NF is 16.22 dB, and the IIP3 is 4.5 dBm, respectively. The current consumption is 9.30 mA with a supply voltage of 1.8 V. This exhibits a good compromise among the gain, noise, and linearity for the second IF mixer in DRM/DAB receivers. (paper)

  2. Software Defined Networking (SDN) controlled all optical switching networks with multi-dimensional switching architecture

    Science.gov (United States)

    Zhao, Yongli; Ji, Yuefeng; Zhang, Jie; Li, Hui; Xiong, Qianjin; Qiu, Shaofeng

    2014-08-01

    Ultrahigh throughout capacity requirement is challenging the current optical switching nodes with the fast development of data center networks. Pbit/s level all optical switching networks need to be deployed soon, which will cause the high complexity of node architecture. How to control the future network and node equipment together will become a new problem. An enhanced Software Defined Networking (eSDN) control architecture is proposed in the paper, which consists of Provider NOX (P-NOX) and Node NOX (N-NOX). With the cooperation of P-NOX and N-NOX, the flexible control of the entire network can be achieved. All optical switching network testbed has been experimentally demonstrated with efficient control of enhanced Software Defined Networking (eSDN). Pbit/s level all optical switching nodes in the testbed are implemented based on multi-dimensional switching architecture, i.e. multi-level and multi-planar. Due to the space and cost limitation, each optical switching node is only equipped with four input line boxes and four output line boxes respectively. Experimental results are given to verify the performance of our proposed control and switching architecture.

  3. Photoconductive switch enhancements for use in Blumlein pulse generators

    International Nuclear Information System (INIS)

    Davanloo, F.; Park, H.; Collins, C. B.; Agee, F. J.

    1999-01-01

    Stacked Blumlein pulse generators developed at the University of Texas at Dallas have produced high-power waveforms with risetimes and repetition rates in the range of 0.2-50 ns and 1-300 Hz, respectively, using a conventional thyratron, spark gap or photoconductive switch. Adaptation of the design has enabled the stacked Blumleins to produce 80 MW, nanosecond pulses with risetimes better than 200 ps into nominally matched loads. The device has a compact line geometry and is commutated by a single GaAs photoconductive switch triggered by a low power laser diode array. Our current investigations involve the switch characteristics that affect the broadening of the current channels in the avalanche, pre-avalanche seedings, the switch lifetime and the durability. This report presents the progress toward improving the GaAs switch operation and lifetime in stacked Blumlein pulsers. Advanced switch treatments including diamond film overcoating are implemented and discussed

  4. Light-driven molecular current switch

    Czech Academy of Sciences Publication Activity Database

    Nešpůrek, Stanislav; Toman, Petr; Sworakowski, J.; Lipinski, J.

    2002-01-01

    Roč. 2, č. 4 (2002), s. 299-304 ISSN 1567-1739. [Multilateral Symposium between the Korean Academy of Science and Technology and the Foreign Academies. Seoul, 08.05.2002-10.05.2002] R&D Projects: GA AV ČR IAA1050901 Grant - others:GA-(PL) 4T09A 13222 Institutional research plan: CEZ:AV0Z4050913 Keywords : molecular switch * molecular electronics * charge transport Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.117, year: 2002

  5. Progress in switching technology for METS systems

    International Nuclear Information System (INIS)

    Honig, E.M.; Swannack, C.E.; Warren, R.W.; Whitaker, D.H.

    1977-01-01

    Three distinct sets of switching requirements have emerged from design optimization studies of large superconducting magnetic energy storage systems, such as the METS system to power the adiabatic plasma compression field in the proposed theta-pinch SFTR. Extremely low joule loss cryogenic disconnects are required between storage coils in the liquid helium environment to allow charging the coils in series over a prolonged time, then to isolate the coils for parallel fast discharging into the load. Another switch must break the current in the series charging loop and absorb the energy from the stray inductance. This action will allow the subsequent opening of the cryogenic disconnects under near zero current condition. The current now has been transferred to the many paralleled circuits, each containing a high current, high voltage interrupter. The opening and arc commutation of the interrupter starts the energy transfer into the load. The primary activities associated with cryogenic disconnect have been testing and development of contact materials, configurations, and closing forces for carrying 26 kA with a resistance less than 40 nΩ, and development of an actuating system that is both reliable and fast acting in a liquid helium environment. The charging loop switch will include a continuous duty switch and a vacuum interrupter. The continuous duty switch resistance can be an order of magnitude larger than that of the cryogenic disconnect because it does not present a refrigeration load. The HVDC interrupter must break 26 kA and withstand 60 kV during the energy transfer time of 700 μs. Testing in progress already has shown successful interruption using single vacuum interrupters up to 31 kA and 66 kV

  6. Resistive switching behavior of SiOx layers with Si nanoparticles

    International Nuclear Information System (INIS)

    Nesheva, D; Pantchev, B; Manolov, E; Dzhurkov, V; Nedev, N; Valdez, B; Nedev, R

    2017-01-01

    First results on resistive switching in SiO x film containing crystalline silicon nanoparticles are reported. SiO x layers ( x = 1.15) with thickness of 50 nm were deposited on n-Si crystalline substrates and annealed for 60 min at 1000 o C to grow crystalline nanoparticles. Part of the samples were annealed in an inert atmosphere, while the rest were subjected to a two-step (O 2 +N 2 /N 2 ) annealing process. Current-voltage (I-V) characteristics were by applying positive or negative voltage to the top contact. For both types of samples the I-V characteristics were asymmetric with lower currents measured at negative voltage, especially in the case of two-step annealed samples. In most of the N 2 annealed structures switching behavior high-low/low-high resistance state was observed in both polarities at voltages with amplitudes in the range (2 - 4) V. Uncontrolled switching low/high resistance was also seen, more frequently at positive voltages. In contrast, the two-step annealed samples showed stable behavior. The transition high-low resistance state was achieved by negative voltages in the (-2, -5) V range leading to an increase of the current by more than three orders of magnitude. The structures were reset to the high resistive state, by positive voltage in the range (3 - 4) V. Uncontrolled switching was not observed in the two-step annealed samples for both polarities and they showed higher reliability regarding the number of switching cycles. (paper)

  7. Switched-capacitor isolated LED driver

    Science.gov (United States)

    Sanders, Seth R.; Kline, Mitchell

    2016-03-22

    A switched-capacitor voltage converter which is particularly well-suited for receiving a line voltage from which to drive current through a series of light emitting diodes (LEDs). Input voltage is rectified in a multi-level rectifier network having switched capacitors in an ascending-bank configuration for passing voltages in uniform steps between zero volts up to full received voltage V.sub.DC. A regulator section, operating on V.sub.DC, comprises switched-capacitor stages of H-bridge switching and flying capacitors. A current controlled oscillator drives the states of the switched-capacitor stages and changes its frequency to maintain a constant current to the load. Embodiments are described for isolating the load from the mains, utilizing an LC tank circuit or a multi-primary-winding transformer.

  8. Avalanche mode of high-voltage overloaded p+–i–n+ diode switching to the conductive state by pulsed illumination

    International Nuclear Information System (INIS)

    Kyuregyan, A. S.

    2015-01-01

    A simple analytical theory of the picosecond switching of high-voltage overloaded p + –i–n + photodiodes to the conductive state by pulsed illumination is presented. The relations between the parameters of structure, light pulse, external circuit, and main process characteristics, i.e., the amplitude of the active load current pulse, delay time, and switching duration, are derived and confirmed by numerical simulation. It is shown that the picosecond light pulse energy required for efficient switching can be decreased by 6–7 orders of magnitude due to the intense avalanche multiplication of electrons and holes. This offers the possibility of using pulsed semiconductor lasers as a control element of optron pairs

  9. Plasma-ring, fast-opening switch

    International Nuclear Information System (INIS)

    Hartman, C.W.; Eddleman, J.; Hammer, J.H.

    1986-01-01

    The authors discuss a fast-opening switch concept based on magnetically confined plasma rings, PROS (for Plasma Ring Opening Switch). In PROS, the plasma ring, confined by Bθ /sub and B/poloidal /sub fields of a compact torus, provide a low mass, localized conduction path between coaxial electrodes. To operate the switch, driver current is passed across the electrodes through the ring, storing inductive energy in external inductance and between the electrodes on the driver side of the ring. The ring is accelerated away from the driver by the field of the driver current and passes over a load gap transferring the current to the load. The authors distinguish two configurations in PROS, straight PROS where the electrodes are coaxial cylinders, and cone PROS with conical electrodes. In straight PROS ring acceleration takes place during the inductive store period as in foil switches, but with the localized ring providing the current path. Increased performance is predicted for the cone PROS (see figure) which employs compression of the ring in the cone during the inductive store period. Here, the B/θ /sub field of the driver forces the ring towards the apex of the cone but the force is in near balance with the opposing component of the radial equilibrium force of the ring along the cone. As a result, the ring undergoes a slow, quasistatic compression limited only by resistive decay of the ring field. Slow compression allows inductive storage with low-power drivers (homopoloar, magneto cumulative generators, high C-low V capacitor banks, etc.). Near the apex of the cone, near peak compression, the ring is allowed to enter a straight coaxial section where, because of low-mass, it rapidly accelerates to high velocity and crosses the load gap

  10. Active high-power RF pulse compression using optically switched resonant delay lines

    International Nuclear Information System (INIS)

    Tantawi, S.G.; Ruth, R.D.; Vlieks, A.E.

    1996-11-01

    The authors present the design and a proof of principle experimental results of an optically controlled high power rf pulse compression system. The design should, in principle, handle few hundreds of Megawatts of power at X-band. The system is based on the switched resonant delay line theory. It employs resonant delay lines as a means of storing rf energy. The coupling to the lines is optimized for maximum energy storage during the charging phase. To discharge the lines, a high power microwave switch increases the coupling to the lines just before the start of the output pulse. The high power microwave switch, required for this system, is realized using optical excitation of an electron-hole plasma layer on the surface of a pure silicon wafer. The switch is designed to operate in the TE 01 mode in a circular waveguide to avoid the edge effects present at the interface between the silicon wafer and the supporting waveguide; thus, enhancing its power handling capability

  11. Switch evaluation test system for the National Ignition Facility

    International Nuclear Information System (INIS)

    Savage, M.E.; Simpson, W.W.; Reynolds, F.D.

    1997-01-01

    Flashlamp pumped lasers use pulsed power switches to commute energy stored in capacitor banks to the flashlamps. The particular application in which the authors are interested is the National Ignition Facility (NIF), being designed by Lawrence Livermore National Laboratory, Los Alamos National Laboratory, and Sandia National Laboratories (SNL). To lower the total cost of these switches, SNL has a research program to evaluate large closing switches. The target value of the energy switched by a single device is 1.6 MJ, from a 6 mF, 24kV capacitor bank. The peak current is 500 kA. The lifetime of the NIF facility is 24,000 shots. There is no switch today proven at these parameters. Several short-lived switches (100's of shots) exist that can handle the voltage and current, but would require maintenance during the facility life. Other type devices, notably ignitrons, have published lifetimes in excess of 20,000 shots, but at lower currents and shorter pulse widths. The goal of the experiments at SNL is to test switches with the full NIF wave shape, and at the correct voltage. The SNL facility can provide over 500 kA at 24 kV charge voltage. the facility has 6.4 mF total capacitance, arranged in 25 sub-modules. the modular design makes the facility more flexible (for possible testing at lower current) and safer. For pulse shaping (the NIF wave shape is critically damped) there is an inductor and resistor for each of the 25 modules. Rather than one large inductor and resistor, this lowers the current in the pulse shaping components, and raises their value to those more easily attained with lumped inductors and resistors. The authors show the design of the facility, and show results from testing conducted thus far. They also show details of the testing plan for high current switches

  12. Methods of high current magnetic field generator for transcranial magnetic stimulation application

    Science.gov (United States)

    Bouda, N. R.; Pritchard, J.; Weber, R. J.; Mina, M.

    2015-05-01

    This paper describes the design procedures and underlying concepts of a novel High Current Magnetic Field Generator (HCMFG) with adjustable pulse width for transcranial magnetic stimulation applications. This is achieved by utilizing two different switching devices, the MOSFET and insulated gate bipolar transistor (IGBT). Results indicate that currents as high as ±1200 A can be generated with inputs of +/-20 V. Special attention to tradeoffs between field generators utilizing IGBT circuits (HCMFG1) and MOSFET circuits (HCMFG2) was considered. The theory of operation, design, experimental results, and electronic setup are presented and analyzed.

  13. Coulomb Blockade Plasmonic Switch.

    Science.gov (United States)

    Xiang, Dao; Wu, Jian; Gordon, Reuven

    2017-04-12

    Tunnel resistance can be modulated with bias via the Coulomb blockade effect, which gives a highly nonlinear response current. Here we investigate the optical response of a metal-insulator-nanoparticle-insulator-metal structure and show switching of a plasmonic gap from insulator to conductor via Coulomb blockade. By introducing a sufficiently large charging energy in the tunnelling gap, the Coulomb blockade allows for a conductor (tunneling) to insulator (capacitor) transition. The tunnelling electrons can be delocalized over the nanocapacitor again when a high energy penalty is added with bias. We demonstrate that this has a huge impact on the plasmonic resonance of a 0.51 nm tunneling gap with ∼70% change in normalized optical loss. Because this structure has a tiny capacitance, there is potential to harness the effect for high-speed switching.

  14. A novel high voltage start up circuit for an integrated switched mode power supply

    Energy Technology Data Exchange (ETDEWEB)

    Hu Hao; Chen Xingbi, E-mail: huhao21@uestc.edu.c [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2010-09-15

    A novel high voltage start up circuit for providing an initial bias voltage to an integrated switched mode power supply (SMPS) is presented. An enhanced mode VDMOS transistor, the gate of which is biased by a floating p-island, is used to provide start up current and sustain high voltage. An NMOS transistor having a high source to ground breakdown voltage is included to extend the bias voltage range to the SMPS. Simulation results indicate that the high voltage start up circuit can start and restart as designed. The proposed structure is believed to be more energy saving and cost-effective compared with other solutions. (semiconductor devices)

  15. Analysis of High Switching Frequency Quasi-Z-Source Photovoltaic Inverter Using Wide Bandgap Devices

    Science.gov (United States)

    Kayiranga, Thierry

    Power inverters continue to play a key role in todays electrical system more than ever. Power inverters employ power semiconductors to converter direct current (DC) into alternating current (AC). The performance of the semiconductors is based on speed and efficiency. Until recently, Silicon (Si) semiconductors had been established as mature. However, the continuous optimization and improvements in the production process of Si to meet today technology requirements have pushed Si materials to their theoretical limits. In an effort to find a suitable replacement, wide bandgap devices mainly Gallium Nitride (GaN) and Silicon Carbide (SiC), have proved to be excellent candidates offering high operation temperature, high blocking voltage and high switching frequency; of which the latter makes GaN a better candidate in high switching low voltage in Distributed Generations (DG). The single stage Quasi-Z-Source Inverter (qZSI) is also able to draw continuous and constant current from the source making ideal for PV applications in addition to allowing shoot-through states. The qZSI find best applications in medium level ranges where multiples qZS inverters can be cascaded (qZS-CMI) by combining the benefit of the qZSI, boost capabilities and continuous and constant input current, and those of the CMI, low output harmonic content and independent MPPT. When used with GaN devices operating at very high frequency, the qZS network impedance can be significantly reduced. However, the impedance network becomes asymmetric. The asymmetric impedance network (AIN-qZSI) has several advantages such as increased power density, increases system lifetime, small size volume and size making it more attractive for module integrated converter (MIC) concepts. However, there are technical challenges. With asymmetric component, resonance is introduced in the system leading to more losses and audible noise. With small inductances, new operation states become available further increasing the system

  16. High frequency modulation circuits based on photoconductive wide bandgap switches

    Science.gov (United States)

    Sampayan, Stephen

    2018-02-13

    Methods, systems, and devices for high voltage and/or high frequency modulation. In one aspect, an optoelectronic modulation system includes an array of two or more photoconductive switch units each including a wide bandgap photoconductive material coupled between a first electrode and a second electrode, a light source optically coupled to the WBGP material of each photoconductive switch unit via a light path, in which the light path splits into multiple light paths to optically interface with each WBGP material, such that a time delay of emitted light exists along each subsequent split light path, and in which the WBGP material conducts an electrical signal when a light signal is transmitted to the WBGP material, and an output to transmit the electrical signal conducted by each photoconductive switch unit. The time delay of the photons emitted through the light path is substantially equivalent to the time delay of the electrical signal.

  17. Uv laser triggering of high-voltage gas switches

    International Nuclear Information System (INIS)

    Woodworth, J.R.; Frost, C.A.; Green, T.A.

    1982-01-01

    Two different techniques are discussed for uv laser triggering of high-voltage gas switches using a KrF laser (248 nm) to create an ionized channel through the dielectric gas in a spark gap. One technique uses an uv laser to induce breakdown in SF 6 . For this technique, we present data that demonstrate a 1-sigma jitter of +- 150 ps for a 0.5-MV switch at 80% of its self-breakdown voltage using a low-divergence KrF laser. The other scheme uses additives to the normal dielectric gas, such as tripropylamine, which are selected to undergo resonant two-step ionization in the uv laser field

  18. RF-MEMS capacitive switches with high reliability

    Science.gov (United States)

    Goldsmith, Charles L.; Auciello, Orlando H.; Carlisle, John A.; Sampath, Suresh; Sumant, Anirudha V.; Carpick, Robert W.; Hwang, James; Mancini, Derrick C.; Gudeman, Chris

    2013-09-03

    A reliable long life RF-MEMS capacitive switch is provided with a dielectric layer comprising a "fast discharge diamond dielectric layer" and enabling rapid switch recovery, dielectric layer charging and discharging that is efficient and effective to enable RF-MEMS switch operation to greater than or equal to 100 billion cycles.

  19. A soft-switching coupled inductor bidirectional DC-DC converter with high-conversion ratio

    Science.gov (United States)

    Chao, Kuei-Hsiang; Jheng, Yi-Cing

    2018-01-01

    A soft-switching bidirectional DC-DC converter is presented herein as a way to improve the conversion efficiency of a photovoltaic (PV) system. Adoption of coupled inductors enables the presented converter not only to provide a high-conversion ratio but also to suppress the transient surge voltage via the release of the energy stored in leakage flux of the coupled inductors, and the cost can kept down consequently. A combined use of a switching mechanism and an auxiliary resonant branch enables the converter to successfully perform zero-voltage switching operations on the main switches and improves the efficiency accordingly. It was testified by experiments that our proposed converter works relatively efficiently in full-load working range. Additionally, the framework of the converter intended for testifying has high-conversion ratio. The results of a test, where a generating system using PV module array coupled with batteries as energy storage device was used as the low-voltage input side, and DC link was used as high-voltage side, demonstrated our proposed converter framework with high-conversion ratio on both high-voltage and low-voltage sides.

  20. Multi-step resistive switching behavior of Li-doped ZnO resistance random access memory device controlled by compliance current

    International Nuclear Information System (INIS)

    Lin, Chun-Cheng; Tang, Jian-Fu; Su, Hsiu-Hsien; Hong, Cheng-Shong; Huang, Chih-Yu; Chu, Sheng-Yuan

    2016-01-01

    The multi-step resistive switching (RS) behavior of a unipolar Pt/Li 0.06 Zn 0.94 O/Pt resistive random access memory (RRAM) device is investigated. It is found that the RRAM device exhibits normal, 2-, 3-, and 4-step RESET behaviors under different compliance currents. The transport mechanism within the device is investigated by means of current-voltage curves, in-situ transmission electron microscopy, and electrochemical impedance spectroscopy. It is shown that the ion transport mechanism is dominated by Ohmic behavior under low electric fields and the Poole-Frenkel emission effect (normal RS behavior) or Li + ion diffusion (2-, 3-, and 4-step RESET behaviors) under high electric fields.

  1. Origin of switching current transients in TIPS-pentacene based organic thin-film transistor with polymer dielectric

    Science.gov (United States)

    Singh, Subhash; Mohapatra, Y. N.

    2017-06-01

    We have investigated switch-on drain-source current transients in fully solution-processed thin film transistors based on 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-pentacene) using cross-linked poly-4-vinylphenol as a dielectric. We show that the nature of the transient (increasing or decreasing) depends on both the temperature and the amplitude of the switching pulse at the gate. The isothermal transients are analyzed spectroscopically in a time domain to extract the degree of non-exponentiality and its possible origin in trap kinetics. We propose a phenomenological model in which the exchange of electrons between interfacial ions and traps controls the nature of the drain current transients dictated by the Fermi level position. The origin of interfacial ions is attributed to the essential fabrication step of UV-ozone treatment of the dielectric prior to semiconductor deposition.

  2. High current, 0.5-MA, fast, 100-ns, linear transformer driver experiments

    Directory of Open Access Journals (Sweden)

    Michael G. Mazarakis

    2009-05-01

    Full Text Available The linear transformer driver (LTD is a new method for constructing high current, high-voltage pulsed accelerators. The salient feature of the approach is switching and inductively adding the pulses at low voltage straight out of the capacitors through low inductance transfer and soft iron core isolation. Sandia National Laboratories are actively pursuing the development of a new class of accelerator based on the LTD technology. Presently, the high current LTD experimental research is concentrated on two aspects: first, to study the repetition rate capabilities, reliability, reproducibility of the output pulses, switch prefires, jitter, electrical power and energy efficiency, and lifetime measurements of the cavity active components; second, to study how a multicavity linear array performs in a voltage adder configuration relative to current transmission, energy and power addition, and wall plug to output pulse electrical efficiency. Here we report the repetition rate and lifetime studies performed in the Sandia High Current LTD Laboratory. We first utilized the prototype ∼0.4-MA, LTD I cavity which could be reliably operated up to ±90-kV capacitor charging. Later we obtained an improved 0.5-MA, LTD II version that can be operated at ±100  kV maximum charging voltage. The experimental results presented here were obtained with both cavities and pertain to evaluating the maximum achievable repetition rate and LTD cavity performance. The voltage adder experiments with a series of double sized cavities (1 MA, ±100  kV will be reported in future publications.

  3. Switching power converters medium and high power

    CERN Document Server

    Neacsu, Dorin O

    2013-01-01

    An examination of all of the multidisciplinary aspects of medium- and high-power converter systems, including basic power electronics, digital control and hardware, sensors, analog preprocessing of signals, protection devices and fault management, and pulse-width-modulation (PWM) algorithms, Switching Power Converters: Medium and High Power, Second Edition discusses the actual use of industrial technology and its related subassemblies and components, covering facets of implementation otherwise overlooked by theoretical textbooks. The updated Second Edition contains many new figures, as well as

  4. The influence of the inverter switching frequency on rotor losses in high-speed permanent magnet machines : an experimental study

    NARCIS (Netherlands)

    Merdzan, M.; Paulides, J. J H; Borisavljevic, A.; Lomonova, E. A.

    2016-01-01

    Harmonic content of the output voltage of pulse width modulated voltage source inverters (PWM VSI) is determined by the switching frequency. On the other hand, rotor losses in high-speed permanent magnet (PM) machines are caused, among other factors, by harmonics in stator currents. These harmonics

  5. Methods of high current magnetic field generator for transcranial magnetic stimulation application

    International Nuclear Information System (INIS)

    Bouda, N. R.; Pritchard, J.; Weber, R. J.; Mina, M.

    2015-01-01

    This paper describes the design procedures and underlying concepts of a novel High Current Magnetic Field Generator (HCMFG) with adjustable pulse width for transcranial magnetic stimulation applications. This is achieved by utilizing two different switching devices, the MOSFET and insulated gate bipolar transistor (IGBT). Results indicate that currents as high as ±1200 A can be generated with inputs of +/−20 V. Special attention to tradeoffs between field generators utilizing IGBT circuits (HCMFG 1 ) and MOSFET circuits (HCMFG 2 ) was considered. The theory of operation, design, experimental results, and electronic setup are presented and analyzed

  6. Methods of high current magnetic field generator for transcranial magnetic stimulation application

    Energy Technology Data Exchange (ETDEWEB)

    Bouda, N. R., E-mail: nybouda@iastate.edu; Pritchard, J.; Weber, R. J.; Mina, M. [Department of Electrical and Computer engineering, Iowa State University, Ames, Iowa 50011 (United States)

    2015-05-07

    This paper describes the design procedures and underlying concepts of a novel High Current Magnetic Field Generator (HCMFG) with adjustable pulse width for transcranial magnetic stimulation applications. This is achieved by utilizing two different switching devices, the MOSFET and insulated gate bipolar transistor (IGBT). Results indicate that currents as high as ±1200 A can be generated with inputs of +/−20 V. Special attention to tradeoffs between field generators utilizing IGBT circuits (HCMFG{sub 1}) and MOSFET circuits (HCMFG{sub 2}) was considered. The theory of operation, design, experimental results, and electronic setup are presented and analyzed.

  7. Protection and switching system for the RFX power supply

    International Nuclear Information System (INIS)

    Browning, J.L.; Gray, J.W.; Mace, T.A.; Varley, G.L.

    1986-01-01

    The RFX toroidal field power supply comprises a large 4.8MJ (max) modular capacitor bank and four 14MW AC/DC converter flat-top power supply modules. The high fault level associated with the capacitor banks presents a problem in the design of the switching system, since mistiming could produce large currents in the flat-top supplies. The poloidal circuit consists of four groups of magnetising windings connected in series, each with its own flat-top convertor supply and opening switch transfer system. The flat-top converter supplies are needed when the transfer voltage has fallen from approximately 40kV to 1kV. Solutions to the problem of designing a fault-tolerant system which presents no danger to the flat-top converters are described in the paper. The adopted methods make use of hybrid ignitron/mechanical switches to give the required combination of switching speed and current carrying capacity, together with careful attention to the circuit layout of different switching elements. (author)

  8. Mechanisms of current conduction in Pt/BaTiO3/Pt resistive switching cell

    International Nuclear Information System (INIS)

    Pan, R.K.; Zhang, T.J.; Wang, J.Y.; Wang, J.Z.; Wang, D.F.; Duan, M.G.

    2012-01-01

    The 80-nm-thickness BaTiO 3 (BT) thin film was prepared on the Pt/Ti/SiO 2 /Si substrate by the RF magnetron sputtering technique. The Pt/BT/Pt/Ti/SiO 2 /Si structure was investigated using X-ray diffraction and scanning electron microscopy. The current–voltage characteristic measurements were performed. The bipolar resistive switching behavior was found in the Pt/BT/Pt cell. The current–voltage curves were well fitted in different voltage regions at the high resistance state (HRS) and the low resistance state (LRS), respectively. The conduction mechanisms are concluded to be Ohmic conduction and Schottky emission at the LRS, while space-charge-limited conduction and Poole–Frenkel emission at the HRS. The electroforming and switching processes were explained in terms of the valence change mechanism, in which oxygen vacancies play a key role in forming conducting paths. - Highlights: ►Pt/BaTiO 3 /Pt cell shows the bipolar resistive switching behavior. ►The current–voltage curves were well fitted for different conduction mechanisms. ►The electroforming and switching processes were explained.

  9. Spin Current Switching and Spin-Filtering Effects in Mn-Doped Boron Nitride Nanoribbons

    Directory of Open Access Journals (Sweden)

    G. A. Nemnes

    2012-01-01

    Full Text Available The spin transport properties are investigated by means of the first principle approach for boron nitride nanoribbons with one or two substitutional Mn impurities, connected to graphene electrodes. The spin current polarization is evaluated using the nonequilibrium Green’s function formalism for each structure and bias. The structure with one Mn impurity reveals a transfer characteristics suitable for a spin current switch. In the case of two Mn impurities, the system behaves as an efficient spin-filter device, independent on the ferromagnetic or antiferromagnetic configurations of the magnetic impurities. The experimental availability of the building blocks as well as the magnitudes of the obtained spin current polarizations indicates a strong potential of the analyzed structures for future spintronic devices.

  10. The development of high-voltage repetitive low-jitter corona stabilized triggered switch

    Science.gov (United States)

    Geng, Jiuyuan; Yang, Jianhua; Cheng, Xinbing; Yang, Xiao; Chen, Rong

    2018-04-01

    The high-power switch plays an important part in a pulse power system. With the trend of pulse power technology toward modularization, miniaturization, and accuracy control, higher requirements on electrical trigger and jitter of the switch have been put forward. A high-power low-jitter corona-stabilized triggered switch (CSTS) is designed in this paper. This kind of CSTS is based on corona stabilized mechanism, and it can be used as a main switch of an intense electron-beam accelerator (IEBA). Its main feature was the use of an annular trigger electrode instead of a traditional needle-like trigger electrode, taking main and side trigger rings to fix the discharging channels and using SF6/N2 gas mixture as its operation gas. In this paper, the strength of the local field enhancement was changed by a trigger electrode protrusion length Dp. The differences of self-breakdown voltage and its stability, delay time jitter, trigger requirements, and operation range of the switch were compared. Then the effect of different SF6/N2 mixture ratio on switch performance was explored. The experimental results show that when the SF6 is 15% with the pressure of 0.2 MPa, the hold-off voltage of the switch is 551 kV, the operating range is 46.4%-93.5% of the self-breakdown voltage, the jitter is 0.57 ns, and the minimum trigger voltage requirement is 55.8% of the peak. At present, the CSTS has been successfully applied to an IEBA for long time operation.

  11. Fundamental studies on the switching in liquid nitrogen environment using vacuum switches for application in future high-temperature superconducting medium-voltage power grids

    International Nuclear Information System (INIS)

    Golde, Karsten

    2016-01-01

    By means of superconducting equipment it is possible to reduce the transmission losses in distribution networks while increasing the transmission capacity. As a result even saving a superimposed voltage level would be possible, which can put higher investment costs compared to conventional equipment into perspective. For operation of superconducting systems it is necessary to integrate all equipment in the cooling circuit. This also includes switchgears. Due to cooling with liquid nitrogen, however, only vacuum switching technology comes into question. Thus, the suitability of vacuum switches is investigated in this work. For this purpose the mechanics of the interrupters is considered first. Material investigations and switching experiments at ambient temperature and in liquid nitrogen supply information on potential issues. For this purpose, a special pneumatic construction is designed, which allows tens of thousands of switching cycles. Furthermore, the electrical resistance of the interrupters is considered. Since the contact system consists almost exclusively of copper, a remaining residual resistance and appropriate thermal losses must be considered. Since they have to be cooled back, an appropriate evaluation is given taking environmental parameters into account. The dielectric strength of vacuum interrupters is considered both at ambient temperature as well as directly in liquid nitrogen. For this purpose different contact distances are set at different interrupter types. A distinction is made between internal and external dielectric strength. Conditioning and deconditioning effects are minimized by an appropriate choice of the test circuit. The current chopping and resulting overvoltages are considered to be one of the few drawbacks of vacuum switching technology. Using a practical test circuit the height of chopping current is determined and compared for different temperatures. Due to strong scattering the evaluation is done using statistical methods. At

  12. Fast switching thyristor applied in nanosecond-pulse high-voltage generator with closed transformer core.

    Science.gov (United States)

    Li, Lee; Bao, Chaobing; Feng, Xibo; Liu, Yunlong; Fochan, Lin

    2013-02-01

    For a compact and reliable nanosecond-pulse high-voltage generator (NPHVG), the specification parameter selection and potential usage of fast controllable state-solid switches have an important bearing on the optimal design. The NPHVG with closed transformer core and fast switching thyristor (FST) was studied in this paper. According to the analysis of T-type circuit, the expressions for the voltages and currents of the primary and secondary windings on the transformer core of NPHVG were deduced, and the theoretical maximum analysis was performed. For NPHVG, the rise-rate of turn-on current (di/dt) across a FST may exceed its transient rating. Both mean and maximum values of di/dt were determined by the leakage inductances of the transformer, and the difference is 1.57 times. The optimum winding ratio is helpful to getting higher voltage output with lower specification FST, especially when the primary and secondary capacitances have been established. The oscillation period analysis can be effectively used to estimate the equivalent leakage inductance. When the core saturation effect was considered, the maximum di/dt estimated from the oscillating period of the primary current is more accurate than one from the oscillating period of the secondary voltage. Although increasing the leakage inductance of NPHVG can decrease di/dt across FST, it may reduce the output peak voltage of the NPHVG.

  13. High Current Planar Transformer for Very High Efficiency Isolated Boost DC-DC Converters

    DEFF Research Database (Denmark)

    Pittini, Riccardo; Zhang, Zhe; Andersen, Michael A. E.

    2014-01-01

    This paper presents a design and optimization of a high current planar transformer for very high efficiency dc-dc isolated boost converters. The analysis considers different winding arrangements, including very high copper thickness windings. The analysis is focused on the winding ac-resistance a......This paper presents a design and optimization of a high current planar transformer for very high efficiency dc-dc isolated boost converters. The analysis considers different winding arrangements, including very high copper thickness windings. The analysis is focused on the winding ac......-resistance and transformer leakage inductance. Design and optimization procedures are validated based on an experimental prototype of a 6 kW dcdc isolated full bridge boost converter developed on fully planar magnetics. The prototype is rated at 30-80 V 0-80 A on the low voltage side and 700-800 V on the high voltage side...... with a peak efficiency of 97.8% at 80 V 3.5 kW. Results highlights that thick copper windings can provide good performance at low switching frequencies due to the high transformer filling factor. PCB windings can also provide very high efficiency if stacked in parallel utilizing the transformer winding window...

  14. High repetition rate, high energy, actively Q-switched all-in-fiber laser

    Science.gov (United States)

    Lecourt, J. B.; Bertrand, A.; Guillemet, S.; Hernandez, Y.; Giannone, D.

    2010-05-01

    We report an actively Q-switched Ytterbium-doped all-in-fibre laser delivering 10ns pulses with high repetition rate (from 100kHz to 1MHz). The laser operation has been validated at three different wavelengths (1040, 1050 and 1064nm). The laser can deliver up to 20Watts average power with an high beam quality (M2 = 1).

  15. High-power electro-optic switch technology based on novel transparent ceramic

    International Nuclear Information System (INIS)

    Zhang Xue-Jiao; Ye Qing; Qu Rong-Hui; Cai Hai-wen

    2016-01-01

    A novel high-power polarization-independent electro-optic switch technology based on a reciprocal structure Sagnac interferometer and a transparent quadratic electro-optic ceramic is proposed and analyzed theoretically and experimentally. The electro-optic ceramic is used as a phase retarder for the clockwise and counter-clockwise polarized light, and their polarization directions are adjusted to their orthogonal positions by using two half-wave plates. The output light then becomes polarization-independent with respect to the polarization direction of the input light. The switch characteristics, including splitter ratios and polarization states, are theoretically analyzed and simulated in detail by the matrix multiplication method. An experimental setup is built to verify the analysis and experimental results. A new component ceramic is used and a non-polarizing cube beam splitter (NPBS) replaces the beam splitter (BS) to lower the ON/OFF voltage to 305 V and improve the extinction ratio by 2 dB. Finally, the laser-induced damage threshold for the proposed switch is measured and discussed. It is believed that potential applications of this novel polarization-independent electro-optic switch technology will be wide, especially for ultrafast high-power laser systems. (paper)

  16. Electric field control of deterministic current-induced magnetization switching in a hybrid ferromagnetic/ferroelectric structure

    Science.gov (United States)

    Cai, Kaiming; Yang, Meiyin; Ju, Hailang; Wang, Sumei; Ji, Yang; Li, Baohe; Edmonds, Kevin William; Sheng, Yu; Zhang, Bao; Zhang, Nan; Liu, Shuai; Zheng, Houzhi; Wang, Kaiyou

    2017-07-01

    All-electrical and programmable manipulations of ferromagnetic bits are highly pursued for the aim of high integration and low energy consumption in modern information technology. Methods based on the spin-orbit torque switching in heavy metal/ferromagnet structures have been proposed with magnetic field, and are heading toward deterministic switching without external magnetic field. Here we demonstrate that an in-plane effective magnetic field can be induced by an electric field without breaking the symmetry of the structure of the thin film, and realize the deterministic magnetization switching in a hybrid ferromagnetic/ferroelectric structure with Pt/Co/Ni/Co/Pt layers on PMN-PT substrate. The effective magnetic field can be reversed by changing the direction of the applied electric field on the PMN-PT substrate, which fully replaces the controllability function of the external magnetic field. The electric field is found to generate an additional spin-orbit torque on the CoNiCo magnets, which is confirmed by macrospin calculations and micromagnetic simulations.

  17. Resistive Switching of Ta2O5-Based Self-Rectifying Vertical-Type Resistive Switching Memory

    Science.gov (United States)

    Ryu, Sungyeon; Kim, Seong Keun; Choi, Byung Joon

    2018-01-01

    To efficiently increase the capacity of resistive switching random-access memory (RRAM) while maintaining the same area, a vertical structure similar to a vertical NAND flash structure is needed. In addition, the sneak-path current through the half-selected neighboring memory cell should be mitigated by integrating a selector device with each RRAM cell. In this study, an integrated vertical-type RRAM cell and selector device was fabricated and characterized. Ta2O5 as the switching layer and TaOxNy as the selector layer were used to preliminarily study the feasibility of such an integrated device. To make the side contact of the bottom electrode with active layers, a thick Al2O3 insulating layer was placed between the Pt bottom electrode and the Ta2O5/TaOxNy stacks. Resistive switching phenomena were observed under relatively low currents (below 10 μA) in this vertical-type RRAM device. The TaOxNy layer acted as a nonlinear resistor with moderate nonlinearity. Its low-resistance-state and high-resistance-state were well retained up to 1000 s.

  18. Reluctance motor employing superconducting magnetic flux switches

    International Nuclear Information System (INIS)

    Spyker, R.L.; Ruckstadter, E.J.

    1992-01-01

    This paper reports that superconducting flux switches controlling the magnetic flux in the poles of a motor will enable the implementation of a reluctance motor using one central single phase winding. A superconducting flux switch consists of a ring of superconducting material surrounding a ferromagnetic pole of the motor. When in the superconducting state the switch will block all magnetic flux attempting to flow in the ferromagnetic core. When switched to the normal state the superconducting switch will allow the magnetic flux to flow freely in that pole. By using one high turns-count coil as a flux generator, and selectively channeling flux among the various poles using the superconducting flux switch, 3-phase operation can be emulated with a single-hase central AC source. The motor will also operate when the flux generating coil is driven by a DC current, provided the magnetic flux switches see a continuously varying magnetic flux. Rotor rotation provides this varying flux due to the change in stator pole inductance it produces

  19. Avalanche mode of high-voltage overloaded p{sup +}–i–n{sup +} diode switching to the conductive state by pulsed illumination

    Energy Technology Data Exchange (ETDEWEB)

    Kyuregyan, A. S., E-mail: ask@vei.ru [Lenin All-Russia Electrical Engineering Institute (Russian Federation)

    2015-07-15

    A simple analytical theory of the picosecond switching of high-voltage overloaded p{sup +}–i–n{sup +} photodiodes to the conductive state by pulsed illumination is presented. The relations between the parameters of structure, light pulse, external circuit, and main process characteristics, i.e., the amplitude of the active load current pulse, delay time, and switching duration, are derived and confirmed by numerical simulation. It is shown that the picosecond light pulse energy required for efficient switching can be decreased by 6–7 orders of magnitude due to the intense avalanche multiplication of electrons and holes. This offers the possibility of using pulsed semiconductor lasers as a control element of optron pairs.

  20. Modeling, Simulation, and Experiment of Switched Reluctance Ocean Current Generator System

    Directory of Open Access Journals (Sweden)

    Hao Chen

    2013-01-01

    Full Text Available This paper presents nonlinear simulation model of switched reluctance (SR ocean current generator system on MATLAB/SIMULINK with describing the structure of generator system. The developed model is made up of main model, rotor position calculation module, controller module, gate module, power converter module, phase windings module, flux-linkage module, torque module, and power calculation module. The magnetization curves obtained by two-dimensional finite-element electromagnetic field calculation and the conjugated magnetic energy graphics obtained from the three-dimensional graphics of flux linkage are stored in the “Lookup Table” modules on MATLAB/SIMULINK. The hardware of the developed three-phase 12/8 structure SR ocean current generator system prototype with the experimental platform is presented. The simulation of the prototype is performed by the developed models, and the experiments have been carried out under the same condition with different output power, turn-off angle, and rotor speed. The simulated phase current waveforms agree well with the tested phase current waveforms experimentally. The simulated output voltage curves agree well with the tested output voltage curves experimentally. It is shown that the developed nonlinear simulation model of the three-phase 12/8 structure SR ocean current generator system is valid.

  1. A solid-state dielectric elastomer switch for soft logic

    Energy Technology Data Exchange (ETDEWEB)

    Chau, Nixon [Biomimetics Laboratory, Auckland Bioengineering Institute, The University of Auckland, Level 6, 70 Symonds Street, Auckland 1010 (New Zealand); Slipher, Geoffrey A., E-mail: geoffrey.a.slipher.civ@mail.mil; Mrozek, Randy A. [U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783 (United States); O' Brien, Benjamin M. [StretchSense, Ltd., 27 Walls Rd., Penrose, Auckland 1061 (New Zealand); Anderson, Iain A. [Biomimetics Laboratory, Auckland Bioengineering Institute, The University of Auckland, Level 6, 70 Symonds Street, Auckland 1010 (New Zealand); StretchSense, Ltd., 27 Walls Rd., Penrose, Auckland 1061 (New Zealand); Department of Engineering Science, School of Engineering, The University of Auckland, Level 3, 70 Symonds Street, Auckland 1010 (New Zealand)

    2016-03-07

    In this paper, we describe a stretchable solid-state electronic switching material that operates at high voltage potentials, as well as a switch material benchmarking technique that utilizes a modular dielectric elastomer (artificial muscle) ring oscillator. The solid-state switching material was integrated into our oscillator, which self-started after 16 s and performed 5 oscillations at a frequency of 1.05 Hz with 3.25 kV DC input. Our materials-by-design approach for the nickel filled polydimethylsiloxane based switch has resulted in significant improvements over previous carbon grease-based switches in four key areas, namely, sharpness of switching behavior upon applied stretch, magnitude of electrical resistance change, ease of manufacture, and production rate. Switch lifetime was demonstrated to be in the range of tens to hundreds of cycles with the current process. An interesting and potentially useful strain-based switching hysteresis behavior is also presented.

  2. A solid-state dielectric elastomer switch for soft logic

    International Nuclear Information System (INIS)

    Chau, Nixon; Slipher, Geoffrey A.; Mrozek, Randy A.; O'Brien, Benjamin M.; Anderson, Iain A.

    2016-01-01

    In this paper, we describe a stretchable solid-state electronic switching material that operates at high voltage potentials, as well as a switch material benchmarking technique that utilizes a modular dielectric elastomer (artificial muscle) ring oscillator. The solid-state switching material was integrated into our oscillator, which self-started after 16 s and performed 5 oscillations at a frequency of 1.05 Hz with 3.25 kV DC input. Our materials-by-design approach for the nickel filled polydimethylsiloxane based switch has resulted in significant improvements over previous carbon grease-based switches in four key areas, namely, sharpness of switching behavior upon applied stretch, magnitude of electrical resistance change, ease of manufacture, and production rate. Switch lifetime was demonstrated to be in the range of tens to hundreds of cycles with the current process. An interesting and potentially useful strain-based switching hysteresis behavior is also presented.

  3. Low-leakage, high-current power crowbar transformer

    International Nuclear Information System (INIS)

    Buck, R.T.; Galbraith, J.D.; Nunnally, W.C.

    1979-01-01

    The design, fabrication, and testing of two sizes of power crowbar transformers for the ZT-40 Toroidal Z-Pinch experiment at the Los Alamos Scientific Laboratory are described. Low-leakage transformers in series with the poloidal and the toroidal field coils are used to sustain magnetic field currents initially produced by 50-kV capacitor banks. The transformer primaries are driven by cost-effective, ignitron-switched, 10-kV high-density capacitor banks. The transformer secondaries, in series with the field coils, provide from 1,000 to 1,500 V to cancel the resistive voltage drop in the coil circuits. Prototype transformers, with a total leakage inductance measured in the secondary of 5 nH, have been tested with peak secondary currents in excess of 600 kA resulting from a 10-kV primary charge voltage. The test procedures and results and the mechanical construction details are presented

  4. Multi-step resistive switching behavior of Li-doped ZnO resistance random access memory device controlled by compliance current

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chun-Cheng [Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Department of Mathematic and Physical Sciences, R.O.C. Air Force Academy, Kaohsiung 820, Taiwan (China); Tang, Jian-Fu; Su, Hsiu-Hsien [Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Hong, Cheng-Shong; Huang, Chih-Yu [Department of Electronic Engineering, National Kaohsiung Normal University, Kaohsiung 802, Taiwan (China); Chu, Sheng-Yuan, E-mail: chusy@mail.ncku.edu.tw [Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China)

    2016-06-28

    The multi-step resistive switching (RS) behavior of a unipolar Pt/Li{sub 0.06}Zn{sub 0.94}O/Pt resistive random access memory (RRAM) device is investigated. It is found that the RRAM device exhibits normal, 2-, 3-, and 4-step RESET behaviors under different compliance currents. The transport mechanism within the device is investigated by means of current-voltage curves, in-situ transmission electron microscopy, and electrochemical impedance spectroscopy. It is shown that the ion transport mechanism is dominated by Ohmic behavior under low electric fields and the Poole-Frenkel emission effect (normal RS behavior) or Li{sup +} ion diffusion (2-, 3-, and 4-step RESET behaviors) under high electric fields.

  5. A fast switch, combiner and narrow-band filter for high-power millimetre wave beams

    Science.gov (United States)

    Kasparek, W.; Petelin, M. I.; Shchegolkov, D. Yu; Erckmann, V.; Plaum, B.; Bruschi, A.; ECRH Groups at IPP Greifswald; Karlsruhe, FZK; Stuttgart, IPF

    2008-05-01

    A fast directional switch (FADIS) is described, which allows controlled switching of high-power microwaves between two outputs. A possible application could be synchronous stabilization of neoclassical tearing modes (NTMs). Generally, the device can be used to share the installed EC power between different types of launchers or different applications (e.g. in ITER, midplane/upper launcher). The switching is performed electronically without moving parts by a small frequency-shift keying of the gyrotron (some tens of megahertz), and a narrow-band diplexer. The device can be operated as a beam combiner also, which offers attractive transmission perspectives in multi-megawatt ECRH systems. In addition, these diplexers are useful for plasma diagnostic systems employing high-power sources due to their filter characteristics. The principle and the design of a four-port quasi-optical resonator diplexer is presented. Low-power measurements of switching contrast, mode purity and efficiency show good agreement with theory. Preliminary frequency modulation characteristics of gyrotrons are shown, and first results from high-power switching experiments using the ECRH system for W7-X are presented.

  6. A fast switch, combiner and narrow-band filter for high-power millimetre wave beams

    International Nuclear Information System (INIS)

    Kasparek, W.; Plaum, B.; Petelin, M.I.; Shchegolkov, D.Yu; Erckmann, V.; Bruschi, A.

    2008-01-01

    A fast directional switch (FADIS) is described, which allows controlled switching of high-power microwaves between two outputs. A possible application could be synchronous stabilization of neoclassical tearing modes (NTMs). Generally, the device can be used to share the installed EC power between different types of launchers or different applications (e.g. in ITER, midplane/upper launcher). The switching is performed electronically without moving parts by a small frequency-shift keying of the gyrotron (some tens of megahertz), and a narrow-band diplexer. The device can be operated as a beam combiner also, which offers attractive transmission perspectives in multi-megawatt ECRH systems. In addition, these diplexers are useful for plasma diagnostic systems employing high-power sources due to their filter characteristics. The principle and the design of a four-port quasi-optical resonator diplexer is presented. Low-power measurements of switching contrast, mode purity and efficiency show good agreement with theory. Preliminary frequency modulation characteristics of gyrotrons are shown, and first results from high-power switching experiments using the ECRH system for W7-X are presented

  7. Highly uniform resistive switching properties of amorphous InGaZnO thin films prepared by a low temperature photochemical solution deposition method.

    Science.gov (United States)

    Hu, Wei; Zou, Lilan; Chen, Xinman; Qin, Ni; Li, Shuwei; Bao, Dinghua

    2014-04-09

    We report on highly uniform resistive switching properties of amorphous InGaZnO (a-IGZO) thin films. The thin films were fabricated by a low temperature photochemical solution deposition method, a simple process combining chemical solution deposition and ultraviolet (UV) irradiation treatment. The a-IGZO based resistive switching devices exhibit long retention, good endurance, uniform switching voltages, and stable distribution of low and high resistance states. Electrical conduction mechanisms were also discussed on the basis of the current-voltage characteristics and their temperature dependence. The excellent resistive switching properties can be attributed to the reduction of organic- and hydrogen-based elements and the formation of enhanced metal-oxide bonding and metal-hydroxide bonding networks by hydrogen bonding due to UV irradiation, based on Fourier-transform-infrared spectroscopy, X-ray photoelectron spectroscopy, and Field emission scanning electron microscopy analysis of the thin films. This study suggests that a-IGZO thin films have potential applications in resistive random access memory and the low temperature photochemical solution deposition method can find the opportunity for further achieving system on panel applications if the a-IGZO resistive switching cells were integrated with a-IGZO thin film transistors.

  8. The Transistor as Low Level Switch

    Energy Technology Data Exchange (ETDEWEB)

    Lyden, Anders

    1963-10-15

    The common collector transistor switch has in the on state with open emitter a certain offset voltage U{sub EK} {approx_equal} -kT/qB{sub N}. This expression is derived in a new, more physical way. It is further shown at which emitter current the current amplification factor B{sub N} should be measured to get a correct value for the above expression. The collector current I at zero collector voltage I{sub K} = I{sub 0}(exp(qU{sub E}/kT) - 1) extremely well. Substitution of I{sub EBO} and I{sub KBO} by I{sub 0} in Eber's and Moll's relations consequently improves these equations and the characteristics of the transistor switch can be better determined. At switching on and off transients appear across the switch. The influence of the 'spike' at switching off can be described by an current I{sub SPIKE} which is easy to calculate. I{sub SPIKE} is approximately dependent only on the base - emitter depletion layer capacitance and the chopper frequency f{sub 0}. Some compensated switches have lower drift than the drift in U{sub EK}. They may, for example, have a temperature drift < 0.2 {mu}V/deg C and a long time drift < 2 {mu}V/week. Some compensated switches also have I{sub SPIKE} < 10{sup -12} f{sub 0}A. The static offset current in the off state can easily be made < 10{sup -12} A.

  9. A CW Gunn diode bistable switching element.

    Science.gov (United States)

    Hurtado, M.; Rosenbaum, F. J.

    1972-01-01

    Experiments with a current-controlled bistable switching element using a CW Gunn diode are reported. Switching rates of the order of 10 MHz have been obtained. Switching is initiated by current pulses of short duration (5-10 ns). Rise times of the order of several nanoseconds could be obtained.

  10. The Application of High Temperature Superconducting Materials to Power Switches

    CERN Document Server

    March, S A; Ballarino, A

    2009-01-01

    Superconducting switches may find application in superconducting magnet systems that require energy extraction. Such superconducting switches could be bypass-switches that are operated in conjunction with a parallel resistor or dump-switches where all of the energy is dissipated in the switch itself. Bypass-switches are more suited to higher energy circuits as a portion of the energy can be dissipated in the external dump resistor. Dump- switches require less material and triggering energy as a lower switch resistance is needed to achieve the required total dump resistance. Both superconducting bypass-switches and superconducting dump-switches can be ther- mally activated. Switching times that are comparable to those obtained with mechanical bypass-switch systems can be achieved using a co-wound heater that is powered by a ca- pacitor discharge. Switches that have fast thermal diffusion times through the insulation can be modelled as a lumped system whereas those with slow thermal diffusion times were modelle...

  11. Measurement of resistance switching dynamics in copper sulfide memristor structures

    Science.gov (United States)

    McCreery, Kaitlin; Olson, Matthew; Teitsworth, Stephen

    Resistance switching materials are the subject of current research in large part for their potential to enable novel computing devices and architectures such as resistance random access memories and neuromorphic chips. A common feature of memristive structures is the hysteretic switching between high and low resistance states which is induced by the application of a sufficiently large electric field. Here, we describe a relatively simple wet chemistry process to fabricate Cu2 S / Cu memristive structures with Cu2 S film thickness ranging up to 150 micron. In this case, resistance switching is believed to be mediated by electromigration of Cu ions from the Cu substrate into the Cu2 S film. Hysteretic current-voltage curves are measured and reveal switching voltages of about 0.8 Volts with a relatively large variance and independent of film thickness. In order to gain insight into the dynamics and variability of the switching process, we have measured the time-dependent current response to voltage pulses of varying height and duration with a time resolution of 1 ns. The transient response consists of a deterministic RC component as well as stochastically varying abrupt current steps that occur within a few microseconds of the pulse application.

  12. Preliminary experiment research of explosively driven opening switch

    International Nuclear Information System (INIS)

    Li Xiaolin; Chen Dongqun; Li Da; Cao Shengguang; Chen Yingcong

    2010-01-01

    In pulse power technology field, many loads require high current pulse with fast risetime, but sometimes, the common high current pulse powers don't satisfy request, thus there need pulse erection switches of sorts to shorten pulse risetime. Explosively driven opening switch (EDOS) is a good choice, it has simple structure and excellent performance, the primary parameters of EDOS are opening time, opening resistance, opening current and dissipation energy, which determine its performance and range for applications. For this, two kinds of EDOS are designed and manufactured, in the later experiments, the power supply is a 200 μF capacitor and the conductor is 0.03 mm copper foil, the results indicate that the two kinds of EDOS have good performance, the opening time is about 1-3 μs, the opening resistance is about 1-2 Ω, the opening current is about 24-31 kA and the average dissipation energy is about 0.125-0.34 kJ per groove, the capability of conduction current is adjusted by the thickness of conductor along with different opening current. (authors)

  13. Three-terminal nanoelectromechanical switch based on tungsten nitride—an amorphous metallic material

    KAUST Repository

    Mayet, Abdulilah M.; Hussain, Aftab M.; Hussain, Muhammad Mustafa

    2015-01-01

    © 2016 IOP Publishing Ltd. Nanoelectromechanical (NEM) switches inherently have zero off-state leakage current and nearly ideal sub-threshold swing due to their mechanical nature of operation, in contrast to semiconductor switches. A challenge for NEM switches to be practical for low-power digital logic application is their relatively large operation voltage which can result in higher dynamic power consumption. Herein we report a three-terminal laterally actuated NEM switch fabricated with an amorphous metallic material: tungsten nitride (WNx). As-deposited WNx thin films have high Young's modulus (300 GPa) and reasonably high hardness (3 GPa), which are advantageous for high wear resistance. The first prototype WNx switches are demonstrated to operate with relatively low control voltage, down to 0.8 V for an air gap thickness of 150 nm.

  14. Three-terminal nanoelectromechanical switch based on tungsten nitride—an amorphous metallic material

    KAUST Repository

    Mayet, Abdulilah M.

    2015-12-04

    © 2016 IOP Publishing Ltd. Nanoelectromechanical (NEM) switches inherently have zero off-state leakage current and nearly ideal sub-threshold swing due to their mechanical nature of operation, in contrast to semiconductor switches. A challenge for NEM switches to be practical for low-power digital logic application is their relatively large operation voltage which can result in higher dynamic power consumption. Herein we report a three-terminal laterally actuated NEM switch fabricated with an amorphous metallic material: tungsten nitride (WNx). As-deposited WNx thin films have high Young\\'s modulus (300 GPa) and reasonably high hardness (3 GPa), which are advantageous for high wear resistance. The first prototype WNx switches are demonstrated to operate with relatively low control voltage, down to 0.8 V for an air gap thickness of 150 nm.

  15. Compact, Energy-Efficient High-Frequency Switched Capacitor Neural Stimulator With Active Charge Balancing.

    Science.gov (United States)

    Hsu, Wen-Yang; Schmid, Alexandre

    2017-08-01

    Safety and energy efficiency are two major concerns for implantable neural stimulators. This paper presents a novel high-frequency, switched capacitor (HFSC) stimulation and active charge balancing scheme, which achieves high energy efficiency and well-controlled stimulation charge in the presence of large electrode impedance variations. Furthermore, the HFSC can be implemented in a compact size without any external component to simultaneously enable multichannel stimulation by deploying multiple stimulators. The theoretical analysis shows significant benefits over the constant-current and voltage-mode stimulation methods. The proposed solution was fabricated using a 0.18 μm high-voltage technology, and occupies only 0.035 mm 2 for a single stimulator. The measurement result shows 50% peak energy efficiency and confirms the effectiveness of active charge balancing to prevent the electrode dissolution.

  16. High-power electro-optic switch technology based on novel transparent ceramic

    Science.gov (United States)

    Xue-Jiao, Zhang; Qing, Ye; Rong-Hui, Qu; Hai-wen, Cai

    2016-03-01

    A novel high-power polarization-independent electro-optic switch technology based on a reciprocal structure Sagnac interferometer and a transparent quadratic electro-optic ceramic is proposed and analyzed theoretically and experimentally. The electro-optic ceramic is used as a phase retarder for the clockwise and counter-clockwise polarized light, and their polarization directions are adjusted to their orthogonal positions by using two half-wave plates. The output light then becomes polarization-independent with respect to the polarization direction of the input light. The switch characteristics, including splitter ratios and polarization states, are theoretically analyzed and simulated in detail by the matrix multiplication method. An experimental setup is built to verify the analysis and experimental results. A new component ceramic is used and a non-polarizing cube beam splitter (NPBS) replaces the beam splitter (BS) to lower the ON/OFF voltage to 305 V and improve the extinction ratio by 2 dB. Finally, the laser-induced damage threshold for the proposed switch is measured and discussed. It is believed that potential applications of this novel polarization-independent electro-optic switch technology will be wide, especially for ultrafast high-power laser systems. Project supported by the National Natural Science Foundation of China (Grant Nos. 61137004, 61405218, and 61535014).

  17. Electronic logic to enhance switch reliability in detecting openings and closures of redundant switches

    Science.gov (United States)

    Cooper, James A.

    1986-01-01

    A logic circuit is used to enhance redundant switch reliability. Two or more switches are monitored for logical high or low output. The output for the logic circuit produces a redundant and failsafe representation of the switch outputs. When both switch outputs are high, the output is high. Similarly, when both switch outputs are low, the logic circuit's output is low. When the output states of the two switches do not agree, the circuit resolves the conflict by memorizing the last output state which both switches were simultaneously in and produces the logical complement of this output state. Thus, the logic circuit of the present invention allows the redundant switches to be treated as if they were in parallel when the switches are open and as if they were in series when the switches are closed. A failsafe system having maximum reliability is thereby produced.

  18. High resolution switching mode inductance-to-frequency converter with temperature compensation.

    Science.gov (United States)

    Matko, Vojko; Milanović, Miro

    2014-10-16

    This article proposes a novel method for the temperature-compensated inductance-to-frequency converter with a single quartz crystal oscillating in the switching oscillating circuit to achieve better temperature stability of the converter. The novelty of this method lies in the switching-mode converter, the use of additionally connected impedances in parallel to the shunt capacitances of the quartz crystal, and two inductances in series to the quartz crystal. This brings a considerable reduction of the temperature influence of AT-cut crystal frequency change in the temperature range between 10 and 40 °C. The oscillator switching method and the switching impedances connected to the quartz crystal do not only compensate for the crystal's natural temperature characteristics but also any other influences on the crystal such as ageing as well as from other oscillating circuit elements. In addition, the method also improves frequency sensitivity in inductance measurements. The experimental results show that through high temperature compensation improvement of the quartz crystal characteristics, this switching method theoretically enables a 2 pH resolution. It converts inductance to frequency in the range of 85-100 µH to 2-560 kHz.

  19. High Resolution Switching Mode Inductance-to-Frequency Converter with Temperature Compensation

    Directory of Open Access Journals (Sweden)

    Vojko Matko

    2014-10-01

    Full Text Available This article proposes a novel method for the temperature-compensated inductance-to-frequency converter with a single quartz crystal oscillating in the switching oscillating circuit to achieve better temperature stability of the converter. The novelty of this method lies in the switching-mode converter, the use of additionally connected impedances in parallel to the shunt capacitances of the quartz crystal, and two inductances in series to the quartz crystal. This brings a considerable reduction of the temperature influence of AT-cut crystal frequency change in the temperature range between 10 and 40 °C. The oscillator switching method and the switching impedances connected to the quartz crystal do not only compensate for the crystal’s natural temperature characteristics but also any other influences on the crystal such as ageing as well as from other oscillating circuit elements. In addition, the method also improves frequency sensitivity in inductance measurements. The experimental results show that through high temperature compensation improvement of the quartz crystal characteristics, this switching method theoretically enables a 2 pH resolution. It converts inductance to frequency in the range of 85–100 µH to 2–560 kHz.

  20. A computational study of the effects of linear doping profile on the high-frequency and switching performances of hetero-material-gate CNTFETs

    International Nuclear Information System (INIS)

    Wang Wei; Li Na; Ren Yuzhou; Li Hao; Zheng Lifen; Li Jin; Jiang Junjie; Chen Xiaoping; Wang Kai; Xia Chunping

    2013-01-01

    The effects of linear doping profile near the source and drain contacts on the switching and high-frequency characteristics for conventional single-material-gate CNTFET (C-CNTFET) and hetero-material-gate CNTFET (HMG-CNTFET) have been theoretically investigated by using a quantum kinetic model. This model is based on two-dimensional non-equilibrium Green's functions (NEGF) solved self-consistently with Poisson's equations. The simulation results show that at a CNT channel length of 20 nm with chirality (7, 0), the intrinsic cutoff frequency of C-CNTFETs reaches up to a few THz. In addition, a comparison study has been performed between C-and HMG-CNTFETs. For the C-CNTFET, results reveal that a longer linear doping length can improve the cutoff frequency and switching speed. However, it has the reverse effect on on/off current ratios. To improve the on/off current ratios performance of CNTFETs and overcome short-channel effects (SCEs) in high-performance device applications, a novel CNTFET structure with a combination of an HMG and linear doping profile has been proposed. It is demonstrated that the HMG structure design with an optimized linear doping length has improved high-frequency and switching performances as compared to C-CNTFETs. The simulation study may be useful for understanding and optimizing high-performance of CNTFETs and assessing the reliability of CNTFETs for prospective applications. (semiconductor devices)

  1. Evidence for thermally assisted threshold switching behavior in nanoscale phase-change memory cells

    International Nuclear Information System (INIS)

    Le Gallo, Manuel; Athmanathan, Aravinthan; Krebs, Daniel; Sebastian, Abu

    2016-01-01

    In spite of decades of research, the details of electrical transport in phase-change materials are still debated. In particular, the so-called threshold switching phenomenon that allows the current density to increase steeply when a sufficiently high voltage is applied is still not well understood, even though there is wide consensus that threshold switching is solely of electronic origin. However, the high thermal efficiency and fast thermal dynamics associated with nanoscale phase-change memory (PCM) devices motivate us to reassess a thermally assisted threshold switching mechanism, at least in these devices. The time/temperature dependence of the threshold switching voltage and current in doped Ge 2 Sb 2 Te 5 nanoscale PCM cells was measured over 6 decades in time at temperatures ranging from 40 °C to 160 °C. We observe a nearly constant threshold switching power across this wide range of operating conditions. We also measured the transient dynamics associated with threshold switching as a function of the applied voltage. By using a field- and temperature-dependent description of the electrical transport combined with a thermal feedback, quantitative agreement with experimental data of the threshold switching dynamics was obtained using realistic physical parameters

  2. Proceedings of the switched power workshop

    International Nuclear Information System (INIS)

    Fernow, R.C.

    1988-01-01

    These proceedings contain most of the presentations given at a workshop on the current state of research in techniques for switched power acceleration. The proceedings are divided, as was the workshop itself, into two parts. Part 1, contains the latest results from a number of groups active in switched power research. The major topic here is a method for switching externally supplied power onto a transmission line. Advocates for vacuum photodiode switching, solid state switching, gas switching, and synthetic pulse generation are all presented. Other important areas of research described in this section concern: external electrical and laser pulsing systems; the properties of the created electromagnetic pulse; structures used for transporting the electromagnetic pulse to the region where the electron beam is located; and possible applications. Part 2 of the proceedings considers the problem of designing a high brightness electron gun using switched power as the power source. This is an important first step in demonstrating the usefulness of switched power techniques for accelerator physics. In addition such a gun could have immediate practical importance for advanced acceleration studies since the brightness could exceed that of present sources by several orders of magnitude. I would like to take this opportunity to thank Kathleen Tuohy and Patricia Tuttle for their assistance in organizing and running the workshop. Their tireless efforts contribute greatly to a very productive meeting

  3. A cross-stacked plasmonic nanowire network for high-contrast femtosecond optical switching.

    Science.gov (United States)

    Lin, Yuanhai; Zhang, Xinping; Fang, Xiaohui; Liang, Shuyan

    2016-01-21

    We report an ultrafast optical switching device constructed by stacking two layers of gold nanowires into a perpendicularly crossed network, which works at a speed faster than 280 fs with an on/off modulation depth of about 22.4%. The two stacks play different roles in enhancing consistently the optical switching performance due to their different dependence on the polarization of optical electric fields. The cross-plasmon resonance based on the interaction between the perpendicularly stacked gold nanowires and its Fano-coupling with Rayleigh anomaly is the dominant mechanism for such a high-contrast optical switching device.

  4. High voltage fast switches for nuclear applications

    International Nuclear Information System (INIS)

    Chatroux, D.; Lausenaz, Y.; Villard, J.F.; Lafore, D.

    1999-01-01

    SILVA process consists in a selective ionization of the 235 uranium isotope, using laser beams generated by dye lasers pumped by copper vapour laser (C.V.L.). SILVA involves power electronic for 3 power supplies: - copper vapour laser power supply, - extraction power supply to generate the electric field in the vapour, and - electron beam power supply for vapour generation. This article reviews the main switches that are proposed on the market or are on development and that could be used in SILVA power supplies. The SILVA technical requirements are: high power, high voltage and very short pulses (200 ns width). (A.C.)

  5. Optimization and Design of a Low Power Switched Current A/D Sigma-Delta-Modulator for Voice Band Applications

    DEFF Research Database (Denmark)

    Jørgensen, Ivan Harald Holger; Bogason, Gudmundur

    1998-01-01

    This paper presents a third order switched current sigma delta-modulator. The modulator is optimized at the system level for minimum power consumption by careful design of the noise transfer function. A thorough noise analysis of the cascode type current copiers used to implement the modulator......, together with a new methodology for evaluating the nonlinear settling behavior is presented. This leads to a new optimization methodology that minimize the power consumption in switched current circuits for given design parameters. The optimization methodology takes process variations into account....... The modulator is implemented in a standard 2.4 mu m CMOS process only using MOS capacitors. For a power supply of 3.3 V the power consumption is approximately 2.5 mW when operating at a sampling rate of 600 kHz. Under these condition the peak SNR it measured to 74.5 dB with a signal band width of 5.5 kHz. Due...

  6. What happens in Josephson junctions at high critical current densities

    Science.gov (United States)

    Massarotti, D.; Stornaiuolo, D.; Lucignano, P.; Caruso, R.; Galletti, L.; Montemurro, D.; Jouault, B.; Campagnano, G.; Arani, H. F.; Longobardi, L.; Parlato, L.; Pepe, G. P.; Rotoli, G.; Tagliacozzo, A.; Lombardi, F.; Tafuri, F.

    2017-07-01

    The impressive advances in material science and nanotechnology are more and more promoting the use of exotic barriers and/or superconductors, thus paving the way to new families of Josephson junctions. Semiconducting, ferromagnetic, topological insulator and graphene barriers are leading to unconventional and anomalous aspects of the Josephson coupling, which might be useful to respond to some issues on key problems of solid state physics. However, the complexity of the layout and of the competing physical processes occurring in the junctions is posing novel questions on the interpretation of their phenomenology. We classify some significant behaviors of hybrid and unconventional junctions in terms of their first imprinting, i.e., current-voltage curves, and propose a phenomenological approach to describe some features of junctions characterized by relatively high critical current densities Jc. Accurate arguments on the distribution of switching currents will provide quantitative criteria to understand physical processes occurring in high-Jc junctions. These notions are universal and apply to all kinds of junctions.

  7. High-voltage switching for in-flight capture of keV antiprotons in a Penning trap

    International Nuclear Information System (INIS)

    Fei, X.; Davisson, R.; Gabrielse, G.

    1987-01-01

    The recently observed in-flight capture of keV antiprotons and protons in a Penning trap requires that the -3-kV potentials on electrodes of a Penning trap near 4.2 K be switched on and off with switching times less than 20 ns. These rapidly switched potentials are applied via transmission lines which are not terminated at the trap, thereby avoiding unacceptable heat load on the helium Dewar. Simple high-voltage switching circuits are constructed using krytrons and reed relays. A krytron provides the rapid switching and stays on just long enough for a reed relay to kick in and maintain the switched state indefinitely

  8. High Isolation Single-Pole Four-Throw RF MEMS Switch Based on Series-Shunt Configuration

    Directory of Open Access Journals (Sweden)

    Tejinder Singh

    2014-01-01

    Full Text Available This paper presents a novel design of single-pole four-throw (SP4T RF-MEMS switch employing both capacitive and ohmic switches. It is designed on high-resistivity silicon substrate and has a compact area of 1.06 mm2. The series or ohmic switches have been designed to provide low insertion loss with good ohmic contact. The pull-in voltage for ohmic switches is calculated to be 7.19 V. Shunt or capacitive switches have been used in each port to improve the isolation for higher frequencies. The proposed SP4T switch provides excellent RF performances with isolation better than 70.64 dB and insertion loss less than 0.72 dB for X-band between the input port and each output port.

  9. Exciter switch

    Science.gov (United States)

    Mcpeak, W. L.

    1975-01-01

    A new exciter switch assembly has been installed at the three DSN 64-m deep space stations. This assembly provides for switching Block III and Block IV exciters to either the high-power or 20-kW transmitters in either dual-carrier or single-carrier mode. In the dual-carrier mode, it provides for balancing the two drive signals from a single control panel located in the transmitter local control and remote control consoles. In addition to the improved switching capabilities, extensive monitoring of both the exciter switch assembly and Transmitter Subsystem is provided by the exciter switch monitor and display assemblies.

  10. Harmonic Analysis and Mitigation of Low- Frequency Switching Voltage Source Inverter with Auxiliary VSI

    DEFF Research Database (Denmark)

    Bai, Haofeng; Wang, Xiongfei; Blaabjerg, Frede

    2018-01-01

    The output currents of high-power Voltage Source Inverters (VSIs) are distorted by the switching harmonics and the background harmonics in the grid voltage. This paper presents an active harmonic filtering scheme for high-power, low-frequency switching VSIs with an additional auxiliary VSI. In th...

  11. Launched electrons in plasma opening switches

    International Nuclear Information System (INIS)

    Mendel, C.W. Jr.; Rochau, G.E.; Sweeney, M.A.; McDaniel, D.H.; Quintenz, J.P.; Savage, M.E.; Lindman, E.L.; Kindel, J.M.

    1989-01-01

    Plasma opening switches have provided a means to improve the characteristics of super-power pulse generators. Recent advances involving plasma control with fast and slow magnetic fields have made these switches more versatile, allowing for improved switch uniformity, triggering, and opening current levels that are set by the level of auxiliary fields. Such switches necessarily involve breaks in the translational symmetry of the transmission line geometry and therefore affect the electron flow characteristics of the line. These symmetry breaks are the result of high electric field regions caused by plasma conductors remaining in the transmission line, ion beams crossing the line, or auxilliary magnetic field regions. Symmetry breaks cause the canonical momentum of the electrons to change, thereby moving them away from the cathode. Additional electrons are pulled from the cathode into the magnetically insulated flow, resulting in an excess of electron flow over that expected for the voltage and line current downstream of the switch. We call these electrons ''launched electrons''. Unless they are recaptured at the cathode or else are fed into the load and used beneficially, they cause a large power loss downstream. This paper will show examples of SuperMite and PBFA II data showing these losses, explain the tools we are using to study them, and discuss the mechanisms we will employ to mitigate the problem. The losses will be reduced primarily by reducing the amount of launched electron flow. 7 refs., 9 figs

  12. Evaluation of the contact switch materials in high voltage power supply for generate of underwater shockwave by electrical discharge

    Directory of Open Access Journals (Sweden)

    K Higa

    2016-10-01

    Full Text Available We have developed the high voltage power-supply unit by Cockcroft-Walton circuit for ingenerate high pressure due to underwater shockwave by electrical discharge. This high voltage power supply has the problem of the metal contact switch operation that contact switch stop by melting and bonding due to electrical spark. We have studied the evaluation of materials of contact switch for the reducing electrical energy loss and the problem of contact switch operation. In this research, measurement of discharge voltage and high pressure due to underwater shockwave was carried out using the contact switch made of different materials as brass plate, brass-carbon plate-brass and carbon block. The contact switch made of carbon is effective to reduce energy loss and problem of contactor switch operation.

  13. Current-Induced Switching of a Single-Molecule Magnet with Arbitrary Oriented Easy Axis

    OpenAIRE

    Misiorny, Maciej; Barnas, Józef

    2007-01-01

    The main objective of this work is to investigate theoretically how tilting of an easy axis of a single-molecule magnet (SMM) from the orientation collinear with magnetic moments of the leads affects the switching process induced by current flowing through the system. To do this we consider a model system that consists of a SMM embedded in the nonmagnetic barrier of a magnetic tunnel junction. The anisotropy axis of the SMM forms an arbitrary angle with magnetic moments of the leads (the latt...

  14. DESAIN DAN IMPLEMENTSI SOFT SWITCHING BOOST KONVERTER DENGAN SIMPLE AUXILLARY RESONANT SWITCH (SARC

    Directory of Open Access Journals (Sweden)

    Dimas Bagus Saputra

    2017-01-01

    Full Text Available Boost konverter merupakan penaik tegangan DC ke tegangan DC yang mempunyai tegangan output yang lebih tinggi dibanding inputnya. Penggunaan boost konverter diera modern semakin meningkat dan dibuat dengan dimensi yang lebih kecil, berat yang lebih ringan dan efisiensi yang lebih tinggi dibanding dengan boost konverter generasi terdahulu. Tetapi rugi-rugi periodik saat on/off meningkat. Untuk meraih kriteria tersebut, teknik hard switching boost konverter berevolusi menjadi teknik soft switching dengan menambah rangkaian simple auxiliary resonant circuit (SARC. Karena penambahan rangkaian SARC tersebut konverter bekerja pada kondisi zero-voltage switching switch (ZVS dan zero current switch (ZCS, sehingga saklar semikonduktor tidak bekerja secara hard switching lagi. Pada penelitian ini akan di desain dan diimplementaskan soft switching boost konverter dengan SARC. Kelebihan dari soft switching boost konverter dengan SARC adalah mempunyai efisiensi yang lebih tinggi dibanding dengan boost konverter konventional. Dari hasil implementasi menunjukkan konverter yang diajukan telah meraih zero voltage switch (ZVS. Sehingga boost konverter zero voltage switch (ZVS bisa diaplikasikan pada sistem power suplay yang membutuhkan efisiensi energi yang tinggi terutama pada daya yang tinggi.

  15. Stability analysis of direct current control in current source rectifier

    DEFF Research Database (Denmark)

    Lu, Dapeng; Wang, Xiongfei; Blaabjerg, Frede

    2017-01-01

    Current source rectifier with high switching frequency has a great potential for improving the power efficiency and power density in ac-dc power conversion. This paper analyzes the stability of direct current control based on the time delay effect. Small signal model including dynamic behaviors...

  16. Design of High-Voltage Switch-Mode Power Amplifier Based on Digital-Controlled Hybrid Multilevel Converter

    Directory of Open Access Journals (Sweden)

    Yanbin Hou

    2016-01-01

    Full Text Available Compared with conventional Class-A, Class-B, and Class-AB amplifiers, Class-D amplifier, also known as switching amplifier, employs pulse width modulation (PWM technology and solid-state switching devices, capable of achieving much higher efficiency. However, PWM-based switching amplifier is usually designed for low-voltage application, offering a maximum output voltage of several hundred Volts. Therefore, a step-up transformer is indispensably adopted in PWM-based Class-D amplifier to produce high-voltage output. In this paper, a switching amplifier without step-up transformer is developed based on digital pulse step modulation (PSM and hybrid multilevel converter. Under the control of input signal, cascaded power converters with separate DC sources operate in PSM switch mode to directly generate high-voltage and high-power output. The relevant topological structure, operating principle, and design scheme are introduced. Finally, a prototype system is built, which can provide power up to 1400 Watts and peak voltage up to ±1700 Volts. And the performance, including efficiency, linearity, and distortion, is evaluated by experimental tests.

  17. High-power subnanosecond operation of a bistable optically controlled semiconductor switch (BOSS)

    International Nuclear Information System (INIS)

    Stoudt, D.C.; Richardson, M.A.; Demske, D.L.; Roush, R.A.; Eure, K.W.

    1994-01-01

    Recent high-power, subnanosecond-switching results of the Bistable Optically controlled Semiconductor Switch (BOSS) are presented. The process of persistent photoconductivity followed by photo-quenching have been demonstrated at megawatt power levels in copper-compensated, silicon-doped, semi-insulating gallium arsenide. These processes allow a switch to be developed that can be closed by the application of one laser pulse and opened by the application of a second laser pulse with a wavelength equal to twice that of the first laser. Switch closure is primarily achieved by elevating electrons from a deep copper center which has been diffused into the material. The opening phase is a two-step process which relies initially on the absorption of the 2-μm laser causing electrons to be elevated from the valance band back into the copper center, and finally on the recombination of electrons in the conduction band with boles in the valance band. The second step requires a sufficient concentration of recombination centers (RC) in the material for opening to occur in the subnanosecond regime. These RC's are generated in the bulk GaAs material by fast-neutron irradiation (∼ 1 MeV) at a fluence of about 3 x 10 15 cm -2 . High-power switching results which demonstrate that the BOSS switch can be opened in the subnanosecond regime are presented for the first time. Neutron-irradiated BOSS devices have been opened against a rising electric field of about 20 kV/cm (10 kV) in a time less than one nanosecond. Kilovolt electrical pulses have been generated with a FWHM of roughly 250 picoseconds

  18. Micro optical fiber display switch based on the magnetohydrodynamic (MHD) principle

    Science.gov (United States)

    Lian, Kun; Heng, Khee-Hang

    2001-09-01

    This paper reports on a research effort to design, microfabricate and test an optical fiber display switch based on magneto hydrodynamic (MHD) principal. The switch is driven by the Lorentz force and can be used to turn on/off the light. The SU-8 photoresist and UV light source were used for prototype fabrication in order to lower the cost. With a magnetic field supplied by an external permanent magnet, and a plus electrical current supplied across the two inert sidewall electrodes, the distributed body force generated will produce a pressure difference on the fluid mercury in the switch chamber. By change the direction of current flow, the mercury can turn on or cut off the light pass in less than 10 ms. The major advantages of a MHD-based micro-switch are that it does not contain any solid moving parts and power consumption is much smaller comparing to the relay type switches. This switch can be manufactured by molding gin batch production and may have potential applications in extremely bright traffic control,, high intensity advertising display, and communication.

  19. An innovative high-power constant-current pulsed-arc power-supply for a high-density pulsed-arc-plasma ion-source using a LaB6-filament.

    Science.gov (United States)

    Ueno, A; Oguri, H; Ikegami, K; Namekawa, Y; Ohkoshi, K; Tokuchi, A

    2010-02-01

    An innovative high-power constant-current (CC) pulsed-arc (PA) power-supply (PS) indispensable for a high-density PA plasma ion-source using a lanthanum hexaboride (LaB(6)) filament was devised by combining a constant-voltage (CV) PA-PS, which is composed of an insulated gate bipolar transistor (IGBT) switch, a CV direct-current (dc) PS and a 270 mF capacitor with a CC-PA-PS, which is composed of an IGBT-switch, a CC-dc-PS and a 400 microH inductor, through the inductor. The hybrid-CC-PA-PS succeeded in producing a flat arc-pulse with a peak power of 56 kW (400 A x 140 V) and a duty factor of more than 1.5% (600 micros x 25 Hz) for Japan Proton Accelerator Research Complex (J-PARC) H(-) ion-source stably. It also succeeded in shortening the 99% rising-time of the arc-pulse-current to about 20 micros and tilting up or down the arc-pulse-current arbitrarily and almost linearly by changing the setting voltage of its CV-dc-PS.

  20. An innovative high-power constant-current pulsed-arc power-supply for a high-density pulsed-arc-plasma ion-source using a LaB6-filament

    International Nuclear Information System (INIS)

    Ueno, A.; Oguri, H.; Ikegami, K.; Namekawa, Y.; Ohkoshi, K.; Tokuchi, A.

    2010-01-01

    An innovative high-power constant-current (CC) pulsed-arc (PA) power-supply (PS) indispensable for a high-density PA plasma ion-source using a lanthanum hexaboride (LaB 6 ) filament was devised by combining a constant-voltage (CV) PA-PS, which is composed of an insulated gate bipolar transistor (IGBT) switch, a CV direct-current (dc) PS and a 270 mF capacitor with a CC-PA-PS, which is composed of an IGBT-switch, a CC-dc-PS and a 400 μH inductor, through the inductor. The hybrid-CC-PA-PS succeeded in producing a flat arc-pulse with a peak power of 56 kW (400 Ax140 V) and a duty factor of more than 1.5%(600 μsx25 Hz) for Japan Proton Accelerator Research Complex (J-PARC) H - ion-source stably. It also succeeded in shortening the 99% rising-time of the arc-pulse-current to about 20 μs and tilting up or down the arc-pulse-current arbitrarily and almost linearly by changing the setting voltage of its CV-dc-PS.

  1. Designing high-order power-source synchronous current converters for islanded and grid-connected microgrids

    DEFF Research Database (Denmark)

    Ashabani, Mahdi; Gooi, Hoay Beng; Guerrero, Josep M.

    2018-01-01

    This paper deals with development of a versatile and compact control strategy for voltage source converters in grid-connected and islanded microgrids using synchronous current converters technology. The key feature is its new integrated high-order controller/synchronizer with applicability to both...... and automated current-based grid synchronization. Moreover, the controller realizes a power-source current-controlled microgrid with minimum control loops, as compared to widely adopted voltage controlled microgrids in the literature, with advantages such as fault-ride-through and inherent droop-less power...... sharing capabilities. Adaptive current-based synchronization and smooth switching to islanding mode provides high flexibility, reliability and only-plug operation capability. Extensive simulation and experimental results are presented to demonstrate performance of the proposed control and management...

  2. Interface-Enhanced Spin-Orbit Torques and Current-Induced Magnetization Switching of Pd /Co /AlOx Layers

    Science.gov (United States)

    Ghosh, Abhijit; Garello, Kevin; Avci, Can Onur; Gabureac, Mihai; Gambardella, Pietro

    2017-01-01

    Magnetic heterostructures that combine large spin-orbit torque efficiency, perpendicular magnetic anisotropy, and low resistivity are key to developing electrically controlled memory and logic devices. Here, we report on vector measurements of the current-induced spin-orbit torques and magnetization switching in perpendicularly magnetized Pd /Co /AlOx layers as a function of Pd thickness. We find sizable dampinglike (DL) and fieldlike (FL) torques, on the order of 1 mT per 107 A /cm2 , which have different thicknesses and magnetization angle dependencies. The analysis of the DL torque efficiency per unit current density and the electric field using drift-diffusion theory leads to an effective spin Hall angle and spin-diffusion length of Pd larger than 0.03 and 7 nm, respectively. The FL spin-orbit torque includes a significant interface contribution, is larger than estimated using drift-diffusion parameters, and, furthermore, is strongly enhanced upon rotation of the magnetization from the out-of-plane to the in-plane direction. Finally, taking advantage of the large spin-orbit torques in this system, we demonstrate bipolar magnetization switching of Pd /Co /AlOx layers with a similar current density to that used for Pt /Co layers with a comparable perpendicular magnetic anisotropy.

  3. Q-Switched High Power Single Frequency 2 Micron Fiber Laser, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Accurate measurement of atmospheric parameters with high resolution needs advanced lasers. In this SBIR program we propose to develop innovative Q-switched high...

  4. High-speed 2 × 2 silicon-based electro-optic switch with nanosecond switch time

    International Nuclear Information System (INIS)

    Xue-Jun, Xu; Shao-Wu, Chen; Hai-Hua, Xu; Yang, Sun; Yu-De, Yu; Jin-Zhong, Yu; Qi-Ming, Wang

    2009-01-01

    A 2 × 2 electro-optic switch is experimentally demonstrated using the optical structure of a Mach–Zehnder interferometer (MZI) based on a submicron rib waveguide and the electrical structure of a PIN diode on silicon-on-insulator (SOI). The switch behaviour is achieved through the plasma dispersion effect of silicon. The device has a modulation arm of 1 mm in length and cross-section of 400 nm×340 nm. The measurement results show that the switch has a V π L π figure of merit of 0.145 V·cm and the extinction ratios of two output ports and cross talk are 40 dB, 28 dB and −28 dB, respectively. A 3 dB modulation bandwidth of 90 MHz and a switch time of 6.8 ns for the rise edge and 2.7 ns for the fall edge are also demonstrated

  5. Nanosecond high-power dense microplasma switch for visible light

    Energy Technology Data Exchange (ETDEWEB)

    Bataller, A., E-mail: bataller@physics.ucla.edu; Koulakis, J.; Pree, S.; Putterman, S. [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095 (United States)

    2014-12-01

    Spark discharges in high-pressure gas are known to emit a broadband spectrum during the first 10 s of nanoseconds. We present calibrated spectra of high-pressure discharges in xenon and show that the resulting plasma is optically thick. Laser transmission data show that such a body is opaque to visible light, as expected from Kirchoff's law of thermal radiation. Nanosecond framing images of the spark absorbing high-power laser light are presented. The sparks are ideal candidates for nanosecond, high-power laser switches.

  6. AIR ATMOSPHERIC-PRESSURE DISCHARGERS FOR OPERATION IN HIGH-FREQUENCY SWITCHING MODE.

    Directory of Open Access Journals (Sweden)

    L.S. Yevdoshenko

    2013-10-01

    Full Text Available Operation of two designs of compact multigap dischargers has been investigated in a high-frequency switching mode. It is experimentally revealed that the rational length of single discharge gaps in the designs is 0.3 mm, and the maximum switching frequency is 27000 discharges per second under long-term stable operation of the dischargers. It is shown that in pulsed corona discharge reactors, the pulse front sharpening results in increasing the operating electric field strength by 1.3 – 1.8 times.

  7. PV source based high voltage gain current fed converter

    Science.gov (United States)

    Saha, Soumya; Poddar, Sahityika; Chimonyo, Kudzai B.; Arunkumar, G.; Elangovan, D.

    2017-11-01

    This work involves designing and simulation of a PV source based high voltage gain, current fed converter. It deals with an isolated DC-DC converter which utilizes boost converter topology. The proposed converter is capable of high voltage gain and above all have very high efficiency levels as proved by the simulation results. The project intends to produce an output of 800 V dc from a 48 V dc input. The simulation results obtained from PSIM application interface were used to analyze the performance of the proposed converter. Transformer used in the circuit steps up the voltage as well as to provide electrical isolation between the low voltage and high voltage side. Since the converter involves high switching frequency of 100 kHz, ultrafast recovery diodes are employed in the circuitry. The major application of the project is for future modeling of solar powered electric hybrid cars.

  8. Application of plasma erosion opening switches to high power accelerators for pulse compression and power multiplication

    International Nuclear Information System (INIS)

    Meyer, R.A.; Boller, J.R.; Commisso, R.J.

    1983-01-01

    A new vacuum opening switch called a plasma erosion opening switch is described. A model of its operation is presented and the energy efficiency of such a switch is discussed. Recent high power experiments on the Gamble II accelerator are described and compared to previous experiments

  9. DC switching regulated power supply for driving an inductive load

    Science.gov (United States)

    Dyer, George R.

    1986-01-01

    A power supply for driving an inductive load current from a dc power supply hrough a regulator circuit including a bridge arrangement of diodes and switching transistors controlled by a servo controller which regulates switching in response to the load current to maintain a selected load current. First and second opposite legs of the bridge are formed by first and second parallel-connected transistor arrays, respectively, while the third and fourth legs of the bridge are formed by appropriately connected first and second parallel connected diode arrays, respectively. The regulator may be operated in three "stages" or modes: (1) For current runup in the load, both first and second transistor switch arrays are turned "on" and current is supplied to the load through both transistor arrays. (2) When load current reaches the desired level, the first switch is turned "off", and load current "flywheels" through the second switch array and the fourth leg diode array connecting the second switch array in series with the load. Current is maintained by alternating between modes 1 and 2 at a suitable duty cycle and switching rate set by the controller. (3) Rapid current rundown is accomplished by turning both switch arrays "off", allowing load current to be dumped back into the source through the third and fourth diode arrays connecting the source in series opposition with the load to recover energy from the inductive load. The three operating states are controlled automatically by the controller.

  10. Fast commutation of high current in double wire array Z-pinch loads

    International Nuclear Information System (INIS)

    Davis, J.; Gondarenko, N.A.; Velikovich, A.L.

    1997-01-01

    A dynamic model of multi-MA current commutation in a double wire array Z-pinch load is proposed and studied theoretically. Initially, the load is configured as nested concentric wire arrays, with the current driven through the outer array and imploding it. Once the outer array or the annular plasma shell formed from it approaches the inner array, the imploded plasma might penetrate through the gaps between the wires, but the azimuthal magnetic field is trapped due to both the high conductivity of the inner wires and the inductive coupling between the two parts of the array, causing a rapid switching of the total current to the inner part of the array. copyright 1997 American Institute of Physics

  11. Anomalous temperature dependence of the current in a metal-oxide-polymer resistive switching diode

    NARCIS (Netherlands)

    Gomes, H.L.; Rocha, P.R.F.; Kiazadeh, A.; Leeuw, de D.M.; Meskers, S.C.J.

    2011-01-01

    Metal-oxide polymer diodes exhibit non-volatile resistive switching. The current–voltage characteristics have been studied as a function of temperature. The low-conductance state follows a thermally activated behaviour. The high-conductance state shows a multistep-like behaviour and below 300 K an

  12. Scalable Active Optical Access Network Using Variable High-Speed PLZT Optical Switch/Splitter

    Science.gov (United States)

    Ashizawa, Kunitaka; Sato, Takehiro; Tokuhashi, Kazumasa; Ishii, Daisuke; Okamoto, Satoru; Yamanaka, Naoaki; Oki, Eiji

    This paper proposes a scalable active optical access network using high-speed Plumbum Lanthanum Zirconate Titanate (PLZT) optical switch/splitter. The Active Optical Network, called ActiON, using PLZT switching technology has been presented to increase the number of subscribers and the maximum transmission distance, compared to the Passive Optical Network (PON). ActiON supports the multicast slot allocation realized by running the PLZT switch elements in the splitter mode, which forces the switch to behave as an optical splitter. However, the previous ActiON creates a tradeoff between the network scalability and the power loss experienced by the optical signal to each user. It does not use the optical power efficiently because the optical power is simply divided into 0.5 to 0.5 without considering transmission distance from OLT to each ONU. The proposed network adopts PLZT switch elements in the variable splitter mode, which controls the split ratio of the optical power considering the transmission distance from OLT to each ONU, in addition to PLZT switch elements in existing two modes, the switching mode and the splitter mode. The proposed network introduces the flexible multicast slot allocation according to the transmission distance from OLT to each user and the number of required users using three modes, while keeping the advantages of ActiON, which are to support scalable and secure access services. Numerical results show that the proposed network dramatically reduces the required number of slots and supports high bandwidth efficiency services and extends the coverage of access network, compared to the previous ActiON, and the required computation time for selecting multicast users is less than 30msec, which is acceptable for on-demand broadcast services.

  13. Switched-capacitor techniques for high-accuracy filter and ADC design

    NARCIS (Netherlands)

    Quinn, P.J.; Roermund, van A.H.M.

    2007-01-01

    Switched capacitor (SC) techniques are well proven to be excellent candidates for implementing critical analogue functions with high accuracy, surpassing other analogue techniques when embedded in mixed-signal CMOS VLSI. Conventional SC circuits are primarily limited in accuracy by a) capacitor

  14. Switched-mode converters (one quadrant)

    CERN Document Server

    Barrade, P

    2006-01-01

    Switched-mode converters are DC/DC converters that supply DC loads with a regulated output voltage, and protection against overcurrents and short circuits. These converters are generally fed from an AC network via a transformer and a conventional diode rectifier. Switched-mode converters (one quadrant) are non-reversible converters that allow the feeding of a DC load with unipolar voltage and current. The switched-mode converters presented in this contribution are classified into two families. The first is dedicated to the basic topologies of DC/DC converters, generally used for low- to mid-power applications. As such structures enable only hard commutation processes, the main drawback of such topologies is high commutation losses. A typical multichannel evolution is presented that allows an interesting decrease in these losses. Deduced from this direct DC/DC converter, an evolution is also presented that allows the integration of a transformer into the buck and the buck–boost structure. This enables an int...

  15. Optical switching systems using nanostructures

    DEFF Research Database (Denmark)

    Stubkjær, Kristian

    2004-01-01

    High capacity multiservice optical networks require compact and efficient switches. The potential benefits of optical switch elements based on nanostructured material are reviewed considering various material systems.......High capacity multiservice optical networks require compact and efficient switches. The potential benefits of optical switch elements based on nanostructured material are reviewed considering various material systems....

  16. Module Integrated GaN Power Stage for High Switching Frequency Operation

    DEFF Research Database (Denmark)

    Nour, Yasser; Knott, Arnold

    2017-01-01

    is integrated on a high glass transition temperature 0.4 mmthick FR4 substrate configured as a 70 pin ball grid arraypackage. The power stage is tested up to switching frequency of12 MHz. The power stage achieved 88.5 % peak efficiency whenconfigured as a soft switching buck converter operating at 7MHz......An increased attention has been detected todevelop smaller and lighter high voltage power converters in therange of 50 V to 400 V domains. The applications for theseconverters are mainly focused for Power over Ethernet (PoE),LED lighting and ac adapters. Design for high power density isone...... of the targets for next generation power converters. Thispaper presents an 80 V input capable multi-chip moduleintegration of enhancement mode gallium nitride (GaN) fieldeffect transistors (FETs) based power stage. The module design ispresented and validated through experimental results. The powerstage...

  17. Implementation of Single Phase Soft Switched PFC Converter for Plug-in-Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Aiswariya Sekar

    2015-11-01

    Full Text Available This paper presents a new soft switching boost converter with a passive snubber cell without additional active switches for battery charging systems. The proposed snubber finds its application in the front-end ac-dc converter of Plug-in Hybrid Electric Vehicle (PHEV battery chargers. The proposed auxiliary snubber circuit consists of an inductor, two capacitors and two diodes. The new converter has the advantages of continuous input current, low switching stresses, high voltage gain without extreme duty cycle, minimized charger size and charging time and fewer amounts of cost and electricity drawn from the utility at higher switching frequencies. The switch is made to turn ON by Zero Current Switching (ZCS and turn OFF by Zero Voltage Switching (ZVS. The detailed steady state analysis of the novel ac-dc Zero Current- Zero Voltage Switching (ZC-ZVS boost Power Factor Correction (PFC converter is presented with its operating principle. The experimental prototype of 20 kHz, 100 W converter verifies the theoretical analysis. The power factor of the prototype circuit reaches near unity with an efficiency of 97%, at nominal output power for a ±10% variation in the input voltage and ±20% variation in the snubber component values.

  18. A prototype switched Ethernet data acquisition system

    International Nuclear Information System (INIS)

    Ye Gaoying; Deng Huichen; Chen Liaoyuan; Liu Li; Wang Xinhui

    1999-01-01

    A prototype switched Ethernet data acquisition system has been built up and successfully operated in HL-1M tokamak experiments. The system is based on a switched high bandwidth Ethernet network with which the CAMAC crates are directly interfaced. It takes the advanced features of LAN switch and Ethernet CAMAC controller (ECC 1365 MK III, HYTEC product) to avoid the rewriting of CAMAC driver for an individual computer system and to ensure high data transmission rate between CAMAC system and host computers on the network. It is a new approach to DAS system architecture and provides a solution for a well-known bottleneck problem in traditional distributed DAS system for fusion research. An average throughput of the test system reaches over 100 Mbps. The system features also an easy and low cost migration from traditional distributed DAS system. In the paper, the hardware configuration, software structure, performance of the system and the method of migrating from current DAS system are discussed in detail. (orig.)

  19. High-performance hybrid complementary logic inverter through monolithic integration of a MEMS switch and an oxide TFT.

    Science.gov (United States)

    Song, Yong-Ha; Ahn, Sang-Joon Kenny; Kim, Min-Wu; Lee, Jeong-Oen; Hwang, Chi-Sun; Pi, Jae-Eun; Ko, Seung-Deok; Choi, Kwang-Wook; Park, Sang-Hee Ko; Yoon, Jun-Bo

    2015-03-25

    A hybrid complementary logic inverter consisting of a microelectromechanical system switch as a promising alternative for the p-type oxide thin film transistor (TFT) and an n-type oxide TFT is presented for ultralow power integrated circuits. These heterogeneous microdevices are monolithically integrated. The resulting logic device shows a distinctive voltage transfer characteristic curve, very low static leakage, zero-short circuit current, and exceedingly high voltage gain. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Novel magnetic wire fabrication process by way of nanoimprint lithography for current induced magnetization switching

    Science.gov (United States)

    Asari, Tsukasa; Shibata, Ryosuke; Awano, Hiroyuki

    2017-05-01

    Nanoimprint lithography (NIL) is an effective method to fabricate nanowire because it does not need expensive systems and this process is easier than conventional processes. In this letter, we report the Current Induced Magnetization Switching (CIMS) in perpendicularly magnetized Tb-Co alloy nanowire fabricated by NIL. The CIMS in Tb-Co alloy wire was observed by using current pulse under in-plane external magnetic field (HL). We successfully observed the CIMS in Tb-Co wire fabricated by NIL. Additionally, we found that the critical current density (Jc) for the CIMS in the Tb-Co wire fabricated by NIL is 4 times smaller than that fabricated by conventional lift-off process under HL = 200Oe. These results indicate that the NIL is effective method for the CIMS.

  1. Plasma opening switch experiments on the Particle Beam Accelerator II

    International Nuclear Information System (INIS)

    Sweeney, M.A.; McDaniel, D.H.; Mendel, C.W.; Rochau, G.E.; Moore, W.B.S.; Mowrer, G.R.; Simpson, W.W.; Zagar, D.M.; Grasser, T.; McDougal, C.D.

    1989-01-01

    Plasma opening switch (POS) experiments have been done since 1986 on the PBFA-II ion beam accelerator to develop a rugged POS that will open rapidly ( 80%) into a high impedance (> 10 ohm) load. In a recent series of experiments on PBFA II, the authors have developed and tested three different switch designs that use magnetic fields to control and confine the injected plasma. All three configurations couple current efficiently to a 5-ohm electron beam diode. In this experimental series, the PBFA-II Delta Series, more extensive diagnostics were used than in previous switch experiments on PBFA II or on the Blackjack 5 accelerator at Maxwell Laboratories. Data from the experiments with these three switch designs is presented

  2. Complementary resistive switching in BaTiO{sub 3}/NiO bilayer with opposite switching polarities

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shuo [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Institut d’Electronique de Micro-électronique et de Nanotechnologie (IEMN), CNRS, Université des Sciences et Technologies de Lille, avenue Poincaré, BP 60069, 59652, Villeneuve d’Ascq cedex (France); Wei, Xianhua, E-mail: weixianhua@swust.edu.cn [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Lei, Yao [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronics Science and Technology of China, Chengdu 610054 (China); Yuan, Xincai [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Zeng, Huizhong [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronics Science and Technology of China, Chengdu 610054 (China)

    2016-12-15

    Graphical abstract: Au/BaTiO{sub 3}/NiO/Pt bilayer device shows complementary resistive switching (CRS) without electroforming which is mainly ascribed to anti-serial stack of two RRAM cells with bipolar behaviors. - Highlights: • Complementary resistive switching (CRS) has been investigated in Au/BaTiO{sub 3}/NiO/Pt by stacking the two elements with different switching types. • The realization of complementary resistive switching (CRS) is mainly ascribed to the anti-serial stack of two RRAM cells with bipolar behaviors. • Complementary resistive switching (CRS) in bilayer is effective to solve the sneak current problem briefly and economically. - Abstract: Resistive switching behaviors have been investigated in the Au/BaTiO{sub 3}/NiO/Pt structure by stacking the two elements with different switching types. The conducting atomic force microscope measurements on BaTiO{sub 3} thin films and NiO thin films suggest that with the same active resistive switching region, the switching polarities in the two semiconductors are opposite to each other. It is in agreement with the bipolar hysteresis I–V curves with opposite switching polarities for single-layer devices. The bilayer devices show complementary resistive switching (CRS) without electroforming and unipolar resistive switching (URS) after electroforming. The coexistence of CRS and URS is mainly ascribed to the co-effect of electric field and Joule heating mechanisms, indicating that changeable of resistance in this device is dominated by the redistribution of oxygen vacancies in BaTiO{sub 3} and the formation, disruption, restoration of conducting filaments in NiO. CRS in bilayer with opposite switching polarities is effective to solve the sneak current without the introduction of any selector elements or an additional metal electrode.

  3. Influence of irradiation on the switching behavior in PZT thin films

    International Nuclear Information System (INIS)

    Baturin, I.; Menou, N.; Shur, V.; Muller, C.; Kuznetsov, D.; Hodeau, J.-L.; Sternberg, A.

    2005-01-01

    Spatially nonuniform imprint behavior induced by X-ray synchrotron, electron and neutron irradiation has been investigated in sol-gel Pb(Zr,Ti)O 3 thin films. The analysis of the switching current data reveals the strong influence of irradiation on the switching current shape. The obtained effects have been explained as a result of acceleration of the bulk screening process induced by irradiation. It was shown that the spatial distribution of the internal bias field is determined by the domain structure existing during irradiation. The changes in the structural characteristics during fatigue cycling have been reveled by high resolution synchrotron X-ray diffraction experiments on (1 1 1)-oriented PZT-based capacitors with a composition in the morphotropic region. From both ex situ and in situ measurements, microstructural changes with cyclic switching during fatigue have been evidenced and correlated with the evolution of the switching characteristics

  4. Performance evaluation of a high-speed switched network for PACS

    Science.gov (United States)

    Zhang, Randy H.; Tao, Wenchao; Huang, Lu J.; Valentino, Daniel J.

    1998-07-01

    We have replaced our shared-media Ethernet and FDDI network with a multi-tiered, switched network using OC-12 (622 Mbps) ATM for the network backbone, OC3 (155 Mbps) connections to high-end servers and display workstations, and switched 100/10 Mbps Ethernet for workstations and desktop computers. The purpose of this research was to help PACS designers and implementers understand key performance factors in a high- speed switched network by characterizing and evaluating its image delivery performance, specifically, the performance of socket-based TCP (Transmission Control Protocol) and DICOM 3.0 communications. A test network within the UCLA Clinical RIS/PACS was constructed using Sun UltraSPARC-II machines with ATM, Fast Ethernet, and Ethernet network interfaces. To identify performance bottlenecks, we evaluated network throughput for memory to memory, memory to disk, disk to memory, and disk to disk transfers. To evaluate the effect of file size, tests involving disks were further divided using sizes of small (514 KB), medium (8 MB), and large (16 MB) files. The observed maximum throughput for various network configurations using the TCP protocol was 117 Mbps for memory to memory and 88 MBPS for memory to disk. For disk to memory, the peak throughput was 98 Mbps using small files, 114 Mbps using medium files, and 116 Mbps using large files. The peak throughput for disk to disk became 64 Mbps using small files and 96 Mbps using medium and large files. The peak throughput using the DICOM 3.0 protocol was substantially lower in all categories. The measured throughput varied significantly among the tests when TCP socket buffer was raised above the default value. The optimal buffer size was approximately 16 KB or the TCP protocol and around 256 KB for the DICOM protocol. The application message size also displayed distinctive effects on network throughput when the TCP socket buffer size was varied. The throughput results for Fast Ethernet and Ethernet were expectedly

  5. Magnetization switching of a metallic nanomagnet via current-induced surface spin-polarization of an underlying topological insulator

    International Nuclear Information System (INIS)

    Roy, Urmimala; Dey, Rik; Pramanik, Tanmoy; Ghosh, Bahniman; Register, Leonard F.; Banerjee, Sanjay K.

    2015-01-01

    We consider a thermally stable, metallic nanoscale ferromagnet (FM) subject to spin-polarized current injection and exchange coupling from the spin-helically locked surface states of a topological insulator (TI) to evaluate possible non-volatile memory applications. We consider parallel transport in the TI and the metallic FM, and focus on the efficiency of magnetization switching as a function of transport between the TI and the FM. Transport is modeled as diffusive in the TI beneath the FM, consistent with the mobility in the TI at room temperature, and in the FM, which essentially serves as a constant potential region albeit spin-dependent except in the low conductivity, diffusive limit. Thus, it can be captured by drift-diffusion simulation, which allows for ready interpretation of the results. We calculate switching time and energy consumed per write operation using self-consistent transport, spin-transfer-torque (STT), and magnetization dynamics calculations. Calculated switching energies and times compare favorably to conventional spin-torque memory schemes for substantial interlayer conductivity. Nevertheless, we find that shunting of current from the TI to a metallic nanomagnet can substantially limit efficiency. Exacerbating the problem, STT from the TI effectively increases the TI resistivity. We show that for optimum performance, the sheet resistivity of the FM layer should be comparable to or larger than that of the TI surface layer. Thus, the effective conductivity of the FM layer becomes a critical design consideration for TI-based non-volatile memory

  6. Application of parallel connected power-MOSFET elements to high current d.c. power supply

    International Nuclear Information System (INIS)

    Matsukawa, Tatsuya; Shioyama, Masanori; Shimada, Katsuhiro; Takaku, Taku; Neumeyer, Charles; Tsuji-Iio, Shunji; Shimada, Ryuichi

    2001-01-01

    The low aspect ratio spherical torus (ST), which has single turn toroidal field coil, requires the extremely high d.c. current like as 20 MA to energize the coil. Considering the ratings of such extremely high current and low voltage, power-MOSFET element is employed as the switching device for the a.c./d.c. converter of power supply. One of the advantages of power-MOSFET element is low on-state resistance, which is to meet the high current and low voltage operation. Recently, the capacity of power-MOSFET element has been increased and its on-state resistance has been decreased, so that the possibility of construction of high current and low voltage a.c./d.c. converter with parallel connected power-MOSFET elements has been growing. With the aim of developing the high current d.c. power supply using power-MOSFET, the basic characteristics of parallel operation with power-MOSFET elements are experimentally investigated. And, the synchronous rectifier type and the bi-directional self commutated type a.c./d.c. converters using parallel connected power-MOSFET elements are proposed

  7. Investigation of DC hybrid circuit breaker based on high-speed switch and arc generator

    Science.gov (United States)

    Wu, Yifei; Rong, Mingzhe; Wu, Yi; Yang, Fei; Li, Mei; Zhong, Jianying; Han, Guohui; Niu, Chunping; Hu, Yang

    2015-02-01

    A new design of DC hybrid circuit breaker based on high-speed switch (HSS) and arc generator (AG), which can drastically profit from low heat loss in normal state and fast current breaking under fault state, is presented and analyzed in this paper. AG is designed according to the magnetic pinch effect of liquid metal. By utilizing the arc voltage generated across AG, the fault current is rapidly commutated from HSS into parallel connected branch. As a consequence, the arcless open of HSS is achieved. The post-arc conducting resume time (Δ tc) of AG and the commutation original voltage (Uc), two key factors in the commutation process, are investigated experimentally. Particularly, influences of the liquid metal channel diameter (Φ) of AG, fault current rate of rise (di/dt) and Uc on Δ tc are focused on. Furthermore, a suitable Uc is determined during the current commutation process, aiming at the reliable arcless open of HSS and short breaking time. Finally, the fault current breaking test is carried out for the current peak value of 11.8 kA, and the validity of the design is confirmed by the experimental results.

  8. Investigation of DC hybrid circuit breaker based on high-speed switch and arc generator.

    Science.gov (United States)

    Wu, Yifei; Rong, Mingzhe; Wu, Yi; Yang, Fei; Li, Mei; Zhong, Jianying; Han, Guohui; Niu, Chunping; Hu, Yang

    2015-02-01

    A new design of DC hybrid circuit breaker based on high-speed switch (HSS) and arc generator (AG), which can drastically profit from low heat loss in normal state and fast current breaking under fault state, is presented and analyzed in this paper. AG is designed according to the magnetic pinch effect of liquid metal. By utilizing the arc voltage generated across AG, the fault current is rapidly commutated from HSS into parallel connected branch. As a consequence, the arcless open of HSS is achieved. The post-arc conducting resume time (Δ tc) of AG and the commutation original voltage (Uc), two key factors in the commutation process, are investigated experimentally. Particularly, influences of the liquid metal channel diameter (Φ) of AG, fault current rate of rise (di/dt) and Uc on Δ tc are focused on. Furthermore, a suitable Uc is determined during the current commutation process, aiming at the reliable arcless open of HSS and short breaking time. Finally, the fault current breaking test is carried out for the current peak value of 11.8 kA, and the validity of the design is confirmed by the experimental results.

  9. High-speed photography of a 'switch-on' collisionless shock

    International Nuclear Information System (INIS)

    El-Khalafawy, T.A.; El-Nicklawy, M.M.; Bashara, A.B.; El-Masry, M.A.; Rudnev, N.J.

    1975-01-01

    The paper presents the results of the investigation of a 'switch-on' shock profile and the measurement of the wave velocity in the collisionless regime employing high-speed photography. Data for the electron temperature (Tsub(e)) ahead of and behind the wave front are presented here, and a Table with estimated and measured characteristic physical quantities. (author)

  10. Electrode erosion properties of gas spark switches for fast linear transformer drivers

    Science.gov (United States)

    Li, Xiaoang; Pei, Zhehao; Zhang, Yuzhao; Liu, Xuandong; Li, Yongdong; Zhang, Qiaogen

    2017-12-01

    Fast linear transformer drivers (FLTDs) are a popular and potential route for high-power devices employing multiple "bricks" in series and parallel, but they put extremely stringent demands on gas switches. Electrode erosion of FLTD gas switches is a restrictive and unavoidable factor that degrades performance and limits stability. In this paper, we systematically investigated the electrode erosion characteristics of a three-electrode field distortion gas switch under the typical working conditions of FLTD switches, and the discharge current was 7-46 kA with 46-300 ns rise time. A high speed frame camera and a spectrograph were used to capture the expansion process and the spectral emission of the spark channel was used to estimate the current density and the spark temperature, and then the energy fluxes and the external forces on the electrode surface were calculated. A tens of kilo-ampere nanosecond pulse could generate a 1011 W/m2 energy flux injection and 1.3-3.5 MPa external pressure on the electrode surface, resulting in a millimeter-sized erosion crater with the maximum peak height Rz reaching 100 μm magnitude. According to the morphological images by a laser scanning confocal microscope, the erosion crater of a FLTD switch contained three kinds of local morphologies, namely a center boiling region, an overflow region and a sputtering region. In addition, the crater size, the surface roughness, and the mass loss were highly dependent on the current amplitude and the transferred charge. We also observed Morphology Type I and Type II, respectively, with different pulse parameters, which had an obvious influence on surface roughness and mass loss. Finally, the quantitative relationship between the electrode mass loss and the pulse parameter was clarified. The transferred charge and the current amplitude were proved to be the main factors determining the electrode mass loss of a FLTD switch, and a least squares fitting expression for mass loss was also obtained.

  11. A high voltage DC switching power supply of corona discharge for ozone tube

    International Nuclear Information System (INIS)

    Ketkaew, Siseerot

    2007-08-01

    Full text: This paper presents a study of design and construction of a high voltage DC switching power supply for corona generating of ozone gas generating. This supply uses fly back converter at 3 k Vdc 30 khz and controls its operation using PWM techniques. I C TL494 is controlled of the switching. The testing of supply by putting high voltage to ozone gas tube at one-hour, the oxygen quantity 21 % of air, which ozone tube model enables ozone gas generating capacity of 95.2 mgO3/hr

  12. Inherent stochasticity of superconductor-resistor switching behavior in nanowires.

    Science.gov (United States)

    Shah, Nayana; Pekker, David; Goldbart, Paul M

    2008-11-14

    We study the stochastic dynamics of superconductive-resistive switching in hysteretic current-biased superconducting nanowires undergoing phase-slip fluctuations. We evaluate the mean switching time using the master-equation formalism, and hence obtain the distribution of switching currents. We find that as the temperature is reduced this distribution initially broadens; only at lower temperatures does it show the narrowing with cooling naively expected for phase slips that are thermally activated. We also find that although several phase-slip events are generally necessary to induce switching, there is an experimentally accessible regime of temperatures and currents for which just one single phase-slip event is sufficient to induce switching, via the local heating it causes.

  13. Current pulse shaping of the load current on PTS

    Directory of Open Access Journals (Sweden)

    Minghe Xia

    2016-02-01

    Full Text Available The typical rise time of PTS machine is ∼110 ns with about 10 MA peak current under short pulse mode when all 24 modules discharge simultaneously. By distributing the trigger times of 12 laser beams logically and adjusting the statues of the pulse output switches, longer rise-time pulse can be obtained on the PTS facility. Based on the required pulse shape, whole circuit simulations will be used to calculate the trigger times of each laser triggering gas switch and the status of the pulse output switches. The rise time of the current is determined by the time difference between the first and last trigged laser triggering gas switches. In order to trigger the laser triggering gas switch, sufficient laser power is needed to be sent into the gap of the gas switches. The gas pressure and voltage difference on the two electrodes of the gas switches also affect the triggering of the gas switches, and the voltage added on the gas switch is determined by its transition time. Traditionally the trigger time difference should be less than the transition time of the two neighboring modules. A new simulation model of PTS shows one can break this transition time limits. Series of current pulse shaping experiments have been investigated on the PTS (Primary Test Stand. As results, more than 5 MA peak current were successfully achieved on the load with a rise time of 600 ns. This study and experiments of the pulse shaping on PTS demonstrate the adaptable ability of the PTS for offering different waveform of mega ampere current pulse for different research purpose.

  14. Zero-Voltage Switching PWM Strategy Based Capacitor Current-Balancing Control for Half-Bridge Three-Level DC/DC Converter

    DEFF Research Database (Denmark)

    Liu, Dong; Deng, Fujin; Zhang, Qi

    2018-01-01

    The current imbalance among the two input capacitors is one of the important issues of the half-bridge threelevel (HBTL) DC/DC converter, which would affect system performance and reliability. In this paper, a zero-voltage switching (ZVS) pulse-wide modulation (PWM) strategy including two operation...

  15. Radio frequency-assisted fast superconducting switch

    Science.gov (United States)

    Solovyov, Vyacheslav; Li, Qiang

    2017-12-05

    A radio frequency-assisted fast superconducting switch is described. A superconductor is closely coupled to a radio frequency (RF) coil. To turn the switch "off," i.e., to induce a transition to the normal, resistive state in the superconductor, a voltage burst is applied to the RF coil. This voltage burst is sufficient to induce a current in the coupled superconductor. The combination of the induced current with any other direct current flowing through the superconductor is sufficient to exceed the critical current of the superconductor at the operating temperature, inducing a transition to the normal, resistive state. A by-pass MOSFET may be configured in parallel with the superconductor to act as a current shunt, allowing the voltage across the superconductor to drop below a certain value, at which time the superconductor undergoes a transition to the superconducting state and the switch is reset.

  16. High-Current Gain Two-Dimensional MoS 2 -Base Hot-Electron Transistors

    KAUST Repository

    Torres, Carlos M.

    2015-12-09

    The vertical transport of nonequilibrium charge carriers through semiconductor heterostructures has led to milestones in electronics with the development of the hot-electron transistor. Recently, significant advances have been made with atomically sharp heterostructures implementing various two-dimensional materials. Although graphene-base hot-electron transistors show great promise for electronic switching at high frequencies, they are limited by their low current gain. Here we show that, by choosing MoS2 and HfO2 for the filter barrier interface and using a noncrystalline semiconductor such as ITO for the collector, we can achieve an unprecedentedly high-current gain (α ∼ 0.95) in our hot-electron transistors operating at room temperature. Furthermore, the current gain can be tuned over 2 orders of magnitude with the collector-base voltage albeit this feature currently presents a drawback in the transistor performance metrics such as poor output resistance and poor intrinsic voltage gain. We anticipate our transistors will pave the way toward the realization of novel flexible 2D material-based high-density, low-energy, and high-frequency hot-carrier electronic applications. © 2015 American Chemical Society.

  17. High-Current Gain Two-Dimensional MoS 2 -Base Hot-Electron Transistors

    KAUST Repository

    Torres, Carlos M.; Lan, Yann Wen; Zeng, Caifu; Chen, Jyun Hong; Kou, Xufeng; Navabi, Aryan; Tang, Jianshi; Montazeri, Mohammad; Adleman, James R.; Lerner, Mitchell B.; Zhong, Yuan Liang; Li, Lain-Jong; Chen, Chii Dong; Wang, Kang L.

    2015-01-01

    The vertical transport of nonequilibrium charge carriers through semiconductor heterostructures has led to milestones in electronics with the development of the hot-electron transistor. Recently, significant advances have been made with atomically sharp heterostructures implementing various two-dimensional materials. Although graphene-base hot-electron transistors show great promise for electronic switching at high frequencies, they are limited by their low current gain. Here we show that, by choosing MoS2 and HfO2 for the filter barrier interface and using a noncrystalline semiconductor such as ITO for the collector, we can achieve an unprecedentedly high-current gain (α ∼ 0.95) in our hot-electron transistors operating at room temperature. Furthermore, the current gain can be tuned over 2 orders of magnitude with the collector-base voltage albeit this feature currently presents a drawback in the transistor performance metrics such as poor output resistance and poor intrinsic voltage gain. We anticipate our transistors will pave the way toward the realization of novel flexible 2D material-based high-density, low-energy, and high-frequency hot-carrier electronic applications. © 2015 American Chemical Society.

  18. The gradual nature of threshold switching

    International Nuclear Information System (INIS)

    Wimmer, M; Salinga, M

    2014-01-01

    The recent commercialization of electronic memories based on phase change materials proved the usability of this peculiar family of materials for application purposes. More advanced data storage and computing concepts, however, demand a deeper understanding especially of the electrical properties of the amorphous phase and the switching behaviour. In this work, we investigate the temporal evolution of the current through the amorphous state of the prototypical phase change material, Ge 2 Sb 2 Te 5 , under constant voltage. A custom-made electrical tester allows the measurement of delay times over five orders of magnitude, as well as the transient states of electrical excitation prior to the actual threshold switching. We recognize a continuous current increase over time prior to the actual threshold-switching event to be a good measure for the electrical excitation. A clear correlation between a significant rise in pre-switching-current and the later occurrence of threshold switching can be observed. This way, we found experimental evidence for the existence of an absolute minimum for the threshold voltage (or electric field respectively) holding also for time scales far beyond the measurement range. (paper)

  19. Method and apparatus for current-output peak detection

    Science.gov (United States)

    De Geronimo, Gianluigi

    2017-01-24

    A method and apparatus for a current-output peak detector. A current-output peak detector circuit is disclosed and works in two phases. The peak detector circuit includes switches to switch the peak detector circuit from the first phase to the second phase upon detection of the peak voltage of an input voltage signal. The peak detector generates a current output with a high degree of accuracy in the second phase.

  20. Investigation on amorphous InGaZnO based resistive switching memory with low-power, high-speed, high reliability

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Yang-Shun [Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan, ROC (China); Liu, Po-Tsun, E-mail: ptliu@mail.nctu.edu.tw [Department of Photonics and Display Institute, National Chiao Tung University, Hsinchu 30010, Taiwan, ROC (China); Hsu, Ching-Hui [Department of Photonics and Display Institute, National Chiao Tung University, Hsinchu 30010, Taiwan, ROC (China)

    2013-12-31

    Recently, non-volatile memory (NVM) has been widely used in electronic devices. Nowadays, the prevailing NVM is Flash memory. However, it is generally believed that the conventional Flash memory will approach its scaling limit within about a decade. The resistive random access memory (RRAM) is emerging as one of the potential candidates for future memory replacement because of its high storage density, low power consumption as well as simple structure. The purpose of this work is to develop a reliable a-InGaZnO based resistive switching memory. We investigate the resistive switching characteristics of TiN/Ti/IGZO/Pt structure and TiN/IGZO/Pt structure. The device with TiN/Ti/IGZO/Pt structure exhibits stable bipolar resistive switching. The impact of inserting a Ti interlayer is studied by material analyses. The device shows excellent resistive switching properties. For example, the DC sweep endurance can achieve over 1000 times; and the pulse induced switching cycles can reach at least 10,000 times. Furthermore, the impact of different sputtering ambience, the variable temperature measurement, and the conduction mechanisms are also investigated. According to our experiments, we propose a model to explain the resistive switching phenomenon observed in our devices.

  1. Pricing Exotic Options under a High-Order Markovian Regime Switching Model

    Directory of Open Access Journals (Sweden)

    Wai-Ki Ching

    2007-10-01

    Full Text Available We consider the pricing of exotic options when the price dynamics of the underlying risky asset are governed by a discrete-time Markovian regime-switching process driven by an observable, high-order Markov model (HOMM. We assume that the market interest rate, the drift, and the volatility of the underlying risky asset's return switch over time according to the states of the HOMM, which are interpreted as the states of an economy. We will then employ the well-known tool in actuarial science, namely, the Esscher transform to determine an equivalent martingale measure for option valuation. Moreover, we will also investigate the impact of the high-order effect of the states of the economy on the prices of some path-dependent exotic options, such as Asian options, lookback options, and barrier options.

  2. Analytical modeling of trilayer graphene nanoribbon Schottky-barrier FET for high-speed switching applications.

    Science.gov (United States)

    Rahmani, Meisam; Ahmadi, Mohammad Taghi; Abadi, Hediyeh Karimi Feiz; Saeidmanesh, Mehdi; Akbari, Elnaz; Ismail, Razali

    2013-01-30

    Recent development of trilayer graphene nanoribbon Schottky-barrier field-effect transistors (FETs) will be governed by transistor electrostatics and quantum effects that impose scaling limits like those of Si metal-oxide-semiconductor field-effect transistors. The current-voltage characteristic of a Schottky-barrier FET has been studied as a function of physical parameters such as effective mass, graphene nanoribbon length, gate insulator thickness, and electrical parameters such as Schottky barrier height and applied bias voltage. In this paper, the scaling behaviors of a Schottky-barrier FET using trilayer graphene nanoribbon are studied and analytically modeled. A novel analytical method is also presented for describing a switch in a Schottky-contact double-gate trilayer graphene nanoribbon FET. In the proposed model, different stacking arrangements of trilayer graphene nanoribbon are assumed as metal and semiconductor contacts to form a Schottky transistor. Based on this assumption, an analytical model and numerical solution of the junction current-voltage are presented in which the applied bias voltage and channel length dependence characteristics are highlighted. The model is then compared with other types of transistors. The developed model can assist in comprehending experiments involving graphene nanoribbon Schottky-barrier FETs. It is demonstrated that the proposed structure exhibits negligible short-channel effects, an improved on-current, realistic threshold voltage, and opposite subthreshold slope and meets the International Technology Roadmap for Semiconductors near-term guidelines. Finally, the results showed that there is a fast transient between on-off states. In other words, the suggested model can be used as a high-speed switch where the value of subthreshold slope is small and thus leads to less power consumption.

  3. Novel magnetic wire fabrication process by way of nanoimprint lithography for current induced magnetization switching

    Directory of Open Access Journals (Sweden)

    Tsukasa Asari

    2017-05-01

    Full Text Available Nanoimprint lithography (NIL is an effective method to fabricate nanowire because it does not need expensive systems and this process is easier than conventional processes. In this letter, we report the Current Induced Magnetization Switching (CIMS in perpendicularly magnetized Tb-Co alloy nanowire fabricated by NIL. The CIMS in Tb-Co alloy wire was observed by using current pulse under in-plane external magnetic field (HL. We successfully observed the CIMS in Tb-Co wire fabricated by NIL. Additionally, we found that the critical current density (Jc for the CIMS in the Tb-Co wire fabricated by NIL is 4 times smaller than that fabricated by conventional lift-off process under HL = 200Oe. These results indicate that the NIL is effective method for the CIMS.

  4. A new amplifier for improving piezoelectric actuator linearity based on current switching in precision positioning

    International Nuclear Information System (INIS)

    Ru, Changhai; Chen, Liguo; Shao, Bing; Rong, Weibin; Sun, Lining

    2008-01-01

    Piezoelectric actuators have traditionally been driven by voltage amplifiers. When driven at large voltages these actuators exhibit a significant amount of distortion, known as hysteresis, which may reduce the stability robustness of the system in feedback control applications. Piezoelectric transducers are known to exhibit less hysteresis when driven with current or charge rather than voltage. Despite this advantage, such methods have found little practical application due to the poor low frequency response of present current and charge driver designs. In this paper, a new piezoelectric amplifier based on current switching is presented which can reduce hysteresis. Special circuits and a hybrid control algorithm realize quick and precise positioning. Experimental results demonstrate that the amplifier can be used for dynamic and static applications and low frequency bandwidths can also be achieved

  5. Monolithic, High-Speed Fiber-Optic Switching Array for Lidar, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This NASA SBIR Phase II effort will develop a 1 x 10 prototype non-mechanical fiber optic switch for use with high power lasers. The proposed optical device is a...

  6. Subnanosecond photoconductive switching in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Druce, R.L.; Pocha, M.D.; Griffin, K.L.

    1991-04-01

    We are conducting research in photoconductive switching for the purpose of generating microwave pulses with amplitudes up to 50 kV. This technology has direct application to impulse radar and HPM sources. We are exploiting the very fast recombination rates of Gallium Arsenide (GaAs) to explore the potential of GaAs as an on-off switch when operating in the linear mode (the linear mode is defined such that one carrier pair is generated for each photon absorbed). In addition, we are exploring the potential GaAs to act as a closing switch in ``avalanche`` mode at high fields. We have observed switch closing times of less than 200 psec with a 100 psec duration laser pulse and opening times of less than 400 psec with neutron irradiated GaAs at fields of tens of kV/cm. If the field is increased and the laser energy decreased, the laser can be used to trigger photoconductive switches into ``avalanche`` mode of operation in which carrier multiplication occurs. This mode of operation is quite promising since the switches close in less than 1 nsec while realizing significant energy gain (ratio of electrical energy in the pulse to optical trigger energy). We are currently investigating both large area (1 sq cm) and small area (< 1 sq mm) switches illuminated by GaAlAs laser diodes at 900 nm and Nd:YAG lasers at 1.06 micrometers. Preliminary results indicate that the closing time of the avalanche switches depends primarily on the material properties of the devices with closing times of 300--1300 psec at voltages of 6--35 kV. We will present experimental results for linear, lock on and avalanche mode operation of GaAs photoconductive switches and how these pulses may be applied to microwave generation. 3 refs.

  7. Subnanosecond photoconductive switching in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Druce, R.L.; Pocha, M.D.; Griffin, K.L.

    1991-04-01

    We are conducting research in photoconductive switching for the purpose of generating microwave pulses with amplitudes up to 50 kV. This technology has direct application to impulse radar and HPM sources. We are exploiting the very fast recombination rates of Gallium Arsenide (GaAs) to explore the potential of GaAs as an on-off switch when operating in the linear mode (the linear mode is defined such that one carrier pair is generated for each photon absorbed). In addition, we are exploring the potential GaAs to act as a closing switch in avalanche'' mode at high fields. We have observed switch closing times of less than 200 psec with a 100 psec duration laser pulse and opening times of less than 400 psec with neutron irradiated GaAs at fields of tens of kV/cm. If the field is increased and the laser energy decreased, the laser can be used to trigger photoconductive switches into avalanche'' mode of operation in which carrier multiplication occurs. This mode of operation is quite promising since the switches close in less than 1 nsec while realizing significant energy gain (ratio of electrical energy in the pulse to optical trigger energy). We are currently investigating both large area (1 sq cm) and small area (< 1 sq mm) switches illuminated by GaAlAs laser diodes at 900 nm and Nd:YAG lasers at 1.06 micrometers. Preliminary results indicate that the closing time of the avalanche switches depends primarily on the material properties of the devices with closing times of 300--1300 psec at voltages of 6--35 kV. We will present experimental results for linear, lock on and avalanche mode operation of GaAs photoconductive switches and how these pulses may be applied to microwave generation. 3 refs.

  8. Subnanosecond photoconductive switching in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Druce, R.L.; Pocha, M.D.; Griffin, K.L.

    1990-01-01

    We are conducting research in photoconductive switching for the purpose of generating microwave pulses with amplitudes up to 50 kV. This technology has direct application to impulse radar and HPM sources. We are exploiting the very fast recombination rates of Gallium Arsenide (GaAs) to explore the potential of GaAs as an on-off switch when operating in the linear mode (the linear mode is defined such that one carrier pair is generated for each photon absorbed). In addition, we are exploring the potential of GaAs to act as a closing switch in avalanche'' mode at high fields. We have observed switch closing times of less than 200 psec with 100 psec duration laser pulse and opening times of less than 400 psec with neutron irradiated GaAs at fields of tens of kV/cm. If the field is increased and the laser energy decreased, the laser can be used to trigger photoconductive switches into an avalanche'' mode of operation in which carrier multiplication occurs. This mode of operation is quite promising since the switches close in less than 1 nsec while realizing significant energy gain (ratio of electrical energy in the pulse to optical trigger energy). We are currently investigating both large are (1 sq cm) and small area (<1 sq mm) switches illuminated by GaAlAs laser diodes at 900 nm and Nd:YAG lasers at 1.06 micrometers. Preliminary results indicate that the closing time of the avalanche switches depends primarily on the material properties of the devices with closing times of 300--1300 psec at voltages of 6-35 kV. We will present experimental results for linear, lock on and avalanche mode operation of GaAs photoconductive switches and how these pulses may be applied to microwave generation. 3 refs., 11 figs.

  9. Subnanosecond photoconductive switching in GaAs

    Science.gov (United States)

    Druce, R. L.; Pocha, M. D.; Griffin, K. L.

    1991-04-01

    We are conducting research in photoconductive switching for the purpose of generating microwave pulses with amplitudes up to 50 kV. This technology has direct application to impulse radar and HPM sources. We are exploiting the very fast recombination rates of Gallium Arsenide (GaAs) to explore the potential of GaAs as an on-off switch when operating in the linear mode (the linear mode is defined such that one carrier pair is generated for each photon absorbed). In addition, we are exploring the potential GaAs to act as a closing switch in 'avalanche' mode at high fields. We have observed switch closing times of less than 200 psec with a 100 psec duration laser pulse and opening times of less than 400 psec with neutron irradiated GaAs at fields of tens of kV/cm. If the field is increased and the laser energy decreased, the laser can be used to trigger photoconductive switches into 'avalanche' mode of operation in which carrier multiplication occurs. This mode of operation is quite promising since the switches close in less than 1 nsec while realizing significant energy gain (ratio of electrical energy in the pulse to optical trigger energy). We are currently investigating both large area (1 sq cm) and small area (less than 1 sq mm) switches illuminated by GaAlAs laser diodes at 900 nm and Nd:YAG lasers at 1.06 micrometers. Preliminary results indicate that the closing time of the avalanche switches depends primarily on the material properties of the devices with closing times of 300-1300 psec at voltages of 6-35 kV. We will present experimental results for linear, lock on, and avalanche mode operation of GaAs photoconductive switches and how these pulses may be applied to microwave generation.

  10. Analysis of current-bidirectional buck-boost based switch-mode audio amplifier

    DEFF Research Database (Denmark)

    Bolten Maizonave, Gert; Andersen, Michael A. E.; Kjærgaard, Claus

    2011-01-01

    The following studdy was carried out in order to assses quantitatively the performannce of the buck--boost converter whhen used as swiitch-mode audio amplifier. It comprises of, to beggin with, the de limitation of design criteria bassed on the state of-the-art solution, which is based...... in a differential mode buckbased amplifier with a boost converter as power supply. The averaged switch modelling of the differential mode current bidirectional topology is also used, in order to analyze the steady state and frequency-wise behaviour of this converter and parameterize it to meet the design criteria....... Next, several piecewise-linear siimulation resultss are shown with detail enough to emphasize the features of the converter. A simple prototype is implemented to verify the main predicted features. Presently no previous publicat ion could be found containing a thorough analysis of this topology...

  11. Magnetization switching schemes for nanoscale three-terminal spintronics devices

    Science.gov (United States)

    Fukami, Shunsuke; Ohno, Hideo

    2017-08-01

    Utilizing spintronics-based nonvolatile memories in integrated circuits offers a promising approach to realize ultralow-power and high-performance electronics. While two-terminal devices with spin-transfer torque switching have been extensively developed nowadays, there has been a growing interest in devices with a three-terminal structure. Of primary importance for applications is the efficient manipulation of magnetization, corresponding to information writing, in nanoscale devices. Here we review the studies of current-induced domain wall motion and spin-orbit torque-induced switching, which can be applied to the write operation of nanoscale three-terminal spintronics devices. For domain wall motion, the size dependence of device properties down to less than 20 nm will be shown and the underlying mechanism behind the results will be discussed. For spin-orbit torque-induced switching, factors governing the threshold current density and strategies to reduce it will be discussed. A proof-of-concept demonstration of artificial intelligence using an analog spin-orbit torque device will also be reviewed.

  12. A differential low-voltage high gain current-mode integrated RF receiver front-end

    Energy Technology Data Exchange (ETDEWEB)

    Wang Chunhua; Ma Minglin; Sun Jingru; Du Sichun; Guo Xiaorong; He Haizhen, E-mail: wch1227164@sina.com [School of Information Science and Technology, Hunan University, Changsha 410082 (China)

    2011-02-15

    A differential low-voltage high gain current-mode integrated RF front end for an 802.11b WLAN is proposed. It contains a differential transconductance low noise amplifier (G{sub m}-LNA) and a differential current-mode down converted mixer. The single terminal of the G{sub m}-LNA contains just one MOS transistor, two capacitors and two inductors. The gate-source shunt capacitors, C{sub x1} and C{sub x2}, can not only reduce the effects of gate-source C{sub gs} on resonance frequency and input-matching impedance, but they also enable the gate inductance L{sub g1,2} to be selected at a very small value. The current-mode mixer is composed of four switched current mirrors. Adjusting the ratio of the drain channel sizes of the switched current mirrors can increase the gain of the mixer and accordingly increase the gain of RF receiver front-end. The RF front-end operates under 1 V supply voltage. The receiver RFIC was fabricated using a chartered 0.18 {mu}m CMOS process. The integrated RF receiver front-end has a measured power conversion gain of 17.48 dB and an input referred third-order intercept point (IIP3) of -7.02 dBm. The total noise figure is 4.5 dB and the power is only 14 mW by post-simulations. (semiconductor integrated circuits)

  13. Integrated Very High Frequency Switch Mode Power Supplies: Design Considerations

    DEFF Research Database (Denmark)

    Hertel, Jens Christian; Nour, Yasser; Knott, Arnold

    2017-01-01

    simulations. The required spiral inductors was modeled, and simulations show Q values of as high as 14 at a switching frequency of 250 MHz. Simulations of the converter show an efficiency of 55 % with a self oscillating gate drive. However the modeled inductor was not adequate for operating with the self...

  14. Load Torque Compensator for Model Predictive Direct Current Control in High Power PMSM Drive Systems

    DEFF Research Database (Denmark)

    Preindl, Matthias; Schaltz, Erik

    2010-01-01

    In drive systems the most used control structure is the cascade control with an inner torque, i.e. current and an outer speed control loop. The fairly small converter switching frequency in high power applications, e.g. wind turbines lead to modest speed control performance. An improvement bring...... the use of a current controller which takes into account the discrete states of the inverter, e.g. DTC or a more modern approach: Model Predictive Direct Current Control (MPDCC). Moreover overshoots and oscillations in the speed are not desired in many applications, since they lead to mechanical stress...

  15. Investigation of current redistribution in superstabilized superconducting winding when switching to the normal resistive state

    International Nuclear Information System (INIS)

    Devred, A.

    1989-01-01

    We have investigated the electromagnetic behavior of a layer of superstabilized superconductive composite conductors when switching instantaneously and uniformly to the normal resistive state. The Laplace transform was used to solve the current diffusion equation in the superstabilizing material. The value of power dissipated per unit volume, averaged over the layer thickness, was then computed using the ''pseudo''-convolution theorem in the complex plane. Last, we present a simple interpretation of the phenomenon with the help of two time constants

  16. Multiphase soft switched DC/DC converter and active control technique for fuel cell ripple current elimination

    Science.gov (United States)

    Lai, Jih-Sheng; Liu, Changrong; Ridenour, Amy

    2009-04-14

    DC/DC converter has a transformer having primary coils connected to an input side and secondary coils connected to an output side. Each primary coil connects a full-bridge circuit comprising two switches on two legs, the primary coil being connected between the switches on each leg, each full-bridge circuit being connected in parallel wherein each leg is disposed parallel to one another, and the secondary coils connected to a rectifying circuit. An outer loop control circuit that reduces ripple in a voltage reference has a first resistor connected in series with a second resistor connected in series with a first capacitor which are connected in parallel with a second capacitor. An inner loop control circuit that reduces ripple in a current reference has a third resistor connected in series with a fourth resistor connected in series with a third capacitor which are connected in parallel with a fourth capacitor.

  17. 160-Gb/s Silicon All-Optical Packet Switch for Buffer-less Optical Burst Switching

    DEFF Research Database (Denmark)

    Hu, Hao; Ji, Hua; Pu, Minhao

    2015-01-01

    We experimentally demonstrate a 160-Gb/s Ethernet packet switch using an 8.6-mm-long silicon nanowire for optical burst switching, based on cross phase modulation in silicon. One of the four packets at the bit rate of 160 Gb/s is switched by an optical control signal using a silicon based 1 × 1 all......-optical packet switch. Error free performance (BER silicon packet switch based optical burst switching, which might be desirable for high-speed interconnects within a short...

  18. Experimental research on the overvoltage protection of high-power thyristor switch

    International Nuclear Information System (INIS)

    Chang Lei; Yang Jianhua; Liu Lie

    2010-01-01

    The influence of resistance-capacitance absorption circuit and static equalizing resistance to thyristor switching performance is investigated, regarding both one single thyristor and two serial thyristors. A conclusion that the higher charging voltage the higher peak value of forward current, reverse current and rising rate has been achieved. To one single thyristor, the resistance-capacitance absorption circuit makes the peak value and rising rate of forward and reverse currents much higher, but lower pulse width; different resistance values (2,10) of resistance-capacitance absorption circuit make no sense to the amplitude and rising rate of forward current, and the pulse width of reverse current. However, the higher the resistance value the lower the amplitude of reverse current, which leads to a lower current rising rate. To the two serial thyristors, the current amplitudes are not precisely half that of one single thyristor, and the forward current is a little higher while the reverse one is obviously lower; the rising time of forward and reverse currents is shortened, especially for the reverse current which is only 1/5 of one single thyristor. Notably, the capacitance impact of thyristor should not be ignored. (authors)

  19. High-Current Cold Cathode Employing Diamond and Related Materials

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L. [Omega-P, Inc., New Haven, CT (United States)

    2014-10-22

    The essence of this project was for diamond films to be deposited on cold cathodes to improve their emission properties. Films with varying morphology, composition, and size of the crystals were deposited and the emission properties of the cathodes that utilize such films were studied. The prototype cathodes fabricated by the methods developed during Phase I were tested and evaluated in an actual high-power RF device during Phase II. These high-power tests used the novel active RF pulse compression system and the X-band magnicon test facility at US Naval Research Laboratory. In earlier tests, plasma switches were employed, while tests under this project utilized electron-beam switching. The intense electron beams required in the switches were supplied from cold cathodes embodying diamond films with varying morphology, including uncoated molybdenum cathodes in the preliminary tests. Tests with uncoated molybdenum cathodes produced compressed X-band RF pulses with a peak power of 91 MW, and a maximum power gain of 16.5:1. Tests were also carried out with switches employing diamond coated cathodes. The pulse compressor was based on use of switches employing electron beam triggering to effect mode conversion. In experimental tests, the compressor produced 165 MW in a ~ 20 ns pulse at ~18× power gain and ~ 140 MW at ~ 16× power gain in a 16 ns pulse with a ~ 7 ns flat-top. In these tests, molybdenum blade cathodes with thin diamond coatings demonstrated good reproducible emission uniformity with a 100 kV, 100 ns high voltage pulse. The new compressor does not have the limitations of earlier types of active pulse compressors and can operate at significantly higher electric fields without breakdown.

  20. Pseudospark switches (PSS) for pulsed power applications

    Energy Technology Data Exchange (ETDEWEB)

    Heine, F; Prucker, U; Frank, K; Goertler, A; Schwandner, A; Tkotz, R; Hoffmann, D H.H.; Christiansen, J [Univ. of Erlangen (Germany). Physics Dept. I

    1997-12-31

    Based on the pseudospark discharge, a low pressure gas discharge in a special geometry, fast closing switches for different pulsed power applications have been designed. Medium power PSS ({<=} 30 kA peak current) were used in laser circuits whereas high current PSS are tested successfully in high current pulsed power applications ({<=} 200 kA). For currents of a few kA the discharge is supported by cathode spots on the cold cathode surface. For higher currents, anode activity is observed too. Inserting semiconductor material seems not only to suppress high erosive spot formation but to support diffuse large-area electrode emission. A different approach to solving the problem of lowering the erosion rate is the multichannel PSS (MUPS). In order to distribute the discharge current to more than one single channel, three or more discharge channels are radial or coaxial arranged. With regard to high voltage applications the maximum hold-off voltage was increased by adding an intermediate electrode. (author). 1 figs., 12 refs.

  1. EMC considerations for protection of cables against switching effects at secondary side of substations

    Energy Technology Data Exchange (ETDEWEB)

    Heydari, H.; Faghihi, F.; Abbasi, V. [Iran Univ. of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of). Center of Excellence for Power System Automation and Operation

    2007-07-01

    High performance and correct functionality of equipment that operate in high voltage substations during transient states need careful engineering design. To achieve electromagnetic compatibility (EMC) in a system, it is necessary to correct design problems and to use special methods like shielding, grounding and filtering which cause an increase in overall cost. This paper discussed a study of a medium voltage substation whose switching process caused electromagnetic interference to low voltage cables. Three methods of decreasing overvoltage and overcurrent were discussed and compared. Recognition of magnetic fields was accomplished by ANSYS (base on finite element method). In addition, overvoltages during the switching process were calculated by common mode and differential mode equivalent circuit. The purpose of the study was to assist designers and engineers in selecting a suitable method to achieve electromagnetic compatibility in a substation. The paper discussed the amplitude of switching currents; common mode current; and methods of reducing overvoltages and overcurrents. These methods included differential mode current and shielding. It was concluded that several methods exist to protect a substations against electromagnetic interference effects. An important problem is the structure of switching in a substation that determines the strength of electromagnetic interference. A substation designer can chose the best way to achieve EMC by considering a switching structure that depends on system topology and cost function of the selected method. 7 refs., 17 figs.

  2. Characteristics of multilevel storage and switching dynamics in resistive switching cell of Al2O3/HfO2/Al2O3 sandwich structure

    Science.gov (United States)

    Liu, Jian; Yang, Huafeng; Ma, Zhongyuan; Chen, Kunji; Zhang, Xinxin; Huang, Xinfan; Oda, Shunri

    2018-01-01

    We reported an Al2O3/HfO2/Al2O3 sandwich structure resistive switching device with significant improvement of multilevel cell (MLC) operation capability, which exhibited that four stable and distinct resistance states (one low resistance state and three high resistance states) can be achieved by controlling the Reset stop voltages (V Reset-stop) during the Reset operation. The improved MLC operation capability can be attributed to the R HRS/R LRS ratio enhancement resulting from increasing of the series resistance and decreasing of leakage current by inserting two Al2O3 layers. For the high-speed switching applications, we studied the initial switching dynamics by using the measurements of the pulse width and amplitude dependence of Set and Reset switching characteristics. The results showed that under the same pulse amplitude conditions, the initial Set progress is faster than the initial Reset progress, which can be explained by thermal-assisted electric field induced rupture model in the oxygen vacancies conductive filament. Thus, proper combination of varying pulse amplitude and width can help us to optimize the device operation parameters. Moreover, the device demonstrated ultrafast program/erase speed (10 ns) and good pulse switching endurance (105 cycles) characteristics, which are suitable for high-density and fast-speed nonvolatile memory applications.

  3. Complementary resistive switching in BaTiO3/NiO bilayer with opposite switching polarities

    Science.gov (United States)

    Li, Shuo; Wei, Xianhua; Lei, Yao; Yuan, Xincai; Zeng, Huizhong

    2016-12-01

    Resistive switching behaviors have been investigated in the Au/BaTiO3/NiO/Pt structure by stacking the two elements with different switching types. The conducting atomic force microscope measurements on BaTiO3 thin films and NiO thin films suggest that with the same active resistive switching region, the switching polarities in the two semiconductors are opposite to each other. It is in agreement with the bipolar hysteresis I-V curves with opposite switching polarities for single-layer devices. The bilayer devices show complementary resistive switching (CRS) without electroforming and unipolar resistive switching (URS) after electroforming. The coexistence of CRS and URS is mainly ascribed to the co-effect of electric field and Joule heating mechanisms, indicating that changeable of resistance in this device is dominated by the redistribution of oxygen vacancies in BaTiO3 and the formation, disruption, restoration of conducting filaments in NiO. CRS in bilayer with opposite switching polarities is effective to solve the sneak current without the introduction of any selector elements or an additional metal electrode.

  4. Quantum dot single-photon switches of resonant tunneling current for discriminating-photon-number detection.

    Science.gov (United States)

    Weng, Qianchun; An, Zhenghua; Zhang, Bo; Chen, Pingping; Chen, Xiaoshuang; Zhu, Ziqiang; Lu, Wei

    2015-03-23

    Low-noise single-photon detectors that can resolve photon numbers are used to monitor the operation of quantum gates in linear-optical quantum computation. Exactly 0, 1 or 2 photons registered in a detector should be distinguished especially in long-distance quantum communication and quantum computation. Here we demonstrate a photon-number-resolving detector based on quantum dot coupled resonant tunneling diodes (QD-cRTD). Individual quantum-dots (QDs) coupled closely with adjacent quantum well (QW) of resonant tunneling diode operate as photon-gated switches- which turn on (off) the RTD tunneling current when they trap photon-generated holes (recombine with injected electrons). Proposed electron-injecting operation fills electrons into coupled QDs which turn "photon-switches" to "OFF" state and make the detector ready for multiple-photons detection. With proper decision regions defined, 1-photon and 2-photon states are resolved in 4.2 K with excellent propabilities of accuracy of 90% and 98% respectively. Further, by identifying step-like photon responses, the photon-number-resolving capability is sustained to 77 K, making the detector a promising candidate for advanced quantum information applications where photon-number-states should be accurately distinguished.

  5. Repetitive switching for an electromagnetic rail gun

    Science.gov (United States)

    Gruden, J. M.

    1983-12-01

    Previous testing on a repetitive opening switch for inductive energy storage has proved the feasibility of the rotary switch concept. The concept consists of a rotating copper disk (rotor) with a pie-shaped insulator section and brushes which slide along each of the rotor surfaces. While on top of the copper surface, the brushes and rotor conduct current allowing the energy storage inductor to charge. When the brushes slide onto the insulator section, the current cannot pass through the rotor and is diverted into the load. This study investigates two new brush designs and a rotor modification designed to improve the current commutating capabilities of the switch. One brush design (fringe fiber) employs carbon fibers on the leading and trailing edge of the brush to increase the resistive commutating action as the switch opens and closes. The other brush design uses fingers to conduct current to the rotor surface, effectively increasing the number of brush contact points. The rotor modification was the placement of tungsten inserts at the copper-insulator interfaces.

  6. Switching Phenomena in a System with No Switches

    Science.gov (United States)

    Preis, Tobias; Stanley, H. Eugene

    2010-02-01

    It is widely believed that switching phenomena require switches, but this is actually not true. For an intriguing variety of switching phenomena in nature, the underlying complex system abruptly changes from one state to another in a highly discontinuous fashion. For example, financial market fluctuations are characterized by many abrupt switchings creating increasing trends ("bubble formation") and decreasing trends ("financial collapse"). Such switching occurs on time scales ranging from macroscopic bubbles persisting for hundreds of days to microscopic bubbles persisting only for a few seconds. We analyze a database containing 13,991,275 German DAX Future transactions recorded with a time resolution of 10 msec. For comparison, a database providing 2,592,531 of all S&P500 daily closing prices is used. We ask whether these ubiquitous switching phenomena have quantifiable features independent of the time horizon studied. We find striking scale-free behavior of the volatility after each switching occurs. We interpret our findings as being consistent with time-dependent collective behavior of financial market participants. We test the possible universality of our result by performing a parallel analysis of fluctuations in transaction volume and time intervals between trades. We show that these financial market switching processes have properties similar to those of phase transitions. We suggest that the well-known catastrophic bubbles that occur on large time scales—such as the most recent financial crisis—are no outliers but single dramatic representatives caused by the switching between upward and downward trends on time scales varying over nine orders of magnitude from very large (≈102 days) down to very small (≈10 ms).

  7. Temperature induced complementary switching in titanium oxide resistive random access memory

    Energy Technology Data Exchange (ETDEWEB)

    Panda, D., E-mail: dpanda@nist.edu [Department of Electronics Engineering, National Institute of Science and Technology, Berhampur, Odisha 761008 (India); Department of Electronics Engineering and Institute of Electronics, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Simanjuntak, F. M.; Tseng, T.-Y. [Department of Electronics Engineering and Institute of Electronics, National Chiao Tung University, Hsinchu 30010, Taiwan (China)

    2016-07-15

    On the way towards high memory density and computer performance, a considerable development in energy efficiency represents the foremost aspiration in future information technology. Complementary resistive switch consists of two antiserial resistive switching memory (RRAM) elements and allows for the construction of large passive crossbar arrays by solving the sneak path problem in combination with a drastic reduction of the power consumption. Here we present a titanium oxide based complementary RRAM (CRRAM) device with Pt top and TiN bottom electrode. A subsequent post metal annealing at 400°C induces CRRAM. Forming voltage of 4.3 V is required for this device to initiate switching process. The same device also exhibiting bipolar switching at lower compliance current, Ic <50 μA. The CRRAM device have high reliabilities. Formation of intermediate titanium oxi-nitride layer is confirmed from the cross-sectional HRTEM analysis. The origin of complementary switching mechanism have been discussed with AES, HRTEM analysis and schematic diagram. This paper provides valuable data along with analysis on the origin of CRRAM for the application in nanoscale devices.

  8. High-Temperature Switched-Reluctance Electric Motor

    Science.gov (United States)

    Montague, Gerald; Brown, Gerald; Morrison, Carlos; Provenza, Andy; Kascak, Albert; Palazzolo, Alan

    2003-01-01

    An eight-pole radial magnetic bearing has been modified into a switched-reluctance electric motor capable of operating at a speed as high as 8,000 rpm at a temperature as high as 1,000 F (=540 C). The motor (see figure) is an experimental prototype of starter-motor/generator units that have been proposed to be incorporated into advanced gas turbine engines and that could operate without need for lubrication or active cooling. The unique features of this motor are its electromagnet coils and, to some extent, its control software. Heretofore, there has been no commercial-off-the-shelf wire capable of satisfying all of the requirements for fabrication of electromagnet coils capable of operation at temperatures up to 1,000 F (=540 C). The issues addressed in the development of these electromagnet coils included thermal expansion, oxidation, pliability to small bend radii, micro-fretting, dielectric breakdown, tensile strength, potting compound, thermal conduction, and packing factor. For a test, the motor was supported, along with a rotor of 18 lb (.8-kg) mass, 3-in. (.7.6-cm) diameter, 21-in. (.53-cm) length, on bearings packed with high-temperature grease. The motor was located at the mid span of the rotor and wrapped with heaters. The motor stator was instrumented with thermocouples. At the time of reporting the information for this article, the motor had undergone 14 thermal cycles between room temperature and 1,000 F (.540 C) and had accumulated operating time >27.5 hours at 1,000 F (=540 C). The motor-controller hardware includes a personal computer equipped with analog-to-digital input and digital-to-analog output cards. The controller software is a C-language code that implements a switched-reluctance motor-control principle: that is, it causes the coils to be energized in a sequence timed to generate a rotating magnetic flux that creates a torque on a scalloped rotor. The controller can operate in an open- or closed-loop mode. In addition, the software has

  9. Highly uniform and reliable resistive switching characteristics of a Ni/WOx/p+-Si memory device

    Science.gov (United States)

    Kim, Tae-Hyeon; Kim, Sungjun; Kim, Hyungjin; Kim, Min-Hwi; Bang, Suhyun; Cho, Seongjae; Park, Byung-Gook

    2018-02-01

    In this paper, we investigate the resistive switching behavior of a bipolar resistive random-access memory (RRAM) in a Ni/WOx/p+-Si RRAM with CMOS compatibility. Highly unifrom and reliable bipolar resistive switching characteristics are observed by a DC voltage sweeping and its switching mechanism can be explained by SCLC model. As a result, the possibility of metal-insulator-silicon (MIS) structural WOx-based RRAM's application to Si-based 1D (diode)-1R (RRAM) or 1T (transistor)-1R (RRAM) structure is demonstrated.

  10. Low-Voltage Switched-Capacitor Circuits

    DEFF Research Database (Denmark)

    Bidari, E.; Keskin, M.; Maloberti, F.

    1999-01-01

    Switched-capacitor stages are described which can function with very low (typically 1 V) supply voltages, without using voltage boosting or switched op-amps. Simulations indicate that high performance may be achieved using these circuits in filter or data converter applications.......Switched-capacitor stages are described which can function with very low (typically 1 V) supply voltages, without using voltage boosting or switched op-amps. Simulations indicate that high performance may be achieved using these circuits in filter or data converter applications....

  11. A New Asymmetrical Current-fed Converter with Voltage Lifting

    Directory of Open Access Journals (Sweden)

    DELSHAD, M.

    2011-05-01

    Full Text Available This paper presents a new zero voltage switching current-fed DC-DC converter with high voltage gain. In this converter all switches (main and auxiliary turn on under zero voltage switching and turn off under almost zero voltage switching due to snubber capacitor. Furthermore, the voltage spike across the main switch due to leakage inductance of forward transformer is absorbed. The flyback transformer which is connected to the output in series causes to high voltage gain and less voltage stress on the power devices. Considering high efficiency and voltage gain of this converter, it is suitable for green generated systems such as fuel cells or photovoltaic systems. The presented experimental results verify the integrity of the proposed converter.

  12. MENGAPA PERUSAHAAN MELAKUKAN AUDITOR SWITCH?

    Directory of Open Access Journals (Sweden)

    Kadek Sumadi

    2011-01-01

    Full Text Available The existence of a large number of accounting firms allowsprovides companies choices whether to stay with current firm or switchto another accounting firm. Decision of Minister of FinanceNo.423/KMK.06/2002 states that a company must switch auditor afterfive years of consecutive assignment. This is mandatory. The questionrises when a company voluntarily switches its auditor. Why does thishappen?One of the reasons is that management does not satisfy withauditor opinion, except for unqualified opinion. New management teamwould directly or indirectly encourage auditor switch to align accountingand reporting policies. Moreover an expanding company expects positivereaction when it does auditor switch. Profitability is also one reason fora company to switch auditor, for example, when a company earns moreprofit it tends to hire more credible auditor. On the other hand, when thecompany faces a financial distress, it probably would switch auditor aswell.

  13. Designing single phase Current-Programmed-Controlled rectifiers by harmonic currents

    DEFF Research Database (Denmark)

    Andersen, Gert Karmisholt; Blaabjerg, Frede

    2002-01-01

    The grid current harmonics of a Current-Programmed-Controlled (CPC) pfc rectifier strongly depends on the choice of switching frequency and switching inductance. This paper describes a new simple and vert fast method to calculate the grid current of a CPC controlled pfc converter. The method...

  14. Electrical switching in Sb doped Al23Te77 glasses

    Science.gov (United States)

    Pumlianmunga; Ramesh, K.

    2017-08-01

    Bulk glasses (Al23Te77)Sbx (0≤ x≤10) prepared by melt quenching method show a change in switching type from threshold to memory for x≥5. An increase in threshold current (Ith) and a concomitant decrease in threshold voltage (Vth) and resisitivity(ρ) have been observed with the increase of Sb content. Raman spectra of the switched region in memory switching compositions show a red shift with respect to the as prepared glasses whereas in threshold switching compositions no such shift is observed. The magic angle spinning nuclear magnetic resonance (MAS NMR) of 27Al atom shows three different environments for Al ([4]Al, [5]Al and [6]Al). The samples annealed at their respective crystallization temperatures show rapid increase in [4]Al sites by annihilating [5]Al sites. The melts of threshold switching glasses (x≤2.5) quenched in water at room temperature (27 °C) show amorphous structure whereas, the melt of memory switching glasses (x>2.5) solidify into crystalline structure. The higher coordination of Al increases the cross-linking and rigidity. The addition of Sb increases the glass transition(Tg) and decreases the crystallization temperature(Tc). The decrease in the interval between the Tg and Tc eases the transition between the amorphous and crystalline states and improves the memory properties. The temperature rise at the time of switching can be as high as its melting temperature and the material in between the electrodes may melt to form a filament. The filament may consists of temporary (high resistive amorphous) and permanent (high conducting crystalline) units. The ratio between the temporary and the permanent units may decide the switching type. The filament is dominated by the permanent units in memory switching compositions and by the temporary units in threshold switching compositions. The present study suggests that both the threshold and memory switching can be understood by the thermal model and filament formation.

  15. High-Voltage MOSFET Switching Circuit

    Science.gov (United States)

    Jensen, Kenneth A.

    1995-01-01

    Circuit reliably switches power at supply potential of minus 1,500 V, with controlled frequency and duty cycle. Used in argon-plasma ion-bombardment equipment for texturing copper electrodes, as described in "Texturing Copper To Reduce Secondary Emission of Electrons" (LEW-15898), also adapted to use in powering gaseous flash lamps and stroboscopes.

  16. High voltage MOSFET switching circuit

    Science.gov (United States)

    McEwan, Thomas E.

    1994-01-01

    The problem of source lead inductance in a MOSFET switching circuit is compensated for by adding an inductor to the gate circuit. The gate circuit inductor produces an inductive spike which counters the source lead inductive drop to produce a rectangular drive voltage waveform at the internal gate-source terminals of the MOSFET.

  17. Microsecond plasma opening switch experiments on GIT-4

    Energy Technology Data Exchange (ETDEWEB)

    Bystritskij, V M; Lisitsyn, I V; Sinebryukhov, A A; Sinebryukhov, V A [Russian Academy of Sciences, Tomsk (Russian Federation). Inst. of Electrophysics; Kim, A A; Kokshenev, V A; Koval` chuk, B M [Russian Academy of Sciences, Tomsk (Russian Federation). High Current Electronics Inst.

    1997-12-31

    The plasma opening switch (POS) operation at the current level up to 2 MA was studied at the terawatt power GIT-4 generator. The experiments are described in which the electrode diameter and the strength of the applied magnetic field were varied, and different plasma sources were used. It is shown that the high voltage / low impedance switch operation can be achieved if the linear current density at the POS cathode does not exceed 20 kA/cm. This value limits the maximum cathode diameter of the magnetically insulated transmission line. The anode diameter is limited by the requirement of no gap closure with a dense electrode plasma. The application of external magnetic field decreases the plasma density necessary for achieving a long POS conduction time operation regime. (J.U.). 1 tab., 4 refs.

  18. Microsecond plasma opening switch experiments on GIT-4

    International Nuclear Information System (INIS)

    Bystritskij, V.M.; Lisitsyn, I.V.; Sinebryukhov, A.A.; Sinebryukhov, V.A.; Kim, A.A.; Kokshenev, V.A.; Koval'chuk, B.M.

    1996-01-01

    The plasma opening switch (POS) operation at the current level up to 2 MA was studied at the terawatt power GIT-4 generator. The experiments are described in which the electrode diameter and the strength of the applied magnetic field were varied, and different plasma sources were used. It is shown that the high voltage / low impedance switch operation can be achieved if the linear current density at the POS cathode does not exceed 20 kA/cm. This value limits the maximum cathode diameter of the magnetically insulated transmission line. The anode diameter is limited by the requirement of no gap closure with a dense electrode plasma. The application of external magnetic field decreases the plasma density necessary for achieving a long POS conduction time operation regime. (J.U.). 1 tab., 4 refs

  19. Experimental results of thermally controlled superconducting switches for high frequency operation

    International Nuclear Information System (INIS)

    Mulder, G.B.J.; IerAvest, D.; Tenkate, H.H.J.; Krooshoop, H.J.G.; Van de Klundert, L.

    1988-01-01

    The aim of this study is to develop thermally controlled switches which are to be used in superconducting rectifiers operating at a few hertz and 1 kA. Usually, the operating frequency of thermally controlled rectifiers is limited to about 0.1 Hz due to the thermal recovery times of the switches. The thermal switches have to satisfy two conditions which are specific for the application in a superconducting rectifier: a) they have to operate in the repetitive mode so beside short activation times, fast recovery times of the switches are equally important, b) the power required to effect and maintain the normal state of the switches should be low since it will determine the rectifier efficiency. To what extent these obviously conflicting demands can be satisfied depends on the material and geometry of the switch. This paper presents a theoretical model of the thermal behaviour of a switch. The calculations are compared with experimental results of several switches having recovery times between 40 and 200 ms. Also, the feasibility of such switches for application in superconducting rectifiers operating at a few hertz with an acceptable efficiency is demonstrated

  20. Power requirements reducing of FBG based all-optical switching

    Science.gov (United States)

    Scholtz, Ľubomír.; Solanská, Michaela; Ladányi, Libor; Müllerová, Jarmila

    2017-12-01

    Although Fiber Bragg gratings (FBGs) are well known devices, their using as all-optical switching elements has been still examined. Current research is focused on optimization of their properties for their using in future all-optical networks. The main problem are high switching intensities needed for achieving the changes of the transmission state. Over several years switching intensities have been reduced from hundreds of GW/cm2 to tens of MW/cm2 by selecting appropriate gratings and signal parameters or using suitable materials. Two principal nonlinear effects with similar power requirements can result in the bistable transmission/reflection of an input optical pulse. In the self-phase modulation (SPM) regime switching is achieved by the intense probe pulse itself. Using cross-phase modulation (XPM) a strong pump alters the FBG refractive index experienced by a weak probe pulse. As a result of this the detuning of the probe pulse from the center of the photonic band gap occurs. Using of XPM the effect of modulation instability is reduced. Modulation instability which is the main SPM degradation mechanism. We focused on nonlinear FBGs based on chalcogenide glasses which are very often used in various applications. Thanks to high nonlinear parameters chalcogenide glasses are suitable candidates for reducing switching intensities of nonlinear FBGs.

  1. Quasi-Optical Network Analyzers and High-Reliability RF MEMS Switched Capacitors

    Science.gov (United States)

    Grichener, Alexander

    The thesis first presents a 2-port quasi-optical scalar network analyzer consisting of a transmitter and receiver both built in planar technology. The network analyzer is based on a Schottky-diode mixer integrated inside a planar antenna and fed differentially by a CPW transmission line. The antenna is placed on an extended hemispherical high-resistivity silicon substrate lens. The LO signal is swept from 3-5 GHz and high-order harmonic mixing in both up- and down- conversion mode is used to realize the 15-50 GHz RF bandwidth. The network analyzer resulted in a dynamic range of greater than 40 dB and was successfully used to measure a frequency selective surface with a second-order bandpass response. Furthermore, the system was built with circuits and components for easy scaling to millimeter-wave frequencies which is the primary motivation for this work. The application areas for a millimeter and submillimeter-wave network analyzer include material characterization and art diagnostics. The second project presents several RF MEMS switched capacitors designed for high-reliability operation and suitable for tunable filters and reconfigurable networks. The first switched-capacitor resulted in a digital capacitance ratio of 5 and an analog capacitance ratio of 5-9. The analog tuning of the down-state capacitance is enhanced by a positive vertical stress gradient in the the beam, making it ideal for applications that require precision tuning. A thick electroplated beam resulted in Q greater than 100 at C to X-band frequencies, and power handling of 0.6-1.1 W. The design also minimized charging in the dielectric, resulting in excellent reliability performance even under hot-switched and high power (1 W) conditions. The second switched-capacitor was designed without any dielectric to minimize charging. The device was hot-switched at 1 W of RF power for greater than 11 billion cycles with virtually no change in the C-V curve. The final project presents a 7-channel

  2. High linearity current communicating passive mixer employing a simple resistor bias

    International Nuclear Information System (INIS)

    Liu Rongjiang; Guo Guiliang; Yan Yuepeng

    2013-01-01

    A high linearity current communicating passive mixer including the mixing cell and transimpedance amplifier (TIA) is introduced. It employs the resistor in the TIA to reduce the source voltage and the gate voltage of the mixing cell. The optimum linearity and the maximum symmetric switching operation are obtained at the same time. The mixer is implemented in a 0.25 μm CMOS process. The test shows that it achieves an input third-order intercept point of 13.32 dBm, conversion gain of 5.52 dB, and a single sideband noise figure of 20 dB. (semiconductor integrated circuits)

  3. Ultra-low switching energy and scaling in electric-field-controlled nanoscale magnetic tunnel junctions with high resistance-area product

    Energy Technology Data Exchange (ETDEWEB)

    Grezes, C.; Alzate, J. G.; Cai, X.; Wang, K. L. [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); Ebrahimi, F.; Khalili Amiri, P. [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); Inston, Inc., Los Angeles, California 90024 (United States); Katine, J. A. [HGST, Inc., San Jose, California 95135 (United States); Langer, J.; Ocker, B. [Singulus Technologies AG, Kahl am Main 63796 (Germany)

    2016-01-04

    We report electric-field-induced switching with write energies down to 6 fJ/bit for switching times of 0.5 ns, in nanoscale perpendicular magnetic tunnel junctions (MTJs) with high resistance-area product and diameters down to 50 nm. The ultra-low switching energy is made possible by a thick MgO barrier that ensures negligible spin-transfer torque contributions, along with a reduction of the Ohmic dissipation. We find that the switching voltage and time are insensitive to the junction diameter for high-resistance MTJs, a result accounted for by a macrospin model of purely voltage-induced switching. The measured performance enables integration with same-size CMOS transistors in compact memory and logic integrated circuits.

  4. Analytical Performance Evaluation of Different Switch Solutions

    Directory of Open Access Journals (Sweden)

    Francisco Sans

    2013-01-01

    Full Text Available The virtualization of the network access layer has opened new doors in how we perceive networks. With this virtualization of the network, it is possible to transform a regular PC with several network interface cards into a switch. PC-based switches are becoming an alternative to off-the-shelf switches, since they are cheaper. For this reason, it is important to evaluate the performance of PC-based switches. In this paper, we present a performance evaluation of two PC-based switches, using Open vSwitch and LiSA, and compare their performance with an off-the-shelf Cisco switch. The RTT, throughput, and fairness for UDP are measured for both Ethernet and Fast Ethernet technologies. From this research, we can conclude that the Cisco switch presents the best performance, and both PC-based switches have similar performance. Between Open vSwitch and LiSA, Open vSwitch represents a better choice since it has more features and is currently actively developed.

  5. Development of high power X-band semiconductor microwave switch for pulse compression systems of future linear colliders

    Directory of Open Access Journals (Sweden)

    Fumihiko Tamura

    2002-06-01

    Full Text Available We describe concepts for high power semiconductor rf switches, designed to handle signals at X-band with power level near 100 MW. We describe an abstract design methodology and derive a general scaling law for these switches. We also present a design and experimental work of a switch operating at the TE_{01} mode in overmoded circular waveguides. The switch is composed of an array of tee junction elements that have a p-i-n diode array window in the third arm.

  6. An improved soft switched PWM interleaved boost AC-DC converter

    International Nuclear Information System (INIS)

    Genc, Naci; Iskender, Ires

    2011-01-01

    In this paper, an improved soft switched two cell interleaved boost AC/DC converter with high power factor is proposed and investigated. A new auxiliary circuit is designed and added to two cell interleaved boost converter to reduce the switching losses. The proposed auxiliary circuit is implemented using only one auxiliary switch and a minimum number of passive components without an important increase in the cost and complexity of the converter. The main advantage of this auxiliary circuit is that it not only provides zero-voltage-transition (ZVT) for the main switches but also provides soft switching for the auxiliary switch and diodes. Though all semiconductor devices operate under soft switching, they do not have any additional voltage and current stresses. The proposed converter operates successfully in soft switching operation mode for a wide range of input voltage level and the load. In addition, it has advantages such as fewer structure complications, lower cost and ease of control. In the study, the transition modes for describing the behavior of the proposed converter in one switching period are described. A prototype with 600 W output power, 50 kHz/cell switching frequency, input line voltage of 110-220 V rms and an output voltage of 400 V dc has been implemented. Analysis, design and the control circuitry are also presented in the paper.

  7. A zero-voltage-switched three-phase interleaved buck converter

    Science.gov (United States)

    Hsieh, Yao-Ching; Huang, Bing-Siang; Lin, Jing-Yuan; Pham, Phu Hieu; Chen, Po-Hao; Chiu, Huang-Jen

    2018-04-01

    This paper proposes a three-phase interleaved buck converter which is composed of three identical paralleled buck converters. The proposed solution has three shunt inductors connected between each other of three basic buck conversion units. With the help of the shunt inductors, the MOSFET parasitic capacitances will resonate to achieve zero-voltage-switching. Furthermore, the decreasing rate of the current through the free-wheeling diodes is limited, and therefore, their reverse-recovery losses can be minimised. The active power switches are controlled by interleaved pulse-width modulation signals to reduce the input and output current ripples. Therefore, the filtering capacitances on the input and output sides can be reduced. The power efficiency is measured to be as high as 98% in experiment with a prototype circuit.

  8. IGBT: a solid state switch

    International Nuclear Information System (INIS)

    Chatroux, D.; Maury, J.; Hennevin, B.

    1993-01-01

    A Copper Vapour Laser Power Supply has been designed using a solid state switch consisting in eighteen Isolated Gate Bipolar Transistors (IGBT), -1200 volts, 400 Amps, each-in parallel. This paper presents the Isolated Gate Bipolar Transistor (IGBTs) replaced in the Power Electronic components evolution, and describes the IGBT conduction mechanism, presents the parallel association of IGBTs, and studies the application of these components to a Copper Vapour Laser Power Supply. The storage capacitor voltage is 820 volts, the peak current of the solid state switch is 17.000 Amps. The switch is connected on the primary of a step-up transformer, followed by a magnetic modulator. The reset of the magnetic modulator is provided by part of the laser reflected energy with a patented circuit. The charging circuit is a resonant circuit with a charge controlled by an IGBT switch. When the switch is open, the inductance energy is free-wheeled by an additional winding and does not extend the charging phase of the storage capacitor. The design allows the storage capacitor voltage to be very well regulated. This circuit is also patented. The electric pulse in the laser has 30.000 Volt peak voltage, 2000 Amp peak current, and is 200 nanoseconds long, for a 200 Watt optical power Copper Vapour Laser

  9. Atomic Scale Modulation of Self-Rectifying Resistive Switching by Interfacial Defects

    KAUST Repository

    Wu, Xing

    2018-04-14

    Higher memory density and faster computational performance of resistive switching cells require reliable array‐accessible architecture. However, selecting a designated cell within a crossbar array without interference from sneak path currents through neighboring cells is a general problem. Here, a highly doped n++ Si as the bottom electrode with Ni‐electrode/HfOx/SiO2 asymmetric self‐rectifying resistive switching device is fabricated. The interfacial defects in the HfOx/SiO2 junction and n++ Si substrate result in the reproducible rectifying behavior. In situ transmission electron microscopy is used to quantitatively study the properties of the morphology, chemistry, and dynamic nucleation–dissolution evolution of the chains of defects at the atomic scale. The spatial and temporal correlation between the concentration of oxygen vacancies and Ni‐rich conductive filament modifies the resistive switching effect. This study has important implications at the array‐level performance of high density resistive switching memories.

  10. Atomic Scale Modulation of Self-Rectifying Resistive Switching by Interfacial Defects

    KAUST Repository

    Wu, Xing; Yu, Kaihao; Cha, Dong Kyu; Bosman, Michel; Raghavan, Nagarajan; Zhang, Xixiang; Li, Kun; Liu, Qi; Sun, Litao; Pey, Kinleong

    2018-01-01

    Higher memory density and faster computational performance of resistive switching cells require reliable array‐accessible architecture. However, selecting a designated cell within a crossbar array without interference from sneak path currents through neighboring cells is a general problem. Here, a highly doped n++ Si as the bottom electrode with Ni‐electrode/HfOx/SiO2 asymmetric self‐rectifying resistive switching device is fabricated. The interfacial defects in the HfOx/SiO2 junction and n++ Si substrate result in the reproducible rectifying behavior. In situ transmission electron microscopy is used to quantitatively study the properties of the morphology, chemistry, and dynamic nucleation–dissolution evolution of the chains of defects at the atomic scale. The spatial and temporal correlation between the concentration of oxygen vacancies and Ni‐rich conductive filament modifies the resistive switching effect. This study has important implications at the array‐level performance of high density resistive switching memories.

  11. Transparent ceramic photo-optical semiconductor high power switches

    Science.gov (United States)

    Werne, Roger W.; Sullivan, James S.; Landingham, Richard L.

    2016-01-19

    A photoconductive semiconductor switch according to one embodiment includes a structure of sintered nanoparticles of a high band gap material exhibiting a lower electrical resistance when excited by light relative to an electrical resistance thereof when not exposed to the light. A method according to one embodiment includes creating a mixture comprising particles, at least one dopant, and at least one solvent; adding the mixture to a mold; forming a green structure in the mold; and sintering the green structure to form a transparent ceramic. Additional system, methods and products are also presented.

  12. Fast Low-Current Spin-Orbit-Torque Switching of Magnetic Tunnel Junctions through Atomic Modifications of the Free-Layer Interfaces

    Science.gov (United States)

    Shi, Shengjie; Ou, Yongxi; Aradhya, S. V.; Ralph, D. C.; Buhrman, R. A.

    2018-01-01

    Future applications of spin-orbit torque will require new mechanisms to improve the efficiency of switching nanoscale magnetic tunnel junctions (MTJs), while also controlling the magnetic dynamics to achieve fast nanosecond-scale performance with low-write-error rates. Here, we demonstrate a strategy to simultaneously enhance the interfacial magnetic anisotropy energy and suppress interfacial spin-memory loss by introducing subatomic and monatomic layers of Hf at the top and bottom interfaces of the ferromagnetic free layer of an in-plane magnetized three-terminal MTJ device. When combined with a β -W spin Hall channel that generates spin-orbit torque, the cumulative effect is a switching current density of 5.4 ×106 A /cm2 .

  13. Detail study of SiC MOSFET switching characteristics

    DEFF Research Database (Denmark)

    Li, Helong; Munk-Nielsen, Stig

    2014-01-01

    This paper makes detail study of the latest SiC MOSFETs switching characteristics in relation to gate driver maximum current, gate resistance, common source inductance and parasitic switching loop inductance. The switching performance of SiC MOSFETs in terms of turn on and turn off voltage...

  14. Design Method for the Coil-System and the Soft Switching Technology for High-Frequency and High-Efficiency Wireless Power Transfer Systems

    Directory of Open Access Journals (Sweden)

    Xu Liu

    2017-12-01

    Full Text Available Increasing the resonant frequency of a wireless power transfer (WPT system effectively improves the power transfer efficiency between the transmit and the receive coils but significantly limits the power transfer capacity with the same coils. Therefore, this paper proposes a coil design method for a series-series (SS compensated WPT system which can power up the same load with the same DC input voltage & current but with increased resonant frequency. For WPT systems with higher resonant frequencies, a new method of realizing soft-switching by tuning driving frequency is proposed which does not need to change any hardware in the WPT system and can effectively reduce switching losses generated in the inverter. Eighty-five kHz, 200 kHz and 500 kHz WPT systems are built up to validate the proposed methods. Experimental results show that all these three WPT systems can deliver around 3.3 kW power to the same load (15 Ω with 200 V input voltage and 20 A input current as expected and achieve more than 85% coil-system efficiency and 79% system overall efficiency. With the soft-switching technique, inverter efficiency can be improved from 81.91% to 98.60% in the 500 kHz WPT system.

  15. Dual-Input Soft-Switched DC-DC Converter with Isolated Current-Fed Half-Bridge and Voltage-Fed Full-Bridge for Fuel Cell or Photovoltaic Systems

    DEFF Research Database (Denmark)

    Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2013-01-01

    integrate a current-fed boost half-bridge (BHB) and a full-bridge (FB) into one equivalent circuit configuration which has dual-input ability and additionally it can reduce the number of the power devices. With the phase-shift control, it can achieve zero-voltage switching turn-on of active switches...... power rating are built up and tested to demonstrate the effectiveness of the proposed converter topology....

  16. A vacancy-modulated self-selective resistive switching memory with pronounced nonlinear behavior

    Science.gov (United States)

    Ma, Haili; Feng, Jie; Gao, Tian; Zhu, Xi

    2017-12-01

    In this study, we report a self-selective (nonlinear) resistive switching memory cell, with high on-state half-bias nonlinearity of 650, sub-μA operating current, and high On/Off ratios above 100×. Regarding the cell structure, a thermal oxidized HfO x layer in combination with a sputtered Ta2O5 layer was configured as an active stack, with Pt and Hf as top and bottom electrodes, respectively. The Ta2O5 acts as a selective layer as well as a series resistor, which could make the resistive switching happened in HfO x layer. Through the analysis of the physicochemical properties and electrical conduction mechanisms at each state, a vacancy-modulated resistance switching model was proposed to explain the switching behavior. The conductivity of HfO x layer was changed by polarity-dependent drift of the oxygen vacancy ( V o), resulting in an electron hopping distance change during switching. With the help of Ta2O5 selective layer, high nonlinearity observed in low resistance state. The proposed material stack shows a promising prospect to act as a self-selective cell for 3D vertical RRAM application.

  17. The development of shock wave overpressure driven by channel expansion of high current impulse discharge arc

    Science.gov (United States)

    Xiong, Jia-ming; Li, Lee; Dai, Hong-yu; Wu, Hai-bo; Peng, Ming-yang; Lin, Fu-chang

    2018-03-01

    During the formation of a high current impulse discharge arc, objects near the discharge arc will be strongly impacted. In this paper, a high power, high current gas switch is used as the site of the impulse discharge arc. The explosion wave theory and the arc channel energy balance equation are introduced to analyze the development of the shock wave overpressure driven by the high current impulse discharge arc, and the demarcation point of the arc channel is given, from which the energy of the arc channel is no longer converted into shock waves. Through the analysis and calculation, it is found that the magnitude of the shock wave overpressure caused by impulse discharge arc expansion is closely related to the arc current rising rate. The arc shock wave overpressure will undergo a slow decay process and then decay rapidly. The study of this paper will perform the function of deepening the understanding of the physical nature of the impulse arc discharge, which can be used to explain the damage effect of the high current impulse discharge arc.

  18. A low-latency optical switch architecture using integrated μm SOI-based contention resolution and switching

    Science.gov (United States)

    Mourgias-Alexandris, G.; Moralis-Pegios, M.; Terzenidis, N.; Cherchi, M.; Harjanne, M.; Aalto, T.; Vyrsokinos, K.; Pleros, N.

    2018-02-01

    The urgent need for high-bandwidth and high-port connectivity in Data Centers has boosted the deployment of optoelectronic packet switches towards bringing high data-rate optics closer to the ASIC, realizing optical transceiver functions directly at the ASIC package for high-rate, low-energy and low-latency interconnects. Even though optics can offer a broad range of low-energy integrated switch fabrics for replacing electronic switches and seamlessly interface with the optical I/Os, the use of energy- and latency-consuming electronic SerDes continues to be a necessity, mainly dictated by the absence of integrated and reliable optical buffering solutions. SerDes undertakes the role of optimally synergizing the lower-speed electronic buffers with the incoming and outgoing optical streams, suggesting that a SerDes-released chip-scale optical switch fabric can be only realized in case all necessary functions including contention resolution and switching can be implemented on a common photonic integration platform. In this paper, we demonstrate experimentally a hybrid Broadcast-and-Select (BS) / wavelength routed optical switch that performs both the optical buffering and switching functions with μm-scale Silicon-integrated building blocks. Optical buffering is carried out in a silicon-integrated variable delay line bank with a record-high on-chip delay/footprint efficiency of 2.6ns/mm2 and up to 17.2 nsec delay capability, while switching is executed via a BS design and a silicon-integrated echelle grating, assisted by SOA-MZI wavelength conversion stages and controlled by a FPGA header processing module. The switch has been experimentally validated in a 3x3 arrangement with 10Gb/s NRZ optical data packets, demonstrating error-free switching operation with a power penalty of <5dB.

  19. An Active Trap Filter for Switching Harmonics Attenuation of Low-Pulse-Ratio Inverters

    DEFF Research Database (Denmark)

    Bai, Haofeng; Wang, Xiongfei; Loh, Poh Chiang

    2017-01-01

    method has also been proposed for the ATF to better enforce its active switching harmonic bypassing ability. Compared with conventional schemes for controlling active power filters, the proposed method is more readily implemented, since it requires neither current reference generation nor high......-bandwidth current control loop. Moreover, the use of a series LC-filter at its ac-side helps the ATF to reduce its inverter voltage and power ratings. Compensated frequency range of the ATF can hence be enlarged by using a comparably higher switching frequency and a proper step-by-step design procedure...

  20. Add-on-Statin Extended Release Nicotinic Acid/Laropiprant but Not the Switch to High-Dose Rosuvastatin Lowers Blood Pressure: An Open-Label Randomized Study

    Directory of Open Access Journals (Sweden)

    Anastazia Kei

    2011-01-01

    Full Text Available Introduction. Nicotinic acid (NA and statins have been associated with reductions in blood pressure (BP. Patients and Methods. We recruited 68 normotensive and hypertensive dyslipidemic patients who were treated with a conventional statin dose and had not achieved lipid targets. Patients were randomized to switch to high-dose rosuvastatin (40 mg/day or to add-on current statin treatment with extended release (ER NA/laropiprant (1000/20 mg/day for the first 4 weeks followed by 2000/40 mg/day for the next 8 weeks for 3 months. Results. Switching to rosuvastatin 40 mg/day was not associated with significant BP alterations. In contrast, the addition of ER-NA/laropiprant to current statin treatment resulted in a 7% reduction of systolic BP (from 134±12 to 125±10 mmHg, <.001 versus baseline and =.01 versus rosuvastatin group and a 5% reduction of diastolic BP (from 81±9 to 77±6 mmHg, =.009 versus baseline and =.01 versus rosuvastatin group. These reductions were significant only in the subgroup of hypertensives and were independent of the hypolipidemic effects of ER-NA/laropiprant. Conclusions. Contrary to the switch to high-dose rosuvastatin, the addition of ER-NA/laropiprant to statin treatment was associated with significant reductions in both systolic and diastolic BP.

  1. An integrated circuit/packet switched video conferencing system

    Energy Technology Data Exchange (ETDEWEB)

    Kippenhan Junior, H.A.; Lidinsky, W.P.; Roediger, G.A. [Fermi National Accelerator Lab., Batavia, IL (United States). HEP Network Resource Center; Waits, T.A. [Rutgers Univ., Piscataway, NJ (United States). Dept. of Physics and Astronomy

    1996-07-01

    The HEP Network Resource Center (HEPNRC) at Fermilab and the Collider Detector Facility (CDF) collaboration have evolved a flexible, cost-effective, widely accessible video conferencing system for use by high energy physics collaborations and others wishing to use video conferencing. No current systems seemed to fully meet the needs of high energy physics collaborations. However, two classes of video conferencing technology: circuit-switched and packet-switched, if integrated, might encompass most of HEPS's needs. It was also realized that, even with this integration, some additional functions were needed and some of the existing functions were not always wanted. HEPNRC with the help of members of the CDF collaboration set out to develop such an integrated system using as many existing subsystems and components as possible. This system is called VUPAC (Video conferencing Using Packets and Circuits). This paper begins with brief descriptions of the circuit-switched and packet-switched video conferencing systems. Following this, issues and limitations of these systems are considered. Next the VUPAC system is described. Integration is accomplished primarily by a circuit/packet video conferencing interface. Augmentation is centered in another subsystem called MSB (Multiport MultiSession Bridge). Finally, there is a discussion of the future work needed in the evolution of this system. (author)

  2. An integrated circuit/packet switched video conferencing system

    International Nuclear Information System (INIS)

    Kippenhan Junior, H.A.; Lidinsky, W.P.; Roediger, G.A.; Waits, T.A.

    1996-01-01

    The HEP Network Resource Center (HEPNRC) at Fermilab and the Collider Detector Facility (CDF) collaboration have evolved a flexible, cost-effective, widely accessible video conferencing system for use by high energy physics collaborations and others wishing to use video conferencing. No current systems seemed to fully meet the needs of high energy physics collaborations. However, two classes of video conferencing technology: circuit-switched and packet-switched, if integrated, might encompass most of HEPS's needs. It was also realized that, even with this integration, some additional functions were needed and some of the existing functions were not always wanted. HEPNRC with the help of members of the CDF collaboration set out to develop such an integrated system using as many existing subsystems and components as possible. This system is called VUPAC (Video conferencing Using Packets and Circuits). This paper begins with brief descriptions of the circuit-switched and packet-switched video conferencing systems. Following this, issues and limitations of these systems are considered. Next the VUPAC system is described. Integration is accomplished primarily by a circuit/packet video conferencing interface. Augmentation is centered in another subsystem called MSB (Multiport MultiSession Bridge). Finally, there is a discussion of the future work needed in the evolution of this system. (author)

  3. Design of all-optical, hot-electron current-direction-switching device based on geometrical asymmetry.

    Science.gov (United States)

    Kumarasinghe, Chathurangi S; Premaratne, Malin; Gunapala, Sarath D; Agrawal, Govind P

    2016-02-18

    We propose a nano-scale current-direction-switching device(CDSD) that operates based on the novel phenomenon of geometrical asymmetry between two hot-electron generating plasmonic nanostructures. The proposed device is easy to fabricate and economical to develop compared to most other existing designs. It also has the ability to function without external wiring in nano or molecular circuitry since it is powered and controlled optically. We consider a such CDSD made of two dissimilar nanorods separated by a thin but finite potential barrier and theoretically derive the frequency-dependent electron/current flow rate. Our analysis takes in to account the quantum dynamics of electrons inside the nanorods under a periodic optical perturbation that are confined by nanorod boundaries, modelled as finite cylindrical potential wells. The influence of design parameters, such as geometric difference between the two nanorods, their volumes and the barrier width on quality parameters such as frequency-sensitivity of the current flow direction, magnitude of the current flow, positive to negative current ratio, and the energy conversion efficiency is discussed by considering a device made of Ag/TiO2/Ag. Theoretical insight and design guidelines presented here are useful for customizing our proposed CDSD for applications such as self-powered logic gates, power supplies, and sensors.

  4. A nonlinear HP-type complementary resistive switch

    Directory of Open Access Journals (Sweden)

    Paul K. Radtke

    2016-05-01

    Full Text Available Resistive Switching (RS is the change in resistance of a dielectric under the influence of an external current or electric field. This change is non-volatile, and the basis of both the memristor and resistive random access memory. In the latter, high integration densities favor the anti-serial combination of two RS-elements to a single cell, termed the complementary resistive switch (CRS. Motivated by the irregular shape of the filament protruding into the device, we suggest a nonlinearity in the resistance-interpolation function, characterized by a single parameter p. Thereby the original HP-memristor is expanded upon. We numerically simulate and analytically solve this model. Further, the nonlinearity allows for its application to the CRS.

  5. A nonlinear HP-type complementary resistive switch

    Science.gov (United States)

    Radtke, Paul K.; Schimansky-Geier, Lutz

    2016-05-01

    Resistive Switching (RS) is the change in resistance of a dielectric under the influence of an external current or electric field. This change is non-volatile, and the basis of both the memristor and resistive random access memory. In the latter, high integration densities favor the anti-serial combination of two RS-elements to a single cell, termed the complementary resistive switch (CRS). Motivated by the irregular shape of the filament protruding into the device, we suggest a nonlinearity in the resistance-interpolation function, characterized by a single parameter p. Thereby the original HP-memristor is expanded upon. We numerically simulate and analytically solve this model. Further, the nonlinearity allows for its application to the CRS.

  6. Combustion mode switching with a turbocharged/supercharged engine

    Science.gov (United States)

    Mond, Alan; Jiang, Li

    2015-09-22

    A method for switching between low- and high-dilution combustion modes in an internal combustion engine having an intake passage with an exhaust-driven turbocharger, a crankshaft-driven positive displacement supercharger downstream of the turbocharger and having variable boost controllable with a supercharger bypass valve, and a throttle valve downstream of the supercharger. The current combustion mode and mass air flow are determined. A switch to the target combustion mode is commanded when an operating condition falls within a range of predetermined operating conditions. A target mass air flow to achieve a target air-fuel ratio corresponding to the current operating condition and the target combustion mode is determined. The degree of opening of the supercharger bypass valve and the throttle valve are controlled to achieve the target mass air flow. The amount of residual exhaust gas is manipulated.

  7. Study of opening switch characteristics of a plasma focus

    International Nuclear Information System (INIS)

    Rhee, M.J.; Schneider, R.F.

    1985-01-01

    It is shown that a current charged transmission line and an opening switch can be used as an inductive energy storage system to produce a high power pulse. A plasma focus device, in which a transmission line is inserted in series with the capacitor bank and a coaxial gun, is considered as an inductive energy storage system. The m = 0 instability in the plasma focus is utilized as an opening switch and the disrupted plasma column is considered as bipolar diode. The system is described preferably by the transmission line theory rather than the lumped circuit theory. The relationship between the output voltage and the current drop is given by V = ΔIZ, where Z is the characteristic impedance of the transmission line. The current drop ΔI depends on the mismatched load impedance of the plasma diode which is governed by nature of the m = 0 instability

  8. Theoretical and Experimental Studies of a Switched Inertance Hydraulic System in a Four-Port High-Speed Switching Valve Configuration

    Directory of Open Access Journals (Sweden)

    Min Pan

    2017-06-01

    Full Text Available The switched inertance hydraulic system (SIHS is a novel high-bandwidth and energy-efficient digital device which can adjust or control flow and pressure by a means that does not rely on throttling the flow and dissipation of power. An SIHS can provide an efficient step-up or step-down of pressure or flow rate by using a digital control signal. In this article, analytical models of an SIHS in a four-port high-speed switching valve configuration are proposed, and the system dynamics and performance are investigated theoretically and experimentally. The flow responses, system characteristics, and power consumption can be predicted effectively and accurately by using the proposed models, which were validated by comparing with experiments and with numerical simulation. The four-port configuration is compared with the three-port configuration, and it is concluded that the former one is less efficient for valves of the same size, but provides a bi-direction control capability. As bi-direction control is a common requirement, this constitutes an important contribution to the development of efficient digital hydraulics.

  9. A Bearingless Switched-Reluctance Motor for High Specific Power Applications

    Science.gov (United States)

    Choi, Benjamin B.; Siebert, Mark

    2006-01-01

    A 12-8 switched-reluctance motor (SRM) is studied in bearingless (or self-levitated) operation with coil currents limited to the linear region to avoid magnetic saturation. The required motoring and levitating currents are summed and go into a single motor coil per pole to obtain the highest power output of the motor by having more space for motor coil winding. Two controllers are investigated for the bearingless SRM operation. First, a model-based controller using the radial force, which is adjusted by a factor derived from finite element analysis, is presented. Then a simple and practical observation-based controller using a PD (proportional-derivative) control algorithm is presented. Both controllers were experimentally demonstrated to 6500 rpm. This paper reports the initial efforts toward eventual self levitation of a SRM operating into strong magnetic core saturation at liquid nitrogen temperature.

  10. Analysis of dc-Link Voltage Switching Ripple in Three-Phase PWM Inverters

    Directory of Open Access Journals (Sweden)

    Marija Vujacic

    2018-02-01

    Full Text Available The three-phase voltage source inverter (VSI is de facto standard in power conversion systems. To realize high power density systems, one of the items to be correctly addressed is the design and selection of the dc-link capacitor in relation to the voltage switching ripple. In this paper, effective formulas for designing the dc-link capacitor as a function of the switching voltage ripple amplitude are obtained, considering the operating conditions such as the modulation index and the output current amplitude. The calculations are obtained considering the requirements and restrictions referring to the high (switching-frequency dc-link voltage ripple component. Analyses have been performed considering the dc source impedance (non-ideal dc voltage source at the switching frequency and a balanced load. Analytical expressions are derived for the dc-link voltage switching ripple amplitude and its maximum value over the fundamental period. Different values of modulation index and output phase angle have been considered and different diagrams are presented. Analytical results were validated both by simulations and comprehensive experimental tests.

  11. A new Zero-Voltage-Transition PWM switching cell

    Energy Technology Data Exchange (ETDEWEB)

    Grigore, V. [Electronics and Telecommunications Faculty `Politebuica` University Bucharest (Romania); Kyyrae, J. [Helsinki University of Technology, Otaniemi (Finland): Institute of Intelligent Power Electronics

    1997-12-31

    In this paper a new Zero-Voltage-Transition (ZVT) PWM switching cell is presented. The proposed switching cell is composed of the normal hard-switched PWM cell (consisting of one active switch and one passive switch), plus an auxiliary circuit (consisting of one active switch and some reactive components). The auxiliary circuit is inactive during the ON and OFF intervals of the switches in the normal PWM switch. However, the transitions between the two states are controlled by the auxiliary circuit. Prior to turn-on, the voltage across the active switch in the PWM cell is forced to zero, thus the turn-on losses of the active switch are practically eliminated. At turn-off the auxiliary circuit behaves like a non-dissipative passive snubber reducing the turn-off losses to a great extent. Zero-Voltage-Transition switching technique almost eliminates switching losses. The active switch operates under ZVT conditions, the passive switch (diode) has a controlled reverse recovery, and the switch in the auxiliary circuit operates under Zero-Current-Switching (ZCS) conditions. (orig.) 6 refs.

  12. Reversible light-controlled conductance switching of azobenzene-based metal/polymer nanocomposites

    International Nuclear Information System (INIS)

    Pakula, Christina; Zaporojtchenko, Vladimir; Strunskus, Thomas; Faupel, Franz; Zargarani, Dordaneh; Herges, Rainer

    2010-01-01

    We present a new concept of light-controlled conductance switching based on metal/polymer nanocomposites with dissolved chromophores that do not have intrinsic current switching ability. Photoswitchable metal/PMMA nanocomposites were prepared by physical vapor deposition of Au and Pt clusters, respectively, onto spin-coated thin poly(methylmethacrylate) films doped with azo-dye molecules. High dye concentrations were achieved by functionalizing the azo groups with tails and branches, thus enhancing solubility. The composites show completely reversible optical switching of the absorption bands upon alternating irradiation with UV and blue light. We also demonstrate reversible light-controlled conductance switching. This is attributed to changes in the metal cluster separation upon isomerization based on model experiments where analogous conductance changes were induced by swelling of the composite films in organic vapors and by tensile stress.

  13. WE-DE-BRA-08: A Linear Accelerator Target Allowing Rapid Switching Between Treatment and High-Contrast Imaging Modes

    Energy Technology Data Exchange (ETDEWEB)

    Yewondwossen, M; Robar, J; Parsons, D [Dalhousie University, Halifax, NS (Canada)

    2016-06-15

    Purpose: During radiotherapy treatment, lung tumors can display substantial respiratory motion. This motion usually necessitates enlarged treatment margins to provide full tumour coverage. Unfortunately, these margins limit the dose that can be prescribed for tumour control and cause complications to normal tissue. Options for real-time methods of direct detection of tumour position, and particularly those that obviate the need for inserted fiducial markers, are limited. We propose a method of tumor tracking without implanted fiducial markers using a novel fast switching-target that toggles between a FFF copper/tungsten therapy mode and a FFF low-Z target mode for imaging. In this work we demonstrate proof-of-concept of this new technology. Methods: The prototype includes two targets: i) a FFF copper/tungsten target equivalent to that in the Varian 2100 EX 6 MV, and ii) a low-Z (carbon) target with a thickness of 110% of continuous slowing down approximation range (CSDA) at 7 MeV. The two targets can be exchanged with a custom made linear slide and motor-driven actuator. The usefulness of the switching-target concept is demonstrated through experimental BEV Planar images acquired with continual treatment and imaging at a user-defined period. Results: The prototype switching-target demonstrates that two recent advances in linac technology (FFF target for therapy and low-Z target) can be combined with synergy. The switching-target approach offers the capacity for rapid switching between treatment and high-contrast imaging modes, allowing intrafractional tracking, as demonstrated in this work with dynamic breathing phantom. By using a single beam-line, the design is streamlined and may obviate the need for an auxiliary imaging system (e.g., kV OBI.) Conclusion: This switching-target approach is a feasible combination of two current advances in linac technology (FFF target for therapy and a FFF low-Z target) allowing new options in on-line IGRT.

  14. Design and Test of a Thermal Triggered Persistent Current System using High Temperature Superconducting Tapes

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dong Keun [Department of Electrical and Electronic Engineering, Yonsei University, Shinchon-Dong 134, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of); Kang, Hyoungku [Electro-Mechanical Research Institute, Hyundai Heavy Industries, Yongin (Korea, Republic of); Ahn, Min Cheol [Department of Electrical and Electronic Engineering, Yonsei University, Shinchon-Dong 134, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of); Yang, Seong Eun [Department of Electrical and Electronic Engineering, Yonsei University, Shinchon-Dong 134, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of); Yoon, Yong Soo [Department of Electrical Engineering, Ansan College of Technology, 671 Choji-Dong, Danwon-Gu, Ansan, 425-792 (Korea, Republic of); Lee, Sang Jin [Department of Electrical and Electronic Engineering, Yonsei University, Shinchon-Dong 134, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of); Ko, Tae Kuk [Department of Electrical and Electronic Engineering, Yonsei University, Shinchon-Dong 134, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of)

    2006-06-01

    A superconducting magnet which is operated in persistent current mode in SMES, NMR, MRI and MAGLEV has many advantages such as high uniformity of magnetic field and reduced thermal loss. A high temperature superconducting (HTS) persistent current switch (PCS) system was designed and tested in this research. The HTS PCS was optimally designed using two different HTS tapes, second generation coated conductor (CC) HTS tape and Bi-2223 HTS tape by the finite element method (FEM) in thermal quench characteristic view. The CC tape is more prospective applicable wire in these days for its high n value and critical current independency from external magnetic field than Bi-2223 tape. Also a prototype PCS system using Bi-2223 tape was manufactured and tested. The PCS system consists of a PCS part, a heater which induces the PCS to quench, and a superconducting magnet. The test was performed in various conditions of transport current. An initial current decay appeared when the superconducting magnet was energized in a PCS system was analyzed. This paper would be foundation of HTS PCS researches.

  15. High frequency ignition arrangement

    Energy Technology Data Exchange (ETDEWEB)

    Canup, R E

    1977-03-03

    The invention concerns an HF ignition arrangement for combustion engines with a transistor oscillator. As this oscillator requires a current of 10A, with peak currents up to about 50A, it is not sensible to take this current through the remote ignition switch for switching it on and off. According to the invention the HF high voltage transformer of the ignition is provided with a control winding, which only requires a few milliamps DC and which can therefore be switched via the ignition switch. If the ignition switch is in the 'running' position, then a premagnetising DC current flows through the control winding, which suppresses the oscillation of the oscillator which has current flowing through it, until this current is interrupted by the interruptor contacts controlled by the combustion engine, so that the oscillations of the oscillator start immediately; the oscillator only continues to oscillate during the period during which the interruptor contacts controlled by the machine are open and interrupt the premagnetisation current. The control winding is short circuited in the 'off' position of the ignition switch.

  16. Current-Nonlinear Hall Effect and Spin-Orbit Torque Magnetization Switching in a Magnetic Topological Insulator

    Science.gov (United States)

    Yasuda, K.; Tsukazaki, A.; Yoshimi, R.; Kondou, K.; Takahashi, K. S.; Otani, Y.; Kawasaki, M.; Tokura, Y.

    2017-09-01

    The current-nonlinear Hall effect or second harmonic Hall voltage is widely used as one of the methods for estimating charge-spin conversion efficiency, which is attributed to the magnetization oscillation by spin-orbit torque (SOT). Here, we argue the second harmonic Hall voltage under a large in-plane magnetic field with an in-plane magnetization configuration in magnetic-nonmagnetic topological insulator (TI) heterostructures, Crx (Bi1 -ySby )2 -xTe3 /(Bi1 -ySby )2Te3 , where it is clearly shown that the large second harmonic voltage is governed not by SOT but mainly by asymmetric magnon scattering without macroscopic magnetization oscillation. Thus, this method does not allow an accurate estimation of charge-spin conversion efficiency in TI. Instead, the SOT contribution is exemplified by current pulse induced nonvolatile magnetization switching, which is realized with a current density of 2.5 ×1010 A m-2 , showing its potential as a spintronic material.

  17. Resistive switching properties and physical mechanism of europium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Wei; Zou, Changwei [School of Physical Science and Technology, Lingnan Normal University, Zhanjiang (China); Bao, Dinghua [State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou (China)

    2017-09-15

    A forming-free resistive switching effect was obtained in Pt/Eu{sub 2}O{sub 3}/Pt devices in which the Eu{sub 2}O{sub 3} thin films were fabricated by a chemical solution deposition method. The devices show unipolar resistive switching with excellent switching parameters, such as high resistance ratio (10{sup 7}), stable resistance values (read at 0.2 V), low reset voltage, good endurance, and long retention time (up to 10{sup 4} s). On the basis of the analysis of the current-voltage (I-V) curves and the resistance-temperature dependence, it can be concluded that the dominant conducting mechanisms were ohmic behavior and Schottky emission at low resistance state and high resistance state, respectively. The resistive switching behavior could be explained by the formation and rupture of conductive filament, which is related to the abundant oxygen vacancies generated in the deposition process. This work demonstrates the great potential opportunities of Eu{sub 2}O{sub 3} thin film in resistive switching memory applications, which might possess distinguished properties. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Wide Bandgap Extrinsic Photoconductive Switches

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, James S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-07-03

    Semi-insulating Gallium Nitride, 4H and 6H Silicon Carbide are attractive materials for compact, high voltage, extrinsic, photoconductive switches due to their wide bandgap, high dark resistance, high critical electric field strength and high electron saturation velocity. These wide bandgap semiconductors are made semi-insulating by the addition of vanadium (4H and 6HSiC) and iron (2H-GaN) impurities that form deep acceptors. These deep acceptors trap electrons donated from shallow donor impurities. The electrons can be optically excited from these deep acceptor levels into the conduction band to transition the wide bandgap semiconductor materials from a semi-insulating to a conducting state. Extrinsic photoconductive switches with opposing electrodes have been constructed using vanadium compensated 6H-SiC and iron compensated 2H-GaN. These extrinsic photoconductive switches were tested at high voltage and high power to determine if they could be successfully used as the closing switch in compact medical accelerators.

  19. Laser-produced dense plasma in extremely high pressure gas and its application to a plasma-bridged gap switch

    International Nuclear Information System (INIS)

    Yamada, J.; Okuda, A.

    1989-01-01

    When an extremely high pressure gas is irradiated by an intense laser light, a dense plasma produced at the focal spot moves towards the focusing lens with a high velocity. Making use of this phenomenon, a new plasma-bridged gap switch is proposed and its switching characteristics is experimentally examined. From the experiments, it is confirmed that the switching time is almost constant with the applied voltage only when the focal spot is just on the positive electrode, indicating that the bridging of gap is caused by the laser light. (author)

  20. Self-Oscillating Soft Switching Envelope Tracking Power Supply for Tetra2 Base Station

    DEFF Research Database (Denmark)

    Høyerby, Mikkel Christian Wendelboe; Andersen, Michael Andreas E.

    2007-01-01

    This paper presents a high-efficiency, high-bandwidth solution to implementing an envelope tracking power supply for the RF power amplifier (RFPA) in a Tetra2 base station. The solution is based on synchronous rectified buck topology, augmented with high-side switch zero-current switching (ZCS......) implemented with a series inductor and an external clamping power supply. Combined with advanced power stage components (die-size MOSFETs), a high-performance fixed-frequency self-oscillating (sliding mode) control strategy and a 4th-order output filter, this leads to a compact, effective and efficient...... overall solution switching at 1MHz with 88-95% efficiency. In a class-AB RFPA amplifying a 50kHz bandwidth QAM Tetra2 signal at 4.6W average output power, the use of tracking supply voltage reduced power dissipation by 25W....

  1. Call for Papers: Photonics in Switching

    Science.gov (United States)

    Wosinska, Lena; Glick, Madeleine

    2006-04-01

    Call for Papers: Photonics in Switching Guest Editors: Lena Wosinska, Royal Institute of Technology (KTH) / ICT Sweden Madeleine Glick, Intel Research, Cambridge, UK Technologies based on DWDM systems allow data transmission with bit rates of Tbit/s on a single fiber. To facilitate this enormous transmission volume, high-capacity and high-speed network nodes become inevitable in the optical network. Wideband switching, WDM switching, optical burst switching (OBS), and optical packet switching (OPS) are promising technologies for harnessing the bandwidth of WDM optical fiber networks in a highly flexible and efficient manner. As a number of key optical component technologies approach maturity, photonics in switching is becoming an increasingly attractive and practical solution for the next-generation of optical networks. The scope of this special issue is focused on the technology and architecture of optical switching nodes, including the architectural and algorithmic aspects of high-speed optical networks. Scope of Submission The scope of the papers includes, but is not limited to, the following topics: WDM node architectures Novel device technologies enabling photonics in switching, such as optical switch fabrics, optical memory, and wavelength conversion Routing protocols WDM switching and routing Quality of service Performance measurement and evaluation Next-generation optical networks: architecture, signaling, and control Traffic measurement and field trials Optical burst and packet switching OBS/OPS node architectures Burst/Packet scheduling and routing algorithms Contention resolution/avoidance strategies Services and applications for OBS/OPS (e.g., grid networks, storage-area networks, etc.) Burst assembly and ingress traffic shaping Hybrid OBS/TDM or OBS/wavelength routing Manuscript Submission To submit to this special issue, follow the normal procedure for submission to JON and select ``Photonics in Switching' in the features indicator of the online

  2. Design of a Command-Triggered Plasma Opening Switch for Terawatt Applications

    International Nuclear Information System (INIS)

    Savage, Mark E.; Mendel, C.W.; Seidel, David B.

    1999-01-01

    Inductive energy storage systems can have high energy density, lending to smaller, less expensive systems. The crucial element of an inductive energy storage system is the opening switch. This switch must conduct current while energy is stored in an inductor, then open quickly to transfer this energy to a load. Plasma can perform this function. The Plasma Opening Switch (POS) has been studied for more than two decades. Success with the conventional plasma opening switch has been limited. A system designed to significantly improve the performance of vacuum opening switches is described in this paper. The gap cleared of plasma is a rough figure-of-merit for vacuum opening switches. Typical opened gaps of 3 mm are reported for conventional switches. The goal for the system described in this paper is more than 3 cm. To achieve this, the command-triggered POS adds an active opening mechanism, which allows complete separation of conduction and opening. This separation is advantageous because of the widely different time scales of conduction and opening. The detrimental process of magnetic field penetration into the plasma during conduction is less important in this switch. The opening mechanism duration is much shorter than the conduction time, so penetration during opening is insignificant. Opening is accomplished with a fast magnetic field that pushes plasma out of the switch region. Plasma must be removed from the switch region to allow high voltage. This paper describes some processes important during conduction and opening, and show calculations on the trigger requirements. The design of the switch is shown. This system is designed to demonstrate both improved performance and nanosecond output jitter at levels greater than one terawatt. An amplification mechanism is described which reduces the trigger energy. Particle-in-cell simulations of the system are also shown

  3. Development status of triggered vacuum switches at All-Russian Electrotechnical Institute and prospects of its applications

    International Nuclear Information System (INIS)

    Alfverov, D.F.; Vozdvienskij, V.A.; Sidorov, V.A.

    1996-01-01

    The sealed-off triggered vacuum switches (TVS) find their application in even broader class of high-voltage high-power high-repetition rate energy storage systems. They can operate in a broad range of voltages (1-100 kV) and currents (1 A - 200 kA). Further increase of the limit switching current up to 500 kA and of the transferred charge over 100 As seems feasible. TVS are popular for their compactness and reliability. Main parameters and possibilities of applications of a number of TVS types developed in the All-Russian Electrotechnical Institute in Moscow are described in the paper. (J.U.). 1 tab., 13 refs

  4. Development status of triggered vacuum switches at All-Russian Electrotechnical Institute and prospects of its applications

    Energy Technology Data Exchange (ETDEWEB)

    Alfverov, D F; Vozdvienskij, V A; Sidorov, V A [All-Russian Electrotechnical Institute, Moscow (Russian Federation)

    1997-12-31

    The sealed-off triggered vacuum switches (TVS) find their application in even broader class of high-voltage high-power high-repetition rate energy storage systems. They can operate in a broad range of voltages (1-100 kV) and currents (1 A - 200 kA). Further increase of the limit switching current up to 500 kA and of the transferred charge over 100 As seems feasible. TVS are popular for their compactness and reliability. Main parameters and possibilities of applications of a number of TVS types developed in the All-Russian Electrotechnical Institute in Moscow are described in the paper. (J.U.). 1 tab., 13 refs.

  5. Resistive switching in Pt/TiO{sub 2}/Pt

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Doo Seok

    2008-08-15

    Recently, the resistive switching behavior in TiO{sub 2} has drawn attention due to its application to resistive random access memory (RRAM) devices. TiO{sub 2} shows characteristic non-volatile resistive switching behavior, i.e. reversible switching between a high resistance state (HRS) and a low resistance state (LRS). Both unipolar resistive switching (URS) and bipolar resistive switching (BRS) are found to be observed in TiO{sub 2} depending on the compliance current for the electroforming. In this thesis the characteristic current-voltage (I-V) hysteresis in three different states of TiO{sub 2}, pristine, URS-activated, and BRS-activated states, was investigated and understood in terms of the migration of oxygen vacancies in TiO{sub 2}. The I-V hysteresis of pristine TiO{sub 2} was found to show volatile behavior. That is, the temporary variation of the resistance took place depending on the applied voltage. However, the I-V hysteresis of URS- and BRS-activated states showed non-volatile resistive switching behavior. Some evidences proving the evolution of oxygen gas during electroforming were obtained from time-of-flight secondary ion mass spectroscopy analysis and the variation of the morphology of switching cells induced by the electroforming. On the assumption that a large number of oxygen vacancies are introduced by the electroforming process, the I-V behavior in electroformed switching cells was simulated with varying the distribution of oxygen vacancies in electroformed TiO{sub x} (x

  6. Study of Ag/RGO/ITO sandwich structure for resistive switching behavior deposited on plastic substrate

    Science.gov (United States)

    Vartak, Rajdeep; Rag, Adarsh; De, Shounak; Bhat, Somashekhara

    2018-05-01

    We report here the use of facile and environmentally benign way synthesized reduced graphene oxide (RGO) for low-voltage non-volatile memory device as charge storing element. The RGO solutions have been synthesized using electrochemical exfoliation of battery electrode. The solution processed based RGO solution is suitable for large area and low-cost processing on plastic substrate. Room-temperature current-voltage characterisation has been carried out in Ag/RGO/ITO PET sandwich configuration to study the type of trap distribution. It is observed that in the low-voltage sweep, ohmic current is the main mechanism of current flow and trap filled/assisted conduction is observed at high-sweep voltage region. The Ag/RGO/ITO PET sandwich structure showed bipolar resistive switching behavior. These mechanisms can be analyzed based on oxygen availability and vacancies in the RGO giving rise to continuous least resistive path (conductive) and high resistance path along the structure. An Ag/RGO/ITO arrangement demonstrates long retention time with low operating voltage, low set/reset voltage, good ON/OFF ratio of 103 (switching transition between lower resistance state and higher resistance state and decent switching performance. The RGO memory showed decent results with an almost negligible degradation in switching properties which can be used for low-voltage and low-cost advanced flexible electronics.

  7. Current limiter circuit system

    Science.gov (United States)

    Witcher, Joseph Brandon; Bredemann, Michael V.

    2017-09-05

    An apparatus comprising a steady state sensing circuit, a switching circuit, and a detection circuit. The steady state sensing circuit is connected to a first, a second and a third node. The first node is connected to a first device, the second node is connected to a second device, and the steady state sensing circuit causes a scaled current to flow at the third node. The scaled current is proportional to a voltage difference between the first and second node. The switching circuit limits an amount of current that flows between the first and second device. The detection circuit is connected to the third node and the switching circuit. The detection circuit monitors the scaled current at the third node and controls the switching circuit to limit the amount of the current that flows between the first and second device when the scaled current is greater than a desired level.

  8. Operation of a homeostatic sleep switch.

    Science.gov (United States)

    Pimentel, Diogo; Donlea, Jeffrey M; Talbot, Clifford B; Song, Seoho M; Thurston, Alexander J F; Miesenböck, Gero

    2016-08-18

    Sleep disconnects animals from the external world, at considerable risks and costs that must be offset by a vital benefit. Insight into this mysterious benefit will come from understanding sleep homeostasis: to monitor sleep need, an internal bookkeeper must track physiological changes that are linked to the core function of sleep. In Drosophila, a crucial component of the machinery for sleep homeostasis is a cluster of neurons innervating the dorsal fan-shaped body (dFB) of the central complex. Artificial activation of these cells induces sleep, whereas reductions in excitability cause insomnia. dFB neurons in sleep-deprived flies tend to be electrically active, with high input resistances and long membrane time constants, while neurons in rested flies tend to be electrically silent. Correlative evidence thus supports the simple view that homeostatic sleep control works by switching sleep-promoting neurons between active and quiescent states. Here we demonstrate state switching by dFB neurons, identify dopamine as a neuromodulator that operates the switch, and delineate the switching mechanism. Arousing dopamine caused transient hyperpolarization of dFB neurons within tens of milliseconds and lasting excitability suppression within minutes. Both effects were transduced by Dop1R2 receptors and mediated by potassium conductances. The switch to electrical silence involved the downregulation of voltage-gated A-type currents carried by Shaker and Shab, and the upregulation of voltage-independent leak currents through a two-pore-domain potassium channel that we term Sandman. Sandman is encoded by the CG8713 gene and translocates to the plasma membrane in response to dopamine. dFB-restricted interference with the expression of Shaker or Sandman decreased or increased sleep, respectively, by slowing the repetitive discharge of dFB neurons in the ON state or blocking their entry into the OFF state. Biophysical changes in a small population of neurons are thus linked to the

  9. The neural basis of task switching changes with skill acquisition

    Directory of Open Access Journals (Sweden)

    Koji eJimura

    2014-05-01

    Full Text Available Learning novel skills involves reorganization and optimization of cognitive processing involving a broad network of brain regions. Previous work has shown asymmetric costs of switching to a well-trained task versus a poorly-trained task, but the neural basis of these differential switch costs is unclear. The current study examined the neural signature of task switching in the context of acquisition of new skill. Human participants alternated randomly between a novel visual task (mirror-reversed word reading and a highly practiced one (plain word reading, allowing the isolation of task switching and skill set maintenance. Two scan sessions were separated by two weeks, with behavioral training on the mirror reading task in between the two sessions. Broad cortical regions, including bilateral prefrontal, parietal, and extrastriate cortices, showed decreased activity associated with learning of the mirror reading skill. In contrast, learning to switch to the novel skill was associated with decreased activity in a focal subcortical region in the dorsal striatum. Switching to the highly practiced task was associated with a non-overlapping set of regions, suggesting substantial differences in the neural substrates of switching as a function of task skill. Searchlight multivariate pattern analysis also revealed that learning was associated with decreased pattern information for mirror versus plain reading tasks in fronto-parietal regions. Inferior frontal junction and posterior parietal cortex showed a joint effect of univariate activation and pattern information. These results suggest distinct learning mechanisms task performance and executive control as a function of learning.

  10. Comparison of switching control algorithms effective in restricting the switching in the neighborhood of the origin

    International Nuclear Information System (INIS)

    Joung, JinWook; Chung, Lan; Smyth, Andrew W

    2010-01-01

    The active interaction control (AIC) system consisting of a primary structure, an auxiliary structure and an interaction element was proposed to protect the primary structure against earthquakes and winds. The objective of the AIC system in reducing the responses of the primary structure is fulfilled by activating or deactivating the switching between the engagement and the disengagement of the primary and auxiliary structures through the interaction element. The status of the interaction element is controlled by switching control algorithms. The previously developed switching control algorithms require an excessive amount of switching, which is inefficient. In this paper, the excessive amount of switching is restricted by imposing an appropriately designed switching boundary region, where switching is prohibited, on pre-designed engagement–disengagement conditions. Two different approaches are used in designing the newly proposed AID-off and AID-off 2 algorithms. The AID-off 2 algorithm is designed to affect deactivated switching regions explicitly, unlike the AID-off algorithm, which follows the same procedure of designing the engagement–disengagement conditions of the previously developed algorithms, by using the current status of the AIC system. Both algorithms are shown to be effective in reducing the amount of switching times triggered from the previously developed AID algorithm under an appropriately selected control sampling period for different earthquakes, but the AID-off 2 algorithm outperforms the AID-off algorithm in reducing the number of switching times

  11. AN ANALYTICAL STUDY OF SWITCHING TRACTION MOTORS

    Directory of Open Access Journals (Sweden)

    V. M. Bezruchenko

    2010-03-01

    Full Text Available The analytical study of switching of the tractive engines of electric locomotives is conducted. It is found that the obtained curves of change of current of the sections commuted correspond to the theory of average rectilinear switching. By means of the proposed method it is possible on the stage of design of tractive engines to forecast the quality of switching and to correct it timely.

  12. Method and device for current driven electric energy conversion

    DEFF Research Database (Denmark)

    2012-01-01

    Device comprising an electric power converter circuit for converting electric energy. The converter circuit comprises a switch arrangement with two or more controllable electric switches connected in a switching configuration and controlled so as to provide a current drive of electric energy from...... configurations such as half bridge buck, full bridge buck, half bridge boost, or full bridge boost. A current driven conversion is advantageous for high efficient energy conversion from current sources such as solar cells or where a voltage source is connected through long cables, e.g. powerline cables for long...... an associated electric source connected to a set of input terminals. This is obtained by the two or more electric swiches being connected and controlled to short-circuit the input terminals during a part of a switching period. Further, a low pass filter with a capacitor and an inductor are provided to low pass...

  13. Performance characterization of gallium nitride HEMT cascode switch for power conditioning applications

    International Nuclear Information System (INIS)

    Chou, Po-Chien; Cheng, Stone

    2015-01-01

    Highlights: • We develop TO-257 cascoded GaN switch configuration in power conversion applications. • The normally-off cascode circuit provides 14.6 A/600 V characteristics. • Analysis of resistive and inductive switching performances shown in loaded circuits. • A 48-to-96 V boost converter is used to evaluate the benefit of GaN cascode switches. - Abstract: A hybrid cascoded GaN switch configuration is demonstrated in power conversion applications. A novel metal package is proposed for the packaging of a D-mode GaN MIS-HEMT cascoded with an integrated power MOSFET and a SBD. The normally-off cascode circuit provides a maximum drain current of 14.6 A and a blocking capability of 600 V. Analysis of 200 V/1 A power conversion characteristics are discussed and show the excellent switching performance in load circuits. Switching characteristics of the integral SiC SBD are also demonstrated. Finally, a 48-to-96 V boost converter is used to evaluate the benefit of GaN cascode switches. These results show that high-voltage GaN-HEMTs can be switching devices for an ultralow-loss converter circuit

  14. Performance characterization of gallium nitride HEMT cascode switch for power conditioning applications

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Po-Chien; Cheng, Stone, E-mail: stonecheng@mail.nctu.edu.tw

    2015-08-15

    Highlights: • We develop TO-257 cascoded GaN switch configuration in power conversion applications. • The normally-off cascode circuit provides 14.6 A/600 V characteristics. • Analysis of resistive and inductive switching performances shown in loaded circuits. • A 48-to-96 V boost converter is used to evaluate the benefit of GaN cascode switches. - Abstract: A hybrid cascoded GaN switch configuration is demonstrated in power conversion applications. A novel metal package is proposed for the packaging of a D-mode GaN MIS-HEMT cascoded with an integrated power MOSFET and a SBD. The normally-off cascode circuit provides a maximum drain current of 14.6 A and a blocking capability of 600 V. Analysis of 200 V/1 A power conversion characteristics are discussed and show the excellent switching performance in load circuits. Switching characteristics of the integral SiC SBD are also demonstrated. Finally, a 48-to-96 V boost converter is used to evaluate the benefit of GaN cascode switches. These results show that high-voltage GaN-HEMTs can be switching devices for an ultralow-loss converter circuit.

  15. Elements of magnetic switching

    International Nuclear Information System (INIS)

    Aaland, K.

    1983-01-01

    This chapter describes magnetic switching as a method of connecting a capacitor bank (source) to a load; reviews several successful applications of magnetic switching, and discusses switching transformers, limitations and future possibilities. Some of the inflexibility and especially the high cost of magnetic materials may be overcome with the availability of the new splash cooled ribbons (Metglas). Experience has shown that magnetics works despite shock, radiation or noise interferences

  16. Single Switch Nonisolated Ultra-Step-Up DC-DC Converter with an Integrated Coupled Inductor for High Boost Applications

    DEFF Research Database (Denmark)

    Siwakoti, Yam P.; Blaabjerg, Frede

    2017-01-01

    This paper introduces a new single-switch nonisolated dc-dc converter with very high voltage gain and reduced semiconductor voltage stress. The converter utilizes an integrated autotransformer and a coupled inductor on the same core in order to achieve a very high voltage gain without using extreme...... duty cycle. Furthermore, a passive lossless clamp circuit recycles the leakage energy of the coupled magnetics and alleviates the voltage spikes across the main switch. This feature along with low stress on the switching device enables the designer to use a low voltage and low RDS-on MOSFET, which...

  17. Open-switch fault detection method of an NPC converter for wind turbine systems

    DEFF Research Database (Denmark)

    Lee, June-Seok; Lee, Kyo-Beum; Blaabjerg, Frede

    2013-01-01

    In wind turbine generation (WTG) systems, the neutral-point-clamped (NPC) topology is widely used as the part of a back-to-back converter since the three-level NPC topology has more advantages than the conventional two-level inverter especially for high power. There are twelve switches in the NPC......-switch detection method of the NPC converter is different from that of the NPC inverter due to the different current paths of the NPC converter. This paper proposes the open-switch fault detection method of the NPC converter connected the permanent-magnet synchronous generator (PMSG). Moreover, the open...

  18. High-performance flat data center network architecture based on scalable and flow-controlled optical switching system

    Science.gov (United States)

    Calabretta, Nicola; Miao, Wang; Dorren, Harm

    2016-03-01

    Traffic in data centers networks (DCNs) is steadily growing to support various applications and virtualization technologies. Multi-tenancy enabling efficient resource utilization is considered as a key requirement for the next generation DCs resulting from the growing demands for services and applications. Virtualization mechanisms and technologies can leverage statistical multiplexing and fast switch reconfiguration to further extend the DC efficiency and agility. We present a novel high performance flat DCN employing bufferless and distributed fast (sub-microsecond) optical switches with wavelength, space, and time switching operation. The fast optical switches can enhance the performance of the DCNs by providing large-capacity switching capability and efficiently sharing the data plane resources by exploiting statistical multiplexing. Benefiting from the Software-Defined Networking (SDN) control of the optical switches, virtual DCNs can be flexibly created and reconfigured by the DCN provider. Numerical and experimental investigations of the DCN based on the fast optical switches show the successful setup of virtual network slices for intra-data center interconnections. Experimental results to assess the DCN performance in terms of latency and packet loss show less than 10^-5 packet loss and 640ns end-to-end latency with 0.4 load and 16- packet size buffer. Numerical investigation on the performance of the systems when the port number of the optical switch is scaled to 32x32 system indicate that more than 1000 ToRs each with Terabit/s interface can be interconnected providing a Petabit/s capacity. The roadmap to photonic integration of large port optical switches will be also presented.

  19. Determining Switched Reluctance Motor Current Waveforms Exploiting the Transformation from the Time to the Position Domain

    Directory of Open Access Journals (Sweden)

    Jakub Bernat

    2017-06-01

    Full Text Available This paper addresses the issue of estimating current waveforms in a switched reluctance motor required to achieve a desired electromagnetic torque. The methodology employed exploits the recently-developed method based on the transformation from the time to the position domain. This transformation takes account of nonlinearities caused by a doubly-salient structure. Owing to this new modelling technique it is possible to solve optimization problems with reference torque, constrained voltage, and parameter sensitivity accounted for. The proposed methodology is verified against published solutions and illustrated through simulations and experiments.

  20. Current delivery and radiation yield in plasma flow switch-driven implosions

    International Nuclear Information System (INIS)

    Baker, W.L.; Degnan, J.H.; Beason, J.D.

    1995-01-01

    Vacuum inductive-store, plasma flow switch-driven implosion experiments have been performed using the Shiva Star capacitor bank (1300 μf, 3 nH, 120 kV, 9.4 MJ). A coaxial plasma gun arrangement is employed to store magnetic energy in the vacuum volume upstream of a dynamic discharge during the 3- to 4-μs rise of current from the capacitor bank. Motion of the discharge off the end of the inner conductor of the gun releases this energy to implode a coaxial cylindrical foil. The implosion loads are 5-cm-radius, 2-cm-long, 200 to 400 μg/cm 2 cylinders of aluminum or aluminized Formvar. With 5 MJ stored initially in the capacitor bank, more than 9 MA are delivered to the implosion load with a rise time of nearly 200 ns. The subsequent implosion results in a radiation output of 0.95 MJ at a power exceeding 5 TW (assuming isotropic emission). Experimental results and related two-dimensional magnetohydrodynamic simulations are discussed. 10 refs., 12 figs

  1. Investigation on properties of ultrafast switching in a bulk gallium arsenide avalanche semiconductor switch

    International Nuclear Information System (INIS)

    Hu, Long; Su, Jiancang; Ding, Zhenjie; Hao, Qingsong; Yuan, Xuelin

    2014-01-01

    Properties of ultrafast switching in a bulk gallium arsenide (GaAs) avalanche semiconductor switch based on semi-insulating wafer, triggered by an optical pulse, were analyzed using physics-based numerical simulations. It has been demonstrated that when a voltage with amplitude of 5.2 kV is applied, after an exciting optical pulse with energy of 1 μJ arrival, the structure with thickness of 650 μm reaches a high conductivity state within 110 ps. Carriers are created due to photons absorption, and electrons and holes drift to anode and cathode terminals, respectively. Static ionizing domains appear both at anode and cathode terminals, and create impact-generated carriers which contribute to the formation of electron-hole plasma along entire channel. When the electric field in plasma region increases above the critical value (∼4 kV/cm) at which the electrons drift velocity peaks, a domain comes into being. An increase in carrier concentration due to avalanche multiplication in the domains reduces the domain width and results in the formation of an additional domain as soon as the field outside the domains increases above ∼4 kV/cm. The formation and evolution of multiple powerfully avalanching domains observed in the simulations are the physical reasons of ultrafast switching. The switch exhibits delayed breakdown with the characteristics affected by biased electric field, current density, and optical pulse energy. The dependence of threshold energy of the exciting optical pulse on the biased electric field is discussed

  2. Untriggered water switching

    International Nuclear Information System (INIS)

    Van Devender, J.P.; Martin, T.H.

    Recent experiments indicate that synchronous untriggered multichannel switching in water will permit the development of relatively simple, ultra-low impedance, short pulse, relativistic electron beam (REB) accelerators. These experiments resulted in the delivery of a 1.5 MV, 0.75 MA, 15 ns pulse into a two-ohm line with a current risetime of 2 x 10 14 A/sec. The apparatus consisted of a 3 MV Marx generator and a series of three 112 cm wide strip water lines separated by two edge-plane water-gap switches. The Marx generator charged the first line in less than 400 ns. The first switch then formed five or more channels. The second line was charged in 60 ns and broke down with 10 to 25 channels at a mean field of 1.6 MV/cm. The closure time of each spark channel along both switches was measured with a streak camera and showed low jitter. The resulting fast pulse line construction is simpler and should provide considerable costs savings from previous designs. Multiples of these low impedance lines in parallel can be employed to obtain power levels in the 10 14 W range for REB fusion studies. (U.S.)

  3. ICC Experiment Performance Improvement through Advanced Feedback Controllers for High-Power Low-Cost Switching Power Amplifiers

    International Nuclear Information System (INIS)

    Nelson, Brian A.

    2006-01-01

    Limited resources force most smaller fusion energy research experiments to have little or no feedback control of their operational parameters, preventing achievement of their full operational potential. Recent breakthroughs in high-power switching technologies have greatly reduced feedback-controlled power supply costs, primarily those classified as switching power amplifiers. However, inexpensive and flexible controllers for these power supplies have not been developed. A uClinux-based micro-controller (Analog Devices Blackfin BF537) was identified as having the capabilities to form the base of a digital control system for switching power amplifiers. A control algorithm was created, and a Linux character device driver was written to realize the algorithm. The software and algorithm were successfully tested on a switching power amplifier and magnetic field coil using University of Washington (subcontractor) resources

  4. Voltage Balancing Method on Expert System for 51-Level MMC in High Voltage Direct Current Transmission

    Directory of Open Access Journals (Sweden)

    Yong Chen

    2016-01-01

    Full Text Available The Modular Multilevel Converters (MMC have been a spotlight for the high voltage and high power transmission systems. In the VSC-HVDC (High Voltage Direct Current based on Voltage Source Converter transmission system, the energy of DC link is stored in the distributed capacitors, and the difference of capacitors in parameters and charge rates causes capacitor voltage balance which affects the safety and stability of HVDC system. A method of MMC based on the expert system for reducing the frequency of the submodules (SMs of the IGBT switching frequency is proposed. Firstly, MMC with 51 levels for HVDC is designed. Secondly, the nearest level control (NLC for 51-level MMC is introduced. Thirdly, a modified capacitor voltage balancing method based on expert system for MMC-based HVDC transmission system is proposed. Finally, a simulation platform for 51-level Modular Multilevel Converter is constructed by using MATLAB/SIMULINK. The results indicate that the strategy proposed reduces the switching frequency on the premise of keeping submodule voltage basically identical, which greatly reduces the power losses for MMC-HVDC system.

  5. Experimental characterization of GIT-8 plasma opening switch

    International Nuclear Information System (INIS)

    Chuvatin, A.; Rouille, C.; Etlicher, B.; Kim, A.; Loginov, S.; Kokshenev, V.; Kovalchuk, B.

    1996-01-01

    High-current Plasma Opening Switch was experimentally studied on the GIT-8 inductive generator. Cordial laser interferometry allowed investigating the line-integrated POS plasma density dynamics during the switch operation. Recording of the axially distributed Bremsstrahlung radiation from the plasma region was used to determine the axial position where the opening started. The monitoring of fast plasma density oscillations with a characteristic frequency of ω ≅ 5 x 10 7 - 10 8 rad/s prior and during the opening is a new experimental achievement. A special study confirmed that such oscillations appear due to a plasma process. The oscillation frequency depended on the mean electron density as ω ∼ n e -0.5 . (author). 5 figs., 7 refs

  6. Pseudo-spark switch (PSS) characteristics under different operation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hamad, B. H., E-mail: dr.bassmahussain@gmail.com; Ahmad, A. K., E-mail: ahmad.kamal@sc.nahrainuniv.edu.iq [College of Science, Al Nahrain University, Jadria, Baghdad (Iraq); Lateef, K. H., E-mail: kamalhlatif@yahoo.com [Ministry of Science and Technology, Jadria, Baghdad (Iraq)

    2016-08-15

    The present paper concentrates on the characteristics of the pseudospark switch (PSS) designed in a previous work. The special characteristics of PSS make it a replacement for other high voltage switches such as thyratrons and ordinary high-pressure spark gaps. PSS is characterized by short rise time and small jitter time. The pseudo park chamber consists of two hollow cylindrical electrodes made of a stainless steel material (type 306L) separated by an insulator. The insulator used in our design is a glazed ceramic 70 mm in diameter and 3.5 mm in thickness. A PSS with an anode voltage of 29.2 kV, and a current of 3.6 kA and 11 ns rise time was achieved and used successfully at a repetition rate of about 2.2 kHz. A simple trigger circuit designed, built, and used effectively reaching more than 1.56 kV trigger pulse which is sufficient to ignite the argon gas inside the cathode to cause a breakdown. A non-inductive dummy load is designed to be a new technique to find the accurate value of the PSS inductance. A jitter time of ±10 ns pulses is observed to occur in a reliable manner for more than 6 h of continuous operation. In this research, the important parameters of this switch like rise time, peak current, and anode voltage were studied at various values of charging capacitance. The lifetime of this system is depending on the kind of the electrode material and on the type of insulation material in the main gap of the pseudospark switch.

  7. Measurement of trigger and cascade section runtimes in 6 MV switches using fiber coupled photodetectors

    Directory of Open Access Journals (Sweden)

    Jens Schwarz

    2012-07-01

    Full Text Available Since October 2007 Sandia National Laboratories has operated the refurbished Z machine at an improved load current of 26 MA yielding 400 TW of x-ray power. The current pulse shape to the load is controlled by 36 independently timed laser triggered gas switches. As part of the refurbishment effort, a fiber coupled laser spark detector system has been installed which is able to detect the laser generated plasma in situ inside the trigger section of the high voltage switch. In this paper we describe how this detection system can be used to characterize the discharge dynamics of these 5.9 MV, 820 kA switches.

  8. Resistive switching memory properties of layer-by-layer assembled enzyme multilayers

    International Nuclear Information System (INIS)

    Baek, Hyunhee; Cho, Jinhan; Lee, Chanwoo; Lim, Kwang-il

    2012-01-01

    The properties of enzymes, which can cause reversible changes in currents through redox reactions in solution, are of fundamental and practical importance in bio-electrochemical applications. These redox properties of enzymes are often associated with their charge-trap sites. Here, we demonstrate that reversible changes in resistance in dried lysozyme (LYS) films can be generated by an externally applied voltage as a result of charge trap/release. Based on such changes, LYS can be used as resistive switching active material for nonvolatile memory devices. In this study, cationic LYS and anionic poly(styrene sulfonate) (PSS) layers were alternately deposited onto Pt-coated silicon substrates using a layer-by-layer assembly method. Then, top electrodes were deposited onto the top of LYS/PSS multilayers to complete the fabrication of the memory-like device. The LYS/PSS multilayer devices exhibited typical resistive switching characteristics with an ON/OFF current ratio above 10 2 , a fast switching speed of 100 ns and stable performance. Furthermore, the insertion of insulating polyelectrolytes (PEs) between the respective LYS layers significantly enhanced the memory performance of the devices showing a high ON/OFF current ratio of ∼10 6 and low levels of power consumption. (paper)

  9. Electrically-controlled nonlinear switching and multi-level storage characteristics in WOx film-based memory cells

    Science.gov (United States)

    Duan, W. J.; Wang, J. B.; Zhong, X. L.

    2018-05-01

    Resistive switching random access memory (RRAM) is considered as a promising candidate for the next generation memory due to its scalability, high integration density and non-volatile storage characteristics. Here, the multiple electrical characteristics in Pt/WOx/Pt cells are investigated. Both of the nonlinear switching and multi-level storage can be achieved by setting different compliance current in the same cell. The correlations among the current, time and temperature are analyzed by using contours and 3D surfaces. The switching mechanism is explained in terms of the formation and rupture of conductive filament which is related to oxygen vacancies. The experimental results show that the non-stoichiometric WOx film-based device offers a feasible way for the applications of oxide-based RRAMs.

  10. Effect of Ag nanoparticles on resistive switching of polyfluorene-based organic non-volatile memory devices

    International Nuclear Information System (INIS)

    Kim, Tae-Wook; Oh, Seung-Hwan; Choi, Hye-Jung; Wang, Gun-Uk; Kim, Dong-Yu; Hwang, Hyun-Sang; Lee, Tak-Hee

    2010-01-01

    The effects of Ag nanoparticles on the switching behavior of polyfluorene-based organic nonvolatile memory devices were investigated. Polyfluorene-derivatives (WPF-oxy-F) with and without Ag nanoparticles were synthesized, and the presence of Ag nanoparticles in Ag-WPF-oxy-F was identified by transmission electron microscopy and X-ray photoelectron spectroscopy analyses. The Ag-nanoparticles did not significantly affect the basic switching performances, such as the current-voltage characteristics, the distribution of on/off resistance, and the retention. The pulse switching time of Ag-WPF-oxy-F was faster than that of WPF-oxy-F. Ag-WPF-oxy-F memory devices showed an area dependence in the high resistance state, implying that formation of a Ag metallic channel for current conduction.

  11. Microwave pulse generation by photoconductive switching

    Energy Technology Data Exchange (ETDEWEB)

    Pocha, M.D.; Druce, R.L.

    1989-03-14

    Laser activated photoconductive semiconductor switching shows significant potential for application in high power microwave generation. Primary advantages of this concept are: small size, light weight, ruggedness, precise timing and phasing by optical control, and the potential for high peak power in short pulses. Several concepts have been suggested for microwave generation using this technology. They generally fall into two categories (1) the frozen wave generator or (2) tuned cavity modulation, both of which require only fast closing switches. We have been exploring a third possibility requiring fast closing and opening switches, that is the direct modulation of the switch at microwave frequencies. Switches have been fabricated at LLNL using neutron irradiated Gallium Arsenide which exhibit response times as short as 50 ps at low voltages. We are in the process of performing high voltage tests. So far, we have been able to generate 2.4 kV pulses with approximately 340 ps response time (FWHM) using approximately a 200..mu..J optical pulse. Experiments are continuing to increase the voltage and improve the switching efficiency. 3 refs., 6 figs.

  12. Microwave pulse generation by photoconductive switching

    Science.gov (United States)

    Pocha, M. D.; Druce, R. L.

    1989-03-01

    Laser activated photoconductive semiconductor switching shows significant potential for application in high power microwave generation. Primary advantages of this concept are: small size, light weight, ruggedness, precise timing and phasing by optical control, and the potential for high peak power in short pulses. Several concepts have been suggested for microwave generation using this technology. They generally fall into two categories: (1) the frozen wave generator, or (2) tuned cavity modulation, both of which require only fast closing switches. We have been exploring a third possibility requiring fast closing and opening switches, that is the direct modulation of the switch at microwave frequencies. Switches have been fabricated at LLNL using neutron irradiated Gallium Arsenide which exhibit response times as short as 50 ps at low voltages. We are in the process of performing high voltage tests. So far, we have been able to generate 2.4 kV pulses with approximately 340 ps response time (FWHM) using approximately a 200 microJ optical pulse. Experiments are continuing to increase the voltage and improve the switching efficiency.

  13. A switched capacitor array based system for high-speed calorimetry

    International Nuclear Information System (INIS)

    Levi, M.; Bebek, C.; Ely, R.; Jared, R.; Kipnis, I.; Kirsten, F.; Kleinfelder, S.; Merrick, T.; Milgrome, O.

    1991-12-01

    A sixteen channel analog transient recorder with 256 cells per channel has been fabricated as an integrated circuit. The circuit uses switched capacitor array technology to achieve simultaneous read/write capability and twelve bit dynamic range. Combined with highly parallel analog-to-digital converter and readout control circuitry being developed this system should satisfy the demanding electronics requirements for calorimeter detectors at the SSC. The system design and test results are presented

  14. Partial spin absorption induced magnetization switching and its voltage-assisted improvement in an asymmetrical all spin logic device at the mesoscopic scale

    Science.gov (United States)

    Zhang, Yue; Zhang, Zhizhong; Wang, Lezhi; Nan, Jiang; Zheng, Zhenyi; Li, Xiang; Wong, Kin; Wang, Yu; Klein, Jacques-Olivier; Khalili Amiri, Pedram; Zhang, Youguang; Wang, Kang L.; Zhao, Weisheng

    2017-07-01

    Beyond memory and storage, future logic applications put forward higher requirements for electronic devices. All spin logic devices (ASLDs) have drawn exceptional interest as they utilize pure spin current instead of charge current, which could promise ultra-low power consumption. However, relatively low efficiencies of spin injection, transport, and detection actually impede high-speed magnetization switching and challenge perspectives of ASLD. In this work, we study partial spin absorption induced magnetization switching in asymmetrical ASLD at the mesoscopic scale, in which the injector and detector have the nano-fabrication compatible device size (>100 nm) and their contact areas are different. The enlarged contact area of the detector is conducive to the spin current absorption, and the contact resistance difference between the injector and the detector can decrease the spin current backflow. Rigorous spin circuit modeling and micromagnetic simulations have been carried out to analyze the electrical and magnetic features. The results show that, at the fabrication-oriented technology scale, the ferromagnetic layer can hardly be switched by geometrically partial spin current absorption. The voltage-controlled magnetic anisotropy (VCMA) effect has been applied on the detector to accelerate the magnetization switching by modulating magnetic anisotropy of the ferromagnetic layer. With a relatively high VCMA coefficient measured experimentally, a voltage of 1.68 V can assist the whole magnetization switching within 2.8 ns. This analysis and improving approach will be of significance for future low-power, high-speed logic applications.

  15. Gap formation processes in a high-density plasma opening switch

    International Nuclear Information System (INIS)

    Grossmann, J.M.; Swanekamp, S.B.; Ottinger, P.F.; Commisso, R.J.; Hinshelwood, D.D.; Weber, B.V.

    1995-01-01

    A gap opening process in plasma opening switches (POS) is examined with the aid of numerical simulations. In these simulations, a high density (n e =10 14 --5x10 15 cm -3 ) uniform plasma initially bridges a small section of the coaxial transmission line of an inductive energy storage generator. A short section of vacuum transmission line connects the POS to a short circuit load. The results presented here extend previous simulations in the n e =10 12 --10 13 cm -3 density regime. The simulations show that a two-dimensional (2-D) sheath forms in the plasma near a cathode. This sheath is positively charged, and electrostatic sheath potentials that are large compared to the anode--cathode voltage develop. Initially, the 2-D sheath is located at the generator edge of the plasma. As ions are accelerated out of the sheath, it retains its original 2-D structure, but migrates axially toward the load creating a magnetically insulated gap in its wake. When the sheath reaches the load edge of the POS, the POS stops conducting current and the load current increases rapidly. At the end of the conduction phase a gap exists in the POS whose size is determined by the radial dimensions of the 2-D sheath. Simulations at various plasma densities and current levels show that the radial size of the gap scales roughly as B/n e , where B is the magnetic field. The results of this work are discussed in the context of long-conduction-time POS physics, but exhibit the same physical gap formation mechanisms as earlier lower density simulations more relevant to short-conduction-time POS. copyright 1995 American Institute of Physics

  16. Multistate storage nonvolatile memory device based on ferroelectricity and resistive switching effects of SrBi2Ta2O9 films

    Science.gov (United States)

    Song, Zhiwei; Li, Gang; Xiong, Ying; Cheng, Chuanpin; Zhang, Wanli; Tang, Minghua; Li, Zheng; He, Jiangheng

    2018-05-01

    A memory device with a Pt/SrBi2Ta2O9(SBT)/Pt(111) structure was shown to have excellent combined ferroelectricity and resistive switching properties, leading to higher multistate storage memory capacity in contrast to ferroelectric memory devices. In this device, SBT polycrystalline thin films with significant (115) orientation were fabricated on Pt(111)/Ti/SiO2/Si(100) substrates using CVD (chemical vapor deposition) method. Measurement results of the electric properties exhibit reproducible and reliable ferroelectricity switching behavior and bipolar resistive switching effects (BRS) without an electroforming process. The ON/OFF ratio of the resistive switching was found to be about 103. Switching mechanisms for the low resistance state (LRS) and high resistance state (HRS) currents are likely attributed to the Ohmic and space charge-limited current (SCLC) behavior, respectively. Moreover, the ferroelectricity and resistive switching effects were found to be mutually independent, and the four logic states were obtained by controlling the periodic sweeping voltage. This work holds great promise for nonvolatile multistate memory devices with high capacity and low cost.

  17. Development of a piping thickness monitoring system using equipotential switching direct current potential drop method

    International Nuclear Information System (INIS)

    Kyung Ha, Ryu; Na Young, Lee; Il Soon, Hwang

    2007-01-01

    As nuclear power plants age, low alloy steel piping undergoes wall thickness reduction due to Flow Accelerated Corrosion (FAC). Persisting pipe rupture accidents prompted thinned pipe management programs. As a consequence extensive inspection activities are made based on the Ultrasonic Technique (UT). As the inspection points increase, time is needed to cover required inspection areas. In this paper, we present the Wide Range Monitoring (WiRM) concept with Equipotential Switching Direct Current Potential Drop (ES-DCPD) method by which FAC-active areas can be screened for detailed UT inspections. To apply ES-DCPD, we developed an electric resistance network model and electric field model based on Finite Element Analysis (FEA) to verify its feasibility. Experimentally we measured DCPD of the pipe elbow and confirmed the validity using UT inspections. For a more realistic validation test, we designed a high temperature flow test loop with environmental parameters turned for FAC simulation in the laboratory. Using electrochemical monitoring of water chemistry and local flow velocity prediction by computational fluid dynamic model, FAC rate is estimated. Based on the FAC prediction model and the simulation loop test, we plan to demonstrate the applicability of ES-DCPD in the PWR secondary environment. (authors)

  18. Development of microsecond generators with plasma current interrupting switch in I.V. Kurchatov Institute of Atomic Energy. Frequency operation of generators

    International Nuclear Information System (INIS)

    Babykin, V.M.; Chikin, R.V.; Dolgachev, G.I.; Golovanov, Yu.P.; Kovalev, Yu.I.; Ushakov, A.G.; Zakatov, L.P.

    1993-01-01

    This paper is a follow up to previously published work on microsecond plasma current interrupting switches (PCIS), which has been conducted in the I.V. Kurchatov Inst. Here the authors present some information on the practical implementation of such devices, and provide an overview of new research facilities

  19. Open-Switch Fault Detection Method of a Back-to-Back Converter Using NPC Topology for Wind Turbine Systems

    DEFF Research Database (Denmark)

    Lee, June-Seok; Lee, Kyo_Beum; Blaabjerg, Frede

    2015-01-01

    system can break down in the worst case scenario. To improve the reliability of WTG systems, an open-switch fault detection method for back-to-back converters using the NPC topology is required. This study analyzes effects of inner and outer open-switch faults of the NPC rectifier and inverter......In wind turbine generation (WTG) systems, a back-to-back converter with a neutral-point-clamped (NPC) topology is widely used because this topology has more advantages than a conventional two-level topology, particularly when operating at high power. There are 12 switches in the NPC topology....... An open-switch fault in the NPC rectifier of the back-to-back converter leads to the distortion of the input current and torque vibration in the system. Additionally, an open-switch fault in the NPC inverter of the back-to-back converter causes the distortion of the output current. Furthermore, the WTG...

  20. Electronically commutated serial-parallel switching for motor windings

    Science.gov (United States)

    Hsu, John S [Oak Ridge, TN

    2012-03-27

    A method and a circuit for controlling an ac machine comprises controlling a full bridge network of commutation switches which are connected between a multiphase voltage source and the phase windings to switch the phase windings between a parallel connection and a series connection while providing commutation discharge paths for electrical current resulting from inductance in the phase windings. This provides extra torque for starting a vehicle from lower battery current.

  1. Transformer core modeling for magnetizing inrush current investigation

    Directory of Open Access Journals (Sweden)

    A.Yahiou

    2014-03-01

    Full Text Available The inrush currents generated during an energization of power transformer can reach very high values and may cause many problems in power system. This magnetizing inrush current which occurs at the time of energization of a transformer is due to temporary overfluxing in the transformer core. Its magnitude mainly depends on switching parameters such as the resistance of the primary winding and the point-on-voltage wave (switching angle. This paper describes a system for measuring the inrush current which is composed principally of an acquisition card (EAGLE, and LabVIEW code. The system is also capable of presetting various combinations of switching parameters for the energization of a 2 kVA transformer via an electronic card. Moreover, an algorithm for calculating the saturation curve is presented taking the iron core reactive losses into account, thereby producing a nonlinear inductance. This curve is used to simulate the magnetizing inrush current using the ATP-EMTP software.

  2. Software Switching for High Throughput Data Acquisition Networks

    CERN Document Server

    AUTHOR|(CDS)2089787; Lehmann Miotto, Giovanna

    The bursty many-to-one communication pattern, typical for data acquisition systems, is particularly demanding for commodity TCP/IP and Ethernet technologies. The problem arising from this pattern is widely known in the literature as \\emph{incast} and can be observed as TCP throughput collapse. It is a result of overloading the switch buffers, when a specific node in a network requests data from multiple sources. This will become even more demanding for future upgrades of the experiments at the Large Hadron Collider at CERN. It is questionable whether commodity TCP/IP and Ethernet technologies in their current form will be still able to effectively adapt to bursty traffic without losing packets due to the scarcity of buffers in the networking hardware. This thesis provides an analysis of TCP/IP performance in data acquisition networks and presents a novel approach to incast congestion in these networks based on software-based packet forwarding. Our first contribution lies in confirming the strong analogies bet...

  3. Thickness-dependent resistance switching in Cr-doped SrTiO3

    Science.gov (United States)

    Kim, TaeKwang; Du, Hyewon; Kim, Minchang; Seo, Sunae; Hwang, Inrok; Kim, Yeonsoo; Jeon, Jihoon; Lee, Sangik; Park, Baeho

    2012-09-01

    The thickness-dependent bipolar resistance-switching behavior was investigated for epitaxiallygrown Cr-doped SrTiO3 (Cr-STO). All the pristine devices of different thickness showed polarity-independent symmetric current-voltage characteristic and the same space-charge-limited conduction mechanism. However, after a forming process, the resultant conduction and switching phenomena were significantly different depending on the thickness of Cr-STO. The forming process itself was highly influenced by resistance value of each pristine device. Based on our results, we suggest that the resistance-switching mechanism in Cr-STO depends not only on the insulating material's composition or the contact metal as previously reported but also on the initial resistance level determined by the geometry and the quality of the insulating material. The bipolar resistance-switching behaviors in oxide materials of different thicknesses exhibit mixed bulk and interface switching. This indicates that efforts in resistance-based memory research should be focused on scalability or process method to control a given oxide material in addition to material type and device structure.

  4. High Peak Power Test and Evaluation of S-band Waveguide Switches

    Science.gov (United States)

    Nassiri, A.; Grelick, A.; Kustom, R. L.; White, M.

    1997-05-01

    The injector and source of particles for the Advanced Photon Source is a 2856-MHz S-band electron-positron linear accelerator (linac) which produces electrons with energies up to 650 MeV or positrons with energies up to 450 MeV. To improve the linac rf system availability, an additional modulator-klystron subsystem is being constructed to provide a switchable hot spare unit for each of the five exsisting S-band transmitters. The switching of the transmitters will require the use of SF6-pressurized S-band waveguide switches at a peak operating power of 35 MW. Such rf switches have been successfully operated at other accelerator facilities but at lower peak powers. A test stand has been set up at the Stanford Linear Accelerator Center (SLAC) Klystron Factory to conduct tests comparing the power handling characteristics of two WR-284 and one WR-340 switches. Test results are presented and their implications for the design of the switching system are discussed.

  5. Motor models and transient analysis for high-temperature, superconductor switch-based adjustable speed drive applications. Final report

    International Nuclear Information System (INIS)

    Bailey, J.M.

    1996-06-01

    New high-temperature superconductor (HTSC) technology may allow development of an energy-efficient power electronics switch for adjustable speed drive (ASD) applications involving variable-speed motors, superconducting magnetic energy storage systems, and other power conversion equipment. This project developed a motor simulation module for determining optimal applications of HTSC-based power switches in ASD systems

  6. A high pulsed power supply system designed for pulsed high magnetic field

    International Nuclear Information System (INIS)

    Liu Kefu; Wang Shaorong; Zhong Heqing; Xu Yan; Pan Yuan

    2008-01-01

    This paper introduces the design of high pulsed power supply system for producing pulsed high magnetic field up to 70 T. This system consists of 58 sets of 55 μF of capacitor bank which provides 1.0 MJ energy storage. A set of vacuum closing switch is chosen as main switch for energy discharge into magnetic coil. A crowbar circuit with high power diodes in series with resistor is used to absorb the redundant energy and adjust pulse width. The resistance of magnetic coil changing with current is deduced by energy balance equations. A capacitor-charging power supply using a series-resonant, constant on-time variable frequency control, and zero-current switching charges the capacitor bank in one minute time with high efficiency. The pulsed power supply provides adjustable current and pulse width with 30 kA peak and 30 ms maximum. The primary experiments demonstrate the system reliability. This work provides an engineering guidance for future development of pulsed high magnetic field. (authors)

  7. Continuing studies of plasma erosion switches for power conditioning on multiterawatt pulsed power accelerators

    International Nuclear Information System (INIS)

    Stringfield, R.; Gilman, C.; James, G.; Peters, T.; Sincerny, P.; Wong, S.

    1983-01-01

    Recent PITHON experiments with plasma erosion switches (PES) have extended the range of operation of the switches by about 50 percent, in terms of closed time and charge passing through the switch. The quantity of charge passed through the switch has been increased to as much as 35 mC. Currents as large as 1 MA and voltages as great as 1.8 MV have been switched off to be diverted to a downstream load. The impedance of the erosion switch can be described as having three stages: 1) essentially zero impedance, 2) a transitional opening phase, and 3) an impedance which is very large (greater than 5 Ω) in comparison with the subohm downstream load. Current diagnostics, consisting of Rogowski coils and segmented shunts, have been successfully developed to monitor the current which propagates to the load region. These monitors have measured rise times as short as 38 ns and slew rates as great as 10 14 A/s at the load. With wire array loads, the pulse conditioning of the switch has been observed to reduce the magnitude of the current losses in the feed which are present when no switch is used. Correlations have been made between the switch closed time, voltage, current, and power with the feed inductance and the generator power injected into the magnetic insulated transmission line (MITL)

  8. Reversible Resistance Switching Effect in Amorphous Ge1Sb4Te7 Thin Films without Phase Transformation

    International Nuclear Information System (INIS)

    Hua-Jun, Sun; Li-Song, Hou; Yi-Qun, Wu; Xiao-Dong, Tang

    2009-01-01

    We demonstrate a reversible resistance switching effect that does not rely on amorphous-crystalline phase transformation in a nanoscale capacitor-like cell using Ge 1 Sb 4 Te 7 films as the working material. The polarity and amplitude of the applied electric voltage switches the cell resistance between low- and high-resistance states, as revealed in the current-voltage characteristics of the film by conductive atomic force microscopy (CAFM). This reversible SET/RESET switching effect is induced by voltage pulses and their polarity. The change of electrical resistance due to the switching effect is approximately two orders of magnitude

  9. Interrupter and hybrid-switch testing for fusion devices

    International Nuclear Information System (INIS)

    Parsons, W.M.; Warren, R.W.; Honig, E.M.; Lindsay, J.D.G.; Bellamo, P.; Cassel, R.L.

    1979-01-01

    This paper discusses recent and ongoing switch testing for fusion devices. The first part describes testing for the TFTR ohmic-heating circuit. In this set of tests, which simulated the stresses produced during a plasma initiation pulse, circuit breakers were required to interrupt a current of 24 kA with an associated recovery voltage of 25 kV. Two interrupter systems were tested for over 1000 operations each, and both appear to satisfy TFTR requirements. The second part discusses hybrid-switch development for superconducting coil protection. These switching systems must be capable of carrying large currents on a continuous basis as well as performing interruption duties. The third part presents preliminary results on an early-counterpulse technique applied to vacuum interrupters. Implementation of this technique has resulted in large increases in interruptible current as well as a marked reduction in contact erosion

  10. High current ion sources

    International Nuclear Information System (INIS)

    Brown, I.G.

    1989-06-01

    The concept of high current ion source is both relative and evolutionary. Within the domain of one particular kind of ion source technology a current of microamperers might be 'high', while in another area a current of 10 Amperes could 'low'. Even within the domain of a single ion source type, what is considered high current performance today is routinely eclipsed by better performance and higher current output within a short period of time. Within their fields of application, there is a large number of kinds of ion sources that can justifiably be called high current. Thus, as a very limited example only, PIGs, Freemen sources, ECR sources, duoplasmatrons, field emission sources, and a great many more all have their high current variants. High current ion beams of gaseous and metallic species can be generated in a number of different ways. Ion sources of the kind developed at various laboratories around the world for the production of intense neutral beams for controlled fusion experiments are used to form large area proton deuteron beams of may tens of Amperes, and this technology can be used for other applications also. There has been significant progress in recent years in the use of microwave ion sources for high current ion beam generation, and this method is likely to find wide application in various different field application. Finally, high current beams of metal ions can be produced using metal vapor vacuum arc ion source technology. After a brief consideration of high current ion source design concepts, these three particular methods are reviewed in this paper

  11. Photo-switching element

    Energy Technology Data Exchange (ETDEWEB)

    Masaki, Yuichi

    1987-10-31

    Photo-input MOS transistor (Photo-switching element) cannot give enough ON/OFF ratio but requires an auxiliary condenser for a certain type of application. In addition, PN junction of amorphous silicon is not practical because it gives high leak current resulting in low electromotive force. In this invention, a solar cell was constructed with a lower electrode consisting of a transparent electro-conducting film, a photosensitive part consisting of an amorphous Si layer of p-i-n layer construction, and an upper metal electrode consisting of Cr or Nichrome, and a thin film transistor was placed on the solar cell, and further the upper metal electrode was co-used as a gate electrode of the thin film transistor; this set-up of this invention enabled to attain an efficient photo-electric conversion of the incident light, high electromotive force of the solar cell, and the transistor with high ON/OFF ratio. (3 figs)

  12. Modeling and analysis of the Rimfire gas switch

    International Nuclear Information System (INIS)

    Gahl, John M.; Kemp, Mark A.; Struve, Kenneth William; Curry, Randy D.; McDonald, Ken F.

    2005-01-01

    Many accelerators at Sandia National Laboratories utilize the Rimfire gas switch for high-voltage, high-power switching. Future accelerators will have increased performance requirements for switching elements. When designing improved versions of the Rimfire switch, there is a need for quick and accurate simulation of the electrical effects of geometry changes. This paper presents an advanced circuit model of the Rimfire switch that can be used for these simulations. The development of the model is shown along with comparisons to past models and experimental results.

  13. CHEETAH: circuit-switched high-speed end-to-end transport architecture

    Science.gov (United States)

    Veeraraghavan, Malathi; Zheng, Xuan; Lee, Hyuk; Gardner, M.; Feng, Wuchun

    2003-10-01

    Leveraging the dominance of Ethernet in LANs and SONET/SDH in MANs and WANs, we propose a service called CHEETAH (Circuit-switched High-speed End-to-End Transport ArcHitecture). The service concept is to provide end hosts with high-speed, end-to-end circuit connectivity on a call-by-call shared basis, where a "circuit" consists of Ethernet segments at the ends that are mapped into Ethernet-over-SONET long-distance circuits. This paper focuses on the file-transfer application for such circuits. For this application, the CHEETAH service is proposed as an add-on to the primary Internet access service already in place for enterprise hosts. This allows an end host that is sending a file to first attempt setting up an end-to-end Ethernet/EoS circuit, and if rejected, fall back to the TCP/IP path. If the circuit setup is successful, the end host will enjoy a much shorter file-transfer delay than on the TCP/IP path. To determine the conditions under which an end host with access to the CHEETAH service should attempt circuit setup, we analyze mean file-transfer delays as a function of call blocking probability in the circuit-switched network, probability of packet loss in the IP network, round-trip times, link rates, and so on.

  14. Switch on the competition. Causes, consequences and policy implications of consumer switching costs

    International Nuclear Information System (INIS)

    Pomp, M.; Shestalova, V.; Rangel, L.

    2005-09-01

    The success or failure of reforms aimed at liberalising markets depends to an important degree on consumer behaviour. If consumers do not base their choices on differences in prices and quality, competition between firms may be weak and the benefits of liberalisation to consumers may be small. One possible reason why consumers may respond only weakly to differences in price and quality is high costs of switching to another firm. This report presents a framework for analysing markets with switching costs and applies the framework in two empirical case studies. The first case study analyses the residential energy market, the second focuses on the market for social health insurance. In both markets, there are indications that switching costs are substantial. The report discusses policy options for reducing switching costs and for alleviating the consequences of switching costs

  15. Switch on the competition. Causes, consequences and policy implications of consumer switching costs

    Energy Technology Data Exchange (ETDEWEB)

    Pomp, M.; Shestalova, V.; Rangel, L.

    2005-09-15

    The success or failure of reforms aimed at liberalising markets depends to an important degree on consumer behaviour. If consumers do not base their choices on differences in prices and quality, competition between firms may be weak and the benefits of liberalisation to consumers may be small. One possible reason why consumers may respond only weakly to differences in price and quality is high costs of switching to another firm. This report presents a framework for analysing markets with switching costs and applies the framework in two empirical case studies. The first case study analyses the residential energy market, the second focuses on the market for social health insurance. In both markets, there are indications that switching costs are substantial. The report discusses policy options for reducing switching costs and for alleviating the consequences of switching costs.

  16. Low Power Very High Frequency Switch-Mode Power Supply with 50 V Input and 5 V Output

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    This paper presents the design of a resonant converter with a switching frequency in the very high frequencyrange (30-300 MHz), a large step down ratio (10 times) and low output power (1 W). Several different invertersand rectifiers are analyzed and compared. The class E inverter and rectifier...... are selected based on complexity andefficiency estimates. Three different power stages are implemented; one with a large input inductor, one with a switch with small capacitances and one with a switch with low on resistance. The power stages are designed with the same specifications and efficiencies from 60...

  17. Experimental Results from a Laser-Triggered, Gas-Insulated, Spark-Gap Switch

    Science.gov (United States)

    Camacho, J. F.; Ruden, E. L.; Domonkos, M. T.

    2017-10-01

    We are performing experiments on a laser-triggered spark-gap switch with the goal of studying the transition from photoionization to current conduction. The discharge of current through the switch is triggered by a focused 532-nm wavelength beam from a Q-switched Nd:YAG laser with a pulse duration of about 10 ns. The trigger pulse is delivered along the longitudinal axis of the switch, and the focal spot can be placed anywhere along the axis of the 5-mm, gas-insulated gap between the switch electrodes. The switch test bed is designed to support a variety of working gases (e.g., Ar, N2) over a range of pressures. Electrical and optical diagnostics are used to measure switch performance as a function of parameters such as charge voltage, trigger pulse energy, insulating gas pressure, and gas species. A Mach-Zehnder imaging interferometer system operating at 532 nm is being used to obtain interferograms of the discharge plasma in the switch. We are also developing a 1064-nm interferometry diagnostic in an attempt to measure plasma free electron and neutral gas density profiles simultaneously within the switch gap. Results from our most recent experiments will be presented.

  18. High power diode-pumped continuous wave and Q-switch operation of Tm,Ho:YVO4 laser

    International Nuclear Information System (INIS)

    Yao, B Q; Li, G; Meng, P B; Zhu, G L; Ju, Y L; Wang, Y Z

    2010-01-01

    High power diode-pumped continuous wave (CW) and Q-switch operation of Tm,Ho:YVO 4 laser is reported. Using two Tm,Ho:YVO 4 rods in a single cavity, up to 20.2 W of CW output lasing at 2054.7 nm was obtained under cryogenic temperature of 77 K with an optical to optical conversion efficiency of 32.9%. For Q-switch operation, up to 19.4 W of output was obtained under 15 kHz pulse repetition frequency (PRF) with a minimum pulse width of 24.2 ns. In addition, different pulse repetition frequencies of Q-switch operation with 10.0 kHz, 12.5 kHz and 15.0 kHz were investigated comparatively

  19. A bidirectional soft switched ultracapacitor interface circuit for hybrid electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Farzanehfard, Hosein; Beyragh, Dawood Shekari; Adib, Ehsan [Electrical and Computer Engineering Department, Isfahan University of Technology, Isfahan 84156 (Iran)

    2008-12-15

    Ultracapacitors are used as auxiliary elements beside batteries to increase peak power capability and battery life in hybrid electric vehicles. In such a configuration, a bidirectional high efficiency converter is required as an interface between ultracapacitors and batteries. Since the voltage level of ultracapacitors and batteries are different, the interface must be able to increase or decrease the voltage level in each power flow direction while limiting the current. This paper presents a zero voltage transition (ZVT) buck-and-boost converter for ultracapacitors interface. All the switches in the proposed converter are soft switched to reduce switching losses and increase efficiency. The converter operational modes are analyzed and its performance is discussed. Finally, the experimental results from a 150 W laboratory prototype are presented which justify the theoretical analysis. (author)

  20. Resistance switching memory in perovskite oxides

    International Nuclear Information System (INIS)

    Yan, Z.B.; Liu, J.-M.

    2015-01-01

    The resistance switching behavior has recently attracted great attentions for its application as resistive random access memories (RRAMs) due to a variety of advantages such as simple structure, high-density, high-speed and low-power. As a leading storage media, the transition metal perovskite oxide owns the strong correlation of electrons and the stable crystal structure, which brings out multifunctionality such as ferroelectric, multiferroic, superconductor, and colossal magnetoresistance/electroresistance effect, etc. The existence of rich electronic phases, metal–insulator transition and the nonstoichiometric oxygen in perovskite oxide provides good platforms to insight into the resistive switching mechanisms. In this review, we first introduce the general characteristics of the resistance switching effects, the operation methods and the storage media. Then, the experimental evidences of conductive filaments, the transport and switching mechanisms, and the memory performances and enhancing methods of perovskite oxide based filamentary RRAM cells have been summarized and discussed. Subsequently, the switching mechanisms and the performances of the uniform RRAM cells associating with the carrier trapping/detrapping and the ferroelectric polarization switching have been discussed. Finally, the advices and outlook for further investigating the resistance switching and enhancing the memory performances are given